KIT | KIT-Bibliothek | Impressum | Datenschutz

Feasible method for generalized semi-infinite programming

Stein, O. ORCID iD icon 1; Winterfeld, A.
1 Institut für Operations Research (IOR), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper, we analyze the outer approximation property of the algorithm for generalized semi-infinite programming from Stein and Still (SIAM J. Control Optim. 42:769–788, 2003). A simple bound on the regularization error is found and used to formulate a feasible numerical method for generalized semi-infinite programming with convex lower-level problems. That is, all iterates of the numerical method are feasible points of the original optimization problem. The new method has the same computational cost as the original algorithm from Stein and Still (SIAM J. Control Optim. 42:769-788, 2003). We also discuss the merits of this approach for the adaptive convexification algorithm, a feasible point method for standard semi-infinite programming from Floudas and Stein (SIAM J. Optim. 18:1187-1208, 2007).


Originalveröffentlichung
DOI: 10.1007/s10957-010-9674-5
Scopus
Zitationen: 17
Web of Science
Zitationen: 14
Dimensions
Zitationen: 17
Zugehörige Institution(en) am KIT Institut für Operations Research (IOR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2012
Sprache Englisch
Identifikator ISSN: 0022-3239
KITopen-ID: 1000027507
Erschienen in Journal of Optimization Theory and Applications
Verlag Springer
Band 146
Heft 2
Seiten 419-443
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page