
Engineering Efficient Error-Correcting Geocoding ∗

Christian Jung
PTV AG

Stumpfstraße 1
76131 Karlsruhe, Germany
christian.jung@ptv.de

Daniel Karch
TU Berlin

Straße des 17. Juni 135
10623 Berlin, Germany

karch@math.tu-berlin.de

Sebastian Knopp
PTV AG

Stumpfstraße 1
76131 Karlsruhe, Germany

Sebastian.Knopp@ptv.de
Dennis Luxen

Karlsruhe Institute of
Technology

Kaiserstraße 12
76131 Karlsruhe, Germany

luxen@kit.edu

Peter Sanders
Karlsruhe Institute of

Technology
Kaiserstraße 12

76131 Karlsruhe, Germany
sanders@kit.edu

ABSTRACT
We study the problem of resolving a perhaps misspelled ad-
dress of a location into geographic coordinates of latitude
and longitude. Our solution does not require any prefixed
rule set and is able to recover even heavily misspelled and
fragmentary queries within a few milliseconds.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]; H.3.3 [Information
Search and Retrieval]

General Terms
Algorithms, Performance, Experimentation

Keywords
Approximate string indexing, Data Structures, Geocoding,
Algorithm Engineering

1. INTRODUCTION
Geocoding of a location description is the process of trans-

forming an address into a geographical coordinate. This pro-
cess has been available in geographic information systems for
quite some time, e.g [3]. However, with its ubiquitous use in
modern web services (e.g., [4, 2]), requirements have beco-
me more severe: Since most of these services are free, geo-
coding servers must handle huge streams of queries at very
low cost. Also, users expect instantaneous answers. Inputs
will frequently be fragmentary, contain misspelled names or

∗Partially supported by DFG grant SA 933/5-1.

.

specify combinations of town and street that are inconsis-
tent with the database. We focus on the algorithmic and
algorithm engineering aspects of the problem to map infor-
mation about town and street to a data base entry for the
intended street.

2. INDEX DATA STRUCTURE
Our input data are a set T of towns and a set S of streets

that are defined by a name and a reference to a town. We
use the term “town” both for a district of another place and
for an independent place. Also, we use the term city for
independent places even if they are small. Streets belonging
to multiple towns are cut into respective pieces. Districts
contain a reference to the city they belong to.

We view place and street names as (very short) documents
containing a sequence of tokens separated by white space,
commas or hyphens. Thus we can use methods known from
full text search to support fast geocoding. We build two in-
verted indices, i.e. the town index maps tokens appearing
in town names to the towns using that token in their name
and the street index maps tokens appearing in street na-
mes to all streets containing this token. We compute the set
towns(s) of town IDs containing a street with name s and
also a set towns(t) of town IDs with name t. This translati-
on lets us efficiently check which combinations of town and
street name correspond to actual addresses.

Indexing tokens makes the index easier to use, but leads to
a problem. A query of the form “New Georgia Street” will
return every street that matches any of the tokens “New”,
“Georgia”, or “Street”. As remedy, we apply a concept from
information retrieval and text mining [1, 7], called inverse
document frequency (IDF). Tokens that occur often receive
a lower IDF weight than those that appear only infrequently.
Tokens with a high weight are more helpful to identify the
correct string, because they match fewer strings in the index.

We will use this to our advantage: When a user enters an
address that they want to have geographically referenced,
they may leave out parts of the address that they deem irre-
levant, but they will probably enter those parts of the query
that will non-ambiguously define what they are looking for.
If we expect the user to enter the most important part of an
address, it is not necessary to have said address be referenced
also by the remaining, unimportant tokens.

We build indices supporting approximate search on the
sets of tokens appearing in town names and street names
respectively. Since dictionaries are much smaller than the
full data base, we can afford super-linear space to some ex-
tent. Token based indices can easily handle queries that drop
part of the town or street name. A recently published appro-
ximate string index [5] offers a convenient trade-off between
speed and memory consumption. An approximate index for
token set M with maximum error di can be queried with a
string q and returns a set Mq ⊆ M of tokens that have edit
(Levenshtein) distance at most di.
We first concentrate on the case where a query consists

of two strings typed into separate fields for town name and
street name. After normalization and tokenization, we try
three increasingly sophisticated ways to obtain sets CT and
CS of town and street candidates respectively that allow an
increasing number of errors. After each of these attempts,
we combine these candidate sets into consistent candidate
addresses from CT ×CS . We stop as soon as we have found
satisfying solutions. Otherwise, an empty result is returned.

Following the successful principle of “make the common
case fast”, we use a simplified special treatment for the case
of a partially exact town match where at least one sufficiently
rare token of a town candidate is exactly matched. If this
yields a plausible result, we stop.

If we successfully identify partially exact town matches
during the first phase, but could not match a street in these
towns with a sufficient rating, we extend the scope of exact
search to the periphery : If the input specifies a city, we try
all its districts, if it specifies a district, we try the city it
belongs to and all its districts. If the town is matched against
a candidate x which is subsequently corrected to a town y
in the periphery of x, we still calculate the rating for x. The
name of y generally does not match anything in the query
string and would lead to a low rating.

When there are no or no good partially exact matches or
when even periphery search does not find a good candidate,
additional candidates are computed using the approximate
indices for towns and streets. If a town candidate found spe-
cifies a district x of a city y, we also add y to the candidates.
However, we do not do a full scale approximate periphery
search because this could yield hard to understand results.

After partially exact matching, periphery search, or ap-
proximate search, that all treat towns and streets separa-
tely, we generate address candidates where town and street
are compatible with each other. A pair (t, s) ∈ CT × CS is
compatible if a street with name s is present in a town with
name t, i.e. we compute:

CT ×S := {(t, s) ∈ CT × CS : towns(t) ∩ towns(s)
= ∅}

3. RATING CANDIDATES
After having dismissed most of the search space, we are

left with a hopefully small set of compatible address can-
didates (t, s) ∈ T × S. These are then rated. The result
is interpreted using two threshold values ρ and ρ. Ratings
below ρ are unsatisfactory. If all results are unsatisfactory,
more extensive search is done (after partially exact matching
or periphery search) or, when everything fails, an empty re-
sult is returned. If a candidate with rating ≥ ρ is found,
the search returns successfully without further attempts at
refining.

Let us recall the different kinds of errors that we want

Jersey City, New York

central New York Jersy cty

1 0

0 1

Figure 1: Candidate (top) is matched against query
(bottom). Edge labels symbolize edit distances.

to compensate for: typing errors, missing or redundant to-
kens, and inconsistent pairing of a street and a town. The
first step on the way to a robust rating heuristic is to align
the query to a candidate, i.e. find a good mapping from the
tokens in the query to the tokens in the candidate. The ra-
ting is computed separately for town and street by the same
method and combined by the arithmetic mean afterwards.
There is one small asymmetry however that we call filter by
edit distance: Since there are usually less candidate towns
than candidate streets, we prune candidates that are alrea-
dy unsatisfactory because they do not sufficiently well fit the
town description from the query.

To match the town tokens q ∈ Q from the input to tokens
of a candidate town name c ∈ C, we solve a minimum weight
perfect matching problem on a bipartite graph. If |Q| ≤ |C|
we add |C|−|Q| dummy nodes to Q and obtain the matching
graph G = (Q∪C,Q×C) where the weight of edge (q, c) is
the edit distance between q and c if c is not a dummy node
and 0 if c is a dummy node. Edit distances take misspel-
lings into account and dummy query nodes model missing
tokens in the query. Similarly, if |Q| > |C| we add |Q| − |C|
dummy nodes to C. This matching problem can be solved
in polynomial time [6]. The considered graphs are tiny and
processing is neglectable.

Each token that matches with at most d errors should be
awarded some points in a rating. It makes sense to choose
d larger than the error bound di for the approximate index
since space or index access time is no issue for the pairwise
distance computations used for the rating function. Tokens
that could not be matched with at most d errors should
not be awarded points and may even be punished. Users are
more likely to omit information (either because they forget
it or because they deem it unnecessary) than to over-specify
the query. Therefore, tokens in the query that do not match
anything in the candidate should be punished higher than
candidate tokens that do not match anything in the query.
The rating should be a real number in the interval [0, 1],
with one denoting a perfect match. The heuristic should be
able to distinguish between tokens that are important and
tokens that do not provide much information.

Rather than directly using the edit distance, we also want
to take into account the lengths of compared words, since
the rate of error that can be introduced into a word with a
constant number of changes depends on its length. We define
token similarity between two tokens q and c as:

sim(q, c) :=

{
1− editDistance(q,c)

|c| , if editDistance(q, c) ≤d

0, else

We normalize the error rate by the length of c since candi-
dates are entries that are actually present in our database.

In order to take the importance of a candidate token into
account, we use its IDF. M is the set of edges (d, c) between
tokens and candidate tokens that were matched with edit
distance ≤ d. U is the set of unmatched query tokens, i.e.,
those tokens that could not be matched to any candidate
token with at most d errors. We use the rating function:

rating(Q,C):= γ ratingQ(Q,C) + (1− γ) ratingC(Q,C)

where

ratingQ(Q,C):=

∑
(q,c)∈M

(sim(q, c))α IDF(c)

∑
(q,c)∈M

IDF(c) + |U | IDFavg

and

ratingC(Q,C):=
∑

(q,c)∈M
IDF(c)/

∑
c∈C

IDF(c)

IDFavg is averaged over IDF values of all town tokens. The
term |Mc| IDFavg expresses that unmatched queries should
have matched somewhere but we have no idea where – so
we use an average value. Parameter α is used to adjust how
important it is to have similar matches. ratingQ is not influ-
enced by the number of unmatched candidate tokens. This
is why we compute a convex combination of ratingQ with
ratingC which penalizes unmatched candidate tokens. The
parameter γ ∈ [0, 1] specifies the relative weight. To give
more weight to the matched parts of a query, set γ > 1/2.

We focused on separate fields for town and street, because
multi-field search is easier to program, and one expects that
it reduces errors. From a users points of view, however, it
is more convenient to enter a query into a single field, with
street and town in arbitrary order.

In order to compare multi-field search and single-field search
and in order to compare our approach with Internet services,
we have implemented a simple version of single-field search
with an emphasis on quality. Our solution is based on the
plausible hypothesis that the token sequence resulting from
a single-field query has the format streetToken∗townToken+

or townToken+streetToken∗, i.e., street and town tokens are
contiguous and there is at least one token designating a
town. We try all 2m − 1 possible ways to split a token se-
quence of length m and call a multi-field search each time.

4. EXPERIMENTAL EVALUATION
We implemented the system described above in C++ ma-

king extensive use of the STL. Experiments were done on
a single core of an Intel Core i7 920, running at 2.67 GHz
with 12GB RAM on Linux kernel 2.6.27. Source was compi-
led with GCC 4.3.2.

The tuning parameters have been chosen intuitively wi-
thout an attempt at finding optimal values: We ignore light
tokens comprising up to 40 % of the cumulative IDF of a
name. The threshold of the approximate dictionaries and
pairwise edit distance computations is limited to d = di = 2
in order to keep space consumption low. Similarities bet-
ween matched words are taken to the power α = 2 and in
the convex combination ratingQ(Q,C) = γ ratingQ(Q,C) +
(1− γ) ratingC(Q,C) we choose γ = 3/4. The threshold for
a satisfactory rating is ρ = 1/2 and a good rating starts at
ρ = 4/5.

The commercial data (from 2009) comprises all German
street and town names There are about 12 000 cities, 108 000
towns, 80 000 town names, 76 000 town name tokens, 1 350 000

streets, 444 000 street names, and 269 000 street name to-
kens. A street name consists of 2.5 tokens, while town na-
mes have 1.1 tokens on average. The input data takes about
30 MB (uncompressed) space while our index data structu-
res take about 327 MB.

We use a set of existing, relevant addresses R, and a set
of non-existing, irrelevant addresses I. A relevant address
is sampled by first choosing a random street name s and
then picking a random town from towns(s). An irrelevant
address is composed of randomly chosen town and street
names such that combinations which accidentally occur in
the database are rejected. We want to return correct results
for relevant and no result for irrelevant address queries. To
generate a random query, it would be easy to just insert, de-
lete or substitute random characters in an existing address.
Those errors, however, are unlikely to resemble the errors
that a human would make while entering a query through a
keyboard. We identify several sources of errors to generate
input sets with more realistic errors.

Typing errors are common and we distinguish swapped
characters,missing characters, and superfluous or wrong cha-
racters, doubled characters, where there should be a single
character, or a single character, where there should be two of
the same. The Soundex algorithm identifies classes of cha-
racters such that different characters from the same class
differ only slightly in their pronunciation. Depending on the
respective language there are several sources of error that
are phonetic. Two consecutive vowels that occur in the same
syllable are called a diphthong. In German, several different
diphthongs sound the same or similar.

To get k errors, we introduce �k/2 errors into the street
string and �k/2� errors into the town string. A random error
class is picked, then a random token, and then a random po-
sition. All distributions are uniform. We classify the results
by: True Positive (TP): A relevant address that is correctly
identified, True Negative (TN): An irrelevant address that
does not return a result or a correct partial result (i.e. the
correct town), False Positive (FP): An irrelevant address
where the index does return a result, False Negative (FN):
A relevant address where we do not find a result, and In-
correctly Identified (II): A relevant address that returns an
incorrect result, i.e. another relevant address. Table 1 gives
match rates on 1 000 relevant and 100 irrelevant addresses,
along with query times. Multi-field search works extremely
well. Only at five errors, we see a sharp increase of false ne-
gative results. At this point, the approximate street index
will fail to find the right result because its error limit is set to
di = 2. Interestingly, query times decrease with the number
of errors, because a smaller number of candidates is checked
both in the approximate index and when rating candidates.

Single-field search for relevant addresses works almost as
well as multi-field search. The notable difference is that a
small fraction of false negative results mutates into incor-
rectly identified results. Our implementation seems to be
too aggressive here. It is paradoxical that we get a larger
number of output errors when there are no spelling errors
in the input. The reason is simple. Without spelling errors
we obtain higher ratings for the generated candidates and it
becomes more likely that the result is accepted. This indica-
tes that the result quality could be improved by increasing
the acceptance threshold. Single-field query times are an or-
der of magnitude larger, since the implementation naively
factors a single-field search into several multi-field searches.

Multi-field search
relevant irrelevant

Errors TP FN II TN FP Time [ms]
0 1 000 0 0 93 7 3.02
1 989 10 1 95 5 2.75
2 988 11 1 94 6 2.44
3 928 66 6 94 6 2.40
4 854 140 6 99 1 1.79
5 557 431 12 97 3 1.59

Single-field search
relevant irrelevant

Errors TP FN II TN FP Time [ms]
0 1 000 0 0 52 48 26.07
1 989 10 1 63 37 23.33
2 986 13 1 74 26 19.72
3 927 66 7 75 25 18.44
4 856 125 19 80 20 16.69
5 560 414 26 86 14 14.31

Table 1: Matching rates and query times

90% of all multi-field queries finish in less than 5 ms. The
maximum is 106 ms. For our server scenario, we want very
low average query time to achieve high throughput and low
cost. Occasional slow queries are no problem as long as they
do not lead to noticeable delays for the user. 100 ms is in the
order of the delays users experience due to network laten-
cies. Although single-field search is an order of magnitude
slower on the average, this slow-down does not translate into
a proportional increase of the slowest query times.

We compare against existing geocoders and take the first
100 relevant queries from the above query set and run them
against the available APIs of Bing, Yahoo and Google Maps.
The results of Yahoo are very sensitive to the ordering of
street and town. Therefore we fed both orderings to the API.
It should also be noted that the subjective performance of
Google with interactive use on the web is much better. Goo-
gle works very well for undistorted inputs, but already for a
single error, the recognition rate drops to 54 % and collapses
for d ≥ 2. Bing already has significant deficits at d = 2, but
fails for distorted inputs. The number of failed answers is an
order of magnitude worse than for our system.

We also experimented with real-world input. 1 383 queries
have been provided by users of an existing geocoder running
at PTV AG. We checked the correctness of our results manu-
ally. Our system outperforms the Google, Yahoo! and Bing
API. Google is similarly good for (partially) exact queries
but looses ground for errorneous inputs. A difference to the
random inputs is that now Google consistently outperforms
Bing – also for the inputs with errors. Yahoo is sometimes
better than Bing.

We use several heuristics to make sure that the number of
candidates stays small and that we do not have to perform
too many edit distance computations. Tests show each of
them affects the query time. The techniques are: Filter In-
compatible Candidates (FIC): We keep only those town and
street candidates that are geographically compatible. Filter
by Edit Distance (FED): As described in Section 3 we ha-
ve an additional filtering stage before full rating evaluation
the drops candidates that can already eliminated because
the town names are an unsatisfactory match. Ignore Light
Tokens (ILT): As described in Section 2, we can ignore so-
me tokens during the construction of the index due to their

weight in comparison to the other tokens. E.g. candidate
“New Georgia Street”will be represented by“Georgia”, be-
cause the other tokens occur so frequently in the dictionary.

ILT FIC FED Query Time [ms]

× × × 570.00
× × � 566.00
× � × 199.00
× � � 126.00
� × × 10.68
� × � 10.58
� � × 3.45
� � � 2.09

Table 2: Effect of ILT, FIC and FED.

Table 2 reports that disabling ILT destroys performance.
FED is always enabled since it only has an impact together
with FIC. Without ILT, any query that contains the token
“street” will return all candidates that contain this token.
Query time drops by a factor of almost 100 with ILT enabled.
FIC gives another boost of factor 3. None of these features
has a noteworthy effect on the memory requirements of the
index, therefore all of them are enabled by default.

5. FUTURE WORK
Developing further techniques especially suited for single-

field search has a high priority. The experiments used com-
mercial German map data, and it should be easy to ad-
apt to other Western countries. The basic ingredients – fast
approximate dictionary search, token matching and scoring
functions might also help in other settings like in countries
with more complicated addresses or less structured reference
data. However in that case we should expect more errors,
longer query times, and the need for further heuristics.

Points of interest can be included by seeing them as streets,
towns or house numbers in a separate index depending on
the context. Finding street intersections is easy once we ha-
ve geocoded the two intersecting streets. We did not cover
the problem of ambiguities in detail, e.g. “Berlin, Germany”
vs. “Berlin, Ohio” vs. “Berlin, Connecticut” or with omitted
information, e.g. “Times Square” without “New York City”.
This problem can be tackled by sorting the town tokens to
which the street tokens point to by some importance.

6. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. Addison-Wesley, 1999.

[2] Bing Maps. http://maps.bing.com.

[3] D. W. Goldberg, J. P. Wilson, and C. A. Knoblock.
From text to geographic coordinates: The current state
of geocoding. Journal of the Urban and Regional
Information Systems Association, 19, 2007.

[4] Google Maps. http://maps.google.com.

[5] D. Karch, D. Luxen, and P. Sanders. Improved fast
similarity search in dictionaries. In Proc. of SPIRE’10,
LNCS. Springer, 2010.

[6] J. Munkres. Algorithms for the assignment and
transportation problems. Journ. SIAM, 5(1), 1957.

[7] H. C. Wu, R. W. P. Luk, K. F. Wong, and K. L. Kwok.
Interpreting TF-IDF term weights as making relevance
decisions. ACM Trans. Inf. Syst., 26(3):1–37, 2008.

Repository KITopen

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:

Jung, C.; Karch, D.; Knopp, S.; Luxen, D.; Sanders, P.
Engineering efficient error-correcting geocoding.
2011. Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, November 1-4 2011, Chicago, Illinois. Ed.: I.Cruz
10.5445/IR/1000028130

Zitierung der Originalveröffentlichung:

Jung, C.; Karch, D.; Knopp, S.; Luxen, D.; Sanders, P.
Engineering efficient error-correcting geocoding.
2011. Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, November 1-4 2011, Chicago, Illinois. Ed.: I.Cruz, 469–
472, Association for Computing Machinery (ACM)

Lizenzinformationen: KITopen-Lizenz

https://publikationen.bibliothek.kit.edu/1000028130
https://publikationen.bibliothek.kit.edu/1000028130
https://publikationen.bibliothek.kit.edu/1000028130
https://www.bibliothek.kit.edu/cms/kitopen-workflow.php

