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Abstract

Interdisciplinary research in computer science and economics shows that great ad-

vancements are taking place in the areas of distributed computing, social networks,

market mechanisms, game theory and artificial intelligence. Prominent examples

of these developments are search engines like Google search, knowledge engines like

WolframAlpha, electronic markets like eBay, Cloud computing markets like Ama-

zon’s EC2 Spot Instances, Google’s AppEngine and SpotCloud, social networks like

Facebook and LinkedIn, and many more.

Market mechanisms are studied for years to determine how goods and services can

be allocated to consumers efficiently. In economic theory, market mechanisms often

refer to design incentives and pricing to achieve a common goal by guiding the be-

havior of self-interested agents. In the field of market-based scheduling, consumers

often demand and use different applications, providers offer heterogeneous comput-

ing services with different business models, therefore, the behavior and goals of both

parties on the market can be highly heterogeneous. The research on bidding strate-

gies is prevalently based on simplified assumptions about the type of agents, which

are often assumed to be homogeneous, rational and sharing their true preferences

with each other. Novel interdisciplinary research in Computational Mechanism De-

sign aims to relax these assumptions by enhancing promising economic theories and

evaluating them extensively in more realistic experiments by utilizing a high number

of computing services over the Internet.

This work contributes to the research on Computational Mechanism Design by pro-

viding novel theoretical and software models – a novel bidding strategy called Q-

Strategy, which automates bidding processes in imperfect information markets, a soft-

ware framework for realizing agents and bidding strategies called BidGenerator and

a communication protocol called MX/CS, for expressing and exchanging economic

and technical information in a market-based scheduling system. The interdisciplinary

approach to this research deals with the areas of design science, game-theoretic mod-

eling, mechanism design, software engineering, agent-based modeling, discrete event

simulation, scientific computing on cluster machines and statistical analysis. This

work provides a full-fledged analysis of bidding strategies, bidding agents and commu-

nication protocols and is based on commonly applied methodologies for agent-based

and technical evaluations. Evaluation of the Q-Strategy against benchmark strategies



iv

in spot market scenarios showed that, on average, agents applying the Q-Strategy

outperformed benchmark strategies in homogeneous and heterogeneous competition

settings. As proof-of-concept, BidGenerator, the Q-Strategy and MX/CS have been

implemented and integrated in a real running prototype for market-based scheduling

and three real application case studies, which are all part of the SORMA project.
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Chapter 1

Introduction

I
nterdisciplinary research in computer science and economics shows that great

advancements are taking place in the areas of distributed computing, social net-

works, market mechanisms, game theory and artificial intelligence (Blume, 2010).

Prominent examples of these developments are search engines like Google search,

knowledge engines like WolframAlpha, electronic markets like eBay, Cloud comput-

ing markets like Amazon’s EC2 Spot Instances, Google’s AppEngine and SpotCloud,

social networks like Facebook and LinkedIn, and many more. Market mechanisms are

studied for years to determine how goods and services can be allocated to consumers

efficiently (Sutherland, 1968; Buyya, 2002; Heydenreich et al., 2010). In economic

theory, market mechanisms often refer to design incentives and pricing to achieve a

common goal by guiding the behavior of self-interested agents. In the field of market-

based scheduling, consumers often demand and use different applications, providers

offer heterogeneous computing services with different business models, therefore, the

behavior and goals of both parties on the market can be highly heterogeneous (Blume,

2010; Levine, 2010). Moreover, bidding strategies implement individual decisions in

software agents and are still based on simplified assumptions about the type of agent,

which is often assumed to be homogeneous, as well as about the type of information

available and it is often assumed that agents share their actions and allocations (Das

et al., 2001; Reeves et al., 2005; Vytelingum et al., 2008; Schvartzman and Well-

man, 2009). Novel interdisciplinary research in Computational Mechanism Design

aims to relax these assumptions by enhancing promising economic theories and eval-

uating them extensively in more realistic experiments by utilizing a high number of

computing services over the Internet (Parkes, 2008; EGEE, 2009).

This work contributes to the research on Computational Mechanism Design by pro-

viding novel theoretical and software models – a novel bidding strategy called Q-

Strategy, which automates bidding processes in imperfect information markets, a

software framework for realizing agents and bidding strategies called BidGenerator

and a communication protocol calledMX/CS for expressing and exchanging economic

and technical information in a market-based scheduling system. The interdisciplinary
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approach to this research deals with the areas of design science, game-theoretic mod-

eling, mechanism design, software engineering, agent-based modeling, discrete event

simulation, scientific computing on cluster machines and statistical analysis. This

work provides a full-fledged analysis of bidding strategies, bidding agents and commu-

nication protocols and is based on commonly applied methodologies for agent-based

and technical evaluations. Evaluation of the Q-Strategy against benchmark strate-

gies in spot market scenarios showed that, on average, agents that apply Q-Strategy

outperformed benchmark strategies in homogeneous and heterogeneous competition

settings. As proof-of-concept, BidGenerator, the Q-Strategy and MX/CS have been

implemented and integrated in a real running prototype for market-based scheduling

and three real application case studies, which are all part of the SORMA project.

1.1 Motivation

The economics of computing service provisioning refers to mechanisms that improve

the efficiencies of their realization and utilization. Studies have shown that, on av-

erage, 5% to 20% of computing center resources are utilized (Armbrust et al., 2009;

Greenberg et al., 2008) and in companies, around 60% (Symantec, 2008). Current

workload logs of the MonALISA1 repositories confirmed these low average rates of

utilization. The current top ten computing centers of the Top500 list2 provide more

than 12 petaFLOPS3 of computing power, which is used by research institutions

and can also be made available to industry. Such a shift in provisioning to business

has considerable implications for scheduling policies. Current cluster or Grid com-

puting (decentralized coordination of connected cluster systems among distributed

sites based on common interfaces and tools) resource managers execute technical and

agreement-based policies rather than economic ones. Consumers of such resources

are often grouped into virtual organizations with specific privileges and quotas for

resource usage (Feitelson et al., 2005; Elmroth and Gardfjall, 2005; Elmroth et al.,

2008). For example, the execution of a job depends on several technical factors, in-

cluding the quotas and permissions granted to the consumer, the part of a virtual

organization it is assigned to, the type and amount of the computing instance’ re-

sources (CPU, memory, storage, bandwidth), the estimated job duration, the current

1<http://nui.uits.indiana.edu:8080/reports/weekly/latest/index.html#3>, last ac-
cessed on 17 Apr. 2011.

2“TOP500 list – November 2010”: <www.top500.org>.
3Equivalent to more than 200K single Intel CPU Core i7 965 machines.
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utilization of the system and availability of the computing instances. The group quo-

tas and technical requirements for the job are used to calculate the job’s priority level

and resulting schedule in the system. This rather simplified example shows the scope

of decision variables a consumer has to deal with when submitting a job for computa-

tion. The group’s usage information history, usage policies between institutions and

groups, as well as the technical job descriptions reported for the consumer, influence

the outcome of the resource manager. Thus, the efficiency of the outcome depends

on the correctness of the consumer’s estimated values. Economic incentives are not

incorporated into allocation processes. Moving computational services to the market

demands the incorporation of price-based allocation and incentive mechanisms on top

of technical schedulers.

In this context, the paradigm shift after Grid computing is Cloud computing, which

focuses on the business view of differentiated service types – infrastructure, platform

and application services (Foster et al., 2008; Lenk et al., 2009). Consumers are able to

scale their applications on demand with Cloud services and only pay for what they

use. Studies show that businesses can reduce their total IT costs by using Cloud

services to cover their peaks, instead of maintaining their own computing and ap-

plication infrastructures (Mell and Grance, 2009a). Symantec (2008) reported that,

on average, companies work with more than 1000 applications, most of which are

web applications, as well as transactional, messaging, and collaboration applications.

Current technologies like Cloud computing allow these applications to be carried out

efficiently, in terms of scalability, resource utilization and costs since “using 1000

servers for one hour costs no more than using one server for 1000 hours” (Armbrust

et al., 2009; Amazon, 2010b). Scalability is achieved through abstraction, distribution

and virtualization techniques for infrastructures, platforms and application services.

On the one hand, consumers profit from transparent, flexible and scalable services

with on-demand usage and payment; on the other hand, providers profit from effi-

cient resource management, as well as resource utilization due to economies of scale

(Armbrust et al., 2009).

The pricing models most commonly offered today are pay-per-use and subscription,

for which consumers pay fixed (or static) prices for a Cloud service unit, e.g. CPU-

hours and GB-storage (Weinhardt et al., 2009). Pay-per-use is a static pricing model

for service usage, whose price per time unit remains stable over time and does not

depend on dynamic parameters like supply and demand. This model is typically

used for products or services, which are supplied for the short term, on demand, and

have similar qualitative characteristics (e.g. Amazon EC2 instances). Through the

subscription pricing model, the consumer subscribes to use a Cloud service with a
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well-defined quota on a monthly or yearly basis. Static pricing models simplify the

planning of billing rates for consumers and providers, however, due to the insurance

and convenience effect, consumers tend to overestimate their usage when choosing a

static price tariff (Lambrecht and Skiera, 2006). In the case of resource reservation,

such overestimation will produce inefficiencies in service usage. Moreover, static

prices introduce unrealized utilities by consumers and providers when prices are not in

keeping with the demand and supply (Lai, 2005). Lai (2005) discusses the application

of market mechanisms for the dynamic pricing of computing services, which considers

fluctuations in supply and demand, thereby resulting in a more efficient allocation of

computing services to consumers as compared to static pricing. Furthermore, on-

demand service usage versus guaranteed static quotas incentivize consumers to be

more careful when developing their jobs or applications (Armbrust et al., 2009).

In this context, Amazon started a spot market service for EC2 instances, where

prices are determined based on current supply and demand (Amazon, 2009). Current

snapshots show that, on average, spot prices of EC2 instances are 30% lower than the

static ones.4 Emerging open standards, web interfaces and tools strive to overcome

usage barriers to such markets by reducing switching costs and offering guarantees

for service availability and data protection.

In a scenario where computing services are allocated with market mechanisms, con-

sumers and providers need a set of tools and methodologies to interact with the mar-

ket. The decision of what to bid for on-demand computing services is performed by

the so-called bidding strategy, which implements the related logic of information ag-

gregation from locally (own preferences and past experience) and publicly available

sources (market information). Technical interaction with the market is facilitated

through bidding agents and a well-defined communication protocol.

1.2 Research Outline

The overall goals of this thesis is to provide i) a theoretical framework for design-

ing bidding strategies within a market-based scheduling context and ii) a technical

framework for implementing bidding agents, bidding strategies and a communica-

tion protocol. The target market mechanism of this work belongs to the class of

double-sided auctions addressing a scenario with multiple providers and consumers,

and dynamic supply and demand (Lai, 2005). The trading objects are computing

4The Cloud Market provides information on actual Amazon spot prices, as well as spot price
history for various computing instances, <http://thecloudmarket.com>.
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services (or infrastructure services, IaaS), which are realistic candidates for perfect

substitutes – offered by different providers, but uniformly consumable from each ap-

plication based on uniform APIs. Moreover, the literature mainly focuses on the

general design of auction mechanisms and bidding languages, and less on the design

of bidding agents, bidding strategies and communication protocols for the field of

market-based scheduling (Chevaleyre et al., 2006; Parsons and Klein, 2009).

The overall goals are investigated on the basis of four main research questions, which

represent the research outline of this work. The first goal (i) of this thesis is addressed

in research questions 1 and 4; and the second goal (ii) is addressed in research ques-

tions 2, 3 and 4.

The first research question, RQ 1, deals with the elaboration of design characteristics

for bidding strategies within the context of market-based scheduling:

Research Question 1 ≺Design of Bidding Strategies�
How can bidding strategies for market-based scheduling be designed and implemented,

which when instantiated into bidding agents, automate the bidding process for con-

sumers and providers?

The original term, bidding strategy, used in game theory refers to the set of possible

actions and probability distribution function with regard to these actions at any stage

of a game (Shoham and Leyton-Brown, 2009). This postulates the fact that each of

the agents makes decisions based on given local or commonly shared knowledge about

the actions of other agents, as well as the actual system state. Classic approaches

suggest that controlled laboratory experiments with human participants should be

performed when designing bidding strategies for a given market mechanism (Axelrod

and Hamilton, 1981; Selten et al., 1997). Human participants are allowed to play

with the market mechanism for a certain time and later asked to implement their

bidding strategies in code, which reproduces their bidding behavior. In later multiple

numerical experiments with continuous double auction, Das et al. (2001) showed that

software agents are able to outperform humans. Moreover, software agents “don’t

get distracted” or are indifferent between decisions and do not suffer from “auction

fever” (Greenwald et al., 2003; Ku et al., 2005).

Recent research shows that bidding strategies are implemented as complex algo-

rithms with multiple functional steps, which aggregate data according to individual

demand functions, experience from past actions and shared market information of

other agents’ actions (Parsons and Klein, 2009). Moreover, a major part of the

literature elaborates on bidding strategies in the context of financial markets utiliz-

ing scoring functions for monetary profit maximization, however, there is a lack of
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research for bidding strategies in the context of market-based scheduling with applica-

tions or computing services for specific scoring functions, which consider additional

metrics like makespan (Parsons and Klein, 2009; Reeves et al., 2005; Heydenreich

et al., 2010).

A bidding strategy executes a policy, a so called scoring function, which formally

defines the goals and constraints that govern the decisions. “Even a goal as su-

perficially simple as maximize utility will require a human to express a complicated

multi-attribute utility function” (Kephart and Chess, 2003). A common evaluation

methodology for bidding strategies is their instantiation into software agents and the

execution of numerical experiments in an agent-based environment (MacKie-Mason

and Wellman, 2006; Tesfatsion, 2006). A detailed elaboration of an appropriate eval-

uation methodology of complex strategies is part of RQ 4.

While RQ 1 focuses on the game theoretic design of bidding strategies, the second

research question, RQ 2, deals with the technical design and realization of software

agents and bidding strategies within a general software framework with well-defined

interfaces and methodology:

Research Question 2 ≺Design of a Framework for Automated Bidding�
What are the characteristics of bidding agents and how can they coincide with bidding

strategies in an agent framework for market-based scheduling?

A system for market-based scheduling is distributed and contains the market middle-

ware with related components for running auctions, contract management, enforce-

ment of service level agreements and security, as well as the consumer and provider

tools to interact with the market and execute consumer applications on the provider’s

computing services (Nimis et al., 2008). A “grand challenge” of such complex systems

is to make them self managing, since many components implement their own logic

and functionality and run “beyond company boundaries into the Internet” (Kephart

and Chess, 2003). Kephart and Chess (2003) identified that such systems have to be

designed to run autonomously since rising complexity “appears to be approaching the

limits of human capability” “for even the most skilled system integrators to install,

configure, optimize, maintain, and merge.” The basic entity of systems’ components

are agents, which interact autonomously according to high-level objectives, set by

their owners or administrators. Moreover, each of the autonomous components is

“responsible for managing its own internal state and behavior and for managing its

interactions” with the related components in the system (Kephart and Chess, 2003).

Therefore, a system for market-based scheduling will, in fact, be a multi-agent system

built with commonly accepted principles and communication protocols.
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In order to interact with the market mechanism, consumers and providers need bid-

ding tools, which coordinate and execute the bidding processes autonomously, and

integrate with the heterogeneous system through well-defined interfaces and commu-

nication protocols. The here developed Framework for Automated Bidding called Bid-

Generator provides interfaces and a methodology for implementing bidding strategies

and bidding agents. Existing agent frameworks are either generic or domain specific,

e.g., for realizing mobile agents, robots, search engines and bidding agents for finan-

cial markets (known also as algorithmic traders) (Jennings et al., 1998; Bergenti and

Poggi, 2002; Sturm and Shehory, 2004). Moreover, there are existing agent frame-

works, which are either designed for experimental purposes or tournaments (Wellman

et al., 2007; Cai et al., 2009). However, there is a lack of research in the area of agent

frameworks in the domain of market-based scheduling and its characteristics, which

is the area that RQ 2 investigates. Common evaluation methodologies of software

frameworks are based on functionality comparison, proof-of-concept implementation

or integration in running systems according to the investigated use cases (Lind, 2001;

Zambonelli et al., 2003; Sturm and Shehory, 2004; Bartolini et al., 2005). Such inte-

grated systems are often evaluated with performance tests.

A distributed system for market-based scheduling interacts by exchanging messages

over well-defined (Web service) interfaces. The aim of the third research question,

RQ 3 is the specification and the realization of protocols for the exchange of context-

specific messages between the bidding tools and related market components:

Research Question 3 ≺Communication Protocols�
What are the characteristics of a message exchange within a market-based scheduling

context? How can technical and economic preferences be expressed, communicated

and matched between consumers, providers and the market?

The communication in a distributed system for market-based scheduling is ruled

according to a well-defined protocol with specific information content between the

different components and communication directions, which is referred to here as a

communication protocol. For example, bidding strategies generate bids of economic

and technical attributes in the form of multi-attributive messages, which are submit-

ted through the bidding agents to the market. The market returns multi-attributive

match messages as well as market information on the actions of other agents. The

protocol specifies the types of messages exchanged between specific components –

application and bidding agent, market and bidding agent, etc. There is a need for

formal languages that enable the expression of economic and technical information

(multi-attributive), where the language concepts, their properties and relations are
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commonly accepted to create an ontology (Kephart and Chess, 2003). The economic

and technical information represents the needs and preferences of consumers and

providers regarding the demanded and traded computing service. System developers

“will need tools that help them acquire and represent policies – high-level specifi-

cations of goals and constraints, typically represented as rules or utility functions”

(Kephart and Chess, 2003). The economic and technical information communicated

in the form of bids and the resulting matches are not only used to execute consumer

applications to the allocated provider’s computing service, but controlling system

components use it to monitor and enforce the agreements (market match of legally

binding consumer and provider bids) as a result of the matchmaking process.

A semantic specification of bidding languages is crucial in a distributed system since

the related components, the consumer’s applications and provider computing ser-

vices can span across different administrative domains – on premiss, as well as off

premise. This will enable more comprehensive usage and trust, and increase the

validation and verification capabilities of the controlling components (Kephart and

Chess, 2003). Furthermore, consumers and providers can easily reason about the

posted bids and their technical descriptions in the market, as well as derive better

knowledge with regard to the supply and demand of computing services.

Available communication protocols for auctions are often proprietary (e.g., eBay,

Amazon Web Services), consisting only of technical attributes (e.g., Job Submission

and Description Language) or developed for tournaments, such as the Trading Agent

Competition (Anjomshoaa et al., 2005; Niu et al., 2009). There is a lack of research on

communication protocols that also express economic data to the technical attributes

and in a market-based scheduling context (Andreetto et al., 2010; Laure et al., 2006;

Smirnova, 2009). Similarly to RQ 2, the evaluation methodology of communication

protocols (as part of a distributed system) is analytical and combined with proof-of-

concept implementation and performance tests.

The fourth research question, RQ 4, refers to the evaluation of complex bidding

strategies in homogeneous and heterogenous settings, and also contains the proof-

of-concept evaluation of the Framework for Automated Bidding and communication

protocol developed here.

Research Question 4 ≺Evaluation of Bidding Strategies�
How do learning-based bidding strategies score against benchmark bidding strategies

in settings with homogeneous and heterogeneous agents?

There is no established and clear methodology for evaluating complex bidding strate-

gies and their interactions in markets. This has to do with the target use cases
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evaluated, the assumptions selected, as well as the scenarios and types of market

mechanisms analyzed. Common assumptions in classic game theory are that agents

are rational, perfectly informed and apply bidding strategies that are the best re-

sponse to the actions of other agents. Furthermore, the mathematical model of the

bidding strategies is similar for all agents, thus, they are often assumed to be homoge-

neous (Shi and Jennings, 2010). In game theory, finding the Nash equilibrium is one

of the main goals in analyzing bidding strategies (Shi and Jennings, 2010; Wellman,

2006; MacKie-Mason and Wellman, 2006). As a system grows in complexity, game

theoretic models quickly become unfeasible. This is a reflection of the “strategies

space, number of agents, degree of incomplete and imperfect information, and dy-

namism” (MacKie-Mason and Wellman, 2006; Tesfatsion, 2006). In realistic settings,

the number of consumer and provider agents is asymmetric, not all agents share the

same information, agents do not share the same preferences as well as demand and

supply is dynamic over the time. In respect to their use cases – e.g. interactive appli-

cations or batch jobs – consumers are interested for immediate or delayed purchases

of online computing services. Thus, realistic settings require market mechanisms

with continuous matching and allocation of computing services (e.g., spot market5)

or markets for short-time future contracts for their batch jobs (call market6). In

online settings, demand and supply fluctuates over time and agents are continuously

making decisions based on the available information about the other agents’ actions.

Computing Nash equilibrium is an NP-complete problem and feasible in perfect in-

formation market scenarios with a small number of agents and manageable action

space.

In order to evaluate bidding strategies for realistic online scenarios, extensive ex-

periments in homogeneous and heterogeneous settings need to be carried out. The

research in this direction is still ongoing and generally addresses financial markets

scenarios than trading computing services (Das et al., 2001; Tesauro and Das, 2001;

Vytelingum et al., 2008; Phelps et al., 2010a). A commonly applied market mech-

anism in these settings is the continuous double auction. Moreover, these bidding

strategies are developed in the context of financial markets with common goal of

profit maximization. In the context of market-based scheduling there is a lack of

research in appropriate bidding strategies with sophisticated scoring functions, e.g.

“maximize profit and utilization,” “minimize time to complete and payments” or

5A market in which a commodity is bought or sold for immediate delivery or delivery in the very
near future, <http://financial-dictionary.thefreedictionary.com/Spot+market>.

6A market in which trading in individual securities occurs at specific times as opposed to con-
tinuously, <http://financial-dictionary.thefreedictionary.com/Call+Market>.
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other important performance indicators of a technical or economic nature (Reeves

et al., 2005; Heydenreich et al., 2010). Furthermore, evaluation of heterogeneous

agents, which apply different bidding strategies in competing online market settings,

is partially explored in the existing research, and virtually unexplored in the context

of market-based scheduling. Therefore, RQ 4 evaluates complex settings of mar-

kets and agents’ bidding strategies; and the proof-of-concept implementation shows

the feasibility of the models and methodologies developed here (MacKie-Mason and

Wellman, 2006; Tesfatsion, 2006; Sturm and Shehory, 2004; Bartolini et al., 2005).

Moreover, the models presented in this work are implemented, integrated and tested

in a real project according to real use cases for batch and interactive applications

(Nimis et al., 2008, 2009; Neumann et al., 2007).

1.3 Summary of the Research Contributions

This work contributes to the research questions introduced by providing novel theo-

retical and software models – a novel bidding strategy, called Q-Strategy, a software

framework for realizing both bidding agents and bidding strategies, called BidGen-

erator and a communication protocol for expressing and exchanging economic and

technical information within a system for market-based scheduling, called MX/CS

(Message Exchange in Computing Service Markets). The contributions of this work

can be summarized in the following way:

Development and realization of a novel, adaptive and configurable bid-

ding strategy called Q-Strategy: The first contribution of this work, the Q-

Strategy, is a novel model for structuring trading activities for trading objects in

terms of related consumer and provider requests, their bids, and observed rewards.

Consumer and provider requests consist of multi-attributive technical and economic

preferences for each of their applications or computing services. Furthermore, each

of the trading objects can be associated with an own scoring function. Thus, the

Q-Strategy aims to solve a so-called multi-armed bandit problem, where each of the

arms represents a long-term optimization problem for a given type of trading object

(Borissov and Wirström, 2008; Borissov, 2009; Borissov et al., 2010). Section 3.4

presents the design model of the Q-Strategy, its realization methodology and integra-

tion into a market-based scheduling scenario.

Development and realization of a novel agent framework for automated

bidding called BidGenerator: The second contribution of this work, the BidGen-

erator framework, offers well-defined interfaces and a methodology for implementing
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any kind of bidding agent and bidding strategy. As a proof-of-concept, it contains im-

plementations of several state-of-the-art bidding strategies, as well as the Q-Strategy.

Based on consumer and provider preferences, as well as the target market mech-

anism, bidding agents can be associated with different adequate bidding strategies

from the available pool (Borissov et al., 2010). Each of the bidding agents connects to

the SORMA market over well-defined interfaces and exchanges secured and binding

market messages. The architecture of the BidGenerator framework is presented in

Section 4.4.

Development and realization of a communication protocol for market-

based scheduling called MX/CS: As part of the distributed system for market-

based scheduling, the third contribution of this work is the definition of a commu-

nication protocol, which defines the type of information exchanged between related

system components in the message chain, from the application request to the bidding

agent, from the bidding agent to the target market, and from the market back to

the application. As proof-of-concept, the communication protocol has been devel-

oped, integrated and tested on top of the Job Submission and Description Language

(Borissov et al., 2009b). A detailed presentation of the communication protocol can

be found in Section 5.3.

Development of a methodology for evaluating bidding strategies in com-

plex settings : This work provides a full-fledged analysis of bidding strategies in

homogeneous and heterogeneous settings using recognized methodologies for agent-

based simulations. The lessons learned from the derived evaluation scenarios, their it-

erative evaluation over the years and the search for an appropriate evaluation method-

ology has led to the development of a more detailed methodology for agent-based

experiments, which is presented in Section 6.1. As part of the fourth contribution

of this work, the developed methodology was applied by evaluating the Q-Strategy

against benchmark strategies in homogeneous and heterogeneous settings in a spot

market. Furthermore, the evaluation results in Section 6.2 show that the Q-Strategy

outperforms the benchmark strategies in most of the scenarios and elaborate the

cases in which the benchmarks were more successful than the Q-Strategy.

Proof-of-concept implementation of BidGenerator, the Q-Strategy and

MX/CS in a real running prototype for market-based scheduling as part

of the SORMA project:7 The fifth contribution of this work is the proof-of-concept

implementation, integration and successful testing of the BidGenerator framework

7<http://sorma-project.eu/>
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with the Q-Strategy and the MX/CS communication protocol in a real running pro-

totype for market-based scheduling (Nimis et al., 2008, 2009; Neumann et al., 2007).

The integrated prototype has been evaluated according to two case studies, which

execute batch and interactive applications through distributed providers of comput-

ing services. The technical analysis of integrations with BidGenerator and MX/CS

is showed in Chapter 7. Performance experiments demonstrated the efficient proof-

of-concept implementation and integration with the related core components of the

overall prototype.

1.4 Structure of This Work

Figure 1.1 depicts the overall structure of the thesis. Chapter 1 introduces the topic,

research questions and contributions of this work. Chapter 2 discusses the target

domain of this research and specifies the economic and technical environments of

the market-based scheduling system. The economic environment describes the mi-

croeconomic model of the system, a definition of the transaction object traded and

challenges when designing markets for scheduling computing services. The techni-

cal environment introduces two application scenarios for batch and interactive jobs,

describes the realization challenges of the system for market-based scheduling from

technical perspective, depicts the technical architecture of the system and introduces

the target bidding scenario. It concludes with a presentation of the research method-

ologies applied in the evaluation of the economic and technical models developed.

Chapter 3 elaborates on the field of bidding strategy design. It starts with the defi-

nition of the term bidding strategy and the specification of related design desiderata

from a computational mechanism design perspective. Subsequently, existing non-

adaptive and adaptive bidding strategies are investigated and evaluated according

to the design desiderata derived and applied in a market-based scheduling domain.

Finally, a novel adaptive bidding strategy called the Q-Strategy is introduced as part

of RQ 1.

Chapter 4 presents the design and realization of a framework for automated bidding

called BidGenerator. The chapter starts with a discussion of what a bidding agent is.

Design desiderata for developing bidding agents are derived; based on these, existing

agent frameworks are elaborated and evaluated. As a contribution to RQ 2, the

chapter concludes with the presentation of the BidGenerator framework.

Chapter 5 focuses on the design and realization of a communication protocol for

market-based scheduling. The chapter starts with specification of the design desider-
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ata for developing communication protocols in the target domain. Subsequently,

it presents and evaluates related works on existing communication protocols to the

design desiderata. The contribution to RQ 3 is a formal definition of a novel commu-

nication protocol called MX/CS, specifically designed for a market-based scheduling

domain.

Chapter 6 presents the results of the agent-based experiments performed – the evalua-

tion of the Q-Strategy against benchmark bidding strategies in homogeneous and het-

erogeneous settings. The chapter starts with a description of the evaluation method-

ology and presents the design of the numerical experiments. The contribution to

RQ 4 is an insightful presentation of the results on the impact of the learning-based

adaptive bidding strategy, Q-Strategy, against benchmark bidding strategies in a spot

market for computing services, realized with the continuous double auction.

Chapter 7 is a technical analysis of the BidGenerator framework and MX/CS applied

in real case studies. Two case studies for batch and interactive applications show how

BidGenerator and MX/CS are applied for automating provisioning and acquisition

processes in markets for computing services. A third case study shows how MX/CS

is applied in the creation of electronic contracts. In this chapter, the adoption of

MX/CS in an application scenario for sharing storage services in social networks
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called Social Cloud is also described. The chapter is concluded with a performance

analysis of the integrated system of BidGenerator, MX/CS and market components.

Finally, Chapter 8 concludes this thesis with a summary of the research contributions

and an overview of related future research topics.

1.5 Related Publications

The preliminary ideas for the Q-Strategy were first presented in Borissov (2009)

and Borissov and Wirström (2008), including its definition, realization and primal

evaluation. The evaluation compares aggregated consumer utilities in scenarios with

symmetric and asymmetric agents for specific market mechanisms. Borissov et al.

(2010) present a comprehensive view on the BidGenerator framework and provides a

fully-fledged evaluation of the Q-Strategy in homogeneous and heterogeneous settings.

Borissov et al. (2009b) present a specification for a bidding language called EJSDL (in

this work renamed to MX/CS ), for expressing and exchanging economic preferences

in the context of market-based scheduling. A detailed description of such a bidding

language is shown with a corresponding realization scenario for exchanging private,

public and market data between the actors in the environment, such as consumers,

providers, bidding agents and auctions. The bidding language is associated with a

corresponding ontology, which defines the semantics of concepts and relations utilized

with links to recognized upper ontologies.

Developed within the scope of the SORMA project, Borissov et al. (2008b); Nimis

et al. (2009, 2008); Neumann et al. (2007) describe the proof-of-concept implementa-

tion and integration of the BidGenerator framework and MX/CS in a real prototype.



Chapter 2

Preliminaries and Related Work

T
he aim of this chapter is to introduce the research field of market-based schedul-

ing of computing services. The chapter begins with a comparison of emerging

service paradigms with the aim of deriving tradable computing service objects. It

motivates the application of market mechanisms, which can improve the efficiency of

provisioning and usage of computing services. The application of market mechanisms

imply economic and technical challenges for the design of mechanisms and strategies,

as well as for the design of related software tools like agent frameworks. The eco-

nomic and technical challenges are discussed in the subsequent sections, followed by

an analysis of existing works in the research field investigated. Finally, the chapter

concludes with a discussion of the research methods available, in order to select an

appropriate evaluation methodology for the contributions of this work.

2.1 Computing Services

The computer became the working unit in society for executing a multitude of tasks

from simple data processing and storage to complex processing of simulations, as well

as sensor and enterprise data. To execute these tasks, different computing services are

often required. For personal uses, a single computing instance is needed for document

creation and editing, audio and video streaming and data aggregation. Industrial and

research applications in the form of information systems often produce big logs from

GB to PB of data, which can only be processed in a time-efficient manner with a

bundle of computing instances that can work together.

Application services became complex, connecting hundreds to millions of people, are

distributed over the network and scalable. Such applications aggregate and provide

data from various sources like sensors, audio and video, finance and forecasting ser-

vices. Each of these applications has varying technical requirements for scalability,

performance and security. The following sections briefly introduce actual computing

paradigms, discussing the shift from utility computing to Cloud computing.
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2.1.1 Utility Computing

The first ideas to provide computing power as a utility (similar to energy, water and

communications) had been discussed back in the 60s (Armbrust et al., 2009). How-

ever, it really started to gain attention in the 90s, together with the increase in com-

puting usage and Internet technologies in everyday life. Through the restructuring

of existing computing infrastructures, utility computing aims to provide computing

power in a more flexible and effective way, in order to reduce IT costs and improve

provider profits. In Rappa (2004), the following characteristics of utility computing

are identified:

• Necessity. Utility computing offers a certain value for the consumers to fulfill

their day-to-day needs.

• Reliability. The utility computing services provided must be readily available

anytime and anywhere.

• Usability. Utility computing services have to be simple at the point of use

(“plug and play”) and hide the system complexity from the consumer. This

consideration implies the existence of standards for technical access (interfaces)

and message protocols.

• Utilization rates. Providers have economic interests in maintaining higher uti-

lization rates and increasing profits for their computing infrastructures. Their

utilization rates may fluctuate over time and across geographic regions, which

have to be taken into consideration in providers’ business models.

• Pay-per-use. This pricing method stipulates that prices of utility computing

services are calculated according to their actual usage. The prices of utility

computing services can vary based on actual system utilization, time of day,

geographic region and consumer type, i.e., price and client discrimination poli-

cies (Püschel et al., 2007). Providers can offer discounts during low peak times

in order to shift consumer demand from higher peak times.

• Scalability. The scalability property of utility computing services refers to the

fact that, on the one hand, consumers can get as much capacity as they are

willing to pay for; on the other hand, providers can benefit from economies of

scale by reducing the costs per unit when consumer usage increases.
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• Service exclusivity. Service exclusivity represents the set of conditions and usage

policies for utility computing services. The conditions are specified in the form

of provisioning and usage policies, which are usually set by providers, however,

they often have to be in keeping with policies of common regulative instance

(e.g., government).

The characteristics of utility computing mentioned above imply challenges of a tech-

nical, business and political nature. Related processes of utility computing like

repetitive tasks, service provisioning and usage, monitoring, payment and billing are

not manually manageable (Kephart and Chess, 2003). Well-defined interfaces and

methodologies, as well as tools, are required in order to automate these processes on

the behalf of the provider and simplify access for the consumer.

2.1.2 Grid Computing

The idea of Grid computing originated from metacomputing projects like I-WAY,

where metacomputing denotes “a networked virtual supercomputer, constructed dy-

namically from geographically distributed resources linked by high-speed networks.”

I-WAY was one of the first projects, which connected supercomputers from seventeen

different sites, mainly in the USA, using preliminary versions of the Globus Toolkit

Grid middleware (Foster and Kesselman, 1997). The Grid computing paradigm incor-

porates ideas and relates them to paradigms like distributed and cluster computing.

Distributed computing is a computing paradigm, in which software applications are

executed on one or more computing instances (also called computing nodes), which

are connected and communicate through a computer network. To achieve their scal-

ability, the software applications are usually modularized and executed on multiple

computing instances in parallel (Naor and Stockmeyer, 1993). The general advantage

of distributed systems over centralized systems is the ability to enable modulariza-

tion of complex systems, where each of the modules are executed on different nodes

connected through a network. Therefore, distributed applications can be more easily

configured to avoid a single-point of failure, to improve scalability and fault tolerance

through the redundancy of application modules.

A cluster contains a set of locally installed and independent compute instances (also

called nodes) that are interconnected through a dedicated network. All components of

a cluster system belong to a single administrative domain and usually reside in a single

room (Baker and Buyya, 1999). A cluster system usually consists of homogeneous

computing nodes, installed with the same operating system and software. In order to
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submit their applications, the users connect to a so-called user interface (also called

head node or UI node) in order to interact with Cluster Management Systems (CMS).

One of the main CMS components is the scheduler, which uses well-defined policies

to allocate submitted applications to computing nodes.

In contrast to distributed and cluster computing, a Grid computing system spans

across multiple sites, each of them coordinating and sharing their own computing

service instances to the research community. A global resource scheduler monitors

the state of each of the registered sites in terms of the current site utilization, as well

as the number of running and allocated jobs. The decision to allocate jobs to sites is

made by the global resource scheduler according to the job’s technical requirements,

the assigned Virtual Organization1 (VO) of the job owner and the utilization of the

target Grid sites assigned to the owner’s VO. The local scheduler of the allocated

Grid site performs the final scheduling actions. An overview of common scheduling

mechanisms for Grid systems is presented by Dong and Akl (2006).

According to the three point checklist, a Grid i) “coordinates resources that are not

subject to centralized control,” ii) “uses standard, open, general-purpose protocols

and interfaces,” and iii) “delivers non-trivial qualities of service” (Foster, 2002). Grid

systems have been in place for a decade mainly in the field of research. Prominent

projects like TeraGrid,2 Open Science Grid3 and EGEE 4 (Enabling Grids for E-

sciencE) already connect many sites around the world, enabling the calculation of

huge amounts of data, which is generated by experiments in areas like physics, biology

and chemistry. With more than 80K CPU cores, distributed in around 250 computing

centers with more than 9K users, the EGEE Grid handles more than 200K jobs each

day (Lingrand et al., 2009).

In order to integrate, provide and perform Grid computing, one needs well-defined

interfaces and standards that that are supported by each provider (e.g., through com-

mon Grid service management tools), in order to prepare computing services for the

Grid. Grid standards are mutually created and approved by global standardization

entities like the Open Grid Forum5 (OGF) and the Organization for the Advancement

of Structured Information Standards6 (OASIS). The Open Grid Services Architecture

1The “project community” of a consumer or provider is called Virtual Organization or VO. A
VO can contain Grid services of many geographically distributed Grid sites.

2<https://www.teragrid.org>, last visited on 15 Mar. 2010.
3<http://www.opensciencegrid.org>, last visited on 15 Mar. 2010.
4<http://www.eu-egee.org>, last visited on 15 Mar. 2010.
5<http://www.ogf.org>, last visited on 15 Mar. 2010.
6<http://www.oasis-open.org/home/index.php>, last visited on 15 Mar. 2010.



21 2.1.2 Grid Computing

(OGSA) is a reference model for implementing Grid systems, which defines its con-

cepts, components and relations (Foster et al., 2005). The realization of Grid services

is based on open standards, which is why the Web service approach was selected. The

original Web service approach supports only stateless communication. Based on a

decentralized control of the Grid, there was a need for new protocols on top of the

Web service protocols, which enable the management of Grid service states. Such

protocols have been defined within the Open Grid Services Infrastructure (OGSI)

document and later refined and implemented as the Web Services Resource Frame-

work (Foster et al., 2005). The Simple API for Grid Applications (SAGA) provides

a common API for application submission and management, data management and

monitoring facilities (Goodale et al., 2008). This API is designed to work with and

support most available Grid middlewares through connectors. The most prominent

Grid middlewares are the Globus Toolkit, gLite and UNICORE (Ellert et al., 2007). A

Grid middleware offers software packages, which enable the provider to connect their

computing instances to the Grid as well as for development, deployment and man-

agement tasks, such as Grid service deployment, monitoring, discovery, management

and security. For consumers, the Grid middleware provides the necessary APIs to

prepare their applications for the Grid, as well as tools for application management,

monitoring and communication with the Grid system.

Consumers willing to utilize Grid services need to prepare their application according

to the APIs of the target Grid middleware. The application’s technical (hardware

and software) requirements, as well as application specific attributes (e.g., for ap-

plication execution and data staging) are expressed with a well-defined description

language like the Job Submission and Description Language(JSDL) (Ellert et al.,

2007). The Grid scheduler acts as a central broker and schedules the consumer’s

applications to Grid sites according to the globally available Grid site information,

the associated consumer’s VOs and the technical requirements of the applications.

The current achievements in Grid computing are the ability to connect geograph-

ically distributed grid sites and manage VOs, enabling a distributed and managed

execution of applications across the available Grid services of the consumer’s VO.

Like with utility computing, the provisioning and usage of Grid services should make

current infrastructures technically and economically more efficient and sustainable.

As such, the so-called Grid Economy (Buyya et al., 2005) discusses market models

for offering Grid services as commodities through negotiation or auctioning processes

between consumers and providers. Economic efficiency refers to the fact that market

mechanisms for computing services can take the technical and economic preferences

of consumers and providers into consideration and match them more efficiently than
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current technical schedulers and static prices. On the one hand, consumers execute

different applications with varying requirements, depending on application type, as

well as time and budget constraints. On the other hand, providers want to achieve

higher utilization and profits with their computing infrastructures (Dong and Akl,

2006). To achieve this, the Grid Economy has to offer appropriate market mech-

anisms, bidding tools and communication protocols, which support the market al-

location and bidding processes of consumers and providers. The literature on Grid

economics has become a significant milestone for the next wave to move the Grid

vision to business and expand it with new types of services such as Cloud computing.

2.1.3 Cloud Computing

Cloud computing builds on the ideas of Grid computing, but focuses more on the

business view of differentiated service types – infrastructure, platform and applica-

tion services. Since the Cloud computing hype has started, the term has been defined

differently by experts and market analysts from research and industry (Foster et al.,

2008; Geelan, 2009; Mell and Grance, 2009b; Plummer et al., 2008). Furthermore,

several joint efforts have been started to define a common view of the characteris-

tics, the related technical and economic challenges of the Cloud stack and to work

on standardization of the related APIs. Organizations like the Open Grid Forum,

Distributed Management Task Force’s Cloud Incubator (DMTF, 2010a), the Open

Science Grid and the Open Cloud Manifesto (Nelson, 2009) already include repre-

sentatives from research and industry, however, this research field is just opening

up and many challenges including, but not limited to security, interoperability and

economics have to be elaborated.

The general idea shift from Grid to Cloud computing is provided in the following

definition (Foster et al., 2008):

Definition 2.1.1 (Cloud computing). A large-scale distributed computing paradigm

that is driven by economies of scale, in which a pool of abstracted, virtualized, dy-

namically scalable, managed computing power, storage, platforms, and services are

delivered on-demand to external customers over the Internet.

The key points of the definition are that Cloud computing services i) scale based on

consumer demand, which allows for efficiency through economies of scale, where ii)

scalability is achieved through abstraction and virtualization over the three Cloud

computing service types – infrastructure, platform and application services, and iii)
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the Cloud computing services are dynamically configured and delivered on demand,

where iv) the consumer pays for usage time.

A more detailed definition of Cloud computing is provided by Mell and Grance

(2009b), which fundamentally contains the definition of Foster et al. (2008), but

extends it by describing the three Cloud service types – Infrastructure as a Service,

Platform as a Service and Software as a Service (Figure 2.1) – as well as the four

possible deployment models of the Cloud computing paradigm – public, private, com-

munity and hybrid Clouds. The following sections will look into more details of the

Infrastructure as a Service model, which is the focus of this research, as well as its

deployment types and characteristics.
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2.1.3.1 Infrastructure as a Service

Towards the shift of Cloud computing, computing centers aim to organize and coordi-

nate their computing resources (computing nodes, storage nodes, network bandwidth,

etc.) more efficiently, in order to provide scalable computing power on demand as

well as to identify idle capacities. Such free capacities can be offered for public use

in order to increase the provider’s profit.

Most providers of infrastructure services adopt static pricing models like subscription

and pay-per-use, where the price for a service instance is fixed in the time (Weinhardt

et al., 2009; Clemons, 2009). Static prices do not reflect changing market conditions

in supply and demand, therefore providers’ computing infrastructures have idle ca-

pacities. In order to respond to this issue, Amazon started a spot market7 where free

capacity is allocated dynamically based on the current supply and demand. Prices

in the spot market vary dynamically (Amazon, 2009).

In the context of Cloud computing, Infrastructure as a Service (IaaS) refers to the

type of fundamental computing services running on top of hardware infrastructures,

such as bandwidth (network), computing, storage and database services (definition

of Resource in Treadwell (2007); Mell and Grance (2009b)). In the case of purchasing

a computing service, a consumer has controlled access to it, which enables deploy-

ment of the target execution environment in terms of software dependencies and

environmental settings (e.g., environment variables and network security settings).

Definition 2.1.2 (Computing Service Instance). A computing service instance (CSI)

provides a computing environment that enables the execution of applications by sat-

isfying their technical requirements for a specified number of processors, main mem-

ory, storage, bandwidth and operating system. The functionality to be able to access

a CSI in terms of transferring and executing an application, as well as retrieving the

related result is enabled through well-defined APIs (Treadwell, 2007). The exact de-

scription of the application execution plan in terms of usage, duration, payment

methods, deployment, execution and result retrieval is provided in a well-defined mes-

sage protocol (i.e., an application description language). The application execution

plan is locally performed by the runtime environment of the computing service. A

well-defined message protocol refers to a standardized means of describing applica-

tions’s requirements, CSIs and their properties.

7A market in which a commodity is bought or sold for immediate delivery or delivery in the very
near future.
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Based on this definition, a provider of IaaS instances enables the transfer and exe-

cution of applications on its CSIs, which can be physical or virtual machines (Nurmi

et al., 2009). Consumers receive the necessary access control to communicate with

the provider IaaS infrastructure and applies the related tools to prepare the target

environment and their applications in order to be executed on the allocated CSI.

Dependencies on third party software components and related licenses are optional

services, which can be additionally purchased by the IaaS provider or consumers can

transmit them together with their applications. In the end, when the application is

completed and results transferred, the computing service is released and reverted to

its initial state.

According to Foster et al. (2006), Infrastructure Services consist of several manage-

ment units – execution management services, data services, resource management

services, security services and monitoring services, which enable management of the

IaaS-Platform:

• Execution Management Services. The execution management (also called run-

time management) controls the starting, execution and termination processes

of a deployed application (Papazoglou and van den Heuvel, 2007). In the Grid

computing context, the Globus Resource Allocation Manager (GRAM) is the

interface service for submitting, locating, monitoring and canceling comput-

ing jobs (Foster et al., 2008). The GRAM also supports the JSDL format,

which consists of elements to specify the runtime scripts and basic configura-

tions of jobs in order to start them on the allocated CSI. Similar, providers

of IaaS-services, which are offered over a market mechanism, need to rely on

standardized interface implementations in order to enable common deployment,

execution and monitoring of batch and interactive jobs.

• Data Services. Applications have different requirements with regards to data

management, data usage and persistence. An IaaS platform has to offer flexible

facilities (APIs) to bind and use storage services to facilitate the requirements

of applications like Document Management, Indexing, Logging and Memory

Management (Buyya et al., 2009).

• Messaging. A crucial part of a computing platform are the message proto-

cols that enable and automate communication with the IaaS services, such

as submitting messages to deploy and start a specific application, but also for

retrieving (monitoring) runtime specific data of the executed application, or ex-

ecute payments for usage. Such message protocols are typically encoded in an
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XML (or a JSON) message format and are communicated through Web service

interfaces (Foster et al., 2009). Standardization plays a crucial role in achiev-

ing interoperability between computing systems with well-designed, useful and

well-accepted message protocols. Standardization bodies like the W3C, OASIS,

DMTF and OGF review and publish various well-defined and commonly ap-

plied message protocols in fields like Web service communication and security

protocols, business process management, job submission and execution (e.g.,

JSDL), to mention just a few. In the context of this work, bidding languages

are a further part of the message protocols of an IaaS platform enhanced with

market-based scheduling facilities (Nisan, 2006).

• Resource Management. Resource management facilitates the execution of IaaS

services on the underlying resource infrastructure of computing nodes, storage

elements and network services. Scalability of an application in IaaS can be

achieved through modularization and parallel execution on more than one node

(Yu and Vahdat, 2006). In the context of this research, consumers are able to

acquire as many CSIs as needed through the computing services market to run

their batch or interactive applications.

• Security Services. The security module handles the processes and methodolo-

gies, which are related to authorization, authentication, secure communication

and data security (Foster et al., 2002; Rittinghouse, 2009; Catteddu and Hog-

ben, 2009). In the context of this work, the communication of consumers,

providers and the market has to be authorized and secured. As a part of the

market model and scenario, all submitted consumer or provider bids are bind-

ing, i.e., the bidders are responsible for using and providing the CSIs as specified

in the bids and matched (a match results in a binding contract) by the mar-

ket. In the context of the SORMA project, the authorization and signature of

bids was realized with the emerging standard for single sign-on authentication

– Security Assertion Markup Language (SAML) (Armando et al., 2008; Nimis

et al., 2009).

• Monitoring. Monitoring is a significant part of the administration of an infras-

tructure service, which enables controlling the system by measuring for system

failures either proactively or reactively and thus preserving the reliability of

the IaaS platform. Monitoring services provide performance data, utilization

statistics, response times, network load statistics, transaction statistics, load

balancing, health management and troubleshooting (Bernstein, 1996; Foster
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et al., 2006; Papazoglou and van den Heuvel, 2007). IaaS providers use the

monitoring data of applications for auditing and billing purposes. The storing

and analysis of such data has to be in compliance with the legal stipulations of

the institutional policies (e.g., governments) (Mowbray, 2009). In the context

of project SORMA, the monitoring services provided runtime information of

the CSIs to the service level agreement enforcement and contract management

components (Nimis et al., 2009).

• Contract and Payment. A contract is a legal and binding agreement between

a consumer and a provider that captures the already negotiated technical and

economic objectives, which are also called service level objectives (SLOs) are

part of a service level agreement document. To ensure regular execution of the

contract, SLOs are frequently monitored by the target provider and consumer.

They are the main indicators for measuring the success of a contract and the

resulting payments or penalties. SLOs can be assigned any quality level of

service attributes (e.g., “service availability of 99.95%”), technical attributes

(e.g., number of CPUs), payment procedures, penalties or legal aspects (Becker

et al., 2008; Wilkes, 2008; Papazoglou and van den Heuvel, 2007). To provide

this capability, the IaaS platform should ensure that consumer applications

are executed according to contract and react adequately on irregularities. The

irregularities are identified by periodic monitoring of the SLOs. The payment

procedure contains information regarding when and how payments are to be

transferred from the consumer to the provider. So far, current payment transac-

tions are often executed via credit card or online payment services like PayPal.

Online payment services often provide Web service interface, which allows au-

tomation of the payment process (Armbrust et al., 2009). In the context of

SORMA, price, technical requirements, SLOs, penalties, method of payment

and establishing contracts are part of the message protocols and the related

bidding processes of consumers and providers, whose aim is to reach a tech-

nically and economically matching agreement in an auction setting (Borissov

et al., 2009b; Nimis et al., 2009).

2.1.3.2 Deployment Models

Depending on the organizational structure, there are four models for deploying Cloud

services, which can be separated into four main models – Private Cloud, Community

Cloud and Public Cloud, as well as a mixed model called Hybrid Cloud (Mell and

Grance, 2009b; ISACA, 2009; Microsystems, 2009; Craig et al., 2009).
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Table 2.1 summarizes the three main models of Cloud service deployment and their

key characteristics. The three deployment concepts are characterized through the

following criteria (Mell and Grance, 2009b; ISACA, 2009; Microsystems, 2009; Craig

et al., 2009):

• Operation. The usage target group.

• Management. The type of authority responsible for the installation, manage-

ment and maintenance activities.

• Realization Describes whether the Cloud services are deployed within the target

organization’s structures (on premise) or externally deployed at a remote facility

(off premise).

• Security Risk. A low security risk level means that the applications are executed

in a controlled local environment, a moderate risk level means that they are

executed within a controlled organizational environment and a high risk level

means that there is less control of where the applications are executed.

• Agility. Describes the level of agility and flexibility to scale applications and

utilize Cloud services.

Table 2.1: Cloud deployment models

Private Cloud Community Cloud Public Cloud

Operation internal inter-organizational public

Management internal, inter-organizational, third-party

third-party third-party

Realization on-premise, on-premise, off-premise

off-premise off-premise

Security Risk low moderate high

Agility moderate moderate high

Based on the Operational criterion, Private Cloud (PRC) services are visible only

to the members of the target organization (enterprise), which have exclusive access

to all PRC services, as well as stored and produced data, whereas with Community
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Cloud (CC), exclusive access to CC services is relaxed to members of the community

and with Public Cloud (PUC), PUC services can be accessed by everyone.

Private Cloud services are managed by the target organization or subcontracted to

a third party. Community Clouds are managed by the community or a third party,

whereas Public Clouds are managed entirely by a third-party, since the third party

also provides the PUC services.

Private Cloud services of big enterprises are realized within their computing centers

(on premise), where small and medium enterprises achieve higher economic efficiency

by acquiring PRC from third party providers (off premise). The same applies to

Community Clouds, since the crucial factor in determining whether Cloud service

should be on or off premise is the size of an enterprise or community. In contrast,

Public Clouds are realized and provided by third-party Cloud service providers like

Amazon Web Services, Salesforce and Google AppEngine.

Executing applications and preserving the data within private computing infrastruc-

tures reduces risks for the enterprises by providing greater control of their data.

Dedicated – secured and with exclusive access – private Cloud environments are al-

ready provided by third parties in the form of Virtual Private Clouds (VPCs) (Wood

et al., 2009). In the case of VPCs, enterprises have exclusive control of their dedi-

cated environment and contract service level agreements to stipulate how and where

the applications and data are to be handled. Within a Community Cloud, the appli-

cations and data can be processed on computing services, which are owned by the

community members. The provisioning and usage policies, as well as service levels

of Community Clouds are specified within a contract for the target community. The

security risks rise with the size of the community. In the case of Public Clouds, the

applications and data can be handled from any provider around the world or within

a specific geographic region. The risk level depends on provider’s security policies.

Higher security risks can be expected due to the greater number of members, who

execute their applications and data on Public Cloud services. In contrast to private

and community Clouds, service provisioning and usage policies with public cloud

services are limited and lack common regularity control (ISACA, 2009).

The level of agility is reflected through the capacities of the Cloud system. In the case

of private and community Clouds, applications can be scaled to the available Cloud

system resources of the organization or community, whereas with public clouds, the

capacity is practically unlimited. Furthermore, utilization of Cloud system resources

depends on the needs of the organization and community, which may change over

time and produce inefficiencies in how the Cloud system is used in the case of private
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and community Clouds. Public clouds, however, can deal with fluctuating demand

and supply efficiently.

Hybrid Cloud refers to a composition of the three main Cloud deployment types.

A realistic scenario of a Hybrid Cloud model is a load-balancing facility in cases

of over utilization of private or community Cloud services due to daily or event-

driven (project deadlines) computing peaks. In such cases, standardization of Cloud

technologies plays a crucial role in enabling the portability of data and applications

(applications) (Mell and Grance, 2009b). The characteristics of a Hybrid Cloud are

aggregated by combining Cloud deployment models. One can imagine that the mi-

gration policies of applications from private or community to public Clouds will have

to take the security level of the outsourced (for external computing) applications or

data into consideration.

2.1.4 Concluding Remarks

The Cloud computing paradigm, i.e., offering computing, platform and application

services as utilities, represents the next evolutionary step after Utility and Grid com-

puting. Cloud computing provides a way to create new software architectures that en-

able the flexible and efficient provisioning of Cloud services. Furthermore, approaches

from autonomic computing (Kephart and Walsh, 2004a) are becoming important in

order to reduce and hide system complexity from consumers and help system main-

tainers monitor preventive and reactive arrangements in order to provide reliable

Cloud services.

Realizing an autonomic system with self-optimization capabilities is a complex task

that increases with the complexity of the target system, i.e., infrastructure, platform

or application services, where each of them may follow different optimization goals

involving various technical and economic parameters. The literature in economics,

especially (computational) mechanism design, game theory and artificial intelligence

uses the concept of utility functions (also called scoring functions in some cases) to

model and optimize decision parameters in order to achieve a well-defined goal (Walsh

et al., 2004; Kephart and Walsh, 2004a; Wilkes, 2008). Walsh et al. (2004) illustrated

this approach with the management of data centers by translating high-level business

objectives (given service level objectives) into lower-level decision steps as part of a

utility function. Kephart and Walsh (2004a) presented a framework for designing

autonomic systems with policies for action, goals and utility functions. Becker et al.

(2008); Wilkes (2008) investigated the use of utility functions to establish service level

agreements for computing services between providers and consumers. For example,
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the high level business objectives represent the overall preferences of a provider (i.e.,

to maximize revenue); lower-level decision steps may include increasing the target

storage price of a storage unit dynamically, such as when demand and consequently

storage utilization increase. A utility function aggregates a set of (weighted) technical

and economic parameters into a single value (usually a monetary unit).

In their paper, Foster et al. (2004) discuss the need to make the management of

computing systems more intelligent and autonomic. The authors propose the usage

of software agents that enable automated and intelligent monitoring of Grid systems,

service discovery, application submission and execution tasks. Furthermore, they

discuss the need for standardized message protocols, standard APIs and policies to

rule the communication of software agents and make it easier to understand their

intentions. Another proposal is to automate the selling and purchasing processes

through trading agents that negotiate the preferences of consumers and providers in

bilateral negotiations or multilateral auctions (Lai, 2005).

The next section discusses the benefits of dynamic price mechanisms for allocating

computing services, as well as the need for agents, bidding strategies and message

protocols to automate the bidding and matchmaking processes in such markets.

2.2 Why Bidding, Agents and Messages in Markets for Com-
puting Services?

Economic approaches for allocating computing services have been investigated for

many years. Many works have focused on the design of market mechanisms for allo-

cating computing services as commodities (see Section 2.3.4). However, there is very

little reference to the design of bidding strategies and their efficiency in continuous

market mechanisms (i.e., bidders join the market continuously and on demand) with

imperfect information in the existing literature. Each of the bidders have different

goals and do not share or receive full information about the past, present or future

intentions, goals and actions of others. The market mechanism is cleared on a con-

tinuous base, as soon as there is a match between available consumer and provider

bids in the order book.

The aim of economics is to investigate the mechanisms that enable the efficient allo-

cation of resources with respect to demand and supply. Each resource has a certain

value for its owner and different values for the various consumers. Resources are

allocated in an economically efficient manner, at a higher or equal price than offered,

when they are purchased by the consumers who value them most.
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In parallel to the static pricing models for IaaS services, Amazon started a new pric-

ing model – spot market for EC2 spot instances – where consumers can bid on unused

IaaS capacity and execute their applications on those EC2 spot instances as long as

their bid exceeds the current spot price for the current time frame (on an hourly

basis). Amazon adjusts the spot price of an EC2 spot instance, based on the current

supply (free capacities) and demand (consumer bids) (Amazon, 2009). Offering free

capacities of EC2 instances via a spot market incentivizes indecisive consumers to

utilize these to execute their low priority and non-time critical applications for lower

prices. At the same time, Amazon profits from the resulting economies of scale.
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Figure 2.2: Static versus dynamic pricing (adopted from Lai (2005))

A pricing model, in which the target price is established through dynamic bargain-

ing situations like auctions or negotiations based on supply and demand, is called

dynamic (or variable) pricing (Lai, 2005). Dynamic pricing is typically used for cal-

culating the price of differentiated and high value products (services). Auctions are

established market mechanisms for performing efficient aggregations of fluctuating

supply and demand (Wurman, 2001). Figure 2.2 illustrates three different cases,
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which describe the relationship of static pricing to fluctuating demand and supply,

postulating the fact that market mechanisms with dynamic pricing policies achieve

more (economically) efficient allocations of differentiated services than static pricing

scenarios:

• Case I describes the case where the static (fixed) price exceeds the demand,

e.g., the consumer’s willingness to pay is lower than the requested price. The

welfare (sum of consumer and provider utilities) that would have been gained

by selling and using the service is unrealized.

• Case II shows a situation in which the demand exceeds the fixed price, i.e., the

consumer’s willingness to pay is higher than the provider’s prices. Consumers

are able to purchase the service at the fixed price and a welfare is realized at that

price together with the providers. Assuming that the provider can choose the

consumer with the highest willingness to pay, the difference between the overall

demand curve and requested fixed price is the provider’s unrealized profit (Lai,

2005).

• Case III is a situation in which there is no common information channel, e.g.,

globally open order book of all consumer and provider bids for a given trad-

ing object (computing service). In this case, the providers do not have full

information about the market; they only have information on the visible set

of consumer bids in the provider’s “local” order book. The consumer bids in

the “local” order book have a lower willingness to pay than other interested

consumers in the market (“global” order book). Therefore, due to the fact that

the price is fixed, the provider supplies the service with unrealized profit. The

unrealized welfare refers to the fact that, on the one hand, unaware consumers

with higher demand do not get the service, on the other hand, the fixed price

of the provider restricts the generation of higher profits.

Traditionally, the price determination process of goods and services is described dy-

namically through supply and demand curves, which depict the relationship between

the prices and quantities (Figure 2.3). The demand curve, D, describes the con-

sumer’s willingness to pay in relation to the quantity of a service by taking their

preferences, endowments and the technology required into account. D is almost de-

creasing, assuming that consumers will buy more from the service as the price goes

down. The supply curve, S, represents the quantity and corresponding price of a

service that the market can offer when taking the provider preferences, endowments



2.2. BIDDING, AGENTS AND MESSAGES 34

and the technology provided into consideration. The upward curve reflects the fact

that higher prices of a service will stimulate providers to increase the number of pro-

vided services in order to increase their revenue (Varian, 2009; Foley, 2010). Gjerstad

(2007) states that the time pace of bid submission plays a role in the price finding

processes of humans, but also of automated software agents. It has been observed

that if the pace of bid submissions of consumers is lower than the pace of bid submis-

sions of providers, then prices are likely to move below the equilibrium price and vice

versa. Figure 2.3 depicts this loss of efficiency of consumer and provider surpluses

when trades occur out of equilibrium. Here the providers request prices that are

lower than the equilibrium price. The dashed lines represent the quantity and price

offered for the traded service. In this case, consumer demand to purchase the traded

services is higher, consequently, providers will have strong incentive to increase the

price and offer more service units.
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Figure 2.3: Consumers’ (CS) and providers’ surpluses (PS) out of equilibrium
(adopted from Gjerstad (2007))

In general, price finding processes between consumers and providers are described

in equilibrium and non-equilibrium trading theory. A service market is in general
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in equilibrium when supply is equal to demand, i.e., in this state, the allocation of

the service is most efficient because the amount of the demanded services is exactly

the same as the amount of the provided services at the given equilibrium price (p∗).
The original idea of price equilibrium was developed by Léon Walras in 1874, who

pointed out that such equilibria can be reached through a price adjustment process,

also called tâtonnement (French for “groping”) or the Walras tâtonnement process.

In such a scenario, consumer and provider agents shout their price signals for a tar-

get good (service). The interactions between agents and the price finding process is

coordinated by a central entity called an “auctioneer.” Based on the price signals

received,, the auctioneer adjusts the price to balance supply and demand by finding

an equilibrium price. A trade between agents is permitted only if the trade price is

in equilibrium (Cheng and Wellman, 1998).

In non-equilibrium theory, agents follow a non-tâtonnement process, where trades

between consumers and providers are allowed before the market has reached equi-

librium (Schlieper, 1974). The non-equilibrium theory is motivated by the fact that

markets are imperfect – online market mechanisms are designed to be computation-

ally tractable and are often executed continuously, services are not homogeneous,

traders are not perfectly informed and their supply and demand (functions) changes

dynamically over time. Here, the allocation of providers’ services to consumers’ ap-

plications takes place in parallel to the price adjustment process. Works showed that

non-tâtonnement processes converge to competitive equilibria (Negishi, 1962; Chan-

der and Tulkens, 2006; Mukherji, 2008). Market mechanisms such as the Continuous

Double Auction implement a non-tâtonnement allocation processes of supply and de-

mand (Wurman et al., 2001; Gjerstad, 2003). Such market mechanisms are widely

applied in practice because of their practicability (see also Section 2.3.5). The trading

behavior of consumers and providers of computing services within market mechanisms

can be described and analyzed as a non-tâtonnement process. Thus, market mech-

anisms and bidding strategies have to deal with a high degree of complexity due to

the reality of imperfect competition, which fosters strategic interactions by traders

and leads to inefficient allocation in comparison to equilibrium-based allocation.

The analysis of tâtonnement processes assumes perfect competition for homogeneous

services, however, computing services are neither storable nor homogeneous, their

supply and demand fluctuates and consumers and providers often do not know their

preferences or do not want to reveal them truthfully (Rothkopf, 2007). Thus, it re-

quires a comprehensive analysis of (dynamic) allocation processes, in which agents

and services are not homogeneous in markets that lack perfect information. These

considerations not only play a crucial role in the design of online mechanisms for
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market-based scheduling, but also in the design of appropriate bidding strategies.

Instantiated into software agents, the bidding strategies can automate bidding pro-

cesses efficiently and the agents can automatically act on behalf of the consumers

and providers (Das et al., 2001; Greenwald et al., 2003; Ku et al., 2005; Kephart and

Chess, 2003).

The (software) bidding agents coordinate and execute the bidding processes au-

tonomously, as well as integrate with the heterogeneous system through well-defined

interfaces and communication protocols (Kephart and Chess, 2003). A distributed

system for market-based scheduling interacts through well-defined (preferably stan-

dardized) and common APIs. The system components exchange messages according

to a well-defined protocol. The protocol specifies the types of messages, which are ex-

changed between specific components – application and bidding agent, bidding agent

and market and vice versa. Moreover, a semantic specification of message protocols

is crucial since there is a need for common understanding, trust, validation and ver-

ification capabilities for the messages within the system components (Kephart and

Chess, 2003).

Sections 2.3 and 2.4 present the economic and technical environment of a system

for market-based scheduling of computing services. Moreover, the sections discuss

the challenges that arise when designing and implementing such a system from an

economic and technical point of view.

2.3 The Microeconomic Environment

This section defines the economic environment of the target system for market-based

scheduling. It starts with an overview of the microeconomic system and the concepts

related to it, followed by a definition of the transaction object. Subsequently, the

classic economic challenges of mechanism design are discussed and expanded upon

with the challenges presented by computational mechanism design theory. The last

sections discuss state-of-the-art mechanisms for market-based scheduling, as well as

the target market mechanism for this work – the Continuous Double Auction; in the

conclusion, a summary of available bidding strategies is given.

2.3.1 The Microeconomic System

According to Smith (1982), a microeconomic system is defined by an environment

and institution. The environment E consists of the following elements:



37 2.3.1 The Microeconomic System

• N = (n1, n2, · · · ) is a set of consumer and provider agents

• θx is a set of transaction objects of type x (like a computing service)

xi = (2GHz, 10GB Memory, 100GB Disk, 100MB/s)

• A utility function U = (u1, u2, · · · ) for the N agents

• The set of environment settings, which represent the agent’s individual (private)

preferences like taste, knowledge or individual skills, are also called commod-

ity and technology endowments (in an experimental environment these endow-

ments are control variables, which are fixed by the experimenter)

The institution specifies and executes the market mechanism, which consists of the

following elements (Smith, 1982; Wurman et al., 2001):

• The bidding language M , which specifies technical and economic attributes

bi ∈ B. The messages m ∈ M are exchanged between the market actors

– consumers, providers and institution. A message can be a consumer bid,

provider offer or market (clearing) message

• The market clearing policyDX, which determines how the consumer and provider

bids are matched

• Policies for the transaction costs and payments Dπ

• Policies that indicate the time constraints for starting and stopping the ex-

change of messages DT

• Policies for legal rights and usage of the system. Before starting a communica-

tion, each agent has to accept the legal rights Dcontract of the institution

• Policies for information revelation, Dbidding, indicating which information is

public to the participants, e.g., other agents’ bids and clearing prices, average

prices, etc.

Neumann (2007) presents the overall structure of a microeconomic system (Figure

2.4). The Transaction Object, used in this work, is specified in the subsequent section.

To interact with the market, the participating agents have to design and implement

appropriate bidding strategies, which are influenced by the various policies of the

market, the demand of the agents in terms of their preferences, commodity and
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Figure 2.4: Microeconomic system (Neumann, 2007)

technology endowments. The agents’ behavior in a microeconomic environment re-

sults from their actions and decisions, which are implemented through their bidding

strategies.

Agent Behavior has been studied in various contexts in the literature, e.g., in psy-

chology, in economics with respect to mechanism design and game theory, in finance

and in computer science, including AI (Smith, 1982; Jennings et al., 1998; Hommes,

2006; Rahwan et al., 2007; van Dinther, 2007). A general approach to modeling agent

behavior is the Belief-Desire-Intention model (BDI). Beliefs represent the current

state of the environment from the agen’t perspective. Desires refer to the available

options (states) an agent may choose to accept. Intentions stand for the options

(states) selected by the agent. In other words, the agent is continuously reasoning

and updating their beliefs about the environment, receiving the available options and

deciding which to choose. BDI models are often formalized within logic frameworks.

Other works describe the deduction of beliefs from past experience through inference

machines. More concretely, in the field of computational economics, consumer agents

have to be able to plan their demand – the types and number of applications to be ex-

ecuted, their priorities and estimated completion times. When an application request

is received, the consumer agent has to report the application’s technical preferences

in terms of hardware and software parameters, as well as, priority and related bid

(reported maximum willingness to pay). Similarly, provider agents have to be able to
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plan their supply – number and type of services, time frames and offers. In the case

of market-based scheduling, priority information is indirectly contained within the

consumer and provider bids, i.e., the higher the bid, the greater the importance of an

application or the quality of a service. Modeling of Agent Behavior can be separated

into the research blocks Preference Elicitation and Representation (De Boer et al.,

2001; Sandholm et al., 2006; Chevaleyre et al., 2008), Design of Bidding Agents &

Strategies (Rahwan et al., 2007; Wellman et al., 2007; Lin and Kraus, 2010) and Poli-

cies for Market Selection (Vytelingum et al., 2008; Cai et al., 2009; Shi and Jennings,

2010):

• Preferences Elicitation and Representation. Preference elicitation is a research

field of mechanism design, which studies the properties of mechanisms that in-

centivize consumers and providers to report their preferences truthfully (Sand-

holm et al., 2006; Chevaleyre et al., 2008). First, however, consumer and

provider agents need methods and tools to deduce and represent their goals,

beliefs, desires and intentions with respect to the conditions (policies) of the

market mechanisms. To achieve this, the individual preferences need to be

mapped with the conditions (rules) of the market by performing actions and

evaluating their outcome. Preferences of consumer applications and provider

services is a complex task because these preferences are often unknown and can

only be estimated. The literature proposes several techniques to achieve this,

starting with reasoning historic actions and their outcomes, statistical methods

such as clustering, artificial methods like case-based reasoning, to multi-criteria

decision methods like conjoint analysis, the analytic hierarchy process and an-

alytical network process (De Boer et al., 2001).

• Design of Bidding Agents & Strategies. After knowing their preferences, con-

sumers and providers need models and tools to govern the consumer and provider

bidding processes. The bidding processes are designed into bidding strategies

and bidding agents (Rahwan et al., 2007; Wellman et al., 2007). The bidding

strategies are software algorithms that implement an action plan of decision

rules, where the bidding agents implement the reaction to new consumer or

provider requests, as well as to market information – others agents’ bids and

matching messages. The adaption of the agent’s beliefs refers to the fact that

consumer and provider bids are executed with well-defined preferences and their

outcome is measurable, i.e., it can flow into the automatic adaption of their

future intentions when generating new actions. Intelligent strategies will use

such information to dynamically adapt to the state of the market and send more
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competitive bids, e.g., by applying machine learning techniques (Lin and Kraus,

2010). In the case of markets with perfect information, bidding strategies can

apply algorithms to capture opponents’ bids and timings in order to extract the

patterns of prices, as well as supply and demand to forecast others’ behavior.

In the case of imperfect markets, agents act under uncertain conditions and

apply bidding strategies, which can adapt to incomplete market information

and the interaction experience with the environment.

• Policies for Market Selection. Another step is selecting the target market mech-

anism for submitting the consumer and provider bids. The decision of which

market to choose depends on the transaction object traded, market policies,

transaction costs, allocation efficiency, market dynamics (changing demand and

supply over time) and available market information (Vytelingum et al., 2008;

Cai et al., 2009; Shi and Jennings, 2010). Furthermore, the state of the markets,

availability of computing services and prices are dynamic and bidding agents

can gain a profit from choosing the appropriate market and timing based on

their past experiences in the available markets. An example of different markets

for computing services is the Amazon EC2 spot market, which offers consumers

different types of transaction objects – small, medium, large configuration set-

tings for EC2 instances, each traded in a separate spot market.

In the context of Game Theory, the Outcome of a system is the set of action-payoff

pairs resulting from the strategies taken by agents. The payoffs (also called rewards)

are the result of the actions performed by the agents and subsequent allocations

at the different stages of the game (Rubinstein, 1985). A mechanism designer can

measure the Outcome of the system conditionally based on the consumer and provider

rewards reported from their performed actions with economic metrics like aggregated

consumer utilities, aggregated provider utilities and the sum of both, known also as

the welfare of the system. To do this, agents have to reveal their true utility or

scoring functions, which is not always the case in real settings (e.g., due to budget

constraints or business concerns) (Rothkopf, 2007).

The efficiency of a system is also theoretically described with the Pareto criterion,

which states that an allocation is Pareto efficient if (by a given allocation state)

there is no way of making an agent better off without making another worse off. The

change in an allocation, where an agent can be made better off without reducing the

utilities of others is called Pareto improvement (Stavins et al., 2003).
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2.3.2 Classification of the Transaction Object

Figure 2.1 in Section 2.1.3 provides a structured view of the differentiated services

of the Cloud computing stack. According to their level of abstraction Cloud services

are separated into infrastructure as a service (low-level computing services), platform

as a service (for creating and running applications) and application as a service.

Goods or services can be separated into substitutes and complements. Substitute

services are those that are interchangeable (e.g., oil and gas; Tomcat8 and Jetty9

web service container; free and licensed email clients; etc.) and have a similar value

to consumers. Given a set of substitutable services with no or low switching costs,

rational consumers are expected to favor the inexpensive substitute. Rising demand

of standardized computing services is fostering the provisioning of novel substitutes by

reducing proprietary service offerings and the switching costs associated with them.

Thus, competition among consumers and providers will increase. Complementary

services are valuable to consumers when purchased in a bundle, e.g., CPU and storage,

hardware and related proprietary operating system, etc. Complementary services are

often proprietary services and important for a business’s growth and generating profit.

While rising competition through substitutable services may reduce business profits,

complementary services can influence profits in a positive or a negative way (Porter

et al., 2001).

As specified in Section 2.1.3, the IaaS layer represents service types, which are close

to the hardware component, i.e., functional units for managing computing, storage

and network elements. Infrastructure services are based on standardized hardware

connection interfaces and standardized software interfaces for configuration, imple-

mentation, monitoring and communication (POSIX10, SFTP, TLS/SSL to support

VPN connections, etc.). Rising supply and demand for IaaS services will evolve them

into substitutes and increase competition among consumers and providers. Amazon

(2009) attempts to increase profits through economies of scale by offering computing

services as “spot instances,” where the price fluctuates dynamically based on supply

and demand. Example computing service instances (CSI) are depicted in Figure 2.1

– small (CSI-S), middle (CSI-M) and large (CSI-L) instances with rising technical

properties. Other IaaS instances are the storage service instance and virtual pri-

vate network, which can be offered with varying technical properties for storage and

8<http://tomcat.apache.org/>
9<http://jetty.codehaus.org/>

10Portable Operating System Interface, <http://standards.ieee.org/regauth/posix>
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bandwidth units (e.g., Terra Bytes). Description languages like the Job Submission

Description Language, Resource Specification Language and Common Information

Model are commonly used in technical descriptions of computational services and

communicating technical preferences (Anjomshoaa et al., 2005; Laure et al., 2006;

Feller et al., 2007; DMTF, 2010a). Galán et al. (2009) present a promising approach

for automated deployment, configuration and execution of applications on top of IaaS

services. They propose XML schema extensions of the DMTF’s Open Virtualization

Format (OVF) standard for tagging Key Performance Indicators for monitoring pur-

poses and flexible network configuration capabilities. The OVF enables packaging

application components (application server, databases, operating system, etc.), as

well as related environmental parameters into a set of virtual machines. Additional

macro (shell) scripts can be used to setup and start the application environment. In

contrast to OVF, the OASIS’s SDD message protocol provides capabilities to describe

the deployment and configuration procedure of software components. The OVF and

SDD can be combined in order to achieve a global setup of the application environ-

ment in terms of a virtual machine(s), as well as a deployment and configuration plan

of the software components within the virtual machines. The IaaS platform provides

services for runtime and resource management, monitoring and security of CSIs (see

Section 2.1.3.1).

Platform services (PaaS ) enable full management of the application environment

through well-defined functionality units like deployment, execution, monitoring, se-

curity and billing (Mell and Grance, 2009b). Current PaaS offerings are rather pro-

prietary – application owners have to adapt their applications using predefined APIs

of the selected PaaS provider, which result in higher switching costs when migrating

to another PaaS provider – and support a selected set of programming languages.

Management of the application environment is based on tool as well as APIs (e.g,

web services). Amazon Web Services Management Console and CloudWatch are

tools that offer core functionalities for creating, terminating and monitoring (CPU

utilization, disk and network I/O) of (EC2) computing instances. Similarly, the

Google App Engine Admin Console deploying and testing applications, viewing data

logs and monitoring the CPU, memory and I/O traffic (Galán et al., 2009; Dunsav-

age et al., 2010). In contrast to IaaS, the deployment of consumer applications on

the provider PaaS platform is supported by the provider tools. Currently, there is

no standard message protocol for platform service descriptions, however, providers

could apply the SDD message protocol to provide automated deployment of consumer

applications.
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The functionalities of PaaS services are rather more straightforward than those of

application services. Application services, AaaS, (Figure 2.1) are implemented in a

specific domain context (e.g., email, document or music management). Applications

can be implemented as stand-alone services (e.g., “Photo”) or can be combined with

other complementary services to achieve a common goal. For example, a “Shop Pay-

ment and Inventory Service” can combine many stand-alone services like Barcode

Reader for transmitting the price information of a good, Billing Service to prepare

the invoice, Payment Service to execute the online payment, as well as Inventory Ser-

vice and Purchase Service for warehousing and reordering of scarce goods. Atomic

and complex services serve specific domains and differ in their implementation and

communication protocols, e.g., SOAP, RSS, ATOM and XML-based communication

protocols. Maximilien et al. (2007) proposed an abstract programming model that

is able to describe combinations of atomic services. There are still challenges to

configure complementary, mostly proprietary, atomic services to complex ones. The

challenges arise because of the compatibility of data formats, the semantics of at-

tributes, units and interaction protocols. A major issue of application services is

their broad domain of attributes and functionalities, which makes automated match-

making and usage a challenging task. The integration of two complementary services

is executed by integrators, which write API connectors and semantically map both

services to a new integrated service called “mashup”. The automation of these tasks

is still a work in progress in the current research (Maximilien et al., 2007; Rosenberg

et al., 2008; Weber et al., 2009; Dorn et al., 2009).

Based on this background and current research, AaaS and PaaS services are assumed

to be configured manually (through an integrator) and offered with the Subscrip-

tion or Pay-per-use pricing model. The execution, scalability and management of

consumer applications on top of IaaS services can be automated with existing and

standardized protocols. Therefore, IaaS services can be rather seen as substitutes

and thus efficiently and automatically traded with market mechanisms.

2.3.3 Economic Challenges

Trading computing services is a complex problem. The complexity reflects the design

of appropriate and efficient market mechanisms, as well as related bidding strategies.

The latter introduces challenges about decisions on how to bid, how to estimate

the value of a service, how to predict prices and how to model utility functions.

These decisions are often derived from the specified bidding, clearing and information

revelation rules of the target market mechanism (Wurman et al., 2001).
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Table 2.2: Computational mechanism design desiderata (Myerson and Satterthwaite,
1983; Krishna and Perry, 1998; Shneidman et al., 2005; Parkes, 2008)

Desiderata Description

Incentive Compatible This mechanism design property guarantees that agents
can only maximize their expected utilities when reporting
their true preferences, given that all other agents report
honestly.

Individual Rational Agents get non-negative expected gain by participating in
a mechanism, regardless of their valuations.

Allocation Efficient Given all reported agent preferences, a mechanism guar-
antees selection of an allocation that maximizes the utili-
ties of all agents.

Budget Balanced A mechanism is called budget balanced if all of the agent’s
transfer payments sum up to zero, i.e., payments are not
injected into or removed from the mechanism.

Computationally
Tractable

A mechanism is computationally tractable if the match-
making processes scale well with the number of agents’
bids, i.e., real world mechanisms needed to offer a poly-
nomial runtime when matching bids.

Communicationally
Tractable

Computational and communicational tractability are
closely related because the computational complexity of
computing an allocation depends on the number and com-
plexity of the message protocols supported by the target
market mechanism (e.g., single bid or combinatorial, cen-
tralized or decentralized). Therefore, real world mecha-
nisms have to be designed with a lower complexity of mes-
sage exchanges and efficient matchmaking capabilities.

Open Open systems often benefit from innovation and standard-
ization through wider acceptance, contributions and usage
by bigger communities compared to many closed systems.
Consumers and providers are more likely to trust open
source market mechanisms rather than closed source pro-
prietary solutions. The versions of the compiled market
mechanisms source code can be easily verified against the
deployed version by using checksums.
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Table 2.2 presents economic and technical criteria for describing and analyzing mar-

ket mechanisms implemented in computing systems. The design of a mechanism in

terms of policies matters in the sense that it defines the trading and strategy space of

the participating agents. The literature of mechanism design has specified economic

properties (upper part of Table 2.2), which designers have to think about when de-

signing market mechanisms (Myerson and Satterthwaite, 1983; Krishna and Perry,

1998). The so-called impossibility result of Myerson and Satterthwaite (1983) proves

that there is no mechanism that can be at the same time allocation efficient, indi-

vidual rational and budget balanced at the same time. Besides the design of a good

market mechanism, online systems (e.g., e-commerce) require the design of scalable,

i.e., computationally efficient mechanisms. The discipline, which focuses on both –

the design of economic and computationally efficient mechanisms – is called Com-

putational Mechanism Design (CMD) (Dash et al., 2003; Parkes, 2008). The CMD

properties (lower part of Table 2.2) of a market mechanism increase their practi-

cability in real scenarios through computational and communication tractability, as

well as their acceptance and trust through the openness of their realization. CMD

implies the application of market engineering (Section 2.3) and software engineer-

ing approaches, which postulate the iterative steps of requirements analysis, market

design, implementation and tests in both an economic and computational manner.

2.3.4 Market Mechanisms for Scheduling Computing Services

One of the first auction mechanisms for allocating computing services dates back to

the 1960s (Sutherland, 1968). In this auction, the consumers bid by putting their bids

on a printed time sheet for a selected slot on which they can execute their computa-

tions. At the end of the day, the winning consumers are informed of their allocated

slots via a recorded telephone message. The microeconomics of computer services

(also called “raw computing services,” e.g., CPU cycles, memory and bandwidth)

had been discussed in several earlier works (Sutherland, 1968; Nielsen, 1970; Cotton,

1975; Mendelson, 1985), but started to gain attention in the 1990s with the Spawn

system (Waldspurger et al., 1992) and became a more important area of research with

Utility, Grid and Cloud computing (Gagliano et al., 1995; Reeves et al., 2005; Grosu

and Das, 2006; Heydenreich et al., 2010; Nassif et al., 2007; AuYoung et al., 2007;

Campbell et al., 2009; An et al., 2010). A detailed survey of market mechanisms for

computing services is presented by Neumann et al. (2008).

In the Spawn system, each provider machine sells time slices through a second price,

sealed-bid auction mechanism, also called a Vickrey auction. The bids are not visible
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to the other agents and the winning agent pays the amount of the second best bid.

These types of auctions are called strategy proof, i.e, the agents are incentivized

to report their true value for the time slice within the bid. A central authority, the

Resource Manager, manages the auctions of each provider machine. If the application

has not finished within the allocated time slice (consumers report their estimated time

for their applications), the application is allowed to continue its execution, as long

as the agent can pay the current market price of the machine. If the agent does

not pay to continue the execution, the application is terminated and the next time

slice is offered to the market. The Spawn system does not support check pointing

or the migration of applications (Waldspurger et al., 1992). A similar approach

uses the Tycoon system (Lai et al., 2005), which enhances the allocation schema

by introducing an Auction Share Scheduling mechanism. Instead of bidding for time

slices, the consumer agent bids for machine proportions in terms of CPU cycles. Each

application is executed on a virtual machine that runs with the allocated proportion

of CPU cycles. The higher the bid, the higher the proportion of CPU cycles received

for an application. In contrast to Spawn, the Tycoon mechanism is not strategy proof

(Lai et al., 2005; Feldman et al., 2009).

Grosu and Das (2006) investigated three market mechanisms for auctioning com-

puting services – first-price auction, Vickrey auction and double auction. They dis-

covered that the first-price auction protocol favors providers, the Vickrey auction

benefits consumers, while the double auction favors both consumers and providers.

Similarly, Regev and Nisan (2000) evaluated the double auction and k-double auction

mechanism for trading CPU cycles in their POPCORN system. To buy CPU time for

application execution, the applications need to be adapted by using the POPCORN

paradigm.

Amar et al. (2008) presented a market mechanism, which allows the preemption of

“low priority” jobs on a single machine or their migration to other machines. The

theoretical results are based on the assumption of zero migration cost, whereas numer-

ical experiments with real world workloads showed that performance of the system is

also robust with realistic migration costs. The mechanism was evaluated within the

cluster and Grid management system MOSIX,11 which provides the functionality for

migrating jobs and automatic load balancing among connected clusters (Barak et al.,

2005; Amar et al., 2008).

11Multicomputer Operating System for UnIX.
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Past and current research mostly focuses on the design of market mechanisms for

allocating “raw computing services,” as well as on policies for scheduling computing

executed in a Resource Manager component. Yeo and Buyya (2006) and MacKie-

Mason and Wellman (2006) summarize past and current research of market mecha-

nisms and resource management tools. MacKie-Mason and Wellman (2006) discuss

the importance of automating markets and participating agents by well-defined inter-

faces, as well as by the parameterizing the auction design space in terms of auction,

allocation and interaction (bidding) rules (Wurman et al., 2001).

According to the coordination modes, scheduling mechanisms can be categorized

into “centralized mechanisms,” where the allocation decision of bids and offers is

taken by a central unit, and “decentralized mechanisms,” where the allocation de-

cision is decentralized, i.e., taken by the requesters based on all of the responses

received from the environment. According to the allocation modes, scheduling mech-

anisms can be divided into mechanisms that execute periodically (also called “off-line

mechanisms”), and mechanisms that execute continuously (also called “online mecha-

nisms”) (Borodin and El-Yaniv, 1998). Web applications like sensor data processing,

price forecasting processing, and video and audio streaming require mechanisms that

can allocate computing services on demand in quasi real time (Amazon, 2010b).

Therefore, this work focuses on online market mechanisms where the allocation and

pricing of computing services is executed continuously.

The aim of this work is to study the design and implementation of competitive and

adaptive bidding strategies, as well as bidding tools for trading computing services

in Cloud markets. The choice of an appropriate market mechanism was performed

based on several considerations and assumptions. Like with the energy market, it

is assumed that the number of consumers and providers will be high, have variable

preferences, and that supply and demand will fluctuate over time (Shneidman et al.,

2005). Furthermore, such a mechanism should be efficient and scale well with a

varying number of participants. A well-studied, widely applied and centralized online

mechanism is the Continuous Double Auction (CDA) (Friedman, 1993; Kant and

Grosu, 2005; van Valkenhoef and Verbrugge, 2009; Parsons and Klein, 2009). CDA

is a two-sided mechanism, where both consumer and provider bids are permitted (if

only bids or offers are permitted, it is called a one-sided mechanism). This mechanism

is evaluated in the context of a Public Cloud Scenario for trading computing services

as specified in 2.3.2, but analogously applicable in the context of Private Clouds,

where the market is internal within an enterprise. In a Public Cloud scenario, it

is assumed that there are many providers (e.g., computing centers, medium and

big enterprises), which have free computing capacities that can be offered to the
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public, as well as many consumers (e.g., researchers, small and medium enterprises,

and private consumers) which want to consume computing services or cover peak

demands. The CDA mechanism is a well-applied, convergent and computationally

scalable (tractable) for scenarios with many consumers and providers because it is less

message intensive (one message per bid and one for a match; if not matched, the bid

expires) as consumers and providers submit their bids to a central authority, which

matches the requests, and are therefore, Computationally- and Communicationally

Tractable by design. Furthermore, CDA is Budget-Balanced and Individual Rational

(Parkes et al., 2001). Therefore, the CDA market mechanism seems to be a good

candidate for scheduling computing services in the Public Cloud.

2.3.5 The Continuous Double Auction

Commonly employed in commodity and financial markets, the Continuous Double

Auction (CDA) is one of the most well-studied two-sided market mechanisms (Fried-

man, 1993; Das et al., 2001; Parsons and Klein, 2009). In this market, consumer and

provider bids are matched “continuously” in the sense that the market clears instan-

taneously on receipt of a bid. If there is no match, the bid is stored in an order book

until a match arises or the specified valid time (“time to live”) expires. The matching

process in CDA is mostly based on the quantity and price for a target commodity (ser-

vice), where the price is a representation of the consumer’s or provider’s preferences,

i.e., valuation vj per time unit. Based on a preferred bidding strategy, consumers and

providers generate and submit bids (for consumers: qj ≤ vj; for providers: qi ≥ vi)

to the CDA market. In the case of consumers, qj means the maximum willingness

to pay; in the case of providers, it means the minimum requested price for a target

commodity. A match represents an immediate contract between a provider and a

consumer. Thus the consumer is authorized to immediately consume the allocated

commodity and pay the calculated clearing price π to the provider. The calculation

of the clearing price on a match depends on the selected pricing policy. A common

pricing schema for the CDA market is K-pricing (Satterthwaite and Williams, 1989).

π = kqj + (1− k)qi (2.1)

The choice of the parameter k ∈ [0, 1] in Equation (2.1) influences the price of the

trade. If k = 0, the provider sets the price, whereas when k = 1, the price is set by

the consumer. To have a fair price determination, k is usually set to k = 0.5.

In the case of CDAs, applications compete directly and when matched, they are

immediately executed on the allocated provider computing instances. Thus, the
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maintenance of a waiting queue on each machine is obsolete. For the CDA market,

there is no known optimal bidding strategy that the agents can apply. Therefore, the

CDA has been widely employed in experimental economic studies using the bidding

strategies of different agents to investigate the efficacy of algorithms that automate

the bidding processes (Das et al., 2001; Gjerstad, 2003; Vytelingum et al., 2008;

Schvartzman and Wellman, 2009).

In a market-based scheduling context, project SORMA, the consumer and provider

bids are continuously matched according to a two-phase matchmaking protocol, which

is price-based (plus other economic parameters) with integrated technical matchmak-

ing (see Section 5.4) (Borissov et al., 2009b; Nimis et al., 2009, 2008). The CDA

performs the price-based matchmaking phase.

2.3.6 Consumer and Provider Bidding Strategies

Auction and strategy selection are closely connected in the sense that a given choice

of auction mechanism will affect the choice of target bidding strategy, and vice versa.

For example, some bidding strategies perform well in a CDA, but not in other auc-

tions like Dutch or English auctions. This also implies that an agent’s success in a

particular auction type depends on the selected bidding strategy. Classic approaches

to designing (programmable) bidding strategies suggest performing controlled labo-

ratory experiments by letting participants “play” and iteratively develop their own

bidding strategies in the defined market mechanism game. Participants develop their

own bidding strategies based on the rules of the market, their intuition or experience

(Axelrod and Hamilton, 1981). Selten et al. (1997) proposed a strategy development

method, in which participants are allowed to play their strategies in a laboratory set-

ting in order to gain experience of the “market game” and then are left to implement

their strategies for further investigation.

There has been increased attention on recent research on the automation of negotia-

tion and bidding processes with software agents that apply bidding strategies using

information from the environment and that can interact with the market mechanism,

as well as against other agents (software or human) efficiently. One of the reasons

is that software agents can deal with the complexity of negotiation and bidding in

asymmetric environments (different market mechanisms and agent strategies) more

efficiently than human agents can, i.e, software agents can extract and aggregate

environmental information in near time and store it in databases to be used in fu-

ture decision-making algorithms. Furthermore, learning algorithms can deal with

the uncertainty of preferences and adapt them to maximize a given scoring function.
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Another important fact is that human agents suffer from emotional affects12 and do

not follow equilibrium strategies, i.e., “when playing with humans, the theoretical

equilibrium strategy is not necessarily the optimal strategy” (Lin and Kraus, 2010).

Thus, game theory and computer science became closely connected to elaborate prag-

matic solutions in mechanism design, and the design of artificial agents, such as for

electronic commerce, monitoring, algorithmic trading in finance markets, negotiation

and bidding (Shoham, 2008).

Early approaches to software agents for negotiating and bidding in auctions are inves-

tigated in Rosenschein and Zlotkin (1994); Chavez and Maes (1996); Doorenbos et al.

(1997); Wurman et al. (1998); Hu and Wellman (1998). Later research explored trad-

ing agents and bidding strategies in various fields like financial markets (Das et al.,

2001; Sherstov and Stone, 2005; Vytelingum et al., 2008), comparison shopping (called

Shopbot) agents (Greenwald et al., 1999; Kephart et al., 2000), supply chain manage-

ment (Pardoe and Stone, 2007) and market-based scheduling of computing services

(Wolski et al., 2001; Vulkan, 2003; Li and Yahyapour, 2006; Reeves et al., 2005; Vi-

lajosana et al., 2008). Wellman et al. (2007) give an overview of the various agents

and the strategies used in the trading agent competition. Phelps (2007) investigated

an evolutionary approach for learning the space of bidding strategies. Anthony and

Jennings (2003) present an agent framework that structures the design of bidding

strategies and introduce bidding algorithms that are able to bid in different market

mechanisms like the English, Dutch and Vickrey auctions.

In general, bidding strategies can be classified into non-adaptive and adaptive strate-

gies. In the non-adaptive strategies, the bid generation process does not take current

and past market information into consideration (e.g., bids from other participants,

clearing prices, market trends and news). Examples of such strategies are the Truth-

Telling and Zero Intelligence (ZI) strategies. In the adaptive strategies, the generated

bid takes the available market information into account. Examples of adaptive bid-

ding algorithms are the Zero Intelligence Plus (ZIP) (Cliff and Bruten, 1997), and

Kaplan and Gjerstad-Dickhaut (Gjerstad, 2003) strategies. A comparison of state-

of-the-art bidding strategies for the Continuous Double Auction (CDA) is evaluated

by Das et al. (2001). The authors of the Adaptive-Aggressiveness (AA) strategy

(Vytelingum et al., 2008) describe and evaluate a novel bidding strategy for financial

markets that implements short and long-term learning behavior that takes market

dynamics into account. Simulation results show that the AA strategy outperforms

the ZIP and GD strategies for the selected design type of the CDA.

12Risk seeking, risk-averse or risk-neutral human agent behavior (Parsons and Klein, 2009).
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To automate and optimize agent decisions in bidding processes, designers of bidding

strategies often apply machine learning techniques like supervised, reinforcement and

unsupervised learning (Weiss, 2000; Müller et al., 2001; Tesauro, 2007). The super-

vised learning (SL) approach is when both input and output data sets exist and

are labeled (structured description of the input and output data and dependencies).

The SL algorithm performs a classification or regression model of the input-output

relationship in order to exhibit and derive a better understanding of system behav-

ior. In the best case scenario, the SL algorithm will find novel correlations based

on the labeled input and output data. Deriving a regression model of the system

will enable learning to produce correct output data when new input is given. Unsu-

pervised learning (UL) refers to the type of algorithms that try to find correlations

in a data set that is not labeled, i.e., there is no explicit knowledge other than the

raw data. Example of UL techniques are data mining (e.g., pattern recognition)

and clustering of “similar” items based on given characteristics. Another type of

machine-learning is the reinforcement learning (RL) approach, “which is largely un-

studied for systems-management applications” (Tesauro, 2007). The RL approach

can be applied in highly dynamic systems with high uncertainty about information

and system behavior. An agent using the RL technique can explore a system’s be-

havior through “trial-and-error interactions,” i.e., by performing various actions and

adapting them based on their received payoff (Kaelbling et al., 1996). The general

RL approach describes an interactive approach rather than a concrete description

of the observed model. It does not say anything about the concrete space of input

data, the endogenous relationships, payoff functions or transfer states (generation of

a new unknown state or selection of an existing state with the highest commutative

payoff). As such, the algorithms that apply RL have to map the “domain-specific

initial knowledge” or the model of the environment in a way that enables actions to

be generated based on concrete policies and adapted from payoff functions.

A detailed explanation of existing and suitable bidding strategies in the context of this

work is presented in Chapter 3, which also includes a description of the Q-Strategy

(Section 3.4), which is one of the contributions of this thesis.

2.4 The Technical Environment

This section presents the technical requirements for two application scenarios for the

market-based purchasing of computing services from external providers. The techni-

cal challenges involved in developing an overall system for market-based scheduling

is also discussed. These challenges have been derived from the literature, as well as
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from the goals of the SORMA project. Its reference architecture, related compo-

nents, as well as the bidding scenario are presented in the subsequent sections. This

work does not aim to evaluate the SORMA system, but rather the developed bidding

tools and message protocols within the context of the project, as well as the scenarios

presented.

2.4.1 Application Scenarios

2.4.1.1 Batch Supply Chain Data Analysis

The first application scenario represents the class of batch jobs. Batch processing of

jobs (applications) is supported by any cluster, Grid or Cloud infrastructure system

(Foster et al., 2008). Batch applications consist of all required libraries, input data

and configuration files for an atomic execution on any computing system, which

fulfills their technical requirements. TXTDemand is a supply chain management

application, which performs sophisticated analysis and demand forecasting on historic

and current product sales (Sales and Replenishment Analysis) (Windsor et al., 2009).

The data from the different consumers is provided as input to the TXTDemand batch

applications. The batch applications are executed during the night, each of them with

a duration of between one and ten hours. The results of the TXTDemand analysis

are used by the related enterprises to make daily decisions regarding their sales and

replenishment strategies.

The consumers provide their sales data to the TXTDemand provider in a well-defined

format. The different TXTDemand batch jobs are then executed on the provider’s

local infrastructure or on externally purchased computing services. The Bid Gener-

ator tool executes the bidding processes to purchase the required computing service

configurations from the Computing Service Market. The result of a bidding process is

the allocation with the established service level agreement from the matched technical

and economic attributes of the consumer and provider.

The TXTDemand scenario defines the following requirements for its integration in

the SORMA system for market-based scheduling (Windsor et al., 2009):

1. A system for market-based scheduling has to provide the possibility of negoti-

ating service level agreements and instantiating related contracts. The negoti-

ation process should include technical parameters for raw resources like CPU,

memory, storage and bandwidth. A service level agreement has to include in-

formation about the duration of a job and the maximum reservation time for

the computing service provided.
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Figure 2.5: Scenario for supply chain data analysis with local and externally pur-
chased computing services (own representation, based on the SORMA project)
(Windsor et al., 2009; Nimis et al., 2008)

2. The negotiation protocol has to consider situations in which resource providers

are forced to break certain service level agreements because they cannot cope

with them. The economic impact of such events and their causes have to be

evaluated and appropriate mechanisms have to be developed to address them

(e.g., compensation payments, which are also called penalties).

3. To increase acceptance and trust in the system, providers of computing ser-

vices have to be evaluated according to well-defined indicators like reliability,

performance, etc. Furthermore, privacy, data protection and security has to be

ensured with well-defined policies that are enforced and easy to demonstrate

since the TXTDemand application handles private and sensitive customer sales

data.

4. The market-based scheduling system has to support different payment models

like pay-per-use, dynamic pricing, prepayments and post-payments.
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5. Flexibility has to be ensured in case consumers need more computing services

than initially agreed.

6. The bidding tool, Bid Generator, may be used by non-experts, so the API and

UI should be clear and simple enough to these kinds of adopters. The Bid

Generator should support consumers and providers in the preparation of bids,

and help them understand the economic impact of their actions.

7. The transfer of consumer data and the bidding processes need to be fast and

performed over a secured communication line, which is part of the system’s

communication protocol.

These requirements are used as a basis for the developed and realized models of this

work.

2.4.1.2 Interactive Sensor Data Analysis

The second scenario represents the class of interactive Web service-based applications.

Visage is a system for advanced video data analysis based on sensor data such as

from cameras (Figure 2.6). When a motion is detected, the camera (client) starts

transmitting the video data to the Visage system. The Motion Detection component

identifies the frames in which the activities are detected. The Object Recognition

component performs a pattern recognition analysis by identifying the moving objects

between a sequence of frames. The process finishes with the creation of a report,

which is sent back to the requesting client in terms of video and description data of

the objects identified (e.g., picture of a moving person and a car, Figure 2.6). Such

a system implements an online and on-demand software service for sensor-driven

video data analysis that can be applied to automate security issues in and around

buildings. As a software as a service approach, Visage offers a Web service interface,

in which camera sensors distributed around the world and in different enterprises can

connect and evaluate their video data. The allocation of a client to a Visage node is

performed by the Visage Service according to the reported consumer technical and

economic preferences. When an allocation is received, the client component (camera

application) starts submitting the video data.

The service provider maintains its own local computing infrastructure of cluster ma-

chines to run the Visage system. The demand for computation power depends on the

number of consumers and cameras that they have installed. In such a scenario, the

ratio of average demand to high demand depends on time and geographic factors, as
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Figure 2.6: Scenario for on-demand video data analysis with local and externally
purchased computing services (own representation, based on the SORMA project)
(Windsor et al., 2009; Nimis et al., 2008)

well as on consumer preferences (Windsor et al., 2009). The demand for additional

computing services (i.e., in addition to the locally existing services) is calculated by

the “PeakDemand” component, which is part of the Visage system. That component

purchases the required computing services from the Computing Service Market on

demand by invoking the Bid Generator component. Therefore, the Visage system

scales on demand based on the number of connected sensors and calculated demand

on the “PeakDemand” component.

In order to realize the described scenario, the following requirements have to be

fulfilled by the SORMA system (Windsor et al., 2009):

1. On-demand deployment of the Visage system on external computing infras-

tructures.

2. Automated purchasing and allocation of external computing services from the

market according to well-defined and implemented bidding strategies.

3. The Visage system should be deployed on as many computing services as

needed. Inefficient utilization of computing services (waste) should be prevented
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through maintenance of a limited local computing service infrastructure. Peak

demand is covered by external providers on the market.

4. Visage clients may request several resources simultaneously and the allocation

has to take all simultaneous requests into account.

5. The Visage system and clients communicate through secured interfaces and all

data is protected from unauthorized access.

6. The Visage system defines specific requirements for computing services, which

are to be expressed in the generated bids and considered in the matchmaking

process. Furthermore, the result of the market-based allocation is a service

level agreement, which has to be fulfilled by the external provider.

This work focuses on the trading of computing services and the related communication

protocols. In this context, only the relevant parts of the Visage scenario will be

considered – purchasing computing services through the Computing Service Market

and defining the required bidding language. The definition of (software) application

specific attributes is not part of this work.

2.4.2 Technical Challenges for the Market System

Systems for market-based scheduling of computing services can be compared to cur-

rent e-commerce systems like eBay, Amazon Web Services and Google AppEngine.

They offer interfaces that allow the automation of purchasing and offering processes

for goods and online services. Purchasing and offering computing services with mar-

ket mechanisms are complex tasks. Such processes require less human intervention

and can be automated by using intelligent software agents in order to achieve higher

efficiency in decision making processes (Kephart and Chess, 2003; Cheliotis et al.,

2005). Software agents can monitor and manage many more computing services and

applications simultaneously than human agents can. Furthermore, software agents

can process huge amounts of data in quasi real time (Foster et al., 2004; Wellman

et al., 2007; Feigenbaum et al., 2009).

Following is a list of the technical challenges that need to be addressed when designing

the components of a system for market-based scheduling.

Automated Bidding. Consumers and providers require configurable bidding agents,

which automate the processes for trading, provisioning and usage. In a realistic set-

ting, this involves designing bidding strategies that can trade in different auction



57 2.4.2 Technical Challenges for the Market System

types with heterogeneous and homogeneous agents, as well as with bounded infor-

mation about the actions of other agents in the market (Parsons and Klein, 2009).

Bidding Language. To express their technical and economic preferences, consumers

and providers need a well-defined, compact and concise term language. In the lit-

erature, bidding languages for auctions that trade single and combinatorial goods

(services) are analyzed. Matching multiple attributes and weights is an optimization

problem, which is NP-Hard.13 In order to specify their preferences, consumers need

to make decisions regarding the multiple attributes of a computing service configu-

rations for their applications. Similarly, providers have to decide, which computing

service configurations are likely to be demanded. Methods for preference elicitation

and statistical prediction of market information are used to derive decisions about

the supplied and demanded computing service configurations (van Ittersum et al.,

2007; Sandholm and Lai, 2007; Kiekintveld et al., 2009).

Automated SLA Creation & Enforcement. As a result of the matching process, a bind-

ing and legal contract between a consumer and a provider is created. Both providers

and consumers need guarantees in the matched terms in order to be incentivized to

offer high-quality services, as well as to execute applications in the Cloud without

concerns about security, trust or the quality of services (Wilkes, 2008; Becker et al.,

2008).

Trading Platform. Trading platforms should be able to run multiple (online) market

mechanisms in a scalable and secure way, as well as communicate and match multiple

bids and offers efficiently. The TAC14 and CAT15 tournaments encourage research in

the design of market mechanisms and bidding strategies that are able to automate

bidding and matching processes in a variety of auction mechanisms and commodities

in changing environmental conditions (Cai et al., 2009).

Security & Trust. Security and trust in IaaS should be provided through transparent

auditing, fair matching and enforcement of SLAs. Authentication for consumers

and providers is done through certificates and they communicate using standardized

security protocols and mechanisms. All messages submitted to the market must be

signed and validated before they are considered legal and binding (Nimis et al., 2008,

2009).

13Non-deterministic polynomial-time hard (Parsons and Klein, 2009).
14Trading Agent Competition: Focus on agent design strategies.
15CAT is the reverse of TAC and comes from CATallactics, the science of exchanges: Focus on

market design (Cai et al., 2009).
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Auditing Services. In order to support the billing processes and reproduce the sys-

tem outcome (e.g., fault-tolerance property), market messages (e.g., bids, offers and

matches) have to be logged and timestamped (Nimis et al., 2009).

Market Directory & Information Services. Information about available auction mech-

anisms and traded computing services has to be stored in registries (“green pages”)

and made findable through a query language, according to the technical specifica-

tion sought. Related market information services have to provide consumers and

providers with aggregated information of current and past prices, as well as the type

and number of supplied and demanded services (Brunner et al., 2008).

Resource Management. Provider’s resource managers perform the actual allocation

of the applications received to their computing infrastructures based on the match-

message received from the market. Therefore, providers design their own scheduling

policies for the allocated consumer applications with the aim of achieving economic

efficiency and consumer satisfaction (Maćıas et al., 2008). Moreover, providers fa-

cilitate consumers’ applications with the requested computing service descriptions

according to the service level agreement document (the SLOs are part of the match-

message), as well as to the specified payment and penalty conditions (Borissov et al.,

2009b; Becker et al., 2008).

Infrastructure Service Engineering. Providers of infrastructure services have to apply

the APIs that are for executing consumer applications and offer their free capacities

to the market. Internally, the profitability (higher margins of market prices and op-

eration costs) of their computing infrastructure not only depends on the economic

management of service level agreements, but also on the continuous improvement of

their hardware resources in order to reduce energy costs and gas emissions (Berl et al.,

2010; Brown and Reams, 2010). Projects like Facebook’s Open Compute Project16

work on energy efficient hardware technologies that reduce overall energy consump-

tion for computation, storage and communication tasks. Moreover, like the Top500

project, the Green50017 provides rankings of the most energy-efficient supercomput-

ers in the world.

Cloud Application Engineering. In order to utilize IaaS services, application devel-

opers have to apply the APIs and tools of the provider. In a market-based scheduling

scenario, the definition and application of common standards and tools is crucial for

16<http://opencompute.org>
17<http://www.green500.org>
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the practicability trust and acceptance of such a system. Open standards from or-

ganizations like the Open Grid Forum, Distributed Management Task Force (DMTF,

2010a), the Open Science Grid and the Open Cloud Manifesto offer transparent

adoption of IaaS services and reduce lock-in effects for consumers (Nelson, 2009).

The engineering of Cloud applications is not an aim of this work, however, it is an

important area for future research and its acceptance in computing service markets.

Licensing. Software licensing is often restricted to local deployment scenarios. Li-

censing models for commercial software has to be made compatible for a Cloud-based

application execution (Armbrust et al., 2009). An open issue of Cloud service pro-

visioning and usage is the transfer of licenses between applications and third-party

software, which is not part of this work, however, it is addressed in the SmartLM

project (Cacciari et al., 2010).

Technically, this work focuses on the design, development and realization of tools for

automated bidding and related message protocols in Chapters 4 and 5. The next

section presents the reference architecture of the SORMA project and the technical

challenges associated with it as the basis for the contributions of this thesis.

2.4.3 A Technical Architecture for Market-Based Scheduling

The design of market mechanisms and bidding strategies is essential in achieving a

system for the market-based allocation of computing services. There are challenges in

realizing such a system with respect to the clear separation of economic and technical

concepts in its architecture and components.

The results of this work have been explored and elaborated in the context of the

SORMA EU-Project 18 (Self-Organizing ICT Resource Management). Figure 2.7

depicts a simplified version of its logical architecture and the components contained

therein. The detailed structure of the components is broken down into four logical lay-

ers. The SORMA architecture is a technical view of a microeconomic system, where

the Open Market Middleware (Layers 1 and 2) represents the institution running the

market mechanism (e.g., Trading Management executes the CDA mechanism) and

defining the legal and communication rules (e.g., Contract and SLA Enforcement and

Billing), Layer 3 represents the agents and their strategies and Layer 4 represents

the transaction objects, i.e., computing services for IaaS applications. The following

sections give a brief overview of the SORMA layers and their components.

18<www.sorma-project.eu>
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Figure 2.7: SORMA architecture

2.4.3.1 Layer 1: Core Market Services

Layer 1 provides the core infrastructure services of the Open Market Middleware

(Chacin et al., 2008).

The Trusted Market Exchange provides an infrastructure for message exchange among

the components of the middleware, as well as the related parties that are part of the

auctioning process. It assures that the related messages are routed to the addressed

party in a secure and reliable way. This service allows asynchronous and state-free

communication among the connected middleware components.

The Logging service keeps a registry of the transactions executed on the market for

auditing purposes, e.g., for Contract Management. Furthermore, it maintains the

state of the active messages and thus allows renewal when a party is reconnecting

(Fault-tolerance).

TheMarket directory is a registry of available auctions for different computing service
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types (e.g., CSI-S-Auction, CSI-M-Auction, CSI-L-Auction, etc.). These services can

be compared to a UDDI’s “green pages,” where each commodity (e.g., CSI-S) is

associated with a technical description, as well as the endpoint reference of the target

auction (e.g., CSI-S-Auction). It provides the functionality to discover the computing

service commodities offered based on the technical preferences.

The Market Information Service provides aggregated price information and historical

statistics of market indicators (e.g., maximum, minimum or average price of a given

time interval) for selected commodities. Agents can subscribe to the service and

perform queries through the interfaces provided (Brunner et al., 2008). Bidding

strategies can use this information to optimize the timing and value of their bids

with respect to the type of application.

2.4.3.2 Layer 2: Open Market Middleware

Layer 2 contains the components, which execute the market mechanisms where bids

and offers are matched (Nimis et al., 2009, 2008). SLAs are the result of the match-

making processes. The execution of an SLA is monitored by the SLA Enforcement

and Billing component.

The Trading Management component is a framework for developing and running

market mechanisms (Sections 2.3.5). Market mechanisms implement the rules of how

bids and offers are matched, technically and economically, and the rules of when and

what to communicate within the exchanged messages (communication protocol). The

trustworthiness of the messages is certified by a Certificate Authority and monitored

and validated by the Security Management component.

Contract Management (CM) receives the result of the matchmaking process and

transforms the corresponding pairs of bids into mutually agreed contracts. As part

of the matchmaking process, the technical and economic preferences are transformed

into a Service Level Agreement (SLA) document, which defines the Service Level

Objectives (SLOs, also called Key Performance Indicators) of the agreement. The

CM component serves as a repository for contracts and initiates the enforcement

process for the SLAs.

The SLA Enforcement and Billing component receives, monitors and enforces the

contracts. It requests information for each SLA periodically and keeps track of the

specified SLOs. Based on the current states of SLOs of the applications, the resource

management component is responsible for the allocation of consumer applications in

a way that maximizes the utilities of the provider and consumer. If the provider fails
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to meet some or all of the agreed SLOs, the bill is discounted by a penalty payment

(Becker et al., 2008). Finally, when the contract is finished, the final payment is

calculated and executed through the Payment Component.

The Payment service provides a unified interface to an online payment service, which

supports recurring micropayments.

Security Management provides the agents with single sign-on entry to the market.

Consumers and providers register to a Certification Authority to get a valid certificate

in order to sign the submitted messages. The market is executed by a trustworthy

institution, and the components within the middleware are running behind a secured

infrastructure. Only messages from certified agents are accepted and routed between

the middleware components. In SORMA, the authorization and signature of bids

was realized with the Security Assertion Markup Language and related tools (Nimis

et al., 2009; Armando et al., 2008).

2.4.3.3 Layer 3: Consumer and Provider Bidding Tools

This layer contains components, which assist consumers and providers in automating

the bid generation processes.

The Preference Modeling component provides the format of the message protocols

that consumers and providers use to express their technical and economic preferences

through the transaction object (Borissov et al., 2009b). It is assumed that they

can estimate their preferences and value bounds by applying the methods of the

Preference Elicitation theory (see Section 2.3). A part of the economic preference

is the selected bidding strategy, which applies the implemented decision rules to

generate bids and offers. The bidding strategies are implemented and executed within

the Bid Generator component.

Bid Generator is the component that connects consumers and providers to the market

and trade on their behalf, based on their preferences and selected bidding strategies

(Borissov and Wirström, 2008; Borissov, 2009; Borissov et al., 2010). To do this,

Bid Generator is represented through an agent framework, which offers well-defined

interfaces for the API units – Learner, Bidding Strategy, Market Connection and

Security. Based on these API units, consumers and providers can already use the

implemented bidding strategies and policies or develop and test new ones.

The Resource Manager (RM) is a provider component that serves the management of

the provider’s local resources (e.g., machines, computing instances, storage, etc.). The

resource manager is designed for direct negotiations and for auctioning through the
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Bid Generator component. To perform direct negotiations with consumers, the RM

utilizes local policies for resource allocation and monitoring, application execution,

SLA enforcement, as well as price discrimination through client classification. To offer

resources on the SORMA market, the RM connects to the Bid Generator component

by reporting the description and reservation price of the computing services offered

(Püschel et al., 2007; Maćıas et al., 2008). The allocated applications are executed

according to the market match, i.e., the SLA. Furthermore, the RM can compensate

for higher local resource demands by buying computing services from the market.

2.4.3.4 Layer 4: Applications and Resources

Layer 4 refers to the type of transaction objects, which are tradable with the SORMA

system (Section 2.3.2) – computing service instances.

On the provider side, a business engineer specifies the type and configuration of a

computing service to be offered on the market according to the provider business plan.

To specify the technical and economic terms of the bid, the provider applies the tools

and message protocol from the Preference Modeling component. The computing

services are managed within the Resource Manager and offered on the market by the

Bid Generator component.

To execute their applications in the Cloud, consumers first have to prepare their

applications so that they can be easily transferred and executed on the allocated

computing service instance. Consumers use the same tools as providers – Preference

Modeling to initialize their technical and economic preferences for the application

and Bid Generator to execute the bidding processes.

2.4.4 Bidding Scenario for Computing Services

Figure 2.8 depicts a general overview of the Bid Generator integration in SORMA’s

market-based scheduling environment. The environment consists of three actor types

– Consumers, Providers and Institutions. Each consumer has applications (apps) to

execute, which are queued, executed, monitored and terminated by the Application

Orchestrator component. The Application Orchestrator component is a consumer

component that manages the deployment and execution of consumer applications

(Section 2.4.1) on local and external computing services. In the case of external

computing services, the Application Orchestrator invokes the BidGenerator by sub-

mitting the “request for bid,” Pj. Pj contains well-defined or estimated technical

requirements and valuations for the application j, which are reported to the BidGen-
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Figure 2.8: Scenario for bidding on computing services

erator component (a description for Pj is provided in Section 5.3.1). The technical

requirements and objectives are manually initiated by the application owner and can

be automatically estimated using a regression analysis of the historic data of the

same application type and a similar amount of input data (Ali et al., 2004). The

BidGenerator component provides methods and realizations of state-of-the-art and

novel bidding strategies (Chapter 3) and bidding agents (Chapter 4). BidGenerator

interacts with the environment according to a well-defined communication protocol

(Chapter 5).

Providers of computing services (comps) maintain their own infrastructure and offer

free capacities on the market. Similar to the consumer case, the provider comput-

ing infrastructure is managed by a so-called Resource Orchestrator. The Resource

Orchestrator creates, prepares, monitors and terminates (virtualized) computing ser-

vices according to the provider’s local scheduling and business policies (Maćıas et al.,

2008; Püschel et al., 2007; Wilkes, 2008). For each of the free computing service

instances, the Resource Orchestrator sends a Pi (Section 5.3.1) to the Bid Generator

component with a detailed description of their technical descriptions, reserve prices

and selected bidding strategy implementations (Sections 3.3.4 and 3.4).

According to the selected market and bidding strategy, the consumer’s and provider’s

Bid Generators generate bids and submit them to the market in the form of Bj and Bi

messages (see Section 5.3.3 for details). The market mechanism performs a technical

and economic matchmaking (Section 5.4) of the consumer and provider bids and

creates a match-message, Xi,j (Section 5.3.4), which is sent back to the matched
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consumer j and provider i. The example on Figure 2.8 depicts a spot market for a

computing instance called c1.medium with a well-defined specification of technical

attributes, similar to the Amazon EC2 offering (Amazon, 2010a; TheCloudMarket,

2010). The market mechanisms are implemented and executed within the market

platform called Trading Management, which was developed, implemented and tested

within the SORMA project (Nimis et al., 2009).

2.5 Research Methods

Bidding strategies implement decision rules according to the information available

and state of the environment. The analysis of such systems becomes complex when

supply and demand, the number of participants and their applied bidding strategies

vary over time. Game theory offers tools to express agent decisions and their rela-

tionships for simplified games usually with few competing agents and an idealistic

set of assumptions about the environment’s rules and information. Game theoretic

models, however, quickly become unfeasible as the complexity of the system grows,

which is a reflection of the “strategies space, number of agents, degree of incomplete

and imperfect information, and dynamism.” (MacKie-Mason and Wellman, 2006).

Laboratory experiments are designed to study the behavior and decision making of

humans under certain conditions and experimental settings. In a laboratory setting

with human participants, the setting of a mechanism and strategy space is biased

and limited by the competencies, dependence on and sentiments of non-expert hu-

man participants. It is not only the normative science of an economic system that

matters, but also the context and implementation details of the computing service

markets and agents. An example of a complex economic system are the FCC19 spec-

trum auctions. Even though it was designed by some of the best auction theory and

agent strategy researchers, given the rules of the market, an analytical solution of the

game has not been proposed (MacKie-Mason and Wellman, 2006; Wellman, 2006).

The design of mechanisms and strategies for computing services has a comparable

complexity; thus there is less potential for analytical solutions to be proposed in

realistic settings.

This work aims to investigate the application of software agents and analyze the

outcome of sophisticated bidding strategies that automate bidding processes in a

distributed system for market-based scheduling. Such complex analysis is performed

19Federal Communications Commission.
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with methodologies proposed by Tesfatsion (2006) – Agent-based Computational Eco-

nomics (ACE) – and by MacKie-Mason and Wellman (2006) – Empirical Game-

Theoretic Analysis (EGTA). ACE studies economic processes, which are “modeled

as dynamic and distributed systems of interacting agents [..]” as “[..] part of a

computationally constructed world” (Tesfatsion, 2006). The application of ACE is

“an attempt to achieve a more transparent and realistic representation of real-world

systems involving multiple distributed entities with limited information and compu-

tational capabilities” (Tesfatsion, 2006). The EGTA of MacKie-Mason and Wellman

(2006) is a supplement to the ACE methodology that proposes systematic evaluation

of market mechanisms and trading strategies in computational experiments. This

approach postulates the construction of an agent-based world that models the key

assumptions and aspects of the economy investigated. This work adopts these two

approaches for the field of market-based scheduling in the following way:

1. Mechanism Design. The selected mechanism for market-based scheduling of

computing services is the Continuous Double Auction. Its Computational Mech-

anism Design properties – Budget-Balanced, Individual Rational, Computation-

ally Tractable and Communicationally Tractable – makes it well-suited for on-

line settings and the selected scenario. The bidding rules define the continuous

matching of arbitrary orders of consumer and provider bids without any time

restrictions or time segmentations. The matchmaking process is performed in

two phases – a price-based (plus additional economic parameters) phase and a

technical matchmaking phase. The market clearing rules are applied as soon as

a consumer and provider bids matches in terms of economic and technical pa-

rameters, where the clearing price is calculated with the k-pricing rule (Section

2.3.5).

2. Bidding Strategy Design. The market rules define the scope of the strategy

space. Bidding strategies are designed according to the parameter space of

the market mechanisms. Such strategies can implement simple decisions like

random bid generation or sophisticated decisions by utilizing available market

information and historic data. The bidding strategies are the logical part,

which implement the decision making steps according to the signals received

from the market or other agents. The bidding strategies are instantiated into

agents, which interact with the environment through the exchange of messages

– e.g., agent’s intentions (bids) and market messages (matches, and market

information like the bids and matches of other agents). The design desiderata
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of bidding strategies, an investigation of existing bidding strategies and the

presentation of the Q-Strategy is part of Chapter 3.

3. Agent Design. Consumers and providers require tools to implement agents

and bidding strategies in order to interact autonomously with the market. A

flexible framework for automated bidding aims to provide a methodology for

implementing agents and strategies in an effective and straightforward way.

Moreover, the framework should facilitate the simple and methodological eval-

uation of agents and strategies in various settings. Chapter 4 focuses on the

definition of bidding agents and their properties, the elaboration of existing

agent frameworks and agent design methodologies, as well as the presentation

of the BidGenerator framework.

4. Message Protocols Design. The definition and adoption of common protocols for

exchanging consumer requirements, provider offers, bids, matches and market

information is a crucial part of a system for market-based scheduling. Devel-

opers of agents and bidding strategies need to understand the semantics, type

of messages, and the market information in order to design and implement

successful bidding strategies according to their needs and design requirements.

Chapter 5 focuses on design desiderata for message protocols and presents the

specification of novel message protocols for market-based scheduling.

5. Experiment Design. To analyze the economic system, one needs to define the

settings of the market, the number of agents and their selected bidding strate-

gies. The strategy profiles of the agents can be homogeneous or heterogeneous

– all agents utilize the same bidding strategy or each agent applies a different

one. Another part of the experimental designs is the generation of artificial

and real-world input data. Historic real-world data for cluster job profiles can

be taken from web archives (Feitelson, 2010), where missing data like the pri-

vate valuations of consumers and providers can be artificially generated only

with well-applied statistical distributions like normal and uniform distributions

(Brooks et al., 2003; Sandholm et al., 2008). Section 6.1 presents the overall de-

sign of the agent-based experiments and Section 7.1 presents the methodology

for the technical and performance analysis.

6. Outcome Analysis. Successful (matched) bids for a computing services result

in an allocable and measurable outcome is called a reward. The overall out-

come of an experiment setting is measured according to the reported consumer

and provider rewards for each of the allocations in this setting. The reward
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(scoring) function for consumers and providers can be different and depends

on their private goals like minimizing makespan and payments or maximizing

profit (Heydenreich et al., 2010; Parsons and Klein, 2009). Concretely, the

overall outcome of each of the experiment settings is measured with aggregated

consumer scores, and aggregated provider scores metrics, and the sum of both,

also known as the welfare of the system. Section 6.2 presents the results and

analysis of the results according to the specified metrics.

Market and strategy design are challenging processes, which are dependent on each

other in the sense that the definition of market rules affects the selection and design

of bidding strategies, which will affect the outcome of the agents applying them.

The presented methodology aims to develop the theory and tools to perform realistic

experimental scenarios for bidding strategies in highly dynamic online (imperfect)

markets.



Part II

Design and Implementation





Chapter 3

Economic Design of Bidding Strategies for

Market-Based Scheduling

T
he landscape of today’s software services is highly heterogeneous. Consumer ap-

plications are realized in different programming languages and run on different

hardware and operating systems with respect to their usage scenarios and require-

ments (e-mail, banking, social apps, office apps, statistical apps, data analysis apps

and many other services). Providers maintain differentiated computing infrastruc-

tures (HPC computing centers, campus computing centers, and computing centers of

large, medium and small enterprises), which are composed of hardware from different

manufacturers, which is updated in different time periods. Therefore, in a market-

based scheduling scenario, consumers will have a different demand for computing

services for their applications and providers will aim for different business models

when offering their free capacities on the market. The heterogeneities of consumers

and providers will affect their decisions and behavior when bidding in markets for

computing services. Such decisions include the time of market entry, the time of

market exit, the number of submitted bids and how they are generated. Bapna

et al. (2004) analyzed the bidding strategies of consumers that buy goods on online

markets such as eBay. They identified five types of bidding strategies, in which ef-

ficiency (profit) was evaluated with observed real data over two consecutive years.

The results showed that consumers learned to improve their bidding strategies in

the second year. An important observation was that consumers, who used software

bidding agents, achieved the highest profits in comparison to other bidders.

The design and implementation of bidding strategies for specific auction mechanisms

automate bidding processes, but the algorithmic decisions implemented influence the

outcomes of the agent. In the literature, various bidding strategies are proposed,

which are designed and evaluated for specific domains and market mechanisms (Par-

sons and Klein, 2009). Moreover, it is often assumed that all agents are perfectly

informed about others’ actions, which is not the case in realistic settings.

This chapter presents a general framework for designing bidding strategies. As part
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of Research Question 1 (Design of Bidding Strategies) in Section 1.2, the framework

is applied in the design of a novel adaptive bidding strategy for the market-based

scheduling domain called Q-Strategy. Bidding strategies like the Q-Strategy are real-

ized to be instantiated into bidding agents in order to automate the bidding processes

for consumers and providers. Section 3.1 defines the term bidding strategy from the

classic and computational mechanism design perspectives. Section 3.2 derives design

desiderata for developing bidding strategies in the market-based scheduling domain.

Subsequently, Section 3.3 starts with the presentation of general frameworks for bid-

ding in games with perfect and imperfect information. The section proceeds with

the presentation of existing non-adaptive and adaptive bidding strategies, and per-

forms an analytical comparison of selected bidding strategies according to the derived

desiderata. Section 3.4 presents the Q-Strategy and Section 3.5 concludes with a sum-

mary of the chapter.

3.1 What is a Bidding Strategy?

Von Neumann and Morgenstern (1944) provide one of the fundamental works that

initiated the study of games and economic behavior, which influenced and bundled

many research fields ranging from economics and artificial intelligence to biology.

In classic economics, it is often assumed that agents are rational utility maximizers

acting under the assumption of perfect information (i.e, all agents know the actions of

others at each stage of the game). The literature investigates several types of games.

Games with sequential actions (also called extensive or tree form games1), where each

agent’s possible actions and outcomes of the game are commonly represented in a

tree form and each agent chooses a sequential action (also called a pure strategy) of

the tree, based on the given stage of the game (Shoham and Leyton-Brown, 2009).

In the case of perfect information, an agent knows all the actions of the others at

any stage of the game. A utility maximizing strategy is to choose the action, which

is the best response to actions of all other agents. The best response action can be

unique (pure strategy) or include more than one possible action (mixed strategy). In

the latter case, the agent among them is indifferent and makes a random selection

with a previously chosen probability distribution. If all agents play a best response

strategy, the resulting game is a Nash equilibrium.

1Extensive or tree form games are visualized through a tree with nodes, edges and leaves. A
node represents a choice of one of the agents, an edge represents a possible action and the leaves
represent the outcomes for each player.
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Other types of games are the repeated and stochastic games. In the first case, the

same game is repeated over time, thus, agents learn from previous experience and

adapt the actions they have selected. In contrast to repeated games, stochastic games

allow the collection of normal form games to be executed repeatedly (Shoham and

Leyton-Brown, 2009). Such types of games allow agents to try varying their action

selection at each stage of the game in order to learn different action combinations of

the game.

In real scenarios (e.g., eBay, stock exchanges), the number of agents is large and the

agents have private information (e.g., valuation and reward functions), which is not

known to the others at each stage of the game (also known as games with imperfect

information). Bayesian games are such games with imperfect information, where

agents face uncertainty about the others’ valuation and reward functions and have

limited memory to store and reason the actions of past agents. A similar type of

game is called congestion games, which describes situations where agents compete

for scarce resources (e.g., bandwidth, computing instances). Such games can become

infinitely large and thus reasoning efforts become complex (NP-hard).

Game theory provides well applied and common mathematical frameworks to ex-

press various game settings, possible agent strategies, their relations and interactions.

Mathematical (game-theoretic) analysis of bidding strategies is often reasonable for

a small number of agents, simple utility functions, and that take place under certain,

often idealistic assumptions like perfect information and rational agents (Engelbrecht-

Wiggans, 1980). It can be assumed that the reason lies in the technical convenience

and simplicity of such (idealistic) scenarios in order to derive straightforward evidence

from the outcome of the game (Shoham et al., 2007, p. 13). With an increasing num-

ber of agents and strategy space, game-theoretic analysis and reasoning with respect

to the solution space is becoming complex.

Modern economics has become an interdisciplinary discipline, where more realistic

and complex scenarios can be efficiently implemented and evaluated in multi-agent ex-

periments by utilizing computing clusters, grids and clouds. As introduced in Section

2.3, Computational Mechanism Design focuses on more realistic and computation-

ally tractable mechanisms, which implies that some mechanism design desiderata are

sacrificed (cf. impossibility result of Myerson and Satterthwaite (1983)). This work

focuses on bidding agents and strategies for online market-based scheduling of com-

puting services. The resulting online allocations of consumer to provider requests is

not as optimal as an off-line optimization algorithm, cf. “Price of Anarchy” (Koutsou-

pias and Papadimitriou, 2009). Furthermore, this work investigates complex scenar-

ios where consumer and provider agents compete in homogeneous and heterogeneous
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scenarios of varying bidding strategies and different proportions thereof. In contrast

to the classic game-theoretic definition of a bidding strategy, this work examines the

term bidding strategy from an algorithmic perspective. In Computational Mechanism

Design, bidding strategies are elaborated as algorithms of multi-functional decision

steps, containing steps like information gathering (shared data of other agents’ bids

and clearing prices), data aggregation, prediction and optimization techniques, as

well as bid generation. Furthermore, adaptive bidding strategies include additional

steps like outcome analysis and learning from past experience at each stage of the

game.

Instantiated into software agents, such bidding strategies automate the bidding pro-

cesses for consumers and providers. In laboratory experiments, Das et al. (2001)

showed that bidding agents (software agents applying algorithmic bidding strategies)

outperform humans. The bidding agents have computational advantages over humans

since data can be found, parsed and aggregated in near real-time, e.g., transactions

are executed in milliseconds. Furthermore, bidding agents implement sophisticated

optimization algorithms with well-defined rules and decisions. Unlike humans, bid-

ding agents “don’t get distracted”, are not indifferent between decisions and do not

suffer from “auction fever” (Greenwald et al., 2003; Ku et al., 2005).

3.2 Design Desiderata

The design process of bidding strategies is a challenging task, which highly depends

on the environment in terms of the target domain (here computing services), the

type of market mechanism, constraints that should be considered and the actions

of the other participating agents (Lin and Kraus, 2010). The characteristics of the

environment define the scope for designing the bidding strategies. When designing

bidding strategies for realistic settings, a clear methodology is required. The following

desiderata focus on strategy design for the market-based scheduling domain.

Desideratum 1 ≺Automating Bidding Processes�
Bidding strategies must allow the automation of decision making processes when bid-

ding for computing services (Windsor et al., 2009; Iyer and Huhns, 2009).

To achieve this, bidding strategies have to be designed according to the rules of the

target market protocol like market type (single-sided vs. double-sided auctions), the

timing of bids, offline vs. online matchmaking and information revelation (Wurman

et al., 2001). Consumers and providers follow well-defined goals for their applications
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and transaction objects (Iyer and Huhns, 2009; Paurobally et al., 2007). Therefore,

bidding strategies have to model the transaction objects explicitly, and the goals that

are to be maximized need to be configured.

Desideratum 2 ≺State Representation�
Bidding strategies must model the environment in which they act and interact explic-

itly.

From the perspective of a consumer or provider, an environment consists of endoge-

nous and exogenous variables. Therefore, a bidding strategy designer has to decide

which variables the state model is to take, endogenous, exogenous, or a mixture of

both. The endogenous state of an agent expresses local states like an agent’s tasks,

goals, believes, desires or intentions. Examples of an endogenous state representa-

tion are those that express statements like “application X is ready for execution and

needs a computing service Y” or “computing service Y is idle and ready to be offered.”

Such intentions can be mapped to local actions and executed by an agent. Examples

of exogenous state variables are those for modeling shared information about other

agents’ bids and clearing prices, as well as information about the rules of the target

market mechanisms (Wurman et al., 2001). Furthermore, monitoring data of an ap-

plication execution on external computing services is also defined as exogenous state

information. The data of the exogenous state representation is used to improve the

decision making processes of the bidding strategy’s endogenous model.

Desideratum 3 ≺Action Representation�
Bidding strategies must model the transition of states into actions, which are executed

from the agents in the environment and affect their outcome.

Designers of bidding strategies must specify a policy for how actions are to be gen-

erated, according to the given state of the environment. Such policies are expressed

through functions using the variables of the endogenous and exogenous states. Ac-

tions can be simple, like the generation of random numbers; they can also be complex

and composed of multiple sub-tasks like information gathering, technical demand es-

timation, valuation estimation and bid generation.

Desideratum 4 ≺Goal Representation�
Bidding strategies must model the goals for trading transaction objects explicitly.

In order to automate bidding processes, the agents have to know their goals, and

these have to be explicitly defined in their bidding strategies. In economics, goods
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and services are compared ex-ante and selected according to a utility function (also

called expected utility function if some of the parameters are unknown and have to

be estimated). The same utility function is used for the ex-post evaluation of choice

satisfaction. Utility functions usually have positive values and express the degree of

satisfaction. In the market-based scheduling domain, consumer and provider goals

can became complex and expressed with multiple attributes, so values may have a

negative prefix, even if they express high satisfaction. Therefore, this work prefers to

use the term scoring function.

Desideratum 5 ≺Adaptive Bidding in Imperfect Markets�
Bidding strategies must support the bid generation processes in markets with incom-

plete information and strategic heterogeneous agents.

In real settings, consumers and providers do not share their true valuations and bid-

ding strategies with each other. This is also the case in strategy-proof mechanisms

where truthful bidding is a dominant strategy (Rothkopf, 2007). Rothkopf (2007)

discusses budget constrains and varying business models as practical reasons that pre-

vent consumers and providers from revealing their true valuations (Rothkopf, 2007).

This means that consumer and provider agents will behave strategically in order to

achieve their goals under their budget and business model constraints. Moreover,

at the beginning, it is difficult for consumers to have a clear idea of their technical

requirements and economic preferences with regard to their applications. However,

they can improve and refine their setups iteratively after carrying out a detailed ex-

ploration of and measuring performance on the computing infrastructures of different

providers.

Furthermore, bidding strategies have to be able to deal with asymmetric market

information, considering the fluctuating supply and demand of prices, and the qual-

ity and number of traded services (Vytelingum et al., 2008). The application of

machine learning techniques can help aggregate past experiences to estimate the de-

cision values under conditions of uncertainty (Anthony and Jennings, 2003; Gomes

and Kowalczyk, 2007; Tesauro, 2007).

Desideratum 6 ≺Bidding in a Market-Based Scheduling Domain�
Bidding strategies for market-based scheduling must model the endogenous and ex-

ogenous characteristics of the specific domain and allow the decision and description

variables to be mapped to the communication protocols of the system.

In contrast to financial markets, bidding languages for market-based scheduling in-

clude technical attributes for the description of required or provided computing ser-
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vices. Part of these technical attributes may be identified as key performance indi-

cators and included in the scoring function. Therefore, bidding strategies not only

automate bid generation processes, but also provide the opportunity to adjust and

“learn” the values of the identified key performance indicators. For example, a scor-

ing function may include the minimization of completion time as part of its definition.

The bidding strategy may increase the memory usage or number of CPUs if there is

a correlation between completion time and memory usage or the number of CPUs

(Smith et al., 1998; Ali et al., 2004).

3.3 Existing Bidding Strategies

The design of bidding strategies depends on the rules of the target market mechanism

and whether all agents are perfectly informed or not. In the case of perfect informa-

tion, all agents have the same data view of the system as other agents and at each

stage of the game, i.e., the market provides complete information to all agents about

the intentions of others – bids for the demanded and supplied computing services and

clearing prices. In the case of imperfectly informed agents, at least one agent of the

game is less informed than the others, i.e., the agent is not aware of something rele-

vant to the transaction, which other agents know. An example of such asymmetries

are the trading relations between suppliers and consumers when there is uncertainty

about the value of the traded computing service (McAfee and McMillan, 1987). This

section presents a summary of bidding strategies that are implied in markets with

perfect and imperfect information.

3.3.1 Bidding in Games with Perfect Information

A well-known result in game theory is that every (finite) perfect information game in

extensive form has a pure strategy Nash equilibrium. This result is due to the fact

that each agent knows the actions of all others and the agents choose actions that

are the best responses to all other agents’ actions at each stage of the game (Shoham

and Leyton-Brown, 2009).

Formally, suppose that s−i = (s1, . . . , si−1, si+1, . . . , sn) is the strategy profile of all

agents other than i and s−i does not contain the bidding strategy si. If other agents

commit to play s−i at a specific stage of the game, a utility maximizing action of

agent i is to determine the best response to s−i.

Definition 3.3.1 (Best Response Strategy). The best response strategy, si, of agent
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i with a scoring function ui, to the strategy profile s−i is the strategy s∗i ∈ Si such

that ui(s
∗
i , s−i) ≥ ui(si, s−i).

Definition 3.3.2 (Nash Equilibrium). Strategy profile s = (si, ..., sn) is a Nash equi-

librium if, for all agents i, si is the best response to s−i.

The concept of Nash equilibrium provides a stable strategy profile, in which no agent

wants to deviate from the best response strategy s∗i , if other agents play s−i.

To calculate Nash equilibria, the literature proposes algorithms that are based on

backward induction. Backward induction calculates Nash equilibria for each sub-game

(tree) of the overall game tree using a depth-first traversal search. Such algorithms

run well for small numbers of agents and strategies, but become unfeasible in practical

settings because of the exponentially increasing space of the tree game in terms of

agents and their adopted strategies.

In contrast to extensive form games, perfect information repeated or stochastic games

may have more than one Nash equilibrium due to the learning processes of the various

playing agents and the resulting new action. For example, the classic Rock-Paper-

Scissors game is a zero-sum game, where the best response strategy of each player

is to uniformly select an action from three of the actions possible. In Rock-Paper-

Scissors tournaments, the winners are never Nash equilibrium players (Shoham et al.,

2007). The winner of one of the past tournaments said, “I read the minds of my

competitors and figure out what they are thinking. I don’t believe in planning your

throws before you meet your opponent” (Shoham et al., 2007). The strategy space

in a repeated game (or more generally a stochastic game) is immense because it

includes all the mappings from past history to mixed strategies in the stage game. In

such complex games it is not reasonable to expect that agents can explore the entire

strategy space, but learn to achieve their own goals. Therefore, in such games, formal

Nash equilibrium analysis plays a minor role, if any at all.

3.3.2 Bidding in Games with Imperfect Information

Games with perfect information assume that all agents know the actions of others at

each stage of the game, as well as the actions of others that led to the current stage.

In a more realistic and competitive market setting, there is asymmetric information

about other agents’ intentions and their rewards. An agent reward depends on its

own preferences, the actions of other agents and the quality of the traded transaction

objects. Such a setting, where indivisible objects are traded and there is uncertainty
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about other agents’ private values, is called the Independent Private Values Model

(IPV) (Milgrom and Weber, 1982). In this model, each agent is assumed to be risk

neutral and each agent has his own private value estimate for the traded transaction

object. Furthermore, it is assumed that agents compete among each other in a non-

cooperative game, with each of them maximizing his own utility.

The following theoretic model defines the class of imperfect information games, which

is based on the definition in (Shoham and Leyton-Brown, 2009, p. 165).

Definition 3.3.3 (Imperfect Information Game). An Imperfect Information Game

is represented through the tuple G = (N,Ω, A,R, ρ, S,M), where:

• N is the set of all consumer and provider agents;

• Ω = (Ω1,Ω2, . . .) is the set all agents’ states, where Ωi = (ωi,1, ωi,2, . . .) repre-

sents the set of states of agent i ∈ N ;

• A = (A1, A2, . . .) is the set of all agents’ actions, where Ai = (ai,1, ai,2, . . .)

represents the set of actions of agent i ∈ N ;

• R : Ωi × Ai → R is the scoring function for calculating the score (reward) for

each executed action ai,k ∈ Ai and each ωi,k ∈ Ωi of agent i ∈ N ;

• ρ : Ωi×Ai → Ai specifies the transition probability function of taking an action

ai,k ∈ Ai in state ωi,k ∈ Ωi;

• S = (s1, s2, . . .) is the set of all agents’ bidding strategies, where si is the selected

bidding strategy of agent i e.g., Q-Strategy, ZIP, GD etc;

• M = (M1,M2, . . .) is the set of all agents’ messages, where Mi = (mi,1,mi,2, . . .)

represents the set of messages of agent i ∈ N .

Definition 3.3.3 extends the definition in (Shoham and Leyton-Brown, 2009, p. 165)

with the addition of the S concept, which explicitly models the set of different (al-

gorithmic) bidding strategies to the set of available agents N of the game setting

G.

An agent i in an imperfect information game can select a bidding strategy si, based

on her or his experience in past and similar games. Let Hi = (hi,1, hi,2, . . .) be the

agent i’s history with a memory length of T units of time.
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Definition 3.3.4 (Classic Markov Strategy). A Markov strategy si : Ωi ×Hi → Ai

of an agent i returns the action ak ∈ Ai with the highest probability of being successful

for the given state ωk ∈ Ωi and history Hi.

The utility (score) of an agent, given other agents’ strategies, is a common indicator

for games with incomplete information.

Definition 3.3.5 (Expected Utility). An agent i’s expected utility with a bidding

strategy si and other agents’ strategies s−i is defined as:

Ei(si, s−i) =
∑
ak∈Ai

(
ui(ak)

∏
a−k∈A−i

s−i(a−k)
)

(3.1)

In an imperfect information game, the bidding strategies of other agents are now

known to agent i, thus, agent i calculates its expected utility based on the public

information of other agents’ actions A−i. Thus, in contrast to the classic definition,

other agents’ strategies s−i are not known and agent i calculates the expected utility

from its own perspective:

Ei(si, s−i) =
∑
ak∈Ai

(
ui(ak)

∏
a−k∈A−i

ui(a−k)
)

(3.2)

Definition 3.3.6 (Best Response Strategy). The set of agent i’s best responses to

other agents’ strategies s−i is defined as:

BRi(s−i) = argmaxs′i∈Si
Ei(s

′
i, s−i) (3.3)

Definition 3.3.7 (Bayes-Nash Equilibrium). A Bayes-Nash equilibrium is a strategy

profile s that for all i, si ∈ BRi(s−i)

The difference of the Bayes-Nash equilibrium to the Nash equilibrium in normal form

games is that in imperfect information games the agents do not know the independent

private values of other agents, thus they try maximize their expected utility based

on the public information available on other agents. In order to calculate the best

response in a imperfect information game, agent i must know the current actions A−i

of the others agents for the state Ωi.

In general, bidding strategies for imperfect information games can be classified as

non-adaptive when the generated bid does not depend on past and current market

information (e.g., bids, offers, clearing prices), and as adaptive when the generated

bid depends on the available market information. In the following sections the non-

adaptive and adaptive strategies that are usually applied are introduced.
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3.3.3 Non-Adaptive Bidding Strategies

Non-adaptive bidding strategies do not require any public information from the mar-

ket mechanism to generate the bids. Such bidding strategies are applied in markets

where either there is a well-known dominant strategy, and therefore no point of

adaption, or in markets with a “high degree of uncertainty”, where agents behave

randomly in some ways, c.f “random walk” in financial markets (Campbell et al.,

1997).

In this context, Truth-Telling is the simplest strategy, where the reported bid to

the market equals the independent private value of the agent. This strategy consti-

tutes the best response in a strategy-proof mechanism, where truthful bidding is a

dominant strategy, i.e., it is a utility maximizing strategy regardless of what other

agents bid. Market mechanisms, which are strategy proof reduce the strategy space

of agents that do not need to perform game-theoretic analysis or counter-speculation

of others. The existing literature often focuses on the investigation of strategy-proof

mechanisms in various application scenarios (Kalagnanam and Parkes, 2004). How-

ever, market mechanisms, such as bid generation, communication costs, and winner

determination, which are theoretically shown to be strategy proof, actually present

NP-hard problems in practice. Moreover, it is often assumed that the independent

private values of consumers and providers are not constrained by any budgets or

endogenous constraints (Rothkopf, 2007).

Another non-adaptive bidding strategy is the Zero-Intelligence (ZI), which is also

called the Zero-Intelligence Constraint (ZI-C). ZI or ZI-C is one of the first and

simplest algorithmic bidding strategies evaluated in laboratory experiments against

human agents (Gode and Sunder, 1993). The ZI-C strategy agents submit (uniformly

distributed) random bids based on the budget constraints of consumers and providers

– consumers do not buy above their independent private values and providers do not

sell below their operating costs.

The authors promote this strategy based on the assumption that the efficiency of

a double auction depends on market design rules rather than the learning effects of

agents. Furthermore, it postulates that it is not possible to predict the trading be-

havior of agents because of their heterogeneity in terms of expectations, preferences,

risks and endowments. The experiments showed that budget constraint is sufficient

to achieve efficient outcomes that are comparable to those of the human agents. The

ZI-C strategy is a simple strategy, which can be applied in computing service markets

where there is high uncertainty about the prices and technical requirements.
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3.3.4 Adaptive Bidding Strategies

Adaptive bidding strategies are designed to work with the public data available,

which is provided by the market mechanisms. The following sections will present two

commonly applied benchmark strategies for the Continuous Double Auction (CDA),

which is the target market model of this work. Furthermore, other adaptive bidding

strategies that are valuable for this research are discussed, but are designed for a

different ĈDA type than the online CDA type presented in Section 2.3.5.

Zero Intelligence Plus Strategy

Cliff and Bruten (1997) developed an adaptive bidding strategy called Zero Intelli-

gence Plus (ZIP). ZIP agents have been widely explored and constitute a popular

benchmark for agents trading on Continuous Double Auctions (Das et al., 2001).

Central to the ZIP agent’s performance is the rule for updating the profit margins of

providers (Algorithm 3.3.1) and consumers (Algorithm 3.3.2), which is the difference

between the agent’s independent private value and the bid. In the absence of any

information, the strategy is initialized with a low bid for the trading object in com-

parison to its true valuation. The profit margin is automatically updated according

to a rule, which is based on the market information received for the clearing prices

and bids of other agents. The most recent bid of another agent is denoted by q−i.

Increasing the profit margin μi, raises the agent i’s bid qi in the case of a seller and

lowers qi in the case of a consumer.

�

�

�

�

Algorithm 3.3.1: ZIP: Provider’s Profit Margin Update Rule(q−i, μi, qi)

comment:Compute provider’s profit margin μi, based on

the last market information q−i and the provider’s bid qi

if q−i was a match

then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if qi ≤ q−i

then
{
raiseProfitMargin(μi)

if q−i was a consumer bid and qi ≥ q−i

then
{
lowerProfitMargin(μi)

else if q−i was not a match

then

{
if q−i was a provider bid and qi ≥ q−i

then
{
lowerProfitMargin(μi)
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�

�

�

�

Algorithm 3.3.2: ZIP: Consumer’s Profit Margin Update Rule(q−i, μi, qi)

comment:Compute consumer’s profit margin μi, based on

the last market information q−i and the consumer’s bid qi

if q−i was a match

then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if qi ≥ q−i

then
{
raiseProfitMargin(μi)

if q−i was a provider bid and qi ≤ q−i

then
{
lowerProfitMargin(μi)

else if q−i was not a match

then

{
if q−i was a consumer bid and qi ≤ q−i

then
{
lowerProfitMargin(μi)

ZIP’s relationship to the generated bid, valuation and profit margin of an agent i for

a trading object ωi is represented with the following rule:

qi = vi(1 + μi)

with μi ∈ [0,∞] in the case of provider

with μi ∈ [−1, 0] in the case of consumer (3.4)

The rules for raising and lowering the profit margins of consumers and providers are

altered dynamically based on whether the last signal was a consumer or provider bid

and whether the bid was a successful match or if it is still unmatched. The profit

margin for the upcoming bid is calculated according to the following update rule:

μi =
qi +Δi

vi
− 1 (3.5)

Δi is the Widrow-Hoff delta value, which is calculated with the individual agent’s i

learning rate βi and the target price τi:

Δi = βi(τi − qi) (3.6)

A ZIP bid is generated with the following stochastic function:

τi(t) = Riq−i + Ai (3.7)

Here, Ri is a randomly generated coefficient, which sets the target price relative to

the current bid q−i with ranges of R ∈ [1.0, 1.05] for price increases and R ∈ [0.95, 1.0]

for price decreases (Cliff and Bruten, 1997). Ai is a random value alteration variable,
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which is set to be uniformly distributed over Ai ∈ [0.0, 0.05] for price increases and

Ai ∈ [−0.05, 0.0] for price decreases. In Das et al. (2001), experiments show that ZIP

agents perform better than (non-expert) human traders on CDA markets. Numerical

experiments show that adopting a ZIP strategy in markets dominated by other kinds

of agents results in an increased profit when the dominating agents are ZI, Kaplan

or GD agents (Gjerstad and Dickhaut, 1998). The ZIP strategy performs well with

fluctuating demand and supply and converges quickly in CDA markets.

In summary, ZIP is an adaptive, dynamic and price competitive strategy, i.e., it adapts

quickly to changing market conditions in terms of bids and clearing prices with the

aim of maximize the agent’s profit. Such a strategy can be applied in computing

service markets where there is public information available about other agents’ bids

and market clearing prices. A drawback of the ZIP strategy is that it is not applicable

in markets with missing or sparse public information about the price signals of other

agents. Furthermore, it indirectly implements a fixed short-term objective of profit

maximization. Nevertheless, this bidding strategy is one of the benchmark strategies

for CDAs in the current literature (Schvartzman and Wellman, 2009; Vytelingum

et al., 2008; Tesauro and Das, 2001).

Gjerstad-Dickhaut Strategy

Another benchmark bidding strategy for CDA markets is the Gjerstad-Dickahaut

strategy, which is also called Heuristic Belief Learning (Gjerstad and Dickhaut, 1998;

Gjerstad, 2003). Similar to ZIP, GD also requires public information about successful

and unsuccessful consumer and provider bids in order to calculate competitive bids.

GD generates bids based on historic information and belief functions for consumers

and providers. The GD strategy is also designed to be price competitive. It has

a profit maximizing scoring function, as well as the ability to respond quickly to

changing market conditions of supply and demand.

Compared to ZIP, this mechanism is memory based, i.e., it maintains a history Hi

of the last T bids and clearing prices. The so-called “belief” function f(π) calculates

the probability for a bid or offer to be accepted at price π.

Let APB(π) be the set of provider bids that have been accepted at a price greater

than or equal to π and UPB(π) be the set of unaccepted provider bids at a price

greater than or equal to π. Let CBL(π) be the total set of consumer bids lower than

or equal to π. Then, the provider j belief function is defined as:

Definition 3.3.8 (Provider’s Belief). fj(π) =
|APB(π)|+|CBL(π)|

|APB(π)|+|CBL(π)|+|UPB(π)|
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The intuition of Definition 3.3.8 is that if a provider bid has been rejected at o
′
< o,

it will also be rejected at o and vice versa for the consumer case, Definition 3.3.9.

Analogous to the consumer case, let ACB(π) be the set of consumer bids b that have

been accepted at a price lower than or equal to π and UCB(π) be the set of unaccepted

consumer bids at a price lower than or equal to π. Let CBL(π) be the total set of

provider bids greater than or equal to π. Then, the consumer i belief function is

defined as in following:

Definition 3.3.9 (Consumer’s Belief). fi(π) =
|ACB(π)|+|CBL(π)|

|ACB(π)|+|CBL(π)|+|UCB(π)|
The timing of bids is another strategic variable in GD. Bids are randomly delayed over

time according to the exponential distribution and the distribution’s rate parameter

depends on the maximum expected reward of the bid and the length T of the trading

period. As such, the choice of exponential distribution is motivated by the fact that

GD is designed to be exploited in mechanisms where there is no common knowledge

about other agents’ rewards and independent private values.

Spline interpolation ensures that the belief functions are monotonically decreasing for

the provider case and monotonically increasing for the consumer case. The provider j

and consumer i bids are calculated according to the following optimization problems

of the expected reward:

max
(
E(vj, π) = (π − vj)fj(π)

)
(3.8)

max
(
E(vi, π) = (vi − π)fi(π)

)
(3.9)

In summary, the GD strategy implements an adaptive model for bid generation,

based on observed public market information, as well as agents’ independent private

value. The choice of an action (bid) depends on the agent’s belief function of past

and current successful and unsuccessful bids. As with ZIP, the GD strategy is also

designed to be price competitive.

A drawback of the GD strategy is that its bid generation process also requires public

information about other agents’ bids and clearing prices. Like the ZIP strategy, GD

is also designed to maximize profit.

General Learning Models

Learning algorithms have been applied in many fields for solving complex problems

in single or multi-agent environments such as autonomous bidding agents (TAC game
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family), machine perception and cognition, autonomic computing2, autonomous ve-

hicles, natural language processing, search engines and fraud detection (Kephart and

Chess, 2003; Tesauro, 2007; Vulkan, 2003; Stone, 2007a).

In general, learning algorithms are classified into supervised, unsupervised and re-

inforcement learning algorithms. Supervised learning (SL) algorithms are applied in

cases when the sources of input and output data are available to the agents. The

agents can perform statistical (regression) analysis of the existing data in order to

“train” their parameter sets or bidding strategies. The ATTac-20013 agent is a suc-

cessful agent of the Trading Agent Competition, which applied SL algorithms in or-

der to estimate the probability distributions of prices when competing against other

agents in the TAC game (Stone et al., 2003). Vorobeychik et al. (2007) applied SL

algorithms to learn reward functions and estimate successful strategies through re-

gression analysis of training sets. However, these strategies are applicable in scenarios

when the agents have access to the actions and responses of all other agents. Further-

more, the ATTac-2001 agent was trained ex-ante with the data of the previous TAC

games. In a real scenario for market-based scheduling, one needs bidding strategies,

which are able to maximize owners’ scoring functions online and are based on the

available (partial or aggregated) market information of other agents. Moreover, in

a real scenario, it is not expected that other agents will report their true valuations

and adopted algorithmic bidding strategies.

In contrast, unsupervised learning (UL) algorithms perform statistical analysis on

given (historic) input data, without given reference to any output data. UL algo-

rithms aim at discovering new structures (clusters, similarities), patterns or relation-

ships between variables in the input data, based on the objective function maximiza-

tion of similarity patterns. Target applications of UL algorithms are in the field of

data mining, in which closely related objects are clustered according to the similarity

of the given criteria (Tesauro, 2007). Kiselev and Alhajj (2009) proposed an online

unsupervised learning approach for the hierarchical clustering of messages exchanged

between agents in a decentralized and dynamic multi-agent environment, with the

aim of resource allocation problems through negotiations. Another application of UL

2“Self-*” tasks like dynamic allocation of bandwidth, memory, threads, and logical partitions;
online performance tuning of system control parameters for Web servers, operating system and
database parameters.

3ATTac-2001 assumes that public information exists with regard to other (software) bidding
agents and their strategies (actions) from past rounds in TAC games with many rounds. The
ATTac-2001 agent was “tuned” in each round based on the available input and output data from
past rounds and knowledge about the participating agents in the coming rounds (Stone et al., 2003).
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algorithms is to cluster technical requirements into similar classes and to calculate

expected rewards for “similar” future actions, that are based on past experience data.

Moreover, consumers do not have the expertise to determine technical requirements,

however, they may give estimated requirements for their applications on a more ab-

stract level. UL algorithms can be applied to reason the historic (public or private)

information available of “similar” applications and their rewards and to infer an ini-

tial detailed technical specification from the “abstract” consumer statements. Thus,

clustering algorithms can map such abstract benchmark concepts to more detailed

description of technical requirements.

Unlike supervised and unsupervised learning, where agents are taught with exam-

ples of input and output data in order to derive new actions, reinforcement learning

(RL) collects the data through interaction with the environment and thus it is more

suitable for online sequential decision making problems (Sutton and Barto, 1998;

Tesauro, 2007). The goal of RL is to learn state-action pairs from delayed rewards,

which are received from the environment from the execution of actions. The poten-

tial of RL is largely unstudied for systems management applications. A commonly

studied application of RL is learning about effective actions “in the absence of ex-

plicit system models, with little or no domain-specific initial knowledge” (Tesauro,

2007). The advantages of reinforcement learning over supervised learning are that

i) “there is no requirement for a skilled human to provide training examples;” ii)

“the exploration process allows the agent to become competent in areas of the state

space that are seldom visited by human experts and for which no training examples

may be available” (Dearden et al., 1998). Moreover, Dearden et al. (1998) stated

that “to ensure a more robust behavior across the state space, exploration is crucial

in allowing the agent to discover the reward structure of the environment and to

determine the optimal policy. Without sufficient incentive to explore, the agent may

quickly settle on a policy of low utility simply because it looks better than leaping

into the unknown.” “A good exploration method should balance the expected gains

from exploration against the cost of trying possibly suboptimal actions when better

ones are available to be exploited.” Good approximative solutions for problems in

reinforcement learning are generally hard to find and may only be found in specific

cases like in “the so-called bandit problems in which the environment has a single

state, several actions, and unknown rewards” (Dearden et al., 1998).

The major difference of reinforcement learning (RL) in comparison to supervised and

unsupervised learning is that RL has to explore the environment in order to learn

the “best” actions with a given state. The designer of an RL algorithm has to think

of good policies that achieve a good trade-off in exploring the environment and in
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exploiting the learned data in new state-action pairs. RL algorithms aim to mimic

human learning behavior, which is described by two of the main principles found

in the literature on psychological learning, the Law of Effect and the Power Law of

Practice (Sutton and Barto, 1998). The Law of Effect states that an action is more

likely to be selected from a set of actions that have achieved the highest cumulative

rewards in the past; in other words, successful actions are likely to be strengthened

over time and unsuccessful actions weakened. Power Law of Practice assumes that

the learning curve is steep at the beginning and flatten out over time. This principle

states that successful and similar actions will be employed more often than others,

and also postulates that recent experiences are weighted higher than past experiences

(Sutton and Barto, 1998).

In general, reinforcement learning algorithms can be broken down into Model-based

learning and Model-free learning mechanisms. Model-based learning focuses on poli-

cies to learn an opponent’s strategies in order to estimate an approximated “best

response” to others’ actions. It is applied in environments where there is information

available on other agents and their actions. However, learning opponents’ strategies

within a given time frame does not guarantee that the opponents will act the same

way in the future.

In the case of Model-free learning, the agent learns “optimal” actions that perform

well in a given environment and against diverse opponents based on its local states

(its own requirements, preferences and scoring functions). The model-free learners

do not try to estimate the opponent’s strategy explicitly, but to adapt their own

actions based on the observed outcome, i.e., the rewards received from the own ac-

tions (Kaelbling et al., 1996). Therefore, model-free learning mechanisms indirectly

incorporate the dynamics of other agents’ actions since the outcome is based on their

fluctuating supply and demand. Model-free learning is motivated by the fact that

the environment is not fully transparent to all agents, i.e., agents do not reveal their

private information in terms of independent private values and scoring functions.

Furthermore, a consumer agent will not always know its own preferences and may

report a fuzzy specification of its technical requirements. The technical requirements

can be manually adapted by the consumer or automatically adapted by the bidding

agent with the aim of maximizing a given scoring function. This work focuses on

Model-free learning approaches since the environment, participants and their actions

(bids) are changing dynamically over time and especially in the computing service

domain.

In order to foster the learning process and overcome complexity, Stone (2007a) sum-

marized the techniques of Learned Abstractions and Layered Learning. Learned Ab-
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stractions is a useful technique when classifying different objects according to common

attribute-value pairs and parameter bounds. This technique enables quicker learning

with a higher number of actions that belong to the abstract class of objects, rather

than single objects. This learning technique can be applied in scenarios with well-

known domain representations, where the human agent can manually determine the

conditions for classifying the objects.

Learning-Based Bidding Strategies

Roth and Erev (1995) and Erev and Roth (1998) specified a reinforcement learning

algorithm with one, three and four parameters, which are adapted in games with

multiple agents. The authors’ goal was to elaborate general reinforcement learning

approaches, which aim to mimic human strategic behavior in games with multiple

players. The three-parameter learning algorithm was later called the Roth-Erev or

RE strategy and was evaluated in a Clearing House market mechanism (also called

Call Market) against the Truth-Telling4 and GD strategies (Phelps et al., 2006).

The Roth-Erev learning algorithm “solves a myopic stimulus-response problem of

the following form: Given this profit outcome, what price should I next choose?”

(Nicolaisen et al., 2001). However, the RE strategy does not explicitly model the

preferences of the agents (Erev and Roth, 1998, p. 875).

Many of the bidding strategies in the literature have financial markets as a tar-

get scenario, such as the Adaptive-Aggressiveness (AA) of Vytelingum et al. (2008)

and the reinforcement learning-based strategy of Schvartzman and Wellman (2009).

Their bidding strategy design and evaluation methodology targets a specific vari-

ant of ĈDA, which is applied in financial markets and where the agents compete

in several rounds during several days and the start and end times of a round and

day is known to all agents (Friedman, 1993). Bidding strategies like GDX (enhanced

GD) and the strategy of Schvartzman and Wellman (2009) use the specific time in-

formation in their decision-making process, i.e., “the expected number of bidding

opportunities before the auction closes” (Tesauro and Bredin, 2002; Schvartzman

and Wellman, 2009). Moreover, with some strategies like the AA model in ĈDA

constraints such as the spread-improvement rule, consumer bids can be placed if they

are below the current minimum consumer bid and vice versa for the provider case;

with the no-order queuing rule as well, unsuccessful bids and offers are not queued

in the order book (Vytelingum et al., 2008). Cliff (2006) also proposes an enhanced

version of the ZIP strategy called “ZIP60,” which adapts 60 financial parameters with

4Note: Clearing-House is not a strategy-proof mechanism.
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genetic algorithms in ĈDA markets. Park et al. (1996, 1999, 2000, 2004) developed

the reinforcement learning-based bidding strategy called P-Strategy, which computes

probabilities for state and reward transitions based on stochastic modeling. He et al.

(2003) apply fuzzy rules and reasoning mechanisms into a heuristic bidding strategy

in order to find efficient actions for a given market state based on the information

available from other agents.

Reeves et al. (2005) explored bidding strategies for market-based scheduling in si-

multaneous ascending auctions for allocating CPU slots. They evaluated a baseline

bidding strategy called straightforward bidding, which is also known as a “myopic

best response.” Based on the current perceived bids for available slots, each agent

selects a best response and utility maximizing bid to purchase a given slot. However,

the authors showed that this strategy is not an efficient (dominant) strategy for as-

cending auctions. Moreover, the authors proposed a bidding strategy called “sunk

awareness,” which assumes that other agents share their mixed strategies (from a

game-theoretic perspective) with each other and each of the agents can perform evo-

lutionary searches (replicator dynamics) to find an “optimal” strategy. A similar

approach for evolutionary searches of bidding strategies is followed and proposed in

Phelps et al. (2010b,a).

Sandholm et al. (2006) discuss models to predict the prices of computing services, and

applied their methods in the Tycoon spot market (Lai et al., 2005). However, they

stated that it is hard to predict user demand and the accuracy of the “predictions

depends on the regularity of previous price snapshots and it is therefore crucial, for

the results to be good, to pick a time window to study that exhibits these patterns.”

In contrast to the works discussed above, this thesis selects a type of CDA, which does

not introduce time constraints for rounds. The CDA type of this work is assumed

to be “infinite” and running continuously every day of the year (Chevaleyre et al.,

2006, p. 11). This design choice is motivated by the fact that computing services

are not storable and their usage patterns are highly dynamic (Altmann et al., 2008).

Any restriction on their continuous allocation and usage will effect their economic

efficiency from both, a provider and consumer perspective.

3.3.5 Analytical Comparison to the Desiderata

The state-of-the-art bidding strategies investigated have heterogeneous designs of

their states, actions, goals, information requirements, target auction type and appli-

cation domains. Table 3.1 shows a mapping of the elaborated bidding strategies to

the common and domain-specific design desiderata derived. In addition to the design
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desiderata, the table compares the bidding strategies according to the information

required for generating their actions according to their goals, as well as their target

auction types and constraints for which the strategies are designed and evaluated.

Desiderata D1 to D5 are common for the design of bidding strategies. However, they

are evaluated further in the context of market-based scheduling, which is explicitly

required in desideratum D6.

Automating Bidding Processes

All of the bidding strategies discussed satisfy the general desideratum D1. Specifi-

cally, the information required as input, as well as the calculation procedure of their

bid generation processes are well-defined and implemented in their data aggregation

and decision models. All of these strategies are instantiated into bidding agents,

therefore the bidding processes of consumers and providers are automated.

State Representation

Truth-Telling and ZI-C are simple bidding strategies, which do not explicitly define

a specific state model. However, they generate bids for a given artifact, which is

traded on the market. These two models only require the valuation as information

in order to generate the true or random bids. The Straightforward Bidding5 (SB)

strategy requires a perfect knowledge of other agents’ actions like bids, offers and

prices in order to calculate the best response strategy (action) to them. This strategy

is designed and evaluated for the specific Simultaneous Ascending Auction (SAA)

(Reeves et al., 2005). The state model of SB is not explicitly defined, however, the

authors model stated that the calculation of the best response is based on the prices

perceived and free slots for the computing services traded. A similar, but complex

approach is taken in the Evolutionary search strategies. With an evolutionary search

genetic algorithms are applied to learn of other agents’ actions and rewards from a

stationary environment in order to calculate the best responses to them. Evolutionary

search does not explicitly model a state; it requires full knowledge of the environment

is required and having to deal with rising computation complexity with the number

of agents and their actions. Therefore, Straightforward Bidding and Evolutionary

search are more likely to be adopted in offline and perfect information settings (cf.

Call Market in Phelps et al. (2010b)), than in online imperfect markets.

5Myopic Best Response.
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Ĉ
D
A

o
th
er
s’

a
ct
io
n
s

en
d
of

ro
u
n
d
/
d
ay

S
ch
va
rt
zm

a
n
-W

el
lm

a
n

�
�

p
er
fe
ct

�
�

m
a
x
.
p
ro
fi
t

•
�

Ĉ
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As adaptive strategies, Roth-Erev (RE) and P Strategy are designed to predict prices

in financial markets based on other agents’ actions. Generally, the RE strategy applies

the Reinforcement Learning (RL) model directly, the “one parameter” RE specifies

the so-called propensity, which is actually the reward parameter in an RL model. The

“three parameter” RE also defines experimentation and recency, which represent the

epsilon-greedy exploration policy and discount factor of an RL model. Finally, the

“four parameter” RE model calculates an expected value for an action based on the

available (perfect) information of other agents’ actions in the environment (Erev and

Roth, 1998). The model of the RE state is not explicitly defined in terms of attributes

and a state transition function.

P Strategy is based on stochastic modeling and the first strategy in the table, which

explicitly defines a state model and a state transition function. The P Strategy state

model contains endogenous and exogenous variables. The endogenous model contains

local information about the bidder’s action history and the valuations of the trans-

action objects. The exogenous model contains shared market information like the

number of standing bids and prices, their probability distributions, the arrival rates

of bids and the status of the auction (Park et al., 1996). However, in later works,

only some of these variables are explicitly considered in the P Strategy model and

evaluation scenarios (Park et al., 1999, 2000, 2004). The P Strategy performs a form

of evolutionary search on the state information again and thus is computationally

intractable for settings of multiple agents and actions (Park et al., 2004).

The Gjerstad-Dickhaut-X (GDX) bidding strategy extends the original Gjerstad-

Dickhaut strategy with a dynamic programming technique (Tesauro and Bredin,

2002). The GDX model a state by an agents holdings, the holdings’ transition proba-

bilities and the remaining time until the end of a trading day. The holdings’ transition

probabilities are estimated based on the past actions of other agents and the “belief

function” from the original Gjerstad-Dickhaut strategy.

Moreover, the state transition function calculates a time forecast of when the agent

should bid by optimizing the long-term discounted profits. This is realized over a

dynamic programming model and based on the available market information about

the auction round and time of day.

The Adaptive-Aggressiveness (AA) strategy is a two-layer bidding strategy with short

and long-term learning components. The short-term learning component combines

ideas from the ZIP and GDX bidding strategies, where the long-term learning com-

ponent adapts a so-called intrinsic shape parameter, which is used to update the

so-called aggressiveness factor. The latter is used from the short-term learning com-

ponent to decide when and how much to bid (Vytelingum et al., 2008). The aim
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of the short-term learning component is to detect price fluctuations (market shocks)

based on the observed market information of other agents’ actions, bids and prices.

Like the GDX strategy, the AA strategy is designed to consider the time constraints

of a ĈDA mechanism in terms of end of round and end of day. Furthermore, the

ĈDA implements a spread-improvement rule.

Schvartzman and Wellman (2009) propose an evolutionary search model for finding

“optimal” bidding strategies through reinforcement learning. They suggest applying

empirical game-theoretic analysis to accumulate data about the performance of the

selected agents’ actions through Monte Carlo simulations. Their model applies re-

gression analysis techniques through pre-generated data and it is applicable in static

environments with less fluctuations in demand and supply. Like with the AA strat-

egy, the target auction type in Schvartzman and Wellman (2009) is ĈDA, where the

time constraints and learning effects are incorporated in the state of the evolutionary

search model. The state model is complex; it contains time-related data (total time

elapsed in the current trading period, and time elapsed since the last trade), trans-

action object-related data (number of units left to trade) and statistical (regression

analysis) data of agents’ actions. Statistical data include moving averages of recent

trades, profits, probability information about recent bids and prices, as well as the

valuation of the transaction object. However, the model in Schvartzman and Well-

man (2009) is not applicable in practical settings since in real settings the number of

agents and their actions is high, and the target environment is non-stationary with

dynamic supply and demand. Moreover, the effort to find “optimal” bids in station-

ary and fixed settings is huge and the authors “provide no recipe for this issue beyond

relying on domain knowledge, creativity, and plenty of patience” (Schvartzman and

Wellman, 2009).

Similar to GDX and RE, the ZIP and GD strategies do not model their states ex-

plicitly, but their in CDA and ĈDA settings. ZIP and GD are evaluated in both

auction types since they do not directly incorporate time constraints, but explicitly

define how the bids are generated without these constraints. Moreover, ZIP and GD

are commonly applied benchmarks in the literature and for the bidding strategies

discussed in the previous paragraph (Tesauro and Bredin, 2002; Vytelingum et al.,

2008; Schvartzman and Wellman, 2009).

Action Representation

Desideratum D3 is satisfied by all of the analyzed bidding strategies in Table 3.1. The

common action for all of these strategies is the generated bid, which is submitted to

the market. The representation of their actions differ in the data and decision models
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they apply to generate the bids. Most of them use perfect market information to

calibrate the decision parameters. Statistical techniques, evolutionary search and

dynamic programming are applied to predict when and what to bid.

The RE strategy applies the epsilon-greedy selection policy to switch between explo-

ration and exploitation modes when generating the bids. In the exploration mode,

the RE strategy chooses a random action as a bid, and in the exploitation mode

it selects an action, which was successful in the past since this action is also more

likely to be successful in the future. The RE strategy implements this in a propensity

matrix, which stores the explored actions and their propensity values (discounted re-

wards). For each executed action, the RE strategy updates its propensity value from

the received reward. In the exploitation phase, the RE strategy performs a lookup

to select the action with the highest propensity.

The P strategy uses shared public information and performs statistical analysis to

estimate an action, which maximizes the agent’s profit. The probabilities for suc-

cess and failure are reinforced in the model from other agents’ actions, i.e., bids

and prices. However, these computations are timely expensive with respect to the

number of agents and their actions, thus, this model is not practical in online set-

tings (Park et al., 2004). Straightforward Bidding and Evolutionary search perform

optimization searches of the available market information to find the best response

strategies. Like with ZIP and GD, GDX, AA and Schvartzman and Wellman (2009),

the decision variables are adapted from other agents’ actions (perfect information).

ZIP updates the profit margin on each bid or price received, which is used when bids

are generated. GD uses a “belief function,” which calculates the probability for each

candidate bid to be allocated and selects the bid with the highest probability. GDX

calculates state-transition probabilities for when and what to bid, which is based on

a dynamic programming model of the public information. AA updates an “aggres-

siveness” parameter, which is part of the decision function for when and what to

bid. The Schvartzman and Wellman (2009) strategy performs an evolutionary search

using agents’ actions to find an “optimal” bid.

Goal Representation

The non-adaptive bidding strategies, Truth-Telling and ZI-C, do not define a scoring

function (a goal) and do not adapt based on the rewards received from the actions

generated. All other bidding strategies implement a scoring function, which is used

to update the agent’s knowledge base from the rewards received and the time they

are received. Applied mostly in financial market settings, these strategies aim to

maximize the agent’s profits, which is the result of the agent’s valuations less the
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clearing prices. Evolutionary search and Straightforward Bidding do not aggregate

the rewards received from each action; their aim when calculating the best response

strategy is profit maximization. The RE bidding strategy reinforces the discounted

rewards receive from agent’ actions in its knowledge base (propensity value for each

of the actions), which is used in the bid generation phase to select the most successful

action. The P Strategy uses RL techniques to calibrate the probability transition pa-

rameters from the rewards received. Furthermore, the P Strategy computes the utility

values for each of the possible actions (bids) and selects the action with the highest

expected utility. The ZIP and GD strategies optimize immediate profits when gener-

ating their bids. The GDX strategy optimizes the cumulative long-term discounted

profits of the actions using dynamic programming. AA optimizes long-term profits

using ZIP-based (short-term) reactions for on changing market conditions. Agents in

the Schvartzman and Wellman (2009) model receive immediate rewards, which are

used in their RL model to update the state information.

Adaptive Bidding in Imperfect Markets

Almost all of the bidding strategies in Table 3.1 are designed to work in perfect

information markets (all agents’ bids and prices are common information). The

Truth-Telling and ZI-C strategies behave the same in perfect and imperfect infor-

mation markets. Straightforward Bidding can calculate a best response only when

information about the other bidders is available. The decision making functions of

the remaining strategies are designed to work with perfect information, however, each

of these algorithmic bidding strategies partially implement RL techniques in some of

their decision steps, e.g., when calibrating variables or updating cumulative rewards.

Such RL techniques can also work (in the long-term) with only partially available

information. Nevertheless, these bidding strategies are designed to work with perfect

information and evaluated in auction settings where all agents are informed about

other agents’ actions. Therefore, their properties and outcome efficiency in the im-

perfect information case might be completely different or difficult to explain.

Bidding in a Market-Based Scheduling Domain

In Table 3.1 only Straightforward Bidding is explicitly designed for a market-based

scheduling scenario. Straightforward Bidding is defined for a scenario for allocating

CPU slots in a simultaneous ascending auction with perfect information about other

agents’ actions. However, the auction mechanism and the bidding strategies dis-

cussed in Reeves et al. (2005) remain at a higher abstraction level by applying classic

economic assumptions, idealistic (perfect) information and strategic (best response)

models. All other bidding strategies are evaluated in financial market scenarios, i.e.,



97 3.4. THE Q-STRATEGY

ĈDA with specific time constraints. In a market-based scheduling scenario, the mar-

ket mechanisms are assumed to run infinitely, i.e., non-constrained continuous and

autonomous allocation of applications to idle computing services with “intelligent”

agents and bidding strategies in CDA market types. Moreover, none of he strategies

of past and current research discussed here provide an explicit definition of communi-

cation protocols (see Chapter 5) for agent interactions in a market-based scheduling

domain, i.e., a well-defined procedure for mapping the endogenous and exogenous

variables (strategic and technical) of bidding strategies, such as state, action, infor-

mation, reward model and a well-defined message type. In real market-based schedul-

ing scenarios agents need to communicate according to well-defined and commonly

accepted communication protocols, which explicitly define the type of information

exchanged and rules of the market mechanism used. Moreover, the target domain of

this work requires a definition of bidding strategies that models economic and techni-

cal attributes in their state, action, information and reward representations. Another

important limitation of the current research on market-based scheduling domains is

the focus on profit maximization. However, according to their key performance indi-

cators, consumers and providers of computing services will adopt more complicated

scoring functions, e.g., min. completion time and payments, max. utilization, max.

reliability, min. penalty etc. (Wilkes, 2008; Auyoung et al., 2009; Brynjolfsson et al.,

2010).

3.4 Q-Strategy: A Bidding Strategy for Automated Provi-
sioning and Purchasing of Computing Services

3.4.1 Why Reinforcement Learning-Based Bidding?

Today’s software applications and computing services are highly heterogeneous. Own-

ers of software applications have different requirements on computing infrastructures

for deploying and executing their applications; and providers maintain computing

infrastructures based on hardware components from different manufacturers.6 There-

fore, the strategies that consumers and providers use have to be able to handle un-

certainties when computing services are purchased or provided through the market.

Unlike supervised and unsupervised learning, where agents learn from past input and

6Symantec (2008) reported that, on average, companies work with more than one thousand
applications; almost all of the computing centers on the Top500-List (<http://www.top500.org>)
are built with different hardware specifications.
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output data, reinforcement learning (RL) enables the learning from local and feed-

back data, which is received from the environment (Sutton and Barto, 1998; Tesauro,

2007). RL incorporates this feedback according to two intuitive effects from the psy-

chology and control theory – Law of Effect and Power Law of Practice. The Law

of Effect postulates that agents are more likely to select the action that achieved

the highest average performance in the past. The Power Law of Practice postulates

that learning curves tend to be steep at the beginning and flatten out over time.

Moreover, the feedback collected can be used immediately in the generation of new

actions. Therefore, RL-based mechanisms are applicable in interactive (online) set-

tings, where agents can explore the environment and adopt “better” actions in order

to improve their rewards over time.

In environments with imperfect information, amodel-free learning mechanism is more

suitable than a model-based learning mechanism since the endogenous variables are

actual and well known to the owners, whereas the exogenous variables might be

incomplete, incorrect or obsolete.

General Reinforcement Learning models, in particularly Q-Learning, define the gen-

eral framework of an interactive and adaptive environment of agents’ states, actions,

rewards and transition policies. Concrete specifications, realizations and evaluations

for (real-world) application scenarios are completely missing within the Q-Learning

framework. In the next section, the theory behind Q-Learning will be briefly pre-

sented. In the subsequent section, a specification, realization and complexity analysis

of a novel bidding strategy for the market-based scheduling domain, Q-Strategy, is

presented.

3.4.2 The General Q-Learning Framework

The theory of reinforcement learning was developed by Bellman in the 1950s, who

formulated the Bellman equation for solving the infinite horizon problems of control

theory (Sutton and Barto, 1998). The Bellman equation uses a dynamic programming

approach to accumulate discounted rewards for observed state-action pairs in order

to “learn” the optimal actions from recurring experiences in an infinite game. In

static environments of single-agent (self-play) learning with known states, actions

and rewards, it has been shown that Q-Learning converges to optimal values over

time when all actions are infinitely and repeatedly explored (Watkins and Dayan,

1992b; Tsitsiklis, 1994; Bowling, 2000). There is also research on the multi-agent

case, but there is no clear proof that Q-Learning converges in cases of cooperative

and perfect information or of what happens in non-cooperative imperfect information
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games (Shoham et al., 2004, 2007; Stone, 2007b).

Environment

Agent

State

Reward Action

Figure 3.1: Standard reinforcement learning interaction loop (adopted from Kaelbling
et al. (1996))

The general interaction loop of the Q-Learning framework is depicted in Figure 3.1:

• Step 1: State Observation. An agent i receives as input an observation for a

state ωi,k of the environment;

• Step 2: Action Selection. Based on the transition probability function ρ, the

agent selects an action ai,k for state ωi,k , which is executed in the environment;

• Step 3: Reward Calculation. The agent receives a reward ri,k, which is calcu-

lated from a reward function R;

• Step 4: Value Update. The reward ri,k for the state-action pair < ωi,k, ai,k >

is aggregated according to the Q-Value update rule in order to reflect the new

observations;

• Step 5: State Transition. A state transition policy identifies the next state

ωi,k+1 to be observed, which moves the algorithm to Step 1.

For each observed state-action pairs, the Q-Value update rule cumulates the received

reward in a so-called Q-Value. The n + 1 experience (Q-Value) of the state-action

pair < ωi,k, ai,k > is updated according to the following rule:

Qn+1(ωi,k, ai,k) = Qn(ωi,k, ai,k) + βωi,k
[ri,k + γmax

a
Q(ωi,k, Ai)−Qn(ωi,k, ai,k)] (3.10)
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Qn(ωi,k, ai,k) is the current Q-Value of a state-action pair, which is updated into

Qn+1(ωi,k, ai,k) by discounting the received reward ri,k with the maximum expected

value for future rewards (with respect to the best action argmaxa(Ai), Ai are the

explored actions for state ωi,k) and the old Q-Value of the target state-action pair.

βωi,k
∈ [0, 1] is the learning rate, which determines how much weight is given to newly

observed rewards. A high value of βωi,k
results in high importance being assigned to

the current observed reward, while a low value leads to the use of small steps to

update the Q-Value-function. βωi,k
= 0 means that no learning will occur at all.

The discounting factor γ defines how much expected future rewards affect current

decisions. A low value (γ → 0) implies greater attention to immediate rewards. A

higher value (γ → 1) implies orientation towards future rewards, whereby agents may

be willing to trade short-term loss for long-term gain.

Typical values in the research for the learning rate βωi,k
have the range [0.01, 0.3] and

for γ the range [0.1, 0.9]. The estimation of these parameters constitutes a trade-off

between the ability to consider the dynamics of the environment and thus the reaction

to changing conditions. Whiteson and Stone (2006) proposed an evolutionary search

of the Q-Learning parameters for the mountain car and server application scheduling

scenarios. Sun and Peterson (1999) varied the learning rate through a heuristic policy.

In Even-Dar et al. (2003) and Even-Dar and Mansour (2004) performed stochastic

searches for estimating the Q-Learning parameters in stationary settings.

Another trade-off is the choosing between exploration and exploitation mode, i.e.,

to explore new action values or to use the cumulated knowledge for selecting the

current “best” action for a given state ωi,k. The exploration and exploitation trade-

off, also called the epsilon-greedy policy (ε), has been theoretically studied in so-called

multi-armed bandit problems (MAB). MAB is part of reinforcement learning theory

and describes a solution for iterative calibration (trial and error) of states to actions

(control theory), i.e., for estimating variables for a given state through repeated

execution of the actions and incorporation of the received feedbacks. The literature

uses different values and value ranges for ε ∈ [0.01, 0.5] in order to balance exploring

new knowledge and exploiting already existing knowledge for the action selection. In

the evaluation part of this work, the βωi,k
, γ and ε variables are estimated based on

the suggested value ranges and a sensitivity analysis, in which each of the parameter

is varied and the parameters combination with the highest performance (outcome) is

selected.

Q-Learning is a well-explored general framework in learning theory. However, as

such, it defines abstract concepts and their relations, but the definition of concrete
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learning models for specific environments (e.g., soccer robots, online human-machine

games like poker and chess, autonomous car driving), their concrete specification,

realization and evaluation is a design and research problem (Stone, 2007a). The next

section presents a novel bidding strategy for the market-based scheduling environment

called the Q-Strategy, which utilizes the Q-Learning concepts, and expands on them

with concrete and detailed specification and realization details. The Q-Strategy is

evaluated in Chapter 6.

3.4.3 The Q-Strategy Model

3.4.3.1 Automating the Bidding Processes

Most of the bidding strategies in Table 3.1 do not include detailed evidence of their

specification, implementation and complexity analysis. However, many of them apply

evolutionary search techniques for calculating best response actions based on market

information of other agents’ bids and clearing prices. Such techniques require expo-

nential efforts with respect to the number of agents and their actions.

The aim of the Q-Strategy model is the automation of consumers’ and providers’

bidding processes in markets for trading computing services (Section 2.3.2) and for

two real case studies for batch and interactive applications (Section 2.4.1). Con-

sumers and providers use the well-defined interfaces of the Q-Strategy to configure

their states, goals and dynamic parameters (exploration rate, learning rate and dis-

count factor). The Q-Strategy is initialized into bidding agents (Section 4), which

start the execution of the bidding processes and manage the communication with

the environment (Section 5). Therefore, the Q-Strategy contributes to the research

on autonomic computing by automating the decision making processes of consumers

and providers when participating in markets for computing services.

3.4.3.2 State Representation

Consumers use heterogenous applications with heterogeneous requirements on the

computing services (see scenarios in Section 2.4.1). Providers maintain heteroge-

neous computing infrastructures from different hardware manufacturers, which are

designed for various use cases and application scenarios. Therefore, the design deci-

sion of a Q-Strategy state definition should reflect this in supporting bidding processes

for heterogeneous applications and computing service descriptions. The innovative

approach of Q-Strategy’s state is its representation as a multi-armed state machine

with a multi-armed action learner. This approach not only allows the action space
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for a given state to be explored, but also the expression of policies to create new

states.

For example, a consumer (company) has a large log data of last month’s sales and

uses the TXTDemand application (Section 2.4.1.1) to analyze the sales and calcu-

late the replenishment strategy for the following month. The consumer estimates

that his technical requirements will be 2 CPUs with at least 2 GHz, 4 GB of dual-

channel memory and 30 GB disk space. Moreover, the log data should be analyzed

as quickly as possible (estimation max. of 8 hours) for not more than 5 monetary

units ($). The bidding processes are executed with the preferred bidding strategy and

the TXTDemand application is allocated for 3 monetary units on a machine, which

satisfies these requirements and needs 7 hours to complete the job. The next time, the

consumer decides to increase the number of CPUs to 4 and the memory requirements

to a three-channel 4GB memory. The reward was that the applications were finished

in 5 hours and within the 5 monetary units constraint.

Such manual optimizations can be automated through state transition policies, which

are supported per design in Q-Strategy ’s state definition. Moreover, the definition of

Q-Strategy ’s state does not capture application specific data like deployment, run-

time and termination instructions, but the technical requirements of the applications

(providers’ technical descriptions of their computing services) for the computing ser-

vices with the economic constraints – duration, valuation and goal. Therefore, the

same consumer may want to execute a ray-tracing application for her or his collection

of holiday pictures and with the same technical requirements and economic prefer-

ences for a computing service at a later time. Here, the Q-Strategy will exploit the

knowledge already collected from past bid generation processes with the same state

description. The applied technique is called Learned Abstractions, i.e., the grouping

of similar states according to a well-defined “similarity rule,” i.e., similar technical

descriptions (key performance indicators) and economic preferences.

The Q-Strategy state for an agent i is represented through the 6-tuple

Ωi = {Θi, ci, vi, Ui,Φi, ρω}:

• Technical Description. Θi defines technical attributes for the consumer’s re-

quirements and the provider’s technical description like CPU, memory, storage

and network bandwidth;

• Duration. ci is an (upper-bound) estimation in time units for the total time a

computing service is demanded or available on the market;
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• Valuation. vi is the maximum monetary unit a consumer is willing to pay per

unit of time for the application’s execution on a target computing service. For

providers, it is the minimum requested price for the computing service per unit

of time;

• Scoring Policy. Ui is the scoring function that consumers or providers adopt in

order to achieve their goals in the bidding process (see Goal Representation);

• State Abstraction Policy. Φi : Ωi × Ωj → Ωi is the policy, which is defined by

consumers and providers. It clusters their requests of similar states Ωi ≈ Ωj

with Θi = Θj, ci = cj, vi = vj and Ui = Uj to one single unique state description

Ωi;

• State Transition Policy. The state transition function ρω : Ωi × ξ → Ω̃i defines

the policy ξ, which adapts the attributes of the technical description in order

to explore new states for the specified goal.

The technique for clustering similar states, State Abstraction is especially applicable

to applications, which are repeatedly executed with technical requirements and input

data that does not change often.

3.4.3.3 Action Representation and Adaptive Bidding

Figure 3.2 shows an example of Q-Strategy’s concepts. On the left, it shows the

different states of the agent. In time t, an agent i receives a “request for bid,” and

based on the information in Pt
i, the state arm looks for the state,

ωi,2 = {{4CPU, 2GB Memory, 10GB Disk}, 5h, 30$, “minCompletionT imeAndPayment′′},
which matches the description in Pt

i: Θt
i, c

t
i, v

t
i , U

t
i ∈ Pt

i (see the definition of Pt
i in

Section 5.3.1).

For ωi,2, the agent has explored m actions so far. Based on the action selection policy,

the action arm returns the action, which is to be executed in the environment. Here,

the “best action” with the current highest Q-Value is ai,2 with Q(ωi,2, ai,2) = 67. This

example also shows the change of the Q-Value over time, based on the received reward

from the action execution. Here, ai,2 was executed twice with rewards of 64 and 67.

The Q-Value is the cumulative reward, which is calculated with the Q-Value update

rule. For example, the last Q-Value of ai,2 is calculated with Q1(ωi,2, ai,2) = 64, a

current expected value of maxa Q(ωi,k, A
k
i ) = 64, βωi,2

= 0.1 and γ = 0.9:

Q2(ωi,2, ai,2) = 64 + 0.1(38 + 0.9 · 64− 64) = 67 (rounded) (3.11)
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Q3(ωi,2,ai,1) = 65

Q4 (ωi,2,ai,1) = 64

Request 
for bid Pt

i

Figure 3.2: Example of Q-Strategy’s multi-states with multi-action arms

The adaptive bidding processes in the Q-Strategy are executed in two main phases

– the Exploration and Exploitation phase, according to the ε-greedy action selection

policy (Kaelbling et al., 1996).

Exploration Phase. The exploration phase allows users to learn from and adapt

to their environment based on new or randomly selected actions and the rewards

associated with these actions. In this phase, for a given state ωi,k the Q-Strategy

uniformly generates an action ai,k with upper and lower bounds from the valuation

of the state vi ∈ ωi,k, U(zvi, vi) and factor z – for the consumer z ∈ [0, 1] and for

the provider z ∈ [1,∞]. The motivation of this phase is that market environments

are dynamic over time and agents will continuously experience different rewards from

each of their actions. However, the continuous accumulation of these experiences will

allow better decisions in the exploitation phase.

Exploitation Phase. The exploitation phase selects the action ai,k in a given state

ωi,k, which achieved the highest cumulative reward over time. The cumulative reward

Q(ωi,k, ai,k) implements the Law of Effect and Power Law of Practice policies and is

calculated with the Q-Value update rule for each executed action ai,k in ωi,k. The

information about the states, associated actions and their cumulative rewards are

stored in the agent’s knowledge base in a so-called Q-Table.
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Equation 3.12 summarizes the decision function between the exploration and ex-

ploitation states:

ai,k =

{
argmaxa(Q(ωi,k, Ai)) with probability 1− ε

U(zvi, vi) with probability ε
(3.12)

With a probability of ε, the Q-Strategy selects an action within the Exploration Phase

and with a probability of 1− ε it selects an action within the Exploitation Phase, for

each incoming “request for bid.” In cases with missing information about a given

state, the ε ∈ [0, 1] value can be set to select the Exploration Phase with a higher

probability, e.g., ε = 0.7, and reduced with time to ε = 0.1 in order to exploit and

refine the initial knowledge through the Exploitation Phase. The z parameter is

predefined and set by the consumers and providers. It is also possible to adapt it

over time, however, this extension will be a part of future research.

In summary, the Action Representation model allows continuous adaption over time

and to the market conditions. Continuous adaption is implemented with the visit of

the Exploration Phase with the probability of ε, which remains constant over time.

3.4.3.4 Goal Representation and Q-Value Update

The Q-Strategy does not predefine the scoring function Ui for all states, but provides

a built-in flexibility of the State Representation to allow consumers and providers to

specify their own scoring functions, which are part of the matched state Ui ∈ ωi,k for

their “request for bid.” When there is no available state that matches the “request

for bid,” a new unique state is created in Q-Strategy ’s multi-armed state machine.

Therefore, the scoring functions are decoupled from the Q-Strategy implementation

and provided as external rules, which are called up from the Q-Strategy for the

reward calculation. The different scoring function identities are provided as a list to

the consumers and providers, from which they select their preferred scoring function

for the traded transaction object. The Q-Value is updated after each action execution

ai,k for the matched state ωi,k, according to the specified scoring function in Ui, which

is used as the reward calculation function, R ≡ Ui, in the Q-Value update rule.

For example, in an application case, consumers can select a “minimize completion

time” scoring function; in other application cases they would select “minimize pay-

ment” or both at the same time, “minimize completion time and payment.” Anal-

ogously, providers of computing services would select “maximize profit,” “maximize

utilization” or both, “maximize profit and utilization.” The evaluation of existing



3.4.3 The Q-Strategy Model 106

scoring functions is not a part of this research, but the application of existing ones

is part of it. In this work, two scoring functions are selected as relevant for the

evaluation: consumers of computing services that “minimize completion time and

payment” as stated in Heydenreich et al. (2010), and providers that are classically

defined as profit (the difference between valuation and clearing price) maximizers.

Selection of the profit maximizing scoring function allows the agent outcomes to be

compared with state-of-the-art works for evaluating bidding strategies. Selecting of

the “minimize completion time and payment” scoring function allows for a more re-

alistic analysis of bidding strategies in the market-based scheduling domain, which

are largely unexplored in the current related research.

3.4.3.5 Realization of the Q-Strategy for a Market-Based Scheduling Do-
main

Figure 3.3 presents the realization architecture of the Q-Strategy in the BidGenera-

tor framework (cf. Figure 4.2 in Section 4.4). States and actions are implemented as

inner classes of the Q-Strategy class.

The State class implements the mapping of “request for bids,” implemented as Pri-

vateMessages (Section 5.3.1), to the states of Q-Strategy ’smulti-armed state machine.

The Action class describes the mapping between an action and its cumulative reward.

The Q-Strategy class implements the generateBid method (Algorithm 3.4.1), which

generates a bid with respect to the decision of an exploration or exploitation phase.

The result of the generateBid is the created PublicMessage (Section 5.3.3), which is

submitted to the market. The Q-Strategy class method updateCalculateScore receives

status information, StateMessage (Section 5.3.2), on the transaction object (applica-

tion or computing service) execution and calculates the achieved reward based on the

selected scoring function U . Additional information like clearing price is extracted

from the market match-message (see MarketMessage in Section 5.3.4), which was

received from the market on successful allocation (Section 5.4) of the consumer and

provider bids. At the end, the updateCalculateScore invokes the newState method of

QLearner in order to accumulate the received reward from the action execution of

the target state with the Q-Value update rule.

The states to actions cumulative reward information is stored in the Q-Table. The Q-

Table is implemented in memory within the QLearning data management structure,

but can be made persistent in a database with little effort.

The QLearner class implements the maintenance of states to actions, the update of

the cumulative rewards (newState) and the retrieval of the bestAction. Originally, the
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+generateBid(message : PrivateMessage) : PublicMessage
+updateCalculateScore(state : StateMessage) : void

<<Interface>>
BiddingStrategy

QStrategy

+bestAction(state : State) : Action
+getActionsFor(state : State) : Map
+newState(state : State, action : Action, score : ScoringFunktion) : void
+addLastActionChosen(state : State, action : Action) : void
+setLearningRate(learningRate : double) : void
+setDiscountRate(discount : double) : void

<<Interface>>
Learner

QLearner

<<Interface>>
State

<<Interface>>
Action

StateImpl ActionImpl

+insert(action : Action)
+update(action : Action)
+get(actionId : string)

<<Interface>>
UpdatablePriorityQueue

<<use>>

Figure 3.3: Q-Strategy’s implementation in BidGenerator

QLearner implementation was inspired by the JASA framework7, but in its current

version the BidGenerator ’s QLearner is a significant extension to JASA’s implemen-

tation since now it i) supports States and Actions as objects rather than integer arrays

and ii) implements computationally efficient management of Actions with a priority

queue technique. The UpdatablePriorityQueue interface specifies general methods of

managing Actions in an efficient and sorted Heap data structure.

Algorithm 3.4.1 describes the implementation of the generateBid method. generate-

Bid receives the “request for bid” message in the form of a PrivateMessage. It ini-

tializes the valuation, the provider’s or consumer’s z -factor and the state information

from the PrivateMessage. The selection between the Exploration and Exploitation

phase is determined by the ε parameter, which is compared to an automatically drawn

parameter from a uniform distribution. The Exploration phase generates a uniform

bid as specified, whose value is bound within the consumer’s or provider’s valuation

and their z -factor scaled valuation. In the Exploitation phase, the bid is the current

best action in the Q-Table for the target state. As a last state, the bid is incorporated

into the PublicMessage, which is a subset and transformed from the PrivateMessage.

7<http://sourceforge.net/projects/jasa>.
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�

�

�

�

Algorithm 3.4.1: Q-Strategy: Bid Generation Rule(privateMessage)

comment:Generates a bid according to the current strategy phase:

* Exploration phase generates random bids

* Exploitation phase exploits the state-action-reward history

procedure generateBid(privateMessage)

valuation ← privateMessage.getV aluation()

if privateMessage.isConsumerBid()

then
{
z ← privateMessage.getConsumerZ()

else if privateMessage.isProviderBid()

then
{
z ∈ privateMessage.getProviderZ()

if ε < Stochastic.uniform(0, 1)

then

{
comment:Explore:

bid ← Stochastic.uniform(z · valuation, valuation)

else if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

comment:Exploit:

state ← State.getState(privateMessage)

action ← qLearner.bestAction(state)

if action! = nil

then
{
bid ← action.getBid()

else if

then

{
comment:Q-Table is empty for privateMessage def.

bid ← Stochastic.uniform(z · valuation, valuation)
return (bid)

3.4.3.6 Complexity Analysis

The bidding strategies discussed in Table 3.1 do not provide any detailed evidence

of the complexity of their implementations. Bidding strategies like Straightforward

Bidding, Evolutionary Search, P-Strategy and Schvartzman-Wellman perform evolu-

tionary search for best response strategies based on the available public information

of other agents’ actions – bids and clearing prices. Evolutionary search techniques

solve complex problems, but suffer from exponential computational complexity due

to the number of agents and their actions. Moreover, reinforcement learning research

focuses on theoretical concepts of learning, but does not discuss possible implemen-

tation solution concepts and their complexity.

Papadimitriou and Tsitsiklis (1987) proved that Markov Decision Processes are P-

complete and thus solvable in polynomial time:

Theorem 3.4.1 (Complexity of a Markov Decision Process). The Markov Decision

Process problem is P-complete in all three cases, finite horizon, discounted and average

cost.
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Therefore, the theoretical computational complexity of the Q-Strategy concept is P-

complete, and the complexity of practical implementation is discussed as follows.

Currently, the Q-Strategy is provided with an in memory implementation. The

multi-armed state machine for the management of Q-Strategy ’s states descriptions

is implemented with Hashtable, which includes a O(1) complexity for lookup, add,

update and delete states. Rare events like resizing the Hashtable add an additional

short-time complexity of O(n) with the number of n states that can be significantly

reduced in average when selecting an appropriate initial size of the table and a table

size improvement policy.

The actions of each state are organized in a max-Heap data structure, implemented

with the UpdatablePriorityQueue class. A max-Heap data structure is an efficient

implementation of a priority queue, where the top element has the highest value and

all other elements are ordered in a binary tree form, where the last element has the

lowest value (Sedgewick and Wayne, 2010). Moreover, the UpdatablePriorityQueue

implementation allows the cumulative reward values of the associated actions to

be updated dynamically. The dynamic update refers to the fact that the updated

cumulative rewards of the associated actions have to be reordered in cases where

consistency of the max-Heap data structure is violated. This implementation allows

a very efficient search for the best action since this action has the highest cumulative

reward, therefore it is the first element in the max-Heap and accessible in O(1).

Moreover, during the Exploitation Phase the UpdatablePriorityQueue will deliver and

update actions close to the top element with an average lookup and update complexity

of O(1). During the Exploration Phase, the lookup and update operations can have

O(logn) complexity in the worst case scenario.

3.4.3.7 Critical View

The aim of the Q-Strategy is to enable agents to perform quasi real-time decisions

on bid generation processes for their applications or computing services, which is

an important issue for the emerging markets in computing services (Amazon, 2010a;

TheCloudMarket, 2010). The Q-Strategy provides a theoretical and architectural

solution concept, which is applicable, but not limited to a market-based scheduling

domain. A further advantage of the Q-Strategy is that it can work without public

information, which is not the case for bidding strategies like ZIP and GD that only

work when public information of other agents’ actions is available. Therefore, Q-

Strategy is able to adapt to local information with regard to states, actions and their

received rewards. The application scenario of the Q-Strategy is motivated by the fact
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that the environment is not fully transparent and agents do not share their private

information with each other. Moreover, the Q-Strategy allows actions and their cu-

mulative rewards to be learned over time for different states and scoring functions.

The Q-Strategy is designed to be flexible and adaptable in dynamic environments, as

well as implemented to be computationally tractable with P-complete complexity.

However, in the worst case scenario, reinforcement learning techniques may produce

outcomes with higher opportunity costs (i.e., lower rewards) at the beginning, but

adapt to optimal decisions over time (Watkins and Dayan, 1992a; Tesauro, 2007).

The convergence of Q-Learning to optimal values over time is shown theoretically

only in stationary settings of one agent or in cooperative games (Bowling, 2000).

Reinforcement learning algorithms also have to implement efficient trade-offs between

exploration and exploitation in order to i) learn from and exploit the experience, but

also to ii) preserve the learning processes in changing environments. Therefore, Q-

Strategy might need to observe a high number of different state-action pairs in order to

derive the optimal states. Such a number could probably be estimated in stationary

environments, but not in dynamic ones. Moreover, the received reward values for

the actions may be noisy, due to the fluctuations in supply and demand over time

and bidding strategies of other agents. The current research shows little evidence of

more realistic and dynamic scenarios in settings with multiple heterogeneous agents,

in which different types of algorithmic bidding strategies are applied (Shoham et al.,

2007; Tesauro and Bredin, 2002).

3.5 Summary

This chapter introduced the general design desiderata for developing bidding strate-

gies, as well as existing bidding strategies for games with perfect and imperfect in-

formation. A set of bidding strategies has been extensively evaluated to determine if

they qualify as candidates for a market-based scheduling domain. There is no bidding

strategy available, which satisfies the design desiderata, in particular, for the target

domain of this work. Therefore, this chapter presents the design and realization of the

novel bidding strategy, Q-Strategy, for the automation of, but not limited to bidding

processes in markets for computing services.

Q-Learning is a generic learning framework, which defines the general relations of

states, actions, rewards and state transitions. In contrast, the Q-Strategy contributes

to state-of-the-art learning-based bidding strategies by i) specifying the state, actions,

goal representations and their transitions explicitly. Q-Strategy ’s state definition al-
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lows heterogeneous trading objects with different scoring functions to be represented,

which are maximized through the actions of the Q-Strategy. In summary, ii) the Q-

Strategy solves a multi-armed bandit problem for trading heterogeneous transaction

objects. Similar “requests for bids” are iii) clustered into unique states, which enable

faster collection of experiences for recurring executions of applications and computing

services. The realization part shows the iv) implementation of Q-Strategy concepts

within a framework for automated bidding called BidGenerator (Section 4.4). The

Q-Strategy is integrated in the communication protocol (Section 5.3) of the BidGen-

erator framework and a system for market-based scheduling for exchanging private,

public and market information (cf. bidding scenario in Section 2.4.4). Finally, v)

the Q-Strategy is designed to act on and fully adapt to local information and past

experiences in dynamic market environments of imperfect information. Steps i) to

v) are properties of the Q-Strategy model. None of the steps are part of the general

Q-Learning framework. Moreover, Q-Strategy is provided with a complexity analysis

of its realization, which confirms its practicability in real application scenarios and

for the investigated domain.

This chapter presented the economic design of an existing and novel bidding strategy.

The next chapter introduces the BidGenerator framework for realizing bidding strate-

gies together with software agents. The latter manages the communication processes

with applications, computing service managers and the target market mechanism

according to a well-defined communication protocol (Chapter 5).



Chapter 4

Architectural Design of a Framework for

Automated Bidding

T
he computing literature has mainly focused on the “brawn” – development of

technical infrastructures and related tools for managing and providing reliable,

secure and distributed computing resources – and less on the “brain” – for automating

their provisioning and purchasing processes efficiently (Foster et al., 2004). Moreover,

mechanisms for market-based scheduling of computing services have been developed,

but there has been less effort put into the development and evaluation of bidding

agents and strategies for the market-based scheduling domain (Broberg et al., 2008;

Chevaleyre et al., 2006; Lubin et al., 2009).

This chapter presents a novel framework for automated bidding called BidGenera-

tor, in which agents and bidding strategies are realized and coexist as independent,

configurable modules. BidGenerator is the solution concept, which aims to answer

Research Question 2 (Design of a Framework for Automated Bidding) in Section 1.2.

The chapter starts with a definition of what a bidding agent is (Section 4.1). Design

desiderata for developing bidding agents from a technical perspective are derived

(Section 4.2) and existing agent frameworks according to the desiderata evaluated

(Section 4.3). Section 4.4 presents the architecture of the BidGenerator framework

and discusses the fulfillment of the desiderata. Section 4.5 is a summary of the

chapter.

4.1 What is a Bidding Agent?

In contrast to the economic definition of a bidding strategy (Section 3.1), the bidding

agent is a software entity, which has a certain and well-defined functionality and is

able to act automatically on behalf of its owner. More formally, Jennings (2001)

defines an agent as:

Definition 4.1.1 (Agent). Agents are “clearly identifiable problem-solving enti-

ties with well-defined boundaries and interfaces; situated (embedded) in a
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particular environment over which they have partial control and observability

– they receive inputs related to the state of their environment through sensors and

they act on the environment through effectors; designed to fulfill a specific role –

they have particular objectives to achieve; autonomous – they have control both

over their internal state and over their own behavior; capable of exhibiting flexible

problem-solving behavior in pursuit of their design objectives – being both reac-

tive (able to respond in a timely fashion to changes that occur in their environment)

and proactive (able to opportunistically adopt goals and take the initiative).”

This definition gives a clear description of the spectrum of a software agent with

respect to the specific goals that they are designed to fulfill in a specific domain. The

differences between a software application and a software agent are their respective

properties (Wooldridge and Jennings, 1995):

• Autonomy. Agents operate without the direct intervention of humans and have

control over their actions and internal state;

• Social Ability. Agents interact with other agents (including institutions, such as

running markets) in the environment via well-defined communication protocols;

• Reactivity. Agents perceive their environment and respond in a timely fashion

to changes that occur in it;

• Proactive. Agents do not simply react to their environment, they are able to

exhibit goal-directed behavior by initiating actions.

Both, Wooldridge and Jennings (1995) as well as Nwana (1996) give clear overview of

agent design, agent architectures and agent languages, which are principles that are

also relevant today, and more recent papers ascribe to the approaches and taxonomies

introduced by these authors. A more recent overview and comparison of existing

frameworks is provided in Section 4.3.

Nwana (1996) defined a taxonomy of agent types – Collaborative agents, Inter-

face agents, Mobile agents, Information/Internet agents, Reactive agents and Hybrid

agents. In the context of this work, the developed bidding agent framework can be

assigned to the type of Hybrid Agents containing interface, information gathering

and collaboration facilities. The Interface Agent (IA) type refers to software agents,

which act and learn autonomously on behalf of their owners. Based on the state of

the environment and given goals, the agents execute delegated tasks autonomously
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by taking appropriate actions in the environment. IAs assist their owners in reaching

a goal and are characterized by their iterative (proactive) and adaptive behavior.

Information (Gathering) Agents (IGA) implement algorithms for the periodic collec-

tion and aggregation of data. In contrast to Web Crawlers and within the context

of market-based scheduling, IGAs implement facilities to collect and aggregate mar-

ket information (volatility, offered computing service types, past and current prices,

market rules, etc.) from various sources and markets. Collaboration Agents (CA) fo-

cus on facilities for message exchange (negotiation or bidding) between other agents

in the environment for reaching a given goal with respect to other agents’ desires

and actions. CAs implement social facilities in terms of communication protocols for

negotiations or bidding, as well as adapt to other agents’ responses.

The aim of the Hybrid Agent type is to reduce complexity by introducing the mod-

ularization of specific types of agent facilities – automatic acting on behalf of the

owners based on their preferences, automatic information gathering and aggregation,

as well as proactive and collaborative facilities by negotiation and bidding.

In an environment for market-based scheduling, where institutions, consumers and

providers are independent and distributed entities, Hybrid Agents seem to offer the

correct type of characteristics to implement an autonomous system. In computing

service markets, Hybrid Agent architectures implement the “brain” and has the po-

tential for effective, flexible and decentralized decision making capabilities. Such

agents need “a robust distributed computing platform that allows them to discover,

acquire, federate, and manage the capabilities necessary to execute their decisions”

(Foster et al., 2004).

In the context of market-based scheduling, a bidding agent is defined as follows:

Definition 4.1.2 (Bidding Agent). A Bidding Agent is a software entity, which

provides well-defined interfaces for instantiating bidding strategies, inter-

faces for information gathering and aggregation, as well as interfaces for

proactive and reactive communication with target market mechanisms or other

agents. Based on the inputs received, the bidding agent maintains an internal state

of the owner’s tasks, and acts and reacts with the environment on the owner’s behalf

by performing decision making actions.

4.2 Design Desiderata

The following design desiderata for agent frameworks in a market-based scheduling

domain are derived from the technical challenges and application requirements pre-
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sented in Section 2.4, as well as from current research.

Desideratum 1 ≺Decoupling of the Market Platform and Bidding Agents�
The market platform and BidGenerator must be separated into independent compo-

nents, the first, operated and maintained by an auctioneer, the second, by their owners

– consumers and providers.

A realistic system for market-based scheduling is a decentralized, multi-agent system,

where the market, consumers and providers are autonomous entities. The application

scenarios in Section 2.4 postulate that each of the consumers and providers aim to

use their own bidding agents locally by maintaining control of their realizations and

bidding strategy selections. The agents are decentralized and the communication is

performed asynchronously. Furthermore, there is no central entity, which controls

all the agents, i.e., agents can join and leave the system at any time. Therefore, the

market platform and bidding agent framework must be separated into independent

components, the first, operated and maintained by an auctioneer, the second, by their

owners (Sycara, 1998; Tesauro et al., 2004; Chevaleyre et al., 2006).

Desideratum 2 ≺Methodic Realization of Agents and Bidding Strategies�
The BidGenerator must offer methods for realizing agents and bidding strategies.

In order to develop bidding strategies one needs to solve the economic design (Section

3) and technical design issues. The technical design of the bidding agent framework

requires that it provide well-defined implementation methods for both, the bidding

agents and bidding strategies. Based on such a method, consumers and providers

can setup and start their own agents and bidding strategies, reuse existing strategies

or implement new ones. The methods for developing bidding agents and bidding

strategies have to be compatible with existing agent framework standards like FIPA

and MASIF, i.e., share commonly accepted principles and interfaces (Milojicic et al.,

1998; FIPA, 2002b).

Desideratum 3 ≺Using Well-Defined Communication Protocols�
The BidGenerator must integrate and use a well-defined communication protocol to

exchange private, public, contract and market information.

In order to communicate with the environment, bidding agents must implement and

utilize well-defined communication protocols. The exchanged messages may have

different formats, which depend on the message direction and communication context,

i.e., between certain components. Moreover, communication protocols set the rules
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for the interaction between bidding agents and the market – e.g., a bidding agent

cannot receive a match without submitting a bid, nor can they submit a bid without

receiving a bid request, etc. The content of a communication protocol (messages) has

to be defined as commonly agreed upon concepts and properties, i.e, in an ontology,

in order to improve the overall acceptance and its integration in the system (Fornara

et al., 2007). In a market-based scheduling context, communication protocols have

to include technical attributes like CPUs, memory, storage and bandwidth, as well

as economic attributes like bid and duration (Windsor et al., 2009; Chevaleyre et al.,

2006).

Desideratum 4 ≺Applicable in a Market-based Scheduling Domain�
The BidGenerator must support the automation of purchasing and provisioning pro-

cesses of external computing services from the corresponding markets. Furthermore,

BidGenerator must support simultaneous bid requests for computing services from

consumers or providers (Windsor et al., 2009).

Desideratum 4 might also be valid in other domains. However, in a market-based

scheduling context, the API of the BidGenerator has to offer interfaces for secured

communication, the signing of bids and the processing of service contracts. In gen-

eral, the adopted security, signing and contract mechanisms are more specific for the

market-based scheduling domain than for other domains like mobile services, robotics

and e-commerce.

Desideratum 5 ≺Integrating Market Information Service�
The BidGenerator must support the integration of a market information service,

which provides information about other agents’ bids and clearing prices.

Information about available auction mechanism and traded computing services has

to be stored in registries (“green pages”) and made findable through a query language

according to the technical specification required. The BidGenerator has to support

integration with a market information service to query aggregated information of

current, past bids and clearing prices for the required computing services (Brunner

et al., 2008; Borissov et al., 2009a).

Desideratum 6 ≺Supporting Secured and Trusted Communication�
The BidGenerator must integrate appropriate security and trust mechanisms when

communicating with the market.
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Privacy, data protection and security has to be ensured with well-defined policies,

which are enforced by an institution since applications like TXTDemand handle

private and sensitive costumer sales data (Windsor et al., 2009). The transfer of

consumer data, as well as bidding processes need to be performed over a secured

communication line. Security in the SORMA system has to be provided through

a certified authentication process, which authorizes consumers and providers to in-

teract with the SORMA market. Moreover, to ensure the legality of all submitted

messages to the market, consumer and provider bids must be signed and validated

before they can be considered as binding and being matched on the market (SORMA,

2008; Nimis et al., 2008, 2009).

These six requirements are the basis for developing and realizing the bidding agent

framework (Section 4.4).

4.3 Existing Agent Frameworks

4.3.1 Selection of Existing Agent Frameworks

There are many agent frameworks in the existing literature and in practice. Some of

them are more general, while others are designed to conduct specific tasks in a specific

domain (mobile agents, agents for robots, e-commerce agents), but only few of them

define interfaces explicitly for implementing bidding strategies and bidding agents

that are applicable in a market-based scheduling domain. The relative straightfor-

ward number of existing surveys for agent frameworks often compare only specific

criteria, provide a comparison for a certain selection of frameworks or are outdated

(Nwana, 1996; Vrba, 2003; Bordini et al., 2006; Such et al., 2009). Vrba (2003)

compares selected agent frameworks for their FIPA compatibility in terms of soft-

ware interfaces and communication protocols, the application of security protocols,

the type of license provided and the programming language of their implementation.

Bordini et al. (2006) provides a brief description of selected agent frameworks without

a direct comparison based on well-defined criteria. Such et al. (2009) focuses on the

security capabilities of agent frameworks. The next two sections provide a detailed

comparison of promising existing agent frameworks with regard to their applicability

in a market-based scheduling domain according to the specified desiderata.

Table 4.1 presents an overview of existing agent frameworks pertaining to a stan-

dardized design method, a communication protocol and license type. Standardiza-

tion efforts like FIPA and MASIF give best practices and policies for developing

multi-agent systems and their interactions (FIPA, 2002b,a; Milojicic et al., 1998).
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Table 4.1: Standardization of agent frameworks. �indicates that no explicit infor-
mation was found • indicates partial support of an agent framework property

Framework Standard Communication Protocol License

Compatible Support

FIPA-OS FIPA FIPA ACL Open Source

JADE FIPA FIPA ACL Open Source

Grasshopper FIPA, FIPA ACL, Free for

MASIF MASIF, Non-commercial

Custom Use

Cougaar • Custom Open Source

SHUFFLE FIPA FIPA ACL �
LEAP FIPA FIPA ACL, Open Source

Custom Protocols

CRUMPET FIPA FIPA ACL �
ADK FIPA FIPA ACL Commercial

Aglets MASIF Custom Open Source

JACK • Custom Commercial

MAGMA • Custom Negotiation, �
Auction Protocols

AuctionBot • Custom Auction Protocols �
e-Game • FIPA ACL �
JCAT (JASA) • Custom Auction Protocols Open Source

The FIPA community provides a general framework for developing agents and agent

communication; MASIF has a similar focus, but for the domain of mobile agents.

However, agent frameworks have to be in keeping with these best practices and ex-

tend them with the required additional functionalities.

The analysis excludes agent frameworks for which there is no available documenta-

tion, source code or anymore support, such as the Java Agent Services1 initiative and

1<http://jcp.org/en/jsr/detail?id=087>.
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many older agent platforms like Zeus2 and the Comtec Agent Platform.3

As shown in Table 4.1, many agent frameworks are compliant with the FIPA agent

architecture specification, some comply with MASIF and others do not explicitly

comply with any open standard. FIPA-OS 4 and JADE 5 are reference implementa-

tions of FIPA. For agents running on mobile devices, the LEAP (Bergenti and Poggi,

2002), SHUFFLE (Robles et al., 2001) and CRUMPET (Poslad et al., 2001) projects

offer agent frameworks based on a lightweight version of the FIPA specification and

its communication protocol. In addition, FIPA compatible frameworks often adopt

FIPA’s agent communication language (ACL), which defines a protocol for imple-

menting general agent communication procedures (FIPA, 2002a). Nearly half of the

frameworks analyzed define and implement their own (domain-specific) communica-

tion protocols and provide their source code to the community.

This literature review concentrates onOpen Source agent frameworks that offer public

documentation of their software architecture, components and interface description

in order to evaluate them for an application in a market-based scheduling domain.

4.3.2 Analytical Comparison to the Desiderata

Table 4.2 maps the specified desiderata to the agent frameworks analyzed. The

agent frameworks are evaluated analytically according to their specifications and the

specified desiderata for this work.

Decoupling of Market Platform and Bidding Agents

D1 requires that the market platform and agent frameworks be independent entities;

the first is executed by an institution, and the second by the providers and consumers.

The agent frameworks analyzed can be clustered into generic (e.g., FIPA-based) and

domain-specific frameworks (e.g., mobile services, production robots, e-commerce).

Agent frameworks like FIPA-OS, JADE, Grasshopper, Cougaar and Aglets offer in-

terfaces for implementing generic agents and interaction protocols that can be applied

and reused in different fields (Helsinger et al., 2004). These frameworks do not offer

any methods or interfaces for implementing bidding strategies. JACK offers a generic

agent framework for implementing lightweight and reusable agents, however, JACK

is a proprietary framework, which is not free for use and adaptation (Howden et al.,

2<http://labs.bt.com/projects/agents/zeus>.
3<http://www.fipa.org/resources/livesystems.html>.
4<http://sourceforge.net/projects/fipa-os/>.
5<http://jade.tilab.com>.



4.3.2 Analytical Comparison to the Desiderata 120

Table 4.2: Comparison of the agent frameworks. D1 – Decoupling of Market Platform
and Bidding Agents. D2 – Methodic Realization of Agents and Bidding Strategies.
D3 – Communication Protocols. D4 – Market-based Scheduling Domain. D5 –
Integrating Market Information Service. D6 – Secured and Trusted Communication.
�indicates explicit support �indicates that no explicit information was found or
desideratum is not met. • indicates partial support.

Framework D1 D2 D3 D4 D5 D6

FIPA-OS • • � • • •
JADE • • � • • •
Grasshopper • • � • • •
Cougaar • • � • • •
SHUFFLE • • � • • •
LEAP • • � • • •
CRUMPET • • � • • •
ADK • � � • � •
Aglets • • � • � •
JACK • • � • � •
MAGMA � • � • � •
AuctionBot � • • • � •
e-Game � • � • � •
JCAT (JASA) � � • • � •
This work � � � � � �

2001). AuctionBot and e-Game focus on the realization of market platforms and the

implementation of flexible market mechanisms, and offer generic interfaces to connect

external agents (Wurman et al., 1998; Fasli and Michalakopoulos, 2008). The Agent

Development Kit, ADK, focuses on agent design, agent logic and specification of the

communication middleware, but not on interactions with market mechanisms (Xu

and Shatz, 2003).

Only few frameworks, MAGMA and JCAT 6, offer interfaces and methods to imple-

ment both market mechanisms and agents. MAGMA describes an overall infras-

tructure for building agent-based virtual marketplaces (Tsvetovatyy et al., 1997). It

6Used in the Trading Agent Competition (TAC), <http://jcat.sourceforge.net>.
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clearly separates the market from the agents and describes a framework for imple-

menting agents, however, the description remains on an abstract level and further

implementation and application details are missing. The main design goal of JCAT

is to provide a platform for the development and evaluation of market mechanisms

and agent strategies in different tournament scenarios,7 e.g., TAC Travel, CAT, TAC

SCM and TAC Ad Auctions (Cai et al., 2009). The JCAT agent framework provides

interfaces and methods to develop, test and evaluate market mechanisms and bidding

strategies.

Methodic Realization of Agents and Bidding Strategies

Most of the frameworks define interfaces for realizing agent logic, but few focus

on the design and realization of bidding strategies. FIPA-OS, JADE, Grasshopper,

Cougaar and Aglets offer interfaces to model and implement generic agents and their

interactions, but there are no specifications for the realization of bidding strategies.

MAGMA describes a process flow of bidding agents, but does not provide a specifica-

tion of implemented and evaluated bidding strategies and how they coexist with the

agents (Tsvetovatyy et al., 1997). The implementation of ADK agents is modular

and defines the Decision Making, Message Passing and Functional units. The agent’s

logic goals, action plan and knowledge base are part of the Decision Making unit; the

communication interfaces and interaction rules are part of the Message Passing, and

the related low-level functionality is part of the Functional unit. ADK describes the

general concepts of a Decision Making model and applies it in a case study for air

ticket trading, however, Xu and Shatz (2003) presented a proof-of-concept realization

of case study with the associated ADK agent interfaces, but an evaluation of bidding

strategies and decision rules was not a part of their work. e-Game and AuctionBot

focus on the design of market mechanisms and each of them provides platforms to

realize them, but not concrete interfaces or implementations of bidding strategies.

JCAT seems to be the only framework that provides well-defined interfaces to realize

both agents and bidding strategies in a modular way. Furthermore, JCAT imple-

ments state-of-the-art auctions and bidding strategies.

Using Well-Defined Communication Protocols

The most of the analyzed frameworks apply communication protocols, which are

based on FIPA ACL (D3). However, some frameworks define their own custom

communication protocols. The FIPA ACL is the candidate for describing general

agent interactions (FIPA, 2002a). An ACL message specifies a well-defined structure

7<http://tradingagents.org>.
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of concepts. ACL’s performatives specify the intentions of the agents like Propose,

Accept Proposal, Reject Proposal, Confirm, Inform, Query and others. Further con-

cepts model the type of communication between agents like sender, receiver and

conversation-id, the concept content enables the transfer of an encoded message in

a user-defined format. There is a concept called ontology, which is associated with

the content concept of the ACL message and expresses the meaning of the content ’s

data. Finally, the protocol concept defines the rules (semantics) of the interactions

with a specific set and order of ACL messages. However, the specifications for the

ACL concepts, content and protocol, are not finalized and marked as deprecated.8

ACL defines general performatives that support negotiation protocols, but there are

no concrete specifications for auctions, bidding concepts, service level agreements,

payment methods, penalties or support for market-based scheduling. Furthermore,

an ACL message defines many concepts, but with missing details and use cases for

their applications in real systems. For example, transferring an ontology in addition

to the content part decreases the communication tractability of the system since each

of the messages has to be interpreted and validated with an ontology reasoner before

using the actual data of the content.

As one of the novel frameworks, only e-Game supports ACL. Agents connect to the

e-Game platform through TCP and exchange messages using a subset of the ACL

language and its performatives (Fasli and Michalakopoulos, 2008). JCAT is platform

for evaluating bidding strategies and market mechanisms in tournament scenarios.

Communication of agents’ intentions is orchestrated with the CATP communica-

tion protocol (Niu et al., 2009). CATP consists of concepts to connect, send bids

and receive market information, but its overall focus is to model the interaction and

characteristics of tournaments with “performatives” like gamestarting, gamestarted,

gameover, dayopening, dayclosed, roundopened and roundclosed. Furthermore, it does

not provide concrete specification for the transaction objects, therefore, the market

performs only price-based matchmaking, but not matchmaking of technical descrip-

tions as required for computing services.

Applicable in a Market-Based Scheduling Domain

The presented agent platforms are well known and accepted in the agent research.

These frameworks are designed and implemented for a specific domain like mobile ser-

vices, e-commerce and tournaments, however, there is no agent framework available

that is designed and evaluated for a market-based scheduling domain. Theoretically,

8See <http://www.fipa.org/specs/fipa00007>. and <http://www.fipa.org/specs/
fipa00025>.
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each agent framework can be extended with the required additional modules, how-

ever, the different frameworks are designed with their own philosophy and goals for

their specific domain, which also affect the design of their interfaces and interaction

protocols, e.g., for tournaments, mobile services or e-commerce. Thus, practically,

an “extension” with the required additional modules is usually required to change

the modules that are already available as well. Moreover, most of these frameworks

are mainly developed and evaluated as proof of concepts, but not realized in real

systems.

Integrating Market Information Service

In a market-based scheduling scenario, agents will need to query information about

available services and their technical specifications. Furthermore, agents will need to

request market information on available actions for these services, as well as current

and past bids in order to derive their bidding strategy for the automated purchasing

and provisioning of the required computing services.

The FIPA ACL specifies concepts for exchanging user-defined information between

agents. Therefore, agent frameworks which adopt an ACL are, in principle, able to

exchange market information, however, only few of the frameworks analyzed define

the exchange of market information explicitly. Therefore, the frameworks that im-

plement the ACL, but do not explicitly define market information, have been marked

as partial support.

ADK integrates the discovery, join, and lookup mechanisms of the Jini9 system, so

agents can find, register for and invoke services and service information. The reg-

istered agents receive market information (e.g., for negotiating airline tickets) from

other agents and can react to them according to the negotiation protocols imple-

mented. In MAGMA, the role of market information management is provided by the

Advertising Server. Agents in MAGMA send ads for what they offer or what they are

looking for. Thus, agents can query the Advertising Server about available ads, their

descriptions and prices. MAGMA discusses the concept of automatic negotiation by

using such market information to decide on the selection of a service based on the

ads that match the agent’s criteria.

As platforms for developing market mechanisms, the AuctionBot, e-Game and JCAT

frameworks explicitly define policies for exchanging market information between the

participating agents in the auctions.

9<http://www.jini.org>.
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Supporting Secured and Trusted Communication

According to D6, consumer data and bids need to be transferred over a secured

communication line, where the security mechanism is a part of the SORMA system.

Moreover, consumer and provider bids must be signed and validated in order to be

considered as binding when they arrive in the order book (Nimis et al., 2008, 2009).

All of the agent frameworks presented integrate security facilities implicitly when

using standard symmetric or asymmetric internet protocols of the ISO security layer

like IPsec, SSL, TLS and Kerberos (Such et al., 2009). These security protocols of-

fer features for the authentication, integrity and encryption of data. FIPA started

working on agent security10 at the end of the 1990s, but a final specification has not

been published yet. Navarro and Borrell (2006) and Demchenko et al. (2007) propose

the application of the OASIS standards eXtensible Access Control Markup Language

(XACML) and Secure Assertion Markup Language (SAML) in distributed systems

like Grids. Moreover, SAML is adopted and well applied in the Cloud computing

domain (Jansen and Grance, 2011; Jensen et al., 2009). XACML focuses on the

specification of control policies for authorizing users and the enforcement of their ac-

cess rights (read/write) for objects. SAML provides authentication and authorization

mechanisms for users and secured data exchange. SAML is well applied in distributed

systems. One or several identity providers (IDP) are responsible for the management

of users and their access rights. In order to interact with the system, a user has to

authenticate and request an (timely limited) access token (called assertion) from an

IDP and a service provider. Each of the user messages and data is signed with the

user’s personal signature, which is part of the user access token. SAML is assigned

to the so-called single sign-on (SSO) mechanism (Armando et al., 2008).

SAML and XACM are well adopted in distributed systems and in securing the ex-

change of data, however, security and trust mechanisms are still unexplored in con-

junction with market mechanisms and bidding agents for a market-based scheduling

domain, especially for the automation of bidding processes. Moreover, the agent

frameworks investigated in Table 4.2 do not implement either XACML or SAML.

The ADK, e-Game and JCAT agent frameworks are good candidates that satisfy

at least three of the six desiderata specified. However, e-Game focuses entirely on

the design of market mechanisms and its source code implementation is not open.

None of these or the other agent frameworks are specifically modeled or evaluated

for a market-based scheduling domain and none of them implement common secu-

rity mechanisms for distributed systems like SAML and XACML. Moreover, ADK

10<http://www.fipa.org/specs/fipa00020/OC00020A.html>.
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focuses on agent design rather than market mechanisms and JCAT is designed to

be executed in tournament scenarios. Theoretically, each agent framework can be

extended with the missing modules required, however, the different frameworks are

motivated and designed according to the specific goals of their target domains, which

affect the definition and implementation of their interfaces and interaction paradigm.

In practice, extending a framework with additional modules usually requires chang-

ing the existing ones. This work requires an agent framework that is applicable in a

real system for market-based scheduling and that fully satisfies the specified desider-

ata according to the application scenarios in Section 2.4.1 and the SORMA project

(Nimis et al., 2008, 2009). The next section presents the BidGenerator, a novel agent

framework for automated bidding as one of the contributions of this work.

4.4 Architecture of the Bidding Agent Framework

This section presents the logical and dynamic design architecture of the BidGenerator

framework. The design and implementation details of BidGenerator are modeled

with UML, which is common in the agent community and offers various standardized

diagrams for displaying the components, their interdependencies, internal structure

and interactions (Bresciani et al., 2004; Zambonelli et al., 2003; Bauer and Odell,

2005; FIPA, 2007). The presentation of the different aspects of the BidGenerator

framework is organized according to the specified design desiderata by enhancing the

overall bidding scenario in Section 2.4.4.

4.4.1 Decoupling of Market Platform and Bidding Agents

As discussed in Section 2.4.4, the general role of the BidGenerator framework is to

be the binding element between the consumer’s Application Orchestrator and the

market platform or the provider’s Resource Orchestrator and the market platform.

In its role, the BidGenerator provides well-defined interfaces to implement and run

bidding agents. Figure 4.1 presents an integrated view of the BidGenerator and

its related components. This view clearly differentiates between components on the

client side that installed locally on the consumer and provider sides, and the market

platform component Communication Space (CSpace). The latter is executed by a

third-party institution together with the other related components, which are part of

the SORMA market middleware (Nimis et al., 2009). The interfaces, which realize

the communication between BidGenerator and CSpace are implemented within the

market connector component called CSpaceConnector.
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<<component>>
Application/Service

Orchestrator

<<component>>
BidGenerator

<<component>>
CSpaceConnector

<<component>>
CSpace

(Market Platform)

agent

strategy

message

security

InWords OutWords

messages

match/no-match

request for bid

messages

Figure 4.1: A bird’s-eye view of the interactions between BidGenerator and related
components

The clients – Application Orchestrator and the Resource Orchestrator – communicate

directly with BidGenerator by submitting “request for bid” (bidCall) messages with

the required or provided computing service descriptions and economic information

like their valuation, payment method and preferred bidding strategy implementation

that are all part of the preferences message (for more details see Section 5.3.1).

The “match/no-match” messages (from the MarketMessage type) are asynchronously

returned back from the market to the Application Orchestrator and the Resource

Orchestrator through the BidGenerator ’s invocation response web interface:

MarketMessage bidCall(credential:Credential, prefs:PrivateMessage)

Each client’s Web service invocation of bidCall is conducted with a username and

password, which is part of the credential object and validated from the security com-

ponent on each interaction with the SORMA system. The BidGenerator provides

interfaces and implementations for agents and bidding strategies, and generates and

exchanges messages with the market through secured communication line. The Bid-

Generator submits messages to the target market mechanism (e.g., CDA), as part of

the CSpace platform, by implementing the CDA’s InWords11 interface and receives

11messages send from the agents to the market mechanism
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messages with the CDA’s OutWords12 interface.CSpace is the market platform of the

SORMA project, which provides a method and interfaces to implement market pro-

tocols like English, Vickrey and CDA auctions (Nimis et al., 2009). CSpace enables

multiple bidding agents to connect and exchange messages according to the defined

rules of the implemented market mechanism. The concept Conversation of CSpace is

used to emphasize the general specification of the platform for implementing different

market protocols, and also any other protocol where agents are involved and need

to communicate. Security and trust in CSpace are parts of its design philosophy

and architecture. Secured communication is guaranteed by the SORMA system, so

CSpace runs in a secured environment. Trust is one of the main characteristics of the

CSpace platform. Each of the implemented market protocols is an autonomous unit,

which can be uploaded and downloaded in the CSpace platform. Each version of a

market mechanism has a checksum, which can be verified by any of the participants

and controlling institutions. Each of the “conversations” between the market partic-

ipants and market mechanisms are recorded and can be verified by a public notary

institution at any time or replayed in order to prove and validate the outcome of the

matchmaking process. The outcome of the matchmaking results in the creation of

signed and binding contracts between consumers and providers. The design philoso-

phy of the CSpace platform assumes that users will use market protocols that they

trust. CSpace does not explicitly control the types and implementation of the mar-

ket protocols, but it is assumed that in long-term “unfair, malicious and erroneous

protocols are rejected by the users in a similar way as such contracts are rejected in

real life” (Nimis et al., 2009).

4.4.2 Methodic Realization of Agents and Bidding Strategies

The overall architecture of the BidGenerator framework is depicted as a class diagram

in Figure 4.2. It specifies and implements interfaces for five main packages – agent,

strategy, learner, message and security.

The agent package provides core interfaces for implementing (bidding) agents, as well

as reference implementations of consumer and provider agents, which have been devel-

oped, integrated, tested and evaluated as part of the SORMA system. BidGenerator’s

strategy package provides well-defined interfaces for implementing bidding strategies

and a method for a dynamic assignment of a bidding strategy implementation to an

12messages send from the market mechanism to the agents
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agent according to the client’s preferences. The BidGenerator implements state-of-

the-art bidding strategies like ZIP and GD, as well as the Q-Strategy developed here

(Sections 3.3.4 and 3.4). The clients report the class name of the preferred bidding

strategy as part of their PrivateMessages. Each of the realized bidding strategies im-

plements an interface method for receiving and transforming clients’ PrivateMessages

into bid messages (PublicMessages):

PublicMessage generateBid(PrivateMessage request)

The well-defined interfaces of the strategy package allow a straightforward develop-

ment and application of novel user-defined bidding strategies. The learner package

of the BidGenerator framework specifies an interface for realizing well-known learn-

ing algorithms. The separation of the packages’ strategy and learner is motivated

by the fact that a bidding strategy may implement several decision steps of infor-

mation gathering (e.g., current prices, other agents’ bids and matches), information

aggregation and bid generation. Each of these steps may utilize different aggregation

algorithms (clustering, trend analysis, decision tree, reinforcement learning, transfer

learning and others) for estimating the decision parameters of the bid generation

function (Stone, 2007a). The method newState creates or updates state informa-

tion for the executed actions and the received reward, which is called score, and the

bestAction method retrieves the current best action with the highest aggregated13

score from the strategy’s knowledge base.

The message package of the BidGenerator framework offers interfaces and refer-

ence implementations for the exchanged messages in the system. The specifications

of the message types PrivateMessage, PublicMessage, MarketMessage, StateMessage

and MarketInformation are provided in Section 5.3. The MessageImpl class imple-

ments the management of the bidding-related messages for each of the consumer and

provider requests. The reward from each consumer’s or provider’s action is mea-

sured with their defined scoring functions (ConsumerScoringFunction and Provider-

ScoringFunction) and it is used to update the knowledge base of the BidGenerator

framework. The structure of the knowledge base is specific for each of the realized

bidding strategies and depends on the definition of their information model. Cur-

rently, BidGenerator implements an in memory knowledge base, but the information

models of the different bidding strategies can be mapped to persistent storage with

relatively low effort.

13The aggregation function is based on a pre-defined rule of the learning algorithm.
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Figure 4.2: BidGenerator architecture
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The last package of the BidGenerator framework is security. This package offers

functionality for credentials management, authentication and the signature of bids,

which are required to communicate with the trusted SORMA middleware. The secu-

rity assertions are requested from a trusted identity provider, which generates proxy

certificates based on the requestor’s credentials.

loop

Service OrchestratorApplication Orchestrator AuctionBidding StrategyBidding Agent

2: addNewRequest(privateMessage)

8:

11: marketMessage

16: updateCalculateScore(stateMessage)

10: marketMessage

9: marketMessage

4: generateBid(privateMessage)

15: finish(stateMessage)

14: terminate(stateMessage)

13: app execution finished

12: submit app for execution

7: matchmaking6: submit(auctionXYZ, "bid", publicMessage)

5: publicMessage

3: getBiddingStrategy(privateMessage)

1: bidCall(credential, privateMessage)

Figure 4.3: BidGenerator’s dynamic view of bidding processes

Figure 4.3 presents a sequence diagram, a dynamic view of bid generation processes

from the consumer’s perspective. The provider case is analogous to the consumer

case. The Application Orchestrator has knowledge about the consumer’s applica-

tions, which require provider machines in order to be executed. The consumer’s

credentials in terms of user name and password, as well as the application’s technical

and economic preferences (privateMessage) are submitted in to the Bidding Agent in

step 1. The Bidding Agent registers the new request in accordance with the prefer-

ences, initializes the preferred Bidding Strategy (steps 2 and 3) and starts the bidding

process (steps 4 to 9). The bid, publicMessage, is generated in step 4 and the result

is sent back to the Bidding Agent in step 5. In step 6 the bid is signed with the

consumer’s signature, which is provided by the trusted identity provider and sent

to the target Auction. The Auction performs technical and economic matchmaking

and response with the successful match, marketMessage, back to the winning Bidding

Agents of the consumer and provider (steps 9, 10 and 11). The marketMessage is

signed by both the consumer and provider. The signatures are automatically verified

from the security component with the trusted identity provider. In the event that
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the consumer or provider bids do not match, they remain stored in the Auction’s

order book and are removed when their limit times expire (step 8). The Applica-

tion Orchestrator receives the allocation (marketMessage) and submits the consumer

application to the allocated machine assigned by the provider’s Service Orchestrator

(step 12). The Application Orchestrator monitors the execution and completion of

its application and at the end, it passes the final state of the application execution

(values of the monitored key performance indicators) to the Bidding Agent (steps

13 and 14). The Bidding Agent uses the state information to calculate the reward

(score) of the application execution (step 15). The score is calculated according to the

consumer’s scoring function. The score value updates the consumer’s knowledge base

according to the selected consumer preferences (step 16), e.g, application’s valuation,

selected bidding strategy, scoring function, etc.

4.4.3 Using Well-Defined Communication Protocols

The BidGenerator integrates a well-defined communication protocol for exchanging

preferences, bids and market messages of technical and economic attributes (Borissov

et al., 2009b). A detailed description of the communication protocol is presented in

Section 5.3.

The interaction with the Auction in CSpace is governed according to well-defined

rules, which define the type and content of the incoming messages to the market and

the outgoing messages from the market. These rules are specified within the Protocol-

InWords and ProtocolOutWords interfaces, which are part of the CSpaceConnector

component (Figure 4.4). These two interfaces are provided for each of the market

mechanisms implemented in CSpace. ProtocolInWords is implemented within the

market mechanism and used by the Bidding Agent to send messages like “bid” and

“info” to the target auction, e.g., CDA. The “bid” command places a binding bid in

the order book, and the “info” command queries market information about the last

N bids, offers and prices for the specified transaction object description, which are

part of the PublicMessage. The types of messages submitted from the market to the

Bidding Agent are specified within the ProtocolOutWords interface. Therefore, the

Bidding Agents implement the ProtocolOutWords interface in order to receive and

react to the market messages.
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<<component>>  CSpaceConnector

eu.sormaproject.bidgenerator.agent

eu.sormaproject.market.cspaceconnector

BiddingAgent

ConsumerBiddingAgentImpl

ProviderBiddingAgentImpl

+register(platformURI : string, port : int) : void
+addNewRequest(message : PrivateMessage) : void
+submit(auctionId : string, command : string, message : PublicMessage) : void
+react(message : MarketMessage) : void
+info(query : string, message : PublicMessage) : void
+handleSubmissionException(messageId : string, exception : MarketException) : string
+finish(state) : void
+handleInfoResponse(info : MarketInformation) : void

<<Interface>>
Agent

<<Interface>>
ProtocolInWords

+getConversation(protocol : Class, id : string) : Conversation
+create(protocol : Class, namespace : string) : Conversation
+setConversationListenerFactory(cfactory : ConversationListenerFactory) : void

<<Interface>>
CSpaceConnection

+Conversation(proxy : ProtocolInWords, conn : CSpaceConnection, cid : string)
+say() : string
+createListener(agent : ProtocolOutWords)
+getId() : string

Conversation

+create(agent : ProtocolOutWords) : OutWordListener

<<Interface>>
ConversationListenerFactory

+ConversationListener(address : string, port : int)
+addListener(agent : ProtocolOutWords, cid : string)

ConversationListener

<<Interface>>
ProtocolInWords

<<Interface>>
InWords

<<Interface>>
OutWords

<<Interface>>
ProtocolOutWords

speaks through

notifies agent on message arrival

creates

creates

Figure 4.4: BidGenerator communication components

4.4.4 Applicable in a Market-based Scheduling Domain

BidGenerator is a general framework for implementing agents, bidding strategies and

their interactions with market mechanisms. However, it integrates a communication

protocol and a security mechanism, which are specific to a market-based scheduling

domain. The message types of SORMA’s communication protocol contain technical
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attributes for describing computing service configurations, e.g., for CPU, memory

and storage. Borissov et al. (2009b) demonstrated a mechanism for creating service

level agreements of technical and economic attributes based on a specified commu-

nication protocol. Moreover, the BidGenerator was integrated, tested and evaluated

in the SORMA system according to the application scenarios presented in Section

2.4.1.

SAML is the integrated security protocol in SORMA. As a single-sign-on service,

SAML is applicable in any distributed system, which requires trusted authentication

and authorization.14 BidGenerator is especially designed for a market-based schedul-

ing domain by realizing interfaces for secured single sign-on authentication and the

exchange of signed bids and matches in that domain.

4.4.5 Integrating Market Information Service

Bergemann and Pesendorfer (2007) discuss the importance of market information to

deduce initial prices and optimal trading times for the demanded or offered transac-

tion objects in a market. Sophisticated bidding strategies can be designed to perform

common trend extrapolation methods for prices and submission times in order to op-

timize bidding processes (Borissov et al., 2009a). Well-known bidding strategies like

ZIP and GD generate their bids from algorithms, which aggregate market informa-

tion of current and past bids and prices (Vytelingum et al., 2008; Gjerstad, 2003;

Das et al., 2001). Therefore, the information provided by market mechanisms is im-

portant for the design of bidding agents and strategies. In the context of SORMA,

there are two types of market information – MarketMessage and MarketInforma-

tion. MarketMessage is the market message that is created when there is a match

between a consumer and provider bids. MarketMessage is private and available only

to the respective consumers and providers; other agents do not have access to it.

The MarketInformation message contains the id of the auction and lists of the last

N consumers’ and providers’ bids and prices for the target transaction object.

In order to submit a bid, the agent has to know the id of the auction mechanism

that trades the desired transaction object type (e.g., computing service with 1 CPU,

10GB memory and 64GB storage). The auction id is requested with the info method,

which queries the market platform (CSpace) for available auctions that match the

technical description in the attached PublicMessage. The response from this query

14SAML is also adopted in the Google’s AppEngine: <http://code.google.com/googleapps/
domain/sso/saml_reference_implementation.html>.
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is returned with the handleInfoResponse method as part of the MarketInformation

message.

void info(string query, PublicMessage message) : void

void handleInfoResponse(MarketInformation info)

Furthermore, market information of other agents’ bids and prices is also provided with

the info method for the specified technical description in PublicMessage and a query,

which requests the last N bids and prices for the target transaction object (Section

5.3.5). The MarketInformation returns empty lists in case there is not a running

auction for the requested transaction object type. The info and handleInfoResponse

methods are non-blocking, thus the bidding agent can perform further consumer or

provider requests until the response from the market is received.

void submit(string auctionId, string command, PublicMessage message)

void react(MarketMessage message)

Bidding agents in BidGenerator implement the submission of bids (PublicMessage)

and the reaction of matches (MarketMessage) with the submit and react methods of

the agent interface. Similar to the info method, these methods are executed asyn-

chronously so that the bidding agent can proceed with the bid generation processes

of the other requests.

4.4.6 Supporting Secured and Trusted Communication

SORMA’s security component provides a single sign-on mechanism for authenticating

consumers’ and providers’ bidding agents to communicate with the trusted SORMA

market middleware. The security component is designed to provide distributed iden-

tity management in order to prevent single points of failures and to be applied in

different geographic regions and their specific (legal) policies. The distributed single

sign-on identity management in SORMA was implemented with the SAML protocol

(SORMA, 2008; Nimis et al., 2009). The identities of the consumers and providers

are stored and managed by (distributed) identity providers (idP). Before a consumer

or provider can communicate with the SORMA market middleware it has to au-

thenticate with the idP service. The idP issues the requester a security token called

SAMLAssertion, which is unique and limited in time, and allows the requester to

identify and communicate with the SORMA market middleware. Moreover, the idP
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Contract Management Service OrchestratorApplication Orchestrator AuctionIdentity ProviderBidding Agent

11: signedMarketMessage

15: true/false

14: validate {samlAssertion}

8: matchmaking of bids

7: true/false

6: validate {samlAssertion}

4: signBid(publicMessage,
signature)

13: submit app for execution with {signedMarketMessage, samlAssertion}

12: signedMarketMessage

10: signedMarketMessage

9: create contract

5: submit(auctionXYZ, "bid", {signedPublicMessage, samlAssertion})

3: {samlAssertion, signature}

2: authenticate(credential, idp)

1: bidCall(credential, privateMessage)

Figure 4.5: BidGenerator security integration

creates a unique signature for the requester, which is used to sign the submitted

messages to binding and legal bids, as well as contracts.

The overall security process in the SORMA system is depicted as a sequence diagram

in Figure 4.5 and complementary to Figure 4.3, but which focuses on the implemented

security and trust mechanism. In step 1, the Application Orchestrator invokes the

Bidding Agent with the submission of its PrivateMessage and credentials (user name

and password). In step 2, the Bidding Agent uses the credentials to authenticate the

requester with the idP and receives the required security token and signature to com-

municate with the SORMA market middleware. Based on the received samlAssertion

and signature for the requester, the Bidding Agent signs the generated bid. In step

5, the signed PublicMessage and samlAssertion are submitted to the Auction. The

Auction validates the bid submission with the bidder’s samlAssertion by invoking the

validate method of the idP (step 6). The provider returns true if the samlAssertion

is valid and false, if not (step 7). If false, the bidder’s PrivateMessage is canceled by

the Auction and not considered in the matchmaking process. The Auction performs

an economic and technical matchmaking of signed consumer and provider bids (step

8). When there is a match, the Contract Management creates a contract of the Mar-

ketMessage provided by the Auction and signs the MarketMessage with the target

consumer and provider signatures (step 9). The signed MarketMessage is returned

back to the Application Orchestrator and Service Orchestrator through their Bidding

Agents (steps 10, 11 and 12). The Application Orchestrator submits the target appli-
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cation to the provider’s Service Orchestrator together with the signed MarketMessage

and the consumer’s samlAssertion (step 13). The Service Orchestrator validates the

consumer’s samlAssertion with the idP and its own copy of the signed MarketMes-

sage (step 14). The Service Orchestrator deploys and executes the application when

the idP response is true (step 15). When the idP validation response is false, the

Service Orchestrator cancels the procedure of the consumer request.

4.5 Summary

This chapter presented the architecture of the BidGenerator framework, which en-

ables a coexisting design and realization of agents and bidding strategies. The Bid-

Generator framework integrates facilities for information gathering and aggregation,

as well as proactive and reactive communication with market mechanisms or other

agents (cf. Definition 4.1.2). The decision making processes for trading transaction

objects are executed with the selected bidding strategy, which is part of the Bid-

Generator ’s strategy pool. The chapter starts with the specification of the design

desiderata for developing bidding agents in a market-based scheduling domain. The

analysis of existing agent frameworks shows that there is no available framework,

which satisfies the desiderata.

The BidGenerator provides clear interfaces for implementing agents and bidding

strategies. The interfaces of the BidGenerator framework are consistent with FIPA’s

reference specifications for agent design and communication (FIPA, 2002b). Adequate

methods like register, submit, info and react ease the development of (bidding) agents

with the BidGenerator framework. The BidGenerator is executed as a stand-alone

component on the provider and consumer side, which is decoupled from the market

platform (D1). Together with D1, D2 allows consumers and providers to implement

and configure their own agents and bidding strategies, and execute them in their

private environments according to their preferences. Furthermore, the BidGenera-

tor provides a realization of the specified interfaces and implements state-of-the-art

bidding strategies and the Q-Strategy. The bidding agents of BidGenerator commu-

nicate with the market platform according to a well-defined communication protocol

(D3). The communication interface is implemented as part of the CSpaceConnector

component and the communication protocol is specified in Section 5.3. The Bid-

Generator ’s architecture is specifically constructed for application in a market-based

scheduling domain (D4). This consideration also affects the design, integration and

realization of the related market information service (D5), as well as the security

and trust mechanism (D6). Moreover, the BidGenerator framework was developed,
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integrated, tested and evaluated as part of the SORMA system. A detailed technical

analysis of the BidGenerator ’s role in SORMA, as well as a performance analysis of

the integrated components is presented in Chapter 7.



Chapter 5

Communication Protocols in Computing Service

Markets

T
he previous chapter presented the architecture of the BidGenerator framework.

This chapter focuses on the design and realization of the communication protocol

for agent interactions and messaging as part of Research Question 3 (Communication

Protocols) in Section 1.2.

Communication protocols are core design issues in computing systems. In a market

context, communication protocols define the interfaces for the message exchange,

the rules for timing, bidding, information revelation and clearing, which are passed

between the agents or related software components (Rosenschein and Zlotkin, 1994;

Wurman, 2001). Examples of communication methods are bid, update-bid, match

and info; example rules are the bidding constraints in terms of value ranges, the

visibility of bids to other agents and the right of bid withdrawal. In a market-based

scheduling context, a communication protocol (also called bidding language here)

defines the content and format of the exchanged messages in terms of technical and

economic attributes. Moreover, in a multi-agent environment, such data formats

have to be syntactically and semantically well defined in order to reach a common

understanding, wide acceptance and standardization.

Section 5.1 derives design desiderata for communication protocols in a market-based

scheduling context. Section 5.2 presents existing communication protocols and com-

pares them with the introduced desiderata. Section 5.3 presents a novel message

protocol for market-based scheduling as one of the main contributions of this work.

Section 5.4 formalizes the adopted matchmaking mechanism for the bids. Matchmak-

ing mechanisms are not a part of the research of this work, however, they are part of

the SORMA market (Nimis et al., 2009). Section 5.6 discusses extensions to support

combinatorial bids for additional market-based scheduling scenarios and Section 5.7

summarizes the chapter.
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5.1 Design Desiderata

The efficiency of the communication process depends on the number of exchanges

required to reach an agreement between two parties (Endriss and Maudet, 2004). In

a negotiation scenario, the exchange processes include communication calls like pro-

pose, accept, reject and deal. Therefore, the effort for reaching an agreement would

require at least three communication calls between two parties (A sends a propose

call to B, B sends an accept call to A, A sends a deal call to B). The number of

required communication calls also depends on consumers’ and providers’ valuations,

their bidding strategies and technical descriptions of the demanded and provided com-

puting services. In a double auction mechanism, the number of communication calls

can be reduced to two – bid and match. In a distributed scenario for market-based

scheduling it is crucial to design a communication protocol which is Communication-

ally Tractable, i.e., efficient in the number of exchanged messages enabling efficient

matchmaking capabilities.

The following design desiderata are derived from the application scenarios in Section

2.4.1, the technical challenges in Section 2.4.2, the bidding scenario in Section 2.4

and from the respective literature.

Desideratum 1 ≺Expressing Economic and Technical Preferences�
Bidding languages for market-based scheduling must allow for the expression of pref-

erences, which consists of both technical and economic attributes.

The expressiveness and simplicity of a bidding language in a market-based scheduling

context depends on the level of abstraction selected (e.g., ISO/OSI reference model;

IaaS, PaaS or SaaS) for the design of the specific language. For example, the number

of technical attributes can be significantly reduced by abstracting computing service

characteristics like CPU architecture, CPU frequency, cache, and memory through

performance benchmarks of test applications (Jain, 1991; Ostermann et al., 2010).

Furthermore, the expressiveness and simplicity of a bidding language depends on

whether the market mechanism supports atomic or combinatorial bids, where the

latter introduces additional logical primitives like XOR, OR, AND and combinations

thereof by way of preferences (Nisan, 2006). On the one hand, the expressiveness

of a bidding language determines the complexity for the bidding parties to specify

their preferences, on the other hand, it determines the complexity for matchmaking

bids, which is an NP-Hard problem in the combinatorial case (Parsons and Klein,

2009). The specified application scenarios in Section 2.4 demand a bidding language

for exchanging technical and economic attributes, which are combined in a common

message format.
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Desideratum 2 ≺Separation of Private, Public and Market Messages�
Bidding languages for market-based scheduling must support the specification of dif-

ferent message types for exchanging private, public, contract and market information.

Economic theory distinguishes between goods with a common value to all agents like

a USB stick with 16 GB of storage space and those with private values, i.e., the

value of a good differs from agent to agent (Lomuscio et al., 2003; Collins et al.,

1998). Therefore, valuations for goods may be common or private knowledge. In

a market-based scheduling scenario, different providers offer computing services on

different hardware infrastructures that vary in the quality of service; and consumers

also have different applications and configuration requirements for computing ser-

vices.1 In the case of private valuations, agents specify their own scoring functions

and generate their bids according to their selected bidding strategy. The agent’s

outcome is measured according to the rewards received as a result of their actions

and scoring functions. The bids of the consumers and providers are functions of their

private valuations (Nisan, 2006). The bids are submitted to the market, therefore,

they are marked as public. Agents’ bid generation functions may also take current

market information about other agents’ bids and matches into account (Lomuscio

et al., 2003). Furthermore, the agents may also exploit their experiences in past in-

teractions with the bid generation function. Thus, markets for computing services

have to offer message formats for exchanging market information on current and past

bids, and clearing prices.

Desideratum 3 ≺Support the Creation of Service Contracts�
Bidding languages for market-based scheduling must support the creation of legally

binding service contracts.

The result of a matchmaking process in a system for market-based scheduling is the

creation of the service contract (service level agreement) between a consumer and a

provider. A service level agreement has to include information about the duration of

an application, the duration of the computing service provided, the payment method

and information about compensation payments, also called penalties (Windsor et al.,

2009). The payment method specifies the rules and type of the payments payment,

such as prepayment, post-payment, pay per use and subscription (Windsor et al.,

1Symantec (2008) reported that, on average, companies work with more than one thousand
applications; almost all of the computing centers on the Top500 list (<www.top500.org>) are built
with different hardware specifications.
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2009; Weinhardt et al., 2009). The penalty part of a contract specifies the formalism

for calculating penalty payments if a contract is not fulfilled (Kephart and Chess,

2003; Becker et al., 2008). Contracts are legal entities and require the signature of

both the target consumer and target provider in order to be considered legally binding

(see also Desideratum 6 in Section 4.2).

Desideratum 4 ≺Providing Semantic Descriptions of Market Concepts�
Bidding languages for market-based scheduling must provide a machine-readable se-

mantic description for each of the adopted domain concepts and relations as part of

their technical and economic attributes.

Desideratum 2 requires that information that is available only to owners (private),

submitted to the market (public), and the market’s response (a match or informa-

tion about other agents’ bids and matches) be clearly specified and separate. These

message types include concepts with different semantics like valuation (private), bid

(public) and clearing price (match). The different message types need to be well

defined not only in structured models for the exchange of data like in XML, but also

semantically in order to enable a common understanding of the machine-processable

data in distributed complex systems for market-based scheduling.

An ontology provides a structured description of the protocol’s concepts and relations

that can be read by machines and humans. A formal description of the semantics

of market concepts adopted in communication protocols is crucial to make sure that

they understand each other, as well as to ensure their interoperability, verification,

and integration in existing and new components. This is especially important for

interdisciplinary research in the area of multi-agent systems and market mechanisms.

The definition of domain ontologies in complex systems facilitates software engineer-

ing and integration processes in terms of a clear mapping between communication

protocols and components’ concepts in a complex distributed system, interoperabil-

ity support through clearly structured and shared knowledge, reusability of already

defined concepts, verification against existing concepts and their relations in other

ontologies (Gasević et al., 2009; Tran and Low, 2008; Tamma et al., 2005). A best

practice in ontology design is to map the ontology concepts of a market-based schedul-

ing domain to concepts of well-known upper ontologies like OpenCyc (Mascardi et al.,

2007). Modern semantic technologies like SAWSDL2 enable the coexistence of XML-

based data models and their explicit specification in ontologies (Lathem et al., 2007;

2Semantic Annotations for WSDL, <http://www.w3.org/TR/sawsdl>.
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Kopecky et al., 2007). On the one hand, this enables efficient data transfer with

commonly applied XML technologies; on the other hand, it enables reasoning and

efficient integration with other data models and their ontologies.

5.2 Existing Communication Protocols

Table 5.1 shows a selection of prominent communication protocols, which represent

the agent, negotiation and bidding domains. The communication protocols are ana-

lytically compared according to the derived design desiderata.

Table 5.1: Comparison of communication protocols. D1 – Economic and Technical
Preferences. D2 – Separation of Private, Public and Market Messages. D3 – Creation
of Service Contracts. D4 – Semantic Descriptions of Market Concepts. �indicates
explicit support. �indicates that no explicit information was found or desideratum
is not met. • indicates partial support.

Communication Protocol D1 D2 D3 D4

ACL • � � •
CATP • � • �
ClassAds • � � �
JSDL/JDL/GLUE/RSL • � � �
CIM • � � •
OVF/SDD • � � �
WS-Agreement � � � �
Nisan (2006) • � � �
MACE � � • �
Vilajosana et al. (2009) � � � �
This work � � � �

5.2.1 Selection of the Communication Protocols

FIPA’s Agent Communication Language (ACL) is a general reference specification

for designing and implementing the communication interfaces between agents in a

multi-agent system (Labrou et al., 1999). ACL defines the usage of performatives,

which rule the intentions of the agents. Built-in performatives like Propose, Accept
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Proposal, Reject Proposal and Confirm can be used in a negotiation scenario, but

they are not adequate for an auction scenario. However, it is a reference specification

from the agent community and thus included for the analytical evaluation.

The Market Design Tournament of the Trading Agent Competition, called CAT, de-

fines its own communication protocol, which is called CATP (Niu et al., 2009). CATP

allows the trading clients to be connected to the CAT server and trading data for the

defined tournament scenario to be exchanged. CATP is the communication protocol

that is currently applied in the CAT multi-agent system and therefore selected for

analysis.

ClassAds is a job description language for matching job requests to machine descrip-

tions used, used in the Condor’s3 cluster management system (Liu and Foster, 2004).

Languages like Job Submission Description Language (JSDL), GLUE Schema, Re-

source Specification Language, Job Definition Language and Resource Specification

Language have been widely adopted as a technical resource and job description lan-

guage in Grid projects like Globus Toolkit and EGEE (Andreetto et al., 2010; Laure

et al., 2006; Smirnova, 2009). The Common Information Model (CIM ) is a DMTF

standard, which offers a detailed technical description of the information concepts

and their relations in computing systems (DMTF, 2010b). The Open Virtualization

Format (OVF) is a DMTF initiative for configuring and describing virtual machines,

as well as the deployment procedure of the required applications. In contrast to

OVF, the OASIS Solution Deployment Descriptor only focuses on the deployment

and configuration procedure of software components (Galán et al., 2009). All of these

languages are currently used for expressing technical requirements and configurations.

TheWS-Agreement is a established “standard” in the Grid community for negotiating

and establishing service level agreements (Andrieux et al., 2007). The WS-Agreement

framework provides an abstract framework with core concepts for supporting the ne-

gotiations of key performance indicators, as well as price and penalty constraints,

rather than concrete specifications on how to realize them in a real world setting.

Moreover, the general framework of the WS-Agreement can be used as a wrapper to

any of the previously discussed job description languages. Other communication pro-

tocols for negotiating service level agreements are the Contract Net Protocol, WSLA,

SLAng and RBSLA (Smith, 1980; Paurobally et al., 2007; Paschke et al., 2005). How-

ever, WS-Agreement remains the current OGF proposal for service level agreements

and has been generally applied in past and current research projects (Kübert et al.,

2011).

3<http://www.cs.wisc.edu/condor/description.html>.
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Nisan (2006) specifies a theoretical framework for bidding in combinatorial auctions.

Consumers and providers can express combinatorial bids by using OR, AND and

XOR operators on Atomic Bids. An Atomic Bid contains the number of items and

valuation of the transaction object provided or demand.

Schnizler (2008) specified the Multi-Attributive Combinatorial Exchange language,

which aims to define atomic bids not just for generic items, but also for a set of

quality of service (QoS) and time attributes. QoS attributes can represent technical

information like CPU, memory and storage. The time attributes specify the start

and end times for executing a job, which are used to solve problems that arise in

determining a winner for offline and combinatorial bids for a given set of consumer

and provider bids.

Vilajosana et al. (2009) aim to specify a communication protocol, which is designed

for a market-based scheduling domain and combinatorial auctions. However, the

protocol defines its own technical attributes rather than reusing commonly accepted

specifications like JSDL and GLUE. Furthermore, its specifications have not been

evaluated.

5.2.2 Analytical Comparison to the Desiderata

Expressing Economic and Technical Preferences

D1 is partially supported by most communication protocols. Partially means, the

protocol specifies either technical or economic attributes for the description of trans-

action objects (i.e., computing services), but not both of them. An ACL does not

provide concrete support for auctions or concrete specification for technical attributes,

but its general framework enables it to be applied as a wrapper to existing languages

like JSDL. However, it requires extensions and additional rule specifications in order

to be applied in auction scenarios. Communication protocols like CATP and Nisan

(2006) specify economic attributes for bidding in tournaments and in combinatorial

auctions. Therefore, CATP and Nisan (2006) cover only half of the desiderata and are

designed for other domain scenarios, not for the scenario investigated in this work.

ClassAds, JSDL, CIM, OVF and the other languages in the second cluster of Ta-

ble 5.1 specify only the technical attributes for describing technical requirements

of jobs or descriptions for the configuration and deployment of jobs to computing

services. These communication protocols are good candidates to be wrapped into

general frameworks with economic attributes with respect to the target adoption

scenario. Only WS-Agreement, MACE and Vilajosana et al. (2009) fully satisfy

D1. As a general framework for negotiations, a WS-Agreement can wrap any of the
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technical description languages. However, a WS-Agreement is designed mainly for

negotiations rather than for auctions. Moreover, as a general framework, the WS-

Agreement includes attributes for structuring economic information like valuation,

key performance indicators and penalties, however, it does not specify concrete in-

stances or evaluate real use cases of them.

MACE supports the specification of both technical and economic attributes for com-

puting services. As a framework, it can adopt technical attributes from technical

description languages like JSDL and GLUE. Vilajosana et al. (2009) specify a commu-

nication protocol for the market-based scheduling of computing services. However, it

is designed for combinatorial auctions and defines its own technical attributes, which

are different from the commonly applied JSDL and GLUE specifications.

Separation of Private, Public and Market Messages

None of the communication protocols analyzed provide a model, which clearly sep-

arate the private, public and market messages submitted between the applications,

computing services, agents and the market. Theoretically, each of the communica-

tion protocols can be extended to do this with the required additional attributes and

rules, however, the different communication protocols are designed with their own

philosophy and goals for their specific domain. Redesigning or modifying them with

extensions will affect the completeness of the already defined attributes and original

application model.

Support for the Creation of Service Contracts

Most communication protocols do not provide a well-defined support for the cre-

ation of service contracts as indicated in D3. The CATP protocol defines the notion

of transaction, which identifies a match between two bids through the creation of

a transaction id from the bids’ ids (e.g., Id: ask3, bid2 ), as well as with the price

statement (Value: 90 ). The CATP transaction is suitable for the CAT tournament

scenario, but limited for the creation of service contracts in a market-based scheduling

domain. MACE specifies a winner determination mechanism for combinatorial set-

tings, however, a method for the creation and exchange of service contracts is neither

suggested nor implemented. Only a WS-Agreement provides a well-defined support

for negotiation and creation of a contract. However, the WS-Agreement only defines

economic attributes with a negotiation-specific semantic. Auction-specific attributes

like bid, clearing price and limit time are missing. A WS-Agreement does not in-

clude attributes for expressing payment information like prepayment, post-payment

and account information. Moreover, a method for consumers and providers to sign

WS-Agreement contracts to establish a legally binding agreement is not proposed.
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Providing Clear Semantic Descriptions of Market Concepts

Most communication protocols do not provide explicit specification of an ontology,

i.e. a formal semantic model of the utilized information concepts and their relations,

as required in D4. Most of these protocols are modeled in an XML schema and

the information concepts are specified as technical documentation, which is not in a

machine-interpretable format unlike an ontology language like OWL4.

The ACL and CIM are the only communication protocols in Table 5.1, which ex-

plicitly support the definition of ontologies or are modeled as an ontology. The ACL

language consists of concepts for defining and exchanging ontologies, as well as con-

cepts for their logical validation. CIM is an extensive reference model for describing

the information concepts and their relations in the domain of computing systems, such

as their applications, devices, components and subsystems (DMTF, 2010b). Quirol-

gico et al. (2004) proposed a model to represent CIM as a formal ontology. However,

these ontologies partially support the domain of this work and do not explicitly define

the required market concepts, their relations and rules in a market-based scheduling

exchange.

5.3 MX/CS: Message Exchange in Computing Service Mar-
kets

Figure 5.1 presents the overall communication architecture of MX/CS (cf. bidding

scenario in Section 2.4.4).

Calls 1, 2 and 5 are invocation requests of the message types PrivateMessage (“request

for bid”) and PublicMessage (bid), where 3 and 4 are the returned result (MarketMes-

sage) of the invocation requests. A represents the invocation and response messages

of the Market Information Service, which provides market information of the last N

bids and clearing prices.

For instance, the Application Orchestrator instance invokes the interface method

bidCall(credential, privateMessage) of BidGenerator in order to submit an applica-

tion’s privateMessage together with the consumer’s credentials. The BidGenerator

instantiates the selected bidding strategy, invokes the security component to receive

a valid samlAssertion and a digital signature (cf. Section 4.4.6), generates a bid,

signs and submits it (privateMessage) to the market. When there is a match, the

4Web Ontology Language.
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Figure 5.1: Communication protocols for the automated provisioning and usage of
computing services
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signed market contracts (marketMessage) are sent back to the Application Orches-

trator through its BidGenerator. For each finished application, the Application Or-

chestrator sends the application’s final monitoring data (stateMessage) using the

BidGenerator ’s terminate interface method. The data in stateMessage updates the

knowledge base of BidGenerator, which is used by the implemented bidding strate-

gies. These processes are similar for the provider side. The following sections specify

the message types introduced in detail.

5.3.1 Private Message

According to Figure 5.1 (step 1), the consumer’s Application Orchestrator and provider’s

Service Orchestrator submit a PrivateMessage to their own BidGenerators. The Pri-

vateMessage models a scenario where consumers and providers do not reveal their true

valuations and bidding strategies for the demanded or supplied transaction object.

However, the consumers and providers trust their own BidGenerator, which imple-

ments agents and a pool of different bidding strategies. Therefore, a PrivateMessage

of type Pi for an Application Orchestrator or a Service Orchestrator i has the follow-

ing structure:

Pi = {vi, si, zi, ci,Λi,Πi,Δi,Ωi, Ui} (5.1)

vi represents the consumer or provider valuation per unit of time (hour) for the re-

quested or provided computing service. si is the identifier (class name) of the bidding

strategy that is implemented within the BidGenerator framework. The si identifier

allows the dynamic initialization of bidding strategies from the pool. zi describes

the expiration time of the bid in the order book. zi plays a strategic role in bidding

strategies for call markets where the market clearing is executed in time intervals,

which are known to the agents (Gjerstad, 2003; Vytelingum et al., 2008; Schvartzman

and Wellman, 2009). Therefore, zi is obligatory for consumers and providers. ci is

the estimated maximum time, which is required for the consumer application (Ali

et al., 2004). In the case of providers, ci is the time (in hours) that a computing ser-

vice is available on the market5. Λi specifies the type of computing service required,

5An initialization with infinite means that the computing service has no availability constraints
and can be matched with any consumer bid. A time constraint limits the availability of the com-
puting service. For example, a provider X knows that her/his cluster of 20 machines will be idle
during the next 10 hours, but needed thereafter; and X decides to supply the 20 idle machines to
the market for the next 10 hours. In this case, the provider bids are only matched to consumer
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“BATCH” or “WEBSERVICE”. In the first case, the application is deployed to the

computing service through a secured network connection (“Batch Supply Chain Data

Analysis” scenario in Section 2.4.1.1). In the second case, the application is a Web

service, which is deployed on an isolated web container environment like Tomcat or

Jetty that runs on a dedicated computing service (“Interactive Sensor Data Analysis

Scenario” in Section 2.4.1.2). The payment method Πi indicates whether the pay-

ment should be executed “BEFORE” deployment of the application (prepayment),

“AFTER” the execution of the application (post-payment) or “EITHER.” Πi is oblig-

atory for consumers and is set to “EITHER” as a default. Payment information is

required by SORMA’s Payment component and enforced by SLA Enforcement as

part of the Contract Management component (Nimis et al., 2009).

Δi specifies the name of the selected penalty function for calculating the compensa-

tion when a contract is not fulfilled. Becker et al. (2008) present a fair and incentive

compatible penalty function for computing markets. Even though penalty functions

are not part of this research, they are crucial for computing service markets since they

offer an additional mechanism for establishing trust, reliability and acceptability for

such types of markets.

Ωi contains the Technical Description of the required or provided computing service.

The specification of Technical Description is left open intentionally since the aim of

MX/CS is to specify a bidding language for computing service markets by reusing

common XML-based languages like JSDL, GLUE or OVF for technical descriptions,

deployments and configurations. Finally, Ui contains the unique identification of the

selected scoring function.

Valuation vi, bidding strategy si and Ui are private attributes, which are known

only to the owner’s BidGenerator. The remaining elements are transformed into a

PublicMessage, which is the bid submitted to the market. Since this work does not

include the research on penalty functions, the Δi element is optional, however, it was

an important requirement in the SORMA scenarios. The Ωi is implemented with

a commonly applied computing service description language like JSDL. The access

URI to the offered computing service is provided as part of the provider’s Ωi and

added to the contract on matches.

applications that do not violate the specified time constraint.
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5.3.2 State Message

A stateMessage transfers the final state information about an executed application

or finished computing service usage. This information is used as feedback for con-

sumers’ and providers’ knowledge bases and utilized by their bidding strategies. It is

composed of two main parts, theScoringFunction Ui and related Parameters :

Si = (Ui, {b1, · · · , bn}) (5.2)

In order to make scoring functions configurable, i.e., not hardcoded in the system,

they are encoded in a Lisp-like syntax and stored in the BidGenerator ’s knowledge

base with an associated unique name. Rule engines like JESS 6 or Drools7 are applied

for loading and processing the scoring function Ui on runtimes with its associated

attributes (b1 · · · bk) ∈ Bi, which are part of the overall attribute definition. The at-

tributes and values for the scoring function are transferred in the Parameters element

of the stateMessage.

minCompletionT imeAndPayment(va, Fs,a, πs,a, ca) = vaFs,a + πs,aca (5.3)

The Equation 5.3 presents an example of the scoring function called “Minimize

Weighted Completion Time and Payments” or minCompletionTimeAndPayment,

which is expressed below as a Lisp-like syntax:

1 ( d e f f un c t i on minCompletionTimeAndPayment (? va lua t i on ? completionTime ? c l e a r i n gP r i c e
? durat ion )

( re turn (+ (∗ ? va lua t i on ? completionTime ) (∗ ? c l e a r i n gP r i c e ? durat ion ) ) )

The following snipped XML is an example of a transferred stateMessage for an exe-

cuted batch application. The consumer’s aim is to minimize the completion time and

payments for her or his batch applications and therefore chooses the minCompletion-

TimeAndPayment scoring function to update BidGenerator ’s knowledge base. The

contract identifier is used to find the associated application and provider identifiers

in BidGenerator ’s knowledge base.

<StateMessage s t a t e I d= ' 456 '>
2 <Scor ingFunct ion>minCompletionTimeAndPayment</ Scor ingFunct ion>

<Parameters>
4 <va lua t i on sequenceNr= ' 1 '>35</ va lua t i on>

<timeToComplete sequenceNr= ' 2 '>3</timeToComplete>
6 < f i n a l P r i c e sequenceNr= ' 3 '>25</ f i n a l P r i c e>

6<http://www.jessrules.com>.
7<http://www.jboss.org/drools>.
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<durat ion sequenceNr= ' 4 '>5</ durat ion>
8 </Parameters>

</StateMessage>

The associated key performance indicators (b1 · · · bk) ∈ Bi are transferred with the

Parameters element of stateMessage and used by the scoring function to calculate

the reward of the application execution. The timeToComplete attribute indicates the

time needed to complete the application execution and the clearingPrice attribute

indicates the final price, which is probably different from the one in the contract

due to compensation payments. The updated rewards are used from BidGenerator ’s

bidding strategies to adapt their bids to the supply and demand.

5.3.3 Public Message

Based on the PrivateMessage received, the BidGenerator instantiates the selected

bidding strategy and generates a bid in the form of a PublicMessage Bi (step 2 of

Figure 5.1), which is submitted to the market. The PublicMessage is created from

the PrivateMessage and contains the following transformed and additional elements:

Bi = {qi, z̃i, ci,Λi,Πi,Δi,Υi,Ωi} (5.4)

Most of the PublicMessage elements are transformed from the PrivateMessage. In

PublicMessage, the PrivateMessage’s bidding strategy and valuation elements are re-

placed with qi, which stores the value of the generated bid according to the selected

bidding strategy. In PublicMessage, the expiration time z̃i �= zi is a dynamic param-

eter, which is adapted by some of the bidding strategies. If zi was not specified in

PrivateMessage and the selected bidding strategy does not update the value in z̃i,

then z̃i is initialized with a default value (e.g., 24h). In addition to the PrivateMes-

sage, the PublicMessage specifies the Υi element, which is the signature added by

the security component in order to sign the bid and make it legally binding. The

signature element is used by SORMA’s Contract Management to sign the market

matches between consumers and providers in the form of legal electronic contracts.

5.3.4 Market Message

The submission of the MarketMessage is depicted as step 3 of Figure 5.1. A Mar-

ketMessage is created as the result of a successful match between a consumer i and
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a provider j bid. The MarketMessage has the following content:

Xi,j = {cIdi,j,Σi,j,Υi,j, πi,j, ci,j,Λi,j,Πi,j,Δi,j, Ω̃i,j} (5.5)

cIdi,j is the contract ID, which is uniquely created by the Contract Management

of the consumer and provider identities, which are part of the Σi,j element. The

Υi,j element contains the consumer’s and provider’s signatures, which are taken from

their PublicMessages. πi,j represents the calculated clearing price by the market

mechanism. ci,j and Λi,j are taken from the consumer’s PublicMessage. Πi,j and

Δi,j are taken from the provider’s PublicMessage since they are values added to the

provider’s business strategy. Ω̃i,j is the matched Technical Description with adjusted

upper and lower bounds as a result of the matchmaking process according to the

consumer’s technical requirements and the provider’s technical specification in their

respective PublicMessages.

The MarketMessage describes the core concepts of a digital contract for a market-

based scheduling domain. The MarketMessage is returned back to the Application

Orchestrator or Service Orchestrator through the BidGenerator components. Sub-

sequently, the Application Orchestrator deploys and executes the application on the

allocated computing service according to the legally binding agreements in the Mar-

ketMessage. The URI to the provider’s computing service is part of the MarketMes-

sage’s Ωi,j.

In the SORMA context, the created MarketMessage was transformed into a WS-

Agreement document since the WS-Agreement is an OGF specification for service

level agreements (Andrieux et al., 2007; Borissov et al., 2009b). However, a WS-

Agreement offers a reference framework for high-level service level agreement concepts

rather than a concrete and detailed method for implementing them. Furthermore,

a WS-Agreement was designed for negotiations rather than for auction scenarios.

Borissov et al. (2009b) describe a mapping procedure to transform a MarketMessage

into the existing concepts of the WS-Agreement specification. However, there are no

semantically corresponding WS-Agreement elements for the MarketMessage concepts

qi,j, ci,j, Λi,j, Πi,j and Υi,j, which haven been additionally modelled and extended in

the WS-Agreement framework (Borissov et al., 2009b). Furthermore, signatures Υi,j

are an integrated part of the latest PublicMessage and MarketMessage definitions,

however, the WS-Agreement specification does not contain an equivalent element.

However, as a general and composite framework for negotiations, the WS-Agreement
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integrates WS-Security elements to incorporate the signatures, but the link to WS-

Security remains on an abstract level with respect to the clear security and trust

methodology in the PublicMessage and MarketMessage.

5.3.5 Market Information Message

The BidGenerator has to know where to submit the bid generated, PublicMessage.

The market platform CSpace integrates a Market Information Service, which enables

queries for the set of available auctions and their market information (Nimis et al.,

2009). The info method, which is part of BidGenerator ’s agent interface, implements

the functionality to request market information about available markets:

void info(string query, PublicMessage bid)

void handleInfoResponse(MarketInformation marketInfo)

Each of the available auctions in CSpace defines the scope of the traded transaction

objects in terms of technical attributes for CPU, memory and storage with associated

ranges, e.g., CDA auction for “middle” service configurations of 4 to 8 CPUs or CPU

cores, 8 to 16 GB of memory and 500GB to 1TB storage. The following example

returns the auctions and respective identifiers that match the technical description

in PublicMessage:

1 <que r i e s>
<auc t i ons />

3 </ que r i e s>

The matchmaking algorithm is the same as the one used by the auction to match the

bids, but is only applied to the technical attributes.

The following example queries market information about the “CDA” auction identi-

fier. The query requests the last 3 consumer and provider bids, as well as the last 3

clearing prices from the market information service:

1 <que r i e s>
<auc t i ons>

3 <auct ion id= 'CDA '>
<market informat ion>

5 <lastNConsumerBids>3</ lastNConsumerBids>
<l a s tNProv iderBids>3</ las tNProv iderBids>

7 <l a s tNC l ea r i ngPr i c e s>3</ l a s tNC l ea r i ngPr i c e s>
</market informat ion>

9 </ auct ion>
</ auc t i ons>

11 </ que r i e s>
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The responses from the market information service are handled by the BidGenerator ’s

interface method handleInfoResponse. An example response of the previous query is

presented in the following code snippet:

1 <re sponse>
<auc t i ons>

3 <auct ion id= 'CDA '>
<market informat ion>

5 <consumerbids><value>17</ value><value>15</ value><value>16</ value></
consumerbids>

<prov ide rb id s><value>17</ value><value>16</ value><value>18</ value></
prov ide rb id s>

7 <c l e a r i n g p r i c e s><value>17</ value><value>16</ value><value>15</ value></
c l e a r i n g p r i c e s>

</market informat ion>
9 </ auct ion>

</ auc t i ons>
11 </ response>

5.4 Matchmaking of Public Messages

The allocation of a set of a priory known goods and services with varying char-

acteristics to an a priori number of known requestors with varying preferences is

called aWinner Determination Problem (WDP). WDPs are NP-complete since multi-

attributive requestors’ preferences are matched against multi-attributive service de-

scription characteristics (Nisan, 2006). Another characteristics of WDPs is that they

often solve allocations of a priory known information in offline settings. Therefore,

offline algorithms are not adequate candidates for a market-based scheduling context

since WDPs are not scalable for thousands of applications and computing services.

Online mechanisms like the Continuous Double Auction are efficient in matching sup-

ply and demand. In addition, they are scalable since consumer and provider bids are

continuously matched with the bids available in the order book as soon as they arrive.

In the context of market-based scheduling, the matchmaking process has to consider

both the technical and economic preferences of consumers and providers. Moreover,

in an online multi-agent scenario, the matchmaking processes should be automated,

efficient and fast (Sycara et al., 2002). A survey of mechanisms for matching tech-

nical attributes is presented by Liu and Foster (2004). Liu and Foster (2004) discuss

the Condor ClassAds language and matchmaking mechanism in more detail and

propose a novel matchmaking mechanism, called Redline. Redline allows the speci-

fication and matching of value ranges like “CPU tact frequency between 2 GHz and

3 GHz.” JSDL is also specified to support the value ranges for technical attributes

(Anjomshoaa et al., 2005). However, there is no known research that describes the
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automation of the matchmaking processes of both the technical and economic pref-

erences of consumers and providers.

Sycara et al. (2002) summarize three general types of matchmaking mechanisms called

Exact match, Plug-in match and Relaxed match. Exact match describes a situation

in which the requests of the demand and supply agents have equivalent variables

and values. The Plug-in match is less restrictive, but offers a greater likelihood of

finding a match rather than an exact match. The idea behind the Plug-in match is

that the provider and consumer messages can differ in the description details of their

respective technical attributes. For example, a provider’s technical description of the

offered computing service may be very detailed in terms of the number of technical

parameters. Conversely, a consumer’s technical description may utilize few technical

parameters. According to the Plug-in match, both descriptions can match if the few

technical attributes of the consumer description match part of the related provider’s

description. The additional technical attributes may complement the matched doc-

ument. A Relaxed match is the least restrictive matchmaking method. A Relaxed

match does not return a match or no-match value, but determines the value distances

of the different consumer and provider descriptions. A simple heuristic in this case

could be that a consumer and provider description match if the overall “distance

value is smaller than a preset threshold value” (Sycara et al., 2002).

In the context of SORMA, a kind of Plug-in match mechanism was implemented

(Nimis et al., 2009). The matchmaking process of PublicMessages is performed by

the implemented auction and matchmaking mechanisms in two steps – i) technical

matchmaking and ii) price-based matchmaking. The technical matchmaking mecha-

nism applies the characteristics of the selected technical description language, JSDL.

JSDL is a well-applied description language in Cluster and Grid schedulers, as well

as in many other related projects (McGough and Savva, 2008). As such, JSDL

supports value ranges for technical attributes. Thus, the technical matchmaking

mechanism is interfaced with the auction mechanism and implemented to support

value ranges for the technical attribute-value pairs. The price-based matchmaking

mechanism is performed by the auction mechanism itself. In the case of Continuous

Double Auction, the bids are matched on arrival according to the K-Pricing schema,

price = kqi+(1−k)qj with k = 0.5 (Satterthwaite and Williams, 1989). The technical

and economic matchmaking procedure is depicted in Algorithm 5.4.1 and described

as follows.
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Algorithm 5.4.1: Matchmaking(publicMessage)

comment:Price-based and technical matchmaking of bids and offers

bids← SortedList(BidComparator)

offers← SortedList(OfferComparator)

procedure match(publicMessage)

removeExpired()

if publicMessage.isBid()

then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

for each offer in offers

do if isTechnicalMatch(publicMessage, offer)

then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
if publicMessage.getBid() ≥ offer.getBid()

then

⎧⎪⎨
⎪⎩
deal ← createMatch(publicMessage, offer)

remove(offer)

break

else if publicMessage.isOffer()

then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

for each bid in bids

do if isTechnicalMatch(publicMessage, bid)

then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
if publicMessage.getBid() ≤ bid.getBid()

then

⎧⎪⎨
⎪⎩
deal ← createMatch(publicMessage, bid)

remove(bid)

break

if deal �= nil

then

{
marketMessage ← deal.getMarketMessage()

informAgents(marketMessage)

else if deal = nil

then
{
insert(publicMessage)

Step 1 – Technical Matchmaking : As a consumer bid or provider offer arrives in the

form of a PublicMessage, the match procedure performs a technical matchmaking

against a list of provider offers or consumer bids. Bids are sorted in descending

order, and offers in ascending order. The technical description of the service is part

of the offer’s and bid’s PublicMessages. The isTechnicalMatch method checks to see if

the bid and offer messages are technically compatible. A consumer i’s PublicMessage

and a provider j’s PublicMessage pair are technically compatible if their key technical

attributes (Key Performance Indicators or KPI), which are part of the PublicMessage,

match into non-empty values:

for all kpii ∈ KPIi, kpij ∈ KPIj, kpii ∩ kpij �= ∅ (5.6)

For example, the intersection of the consumer’s KPI CPUSpeedi = {2GHz, 3GHz}8,
and the intersection of the provider’s CPUSpeedj = {2.6GHz} amounts to {2.6GHz}.

8Here the CPUSpeed is defined for a range of 2 to 3 GHz.
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Step 2 – Economic Matchmaking : If a bid and an offer are technically compatible

(the method isTechnicalMatch returns true), then the match procedure performs a

price-based matchmaking. Since the bids and offers are ordered according to their

values, a full match can be immediately returned if the consumer’s bid is higher than

the provider’s bid, otherwise, the algorithm moves to Step 1 with the next possible

candidate (bid or offer) in the order book. If the consumer’s bid is less than the

provider’s offer, then the matchmaking process can be terminated and the consumer’s

bid remains in the order book until it is matched or the specified expiration time in

PublicMessage. When a match is identified, the auction creates aMarketMessage and

delivers it to SORMA’s Contract Management, which generates a binding contract

and returns it back to the related consumer and provider. The technical attribute-

value pairs of the MarketMessage are constructed from the intersection values of the

consumer’s and provider’s PublicMessages. The clearing price is the result of the

economic matchmaking and is calculated according to the K-Pricing schema.

5.5 The MX/CS Ontology

Software engineering and ontologies are complementary technologies to describe and

share domain knowledge, which is “stored” in (complex) software systems (Gasević

et al., 2009). The application of ontologies in the software engineering processes pro-

vides a common language for software engineers of the system concepts developed, as

well as a common understanding of system’s requirements, their solution concepts,

as well as the implementation details. Machine-processable system ontologies can

help software engineers establish links between the system knowledge and software

artifacts produced in order to automate the verification and integration processes

of existing and novel components. Gasević et al. (2009) propose the use of ontolo-

gies for software engineering processes. For example, their application starts in the

requirement analysis phase in the definition of a common lexicon for the targeted

system, which serves to establish a common and well-defined vocabulary of the con-

cepts, their properties and internal/external relationships for the people involved in

the project. In the design phase, ontologies can be applied by software engineers

to iteratively validate and reason their UML or software models. Furthermore, on-

tologies can facilitate the transformation and integration processes of third-party or

novel components. In the software implementation phase, ontologies can be applied

to document implementation decisions, i.e., selecting software patterns for a specific

domain problem (Gasević et al., 2009). A formal description of the semantics of

market concepts adopted in communication protocols is crucial to make sure that
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they understand each other, as well as to ensure their interoperability, verification,

and integration in existing and new components. This is especially important for

interdisciplinary research in the area of multi-agent systems and market mechanisms.

Therefore, this research proposes separating the data exchange model from the se-

mantic model. The data exchange model of MX/CS is specified as XML schema

(Appendix C.1), the semantic model is specified in OWL (version 2.0) and called

MX/CS Ontology (Appendix C.2). The MX/CS XML schema explicitly defines the

data model of the presented message types PrivateMessage, PublicMessage and Mar-

ketMessage. The StateMessage and MarketInformation are specific to the BidGener-

ator and not directly involved in the communication between the clients (Application

Orchestrator, Service Orchestrator) and the SORMA market components. Therefore,

StateMessage and MarketInformation are specified externally to SORMA’s market

communication protocol (Appendix C.3), but related to the MX/CS Ontology (Ap-

pendix C.2).

Following is a an example of an XML schema element definition. The defined element

strategy of the type string stores the class name of the preferred bidding strategy:

1 <xsd :e l ement name= ' s t r a t e gy ' type= ' x s d : s t r i n g ' sawsd l :mode lReference= ' mxcsProtocol#
s t r a t e gy ' />

SAWSDL enables annotating XML elements with a reference to an existing semantic

concept that is part of an (domain) ontology. In the above example, the SAWSDL

attribute sawsdl:modelReference provides a reference to the strategy concept in mxc-

sProtocol.owl (MX/CS Ontology).

In the following OWL snippet, the definition of the concept strategy is presented,

which is part of the MX/CS Ontology :

1 <DataPropertyDomain>
<DataProperty URI=”\&mxcsProtocol ; s t r a t e gy ”/>

3 <Class URI=”\&mxcsProtocol ; PrivateMessage ”/>
</DataPropertyDomain>

5 <DataPropertyRange>
<DataProperty URI=”\&mxcsProtocol ; s t r a t e gy ”/>

7 <Datatype URI=”&xsd ; s t r i n g ”/>
</DataPropertyRange>

9 <EntityAnnotat ion>
<DataProperty URI=”\&mxcsProtocol ; s t r a t e gy ”/>

11 <Annotation annotationURI=”&dc ; r e l a t i o n ”>
<Constant>ht tp : //sw . opencyc . org / concept /Mx4rvViB 5wpEbGdrcN5Y29ycA</

Constant>
13 </Annotation>

</EntityAnnotation>
15 <EntityAnnotat ion>

<DataProperty URI=”\&mxcsProtocol ; s t r a t e gy ”/>
17 <Annotation annotationURI=”&rd f s ; comment”>
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<Constant>A bidding s t r a t e gy i s a complete plan o f a c t i on s f o r whatever
s i t u a t i o n might a r i s e ; t h i s f u l l y determines the agent behavior . A
bidding s t r a t e gy w i l l determine the ac t i on o f the agent w i l l take at
any s tage o f the bid gene ra t i on and market−based schedu l ing

proce s s e s , f o r every p o s s i b l e h i s t o r y and av a i l a b l e market
in fo rmat ion to that s tage .</Constant>

19 </Annotation>
</EntityAnnotation>

21 <EntityAnnotat ion>
<DataProperty URI=”\&mxcsProtocol ; s t r a t e gy ”/>

23 <Annotation annotationURI=”&rd f s ; s eeAl so ”>
<Constant>ht tp : //en . w ik iped ia . org /wik i / S t ra t egy ( game theory )</Constant>

25 </Annotation>
</EntityAnnotation>

27 <EntityAnnotat ion>
<DataProperty URI=”\&mxcsProtocol ; s t r a t e gy ”/>

29 <Annotation annotationURI=”&rd f s ; s eeAl so ”>
<Constant>ht tp : //mitpres s . mit . edu/books/FLAOH/cbnhtml/ g lo s sa ry−S . html</

Constant>
31 </Annotation>

</EntityAnnotation>
33 <Dec la ra t i on>

<DataProperty URI=”\&mxcsProtocol ; s t r a t e gy ”/>
35 </Dec la ra t i on>

A concept is defined through its Domain space (here strategy is part of PrivateMes-

sage) and its Range space (here xsd:string). Furthermore, the definition of strategy

is associated with additional annotations like comments, see also links, as well as

relations. A best practice in the ontology design is to associate ontology concepts to

a well-known upper ontology, such as OpenCyc (Mascardi et al., 2007). The MX/CS

Ontology is associated with concepts of the OpenCyc upper ontology by using the

OWL type of relation annotation.

5.6 Extensions for Combinatorial Bids

Combinatorial markets and related combinatorial bidding languages have been ex-

tensively explored in the literature (Nisan, 2006; Schnizler, 2008; Lubin et al., 2008).

A combinatorial bid is a logical combination of atomic bids, expressed through

the logical operators XOR, AND and OR. Following example demonstrates an ex-

tension of the introduced message protocols (PrivateMessage and PublicMessage),

which allows the specification of combinatorial bids of a set of TechnicalDescriptions,

{TD1, · · · , TDn}, which are wrapped into the PrivateMessage and PublicMessage

documents.
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1 <Combinations>
<XOR>

3 <AND>
<Se rv i c e r e f= 'TD1 ' />

5 <Se rv i c e r e f= 'TD2 ' />
</AND>

7 <Se rv i c e r e f= 'TD3 ' />
</XOR>

9 </Combinations>

In the case of a PrivateMessage definition, consumers specify their valuation for a

service configuration or a set of alternatives (Borissov et al., 2008a). Suppose that the

deployment, application execution and monitoring interfaces for computing services

are standardized and adopted by all providers. Furthermore, suppose that TD1 is a

technical description of an Amazon EC2 service and TD2 is a technical description

of an Amazon S3 service. In contrast to TD1 and TD2, TD3 is a description of an

integrated Google AppEngine service, which offers both – computational and storage

facilities. In this example, a consumer specifies an exclusive-or combinatorial bid for

either the TD1 and TD2 or TD3 services.

5.7 Summary

This chapter presented the design and realization of the MX/CS communication pro-

tocol for a market-based scheduling domain. The derived design desiderata required

that communication protocols for market-based scheduling must allow the expression

of both technical and economic attributes; it must support different types of message

for private, public, contract and market information; it must enable the creation of

legally binding service contracts; and it must contain semantic descriptions of the

implemented domain concepts. The analysis of existing communication protocols

showed that there is no existing communication protocol, which satisfies the design

desiderata.

The MX/CS communication protocol specifies the economic attributes needed to im-

plement a market-based scheduling scenario. Furthermore, as a framework, MX/CS

is modeled to wrap any technical description language for computing services. There-

fore, desideratum D1 is fully satisfied.

Desideratum D2 is fully supported with the specification of the various message

types: PrivateMessage, PublicMessage, MarketMessage, StateMessage and Market-

Information. This specification is consistent with a realistic bidding scenario in which

consumers and providers have full control of their own bidding infrastructure and
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implemented bidding strategies. The PrivateMessage type models the exchange of

internal information within consumers’ and providers’ private environments. The

PublicMessage models the bid that is sent to the auction. MarketMessage is the

contract created when there is an auction match, which is returned from the auction

to the allocated consumer and provider. The StateMessage and MarketInformation

types are used from BidGenerator to update its knowledge base and request market

information.

The creation of electronic contracts between consumer and provider bids is supported

with the specified concepts in MarketMessage (D3). A contract (MarketMessage)

between a consumer and a provider bids (PublicMessages) is created if they match

technically and economically. The MarketMessage contains the digital signatures of

the participants and is sent back to them in the form of a WS-Agreement document,

which contains the auction-specific concepts from the MarketMessage. Moreover, the

XML data model of MX/CS is associated with the MX/CS ontology, which explicitly

defines the utilized concepts in human and machine-readable form (D4). The MX/CS

ontology captures a part of the SORMA system knowledge for the associated system

components and their interactions. With respect to the best practices in ontology

design, the MX/CS ontology concepts are linked to the well-known upper ontology

OpenCyc.

The MX/CS has been implemented as a proof-of-concept in the SORMA prototype.

In the Cloud context, the MX/CS communication protocol can be applied as a wrap-

per to any technical description language for infrastructure services (IaaS) in order to

support the exchange in a market-based scheduling scenario. A detailed description

of the MX/CS integration in three case studies, as well as in a Social Cloud scenario

is presented in Chapter 7.
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Part III

Evaluation





Chapter 6

Agent-Based Numerical Experiments

T
his chapter presents an economic evaluation of Q-Strategy for consumers and

providers in competition settings against benchmark strategies in spot markets.

Section 6.1 depicts the evaluation methodology in detail followed by the setup of

an agent-based environment. Section 6.2 presents the results of the agent-based

experiments and Section 6.3 summarizes the chapter.

6.1 Evaluation Methodology

Evaluation of market mechanisms and bidding strategies for realistic settings is a

complex task dealing with the high heterogeneity of agents, varying preferences and

incomplete information. The performance of an agent depends not only on its own

preferences, but also on the strategies of other agents, and fluctuating supply and

demand. The resulting evaluation space becomes large with the number of possible

agent strategies, nevertheless it is necessary to verify agents’ performances under

these changing conditions (Sodomka et al., 2007).

The newly developed bidding strategy, Q-Strategy, is evaluated against benchmark

strategies in homogeneous and heterogeneous settings. The bidding strategies are

instantiated into bidding agents, according to the defined evaluation scenario. The

agents generate the bids automatically on demand – consumer agents upon receipt

of a new job; provider agents, each time a computing service becomes idle. In or-

der to reduce the technical bias through network communication and concentrate

on the economic outcome, all experiments are executed in a controlled multi-agent

environment with a market mechanism, and a corresponding configuration of con-

sumer and provider bidding agents running on a single machine instance. The design

of the experiments and the evaluation methodology is in keeping with the proposed

methodologies for multi-agent numerical experimentation postulated in Agent-based

Computational Economics and Empirical Game-theoretic Analysis (Tesfatsion, 2006;

MacKie-Mason and Wellman, 2006) (see also Section 2.5).
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Table 6.1: Design of the experiments and variables

Variables Values

Number of provider agents 50, 100

Provider settings Homogeneous agents of {ZIP, GD, Q-Strategy}
Number of consumer agents 10 in total

Consumer settings homogeneous and heterogeneous scenarios
Q-Strategy vs. Benchmark∈{ZIP, GD}
in ratios of (0:10), (1:9), . . ., (10:0) agents

Number of Real job profiles (Feitelson, 2010):
consumer applications LLNL* with ca. 13000 job profiles

HPC2N* with ca. 110000 job profiles
Job duration cj cj ∈ [1, 24] hours

Consumer’s valuation vj per hour N(190, 25), vj ∈ [70, 300]

Provider’s valuation vi per hour N(75, 1.7), vi ∈ [70, 80]

Payment πi,j(vj , cj) = vjcj
Job’s j completion time Fj = tj,startBidding4App − tj,finishAppExec

Metrics Consumer’s scoring function:
max(Uj) with Uj = −vjFj − πi,j
(min. opportunity costs and payments)
Provider’s scoring function:
max(Ui) with Ui = πi,j − vicj
(maximize profit)
Combined consumer and provider scores:
W =

∑
j Uj +

∑
i Ui

Table 6.1 presents the global specification of the variables, the combinations of which

define the overall scope of the experimental settings. The details are discussed in the

following sections.

6.1.1 Setup of the Market Mechanism and the Application Data Profiles

The target market mechanism for all experiments is a spot market by means of

the online Continuous Double Auction. For each experiment setting, the same two

real data profiles – LLNL and HPC2N – were executed separately and independently

from each other in the different settings. The LLNL and the HPC2N application data
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profiles1 i) offer stable characteristics with small fluctuations of the jobs’ technical

parameter values and ii) these workloads have also been applied in other research

works (Feitelson, 2010). Originally, the LPC EGEE was also selected as a third

candidate, but the experiments in Borissov et al. (2010) showed that the evidence

from the outcome with the HPC2N workload is similar to that of the LPC EGEE

workload. Therefore, the LPC EGEE workload was skipped from the evaluation

scenarios in order to save two months of computing time for additional 1200 jobs,

which did not result in a significant difference in the outcome other than of the

HPC2N workload.

The job profile characteristics in the LLNL and HPC2N workloads are in keeping

with the scenarios selected for this work (Section 2.4.1), where consumers execute

the same applications for demand forecasting and image processing, but with slight

variations in job duration (e.g., between 1 and 8 hours in the case of TXTDemand,

Section 2.4.1.1) based on the input data for the applications. Moreover, the log files

have been filtered to support application types with durations between one hour and

twenty-four hours. The lower bound is motivated by the fact that current Cloud

IaaS offerings are for at least one hour of usage; the upper bound is motivated by the

investigated application case studies in Section 2.4.1, which define short-time batch

applications (overnight execution with a maximum of 8 hours), as well as interactive

and quasi real-time applications for image processing with a minimum of one hour

usage time in total. It is assumed that usage time of less than one hour is performed

on internal (own) computing infrastructures. In times of high demand, however, it is

assumed that consumers purchase external computing services for at least one hour

(cf. Section 2.4.1.2).

Moreover, the providers’ minimum hour purchase is motivated by the fact that ap-

plications implicate time and bandwidth costs for reserving computing services, de-

ployment, runtime and monitoring; and these costs may vary with application size.

Therefore, it is not economically feasible to execute applications on outsourced com-

puting services runtimes that are less than one hour and for providers to receive

payment only for the net execution of the application without considering the total

costs.

1Feitelson’s workload archive homepage: <http://www.cs.huji.ac.il/labs/parallel/
workload/logs.htm>.
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Figure 6.1 shows the distribution of the job durations and the cumulative distribution

function of both data profiles. The job durations of the filtered job data profiles are

in keeping with the characteristics of both case studies in Section 2.4.1. The LLNL

data profile has a small differentiation of job duration types with the highest number

of jobs that are 4 and 16 hours long. The mean job duration in LLNL is 8.01h

and the standard deviation is 5.58h. The larger HPC2N data profile has a higher

differentiation of job durations with a mean of 7.50h and a standard deviation of

6.96h. In HPC2N the highest number of jobs have a duration of 2 and 4 hours.

6.1.2 Setup of Bidding Strategies

The evaluation of this work focused on the consumer side in settings with varying ho-

mogeneous and heterogeneous agents, by applying the Q-Strategy, as well as the ZIP

and GD strategies. In order to measure consumer outcome in a market-based schedul-

ing scenario, a more feasible scoring function is needed than just profit maximization

since application owners are not just interested in the price, but in the time-efficient

execution of their applications (Buyya et al., 2002). Therefore, the analysis of the

consumer outcomes was performed with the proposed scoring function in Heydenre-

ich et al. (2010), namely the “minimize completion time and payments”. In order

to reduce evaluation and outcome analysis complexity, the evaluation focused on the

consumer side, where the providers are typically assumed to be profit maximizing

agents. This focus solves two issues for the analysis.

Firstly, real-world providers of computing services apply more complex optimizations

than just profit maximization. Complex optimizations in this case mean more so-

phisticated scoring functions like “maximize computing service utilization and profit,”

“maximize consumer happiness, computing service utilization and profit” and many

others. These optimizations are reflected in the provider’s business models, such as

introducing price differentiations for different consumer types (e.g., “gold,” “silver”

and “bronze”), sophisticated service level agreements, scheduling and utilization poli-

cies (Püschel et al., 2007; Becker et al., 2008). The analysis of the provider side and

derivation of appropriate scoring function will deflect the focus of this work and it

is an important part of many future doctoral theses. Secondly, assuming providers

to be profit maximizers allows provider outcomes to be compared to the outcomes in

the state-of-the-art literature.

The analysis of existing bidding strategies for the Continuous Double Auction and its

variants showed that the GD and ZIP strategies are suitable and fair benchmark can-

didates for evaluation of the Q-Strategy and for the selected domain-specific market
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of this work (Section 3.3.5).

Similar to existing works in the literature for agent-based evaluation, the selected

total number of consumer agents amounts to 10 (Schvartzman and Wellman, 2009;

Vytelingum et al., 2008; Tesauro and Bredin, 2002). Moreover, Tesauro and Bredin

(2002) performed a kind of heterogeneous analysis of competing bidding strategies –

GDX vs. ZIP, as well as GDX vs. GD types of agents, with “typical agent populations

consisting of 10 buyer agents and 10 seller agents.” Table 6.1 shows the design of the

homogeneous and heterogeneous settings. A homogeneous setting is given when all

of the consumer and provider agents apply the same bidding strategy, otherwise the

setting is heterogeneous. In heterogeneous settings, the Q-Strategy competes against

one of the benchmark strategies, (Q − Strategy : Benchmark), in a ratio of (9 : 1)

to (1 : 9) different agents.

In the three workload data profiles – LLNL, HPC2N and LPC EGEE, the number of

computing nodes was around 50 and 100. Therefore, the number of provider agents

in the investigated setting was selected to be either 50 or 100. The scenarios with 50

and 100 providers allows the outcomes to be compared from both a competitive and

less competitive perspective. This differentiation allows the outcome to be evaluated

under a different competition strength. Each provider agent represents a machine

and executes an application exclusively in each time unit immediately after a market

allocation for the specified application duration. The representation of one agent

per machine is motivated by a competitive market-based scheduling scenario where

each provider aims to maximize its goal. For example, Amazon offers computing

services on a spot market, but it is the single provider for EC2 instances, rather than

the double-sided case assumed for multiple providers and multiple consumers. Given

that the focus is on the consumer, all of the provider agents apply only one type of

bidding strategy, either the Q-Strategy, ZIP strategy or GD strategy. Thus, in each

setting the provider agents are “homogeneous.”

The application data profiles do not contain information about the application or

computing service valuations. The distributions that are usually selected for valu-

ations are the uniform and normal distributions (Sandholm et al., 2008; Jiang and

Leyton-Brown, 2007; Robu and Poutre, 2009). The normal distribution is commonly

adopted for evaluating adaptive algorithms and thus selected for the generation of the

application’s valuations (Jiang and Leyton-Brown, 2007). The selected distribution

and range for the job valuations N(190, 25) are consistent with those of prominent

authors on the subject of the agent-based evaluation domain for algorithmic bid-

ding strategies (Schvartzman and Wellman, 2009; Tesauro and Bredin, 2002). The
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generated job valuations (also called limit prices by some authors) are in the range

vj ∈ [70, 300] and do not vary during the experiments; only the bids vary according to

the selected bidding strategy. As with the providers, the computing service valuations

are also normally distributed N(75, 1.7). The application scenario defines the provi-

sioning of substitutable computing services with similar performance characteristics

through well-defined interfaces and different goal maximizing providers. Therefore,

the providers’ i valuations are closer to each other and generated within a tighter

range vi ∈ [70, 80] the valuations that of the consumers. The providers’ valuations

do not change during the experiments; they change according to their bids and the

selected bidding strategy.

6.1.3 Setup of the Multi-Agent System

The multi-agent environment for the experiments integrates the BidGenerator (Sec-

tion 4.4) and the market platform CSpace with a Discrete Event Simulation Engine

(DES) (Borissov et al., 2008b; Nimis et al., 2009). DES is an integral part of a multi-

agent experimental system since it controls the timing and distribution of events and

their correct execution in a controlled environment (Chevaleyre et al., 2006; Ross,

2006). The DES engine uniformly distributes the request events of arriving applica-

tions from the target workload profile (LLNL or HPC2N) to the consumer agents.

Each job from the workload profile is added as an event in DES, which is run and

executed with the respective duration (delay) as specified in the workload profile.

The experimental environment communicates with the market platform CSpace by

implementing the ProtocolInWords and ProtocolOutWords interfaces. In order to re-

duce unnecessary overhead (here the bidding strategies are evaluated; an evaluation

of the system integration and performance is part of Chapter 7), the communication

methods are directly invoked with the required attribute-value pairs for the experi-

ments, instead of creating, serializing and parsing XML messages like in a real system

(Section 5.3). The DES Engine runs the CDA protocol, which receives the messages

from the agents with the ProtocolInWords interface, performs the economic match-

making and responds to the agents with the ProtocolOutWords. The agent uses the

ProtocolInWords interface to register with the market and exchange consumer bids

and provider offers. The ProtocolOutWords interface is used by the CDA i) to send

the match messages to the allocated consumer and provider agents, as well as to ii)

info to broadcast (public information) other agents’ actions, such as bids and clearing

prices, to all registered agents.
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<<component>>  BidGenerator

<<component>>  CSpaceConnector

<<component>>  CSpaceServer

CSpaceDESEngine

eu.sormaproject.bidgenerator.agent

eu.sormaproject.bidgenerator.strategy

eu.sormaproject.market.cspaceconnector

eu.sormaproject.cspace.server

eu.sormaproject.cspace.des

+register(platformURI : string, port : int) : void
+addNewRequest(message : PrivateMessage) : void
+submit(auctionId : string, command : string, message : PublicMessage) : void
+react(message : MarketMessage) : void
+info(query : string, message : PublicMessage) : void
+handleSubmissionException(messageId : string, exception : MarketException) : string
+finish(state : StateMessage) : void
+handleInfoResponse(info : MarketInformation) : void

<<Interface>>
Agent

+generateBid(message : PrivateMessage) : PublicMessage
+updateCalculateScore(state : StateMessage) : void

<<Interface>>
BiddingStrategy

BiddingAgent

ConsumerBiddingAgentImpl

ProviderBiddingAgentImpl

QStrategyZIPStrategy GDStrategy

+getConversation(protocol : Class, id : string) : Conversation
+create(protocol : Class, namespace : string) : Conversation
+setConversationListenerFactory(cfactory : ConversationListenerFactory) : void

<<Interface>>
CSpaceConnection

+Conversation(proxy : ProtocolInWords, conn : CSpaceConnection, cid : string)
+say() : string
+createListener(agent : ProtocolOutWords)
+getId() : string

Conversation

+create(agent : ProtocolOutWords) : OutWordListener

<<Interface>>
ConversationListenerFactory

+ConversationListener(address : string, port : int)
+addListener(agent : ProtocolOutWords, cid : string)
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Figure 6.2: Architecture of an agent-based experimental environment with a Descrete
Event Service Engine
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The specified variables in Table 6.1 define the overall evaluation scenario, the com-

binations of which resulted in 240 unique experimental settings, where each one was

repeated 10 times. The 2400 numerical experiments have been executed on 88 com-

puting nodes over a period of four months on the HP XC3000 cluster system at the

Steinbuch Centre for Computing2.

6.1.4 Analyzing the Efficiency of Bidding Strategies

Common metrics in the economic literature to measure the efficiency of market mech-

anisms and bidding strategies are the overall score of consumers or providers and the

welfare, and combination of both. The literature on automated bidding agents in

CDA investigates the outcome of bidding strategies based on the classic assumption

of profit maximization. In the field of market-based scheduling, it is assumed that

consumers not only minimize payments (increase profit), but also to try minimize

opportunity costs. Heydenreich et al. (2010) proposed a consumer scoring function

for market-based scheduling, which aims to minimize both, the weighted completion

time vjFj and the payments πi,j. Although Heydenreich et al. (2010) propose this

scoring function for a strategy-proof decentralized mechanism in which consumers

can act strategically and providers offer their computing services for free, this scoring

function is a more appropriate metric outcome analysis and for the market-based

scheduling domain rather than just the profit maximization score.

In Heydenreich et al. (2010), the vj is defined as the costs for waiting for an additional

time unit in the machine queue for execution, where F is the time between the “ar-

rival” of the application from the consumer agent until the actual time of application

completion. Within the scope of this work, vj is simply defined as the valuation of

the jobs – a higher valuation of a job represents higher opportunity costs for waiting

for an additional time unit to be allocated on a machine. πi,j is the price per unit

of time that a consumer j has to be pay to the allocated provider i for the required

runtime cj of the job.

In contrast to the mechanism in Heydenreich et al. (2010), providers in the Con-

tinuous Double Auction also behave strategically. Within the scope of this work,

each of the providers are assumed to be traditional profit maximizing agents. With

the selection of this traditional scoring function, a straightforward comparison of the

providers’ outcome to the works of Tesauro and Bredin (2002) and Vytelingum et al.

(2008) is possible to some degree.

2<http://www.scc.kit.edu>.



6.1.5 Sensitivity Analysis 174

Finally, the aggregate consumer and provider scores represents the welfare (here

referred to as combined consumer and provider scores) of the outcome, which is

compared within the different settings.

6.1.5 Sensitivity Analysis

In order to initialize the variables of the parametrized bidding strategies – Q-Strategy,

ZIP and GD – a one-at-a-time sensitivity analysis was performed (Saltelli et al.,

2008). In a one-at-a-time sensitivity analysis, one parameter is varied in each of the

sensitivity analysis experiments. The variation scope of the parameters was spec-

ified according to the specifications in the literature and calibrated for all of the

strategies analyzed. For example, for calibration of the Q-Strategy, the learning rate

β ∈ [0.1, 0.3], the exploration rate ε ∈ [0.1, 0.3] and γ ∈ [0.1, 0.9] have been varied

for the applied value ranges in the literature. The selection of the Q-Strategy pa-

rameters constituted a trade-off between the ability to consider the dynamics of the

environment and the reaction to changing conditions. Whiteson and Stone (2006)

proposed an evolutionary search of Q-Learning parameters for the mountain car and

server application scheduling scenarios. Sun and Peterson (1999) varied the learning

rate through a heuristic policy. In Even-Dar et al. (2003) and Even-Dar and Man-

sour (2004) a stochastic stochastic search for estimating Q-Learning parameters in

stationary settings was performed.

A detailed overview of the sensitivity analysis outcomes and resulting initialization

of the parameters of the bidding strategies is presented in Appendix A. Based on the

results of a sensitivity analysis, the learning rate of the Q-Strategy was set to β = 0.1.

With an exploration rate of ε = 0.3, the Q-Strategy explores the strategy space of

different bids. During the experiments, the exploration rate ε does not change in order

to preserve the learning and adaption facility, and to react to the changing market

dynamics. The Q-Strategy discount factor γ = 0.9, which is also commonly used in

the literature, assigns a higher weight to long-term gains, and accepting short-term

losses. The parameters of the ZIP and GD bidding strategies have been set according

to the results of the sensitivity analysis and the ranges specified in Cliff and Bruten

(1997) and Gjerstad (2003).

6.1.6 Correlation Analysis

The results of the experimental settings are organized according to the criteria in

Table 6.1: The type of job profile applied (LLNL or HPC2N), the number of provider
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machine agents (50 or 100), as well as the provider’s bidding strategy (ZIP, GD

or Q-Strategy). In the case of consumers, the outcomes of the jobs executions are

calculated with the consumer’s scoring function in Table 6.1. The total outcome of

the three bidding strategies can be compared directly only for homogeneous settings.

In heterogeneous settings, however, the agents are assigned different proportions of

Q-Strategy and benchmark agents. Therefore, their performances can only be directly

compared with the average job score through the same types of agents since the 7

Q-Strategy agents execute more jobs than the 3 ZIP agents, assuming that the jobs

from the workload profiles are uniformly distributed to the agents. Therefore, the

Consumers’ Aggregated Average Scores or CAAS is the metric applied to compare

the outcomes of all consumers of the same strategy type in both homogeneous and

heterogeneous consumer settings. The Aggregation in the CAAS points to the fact

that the averages are calculated of one, two or more consumer agents of the same

type.

Analogous to the consumer outcomes, the provider outcomes are similarly averaged

and compared among the three bidding strategies with the Providers’ Aggregated

Average Score or PAAS metric according to the provider’s scoring function in Table

6.1. In contrast to consumers, however, all the providers apply the same type of

bidding strategy in each setting (“homogenous” providers). Therefore, the provider

outcomes can be directly compared for the three bidding strategies and different

settings. In contrast to CAAS, the Aggregation in PAAS points to the fact that the

averages are calculated of all provider agents in a given setting since they are all of

the same type.

The last metric of the comparative analysis is the combined consumer and provider

scores, called CCPAAS, which measures the overall welfare for each of the settings

(Table 6.1).

The setting outcomes in the correlation analysis is tested for normal distribution with

the Chi-square, Kolmogorow-Smirnow and Shapiro-Wilk tests. The tests showed that

most of the clustered outcomes are likely to be normally distributed with an alpha =

0.05. With respect to the failed tests for normal distribution, the correlation analysis

was performed with the nonparametric Spearman correlation coefficient, which does

not require knowledge of the probability distribution of the data. Furthermore, the

Spearman correlation coefficient provides a good approximation of the correlation

because, unlike the Pearson correlation coefficient, it is not affected by higher data

leaps.

A positive correlation in the case of consumers means that when the number of Q-

Strategy agents increases and the number of benchmark agents decreases, the average
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job outcome (CAAS) improves; a negative correlation means that the CAAS recede.

A positive correlation in the case of providers means that when the number of Q-

Strategy agents increases and the number of benchmark agents falls, the average

provider profit (PAAS) improves; a negative correlation means that the provider’s

average profit recedes. Finally, a positive correlation in the combined consumer

and provider scores (CCPAAS) means that when the number of Q-Strategy agents

increases and the number of benchmark agents decreases, the welfare in the system

improves; a negative correlation means that the welfare recedes.

6.2 Evaluation Results

6.2.1 Consumer Outcomes

The overall performance of the Q-Strategy against the benchmark strategies in all

settings is summarized in Table 6.2. The table shows the results from a consumers’

perspective. The consumer outcomes are ordered according to the executed data

profiles – LLNL and HPC2N, the number of providers – 50 and 100, and whether

they stem from the homogeneous strategy settings or heterogeneous ones. In general,

the Q-Strategy outperformed the benchmark strategies ZIP and GD in more than

70% of all settings.

The outcomes in the homogeneous lower supply settings of 50 providers, homoge-

neous LLNL–50 and HPC2N–50, identify a clear pattern in which Q-Strategy con-

sumer agents are 100% successful against the ZIP and GD consumers in cases where

providers also apply the Q-Strategy. However, in the same type of settings, but with

ZIP providers, the GD and ZIP consumers outperformed the Q-Strategy consumers.

In the cases with 50 GD providers, only the ZIP consumers succeeded in outper-

forming the Q-Strategy consumers; the GD consumers failed against the Q-Strategy

consumers. This was to be expected because ZIP and GD agents are designed to

adapt quickly to the public signals, bids and clearing prices of the other agents,

whereas, Q-Strategy is designed to adapt on a long-term basis, as well as to local

information and experience. Therefore, Q-Strategy would not be a good choice in

highly competitive settings (low supply and high demand) and perfect information

about about other agents’ actions.

In the heterogenous lower supply settings of 50 providers, the Q-Strategy consumer

agents almost outperformed the ZIP and GD consumers with the LLNL job profile,

but exhibited mixed performance results in the HPC2N case. In the latter case, the Q-

Strategy consumers failed against ZIP consumers in settings where the providers were
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Table 6.2: Winning performance of the Q-Strategy against the benchmark strategies,
ZIP and GD, in homogeneous and heterogeneous settings of consumers and providers

Data Profile Homogeneous Settings Heterogeneous Settings

LLNL – 50

Consumers Providers

(Q:ZIP ) ZIP 0% 48.34%

(Q:ZIP ) GD 0% 96.67%

(Q:ZIP ) Q 100% 100%

(Q:GD) ZIP 0% 52.67%

(Q:GD) GD 100% 99.23%

(Q:GD) Q 100% 87.78%

LLNL – 100

Consumers Providers

(Q:ZIP ) ZIP 100% 100%

(Q:ZIP ) GD 100% 97.89%

(Q:ZIP ) Q 100% 100%

(Q:GD) ZIP 100% 97.56%

(Q:GD) GD 100% 97.56%

(Q:GD) Q 100% 56.45%

HPC2N – 50

Consumers Providers

(Q:ZIP ) ZIP 0% 0%

(Q:ZIP ) GD 0% 61%

(Q:ZIP ) Q 100% 99.23%

(Q:GD) ZIP 0% 0%

(Q:GD) GD 100% 99.45%

(Q:GD) Q 100% 100%

HPC2N – 100

Consumers Providers

(Q:ZIP ) ZIP 100% 100%

(Q:ZIP ) GD 100% 98.67%

(Q:ZIP ) Q 100% 100%

(Q:GD) ZIP 0% 96.78%

(Q:GD) GD 100% 96.34%

(Q:GD) Q 100% 100%

also of the ZIP type. However, in the remaining settings, the Q-Strategy consumers

showed a higher rate of success against the benchmark bidding strategies.

The consumer outcomes in the higher supply settings of 100 providers show that the

Q-Strategy outperforms the benchmark bidding strategies in almost all settings and

on the highest level. The Q-Strategy consumers failed against the GD consumers only

in one setting, the one with the with the HPC2N job profile with providers of type

ZIP. In summary, Q-Strategy is the best choice in settings with moderate competition

in a scenario with 100 providers and both job profiles. In more competitive settings,



6.2.1 Consumer Outcomes 178

Q-Strategy is almost always the best choice in cases where providers use either the

Q-Strategy or GD strategy. In higher competition settings with ZIP providers, the

price competitive ZIP and GD strategies are the best choice for consumers.

Table 6.3 is a Top 10 list of the combined (Q-Strategy and benchmark strategies)

consumer outcomes for the LLNL data profile, with 50 provider agents. The highest

CAAS scores were achieved in settings that are dominated by Q-Strategy consumer

(10Q) and provider agents of the Q-Strategy type. The settings [(10Q : 0GD) with Q-

Providers] and [(10Q : 0ZIP ) with Q-Providers] are equivalent since the the number

of GD and ZIP agents in these settings is zero. The best outcome was achieved

by the homogeneous settings of Q-Strategy agents; the subsequent highly-ranked

settings are dominated by a higher number of Q-Strategy agents on both the consumer

and provider side. Full lists of the consumer outcomes for all homogeneous and

heterogenous settings can be found in Appendix B.1.

Table 6.3: Top 10 consumer outcomes of settings with 50 providers and the LLNL
data profile. The higher the combined CAAS, the better the outcome of the setting.

No. LLNL 50 Providers Combined CAAS(×105)

Consumers Providers

1 (10Q:0GD) Q-Providers -68551

(10Q:0ZIP ) Q-Providers -69067

2 (8Q:2GD) Q-Providers -147806

3 (9Q:1GD) Q-Providers -149139

4 (7Q:3GD) Q-Providers -155348

5 (2Q:8GD) Q-Providers -155786

6 (4Q:6GD) Q-Providers -158339

7 (6Q:4GD) Q-Providers -158985

8 (10Q:0GD) GD-Providers -161261

9 (3Q:7GD) Q-Providers -161600

10 (0Q:10ZIP ) ZIP-Providers -163205

Table 6.4 shows the outcomes with the same LLNL data profile, but with a higher

supply of computing services with 100 providers. Here again, the settings are domi-

nated by the Q-Strategy consumers and providers that achieved the highest scores.

Table 6.5 shows the outcomes for the configuration of 50 providers and the HPC2N

data profile. Similar to the LLNL data profile, in the 10 times larger HPC2N profile,

the Q-Strategy dominated settings achieved the highest outcomes. Again, the best

outcomes were achieved by the Q-Strategy dominated consumer and provider settings.



179 6.2.1 Consumer Outcomes

Table 6.4: Top 10 consumer outcomes of settings with 100 providers and the LLNL
data profile. The higher the combined CAAS, the better the outcome of the setting.

No. LLNL 100 Providers Combined CAAS(×105)

Consumers Providers

1 (10Q:0ZIP ) Q-Providers -60184

(10Q:0GD) Q-Providers -60323

2 (10Q:0GD) ZIP-Providers -73155

(10Q:0ZIP ) ZIP-Providers -73956

3 (0Q:10GD) ZIP-Providers -85604

4 (0Q:10GD) Q-Providers -95449

5 (10Q:0ZIP ) GD-Providers -110368

(10Q:0GD) GD-Providers -110553

6 (7Q:3GD) Q-Providers -124026

7 (6Q:4GD) Q-Providers -129126

8 (3Q:7GD) Q-Providers -136576

9 (4Q:6GD) Q-Providers -141748

10 (2Q:8GD) ZIP-Providers -146821

Table 6.5: Top 10 consumer outcomes of settings with 50 providers and the HPC2N
data profile. The higher the combined CAAS, the better the outcome of the setting.

No. HPC2N 50 Providers Combined CAAS(×105)

Consumers Providers

1 (10Q:0GD) Q-Providers -1054218

(10Q:0ZIP ) Q-Providers -1085099

2 (0Q:10ZIP ) GD-Providers -1703405

3 (0Q:10ZIP ) ZIP-Providers -1945762

4 (10Q:0ZIP ) GD-Providers -1945778

5 (10Q:0GD) GD-Providers -2200169

6 (9Q:1ZIP ) Q-Providers -2535239

7 (0Q:10ZIP ) Q-Providers -2632936

8 (8Q:2ZIP ) Q-Providers -2725949

9 (7Q:3ZIP ) Q-Providers -2855771

10 (1Q:9ZIP ) GD-Providers -3120306
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Table 6.6: Top 10 consumer outcomes of settings with 100 providers and the HPC2N
data profile. The higher the combined CAAS, the better the outcome of the setting.

No. HPC2N 100 Providers Combined CAAS(×105)

Consumers Providers

1 (10Q:0GD) Q-Providers -576447

(10Q:0ZIP ) Q-Providers -579618

2 (0Q:10GD) ZIP-Providers -734462

3 (10Q:0GD) GD-Providers -903385

4 (0Q:10GD) Q-Providers -974690

5 (10Q:0ZIP ) GD-Providers -1028515

6 (10Q:0ZIP ) ZIP-Providers -1094188

7 (10Q:0GD) ZIP-Providers -1107360

8 (0Q:10GD) GD-Providers -1231504

9 (0Q:10ZIP ) ZIP-Providers -1392967

10 (1Q:9GD) ZIP-Providers -1471657

The outcomes in Table 6.6 with the higher supply and HPC2N data profile confirm

the effectiveness of Q-Strategy in the LLNL settings. In the 50 and 100 provider

cases with the HPC2N data profile, the settings dominated by the Q-Strategy agents

scored higher than those of the benchmark dominated settings.

Figure 6.3 shows the consumer outcomes in settings where all the providers’ agents

are of the GD type and the target job profile is LLNL. The sub-figures (a)–(b) dis-

play the results in higher competitive settings with 50 providers, sub-figures (c)–(d)

present results in settings with 100 providers. The x-axis displays the ten differ-

ent competing scenarios of 0-Q-Strategy and 10 Benchmark (ZIP or GD) consumers

to 10-Q-Strategy and 0-Benchmark -consumers in all consecutive combinations. The

y-axis displays consumers’ aggregated average job score for each of the competing sce-

narios. In contrast to the previously presented “Top 10” tables these figures directly

compare the averaged outcomes of the Q-Strategy agents to those of the Benchmark

agents in each of the competing scenarios. For example, in sub-figure (a), the av-

erage job score of the 1-Q-Strategy consumers is higher than the average scores of

all 9-GD agents. Moreover, in the higher competition setting of sub-figure (a) the

Q-Strategy consumers outperform (CAAS) the GDs in the homogeneous (in these

cases, a direct comparison of the 0:10 and 10:0 is performed) and heterogeneous

settings (between 0:10 and 10:0 ). The Spearman correlation coefficient rs for the

Q-Strategy consumers is somewhat positive, which means that when the number of

Q-Strategy agents increases, the CAAS score improves. From the perspective of the
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(a) (b)

(c) (d)

Figure 6.3: Consumer outcomes in settings with GD-Providers and the LLNL data
profile: (a) Competing settings of (Q-Strategy:GD)-Consumers and 50-GD-Providers;
(b) Competing settings of (Q-Strategy:ZIP)-Consumers and 50-GD-Providers; (c)
Competing settings of (Q-Strategy:GD)-Consumers and 100-GD-Providers; and, (d)
Competing settings of (Q-Strategy:ZIP)-Consumers and 100-GD-Providers.

GD consumers, the correlation is somewhat negative, when the number of GD agents

decreases. Therefore, the CAAS score of the lesser becoming GD consumers decreases

somewhat as the number of Q-Strategy consumers increases.

In contrast, in sub-figure (b) opponents of the Q-Strategy consumer agents are ZIP

consumers. Here, the Q-Strategy consumer agents outperform the ZIP opponents in

almost all heterogeneous settings, but failed in the homogeneous settings. In this

setting and in settings against ZIP consumers, Q-Strategy consumers experienced

an almost negative correlation between their CAAS scores and an increase in the

number of consumers for the Q-Strategy. On the other hand, ZIP agents experienced
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(a) (b)

(c) (d)

Figure 6.4: Consumer outcomes in settings with GD-Providers and the HPC2N data
profile: (a) Competing settings of (Q-Strategy:GD)-Consumers and 50-GD-Providers;
(b) Competing settings of (Q-Strategy:ZIP)-Consumers and 50-GD-Providers; (c)
Competing settings of (Q-Strategy:GD)-Consumers and 100-GD-Providers; and, (d)
Competing settings of (Q-Strategy:ZIP)-Consumers and 100-GD-Providers.

an almost positive correlation between the decreasing number of agents and CAAS

scores, e.g. the 1-ZIP consumer managed to achieve a higher CAAS score than the 9-

Q-Strategy consumers. Both correlations are significant with p < 0.001 and p < 0.05.

In the higher supply case with 100 providers, sub-figures (c)–(d), the Q-Strategy

agents outperform the benchmark strategies ZIP and GD in all heterogeneous and

homogeneous settings. In the higher supply setting, the CAAS correlation of the GD

consumers changed from somewhat negative to almost negative; in other words, GD

consumers achieve higher CAAS when their number increases in relation to the num-
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(a) (b)

(c) (d)

Figure 6.5: Consumer outcomes in settings with Q-Providers and the LLNL data pro-
file: (a) Competing settings of (Q-Strategy:GD)-Consumers and 50-ZIP-Providers;
(b) Competing settings of (Q-Strategy:ZIP)-Consumers and 50-ZIP-Providers; (c)
Competing settings of (Q-Strategy:GD)-Consumers and 100-ZIP-Providers; and, (d)
Competing settings of (Q-Strategy:ZIP)-Consumers and 100-ZIP-Providers.

ber of Q-Strategy consumers. Similar to the outcome in sub-figure (b), the increase

in the number of Q-Strategy consumers correlated negatively with their CAAS score,

whereas the decrease in the number of ZIP consumers improved their CAAS score.

Figure 6.4 shows the same setting configurations, but with the HPC2N job profile,

which is 10 times larger. In almost all heterogeneous and homogeneous settings, the

Q-Strategy agents achieved a higher CAAS than those with the benchmark strategies,

except for the setting in sub-figure (b), where the ZIP consumers scored higher, on

average, in settings with a higher number of Q-Strategy agents. As discussed before,
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(a) (b)

(c) (d)

Figure 6.6: Consumer outcomes in settings with ZIP-Providers and the HPC2N
data profile: (a) Competing settings of (Q-Strategy:GD)-Consumers and 50-ZIP-
Providers; (b) Competing settings of (Q-Strategy:ZIP)-Consumers and 50-ZIP-
Providers; (c) Competing settings of (Q-Strategy:GD)-Consumers and 100-ZIP-
Providers; and, (d) Competing settings of (Q-Strategy:ZIP)-Consumers and 100-ZIP-
Providers.

the ZIP strategy adapts quickly in highly competitive settings, which results in higher

CAAS scores. Furthermore, the outcomes in sub-figures (b)–(d) were, on average,

almost negatively correlated for the Q-Strategy. The correlation of GD consumers

with a higher number of Q-Strategy agents is almost negative, but positive, vice versa.

In contrast, an almost positive correlation can be observed in ZIP consumer agents

as the number of Q-Strategy agents increases.

The competitive property of the ZIP and GD strategies becomes evident when the
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(a) (b)

(c) (d)

Figure 6.7: Consumer outcomes in settings with Q-Providers and the LLNL data pro-
file: (a) Competing settings of (Q-Strategy:GD)-Consumers and 50-Q-Providers; (b)
Competing settings of (Q-Strategy:ZIP)-Consumers and 50-Q-Providers; (c) Com-
peting settings of (Q-Strategy:GD)-Consumers and 100-Q-Providers; and, (d) Com-
peting settings of (Q-Strategy:ZIP)-Consumers and 100-Q-Providers.

providers are also type ZIP (Figure 6.5). In the smaller supply settings with 50

providers, the Q-Strategy consumers outperform their benchmark opponents only in

the heterogeneous settings with a smaller number of Q-Strategy agents; in settings

with a higher number of Q-Strategy agents, the competitive benchmark agents ZIP

and GD achieved higher CAAS. However, in the higher supply settings with 100

providers, the Q-Strategy agents outperform the benchmarks in all homogeneous and

heterogeneous settings. In the case of ZIP providers, the increase in the number of

Q-Strategy agents almost had a negative impact on their CAAS outcome.

In the larger data profile in Figure 6.6 a lower supply of ZIP providers (high com-
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(a) (b)

(c) (d)

Figure 6.8: Consumer outcomes in settings with Q-Providers and the HPC2N data
profile: (a) Competing settings of (Q-Strategy:GD)-Consumers and 50-Q-Providers;
(b) Competing settings of (Q-Strategy:ZIP)-Consumers and 50-Q-Providers; (c)
Competing settings of (Q-Strategy:GD)-Consumers and 100-Q-Providers; and, (d)
Competing settings of (Q-Strategy:ZIP)-Consumers and 100-Q-Providers.

petition for less computing services), the GD and ZIP benchmark strategies outper-

formed the Q-Strategy, whereas in the higher supply setting, the Q-Strategy con-

sumers performed better than the benchmark strategies. However, the rising number

of Q-Strategy agents is almost negatively correlated for the overall consumer scores

(CAAS); only the ZIP consumers in (d) achieved a somewhat positive correlation

with an increase in the number of Q-Strategy agents.

Figure 6.7 depicts a case, in which the providers are of the Q-Strategy type. As

stated earlier, the fully homogeneous settings of Q-Strategy consumers and Q-Strategy
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providers achieved the highest scores. Here, this result is confirmed; in sub-figures (a)–

(d) the Q-Strategy consumers achieved a higher CAAS score against the benchmark

bidding strategies in the low and high supply settings. In contrast to the settings

of ZIP and GD providers, here the consumer bidding strategies correlated positively

with an increase in the number of Q-Strategy agents. The GD consumers in the

high supply setting do not yield significant evidence (p = 0.86) for a correlation

(rs = −0.06 is very close to a correlation of 0).

Figure 6.8 also shows the positive results for the larger HPC2N data profile. In

the case of Q-Strategy providers, the Q-Strategy consumers outperformed the bench-

mark strategies GD and ZIP. Furthermore, the correlation is almost positive for the

consumers’ CAAS when the number of Q-Strategy agents increases, whereas the cor-

relation for ZIP consumers is almost positive when the Q-Strategy consumers are in

the majority.

6.2.2 Provider Outcomes

Table 6.7 presents the outcomes from the provider’s perspective with a supply of

50 machines and with the LLNL data profile. All providers are classic profit max-

imizers and Q-Strategy is configured with the profit maximizing scoring function

for the provider case. As shown in the “Top 10” outcomes, Table 6.7, the highest

providers’ aggregated average score (PAAS) was achieved by providers applying the

ZIP strategy. However, the higher PAAS scores are achieved in settings dominated

by Q-Strategy consumers. Therefore, Q-Strategy consumers paid higher prices, on

average, which resulted in higher profits for the providers. This can be explained

by the fact that Q-Strategy consumers optimize their job specific goals in terms of

completion time and payments, which resulted in higher payments than those of the

price competitive ZIP and GD consumers. Moreover, reinforcement-based strategies

optimize long-term rewards rather than short-term gains like in cases using the ZIP

and GD strategies (Note: GD and ZIP assume and use the public information of

all other agents’ bids and clearing prices in order to remain price competitive. In

markets with imperfect information, these strategies might not be the best choice).

Full lists of the providers’ outcomes of all homogeneous and heterogenous settings

can be found in Appendix B.2.

In the case with 100 providers and the LLNL data profile, Table 6.8, the highest profit

was achieved by providers applying the GD strategy, but again in settings dominated

by Q-Strategy consumer agents.
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Table 6.7: Top 10 provider outcomes of settings with 50 providers and the LLNL
data profile. The higher the PAAS, the better the outcome of the setting.

No. LLNL 50 Providers PAAS(×105)

Consumers Providers

1 (10Q:0ZIP ) ZIP-Providers 6180

(10Q:0GD) ZIP-Providers 6135

2 (9Q:1GD) ZIP-Providers 6088

3 (9Q:1ZIP ) ZIP-Providers 6018

4 (7Q:3GD) ZIP-Providers 5977

5 (8Q:2GD) ZIP-Providers 5937

6 (6Q:4GD) ZIP-Providers 5867

7 (5Q:5GD) ZIP-Providers 5841

8 (8Q:2ZIP ) ZIP-Providers 5779

9 (4Q:6GD) ZIP-Providers 5712

10 (7Q:3ZIP ) ZIP-Providers 5595

Table 6.8: Top 10 provider outcomes of settings with 100 providers and the LLNL
data profile. The higher the PAAS, the better the outcome of the setting.

No. LLNL 100 Providers PAAS(×105)

Consumers Providers

1 (10Q:0GD) GD-Providers 2095

(10Q:0ZIP ) GD-Providers 2079

2 (9Q:1ZIP ) GD-Providers 2029

3 (9Q:1GD) GD-Providers 2023

4 (8Q:2GD) GD-Providers 1953

5 (8Q:2ZIP ) GD-Providers 1934

6 (7Q:3GD) GD-Providers 1887

7 (7Q:3ZIP ) GD-Providers 1833

8 (6Q:4GD) GD-Providers 1804

9 (5Q:5GD) GD-Providers 1734

10 (6Q:4ZIP ) GD-Providers 1732
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Table 6.9: Top 10 provider outcomes of settings with 50 providers and the HPC2N
data profile. The higher the PAAS, the better the outcome of the setting.

No. HPC2N 50 Providers PAAS(×105)

Consumers Providers

1 (10Q:0GD) ZIP-Providers 53314

(10Q:0ZIP ) ZIP-Providers 53066

2 (9Q:1GD) ZIP-Providers 52757

3 (8Q:2GD) ZIP-Providers 52172

4 (9Q:1ZIP ) ZIP-Providers 51785

5 (7Q:3GD) ZIP-Providers 51670

6 (6Q:4GD) ZIP-Providers 50804

7 (8Q:2ZIP ) ZIP-Providers 50281

8 (5Q:5GD) ZIP-Providers 49697

9 (4Q:6GD) ZIP-Providers 49222

10 (7Q:3ZIP ) ZIP-Providers 48436

Table 6.10: Top 10 provider outcomes of settings with 100 providers and the HPC2N
data profile. The higher the PAAS, the better the outcome of the setting.

No. HPC2N 100 Providers PAAS(×105)

Consumers Providers

1 (10Q:0GD) GD-Providers 17669

(10Q:0ZIP ) GD-Providers 17619

2 (9Q:1GD) GD-Providers 17122

3 (9Q:1ZIP ) GD-Providers 17049

4 (8Q:2GD) GD-Providers 16593

5 (8Q:2ZIP ) GD-Providers 16408

6 (7Q:3GD) GD-Providers 16139

7 (7Q:3ZIP ) GD-Providers 15631

8 (6Q:4GD) GD-Providers 15459

9 (5Q:5GD) GD-Providers 14843

10 (6Q:4ZIP ) GD-Providers 14761
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Tables 6.9 and 6.10 display the results with 50 and 100 providers with the HPC2N

data profile. The outcomes of the LLNL and HPC2N data profiles are comparable,

but resulted in higher profits due to higher (10 times more) number of jobs. In the

50 provider HPC2N settings the ZIP providers again achieved higher profits than

the GD and Q-Strategy providers (see Appendix B for a full version of the table),

whereas the GD providers outperformed the GD and Q-Strategy providers in the 100

provider HPC2N settings. Like in the 50 provider settings, the profitable provider

settings also consisted of a dominant number of Q-Strategy consumers.

Figure 6.9 presents the provider outcomes for the LLNL data profile and the varying

types of consumer agents. Based on the design specification and focus on consumers,

all providers are modeled to be homogeneous. Therefore, their outcomes with ZIP,

GD and Q-Strategy provider agents can be directly compared. Unlike with con-

sumers, in the case with provider agents, the scoring function of Q-Strategy is to

maximize profit.

The first sub-figure (a) shows a setting with (Q : GD)-consumers, 50 providers in

total for all three strategy types – ZIP, GD and Q-Strategy – and the data profile

LLNL. The x-axis represents the (Q : GD)-consumers competition settings and the

y-axis is the providers’ aggregated average score. Here, the price competitive and

profit maximizing bidding strategies, ZIP and GD, outperformed Q-Strategy in all

consumer competition settings. However, all three strategies in all of the four sub-

figures correlate significantly and almost positively with an increasing number of

Q-Strategy consumer agents. In the case of sub-figure (b), the Q-Strategy provider

agents outperformed the ZIP and GD providers in the setting, fully dominated by ZIP

consumers outperforming ZIP providers in the (1Q : 9ZIP )-consumers setting. With

an increasing number of Q-Strategy consumers, the ZIP providers outperformed the

GD providers in the higher competition settings with 50 providers, but lost against

them in the moderate competition settings with 100 providers.

In the case of settings with a higher supply, sub-figures (c)–(d), the Q-Strategy

provider agents lost in most of the competitions against the benchmark agents, but

have been successful against the ZIP providers (also in a case against a GD provider,

sub-figure (d)) in settings with a smaller number of Q-Strategy consumers.

In the case of Figure 6.10 and the larger data profile HPC2N, the results are similar.

However, in sub-figure (d) the Q-Strategy providers achieved a higher PAAS against

the ZIP providers in most of the competition settings. Similar to the previous out-

come with the LLNL data profile, the Q-Strategy providers were successful in this
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(a) (b)

(c) (d)

Figure 6.9: Provider outcomes in settings with competing consumers and the LLNL
data profile: (a) Outcome comparison between the 50-Providers of types ZIP, GD
and Q-Strategy, and competing consumers of type (Q-Strategy:GD); (b) Outcome
comparison between the 50-Providers of types ZIP, GD and Q-Strategy, and com-
peting consumers of type (Q-Strategy:ZIP); (c) Outcome comparison between the
100-Providers of types ZIP, GD and Q-Strategy, and competing consumers of type
(Q-Strategy:GD); and, (d) Outcome comparison between the 100-Providers of types
ZIP, GD and Q-Strategy, and competing consumers of type (Q-Strategy:ZIP).

setting, which was dominated by ZIP consumers. However, this evidence is observ-

able only in the moderate competition settings of 100 providers; in the case of higher

competition (lower supply of 50 providers), the Q-Strategy providers have been suc-

cessful only in settings, which are fully dominated by ZIP consumers. As soon as the

number of Q-Strategy consumers increases in relation to the ZIP consumers, the Q-
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(a) (b)

(c) (d)

Figure 6.10: Provider outcomes in settings with competing consumers and the
HPC2N data profile: (a) Outcome comparison between the 50-Providers of types
ZIP, GD and Q-Strategy, and competing consumers of type (Q-Strategy:GD); (b)
Outcome comparison between the 50-Providers of types ZIP, GD and Q-Strategy,
and competing consumers of type (Q-Strategy:ZIP); (c) Outcome comparison be-
tween the 100-Providers of types ZIP, GD and Q-Strategy, and competing consumers
of type (Q-Strategy:GD); and, (d) Outcome comparison between the 100-Providers of
types ZIP, GD and Q-Strategy, and competing consumers of type (Q-Strategy:ZIP).

Strategy providers tend to be outperformed by the ZIP and GD providers. Moreover,

in all settings the rising number of learning Q-Strategy consumers strongly correlated

with the PAAS scores of all provider types (ZIP, GD and Q-Strategy). Therefore,

in all cases, the providers will prefer to have consumers of type Q-Strategy, which

maximize their goals in the long term.
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The outcomes of this section confirm and enhance the findings of Gjerstad (2003),

Tesauro and Bredin (2002), and Das et al. (2001) that the ZIP and GD strategies are

good candidates in price competitive markets, in which public information of other

agents’ actions is available. In addition, these analyses shows that the ZIP providers

outperform the GD providers in the highly competitive settings with 50 providers

and in both workload profiles, LLNL and HPC2N. However, in the moderately com-

petitive settings with 100 providers, the GD providers received the highest PAAS

scores on average. Moreover, an important result of this section is that all types of

the elaborated provider agents (ZIP, GD, Q-Strategy) benefit with the an increas-

ing number of Q-Strategy consumers that aim to maximize their complex long term

goals (“minimum completion time and payments”). In settings, dominated by profit

maximizing ZIP and GD agents, agents, however, the PAAS score for providers was

significantly (p < 0.001) lower.

6.2.3 Combined Outcomes

The combination of the consumers’ and providers’ aggregated average scores (CC-

PAAS) provides a general view of the total CAAS score of both the Q-Strategy CAAS

and Benchmark CAAS, as well as the total PAAS of the providers. Since the con-

sumers’ CAAS has a higher value than the PAAS, with an exponential factor differ-

ence of at least 102, the “Top 10 Lists” would look similar to those of the consumer

outcomes. However, the combined analysis shows the total outcome for each set-

ting, which is summarized for all consumer and provider agents into one value, the

CCPAAS score. Therefore, the CCPAAS analysis allows the derivation of evidence

regarding the general effects of the Q-Strategy agents when competing against bench-

mark agents in homogeneous and heterogeneous scenarios.

Figure 6.11 depicts the combined outcomes in the settings with competing [Q:GD]

and [Q:ZIP] consumers, 50 and 100 providers of type GD, and with the LLNL work-

load profile. The combined outcomes in sub-figure (a) do not significantly (p = 0.92)

correlate with an increasing number of Q-Strategy consumers against a decreasing

number of GD consumers and in the more competitive setting with 50 providers. In

the same setting, but with ZIP Benchmark consumers (sub-figure (b)), the CCPAAS

correlate significantly and almost negatively with an increasing number of Q-Strategy

consumers. In the moderately competitive setting with 100 providers, sub-figures (c)

and (d), the correlation relationships reverse: sub-figure (c) shows a negative cor-

relation with the increasing number of Q-Strategy consumers in relation to the GD

consumers and the CCPAAS score, whereas sub-figure (d) does not show any sig-
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(a) (b)

(c) (d)

Figure 6.11: Combined consumer and provider outcomes in settings with GD-
Providers and the LLNL data profile: (a) Competing settings of (Q-Strategy:GD)-
Consumers and 50-GD-Providers; (b) Competing settings of (Q-Strategy:ZIP)-
Consumers and 50-GD-Providers; (c) Competing settings of (Q-Strategy:GD)-
Consumers and 100-GD-Providers; and, (d) Competing settings of (Q-Strategy:ZIP)-
Consumers and 100-GD-Providers.

nificant change of direction of the CCPAAS scores with an increasing number of

Q-Strategy consumers in relation to ZIP consumers.

In similar settings, but with the larger HPC2N data profile, an increasing number of

Q-Strategy agents does not correlate with the CCPAAS (Figure 6.12). Moreover, the

sub-figures (a) to (d) do not show any significant correlation of the CCPAAS with an

increasing number of Q-Strategy agents, however, in the more competitive settings

with 50 providers, the CCPAAS tend to correlate negatively.

Figure 6.13 shows the similar cases with the LLNL workload profile and with type ZIP
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(a) (b)

(c) (d)

Figure 6.12: Combined consumer and provider outcomes in settings with GD-
Providers and the HPC2N data profile: (a) Competing settings of (Q-Strategy:GD)-
Consumers and 50-GD-Providers; (b) Competing settings of (Q-Strategy:ZIP)-
Consumers and 50-GD-Providers; (c) Competing settings of (Q-Strategy:GD)-
Consumers and 100-GD-Providers; and, (d) Competing settings of (Q-Strategy:ZIP)-
Consumers and 100-GD-Providers.

providers. Sub-figures (a) and (b) show that the CCPAAS correlate significantly and

negatively with an increasing number of Q-Strategy consumers. As observed in the

consumer outcomes, the ZIP and GD consumers outperformed the Q-Strategy when

all providers applied the ZIP strategy. Therefore, sub-figures (a) and (b) confirm this

relationship since the CCPAAS scores improved when the number of ZIP consumers

increase in relation to the Q-Strategy consumers in settings with ZIP providers. In

he moderately competitive settings with 100 providers, sub-figures (c) and (d), there

is no observable or significant correlation between the CCPAAS and the increasing

number of Q-Strategy consumers.
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(a) (b)

(c) (d)

Figure 6.13: Combined consumer and provider outcomes in settings with ZIP-
Providers and the LLNL data profile: (a) Competing settings of (Q-Strategy:GD)-
Consumers and 50-ZIP-Providers; (b) Competing settings of (Q-Strategy:ZIP)-
Consumers and 50-ZIP-Providers; (c) Competing settings of (Q-Strategy:GD)-
Consumers and 100-ZIP-Providers; and, (d) Competing settings of (Q-Strategy:ZIP)-
Consumers and 100-ZIP-Providers.

Figure 6.14 shows the same settings, but with the HPC2N job profile. Only sub-

figure (b) shows a significant and negative correlation of the CCPAAS and the in-

creasing number of Q-Strategy consumers in relation to ZIP consumers. The sub-

figures (a), (c) and (d) show a tendency to negative correlations of the CCPAAS and

the competing consumer settings since the correlations are not significant (p > 0.05).

Figure 6.15 shows the case, in which all providers apply the Q-Strategy and the con-

sumers are executed with the LLNL workload. The outcomes in the high competitive

settings, sub-figures (a) and (b), show a significant (p < 0.05) and positive correlation
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(a) (b)

(c) (d)

Figure 6.14: Combined consumer and provider outcomes in settings with ZIP-
Providers and the HPC2N data profile: (a) Competing settings of (Q-Strategy:GD)-
Consumers and 50-ZIP-Providers; (b) Competing settings of (Q-Strategy:ZIP)-
Consumers and 50-ZIP-Providers; (c) Competing settings of (Q-Strategy:GD)-
Consumers and 100-ZIP-Providers; and, (d) Competing settings of (Q-Strategy:ZIP)-
Consumers and 100-ZIP-Providers.

between the CCPAAS and increasing number of Q-Strategy consumers in relation to

the Benchmark consumers GD and ZIP. In the moderately competitive settings with

100 providers, only sub-figure 6.15d shows a significant and positive correlation of the

CCPAAS and the number of Q-Strategy consumers, sub-figure 6.15c does not show

any correlation at all.

Figure 6.16 displays the cases with the larger HPC2N job profile. The outcomes

in subfigures (a) and (b) confirm the findings of their LLNL equivalences and show

significant and positive correlations between the CCPAAS and the number of Q-
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(a) (b)

(c) (d)

Figure 6.15: Combined consumer and provider outcomes in settings with Q-Providers
and the LLNL data profile: (a) Competing settings of (Q-Strategy:GD)-Consumers
and 50-Q-Providers; (b) Competing settings of (Q-Strategy:ZIP)-Consumers and
50-Q-Providers; (c) Competing settings of (Q-Strategy:GD)-Consumers and 100-Q-
Providers; and, (d) Competing settings of (Q-Strategy:ZIP)-Consumers and 100-Q-
Providers.

Strategy consumer agents. Sub-figure (d) shows a tendency to positive correlations of

the CCPAAS and the number of Q-Strategy consumer agents, whereas, sub-figure (c)

does not show any correlation at all.

The evaluation results show that although the Q-Strategy only adapts from local

experience, it was able to outperform the benchmark strategies in most homoge-

neous and heterogeneous agent settings, from a consumer and combined perspective.

Therefore, Q-Strategy offers a promising approach for automating bidding processes

in markets with complete and incomplete information. In markets with incomplete
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(a) (b)

(c) (d)

Figure 6.16: Combined consumer and provider outcomes in settings with Q-Providers
and the HPC2N data profile: (a) Competing settings of (Q-Strategy:GD)-Consumers
and 50-Q-Providers; (b) Competing settings of (Q-Strategy:ZIP)-Consumers and
50-Q-Providers; (c) Competing settings of (Q-Strategy:GD)-Consumers and 100-Q-
Providers; and, (d) Competing settings of (Q-Strategy:ZIP)-Consumers and 100-Q-
Providers.

information, strategies like ZIP and GD may become infeasible with respect to the

public information available, where the Q-Strategy offers a good approximation for

the exploration and exploitation processes in uncertain environments. However, in

the more competitive settings with providers of type ZIP, the price competitive con-

sumer benchmarks ZIP and GD outperformed the Q-Strategy consumers.

From a provider’s perspective, the price competitive provider strategies ZIP and GD

outperformed the Q-Strategy providers. However, an interesting result from their

outcomes is that all types of providers (ZIP, GD and Q-Strategy) profit with an
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increasing number of Q-Strategy consumers.

Moreover, the evaluation results showed the adaptive and stable behavior of the Q-

Strategy in the various settings and for both job profiles, LLNL and HPC2N. The

combined results of consumer and provider scores confirmed the effectiveness of the Q-

Strategy. The highest consumer scores and combined scores were achieved in settings

with solely Q-Strategy providers and Q-Strategy consumers as well as in settings,

dominated by Q-Strategy consumer agents.

6.3 Summary

This chapter presented the economic evaluation of the Q-Strategy against the selected

(Section 3.3.5) benchmark bidding strategies, ZIP and GD (Section 3.3.4), for the

target market scenario of this work: Spot market, implemented with the Continuous

Double Auction with no time constraints regarding closing times of rounds or days.

The applied evaluation methodology is in keeping with existing methodologies of

agent-based computational economics and empirical game theoretic analysis. In ad-

dition to these methodologies, detailed scenarios with homogenous and heterogeneous

settings of bidding strategies for consumers and homogeneous settings for providers

have been designed for this work. A detailed description of the evaluation methodol-

ogy, homogeneous and heterogeneous settings, selected job profiles, the consumer and

provider scoring functions, the applied statistical methods and the technical archi-

tecture of the agent-based experimental system are presented in Section 6.1. Section

6.2 presented the evidence from the experiments’ outcomes from consumer, provider

and combined perspectives.



Chapter 7

Technical Analysis and Application

T
his chapter presents the integration of the presented models of this work in three

case studies: Two application case studies for batch and interactive jobs and a

case study for generating service level agreements. The case studies, Batch Supply

Chain Data Analysis, Interactive Sensor Data Analysis and e-Service Level Agree-

ments are part of the SORMA project and realistic candidates for using computing

(infrastructure) services on demand. Moreover, the MX/CS communication protocol

was applied in another application scenario called Social Cloud for sharing storage

services in social communities.

7.1 Technical Analysis as Methodology

Technical analysis of software artifacts is a commonly applied methodology in design

science (Hevner et al., 2004). Hevner et al. (2004) provide guidelines and describe

methods for the specification and evaluation of software artifacts. In this context,

software artifacts can be semantic constructs (vocabulary and symbols), software

engineering models, algorithms and prototypes. The Information Systems Research

Framework presents the general concepts Environment, IS Research and Knowledge

Base for describing and evaluating theories and software artifacts (Hevner et al.,

2004). The Environment contains a description of the People roles, the Organization

structure, as well as the applied Technology in terms of infrastructure and appli-

cations. The IS Research concept describes the development processes of theories

and artifacts and their justification/evaluation through analytical comparison, case

studies, experiments, field studies and simulation. The Knowledge Base provides the

fundamental information for building the theories and artifacts in terms of analyses of

existing and commonly applied theories, best practices, existing (formal) frameworks,

models and methodologies. This chapter applies the design science methodology by

describing the application of the developed models for market-based scheduling in

three case studies and in a third-party project. Moreover, a performance analysis
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of the integrated SORMA system is performed, which shows the tractability and

efficient resource usage of the integrated system components.

7.2 Case Study 1: Batch Supply Chain Data Analysis

7.2.1 TXTDemand and Its Market Scenario

The first application scenario addresses the automated submission and execution

of batch jobs on outsourced computing services, which are automatically allocated

through a marketplace and according to the supply and demand. Each batch appli-

cation consists of all required libraries, legal agreements (licenses), input data and

configuration files in order to be automatically deployed and executed on the com-

puting services of the allocated external provider.

Figure 7.1: TXTDemand: An application for supply chain management and data
analysis (screenshot provided by the SORMA project)

TXTDemand is a software application for supply chain management and data analy-
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sis, which performs sophisticated calculations using historic data for demand forecast-

ing of future product sales and derivation of replenishment strategies (Windsor et al.,

2009; Nimis et al., 2008; Neumann et al., 2007). Figure 7.1 shows the user interface

of the TXTDemand application. The TXTDemand application provider configures

and executes the log data of its customers on its local infrastructure. The data logs of

the different customers are executed with TXTDemand as batch applications during

the night since the results often have to be available by the next morning. However,

the TXTDemand application provider needs a flexible and economically efficient way

of acquiring additional computing services on demand to be able to meet customer

demand and deal with the changing preferences of customers. Economic efficiency

with regard to the TXTDemand application provider refers to the platforms, mech-

anisms, methods, and tools needed to enable a rapid, automatic and market-based

allocation of external computing services on demand. The TXTDemand provider ex-

pects to achieve cost reductions through better utilization of its local infrastructure

with acceptable fixed costs by covering its higher demand peaks through the acqui-

sition of computing services from external providers. Moreover, the TXTDemand

provider expects greater flexibility with regard to license costs and greater customer

satisfaction by acquiring differentiable computing services through the market.
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Figure 7.2: Integrated view of TXTDemand SaaS, TXTOrchestrator, BidGenerator,
MX/CS and the SORMA Market for Computing Services (own representation)
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The prototypical integration of TXTDemand with the SORMA market is presented

in Figure 7.2. According to this representation, all of the TXTDemand customers

use the TXTDemand client in order to view the results of their sales data analysis.

In order to receive their results, the customers upload their data to the TXTDemand

Software as a Service, SaaS application. The TXTDemand SaaS performs the steps

Sales Analysis, Replenishment Analysis and Reporting according to the customers’

preferences and on the TXTDemand provider’s local infrastructure. If the customer

demand exceeds the capacity of the TXTDemand provider infrastructure, the TX-

TOrchestrator is activated to acquire external computing services from the market.

The TXTOrchestrator submits a PrivateMessage to the owned BidGenerator, which

starts to execute the bidding processes with the market until an allocation is returned

(cf. Figure 4.3 in Section 4.4.2). Based on the received allocation, the TXTOrches-

trator deploys the TXTDemand SaaS on the external computing service and starts

to execute the customers’ sales data analysis.

7.2.2 TXTDemand Requirements

The following TXTDemand requirements are summarized from Section 2.4.1.1 and

selected according to the models presented for this work:

1. The BidGenerator should provide clear APIs in order to be adopted by non-

experts as well. The BidGenerator should support consumers and providers in

preparing their bids, and help them understand the economic impact of their

actions.

2. Flexibility has to be ensured in case the consumers need more computing ser-

vices than initially agreed.

3. The transfer of consumer data and bidding processes needs to be fast and

performed over a secured communication line, which is part of the SORMA

system’s communication protocol.

4. Privacy, data protection and security has to be ensured with well-defined poli-

cies that are enforced and easy to demonstrate since the TXTDemand applica-

tion handles private and sensitive customer sales data.

5. Negotiations need to be automated and supported according to a clear method-

ology and service level contracts need to be established for technical parameters
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like CPU, memory, storage and bandwidth, as well as for economic parameters

like duration and payment.

6. The market-based scheduling system has to support different payment models

like pay-per-use, dynamic pricing, prepayments and post-payments.

7.2.3 Integration of BidGenerator and MX/CS Protocol

The actual integration of TXTDemand with the SORMA market is realized with the

TXTOrchestrator and its integration with the BidGenerator. The TXTOrchestrator

orchestrates customer batch jobs to computing services allocated from the SORMA

market. Figure 7.3 shows the web user interface of the TXTOrchestrator. It provides

facilities for creating new batch job descriptions, importing batch job descriptions,

calculating technical requirements for the batch jobs based on past experience and ini-

tialization of bid requests to the BidGenerator. The TXTOrchestrator web interface

shows a list of the uploaded ids for the batch jobs with general technical parameters,

time constraints and their values. Based on these parameters, the TXTOrchestrator

creates a PrivateMessage (see Section 5.3.1) with a detailed description of the batch

job, the technical requirements and economic preferences.

Figure 7.3: TXTOrchestrator: General view (screenshot provided by the SORMA
project)

Figure 7.4 shows a detailed view of the utilized technical and economic attributes like
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time constraints, duration, maximum price (valuation), bidding strategy, payment

type and others, which are all part of the PrivateMessage. The TXTOrchestrator uses

the non-blocking Web service interface of BidGenerator to submit the PrivateMessage

for the target batch job. The BidGenerator starts the bidding process as specified

in the PrivateMessage and with the selected bidding strategy. When the bidding

process succeeds, the TXTOrchestrator receives the MarketMessage (Section 5.3.4)

back from BidGenerator and uses it to deploy and execute the batch job on the target

computing service from the allocated external provider.

Figure 7.4: TXTOrchestrator: Job details (screenshot provided by the SORMA
project)

As part of the project SORMA, TXTDemand with TXTOrchestrator was integrated,

tested and evaluated with BidGenerator and the MX/CS communication protocol

(Figure 7.2). The integrated SORMA prototype was installed on several sites in

different countries and continents and its integration was proofed and evaluated by

running test jobs using the TXTDemand settings. The tests proved end-to-end func-

tionality of the running prototype with distributed, heterogeneous network, hardware

and software environments. The TXTDemand application evaluation proved the Bid-

Generator and MX/CS concepts, but could not give clear evidence on the outcome of

the selected bidding strategies because of the heterogeneity of the installed testbeds

with different network, hardware and software characteristics, as well as because of

the TXTDemand -specific design settings for the number of jobs, the number of con-

sumers and the number of providers. Therefore, this work evaluated the bidding
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strategies that were part of BidGenerator, in a controlled experimental environment

with well-defined settings and homogeneous computing nodes of hardware and soft-

ware configurations, as part of a computing cluster (Chapter 6).

7.2.4 Summary of Case Study Contributions

Requirement 1 of the TXTDemand application is addressed in both the architecture

and APIs of the BidGenerator (Section 4.4), as well as the communication proto-

col MX/CS (Section 5.3). Non-experts can use the TXTOrchestrator web interface

to specify their technical and economic preferences, which are transformed into a

PrivateMessage, which is part of the MX/CS protocol. The BidGenerator uses the

values in PrivateMessage to initialize the agents with the selected bidding strategy

in order to start and execute the bidding processes. Moreover, BidGenerator offers

clear and simple APIs for experts, who can implement their own agents and bidding

strategies, as well as integrate tools for further analysis of the market data. Require-

ment 2 is satisfied by the fact that BidGenerator can perform multiple negotiations

for multiple requests in parallel according to the specified consumer requirements and

system resources on which the BidGenerator is running. Furthermore, consumers are

able to predict and specify their requirements in the PrivateMessage and ensure that

the executed TXTDemand service performs a checkpoint of the actual state and be-

fore the requested execution time (job duration) is exceeded. If the job is still not

finished, the TXTOrchestrator can request a new allocation from the BidGenerator

and start the already checkpointed job on the new computing service.

Requirement 3 is satisfied by the integrated security mechanism in the BidGenerator

framework. Each bid generated and submitted to the SORMA system is signed and

validated by a trusted identity provider with the SAML protocol. Requirement 4

addresses security and privacy issues as well. Security and trust in the SORMA sys-

tem are handled according to the SAML protocol. The security and data protection

policies between the application owner and the target computing service provider

are also handled with the SAML protocol, but enforced through additional legal and

data protection policies by SORMA’s Contract Management. However, the legal and

data privacy aspects have been not investigated in detail in SORMA. However, they

will be dealt with in future research.

The automated bidding part of Requirement 5 is fully supported by BidGenerator.

The establishment of service level contracts of technical and economic parameters is

supported by the MX/CS communication protocol and discussed in Section 7.4. Re-

quirement 6 is addressed in the specification of the MX/CS communication protocol,
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which incorporates attributes for bids and payment methods like prepayments and

post-payments.

7.3 Case Study 2: Interactive Sensor Data Analysis

7.3.1 Visage and Its Market Scenario

The second case study represents the class of interactive web-based applications.

Visage is an application for analyzing streamed video data (e.g., camera sensors).
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Figure 7.5: Integrated view of TXTDemand SaaS, TXTOrchestrator, BidGenerator,
MX/CS and the SORMA Market for Computing Services (own representation)

The data analysis is performed in three logical steps (Figure 7.5). The Motion Detec-

tion compares a sequence of two or more pictures in order to detect a motion. The

Object Recognition component performs a pattern recognition to identify the type of

moving object. At the end, a Report is created and submitted back to the client.

Visage is provided as an SaaS and invoked by the client. Similar to the previous sce-

nario, the Visage provider owns a limited computing infrastructure and aims to cover

peak times by acquiring computing services on the market. Visage clients invoke the

Visage Service to get service instances for analyzing the video streams. The Visage

Service returns instances of the Visage provider’s infrastructure or if there are no free
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capacities, Visage invokes BidGenerator in order to acquire computing services from

the market (cf. Figure 4.3 in Section 4.4.2). On successful allocation, the Visage

SaaS is deployed on the target computing services of the external providers and the

new instances are returned back to the Visage client.

7.3.2 Visage Requirements

The following Visage requirements are summarized from Section 2.4.1.2 and selected

according to the models presented in this work:

1. Automated purchasing and allocation of external computing services from the

market according to well-defined and implemented bidding strategies.

2. Efficient deployment of Visage on external computing services.

3. Visage clients may request several resources simultaneously and the allocations

have to take all simultaneous requests into account.

4. The Visage system and clients communicate over secured interfaces and all data

is protected from unauthorized access.

5. The Visage system defines defines the specific requirements for computing ser-

vices that have to be taken into account for the bidding processes and fulfilled

by the external provider.

The Visage requirements are similar to these of TXTDemand, however, the interac-

tive applications have different characteristics from the batch applications in terms

of technical and economic attributes, security, service level agreement creation and

enforcement, as well as the management of contracts and licenses.

7.3.3 Integration of the BidGenerator and MX/CS Protocol

Figure 7.6 presents the integration of the BidGenerator and MX/CS protocol from

the perspective of the Visage client. The second part of the Visage client shows

economic data like Bidding Strategy (part of PrivateMessage), Bid (part of Pub-

licMessage), and Generated Price (i.e., the Clearing Price as part of the returned

MarketMessage), as part of the MX/CS protocol. Moreover, the MarketMessage

contains the endpoint reference of the target Visage service, which is displayed in the

Server url. In this example, the video data is streamed from a directory and the path
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is displayed in the Video Source element. The first part of the Visage client shows

the result of the video data analysis. In the example below, the detected object, the

car, is highlighted.

Figure 7.6: Visage client invoked BidGenerator with the Q-Strategy, received an
allocation of Visage with an endpoint reference and started an analysis of video data
sequences (screenshot provided by the SORMA project)

Figure 7.71 shows a real demonstration of the SORMA system with Visage client, Bid-

Generator, MX/CS and the SORMA Resource Manager called EERM (Maćıas et al.,

2008). The adapted version of both Visage clients in this case utilize the Truth-Telling

bidding strategy when invoking the BidGenerator and show aggregated statistics of

the already processed images on the different Visage service nodes, which have been

allocated through BidGenerator. The aggregated values are similar because of the

1Demonstration at IES 2009, Internet of Services 2009, ICT Challenge 1.2 Service and Software
Architectures, Infrastructures and Engineering Collaboration meeting for FP6 & FP7 projects.
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Figure 7.7: Visage integration (Garry Smith, demonstration at IES 2009, project
SORMA)
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similar economic preferences of the bidding strategy and valuation. The SORMA

Resource Manager shows monitoring information about the Visage service execution

(first part of the EERM’s web interface), as well as economic information like the

bidding strategy and valuation (second part of the EERM’s web interface).

Like in Case Study 1, the Visage service was integrated, tested and evaluated with

BidGenerator and the MX/CS communication protocol as part of the SORMA

project and according to the specific settings of the Visage scenario.

7.3.4 Summary of Case Study Contributions

Requirement 1 of Visage is fully satisfied by BidGenerator since it enables automation

of the bidding processes. The efficient deployment of Visage on external computing

services, Requirement 2, is enabled by the information provided in MX/CS protocol,

the contract between the Visage owner and the computing service provider. The

contract contains the endpoint reference of the target machine, on which the Visage

SaaS is automatically deployed as a web application in Tomcat or Jetty through their

standard deployment interfaces. Requirement 3, simultaneous requests for multiple

computing services, is fully supported by the non-blocking interface and scalable.2

BidGenerator satisfies the part of Requirement 4, which addresses its security con-

cept of signing and validating the MX/CS messages that are exchanged within the

SORMA system. The mechanisms for secured communication between the Visage

client and deployed Visage system are performed outside the SORMA system and

BidGenerator and are defined and realized by the owner of the Visage system.

Requirement 5 is partially satisfied with the MX/CS protocol, which provides at-

tributes to specify technical requirements (e.g., by wrapping JSDL) for the system

resource configurations like CPU, memory, storage and bandwidth, the endpoint

reference for deploying the Visage service, as well as the economic preferences for au-

tomating bidding processes. However, electronic contracts of software services have

to contain application-specific attributes for monitoring and enforcing application-

specific key performance indicators. The definition of application-specific attributes

was not part of this work, however, it will be a subject area of future research.

2Scalability is limited by the system resources on which BidGenerator is running.



213 7.4. CASE STUDY 3: E-SERVICE LEVEL AGREEMENTS

7.4 Case Study 3: Application of MX/CS for e-Service Level
Agreements

7.4.1 Service Level Agreements in SORMA and Requirements

The result of a matchmaking process in the SORMA system is the creation of a

service contract, or a service level agreement (SLA) between the allocated consumer

and provider. The SLA includes technical and economic information from the Pub-

licMessages of the consumer and provider, which is aggregated according to the

matchmaking policy applied (Section 5.4).

The TXTDemand and Visage scenarios define the following requirements with re-

spect to SLAs (Section 2.4.1):

1. A system for market-based scheduling has to provide the possibility of nego-

tiating negotiate service level agreements and instantiating related contracts.

The negotiation process should include technical parameters for raw resources

like CPU, memory, storage and bandwidth. A service level agreement has to

include information about the duration of a job and the maximum reservation

time of the computing service provided.

2. The negotiation protocol has to take into account situations in which resource

providers cannot meet the requirements of certain service level agreements and

are therefore forced to break them. The economic impact of such events and

their causes have to be evaluated and appropriate mechanisms have to be de-

veloped to address them (e.g., compensation payments, which are also called

penalties).

3. To increase acceptance and trust in the system, providers of computing ser-

vices have to be evaluated according to well-defined indicators like reliability,

performance, etc.

4. A market-based scheduling system has to support different payment models like

pay-per-use, dynamic pricing, prepayments and post-payments.

5. The Visage system defines specific requirements for computing services, which

have to be taken into consideration for the purchasing (bidding) processes.

Furthermore, the result of a market-based allocation is a service level agreement,

which has to be fulfilled by the external provider.
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A WS-Agreement is a commonly applied protocol in the Grid community for nego-

tiating service contracts. A WS-Agreement defines the general negotiation concepts,

a detailed definition of these concepts and their instantiation is left up to the ap-

plication designer. Moreover, a WS-Agreement allows the incorporation of other

commonly applied languages like the Job Submission and Description Language. In

the SORMA context, a WS-Agreement is created from the MarketMessage, which is

the result of the matchmaking process of the consumer’s and provider’s PublicMes-

sages. The MarketMessage is transformed into a WS-Agreement document, which

is also called MarketMessage since it incorporates the same data after the syntax-

based transformation has taken place. Moreover, a WS-Agreement is designed for

negotiations and has been adapted through extensions for an auction scenario. The

following section describes the creation procedure of a WS-Agreement document in

SORMA.

7.4.2 Application of the MX/CS Protocol

Figure 7.8 illustrates the mapping of theMarketMessage3 concepts into aWS-Agreement

document. A WS-Agreement document is created from a MarketMessage in six steps.

In the first step, a globally unique contract identification is generated. In the example

below, the ids of the consumer and provider are concatenated with a timestamp. In

the second step, the consumer and provider ids, together with their bid and offer ids

are taken into the WS-Agreement context. The validity period, which is part of the

context, specifies the end time of the contract. The third step includes the creation

of the WS-Agreement ’s service properties – references to the key performance indi-

cators, which are extracted from the technical resource description, which are part

of the MarketMessage. The endpoint reference to the provider’s computing service

is added in step four. In step five, the technical description of a MarketMessage is

taken into the resource description concept of the WS-Agreement document. The

last and sixth step concludes the creation process by extracting the Guarantee Terms

from the technical description (JSDL) and integrating them into the target concept

of the WS-Agreement document.

The transformation process of a MarketMessage into a WS-Agreement document

required a definition of the extensions for the latter. For example, concepts like pay-

ment type, bid, signature and clearing price are missing in the general WS-Agreement

3EJSDLMarket is the name of the MarketMessage, which uses the JSDL description language
for expressing the technical requirements.
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Service Reference
Provider Endpoint Reference

Figure 7.8: Transformation of the MarketMessage concepts into a WS-Agreement
(Borissov et al., 2009b).

framework. Moreover, the WS-Agreement concepts Agreement Initiator and Agree-

ment Responder do not fit with the semantics of the mappedMarketMessage concepts

– Provider and Consumer. Furthermore, a WS-Agreement does not explicitly define

the attributes for adding the consumer and provider signatures. These missing at-

tributes have been included as extensions to the WS-Agreement Guarantee Terms

concept.

Finally, theWS-Agreement allows multiple reward and penalty functions with respect

to the Guarantee Terms to be defined. However, the WS-Agreement specifications

do not offer any practical suggestions for describing and setting penalty and reward

policies, or for mapping and enforcing them. In this context, an incentive compatible

penalty function based on k-pricing for the market-based scheduling domain was

developed by Becker et al. (2008).

7.4.3 Summary of Case Study Contributions

Requirement 1 is addressed in SORMA with the MX/CS protocol and the transfor-

mation procedure of MarketMessage into a WS-Agreement document. Requirement

2 was not fully addressed in the SORMA system, but supported by the concepts

defined for the MX/CS protocol and the research performed in this area (Becker

et al., 2008). However, the calculation of penalties and automatic enforcement of

service level agreements are emerging subject areas for future research. Require-

ment 3 is addressed through the transformation of the MarketMessage concepts into

WS-Agreement key performance indicators, however, more research and evaluation is

required in this area. Requirement 4 is supported by the incorporation of different



7.5. FURTHER APPLICATION SCENARIOS OF MX/CS 216

payment models and pricing concepts in the definition of an MX/CS protocol. More-

over, these concepts are mapped into the extensions of the WS-Agreement document.

Requirement 5 is partially supported by the MX/CS protocol since application ser-

vices like Visage require application-specific attributes, key performance indicators

and penalty functions. The Web service URL to the Visage SaaS is part of the

endpoint reference element of the MX/CS and WS-Agreement documents.

7.5 Further Application Scenarios of MX/CS: Social Cloud

The research project Social Cloud elaborates market mechanisms for incentivizing

members of social network communities to “share resources amongst each other for

little to no gain” (Chard et al., 2011). The computing services can be shared based

on monetary, barter or voluntary agreements. In Chard et al. (2011), the MX/CS

(former EJSDL) communication protocol was applied for the creation of service level

agreements in two market mechanisms, a Posted Price and Reverse Sealed Bid Second

Price auction. Furthermore, the MX/CS was also extended by the parameters avail-

ability and error rate, which are used as key performance indicators in the proposed

mechanisms. The Social Cloud project shows the applicability and extensibility of

the MX/CS communication protocol with two mechanisms (other than the selected

mechanism for this work) for the market-based sharing of storage services through

social networks.

7.6 Performance Analysis

7.6.1 Monitoring of Distributed Services

In order to evaluate the performance of a distributed system, access to system and

application level information is needed. The target programming language of the

SORMA system was Java. Therefore, the components are executed in Java Virtual

Machines (JVM). In order to monitor system level or virtual machine level data, the

Java Management Extensions (JMX) technology can be applied. JMX provides the

implementation of managed objects, which is also called MBeans, as well as the tools

for managing and monitoring system-level data like CPU utilization, memory usage,

storage, threads, devices (e.g., printers) and networks. The JMX provides standard

(Web service) interfaces that enable remote access to the monitored target system

(JVM).

Figure 7.9 shows system-level information of the monitored BidGenerator service
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Figure 7.9: Performance Monitor: System specific data with Java’s VisualVM (own
screenshot)

with Java’s VisualVM tool. Here, the BidGenerator shows that it performs ade-

quately for the duration of all the experiments, as well as a gentle utilization of the

software and hardware resources for the defined settings. However, in settings with a

higher number of agents #agents >= 60 and a high number of parallel bid submis-

sions, over-utilization of the system’s resources occurred, which blocked execution of

the system. However, achieving scalable systems through decentralization, caching

and pre-aggregation techniques is a question of having the hardware resources and

respective software configurations.

Monitoring application level data in (distributed) systems can be realized by im-

plementing so-called System Dashboards. System Dashboards collect and aggregate

monitoring information from the distributed system’s services. Each of the applica-

tions implements a logging mechanism for the internal processes and reports its state
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to the remote interface of the System Dashboard, as well as according to the specified

monitoring data format.

Figure 7.10: Distributed service process monitoring: SORMA Dashboard (screenshot
provided by the SORMA project)

Figure 7.10 shows the web user interface of the SORMA Dashboard. The SORMA

Dashboard uses log4j technology for receiving and aggregating application logs through

its remote-access socket appender. In this example, the SORMA Dashboard shows

logs received from the providers’ Resource Managers. The registered provider ma-

chines are displayed in the panel Resources. Moreover, the Bidding panel displays the

logs received from BidGenerator and the SORMA market (CSpace), i.e., consumer

bids, provider offers, market matches, as well as lists of bids and offers with exceeded

time limits that have not been matched.
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7.6.2 Technical Performance Experiments

The technical performance of the integrated components is evaluated in several ex-

periments with 10 consumer and 10 provider clients (20 in total), as well as with 20

consumer and 20 provider clients (40 in total). Each of the experiments was exe-

cuted in several settings – 10 bids per agent up to 500 bids per agent. The metric

makespan is defined as the time between the submission of the “request for bid”

from the application orchestrator, followed by the bid generation processes, until a

match is returned back to the application orchestrator. The makespan includes the

whole chain of i) PrivateMessage creation and submission to BidGenerator ; ii) the

instantiation of the selected bidding strategy in BidGenerator followed by the bid

generation and creation of a PublicMessage, which is submitted to the target mar-

ket; iii) the matchmaking of the bids in CSpace, iv) resulting in the creation of a

MarketMessage, which is submitted back to the application orchestrator. The se-

lected bidding strategies for the experiments are Truth-Telling (simple candidate)

and Q-Strategy (complex candidate) and the consumer valuations drawn are higher

than the provider valuations in order to produce matches for the evaluated number of

bids. The experiments have been executed on a 4-core Intel Xeon 3.00GHz processor,

the SORMA market machine with the installed market components. The SORMA

market and related components (e.g., Trusted Market Exchange, Section 2.4.3) are

deployed on individual Tomcat servers running within SORMA market machine with

certain configurations with respect to the number of threads allowed and memory us-

age. There was a BidGenerator for all consumer clients and a BidGenerator for all

providers’ clients. The test consumers’ and test providers’ clients with their Bid-

Generators are running on two external machines in addition to the SORMA market

machine, however, in the same network. The aim of this simple experiment was to

test the technical scalability and time performance of the integrated SORMA system

of test clients (simple Job Orchestrators and Resource Orchestrators), BidGenera-

tor, MX/CS and CSpace in settings with 20 and 40 Truth-Telling agents, as well as

Q-Strategy agents.

With respect to the hardware and software characteristics in terms of number of

the possible open connections (constraining the number of running threads), CPU

utilization and memory constraints, an artificial time delay between each bid sub-

mission per agent was added, which is composed from a constant of 500 milliseconds

and additional random milliseconds, which are introduced with the bash’s random

number generator $RANDOM ∈ [0, 32767]. Each of the experiments was repeated 10

times and the results represent the average values. The artificially introduced time

delays are selected from a one-at-a-time sensitivity analysis and all the experiments
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Figure 7.11: Time performance chart of the integrated system in settings with 20
and 40 Truth-Telling agents, as well as Q-Strategy agents

were allowed to be executed without a system block, which typically occurs when a

system’s capacities are overused and when choosing an artificial delay of below 1000

milliseconds for the largest setting.

Figure 7.11 shows the measured total time (makespan) of the four agent scenarios of

20 and 40 gents that apply either the Truth-Telling strategy or Q-Strategy. The x-axis

represents the number of bids per agents and the y-axis is the total time in seconds

needed by all to execute and match their bids. As shown, the makespan increases

linearly in relation to the number of bids in all four Truth-Telling and Q-Strategy

agent settings.

Table 7.1 presents the performance results in more detail. The 20 and 40 agents

needed an approximate similar makespan (sec) for executing their bids; the linear

relation describes the number of executed bids per agent. The largest setting has

40 agents, with each of them submitting 500 bids (i.e., 20000 bids in total), which

was executed for an average of 4.45 hours. The smallest setting of 20 agents with 10

bids per agent (i.e., 200 bids in total) was executed for 4.81 minutes. These settings

show the linear computational and communication efforts of the proof-of-concept



221 7.7. SUMMARY

Table 7.1: Detailed time performance analysis of the integrated system in settings
with 20 and 40 Truth-Telling agents, as well as Q-Strategy agents

Truth-Telling Q-Strategy

#agents (makespan) #agents (makespan)
#bids 20 40 Δ (%) Δ (sec) 20 40 Δ (%) Δ (sec)

10 286 318 11 33 289 320 11 31
30 898 929 3 30 917 964 5 47
50 1524 1581 4 57 1539 1599 4 60
100 3011 3262 8 250 3113 3241 4 127
300 9093 9698 7 605 9408 9593 2 185
500 15511 15937 3 427 15353 15848 3 496

implementation of the components tested, which were constrained by the selected

hardware- and software configurations. The Δ parameter shows the time difference

between the experiments with 40 and 20 agents expressed in percentage and seconds.

These differences increase slowly in the settings with bids of between 10 and 50

and steeper in the remaining ones. The standard deviations of both differences in

the Truth-Telling strategy settings are 3% and 240 seconds, whereas the the standard

deviations for theQ-Strategy settings are 3% and 175 seconds, respectively. According

to the Wilcoxon rank sum test,4 the differences in milliseconds between the Truth-

Telling ’s Δ and Q-Strategy ’s Δ are not significant (p.value = 0.59) for the alternative

hypothesis H1: ΔQ−Strategy > ΔTruth−Telling.

7.7 Summary

This chapter presented the technical analysis performed on the models used in this

work, BidGenerator, Q-Strategy and MX/CS, for three case studies. The first case

study represents the class of batch applications with specific time requirements of

customers for the execution and outcome delivery of their data (Section 7.2). In this

case, the number and type of batch applications is usually known to the TXTDemand

application provider a priori, so their executions can be planned ahead. The class of

interactive applications represented in the second case study are application services

that are executed ad hoc by the consumers without an a priori plan (Section 7.3). The

first two case studies show the application of both BidGenerator and MX/CS. The

4A non-parametric statistical hypothesis test used when comparing two related samples or re-
peated measurements on a single sample to assess whether their population means differ, <http:
//stat.ethz.ch/R-manual/R-patched/library/stats/html/wilcox.test.html>.
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third case study shows the application of MX/CS for creating e-Service Level Agree-

ments with the WS-Agreement specification (Section 7.4). A third-party project,

Social Cloud, showed the applicability and extensibility of the MX/CS communica-

tion protocol for two more market mechanisms and in a social networking scenario

(Section 7.5). The performance analysis in Section 7.6 showed that the integrated

system of BidGenerator, MX/CS and CSpace uses computing services efficiently. In

addition, the bidding and communication efforts scale linearly with the number of

agents and bids, irrespective of the selected bidding strategy.



Part IV

Conclusion





Chapter 8

Summary of This Work and Future Research

T
his chapter summarizes the key contributions of this work with respect to the

research questions introduced in Chapter 1. The final section concludes this

thesis with the outlook for future and complementary research.

8.1 Summary of Contributions

The aim of this work was to elaborate, design, develop and realize models for schedul-

ing computing services with market mechanisms. The literature mainly explored the

definition and application of market mechanisms in this domain, however, research

with regard to the automation of bidding processes in such markets is still largely

unexplored. One possible reason is that researchers design market mechanisms that

aim to satisfy most of the well-known design desiderata (Myerson and Satterthwaite,

1983). A common solution for incentive compatibility in market design is the ap-

plication of Vickrey payments. The results of these works and their mathematical

models are impressive, however, they are based on idealistic assumptions about the

strategic behavior of market participants, e.g., rational bidders that bid truthfully in

strategy-proof mechanisms, and informed bidders (all bidders share the same infor-

mation about the market and other agent’s actions). However, such market models

are not practical, or computationally and communicationally tractable in real online

settings since bidders and their objectives, transaction objects, bidding behavior and

timing for bid submission are heterogeneous (Rothkopf, 2007; Wellman et al., 2007).

This thesis aims to relax these classic and idealistic assumptions and provide eco-

nomic models and practical tools to realize adaptive and flexible bidding agents in a

pragmatic way. The contributions of this work can be summarized as following:

Q-Strategy. Section 3.4 presented a novel bidding strategy as a model for automated

decision making in imperfect market mechanisms with heterogeneous bidders.

The Q-Strategy is specified and realized for both consumers and providers. In

general, the Q-Strategy solves the multi-armed bandit problem for the owner’s
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transaction objects (TO) and for the specified scoring function, which may vary

for each of the different TO. A TO is described within the state space of the

Q-Strategy with its technical and economic attributes. The bids are probabilis-

tically and continuously explored and exploited for each of the different TO in

the Q-Strategy ’s state-action spaces. The adaptive ranking of bids is dynam-

ically updated in the Q-Strategy ’s Q-Table from the received rewards and for

each of the submitted bids. Moreover, the TOs are clustered according to a

similarity criterion in order to foster the ranking (learning) processes for the

TOs’ bids. The Q-Strategy adapts fully based on local information and past ex-

perience and thus it is applicable in markets with imperfect information, where

the dominant bidding strategy is unknown.

BidGenerator Framework. Bidding agents consist of decision making and inter-

active parts. The decision making part is designed and realized in the bidding

strategy module of the BidGenerator framework, the interactive part specifies

interfaces to realize agents and their interactions with the owner’s applications

or computing services, as well as the market. These interfaces implement the

actions based on an owner’s requests, initialization of the bidding strategy se-

lected by the owner, the reaction to the market messages (e.g., match) and the

update of the agent’s knowledge base (e.g., the incorporation of the rewards).

Therefore, the BidGenerator framework (Section 4.4) offers a platform for de-

veloping bidding agents and bidding strategies. The specified interfaces provide

a methodology for implementing the core capabilities of bidding agents (Sec-

tion 4.2). The advantages of decomposing BidGenerator from the target market

platform allows consumers and providers to implement, configure and execute

their own bidding agents and bidding strategies according to their preferences

and needs.

Message Exchange in Computing Service Markets (MX/CS). In order to al-

locate applications to computing services with market-based schedulers, this

work specifies the MX/CS communication protocol (Section 5.3). This pro-

tocol clearly differentiates between messages that are internal to their owners

(called PrivateMessage), public messages submitted to the market mechanism

(called PublicMessage) and match messages (called MarketMessage) created as

a result of the economic and technical matchmaking processes on the market.

Furthermore, the message stack introduces two new message types – Market-

Information and StateMessage, which are applied to query market information
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for the bidding strategies, as well as to update their state-action reward infor-

mation in the agent’s knowledge base. The communication protocol is specified

as an XML schema and ontology. The consumer, provider and SORMA mar-

ket components exchange XML messages according to MX/CS. The MX/CS

ontology explicitly defines the concepts and properties of MX/CS introduced

here. The binding of the XML schema elements and the ontology concepts are

implemented with the SAWSDL language. The modular design of the MX/CS

concepts enable their integration and extensibility with any other standard de-

scription language. Here, MX/CS was applied on top of the Job Submission

and Description Language, enhancing its technical attributes with economic

modules to support the market-based scheduling processes.

The following part maps the research questions in Chapter 1 to the related contribu-

tions of this work.

Research Question 1 ≺Design of Bidding Strategies�
How can bidding strategies for market-based scheduling be designed and implemented,

which when instantiated into bidding agents, automate the bidding process for con-

sumers and providers?

This research question is elaborated in Chapter 3. The chapter contributes to it with

an introduction of general design desiderata for developing bidding strategies. The

design of a bidding strategy depends on the type of target market mechanism, and

its bidding, clearing and information rules. Therefore, the chapter elaborates bidding

strategies for settings of perfect information markets and imperfect information mar-

kets. Section 3.3.2 presents a general framework for designing bidding strategies for

imperfect markets, which was applied to the description of the benchmark bidding

strategies and the Q-Strategy. As an original contribution to the research, Section 3.4

presents the design and specification of the Q-Strategy, which automates the bidding

processes for consumers and providers. The Q-Strategy was implemented in the Bid-

Generator framework and evaluated in agent-based experiments against benchmark

bidding strategies in the Continuous Double Auction.

Research Question 2 ≺Design of a Framework for Automated Bidding�
What are the characteristics of bidding agents and how can they coincide with bidding

strategies in an agent framework for market-based scheduling?
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This research question is elaborated in Chapter 4. The chapter deduces common

design desiderata for developing agent frameworks for a market-based scheduling do-

main. Based on the desiderata, an analytical evaluation of existing agent frameworks

is shown in this chapter. The BidGenerator component specifies and implements

a reference framework for realizing bidding agents and bidding strategies. Further-

more, as a proof of concept, the BidGenerator implements state-of-the-art bidding

strategies and the specified interfaces for developing bidding agents. The assignment

of agents to bidding strategies is specified within the consumer and provider prefer-

ences and performed dynamically on runtime. The BidGenerator framework has a

modular architecture and communicates over interfaces with the related components –

applications, resource managers and the market. The BidGenerator framework was

systematically developed, integrated and tested as a part of the SORMA project.

Moreover, the BidGenerator was integrated with a Discrete Event Engine to build

a Test Box for evaluating bidding strategies and market mechanisms (Nimis et al.,

2009). In this context, the Test Box can be used by other researchers to evaluate their

own bidding strategies and market mechanisms. The integration process with other

market platforms is facilitated with the communication interfaces provided. Chap-

ter 7 presents the integration of the BidGenerator framework in two case studies for

batch and interactive applications. The performance analysis showed that the im-

plemented agents, bidding strategies and communication protocol scale linearly with

the number of agents and exchanged messages.

Research Question 3 ≺Communication Protocols�
What are the characteristics of a message exchange within a market-based scheduling

context? How can technical and economic preferences be expressed, communicated

and matched between consumers, providers and the market?

The characteristics and specifications of a message infrastructure in a system for

market-based scheduling is part of Chapter 5. The first part of this research question

is elaborated in Section 5.1, in which core design desiderata for realizing commu-

nication protocols are identified for market-based scheduling. The state-of-the-art

analysis showed that there are no existing protocols, which satisfy the desiderata

as needed. The second part of the research question is answered in Section 5.3,

which presents a newly developed communication protocol for expressing technical

and economic information on transaction objects (computing services). The MX/CS

communication protocol was one of the first to enable the market-based scheduling of

computing services. It has been developed and applied as part of the SORMA pro-

totype in three case studies (Chapter 7), as well as in a third-party application for

sharing storage services in social networks called Social Cloud (Chard et al., 2011).
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Research Question 4 ≺Evaluation of Bidding Strategies�
How do learning-based bidding strategies score against benchmark bidding strategies

in settings with homogeneous and heterogeneous agents?

This research question is elaborated in Chapter 6. Section 6.1 presents the methodol-

ogy applied for the evaluation the Q-Strategy against the benchmark bidding strate-

gies in homogeneous and heterogenous settings. The evaluation methodology is con-

sistent with well-known works in the area of agent-based computational economics

domain. The evaluation results showed the applicability, adaptability and stable

behavior of the Q-Strategy in varying heterogeneous and homogeneous settings. In

contrast to the related work, the selected consumer scoring function is consistent

with the market-based scheduling domain. To reduce the complexity of the evalua-

tion, the definition of the experiments focused on the consumer side. The providers

are typically assumed to be profit maximizers. The repeated outcome of the 240

unique agent-based experiments showed that the Q-Strategy is competitive in more

than 70% of the settings for the consumers by outperforming the selected benchmark

bidding strategies in scenarios with real job profiles.

8.2 Future Research

This section concludes this work with the presentation of possible future research

directions and complementary research.

8.2.1 Hierarchical Bidding and Transfer Learning

Systems like Google’s search engine, AppEngine, Amazon’s bookstore and Web ser-

vices, Facebook and Twitter are highly distributed, interconnected and scalable to

thousands to millions of users. To achieve autonomous management of complex

systems big problems need to be broken down into smaller ones, solved, and the

solutions applied to the bigger ones. In the case of automated bidding, agents have

to make different decisions about i) which technical parameters are required for a

given application and whether these parameters can be determined for other similar

applications, such as, ii) what market to choose, iii) the available information on this

market, iv) how to bid, etc. These obvious questions result in multiple parameters,

which need to be estimated or learned simultaneously. The concept of hierarchi-

cal reinforcement learning is a promising one for specifying multiple objectives in

sub-units, whose parameters are adapted independently from each other and used to
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maximize future rewards in complex decision making processes (Barto and Mahade-

van, 2003). A hierarchical bidding strategy can have market, bidding and transfer

learning modules. The market module explores the different markets for computing

services available – different providers, service configurations, quality of services, etc.

The bidding module explores and exploits optimal bids for the selected market from

the market module, and the transfer learning module optimizes technical parameters

for actual or newly added applications based on the experience of the application

executions and available market information. Transfer learning is another area of

promising and ongoing research, which deals with the transfer of gained experience

from the execution of one task or application and improving the performance of a

similar, but different task or application. Transfer learning addresses the question

of how to select an appropriate application for the experience to be transferred to

and how to achieve this effectively and autonomously (Taylor and Stone, 2009). In

the context of bidding, and given the knowledge base for application types x1 to x20,

the question would be how to estimate an appropriate technical configuration for

application type x21 or y1?

8.2.2 Automated Bidding for Complex Service Mashups

Another area of future research is the bidding in combinatorial auctions for service

mashups. This scenario assumes that such web applications are designed with com-

patible Web service interfaces of input and output data formats. An application is

represented with its technical specification and interface description (WSDL), which

can be queried from so-called green pages (Bernstein, 1996; Diamantini et al., 2007)).

Service mashups are created from two or more web applications that work together,

integrate with mappings of their input and output interfaces, and exchange message

formats and quality aspects (Papazoglou et al., 2007). Moreover, to simplify the

integration of web applications, an explicit definition of the interfaces of the appli-

cations is required in terms of (machine readable) the semantic descriptions of their

parameters, as well as in relation to other existing parameters (Turner et al., 2003;

Cusumano, 2008). XML has succeeded in becoming a well-utilized basement lan-

guage for describing communication protocols, processes, artifacts and Web service

interfaces (Gold et al., 2004). Furthermore, description languages like BPEL and

WS-CDL are well applied by modeling the business processes of interconnected ser-

vices (Weske, 2007). A field of ongoing research is the automated bidding context for

complex services called Service Value Networks, which investigates methodologies,

risks and incentives for combining existing application services to create higher level

integrated applications (Blau et al., 2009; Michalk and Blau, 2010).
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8.2.3 Design of Flexible Market Platforms

Another research direction is the design and implementation of market platforms that

use Lisp- and ruby-based languages for configuring, deploying runtime and executing

market mechanisms easily. The Game Description Language (GDL) is a declara-

tive language with a Lisp-based syntax that is used to describe arbitrary games

(Thielscher, 2010; Love et al., 2006). This type of platform allows market mecha-

nisms and bidding strategies to be expressed and evaluated with more agility. Similar

to the Trading Agent Competition, a TAC Cloud game can be specified to incentivize

researchers to implement market mechanisms and bidding strategies for market-based

scheduling (Cai et al., 2009). The motivation for specifying a TAC Cloud points to the

need for more pragmatic and computationally tractable solutions that can interact

with research and industry.

8.2.4 Legal Issues and Matchmaking of Service Level Agreements

A match between binding bids results in a contract; this is a legal and binding agree-

ment between a consumer and a provider that captures the already negotiated tech-

nical and economic objectives, which are also called service level objectives (SLOs).

To ensure regular execution of a contract, a target institution monitors the SLOs

continuously to ensure that they are being fulfilled, and is also responsible for cal-

culating final payments or penalties (Becker et al., 2008; Wilkes, 2008; Papazoglou

and van den Heuvel, 2007). SLOs may include any quality of service attributes (e.g.,

“service availability of 99.95%”), technical attributes (e.g., number of CPUs), pay-

ment procedures, penalties, or legal stipulations. The enforcement of SLOs increases

the trustworthiness of consumers and providers (Kephart and Chess, 2003). Kephart

and Chess (2003) also identified the need for effective negotiation and matchmak-

ing algorithms, which provide clear rules and govern the processes that create the

final contract between consumers and providers. Similar to online markets, a market

information system in a market-based scheduling context can capture and provide in-

formation about the reliability and quality of services of providers through reputation

systems (Josang et al., 2007).

8.2.5 Information Services for Computing Service Markets

Like financial markets, market information systems (MIS) for computing services can

aggregate and provide market data with respect to supply and demand (Brunner

et al., 2008). Bidding agents can query market information from the MIS service
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and use it in bid generation processes (Borissov et al., 2009a). Furthermore, MIS

can provide the functionality of “green pages” and store references to running auc-

tions, as well as descriptions of the transaction object types traded. Such information

has to be stored in registries and made findable through a query language according

to a given technical specification. Websites like thecloudmarket.com and cloudex-

change.org already provide such information for humans, but do not offer interfaces

for machine agents.

8.2.6 Economic Resource Management

The provider’s local resource managers perform the actual allocation of the received

applications to their computing infrastructures. This means that control of the appli-

cation’s execution and satisfaction of the related service level agreement is part of the

provider’s scheduling policy (AuYoung et al., 2006; Maćıas et al., 2008). The design

of the provider’s bidding strategies is closely related to the provider’s local scheduling

policies and an important part of the provider’s business model since they affect the

happiness (outcome) of the consumers. Defining efficient local scheduling policies for

computing services by integrating bidding strategies is an area of ongoing research

(Kephart and Walsh, 2004b; AuYoung et al., 2006; Becker et al., 2008; Pueschel and

Neumann, 2009; Michalk et al., 2011).

8.2.7 Cloud Application Engineering and Standardization

In a market-based scheduling scenario, the definition and application of common

standards and tools is crucial for the practicability, trust and acceptance of such a

system. On the one hand, providers agree to apply common APIs and tools when of-

fering their infrastructure services to the market; on the other hand, consumers have

to utilize these APIs and tools to prepare their applications for such a scenario. Open

standards from non-profit organizations like the Open Grid Forum, Distributed Man-

agement Task Force (DMTF, 2010a), Open Science Grid and Open Cloud Manifesto

offer transparent mechanisms and communication protocols for adopting infrastruc-

ture services and reducing lock-in effects for consumers (Nelson, 2009).

8.2.8 Complementary Research

BidGenerator as a development framework for bidding agents and strategies can also

be applied for trading Cloud futures and derivatives, as well as in Ad Auctions (Meinl

and Blau, 2009; Lahaie et al., 2007). Ad Auctions is a promising research field for
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bidding strategies since these auctions are frequently executed each day and can be

modeled as repeated games with incomplete information (Lahaie et al., 2007). The

Q-Strategy is a promising candidate for such kinds of auctions and can be further eval-

uated as part of future research in the TAC/Ad competition (Jordan and Wellman,

2010; Jordan et al., 2010). Moreover, the BidGenerator, bidding strategies and the

MX/CS communication protocol can be applied in market settings for wireless sensor

networks, where mobile agents (smartphones, tablet computers) bid for bandwidth

(Bratman et al., 2009).
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Appendix A

Sensitivity Analysis

According to the one-at-a-time sensitivity analysis methodology, each setting varies

only one parameter of the overall possible combinations.

Tables A.1 and A.4 show the outcomes of the Q-Strategy sensitivity analysis for

homogeneous settings of Q-Strategy consumers and providers with LLNL and HPC2N

data profiles. The combination of exploration rate εq = 0.3 ∈ [0.1; 0.3], learning

rate βq = 0.1 ∈ [0.1; 0.3] and discount factor γq = 0.9 ∈ [0.1; 0.9] achieved the

highest Total Consumer Score (TCS) of the aggregated consumer scoring function

Uj. The parameter ranges are commonly applied and selected from the respective

literature (Whiteson and Stone, 2006; Sun and Peterson, 1999; Even-Dar et al., 2003;

Even-Dar and Mansour, 2004). The parameter combination with the highest TCS

was initialized for all Q-Strategy agents and remained fixed for the duration of the

experiment.

Similarly, Tables A.2 and A.5 present the outcomes of the ZIP sensitivity analysis.

The ZIP learning rate βz = 0.5 ∈ [0.1; 0.5] and the momentum coefficient γz =

0.1 ∈ [0.0; 0.1] achieved the highest TCS for the LLNL data profile, βz = 0.2 and

γz = 0.9 scored highest for the HPC2N data profile. The target value ranges for

the ZIP parameters are taken as suggested and applied by Cliff and Bruten (1997).

The parameter combination βz = 0.5 and γz = 0.1 was selected to initialize the ZIP

agents and remained fixed for the duration of the experiment. The ZIP sensitivity

analysis showed that settings with βz = 0.5, γz = 0.1 or combinations thereof are

more likely to achieve higher TCSs than the related combinations of βz = 0.2 and

γz = 0.9.

Tables A.3 and A.6 display the sensitivity analysis of the GD strategy’s beta rate

parameter βg. The outcomes of βg = 250 and βg = 400 are not significantly different.

All GD agents have been initialized with βg = 250, also called the fast price compet-

itiveness choice, which remains fixed for the duration of the experiment (Gjerstad,

2003). Moreover, the selection of βg = 250 is justified due to the higher TCS with

the larger HPC2N data profile.
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Table A.1: Selection of Q-Strategy’s parameters in settings with Q-Strategy con-
sumers and providers with the LLNL data profile.

Strategy εq βq γq TCS

QStrategy 0.3 0.1 0.9 -179349326598

QStrategy 0.1 0.1 0.9 -188733048145

QStrategy 0.1 0.3 0.9 -190483060168

QStrategy 0.3 0.3 0.9 -194499799223

QStrategy 0.3 0.1 0.2 -197763518085

QStrategy 0.3 0.1 0.1 -199280734261

QStrategy 0.3 0.1 0.5 -203544555310

QStrategy 0.3 0.3 0.2 -209749749374

QStrategy 0.3 0.3 0.5 -209928051158

QStrategy 0.1 0.1 0.5 -210020950464

QStrategy 0.1 0.1 0.2 -216083986357

QStrategy 0.3 0.3 0.1 -217490521652

QStrategy 0.1 0.3 0.2 -222610889409

QStrategy 0.1 0.3 0.5 -228938118420

QStrategy 0.1 0.1 0.1 -245631045967

QStrategy 0.1 0.3 0.1 -253193066141
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Table A.2: Selection of ZIP-Strategy’s parameters in settings with ZIP consumers
and providers with the LLNL data profile.

Strategy βz γz TCS

ZIP 0.5 0.1 -214128131171

ZIP 0.5 0.2 -216255932497

ZIP 0.4 0.1 -216978086142

ZIP 0.4 0.2 -217822968998

ZIP 0.5 0.5 -222629681798

ZIP 0.3 0.1 -222876890288

ZIP 0.3 0.2 -224962053263

ZIP 0.4 0.5 -226750428720

ZIP 0.2 0.9 -226850161164

ZIP 0.3 0.5 -231266085703

ZIP 0.2 0.1 -231791908754

ZIP 0.2 0.2 -233607673291

ZIP 0.2 0.5 -236747889990

ZIP 0.5 0.9 -247485829207

ZIP 0.4 0.9 -249709032425

ZIP 0.3 0.9 -250636753971

Table A.3: Selection of GD-Strategy’s parameters in settings with GD-Strategy con-
sumers and providers with the LLNL data profile.

Strategy βg TCS

GD 400.0 -23007840398990

GD 250.0 -23038336800904
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Table A.4: Selection of Q-Strategy’s parameters in settings with Q-Strategy con-
sumers and providers with the HPC2N data profile.

Strategy εq βq γq TCS

QStrategy 0.3 0.1 0.9 -1233325468563

QStrategy 0.3 0.1 0.5 -1288804606586

QStrategy 0.3 0.1 0.1 -1297339420763

QStrategy 0.3 0.1 0.2 -1311908637690

QStrategy 0.3 0.3 0.9 -1325973901181

QStrategy 0.3 0.3 0.1 -1338159520143

QStrategy 0.3 0.3 0.2 -1368911141138

QStrategy 0.3 0.3 0.5 -1386422273595

QStrategy 0.1 0.1 0.2 -2096264081980

QStrategy 0.1 0.3 0.2 -2164988902096

QStrategy 0.1 0.1 0.9 -2202429703125

QStrategy 0.1 0.3 0.9 -2273741211411

QStrategy 0.1 0.1 0.1 -2279232288606

QStrategy 0.1 0.1 0.5 -2318536586561

QStrategy 0.1 0.3 0.1 -2346200703511

QStrategy 0.1 0.3 0.5 -3218125553768
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Table A.5: Selection of ZIP-Strategy’s parameters in settings with ZIP consumers
and providers with the HPC2N data profile.

Strategy βz γz TCS

ZIP 0.2 0.9 -1265165645908

ZIP 0.4 0.1 -1368204677550

ZIP 0.5 0.1 -1377655155815

ZIP 0.5 0.2 -1383321743681

ZIP 0.3 0.1 -1388478567842

ZIP 0.4 0.2 -1394243560545

ZIP 0.3 0.2 -1410936947078

ZIP 0.5 0.5 -1426500194951

ZIP 0.2 0.1 -1430473953714

ZIP 0.4 0.5 -1440322238509

ZIP 0.3 0.5 -1447431577568

ZIP 0.2 0.2 -1455115025598

ZIP 0.2 0.5 -1459452856239

ZIP 0.3 0.9 -1551589042240

ZIP 0.4 0.9 -1620128983229

ZIP 0.5 0.9 -1623809834826

Table A.6: Selection of GD-Strategy’s parameters in settings with GD consumers
and providers with the HPC2N data profile.

Strategy βg TCS

GD 250.0 -1351355054627723

GD 400.0 -1351516540965796
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Appendix B

Full Tables of the Evaluation Results

B.1 Consumer Outcomes

Table B.1: Consumer outcomes of settings with 50 providers and the LLNL workload.
The higher the combined CAAS, the better the outcome of the setting.

No. LLNL 50 Providers Combined CAAS(×105)

Consumers Providers

1 (10Q:0GD) Q-Providers -68551

2 (10Q:0ZIP ) Q-Providers -69067

3 (8Q:2GD) Q-Providers -147806

4 (9Q:1GD) Q-Providers -149139

5 (7Q:3GD) Q-Providers -155348

6 (2Q:8GD) Q-Providers -155786

7 (4Q:6GD) Q-Providers -158339

8 (6Q:4GD) Q-Providers -158985

9 (10Q:0GD) GD-Providers -161261

10 (3Q:7GD) Q-Providers -161600

11 (0Q:10ZIP ) ZIP-Providers -163205

12 (5Q:5GD) Q-Providers -169742

13 (0Q:10ZIP ) GD-Providers -190029

14 (9Q:1ZIP ) Q-Providers -216004

15 (0Q:10GD) Q-Providers -218088

16 (0Q:10ZIP ) Q-Providers -228094

17 (1Q:9GD) Q-Providers -228525

18 (8Q:2ZIP ) Q-Providers -229104

19 (1Q:9ZIP ) ZIP-Providers -230984

20 (7Q:3ZIP ) Q-Providers -237423

21 (2Q:8ZIP ) ZIP-Providers -244075

22 (6Q:4ZIP ) Q-Providers -248494

23 (5Q:5ZIP ) Q-Providers -257951

24 (3Q:7ZIP ) ZIP-Providers -266514

25 (4Q:6ZIP ) Q-Providers -267779
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26 (3Q:7ZIP ) Q-Providers -276604

27 (2Q:8ZIP ) Q-Providers -287472

28 (1Q:9ZIP ) GD-Providers -292435

29 (1Q:9ZIP ) Q-Providers -300680

30 (2Q:8ZIP ) GD-Providers -307262

31 (3Q:7ZIP ) GD-Providers -313886

32 (4Q:6ZIP ) ZIP-Providers -316514

33 (7Q:3ZIP ) GD-Providers -316622

34 (4Q:6ZIP ) GD-Providers -323994

35 (6Q:4ZIP ) GD-Providers -324057

36 (5Q:5ZIP ) GD-Providers -333597

37 (8Q:2ZIP ) GD-Providers -334425

38 (5Q:5ZIP ) ZIP-Providers -369474

39 (0Q:10GD) ZIP-Providers -438683

40 (9Q:1ZIP ) GD-Providers -465031

41 (6Q:4ZIP ) ZIP-Providers -588712

42 (5Q:5GD) GD-Providers -646030

43 (2Q:8GD) GD-Providers -750562

44 (7Q:3GD) GD-Providers -895138

45 (1Q:9GD) ZIP-Providers -903971

46 (10Q:0ZIP ) GD-Providers -940491

47 (7Q:3ZIP ) ZIP-Providers -966988

48 (1Q:9GD) GD-Providers -1059026

49 (2Q:8GD) ZIP-Providers -1149451

50 (6Q:4GD) GD-Providers -1207267

51 (3Q:7GD) ZIP-Providers -1255518

52 (10Q:0GD) ZIP-Providers -1296764

53 (8Q:2ZIP ) ZIP-Providers -1314218

54 (10Q:0ZIP ) ZIP-Providers -1338354

55 (4Q:6GD) GD-Providers -1340838

56 (3Q:7GD) GD-Providers -1417129

57 (4Q:6GD) ZIP-Providers -1480563

58 (0Q:10GD) GD-Providers -1586744

59 (5Q:5GD) ZIP-Providers -1725407

60 (9Q:1ZIP ) ZIP-Providers -1830294

61 (8Q:2GD) ZIP-Providers -1904263

62 (6Q:4GD) ZIP-Providers -1915432

63 (7Q:3GD) ZIP-Providers -2096641

64 (9Q:1GD) ZIP-Providers -2366724

65 (8Q:2GD) GD-Providers -5942040



B.1. CONSUMER OUTCOMES 242

66 (9Q:1GD) GD-Providers -11099648

Table B.2: Consumer outcomes of settings with 100 providers and the LLNL work-
load. The higher the combined CAAS, the better the outcome of the setting.

No. LLNL 100 Providers Combined CAAS(×105)

Consumers Providers

1 (10Q:0ZIP ) Q-Providers -60184

2 (10Q:0GD) Q-Providers -60323

3 (10Q:0GD) ZIP-Providers -73155

4 (10Q:0ZIP ) ZIP-Providers -73956

5 (0Q:10GD) ZIP-Providers -85604

6 (0Q:10GD) Q-Providers -95449

7 (10Q:0ZIP ) GD-Providers -110368

8 (10Q:0GD) GD-Providers -110553

9 (7Q:3GD) Q-Providers -124026

10 (6Q:4GD) Q-Providers -129126

11 (3Q:7GD) Q-Providers -136576

12 (4Q:6GD) Q-Providers -141748

13 (2Q:8GD) ZIP-Providers -146821

14 (1Q:9GD) ZIP-Providers -150837

15 (3Q:7GD) ZIP-Providers -153308

16 (5Q:5GD) Q-Providers -154328

17 (4Q:6GD) ZIP-Providers -155774

18 (6Q:4GD) ZIP-Providers -160295

19 (0Q:10ZIP ) ZIP-Providers -160900

20 (5Q:5GD) ZIP-Providers -169469

21 (1Q:9GD) Q-Providers -170459

22 (2Q:8GD) Q-Providers -171239

23 (0Q:10ZIP ) GD-Providers -174562

24 (8Q:2GD) ZIP-Providers -175243

25 (9Q:1GD) Q-Providers -175353

26 (0Q:10GD) GD-Providers -177207

27 (7Q:3GD) ZIP-Providers -179542

28 (9Q:1ZIP ) Q-Providers -200096

29 (8Q:2GD) Q-Providers -200764

30 (0Q:10ZIP ) Q-Providers -202447

31 (8Q:2ZIP ) Q-Providers -206671
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32 (7Q:3ZIP ) Q-Providers -210332

33 (6Q:4ZIP ) ZIP-Providers -211281

34 (4Q:6ZIP ) ZIP-Providers -211314

35 (3Q:7ZIP ) ZIP-Providers -211368

36 (7Q:3ZIP ) ZIP-Providers -211698

37 (9Q:1ZIP ) ZIP-Providers -211921

38 (5Q:5ZIP ) ZIP-Providers -212104

39 (2Q:8ZIP ) ZIP-Providers -212456

40 (8Q:2ZIP ) ZIP-Providers -213239

41 (1Q:9ZIP ) ZIP-Providers -215568

42 (6Q:4ZIP ) Q-Providers -216548

43 (5Q:5ZIP ) Q-Providers -224802

44 (4Q:6ZIP ) Q-Providers -228521

45 (9Q:1GD) ZIP-Providers -236838

46 (3Q:7ZIP ) Q-Providers -238517

47 (2Q:8ZIP ) Q-Providers -248712

48 (1Q:9ZIP ) Q-Providers -260289

49 (9Q:1ZIP ) GD-Providers -262761

50 (1Q:9ZIP ) GD-Providers -262990

51 (7Q:3ZIP ) GD-Providers -266602

52 (8Q:2ZIP ) GD-Providers -267406

53 (2Q:8ZIP ) GD-Providers -269743

54 (6Q:4ZIP ) GD-Providers -270321

55 (3Q:7ZIP ) GD-Providers -272609

56 (5Q:5ZIP ) GD-Providers -272917

57 (4Q:6ZIP ) GD-Providers -273087

58 (1Q:9GD) GD-Providers -283668

59 (2Q:8GD) GD-Providers -332753

60 (4Q:6GD) GD-Providers -452748

61 (3Q:7GD) GD-Providers -457567

62 (5Q:5GD) GD-Providers -571206

63 (6Q:4GD) GD-Providers -678564

64 (8Q:2GD) GD-Providers -1560568

65 (7Q:3GD) GD-Providers -2025546

66 (9Q:1GD) GD-Providers -3105745
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Table B.3: Consumer outcomes of settings with 50 providers and the HPC2N work-
load. The higher the combined CAAS, the better the outcome of the setting.

No. HPC2N 50 Providers Combined CAAS(×105)

Consumers Providers

1 (10Q:0GD) Q-Providers -1054218

2 (10Q:0ZIP ) Q-Providers -1085099

3 (0Q:10ZIP ) GD-Providers -1703405

4 (0Q:10ZIP ) ZIP-Providers -1945762

5 (10Q:0ZIP ) GD-Providers -1945778

6 (10Q:0GD) GD-Providers -2200169

7 (9Q:1ZIP ) Q-Providers -2535239

8 (0Q:10ZIP ) Q-Providers -2632936

9 (8Q:2ZIP ) Q-Providers -2725949

10 (7Q:3ZIP ) Q-Providers -2855771

11 (1Q:9ZIP ) GD-Providers -3120306

12 (6Q:4ZIP ) Q-Providers -3263527

13 (2Q:8ZIP ) GD-Providers -3454209

14 (5Q:5ZIP ) Q-Providers -3599000

15 (3Q:7ZIP ) GD-Providers -3708171

16 (9Q:1ZIP ) GD-Providers -3793523

17 (7Q:3ZIP ) GD-Providers -3929615

18 (4Q:6ZIP ) GD-Providers -3960010

19 (4Q:6ZIP ) Q-Providers -4030828

20 (6Q:4ZIP ) GD-Providers -4055351

21 (8Q:2ZIP ) GD-Providers -4167194

22 (3Q:7ZIP ) Q-Providers -4535178

23 (5Q:5ZIP ) GD-Providers -4949095

24 (2Q:8ZIP ) Q-Providers -5160078

25 (0Q:10GD) GD-Providers -5161114

26 (1Q:9ZIP ) Q-Providers -5446674

27 (1Q:9ZIP ) ZIP-Providers -5693947

28 (2Q:8ZIP ) ZIP-Providers -7218910

29 (8Q:2GD) Q-Providers -7506981

30 (1Q:9GD) GD-Providers -7961652

31 (9Q:1GD) Q-Providers -8083268

32 (4Q:6GD) GD-Providers -8098325

33 (4Q:6GD) Q-Providers -8206241

34 (5Q:5GD) Q-Providers -8411912

35 (3Q:7GD) Q-Providers -8529931
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36 (5Q:5GD) GD-Providers -8972354

37 (0Q:10GD) Q-Providers -9382095

38 (6Q:4GD) Q-Providers -9397618

39 (7Q:3GD) GD-Providers -9435986

40 (3Q:7ZIP ) ZIP-Providers -9563017

41 (7Q:3GD) Q-Providers -9615037

42 (1Q:9GD) Q-Providers -9835239

43 (2Q:8GD) GD-Providers -9852016

44 (8Q:2GD) GD-Providers -11131176

45 (2Q:8GD) Q-Providers -11594640

46 (4Q:6ZIP ) ZIP-Providers -11606811

47 (3Q:7GD) GD-Providers -11672395

48 (0Q:10GD) ZIP-Providers -11924207

49 (5Q:5ZIP ) ZIP-Providers -14586371

50 (6Q:4GD) GD-Providers -15923835

51 (6Q:4ZIP ) ZIP-Providers -18853631

52 (7Q:3ZIP ) ZIP-Providers -22436211

53 (10Q:0GD) ZIP-Providers -25536325

54 (10Q:0ZIP ) ZIP-Providers -25609324

55 (9Q:1GD) GD-Providers -27581010

56 (1Q:9GD) ZIP-Providers -27611378

57 (8Q:2ZIP ) ZIP-Providers -27807847

58 (2Q:8GD) ZIP-Providers -29238046

59 (3Q:7GD) ZIP-Providers -30494378

60 (4Q:6GD) ZIP-Providers -32650643

61 (5Q:5GD) ZIP-Providers -33656891

62 (9Q:1ZIP ) ZIP-Providers -34552918

63 (6Q:4GD) ZIP-Providers -37592420

64 (7Q:3GD) ZIP-Providers -39438291

65 (8Q:2GD) ZIP-Providers -43640894

66 (9Q:1GD) ZIP-Providers -46991008
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Table B.4: Consumer outcomes of settings with 100 providers and the HPC2N work-
load. The higher the combined CAAS, the better the outcome of the setting.

No. HPC2N 100 Providers Combined CAAS(×105)

Consumers Providers

1 (10Q:0GD) Q-Providers -576447

2 (10Q:0ZIP ) Q-Providers -579618

3 (0Q:10GD) ZIP-Providers -734462

4 (10Q:0GD) GD-Providers -903385

5 (0Q:10GD) Q-Providers -974690

6 (10Q:0ZIP ) GD-Providers -1028515

7 (10Q:0ZIP ) ZIP-Providers -1094188

8 (10Q:0GD) ZIP-Providers -1107360

9 (0Q:10GD) GD-Providers -1231504

10 (0Q:10ZIP ) ZIP-Providers -1392967

11 (1Q:9GD) ZIP-Providers -1471657

12 (4Q:6GD) Q-Providers -1487436

13 (6Q:4GD) Q-Providers -1487648

14 (3Q:7GD) Q-Providers -1494709

15 (0Q:10ZIP ) GD-Providers -1502237

16 (2Q:8GD) Q-Providers -1522503

17 (2Q:8GD) ZIP-Providers -1541359

18 (3Q:7GD) ZIP-Providers -1610839

19 (4Q:6GD) ZIP-Providers -1670399

20 (1Q:9GD) Q-Providers -1706291

21 (9Q:1GD) Q-Providers -1771652

22 (5Q:5GD) ZIP-Providers -1786840

23 (0Q:10ZIP ) Q-Providers -1799236

24 (2Q:8ZIP ) ZIP-Providers -1848090

25 (3Q:7ZIP ) ZIP-Providers -1854137

26 (1Q:9ZIP ) ZIP-Providers -1862732

27 (9Q:1ZIP ) Q-Providers -1864071

28 (4Q:6ZIP ) ZIP-Providers -1872719

29 (7Q:3GD) Q-Providers -1887748

30 (6Q:4GD) ZIP-Providers -1907666

31 (5Q:5ZIP ) ZIP-Providers -1920339

32 (8Q:2ZIP ) Q-Providers -1926107

33 (6Q:4ZIP ) ZIP-Providers -1972506

34 (5Q:5GD) Q-Providers -1993377

35 (7Q:3ZIP ) Q-Providers -2006344
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36 (7Q:3ZIP ) ZIP-Providers -2060957

37 (7Q:3GD) ZIP-Providers -2062742

38 (6Q:4ZIP ) Q-Providers -2102548

39 (8Q:2GD) ZIP-Providers -2151623

40 (8Q:2ZIP ) ZIP-Providers -2178212

41 (5Q:5ZIP ) Q-Providers -2261270

42 (1Q:9ZIP ) GD-Providers -2294685

43 (9Q:1ZIP ) GD-Providers -2315432

44 (1Q:9GD) GD-Providers -2353024

45 (9Q:1ZIP ) ZIP-Providers -2359334

46 (6Q:4ZIP ) GD-Providers -2364299

47 (2Q:8ZIP ) GD-Providers -2368400

48 (8Q:2ZIP ) GD-Providers -2383186

49 (7Q:3ZIP ) GD-Providers -2383867

50 (5Q:5ZIP ) GD-Providers -2384827

51 (3Q:7ZIP ) GD-Providers -2386808

52 (4Q:6ZIP ) GD-Providers -2397811

53 (9Q:1GD) ZIP-Providers -2436342

54 (4Q:6ZIP ) Q-Providers -2458261

55 (2Q:8GD) GD-Providers -2609021

56 (8Q:2GD) Q-Providers -2658497

57 (3Q:7ZIP ) Q-Providers -2683325

58 (1Q:9ZIP ) Q-Providers -2835382

59 (2Q:8ZIP ) Q-Providers -2837506

60 (4Q:6GD) GD-Providers -3469464

61 (3Q:7GD) GD-Providers -3511246

62 (5Q:5GD) GD-Providers -4357397

63 (7Q:3GD) GD-Providers -4383098

64 (6Q:4GD) GD-Providers -4446110

65 (8Q:2GD) GD-Providers -4819245

66 (9Q:1GD) GD-Providers -9898191
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B.2 Provider Outcomes

Table B.5: Provider outcomes of settings with 50 providers and the LLNL workload.
The higher the PAAS, the better the outcome of the setting.

No. LLNL 50 Providers PAAS(×105)

Consumers Providers

1 (10Q:0ZIP ) ZIP-Providers 6180

2 (10Q:0GD) ZIP-Providers 6135

3 (9Q:1GD) ZIP-Providers 6088

4 (9Q:1ZIP ) ZIP-Providers 6018

5 (7Q:3GD) ZIP-Providers 5977

6 (8Q:2GD) ZIP-Providers 5937

7 (6Q:4GD) ZIP-Providers 5867

8 (5Q:5GD) ZIP-Providers 5841

9 (8Q:2ZIP ) ZIP-Providers 5779

10 (4Q:6GD) ZIP-Providers 5712

11 (7Q:3ZIP ) ZIP-Providers 5595

12 (3Q:7GD) ZIP-Providers 5523

13 (2Q:8GD) ZIP-Providers 5420

14 (6Q:4ZIP ) ZIP-Providers 5170

15 (1Q:9GD) ZIP-Providers 5111

16 (0Q:10GD) ZIP-Providers 4831

17 (10Q:0GD) GD-Providers 4696

18 (10Q:0ZIP ) GD-Providers 4693

19 (9Q:1GD) GD-Providers 4686

20 (9Q:1ZIP ) GD-Providers 4631

21 (8Q:2GD) GD-Providers 4547

22 (8Q:2ZIP ) GD-Providers 4511

23 (7Q:3GD) GD-Providers 4486

24 (6Q:4GD) GD-Providers 4455

25 (5Q:5ZIP ) ZIP-Providers 4412

26 (5Q:5GD) GD-Providers 4384

27 (7Q:3ZIP ) GD-Providers 4353

28 (4Q:6GD) GD-Providers 4340

29 (3Q:7GD) GD-Providers 4272

30 (2Q:8GD) GD-Providers 4208

31 (6Q:4ZIP ) GD-Providers 4197

32 (1Q:9GD) GD-Providers 4147

33 (0Q:10GD) GD-Providers 4049
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34 (5Q:5ZIP ) GD-Providers 3993

35 (4Q:6ZIP ) GD-Providers 3748

36 (4Q:6ZIP ) ZIP-Providers 3693

37 (3Q:7ZIP ) GD-Providers 3348

38 (2Q:8ZIP ) GD-Providers 2866

39 (10Q:0GD) Q-Providers 2509

40 (10Q:0ZIP ) Q-Providers 2497

41 (9Q:1ZIP ) Q-Providers 2453

42 (9Q:1GD) Q-Providers 2443

43 (8Q:2ZIP ) Q-Providers 2439

44 (3Q:7ZIP ) ZIP-Providers 2380

45 (7Q:3ZIP ) Q-Providers 2339

46 (8Q:2GD) Q-Providers 2326

47 (7Q:3GD) Q-Providers 2235

48 (6Q:4ZIP ) Q-Providers 2232

49 (6Q:4GD) Q-Providers 2170

50 (5Q:5GD) Q-Providers 2085

51 (5Q:5ZIP ) Q-Providers 2075

52 (1Q:9ZIP ) GD-Providers 2063

53 (4Q:6GD) Q-Providers 1978

54 (3Q:7GD) Q-Providers 1889

55 (4Q:6ZIP ) Q-Providers 1883

56 (2Q:8GD) Q-Providers 1744

57 (1Q:9GD) Q-Providers 1633

58 (3Q:7ZIP ) Q-Providers 1612

59 (0Q:10GD) Q-Providers 1532

60 (2Q:8ZIP ) ZIP-Providers 1484

61 (2Q:8ZIP ) Q-Providers 1345

62 (1Q:9ZIP ) Q-Providers 1096

63 (1Q:9ZIP ) ZIP-Providers 811

64 (0Q:10ZIP ) Q-Providers 703

65 (0Q:10ZIP ) ZIP-Providers 463

66 (0Q:10ZIP ) GD-Providers 455
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Table B.6: Provider outcomes of settings with 100 providers and the LLNL workload.
The higher the PAAS, the better the outcome of the setting.

No. LLNL 100 Providers PAAS(×105)

Consumers Providers

1 (10Q:0GD) GD-Providers 2095

2 (10Q:0ZIP ) GD-Providers 2079

3 (9Q:1ZIP ) GD-Providers 2029

4 (9Q:1GD) GD-Providers 2023

5 (8Q:2GD) GD-Providers 1953

6 (8Q:2ZIP ) GD-Providers 1934

7 (7Q:3GD) GD-Providers 1887

8 (7Q:3ZIP ) GD-Providers 1833

9 (6Q:4GD) GD-Providers 1804

10 (5Q:5GD) GD-Providers 1734

11 (6Q:4ZIP ) GD-Providers 1732

12 (4Q:6GD) GD-Providers 1627

13 (5Q:5ZIP ) GD-Providers 1592

14 (3Q:7GD) GD-Providers 1522

15 (4Q:6ZIP ) GD-Providers 1456

16 (2Q:8GD) GD-Providers 1380

17 (10Q:0ZIP ) ZIP-Providers 1309

18 (10Q:0GD) ZIP-Providers 1306

19 (3Q:7ZIP ) GD-Providers 1268

20 (9Q:1GD) ZIP-Providers 1228

21 (1Q:9GD) GD-Providers 1223

22 (9Q:1ZIP ) ZIP-Providers 1155

23 (10Q:0GD) Q-Providers 1154

24 (8Q:2GD) ZIP-Providers 1136

25 (10Q:0ZIP ) Q-Providers 1133

26 (9Q:1GD) Q-Providers 1096

27 (0Q:10GD) GD-Providers 1089

28 (7Q:3GD) ZIP-Providers 1077

29 (8Q:2GD) Q-Providers 1054

30 (9Q:1ZIP ) Q-Providers 1045

31 (2Q:8ZIP ) GD-Providers 1023

32 (6Q:4GD) ZIP-Providers 1023

33 (8Q:2ZIP ) ZIP-Providers 999

34 (7Q:3GD) Q-Providers 992

35 (5Q:5GD) ZIP-Providers 973
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36 (6Q:4GD) Q-Providers 958

37 (8Q:2ZIP ) Q-Providers 937

38 (4Q:6GD) ZIP-Providers 919

39 (5Q:5GD) Q-Providers 913

40 (7Q:3ZIP ) ZIP-Providers 894

41 (4Q:6GD) Q-Providers 891

42 (7Q:3ZIP ) Q-Providers 862

43 (3Q:7GD) ZIP-Providers 861

44 (3Q:7GD) Q-Providers 838

45 (2Q:8GD) Q-Providers 817

46 (2Q:8GD) ZIP-Providers 810

47 (6Q:4ZIP ) ZIP-Providers 776

48 (1Q:9GD) Q-Providers 773

49 (1Q:9GD) ZIP-Providers 767

50 (6Q:4ZIP ) Q-Providers 767

51 (0Q:10GD) Q-Providers 745

52 (0Q:10GD) ZIP-Providers 715

53 (5Q:5ZIP ) Q-Providers 698

54 (1Q:9ZIP ) GD-Providers 687

55 (5Q:5ZIP ) ZIP-Providers 658

56 (4Q:6ZIP ) Q-Providers 600

57 (4Q:6ZIP ) ZIP-Providers 548

58 (3Q:7ZIP ) Q-Providers 524

59 (2Q:8ZIP ) Q-Providers 451

60 (3Q:7ZIP ) ZIP-Providers 446

61 (1Q:9ZIP ) Q-Providers 362

62 (2Q:8ZIP ) ZIP-Providers 340

63 (0Q:10ZIP ) Q-Providers 259

64 (1Q:9ZIP ) ZIP-Providers 229

65 (0Q:10ZIP ) GD-Providers 191

66 (0Q:10ZIP ) ZIP-Providers 103
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Table B.7: Provider outcomes of settings with 50 providers and the HPC2N workload.
The higher the PAAS, the better the outcome of the setting.

No. HPC2N 50 Providers PAAS(×105)

Consumers Providers

1 (10Q:0GD) ZIP-Providers 53314

2 (10Q:0ZIP ) ZIP-Providers 53066

3 (9Q:1GD) ZIP-Providers 52757

4 (8Q:2GD) ZIP-Providers 52172

5 (9Q:1ZIP ) ZIP-Providers 51785

6 (7Q:3GD) ZIP-Providers 51670

7 (6Q:4GD) ZIP-Providers 50804

8 (8Q:2ZIP ) ZIP-Providers 50281

9 (5Q:5GD) ZIP-Providers 49697

10 (4Q:6GD) ZIP-Providers 49222

11 (7Q:3ZIP ) ZIP-Providers 48436

12 (3Q:7GD) ZIP-Providers 47866

13 (2Q:8GD) ZIP-Providers 47313

14 (6Q:4ZIP ) ZIP-Providers 45952

15 (1Q:9GD) ZIP-Providers 45884

16 (0Q:10GD) ZIP-Providers 44638

17 (5Q:5ZIP ) ZIP-Providers 42491

18 (10Q:0GD) GD-Providers 41716

19 (10Q:0ZIP ) GD-Providers 41680

20 (9Q:1GD) GD-Providers 41223

21 (9Q:1ZIP ) GD-Providers 41084

22 (8Q:2GD) GD-Providers 40748

23 (8Q:2ZIP ) GD-Providers 40363

24 (7Q:3GD) GD-Providers 40253

25 (6Q:4GD) GD-Providers 39759

26 (7Q:3ZIP ) GD-Providers 39507

27 (5Q:5GD) GD-Providers 39309

28 (4Q:6ZIP ) ZIP-Providers 38602

29 (4Q:6GD) GD-Providers 38574

30 (6Q:4ZIP ) GD-Providers 38218

31 (3Q:7GD) GD-Providers 37929

32 (2Q:8GD) GD-Providers 37191

33 (5Q:5ZIP ) GD-Providers 37086

34 (1Q:9GD) GD-Providers 36290

35 (4Q:6ZIP ) GD-Providers 34993
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36 (0Q:10GD) GD-Providers 34616

37 (3Q:7ZIP ) ZIP-Providers 34321

38 (3Q:7ZIP ) GD-Providers 32327

39 (10Q:0GD) Q-Providers 32011

40 (10Q:0ZIP ) Q-Providers 31997

41 (9Q:1ZIP ) Q-Providers 31691

42 (8Q:2ZIP ) Q-Providers 31415

43 (9Q:1GD) Q-Providers 31382

44 (8Q:2GD) Q-Providers 31125

45 (7Q:3ZIP ) Q-Providers 31002

46 (6Q:4ZIP ) Q-Providers 30650

47 (7Q:3GD) Q-Providers 30596

48 (5Q:5ZIP ) Q-Providers 30143

49 (6Q:4GD) Q-Providers 30038

50 (5Q:5GD) Q-Providers 29700

51 (4Q:6GD) Q-Providers 29191

52 (4Q:6ZIP ) Q-Providers 29168

53 (3Q:7GD) Q-Providers 28565

54 (2Q:8ZIP ) GD-Providers 28032

55 (2Q:8GD) Q-Providers 27881

56 (3Q:7ZIP ) Q-Providers 27845

57 (2Q:8ZIP ) ZIP-Providers 27493

58 (1Q:9GD) Q-Providers 26894

59 (0Q:10GD) Q-Providers 26244

60 (2Q:8ZIP ) Q-Providers 25831

61 (1Q:9ZIP ) Q-Providers 23127

62 (1Q:9ZIP ) GD-Providers 21709

63 (1Q:9ZIP ) ZIP-Providers 20589

64 (0Q:10ZIP ) Q-Providers 17394

65 (0Q:10ZIP ) ZIP-Providers 10038

66 (0Q:10ZIP ) GD-Providers 7714
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Table B.8: Provider outcomes of settings with 100 providers and the HPC2N work-
load. The higher the PAAS, the better the outcome of the setting.

No. HPC2N 100 Providers PAAS(×105)

Consumers Providers

1 (10Q:0GD) GD-Providers 17669

2 (10Q:0ZIP ) GD-Providers 17619

3 (9Q:1GD) GD-Providers 17122

4 (9Q:1ZIP ) GD-Providers 17049

5 (8Q:2GD) GD-Providers 16593

6 (8Q:2ZIP ) GD-Providers 16408

7 (7Q:3GD) GD-Providers 16139

8 (7Q:3ZIP ) GD-Providers 15631

9 (6Q:4GD) GD-Providers 15459

10 (5Q:5GD) GD-Providers 14843

11 (6Q:4ZIP ) GD-Providers 14761

12 (4Q:6GD) GD-Providers 14095

13 (10Q:0GD) ZIP-Providers 14074

14 (10Q:0ZIP ) ZIP-Providers 14062

15 (5Q:5ZIP ) GD-Providers 13787

16 (9Q:1GD) ZIP-Providers 13371

17 (3Q:7GD) GD-Providers 13322

18 (9Q:1ZIP ) ZIP-Providers 12817

19 (4Q:6ZIP ) GD-Providers 12543

20 (8Q:2GD) ZIP-Providers 12468

21 (2Q:8GD) GD-Providers 12227

22 (7Q:3GD) ZIP-Providers 11910

23 (6Q:4GD) ZIP-Providers 11147

24 (1Q:9GD) GD-Providers 11117

25 (8Q:2ZIP ) ZIP-Providers 11041

26 (3Q:7ZIP ) GD-Providers 10997

27 (10Q:0GD) Q-Providers 10821

28 (10Q:0ZIP ) Q-Providers 10793

29 (9Q:1ZIP ) Q-Providers 10511

30 (9Q:1GD) Q-Providers 10461

31 (5Q:5GD) ZIP-Providers 10308

32 (8Q:2ZIP ) Q-Providers 10178

33 (8Q:2GD) Q-Providers 10125

34 (7Q:3ZIP ) Q-Providers 9908

35 (0Q:10GD) GD-Providers 9838
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36 (7Q:3GD) Q-Providers 9791

37 (4Q:6GD) ZIP-Providers 9682

38 (7Q:3ZIP ) ZIP-Providers 9650

39 (6Q:4ZIP ) Q-Providers 9575

40 (6Q:4GD) Q-Providers 9413

41 (5Q:5ZIP ) Q-Providers 9210

42 (3Q:7GD) ZIP-Providers 9098

43 (5Q:5GD) Q-Providers 9057

44 (2Q:8ZIP ) GD-Providers 8990

45 (4Q:6GD) Q-Providers 8745

46 (4Q:6ZIP ) Q-Providers 8734

47 (2Q:8GD) ZIP-Providers 8499

48 (3Q:7GD) Q-Providers 8313

49 (6Q:4ZIP ) ZIP-Providers 8124

50 (3Q:7ZIP ) Q-Providers 8022

51 (1Q:9GD) ZIP-Providers 7989

52 (2Q:8GD) Q-Providers 7950

53 (0Q:10GD) ZIP-Providers 7494

54 (1Q:9GD) Q-Providers 7474

55 (2Q:8ZIP ) Q-Providers 7079

56 (0Q:10GD) Q-Providers 6990

57 (5Q:5ZIP ) ZIP-Providers 6840

58 (1Q:9ZIP ) GD-Providers 6043

59 (1Q:9ZIP ) Q-Providers 5712

60 (4Q:6ZIP ) ZIP-Providers 5496

61 (3Q:7ZIP ) ZIP-Providers 4179

62 (0Q:10ZIP ) Q-Providers 3075

63 (2Q:8ZIP ) ZIP-Providers 2902

64 (1Q:9ZIP ) ZIP-Providers 1834

65 (0Q:10ZIP ) GD-Providers 1278

66 (0Q:10ZIP ) ZIP-Providers 845
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B.3 Combined Outcomes

Table B.9: Combined outcomes of settings with 50 providers and the LLNL workload.
The higher the CCPAAS, the better the outcome of the setting.

No. LLNL 50 Providers CCPAAS(×105)

Consumers Providers

1 (10Q:0GD) Q-Providers -66042

2 (10Q:0ZIP ) Q-Providers -66570

3 (8Q:2GD) Q-Providers -145479

4 (9Q:1GD) Q-Providers -146696

5 (7Q:3GD) Q-Providers -153113

6 (2Q:8GD) Q-Providers -154041

7 (4Q:6GD) Q-Providers -156360

8 (10Q:0GD) GD-Providers -156565

9 (6Q:4GD) Q-Providers -156814

10 (3Q:7GD) Q-Providers -159711

11 (0Q:10ZIP ) ZIP-Providers -162742

12 (5Q:5GD) Q-Providers -167657

13 (0Q:10ZIP ) GD-Providers -189574

14 (9Q:1ZIP ) Q-Providers -213552

15 (0Q:10GD) Q-Providers -216556

16 (8Q:2ZIP ) Q-Providers -226665

17 (1Q:9GD) Q-Providers -226892

18 (0Q:10ZIP ) Q-Providers -227391

19 (1Q:9ZIP ) ZIP-Providers -230174

20 (7Q:3ZIP ) Q-Providers -235083

21 (2Q:8ZIP ) ZIP-Providers -242591

22 (6Q:4ZIP ) Q-Providers -246261

23 (5Q:5ZIP ) Q-Providers -255876

24 (3Q:7ZIP ) ZIP-Providers -264133

25 (4Q:6ZIP ) Q-Providers -265897

26 (3Q:7ZIP ) Q-Providers -274992

27 (2Q:8ZIP ) Q-Providers -286127

28 (1Q:9ZIP ) GD-Providers -290372

29 (1Q:9ZIP ) Q-Providers -299583

30 (2Q:8ZIP ) GD-Providers -304396

31 (3Q:7ZIP ) GD-Providers -310538

32 (7Q:3ZIP ) GD-Providers -312269

33 (4Q:6ZIP ) ZIP-Providers -312821
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34 (6Q:4ZIP ) GD-Providers -319860

35 (4Q:6ZIP ) GD-Providers -320246

36 (5Q:5ZIP ) GD-Providers -329604

37 (8Q:2ZIP ) GD-Providers -329914

38 (5Q:5ZIP ) ZIP-Providers -365061

39 (0Q:10GD) ZIP-Providers -433852

40 (9Q:1ZIP ) GD-Providers -460400

41 (6Q:4ZIP ) ZIP-Providers -583542

42 (5Q:5GD) GD-Providers -641646

43 (2Q:8GD) GD-Providers -746354

44 (7Q:3GD) GD-Providers -890652

45 (1Q:9GD) ZIP-Providers -898860

46 (10Q:0ZIP ) GD-Providers -935798

47 (7Q:3ZIP ) ZIP-Providers -961393

48 (1Q:9GD) GD-Providers -1054879

49 (2Q:8GD) ZIP-Providers -1144031

50 (6Q:4GD) GD-Providers -1202812

51 (3Q:7GD) ZIP-Providers -1249995

52 (10Q:0GD) ZIP-Providers -1290629

53 (8Q:2ZIP ) ZIP-Providers -1308439

54 (10Q:0ZIP ) ZIP-Providers -1332174

55 (4Q:6GD) GD-Providers -1336498

56 (3Q:7GD) GD-Providers -1412856

57 (4Q:6GD) ZIP-Providers -1474851

58 (0Q:10GD) GD-Providers -1582696

59 (5Q:5GD) ZIP-Providers -1719566

60 (9Q:1ZIP ) ZIP-Providers -1824275

61 (8Q:2GD) ZIP-Providers -1898326

62 (6Q:4GD) ZIP-Providers -1909565

63 (7Q:3GD) ZIP-Providers -2090664

64 (9Q:1GD) ZIP-Providers -2360636

65 (8Q:2GD) GD-Providers -5937493

66 (9Q:1GD) GD-Providers -11094962
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Table B.10: Combined outcomes of settings with 100 providers and the LLNL work-
load. The higher the CCPAAS, the better the outcome of the setting.

No. LLNL 100 Providers CCPAAS(×105)

Consumers Providers

1 (10Q:0ZIP ) Q-Providers -59051

2 (10Q:0GD) Q-Providers -59169

3 (10Q:0GD) ZIP-Providers -71849

4 (10Q:0ZIP ) ZIP-Providers -72647

5 (0Q:10GD) ZIP-Providers -84889

6 (0Q:10GD) Q-Providers -94704

7 (10Q:0ZIP ) GD-Providers -108289

8 (10Q:0GD) GD-Providers -108458

9 (7Q:3GD) Q-Providers -123034

10 (6Q:4GD) Q-Providers -128168

11 (3Q:7GD) Q-Providers -135739

12 (4Q:6GD) Q-Providers -140857

13 (2Q:8GD) ZIP-Providers -146011

14 (1Q:9GD) ZIP-Providers -150070

15 (3Q:7GD) ZIP-Providers -152447

16 (5Q:5GD) Q-Providers -153415

17 (4Q:6GD) ZIP-Providers -154855

18 (6Q:4GD) ZIP-Providers -159272

19 (0Q:10ZIP ) ZIP-Providers -160796

20 (5Q:5GD) ZIP-Providers -168496

21 (1Q:9GD) Q-Providers -169686

22 (2Q:8GD) Q-Providers -170422

23 (8Q:2GD) ZIP-Providers -174107

24 (9Q:1GD) Q-Providers -174257

25 (0Q:10ZIP ) GD-Providers -174371

26 (0Q:10GD) GD-Providers -176118

27 (7Q:3GD) ZIP-Providers -178465

28 (9Q:1ZIP ) Q-Providers -199050

29 (8Q:2GD) Q-Providers -199710

30 (0Q:10ZIP ) Q-Providers -202188

31 (8Q:2ZIP ) Q-Providers -205734

32 (7Q:3ZIP ) Q-Providers -209471

33 (6Q:4ZIP ) ZIP-Providers -210505

34 (9Q:1ZIP ) ZIP-Providers -210765

35 (4Q:6ZIP ) ZIP-Providers -210766
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36 (7Q:3ZIP ) ZIP-Providers -210804

37 (3Q:7ZIP ) ZIP-Providers -210922

38 (5Q:5ZIP ) ZIP-Providers -211446

39 (2Q:8ZIP ) ZIP-Providers -212116

40 (8Q:2ZIP ) ZIP-Providers -212240

41 (1Q:9ZIP ) ZIP-Providers -215338

42 (6Q:4ZIP ) Q-Providers -215781

43 (5Q:5ZIP ) Q-Providers -224103

44 (4Q:6ZIP ) Q-Providers -227921

45 (9Q:1GD) ZIP-Providers -235611

46 (3Q:7ZIP ) Q-Providers -237993

47 (2Q:8ZIP ) Q-Providers -248261

48 (1Q:9ZIP ) Q-Providers -259927

49 (9Q:1ZIP ) GD-Providers -260732

50 (1Q:9ZIP ) GD-Providers -262303

51 (7Q:3ZIP ) GD-Providers -264769

52 (8Q:2ZIP ) GD-Providers -265473

53 (6Q:4ZIP ) GD-Providers -268589

54 (2Q:8ZIP ) GD-Providers -268719

55 (5Q:5ZIP ) GD-Providers -271325

56 (3Q:7ZIP ) GD-Providers -271341

57 (4Q:6ZIP ) GD-Providers -271631

58 (1Q:9GD) GD-Providers -282445

59 (2Q:8GD) GD-Providers -331373

60 (4Q:6GD) GD-Providers -451121

61 (3Q:7GD) GD-Providers -456045

62 (5Q:5GD) GD-Providers -569471

63 (6Q:4GD) GD-Providers -676760

64 (8Q:2GD) GD-Providers -1558615

65 (7Q:3GD) GD-Providers -2023660

66 (9Q:1GD) GD-Providers -3103722
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Table B.11: Combined outcomes of settings with 50 providers and the LLNL work-
load. The higher the CCPAAS, the better the outcome of the setting.

No. HPC2N 50 Providers CCPAAS(×105)

Consumers Providers

1 (10Q:0GD) Q-Providers -1022207

2 (10Q:0ZIP ) Q-Providers -1053102

3 (0Q:10ZIP ) GD-Providers -1695691

4 (10Q:0ZIP ) GD-Providers -1904098

5 (0Q:10ZIP ) ZIP-Providers -1935723

6 (10Q:0GD) GD-Providers -2158453

7 (9Q:1ZIP ) Q-Providers -2503549

8 (0Q:10ZIP ) Q-Providers -2615542

9 (8Q:2ZIP ) Q-Providers -2694534

10 (7Q:3ZIP ) Q-Providers -2824769

11 (1Q:9ZIP ) GD-Providers -3098597

12 (6Q:4ZIP ) Q-Providers -3232877

13 (2Q:8ZIP ) GD-Providers -3426177

14 (5Q:5ZIP ) Q-Providers -3568857

15 (3Q:7ZIP ) GD-Providers -3675844

16 (9Q:1ZIP ) GD-Providers -3752439

17 (7Q:3ZIP ) GD-Providers -3890107

18 (4Q:6ZIP ) GD-Providers -3925017

19 (4Q:6ZIP ) Q-Providers -4001660

20 (6Q:4ZIP ) GD-Providers -4017133

21 (8Q:2ZIP ) GD-Providers -4126832

22 (3Q:7ZIP ) Q-Providers -4507333

23 (5Q:5ZIP ) GD-Providers -4912009

24 (0Q:10GD) GD-Providers -5126498

25 (2Q:8ZIP ) Q-Providers -5134247

26 (1Q:9ZIP ) Q-Providers -5423547

27 (1Q:9ZIP ) ZIP-Providers -5673358

28 (2Q:8ZIP ) ZIP-Providers -7191417

29 (8Q:2GD) Q-Providers -7475856

30 (1Q:9GD) GD-Providers -7925362

31 (9Q:1GD) Q-Providers -8051885

32 (4Q:6GD) GD-Providers -8059751

33 (4Q:6GD) Q-Providers -8177051

34 (5Q:5GD) Q-Providers -8382212

35 (3Q:7GD) Q-Providers -8501367
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36 (5Q:5GD) GD-Providers -8933045

37 (0Q:10GD) Q-Providers -9355851

38 (6Q:4GD) Q-Providers -9367580

39 (7Q:3GD) GD-Providers -9395733

40 (3Q:7ZIP ) ZIP-Providers -9528696

41 (7Q:3GD) Q-Providers -9584441

42 (1Q:9GD) Q-Providers -9808346

43 (2Q:8GD) GD-Providers -9814825

44 (8Q:2GD) GD-Providers -11090428

45 (2Q:8GD) Q-Providers -11566760

46 (4Q:6ZIP ) ZIP-Providers -11568209

47 (3Q:7GD) GD-Providers -11634466

48 (0Q:10GD) ZIP-Providers -11879569

49 (5Q:5ZIP ) ZIP-Providers -14543880

50 (6Q:4GD) GD-Providers -15884076

51 (6Q:4ZIP ) ZIP-Providers -18807679

52 (7Q:3ZIP ) ZIP-Providers -22387774

53 (10Q:0GD) ZIP-Providers -25483011

54 (10Q:0ZIP ) ZIP-Providers -25556257

55 (9Q:1GD) GD-Providers -27539786

56 (1Q:9GD) ZIP-Providers -27565494

57 (8Q:2ZIP ) ZIP-Providers -27757566

58 (2Q:8GD) ZIP-Providers -29190732

59 (3Q:7GD) ZIP-Providers -30446512

60 (4Q:6GD) ZIP-Providers -32601421

61 (5Q:5GD) ZIP-Providers -33607194

62 (9Q:1ZIP ) ZIP-Providers -34501134

63 (6Q:4GD) ZIP-Providers -37541616

64 (7Q:3GD) ZIP-Providers -39386621

65 (8Q:2GD) ZIP-Providers -43588722

66 (9Q:1GD) ZIP-Providers -46938252
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Table B.12: Combined outcomes of settings with 50 providers and the LLNL work-
load. The higher the CCPAAS, the better the outcome of the setting.

No. HPC2N 100 Providers CCPAAS(×105)

Consumers Providers

1 (10Q:0GD) Q-Providers -565626

2 (10Q:0ZIP ) Q-Providers -568826

3 (0Q:10GD) ZIP-Providers -726968

4 (10Q:0GD) GD-Providers -885716

5 (0Q:10GD) Q-Providers -967701

6 (10Q:0ZIP ) GD-Providers -1010896

7 (10Q:0ZIP ) ZIP-Providers -1080126

8 (10Q:0GD) ZIP-Providers -1093286

9 (0Q:10GD) GD-Providers -1221666

10 (0Q:10ZIP ) ZIP-Providers -1392122

11 (1Q:9GD) ZIP-Providers -1463668

12 (6Q:4GD) Q-Providers -1478235

13 (4Q:6GD) Q-Providers -1478691

14 (3Q:7GD) Q-Providers -1486396

15 (0Q:10ZIP ) GD-Providers -1500959

16 (2Q:8GD) Q-Providers -1514553

17 (2Q:8GD) ZIP-Providers -1532860

18 (3Q:7GD) ZIP-Providers -1601741

19 (4Q:6GD) ZIP-Providers -1660717

20 (1Q:9GD) Q-Providers -1698818

21 (9Q:1GD) Q-Providers -1761191

22 (5Q:5GD) ZIP-Providers -1776532

23 (0Q:10ZIP ) Q-Providers -1796161

24 (2Q:8ZIP ) ZIP-Providers -1845188

25 (3Q:7ZIP ) ZIP-Providers -1849958

26 (9Q:1ZIP ) Q-Providers -1853561

27 (1Q:9ZIP ) ZIP-Providers -1860898

28 (4Q:6ZIP ) ZIP-Providers -1867223

29 (7Q:3GD) Q-Providers -1877957

30 (6Q:4GD) ZIP-Providers -1896519

31 (5Q:5ZIP ) ZIP-Providers -1913499

32 (8Q:2ZIP ) Q-Providers -1915929

33 (6Q:4ZIP ) ZIP-Providers -1964382

34 (5Q:5GD) Q-Providers -1984321

35 (7Q:3ZIP ) Q-Providers -1996437



263 B.3. COMBINED OUTCOMES

36 (7Q:3GD) ZIP-Providers -2050831

37 (7Q:3ZIP ) ZIP-Providers -2051307

38 (6Q:4ZIP ) Q-Providers -2092973

39 (8Q:2GD) ZIP-Providers -2139155

40 (8Q:2ZIP ) ZIP-Providers -2167170

41 (5Q:5ZIP ) Q-Providers -2252060

42 (1Q:9ZIP ) GD-Providers -2288641

43 (9Q:1ZIP ) GD-Providers -2298383

44 (1Q:9GD) GD-Providers -2341907

45 (9Q:1ZIP ) ZIP-Providers -2346517

46 (6Q:4ZIP ) GD-Providers -2349538

47 (2Q:8ZIP ) GD-Providers -2359410

48 (8Q:2ZIP ) GD-Providers -2366778

49 (7Q:3ZIP ) GD-Providers -2368236

50 (5Q:5ZIP ) GD-Providers -2371040

51 (3Q:7ZIP ) GD-Providers -2375811

52 (4Q:6ZIP ) GD-Providers -2385268

53 (9Q:1GD) ZIP-Providers -2422971

54 (4Q:6ZIP ) Q-Providers -2449528

55 (2Q:8GD) GD-Providers -2596794

56 (8Q:2GD) Q-Providers -2648372

57 (3Q:7ZIP ) Q-Providers -2675304

58 (1Q:9ZIP ) Q-Providers -2829670

59 (2Q:8ZIP ) Q-Providers -2830427

60 (4Q:6GD) GD-Providers -3455369

61 (3Q:7GD) GD-Providers -3497925

62 (5Q:5GD) GD-Providers -4342554

63 (7Q:3GD) GD-Providers -4366959

64 (6Q:4GD) GD-Providers -4430651

65 (8Q:2GD) GD-Providers -4802652

66 (9Q:1GD) GD-Providers -9881069
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Appendix C

MX/CS – Communication Protocol Specification

The following XML Schema represents the proof-of-concept realization of the de-

veloped message protocols in Section 5.3 on top of the Job Submission and Defi-

nition Language. The corresponding ontology file, created with Protégé (<http:

//protege.stanford.edu>, version 4.0.2), consists of an explicit formal definition

of the concepts defined, their properties and relations to the well-known upper on-

tology OpenCyc (<http://www.opencyc.org>).

All the specifications in this thesis are open under the GNU Lesser General Public

License as published by the Free Software Foundation, either as version 3 of the

license, or any later version.

C.1 MX/CS – XML Schema Specification

1 <?xml version= ' 1 .0 ' encoding= 'UTF−8 ' ?>
<xsd:schema xmlns:xsd= ' ht tp : //www.w3 . org /2001/XMLSchema '

3 xmlns :b id= ' ht tp : //www. sormapro ject . eu/message/ e j s d l /beans '
xm ln s : j s d l= ' ht tp : // schemas . gg f . org / j s d l /2005/11/ j s d l '

5 xmlns:wsa= ' ht tp : // schemas . xmlsoap . org /ws/2004/03/ addre s s ing '
xmlns : sawsdl= ' ht tp : //www.w3 . org /ns/ sawsdl '

7 targetNamespace= ' ht tp : //www. sormapro ject . eu/message/ e j s d l /beans '
elementFormDefault= ' q u a l i f i e d '>

9 <xsd : import namespace= ' ht tp : // schemas . gg f . org / j s d l /2005/11/ j s d l ' schemaLocation= '
j s d l . xsd ' />

<xsd : import namespace= ' ht tp : // schemas . gg f . org / j s d l /2005/11/ j s d l−pos ix '
schemaLocation= ' j s d l−pos ix . xsd ' />

11
< !−− ============================================== −−>

13 < !−− ==========Economic Extens ions ================ −−>
< !−− ============================================== −−>

15
< !−− ========== Private−Data Type ============ −−>

17 <xsd:complexType name= ' PrivateData Type '>
<xsd : s equence>

19 <xsd :e l ement r e f= ' b i d : v a l u a t i on ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
<xsd :e l ement r e f= ' b i d : s t r a t e g y ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />

21 <xsd :e l ement r e f= ' b id :Scor ingFunct i on ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
</ xsd : s equence>

23 </xsd:complexType>
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<xsd :e l ement name= ' PrivateData ' type= ' bid:Pr ivateData Type ' sawsd l :mode lReference=
' mxcsProtocol#PrivateData ' />

25 <xsd :e l ement name= ' va lua t i on ' type= ' xsd :doub le ' sawsd l :mode lReference= '
mxcsProtocol#va lua t i on ' />

<xsd :e l ement name= ' s t r a t e gy ' type= ' x s d : s t r i n g ' sawsd l :mode lReference= ' mxcsProtocol
#s t r a t e gy ' />

27 <xsd :e l ement name= ' Scor ingFunct ion ' type= ' x s d : s t r i n g ' sawsd l :mode lReference= '
mxcsProtocol#scor ingFunct ion ' />

29 < !−− ========== Publ ic−Data Type ================ −−>
<xsd:complexType name= 'Bid Type '>

31 <xsd : s equence>
<xsd :e l ement r e f= ' b i d : b i dP r i c e ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />

33 <xsd :e l ement r e f= ' b i d : s i g n a t u r e ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
<xsd :e l ement r e f= ' bid : requestType ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />

35 <xsd :e l ement r e f= ' b i d : p a r t i c i p a n t I d ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
<xsd :e l ement r e f= ' b i d : e x p i r a t i o n ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />

37 <xsd :e l ement r e f= ' b id :du ra t i on ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />
<xsd :e l ement r e f= ' b id : s e rv i c eType ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />

39 <xsd :e l ement r e f= ' bid:paymentType ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
</ xsd : s equence>

41 </xsd:complexType>

43 < !−− ========== Payment Type ================ −−>
<xsd:s impleType name= 'PaymentTypeEnumeration '>

45 <x s d : r e s t r i c t i o n base= ' x s d : s t r i n g '>
<xsd:enumerat ion value= 'BEFORE ' />

47 <xsd:enumerat ion value= 'AFTER ' />
<xsd:enumerat ion value= 'EITHER ' />

49 </ x s d : r e s t r i c t i o n>
</ xsd:s impleType>

51
< !−− ========== Serv i ce Type ================ −−>

53 <xsd:s impleType name= ' ServiceTypeEnumeration '>
<x s d : r e s t r i c t i o n base= ' x s d : s t r i n g '>

55 <xsd:enumerat ion value= 'WEBSERVICE ' />
<xsd:enumerat ion value= 'BATCH ' />

57 </ x s d : r e s t r i c t i o n>
</ xsd:s impleType>

59
< !−− ========== Request Type ================ −−>

61 <xsd:s impleType name= 'RequestTypeEnumeration '>
<x s d : r e s t r i c t i o n base= ' x s d : s t r i n g '>

63 <xsd:enumerat ion value= 'BID ' />
<xsd:enumerat ion value= 'OFFER ' />

65 <xsd:enumerat ion value= 'MATCH' />
</ x s d : r e s t r i c t i o n>

67 </ xsd:s impleType>

69 <xsd :e l ement name= 'paymentType ' type= ' bid:PaymentTypeEnumeration '
sawsd l :mode lReference= ' mxcsProtocol#paymentType ' />

<xsd :e l ement name= ' serv iceType ' type= ' bid:ServiceTypeEnumerat ion '
sawsd l :mode lReference= ' mxcsProtocol#serv iceType ' />

71 <xsd :e l ement name= ' requestType ' type= ' bid:RequestTypeEnumeration '
sawsd l :mode lReference= ' mxcsProtocol#requestType ' />

<xsd :e l ement name= 'BidType ' type= ' bid:Bid Type ' sawsd l :mode lReference= '
mxcsProtocol#BidData ' />

73 <xsd :e l ement name= ' b idPr i c e ' type= ' xsd :doub le ' sawsd l :mode lReference= ' mxcsProtocol
#bid ' />
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<xsd :e l ement name= ' s i gna tu r e ' type= ' x s d : s t r i n g ' sawsd l :mode lReference= '
mxcsProtocol#s i gna tu r e ' />

75 <xsd :e l ement name= ' pa r t i c i p an t I d ' type= ' x s d : s t r i n g ' sawsd l :mode lReference= '
mxcsProtocol#pa r t i c i p an t ' />

<xsd :e l ement name= ' exp i r a t i on ' type= ' xsd : l ong ' sawsd l :mode lReference= ' mxcsProtocol
#exp i r a t i on ' />

77 <xsd :e l ement name= ' durat ion ' type= ' xsd : l ong ' sawsd l :mode lReference= ' mxcsProtocol#
durat ion ' />

79 < !−− ========== Market−Data Type ================ −−>

81 <xsd:complexType name= 'MarketMessage Type '>
<xsd : s equence>

83 <xsd :e l ement r e f= ' b i d : c l e a r i n gP r i c e ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
<xsd :e l ement r e f= ' b i d : c on t r a c t I d ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />

85 <xsd :e l ement r e f= ' bid:ConsumerContext ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
<xsd :e l ement r e f= ' bid :Prov iderContext ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />

87 <xsd :e l ement r e f= ' bid : requestType ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
<xsd :e l ement r e f= ' b id :du ra t i on ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />

89 <xsd :e l ement r e f= ' b id : s e rv i c eType ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
<xsd :e l ement r e f= ' bid:paymentType ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />

91 </ xsd : s equence>
</xsd:complexType>

93
<xsd :e l ement name= 'ConsumerContext ' type= ' bid:Context Type ' sawsd l :mode lReference=

' mxcsProtocol#ConsumerContext ' />
95 <xsd :e l ement name= ' ProviderContext ' type= ' bid:Context Type ' sawsd l :mode lReference=

' mxcsProtocol#ProviderContext ' />

97 <xsd:complexType name= 'Context Type '>
<xsd : s equence>

99 <xsd :e l ement r e f= ' b i d : s i g n a t u r e ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
<xsd :e l ement r e f= ' b i d : p a r t i c i p a n t I d ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />

101 <xsd :e l ement r e f= ' b id : b i d Id ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
</ xsd : s equence>

103 </xsd:complexType>

105 <xsd :e l ement name= 'MarketMessage ' type= ' bid:MarketMessage Type '
sawsd l :mode lReference= ' mxcsProtocol#MarketMessage ' />

<xsd :e l ement name= ' c l e a r i n gP r i c e ' type= ' xsd :doub le ' sawsd l :mode lReference= '
mxcsProtocol#c l e a r i n gP r i c e ' />

107 <xsd :e l ement name= ' cont rac t Id ' type= ' x s d : s t r i n g ' sawsd l :mode lReference= '
mxcsProtocol#cont rac t ' />

<xsd :e l ement name= ' consumerId ' type= ' x s d : s t r i n g ' sawsd l :mode lReference= '
mxcsProtocol#consumer ' />

109 <xsd :e l ement name= ' prov ide r Id ' type= ' x s d : s t r i n g ' sawsd l :mode lReference= '
mxcsProtocol#prov ide r ' />

<xsd :e l ement name= ' bidId ' type= ' x s d : s t r i n g ' sawsd l :mode lReference= ' mxcsProtocol#id
' />

111
< !−− ========== Penal ty Type ================ −−>

113 <xsd:complexType name= 'Penalty Type '>
<xsd : s equence>

115 <xsd :e l ement r e f= ' bid: funct ionName ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
<xsd :e l ement r e f= ' b id :norma l i za t i onConstant ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />

117 </ xsd : s equence>
</xsd:complexType>

119 <xsd :e l ement name= ' Penalty ' type= ' bid :Penalty Type ' sawsd l :mode lReference= ' ht tp :
//www. im . uni−ka r l s ruhe . de/sorma/ f i l e admin / onto logy /mxcsProtocol#Penalty ' />
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<xsd :e l ement name= ' functionName ' type= ' bid:FunctionNameEnumeration '
sawsd l :mode lReference= ' ht tp : //www. im . uni−ka r l s ruhe . de/sorma/ f i l e admin / onto logy
/mxcsProtocol#Function ' />

121 <xsd :e l ement name= ' normal izat ionConstant ' type= ' xsd :doub le ' sawsd l :mode lReference=
' ht tp : //www. im . uni−ka r l s ruhe . de/sorma/ f i l e admin / onto logy /mxcsProtocol#
Normal izat ionFactor ' />

123 <xsd:s impleType name= 'FunctionNameEnumeration '>
<x s d : r e s t r i c t i o n base= ' x s d : s t r i n g '>

125 <xsd:enumerat ion value= ' Defau l tPena l ty ' />
</ x s d : r e s t r i c t i o n>

127 </ xsd:s impleType>

129 < !−− ================================================= −−>
< !−− ========== Priva te Message ================ −−>

131 < !−− ================================================= −−>
<xsd:complexType name= ' Pr iva t eDe f in i t i on Type '>

133 <xsd : s equence>
<xsd :e l ement r e f= ' j s d l : J o bD e f i n i t i o n ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />

135 <xsd :e l ement r e f= ' bid :Pr ivateData ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
<xsd :e l ement r e f= ' bid :B id ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />

137 <xsd :e l ement r e f= ' b id :Pena l ty ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />
</ xsd : s equence>

139 <x s d : a t t r i b u t e name= ' r eque s t Id ' type= ' x s d : s t r i n g ' use= ' r equ i r ed '
sawsd l :mode lReference= ' mxcsProtocol#reque s t Id ' />

</xsd:complexType>
141 <xsd :e l ement name= ' Pr i v a t eDe f i n i t i o n ' type= ' b id :P r i va t eDe f i n i t i on Type ' />

143 < !−− ================================================= −−>
< !−− ========== PublicMessage ================ −−>

145 < !−− ================================================= −−>
<xsd:complexType name= ' BidDef in i t ion Type '>

147 <xsd : s equence>
<xsd :e l ement r e f= ' j s d l : J o bD e f i n i t i o n ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />

149 <xsd :e l ement r e f= ' bid :B id ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
<xsd :e l ement r e f= ' b id :Pena l ty ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />

151 </ xsd : s equence>
<x s d : a t t r i b u t e name= ' bidId ' type= ' x s d : s t r i n g ' use= ' r equ i r ed '

sawsd l :mode lReference= ' mxcsProtocol#id ' />
153 </xsd:complexType>

155 <xsd :e l ement name= ' BidDe f i n i t i on ' type= ' b id :B idDe f in i t i on Type ' />

157 < !−− ================================================= −−>
< !−− ========== MarketMessage ================ −−>

159 < !−− ================================================= −−>

161 <xsd:complexType name= ' MarketDef in it ion Type '>
<xsd : s equence>

163 <xsd :e l ement r e f= ' j s d l : J o bD e f i n i t i o n ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />
<xsd :e l ement r e f= ' bid:MarketMessage ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />

165 <xsd :e l ement r e f= ' b id :Pena l ty ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />
</ xsd : s equence>

167 <x s d : a t t r i b u t e name= 'marketMessageId ' type= ' x s d : s t r i n g ' use= ' r equ i r ed '
sawsd l :mode lReference= ' mxcsProtocol#cont rac t ' />

</xsd:complexType>
169

<xsd :e l ement name= ' MarketDef in i t ion ' type= ' bid :MarketDef in i t ion Type '
sawsd l :mode lReference= ' mxcsProtocol#MarketData ' />

171



C.2. MX/CS – OWL SPECIFICATION 268

</xsd:schema>

C.2 MX/CS – OWL Specification
<?xml version=” 1 .0 ”?>

2 < !DOCTYPE Ontology [
<!ENTITY owl ” h t tp : //www.w3 . org /2002/07/ owl#” >

4 < !ENTITY dc ” h t tp : // pur l . org /dc/ e lements /1 .1/ ” >
< !ENTITY xsd ” h t tp : //www.w3 . org /2001/XMLSchema#” >

6 < !ENTITY owl2xml ” h t tp : //www.w3 . org /2006/12/ owl2−xml#” >
< !ENTITY r d f s ” h t tp : //www.w3 . org /2000/01/ rdf−schema#” >

8 < !ENTITY rd f ” h t tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#” >
< !ENTITY mxcsProtocol ” h t tp : //www. im . uni−ka r l s ruhe . de/sorma/ f i l e admin / onto logy /

mxcsProtocol . owl#” >
10 ]>

<Ontology xmlns=” ht tp : //www.w3 . org /2006/12/ owl2−xml#”
12 xml:base=” ht tp : //www.w3 . org /2006/12/ owl2−xml#”

xmlns:dc=” ht tp : // pur l . org /dc/ e lements /1 .1/ ”
14 xmln s : rd f s=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”

xmlns:mxcsProtocol=” ht tp : //www. im . uni−ka r l s ruhe . de/sorma/ f i l e admin / onto logy /
mxcsProtocol . owl#”

16 xmlns:owl2xml=” ht tp : //www.w3 . org /2006/12/ owl2−xml#”
xmlns:owl=” ht tp : //www.w3 . org /2002/07/ owl#”

18 xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema#”
xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”

20 URI=” ht tp : //www. im . uni−ka r l s ruhe . de/sorma/ f i l e admin / onto logy /mxcsProtocol . owl”>
<EntityAnnotat ion>

22 <Class URI=”\&mxcsProtocol ; MarketInformation ”/>
<Annotation annotationURI=”&dc ; r e l a t i o n ”>

24 <Constant>ht tp : //sw . opencyc . org / concept /Mx4raTUz−O−KEdyAAAACs6hbjw</
Constant>

</Annotation>
26 </EntityAnnotation>

<EntityAnnotat ion>
28 <Class URI=”\&mxcsProtocol ; MarketInformation ”/>

<Annotation annotationURI=”&rd f s ; comment”>
30 <Constant>Market in fo rmat ion conta in s data o f the quantity , type , b ids

and c l e a r i n g p r i c e s o f the traded goods or s e r v i c e s .</Constant>
</Annotation>

32 </EntityAnnotation>
<Dec la ra t i on>

34 <Class URI=”\&mxcsProtocol ; MarketInformation ”/>
</Dec la ra t i on>

36 <SubClassOf>
<Class URI=”\&mxcsProtocol ; MarketMessage”/>

38 <Class URI=”&owl ; Thing”/>
</SubClassOf>

40 <EntityAnnotat ion>
<Class URI=”\&mxcsProtocol ; MarketMessage”/>

42 <Annotation annotationURI=”&rd f s ; comment”>
<Constant>The context o f a market document conta in ing data , which i s

generated by the market mechanism and submitted to the t a r g e t
consumer and prov ide r as we l l as r e l a t e d p a r t i e s e . g . f o r cont rac t
and s e r v i c e l e v e l agreement management .</Constant>

44 </Annotation>
</EntityAnnotation>

46 <EntityAnnotat ion>
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<Class URI=”\&mxcsProtocol ; MarketMessage”/>
48 <Annotation annotationURI=”&rd f s ; s eeAl so ”>

<Constant>ht tp : //sw . opencyc . org / concept /Mx4rvViA1ZwpEbGdrcN5Y29ycA</
Constant>

50 </Annotation>
</EntityAnnotation>

52 <Dec la ra t i on>
<Class URI=”\&mxcsProtocol ; MarketMessage”/>

54 </Dec la ra t i on>
<SubClassOf>

56 <Class URI=”\&mxcsProtocol ; PrivateMessage ”/>
<Class URI=”&owl ; Thing”/>

58 </SubClassOf>
<EntityAnnotat ion>

60 <Class URI=”\&mxcsProtocol ; PrivateMessage ”/>
<Annotation annotationURI=”&rd f s ; comment”>

62 <Constant>The context o f a consumer or prov ide r document , that conta in s
p r i va t e economic data , a v a i l a b l e only to the bidding agent o f the
consumer or prov ide r .

The bidding agent i s a l o c a l program to the consumer or provider , which u t i l i z e a
s e l e c t e d bidding s t r a t e gy and based on the economic data , i t g ene ra t e s bids ,
which are submitted to the market .</Constant>

64 </Annotation>
</EntityAnnotation>

66 <Dec la ra t i on>
<Class URI=”\&mxcsProtocol ; PrivateMessage ”/>

68 </Dec la ra t i on>
<SubClassOf>

70 <Class URI=”\&mxcsProtocol ; PublicMessage ”/>
<Class URI=”&owl ; Thing”/>

72 </SubClassOf>
<EntityAnnotat ion>

74 <Class URI=”\&mxcsProtocol ; PublicMessage ”/>
<Annotation annotationURI=”&rd f s ; comment”>

76 <Constant>The context o f a consumer or prov ide r document , that conta in s
pub l i c economic data , submitted to the t a r g e t market mechanism .</
Constant>

</Annotation>
78 </EntityAnnotation>

<Dec la ra t i on>
80 <Class URI=”\&mxcsProtocol ; PublicMessage ”/>

</Dec la ra t i on>
82 <EntityAnnotat ion>

<Class URI=”\&mxcsProtocol ; StateMessage ”/>
84 <Annotation annotationURI=”&dc ; r e l a t i o n ”>

<Constant>ht tp : //sw . opencyc . org / concept /Mx4rZqZ6chY−Ed2AAAACs6hRXg</
Constant>

86 </Annotation>
</EntityAnnotation>

88 <EntityAnnotat ion>
<Class URI=”\&mxcsProtocol ; StateMessage ”/>

90 <Annotation annotationURI=”&rd f s ; comment”>
<Constant>Status r ep r e s en t s an ac tua l min i to r ing data or f a c t

in fo rmat ion about a good , t rad ing object , s e r v i c e , job or
app l i c a t i o n a r t i f a c t , which i s v a l i d f o r the time o f request , but
can change in the time .</Constant>

92 </Annotation>
</EntityAnnotation>

94 <Dec la ra t i on>
<Class URI=”\&mxcsProtocol ; StateMessage ”/>
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96 </Dec la ra t i on>
<DataPropertyDomain>

98 <DataProperty URI=”\&mxcsProtocol ; auct ion ”/>
<Class URI=”\&mxcsProtocol ; MarketInformation ”/>

100 </DataPropertyDomain>
<DataPropertyRange>

102 <DataProperty URI=”\&mxcsProtocol ; auct ion ”/>
<Datatype URI=”&xsd ; s t r i n g ”/>

104 </DataPropertyRange>
<EntityAnnotat ion>

106 <DataProperty URI=”\&mxcsProtocol ; auct ion ”/>
<Annotation annotationURI=”&dc ; r e l a t i o n ”>

108 <Constant>ht tp : //sw . opencyc . org / concept /Mx4rvotkAJwpEbGdrcN5Y29ycA</
Constant>

</Annotation>
110 </EntityAnnotation>

<EntityAnnotat ion>
112 <DataProperty URI=”\&mxcsProtocol ; auct ion ”/>

<Annotation annotationURI=”&rd f s ; comment”>
114 <Constant>An auct ion i s a p roce s s o f buying and s e l l i n g goods or

s e r v i c e s by o f f e r i n g them up f o r bid , tak ing bids , and then s e l l i n g
the item to the h i ghe s t b idder . In economic theory , an auct ion may
r e f e r to any mechanism or s e t o f t rad ing r u l e s f o r exchange .

[ h t tp : //en . w ik iped ia . org /wik i /Auction ]</Constant>
116 </Annotation>

</EntityAnnotation>
118 <Dec la ra t i on>

<DataProperty URI=”\&mxcsProtocol ; auct ion ”/>
120 </Dec la ra t i on>

<DataPropertyDomain>
122 <DataProperty URI=”\&mxcsProtocol ; bid ”/>

<Class URI=”\&mxcsProtocol ; MarketInformation ”/>
124 </DataPropertyDomain>

<DataPropertyDomain>
126 <DataProperty URI=”\&mxcsProtocol ; bid ”/>

<Class URI=”\&mxcsProtocol ; PublicMessage ”/>
128 </DataPropertyDomain>

<DataPropertyRange>
130 <DataProperty URI=”\&mxcsProtocol ; bid ”/>

<Datatype URI=”&xsd ; double ”/>
132 </DataPropertyRange>

<EntityAnnotat ion>
134 <DataProperty URI=”\&mxcsProtocol ; bid ”/>

<Annotation annotationURI=”&dc ; r e l a t i o n ”>
136 <Constant>ht tp : //sw . opencyc . org / concept /Mx4rcL Z9AfHEduAAADggVaqvw</

Constant>
</Annotation>

138 </EntityAnnotation>
<EntityAnnotat ion>

140 <DataProperty URI=”\&mxcsProtocol ; bid ”/>
<Annotation annotationURI=”&rd f s ; comment”>

142 <Constant>The generated bid pr i c e , based on the s e l e c t e d bidding
s t ra tegy , o f the consumer or prov ide r . </Constant>

</Annotation>
144 </EntityAnnotation>

<Dec la ra t i on>
146 <DataProperty URI=”\&mxcsProtocol ; bid ”/>

</Dec la ra t i on>
148 <SubDataPropertyOf>

<DataProperty URI=”\&mxcsProtocol ; b idId ”/>
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150 <DataProperty URI=”\&mxcsProtocol ; consumerContext”/>
</SubDataPropertyOf>

152 <SubDataPropertyOf>
<DataProperty URI=”\&mxcsProtocol ; b idId ”/>

154 <DataProperty URI=”\&mxcsProtocol ; providerContext ”/>
</SubDataPropertyOf>

156 <DataPropertyDomain>
<DataProperty URI=”\&mxcsProtocol ; b idId ”/>

158 <Class URI=”\&mxcsProtocol ; PublicMessage ”/>
</DataPropertyDomain>

160 <DataPropertyRange>
<DataProperty URI=”\&mxcsProtocol ; b idId ”/>

162 <Datatype URI=”&xsd ; anyType”/>
</DataPropertyRange>

164 <EntityAnnotat ion>
<DataProperty URI=”\&mxcsProtocol ; b idId ”/>

166 <Annotation annotationURI=”&dc ; r e l a t i o n ”>
<Constant>ht tp : //sw . opencyc . org / concept /Mx4rvVi7GJwpEbGdrcN5Y29ycA</

Constant>
168 </Annotation>

</EntityAnnotation>
170 <EntityAnnotat ion>

<DataProperty URI=”\&mxcsProtocol ; b idId ”/>
172 <Annotation annotationURI=”&rd f s ; comment”>

<Constant>Unique i d e n t i f a c a t i o n o f a bid in form o f a number or s t r i n g .<
/Constant>

174 </Annotation>
</EntityAnnotation>

176 <Dec la ra t i on>
<DataProperty URI=”\&mxcsProtocol ; b idId ”/>

178 </Dec la ra t i on>
<DataPropertyDomain>

180 <DataProperty URI=”\&mxcsProtocol ; c l e a r i n gP r i c e ”/>
<Class URI=”\&mxcsProtocol ; MarketMessage”/>

182 </DataPropertyDomain>
<DataPropertyRange>

184 <DataProperty URI=”\&mxcsProtocol ; c l e a r i n gP r i c e ”/>
<Datatype URI=”&xsd ; double ”/>

186 </DataPropertyRange>
<EntityAnnotat ion>

188 <DataProperty URI=”\&mxcsProtocol ; c l e a r i n gP r i c e ”/>
<Annotation annotationURI=”&dc ; r e l a t i o n ”>

190 <Constant>ht tp : //sw . opencyc . org / concept /Mx4rvViMf5wpEbGdrcN5Y29ycA</
Constant>

</Annotation>
192 </EntityAnnotation>

<EntityAnnotat ion>
194 <DataProperty URI=”\&mxcsProtocol ; c l e a r i n gP r i c e ”/>

<Annotation annotationURI=”&dc ; r e l a t i o n ”>
196 <Constant>ht tp : //sw . opencyc . org / concept /Mx4rvbYa8JwpEbGdrcN5Y29ycA</

Constant>
</Annotation>

198 </EntityAnnotation>
<EntityAnnotat ion>

200 <DataProperty URI=”\&mxcsProtocol ; c l e a r i n gP r i c e ”/>
<Annotation annotationURI=”&rd f s ; comment”>

202 <Constant>The s p e c i f i e d monetary value a s s i gned to an a r t i f a c t on market
c l e a r i ng , c a l l e d a l s o market−c l e a r i n g p r i c e . In an auct ion−based

scenar io , the p r i c e i s determined by the auct ion , based on the b ids
and o f f e r s o f p rov ide r s and consumers i n t e r e s t e d in t rad ing that
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a r t i f a c t . The p r i c e that a consumer has to pay to a prov ide r in
order to execute h i s job on the t a r g e t prov ide r machine .</Constant>

</Annotation>
204 </EntityAnnotation>

<EntityAnnotat ion>
206 <DataProperty URI=”\&mxcsProtocol ; c l e a r i n gP r i c e ”/>

<Annotation annotationURI=”&rd f s ; i sDef inedBy ”>
208 <Constant>ht tp : //www−per sona l . umich . edu/˜ a landear / g l o s s a r y /m. html</

Constant>
</Annotation>

210 </EntityAnnotation>
<Dec la ra t i on>

212 <DataProperty URI=”\&mxcsProtocol ; c l e a r i n gP r i c e ”/>
</Dec la ra t i on>

214 <DataPropertyDomain>
<DataProperty URI=”\&mxcsProtocol ; completionTime”/>

216 <Class URI=”\&mxcsProtocol ; StateMessage ”/>
</DataPropertyDomain>

218 <DataPropertyRange>
<DataProperty URI=”\&mxcsProtocol ; completionTime”/>

220 <Datatype URI=”&xsd ; double ”/>
</DataPropertyRange>

222 <EntityAnnotat ion>
<DataProperty URI=”\&mxcsProtocol ; completionTime”/>

224 <Annotation annotationURI=”&dc ; r e l a t i o n ”>
<Constant>ht tp : //sw . opencyc . org / concept /Mx4rvVjXppwpEbGdrcN5Y29ycA</

Constant>
226 </Annotation>

</EntityAnnotation>
228 <EntityAnnotat ion>

<DataProperty URI=”\&mxcsProtocol ; completionTime”/>
230 <Annotation annotationURI=”&rd f s ; comment”>

<Constant>The t o t a l time needed to complete a job , app l i c a t i o n or
s e r v i c e execut ion .</Constant>

232 </Annotation>
</EntityAnnotation>

234 <Dec la ra t i on>
<DataProperty URI=”\&mxcsProtocol ; completionTime”/>

236 </Dec la ra t i on>
<DataPropertyDomain>

238 <DataProperty URI=”\&mxcsProtocol ; consumer”/>
<Class URI=”\&mxcsProtocol ; MarketMessage”/>

240 </DataPropertyDomain>
<DataPropertyRange>

242 <DataProperty URI=”\&mxcsProtocol ; consumer”/>
<Datatype URI=”&xsd ; anyType”/>

244 </DataPropertyRange>
<EntityAnnotat ion>

246 <DataProperty URI=”\&mxcsProtocol ; consumer”/>
<Annotation annotationURI=”&dc ; r e l a t i o n ”>

248 <Constant>ht tp : //sw . opencyc . org / concept /Mx4rvVjK1JwpEbGdrcN5Y29ycA</
Constant>

</Annotation>
250 </EntityAnnotation>

<EntityAnnotat ion>
252 <DataProperty URI=”\&mxcsProtocol ; consumer”/>

<Annotation annotationURI=”&rd f s ; comment”>
254 <Constant>A consumer ( costumer ) has an i n t en t i on to purchase goods or

s e r v i c e s . A consumer might make the purchase e i t h e r d i r e c t l y or
through a bidding agent . </Constant>
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</Annotation>
256 </EntityAnnotation>

<Dec la ra t i on>
258 <DataProperty URI=”\&mxcsProtocol ; consumer”/>

</Dec la ra t i on>
260 <DataPropertyDomain>

<DataProperty URI=”\&mxcsProtocol ; consumerContext”/>
262 <Class URI=”\&mxcsProtocol ; MarketMessage”/>

</DataPropertyDomain>
264 <EntityAnnotat ion>

<DataProperty URI=”\&mxcsProtocol ; consumerContext”/>
266 <Annotation annotationURI=”&dc ; r e l a t i o n ”>

<Constant>ht tp : //sw . opencyc . org / concept /Mx4rvViA1ZwpEbGdrcN5Y29ycA</
Constant>

268 </Annotation>
</EntityAnnotation>

270 <EntityAnnotat ion>
<DataProperty URI=”\&mxcsProtocol ; consumerContext”/>

272 <Annotation annotationURI=”&rd f s ; comment”>
<Constant>This property groups a s e t o f common consumer p r op e r t i e s .</

Constant>
274 </Annotation>

</EntityAnnotation>
276 <Dec la ra t i on>

<DataProperty URI=”\&mxcsProtocol ; consumerContext”/>
278 </Dec la ra t i on>

<DataPropertyDomain>
280 <DataProperty URI=”\&mxcsProtocol ; cont rac t ”/>

<Class URI=”\&mxcsProtocol ; MarketMessage”/>
282 </DataPropertyDomain>

<DataPropertyRange>
284 <DataProperty URI=”\&mxcsProtocol ; cont rac t ”/>

<Datatype URI=”&xsd ; anyType”/>
286 </DataPropertyRange>

<EntityAnnotat ion>
288 <DataProperty URI=”\&mxcsProtocol ; cont rac t ”/>

<Annotation annotationURI=”&dc ; r e l a t i o n ”>
290 <Constant>ht tp : //sw . opencyc . org / concept /Mx4rvZvacpwpEbGdrcN5Y29ycA</

Constant>
</Annotation>

292 </EntityAnnotation>
<EntityAnnotat ion>

294 <DataProperty URI=”\&mxcsProtocol ; cont rac t ”/>
<Annotation annotationURI=”&rd f s ; comment”>

296 <Constant>A c o l l e c t i o n o f agreements . Each in s t anc e i s a l e g a l agreement
in which two or more ag ree ing agents promise to do ( or not do )

something . There are l e g a l consequences to breaking the promises
made in a cont rac t .</Constant>

</Annotation>
298 </EntityAnnotation>

<Dec la ra t i on>
300 <DataProperty URI=”\&mxcsProtocol ; cont rac t ”/>

</Dec la ra t i on>
302 <DataPropertyDomain>

<DataProperty URI=”\&mxcsProtocol ; durat ion ”/>
304 <Class URI=”\&mxcsProtocol ; MarketMessage”/>

</DataPropertyDomain>
306 <DataPropertyDomain>

<DataProperty URI=”\&mxcsProtocol ; durat ion ”/>
308 <Class URI=”\&mxcsProtocol ; PublicMessage ”/>
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</DataPropertyDomain>
310 <DataPropertyDomain>

<DataProperty URI=”\&mxcsProtocol ; durat ion ”/>
312 <Class URI=”\&mxcsProtocol ; StateMessage ”/>

</DataPropertyDomain>
314 <DataPropertyRange>

<DataProperty URI=”\&mxcsProtocol ; durat ion ”/>
316 <Datatype URI=”&xsd ; long ”/>

</DataPropertyRange>
318 <EntityAnnotat ion>

<DataProperty URI=”\&mxcsProtocol ; durat ion ”/>
320 <Annotation annotationURI=”&dc ; r e l a t i o n ”>

<Constant>ht tp : //sw . opencyc . org / concept /Mx4rvVijs5wpEbGdrcN5Y29ycA</
Constant>

322 </Annotation>
</EntityAnnotation>

324 <EntityAnnotat ion>
<DataProperty URI=”\&mxcsProtocol ; durat ion ”/>

326 <Annotation annotationURI=”&rd f s ; comment”>
<Constant>A measurable quant i ty that r e l a t e s a temporal th ing to the

l ength o f time , in m i l l i s e c ond s , dur ing which i t ex i s t ed , happened ,
or obta ined . </Constant>

328 </Annotation>
</EntityAnnotation>

330 <Dec la ra t i on>
<DataProperty URI=”\&mxcsProtocol ; durat ion ”/>

332 </Dec la ra t i on>
<DataPropertyDomain>

334 <DataProperty URI=”\&mxcsProtocol ; f i n a l P r i c e ”/>
<Class URI=”\&mxcsProtocol ; StateMessage ”/>

336 </DataPropertyDomain>
<DataPropertyRange>

338 <DataProperty URI=”\&mxcsProtocol ; f i n a l P r i c e ”/>
<Datatype URI=”&xsd ; double ”/>

340 </DataPropertyRange>
<EntityAnnotat ion>

342 <DataProperty URI=”\&mxcsProtocol ; f i n a l P r i c e ”/>
<Annotation annotationURI=”&dc ; r e l a t i o n ”>

344 <Constant>ht tp : //sw . opencyc . org / concept /Mx4rvViMf5wpEbGdrcN5Y29ycA</
Constant>

</Annotation>
346 </EntityAnnotation>

<EntityAnnotat ion>
348 <DataProperty URI=”\&mxcsProtocol ; f i n a l P r i c e ”/>

<Annotation annotationURI=”&rd f s ; comment”>
350 <Constant>The f i n a l p r i c e i s the market c l e a r i n g p r i c e a f t e r c on s i d e r i ng

the p e n a l t i e s .</Constant>
</Annotation>

352 </EntityAnnotation>
<Dec la ra t i on>

354 <DataProperty URI=”\&mxcsProtocol ; f i n a l P r i c e ”/>
</Dec la ra t i on>

356 <DataPropertyDomain>
<DataProperty URI=”\&mxcsProtocol ; parameter ”/>

358 <Class URI=”\&mxcsProtocol ; StateMessage ”/>
</DataPropertyDomain>

360 <DataPropertyRange>
<DataProperty URI=”\&mxcsProtocol ; parameter ”/>

362 <Datatype URI=”&xsd ; anyType”/>
</DataPropertyRange>
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364 <EntityAnnotat ion>
<DataProperty URI=”\&mxcsProtocol ; parameter ”/>

366 <Annotation annotationURI=”&dc ; r e l a t i o n ”>
<Constant>Value or c o l l e c t i o n o f parameters and t h e i r va lue s .</Constant>

368 </Annotation>
</EntityAnnotation>

370 <EntityAnnotat ion>
<DataProperty URI=”\&mxcsProtocol ; parameter ”/>

372 <Annotation annotationURI=”&dc ; r e l a t i o n ”>
<Constant>ht tp : //sw . opencyc . org / concept /Mx4r9lIvlpcoEdqAAAACs4vPlg</

Constant>
374 </Annotation>

</EntityAnnotation>
376 <Dec la ra t i on>

<DataProperty URI=”\&mxcsProtocol ; parameter ”/>
378 </Dec la ra t i on>

<SubDataPropertyOf>
380 <DataProperty URI=”\&mxcsProtocol ; p a r t i c i p an t ”/>

<DataProperty URI=”\&mxcsProtocol ; consumerContext”/>
382 </SubDataPropertyOf>

<SubDataPropertyOf>
384 <DataProperty URI=”\&mxcsProtocol ; p a r t i c i p an t ”/>

<DataProperty URI=”\&mxcsProtocol ; providerContext ”/>
386 </SubDataPropertyOf>

<DataPropertyDomain>
388 <DataProperty URI=”\&mxcsProtocol ; p a r t i c i p an t ”/>

<Class URI=”\&mxcsProtocol ; PublicMessage ”/>
390 </DataPropertyDomain>

<DataPropertyRange>
392 <DataProperty URI=”\&mxcsProtocol ; p a r t i c i p an t ”/>

<Datatype URI=”&xsd ; anyType”/>
394 </DataPropertyRange>

<EntityAnnotat ion>
396 <DataProperty URI=”\&mxcsProtocol ; p a r t i c i p an t ”/>

<Annotation annotationURI=”&rd f s ; comment”>
398 <Constant>An i d e n t i f i e r o f the consumer or prov ide r ac to r . </Constant>

</Annotation>
400 </EntityAnnotation>

<EntityAnnotat ion>
402 <DataProperty URI=”\&mxcsProtocol ; p a r t i c i p an t ”/>

<Annotation annotationURI=”&rd f s ; comment”>
404 <Constant>Par t i c i pan t i s a consumer , prov ider , consumer agent , p rov ide r

agent , auc t i onee r or t rad ing manager .</Constant>
</Annotation>

406 </EntityAnnotation>
<Dec la ra t i on>

408 <DataProperty URI=”\&mxcsProtocol ; p a r t i c i p an t ”/>
</Dec la ra t i on>

410 <DataPropertyDomain>
<DataProperty URI=”\&mxcsProtocol ; paymentType”/>

412 <Class URI=”\&mxcsProtocol ; MarketMessage”/>
</DataPropertyDomain>

414 <DataPropertyDomain>
<DataProperty URI=”\&mxcsProtocol ; paymentType”/>

416 <Class URI=”\&mxcsProtocol ; PublicMessage ”/>
</DataPropertyDomain>

418 <DataPropertyRange>
<DataProperty URI=”\&mxcsProtocol ; paymentType”/>

420 <Datatype URI=”&xsd ; s t r i n g ”/>
</DataPropertyRange>
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422 <EntityAnnotat ion>
<DataProperty URI=”\&mxcsProtocol ; paymentType”/>

424 <Annotation annotationURI=”&dc ; r e l a t i o n ”>
<Constant>ht tp : //sw . opencyc . org / concept /Mx4rvVkKHZwpEbGdrcN5Y29ycA</

Constant>
426 </Annotation>

</EntityAnnotation>
428 <EntityAnnotat ion>

<DataProperty URI=”\&mxcsProtocol ; paymentType”/>
430 <Annotation annotationURI=”&rd f s ; comment”>

<Constant>The type o f payment , BEFORE or AFTER job execut ion .</Constant>
432 </Annotation>

</EntityAnnotation>
434 <Dec la ra t i on>

<DataProperty URI=”\&mxcsProtocol ; paymentType”/>
436 </Dec la ra t i on>

<DataPropertyDomain>
438 <DataProperty URI=”\&mxcsProtocol ; p rov ide r ”/>

<Class URI=”\&mxcsProtocol ; MarketMessage”/>
440 </DataPropertyDomain>

<DataPropertyRange>
442 <DataProperty URI=”\&mxcsProtocol ; p rov ide r ”/>

<Datatype URI=”&xsd ; anyType”/>
444 </DataPropertyRange>

<EntityAnnotat ion>
446 <DataProperty URI=”\&mxcsProtocol ; p rov ide r ”/>

<Annotation annotationURI=”&dc ; r e l a t i o n ”>
448 <Constant>ht tp : //sw . opencyc . org / concept /Mx4rvViQGpwpEbGdrcN5Y29ycA</

Constant>
</Annotation>

450 </EntityAnnotation>
<EntityAnnotat ion>

452 <DataProperty URI=”\&mxcsProtocol ; p rov ide r ”/>
<Annotation annotationURI=”&rd f s ; comment”>

454 <Constant>A prov ide r ( s e l l e r ) has an i n t en t i on to o f f e r ( s e l l ) goods or
s e r v i c e s . A prov ide r might prov ide i t s good or s e r v i c e s e i t h e r
d i r e c t l y or through a bidding agent . </Constant>

</Annotation>
456 </EntityAnnotation>

<Dec la ra t i on>
458 <DataProperty URI=”\&mxcsProtocol ; p rov ide r ”/>

</Dec la ra t i on>
460 <DataPropertyDomain>

<DataProperty URI=”\&mxcsProtocol ; providerContext ”/>
462 <Class URI=”\&mxcsProtocol ; MarketMessage”/>

</DataPropertyDomain>
464 <EntityAnnotat ion>

<DataProperty URI=”\&mxcsProtocol ; providerContext ”/>
466 <Annotation annotationURI=”&dc ; r e l a t i o n ”>

<Constant>ht tp : //sw . opencyc . org / concept /Mx4rvViA1ZwpEbGdrcN5Y29ycA</
Constant>

468 </Annotation>
</EntityAnnotation>

470 <EntityAnnotat ion>
<DataProperty URI=”\&mxcsProtocol ; providerContext ”/>

472 <Annotation annotationURI=”&rd f s ; comment”>
<Constant>This property groups a s e t o f common prov ide r p r op e r t i e s .</

Constant>
474 </Annotation>

</EntityAnnotation>
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476 <Dec la ra t i on>
<DataProperty URI=”\&mxcsProtocol ; providerContext ”/>

478 </Dec la ra t i on>
<DataPropertyDomain>

480 <DataProperty URI=”\&mxcsProtocol ; query”/>
<Class URI=”\&mxcsProtocol ; MarketInformation ”/>

482 </DataPropertyDomain>
<DataPropertyRange>

484 <DataProperty URI=”\&mxcsProtocol ; query”/>
<Datatype URI=”&xsd ; anyType”/>

486 </DataPropertyRange>
<EntityAnnotat ion>

488 <DataProperty URI=”\&mxcsProtocol ; query”/>
<Annotation annotationURI=”&dc ; r e l a t i o n ”>

490 <Constant>Request o f a s p e c i f i c in fo rmat ion about a s p e c i f i c a r t i f a c t ,
auct ion , object , t rad ing ob j e c t and market pa r t i c i p an t .</Constant>

</Annotation>
492 </EntityAnnotation>

<EntityAnnotat ion>
494 <DataProperty URI=”\&mxcsProtocol ; query”/>

<Annotation annotationURI=”&dc ; r e l a t i o n ”>
496 <Constant>ht tp : //sw . opencyc . org / concept /Mx4rvVitwpwpEbGdrcN5Y29ycA</

Constant>
</Annotation>

498 </EntityAnnotation>
<Dec la ra t i on>

500 <DataProperty URI=”\&mxcsProtocol ; query”/>
</Dec la ra t i on>

502 <DataPropertyDomain>
<DataProperty URI=”\&mxcsProtocol ; requestType ”/>

504 <Class URI=”\&mxcsProtocol ; MarketMessage”/>
</DataPropertyDomain>

506 <DataPropertyDomain>
<DataProperty URI=”\&mxcsProtocol ; requestType ”/>

508 <Class URI=”\&mxcsProtocol ; PublicMessage ”/>
</DataPropertyDomain>

510 <DataPropertyRange>
<DataProperty URI=”\&mxcsProtocol ; requestType ”/>

512 <Datatype URI=”&xsd ; s t r i n g ”/>
</DataPropertyRange>

514 <EntityAnnotat ion>
<DataProperty URI=”\&mxcsProtocol ; requestType ”/>

516 <Annotation annotationURI=”&dc ; r e l a t i o n ”>
<Constant>ht tp : //sw . opencyc . org / concept /Mx4rvVrH55wpEbGdrcN5Y29ycA</

Constant>
518 </Annotation>

</EntityAnnotation>
520 <EntityAnnotat ion>

<DataProperty URI=”\&mxcsProtocol ; requestType ”/>
522 <Annotation annotationURI=”&rd f s ; comment”>

<Constant>The type o f the r eque s t e . g . BID , OFFER, MATCH.</Constant>
524 </Annotation>

</EntityAnnotation>
526 <Dec la ra t i on>

<DataProperty URI=”\&mxcsProtocol ; requestType ”/>
528 </Dec la ra t i on>

<DataPropertyDomain>
530 <DataProperty URI=”\&mxcsProtocol ; r e sponse ”/>

<Class URI=”\&mxcsProtocol ; MarketInformation ”/>
532 </DataPropertyDomain>
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<DataPropertyRange>
534 <DataProperty URI=”\&mxcsProtocol ; r e sponse ”/>

<Datatype URI=”&xsd ; anyType”/>
536 </DataPropertyRange>

<EntityAnnotat ion>
538 <DataProperty URI=”\&mxcsProtocol ; r e sponse ”/>

<Annotation annotationURI=”&dc ; r e l a t i o n ”>
540 <Constant>ht tp : //sw . opencyc . org / concept /Mx4rvViyOJwpEbGdrcN5Y29ycA</

Constant>
</Annotation>

542 </EntityAnnotation>
<EntityAnnotat ion>

544 <DataProperty URI=”\&mxcsProtocol ; r e sponse ”/>
<Annotation annotationURI=”&rd f s ; comment”>

546 <Constant>Provid ing a in fo rmat ion to an ob j e c t or agent on a method
invoca t i on .</Constant>

</Annotation>
548 </EntityAnnotation>

<Dec la ra t i on>
550 <DataProperty URI=”\&mxcsProtocol ; r e sponse ”/>

</Dec la ra t i on>
552 <DataPropertyDomain>

<DataProperty URI=”\&mxcsProtocol ; s cor ingFunct ion ”/>
554 <Class URI=”\&mxcsProtocol ; StateMessage ”/>

</DataPropertyDomain>
556 <DataPropertyRange>

<DataProperty URI=”\&mxcsProtocol ; s cor ingFunct ion ”/>
558 <Datatype URI=”&xsd ; s t r i n g ”/>

</DataPropertyRange>
560 <EntityAnnotat ion>

<DataProperty URI=”\&mxcsProtocol ; s cor ingFunct ion ”/>
562 <Annotation annotationURI=”&dc ; r e l a t i o n ”>

<Constant>ht tp : //sw . opencyc . org / concept /Mx4rvVi9LZwpEbGdrcN5Y29ycA</
Constant>

564 </Annotation>
</EntityAnnotation>

566 <EntityAnnotat ion>
<DataProperty URI=”\&mxcsProtocol ; s cor ingFunct ion ”/>

568 <Annotation annotationURI=”&rd f s ; comment”>
<Constant>A s p e c i f i c a t i o n o f a goal , based on wel l−de f ined and

measurable c r i t e r i a s .</Constant>
570 </Annotation>

</EntityAnnotation>
572 <Dec la ra t i on>

<DataProperty URI=”\&mxcsProtocol ; s cor ingFunct ion ”/>
574 </Dec la ra t i on>

<DataPropertyDomain>
576 <DataProperty URI=”\&mxcsProtocol ; se rv iceType ”/>

<Class URI=”\&mxcsProtocol ; MarketMessage”/>
578 </DataPropertyDomain>

<DataPropertyDomain>
580 <DataProperty URI=”\&mxcsProtocol ; se rv iceType ”/>

<Class URI=”\&mxcsProtocol ; PublicMessage ”/>
582 </DataPropertyDomain>

<DataPropertyRange>
584 <DataProperty URI=”\&mxcsProtocol ; se rv iceType ”/>

<Datatype URI=”&xsd ; s t r i n g ”/>
586 </DataPropertyRange>

<EntityAnnotat ion>
588 <DataProperty URI=”\&mxcsProtocol ; se rv iceType ”/>
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<Annotation annotationURI=”&dc ; r e l a t i o n ”>
590 <Constant>ht tp : //sw . opencyc . org / concept /Mx4rkFbJUkPjQdmfp4wat978Fw</

Constant>
</Annotation>

592 </EntityAnnotation>
<EntityAnnotat ion>

594 <DataProperty URI=”\&mxcsProtocol ; se rv iceType ”/>
<Annotation annotationURI=”&rd f s ; comment”>

596 <Constant>The type o f the reques ted s e r v i c e e . g . command l i n e batch job
execut ion (BATCH) or web app l i c a t i o n (WEBSERVICE) .</Constant>

</Annotation>
598 </EntityAnnotation>

<Dec la ra t i on>
600 <DataProperty URI=”\&mxcsProtocol ; se rv iceType ”/>

</Dec la ra t i on>
602 <DataPropertyDomain>

<DataProperty URI=”\&mxcsProtocol ; s i gna tu r e ”/>
604 <Class URI=”\&mxcsProtocol ; MarketMessage”/>

</DataPropertyDomain>
606 <DataPropertyDomain>

<DataProperty URI=”\&mxcsProtocol ; s i gna tu r e ”/>
608 <Class URI=”\&mxcsProtocol ; PublicMessage ”/>

</DataPropertyDomain>
610 <DataPropertyRange>

<DataProperty URI=”\&mxcsProtocol ; s i gna tu r e ”/>
612 <Datatype URI=”&xsd ; anyType”/>

</DataPropertyRange>
614 <EntityAnnotat ion>

<DataProperty URI=”\&mxcsProtocol ; s i gna tu r e ”/>
616 <Annotation annotationURI=”&dc ; r e l a t i o n ”>

<Constant>ht tp : //sw . opencyc . org / concept /Mx4rvVjNKpwpEbGdrcN5Y29ycA</
Constant>

618 </Annotation>
</EntityAnnotation>

620 <EntityAnnotat ion>
<DataProperty URI=”\&mxcsProtocol ; s i gna tu r e ”/>

622 <Annotation annotationURI=”&rd f s ; comment”>
<Constant>A d i g i t a l sequence , which r ep r e s en t s a va l i d and l e g a l &#39;

f ingermark&#39; o f a t rad ing party , market pa r t i c i pan t , consumer ,
p rov ide r or auc t i onee r .</Constant>

624 </Annotation>
</EntityAnnotation>

626 <Dec la ra t i on>
<DataProperty URI=”\&mxcsProtocol ; s i gna tu r e ”/>

628 </Dec la ra t i on>
<DataPropertyDomain>

630 <DataProperty URI=”\&mxcsProtocol ; s t r a t e gy ”/>
<Class URI=”\&mxcsProtocol ; PrivateMessage ”/>

632 </DataPropertyDomain>
<DataPropertyRange>

634 <DataProperty URI=”\&mxcsProtocol ; s t r a t e gy ”/>
<Datatype URI=”&xsd ; s t r i n g ”/>

636 </DataPropertyRange>
<EntityAnnotat ion>

638 <DataProperty URI=”\&mxcsProtocol ; s t r a t e gy ”/>
<Annotation annotationURI=”&dc ; r e l a t i o n ”>

640 <Constant>ht tp : //sw . opencyc . org / concept /Mx4rvViB 5wpEbGdrcN5Y29ycA</
Constant>

</Annotation>
642 </EntityAnnotation>
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<EntityAnnotat ion>
644 <DataProperty URI=”\&mxcsProtocol ; s t r a t e gy ”/>

<Annotation annotationURI=”&rd f s ; comment”>
646 <Constant>A bidding s t r a t e gy i s a complete plan o f a c t i on s f o r whatever

s i t u a t i o n might a r i s e ; t h i s f u l l y determines the agent behavior . A
bidding s t r a t e gy w i l l determine the ac t i on o f the agent w i l l take at
any s tage o f the bid gene ra t i on and market−based schedu l ing

proce s s e s , f o r every p o s s i b l e h i s t o r y and av a i l a b l e market
in fo rmat ion to that s tage .</Constant>

</Annotation>
648 </EntityAnnotation>

<EntityAnnotat ion>
650 <DataProperty URI=”\&mxcsProtocol ; s t r a t e gy ”/>

<Annotation annotationURI=”&rd f s ; s eeAl so ”>
652 <Constant>ht tp : //en . w ik iped ia . org /wik i / S t ra t egy ( game theory )</Constant>

</Annotation>
654 </EntityAnnotation>

<EntityAnnotat ion>
656 <DataProperty URI=”\&mxcsProtocol ; s t r a t e gy ”/>

<Annotation annotationURI=”&rd f s ; s eeAl so ”>
658 <Constant>ht tp : //mitpres s . mit . edu/books/FLAOH/cbnhtml/ g lo s sa ry−S . html</

Constant>
</Annotation>

660 </EntityAnnotation>
<Dec la ra t i on>

662 <DataProperty URI=”\&mxcsProtocol ; s t r a t e gy ”/>
</Dec la ra t i on>

664 <DataPropertyDomain>
<DataProperty URI=”\&mxcsProtocol ; e xp i r a t i on ”/>

666 <Class URI=”\&mxcsProtocol ; PublicMessage ”/>
</DataPropertyDomain>

668 <DataPropertyRange>
<DataProperty URI=”\&mxcsProtocol ; e xp i r a t i on ”/>

670 <Datatype URI=”&xsd ; long ”/>
</DataPropertyRange>

672 <EntityAnnotat ion>
<DataProperty URI=”\&mxcsProtocol ; e xp i r a t i on ”/>

674 <Annotation annotationURI=”&dc ; r e l a t i o n ”>
<Constant>ht tp : //sw . opencyc . org / concept /Mx4rvViQe5wpEbGdrcN5Y29ycA</

Constant>
676 </Annotation>

</EntityAnnotation>
678 <EntityAnnotat ion>

<DataProperty URI=”\&mxcsProtocol ; e xp i r a t i on ”/>
680 <Annotation annotationURI=”&rd f s ; comment”>

<Constant>The time in m i l l i s e c ond s a bid i s v a l i d in the t a r g e t auct ion
&#39;s order book . </Constant>

682 </Annotation>
</EntityAnnotation>

684 <Dec la ra t i on>
<DataProperty URI=”\&mxcsProtocol ; e xp i r a t i on ”/>

686 </Dec la ra t i on>
<DataPropertyDomain>

688 <DataProperty URI=”\&mxcsProtocol ; va lua t i on ”/>
<Class URI=”\&mxcsProtocol ; PrivateMessage ”/>

690 </DataPropertyDomain>
<DataPropertyDomain>

692 <DataProperty URI=”\&mxcsProtocol ; va lua t i on ”/>
<Class URI=”\&mxcsProtocol ; StateMessage ”/>

694 </DataPropertyDomain>
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<DataPropertyRange>
696 <DataProperty URI=”\&mxcsProtocol ; va lua t i on ”/>

<Datatype URI=”&xsd ; double ”/>
698 </DataPropertyRange>

<EntityAnnotat ion>
700 <DataProperty URI=”\&mxcsProtocol ; va lua t i on ”/>

<Annotation annotationURI=”&dc ; r e l a t i o n ”>
702 <Constant>ht tp : //sw . opencyc . org / concept /Mx4rvWotk5wpEbGdrcN5Y29ycA</

Constant>
</Annotation>

704 </EntityAnnotation>
<EntityAnnotat ion>

706 <DataProperty URI=”\&mxcsProtocol ; va lua t i on ”/>
<Annotation annotationURI=”&rd f s ; comment”>

708 <Constant>The va lua t i on i s the monetary u t i l i t y re turn o f a good or a
s e r v i c e . I t i s a s ub j e c t i v e term that has va lue to one party may
have no value to another . The va lua t i on i s the r e s u l t o f events in
which someone e s t imate s the amount that would be paid f o r a c e r t a i n
a r t i f a c t e i t h e r ( a ) i f i t were so ld , c a l l e d a l s o r e s e r v a t i o n p r i c e (
b) i f a s e r v i c e should be bought , c a l l e d a l s o maximum w i l l i n g n e s s to
pay .</Constant>

</Annotation>
710 </EntityAnnotation>

<EntityAnnotat ion>
712 <DataProperty URI=”\&mxcsProtocol ; va lua t i on ”/>

<Annotation annotationURI=”&rd f s ; s eeAl so ”>
714 <Constant>ht tp : //www. economypedia . com/wik i / index . php? t i t l e=Value</

Constant>
</Annotation>

716 </EntityAnnotation>
<Dec la ra t i on>

718 <DataProperty URI=”\&mxcsProtocol ; va lua t i on ”/>
</Dec la ra t i on>

720 <DataPropertyDomain>
<DataProperty URI=”\&mxcsProtocol ; va lue ”/>

722 <Class URI=”\&mxcsProtocol ; MarketInformation ”/>
</DataPropertyDomain>

724 <DataPropertyRange>
<DataProperty URI=”\&mxcsProtocol ; va lue ”/>

726 <Datatype URI=”&xsd ; double ”/>
</DataPropertyRange>

728 <Dec la ra t i on>
<DataProperty URI=”\&mxcsProtocol ; va lue ”/>

730 </Dec la ra t i on>
</Ontology>
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C.3 State Message and Market Information

1 <?xml version= ' 1 .0 ' encoding= 'UTF−8 ' ?>
<xsd:schema xmlns:xsd= ' ht tp : //www.w3 . org /2001/XMLSchema '

3 xmlns : i n f o= ' ht tp : //www. sormapro ject . eu/message/ e j s d l /beans '
xm ln s : j s d l= ' ht tp : // schemas . gg f . org / j s d l /2005/11/ j s d l '

5 xmlns:wsa= ' ht tp : // schemas . xmlsoap . org /ws/2004/03/ addre s s ing '
xmlns : sawsdl= ' ht tp : //www.w3 . org /ns/ sawsdl '

7 targetNamespace= ' ht tp : //www. sormapro ject . eu/message/ e j s d l /beans '
elementFormDefault= ' q u a l i f i e d '>

9 <xsd : import namespace= ' ht tp : // schemas . gg f . org / j s d l /2005/11/ j s d l ' schemaLocation= '
j s d l . xsd ' />

<xsd : import namespace= ' ht tp : // schemas . gg f . org / j s d l /2005/11/ j s d l−pos ix '
schemaLocation= ' j s d l−pos ix . xsd ' />

11
< !−− ================================================= −−>

13 < !−− ========== StateMessage ================ −−>
< !−− ================================================= −−>

15
<xsd:complexType name= ' StateMessage Type '>

17 <xsd : s equence>
<xsd :e l ement r e f= ' i n f o : S co r i ngFunc t i on ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />

19 <xsd :e l ement r e f= ' i n f o :Paramete r s ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
</ xsd : s equence>

21 <x s d : a t t r i b u t e name= ' cont rac t Id ' type= ' x s d : s t r i n g ' use= ' r equ i r ed '
sawsd l :mode lReference= ' mxcsProtocol#cont rac t ' />

</xsd:complexType>
23

<xsd:complexType name= 'Parameters Type '>
25 <xsd : s equence>

<xsd :e l ement r e f= ' i n f o : v a l u a t i o n ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
27 <xsd :e l ement r e f= ' info :t imeToComplete ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />

<xsd :e l ement r e f= ' i n f o : f i n a l P r i c e ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
29 <xsd :e l ement r e f= ' i n f o : d u r a t i o n ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />

</ xsd : s equence>
31 </xsd:complexType>

33 <xsd :e l ement name= ' StateMessage ' type= ' in fo :StateMessage Type '
sawsd l :mode lReference= ' mxcsProtocol#StateMessage ' />

<xsd :e l ement name= ' Parameters ' type= ' in fo :Parameters Type ' sawsd l :mode lReference= '
mxcsProtocol#Parameters ' />

35 <xsd :e l ement name= ' Scor ingFunct ion ' type= ' x s d : s t r i n g ' sawsd l :mode lReference= '
mxcsProtocol#scor ingFunct ion ' />

<xsd :e l ement name= ' va lua t i on ' type= ' xsd :doub le ' sawsd l :mode lReference= '
mxcsProtocol#va lua t i on ' />

37 <xsd :e l ement name= ' timeToComplete ' type= ' xsd :doub le ' sawsd l :mode lReference= '
mxcsProtocol#completionTime ' />

<xsd :e l ement name= ' f i n a l P r i c e ' type= ' x s d : s t r i n g ' sawsd l :mode lReference= '
mxcsProtocol#f i n a l P r i c e ' />

39 <xsd :e l ement name= ' durat ion ' type= ' xsd :doub le ' sawsd l :mode lReference= ' mxcsProtocol
#durat ion ' />

41 < !−− ================================================= −−>
< !−− ========== MarketInformation ================ −−>

43 < !−− ================================================= −−>

45 <xsd:complexType name= ' Queries Type '>
<xsd : s equence>

47 <xsd :e l ement r e f= ' i n f o : a u c t i o n s ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
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</ xsd : s equence>
49 </xsd:complexType>

51 <xsd:complexType name= 'Response Type '>
<xsd : s equence>

53 <xsd :e l ement r e f= ' i n f o : a u c t i o n s ' minOccurs= ' 1 ' maxOccurs= ' 1 ' />
</ xsd : s equence>

55 </xsd:complexType>

57 <xsd:complexType name= ' Auctions Type '>
<xsd : s equence>

59 <xsd :e l ement r e f= ' i n f o : a u c t i o n ' minOccurs= ' 0 ' />
</ xsd : s equence>

61 </xsd:complexType>

63 <xsd:complexType name= 'Auction Type '>
<xsd : s equence>

65 <xsd :e l ement r e f= ' i n f o :marke t in f o rmat i on ' minOccurs= ' 0 ' />
</ xsd : s equence>

67 <x s d : a t t r i b u t e name= ' id ' type= ' x s d : s t r i n g ' use= ' r equ i r ed ' sawsd l :mode lReference=
' mxcsProtocol#id ' />

</xsd:complexType>
69

<xsd:complexType name= ' MarketInformation Type '>
71 <xsd : s equence>

<xsd :e l ement r e f= ' in fo : lastNConsumerBids ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />
73 <xsd :e l ement r e f= ' i n f o : l a s tNProv id e rB id s ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />

<xsd :e l ement r e f= ' i n f o : l a s tNC l e a r i n gP r i c e s ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />
75 <xsd :e l ement r e f= ' i n f o : consumerb id s ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />

<xsd :e l ement r e f= ' i n f o : p r o v i d e r b i d s ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />
77 <xsd :e l ement r e f= ' i n f o : c l e a r i n g p r i c e s ' minOccurs= ' 0 ' maxOccurs= ' 1 ' />

</ xsd : s equence>
79 </xsd:complexType>

81 <xsd:complexType name= 'Value Type '>
<xsd : s equence>

83 <xsd :e l ement r e f= ' i n f o : v a l u e ' minOccurs= ' 0 ' />
</ xsd : s equence>

85 </xsd:complexType>

87 <xsd :e l ement name= ' que r i e s ' type= ' i n f o :Quer i e s Type ' sawsd l :mode lReference= '
mxcsProtocol#query ' />

<xsd :e l ement name= ' re sponse ' type= ' i n f o :Quer i e s Type ' sawsd l :mode lReference= '
mxcsProtocol#response ' />

89 <xsd :e l ement name= ' auc t i ons ' type= ' i n fo :Auct ions Type ' sawsd l :mode lReference= '
mxcsProtocol#auct ion ' />

<xsd :e l ement name= ' auct ion ' type= ' in fo :Auct ion Type ' sawsd l :mode lReference= '
mxcsProtocol#auct ion ' />

91 <xsd :e l ement name= ' market informat ion ' type= ' in fo :Market In format ion Type '
sawsd l :mode lReference= ' mxcsProtocol#market informat ion ' />

<xsd :e l ement name= ' consumerbids ' type= ' in fo :Va lue Type ' sawsd l :mode lReference= '
mxcsProtocol#bid ' />

93 <xsd :e l ement name= ' prov ide rb id s ' type= ' in fo :Va lue Type ' sawsd l :mode lReference= '
mxcsProtocol#bid ' />

<xsd :e l ement name= ' c l e a r i n g p r i c e s ' type= ' in fo :Va lue Type ' sawsd l :mode lReference= '
mxcsProtocol#c l e a r i n gP r i c e ' />

95 <xsd :e l ement name= ' value ' type= ' xsd :doub le ' sawsd l :mode lReference= ' mxcsProtocol#
value ' />

<xsd :e l ement name= ' lastNConsumerBids ' type= ' x s d : i n t e g e r ' sawsd l :mode lReference= '
mxcsProtocol#bid ' />
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97 <xsd :e l ement name= ' l a s tNProv iderBids ' type= ' x s d : i n t e g e r ' sawsd l :mode lReference= '
mxcsProtocol#bid ' />

<xsd :e l ement name= ' l a s tNC l ea r i ngPr i c e s ' type= ' x s d : i n t e g e r ' sawsd l :mode lReference= '
mxcsProtocol#c l e a r i n gP r i c e ' />

99
</xsd:schema>
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