
Efficient Parallel Scheduling of Malleable Tasks

Peter Sanders
Department of Informatics

Karlsruher Institut für Technologie
Karlsruhe, Germany

sanders@kit.edu

Jochen Speck
Department of Informatics

Karlsruher Institut für Technologie
Karlsruhe, Germany

speck@kit.edu

Abstract—We give an O(n + min{n, m} log m) work algo-
rithm for scheduling n tasks with flexible amount of parallelism
on m processors, provided the speedup functions of the tasks
are concave. We give efficient parallelizations of the algorithm
that run in polylogarithmic time. Previous algorithms were
sequential and required quadratic work. This is in some sense
a best-possible result since the problem is NP-hard for more
general speedup functions.

I. INTRODUCTION

As parallellism becomes ubiquitous and cheap with mod-
ern many-core processors, we need more flexible ways to
exploit this parallelism. One interesting model are malleable
tasks (see [12]) that can adapt the parallelism they use
to the ressources currently available. Following standard
assumptions of classical scheduling theory, in this paper we
study the makespan optimization problem for independent
malleable tasks for the case where we have complete in-
formation. This information specifies the sequential work
wj required for each of n jobs, as well as a speedup
function fj : 1..m → [1,m]1 specifying how much faster
job j can be executed when run on multiple processors
(m being the number of processors (PEs)). Unfortunately,
the problem is NP-hard for general speedup functions – In
Appendix A we show that the problem is NP-hard even for
step functions with just two possible speedups. The good
news is that there are polynomial time algorithms for the
case of concave speedup functions. We naturally get concave
speedup functions for parallel programs that work with any
number of PEs but loose efficiency with a growing number
of them, e.g., due to some sequential component in the code.
It is also allowed that there is a maximal useful amount of
parallelism where the speedup function remains flat beyond
a certain point.

Our main contribution is to make these algorithms
fast. The best previous result [3] requires running time
Θ
(
max

{
nm, n2 log2m

})
which may be too slow for large

machines. Parallelization is not discussed. After introducing
basic ideas and notation in Section II we give an algo-
rithm based on binary search with running time O(n +
min{n,m} log2m) in Section III. At least a randomized

1In this paper we use i..j as a shorthand for {i, . . . , j}.

version of the algorithm is fairly simple and practical. Then,
in Section IV, we reduce the factor log2m to logm. In
Section V we then discuss how these algorithms can be
parallelized. It turns out that we can achieve polylogarithmic
execution time with near linear speedup. Section VI sum-
marizes the results and discusses further issues.

More Related Work

In classical scheduling theory (e.g., [12]) there has been
extensive work on scheduling sequential jobs. We view this
as too specialized since it allows parallelism only at the
most coarse level. For jobs running on multiple PEs, three
different variants can be considered:

Tasks with a fixed number of PEs are also too inflexible
since many problems can be parallelized with a variable
number of PEs and since the optimal number of PEs to use
depends on the number of PEs available and on the total set
of jobs to be scheduled. Finding optimal schedules in this
case is difficult because in case of nonpreemptive tasks the
problem is NP-hard (generalisation from classical scheduling
theory) and even strongly NP-hard for m ≥ 5 [6]. Even in
case of preemptive tasks the problem is NP-hard for m being
part of the input [5] but it becomes polynomially solvable
if m is fixed [2].

Moldable jobs allow a flexible number of PEs that has
to be fixed once and for all.2 While this is an attractive
model, the resulting scheduling problem is NP-hard in the
preemptive and nonpreemptive case [6]. The problem is even
strongly NP-hard for m ≥ 5 in the nonpreemptive case and
for m being part of the input in the preemptive case [6]. As
far as we know, the best approximation algorithm known
has approximation ratio 3

2 + ε [15] (there are approximation
schemes for fixed m [9]). [13] connects the approximation
of moldable and fixed size jobs.

Malleable jobs offer the most flexibility. The more general
problem with speedup functions without any additional
properties was studied by Jansen [8]. But the general prob-
lem seems to be far more difficult. Accordingly only an
approximate solution (FPTAS) with time complexity cubic
in n could be obtained in [8].

2Care should be taken since some works use the term malleable also in
this situation (e.g. [9]).

There are astonishingly few result on parallel algorithms
for classical scheduling problems. A notable exception is the
bin packing approximation algorithm given in [1] that can
be used to schedule nonpreemptible single processor jobs.

II. PRELIMINARIES

The tasks are malleable, which means that a job can
be preempted at any time to be moved to a different set
of PEs that may even contain a different number of PEs.
Preemptions are free but we will compute schedules with
few preemptions. For each task j in the task set J , we
are given the amount of work wj that has to be done to
complete the task and a speedup function fj : 1..m→ Q≥0

with fj(1) = 1. Running job j for a time interval of
length t using k processors will get work fj(k)t done. Let
wj(k):= wj/fj(k) denote the work function of job j. All
speedup functions are required to be concave.3 Wlog we
can also assume that speedup functions are monotonically
increasing since a nonmonotonic concave speedup function
reaching its maximum at k PEs could be changed into a
monotonic speedup functions with value fj(i):= fj(k) for
all i ≥ k – this is equivalent to not using PEs that do
not contribute to speedup. Our default assumption is that
speedup functions are represented by the vector of their m
function values. In this case, the total description length
of a scheduling instance is Θ(nm). Note that we will
give scheduling algorithms running in time sublinear in this
input size. This makes sense in application contexts where
multiple scheduling problems with only slightly changed job
sets have to be solved and when we actually have different,
more compact representations of speedup functions. For
example, we could have a closed form expressions for the
parallel execution times of the programs that work on the
jobs. Note that in this case, inverting work functions may
be possible in constant time.

III. A BINARY SEARCH ALGORITHM

Our scheduling problem can be solved in two main steps.
In the first step, we solve the fractional version where the
domain of the speedup functions is extended to the real inter-
val [0,m] by linear interpolation between the speedup values
for adjacent integer numbers of PEs (setting fj(0) = 0). In
the second step, the fractional schedule is transformed into
a dicrete one – see Section III-B.

The nice thing about the fractional version of the problem
is that it has a very simple structure:

Lemma 1 There are optimal schedules for fractional prob-
lems where every job runs with a fixed number of processors
during the entire makespan.

3f is concave iff ∀x < y < z : f(y) ≥ y−x
z−x

f(x) + z−y
z−x

f(z).

Function findMakeSpan(J)
T := max(max

j∈J
wj(m),

∑
j∈J

wj

m
)

T := max(max
j∈J

wj ,
∑
j∈J

wj

m
)

L:= {j ∈ J : wj > T} – – large jobs

g:=
∑

j∈J\L

wj – – work for small, sequential jobs

while ∃j ∈ L : #(w−1
j (T), w−1

j (T)) ≥ 1 do
T := findPivot(L, T , T)

if
g

T
+
∑
j∈L

w−1
j (T) > m then T := T

else T := T
Assert ∀j ∈ J : wj is linear on [T , T]

return solution of
g

T
+
∑
j∈L

w−1
j (T) = m

Figure 1. Finding the makespan of the fractional problem using binary
search.

Proof: Let

R:= {r ∈ Rn|
n∑

i=1

ri ≤ m, ri ≥ 0} .

Each r ∈ R defines a ressource allocation of the PEs to the
jobs (job j gets rj PEs). Let

S:= {s ∈ Rn|si = fi(ri), r ∈ R} .

S is the set of possible speeds for the jobs. Chapter 3
of [18] Lemma 1 shows that S is a convex set. Let
w:= (w1, . . . , wn) be the vector of work for all jobs. Then
Theorem 1 (in Chapter 3 of [18]) tells us that the minimal
makespan for all jobs is

T ∗ = min{T > 0|w
T
∈ S} .

Thus there is an optimal solution in which each task runs
with speed s∗j := wj

T∗ all the time and thus uses r∗j := f−1
j (s∗j)

PEs all the time.
This lemma reduces the fractional scheduling problem

to the problem of finding the optimal makespan. In the
following we will discuss several increasingly sophisticated
algorithms for this purpose.

A. Binary Search

A straight forward idea is to start with simple upper and
lower bounds for the makespan and then to use binary search
for narrowing down this range:

Lemma 2 max(max
j∈J

wj(m),
∑
j∈J

wj

m
) is a lower bound for

the makespan of the fractional schedule.

2

Proof: Since the speedup functions can be assumed
to be monotone, an obvious lower bound is the time
maxj∈J wj(m) needed to process any job using full par-
allelism. Since the speedup functions are concave, the most
efficient way to execute the jobs is to do this sequentially.
The total resulting work of

∑
j∈J wj can only be split

among m PEs.

Lemma 3
max(max

j∈J
wj ,

∑
j∈J

wj

m
)

is a upper bound for the makespan of the fractional schedule.

Proof: If we compare the length of an (yet unknown)
optimal schedule with the wj we get two cases:

In the first case all wj are smaller than the length of the
optimal schedule. Then we can consider all jobs as sequen-
tial ones with work wj . Hence we can use McNaughton’s
wrap-around rule [14] to get a schedule with makespan∑

j∈J wj/m. And

wi ≤
∑
j∈J

wj

m

holds for all i. So in this case

max(max
j∈J

wj ,
∑
j∈J

wj

m
) =

∑
j∈J

wj

m
.

In the second case the maximal wi is bigger than the
length of the optimal schedule. Then it is clear that the
maximal wi is an upper bound for the length of the optimal
schedule. We also get

wi >
∑
j∈J

wj

m

for the maximal wi because
∑

j∈J wj/m is a lower bound
for the optimal schedule.

Here, we maintain the invariant that the optimal makespan
is in [T , T]. Figure 1 gives pseudocode for this approach.
After computing the starting range, the algorithm first inden-
tifies the set L of jobs that are sufficiently large that they may
possibly require more than one PE in an optimal solution.
This is mainly important for the running time, since there
can be at most m− 1 jobs in L.

When we want to check whether some T ∈ [T , T] is a
makespan sufficient to process all jobs, we just have to check
whether the total required ressources for achieving makespan
T are bounded by m. Using Lemma 1 this is easy because
we just have to find out how many processors are needed
to achieve exactly makespan T for the large jobs. The latter
task amounts to inverting the work function w at T . Note
that w−1(T) always has a well defined value since we are
only using values T ≥ T ≥ maxj∈J wj(m).

What we said above already suffices to quickly obtain
good approximations for the optimal makespan. But when

can we actually stop the binary search and how do we finally
get the optimal value? The key insight here is that we can
give a closed form formula for the optimal makespan, once
all the speedup functions are linear for the entire range
[T , T]. Appendix B derives the actual formula needed for
this purpose. A speedup function becomes linear for [T , T]
once its corresponding domain [w−1(T), w−1(T)] does not
properly contain any integers (where it can bend). Defining
#(a, b) as the number of integers properly contained in
[a, b], we obtain the stopping criterion used in Figure 1.

There remains one crucial problem: We can construct
instances , where convergence would be very slow using
the usual interval halving technique for choosing the next
makespan T (refer to the end of this section). Rather than
halving the range of possible makespans, we should try to
half the number of bend points

∑
j∈J #(w−1

j (T), w−1
j (T)).

This means that we should take a bend point corresponding
to a median value of the work function with respect to
the work function value at all bend points. This sounds
expensive since there are up to mn bend points overall and
up to m|L| bend points for large jobs. However, we can
exploit that the bend points are organized into |L| sorted
sequences of length up to m. This multisequence selection
problem can be solved in time O(|L| logm) (see [7]).

With multisequence selection for implementing the func-
tion findPivot, we arrive at the following result:

Theorem 1 n malleable jobs with concave speedup function
can be scheduled optimally in time

O
(
n+ min(n,m) log2m

)
.

Proof: Function findMakeSpan finds an optimal
makespan for the fractional problem and in Section III-B
it is explained how this can be used to construct a discrete
schedule with the same makespan. Since the number of
bend points is halved in each iteration of the main loop,
it performs at most log(|L|m) = O(logm) iterations. Each
iteration takes time O(m logm) if pivot selection uses an
efficient algorithm for multisequence selection and binary
search for computing inverses of work functions.

Multisequence selection is relatively complicated and
involves significant constant factors hidden in the O(·)-
notation. The algorithm becomes faster by a constant factor
if we replace exact multisequence selection with a compu-
tation that is guaranteed to have a constant fraction of the
bend points on either side of T . This can be done like this:
For each large job, we take the median of the bend points in
Ij = [w−1

j (T)..w−1
j (T)] and compute the weighted median

of these medians, where the weight is the number of bend
points contained in Ij [7].

We can get even faster an more simple by choosing a
random bend point as pivot. This can be done in time
O(m) and still guarantees an expected number of O(logm)
iterations of the main loop. We obtain the same asymptotic

3

performance as in Theorem 1, now as an expected time
bound. If the work function can be inverted in constant
time, this randomized algorithm achieves running time
O(n+ min(n,m) logm).

Example: Here we present a family of scheduling prob-
lems, where a simple bisection technique can’t find the opti-
mal optimal schedule in a logarithmic number of executions
of the main loop.

Let the number of jobs be 6 for all members of the family.
The number of processors m ≥ 50 can be any multiple of 10
which is not divisible by 6. All jobs have the same amount
of work w and all jobs have the same speedup function f
which is defined as follows:

f(k) =

k, for 0 ≤ k ≤ m

10
m
10 + 2−m(k − m

10), for m
10 < k ≤ 2m

10
m
10 + 2−m m

10 else

The optimal fractional schedule is giving every job 1
6 of

the processors.
For all members of the familiy

T = max(
w

m
10 + 2−m m

10

,
6w
m

) ≤ 11w
m

and
T := max(w,

6w
m

) = wpunkt

Hence, the length of the starting interval [T , T] is at least
T − T ≥ w

2 . Now we compute the length of the largest
interval that contains T ∗ but doesn’t contain any bend point.
The length is

w

f(
⌊

m
6

⌋
)
− w

f(
⌈

m
6

⌉
)

=
w

f(
⌊

m
6

⌋
)f(
⌈

m
6

⌉
)
(f(
⌈m

6

⌉
)− f(

⌊m
6

⌋
))

≤ w
m
10

m
10

(2−m(
⌈m

6

⌉
− m

10
)− 2−m(

⌊m
6

⌋
− m

10
))

=
100w
m2

(2−m(
⌈m

6

⌉
−
⌊m

6

⌋
))

=
100w
m2

2−m

Hence one needs at least Ω(m) bisection steps to get an
interval without bend points that contains T ∗.

B. Solving the Discrete Problem

The pseudocode in Figure 2 summarizes the computation
of a complete schedule once the optimal makespan is given.
This algorithm is basically a simplified description of the
main result of [3]. We use 〈x〉 to denote the fractional part
x − bxc of x. The schedule is output as a sequence of
tuples (j, [a, b], i..k) saying that during time interval [a, b]
job j runs on PEs i..k. We use T ∗[a, b] as a shorthand for
[T ∗a, T ∗b]. The algorithm schedules one job after the other
and maintains the invariant that when job j is scheduled,

PEs 1.. bcc are completely filled with the previous jobs and
PE bcc + 1 is filled during time span [0, T ∗ 〈c〉] where c
is the sum of the ressource requirement of the previously
scheduled jobs. Let r = w−1

j (T ∗) denote the ressources
required to finish job j in time T ∗ in the fractional solution.
The basic idea is to emulate the fractional schedule by
running job j with dre PEs for a duration T ∗ 〈r〉 and with
brc PEs for the remaining duration of T ∗(1 − 〈r〉). To do
this in such a way that the invariant is mainained, we need to
distinguish two cases. If 〈r〉+ 〈c〉 ≤ 1 then the “big” part of
j requiring dre PEs is scheduled just after the lower part of
the previous schedule begins. Otherwise, the big part is split
into two pieces in such a way that the second piece just fills
the lower part of the old schedule and the remaining piece
starts at time zero. The pictures in the pseudocode illustrate
these cases.

Procedure findSchedule has running time
O(n+ min(n,m) logm) – taking into account that
w−1

j (T ∗) can be computed in constant time for the majority
of jobs that have w−1

j (T ∗) ≤ 1 and in logarithmic time for
the at most m− 1 larger jobs.

The produced schedules have several nice properties:
Each job is preempted at most twice. A job with ressource
requirement r in the fractional solution is executed on dre+1
consecutively numbered PEs. No PE has to work on more
than two large jobs. A description of a schedule has length
O(n).

Example for a complete solution:
Let m = 5, n = 3 and w1 = 12, w2 = 12, w3 = 8. The

speedup funktions are given in the following table:

#m 1 2 3 4 5
job 1 1 3

2 2 2 2
job 2 1 2 3 4 4
job 3 1 2 8

3
8
3

8
3

These speeds lead to the following execution times on
different numbers of processors:

#m 1 2 3 4 5
job 1 12 8 6 6 6
job 2 12 6 4 3 3
job 3 8 4 3 3 3

When we compute T ∗ with the algorithm from Figure 1
and Appendix B we get T ∗ = 22

3 and r∗1 = 25
11 , r

∗
2 =

18
11 , r

∗
3 = 12

11 and the fractional depicted in Figure 3.
The algorithm from Figure 2 then produces the discrete

schedule shown in Figure 4.

IV. A FASTER ALGORITHM

The binary search algorithm from Section III-A has
quadratic dependence on logm since it uses two binary
searches nested within each other – the main loop and
inversions of work functions. The inversion is needed in
order to compute the exact ressource requirements for the

4

Procedure findSchedule(J , T ∗)
c:= 0 – – currently consumed PEs
foreach j ∈ J do

r:= w−1
j (T ∗) – – ressources needed for job j

if 〈r〉+ 〈c〉 ≤ 1 then output

(j, T ∗[0, 〈c〉], bcc+ 1.. bcc+ brc)
(j, T ∗[〈c〉 , 〈c〉+ 〈r〉], bcc .. bcc+ brc)
(j, T ∗[〈c〉+ 〈r〉 , 1], bcc .. bcc+ brc − 1)

else output

(j, T ∗[0, 〈c〉+ 〈r〉 − 1], bcc+ 1.. bcc+ brc+ 1)
(j, T ∗[〈c〉+ 〈r〉 − 1, 〈r〉], bcc+ 1.. bcc+ brc)
(j, T ∗[〈r〉 , 1], bcc+ 1.. bcc+ brc)

c:= c+ r

Figure 2. Computing a discrete schedule given the optimal makespan.

T

m1 2 3 4 5

1

2

3

4

5

6

7

Figure 3. Fractional schedule for our example.

pivot makespan T . We will now describe an algorithm which
becomes asymptotically faster by avoiding exact inversions
of work functions (we assume m ≥ 17 as otherwise the
inversion of work functions is possible in constant time).
We show how already approximate ressource requirements
can be used to eliminate a constant fraction of the re-
maining bend points. This reduces the total running time
to O(n + min(n,m) logm), because we still need only

T

m1 2 3 4 5

1

2

3

4

5

6

7

Figure 4. Discrete schedule for our example.

O(logm) iterations of the main loop, each of which will
only need time O(min(n,m)). The fast algorithm replaces
the global interval [T , T] of possible makespans with per
job intervals [T j , T j] which are associated with bend points
of the speed function of job j. Each of these intervals still
contains the optimal makespan T ∗. The small tasks which
will surely be executed sequentially are considered through
g which is the sum of their wj-s. This is analogous to

5

Function findMakeSpanFast(J)

L:=

j ∈ J : wj >
∑
j∈J

wj

m
)

 – – large jobs

g:=
∑

j∈J\L

wj – – work for small, sequential jobs

foreach j do Bj := 1..m− 1 (or bj := 0, b:= m)
W := L – – wide jobs (|Bj | ≥ 16)
N := ∅ – – narrow jobs (|Bj | < 16)
while W 6= ∅ do

compute p(1
3) and p(2

3) for the wide jobs – – weighted selection

if
g

t(1/3)
+
∑
j∈L

s
(1/3)

j ≤ m then

foreach j ∈W with wj(mj(1
3)) ≥ t(1

3) do
bj := mj(1

3)

if
g

t(2/3)
+
∑
j∈L

s
(2/3)

j ≥ m then

foreach j ∈W with wj(mj(2
3)) ≤ t(2

3) do
bj := mj(2

3)
update W and N

finish using binary search similar to Section III-A
return solution (by solving the remaining linear equation)

Figure 5. Finding the makespan of the fractional problem using advanced binary search.

Section III-A. If the interval [T j , T j] contains less than 16
bend points we can compute w−1

j (T) in constant time. If
this is the case for all jobs we can use an algorithm similar
to the one in Section III-A which takes the border values bj
and bj as additional input.

To describe the algorithm in more detail, we need some
additional notation: Let Bj = (bj + 1)..(bj − 1) denote the
interval of active bend points for job j, i.e., those bend points
of which it is still unknown if they are bigger or smaller than
the ressource requirement for the optimal makespan T ∗. We
define W as the set of wide jobs with Bj ≥ 16 and N as
the set of narrow jobs with Bj < 16. The decision in which
set a job is can be done in constant time.

For c ∈ [0, 1] let

mj(c):= dc|Bj |e+ minBj − 1,

i.e., mj(c) is a c-quantile that splits Bj in the ratio c to
1− c. One can compute mj(c) in constant time. Let

U =
∑
j∈W

|Bj |

denote the total number of bend points of the wide jobs left.
Let

Mc:= {(mj(c), j) : j ∈W}

denote the set of c-quantiles. We consider the elements (i, j)
of Mc to be weighted with |Bj | and ordered like this:

(i, j) < (̃i, j̃) ⇔ wj(i) > wj̃ (̃i) .

Let p(c) = (r(c), j(c)) be the weighted c-quantile of Mc.
This means p(c) is the smallest element of Mc such that∑

{j∈W :(mj(c),j)≤p(c)}

|Bj | ≥ c ·
∑
j∈W

|Bj | .

We also introduce the appreviation t(c):= wj(c)(r(c)). One
can compute p(c) in time |W | using the weighted selection
algorithm from [10].

Our fast algorithm computes approximations of w−1
j (t(c))

for two different values of c (1/3 and 2/3). We will show
that for one of these splits it must be possible to cut the set of
remaining bend points by a constant fraction. Let s(c)

j denote
an upper bound for w−1

j (t(c)) that is exact when |Bj | < 16
and based on five iterations of binary search otherwise (the
first iteration takes mj(c) as pivot). Note that in either case,
s(c)

j can be computed in constant time. Let s(c)
j denote an

analogously defined lower bound. If t(c) < wj(m) we set

s(c)
j := s(c)

j := m+ 1 .

This will prevent us from infeasible solutions. We assume
that T ∗ > max{wj(m)|j ∈ J }. We can check this condition

6

if we compute max{wj(m)|j ∈ J } in O(n) and then test
in O(n + min(n,m) logm) (like in Section III-A) if this
solution is feasible. If our assumption is wrong this will
give us a solution immediately.

With these definitions in place, the pseudocode given in
Figure 5 is fairly straightforward. What remains to be shown
is that one of the if-statements in the main loop will always
apply, that either one will reduce U by a constant factor and
that T ∗ is always inside [T j , T j].

Lemma 4 In each iteration of Algorithm 5 at least one of
the two if-cases is true.

Proof: The lemma is true if
g

t(1/3)
+
∑
j∈L

s
(1/3)

j ≤ g

t(2/3)
+
∑
j∈L

s
(2/3)

j (1)

because if both if-cases are false, we must have
g

t(1/3)
+
∑
j∈L

s
(1/3)

j > m

and
m >

g

t(2/3)
+
∑
j∈L

s
(2/3)

j

which cannot be true simultaneously with inequality 1.
From the definition of t(1

3) we know∑
{j∈W :wj(mj(

1
3))≤t(1

3)}
|Bj | ≥

2
3
U

and from the definition of t(2
3) we know∑

{j∈W :wj(mj(
2
3))≥t(2

3)}
|Bj | ≥

2
3
U .

Thus ∑
{j∈W :wj(mj(

2
3))≥t(2

3)∧wj(mj(
1
3))≤t(1

3)}
|Bj | ≥

1
3
U .

Hence, there has to exist a j ∈W with

t(
2
3

) ≤ wj(mj(
2
3

))

and
wj(mj(

1
3

)) ≤ t(1
3

) .

We know wj(mj(2
3)) ≤ wj(mj(1

3)) and hence we get
t(2

3) ≤ t(1
3).

This immediately gives g
t(1/3) ≤

g
t(2/3) . Because the wj-s

are monotonically decreasing we get

w−1
j (t(

1
3

)) ≤ w−1
j (t(

2
3

))

for all j ∈ L. For j ∈ N we have

s
(1/3)

j = w−1
j (t(

1
3

))

and s(2/3)

j = w−1
j (t(2

3)). We get

g

t(1/3)
+
∑
j∈N

s
(1/3)

j ≤ g

t(2/3)
+
∑
j∈N

s
(2/3)

j ,

thus we only have to care about tasks that are in W = L\N .
For tasks in j ∈ W there are 4 cases (orderings in M 1

3
or M 2

3
):

1) (mj(1
3), j) < p(1

3) and (mj(2
3), j) ≤ p(2

3)

2) (mj(1
3), j) ≥ p(1

3) and (mj(2
3), j) ≤ p(2

3)

3) (mj(1
3), j) ≥ p(1

3) and (mj(2
3), j) > p(2

3)

4) (mj(1
3), j) < p(1

3) and (mj(2
3), j) > p(2

3)
Let us consider a j in case 2. We know that mj(1

3) ≥
w−1

j (t(1
3)) and mj(1

3) ≥ s(1/3)

j as we start the binary search
with mj(1

3). Analogously we know mj(2
3) ≤ s

(2/3)

j . Now
we can compute a lower bound for d`

j := s
(2/3)

j −s(1/3)

j . First
we get

d`
j ≥ mj(

2
3

)−mj(
1
3

) =
⌈

2
3
|Bj |

⌉
−
⌈

1
3
|Bj |

⌉
≥ 1

3
(|Bj |−1)

and as |Bj | ≥ 16 we get

d`
j ≥

1
3
· 15

16
|Bj | =

5
16
|Bj | .

Now consider a j in case 1,3 or 4. We overestimate the
worst case if we start the binary search with borders bj and
bj after step 1. After 4 more steps, the remaining search
interval has length

`j :=
1
16

(bj − bj) ≤ 1
16

(|Bj |+ 2)

and as |Bj | ≥ 16 we get

`j ≤
1
16
· 18

16
|Bj | =

9
128
|Bj | .

Now we can compute a upper bound for

du
j := s

(1/3)

j − s(2/3)

j .

We know w−1
j (t(1

3)) ≤ w−1
j (t(2

3)) thus

du
j ≤ s

(1/3)

j − w−1
j (t(

1
3

)) + w−1
j (t(

2
3

))− s(2/3)

j

≤ 9
128
|Bj |+

9
128
|Bj | =

9
64
|Bj | .

We know that∑
j∈W

s
(2/3)

j −
∑
j∈W

s
(1/3)

j ≥
∑

j∈case 2

d`
j −

∑
j∈case 1,3 or 4

du
j .

Because of the definition of p(1
3) we get∑

j∈case 1 or 4

|Bj | ≤
1
3

∑
j∈W

|Bj | .

7

Because of the definition of p(2
3) we get∑

j∈case 3 or 4

|Bj | ≤
1
3

∑
j∈W

|Bj | .

Thus we know ∑
j∈case 2

|Bj | ≥
1
3

∑
j∈W

|Bj |

. With U =
∑

j∈W |Bj | we get:∑
j∈W

s
(2/3)

j −
∑
j∈W

s
(1/3)

j ≥ 5
16
· 1

3
U − 9

64
· 2

3
U =

1
96
U > 0

This gives the assertion.

Lemma 5 The execution time of Algorithm 5 is O(n +
min{n,m} logm).

Proof: Every step of the main loop takes time
O(min{n,m}). Thus we only have to show that the main
loop needs O(logm) steps to terminate. To do this, it
suffices to show, that in every step of the main loop the
number of bend points in

⋃
j∈W Bj is reduced by a constant

factor.
We know from Lemma 4 that at least one of the if-

conditions in Algorithm 5 is true in every step. Wlog we
assume that

g

t(1/3)
+
∑
j∈L

s
(1/3)

j ≤ m .

From the definition of p(1
3) we know that at least 1

3 th of all
bend points in

⋃
j∈W Bj are in a set Bj with (mj(1

3), j) ≤
p(1

3). As we set bj := mj(1
3) we delete at least 1

3 th of the
bend points in Bj . So in every step of the main loop at least
1
9 th of all bend points in

⋃
j∈W Bj are deleted. This proves

the running time.
In the end we can use binary search similar to Sec-

tion III-A because computing w−1
j (T) takes only constant

time if |Bj | < 16 and the binary search algorithm with
constant time work function inversion runs in time O(n +
min{n,m} logm).

Lemma 6 The invariant bj ≤ w−1
j (T ∗) ≤ bj holds for all

j at the end of the main loop in Algorithm 5.

Proof: The invariant holds before the first step of the
main loop. We now have to show that the invariant before
one step implies the invariant after the step.

Recall that
g

T ∗
+
∑
j∈L

w−1
j (T ∗) = m .

Now we consider the case
g

t(1/3)
+
∑
j∈L

s
(1/3)

j ≤ m .

Then,
g

t(1/3)
+
∑
j∈L

w−1
j (t(

1
3

)) ≤ g

T ∗
+
∑
j∈L

w−1
j (T ∗)

and because of the monotonicity of the wj-s we have t(1
3) ≥

T ∗. From the definition of the ordering in M 1
3

we get for
j ∈ W with (mj(1

3), j) ≤ p(1
3) that wj(mj(1

3)) ≥ t(1
3)

and thus wj(mj(1
3)) ≥ T ∗. The monotonicity of the wj-s

proves the lemma in this case because setting bj to mj(1
3)

for j ∈ W with (mj(1
3), j) ≤ p(1

3) does not change the
invariant.

The case of
g

t(2/3)
+
∑
j∈L

s
(2/3)

j ≥ m

can be proven analogously.
Overall we obtain:

Theorem 2 n malleable jobs with concave speedup function
can be scheduled optimally in time

O(n+ min(n,m) logm) .

V. PARALLELIZATION

We now explain how our algorithms can be parallelized.
We assume a machine where all PEs have access to the work
functions and where the collective operations broadcast,
barrier, reduction, and prefix sum can be computed in time
O(logm). For example, an EREW PRAM [11] has these
properties. But note that this also holds for more realistic
shared memory models with asynchronous behavior and
even for distributed memory machines. An adaptation to
distributed memory is possible if the descriptions of the work
functions are available on all nodes of the system or if a work
function description can be represented with constant space.

We first parallelize the binary search algorithm from Sec-
tion III-A. Initially, we assign n/m jobs to each PE. T , T ,
and g can then easily be computed in time O(n/m+ logm)
using local computations, reduction, and broadcast. The
large jobs in L can then be computed locally. Since |L| < m
we can from now on assign a full PE to each large job (using
prefix sums).

Inverting work functions of large jobs can be done in
parallel for all work functions and takes time O(logm)
also. The decisions in the main loop can be implemented
using broadcast and reduction in time O(logm). For rou-
tine findPivot, we have to decide which implementation
to choose. A random pivot is relatively easy to find in
logarithmic time: compute an (exclusive) prefix sum over
the bend point counts cj = #(w−1

j (T), w−1
j (T)). Broadcast

a random number r between 1 and the total number of bend
points. The PE whose prefix sum sj is below r but where
sj +cj ≥ r broadcasts the work required at its r−sj-th local
bend point. Even the deterministic algorithm at the end of

8

Section III-A can be parallelized in logarithmic time on an
EREW PRAM: Sort the local medians using Cole’s merge
sort [4]. A weighted median is then easy to determine using
a prefix sum.

Computing a discrete schedule given a feasible makespan
is easy once one notices that the computations in the
main loop of Figure 2 only depend on the sum of the
ressource requirements of the previously scheduled jobs.
This information can be computed using a prefix sum over
the individual ressource requirements. Overall, we obtain the
following result:

Theorem 3 n malleable jobs with concave speedup function
can be scheduled optimally in time O

(
n/m+ log2m

)
on m

PEs of an EREW PRAM. 2

Parallelizing the more efficient algorithm from Section IV
is also possible. However, on m PEs we do not get faster
than the above result since we still need a logarithmic num-
ber of global operations. However, we can can get more effi-
cient by reducing the number of PEs to m/(logm log logm)
and aiming for execution time O

(
log2m log logm

)
. The

only nontrivial change to the simple binary search algorithm
is that we have to replace Cole’s mergesort by a more
efficient algorithm that directly finds weighted medians in
time O(logm log logm) [16]. In [17, Section 3.2] an even
faster weighted selection algorithm is claimed which would
reduce the factor log logm to the iterated logarithm log∗m.
Unfortunately, the analysis of the algorithm is wrong since
at one place a positive value ε assumed to be constant is set
to a value with asymptotic behavior o(1). [17]

VI. CONCLUSION

We have shown that malleable tasks with concave speedup
functions can be scheduled in near linear time sequentially
and in polylogarithmic time in parallel. At least the ran-
domized version of the binary search algorithm is fairly
simple and should be easy to implement, even in parallel.
This means that rather than considering this scheduling
problem as a complicated offline process, we can use our
fast algorithms to recompute schedules dynamically within
milliseconds. Thanks to parallelization this even holds for
a large parallel computer. This might open up new ways to
use malleable tasks in practice, e.g., in real time systems.

More generally, we find it astonishing how few results
there are on parallel algorithms for classical scheduling
problems. It looks like a promising direction of research
to find more results in this direction. We might also look
at nonconvex speedup functions with somehow weaker re-
strictions. As the NP-hardness proof from Appendix A only
works with speedup functions which contain big steps maybe
one can find polynomial time algorithms for the optimal
solution if one controls the step size. It also remains unclear
if the problem with general speedup functions is only NP-
hard for m exponential in the input. We might find good

approximation algorithms or even algorithms with running
time polynomial in both m and n in case of m being
polynomial in n.

The makespan minimization problem we consider does
not fully exploit the potential of malleable tasks which
allows arbitrary changes in number of processors. This will
change if we consider more complicated settings, e.g., where
jobs have arrival times and deadlines.

ACKNOWLEDGMENT

Partially supported by the German Science Foundation
(DFG), Collaborative Research Center SFB/Transregio 89.

REFERENCES

[1] R. J. Anderson, E. W. Mayr, and M. K. Warmuth. Parallel
approximation algorithms for bin packing. Inf. Comput.,
82(3):262–277, 1989.

[2] J. Blazewicz, M. Drabowski, and J. Weglarz. Scheduling
multiprocessor tasks to minimize schedule length. Computers,
IEEE Transactions on, C-35(5):389 –393, may. 1986.

[3] J. Blazewicz, M. Y. Kovalyov, M. Machowiak, D. Trystram,
and J. Weglarz. Preemptable malleable task scheduling
problem. IEEE Transactions on Computers, 55:486–490,
2006.

[4] R. Cole. Parallel merge sort. SIAM J. Comput., 17(4):770–
785, 1988.

[5] M. Drozdowski. On the complexity of multiprocessor task
scheduling. Bull. Pol. Acad. Sci., Tech. Sci., 43(3):381–392,
1995.

[6] J. Du and J. Y.-T. Leung. Complexity of scheduling paral-
lel task systems. SIAM Journal on Discrete Mathematics,
2(4):473–487, 1989.

[7] G. N. Frederickson and D. B. Johnson. The complexity
of selection and ranking in X+Y and matrices with sorted
columns. J. Comput. Syst. Sci., 24:197–208, 1982.

[8] K. Jansen. Scheduling malleable parallel tasks: An asymptotic
fully polynomial time approximation scheme. Algorithmica,
39(1):59–81, 2004.

[9] K. Jansen and L. Porkolab. Linear-time approximation
schemes for scheduling malleable parallel tasks. Algorith-
mica, 32(3):507–520, 2002.

[10] D. B. Johnson and T. Mizoguchi. Selecting the kth element
in X + Y and X1 + X2 + · · · + Xm. SIAM J. Comput.,
7:147–153, 1978.

[11] J. JJ. An introduction to parallel algorithms. Addison-Wesley,
Reading, Mass. [u.a.], 1992.

[12] J. Y.-T. Leung, editor. Handbook of Scheduling. CRC, 2004.

[13] W. Ludwig and P. Tiwari. Scheduling malleable and non-
malleable parallel tasks. In 5th ACM SIAM Symposium on
Discrete Algorithms, pages 167–176, 1994.

9

[14] R. McNaughton. Scheduling with deadlines and loss func-
tions. Management Science, 6(1):pp. 1–12, 1959.

[15] G. Mounie, C. Rapine, and D. Trystram. A 3
2

-approximation
algorithm for scheduling independent monotonic malleable
tasks. SIAM Journal on Computing, 37(2):401–412, 2007.

[16] E. Ruppert. Finding the k shortest paths in parallel. Algo-
rithmica, 28(2):242–254, 2000.

[17] H. Shen. Optimal parallel weighted multiselection. volume 1,
pages 323 – 326 vol.1, oct. 2002.

[18] S. G. H. Tzafestas, editor. Optimisation and control of
dynamic operational research models. North Holland systems
and control series ; 4. North-Holland, Amsterdam [u.a.], 1982.
Includes bibliographies and index.

APPENDIX A.
MALLEABLE SCHEDULING WITH ARBITRARY SPEEDUP

FUNCTIONS IS NP-HARD

The idea used here is similar to the one used in [5] to
prove that scheduling fixed size parallel jobs is NP-hard.
We will reduce PARTITION on
MALLEABLE SCHEDULING. Consider a1, . . . , a2n and
B with

∑2n
i=1 ai = 2B and the question Exists a J ⊆

{1, . . . , 2n} with
∑

i∈J ai =
∑

i6∈J ai = B? be our
PARTITION instance.

Then we construct a MALLEABLE SCHEDULING in-
stance with: m:= B and 2n jobs with wj = 2aj and speedup

function fj(k) =
{

1, k < aj

2aj , k ≥ aj
and the question: Is

there a schedule with makespan 2?
If there is a yes-solution for the PARTITION instance

we get a yes-solution of the MALLEABLE SCHEDULING
instance by running the jobs in J first (each with aj PEs
and with time 1) and then the jobs in {1, . . . , 2n} \ J .

If we have a yes-instance of
MALLEABLE SCHEDULING every task has to run
with maximal efficiency, thus has to use exactly aj PEs
during its complete computation time. Also there can’t be
idle PEs. Thus a set J ⊆ {1, . . . , 2n} with

∑
i∈J ai = B

must exist. So we get a yes-instance of PARTITION.

APPENDIX B.
SOLUTION OF THE LINEAR PROBLEM

Assume we have computed border values bj and bj for
each job. If we have only computed T and T we can compute
bj = w−1

j (T) and bj = w−1
j (T) for large jobs and set bj = 1

and bj = 0 for small jobs (which are executed sequentially).
We know that all speedup functions are linear between

bj and bj . As the speedup functions are linear between
bj and bj there exist kj , cj ∀j ∈ {1, . . . , n} such that
fj(rj) = kjrj + cj for each rj ∈ [bj , bj]. The kj and cj
can be computed for each task in constant time. For the
optimal solution r∗1 , . . . , r

∗
n, the equation

wj = fj(r∗j)T ∗ = (kjr
∗
j + cj)T ∗

holds. Some algebra gives:

wj = (kjr
∗
j + cj)T ∗

wj

kj
= (r∗j +

cj
kj

)T ∗

n∑
j=1

wj

kj
= (

n∑
j=1

r∗j +
n∑

j=1

cj
kj

)T ∗

= (m+
n∑

j=1

cj
kj

)T ∗

T ∗ =

∑n
j=1

wj

kj

m+
∑n

j=1
cj

kj

After we have computed T ∗, we compute r∗i using

wj = (kjr
∗
j + cj)T ∗

for each task. This solves the continuous problem. All com-
putations in this Section can easily be parallelized through
reduce (to compute T ∗) and broadcast (broadcast T ∗ to
compute the r∗j).

10

