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Peter H. Schmitt1, and Tomasz Truderung2

1 Karlsruhe Institute of Technology
2 Universität Trier

Abstract. In this paper, we report on an ongoing case study in which we use the
KeY tool, a theorem prover for checking functional correctness and noninterfer-
ence properties of JAVA programs, to establish computational indistinguishability
for a simple JAVA program that involves clients sending encrypted messages over
an untrusted network to a server.
The analysis uses a general framework, recently proposed by Küsters et al., which
enables program analysis tools, such as KeY, that can check (standard) noninter-
ference properties for JAVA programs to establish computational indistinguisha-
bility properties.

1 Introduction

Computational indistinguishability is a fundamental security property that can be used
to express, for instance, strong secrecy of keys/messages, privacy of votes, unlinkability
of communication (to prevent tracking of devices, RFID tags or contactless smartcards,
and people), and as such, is relevant in many security critical applications, including
secure message transmission, key exchange, anonymous communication, and e-voting.
Two systems S1 and S2 are computationally indistinguishable if no probabilistic poly-
nomially bounded environment (adversary) is able to distinguish, with more than neg-
ligible probability, whether it interacts with S1 or S2.

In [13], Küsters et al. have proposed a general framework for establishing computa-
tional indistinguishability properties for JAVA(-like) programs using program analysis
tools that can check (standard) noninterference properties [7] for JAVA programs. Sev-
eral such tools exist, including Joana [8], KeY [4], a tool based on Maude [1], and
Jif [19,21]. However, these tools cannot deal with cryptography directly. In particular,
they cannot deal with probabilities and the noninterference properties that they prove
are w.r.t. unbounded adversaries, rather than probabilistic polynomially bounded ad-
versaries. For example, if a message is encrypted and the ciphertext is given to the
adversary, the tools consider this to be an illegal information flow (or a declassifica-
tion), because a computationally unbounded adversary could decrypt the message. This
problem has long been observed in the literature (see, e.g., [25] and references therein).
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Now, to nevertheless enable such tools to deal with cryptography and to estab-
lish computational indistinguishability properties, the approach taken in the general
framework by Küsters et al. is to use techniques from simulation-based security (see,
e.g., [5,22,14]). More precisely, in order to establish computational indistinguishability
properties for a JAVA program (which may describe a distributed system), the idea is
to first check noninterference for the JAVA program under consideration where crypto-
graphic operations (such as encryption) are performed within ideal functionalities. Such
functionalities typically provide guarantees even in the face of unbounded adversaries
and can often be formulated without probabilistic operations. These ideal functionali-
ties can then be replaced by their realizations. Now, by theorems stated as part of the
framework, from the noninterference of the JAVA program with ideal functionalities one
obtains computational indistinguishability for the actual JAVA program (with the ideal
components replaced by the real ones).

As further discussed in [13], language-based verification of computational indistin-
guishability properties is a very challenging task, especially for practical programming
languages. The approach taken in [13] is new and in fact there exists almost no prior
work in the literature that tackles this problem.

In [13], a first case study demonstrating the feasibility and the usefulness of the
approach was carried out using the tool Joana [8], a fully automated tool for proving
noninterference properties of JAVA programs.

In this paper, we report on an ongoing case study in which the KeY tool [4] is
used within the framework of Küsters et al. in order to establish computational in-
distinguishability for a simple JAVA program that involves clients sending encrypted
messages over an untrusted network to a server.

The KeY system, see [4] as the main reference, is a methodology and tool for de-
ductive verification of annotated sequential JAVA programs. From a user’s perspective it
is based on the design-by-contract paradigm as advocated by Betrand Meyer in [17,18].
For the annotation of the JAVA source code an extension of the Java Modeling Lan-
guage (JML) is employed, see [16]. The internal logic of the KeY system is Dynamic
Logic, the basics of which will be reviewed in Subsection 3.1 below. In keeping with the
design-by-contract paradigm as well as the approach taken by JML verification in the
KeY system is strictly modular. That is to say, the verification of a method contract is
performed without any assumptions on the situation in which a method may be called.
Thus, a contract for method m(), once proved correct, may be applied everywhere m()

is called. In this sence we may say that KeY adopts an open system perspective.
Verification of the case study with KeY is still ongoing work. The precise state

of the work and the challenges to be met will be explained in Section 6. We may
however already conclude that the combination of verification with KeY and the general
framework is a very promision and fruitful approach.

Structure of the paper. In the next two sections, we briefly recall the general framework
and the KeY approach. In Section 4, we argue that noninterference as proven in the KeY
approach implies noninterference as considered in the general framework, and hence,
the KeY approach delivers what is needed for the general framework. The Java program
to be analyzed in our case study is presented in Section 5, with the verification process
described in Section 6. We conclude in Section 7.
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2 The General Framework for the Cryptographic Verification of
JAVA Programs

In this section, we briefly recall the general framework for the cryptographic verification
of Java programs from [13].

2.1 Jinja+: A JAVA-like language

The framework is stated for a JAVA-like language called Jinja+. Jinja+ is based on Jinja
[12] and extends this language with some additional features that are useful or needed
in the context of the framework.

Jinja+ covers a rich subset of JAVA, including classes, inheritance, (static and non-
static) fields and methods, the primitive types int, boolean, and byte (with the usual
operators for these types), arrays, exceptions, and field/method access modifiers, such
as public, private, and protected. Among the features of JAVA that are not covered
by Jinja+ are: abstract classes, interfaces, strings, and concurrency.

Syntax of Jinja Expressions in Jinja are constructed recursively and include: (a) cre-
ation of a new object, (b) casting, (c) literal values (constants) of types boolean and int,
(d) null, (e) binary operations, (f) variable access and variable assignment, (g) field
access and field assignment, (h) method call, (i) blocks with locally declared variables,
(j) sequential composition, (k) conditional expressions, (l) while loop, (m) exception
throwing and catching.

A program or a system is a set of class declarations. A class declaration consists of
the name of the class and the class itself. A class consists of the name of its direct super-
class (optionally), a list of field declarations, and a list of method declarations, where
we require that different fields and methods have different names. A field declaration
consists of a type and a field name. A method declaration consists of the method name,
the formal parameter names and types, the result type, and an expression (the method
body). Note that there is no return statement, as a method body is an expression; the
value of such an expression is returned by the method.

In what follows, by a program we will mean a complete program (one that is cor-
rect and can be executed). We assume that a program contains a unique static method
main (declared in exactly one class); this method is the first to be called in a run. By a
system we will mean a set of classes which is correct (can be compiled), but possibly
incomplete (can use not defined classes). In particular, a system can be extended to a
(complete) program.

Some construction of Jinja (and the richer language Jinja+, specified below) are
illustrated by the program in Figure 1, where we use JAVA-like syntax (we will use this
syntax as long as it translates in a straightforward way to a Jinja/Jinja+ syntax).

Jinja comes equipped with a type system and a notion of well-typed programs. We
will consider only well-typed programs.
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Semantics of Jinja Following [12], we briefly sketch the small step semantics of Jinja.
The full set of rules, including those for Jinja+ (see the next subsection) can be found
in [13].

A state is a pair of heap and a store. A store is a map from variable names to values.
A heap is a map from references (addresses) to object instances. An object instance is
a pair consisting of a class name and a field table, and a field table is a map from field
names (which include the class where a field is defined) to values.

The small step semantics of Jinja is given as a set of rules of the form P ` 〈e,s〉 →
〈e′,s′〉, describing a single step of the program execution (reduction of an expression).
We will call 〈e,s〉 (〈e′,s′〉) a configuration. In this rule, P is a program in the context of
which the evaluation is carried out, e and e′ are expressions and s and s′ are states. Such
a rule says that, given a program P and a state s, an expression e can be reduced in one
step to e′, changing the state to s′.

Jinja+ The basis for the general framework in [13] is a language that extends Jinja
with: (a) the primitive type byte with natural conversions from and to int, (b) arrays,
(c) abort primitive, (d) static fields (with the restriction that they can be initialized by
literals only), (e) static methods, (f) access modifier for classes, fields, and methods
(such as private, protected, and public), (g) final classes (classes that cannot be
extended), (h) the throws clause of a method declaration.

Exceptions, which are already part of Jinja, are particularly critical for the security
properties we are interested in because they provide an additional way information can
be transfered from one part of the program to another.

We assume that Jinja+ programs have unbounded memory. The reason for this mod-
eling choice is that the formal foundation for the security notions used in the general
framework of [13] are based on asymptotic security. This kind of security definitions
only makes sense if the memory is not bounded, since the security parameter grows
indefinitely.

Randomized programs. So far, we have considered deterministic programs. We will
also need to consider randomized programs in the framework. For this purpose, Jinja+
programs may use the primitive randomBit() that returns a random bit each time it is
used. Jinja+ programs that do no make use of randomBit() are (called) deterministic,
and otherwise, randomized.

As already mentioned, when presenting program code, we will use JAVA-like syntax, as
long as it translates in an straightforward way to the syntax of Jinja+. In this sense, the
code presented in Figure 1 can be considered as a valid Jinja+ program.

Semantics and runs of Jinja+ programs. As already mentioned, the full set of rules
of the small step semantics of Jinja+ can be found in [13].

Definition 1. A run of a deterministic program P is a sequence of states obtained using
the (small step) Jinja+ semantics from the initial configuration of the form 〈e0,(h0, l0)〉,
where e0 =C.main(), for C being the (unique) class where main is defined, h0 = /0 is the
empty heap, l0 is the store mapping the static (global) variables to their initial values (if
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1 class A extends Exception {

2 protected int a; // field with an access modifier

3 static public int[] t = null; // static field

4 static public void main() { // static method

5 t = new int[10]; // array creation

6 for (int i=0; i<10; i++) // loops

7 t[i] = 0; // array assignment

8 B b = new B(); // object creation

9 b.bar(); // method invocation

10 }

11 }

12 class B extends A { // inheritance

13 private int b;

14 public B() // constructor

15 { a=1; b=2; } // field assignment

16 int foo(int x) throws A { // throws clause

17 if (a<x) return x+b; // field access (a, b)

18 else throw (new B()); // exception throwing

19 }

20 void bar() {

21 try { b = foo(A.t[2]); } // static field access

22 catch (A a) { b = a.a; } // exception catching @\label{example:catch}@

23 }

24 }

Fig. 1. An example Jinja+ program (in JAVA-like notation).
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the initial value for a static variable is not specified in the program, the default initial
value for its type is used).

A randomized program induces a distribution of runs in the obvious way. Formally,
such a program is a random variable from the set {0,1}ω of infinite bit strings into the
set of runs (of deterministic programs), with the usual probability space over {0,1}ω ,
where one infinite bit string determines the outcome of randomBit(), and hence, induces
exactly one run.

The small step semantics of Jinja+ provides a natural measure for the length of
a run of a program, and hence, the runtime of a program. The length of a run of a
deterministic program is the number of steps taken using the rules of the small-step
semantics. Given this definition, for a randomized program the length of a run is a
random variable defined in the obvious way.

For a run r of a program P containing some subprogram S (a subset of classes of
P), we define the number of steps performed by S or the number of steps performed in
the code of S in the expected way. To define this notion, we keep track of the origin of
(sub)expressions, i.e., the class they come from. If a rule is applied on a (sub)expression
that originates from the class C, we label this step with C and count this as a step
performed in C (see [13] for details).

2.2 Indistinguishability

We now recall what it means for two systems to be indistinguishable by environments
interacting with those systems according to [13]. For this purpose, we first define inter-
faces that systems use/provide, how systems are composed, and environments. We then
define the two forms of indistinguishability, namely perfect and computational indis-
tinguishability. Since we consider asymptotic security, this involves to define programs
that take a security parameter as input and that run in polynomial time in the security
parameter.

Interfaces Before we define the notion of an interface, we emphasize that it should not
be confused with the concept of interfaces in JAVA; we use this term with a different
meaning.

An interface I is defined like a (Jinja+) system but where all method bodies as well
as static field initializers are dropped. If I and I′ are interfaces, then I′ is a subinterface
of I, written I′ v I, if I′ can be obtained from I by dropping whole classes (with their
method and field declarations), dropping methods and fields, dropping extends clauses,
and/or adding the final modifier to class declarations. Two interfaces are called disjoint
if the set of class names declared in these interfaces are disjoint.

If S is a system, then the public interface of S is obtained from S by (1) dropping all
private fields and methods from S and (2) dropping all method bodies and initializers of
static fields. A system S implements an interface I, written S : I, if I is a subinterface of
the public interface of S. Clearly, for every system S we have that S : /0.

We say that a system S uses an interface I, written I ` S, if S, besides its own
classes, uses at most classes/methods/fields declared in I. We always assume that the
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public interface of S and I are disjoint. We note that if I v I′ and I ` S, then I′ ` S. We
write I0 ` S : I1 for I0 ` S and S : I1. If I = /0, i.e., I is the empty interface, we often write
` S instead of /0 ` S. Note that ` S means that S is a complete program.

Interfaces I1 and I2 are compatible if there exists an interface I such that I1 v I and
I2 v I. Intuitively, if two compatible interfaces contain the same class, the declarations
of methods and fields of this class in those interfaces must be consistent (for instance,
a field with the same name, if declared in both interfaces, must have the same type).
Note that if I1 and I2 are disjoint, then they are compatible. Systems that use compatible
interfaces and implement disjoint interfaces can be composed:

Composition Let IS, IT , I′S and I′T be interfaces such that IS and IT are disjoint and I′S and
I′T are compatible. Let S and T be systems such that not both S and T contain the method
main, I′S ` S : IS, and I′T ` T : IT . Then, we say that S and T are composable and denote
by S ·T the composition of S and T which, formally, is the union of (declarations in) S
and T . If the same classes are defined both in S and T (which may happen for classes not
specified in IS and IT ), then we always implicitly assume that these classes are renamed
consistently in order to avoid name clashes.

Environments An environment will interact with one of two systems and it has to
decide with which system it interacted (see below). Its decision is written to a distinct
static boolean variable result. A system E is called an environment if it declares a
distinct private static variable result of type boolean with initial value false. In the
rest of the paper, we (often implicitly) assume that the variable result is unique in
every JAVA program, i.e., it is declared in at most one class of a program, namely, one
that belongs to the environment.

Let S be a system with S : I for some interface I. Then an environment E is called an
I-environment for S if there exists an interface IE disjoint from I such that (i) IE ` S : I
and I ` E : IE and (ii) either S or E contains main(). Note that E and S, as above, are
composable and E ·S is a (complete) program.

For a finite run of E · S, i.e., a run that terminates, we call the value of result at
the end of the run the output of E or the output of the program E · S. For infinite runs,
we define the output to be false. If E · S is a deterministic program, then we write
E · S true if the output of E · S is true. If E · S is a randomized program, we write
Prob{E ·S true} to denote the probability that the output of E ·S is true.

The systems S1 and S2 use the same interface if (i) for every IE , we have that IE ` S1
iff IE ` S2, and (ii) S1 contains the method main iff S2 contains main. Observe that if S1
and S2 use the same interface and we have that S1 : I and S2 : I for some interface I, then
every I-environment for S1 is also an I-environment for S2.

Programs with security parameter As mentioned at the beginning of this section, we
need to consider programs that take a security parameter as input and run in polynomial
time in this security parameter. To ensure that all parts of a system have access to the
security parameter, we fix a distinct interface ISP consisting of (one class containing)
one public static variable securityParameter. We assume that, in all the considered

7



systems/programs, this variable (after being initialized) is only read but never written
to. Therefore, all parts of the considered system can, at any time, access the same,
initial value of this variable (see [13] for details). We denote by P(η) a program that
runs with security parameter η , i.e., a program where the variable securityParameter

is initialized by η .
As discussed in [13], it is useful to parameterize the semantics of Jinja+ with the

maximal (absolute) value integers can take. However, in this presentation we ignore this
technical detail.

Perfect Indistinguishability We now recall the definition of (termination-insensitive)
perfect indistinguishability from [13], which, as proved in [13], implies computational
indistinguishability (see also below). We say that a deterministic program P terminates,
if the run of P is finite.

Let S1 and S2 be deterministic systems such that S1 : I and S2 : I for some interface
I. Then, S1 and S2 are perfectly indistinguishable w.r.t. I, written S1 ≈I

perf S2, if (i) S1
and S2 use the same interface and (ii) for every deterministic I-environment E for S1
(and hence, S2), for every security parameter η , it holds that if E ·S1(η) and E ·S2(η)
terminate, then E ·S1(η) true iff E ·S2(η) true.

Polynomially Bounded Systems As already mentioned at the beginning of this sec-
tion, in order to define the notion of computational indistinguishability we need to de-
fine programs and environments whose runtime is polynomially bounded in the security
parameter.

We start with the definition of almost bounded programs. These are programs that,
with overwhelming probability, terminate after a polynomial number of steps. Formally,
a program P with security parameter is almost bounded if there exists a polynomial p
such that the probability that the length of a run of P(η) exceeds p(η) is a negligible
function in η .3

We also need the notion of a bounded environment. The number of steps such an
environment performs in a run is bounded by a fixed polynomial independently of the
system the environment interacts with. Formally, an environment E is called bounded if
there exists a polynomial p such that, for every system S such that E is an I-environment
for S (for some interface I) and for every run of E ·S(η), the number of steps performed
in the code of E does not exceed p(η).

If an environment E is both bounded and an I-environment for some system S, we
call E a bounded I-environment for S.

For the cryptographic analysis of systems to be meaningful, we study systems that
run in polynomial time (with overwhelming probability) with any bounded environ-
ment. Therefore, the following notion is needed: A system S is environmentally I-
bounded, if S : I and for each bounded I-environment E for S, the program E · S is
almost bounded.

3 As usual, a function f from the natural numbers to the real numbers is negligible, if for every
c > 0 there exists η0 such that f (η)≤ 1

ηc for all η > η0. A function f is overwhelming if 1-f
is negligible.

8



Computational Indistinguishability Having defined polynomially bounded systems
and programs, we are now ready to recall the definition of computational indistinguisha-
bility of systems from [13]. We begin with the notion of computationally equivalent
programs.

Let P1 and P2 be (complete, possibly probabilistic) programs with security parame-
ter. Then P1 and P2 are computationally equivalent, written P1 ≡comp P2, if

|Prob{P1(η) true}−Prob{P2(η) true}|

is a negligible function in the security parameter η .
Let S1 and S2 be environmentally I-bounded systems. Then S1 and S2 are compu-

tationally indistinguishable w.r.t. I, written S1 ≈I
comp S2, if S1 and S2 use the same

interface and for every bounded I-environment E for S1 (and hence, S2) we have that
E ·S1 ≡comp E ·S2.

We point out that in the above definition two cases can occur: (1) main() is defined
in E or (2) main() is defined in both S1 and S2. In the first case, E can freely create
objects of classes in the interface I (which is a subset of classes of S1/S2) and initiate
calls. Eventually, even in case of exceptions, E can get back control (method calls return
a value to E and E can catch exceptions if necessary), unless S1/S2 uses abort. The
kind of control E has in the case (2), heavily depends on the specification of S1/S2.
This can go from having as much of control as in case (1) to being basically a passive
observer. For example, main() (as specified in S1/S2) could call a method of E and from
then on E can use the possibly very rich interface I as in case (1). The other extreme
is that I is empty, say, so E cannot create objects of (classes of) S1/S2 by itself, only
S1/S2 can create objects of (classes of) E and of S1/S2. Hence, S1/S2 has more control
and can decide, for instance, how many and which objects are created and when E
is contacted. Still even in this case, if so specified, S1/S2 could give E basically full
control by callback objects. (As a side note, illustrating the richness of the interfaces,
compared to Turing machine models, E could also extend classes of S1/S2 and by this,
if not properly protected, might get access to information kept in these classes.)

2.3 Simulatability

We now recall what it means for a system to realize another system, in the spirit of the
simulation-based approach. In a nutshell, the definition says that the (real) system R
realizes an (ideal) system F if there exists a simulator S such that R and S ·F behave
almost the same in every bounded environment.

Definition 2 (Strong Simulatability [13]). Let Iin, Iout , IE , IS be disjoint interfaces. Let
F and R be systems. Then R realizes F w.r.t. the interfaces Iout , Iin, IE , and IS, written
R ≤(Iout ,Iin,IE ,IS) F or simply R ≤ F, if i) IE ∪ Iin ` R : Iout and IE ∪ Iin ∪ IS ` F : Iout , ii)
either both F and R or neither of these systems contain the method main(), iii) R is
an environmentally Iout -bounded system (F does not need to be), and iv) there exists
a system S (the simulator) such that S does not contain main(), IE ` S : IS, S · F is
environmentally Iout -bounded, and R ≈Iout

comp S ·F.
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The intuition behind the way the interfaces between the different components (environ-
ment, ideal and real functionalities, simulator) are defined is as follows: Both R and F
provide the same kind of functionality/service, specified by the interface Iout . They may
require some (trusted) services Iin from another system component and some services
from an (untrusted) environment, for example, networking and certain other libraries.
In addition, the ideal functionality F may require services from the simulator S, which
in turn may require services from the environment. As discussed in [13], we note that
the interfaces can be very rich—they allow for communication and method calls in both
directions.

The notion of strong simulatability, as introduced above, enjoys important basic
properties, namely, reflexivity and transitivity, and allows to prove a fundamental com-
position theorem (see [13] for more details).

In the case study presented in Section 5, we will analyze a system that uses public-key
encryption. In this analysis, we will use an ideal functionality for public-key encryp-
tion, denoted by IdealPKE, which is provided in [13]. In [13], it was also proved that
this functionality can be realized by a system called RealPKE that implements, in the
obvious way, an IND-CCA2-secure public-key encryption scheme.

2.4 From Perfect to Computational Indistinguishability

Following [13], we now present results stating that if two systems that use an ideal func-
tionality are perfectly indistinguishable, then these systems are computationally indis-
tinguishable if the ideal functionality is replaced by its realization. This is a central step
in enabling program analysis tools that cannot deal with cryptography and probabilistic
polynomially bounded adversaries to establish computational indistinguishability prop-
erties.

The proof of the statement sketched above is done via two theorems in [13]. The
first says that if two systems that use an ideal functionality are computationally indistin-
guishable, then they are also computationally indistinguishable if the ideal functionality
is replaced by its realization.

Theorem 1 ([13]). Let I, J, IE , IS, and IP be disjoint interfaces with J v IP ∪ I. Let F,
R, P1, and P2 be systems such that (i) IE ∪ I ` P1 : IP and IE ∪ I ` P2 : IP, (ii) R≤(I,IP,IE ,IS)

F, in particular, IE ∪ IP ` R : I and IE ∪ IP ∪ IS ` F : I, (iii) P1 contains main() iff P2
contains main(), (iv) not both P1 and F (and hence, R) contain main(), (v) F ·Pi and
R ·Pi, for i ∈ {1,2}, are environmentally J-bounded. Then, F ·P1 ≈J

comp F ·P2 implies
R ·P1 ≈J

comp R ·P2.

The next theorem links perfect indistinguishability with computational indistin-
guishability.

Theorem 2 ([13]). Let I be an interface and let S1 and S2 be deterministic, environ-
mentally I-bounded programs such that Si : I, for i ∈ {1,2}, and S1 and S2 use the same
interface. Then, S1 ≈I

perf S2 implies S1 ≈I
comp S2.

By combining Theorem 1 and Theorem 2, one immediately obtains the desired result
explained above.
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Corollary 1 ([13]). Under the assumption of Theorem 1 and moreover assuming that
P1 ·F and P2 ·F are deterministic systems, it follows that P1 ·F ≈J

perf P2 ·F implies
P1 ·R ≈J

comp P2 ·R.

2.5 Perfect Indistinguishability and Noninterference

We now recall the statement from [13] that perfect indistinguishability and noninterfer-
ence are equivalent for an appropriate class of systems. In combination with Corollary 1
this means that it suffices for tools to analyze systems that use an ideal functional-
ity w.r.t. noninterference in order to get computational indistinguishability for systems
when the ideal functionality is replaced by its realization.

The (standard) noninterference notion for confidentiality [7] requires the absence of
information flow from high to low variables within a program. In [13], noninterference
is defined for a (Jinja+) program P with some static variables x of primitive types that
are labeled as high. Also, some other static variables of primitive types are labeled as
low. We say that P[x] is a program with high and low variables. By P[a] we denote the
program P where the high variables x are initiated with values a and the low variables
are initiated as specified in P. We assume that the lengths of x and a are the same
and a contains values of appropriate types; in such a case we say that a is valid. Now,
noninterference for a (deterministic) program is defined as follows, where, for ease of
presentation, the definition is slightly simplified compared to [13].

Definition 3 (Noninterference for Jinja+ programs [13]). Let P[x] be a program with
high and low variables. Then, P[x] has the noninterference property if the following
holds: for all valid a1 and a2, if P[a1] and P[a2] terminate, then at the end of these runs,
the values of the low variables are the same.

The above notion of noninterference deals with complete programs (closed sys-
tems). The definition can be lifted to open systems as follows

Definition 4 (Noninterference in an open system [13]). Let I be an interface and
let S[x] be a (not necessarily closed) deterministic system with a security parameter,
high and low variables, and such that S : I. Then, S[x] is I-noninterferent if for every
deterministic I-environment E for S[x] and every security parameter η noninterference
holds for the system E ·S[x](η), where the variable result declared in E is considered
to be a low variable.

Now, equivalence of this notion and perfect indistinguishability follows easily by
the definitions of I-noninterference and perfect indistinguishability:

Theorem 3. [13] Let I and S[x] be given as in Definition 4 with no variable of S labeled
as low (only the variable result declared in the environment is labeled as low). Then
the following statements are equivalent:
(a) For all valid a1 and a2, we have that S[a1] ≈I

perf S[a2].
(b) I-noninterference holds for S[x].

As already mentioned, in combination with Corollary 1 this theorem reduces the prob-
lem of checking computational indistinguishability for systems that use real crypto-
graphic schemes to checking noninterference for systems that only use ideal function-
alities.
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2.6 A Proof Technique for Noninterference in Open Systems

There are many tools that can deal with classical noninterference (noninterference of
a complete program), including the KeY tool. In our case study, we want to apply the
KeY tool to prove noninterference in certain open systems. In [13], we have developed
techniques that help with this process. We shortly recall these techniques; for more
details, see [13].

Our technique works for the following cases. We assume that a system S communi-
cates with its environment E through an interface IE provided by E (where E does not
use the public interface of S) such that S and E exchange information through values
of primitive types, arrays of primitive types, simple objects, and throwing exceptions.
Some additional restrictions are imposed on the system S. These restrictions (formally
specified in [13]) guarantee that, although references are exchanged between E and S,
the communication resembles exchange of pure data.

Now, in order to show I-noninterference for S, with I = /0 (the environment E does
not use the public interface of S), we use the following technique: Given S and IE
as above, we consider a specific system E∗IE that implements the interface IE (see the
definition of this system in [13]). This system is not closed: it uses the interface IIO
consisting of (a class with) two static methods:

1 public static void unstrustedOutput(int x);

2 public static int untrustedInput();

We obtain the following fact, which is a corollary of Theorem 6 in [13]:4

Corollary 2. Let S be as above and I = /0. Then, S is I-noninterferent if the system
E∗IE ·S is I-noninterferent.

Note that the interface IIO used by the system E∗IE ·S is very restricted which facilitates
the verification process described in the following sections. In short, the formulation of
contracts for unspecified methods is greatly simplified.

We note that the program P considered in our case study (Section 5) falls into the
family of programs that can be handled by the technique sketched above.

3 The KeY Approach

In the following we present the KeY approach to verify information flow properties.
The presentation follows [27].

As a starting point, some basics on Java Dynamic Logic (JAVADL) will be sum-
marised in the next section. Afterwards, a simple definition of non-interference and its
formalisation in JAVADL will be considered in Section 3.2. The formalisation will be
illustrated on a password checker example which will be used and extended throughout
the presentation of the KeY approach. Section 3.3 gives a short introduction to JML and
JML* and continues with the definition of an extension of JML* suitable for the spec-
ification of information flow properties. Finally Section 3.4 describes the translation of
the JML* extensions into JAVADL.

4 Theorem 6 in [13] makes a stronger statement in that only specific implementations of the
interface IIO are considered.
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3.1 Basics on JAVA Dynamic Logic

Dynamic Logic is an extension of typed first-order logic tailored towards reasoning
about computer programs, see [9] for an early publication and [10] for a modern ac-
count. Typical formulas, that go beyond first-order logic, are of the form 〈π〉F or [π]F
where F is again a Dynamic Logic formula and π is a program. In theoretical inves-
tigations the programs π are taken from some abstract programming language. In the
instantiation of Dynamic Logic that we are concerned with, JAVADL, π can be an ar-
bitrary, executable, sequential JAVA program. More formally, dynamic logic is a multi-
modal logic in which there are modalities 〈π〉 and [π] for every program π . Dynamic
logic extends Hoare logic: The Hoare triple {φ}π{ψ} can be expressed in dynamic
logic as φ → [π]ψ .

For the definition of terms we implicitly assume that a vocabulary Σ = Rel]Fun]
LV of relation and functions symbols and a set of logical variables has been fixed.
Among the function symbols we distinguish the subset R ⊆ Fun of reference symbols.
Reference symbols are

1. all instance and static fields as well as
2. this, result and method parameters.

Expressions built up exclusively from symbols in R are called reference expressions.
We use ExpR to stand for the set of all reference expressions. The semantics of Dy-
namic Logic is based on the notion of a program state, i.e., an assignment of values to
all program variables, global and local. The formula 〈π〉F is true in state s, in symbols
vals([π]F) = tt, if the program π started in s terminates and formula F is true in the
terminating state. This corresponds to total correctness assertions in Hoare logic that
the reader might be more familiar with. Dually [π]F is true in state s, if either π does
not terminate when started in s or 〈π〉F is true in s. This corresponds to partial cor-
rectness assertions in Hoare logic. The first-order logic part of JAVADL contains types
Heap and Field and thus allows quantifications ∀Heaph and ∀Field f . Furthermore
there is an implicit program variable heap of type Heap that evaluates in any state to
the current heap of the JAVA program. The values of fields, arrays and information on
created objects are stored and accessed by suitable functions as formalized in the theory
of abstract arrays, see [23, pages 69 – 70] and [28]. The details of this model play no
role in the current report. Thus, the current value of the implicit program variable heap
determines completely the current state of the JAVA heap.

JAVADL uses an additional modal operator {v := t} called an update, where v is
a program variable and t a JAVADL expression. A formula {v := t}F is true in state
s if F is true in the state s′ with s′(w) = s(w) for variables w 6= v and s′(v) equals the
value of expression t in state s. Updates serve more than one purpose in JAVADL. They
are ultimately necessary for an axiomatization of forward symbolic execution. For the
reader of this report it suffices to think of updates as an interface between logical and
program variables. While program variables may occur in formulas, logical variables
are not allowed in programs. But logical variables may occur in the expression t in an
update {v := t}. By {v1 := t1 || v2 := t2} we denote parallel composition of the updates
{v1 := t1} and {v2 := t2}.
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3.2 Information Flow and JAVA Dynamic Logic

The most prominent information flow property is non-interference. In the simple case
of theoretical programming languages non-interference is defined for a program P and
a partition of the program variables of P in low security variables low and high secu-
rity variables high. The low variables are publicly readable variables whereas the high
variables contain secret data which should be protected. Intuitively non-interference
expresses that there should be no data-flow from high variables into low ones. In this
report we classify reference symbols as high or low. A reference expression is called
high (low) if its leading reference symbol is high (low). By L we denote the set of all
low reference expressions.

Definition 5 (Low equivalence). We call two states s1, s2 low equivalent, with respect
to L , in symbols s1 ∼L s2, iff vals1(e) = vals2(e) for all e ∈L .

Definition 6 (Simple Non-interference). We say that there is no interference of high
references with low references in P iff
for all states s1,s2,s′1,s

′
2 such that program P started in si terminates in s′i

the condition s1 ∼L s2⇒ s′1 ∼L s′2 holds.

Simple non-interference can be formulated naturally in JAVA Dynamic Logic with the
help of self-composition as it will be shown in the next section.

Formalising Simple Non-Interference in JAVADL Simple non-interference will be
expressed in JAVADL with the help of self-composition [2,6]. In short, self-composition
executes a program twice on any two low equivalent states and compares whether the
results are also low equivalent. In our formulation we replace the program P from Defi-
nition 6 by a call to a method m of class C with parameters p1, . . . , pn of type T1, . . . ,Tn
and a return value of type Tr.

Lemma 1. Let L be all reference expressions occurring in method m with leading
symbol classified as low. If the formula

∀Heaps1
in,s

2
in,s

1
out ,s

2
out

∀Cthis ∀T1 p1
1 . . . ∀Tn p1

n ∀Tr r1 ∀T1 p2
1 . . . ∀Tn p2

n ∀Tr r2 (
this 6= null

∧U 1
in〈Tr result = this.m(p1, . . . , pn)〉(h1

out = heap∧ r1 = result)

∧U 2
in〈Tr result = this.m(p1, . . . , pn)〉(h2

out = heap∧ r2 = result)

∧
∧

e∈L
U 1

in e = U 2
in e

→
∧

e∈L
U 1

out e = U 2
out e

)
(1)

with Updates U i
x defined as U i

x = {heap := si
x || p1 := pi

1 || . . . || pn := pi
n || r := ri} is valid

then there is no information flow from the high locations to the low ones in m.

Proof. See [27].
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1 class PasswordFile { high symbols

2 private int[] names, passwords;

3 //@ invariant names.length == passwords.length;

4 /*@ normal_behavior

5 @ ensures \result ==

6 @ (\exists int i; 0<=i && i<names.length;

7 @ names[i]==user && passwords[i]==password);

8 @ accessible names, names[*], passwords, passwords[*];

9 @ modifies \nothing; @*/

10 public boolean check(int user, int password) {

11 /*@ loop_invariant 0 <= i && i <= names.length &&

12 @ ( \forall int j; 0 <= j && j < i;

13 @ !( names[j]==user

14 @ && passwords[j]==password) );

15 @ assignable \nothing;

16 @ decreases names.length - i; @*/

17 for (int i = 0; i < names.length; i++) {

18 if (names[i] == user && passwords[i] == password) {

19 return true;

20 }

21 }

22 return false;

23 }

24 } low symbols

Fig. 2. Example of a password checker in JAVA with a full functional JML-specification and an
informal annotation for low- and high-reference symbols.

Formula (1) has been inspired by [6, Formula (7)]. However, the formalisation is still
quite abstract and can’t be used directly as proof obligation for the KeY System. Some
details on general assumptions like invariants and the wellformedness of the heaps etc.
are abstracted away. Furthermore, it does not cover important features of a practica-
ble non-interference specification language for JAVA, as discussed in Section 3.4. Be-
fore we introduce the new program-level specification language for non-interference in
Section 3.3, we want to illustrate the formalisation of simple non-interference with an
example.

Example The frequently used password checker example will be used to illustrate the
formalisation. The example will be extended throughout the presentation of the KeY
approach. The considered implementation (Figure 2) consists of a class PasswordFile
with two private arrays, names and passwords, which store the user-names and their
corresponding passwords at the same index. Obviously, the length of those two arrays
has to coincide. This is formulated with the help of an JML-invariant in line 3. For the
moment the reader may assume that such an invariant holds in any state of the program.
More details on JML will be given in Section 3.3. Furthermore, the class contains a
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1 ∀ Heap h_in_1, h_in_2, h_out_1, h_out_2 // independend heaps

2 ∀ PasswordFile this // considered class

3 ∀ int user1, password1, user2, password2 // method arguments

4 ∀ boolean result1, result2 // return values

5 // General Assumtions + Class Invariants

6 wellFormed(h_in_1) ∧ wellFormed(h_in_2) ∧ . . .
7 // Independent Symbolic Executions

8 ∧ {heap := h_in_1}\[{ . . .
9 boolean r = this.check(user1 ,password1)@PasswordFile;

10 . . .}\]( h_out_1 = heap ∧ result1 = r )

11 ∧ {heap := h_in_2}\[{ . . .
12 boolean r = this.check(user2 ,password2)@PasswordFile;

13 . . .}\]( h_out_2 = heap ∧ result2 = r )

14 // Comparision of the low variables

15 ∧ user1 = user2 ∧ password1 = password2

16 → result1 = result2

Fig. 3. Formalisation of non-interference in JAVADL for the example of Figure 2. The three dots
“. . .” mark passages where some less important JAVADL details have been abstracted away.

method check which takes a user-name and a password. It checks whether there ex-
ists an index i at which the array names contains the user-name and at which the array
passwords contains the password. If such an index exists, the method returns true, oth-
erwise false. The implementation covers a full functional JML-specification consisting
of a method contract and a loop-invariant. Those specifications are not relevant at the
moment, but will be discussed in Section 3.3. Still, a formal specification of low and
high reference symbols is missing, since the current version of JML does not allow for
such specifications. Let’s assume the arrays names and passwords and their contents are
considered as high whereas the parameters user and password as well as the not explic-
itly named return-variable are considered as low. This is reasonable since user-names
and passwords normally should be kept secret whereas the caller knows the user-name
and password he entered as well as the returned value. The method check translates
in connection with these informal low and high specifications to the JAVADL formula
of Figure 3. The formula is assembled as follows: the first part contains some general
assumptions, which have been abstracted away in Formula (1) and are not central here
either. The following two parts contain the symbolic execution and comparison as in-
troduced in Section 3.2. Still, there is a slight difference: in this particular example only
the return values have to be compared, because the heap does not contain low refer-
ence symbols and the values of the parameters are not observable after the return of the
method.

In the next section, it will be shown how JAVA programs can be annotated system-
atically with non-interference specifications.
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3.3 Program-Level Specifications

The last section showed how, in principle, non-interference can be formalised in JAVADL
and how proof obligations can be generated manually out of JAVA programs with an in-
formal annotation of low and high reference symbols. This section will discuss how
JAVA programs can be annotated with non-interference specifications which seamlessly
integrate with functional specifications in JML* and which are suitable for automatic
translation into JAVADL. The specification entities are in particular suitable for the (im-
plicit) specification of security lattices and intentional information leakage. Before the
new specification entities are introduced in Section 3.3, the next section will present
some basics on JML and its dialect JML*. Section 3.3 illustrates the entities on the
example of Figure 2 thereafter.

JML and JML* The Java Modeling Language (JML) is a popular language for the
behavioral specification of JAVA code [15]. It adopts the design by contract (DBC)
methodology. JAVA expressions enriched with other specification constructs such as
quantifiers are used to write assertions, such as pre- and postconditions and invariants.
[28] introduced a dialect of JML, called JML*, which is suitable for modular specifi-
cations. Our approach will be based on this dialect. In the following, the specification
entities which are most important in the context of this work will be explained shortly
by the example of Figure 2. These entities are method contracts, invariants and model
fields.

The method contract of Figure 2 starts with the keyword normal_behavior. This
means that the method won’t throw an exception if the precondition of the method
is fulfilled. Preconditions are specified via the keyword requires. If the keyword is
missing—as it is the case in our example—the precondition is implicitly defined as
true. Thus, the specification guarantees that no exception will be thrown. Postcondi-
tions are specified via the keyword ensures. In Figure 2, lines 5 to 7 specify the post-
condition of the method check, which says that the result of the method is true iff there
exists an index i at which the array names equals the value passed by the user parameter
and at which the array passwords equals the value passed by the parameter password.
Furthermore, the keyword modifies defines a set of heap locations whose values may
be changed at most by the execution of the method. In our case, no locations may be
changed. Similarly, the keyword accessible defines a set of heap locations whose val-
ues may be read at most by the execution of the method. Here, the specification of
check expresses that at most the heap locations of the fields names and passwords as
well as the entries of the two arrays are read. Line 3 shows an invariant specification. It
says that the lengths of the arrays names and passwords coincide. In this work it can be
assumed that invariants hold in every state of the program execution. The real semantics
is more complicated, but it is not essential to understand the semantics in detail in order
to follow the presentation of this work. Finally, model fields have to be considered. The
following example shows a model field definition:

1 /*@ model \refset pwdFileManager;

2 @ represents pwdFileManager =

3 @ names, names[*], passwords, passwords[*];
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4 @*/

The first line declares the model field pwdFileManager of type \refset. Lines two and
three define the set of locations, to which the model field evaluates. In the context of
this work we consider only model fields of type \refset.

Next, the concepts behind the new JML* specification entities are introduced.

Concepts for the JML* Extensions and their Motivation Given the definition of
non-interference from Section 3.2, one of the first questions to ask is: how can low
and high reference symbols be defined in JML*? We will provide in this section an
answer to a more general question: How can on the level of JML* reference expressions
be classified with respect to security levels? For practicable information flow analysis
a classification into low and high symbols is in many cases found to be too coarse.
Most existing analysis tools use lattices of security levels instead (see for instance [20]).
In a security lattice information may flow only from lower levels to higher ones. The
power set of all reference expressions P(ExpR) with set union and set intersection as
operations forms the most general lattice of security types [11,6]: any other type lattice
is subsumed by it. Therefore it is reasonable and quite common to restrict oneself to
(sublattices of) P(ExpR). Given a security lattice, a security policy is defined as a
mapping of the set of reference expressions to the set of security levels of the lattice.

The probably most straight forward approach to define a security policy in JML
would be to require the specifier (1) to provide a security lattice and (2) to annotate the
declaration of each field, parameter, return value etc. with a security level from this lat-
tice. However, we favour another concept which concentrates on the specification of the
knowledge which the actors of a system may have about a system. Every specification
in our approach implies a security policy and vice versa, as shown in [27]. We think that
specifications on the knowledge of actors can be deduced easier from high-level secu-
rity requirements than a suitable security policy. Furthermore, our approach defines the
implied security policies in a decentralised way which is helpful for modular specifica-
tions. We will illustrate our approach with the help of the following banking example.
In this subsection we will use UML diagrams to motivate our approach. This will help
us to abstract away from program level details that would only blur the big picture. The
technical definitions in Subsection 3.3 will of course be again on the JAVA level.

Figure 4 shows a use-case diagram and a class diagram for a banking example. The
actors in this example are bank-customers and bank-employees. Customers can view
the balance of (their) accounts and draw money while employees may see the balance
of (all) accounts and create new accounts. A reasonable security requirement is that a
customer may know at most the data belonging to his accounts while an employee may
know everything except the passwords of the accounts. This requirement is illustrated in
the object diagram of Figure 5 for three customers and one employee. Each kind of smi-
ley represents an actor and marks the fields which are allowed to be observed / known
by this actor. In the following these sets of reference expressions are called views. The
lower part of Figure 5 summarizes these requirements at the level of a class diagram.

Definition 7 (View). A view V is an expression which evaluates to a set of reference
expressions.
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Use-Case-Diagram

Class-Diagram

Fig. 4. A use-case diagram and a class diagram for a banking scenario.

These expressions may contain, as in the example in Figure 5, set union and the iter-
ator symbol *. The symbols userAccounts and bankAccounts denote the shown as-
sociations between the classes Bank and UserAccount in the first case and between
UserAccount and BankAccount in the second. On the programming language level these
could be implemented as fields of type UserAccount[] and BankAccount[].

Non-interference can be defined for a set of views in the obvious way:

Definition 8 (Low equivalence for views). We call two states s1, s2 low equivalent with
respect to a view V , in symbols s1 ∼V s2, iff vals1(V ) = vals2(V ) and vals1(e) = vals2(e)
for all e ∈ vals1(V ).

Allowing model fields in expression for views one may define a view that e.g., evalu-
ates to a set of expressions for all elements in a linked list. As a consequence vals(V )
depends on s. This motivates the first equation on the left hand side of the previous
definition.

Definition 9 (Non-interference for a set of views). We say that there is no interference
of higher references with lower references with respect to the security policy defined by
a set of views V in P iff
for all views V ∈ V and all states s1,s2,s′1,s

′
2 such that program P started in si termi-

nates in s′i the condition s1 ∼V s2⇒ s′1 ∼V s′2 holds.

In the next section the JML* extensions for non-interference specifications are in-
troduced.
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Object-Diagram

Class-Diagram

Bank-Employee-View = userAccounts[∗]∪ userAccounts[∗].user

∪ userAccounts[∗].currentNumBankAccounts

∪ userAccounts[∗].bankAccounts[∗]
∪ userAccounts[∗].bankAccounts[∗].balance

∪ userAccounts[∗].bankAccounts[∗].id
Bank-Customer-View = user∪ password∪ currentNumAccounts

∪ bankAccounts[∗]∪ bankAccounts[∗].balance∪ bankAccounts[∗].id

Fig. 5. An object diagram to the class diagram of Figure 4 with annotated views and the class
diagram with the same set of views.

Extending JML* for Non-Interference Specifications Our JML* extension provides
the possibility to specify for every method a set of views (which defines the security
policy) which is respected by that method. More precisely, every method contract can
be extended by a respects-clause which defines the set of views:

1 /*@ respects \set_union(names, names[*]),

2 @ \set_union(passwords, passwords[*]);

3 @*/
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4 boolean check(int user, int password) { ...

The respects-clause is a usual clause in a method contract and takes a list of views
as an argument. Views evaluate to sets of reference expressions and list concatenation
is interpreted as set union. A contract may contain multiple respects-clauses. In this
case the clauses are treated as one big respects-clause consisting of the concatenation
of all listed location sets. The semantics of the clause is that in case the precondition of
the contract evaluates to true, the method fulfills non-interference for the defined set of
views as formalised in Definition 9.

Sets of views can, but don’t have to be specified explicitly. An alternative is to use
a model field that can be reused in different contexts. The model field may remain
underspecified or its value may be given by a represents-clause.

1 //@ model \refset anyUser;

2 //@ respects anyUser;

3 boolean check( ... ) { ...

The above example illustrates an underspecification. The model field anyUser can rep-
resent any reference set. This means in particular that every singleton set is respected
by the method which in turn means that no information flows at all.

Because we aim at information flow specifications which are modular at the method
level, a security level has also to be specified for every parameter and the return value
of a method. This is illustrated in the following example:

1 public int low;

2 private int high;

3 //@ respects low;

4 int m(int param) {

5 low = param; return param;

6 }

Imagine low and high are low and high fields, respectively, and the method m is called
with high as parameter. Then the high value will be assigned to low and therefore the
call would be unsafe. On the other hand, if m is called with low as parameter every-
thing is fine. In order to assign parameters and the return-value a security level, the
parameter-names and the \return-statement are \refset-expressions and can be used
in the respects-clause.

The respects-clause is sufficient to specify non-interference for methods in JML*.
However, as it is well known (see for instance [20]), non-interference on its own is
too restrictive; many useful JAVA programs contain intentional information leaks. This
includes the program of Example 2. KeY won’t be able to show the universal validity
of the formula of Figure 3 because the method check indeed leaks some information
about the secret arrays names and passwords: the information whether the passed user-
name and password are contained in names and passwords or not. In order to distin-
guish intentional information leaks from unintentional ones, intentional leaks have to
be specified clearly. Those specifications are called declassifications [26]. In our case,
declassifications specify the information which is allowed to leak in form of terms. The
value of the terms in the pre-state of the execution of a method is the information which
is allowed to leak. In the case of Example 2 this is the Boolean term

\exists int i; 0 <= i && i < names.length;
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names[i] == user && passwords[i] == password

Following the discussion e.g., in [2, end of Section 6] and [26, Section 2.1] the meaning
of declassification is formalized by a further restriction on the input equivalence in
Definition 9, leading to:

Definition 10 (Non-interference for a set of views with declassification). We say that
there is no interference of higher references with lower references with respect to the
security policy defined by a set of views V except for declassification t in P iff
for all views V ∈ V and all states s1,s2,s′1,s

′
2 such that program P started in si ter-

minates in s′i the condition s1 ∼t
V s2 ⇒ s′1 ∼V s′2 holds, where s1 ∼t

V s2 ⇔ s1 ∼V
s2 and vals1(t) = vals2(t).

On the JML* level declassification is specified by the declassify-clause. We present
here a generalisation of declassification suggested by [26] that goes beyond Definition
10. The following example illustrates the usage of this general declassify-clause.

1 /*@ declassify

2 @ ( \exists int i; 0 <= i && i < names.length;

3 @ names[i] == user && passwords[i] == password )

4 @ \from pwdFileManager \to \result \if true;

5 @*/

6 boolean check(int user, int password) { ...

A declassification in its full generality is a tuple (Dterm,D f rom,Dto,Di f ), where Di f is
a Boolean expression, Dto and D f rom are views and Dterm is an expression. The seman-
tics is the following: for every view V and every pair s1, s2 of pre-states of an method
invocation, if the preconditions (1) vals1(Di f ) = vals2(Di f ) = true (the condition of the
\if-part Di f is fulfilled in the pre-states of the execution), (2) vals1(V )⊆ vals1(Dto) ∧
vals2(V ) ⊆ vals2(Dto) (the view V is a subset of the \to-part Dto) and (3) for all states
s,s′ with vals(D f rom) = vals′(D f rom) ∧ ∀e ∈ vals(D f rom) (vals(e) = vals′(e)) the condi-
tion vals(Dterm) = vals′(Dterm) holds (the declassified term Dterm depends only on the
references in the \from-part D f rom) hold, then vals1(Dterm) = vals2(Dterm) will be true.

The defaults for the \from-, \to- and \if-parts are \everything, \everything and
true, respectively.

Example Figure 6 gives a complete example of the specification of the check method
from Figure 2. The specification of Figure 2 is extended in two parts. The first part,
line 1, declares an underspecified model field anyUser, as discussed in Section 3.3.
The KeY system contains a built-in type \locset for location sets. Locations are those
references that are stored on the heap. The model field anyUser can thus stand for
any location set. The second part, lines 9 to 12, extends the method contract of the
method check by a non-interference specification. The respects-clause states that the
views anyUser and {\result} can’t learn anything through the execution of check. Since
anyUser can stand for any set of references on the heap, the first part of the specification
states that no information may flow on the heap. The second part, the view {\result},
states that the result may depend at most on itself. Finally, the declassify-clause states
that the information whether the passed user-name and password are contained in names

and passwords or not may be leaked to the result of the method.
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1 /*@ model \locset anyUser;

2 @

3 @ normal_behavior

4 @ ensures \result ==

5 @ ( \exists int i; 0<=i && i<names.length;

6 @ names[i]==user && passwords[i]==password);

7 @ accessible names, names[*], passwords, passwords[*];

8 @ modifies \nothing;

9 @ respects anyUser, \result;

10 @ declassify ( \exists int i; 0<=i && i<names.length;

11 @ names[i]==user && passwords[i]==password

12 @ ) \to \result; @*/

13 public boolean check(int user, int password) { ...

Fig. 6. Complete non-interference specification for the method check from Figure 2 with a seam-
less integration to the functional specifications.

In the next section it will be shown how the introduced information flow extensions
of JML* can be translated to JAVADL and checked by the KeY-System.

3.4 Translating JML* Non-Interference Specifications to JAVADL

Summarising [27], the JML* extensions can be translated to JAVADL as follows. Views
translate canonically to JAVADL terms which evaluate to a set of reference expressions
in a given state. respects-clauses and declassifications can be translated to JAVADL by
the formalisation of Definition 9:

Lemma 2. Let V be a set of views over method m and let D be a set of declassifica-
tions. If the formula

∀Heaps1
in,s

2
in,s

1
out ,s

2
out

∀Cthis ∀T1 p1
1 . . . ∀Tn p1

n ∀Tr r1 ∀T1 p2
1 . . . ∀Tn p2

n ∀Tr r2
(

this 6= null

∧U 1
in〈Tr result = this.m(p1, . . . , pn)〉(h1

out = heap∧ r1 = result)

∧U 2
in〈Tr result = this.m(p1, . . . , pn)〉(h2
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→
∧
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(
U 1

in V = U 2
in V ∧

∧
e∈U 1
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U 1
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in e∧dcls
)

→ U 1
out V = U 2

out V ∧
∧
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U 1
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)
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23



with updates U i
x defined as U i

x = {heap := si
x || p1 := pi

1 || . . . || pn := pi
n || r := ri} and with

declassifications dlcs defined as

dcls :=
∧

D∈D


U 1

in Di f = true∧ U 2
in Di f = true

∧U 1
in (V ⊆ Dto)∧ U 2

in (V ⊆ Dto)

∧ Dterm = {heap := anon(heap,allLocs\D f rom,anonHeap}Dterm

→U 1
in Dterm = U 2

in Dterm


(3)

is valid
then only declassified information flows from higher references to lower ones in m.

Proof. See [27].

4 Connection between Noninterference in KeY and
Noninterference in an Open System

In this section, we argue that KeY can be used to prove noninterference in open systems,
as specified in Definition 4 on page 11.

KeY can verify programs modularly on the level of individual methods. For this pur-
pose method-contracts need to be specified for each method. More precisely, within the
verification of a method m KeY can use contracts of other methods instead of unfolding
their implementation.5 A method m is verified if it has been proven that the imple-
mentation of m adheres to its contract(s). As shown in [3], not only functional method
contracts can be used in this way but also information flow contracts [27], as defined in
Section 3.3. In case a method does not have a known implementation (for instance if it
is a native method or, as in our case study, if it is a part of the environment), a contract
can be seen as an assumption on the behavior of the method. This assumption has to be
justified externally.

By the results of Section 2.6, to show noninterference in an open system (Defini-
tion 4), it is enough to consider environments with only two (unspecified) static meth-
ods: public static int untrustedInput() and public static void untrusted-

Ouput(int x), as specified by the interface IIO (see Section 2.6).
In order to show that the noninterference property proven by KeY (Lemma 2) im-

plies noninterference in a system connected to such an environment (i.e. to an environ-
ment implementing IIO), it has to be shown that

5 Moreover, due to the concept of dynamic method dispatch in object-oriented languages such
as JAVA, there may be several implementations. Since this dispatch is dynamic, it cannot be
statically determined which thereof is the most precise applicable. One goal of KeY’s calculus
is to be modularily sound, i.e., it is sound with respect to open programs (see, e.g. [24]). One
important property is that proofs are still correct if the program is changed in such ways that
classes (and implementations of previously present methods) are added. This means that even
in case where the static type of an instance is known, soundness requires to apply a contract be-
cause otherwise the addition of applicable method implementations would invalidate previous
proofs.
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1 public interface Environment {

2

3 /*@ public static model \locset envLocs;

4 @ accessible envLocs : envLocs;

5 @*/

6

7 /*@ normal_behavior

8 @ ensures \new_elems_fresh(envLocs);

9 @ assignable envLocs;

10 @ respects envLocs, x;

11 @*/

12 public static void untrustedOuput(int x) {

13 // underspecified

14 }

15

16 /*@ normal_behavior

17 @ ensures \new_elems_fresh(envLocs);

18 @ assignable envLocs;

19 @ respects envLocs;

20 @*/

21 public static int untrustedInput() {

22 // underspecified

23 }

24 }

Fig. 7. Specification of the environment interface.

1. the specification for the main method verified by KeY specifies the result value of
E to be low, but the input-vector −→x of P as high and

2. the contracts of the methods in the interface IIO of E are correctly chosen.

In a sense envLocs represents the complete knowledge of the environment. It will be
defined as the set of low locations later on. The restricted form of this interface implies
that P and E do not share any references: their sets of heap locations are disjoint. This
disjointness will play an important part in the proofs. As a preview of things to happen
we also point out that this disjointness property will be derived from the contracts in
Figure 7.

Item (1) is obvious.
Figure 7 shows IIO as a JAVA interface with an appropriate JML specification. In

the following we will argue in detail that this JML specifications are correct, by which
we mean that they are either justified by the JAVA semantics or by [13, Definition 18].

Line 3 defines a static model field envLocs. Intuitively the model field represents
the heap locations belonging to the (unknown) environment. Formally the model field
defines a function envLocs : Heap→ LocSet which returns for any heap a set of (created)
heap locations. The function is underspecified, but possible interpretations are restricted
by line 4: let h be an arbitrary heap and let h′ be a heap which differs from h only in
locations not belonging to envLocs(h). Then envLocs(h) = envLocs(h′) holds. Here we
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assume that envLocs is self-framing: the set of locations belonging to E cannot change
if some value changes that does not belong to E. This assumption is justified by the fact
that P and E interact only through the special interface IIO: since IIO does not allow the
exchange of references, the set of locations belonging to E can only change if E creates
new objects and stores references on these new objects or if E releases all references on
an (own) object.

It remains to explain the contracts of untrustedInput and untrustedOuput. Let h1
be the heap before an invocation of the method untrustedOuput and let h2 be the heap
after its invocation. The contract of untrustedOuput states the following:

– If values of locations in envLocs(h1) change (which means that envLocs(h1) 6=
envLocs(h2) might hold), then all locations in envLocs(h2)\envLocs(h1) are newly
created locations (line 8). In other words: E cannot get references to heap locations
not belonging to E. As before, the assumption is valid, because the parameter of
untrustedOuput has a primitive type and E cannot callback P.

– untrustedOuput changes at most values of locations in envLocs(h1) or in newly
created locations (line 9). Formally this is expressed by:

∀l /∈ envLocs(h1) : created(h1, l)→ select(h1, l) = select(h2, l)

Thus we assume that only values of locations currently belonging to E are changed
by untrustedOuput. The assumption is valid for the same reasons as before.

– The behavior of untrustedOuput depends at most on the values of locations in
envLocs(h1) and the value of the parameter x (line 10). This reflects the assumption
that the environment cannot read from heap locations not belonging to the environ-
ment. The assumption is valid for the same reasons as before.

The contract of untrustedInput states the same as the contract of untrustedOuput ex-
cept that the behavior of untrustedInput depends solely on the values of locations in
envLocs(h1) (it has no parameter). The return value of untrustedInput is underspeci-
fied.

So far we have justified the assumptions on IIO with the help of its special form,
the requirement that P and E interact only through IIO and the JAVA semantics. Finally
we will consider the specification of the main method of P. Such a specification is
given in Figure 8. Let h1 be the heap before an invocation of main and let h2 be the
heap after its invocation. The vector −→x is represented in the example without loss of
generality by the three attributes x1, x2 and x3. An arbitrary number of x’es can be used
instead. Furthermore P will use only locations of \locset(x1, x2, x3) and newly
created locations.

The contract requires (line 5-6) that the locations belonging to x1, x2 and x3 are dis-
joint from envLocs(h1). Thus we require that the environment does not know the values
of the x’es before the execution of main. Because P uses only locations of \locset(x1,
x2, x3) and newly created locations, KeY is able to show with the help of the specifi-
cation of IIO that the locations of P and E (the latter described by envLocs) are always
disjoint. Line 7 specifies the locations of envLocs(h1) as low in h1 (before the execution
of main). Furthermore line 7 specifies the locations of envLocs(h2) as low in h2 (after
the execution of main). As explained in Section 3.3, in our JML* extension everything
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1 public class P {

2 // arbitrary number of x’es

3 private static int x1, x2, x3;

4

5 /*@ normal_behavior

6 @ requires \disjoint(\locset(x1, x2, x3),

7 @ Environment.envLocs);

8 @ respects Environment.envLocs;

9 @*/

10 public static void main(String[] args) {

11 // some secure program

12 }

13

14 }

Fig. 8. Specification of the main method.

which is not explicitly defined as low is implicitly defined as high. Thus the locations
of the x’es are implicitly defined as high in h1.

Altogether KeY proves that for any environment E which implements IIO and does
not interact with P in any other way than through IIO, for any interpretation of the
function envLocs which adheres to the specified assumptions the values of the locations
in envLocs(h2) depend at most on the values of the locations in envLocs(h1) (and in
particular not on the values of the x’es in h1). This proposition holds especially for
environments E with a special field result and for interpretations of envLocs for which
\locset(result)⊆ envLocs(h1) and \locset(result)⊆ envLocs(h2) holds. Hence we can
conclude from a noninterference proof of KeY that noninterference in an open system
holds.

5 The Case Study

In our case study, we consider a simple system that uses public-key encryption: clients
send secrets encrypted over an untrusted network, controlled by an active adversary, to
a server who decrypts the messages. This can be seen as a rudimentary way encryption
can be used. Based on our framework, we started using the KeY tool to verify strong se-
crecy of the messages sent over the network, i.e., noninterference shall be shown using
KeY for the system when it runs with IdealPKE and by our framework we then obtain
computational indistinguishability guarantees when IdealPKE is replaced by RealPKE.

Clearly, the system itself is quite trivial from a cryptographic point of view. How-
ever, the point of language-based analysis in general and the point of our case study
in particular is to show that the system is implemented in a way that the expected se-
curity guarantees actually hold true (there are more than enough opportunities to make
implementation errors in even simple systems).

We emphasize that while the code of client and server are quite small, the actual
code that needs to be analyzed is longer because it includes the ideal functionality and
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the code that results from applying the techniques of our general framework developed
in Section 2 (we note the verified program is in the family of systems considered in
this section); altogether the code, which in our case study comprises 10 classes, one
interface, and about 30 methods and, in about 370 LoC of a rich fragment of JAVA.

Moreover, the adversary model we consider in the case study is strong in that the
(active) adversary dictates the number of clients, sends a pair of messages to every client
of which one is encrypted (in the style of a left-right oracle), and controls the network.

5.1 The Analyzed Program

We now describe the analyzed program in more detail. The code of the client and the
server is given below.

1 final public class Client {

2 private Encryptor BobPKE;

3 private byte[] message;

4

5 public Client(Encryptor BobPKE, byte message) {

6 this.BobPKE = BobPKE;

7 this.message = new byte[] {message};

8 }

9 public void onInit() throws NetworkError {

10 byte[] encMessage = BobPKE.encrypt(message);

11 Network.networkOut(encMessage);

12 }

13 }

14 final public class Server {

15 private Decryptor BobPKE;

16 private byte[] receivedMessage = null;

17

18 public Server(Decryptor BobPKE) {

19 this.BobPKE = BobPKE;

20 }

21

22 public void onReceive(byte[] message) {

23 receivedMessage = BobPKE.decrypt(message);

24 }

25 }

Besides the code for client and server, the program also contains a setup class which
contains the methods main() and creates instances of protocol participants and organizes
the communication. This setup first creates a public/private key pair (encapsulated in a
decryptor object) for the server. In a while-loop it then expects, in every round, i) two
input messages from the network (adversary), ii) depending on a static boolean variable
secret (which will be declared to be high), one of the two messages is picked, iii) a
client is created and it is given the public key of the server and the chosen message
(the client will encrypt that message and send it over the network to the server), iv) a
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message from the network is expected, and v) given to the server, who will then decrypt
this message and assign the plaintext to some variable.

We denote the class setup by Setup[b], where b ∈ {false,true} is the value with
which secret is initialized in Setup. By Sreal [b], for b ∈ {false,true}, we denote the
system consisting of the class Setup[b], the class Client, the class Server, and the sys-
tem RealPKE. This system is open: it uses unspecified network (and untrusted input
from the environment) which is controlled by the adversary. Analogously, Sideal [b] con-
tains IdealPKE instead of RealPKE. Note that Sideal [b] is even more open in that the
ideal functionality asks the environment to encrypt and decrypt some messages (see the
definition of IdealPKE).

The code for the setup class is as follows.

26 public class Setup {

27 static private boolean secret = b; // b ∈ {true,false}
28

29 public static void main() throws NetworkError {

30 // Public-key encryption functionality for Server

31 Decryptor serverDec = new Decryptor();

32 Encryptor serverEnc = serverDec.getPublicInterface();

33 Network.networkOut(serverEnc.getPublicKey());

34

35 // Creating the server

36 Server server = new Server(serverDec);

37

38 // The adversary decides how many clients we create

39 while( Network.networkIn() != null ) {

40 byte s1 = Network.networkIn()[0];

41 byte s2 = Network.networkIn()[0];

42 // and one of them is picked depending

43 // on the value of the secret bit

44 byte s = secret ? s1 : s2;

45 Client client = new Client(serverEnc, s);

46 // trigger the client

47 client.onInit();

48 // read a message from the network...

49 byte[] message = Network.networkIn();

50 // ... and deliver it to the server

51 server.onReceive(message);

52 }

53 }

54 }

5.2 The Property to be Proven

The property we want to show is

Sreal [false] ≈ /0
comp Sreal [true], (4)
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that is, the two variants of the system are indistinguishable from the point of view of
an adversary who implements the networking, but does not call (directly) methods of
Sreal [b]; he, however, through the setup class, determines the number of clients that are
created and the message pair for every client.

By our framework, to prove (4) it is enough to show I-noninterference of the sys-
tem Sideal [b]. Since the system Sideal [b] is in the class of systems considered in Sec-
tion 2.6, we can use the results from this section which say that we only need to show
I-noninterference of the system T [b] = E∗IE · S

ideal [b] that uses much simpler interface
IIO.

The carried out verification shall establish (4), under the (reasonable) assumption
that KeY is sound with respect to the subset of JAVA covered in Jinja+.

6 The Verification Process

The verification process in KeY consists of two parts: the specification of the program
in JML and the proof that the program adheres to the specification.

The specification of the main method as well as the specification of the interface
Environment have been discussed in great detail in Section 4. In our case study the x’s
from Section 4 consist solely of the field secret of the class Setup. The rest of the nec-
essary specification is related to modular verification: the size of the program is already
that big that KeY needs to verify each method on its own. Hence each method has to be
annotated with an appropriate contract. The contracts normally consist of two parts: the
first part expresses heap separation properties which are preserved by the implementa-
tion. On the one hand these specifications are necessary for the modular verification, on
the other hand they are necessary to prove that the locations of the environment are dis-
joint from the ones of the program. The second part of the specifications are information
flow contracts. These are also needed for modularity reasons: during the verification of
a method m we use the information flow contracts of the called methods to conclude
that m has no flow. In this way we avoid unfolding the body of the called methods.
Finally, the contracts might compromise preconditions. Most of the preconditions re-
quire that some invariants hold. Those invariants represent in large part the remaining
specifications. In total the current specification has about 370 lines.

The specifications result in about 60 proof obligations. Currently we have proven
50 out of them. During the verification we realised two problems with our current ap-
proach.

The first problem is scalability. The key technique in KeY for modular (functional)
verification, called dynamic frames [28], is quite new to KeY. So far it has mainly been
tested on small examples. This case study is the first bigger example. It revealed that
the automatic proof search strategy fails in finding proofs for examples with complex
heap separation properties (including list specifications). In those cases the prover has
to be guided by the user. This leads to semi-automatic proofs. This alone is not that
much a problem, but because the heap separation properties are complex, it is also quite
error-prone to specify those properties. Hence one normally needs several verification
attempts until the right specification is found. Altogether this results in a very high
verification effort. Until now we have spent about one to two person months on the case
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study. We will have to address this issue in future research in order to reduce the overall
effort.

The second problem is related to the definition of non-interference in an object-
oriented setting. It revealed that the standard definition of low-equivalence as used in
this report is usually too restrictive for modular verification in an object-oriented setting.
Already the simple method m in

1 class C {

2 C low;

3 m(){ low = new C(); }

4 }

(where low is a low variable) cannot be verified in a modular fashion. The reason is that
we simply cannot guarantee that the creation of the same object in two heaps which
agree on the low values, but nevertheless might contain a different number of created
objects, will lead to the same heap location. Therefore, in order to carry out the security
analysis, a richer notion of non-interference is needed in this setting.

This has lead us to the development of a notation of low-equivalence which takes
object references into account [3]. Instead through the equality of all values, this defini-
tion relies on isomorphisms between heap structures. It is based on the assumption that
an attacker is able to compare object references to each other (through ==), but not to
infer other properties like the order or even the time of object creation.6

7 Conclusion

The case study supports the view that the general framework from [13] is a useful
concept to extend the range of verification tasks that can be performed by deductive
verification systems. The case study also revealed challenges for the verification with
the KeY system. We are confident, and have first ideas on the measures to be taken, that
these problems can be solved,
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