QUANTIFYING DIFFERENCES IN PARASITE NUMBERS BETWEEN SAMPLES OF HOSTS
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ABSTRACT: An important question in many parasitological studies is the assessment of differences in parasite numbers between
samples of hosts. This is not always an easy problem with which to deal. While almost everyone will agree that the main task consists in
deciding whether the values in one sample tend to be higher than the values of another sample, there is considerable disagreement
about what higher (or lower) should mean. In most cases, dissimilarity measures are differences between mean values, medians,
geometric means, prevalence rates, relative effects, and more. In general, different measures can lead to different conclusions. However,
a debate as to which measure is superior is fruitless; it depends on goals and circumstances of the respective study. In our opinion, it is
more important to identify situations in which most of the above measures coincide, and, hence, one can confidently claim that the
values in one sample are higher than in another. This is the case when one sample is stochastically larger than a second. Roughly
speaking, a random variable X is stochastically larger than a second random variable Y, when X assumes large values with a higher
probability than Y. In this paper, we review this concept using distributional and data examples, and we propose the use of graphical
tools for detecting stochastic dominance. Our method provides a relatively easy, visual way of fully justifying general statements that

the number of parasites in one sample is larger than in another.

In much parasitological research, the quantification and
comparison of parasite numbers in different samples, recorded
at different times and/or in different habitats, is an important
task. The most commonly used measure for this purpose is
probably the difference between mean values, i.e., mean
abundance or mean intensity. Rézsa et al. (2000) argue that
terminological recommendations require the use of these mea-
sures. Because small sample sizes can lead to difficulties when
using the traditional s-test or Welch’s modification, they propose
a bootstrap test based on Welch’s statistic. They criticize the use
of nonparametric tests such as the Mann-Whitney U-test because
these tests compare other characteristics instead of means. Indeed,
assuming we have samples X),..., X,, and Y,,..., Y, of size m
and n, the U-test corrected for ties is based on the statistic
lif X;>Y;

m n

U=ZZ
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(see, e.g., Hollander and Wolfe, 1999). U/(m » n) is an estimator of
the relative effect p = Pr(X > V) + (112) Pr(X = Y). If p > 1/2,
observations tend to be larger in group 1 in comparison to group
2 in a certain sense, but the mean of group 1 is not necessarily
larger than the mean of group 2. The converse is true for p < 1/2.
If both groups have the same distribution, then p = 1/2. However,
the opposite does not hold: if p = 1/2, the underlying distributions
need not be the same.

In 2 recent articles, however, Neuhduser and Poulin (2004) and
Neuhiuser and Ruxton (2009) advocate the use of relative effect,
because “means are not very useful descriptors for skewed
distributions,” (Neuhéduser and Poulin, 2004) and they propose
the use of the Brunner and Munzel (2000) test, which is also based
on this measure. Neuhiduser and Poulin (2004) conclude that the
relative effect would be the natural measure for a difference
between 2 samples because ‘“the main question is whether the
values in one sample tend to be larger (or smaller) than the values
of the other sample,” implying that only the relative effect
provides the answer to this question. A bootstrap test for the

hypothesis p = 1/2 based on the rank Welch test statistic is
proposed by Reiczigel et al. (2005). A modified version of the
Brunner-Munzel test is discussed in Neubert and Brunner (2007).

There are other measures in common use, such as the
comparison of medians or prevalence rates, and, clearly, in a
specific situation, the use of different measures can lead to
different conclusions. However, in our opinion, a dispute about
the “best” measure is fruitless because this depends on goals and
circumstances of the respective study. For example, if an infection
with a certain parasite is invariably lethal, prevalences are
adequate measures. In other cases, infection with a moderate
number of parasites has no demonstrable negative effects on the
host, but a very large number of parasites cause significant
morbidity; in such cases, means that give more weight at high
intensities are suitable measures. Situations that lie in between call
for intermediate measures such as medians or relative effects.

Unfortunately, because the impact of parasites on hosts is
seldom known precisely, it is difficult to justify the preference for
a particular measure, even in specific situations. For this reason, it
is important to identify situations in which the above mentioned
measures coincide; one can, therefore, confidently claim that the
values in one sample are higher than in another. Thus, it is not
sufficient to compare a special characteristic of 2 distributions,
one must compare the whole distributions. A suitable tool is to
determine whether the 2 distributions are stochastically ordered.
We review this concept using distributional and data examples,
and we propose graphical tools for detecting stochastic domi-
nance.

STOCHASTIC DOMINANCE BETWEEN
DISCRETE DISTRIBUTIONS

The (usual) stochastic order is an established concept in
probability theory and is in frequent use in reliability theory
and econometrics. Because we are interested in comparing
parasite numbers, we will give the definition for discrete
distributions: A discrete random variable X with cumulative
distribution function (cdf) Fx(k) = Pr(X = k) is said to be larger
than another discrete random variable Y with cdf Fy(k) = Pr(Y =
k) with respect to stochastic order (written X =, Y) if

P(X>k)=P(Y>k) fork=0,1,2,..., (%)



TasLE I. Differences in (cumulative) relative frequencies for example 1.

k 0 1 2 3 4 5 6 7 8 >8
Abs. freq. sample 1 32 15 8 4 1 1 3 2 1 4
Abs. freq. sample 2 134 19 9 0 1 2 0 1 1 1
ry(k) — rx(k) 0.35 -0.1 —0.06 —0.06 -0.01 0 —0.04 -0.02 -0.01 —-0.05
Ry(k) — Rx(k) 0.35 0.25 0.19 0.13 0.12 0.12 0.08 0.06 0.05 0

or equivalently

1—Fy(k)>1—Fy(k) fork=0,1,2,...,
and it is called strictly larger if = can be replaced by > for at least
1 k (otherwise, the 2 distributions can be equal). This means that
if X stochastically dominates Y, then X assumes large values with
a higher probability than Y does, and hence X assumes small
values with a smaller probability than Y does. We also say that X
is stochastically larger than Y, that X stochastically dominates Y,
or that Y is stochastically smaller than X. Obviously, a further
equivalent condition for X =, Yis given by Fy(k) — Fx(k) = 0 for
all k.

For our purpose, the most important properties of this order
between random variables are the following:

¢ If X =, Y, then X assumes values larger than 0 with a higher
probability than Y does. Hence, the (theoretical) prevalence
P(X = 1) of X is larger than or equal to the prevalence of Y.
Formally, this follows directly from the definition in (*)
puttingk = 0: (X = 1) = P(X > 0) = P(Y > 0) = P(Y = 1).

® If X = Y, then EX = EY. This follows from the definition of
stochastic order together with the representation of the
population mean EX =3, ok P(X =k)= >, .o P(X >k).
If X stochastically dominates Y, then P(X > k) is greater than
or equal to P(Y > k) for each k, and, hence, EX = EY.

* If X =, Y, then all population quantiles of the distribution of
X are larger than or equal to the corresponding quantiles of Y.
In particular, the median of X is larger than or equal to the
median of Y.

* If X =, Y, then p = ' holds for the relative effect.

Hence, if X =, Y, the typical measures for assessing differences
between samples all point in the same direction. Examples for discrete
distributions that are stochastically ordered will be dealt with below.

If the implications of stochastic order for empirical data are
considered, and if we examine data sets, probabilities P(X = k)
are replaced by relative frequencies r(k), k = 0,1,..., and the cdf
is replaced by the cumulative relative frequencies, which are
sometimes called the empirical distribution function (edf).
Because the edf has all the properties of a cdf, the 4 properties
mentioned above carry over immediately to the corresponding
empirical measures. For example, if Ry/{(k) — Ry(k) = 0 for all k,
(sample) prevalence and sample mean of the x-sample are larger
than or equal to the corresponding measures of the y-sample.

The first example compares counts of larvae of swimbladder
nematodes in 2 populations of the Japanese eel (4nguilla japonica)
from southwest Taiwan. Miinderle et al. (2006) compared wild
eels from the Kao-Ping River (sample 2, n = 168) to cultured eels
from an adjacent aquaculture farm (sample 1, n = 71). All

recorded nematodes were species of Anguillicoloides crassus
(previously Anguillicola crassus).

Absolute frequencies and differences in relative frequencies are
given in Table I. Figure 1 shows histograms of relative frequen-
cies truncated at 22. We see that rx(0) < ry(0), but ry(1) > ry(1),
rx(2) > r{(2), etc. However, it is not possible to deduce anything
regarding stochastic ordering between the 2 samples based
directly on these values.

The differences in cumulative relative frequencies are given in
the last row of Table 1. Because all entries are positive, sample 1 is
stochastically larger than sample 2. This can also be seen by
careful comparison of the 2 histograms of cumulative relative
frequencies in Figure 2. From the above discussion, we can
conclude that the difference between prevalences, means, and
medians are positive and that the relative effect is larger than 1/2.
The empirical values are given in the second column of Table II.
In this example, it is fully justified to state that the eels from the
aquaculture farm are more heavily infected than the wild eels.

GRAPHIC TOOLS FOR DETECTING STOCHASTIC ORDER

Instead of comparing 2 histograms of cumulative relative
frequencies (or cumulative probabilities) as done in the first
example, it is more helpful to visualize both quantities in a single
graph. From the definition, 2 simple graphical procedures are
evident for checking the stochastic order between 2 given discrete
distributions. The first is a bar plot of the difference Fy(k) —
Fx(k) with positive bars if X stochastically dominates Y, and
negative values if Y stochastically dominates X. This plot is called
a probability difference plot (P-D plot) in what follows.
Alternatively, a scatter plot of Fy(k) against Fy{(k) can be drawn.
If one plots the values of Fy(k) on the x-axis, the points are above
the diagonal if X stochastically dominates Y. This plot is known
as probability-probability plot (P-P plot).

A further possible diagnostic plot is a quantile-quantile plot,
which is also well known in the graphical analysis of statistical
data. However, for discrete distributions, it is less suitable,
particularly due to the need for choosing suitable plotting
positions.

In all plots, Fy(k) and Fy(k) must be replaced with R (k) and
Rx(k) when dealing with observed data instead of probability
distributions.

The P-D plot and the P-P plot for the eel nematode example 1
are shown in Figures 3 and 4, respectively. As expected from the
discussion regarding the eel nematodes, all values in Figure 3 are
positive, and all points in Figure 4 are well above the diagonal.
Hence, each plot shows at a glance the stochastic ordering
between the 2 samples.

As a standard test for stochastic dominance, we applied the
l-sided 2-sample Kolmogorov-Smirnov test, based on the
hypothesis that X has the same distribution as Y against the
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FiGURE 1. Plot of relative frequencies for the 2 samples in example 1.
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FIGURE 2. Plot of cumulative frequencies for the 2 samples in example 1.

alternative X =, Y, and leading to a P value less than 0.001. For
this test to be exact, the random variables are assumed to be
continuous. However, for discrete distributions, the test is still
valid, but becomes conservative (Conover, 1999).

TasLE II. Empirical measures for examples 1-3.

Example 1 Example 2 Example 3
Sample sizes 71 and 168 196 and 100 40 and 20
Diff. between prevalences 0.35 0.08 -0.3
Diff. between means 2.85 —0.05 5.85
Diff. between medians 1 0 -5
Relative effect 0.69 0.53 0.3

FURTHER DATA EXAMPLES

Here we discuss situations in which the 2 samples are not
stochastically ordered. A typical situation in which stochastic
ordering does not hold occurs when parasite A has a higher
prevalence but lower mean (median, etc.) infection intensity than
parasite B. That is, if we disregard the uninfected hosts, the
distribution of parasite B is stochastically larger (and accordingly,
has a higher mean, median, etc.), but if we consider the uninfected
hosts as well, then the distributions are no longer stochastically
ordered.

In examples 2 and 3, swimbladder and intestinal nematodes in
European eels (Anguilla anguilla) are considered. Thereby, the
differences between the 2 distributions are rather small in the
second, and large in the third example.



L —
0 36 9 13 17 21 25 29

FiGure 3. P-D plot for the 2 samples in example 1.

As second example, we consider counts of larvae of swim-
bladder nematodes in European eels from 2 different locations:
sample 1 (n = 196) from the River Rhine near Karlsruhe, and
sample 2 (n = 100) from the River Rhine near Sulzbach
(Miinderle, 2005). Again, all recorded nematodes were A. crassus.
Measures such as the difference between means can be found in
the third column of Table II.

The P-D plot (Fig. 5) and the P-P plot (Fig. 6) show that the 2
samples are not stochastically ordered. Because the bars in
Figure 5 are rather short, i.e., the differences R (k) — Ry(k) are
small, we may assume that both samples come from the same
distribution. We conducted a test of the hypotheses Fy = Fy
against the alternative Fy # Fy. A suitable test for this purpose is
a (2-tailed) 2-sample Kolmogorov-Smirnov test yielding a
nonsignificant P value of 0.8. Clearly, this result does not prove
the equality of the 2 distributions, but indicates only that the data
are compatible with the null hypothesis. One could also apply
equivalence tests, which are able to confirm that there are more or
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FiGure 4. P-P plot for the 2 samples in example 1.
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FIGURe 5. P-D plot for the 2 samples in example 2.

less no differences between a selected statistical measure for the 2
samples. Parkhurst (2001), for example, uses the ratio of means,
whereas Meier (2009) proposes equivalence tests with respect to
the median difference.

The third example compares 2 samples of counts of intestinal
parasites in European eels at the same location (River Rhine near
Karlsruhe), but from different years. Sample 1 (n = 40) was
recorded in summer 1999, and sample 2 (n = 20) in summer 2005
(Thielen, 2006).

As in example 2, the P-D (Fig. 7) and P-P plots (Fig. 8) show
that the 2 samples are not stochastically ordered. However, on
examination of the plots, it is quite obvious that the 2 samples do
not stem from the same distributions. The prevalence in the
second sample is 30% higher than in the first, and the cumulative
relative frequencies R(k) are much higher in the second sample for
values of k up to 10. The pattern changes for large values of k.
Thus, there are noticeably more heavily infected eels in sample 1
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FIGURE 6. P-P plot for the 2 samples in example 2.
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FiGure 7. P-D plot for the 2 samples in example 3.

than in sample 2. These findings are reflected in the numerical
values in the fourth column of Table II.

The reason behind this change in the distribution of intestinal
parasites between 1999 and 2005 is explained in Thielen (2006).
The parasite Paratenuisentis ambiguous, which was predominant
in 1999, vanished because of the extinction of an alternate host
and was replaced by several other species (Pomphorhynchus laevis,
Raphidascaris acus, Paraquimperia tenerrima, Proteocephalus
macrocephalus, and Bothriocephalus claviceps).

In the present case, it is not generally possible to speak of 1
sample tending to larger values than the other; it is necessary to be
more specific: “Sample 1 has a larger mean than sample 2” or
“the median is smaller in sample 1,” and we cannot anticipate the
ordering when using a 3rd measure.

EXAMPLES OF STOCHASTICALLY ORDERED DISCRETE
PROBABILITY DISTRIBUTIONS

The opinion is widespread that stochastic ordering between
probability distributions is uncommon. Presumably, this is due to
the example of the predominant normal distribution. Two normal
distributions can be stochastically ordered only if they have equal
variances (and, then, the one with larger mean stochastically
dominates the other). However, because equal variance is
certainly the exception in practice, the same holds for stochastic
ordering between 2 normal distributions. This finding is
connected with the fact that the normal distribution can take on
both arbitrarily small and large values.

This changes entirely if we consider distributions defined only
for positive values such as exponential, gamma, Weibull, or count
distributions. We consider the 3 most important count distribu-
tions: the Poisson, the binomial, and the negative binomial.
Particularly the last distribution is often used to model parasite
numbers because data show a high degree of overdispersion
(Anderson and Gordon, 1985). As a final example, we consider
the logarithmic distribution, which is long and widely used for
modeling intensities (see, e.g., Williams, 1964).

First, let X be distributed according to a Poisson distribution
with probability density function (pdf) A* exp(—A)k!, k =
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Ficure 8. P-P plot for the 2 samples in example 3.

0,1,..., and let Y be Poisson-distributed with pdf p* exp(—p)/
kl,k=0,1,2,.... Then, X =, Yif and only if A = y, i.e., if the
mean of Xis larger or equal to the mean of Y.

Second, let X have a binomial distribution with pdf

(':)p"(l—p)'"—", k=0, ....m,

and let Y be binomial distributed with pdf
(Z)qk(l—q)"_k, k=0, ....n.

Then, X =, Yif p = g and m = n, and in this case, FX = EY and
Var(X) = Var(Y).

Third, let X and Y have negative binomial distributions with
pdf

ktr—1
( +'1 )p'(l—p)k, k=0,1,2, ...,
and pdf

<k+s—1
s—1

)q‘(l—q)", k=0,1,2, ...,

respectively. Then, X =, Yif p = g and r = 5. In this case, EX =
EY and Var(X) = Var(Y) holds again.

Fourth, let X have a logarithmic distribution with pdf — [In(1 —
I prlk, k= 1,2,3, ..., and let Y be logarithmic distributed
with pdf — [In(1 — ¢)]' q*/k, k = 1, 2,.... Then, X =, Y if and
only if p = q.

For the Poisson and the binomial distribution, the results can
be found in Miiller and Stoyan (2002, table 1.2). Proofs of the
claims in case of the negative binomial and logarithmic
distribution can be obtained from the authors upon request.

Of course, if we have stochastic ordering in 1 of the 4 examples
above, not only are the means and variances ordered, but also
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FiGUrRE 9. P-D plot for the fitted negative binomial distribution for
example 3.

medians, etc., as stated above. If, on the other hand, the mean of
X is smaller than the mean of Y, but the variances are ordered
conversely, both samples will not be stochastically ordered in
general.

As examples, we fitted negative binomial distributions to the
datasets in examples 1 and 3. This distribution provides a very
good model for the data under consideration (see Miinderle et al.,
2006 for the first example). In example 1, we obtain r = 0.28, p =
0.08 for the first sample and s = 0.17, ¢ = 0.27 for the second
sample. Because r > s and p < g, we can conclude from the result
above that the fitted negative binomial distribution for the first
sample stochastically dominates the second, in agreement with the
previous findings.

In example 3, we have r = 0.23, p = 0.01 and s = 1.60, ¢ = 0.15.
Here, r < s and p < g, and a P-D plot (Fig. 9) shows that the 2
fitted distributions are not stochastically ordered, which is again
consistent with the previous results for this dataset.

CONCLUSION

An important task in many parasitological studies consists of
deciding whether the values in one sample tend to be higher than
the values of the other sample. However, different dissimilarity
measures can lead to different conclusions. A debate as to which
measure is superior is unproductive. A similar view with regard to
formal tests for the relative effect is expressed in Neuhduser and
Ruxton (2009): “Testing the null hypothesis P = 0.5 is not
necessarily a better or worse approach than comparing central
tendencies such as means or medians. However, it offers a

different point-of-view that at least sometimes is more meaning-
ful.”

Using the concept of stochastic dominance, we have proposed
graphical tools that will help to identify situations in which it is
fully justified to make a general statement that the number of
parasites in one sample is larger than in the other sample.
Consequently, the most common measures then all lead to the
same conclusion. Several examples corroborate the applicability
of the concept to empirical data as well as to theoretical count
distributions.
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