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”This furnishes us with an evident explanation of the great superiority in certitude of
Arithmetic and Geometry to other sciences. The former alone deal with an object so pure
and uncomplicated, that they need make no assumptions at all which experience renders
uncertain, but wholly consist in the rational deduction of consequences. They are on that
account much the easiest and clearest of all, and possess an object such as we require,
for in them it is scarce humanly possible for anyone to err except by inadvertence. And
yet we should not be surprised to find that plenty of people of their own accord prefer to
apply their intelligence to other studies, or to Philosophy. The reason for this is that every
person permits himself the liberty of making guesses in the matter of an obscure subject
with more confidence than in one which is clear, and that it is much easier to have some
vague notion about any subject, no matter what, than to arrive at the real truth about a
single question however simple that may be.”

René Decartes
Rules for the Direction of the Mind1

1Translated by Elizabeth S. Haldane and G. R. T. Ross in ”Philosophical Works of Decartes”, Cambridge
University Press, 1911
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Preface

This thesis covers most of my research activity on superconducting heterostructures con-
ducted between 2008 and 2011 at the Institute for Theoretical Solid State Physics, Karl-
sruhe Institute of Technology, and the Department of Physics, Royal Holloway, University
of London. The common physical theme of all topics discussed here is the superconducting
proximity effect, i.e., the penetration of superconducting order into a non-superconducting
state that comes about if a material – usually a metal – is brought into contact with a
superconductor. This phenomenon has been investigated for decades already [30] and
is intimately related to prominent physical effects, like Josephson currents or Andreev
reflection.

More recently, the idea that the superconducting proximity effect may allow for ’engi-
neering’ superconducting states that so far eluded observation in bulk systems stimulated
renewed research efforts in this field [38]. Generally, one may say that this requires a
normal statea which is not commensurate with the order of conventional superconduc-
tivity, i.e. singlet s-wave pairing. Typically, this implies breaking spin-rotation symme-
try – which is readily achieved with magnetic fields, exchange interactions, or spin-orbit
coupling. Regarding applications, such proximity induced superconducting phases offer
exciting prospects in the context of spintronics and (topological) quantum computation
[38, 93].

We study two examples of such normal states here: ferromagnetic conductors and the two-
dimensional helical metal realised at the surface of three-dimensional topological insulators.
Since these systems do not only differ fundamentally in their phenomenology and potential
applications, but also in terms of the theoretical methods that we invoke to study them,
the thesis is split into two largely independent parts.

The first part treats the triplet proximity effect in superconductor-ferromagnet heterostruc-
tures. The current interest in these devices was triggered by the discovery of so-called 0-π
oscillations in Josephson-junctions where the non-superconducting interlayer is a weakly
ferromagnetic alloy [104]. The term 0-π oscillation refers to the fact that the current-phase
relation switches periodically between sin(Δχ) and sin(Δχ+ π) as a function of junction
length and temperature [18]. This can be understood as an effect of the ferromagnetic
exchange field. The Cooper-pairs of a conventional superconductor consist of electrons
with opposite spin and momentum. When they tunnel into a ferromagnetic material, this
symmetry cannot be upheld, as the momenta of conduction electrons at the Fermi-level
are now different for electrons with opposite spin-orientation. Consequently, the proximity
induced pairing correlations acquire a finite centre of mass momentum, leading to their
oscillation on a scale set by the exchange field. This is directly analogous to the FFLO-
state, where this effect is caused by a magnetic field [18]. Ferromagnetic π-junctions were
recently incorporated in superconducting Qubits [43], which may allow to reduce their cell
size and make them less susceptible to noise.b

aThe term ’normal state’ is nothing but a shorthand for ’non-superconducting state’ here.
bSee Ref. [43] and references therein.
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However, the exchange field does not only lead to oscillations of the pair wave function, it
is also detrimental to the proximity effect and reduces its decay length [30, 55]. This loss
of particle-hole coherence is associated to the wave vector mismatch between spin-up and
-down states. It was therefore widely believed that the proximity effect in ferromagnetic
materials whose exchange energy is of the order of the Fermi-energy should be suppressed
on the inter-atomic length scale. In 2001, a first proposal for circumventing this suppression
was put forward by Bergeret et al. [10]. It relies on converting the pairing correlations of
the superconductor, whose spin wave function is singlet, to correlations between electrons
with the same spin. Obviously, these are not affected by the exchange field. This initial
idea entailed a lot of theoretical activity in the following years and a supercurrent carried by
such triplet correlations was eventually confirmed by Keizer et al. in 2006, using junctions
with half metallic CrO2 [67]. Since CrO2 is fully (or almost fully) spin-polarised, and
since the length of the junctions was of the order of 100 nm, this Josephson coupling must
have been carried by spin-polarised Cooper-pairs, i.e. a long range triplet proximity effect.
This was the first instance of a fully spin-polarised Josephson current. A large number
of experiments on this effect followed since 2010, an incomplete overview is provided in
chapter 1 of this thesis. This development may pave the way for a marriage between
superconducting circuits and spintronics [38]. For instance, theory predicts that both the
critical current and the current-phase relation of these junctions may be controllable by
magnetic fields, and this was partly confirmed in experiment already [71].

In this general context, the present work is devoted to the application of a particular the-
oretical method in non-equilibrium superconductivity, the quasiclassical Green’s function
technique [114], to such systems. This theory was pioneered by Eilenberger [33] and Larkin
and Ovchinnikov [76]. It can be considered as an extension of Landau’s Fermi-liquid the-
ory [75] to superconductors [36]. However, while Landau argued that the distribution
function of a Fermi-liquid is sufficient to describe its transport properties, this is no true
for the superconducting state. The condensate of conventional superconductors consists of
Cooper-pairs and its elementary excitations are described by superpositions of particle-like
and hole-like states in a thin shell around the Fermi-energy [8, 113]. The quasiclassical
theory of superconductivity accounts for this order by describing the particle-hole and spin
degrees of freedom as quantum mechanical, while real space coordinates and momentum
enter as classical parameters [114]. This turns out to be sufficient if the problem one
wishes to consider abides a separation of energy scales. The ’low’ energy scale is set by
the superconducting gap, and the ’high’ energy scale by the Fermi-energy. Translated to
length scales, this implies that we can describe variations of the system on the scale of the
superconducting coherence length, while variations on the interatomic scale – which are
usually irrelevant – are integrated out [114]. Consequently, this technique figures among
the most efficient approaches to dealing with inhomogeneous and non-equilibrium problems
in superconductivity.

It goes without saying that this is only true as long as the assumptions underlying the qua-
siclassical approximation are well-founded for the problem at hand. As a matter of fact,
ferromagnets pose a problem in this respect. Until recently, only ’small’ exchange fields
comparable to the superconducting gap could be treated consistently [52, 53]. A general-
isation of the boundary conditions for the quasiclassical Green’s function near interfaces
and surfaces worked out by Eschrig [37] then allowed for considering another limit, i.e.
exchange fields of the order of the Fermi-energy. This is the relevant case for ferromagnets
like Co, Ni, Fe and of course half metallic compounds like CrO2.

The novelty of the results presented in this thesis relies fundamentally on this innovation.
On the one hand, I discuss the triplet proximity effect in strongly polarised ferromagnets
and in particular the Josephson effect related to it. Most experimental prove of induced
triplet correlations in such structures available so far relies on the observation of supercur-
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rents. While the half metallic case was analysed before using QC theory [39, 40], I show
that the presence of a second spin-band has important consequences for the current-phase
relation and the critical current and may even lead to a novel effect – the presence of a
spin-supercurrent in a superconductor-ferromagnet bilayer. In recent experiments, junc-
tions with an anti-ferromagnetic domain structure were investigated [68, 70]. My study of
this problem shows that backscattering at the domain boundaries leads to an additional
suppression of the supercurrent, and I find a 0-π switching of the current-phase relation as
a function of the number of domains. In relation to a recent result of Chung et al. [22], I
briefly comment on the triplet proximity effect induced by an interface whose spin-activity
is caused by Rashba spin-orbit coupling, finding that px ± ipy-superconductivity with op-
posite chirality is induced in the two spin-bands.

Secondly, I present an investigation of point-contact spectra which have become a popular
experimental tool for obtaining the spin-polarisation of ferromagnets. The theory put
forward here is an extension of earlier theoretical models [28, 83] that accounts for spin-
active scattering at the interface and the Fermi-surface geometry of the adjacent materials.
I show that previous theories are contained as limiting cases in this formalism. I also
investigate simple microscopic models to understand the origin of the scattering effects
which are believed to drive the singlet-triplet conversion. It was shown previously [46, 142]
that spin-active scattering leads to interface bound states and resonant Andreev scattering
at SC/FM contacts. I show that these effects may help to understand point-contact spectra
of (Ga,Mn)As, even though they are not directly observable due to temperature smearing.
A first direct observation of such bound state signatures in conductance signals was very
recently reported by Hübler et al. [61], who investigated Al/Fe tunnel junctions. Moreover,
I discuss how this theory allows to reconcile point-contact spectra of CrO2 with its alleged
complete spin-polarisation.

Regarding technicalities, I discuss the boundary conditions put forward by Eschrig [37] and
their diagrammatic representation in detail. A set of diagrammatic rules is proposed which
may be helpful for the interpretation of theoretical results obtained with this formalism.

In the second part, I present a numerical study of a problem that attracted a lot of attention
in the last two years – the proximity effect in surface states of topological insulators. Prior
to their discovery in 2007 [72], topological insulators had been predicted theoretically [64,
14] as a special type of band insulator whose band structure topology implies the existence
of topologically protected edge states at surfaces and interfaces. This idea was first applied
to ’ two-dimensional’ materials, e.g. graphene [65] and semiconductor quantum wells [13].
It was argued that this state can be understood as the time-reversal invariant analogue
of the Quantum Hall state, where the role of the magnetic field is – in a sense – taken
over by spin-orbit coupling [13]. The quantum well proposal turned out to work, the
existence of edge states was confirmed in transport measurements [72]. A little later,
it was realised that this state has a three-dimensional analogue [90]. The first material
predicted and confirmed to be such a three-dimensional topological insulator was Bi1−xSbx
[124, 58]. Bi2Se3 [137, 59], Bi2Te3 [21] followed a little later. In these cases, surface states
were identified by ARPES-measurements, being the predestined tool for studying surface
electronic structure. The surface states of these 3D materials form a two-dimensional,
helical metal with a Dirac cone dispersion around the Γ-point [56]. The term ’helical’ refers
to the special spin-structure of these states. For every wave vector k = (kx, ky), there is
exactly one state at energy ε, i.e., there is no spin-degeneracy – a situation referred to
as spin-momentum locking [56]. The states at k and −k have opposite spin-orientation,
which implies that the spin winds around the Fermi-surface of the surface states. In fact,
the low-energy Hamiltonian describing this dispersion is the same as that of graphene,
just that σ now refers to real spin instead of pseudo-spin [56]. It was then theorised
by Fu and Kane [47], that an instance of the px + ipy-superconductor can be created
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in these states if a pair-potential is induced by means of the superconducting proximity
effect. This would have important implications, since this type of superconductor hosts
Majorana-fermion excitations at vortex-cores or line junctions [47].a While these particles
so far eluded observation in the realm of high-energy physics, there is a growing number
of low dimensional condensed matter systems that are conjectured to host quasiparticle
excitations of the Majorana-type. These quasiparticles would obey non-abelian statistics
and are hence relevant to the field of topological quantum computation [93].

The experimental study of the proximity effect in topological insulators is, however, only
just beginning [140, 106]. Thus, rather than exploring further consequences of the Fu-Kane
proposal, I decided to investigate the validity of their phenomenological model. To this
end, I employ a finite differences discretisation of a topological insulator-superconductor
heterostructure, where the interface is modelled by a transfer-Hamiltonian. The dispersion
is then calculated with a recursive Green’s function technique. In agreement with earlier
studies of this problem [108, 121, 74], I find that the Fu-Kane model is a reasonable
approximation if the coupling between the two materials is small to intermediate. This
obviously implies that the induced gap in the surface states will be smaller than the
superconducting gap of the bulk superconductor. The validity of the Fu-Kane model can
in this case be understood in terms of McMillan’s theory of the proximity effect [85] – the
pair-potential in the surface state is identified with an effective self-energy that accounts
for the presence of the superconductor [108]. To recover the Fu-Kane model, one must,
however, assume the energy and momentum independence of this self-energy, which turns
out to be a bad approximation if the coupling is strong.

While this basic understanding was established before [108], the numerical method em-
ployed here is a powerful tool for material specific calculations [122], and will certainly be
useful for future studies of transport in superconducting nanostructures involving topolog-
ical insulators.

The results discussed in this thesis were all obtained in collaboration with other scientists.
Regarding my personal contributions, modelling and calculations for the Josephson effect
and point-contact spectra were carried out by me, with the exception of the numerical
calculations for the smooth potential model (chapter 4), implemented by Georgo Metal-
idis, and the model for the spin-orbit coupled barrier (chapter 6), worked out by Tomas
Löfwander. As far as the comparison to experimental results is concerned, the data on
(Ga,Mn)As was taken by Samanta Piano and BTK fits are due to her as well. I did the
theoretical modelling and fitting of the data with our theory. The accompanying calcu-
lations with the Kane-model were carried out by Karel Výborný. The calculations done
for fitting the CrO2 spectra are entirely due to Tomas Löfwander; I still discuss them
here, since this is a very nice application of our general theory. Unpublished calculations
and those which I present in the second part of the thesis were all done by me. In all
cases, theoretical modelling and interpretation was done in close collaboration with the
respective scientists and in particular my advisor, Matthias Eschrig.

Lastly, the quotation which I chose to prelude this thesis may seem unfitting to some,
since condensed matter theory hardly lives up to the standards of mathematical rigour
that Descartes proposed in his regulae ad directionem ingenii. As Descartes admitted
himself, this is necessarily true for an science aspiring to describe and understand the
material world, rather than contenting itself with formal logics. Thus, the words of Albert
Einstein: ”As far as the laws of mathematics refer to reality, they are not certain; and as
far as they are certain, they do not refer to reality.”,b do better justice to theoretical physics

aMajorana-fermions are fermionic particles with the property of being their own anti-particle. They were
proposed by Ettore Majorana, who found that such particles are a solution of the Dirac-equation [133].

bAlbert Einstein in ”Geometry and Experience”, January 27, 1921
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in this respect. Still, I stumbled across this quotation during my first year at university
in one of my undergraduate textbooks,a and they remained a source of motivation to me
ever since.

Roland Grein, January 2012

a”Lehrbuch der Analysis, Teil 1”, Harro Heuser, Teubner, 15th edition, 2003
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1. Superconductor-Ferromagnet
Heterostructures

The basic phenomenon behind the physical effects observed in superconducting nanos-
tructures is the so-called proximity effect [30]. It can quite generally be understood as the
penetration of one ordered state of matter into another – a situation which is typically re-
alised at interfaces between materials with different ground states. In the particular case of
singlet, s-wave superconductivity and ferromagnetism – which we shall be concerned with
here – this situation becomes even more interesting, since these states are mutually exclu-
sive [18, 11]. A singlet superconductor pairs electrons with opposite spin orientation, while
the ferromagnetic states favours the alignment of electron spins. How this fundamental
contradiction can be overcome and the interpenetration of such states of matter achieved
has been subject to intense research activity over the past decade [38]. It turned out that
novel types of superconducting pairing, which remain unobserved in bulk-systems, arise at
such interfaces, resulting in a rich phenomenology of physical effects. Thus, these devices
are not only interesting in terms of functionality, but also from a fundamental point of
view.

This chapter is supposed to provide a general introduction to this topic and review some
of the very recent experimental results in this area. As such, it hopefully constitutes a
convincing motivation for the theoretical questions which are at the heart of this part of
the thesis.

1.1. Symmetry Classification of Pairing Correlations

In this section, we shortly explain why the symmetrisation postulate, being the basis of
many-body quantum mechanics, enforces a symmetry constraint for pairing correlations,
and how this fact can be used to chart all possible types of pairing. On that basis, we
then discuss the pairing correlations induced by the proximity effect at superconductor-
ferromagnet interfaces.

The model Hamiltonian used by Bardeen, Cooper and Schrieffer to give a first microscopic
explanation of superconductivity [8] has the following general structure in real space [2]:

H = H0 +Hint, (1.1)

Hint =

∫
d3x

∫
d3μ

∑
α,β,γ,η

Vα,β,γ,η(4, 3, 2, 1)Ψ
†
α(4)Ψ

†
β(3)Ψγ(2)Ψη(1),

13



1. Superconductor-Ferromagnet Heterostructures

where H0 is the single-particle Hamiltonian and Hint describes the pairing interaction.
Moreover, μ ∈ {1, 2, 3, 4} : μ = xμ and d3μ =

∏
μ d

3xμ. In standard BCS-theory we
have [2]:

Vα,β,γ,η(4, 3, 2, 1) = λδβγδαη

4∏
μ=1

δ
3
(xμ − x), (1.2)

where λ < 0 is a constant and δ
3
is defined by [2]:

δ
3
(x) =

1

(2π)3

∫
d3p θpe

ip�x θp =

{
1 |ε(p)− EF| < εc

0 |ε(p)− EF| > εc
. (1.3)

Here, EF is the Fermi-energy of the system’s normal state, ε(p) the single-particle disper-
sion, and εc an energy cut-off of the interaction, usually assumed to be the Debye-frequency.
The solution of this problem, pioneered by BCS, is based on a mean-field approximation
which results in a Hamiltonian that is second order in field-operators. To this effect, one
considers the expectation values

〈Ψγ(2)Ψη(1)〉, 〈Ψ†α(4)Ψ†β(3)〉 (1.4)

with respect to the equilibrium state of the system and defines the superconducting order
parameter as:

Δα,β(4, 3) =

∫
d3x2d

3x1
∑
γ,η

Vα,β,γ,η(4, 3, 2, 1)〈Ψγ(2)Ψη(1)〉. (1.5)

Thus, within this mean-field treatment, the superconducting state can be characterised by
correlation functions of the form:

fα,β(x,x
′, t, t′) = 〈Ψα(x, t)Ψβ(x

′, t′)〉, (1.6)

f̃α,β(x,x
′, t, t′) = 〈Ψ†α(x, t)Ψ†β(x′, t′)〉, (1.7)

if we transform to the Heisenberg-picture. These so-called pairing correlations are only
non-zero in the superconducting state, and the symmetry classification of superconducting
states amounts to classifying the possible symmetries of these functions under particle-
exchange [42]. The basic ingredients of this classification are (a) the symmetrisation pos-
tulate (or Pauli principle), implying that fermionic field-operators anti-commute and (b)
the fact that the field-operators entering these functions are of the same type and that an
exchange of field-operators is thus formally identical to an exchange of coordinates. Such
correlation functions enter any Green’s function formalism describing the superconducting
state as anomalous Green’s functions. Their specific definition depends on the Green’s
function formalism in question and may be different from the one chosen above.a Their
fundamental structure, however, is always the same and the argumentation laid out in the
following thus holds irrespective of these technical details.

The equilibrium state of a translationally invariant system does not depend on the ’centre
of mass’ coordinates in time and space, i.e. R = (x + x′)/2 and T = (t + t′)/2. These
coordinates are also invariant under the exchange x ↔ x′, t↔ t′, while the corresponding
relative coordinates change sign. Usually, one then considers the Fourier-transform of

aIf the time coordinates introduced here are understood to reside on the Keldysh contour, f is identical
to the Keldysh part FK of the Gor’kov Green’s function up to a constant factor (cf. Ref. [102]). In
equilibrium, it is more convenient to discuss this argument in terms of Matsubara correlation functions
[42].
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1.1. Symmetry Classification of Pairing Correlations

Figure 1.1. – Sketch of the singlet, s-wave (blue) and odd-frequency Sz = ±1 (orange) and
Sz = 0 (green) correlations present at superconductor/ferromagnet interfaces as a function of
the spatial coordinate.

the correlation functions with respect to the relative time and space coordinate, i.e. r =
x− x′ �→ p, t = t− t′ �→ ω. This eventually results in the symmetry constraint [42]:

fα,β(p, ω) = −fβ,α(−p,−ω), (1.8)

which one may use to classify the possible pairing correlations. Relation (1.8) can be
reformulated as [42, 40]:(

momentum =

{
even

odd

)
×
(

frequency =

{
even

odd

)
×
(

spin =

{
even

odd

)
= odd, (1.9)

to obtain the classification scheme. Conventional superconductivity is even in momentum
and frequency but odd in spin. The same holds for cuprate superconductors [129] and is at
least very likely in a large number of the recently discovered iron-based superconductors
[84, 82]. Triplet-superconducting states which are odd in momentum can for instance be
found in superfluid He3 [130].a

This scheme cannot only be used to classify superconducting bulk-states. At interfaces
between superconducting and non-superconducting materials, pairing correlations will be
induced in the normal region by means of the proximity effect and those in the supercon-
ductor will be modified. The latter is sometimes referred to as ’inverse’ proximity effect.
Far away from the interface, the pairing correlations drop to zero in the normal region
and recover their bulk value inside the superconductor (SC). If the non-superconducting
material breaks additional symmetries compared to the superconductor, it is to be ex-
pected that pairing correlations belonging to symmetry classes different from that of the
SC bulk-state are induced. A ferromagnet breaks spin-rotation symmetry. Thus, correla-
tion breaking spin-rotation symmetry, i.e. triplet amplitudes, are to be expected. Since
triplet amplitudes are even in spin, they have to be odd in either momentum or frequency.
Generally, both cases may occur [40]. If, however, impurity scattering is strong, correla-
tions that are odd in momentum will be suppressed [10, 40]. Thus, the proximity effect
will be dominated by odd-frequency triplet correlations unless the nanostructure is in the
ballistic limit.

A further sub-classification can be applied to these triplet amplitudes [40]. Recall that f
is a matrix in spin-space. We call its diagonal entries, f↑,↑ and f↓,↓, equal-spin triplet, or

aIn the case of bulk-superconductors, the classification refers to Δ rather than to the f -functions.
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1. Superconductor-Ferromagnet Heterostructures

Sz = ±1 amplitudes. We may also use the corresponding two-particle spin-wave functions
|↑↑〉, |↓↓〉 to denote them. The amplitude (f↑,↓ + f↓,↑)/2 is the opposite-spin triplet, or
Sz = 0 component, and we may write |↑↓〉+ |↓↑〉 to refer to it. (f↑,↓ − f↓,↑)/2 is the usual
singlet (|↑↓〉 − |↓↑〉) amplitude. The reason for this distinction is that the ferromagnetic
exchange field is as detrimental to the |↑↓〉+ |↓↑〉-correlations as to the singlet ones. The
equal spin correlations, on the other hand, are insensitive to the exchange field and are
thus also called ’long range’ [10, 39].

This situation is sketched in Fig. 1.1, illustrating qualitatively the behaviour of the relevant
symmetry components at an SC/FM interface. The singlet s-wave correlations of the bulk
superconductor show an oscillating decay into the ferromagnetic region, while Sz = 0 and
Sz = ±1 triplet components are induced. The first meet the same fate as the original singlet
correlations, since they still pair electrons with opposite spin. The Sz = ±1 correlations, on
the other hand, can penetrate the ferromagnet on the scale of the normal metal coherence
length.

The suppression of all Sz = 0 components is a consequence of the fact that the paired
electrons no longer have the same magnitude of momentum due to the exchange field.
Another way to put it is that the correlations acquire a finite centre of mass momentum.
They hence decay on the scale of the magnetic coherence length ξJ = �/(p↑ − p↓) in the
clean limit and this situation also leads to their oscillating behaviour [18]. The Sz = 0
proximity effect was first observed in 2001 by Ryazanov et al. [104]. Obviously, finding
any sizeable effect arising from the Sz = 0 amplitude requires a relatively weak exchange
field. This can be realised in ferromagnetic alloys. For example, Ryazanov et al. used
CuxNi1−x with x ≈ 0.5 in their experiment [104].

Most natural ferromagnets, however, have an exchange field which is of the order of the
Fermi-energy, implying that all Sz = 0 components are suppressed on the interatomic
length scale [39]. Consequently, the question under which circumstances the Sz = ±1
amplitudes can be induced at an SC/FM interface arose, and a first answer was provided
by Bergeret and coworkers [10]. As it is this Sz = ±1 proximity effect that we are interested
in here, the question how these correlations come about will be addressed in the next
section.

1.2. Singlet-Triplet Conversion through Interface Scattering

So far, we only provided a vague symmetry argument as a motivation for the creation
of triplet amplitudes and what makes the creation of a Sz = ±1 proximity effect more
complicated than the Sz = 0 case is unclear as of now. We shall see in a second that
a homogeneous exchange field in the FM-region can only induce the Sz = 0 component.
However, as opposed to singlet correlations, this component is no longer invariant under
rotations in spin-space [40]. Hence, other components of the triplet-subspace can be cre-
ated by introducing an inhomogeneous exchange field. This idea was first investigated by
Bergeret et al. [10] in terms of domain wall at the SC/FM-interface whose magnetisation
direction varies continuously over the width of the wall.

In a ferromagnet where the exchange field is of the order of the Fermi-energy, this domain
wall would have to be atomically thin, i.e. the rotation must be abrupt. Otherwise, the
Sz = 0 components would decay to zero before the conversion becomes effective [39]. This
lead Eschrig et al. [39] to consider a different take on the problem. An atomically thin
domain wall would effectively be part of the interface and, consequently, the conversion
must happen directly in the interface region. Treating the interface within a scattering
formalism, they then showed that equal-spin triplet correlations arise from a combination
of two scattering effects, namely spin-mixing and spin-flip scattering. This is the conversion
mechanism relevant to this thesis and we shall discuss it in detail here.
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1.2. Singlet-Triplet Conversion through Interface Scattering

These are certainly not the only theoretical approaches to this problem. In fact, a huge
number of proposals have been put forward and investigated using various techniques, but
we refrain from giving a complete account of the theoretical developments in this area.
A very recent overview over both experimental and theoretical advances is provided in
Ref. [38], while Ref. [11] is a more comprehensive but also older review.

Spin-mixing effect

The ’spin-mixing effect’ quite simply means that electron with different spin-orientation
acquire different scattering phases upon scattering at a ferromagnetic surface or interface.
Simple calculations show that this effect is ubiquitous for any spin-dependent scattering
potential. The difference of scattering phases ϑ(k) = ϕ↑(k)−ϕ↓(k), which usually depends
on the wave vector of the incident particles is called spin-mixing angle [39] here, but is
also called spin-dependent interface phase shift (SDIPS) in the literature (see Ref. [25], for
instance). Chapter 4 is devoted to an investigation of this mixing angle in different models
of the interface region.

A simple hand-waiving calculation shows how the Sz = 0 triplet component is induced by
these scattering phases [39]. We consider the wave function of a conventional Cooper-pair:

|k ↑,−k ↓〉 − |k ↓,−k ↑〉. (1.10)

Upon scattering, the single particle wave functions acquire a scattering phase according
to their spin [39]:a

|−k ↑〉 = |k ↑〉eiϕ↑(k), |−k ↓〉 = |k ↓〉eiϕ↓(k). (1.11)

This implies that the Cooper-pair wave function transforms to [39]:

|k ↑,−k ↓〉ei(ϕ↑(k)−ϕ↓(k)) − |k ↓,−k ↑〉e−i(ϕ↑(k)−ϕ↓(k)), (1.12)

upon scattering at the interface, which we may rewrite as:

cosϑ(k) · (|k ↑,−k ↓〉 − |k ↓,−k ↑〉) + i· sinϑ(k) · (|k ↑,−k ↓〉+ |k ↓,−k ↑〉). (1.13)

Hence, we see that a Sz = 0 triplet component proportional to sinϑ(k) is induced. The
spin-independent scattering phase ϕ(k) = [ϕ↑(k) + ϕ↓(k)]/2 is irrelevant.

Spin-flip scattering

As argued above, an additional spin-quantisation axis must enter the game to rotate parts
of the Sz = 0 component into the required Sz = ±1 correlations. This is achieved by
considering a spin-dependent interface potential whose quantisation axis is misaligned with
respect to the ferromagnet. This misalignment is characterised by two spherical angles, α
and ϕ, as shown in Fig. 1.2. The most obvious physical model that springs to mind is a
canted ferromagnetic domain [40], but other mechanisms, like an interface with spin-orbit
coupling [41], are also possible. The latter case, in which the misalignment angles become
k-dependent, has attracted attention very recently in the ongoing hunt for topological
superconductors [22].

For now, we shall leave it at that. A thorough investigation of models for interface scat-
tering is presented in chapter 4.

aThe notation is somewhat sloppy here. If the interface is translationally invariant, scattering conserves
parallel momentum, i.e., k = (k||, kz) → (k||,−kz). If the scattering phases are the same for k|| and
−k||, which is generically true if the scattering potential is not k-dependent, the relations stated in this
equation hold.
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1. Superconductor-Ferromagnet Heterostructures

Figure 1.2. – The spherical angles characterising the misalignment of the interface spin-
quantisation axis with respect to the magnetisation of the ferromagnetic bulk.

1.3. The Long Range Triplet Proximity Effect in Experiment

So far, the experimental verifications of a proximity effect due to the long range Sz =
±1 components are mostly based on the Josephson effect. The general argumentation
is that if a Josephson current is measured across a SC/FM/SC junction with a FM-
interlayer whose thickness exceeds the magnetic coherence length ξJ, the superconducting
correlations carrying this Josephson-current must be of the Sz = ±1 type. In this sense,
the evidence is indirect but – in our opinion – certainly conclusive.

The Keizer-experiment

The first article reporting such a Josephson-current was published by Keizer and coworkers
in 2006 [67]. Their setup consisted of two NbTiN-electrodes deposited on a layer of CrO2,
a half-metallic, i.e. a fully or almost fully spin-polarised, ferromagnet [23]. The CrO2 film
was grown on a TiO2 substrate. Their data shows a Josephson current across junctions
which are more than half a micron long.

In a half metal, where the minority spin band is completely absent, the conversion from
singlet to triplet correlations must happen in the interface region, as outlined above. CrO2

is metastable and rapidly oxidises at the surface to Cr2O3 [67]. Keizer et al. claim that they
were able to remove this oxidised layer when creating the contacts to the superconducting
electrodes. In any case, spin-active scattering must be induced at the contact, possibly
by canted magnetic moments – an assumption which is supported by the fact that the
observed critical currents show substantial variations between different samples. This
may indicate that the interfaces, which form spontaneously, vary in their effectiveness of
singlet-triplet conversion [67].

In the presence of a magnetic field H, the relatively poor Fraunhofer pattern shows a
hysteresis loop as a function of the magnitude of the magnetic field, which an be understood
from the magnetic anisotropy of the sample. The magnetisation M also implies an offset
of the magnetic field B, resulting in a minimum of the Fraunhofer pattern at H = 0.

What is even more remarkable is that the critical current was shown to depend on the ori-
entation of the magnetisation, which can be considered further evidence for the theoretical
picture promoted here.

Only two months after the publication of this work, Sosnin et al. [118] reported a long
range proximity effect in an Al/Ho junction. Ho becomes ferromagnetic below 21 K with
a conical magnetisation structure, i.e. the magnetisation rotates along the c-axis of the
crystal, thus providing an inhomogeneous magnetisation texture and thereby realising the
original idea of Bergeret et al. [38]. In their Andreev interferometer device, they observed
resistance oscillations as a function of the introduced magnetic flux up to Ho-layer lengths
of 150nm, which exceeds the penetration depth of Sz = 0 correlations by far.
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The year of triplet supercurrents

After the tantalising discoveries of Keizer et al. and Sosnin et al., the race was on for
further confirmations of these effects. After several years of failed attempts, and the first
jokes being made about the Keizer-experiment entering the annals of irreproducible exper-
iments, 2010 proved to be the year of triplet supercurrents. Several groups confirmed the
observation of long range supercurrents through strongly spin-polarised ferromagnets using
different approaches and materials, all sharing the common idea that an inhomogeneous
magnetisation must somehow be introduced at the SC/FM-contacts.

Anwar et al. [4] confirmed the Keizer-experiment on CrO2, using both a different supercon-
ductor (amorphous Mo70Ge30) and a different substrate (Al2O3), but failed to reproduce
a Josephson-coupling with TiO2 as substrate. The current densities they found are con-
siderably smaller than those of the Keizer-experiment and a Fraunhofer pattern was not
observed. Hence, although the evidence for a supercurrent is clear, the riddle of the prox-
imity effect in CrO2 is still not solved. An important point in this respect seems to be that
there is no direct control over the interfaces which must provide the conversion mechanism.

Khaire et al. [68, 69] overcame this problem by creating a complex multilayer structure
where spin-active interfaces are introduced artificially. The interfaces consist of ferromag-
netic alloys (either PdNi or CuNi) separated by Cu buffer layers from the central, strongly
spin-polarised part of the device, which is made of Co. A major innovation was the ad-
ditional introduction of an antiferromagnetic Ru-layer sandwiched between two extended
layers of Co, enforcing an antiparallel magnetisation direction of the Co layers and thereby
cancelling their intrinsic magnetic field. This resulted in a very clear Fraunhofer pattern
whose quality exceeds that of the Keizer-experiment by far. Khaire and coworkers then
showed that the effectiveness of singlet-triplet conversion can be controlled by the thick-
ness of the alloy layers and they observed a crossover from the singlet-Josephson effect,
which is rapidly suppressed as a function of the Co-layer thickness, to the triplet one,
which showed no sign of decay for the junction lengths considered in Ref. [68] (up to
28nm) and a slow decay in their follow-up work [69] (up to 50nm). The origin of the
inhomogeneous magnetisation structure was attributed to the domain wall structure of
the weakly ferromagnetic alloys due to their out-of-plane magnetisation anisotropy. In
their later work [69], they achieved even better results with pure Ni, which, according to
them, has an in-plane magnetisation in Ni/Co layered structures and larger domain sizes
than the alloys. This supports the picture that the relevant magnetisation misalignment
is the one between the interface layer and the central Co part and not the one between
different domains of the interface. This group also managed to enhance the effect even
more by maximising the misalignment of the Ni layers with the help of a magnetic field
[71]. Khaire et al. argue that their experiment is best described by the model of Houzet
and Buzdin [57], who considered a ferromagnetic trilayer sandwiched between supercon-
ducting electrodes, but that the diffusive limit discussed in this work is not applicable to
their samples [69].

Robinson et al. [103] used the holmium idea to create an inhomogeneous magnetisation
profile in a Josephson junction whose central part was also made of Co. They did not
use the ruthenium trick to obtain nice Fraunhofer patterns, but found a non-monotonic
dependence of the critical current on the Ho thickness. This can, according to them, be
attributed to a maximisation of the magnetisation inhomogeneity for Ho thicknesses that
correspond to half complete windings of the magnetisation direction. They found a slow
decay of the critical current for Co layers of up to about 16nm, which means that the
junctions were shorter than those of Khaire et al., but still long enough to rule out a
Josephson coupling carried by Sz = 0 correlations.

Evidence for a triplet Josephson current in the Heusler compound Cu2MnAl was found
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by Sprungmann et al. [120]. In this case, the conversion mechanism was attributed to a
spin-glass phase forming at the contacts.

The longest Co-junction to show a supercurrent, no less than 600nm long, was reported
by Wang et al. [132], who measured a Josephson current through a Co nanowire with
tungsten forming the superconducting electrodes. How the conversion comes about is
unclear in this case.

All in all, it is fair to say that the basic theoretical concepts behind the conjectured long
range triplet proximity effect worked out over the past 10 years have been confirmed by
these experimental results, which, on the other hand, certainly also raise a number of new
questions deserving theoretical investigation.

In this context, the present thesis describes how the triplet Josephson effect can be de-
scribed consistently with quasiclassical theory if the exchange field is of the order of the
Fermi-energy. We investigate the critical current in the presence of domain wall structures
and show that exotic current-phase relations may arise in high-transparency junctions. We
argue that the latter may even imply the existence of a spin Josephson effect in junctions
with only one SC-electrode.

1.4. Measuring the Spin-Polarisation

We now turn to another problem in the context of superconducting heterostructures,
namely inferring the spin-polarisation of a ferromagnet from the differential conductance
of a superconductor-ferromagnet point contact.

The basic idea was first proposed by de Jong and Beenakker [28], as a simple extension
of the Blonder-Tinkham-Klapwijk theory [15] of transport across superconductor-normal
metal contacts. The superconducting density of states has a gap at the Fermi energy
which renders charge transport carried by single-particle excitations impossible unless the
applied voltage exceeds the gap-energy.a The only process that contributes to transport
at these energies is Andreevb reflection. In this case, a Cooper pair is created in the
superconductor as a quasiparticle tunnels into it and a hole is coherently reflected into
the non-superconducting metal. In the case of a conventional superconductor, the singlet
symmetry of the Cooper-pair wave function requires that the reflected hole excitation has
opposite spin with respect to the incident electron.c

Now, if the non-superconducting metal is spin-polarised, i.e. the density of states at the
Fermi-level is different for spin-up and spin-down electrons, this process is naturally sup-
pressed, since incoming spin-up particles have a reduced chance to find a spin-down partner
for the Andreev process, as illustrated in Fig. 1.3. De Jong and Beenakker formulated a
minimal model that accounts for this effect. They solved the BdG-equation with a step
function switching between the pair-potential of the superconductor and the exchange
field of the ferromagnet at the interface. This model thereby introduces wave vector mis-
matches at the interface which reduce transmission. These are neglected in BTK-theory,
but inevitably present at such a contact. The first experiments using this idea to infer the
spin-polarisation of ferromagnetic materials were carried out by Soulen et al. [119] and
Upadhyay et al. [127]. For fitting their data, Soulen et al. used a model based on the
idea of de Jong and Beenakker which neglects the wave vector mismatches. They write

aMore precisely, this is true at T = 0.
bMore precisely: Andreev-Saint-James reflection, as explained in Ref. [29]. We opt for the shorter, even

though unjust terminology here.
cFor reasons that will become clear later on, we define the spin of a hole excitation as the spin of the
unoccupied state it is associated to.
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Figure 1.3. – The process of Andreev reflection at a superconductor-ferromagnet contact. In
the ferromagnet (left), the DOS of spin-down quasiparticles (red) is reduced compared to that
of spin-up quasiparticles. The superconductor (right) has an energy gap in the single-particle
density of states. The injection of a pair into the superconducting condensate requires the
coherent transmission of a spin-up and a spin-down quasiparticle into the superconductor. This
implies the coherent reflection of a hole excitation in the down-band, as an up-quasiparticle
transmits from the ferromagnet into the superconductor. Figure adapted from Ref. [119].

the conductance of the point-contact as a sum of two contributions [119]:

G(V ) = (1− PC)GBTK(V ) + PCGH(V ), (1.14)

where GBTK(V ) is the BTK-conductance formula for a superconductor-normal metal con-
tact and PC the so-called transport spin-polarisation [119]:

PC =
NF↑vF↑ −NF↓vF↓
NF↑vF↑ +NF↓vF↓

. (1.15)

The conductance GH corresponds to the spin-up transport channels for which no spin-
down partner exists, i.e. GH = 0 for |eV| < Δ. To obtain an expression for GH , Soulen
et al. use the BTK result again and simply put the contribution of Andreev reflection
to zero. Subsequently, they renormalise the remaining contributions to ensure charge
conservation [119]. The exact fitting formulas used by Upadhyay et al. are not clear from
their publication, but were apparently obtained along similar lines as those published later
by Mazin et al. [83]. In both cases, one ends up with a fitting formula that has only two
parameters, the interface barrier parameter Z and the transport spin-polarisation PC . The
latter is then ’measured’ by fitting the spectra to this formula. A formula for GH obtained
from a rigorous calculation, used as well for experimental fitting (see Refs. [135, 138], for
instance), was later given by Mazin et al. [83]. This work did, however, not remedy the
other shortcomings of the Soulen fitting formula, i.e. the neglect of wave vector mismatches
and, more generally, the channel or k-dependence of all parameters characterising the
contact, as well as further effects related to the spin-activity of such a magnetic interface.

In this thesis, we propose a generalised theory for the conductance of such a point-contact,
taking into account the Fermi-surface geometry at the contact and the presence of spin-
active scattering potentials. Although our results are obtained from a quasiclassical de-
scription, we find that they reproduce Mazin’s formulas, which were obtained within a ’full
quantum’ formalism, exactly in the appropriate limiting case [53]. Moreover, we discuss
applications of our model to experimental results on (Ga,Mn)As [98], one of the most im-
portant ferromagnetic semiconductors, and CrO2 [81], which attracted a lot of attention
in the context of triplet supercurrents.
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2. Quasiclassical Theory of
Superconductivity

In this chapter, we give a brief account of the Quasiclassical Theory of Superconductivity
and in particular its application to heterostructures. This theory exploits a natural sepa-
ration of energy scales and thereto related length scales which exists in most conventional
superconductors.a

This situation is fully analogous to the one we encounter in a normal Fermi-liquid. The
latter was first discussed by Landau [75], his fundamental insight being that the Fermi-
liquid emerges from a gas of non-interacting Fermions as the interaction is adiabatically
turned on and that there is a bijective map between the final states of the Fermi-liquid
and the original particles of the gas [75, 24]. This is a direct consequence of the fact that
fermionic particles are subject to the Pauli principle. The ground state of the Fermi-gas
is a sphere of occupied states in k-space whose surface is called Fermi-surface. At finite
temperatures, this surface is ’washed out’ on a width proportional to T . Any scattering
due to interactions between the particles is suppressed by a factor T 2 [75] in this thin layer
around the Fermi-surface, as a result of their fermionic nature. This guarantees, according
to Landau, the adiabatic evolution of the ground state as the interactions are turned
on. As we know, there is a number of many-electron systems which do not self-organise
as Fermi-liquids, i.e., this reasoning is only true for a certain range of interactions and
particle densities. The Fermi-energy of such a liquid, i.e. the kinetic energy of electrons
at the Fermi-surface, is usually very large compared to temperature, implying that the
scattering rate of states in the Fermi-shell is strongly suppressed. Consequently, these
states have quasi-infinite lifetime and were therefore called quasiparticles by Landau. The
quasiparticles have renormalised properties due to the interactions but can be considered
as effectively non-interacting. It follows from the above that only particles in this thin
shell around the Fermi-surface can participate in any response of the system to external
perturbations. To describe the dynamics of a Fermi-liquid, it is therefore sufficient to devise
a theory which only takes into account these states. The quasiparticle states themselves
are ’robust’ against perturbations on the energy scale set by temperature. Thus, only
changes in the distribution function of quasiparticles must be accounted for, which leads
to a Boltzmann-type transport equation [75].

aIn the following ’historical’ outline, original articles are in some cases cited together with a secondary
source that we obtained the information from. A more extensive list of original references is provided
in Ref. [37], on which this overview is loosely based.
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In most conventional superconductors, the superconducting energy gap is roughly 2-3
orders of magnitude smaller than the Fermi-energy of the superconductor in the normal
state. Hence, the superconducting order is equally confined to this thin shell around the
Fermi-surface and one is led to expect that a theory similar to Landau’s Fermi-liquid
theory can be put forward. An important difference is, however, that the quasiparticles
of the superconductor in vicinity to the Fermi-surface are not the ’robust’ quasiparticles
of the normal Fermi-liquid, but rather linear superpositions of pairs of such states. In
BCS-theory, the operators that create quasiparticles from the ground state read [113]:

γ†k↑ = ukc
†
k↑ − vkc−k↓, γ†−k↓ = ukc

†
−k↓ + vkck↑, (2.1)

where ckσ, c
†
kσ annihilate and create single particle excitations in the normal state and

vk, uk are scalar factors. This implies a coherent superposition of particle-like and hole-
like states. The ground state of the superconductor, i.e. the condensate, is described on
the same footing [113]:

|Ψ0〉 =
∏
k

(uk + vkc
†
k↑c

†
−k↓)|0〉. (2.2)

As far as this superposition is concerned, the states are susceptible to change on the small
energy scale. Consequently, a kinetic equation for the distribution function is no longer
sufficient. The corresponding quasiclassical theory must explicitly take into account this
particle-hole degree of freedom and describe ”the coupled dynamics of both the quasiparticle
states and their occupation” [36].

The Quasiclassical Theory of Superconductivity discussed here makes explicit use of this
separation of energy and length scales by integrating out the fast oscillations of the
Nambu-Gor’kov Green’s function on the scale of the Fermi-wavelength λF, retaining only
an envelop function which varies on the scale of the superconducting coherence length
ξ0 = �|vF|/2πkBTc [37]. This derivation was first carried out by Eilenberger and Larkin
and Ovchinnikov [33, 76, 37] for equilibrium Green’s functions and later generalised to
non-equilibrium situations by Eliashberg, Larkin and Ovchinnikov and Schmid and Schön
[34, 77, 109, 115, 37]. A mathematically more rigorous derivation was eventually given by
Shelankov [115]. The properties of the system which are determined at the high energy
and short wavelength scale, like the Fermi-surface geometry for example, enter the qua-
siclassical theory as phenomenological parameters. The resulting formalism provides an
excellent description of systems whose parameters vary in time and space on a scale set
by the ’low energy’, i.e., on lengths comparable to the coherence length ξ0 and times of
order �/Δ [37].

If one is concerned with heterostructures containing abrupt interfaces between different
materials, the quasiclassical approach is bound to fail in the interface regions, where the
system’s properties vary rapidly on the interatomic scale, while being fully sufficient away
from the interfaces (see Fig. 2.1). This led to the idea that quasiclassical propagators in
the ’asymptotic’ regions may be matched with a set of boundary conditions that have to be
obtained from a microscopic description of the interface region. A first set of such bound-
ary conditions was derived independently by Zaitsev [139, 89], Shelankova [117, 37] and
Kieselmann [89]. These were, however, restricted to interfaces between superconductors
and normal metals and did not account for spin-dependent scattering. A generalisation
accounting fully for spin-dependent scattering was later obtained by Millis et al. [89].
Such boundary conditions are in line with the general philosophy of quasiclassical theory.
Relevant properties of the system which cannot be described within the theory itself enter

aThese boundary conditions were, however, derived for the envelop functions of the wave function formal-
ism.
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Figure 2.1. – The quasiclassical Green’s function g can be understood as the envelop function
of the microscopic Green’s function G. It is not defined in an interface region where the
system’s properties vary rapidly. The envelop function is generally discontinuous across the
interface. Figure from Ref. [51].

as phenomenological parameters. In this case, the parameters describe the scattering of
quasiparticles at the interface and come in the form of a scattering matrix which must be
assumed or calculated independently.

While these boundary conditions in principle allowed for describing heterostructures in
quasiclassical theory, they are rather cumbersome and difficult to handle, since they are
non-linear and admit unphysical solutions which need to be ruled out [36]. The fundamen-
tal problem is that solving the equation of motion for the quasiclassical Green’s function
and its accompanying normalisation condition is a boundary value rather than an ini-
tial value problem [37]. In other words, there is no obvious separation of ’incoming’ and
’outgoing’ solution with respect to the scatterer. This problem could eventually be over-
come by introducing a particular parameterisation of the quasiclassical Green’s function.
These parameters obey transport equations which fall into the class of Riccati differential
equations and were hence dubbed Riccati parameters [111, 112, 36]. They automatically
guarantee the correct normalisation of the quasiclassical Green’s function and, most im-
portantly, transform the boundary value problem into initial value problems for the Riccati
transport equations, thereby simplifying numerical calculations considerably [36]. In par-
ticular, the boundary conditions can be formulated as a system of linear equations [37]
and thereby acquire a more transparent and tractable form.

The Riccati parameterisation was developed for the equilibrium case by Schopohl and
Maki [111, 112], while the generalisation to Keldysh Green’s functions and thus to non-
equilibrium situations is due to Eschrig [35, 36]. A first set of boundary conditions for the
Riccati parameters was obtained by Eschrig [36] and Shelankov and Osana [116]. They
were, however, restrained to non-magnetic interfaces. After a number of generalisations
[142, 46], a fully general solution of the scattering problem in quasiclassical theory was
eventually presented by Eschrig [37] and it is this latest formulation that we shall employ
here.

It should also be noted that other than incorporating interfaces and surfaces by a scattering
matrix and boundary conditions into quasiclassical theory, one may also start from a
transfer-Hamiltonian and treat the scatterer as a perturbation that directly enters the
quasiclassical equation of motion [26, 37].

We would also like to emphasise that the Riccati parameterisation has merits which go be-
yond the undoubtful numerical advantages it provides. The Riccati equations in question
are partial differential equations whose solutions can be assembled by integrating them
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2. Quasiclassical Theory of Superconductivity

along straight lines, and they always have a definite stable direction of integration along
those lines [36]. This allows us to think of Riccati parameters as quasiparticles moving
along straight trajectories, although they do not, in an immediate sense, correspond to
physical quasiparticles. On this basis, a diagrammatic representation of transport and
scattering processes was developed by Löfwander, Zhao and Sauls [143, 144, 37] and ex-
tended by Eschrig [37], which simplifies the physical interpretation of results obtained from
this theory considerably. Some applications of this will be discussed in the next chapter.

A full account of the development of quasiclassical methods for superconductors and their
applications, spanning more than 50 years by now [49, 37], could fill a book of its own,
which so far nobody found the time to write. An extensive review of the method in
the context of its application to superfluid He3 was given by Serene and Rainer [114], a
thorough discussion of the Riccati formulation and its boundary conditions is provided
in the seminal articles of Eschrig [36, 37]. The important diffusive limit of quasiclassical
theory [128], is reviewed in Ref. [9], and the latest formulation of the boundary conditions
for the diffusive case can be found in Ref. [25].

In what follows, we set up all the formalities needed to tackle the problems we shall be
concerned with. This presentation will be rather sketchy as it constitutes no original work
of the author. We choose to use the notation introduced by Eschrig [36, 37] and also the
diagrammatic representation of Ref. [37].

2.1. The Quasiclassical Green’s Function and its Equation of
Motion

The starting point for the derivation of the quasiclassical Green’s function is the Nambu-
Gor’kov Green’s function [113], being the Green’s function formalism that directly cor-
responds to the BCS mean-field Hamiltonian. We use Keldysh’s technique [102], which
allows us to consider non-equilibrium phenomena.

The quasiclassical Green’s function is formally obtained from the integration [114]:

ǧ(pF,R, ε, t) =
1

a(pF)

∫
dξpτ̂3Ǧ(p,R, ε, t), (2.3)

where a(pF) is a Landau renormalisation parameter and Ǧ is the Nambu-Gor’kov Green’s
function. A check denotes a matrix in Keldysh-space and a hat a matrix in Nambu-Gor’kov
space, i.e., the particle-hole degree of freedom. Specifically, we have:

Ǧ(x′, x, t′, t) =
(
ĜR ĜK

0 ĜA

)
, ĜR,A,K =

(
G F

−F̃ −G̃

)R,A,K

, (2.4)

from which Ǧ(p,R, ε, t) is obtained by a transformation to relative and centre of mass
coordinates and subsequent Fourier-transformations r �→ p and t �→ ε. The matrices τ̂i,
i = 1, 2, 3, denote the Pauli matrices acting on particle-hole space, while σi are the Pauli-
matrices acting on spin-space. The integration over momentum (ξp = vF ·(p−pF)) results
in the elimination of the fast oscillations of Ǧ on the scale of kF. The off-diagonal elements
of ĜR,A,K are the anomalous correlation functions describing pairing correlations. The
resulting quasiclassical Green’s function is generally a function of the spatial coordinate
R, the momentum pF, which lies on the Fermi-surface, energy ε and time t [114]. While
the Fourier-transformation of the spatial coordinate is mandatory to carry out the ξp-
integration, the transformation of the time coordinate is not; and in fact, for a number
of non-equilibrium problems it is advantageous to keep t, t′ as parameters or Fourier-
transform them individually.
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2.1. The Quasiclassical Green’s Function and its Equation of Motion

The equation of motion for the quasiclassical Green’s function is obtained from the Dyson-
equation of the Nambu-Gor’kov Green’s function. This involves a gradient expansion of
the momentum operator, taking the difference between the Dyson-equation and its adjoint
and carrying out the ξp-integration [114, 115]. The result is Eilenberger’s equation:

i�vF · ∇Rǧ + [ετ̂3 − Δ̌− ȟ, ǧ]⊗ = 0̌. (2.5)

Here, Δ̌ denotes self-energies which are off-diagonal in particle-hole space, typically the
order-parameter, and ȟ contains the diagonal components. These self-energies arise due to
the mean-field treatment of interactions and impurity scattering, external fields can also
be absorbed in these terms. [•, •]⊗ denotes a commutator with respect to the product
⊗, which combines a matrix product in Nambu-Gor’kov space with a convolution over
internal time variables [114]. For our purposes, it reduces to the matrix product. The
subtraction trick involved in the derivation of this equation results in a non-uniqueness of
its solutions. It must hence be supplemented by a normalisation condition [114]:

ǧ ⊗ ǧ = −1̌π2. (2.6)

The quasiclassical equation of motion is also complemented by a set of self-consistency
relations arising from the mean-field treatment of superconducting pairing (BCS-theory)
and other interactions (Landau parameters) [114]. The self-consistency relation for the
superconducting order parameter reads [114]:

ΔR(pF,R, t) =

∫
dε

4iπ

〈
V (pF,p

′
F)f

K(p′F,R, ε, t)
〉
p′F
. (2.7)

The pairing interaction V (pF,p
′
F) is a constant for singlet, s-wave pairing and the energy

integral runs over the interval [−εc, εc].a 〈•〉pF is the Fermi-surface average defined as [36]:

〈•〉pF =
1

NF

∫
FS

d2pF
(2π�)3|vF(pF)|

(•) , (2.8)

where NF is the normal state density of states at the Fermi-level:

NF =

∫
FS

d2pF
(2π�)3|vF(pF)|

. (2.9)

Apart from the boundary conditions, which we will only discuss in their latest formulation,
this establishes the quasiclassical theory of superconductivity as a self-contained formalism.
Eq. (2.3), while representing the connection to the microscopic theory, is irrelevant for the
application of the method.

The physical observables relevant to us are the local density of states and the current
density, which we obtain from [37]:

N(R, ε, t)

NF
= − 1

2π
Im
(
Tr
〈
gR(pF,R, ε, t)

〉)
(2.10)

and

j(R, t) = eNF

∫
dε

8πi
Tr
〈
vF(pF)τ̂3ĝ

K(pF,R, ε, t)
〉
. (2.11)

The sign of the electronic charge is defined as e = −|e|.
aNote also that this is a matrix equation, and that V (pF,p

′
F) = V0 automatically projects out the spin-

singlet part of fK under the energy integral and momentum average.
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2. Quasiclassical Theory of Superconductivity

2.2. Riccati Parameterisation

We now turn to the Riccati parameterisation which eliminates the normalisation condition
and allows us to solve the Eilenberger-equation by solving a set of initial value problems.
We only state it here and refer the reader to Refs. [36, 37] for its derivation.

The Riccati parameterisation introduces 6 amplitudes. γR,A and γ̃R,A are coherence func-
tions describing the quasiparticle states and xK and x̃K are distribution functions describ-
ing their occupation [36]. This already is an advantage over the usual Keldysh formulation
of quasiclassical theory, where such a separation does not exist. The quasiclassical Green’s
function reads in terms of these parameters [37]:

ĝR,A = ∓ 2πi

(
G F

−F̃ −G̃

)R,A

± iπτ̂3, (2.12)

ĝK = −2πi

(
G F

−F̃ −G̃

)R(
xK 0
0 x̃K

)(
G F

−F̃ −G̃

)A
.

with G = (1 − γγ̃)−1, G̃ = (1 − γ̃γ)−1, and F = Gγ, F̃ = G̃γ̃, and upper/lower signs hold
for retarded/advanced quantities.

Symmetry Relations

A number of symmetry relations hold for the Riccati amplitudes, and we will make ex-
cessive use of them in the following chapters. The Nambu-Gor’kov or, equivalently, the
Bogoliubov-de-Gennes description of superconductivity introduces a redundancy of infor-
mation, expressing itself in a particle-hole symmetry of all quantities in the quasiclassical
formalism [36]:

Q̃(pF,R, z, t) = Q(−pF,R,−z∗, t)∗, (2.13)

where z = ε± i0+ for retarded/advanced quantities and real for Keldysh functions. More-
over, the following symmetries hold for the Riccati amplitudes [36]:

γA = (γ̃R)†, xK = (xK)†, (2.14)

from which follows that if we know for instance γR and xK , all other components can
be obtained from these relations. While (2.13) is general, the symmetry relations for
self-energies in Keldysh-space are different from (2.14) [37]:

ΔA = −(Δ̃R)† ΔK = (Δ̃K)† ΣA = (ΣR)† ΣK = −(ΣK)†. (2.15)

Transport Equations

With

Δ̂R,A =

(
0 ΔR,A

Δ̃R,A 0

)
, ĥR,A =

(
ΣR,A 0

0 Σ̃R,A

)
, (2.16)

Δ̂K =

(
0 ΔK

−Δ̃K 0

)
, ĥK =

(
ΣK 0

0 −Σ̃K

)
,

the transport equations read [36]:

i�vF∇γR,A + 2εγR,A = γR,AΔ̃R,AγR,A +ΣR,AγR,A − γR,AΣ̃R,A −ΔR,A,

i�vF∇γ̃R,A − 2εγ̃R,A = γ̃R,AΔR,Aγ̃R,A + Σ̃R,Aγ̃R,A − γ̃R,AΣR,A − Δ̃R,A, (2.17)
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2.3. Boundary Conditions for Riccati-Amplitudes and Diagrammatic Representation

for the coherence functions and

i�vF∇xK + i�∂tx
K − (γRΔ̃R +ΣR)xK − xK(ΔAγ̃A − ΣA) (2.18)

= −γRΣ̃Kγ̃A +ΔKγ̃A + γRΔ̃K − ΣK,

i�vF∇x̃K − i�∂tx̃
K − (γ̃RΔR + Σ̃R)x̃K − x̃K(Δ̃AγA − Σ̃A)

= −γ̃RΣKγA + Δ̃KγA + γ̃RΔK − Σ̃K,

for the distribution functions [36]. We omitted the convolution product ⊗ here, which
has to be taken whenever self-energies or Riccati amplitudes are multiplied [36]. Note
that (2.17) is independent of the distribution functions and should hence be solved first.
Equations (2.18) contain the coupling between quasiparticle states and their occupation.
These are the kinetic equations which reduce to Boltzmann-type equations if the coherence
functions are zero.a

In the homogeneous equilibrium state, the solutions of equation (2.17) are [37]:

γR,A
h,eq = −

[
(E ± i

√
−ΔΔ̃− E2)−1 ·Δ

]R,A
(2.19)

if ER,A = ε−[(Σ−Σ̃)/2]R,A and [ΔΔ̃]R,A are both diagonal and if γR,A and Σ̃R,A commute.
If they anti-commute, the definition of ER,A changes to ER,A = ε− [(Σ + Σ̃)/2]R,A, a case
one is concerned with when considering a magnetic field.

For the distribution functions, the solution is [37]:

xh,eq = (1− γRγ̃A)tanh

(
ε

2kBT

)
. (2.20)

Generally, the solutions of these partial differential equations are obtained by solving them
along their characteristics, which are straight lines in real space, starting from some initial
value [36]. Their direction for any value of pF is given by the Fermi-velocity vF(pF). I.e.,
we have R = v̂F · x + c. So i�vF∇Q(R) becomes i�|vF|∂xQ(v̂F · x + c) and hence an
ordinary differential equation (ODE). For a given value of pF on the Fermi-surface, the
orientation along which the integration of this ODE is stable is identical for γR, γ̃A, xK

and γA, γ̃R, x̃K respectively, but opposite for these two groups [36].

In this sense, one can understand the Riccati amplitudes, which are in principle fields over
real space, as ’particles’ traveling along straight trajectories with a definite group velocity.

When considering a scattering problem, i.e., a region in which the quasiclassical description
breaks down, these trajectories, which are only meaningful away from the scattering region,
will get ’mixed’ [36, 37]. The above discussed properties of the Riccati amplitudes now
allow us to separate them in ’incoming’ and ’outgoing’ quantities with respect to the
scatterer that are related by a set of boundary conditions [36, 37].

2.3. Boundary Conditions for Riccati-Amplitudes and Dia-
grammatic Representation

We now present the boundary conditions for Riccati amplitudes at the interface to a scat-
tering region. Following Eschrig’s notation [36], the separation of incoming and outgoing
quantities we alluded to is made explicit by writing small case letters for incoming am-
plitudes and capital letters for outgoing ones. The phenomenological parameters entering

aApart from the kinetic term, the equations for xK, x̃K are identical to the usual quantum kinetic equation
if the coherence functions are zero. For comparison, see equation (11.68) of Ref. [3], p.726.
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2. Quasiclassical Theory of Superconductivity

these boundary conditions are contained in the normal state scattering matrix of the scat-
terer [37, 89]. Indices k = (p, α) denote transport channels, i.e., they combine momentum
p and band indices α. −k implies −k = (−p, α). Generically, Riccati amplitudes are
matrices in spin-space; if, however, a band is not spin-degenerate, they are scalar. The
boundary conditions fully cover this case, which turns out to be important when modelling
strongly spin-polarised ferromagnets in quasiclassical theory.

We also discuss the diagrammatic representation introduced in Ref. [37] in this context,
as it provides an intuitive understanding of the boundary conditions. To this effect, we
first consider the quantities G,F , G̃, F̃ introduced in (2.12). They can be expanded in a
geometric series in γ and γ̃ pairs as shown in Fig. 2.2. γ and γ̃ encode the coherence
between particle-like and hole-like states and can be seen as a ”local probability amplitude”
for a hole-to-particle (γ) or particle-to-hole transformation (γ̃) with the same momentum
[37]. It is important to fully understand these elementary diagrams. They have two
legs pointing in opposite directions. These legs represent quasi-particles (red) or -holes
(blue) and their propagation direction. Thus γ and γ̃ represent conversions between quasi-
particles and quasi-holesa with the same momentum and opposite group velocity, but they
also have a group velocity associated to themselves, which, for a given value of momentum,
is opposite for γ and γ̃. The quantities F and F̃ , forming the anomalous part of the Green’s
function, represent coherence functions in which the elementary particle-hole conversions
are summed to infinite order. The quantities G and G̃ describe quasi-particle and -hole
excitations which are renormalised by particle-hole coherence [37]. Their representation
is straight-forward to infer from their definition. Considering the same problem at the
scatterer, we observe that the normal-state scattering matrix S of the scatterer connects
quasiparticle states with incoming group velocity to states with outgoing group velocity.
We are dealing with retarded/advanced and particle/hole quantities. The corresponding
scattering matrices are related by the following symmetries [37]:

SR
kk′ = [SA

k′k]
†, S̃R

kk′ = [S̃A
k′k]

†, S̃R,A
kk′ = [SR,A

−k′−k]
T . (2.21)

A possible time or energy dependence is neglected here, as the properties of the S-matrix
are usually determined on the ’high-energy’ scale. The formalism would, however, also
cover the case of such a dependence. Irrespective of which scattering states are connected
by the S-matrix, a scattering event will always invert the group velocity of the quasi-
particle from ’incoming’ to ’outgoing’ with respect to the scatterer, without changing its
particle/hole character [37]. This is reflected in the elementary diagrammatic representa-
tion of scattering events shown in Fig. 2.3.

We are now interested in the outgoing quantities FR and GR at the scatterer as functions
of the incoming coherence amplitudes γk and γ̃k.

b For FR, this implies to find all possible
paths contributing to the hole-particle conversion amplitude of an incoming hole to an
outgoing particle. Since the scatterer will mix transport channels, we must also specify
between which channels this conversion is to take place, i.e., FR

kk′ acquires two band in-
dices. The elementary hole-particle conversions appearing in the paths that contribute
to this quantity must be the incoming ones. Their legs can, however, only be matched
with those of the desired amplitude, if their group velocity is inverted by means of an ele-
mentary scattering event. This leads to the leading order in path length, or ’elementary’,

aWe use both ’quasiparticle’ and ’quasi-particle’. The first term is supposed to refer to the general concept
of quasiparticles introduced by Landau, while the latter is used when we want to distinguish particle-like
from hole-like quasiparticle excitations.

bNote that γk and γ̃k have opposite momentum here, since their propagation direction is the same (pointing
towards the scatterer).
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2.3. Boundary Conditions for Riccati-Amplitudes and Diagrammatic Representation

Figure 2.2. – Diagrammatic representation of the retarded coherence functions and the
corresponding quantities G,F , G̃, F̃ . For advanced amplitudes, the propagation direction of all
lines must to be inverted with respect to the retarded ones. Figure adapted from Ref. [37].

contributions to FR
kk′ [37]:

[γ′kk′ ]
R =

[∑
k′′

Skk′′γk′′S̃k′′k′

]R
, (2.22)

where a sum is taken over all possible channels. The diagrammatic representation is shown
at the top of Fig. 2.3. Its hole-like leg is pointing towards the scatterer, and its particle-like
leg way from it. This particle-like leg may now undergo another particle-hole conversion
by means of the incoming amplitude γ̃k. This will invert the group velocity and send the
quasiparticle back to the scatterer. Consequently, the amplitude FR

kk′ can – again – be
written as an expansion in an infinite number of quasiparticle paths, and the same is true
for GR

kk′ , as depicted in Fig. 2.3. The sum over these paths can be written in an implicit
form as [37]:

FR
kk′ =

[
γ′kk′ +

∑
k′′

Fkk′′ γ̃k′′γ
′
k′′k′

]R
. (2.23)

Likewise, we obtain an expression for GR
kk′ [37]:

GR
kk′ = [1 + Fkk′ γ̃k′ ]

R . (2.24)

Now, what we are actually interested in are the outgoing coherence functions ΓR
k , Γ̃

R
k .

These can be obtained from the definition of the Green’s function. Note that if the group
velocity vF(pF) points away from the scatterer, the amplitude γR entering ĝR(pF) is an
outgoing one, while γ̃R is incoming, ĝR(pF) = ĝR(ΓR, γ̃R) [37]. We hence obtain ΓR from
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2. Quasiclassical Theory of Superconductivity

Figure 2.3. – Diagrammatic representation elementary scattering events (top-left), the ele-
mentary contributions to the outgoing coherence functions (top-right) and the diagrammatic
expansion of the outgoing amplitudes G,F at the scatterer. Figure adapted from Ref. [37].

the relation [37]:

FR
kk = GR

kkΓ
R
k ⇒ ΓR

k = [G−1kk Fkk]
R. (2.25)

The logic here is that the fundamental quantities are in fact Gkk′ and Fkk′ , for which
we obtained the outgoing solutions from the sum-over-scattering-paths reasoning. The
coherence amplitudes Γk, that enter the Riccati formalism, are then calculated from them.
Obviously, the outgoing coherence functions are not connected to the amplitudes Fkk′ ,
Gkk′ with k �= k′. This is because they describe coherence between quasi-particles and
quasi-holes with different momenta on the Fermi-sphere in the same band or even in
different bands. This coherence is lost on the interatomic scale and does hence not enter
the quasiclassical formalism [37]. Such contributions enter only indirectly through the
boundary conditions. By generalising (2.25) as [37]:

FR
kk′ = GR

kkΓ
R
k←k′ , (2.26)

we can directly write implicit equations for the outgoing coherence functions [37]:

ΓR
k←k′ =

⎡
⎣γ′kk′ + ∑

k′′ �=k

Γk←k′′ γ̃k′′γ
′
k′′k′

⎤
⎦
R

, (2.27)

with ΓR
k = ΓR

k←k.

The boundary conditions for the hole-like coherence functions are obtained analogously [37]:

Γ̃R
k←k′ =

⎡
⎣γ̃′kk′ + ∑

k′′ �=k

Γ̃k←k′′γk′′ γ̃
′
k′′k′

⎤
⎦
R

, (2.28)
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Figure 2.4. – Diagrammatic representation of the distribution functions xK and x̃K and the
distribution functions renormalised by elementary scattering events [x′kk′ ]K, [x̃′kk′ ]K. The lower
figure depicts the identity used to obtain XK. Figure adapted from Ref. [37].

while for advanced amplitudes, the direction of time is inverted, resulting in [37]:

ΓA
k→k′ =

⎡
⎣γ′kk′ + ∑

k �=k′′
γ′k′k′′ γ̃k′′Γk′′→k′

⎤
⎦
A

, Γ̃A
k→k′ =

⎡
⎣γ̃′kk′ + ∑

k �=k′′
γ̃′k′k′′γk′′Γ̃k′′→k′

⎤
⎦
A

.

(2.29)

We now turn to the boundary conditions for the outgoing distribution functions XK and
X̃K. We observe that the distribution functions are connected to retarded coherence
amplitudes on the left and advanced ones to the right in ĝK. This is reflected in their dia-
grammatic representation (see Fig. 2.4), they have one retarded and one advanced leg with
the same quasiparticle character and, consequently, opposite group velocity [37]. Again,
we introduce an elementary renormalisation of the distribution functions by scattering
[37]:

[x′kk′ ]
K =

∑
k′′

SR
kk′′x

K
k′′S

A
k′′k′ , [x̃′kk′ ]

K =
∑
k′′

S̃R
kk′′ x̃

K
k′′S̃

A
k′′k′ . (2.30)

We then obtain XK by inspecting the Keldysh-Green’s function for vF(pF) pointing away
from the scatterer [37]. In this case [37]:

ĝKk (pFk) = ĝKk (Γ
R
k , γ̃

R
k , γ

A
k , Γ̃

A
k , X

K
k , x̃

K
k ), (2.31)

and we infer from equation (2.12) for the upper left entry of ĝK [37]:

GR
kkX

K
k GA

kk −FR
kkx̃

K
k F̃A

kk, (2.32)

which is the quantity depicted on the right side of the identity in Fig. 2.4. This corresponds
to the effective outgoing particle-distribution function which couples the bare distribution
functions XK and x̃K with the coherence amplitudes. The same quantity is obtained by
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directly coupling the incoming bare distribution functions to the scatterer and the coher-
ence functions [37]. For the bare incoming particle distribution function xK, this involves
a scattering first, so that the legs have the right group velocity. The renormalisation of the
legs pointing away from the scatterer due to the coherence amplitudes and scattering is
given by GR,A

kk′ as discussed above. This gives the first term on the left side of the identity.
The second term is due to the hole-like distribution function, whose legs already have the
right group-velocity but most still undergo a hole-particle conversion to contribute to the
particle distribution. The corresponding renormalisation is given by FR

kk′ for the retarded
and F̃A

kk′ for the advanced branch. This gives us the identity [37]:∑
k′k′′

GR
kk′ [x

′
k′k′′ ]

KGA
k′′k −FR

kk′ x̃
K
k′F̃A

k′k = GR
kkX

K
k GA

kk −FR
kkx̃

K
k F̃A

kk (2.33)

The identity can now be solved to give an expression for XK, which we state here directly
in terms of the amplitudes Γk�k′ [37]:

XK
k =

∑
k′k′′

[δkk′ + Γ̄k←k′ γ̃k′ ]
R[x′k′k′′ ]

K[γk′′
˜̄Γk′′→k + δk′′k]

A − Γ̄R
k←k′ x̃

K
k′
˜̄ΓA
k′→k, (2.34)

where Γ̄k�k′ = Γk�k′ − δkk′Γk.

The argumentation for the outgoing hole distribution function is again analogous and
yields [37]:

X̃K
k =

∑
k′k′′

[δkk′ +
˜̄Γk←k′γ

′
k]

R[x̃′k′k′′ ]
K[γ̃k′′Γ̄k′′→k + δk′′k]

A − ˜̄ΓR
k←k′x

K
k′Γ̄

A
k′→k. (2.35)

This establishes the boundary conditions and completes our discussion of the Riccati tech-
nique. We tried to put an emphasis on the logics behind the diagrammatic representation
and on how the boundary conditions can be understood in this context. As far as the
technical aspects are concerned, the original article of Eschrig is certainly more compre-
hensive [37]. For brevity, we drop the Keldysh-index of the distribution functions in the
following chapters.

2.4. Diagrammatic Rules

In the following, we state a set of diagrammatic rules which can be used to construct the
solutions of the boundary conditions for Riccati amplitudes in terms of their diagrammatic
representation. Note that only the boundary conditions for the coherence amplitudes
require a solution in the sense that an algebraic elimination must be carried out to obtain
explicit expressions for all Γk�k′-amplitudes. Once these are known, the solutions for
the distribution functions can simply be written down. The rules for these coherence
amplitudes are straight-forward to construct based on the insight that: ”The diagrammatic
representation of these equations is the same as for the functions FR,A and F̃R,A, with the
modification that in all internal sums the direction k of the final state that is scattered into
is excluded.”, M. Eschrig, PRB 80, 134511-8 (2009).

This leads us to the following set of rules:

1. For the outgoing coherence function in question, draw the corresponding incoming
and outgoing particle or hole line.

2. Draw all possible paths connecting these incoming and outgoing lines through ele-
mentary scattering events and particle-hole or hole-particle conversions via the in-
coming coherence functions. An elementary scattering event will change the charac-
ter of the path from incoming to outgoing, an elementary particle-hole or hole-particle
conversion from outgoing to incoming. Only incoming paths can be scattered and
only outgoing ones can undergo conversion.
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2.4. Diagrammatic Rules

Figure 2.5. – Relevant elementary diagrams at the scatterer (dashed line). Legs pointing
towards the scatterer are incoming, legs pointing away from it are outgoing. The momentum
direction of the respective amplitudes are stated explicitly, pFk is pointing towards the scat-
terer. As for the Γk�k′ amplitudes, a momentum direction is only defined for k = k′, and we

have, for completeness, −pFk for ΓR
k and Γ̃A

k and pFk for Γ̃R
k and ΓA

k .

3. Reject all paths where the final outgoing line appears at an intermediate step.

4. For a given path, write out the corresponding scattering matrices and coherence
amplitudes from right to left.

5. Take the sum over all paths.

For advanced amplitudes, rule 4 changes to ’left to right’. If one thinks about the diagram-
matic representation of the F-functions, all of these rules save the third are very obvious.
Rule 3 takes care of the forbidden scattering into the final state. In Fig. 2.5, we give a
summary of the leg-orientations of the relevant amplitudes at the scatterer.

On that basis, it is then easy to write down the rules for the distribution functions by
inspecting their boundary conditions:

1. For the distribution function in question, draw the corresponding incoming advanced
and outgoing retarded line.

2. Draw all possible paths connecting these lines through elementary scattering events,
particle-hole or hole-particle conversions and incoming distribution functions. Only
incoming lines can scatter, only outgoing lines can undergo a particle-hole or hole-
particle conversion or be connected to an incoming distribution function. A scat-
tering event converts a path from incoming to outgoing, a coherence or distribution
function from outgoing to incoming.

3. Reject all paths containing the final outgoing line or the initial incoming line at an
intermediate step.

4. Also reject all paths that contain the incoming distribution function with opposite
particle/hole-type and the same channel-label as the outgoing distribution function
that is to be calculated.

5. Starting from the single incoming distribution function, write down the retarded
branch of the path from right to left and the advanced one from left to right.
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2. Quasiclassical Theory of Superconductivity

6. Take the sum over all paths.

A few comments are in order. The structure of the incoming distribution functions guar-
antees that every path constructed from these rules contains exactly one incoming dis-
tribution function. Thus, this must not be demanded explicitly. Another complication
arises from the fact that the forward-scattering amplitude is subtracted in all coherence
functions. An inspection of the first term of the boundary conditions shows that the rule
”Reject all paths that contain the final outgoing line or the initial incoming line at an inter-
mediate step” describes all contributions to this term correctly. If the forward scattering
amplitude was to appear here, the final outgoing line would immediately appear after the
first scattering vertex at the distribution function and the path must end, which is the
case covered by the Kronecker-deltas. In the second term, however, we need an additional
rule to avoid the forward scattering amplitude. In fact, the paths that we thus reject do
still enter the Keldysh-Green’s function, but not XK.

Although the number of paths contributing to the solutions is infinite, we can obviously
state closed algebraic expressions to describe them all. This implies that these paths can
be represented by a finite graph, involving only elementary diagrams. This is illustrated
in the appendix for the three channel case relevant to us.

The rules stated here do certainly not provide any kind of technical advantage, since the
algebraic solution of the boundary conditions, being nothing but a system of linear equa-
tions, poses no problem at all. We still believe that they may facilitate the interpretation
of results obtained with this formalism.

2.5. The Riccati Technique for Matsubara Green’s Functions

Our study of the Josephson effect will be carried out in the Matsubara framework. The
corresponding Riccati amplitudes are obtained from the retarded and advanced coherence
functions in a straight-forward way. The corresponding relations are briefly reviewed here.

The quasiclassical Matsubara-Green’s function ĝM depends on the Matsubara frequency
εn = 2π · (n + 1/2) · kBT instead of the energy ε [114], the Riccati parameterisation is
defined as above:

ĝM = ∓ 2πi

(
G F

−F̃ −G̃

)M
± iπτ̂3, (2.36)

where∓ and± now correspond to positive/negative Matsubara-frequencies. The Eilenberger-
equation transforms to:

i��vF · ∇�Rĝ
M + [iεnτ̂3 − Δ̂− ĥ, ĝ]M = 0̂, (2.37)

with the normalisation condition: ĝMĝM = −1̂π2. Consequently, the Riccati-transport
equations become:

(i�vF · ∇+ 2iεn)γ
M = [γΔ̃γ +Σγ − γΣ̃−Δ]M, (2.38)

(i�vF · ∇ − 2iεn)γ̃
M = [γ̃Δγ̃ + Σ̃γ̃ − γ̃Σ− Δ̃]M.

The particle-hole symmetry relation is:

Q̃M(�pF, �R, εn, t) = [QM(−�pF, �R, εn, t)]∗, (2.39)

and the one between retarded and advanced amplitudes transforms to:

γM(−εn) = [γ̃M(εn)]
†. (2.40)
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The equilibrium current density, which is the only observable that we calculate with this
technique, is [114]:

j(R, t) = eNFkBT
∑
εn

1

2
Tr
〈
vF(pF)τ̂3ĝ

M(pF,R, εn, t)
〉
. (2.41)

The symmetry between negative and positive Matsubara frequencies allows us to consider
only the positive ones. For these, the boundary conditions are exactly the same as those
of the retarded amplitudes.
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3. Model of the SC/FM Contact within
Quasiclassical Theory

In this chapter, we discuss the model that allows us to describe SC/FM heterostructures
in which the ferromagnetic materials are strongly spin-polarised with quasiclassical the-
ory. This is a new approach based on the generalisation of the quasiclassical boundary
conditions to multi-channel scattering.

The fundamental problem here is the following. Recall that quasiclassical theory is based
on a separation of two energy scales, which can be defined as the Fermi-energy EF on the
one hand, and the superconducting energy gap Δ on the other hand. The treatment of
ferromagnetism within this theory so far consisted in including the ferromagnetic exchange-
field as an external field in the Eilenberger-equation, thus making the implicit assumption
that the exchange energy J is roughly of order Δ. This is reasonable for weakly spin-
polarised alloys such as CuxNi1−x, in which 0 − π oscillations of the Josephson effect
were first observed [104]. However, most natural ferromagnets such as Fe, Co and Ni do
not comply to this requirement, as their exchange splitting is of order EF rather than
Δ. In a sense, this is still good news, since the separation of energy scales also holds for
these materials; the difference being, however, that the exchange field must be treated
on the ’high energy’ scale. This is achieved by considering the majority and minority
band of the ferromagnet at the Fermi-level as independent and defining two independent
Green’s functions [52, 53]. The technicalities of this model are introduced in the following
section. In section 3.2, we then discuss quasiparticle scattering at the contact and solve
the boundary conditions at the SC/FM interface in section 3.3. Finally, we analyse the
result in terms of the diagrammatic technique.

3.1. Ferromagnets with Large Exchange Splitting in Quasi-
classical Theory

If the exchange splitting of the ferromagnet is large, it is obvious that pairing correlations
between electrons in different spin-bands – even if induced at the SC/FM interface – are
rapidly suppressed on the interatomic scale, as there is a large difference in momentum
between the paired particles. In principle, this is known for a long time already [30]
and was explicitly shown with microscopic calculations by, e.g., Halterman and Valls [55].
It is therefore sufficient to devise a theory which only describes inter-band pairing, i.e.
correlations with equal-spin triplet character. This is readily achieved within quasiclassical
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3. Model of the SC/FM Contact within Quasiclassical Theory

Figure 3.1. – Model band structure of the SC/FM system.

theory by defining independent quasiclassical Green’s functions for different spin-bands in
the ferromagnet. This approximation is well-suited if J > 0.1EF for most conventional
superconductors [53], or generally, if the decay length ξJ = �/(p↑ − p↓) is a lot shorter
than the normal metal coherence length ξ0, which one may define as �(v↑ + v↓)/4πkBTc
inside the ferromagnet. Specifically, we assume two metallic bands at the Fermi-energy
with complete and opposite spin-polarisation. In the parabolic band approximation, this
consists in shifting the dispersion by −J/2 for the majority or spin-↑-band and by +J/2 for
the minority or spin-↓-band. In the superconductor, we assume a single, spin-degenerate
band. Thus, the normal-state dispersion relations are:

ξ1(p1) =
p2
1

2m
− EF, (3.1)

ξ2(p
2
2) =

p2
2

2m
− J/2 + V − EF, ξ3(p

2
3) =

p2
3

2m
+ J/2 + V − EF,

where we introduce the band index η: η = 1 ≡ SC, η = 2 ≡ FM, ↑-band and η = 3 ≡
FM, ↓-band. For simplicity, we use the same effective mass in all bands m = p2F1/2EF, V
corresponds to a global shift of the FM-bands with respect to that of the SC as shown in
Fig. 3.1. The individual Green’s functions are defined accordingly as:

ǧη(pFη,R, ε, t) =
1

a(pFη)

∫
dξpη τ̂3Ǧ(p,R, ε, t), (3.2)

where ǧ1 is a matrix in spin-space while ǧ2,3 are spin-scalars. The relevant observables
thus read for the respective bands:

N1(R, ε, t)

NF1
= − 1

2π
Im
(
Tr〈gR(pF1,R, ε, t)〉pF1

)
, (3.3)

N2,3(R, ε, t)

NF2,3
= − 1

π
Im
(
〈gR(pF2,3,R, ε, t)〉pF2,3

)
,

jη(R, t) = eNFη

∫
dε

8πi
Tr
〈
vFη(pFη)τ̂3ĝ

K
η (pFη,R, ε, t)

〉
pFη

.

The missing trace and factor 1/2 in the normalised DOS for η = 2, 3 are due to the missing
spin degree of freedom in the FM-bands. The Fermi-surface average and density of states
are defined accordingly:

〈•〉pFη =
1

NFη

∫
FSη

d2pFη
(2π�)3|vFη(pFη)|

(•) , (3.4)

NFη =

∫
FSη

d2pFη
(2π�)3|vFη(pFη)|

. (3.5)
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3.2. Scattering Geometry

Figure 3.2. – Geometry of quasiparticle scattering at the superconductor-ferromagnet in-
terface with the assumption of an atomically clean interface, i.e. the conservation of parallel
momentum k||. This constraint implies two types of trajectories contributing to transport
across the contact, (a) trajectories connecting all three Fermi-surface sheets and (b) trajec-
tories connecting only the SC-band and the majority band of the ferromagnet. Figure from
Ref. [53]. Copyright 2010 by the American Physical Society.

3.2. Scattering Geometry

To solve the boundary conditions for this problem, we first need to specify the normal-
state scattering matrix of the interface. As discussed at length in the previous chapter,
this matrix cannot be obtained within quasiclassical theory, but must be provided as a
set of phenomenological parameters. Here, we shall obtain this matrix from microscopic
models of the interface region. The most fundamental assumption entering these models
is the conservation of parallel momentum k|| when a quasiparticle scatters at the interface.
This corresponds to an interface which is translationally invariant in the plane of the
interface, i.e. atomically clean.a Such a constraint severely reduces the number of non-
zero matrix elements. In fact, for any incident quasiparticle, there will be a maximum
of 3 possible outgoing states available. Depending on the Fermi-surface geometry, this
number may reduce to 2 or even 1, as illustrated in Fig. 3.2. For any incoming trajectory,
backscattering is always possible; if no other band can be accessed, such a trajectory
cannot contribute to transport. We are hence only interested in those trajectories with
2 or 3 outgoing channels. We shall call the first ’half metallic’ trajectories and the latter
’ferromagnetic’ trajectories, since only the first type exists in a half metal [52, 53].

Thus, when considering solutions of the quasiclassical boundary conditions for this prob-
lem, we need to distinguish two cases. For half metallic trajectories, two transport channels
must be matched and three for the ferromagnetic ones. The corresponding solutions are
discussed in the next section.

The S-matrix has the following structure for these cases [53]:

SR
FM =

⎛
⎝ R1 T12 T13
T21 r2 r23
T31 r32 r3

⎞
⎠ , SR

HM =

(
R1 T12
T21 r2

)
. (3.6)

Here, R1 is a 2× 2-matrix, T12 and T13 are 2× 1 matrices, T21 and T31 are 1× 2-matrices,
r2, r3, r23 and r32 are scalars. This choice of parameters may seem awkward at first, but
will turn out to be convenient for solving the boundary conditions. The matrix elements
SR
kk′ used in the definitions of the elementary scattering amplitudes [γ′]R and [x′]R are

exactly these components. This is because we match two spin-scalar channels (η = 2, 3)
with one spin-degenerate channel (η = 1).

aStrictly speaking, our approach for calculating the S-matrix also requires that the band structure is
centrosymmetric or time-reversal invariant on both sides of the interface, otherwise there may be no
scattering states available if both k|| and energy are to be conserved [37].
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3.3. Solution of the Boundary Conditions

We discuss the solutions of the boundary conditions for the two types of trajectories in
terms of the general scattering matrices given in equation (3.6). The models from which
we obtain the values of the S-matrix parameters will be discussed in the next chapter.

Coherence functions

As for the incoming coherence functions, we assume that they are given by the bulk solution
(2.19) in the superconductor, i.e., γR1 = γReq,hom and γ̃R1 = γ̃Req,hom, with ΔR = |Δ|iσy, i.e.
a singlet gap, and no other self-energy terms. In the ferromagnet, the incoming coherence
functions are zero in the point-contact geometry but have a finite value originating from
the opposite surface or interface in the Josephson junction geometry. We only discuss
the point-contact case here and illustrate how the diagrammatic technique can be used to
obtain a physical interpretation of the result. The more general solution for finite γ2,3 is
given in the appendix.

An additional comment concerning the physical assumptions that underly our point con-
tact theory is in order. The dimensions characterising the contact area of the point con-
tact are assumed to be small compared the superconducting coherence length but imply a
macroscopic number of transport channels, i.e., there is no conductance quantisation [53].
This is usually a good assumption for point-contact Andreev spectroscopy and it is also
implicit in BTK-theory [15].

Thanks to symmetry relations between advanced and retarded propagators, it will be suf-
ficient to consider retarded quantities. Hence, the boundary conditions for ferromagnetic
trajectories reduce to [53]:

ΓR
2←1 = [γ′21 + Γ2←1γ̃1γ

′
11]

R, ΓR
2 = [γ′22 + Γ2←1γ̃1γ

′
12]

R, (3.7)

ΓR
2←3 = [γ′23 + Γ2←1γ̃1γ

′
13]

R, ΓR
3←1 = [γ′31 + Γ3←1γ̃1γ

′
11]

R,

ΓR
3 = [γ′33 + Γ3←1γ̃1γ

′
13]

R, ΓR
3←2 = [γ′32 + Γ3←1γ̃1γ

′
12]

R,

ΓR
1 = [γ′11]

R, ΓR
1←2 = [γ′12]

R, ΓR
1←3 = [γ′13]

R,

with [γ′ij ]
R = Si1γ

R
1 S

∗
1j for i, j = 1, 2, 3. The boundary condition for ΓR

1 , Γ
R
1←2 and ΓR

1←3

are trivial, the remaining explicit solutions are [53]:

ΓR
2←1 = [γ′21(1− γ̃1γ

′
11)

−1]R, (3.8)

ΓR
2 = [γ′22 + γ′21(1− γ̃1γ

′
11)

−1γ̃1γ′12]
R,

ΓR
2←3 = [γ′23 + γ′21(1− γ̃1γ

′
11)

−1γ̃1γ′13]
R,

ΓR
3←1 = [γ′31(1− γ̃1γ

′
11)

−1]R,

ΓR
3 = [γ′33 + γ′31(1− γ̃1γ

′
11)

−1γ̃1γ′13]
R,

ΓR
3←2 = [γ′32 + γ′31(1− γ̃1γ

′
11)

−1γ̃1γ′12]
R.

In Fig. 3.3, we show the diagrammatic representation of these solutions.

As an example, we consider ΓR
2←1. The incoming line is hole-like in band 1 and the outgoing

line particle-like in band 2. Taking into account that γR2 = γR3 = 0, the required hole-
particle conversion must take place in band 1. This requires an elementary scattering event
first, in order to convert the hole-like line from incoming to outgoing. Then the conversion
takes place and we have an incoming particle line which can now scatter to band 2, which
gives us the final outgoing line. This path can be extended by adding further pairs of
particle-hole and hole-particle conversions in band 1 with the corresponding scattering
events. Since the final line is in band 2, these paths are allowed and denoted by the
’bubble’ in the diagram. The resulting geometric series yields [(1 − γ̃1γ

′
11)

−1]R for the
bubble.
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Figure 3.3. – Diagrammatic representation of the outgoing coherence functions at the
SC/FM point-contact.

Distribution functions

The boundary conditions for the distribution function are already explicit in the sense
that no further algebraic elimination is necessary once the outgoing coherence amplitudes
Γk�k′ are known. The distribution functions are not uniquely defined [37]. This allows
us to choose a set of incoming distribution functions which simplifies the solution of the
problem. The bias-voltage across the contact is modelled by shifting the chemical potential
on the ferromagnetic side by eV. The ’gauge freedom’ for the distribution functions can
be used to put x1 = x̃1 = 0, which results in [53]:

x2,3 = tanh

(
ε+ eV

2kBT

)
− tanh

(
ε

2kBT

)
, (3.9)

x̃2,3 = − tanh

(
ε− eV

2kBT

)
+ tanh

(
ε

2kBT

)
.

The solutions then read [53]:

X2 =[x′22] + [Γ2←1γ̃1]
R[x′12] + [x′21][γ1Γ̃1→2]

A

+ [Γ2←1γ̃1]
R[x′11][γ1Γ̃1→2]

A − ΓR
2←3x̃3Γ̃

A
3→2, (3.10)

X3 =[x′33] + [Γ3←1γ̃1]
R[x′13] + [x′31][γ1Γ̃1→3]

A

+ [Γ3←1γ̃1]
R[x′11]

K[γ1Γ̃1→3]
A − ΓR

3←2x̃
K
2 Γ̃A

2→3, (3.11)

X1 =[x′11]
K − ΓR

1←2x̃2Γ̃
A
2→1 − ΓR

1←3x̃3Γ̃
A
3→1. (3.12)

with [x′ij ] = Si2x2S
†
j2 + Si3x3S

†
j3 for i, j = 1, 2, 3. In Fig. 3.4, we illustrate this for X1. X1

has a retarded quasi-particle leg pointing away from the interface and an advanced one
pointing towards it. Taking into account that x1 = x̃1 = 0 and γR,A

2,3 = γ̃R,A
2,3 = 0, we find

four contributing paths. Two of these connect to the particle-like distribution functions in
the FM-bands through elementary scattering events. These paths could be extended by
adding pairs of particle-hole and hole-particle conversions with the corresponding scatter-
ing events on the SC-side. This, however, would imply that the final outgoing line appears
at an intermediate step, which is excluded. For connecting to the hole-like distribution
function, we need a particle-hole/hole-particle conversion on the advanced/retarded branch
of the path. This yields the remaining contributing paths. The extra rule for distribution
functions, which would prohibit paths involving x̃1, is irrelevant thanks to x̃1 = 0.

Transport processes

The Andreev spectrum is given by the differential conductance across the contact, which is
related to the current and hence the diagonal part of the Keldysh-Green’s function. Since
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Figure 3.4. – Diagrammatic representation of X1 at the SC/FM-interface.

current is conserved across the contact, it does in principle not matter on which side of
the interface it is calculated. Andreev reflection, i.e. the process which allows for charge
transfer at energies below the superconducting energy gap, is understood as a particle
incident to the contact from the non-superconducting region being coherently reflected
as a hole, while on the superconducting side, the corresponding current is carried by the
condensate. To study this process, it is therefore advisable to calculate the current on the
normal side of the contact. We have [53]:

jη = −eNFη

2

∫
dε 〈vη · jε,η〉pFη+ , (3.13)

jε,η = Xη − xη − ΓR
η x̃ηΓ̃

A
η , (3.14)

for the currents in bands η = 2, 3, where 〈•〉pFη+ denotes a Fermi-surface average over
trajectories pointing away from the interface. The trajectories pointing towards it are
included through the term −xη in the integrant. The current is hence given by the sum
of the imbalance Xη − xη of incoming and outgoing distribution functions and the term
ΓR
η x̃ηΓ̃

A
η , which is proportional to the incoming hole-like distribution function. This term,

by the way, contains exactly the paths that we rejected for Xη by the additional rule
for distribution functions. Note that, in principle, jε,η ∝ Tr(τ̂3ĝ

K). However, the second
diagonal component of the Keldysh-Green’s function must not be considered explicitly, as
it is related to the first by symmetry.

We will now identify the elementary transport processes contributing to the current by
studying (3.14). To identify the Andreev processes, we focus on the terms in jε,η which
are proportional to a hole-like distribution function, as this implies a conversion of in-
coming hole-like to reflected particle-like quasiparticles, which is precisely the property of
Andreev reflection.a Apart from the terms ΓR

η x̃ηΓ̃
A
η entering (3.14), these are ΓR

2←3x3Γ̃
A
2→3

and ΓR
3←2x2Γ̃

A
2→3, entering X2 and X3, respectively. The latter two terms correspond to

processes where the coherently reflected particle travels in the opposite spin-band with
respect to the incoming hole; for the first terms, the band remains the same. The pro-
cess where incoming and outgoing quasiparticle have opposite spin is the usual Andreev
reflection process known from normal metal/singlet-superconductor contacts.b The other
terms imply a spin-flip in the interface region, otherwise this process cannot be reconciled
with the singlet-symmetry of the superconducting condensate. We will show in the next
section that the amplitude of this process is indeed only non-zero if the scattering matrix
contains spin-flip scattering and spin-mixing.

The remaining terms contained in Xη−xη describe quasi-particle transmissions across the

aActually, it is usually the other way around. That these terms appear here rather than the particle-
to-hole terms is due to the fact that we chose to eliminate the hole-hole entry of ĝK instead of the
particle-particle one.

bIn the literature, one will usually find ’the same spin’. This is because the spin of a hole-like quasiparticle
is often defined as opposite to that of the unoccupied state it is associated to. In the context of the
method employed here, this would be confusing, as we would call hole-like amplitudes belonging to the
spin-down band ’spin-up’.
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Figure 3.5. – Diagrams contributing to spin-flip Andreev reflection (upper diagrams) and
normal Andreev reflection (lower diagrams).

interface. For energies below the gap (|ε| < |Δ|), one can show that:

[X2 − x2 + ΓR
2←3x̃3Γ̃

A
3→2](ε) = [−ΓR

2←3x̃3Γ̃
A
3→2 − ΓR

2 x̃2Γ̃
A
2 ](−ε), (3.15)

[X3 − x3 + ΓR
3←2x̃2Γ̃

A
2→3](ε) = [−ΓR

3←2x̃2Γ̃
A
2→3 − ΓR

3 x̃3Γ̃
A
3 ](−ε), (3.16)

implying that these remaining terms contain exactly the second charge associated to each
Andreev process. For energies above the gap, normal quasiparticle tunnelling will also
contribute and cannot – to our present knowledge – be disentangled from the Andreev
part [53]. Still, the contribution of Andreev reflection to the current is given by twice the
contribution of the diagrams shown in Fig. 3.5 at energies above the gap, too.

The solutions for half metallic trajectories are obtained by putting all terms that contain
the band index 3 to zero in the above relations. Obviously, this implies that there can
only be spin-flip Andreev reflection for these channels.
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4. Models for Quasiparticle Scattering at
Superconductor-Ferromagnet
Interfaces

The purpose of this chapter is to discuss microscopic models from which the normal state
scattering matrix of the SC/FM contact can be inferred. The constraint of translational
invariance in the contact plane implies that such a model is essentially limited to a scat-
tering potential which varies in the z-direction. To obtain spin-active scattering from this
scenario, this potential must be spin-dependent.a We investigate the ’classical’ idealisa-
tions of such a potential, namely the box-shaped and δ-function potentials and show that
these generically imply a relatively small spin-mixing effect. We then show that assuming
the more realistic case of a smooth potential leads to a significant boost of the mixing an-
gle. As a result of this analysis, we identify two basic mechanisms behind the spin-mixing
effect.

The normal-state band structure of the FM and SC have been introduced in the previous
chapter. We still need to specify the Hamiltonian of the interface:

HI =
p2

2m
− EF + VI +

�JI
2

· �σ. (4.1)

So in principle, we have exactly the same model for the interface as for the FM. However,
we will assume that the exchange fields �JI and �JFM are misaligned. And we can choose VI
to tune the interface potential from a metallic to an insulating state. VI and | �JI| will vary
as a function of z in the smooth potential model.

In the box-potential case, the scattering matrix is then obtained from matching wave
functions which can be labeled by the conserved quantum numbers ε, k||. The details of
this procedure are explained in the appendix. In the case of a δ-function potential, the SC
and FM solutions are matched directly. The interface potential enters only through the
matching conditions for derivatives [53]. We will not discuss this case explicitly here, but
the qualitative result – a relatively small mixing angle – is analogous to the box-potential
case [53].

The smooth potential model can be solved within the WKB-approximation if the variation
is slow on the scale of the Fermi-wavelength. This, however, results in large interfaces and,

aThis is, strictly speaking, only true for spin-flip scattering, the spin-mixing effect can in principle be
induced by the spin-splitting of the FM band structure alone.
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4. Models for Quasiparticle Scattering at Superconductor-Ferromagnet Interfaces

as a consequence, yields a weak coupling between the SC and the FM. It does also not
really correspond to the experimental situation we are interested in, since the interfaces
do certainly not extend over several Fermi-wavelengths. Instead, we can use the Recursive
Green’s Function method, which will be discussed at length in the second part of this
thesis, to obtain the scattering matrix numerically.

4.1. Parameterisation of the Scattering Matrix

Using a partial singular value decomposition of general U(4)- and U(3)-matrices, we are
able to show that the S-matrices discussed here can be parameterised as follows. Again,
we refer to appendix A and Ref. [53] for details. For FM-trajectories, the S-matrix reads
[53]:

SFM =

⎛
⎜⎜⎝

r1↑eiϑ/2 r1↑↓ t2e
iϑ2/2 t′3eiϑ3/2

r1↑↓ r1↓e−iϑ/2 t′2e−iϑ2/2 t3e
−iϑ3/2

t2e
iϑ2/2 t′2e−iϑ2/2 r2 r23

t′3eiϑ3/2 t3e
−iϑ3/2 r23 r3

⎞
⎟⎟⎠ . (4.2)

In the HM case, where the matrix is 3× 3, we have [53]:

SHM =

⎛
⎝ r1↑eiϑ/2 r1↑↓ t2e

iϑ/4

r1↑↓ r1↓e−iϑ/2 t′2e−iϑ/4

t2e
iϑ/4 t′2e−iϑ/4 r2

⎞
⎠ . (4.3)

This parameterisation exploits the SU(2) spin-rotation invariance of the SC and neglects
irrelevant scattering phases. Moreover, the second spherical angle characterising the mis-
alignment of �JFM and �JI, ϕ, was put to zero here (see Fig. 1.2 for its definition). If ϕ is
finite, the scattering matrix is simply obtained from [52]:

SFM(ϕ) = Φ∗4×4SFMΦ4×4, SHM(ϕ) = Φ∗3×3SHMΦ3×3, (4.4)

with

Φ4×4 =
(
eiσzϕ/2 0

0 eiσzϕ/2

)
, Φ3×3 =

(
eiσzϕ/2 0

0 eiϕ/2

)
. (4.5)

Moreover, the parameters r2, r23, r32, r3 may contain additional complex phases which
cannot be eliminated. Yet, only a relative phase between r32 and r23 is physically relevant.
It plays an important role for the Josephson effect, as we shall see later on, but has no
influence on the conductance of point contacts. Since S = ST if ϕ = 0, this relative phase
is always given by 2ϕ. All other phases are irrelevant and hence neglected.

The phases ϑ, ϑ2, ϑ3 are all relevant for the creation of triplet correlations. ϑ is usually
called ’spin-mixing angle’. It is responsible for the creation of triplet correlations inside the
superconductor, as it enters the reflection matrix on the non-magnetic side of the interface.
For ferromagnetic trajectories, the situation is somewhat more complicated – there is no
simple relation between the mixing phases entering the transmission part of the S-matrix,
ϑ2 and ϑ3, and the spin-mixing angle ϑ.

In the next section, we focus on ϑ only and try to provide some intuitive understanding
as to how these scattering phases come about.
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4.2. Basic Mechanisms behind the Spin-mixing Effect

It is rather obvious that if a difference of scattering phases between quasiparticles with
different spin is to appear upon scattering at some potential, this potential must itself be
spin-dependent. Quite generally, this simply implies that we have two different potentials
for spin-up and spin-down particles. Consequently, such a potential also introduces a
spin-quantisation axis, i.e., a basis in spin-space in which it is diagonal.

The appearance of scattering phases can be studied analytically in two limiting cases.
These are (a) an abrupt change of the potential V , where bulk solutions can be defined
and subsequently matched on both sides of the potential step, and (b) a smooth potential
that varies slowly on the scale set by the typical wavelength of the eigenfunctions in
question. This is the Fermi-wavelength in our case, and the method we can employ in this
scenario is the WKB-approximation.

The first case was studied by Tokuyasu et al. [126] in the context of scattering at an
interface between a normal metal and a ferromagnetic insulator. The matching conditions
read:

1 +B↑,↓ = C↑,↓, ik(1−B↑,↓) = −κ↑,↓C↑,↓, (4.6)

using the plane wave ansätze eik·z + B↑,↓e−ik·z and C↑,↓e−κ↑,↓·z for the normal and ferro-
magnetic side, respectively. We choose a decaying solution for the ferromagnet, as it is
supposed to be an insulator. κ is spin-dependent due to the exchange field. The reflection
matrix R of this interface is then easily found to be:

R =

⎛
⎝ −1+ik/κ↑

1−ik/κ↑
0

0 −1+ik/κ↓
1−ik/κ↓

⎞
⎠ = eiη · eiσzϑ. (4.7)

Obviously, there is only a complex phase because we matched a propagating with an
evanescent solution, otherwise there would be either no imaginary unit appearing in the
matching conditions or there would be two that cancel. Secondly, the spin-mixing angle ϑ is
only non-zero because κ↑ is different from κ↓. We hence conclude that spin-dependent wave
vector mismatches lead to a scattering phase if one of the two wave vectors is imaginary.

We may consider another scenario where two interfaces are involved. This the relevant
case for us, since we always assume an interlayer with a finite width in the following.
Specifically, we consider a N/FM/N system, where the FM-layer has a width of the order
of the Fermi-wavelength but is metallic.

We need to solve matching conditions at two interfaces now:

1 +B↑,↓ = C↑,↓ +D↑,↓, C↑,↓eik↑,↓·d +D↑,↓e−ik↑,↓·d = E↑,↓eik·d, (4.8)

k · (1−B↑,↓) = k↑,↓ · (C↑,↓ −D↑,↓), k↑,↓ · (C↑,↓eik↑,↓·d −D↑,↓e−ik↑,↓·d) = k · E↑,↓eik·d.

Again, we obtain the reflection matrix at the first interface by solving for B:

R =

(
r↑ 0
0 r↓

)
, r↑,↓ =

(k2 − k2↑,↓) · (1− e2ik↑,↓·d)
(k + k↑,↓)2 − (k − k↑,↓)2 · e2ik↑,↓·d

. (4.9)

In this case, the complex phase of the reflection parameter is due to e2ik↑,↓·d. It can be
understood as the contribution from waves that are transmitted at the first interface, then
propagate forth and back in the interlayer an arbitrary number of times, and are eventually
transmitted back into the first N-region. Yet, the leading order process contributing to
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4. Models for Quasiparticle Scattering at Superconductor-Ferromagnet Interfaces

Figure 4.1. – Sketch of the interface model for the box-potential. The left sketch shows the
Fermi-surface geometry at the contact, both FM-bands are assumed to be smaller than that
of the SC. The right sketch shows the variation of the band bottom in the minority (green)
and majority (red) band. The exchange splitting J = JFM = JI is assumed to be identical in
the FM and the interlayer. The quantisation axis is different in the interlayer and the FM.
This is denoted by the different indices of E2,3 = VFM ∓ J/2 and U± = VI ∓ J/2. Figure from
Ref. [53]. Copyright 2010 by the American Physical Society.

the reflection is the direct reflection at the first interface, and there is no scattering phase
arising from this process. This can easily be seen by assuming k↑,↓ ≈ 0 in the expression
above, which maximises the wave vector mismatch. The expression then becomes real and
there is no spin-mixing phase.

Thus, there is a second mechanism contributing to the spin-mixing angle, which is simply
the dephasing of two waves propagating over a certain length with different wave vectors.
However, the step-potential scenario cannot make good use of this effect for the reasons
explained above. It can be enhanced when the potential is smooth, which leads us to the
WKB-scenario.

Effects due to wave vector mismatches are generically eliminated in WKB-approximation.
This implies that there is only a finite reflection if the potential rises above the Fermi-energy
over a certain length. The spin-mixing angle is then simply given by the phase-difference
that quasiparticles accumulate inside the N-region until the point where VI = EF [53],
which we denote by z↑,↓ for the respective band:

ϑ = 2

[∫ z↑

−∞
dz k↑(z)−

∫ z↓

−∞
dz k↓(z)

]
. (4.10)

The very slow variation of the potential, which is mandatory for the WKB-approximation,
is not realistic for the atomically thin interlayer regions that we wish to discuss here.
We therefore resorted to a numerical calculation of the S-matrix for the smooth-potential
model.

After this introductory discussion, we now turn to the models that we actually used for
our calculations.

4.3. Box-shaped Scattering Potential and Influence of the
Fermi-surface Geometry

The model we consider in this section is depicted in Fig. 4.1. We are dealing with a mag-
netic insulator of width d as the interlayer. The Fermi-surface geometry of the conducting
bands which connect at the interface is shown on the left-hand side of the figure. The
misalignment of the interface quantisation axis with respect to the bulk magnetisation of
the FM is taken to be α = 0.5π. Moreover, we have VFM = 0.5 EF, VI = 1.5 EF and
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Figure 4.2. – The spin-mixing angle as a function of k|| for different widths of the interlayer.
Parameters are stated in the text. Figure from Ref. [53] with slight modifications.

J = 0.8 EF. In what follows, λF and kF refer to the Fermi-wavelength and -vector in band
1.

In Fig. 4.2, we show the spin-mixing angle as a function of k|| for different values of the
interlayer width. Dashed lines indicate the separation of half metallic and ferromagnetic
trajectories. We focus on the right plot first. These ’thick’ interlayers correspond to the
tunnelling limit situation, in which the spin-mixing angle is understood from the reflection
of a magnetic insulating barrier as discussed in the previous section. The expression for ϑ
that one can derive from eq. (4.7) reads [53]:

ϑ = 2

[
arctan

(
k1
κ+

)
− arctan

(
k1
κ−

)]
, (4.11)

where κ± are the perpendicular components of the wave vectors in the interlayer and k1
that of the superconductor. It fits the plot quite well, the maximum value of this expression
is 0.29π at k|| = 0 for the given parameters, and it monotonically approaches 0 for grazing
impact [53].

For thin interlayers, shown on the left-hand side, the behaviour is more intriguing – the
reason being that the presence of the ferromagnetic bands on the other side of the interface
can no longer be ignored in this case. The mixing angle remains relatively constant for
ferromagnetic trajectories and shows a non-monotonical behaviour for half metallic ones if
the interlayer is very thin. The increase for grazing impact can in this case be understood
as resulting from the influence of the minority band in the FM, which has an evanescent
mode for these trajectories. In the limit of an absent interlayer (d = 0), an analytical
expression can be obtained [53]:

ϑ = π − 2 arctan

(
k1
κ3

)
, (4.12)

where κ3 is the evanescent wave vector of the minority band. Only the ration k1/κ3
enters here, as there is no complex phase from the second wave vector mismatch (k1/k2).
Since k1 approaches 0 for grazing impact (the majority band of the FM and the SC band
have comparable Fermi wave vectors) while κ3 increases, this expression approaches π for
k|| → kF.

a This explains the diverging behaviour of the mixing angle for grazing impact
observed for d = 0.1 λF/2π. Other than that, the functional dependence ϑ(k||) is difficult
to explain from simple limiting cases, since all parts of the scattering problem play an
important role.

aUnfortunately, there is a lapse in our original publication (Ref. [53]) in this respect. The second half of
the statement ”the wave vector k1 drops to zero for grazing impact and so does the spin-mixing angle”,
is not correct.
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(a) (b)

Figure 4.3. – Spin-mixing angle as a function of k|| for different values of the exchange field
J (U+ and E2 are kept constant). (a) d = 0.5 λF/2π, (b) d = 5.0 λF/2π. Figure from Ref. [53].
Copyright 2010 by the American Physical Society.

In Fig. 4.3, we plot the mixing angle for different values of the exchange field J , kF2 is
kept constant, so both VFM and JFM change. Not surprisingly, increasing the exchange
field enhances the mixing angle, but not dramatically. The crossover point between half
metallic and ferromagnetic trajectories now changes, which can be seen clearly in Fig. 4.3a.
The mixing angle remains limited to values smaller than 0.5π.

Fig. 4.4 shows the mixing phases ϑ2,3 which enter the transmission blocks of the scattering
matrix. In the next chapter, we will see that these phases are important for the magnitude
of triplet correlations transmitted into the ferromagnet. Naturally, ϑ3 is only defined for
k|| < kF3, while ϑ2 is identical to ϑ/2 for k|| > kF3. For k|| < kF3, we see that ϑ2 is
significantly enhanced compared to ϑ/2 if the interlayer is thick (Fig. 4.4b). This will be
important later on, as it is one reason why the triplet Josephson current that we find is
enhanced for ferromagnets with intermediate polarisation compared to fully half metallic
ones. Other than that, we see that ϑ2 and ϑ3 have a different functional dependence on
k|| and that there is a crossover from a local minimum at k|| = 0 to a local maximum as
the width of the interlayer increases.

Transmitting pairing correlations between quasiparticles through an interface happens by
transmitting the quasiparticles themselves. Accordingly, we shall see in the next chapter
that the magnitude of induced triplet correlations depends on the absolute value of the
transmission parameter |tηt′η|. The reason is clear. Since we transform singlet to triplet
correlations, one of the quasiparticles involved must undergo a spin-flip, while the other
does not. The relevant probability amplitude is hence the product of a spin-flip trans-
mission, t′η, and one without spin-flip, tη. This quantity is plotted in Fig. 4.5 for both
FM-bands. In Fig. 4.5b and d, the thick interlayers are shown and the transmission de-
creases monotonically. The latter is governed by the decay of the wave functions in the
insulating interlayer in this case, and hence suppressed for grazing trajectories, since κ+,
κ− increase with growing k||. When the interlayer is thin, the wave vector mismatches dom-
inate the transparency of the interface and this leads – again – to a relatively complicated
behaviour. Interestingly, the maxima of the transmission for half metallic trajectories,
shown in Fig. 4.5a, coincide with the minima of ϑ [53]. We cannot offer a simple explana-
tion for this, but it is important to keep in mind that all relevant scattering parameters
may be non-monotonical, and the most relevant transport channels contributing to the
current will hence not always be those close to perpendicular impact. Note also that the
transmission first increases with growing thickness of the interlayer before showing the ex-
pected suppression for ever thicker interfaces. The reason is that the spin-flip transmission
t′η is relatively ineffective if the misaligned interlayer is to small.
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Figure 4.4. – ϑ2 (top) and ϑ3 (bottom) as a function of k|| for different values of the interlayer
thickness. As in Fig. 4.2, we have d = 0.1 λF/2π (blue), d = 0.5 λF/2π (green), d = 1.0 λF/2π
(red) on the left-hand side, and d = 2 λF/2π (red), d = 3 λF/2π (green), d = 5 λF/2π (blue)
on the right-hand side. Figure from Ref. [53] with slight modifications.

Figure 4.5. – The transmission parameters |t2t′2| (top) and |t3t′3| (bottom) as a function of k||
for different values of the interlayer thickness. d = 0.1 λF/2π (blue), d = 0.5 λF/2π (green),
d = 1.0 λF/2π (red) on the left-hand side, and d = 2 λF/2π (red), d = 3 λF/2π (green),
d = 5 λF/2π (blue) on the right-hand side. Figure from Ref. [53] with slight modifications.
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4. Models for Quasiparticle Scattering at Superconductor-Ferromagnet Interfaces

Figure 4.6. – Sketch of the interface model for the smooth-potential. The left sketch shows
the Fermi-surface geometry at the contact, both FM-bands are assumed to be larger than that
of the SC. The right sketch shows the variation of the band bottom in the minority (green) and
majority (red) band. The exchange splitting J = JFM = JI is kept constant once it reaches its
maximum (not true for the sketch) and increases monotonically on the SC side of the interface.
Figure from Ref. [53]. Copyright 2010 by the American Physical Society.

4.4. Scattering Potentials with Arbitrary Shape

We now turn to the smooth potential model and demonstrate that a spin-mixing angle
well above 0.5π can be achieved in this case. The considered model is shown in Fig. 4.6.
We choose a different Fermi-surface geometry here, where only ferromagnetic trajectories
are relevant. This simplifies our calculations and is sufficient to prove the point we want
to make. The variation of the potential is sketched on the right-hand side of that figure,
while the exact functional dependence is given by [53]:a

U± =

⎧⎨
⎩

(VI ∓ J/2) · e−(z+d)2/σ2
z < −d

VI ∓ J/2 −d < z < 0

VFM ∓ J/2 + (VI − VFM)e−z2/σ2
z > 0

(4.13)

The potential VI and exchange field J hence increase with a Gaussian slope for z < −d,
remain constant over a width d and then decrease to E2,3, where the slope is chosen so
that the exchange splitting remains constant. σ controls the smoothness of the potential.
The exact functional dependence of VI is shown in Fig. 4.7a, for the choice of parameters
that we consider. Since increasing σ while keeping d constant would widen the interface
substantially and hence reduce the transmission, we keep σ + d = 0.7 λF [53]. The
quantisation axis is assumed to switch abruptly at z = −d/2 by an angle of α = 0.5π.
Taking into account a smooth variation of the magnetisation direction would pose no
difficulty within this approach, but the important point is the enhanced spin-mixing effect
due to the smoothened slopes of the potential.

For calculating the scattering matrix, the Schrödinger equation was discretised in the
z-direction. The Green’s function of the resulting tight-binding Hamiltonian was then
calculated with the Recursive Green’s Function technique and the scattering matrix can
subsequently be obtained from the Fisher-Lee relationsb [45, 53]. Details are provided in
appendix C.

The result is shown in Fig. 4.7b, where the mixing angle increases monotonically as the
’smoothness’ of the interface increases and easily reaches values well above 0.5π. ϑ also

aIn our original publication (Ref.[53]), the ±-signs on the right-hand side of this equation are erroneously
interchanged.

bThis calculation was implemented by Georgo Metalidis.
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Figure 4.7. – The spin-mixing angle in the smooth potential model. (a) VI as a function
of z for σ = 0, ..., 0.7 λF1, increasing in steps of 0.1 λF1. d + σ = 0.7 λF1, J = 0.7 EF,
and VFM = −0.5 EF. (b) spin-mixing angle for the potentials shown in (a), ϑ increases
monotonically with σ. Figure from Ref. [53] with slight modifications and additional data.

decreases monotonically with k||, which corresponds to the fact that the potential is in
the tunnelling limit, and that there is no cross-over from ferromagnetic to half metallic
trajectories due to the Fermi-surface geometry that we assume. In this scenario, there is no
real separation between the two mechanisms for acquiring a spin-mixing phase discussed
in the previous section, since the potential is neither in the step-function nor in the WKB-
limit.

Given that the smoothening of the potential has such an important effect, the dephasing
of quasiparticles on the superconducting side seems to be the dominating mechanism. We
underline that this model is also more reasonable from an experimental point of view, as
the variation we assume happens on the scale of a Fermi-wavelength which is more realistic
than a fully abrupt change of the potential.

In the next chapter, we discuss the Andreev spectra that we obtained from the interface
models presented here.

55





5. Conductance Spectra of
Point-Contacts

In this chapter, we summarise our results on conductance spectra of superconductor-
ferromagnet (SC-FM) point-contacts. In most experiments, these contacts are created by
pressing a superconducting tip into a ferromagnetic sample. A more laborious technique
consists in growing them in planar junctions by drilling a nanoscale hole into an insulating
buffer layer [127, 97]. In both cases, contacts with a macroscopic number of transport
channels are created, i.e., there is no sign of conductance quantisation. On the other
hand, the contact is small compared to the coherence length of the superconductor, ξ,
which implies that the inverse proximity effect can usually be neglected. As anticipated
in the introduction, such contacts have been studied intensively, since they may provide
information about the spin-polarisation P of charge carriers. Here, we will show that other
features related to the triplet proximity effect can also show up in such spectra and that
spin-active scattering may invalidate the inferred values of P .

The fundamental assumption underlying our model is that the diameter a of the contact
complies to λF < a < ξ. If the contact was small compared to the Fermi-wavelength, the
assumption of translational invariance in the contact plain would definitely be ill-founded.
And since the contact is small compared to the coherence length, we can assume that the
superconductor is unperturbed and can thus use the bulk-coherence functions as incoming
solutions on the SC-side of the contact.

In the first section, we shortly review some analytical results and in particular discuss
the creation of triplet pairing correlations and Andreev bound states at the contact. We
then turn to the conductance spectra which were calculated on the basis of the interface
models introduced in the previous chapter. After that, we show that earlier theoretical

Figure 5.1. – A superconducting tip (blue) is pressed into a ferromagnetic sample (red).
The size of the contact is small compared to the superconducting coherence length ξ, but large
compared to the Fermi-wavelength.
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models obtained from Bogoliubov-de-Gennes (BdG) wave function matching are contained
in our theory and eventually turn to the comparison with experiment. In the last section,
we briefly compare our approach to other theoretical models used in the study of this
problem.

5.1. Analytical Analysis

The general solutions of the boundary conditions at the SC/FM contact were introduced
in chapter 3. We now discuss analytical expressions for the relevant coherence functions
ΓR
1 , Γ

R
2 , Γ

R
3 , and ΓR

2�3.
a

We start with the solutions on the SC side and discuss the symmetry classification of
pairing correlations and the emergence of Andreev bound states in the local density of
states (DOS) in this context. We then turn to the solutions on the FM side to analyse the
pairing correlations induced there and discuss their significance for Andreev reflection.

Symmetry classification of induced pairing correlations

Since the incoming coherence functions from the FM-side are zero, only the reflection
matrix on the superconducting side enters. As shown in the appendix, the reflection
parameters can be written as [53]:b

r1↑ = r↑ cos(αY /2)
2 + r↓ sin(αY /2)

2 (5.1)

r1↓ = r↑ sin(αY /2)
2 + r↓ cos(αY /2)

2

r1↑↓ = (r↑ − r↓)
sin(αY )

2
.

Here, αY is related to a spin-rotation defined in the context of the partial singular value
decomposition discussed in appendix A. It has no simple connection to the physical mis-
alignment angle α between the interlayer magnetisation and that of the FM bulk. Yet,
αY = 0 if α = 0 holds, since spin-rotation symmetry is restored in that case. r↑,↓ are the
eigenvalues of the reflection matrix. In terms of these parameters, we have:

Γ̂R
1 = [Ŝ11γ̂1

ˆ̃S11]
R (5.2)

=
[
2i sin(ϑ/2)ρ̂+ [(ρ+ ρs) cos(ϑ)− ρs] iσ̂y + (ρ+ ρs) i sin(ϑ)σ̂x

]
γ,

with

ρ =r↑r↓, ρs = (r↑ − r↓)2
sin2(αY )

4
, (5.3)

ρ̂ =
√
ρs · diag[r↑ cos2(αY /2) + r↓ sin2(αY /2), r↓ cos2(αY /2) + r↑ sin2(αY /2)].

This simple formula teaches us a lot already. The outgoing coherence function on the
SC side has three contributions which correspond to the different spin-symmetries of the
associated anomalous Green’s function:

f̂R1 (pF,z < 0) = −i2π
[
(1− Γ̂1

ˆ̃γ1)
−1Γ̂1

]R
, f̂A1 (pF,z > 0) = i2π

[
(1− Γ̂1

ˆ̃γ1)
−1Γ̂1

]A
. (5.4)

aIn this section only, we use •̂ to indicate a matrix in spin-space.
bNote the sign change in the last equation compared to Ref. [53]. This is due to the parameterisation of

SU(2), which we choose consistently here, but which is unfortunately not consistent across all of our
publications. Specifically, the definition of the original article is recovered by αY �→ −αY .
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Figure 5.2. – Top row: 1/|DR| (see text for the definition) as a function of energy, for
ϑ = 0.0π, ..., 1.0π in steps of 0.1π and r↑ = 0.9, r↓ = 0.95 (left column), r↑ = 0.7, r↓ = 0.75
(right column). αY = 0.5π. With increasing mixing angle, the maxima move to smaller
energies. The function is symmetric in energy. Bottom row: position of the maximum as a
function of the mixing angle (blue) compared to the tunnelling limit formula cos(ϑ/2) (red).
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5. Conductance Spectra of Point-Contacts

Here, ˆ̃γ is an incoming and Γ̂ an outgoing amplitude with respect to the interface. In
terms of the above parameters, we have:

fR1 (pF,z < 0) =− i2π

[
Γ̂1 + γ̃γ2ρ2iσ̂y

D

]R
(5.5)

DR =
[
1 + 2γγ̃[ρ cosϑ− ρs(1− cosϑ)] + (γγ̃)2ρ2

]R
.

Here, γ and γ̃ are defined by γ̂1 = γiσ̂y and ˆ̃γ1 = γ̃iσ̂y, respectively. It is easy to see that if
only the ’green’ term is present in equation (5.2), fR1 is proportional to iσ̂y and therefore a
pure singlet. If the ’red’ term is present, there is an additional component proportional to
σ̂x, which is the Sz = 0 triplet. And finally, in case that the diagonal ’blue’ term appears,
fR1 will have an equal-spin triplet component. Inspecting these terms more closely shows
that the red term is present if there is a spin-mixing phase (ϑ �= 0), and the blue term
only if there is also a finite misalignment αY �= 0 in addition to that. This finding is in
line with our introductory discussion regarding the creation of triplet correlations at such
interfaces.

The denominator DR enters all outgoing-coherence functions and plays an important role
in the following. We plot 1/|DR| for two parameter sets in Fig. 5.2. The maximum of
this function imprints itself both in the density of states and in the Andreev reflection
amplitude. For perfect reflection, i.e. r↑ = r↓ = 1, the maximum becomes a pole whose
position is given by [46, 53]:

εpole = ±Δcos(ϑ/2), (5.6)

but as the transmission increases the maximum remains at εmax = Δ and just decreases
in magnitude before it starts to move to smaller energies. The same happens at the final
position εmax = 0, where the maximum then increases in magnitude with growing ϑ.

Now, how do we see that the validity of the Pauli principle is maintained, i.e., that the
triplet contributions are indeed odd in frequency? For real frequencies, the symmetry
implied by the Pauli principle connects advanced and retarded amplitudes:

f̂A(ε,pF) = −
[
f̂R(−ε,−pF)

]T
. (5.7)

This can easily be inferred from the definition of these amplitudes in terms of field-
operators [102], or, alternatively, from the basic symmetry relations that hold for the
coherence functions:

γ̂A(ε,pF) =
[
ˆ̃γR(ε,pF)

]†
=
[
γ̂R(−ε,−pF)

]T
. (5.8)

From the last equation, we directly infer γA(ε) = −γR(−ε), since iσ̂Ty = −iσy and the

bulk-coherence function is independent of momentum. Moreover, SA
11 = [SR

11]
†. Thus,

fA1 (pF,z > 0, ε > 0) is obtained from the expression for fR1 (pF,z < 0, ε < 0) by replacing
ϑ �→ −ϑ and (γ, γ̃) �→ (−γ,−γ̃) and multiplying the resulting expression with −1. This
implies (−1)3 = −1 for the triplet terms, since these are odd functions of ϑ and (−1)2 =
1 for the singlet-terms. The third minus-sign for the singlet term is generated by the
transposition in equation (5.7) and together with the minus-sign in that relation we find
the symmetry to be fulfilled. In other words, the sign change for the triplet component
was provided by ϑ �→ −ϑ; so, as momentum is irrelevant in all of the above expressions,
being an odd-function of ϑ can be identified with being odd in frequency in this context.
ϑ is a scattering phase originating from the presence of an exchange field. It is hence
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Figure 5.3. – The singlet (green) and ↑↑-triplet (blue) component of fR1 (pF,z < 0) for a
single trajectory with r↑ = 0.9, r↓ = 0.95, αY = 0.5π and ϑ = 0.5π. ξ = �vF1/Δ. −z is the
distance to the interface.

not surprising that it breaks time-reversal symmetry, i.e., changes sign for the advanced
scattering matrix.

To see how these components decay into the superconductor, we need to consider the solu-
tion of the Riccati-equation for Γ̂R

1 . Neglecting the self-consistency of the order parameter,
we assume Δ̂ = const and may use the analytic solution for homogenous self-energies [37]:

γ̂R(s) =

⎡
⎣γ̂h + eisΩ̂ · [γ̂0 − γ̂h] ·

(
e−isΩ̂ +

ˆ̃Δ

Ω̂
· i sin(sΩ̂) · [γ̂0 − γ̂h]

)−1⎤⎦
R

. (5.9)

Here Ω̂ = ε1̂ − γ̂h
ˆ̃Δa, γ̂h is the homogeneous bulk solution inside the SC and γ̂0 = Γ̂1.

ρ parameterises the trajectory (R = svF,1 + R0) [37]. As can be seen from the plots in

Fig. 5.3, the triplet components of Γ̂1 decay only for energies smaller than the gap if real
frequencies are considered. This is a consequence of the fact that we do zero-temperature
calculations in the clean limit, which implies that there is basically no source of decoherence
in our calculation. Note also that the singlet component shows an oscillating behaviour
above the gap-energy. The simplest way to convince oneself that the triplet correlations
decay globally is to consider Matsubara-Green’s functions instead, i.e. finite temperatures.
For our purpose, it is sufficient to replace ε �→ iεn, with εn > 0, to achieve this. It is then

immediately obvious that the eiρΩ̂-term becomes a decaying exponential. Thus, the second
term on the right-hand side of equation (5.9) is suppressed and only the bulk solution,
which is a singlet, remains.

Finally, we plot the spin-resolved density of states on the superconducting side of the
contact in Fig. 5.4. In this case, the Fermi-surface average reduces to:

〈gR(ε,pF)〉 =
1

2

[
gR(ε, pF,z > 0) + gR(ε, pF,z < 0)

]
. (5.10)

We see that the bound states are fully polarised, i.e. the bound state at positive energy
appears only in the spin-up DOS and the bound state at negative energy only in the spin-
down DOS. The bound states decay on the scale of the superconducting coherence length
ξ = �vF1/Δ and are thus localised at the interface.

aNote that this is proportional to the unit matrix.
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Figure 5.4. – Spin-resolved density of states on the superconducting side of the interface for
a single trajectory with r↑ = 0.9, r↓ = 0.95, αY = 0.5π and ϑ = 0.5π. ξ = �vF1/Δ. −z is the
distance from the interface.

Andreev amplitudes

In chapter 3, we argued that the current contributions of Andreev reflection are given by
ΓR
2 x2Γ̃

A
2 and ΓR

2←3x3Γ̃
A
3→2 for band 2, and ΓR

3 x3Γ̃
A
3 and ΓR

3←2x2Γ̃
A
2→3 for band 3. Since

Γ̃A
η = [ΓR

η ]
† and Γ̃A

2,3→3,2 = [ΓR
3,2←2,3]

†, |ΓR
η |2 can be interpreted as the amplitude of spin-

flip Andreev reflection in the respective band, and |ΓR
2→3|2 and |ΓR

3→2|2 as the amplitude
of normal Andreev reflection in band 2 or 3, respectively. The analytical expressions for
these amplitudes in terms of the parameters defined above are [53]:a

ΓR
η =

[
Tη1N̂iσ̂yT

∗
1η

D

]R
ΓR
2←3 =

[
T21N̂iσ̂yT

∗
13

D

]R
, ΓR

3←2 =

[
T31N̂iσ̂yT

∗
12

D

]R
(5.11)

N̂ =γ(1 + γγ̃
[
e−iϑσ̂z(ρ+ ρs)− ρs + 2σ̂yρ̂ sin(ϑ/2)

]
). (5.12)

These expressions are quite cumbersome, we limit the discussion to the tunnelling limit,
where r↑ ≈ r↓ ≈ 1 and hence the off-diagonal elements of S11 vanish. In that case, we
have [53]:

ΓR
η =

[
2i tηt

′
ηγ

sinϑη − sin(ϑ− ϑη)γγ̃

1 + (γγ̃)2 + 2 cos(ϑ)γγ̃

]R
(5.13)

ΓR
2←3 =

[
γ

τ + τϑγγ̃

1 + (γγ̃)2 + 2 cos(ϑ)γγ̃

]R
= ΓR

3←2, (5.14)

with

τR = t2t3e
iϑ23 − t′2t

′
3e
−iϑ23 , τRϑ = t2t3e

i(ϑ23−ϑ) − t′2t
′
3e
−i(ϑ23−ϑ), ϑ23 = (ϑ2 + ϑ3)/2.

We observe that both α �= 0 and either ϑη �= 0 or ϑ �= 0 are required for ΓR
η to be finite,

which again confirms our arguments in regard to the triplet proximity effect. No such
requirements apply to ΓR

2←3.

Note that the expressions shown here have the same denominator, DR, as those of the
previous section. The Andreev amplitudes will hence be enhanced at energies where 1/|DR|
aNote that there is a typo in the equation for N̂ in Ref. [53].
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5.2. Conductance Spectra

has a maximum. This maximum thus imprints itself both in the density of states at the
interface, where it gives rise to an interface bound state inside the energy gap, and in
the Andreev-amplitudes, which implies an enhanced current contribution from Andreev
reflection [46, 142]. Since the interface bound states are localised, they do not facilitate
quasiparticle tunnelling in this single-contact geometry. However, quasiparticle tunnelling
through these states turned out be crucial for understanding the non-local conductance
signal in FM/SC/FM-heterostructures, where the FM-contacts are separated by a distance
comparable to or smaller than the coherence length [88].

For half metallic trajectories, there is only ΓR
2 and the corresponding expression can be

inferred from the one given above, but the S-matrix becomes a bit simpler in this case
[37, 53]:

ΓR
2 =

−iTαt2(1 + r)γR(1− γRγ̃R)

1 + γRγ̃R[2r cosϑ− T 2
α t

4] + (γRγ̃R)2r2
(5.15)

with Tα = sin(ϑ/2) sin(αY )/(1 + r). r = r↑, t =
√
1− r2 (r↓ = 1), and ϑ2 = ϑ/2 hold

in comparison to the formula for the FM-trajectories. Quite importantly, (1 − γRγ̃R)
enters the nominator here. At ε = 0, we have γR(ε = 0) = i and γ̃R(ε = 0) = −i and
hence (1 − γRγ̃R) = 0. Thus, the Andreev amplitude for spin-flip AR vanishes at zero
energy and so does the conductance if the material is a half metal [53, 81].a This is an
important difference compared to the normal Andreev reflection contribution and may
allow experimentalists to pin down whether spin-flip Andreev reflection is responsible for
the conductance signal at sub-gap energies. We shall discuss this idea in more detail later
on, when we turn to the analysis of CrO2 conductance spectra. Note also that the spin-
flip AR amplitude for FM-trajectories does not necessarily have this property, the crucial
point being the relation ϑ2 = ϑ/2. This equation is directly imposed by the unitarity of the
3×3 S-matrix and thus an ubiquitous property of half metallic trajectories. This was also
noted before by Béri et al. [12], who carried out a BdG-calculation of a superconductor-half
metal contact.

We will not state analytical expressions for the current here, as they would be quite
cumbersome for the FM trajectories and, as a consequence of that, not very instructive.
An analytical formula for the HM contribution is provided in Refs. [81, 37].

5.2. Conductance Spectra

In the following, we discuss results for the conductance spectra of SC/FM point-contacts
based on the models introduced in chapters 3 and 4. We start with the box-potential
model and compare the current contributions of quasiparticle tunnelling, normal Andreev
reflection and spin-flip Andreev reflection. We address the implications of spin-flip scat-
tering at the contact and the influence of the spin-mixing effect. The latter gives rise
to anomalies in the Andreev spectrum that can be interpreted as imprints of the bound
states induced at the interface [142, 53]. As anticipated earlier, we show that they can
generically not be observed at finite temperatures if a box-potential is assumed, but may
move to low enough energies if the potential is smooth.

The general expressions for the current were stated in chapter 3 (equation (3.13)). The
conductance is obtained by taking the derivative with respect to the bias voltage V . The
voltage enters only in the incoming distribution functions and the derivative can be taken
explicitly:

∂V xη =
e

2kBT
· 1

cosh2((ε+ eV )/2kBT )
, ∂V x̃η =

e

2kBT
· 1

cosh2((ε− eV )/2kBT )
. (5.16)

aTechnically, this is true in all but the special case where ϑ = π and αY = 0.5π [53].
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5. Conductance Spectra of Point-Contacts

Figure 5.5. – Total conductance (top row), conductance due to spin-flip AR (second row) and
conductance due to normal AR (bottom row) as a function of voltage and for six different inter-
layer thicknesses (left column: d = 0.1, 0.5, 1.0 λF/2π, right column: d = 2.0, 3.0, 5.0 λF/2π).
Gn is the normal state conductance of the contact. The other parameters are VI = 1.5 EF,
VFM = 0.5 EF, J = 0.8 EF and α = 0.5π. T = 0. Figure from Ref. [53] with slight modifica-
tions.

In the T → 0 limit, these expressions reduce to 2eδ(ε ± eV ), and broaden for higher
temperatures. We thus obtain the conductance spectra at finite temperatures by simply
convoluting the zero-temperature spectra with the respective derivative stated above. The
conductance contributions of normal Andreev reflection and spin-flip Andreev reflection
can be defined as [53]:

GAR,2

2
= ∂V

eNF2

2

∫
ε
dε 〈ΓR

2←3x̃3Γ̃
A
3→2〉2+, (5.17)

GSAR,2

2
= ∂V

eNF2

2

∫
ε
dε 〈ΓR

2 x̃2Γ̃
A
2 〉2+,

for band 2. The expressions for band 3 are simply obtained by replacing 2 ↔ 3. The
factor 1/2 on the left-hand side of these equations is included because the terms on the
right-hand side account for only half of the current due to the respective Andreev reflection
process, as discussed in chapter 3.

In Fig. 5.5, we plot the conductance for exactly the same parameter set that we used in
the discussion of the box-potential in the previous chapter. The spin-polarisation of the
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5.2. Conductance Spectra

Figure 5.6. – The total conductance for different values of the exchange field J = 0.1(black),
0.3(red), 0.5(blue), and 0.8(green) EF, and for (a) T = 0 and (b) T = 0.1 Tc. VI and VFM
increase also, so that E2 = VFM − J/2 = 0.1 EF and U+ = VI − J/2 = 1.1 EF stay constant.
α = 0.5π and d = 5.0 λF/2π. Figure from Ref. [53] with slight modifications.

FM, which we define as [53]:

P =
NF2 −NF3

NF2 +NF3
, (5.18)

is P = 0.5 in this case. For d = 0.1 λF, the conductance drops from its normal state
value to about 0.24 Gn below the gap and remains relatively constant. We also see that
the conductance below the gap-energy is entirely due to normal Andreev reflection. This
curve can be well understood from the usual BTK picture. The transmission of this contact
is relatively high, which is why the Andreev conductance hardly varies as a function of
energy. Still, due to scattering caused by wave vector mismatches and in particular the
finite spin-polarisation, the AR conductance is reduced from its perfect transmission value
of 2 Gn. Spin-flip Andreev reflection gives hardly any contribution in this case, since
spin-flip scattering is largely ineffective for such a thin interlayer. As the thickness of the
interlayer increases to d = 0.5, 1.0 λF, the conductance becomes enhanced close to the
gap-energy and is mostly carried by spin-flip Andreev reflection. The reason is that this
process is insensitive to the spin-polarisation of the FM, as opposed to the normal Andreev
process. In terms of energy dependence, spin-flip AR decays rapidly to zero for energies
smaller than the gap-energy. The AR contribution also shows a stronger variation but still
reaches a finite value at ε = 0.

As the interface thickness increases further, we see that signatures of Andreev bound states
emerge in the spectrum. Since the mixing angle is relatively small, these states are located
very close to the gap edge. The magnitude of the bound state signature decreases for even
thicker interlayers, as the probability for Andreev reflection is proportional to t4, while
quasiparticle tunnelling scales with t2. As expected from the analytical discussion, this
signature – which is due to the denominator D – appears in both spin-flip and normal AR.
The reason why it only appears for relative thick interfaces is that the spectral weight of
normal AR fills the tiny gap between the bound state signature and the SC gap edge for
thin interfaces. However, one also sees that both the contributions of spin-flip and normal
AR are peaked at the bound state energy rather than the gap energy for interfaces with
d ≥ 1.0 λF/2π.

We investigate the appearance of the bound state signature more closely in Fig. 5.6, where
we plot the conductance spectrum for a thick interface and different values of the exchange
field. The zero-temperature spectrum shows signs of the bound state close to the gap
edge. As the exchange field increases, the maximum of the state does indeed move to
lower energies, but is also rapidly suppressed. Consequently, the signature of this state is
completely washed out at T = 0.1 Tc already, as shown in the second plot. While ramping
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5. Conductance Spectra of Point-Contacts

Figure 5.7. – Total conductance at (a) T = 0 and (b) T = 0.1 Tc for a collinear (blue)
and misaligned (red) interface magnetisation. J = 0.89 EF, VF = 0.545 EF, VI = 1.545 EF,
d = 1.0 λF/2π. Figure from Ref. [53]. Copyright 2010 by the American Physical Society.

up the exchange field does increase the mixing angle and hence pushes the bound state
to lower energies, it also reduces the transmission, since the scattering potential of the
minority band increases in energy. It is exactly this dilemma that can be circumvented by
dropping the box-potential idealisation and considering a smoother scattering potential.

Lastly, we consider the case of a highly spin-polarised contact (P = 0.8) in Fig. 5.7, to show
that spin-flip scattering at the contact can have an important effect on the conductance
spectrum in such a case. Due to the high polarisation, the Andreev conductance is almost
completely suppressed if the interface magnetisation is collinear with that of the FM bulk.
This is in agreement with standard BTK-theory, the minority band is almost depleted and
normal Andreev reflection cannot occur. However, if the interface is misaligned, which
implies the presence of spin-flip scattering, we find a finite conductance below the gap-
energy which shows the typical energy dependence of spin-flip AR. The latter is not affected
by the high polarisation and thus, its presence or absence can make a big difference in this
scenario. As shown in Fig. 5.7b, this is also true for finite temperatures. The conclusion
one may draw from this is that spin-active scattering can modify the spectra a lot and may
therefore obscure polarisation values obtained by fitting them to the extended BTK-model.

We now turn to the smooth potential model. The scattering potentials we consider are
exactly the same as those shown in Fig. 4.7 and we present the resulting conductance
spectra in Fig. 5.8. The last curve shows the box-potential case, we clearly see that the
junction is in the tunnelling limit (t2 < 0.01 in all cases). We see the same relatively
small bound state signature close to the gap edge that we observed in the box-potential
analysis. As the smoothness of the interface increases, the states move to lower energies
and are enhanced. For even broader interlayers, the bound states broaden in energy
and decrease in height. The dispersion of the bound states is related to the Fermi-surface
geometry and the k||-dependence of the mixing-angle ϑ. For a given trajectory, the formula
εpole = Δcos(ϑ/2) is a good approximation for the bound state position, but ϑ sweeps over
the whole range between its maximum value and zero as a function of k||. This implies
a broadening of the state caused by the Fermi-surface average. The energy-profile of
these states also depends on the respective transmission values. Since the transmission is
maximal for perpendicular impact, and so is the mixing angle, the maximum of the bound
state should give a good estimate of the maximal mixing angle.

We also see that the bound state signatures may now survive at finite temperatures and
should hence be observable in experiments, provided that interlayers with such properties
can be engineered. While we are well aware that experimental techniques are far from
providing perfect control over interface properties, we still believe that the model we
considered here is not artificial and that insulating contact barriers that boost the spin-
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Figure 5.8. – Total conductance for the smooth potential model, T = 0 (top) and T = 0.1 Tc
(bottom). Figure from Ref. [53]. Copyright 2010 by the American Physical Society.

mixing effect sufficiently may even form spontaneously. This view is also supported by
recent findings of Hübler et al. [61]. They estimate a mixing angle close to π from the
bound state positions in their Al/Fe spectra, but it should be noted that the signature of
these states in the AR spectrum is very weak.

When comparing our theoretical results to experimental data in the final section of this
chapter, we shall also see that the mixing effect – even if it does not lead to the emergence
of bound state signatures – may still be of importance for the understanding of currently
available data.

5.3. Relation to the Extended BTK-Model

The extended BTK-model was shortly introduced in chapter 1. In this section, we will
demonstrate that this model is contained as a limiting case in our formalism and that we
obtain exactly the same expressions for the conductance if an appropriate choice is made
for the scattering matrix. The reason for this is probably that approximations are made
in the derivation of the BTK-formulas from BdG wave function matching [15] which are
in a sense equivalent to the quasiclassical approximation.a

aSpecifically, the wave vector solutions k± and q± are replaced by kF in some places, which is justified if
EF � Δ. See Ref. [15], p. 4531.
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Recall that in the extended BTK-model the conductance of the point contact is given by
[119]:

G(V ) = (1− PC)GBTK(V ) + PCGH(V ), (5.19)

with

PC =
NF↑vF↑ −NF↓vF↓
NF↑vF↑ +NF↓vF↓

. (5.20)

Note the difference between PC , called the transport spin-polarisation, and the bulk-
polarisation P introduced in the previous chapter. Thus, the conductance is a weighted
average of two contributions, GBTK and GH , and the weight factor is PC . GBTK is the
standard conductance formula of BTK-theory, while GH is due to the contribution of half-
metallic trajectories. The first formula used for this contribution, proposed by Soulen et
al. [119], was simply obtained from the BTK formula by putting the Andreev reflection
amplitude to zero and renormalising all other transport amplitudes so that current con-
servation is maintained. Obviously, this was not a rigorous calculation, and we shall hence
compare your theory to later work of Mazin et al. [83], who obtained an expression for
GH on the basis of wave function matching in the BdG framework.

Apart from PC , the usual barrier parameter Z enters as a second free parameter in GBTK

and GH . Moreover, the mismatch parameter K = κ/k between the wave vector k of
the superconductor and the imaginary wave vector iκ of the evanescent mode in the FM
enters GH [83]. To make this very clear, we are dealing with a model based on the following
assumptions [53]:

1. We consider only three types of transport channels. The channels in the SC have
wave vector k, while in the FM we consider spin-degenerate channels (called ’non-
magnetic’ contribution [83]) with k2 = k3 = k and half-metallic channels with k2 = k
and k3 = iκ. Matching a SC channel with either a non-magnetic or a half metallic
channel gives the two conductance contributions introduced above.

2. The interface barrier is modelled by the same spin-degenerate δ-function for both
the non-magnetic and the half metallic matching problem.

3. The FS-average is taken by simply multiplying the individual contributions with their
respective total number of transport channels, which results in the weighting formula
for the total conductance. The number of transport channels for the ’non-magnetic’
trajectories is set by the minority band and is proportional to 2vF3NF3. The ’excess’
channels of the majority band, whose number is proportional to NF2vF2 − NF3vF3,
give the ’half metallic’ contribution.

These assumptions imply that the scattering matrix for the GBTK contribution is spin-
degenerate and does not contain any scattering phases or spin-flip elements. It is thus
described by a single parameter:

TN = t22 = t23 = 1/[1 + Z2] = 1−RN = 1− r21↑ = 1− r21↓. (5.21)

We hence established the scattering matrix, which is all we need to calculate the conduc-
tance. We obtain the following expression for the spectral current for the two FM bands
(η = 2, 3):

jε(ε, V,pη) = Xη − xη − ΓR
η x̃ηΓ̃

A
η (5.22)

=

[−TN · |N |2 − 2TNRN · Re[γ2N ∗] + T 2
NRN |γ|4

|N |2 x− T 2
N |γ|2
|N |2 x̃

]
Θ(pF3 − |p‖|).
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5.3. Relation to the Extended BTK-Model

where the Θ-function makes sure that this expression is used for the FM trajectories in
the FS-average. Furthermore, we have:

γ = − Δ

ε− i
√
Δ2 − ε2

, N = 1− γ2RN . (5.23)

The expressions for x and x̃ are stated in equation (3.9). Note that γ̃ = −γ if the order
parameter is real. If ε < Δ, we have |γ| = 1 and (5.22) reduces to [53]:

jε(ε, V,pη) = − TN
|N |2 [x+ x̃] Θ(pF3 − |p‖|), ε < Δ. (5.24)

For ε > Δ, γ and N are real, so we have:

jε(ε, V,pη) =

[−TN + TNRNγ
4

N 2
x− TNγ

2

N 2
x̃

]
Θ(pF3 − |p‖|), ε > Δ. (5.25)

The current density is given by [53]:

�j(V) = −
∑
η

eNFη

2

∫
ε
dε〈vηjε〉η+. (5.26)

In the next step, we carry out the FS-average explicitly [53]:

�j = − e

2

∫
ε
dε

[∫
vF2,z>0

d2p′F2
(2π�)3

vF2jε(pF2)

|vF2(p′F2)|
+

∫
vF3,z>0

d2p′F3
(2π�)3

vF3jε(pF3)

|vF3(p′F3)|

]
. (5.27)

Note that the functional dependence of jε on pFη is given by Θ(pF3−|p‖|), i.e. a constant
for p|| < pF3 and zero for p|| > pF3. Due to the rotational invariance in the x-y-plane, the
integrals hence reduce to calculating [53]:

Sη =

∫
vFη,z>0

d2p′Fη
vFη

|vFη(p′Fη)|
· ez ·Θ(pF3 − |p‖|), (5.28)

and it is easy to convince oneself that S3 is exactly the projection of the minority band
Fermi-surface onto the contact plane, while S2 is the projection of that part of the majority
band Fermi-surface which covers the minority FS. In other words S2 = S3, and this would
even hold if we dropped the spherical band approximation. We hence obtain for the total
current:

�j = jez = −evF3NF3

4

∫
ε
dε jε(ε, V)ez. (5.29)

The conductance is then given by:

Gquasi
N /GN,0 = A∂V j/GN,0 = TN , (5.30)

where A is the contact area. GN,0 ·TN is the normal state conductance of the non-magnetic
trajectories. Specifically, we have GN,0 = (2e2AvF3NF3)/4.

a This yields exactly the BTK-
formula [15], if ∂V x = 2eδ(ε + eV) and ∂V x̃ = 2eδ(ε − eV) is used, which corresponds to
T = 0. More precisely [53]:

GBTK = [e2A(vF2NF2 + vF3NF3)/4]TN , (5.31)

aCompared to the article of BTK, a factor 1/4 appears here. This is because BTK assumed that all
transport channels contribute with the same velocity to the current. Here, it is the projection of the
velocity onto the axis perpendicular to the contact plane.
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since the BTK-formula ignores that the transport channels are in fact not spin-degenerate.

With

(1− PC)GBTK =
2vF3NF3

NF2vF2 +NF3vF3
GBTK, (5.32)

it is then easy to see that [53]:

Gquasi
N = (1− PC)GBTK, (5.33)

which completes the prove.

We now turn to the half metallic or ’magnetic’ trajectories. Now, the situation is com-
plicated by the fact that we have a non-trivial wave vector mismatch k/iκ entering the
game. In accordance with the discussion presented in chapter 3, this implies the presence
of a spin-mixing angle from our perspective and perfect reflection in the minority band.
We hence have a scattering matrix which is characterised by r1↑ = reiϑ/2 and r1↓ = e−iϑ/2.
We simply state the result without repeating the above calculation [53]:

GH/GH,0 = TH =
4THβ

2(β2 + 1)− (β − 1)2TH − 2 cosϑ
√
1− TH(β2 − 1)

, eV > Δ, (5.34)

where β = eV/
√

eV2 −Δ2, TH = 1−r2 and GH,0 = e2A(NF2vF2−NF3vF3)/4. Since there
cannot be any Andreev reflection in this case, we have GH = 0 for eV < Δ. The above
equation is in agreement with the formula stated in Ref. [83] if

cosϑ = Z

√
1

1 + Z2

(
1− 2(K/Z − 1)

(K − 2Z)2 + 1

)
, (5.35)

with TH = 1/[1 + Z2], holds [53], where K is the defined as the ratio κ/k [83].a We find
exactly the same formula when we calculate the mixing angle from wave function matching
in the normal state, assuming a spin-degenerate δ-function potential [53]. With:

ΨSC
↑,↓ = 1eikz +B↑,↓e−ikz, ΨHM

↑ = C↑eikz, ΨHM
↓ = C↓e−κz, (5.36)

the matching conditions read:

ΨSC
↑,↓(z = 0) = ΨHM

↑,↓ (z = 0),
[
∂zΨ

SC
↑,↓ − ∂zΨ

HM
↑,↓
]
(z = 0)− VΨHM

↑,↓ (z = 0) = 0, (5.37)

from which one calculates r↑,↓. cosϑ is then obtained from:

cosϑ = Re

[
r↑r∗↓
|r↑r↓|

]
. (5.38)

Thus, the parameter K = κ/k appearing in the work of Mazin is related to our spin-mixing
angle by equation (5.35). Such an angle does generically not appear in BTK-theory, since
any kind of wave vector mismatch is absent in this model. For the half metallic trajectories,
however, such a mismatch is inevitable, even in the most simplified model.

This completes our prove. The Mazin formulas, widely used by experimentalists to fit
their data (see [135, 138, 95], for instance), are contained as a simple limiting case in our
formalism.

aUnfortunately, the general formula for GH printed in that paper is incorrect, as we know from personal
correspondence with I.I. Mazin [53].
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5.4. Experimental Results and Comparison

As pointed out in the introductory chapter, conductance spectra of point contacts have
become a popular experimental tool to determine the spin-polarisation of charge carriers in
ferromagnetic conductors. Since the spin – as opposed to the charge – of a carrier is usually
not conserved, this is a notoriously hard to measure quantity. Thus, the idea put forward
by de Jong and Beenakker [28], that the suppression of Andreev reflection induced by
the spin-polarisation of charge carriers may allow for inferring the spin-polarisation from
conductance spectra, was readily taken up [127, 119]. Creating a point contact by simply
pressing a superconducting STM tip into the sample is a rather straightforward technique,
and thus, a lot of these experiments were carried out – both on classical ferromagnets like
Ni, Co, Fe [119, 62], but also more exotic materials like CrO2 [138, 119, 135] and ferromag-
netic semiconductors [95, 50]. Complementary to that, point contacts were created and
investigated using more laborious techniques, i.e., growing contacts in layered structures
[97, 127].

The particular problem here is, however, that the spin-polarisation is not a directly mea-
sured quantity. What is measured is the Andreev spectrum, and the only way to obtain
an estimate for the polarisation from it is to fit it to some theoretical model. Even though
that is a nice idea, these spectra are highly sensitive to almost anything that may possibly
go on in the contact. It is therefore not surprising that theoretical studies questioning
the validity of the extended BTK-model appeared soon after the first experimental works
using this approach were published [136, 123]. These studies are based on ab initio calcula-
tions and show that the polarisation inferred from the BTK-model may differ largely from
the true bulk polarisation of the respective material. On the other hand, these ’ab initio’
calculations can also not reproduce the spectra without a number of ad-hoc assumptions
and are thus, in our opinion, not necessarily more conclusive than our scattering approach.
We shall discuss this in more detail at the end of this section.

As a final introductory comment, it should be noted that in comparing all these theoretical
and experimental investigations, one must pay attention to the particular definition of
’spin-polarisation’ used in the respective works. We introduced the bulk-polarisation P
and the transport polarisation PC already. The latter would be further modified in a
diffusive picture.a This is no fundamental problem, since, in any case, the polarisation is
obtained from a model and not directly measured – one may hence infer a value for any
of the above definitions from an appropriate model.

Spin-Polarisation of (Ga,Mn)As

Ferromagnetic semiconductors are considered an ideal source of spin-polarised charge car-
riers in electronic devices designed to exploit the spin rather than the charge of electrons
for information processing – an idea which was popularised under the name ’spintronics’
[134, 7]. Since our present electronic devices are based on semiconductor technology, ferro-
magnetic semiconductors, usually obtained by magnetic doping of known semiconducting
compounds, would be easy to integrate in these circuits [134]. (Ga,Mn)As is probably
the most prominent representative of the (III, Mn)V family of ferromagnetic semiconduc-
tors, with a Curie-temperature of up to TC = 185 K [94]. A lot of theoretical effort was
invested in understanding the origin of ferromagnetism and magnetotransport properties
of these materials, the general purpose being to push the Curie-temperature above the
room-temperature limit [63]. Increasing this temperature to ever higher values was mainly
due to improvements of non-equilibrium growth techniques [63](molecular beam epitaxy),
but whether the ultimate goal can be reached is unclear as of now.

aProvided the contact is sufficiently small, it should be in the ballistic limit.
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Apart from the ferromagnetic transition temperature, the degree of spin-polarisation which
can be attained is naturally also an important question to address. Mn does not only pro-
vide magnetic moments, but also acts as an acceptor, i.e. (Ga,Mn)As is a hole-doped
semiconductor. Samples reaching a very high TC are strongly doped and therefore heavily
disordered. Moreover, doping defects like interstitial and anti-site doping partly compen-
sate the hole-doping and it is therefore not clear a priori, how many charge carriers are
really provided at a given level of Mn doping. Further complications arise due to the
warping of the Fermi-surface and spin-orbit coupling. We are hence dealing with a very
complicated material.

A peculiar problem that arose in the context of point contact Andreev reflection (PCAR)
spectroscopy on these materials was that fits with the extended BTK-model required the
introduction of a ’effective temperature’ T ∗ in the contact, which is a lot higher than the
actual temperature in the sample and even higher than the superconducting transition
temperature in the tip [95, 98]. The reason is that the typical ’shoulder peaks’ at the gap
energy, that are present in any spectrum of a non-ideal contact, were completely absent in
this case. This can only be reconciled with BTK-theory if an additional (and very strong)
smearing of the spectrum is included. The simplest way to do this is to attribute it to
temperature smearing.a In fact, it was argued before that this procedure could be justified
as a heuristic model for inelastic scattering [95].b Yet, assuming a T ∗ which is more than
five times as high as the measured temperature in the sample [98], which was indeed
necessary, is highly unsatisfactory. At this point, it occurred to us that the spin-mixing
effect provides a shift of spectral weight from the gap edge to energies inside the gap and
that although it may not be possible to observe the bound states at finite temperatures,
this may provide an explanation for the absence of peaks at the gap edge and allow for
fitting the spectra with the real temperature. This turned out to work if, in addition to
the spin-mixing effect, an average over different transport channels and the presence of a
series resistance in the setup were taken into account.

We shall discuss these results in the following.c We model three data sets obtained from
pressing a superconducting Nb-tip into the same (Ga,Mn)As sample at different points.
Since we were not directly involved in the experiment, we quote the original article for its
description: ”We have investigated 7% Mn-doped, 25-nm-thick (Ga,Mn)As samples. They
are grown on a 400-nm-thick, highly carbon-doped (≈ 1019cm−3) buffer layer to minimize
series resistance. The Curie temperature TC is ≈ 70 K for the as-grown sample and
≈ 140 K after 24 hours of annealing at 190 ◦C. The details of the sample growth and
preparation are described elsewhere [19]. The experiments were carried out by means of
a variable temperature (1.5 – 300 K) cryostat. Sample and Nb tip (chemically etched)
were introduced into the PCAR probe, in which a piezo motor and scan tube can vary the
distance between tip and sample. The PCAR junctions were formed by pushing the Nb tip
on the (Ga,Mn)As surface with the probe thermalized in 4He gas. The current-voltage I
versus V characteristics were measured by using a conventional four-probe method, and by
using a small ac modulation of the current, a lock-in technique was used to measure the
differential conductance dI/dV versus V .”, S. Piano et al., PRB 83, 081305(R)-2 (2011).

Specifically, we made the following model assumption to fit this data with our theory, that
we shall call the ’spin-active’ model here [98]:

aWhich enters through the convolution of the T = 0-spectrum with the 1/ cosh2[(ε− eV )/2kBT ] factor.
bThis article of Panguluri et al. cites the classical paper of Dynes [32] as a justification for this effective

temperature. However, the renowned ΓDynes parameter added as an imaginary part to the energy is
not equivalent to assuming T ∗ �= T .

cConcerning the author’s contribution to the work discussed in this section: The data was taken by S.
Piano, fits with the BTK-model were done by S. Piano, modelling and fitting with the spin-active model
was done by the author. Kane-model calculations were done by K. Výborný. The figures shown were
prepared by S. Piano.
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• We assume three isotropic bands, one in the superconductor, characterised by its
Fermi wave vector kSC, and a single pair of majority/minority-bands in the ferromag-
net, characterised by the Fermi wave vectors k↑,↓. Since the FM is a semiconductor,
the FM-bands are assumed to be smaller than that of the SC. The transmission and
reflection parameters for a given k|| are then calculated from wave function matching
on this basis, i.e., we average over an ensemble of transmission values and naturally
we have t↑ �= t↓. The bulk-DOS of the respective bands is assumed to be proportional
to the Fermi wave vector, which is in line with the spherical band approximation.

• The spin-mixing effect is introduced ad-hoc, i.e., we assume a mixing angle ϑ to be
present, although it is not automatically implied by the above matching problem. It
can be assumed to arise from the presence of magnetic moments in the contact. The
trajectory dependence of the mixing-angle is ϑ(k||) = ϑ·

√
(1−k2||/k2SC), which models

the decay of the mixing angle with increasing impact angle. Yet, this dependence
turned out to have little influence on the result, since trajectories with perpendicular
impact are most relevant, i.e., assuming ϑ(k||) = const. instead did not make a big
difference.

• Finally, a series resistance Rs was assumed, which renormalised both the normalised
conductance and the voltage scale. This renormalisation was taken into account with
a simple Kirchhoff’s rule calculation:

V = (1 + α
Gc

Gcn
) · Vc,

G

Gn
(V ) =

[(1 + α) · (Gc/Gcn)

1 + α(Gc/Gcn)

]
(Vc). (5.39)

Here, Gc/Gcn is the normalised conductance of the contact and Vc the voltage
that drops across the contact. The normalised conductance G/Gn and voltage V
measured in the experiment are renormalised by the series resistance, which enters
through the parameter α = Rs/Rc, where Rc is the contact resistance in the normal
state.

Moreover, the value of the superconducting gap was fitted to the spectrum while the
temperature was taken from experiment. This is reasonable, since a suppression of the bulk
gap can be assumed to occur in a magnetic point contact due to the inverse proximity effect
and the small size of the tip. This brings us to a total of 5 fit parameters, k↑, k↓, ϑ, Rs,Δ,
while the BTK-model uses 4: T ∗,Δ, Z, PC .

The results for the lowest temperatures reached in the respective experiment are shown in
Fig. 5.9. Fig. 5.9a shows the BTK-fit to the first data set, the corresponding spin-active
fit is shown in Fig. 5.9b. T ∗ equals 10.95 K and is hence almost six times larger than the
actual temperature in the sample and even higher than the bulk transition temperature of
Nb (about 9.2 K). The PC value inferred from the BTK fit is 0.9, pointing to a very high
degree of spin-polarisation. This is not surprising, since the extreme smearing implied by
this value of T ∗ requires a high PC in order to obtain a sizeable dip of the conductance at
energies below the gap. Increasing Z, on the other hand, would not only enhance the dip
but also the peaks at the gap edge, which are completely absent.

Another reason why assuming an effective temperature works so well is the blown up
voltage scale. From the data, one would assume that the superconducting gap was about
4 meV, but the bulk gap of Nb is only 1.5 meV, approximately. If one wishes to fit this
data with the real temperature, there are basically two ways of addressing this voltage-
scale problem. (a), one sticks with the non-thermal smearing of the DOS, but models it
with a non-thermal broadening parameter in the standard way ε �→ ε+ iΓ [32] instead of
an effective temperature, or (b), one takes into account a series resistance, which leads to
a modification of the voltage scale. We settle for option (b) in our model, but the truth
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is probably a compromise between the two. An issue here is that the spectral properties
which matter are those of the superconductor and the broadening would hence have to
happen in the Nb tip.a Yet, this problem is absent or at least a lot less pronounced in other
PCAR studies of ferromagnetic point contacts and thus more likely to be a feature related
to (Ga,Mn)As. One may assume that the conductivity of this semiconductor sample is
poor compared to a ferromagnetic metal, and consequently, a significant series resistance
may indeed be present. However, there is apparently no experimental way of estimating
it independently.

Figure 5.9. – Data sets of three Nb-contacts on the same (Ga,Mn)As sample. (a) and (b)
show the same data set and fits with the BTK (a) and the spin-active model (b), respectively.
(c) and (d) show two further data sets fitted with the spin-active model. Fit-parameters are
stated in the respective figure. Figure from Ref. [98] with slight modifications. Copyright 2011
by the American Physical Society.

Not surprisingly, we find an elevated ratio Rs/Rc ≥ 1.4 for all three data sets. In the
CrO2 fits that we discuss in the next section, this value is significantly smaller. The
fitted values for k↑,↓ vary little for the three data sets. In fact, we keep k↑ constant for
all three fits. Since these are parameters supposed to characterise bulk-properties of the
sample, this seems to be a very reasonable result. Accordingly, the value we infer for the
spin-polarisation PC , which we calculate from:

PC =
k2↑ − k2↓
k2↑ + k2↓

, (5.40)

in agreement with the spherical band approximation,b also remains relatively constant at
about PC ≈ 0.57, and is hence a lot smaller than the value inferred from BTK-fitting.
The spin-mixing angle and the SC gap also vary little, but the suppression of the latter is
significant. In any case, the quality of the fits is as good as that of the BTK-fit.

aRecall that the dependence on energy is entirely due to the coherence functions in the SC.
bThis also requires the effective mass to be the same in both bands.
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Figure 5.10. – Temperature dependence of the conductance spectrum for the sample shown
in Fig. 5.9a,b. The inset shows the fitted gap values for all three samples. Figure from Ref. [98]
with slight modifications. Copyright 2011 by the American Physical Society.

We are also able model the temperature dependence of the spectra by changing the value
of Δ only, which is also the only parameter that should vary with temperature. This is
illustrated in Fig. 5.10 for the contact of Fig. 5.9a,b. The inset shows how our fitted gap
values for all three contacts compare to the BCS-relation. Note, however, that both Δ
and T are normalised independently in this figure and thus, there is an additional fudge
parameter which fixes the ratio between Δ(0) and Tc. This parameter is significantly
smaller than the theoretical strong-coupling BCS-ratio for Nb (2Δ/kBTc ≈ 3.95), we find
2Δ/kBTc ≈ 3.3± 0.3 [98]. This is an expression of the gap suppression in the contact.

Complementary to our efforts of modelling this data, theorists from Prague carried out
calculations of the bulk-electronic structure with a six-band Kane-model, treating mag-
netism in a mean-field approach with an exchange coupling between localised Mn-moments
and the itinerant charge carriers [1]. The strong warping and spin-orbit coupling require
a different definition of the transport spin-polarisation [98]:

PC =
∑
i

〈szv〉i + 〈szv〉i
〈v〉i + 〈v〉i

. (5.41)

Here, vi(k) is the Fermi-velocity (1/�)|∇kεk,i| of band i, and 〈f〉i =
∫
d3kf(k)δ(EF− εk,i)

the respective FS-average. The operator sz projects the spin-quantisation axis �s(k) at
a given k-point on its z-component. PC was calculated by averaging over all six-bands
appearing in the Kane-model, although the pair of heavy-hole bands should predominantly
contribute to transport. For further details on this model, we refer to [1, 98]. PC is found
to be of the order PC ≈ 0.35 from this calculation, which is considerably lower than the
estimate we inferred from the spin-active model, but even further away from the BTK-
result (PC = 0.9). An important deficiency of this model is that it completely neglects the
effects of strong disorder in highly doped (Ga,Mn)As. The discrepancy with our model
is not really surprising, since we did not take into account the anisotropy of the Fermi-
surface. On the other hand, it also not clear how much that really matters as long as the
influence of disorder has not been elucidated.
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In this sense, our results have to be taken with a grain of salt, but we were still able to
show that there are likely more reasonable explanations for the particular shape of PCAR
spectra in (Ga,Mn)As – which was not only observed in this experiment, but also by
Panguluri et al. [95] – than an effective temperature, and that this may be related to the
spin-mixing effect.

Half metallicity of CrO2

A second comparison to experimental results that we wish to discuss here is related to
CrO2, being one of the few half metallic materials around [23, 66] and the first material
through which a triplet supercurrent was observed [67]. There is also a vast literature
on PCAR spectra probing this material (see Ref. [81] and references therein). The data
published in these articles was fitted with some version of the extended BTK-model, which
turned out to give a large spread of the estimated PC values. To make these value com-
parable, T. Löfwander carried out a reanalysis of all this data, using the formulas of
Mazin et al., that we discussed in the previous section [81].a He used four fit parameters
(PC , Z,Rs,Δ) and obtained a spread of PC ranging from 0.54 to 1.0. This is highly un-
satisfactory, since both theoretical [66] and experimental work using the Meservey-Tedrow
technique point to the half-metallicity of CrO2 [96].

As shown in Ref. [81], this contradiction can be overcome if spin-active scattering at the
interface is taken into account. Specifically, the full polarisation (P = 1.0) was assumed
from the outset, which implies that only the half metallic contribution to the current
exists. The fitting formula was obtained from the theory described in chapter 3 and
4, an analytical expression is stated in Ref. [37]. Here, we simply formulate the model
assumptions in terms of the relevant scattering matrix, which we presented in equation
(4.3):

• There is a single transmission parameter t, which can be expressed in terms of
the usual BTK barrier parameter Z as t2 = 1/[1 + Z2] = 1 − r2. The functional
dependence t(k||) is consistent with the one inferred from wave function matching
in the presence of a δ-function potential, i.e., the Z parameter stated in Ref. [81] is
Z(k|| = 0).

• The misalignment angle αY
b is kept constant at π/2, but the conclusions drawn from

this model do not change for αY > 0.3π [81].

• The spin-mixing angle ϑ is assumed to vary with k|| as ϑ(0)·(1−k2||/k2F), in agreement
with the functional dependence inferred from a δ-function potential.

• A spread-resistance Rs is taken into account in exactly the same way as in our
(Ga,Mn)As model.

Most importantly, the gap was not fitted in this case, which implies that only three param-
eters (Z, ϑ(0), Rs) were used for the spin-active fits here. In general, the spin-active fits are
fully competitive in quality with the BTK fits, notwithstanding the full spin-polarisation
which is assumed [81]. This can be considered the most important result of this work. If
the gap is kept fixed at its bulk value, the BTK fits become considerably worse for the
majority of the data sets.

To get to the bottom of this, we proposed that investigating the zero-bias conductance of
these contacts at even lower temperatures may provide a univocal indication as to which
of these two pictures is correct [53, 81]. The reason being that if the polarisation is finite,

aThe calculations done in this work are entirely due to T. Löfwander.
bCalled α in the original article. But in the context of this thesis it corresponds to the angle αY introduced

in chapter 4.
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the zero-bias conductance due to normal Andreev reflection will level out at some constant
value, which is basically determined by the transparency of the interface and the degree of
spin-polarisation. On the other hand, spin-flip Andreev reflection has always zero spectral
weight at zero energy, and does therefore not contribute to the zero-bias conductance if
temperature smearing is absent. Recent results obtained by a group at Imperial College,a

measuring the zero-bias conductance as a function of temperature, seem to further support
the spin-active model in this respect.

Comparing this work to our (Ga,Mn)As results, we have to admit that the story is more
sound in the CrO2 case – there are less fit parameters, and in particular, there is no need
to fit the gap. The spread-resistance is also substantially smaller (Rs/Rn < 0.2 in all
cases). On the other hand, the CrO2 spectra are also more ’regular’, in the sense that the
gap edge is well defined, which is absolutely not the case for the (Ga,Mn)As data.

5.5. Other Theoretical Approaches

As already noted in the previous section, there is a second ’branch’ of theoretical effort to
do better than BTK-theory, based on ab initio calculations. For definiteness, we refer to
the work of F. Taddei et al. [123] in the following, in which the differential conductance of
a Co/Pb-contact is calculated from a tight-binding model whose material specific parame-
ters were fitted to the DFT band structure of the respective materials. The authors claim
on these grounds that polarisation values inferred from the BTK-model are highly ques-
tionable. The interface is modelled by a transfer-Hamiltonian whose hopping-elements are
chosen to be the mean square of the bulk-elements.b This is an ad-hoc choice, ultimately
justified by the agreement with experimental data. The latter also requires the assumption
of ”enhanced magnetic moment” at the interface.

Using a realistic band structure is incontrovertibly an important improvement compared
to our model assumptions. However, the spherical band-approximation which we used is
not a result of fundamental limitations of quasiclassical theory in this respect, but only a
matter of convenience. Other than that, the calculation is as much in the clean limit as
the one presented here and maintains translational invariance in the x-y-plane, although it
is not clear from the article whether the conservation of parallel momentum was exploited
explicitly. The transfer-Hamiltonian required in this approach is replaced by a scattering
matrix in ours, and although the results were interpreted to provide an indication for
enhanced surface magnetisation, this is foremost another ad-hoc assumption required for
the agreement with experimental data.

To conclude, although using a material specific band structure is certainly important
for realistic modelling, the ab initio+tight-binding approach is not per se more general
than the quasiclassical scattering approach or wave function matching in BdG theory [78].
Addressing the issue of impurity scattering in these systems is likely more efficient within
quasiclassical theory, but performing tight-binding calculations with a huge computational
effort could shed light on the influence of interface disorder more easily. The problem here is
the breaking of translational invariance, which requires a three-dimensional discretisation
in real space.

aPrivate communication from K. A. Yates and L. F. Cohen.
bIn fact, the calculation done here uses exactly the same method that we shall describe and apply to

topological insulators in the second part of this thesis.
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In this chapter, we study the long range Josephson effect in ferromagnetic junctions carried
by Sz = ±1 triplet correlations. The experimental state of affairs has been reviewed in the
introduction and all modelling assumptions we make were introduced in the chapters on
point-contact spectra already. On the technical level, complications arise due to the fact
that we need to consider at least two interfaces now, as the ferromagnet is sandwiched
between superconducting electrodes. The problem is then no longer amenable to an an-
alytical solution in the general case – boundary conditions and propagations through the
FM interlayer have to be iterated self-consistently.

Previous work on the Josephson effect through half-metallic junctions with the same ap-
proach [40] were carried out in a so-called ’linearised’ approximation. This implies that the
proximity effect in the FM layer is weak – due to poor transparency of the interfaces, small
spin-mixing effect or both. In that case, an analytical solution of the Josephson problem
can be obtained, also in the more general ferromagnetic case [51, 52]. The hallmark of a
junction conforming to this limit is a current-phase relation (CPR) which only depends
on the first order Fourier-components in the order parameter phase difference Δχ:

J = Jc · sin(Δχ+ ϕ). (6.1)

In the standard case of a non-magnetic tunnelling barrier sandwiched between two super-
conductors ϕ = 0 holds, but this is not true here. This additional phase factor describes
the CPR of a half metallic junction in the linearised, or tunnelling, limit [40]. It is re-
lated to the relative misalignment between the quantisation axes of the two spin-active
interfaces.

We show here that such phases play a role that is comparable but not identical to that
of the order parameter phase difference Δχ. They lead to highly irregular current-phase
relations if the proximity effect is not weak and may even imply the presence of spin-
supercurrents in ferromagnetic layers that are coupled to a single superconductor. We
perform a systematic analysis of the CPR by means of a Fourier-analysis and identify
two principal contributions to the Josephson current. In terms of novel physics, this is
certainly the main result of this chapter.

We also investigate the critical current and the temperature anomaly predicted for half
metallic junctions [40] in the ferromagnetic case. Due to the competition between the
enhancement of singlet-triplet conversions by larger exchange fields on the one hand, and
the elimination of the minority band for high spin-polarisations on the other hand, we
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6. Long Range Triplet Supercurrents

Figure 6.1. – Multilayer structures considered here and notation. Superconducting parts are
blue, ferromagnetic parts red. Yellow regions indicate interfaces or surfaces. Purple regions
indicate domain boundaries. The single domain Josephson junction is shown in the upper-left
figure. The upper-right figure shows a bilayer terminated by a spin-active surface. The bottom
figures show junctions with two or three domains, respectively. Channel labels are indicated.

find the critical current to be maximal when the polarisation takes intermediate values.
We show that the temperature anomaly is predominantly caused by half metallic tra-
jectories and thus suppressed if the spin-polarisation is weak or if the junction contains
anti-ferromagnetic domains. We also study the critical current as a function of junction
length and in the presence of domain structure.

Finally, we shortly comment on the proposal of inducing px ± ipy superconductivity by
means of an interface with Rashba spin-orbit coupling [22] and show that such states are
induced in both spin-bands with opposite chirality.

Before we discuss these results, the general numerical scheme that we employ is shortly
sketched in section 6.1 and the linearised equations, which are helpful for the interpretation
of results, are introduced in section 6.2.

6.1. Full Solutions

The multilayer structures we consider are shown in Fig. 6.1, we assume that the junctions
are grown in the z-direction and that they are translationally invariant in the x-y-plane. In
all cases, z = 0 is the position of the first interface. To determine the Riccati-amplitudes
inside these structures, we must solve the boundary conditions at interfaces and domain
boundaries and the transport equations in the ferromagnetic layers. A fully self-consistent
calculation also requires to calculate the coherence functions inside the SC-electrodes and
to determine the spatial profile of the SC-gap. We neglect the latter and assume that
the incoming coherence functions of the SCs are given by the homogenous bulk solutions.
Obviously, this is a rather complicated inhomogeneous problem, but at finite temperatures,
or in the presence of inelastic scattering, there is a well-controlled numerical scheme for
solving it, as we will show in the following.

We will only study equilibrium problems here and are exclusively interested in thermody-
namic quantities. Thus, we can employ the Matsubara technique. This implies that the
distribution functions are irrelevant and we only need to find the coherence functions.
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6.2. Linearised Solutions

The relevant solutions of the boundary conditions are discussed in the appendix, we already
discussed them in detail in chapter 3 for the point-contact geometry. This leaves us with
the solution of the transport equation.

We only consider the clean limit, where the Riccati equation inside the FM takes the
simple form:

2iεnγη + i�vFημ∂zγη = 0. (6.2)

Here, η ∈ 2, 3 is again the band index and μ = cos θ refers to the impact angle θ of the
quasiparticle trajectory with respect to the z-axis. The equation has a simple analytical
solution:

γη(z
′) = βη(z

′ − z) · γη(z), βη(z) = exp

(
− 2εn
�vFημ

· z
)
. (6.3)

Obviously, βη can be understood as a propagation-factor that is simply multiplied with
the initial value of γ at an interface or surface to obtain the incoming value at the next
interface or surface. There, the boundary conditions have to be solved and the next
propagation takes place. It is therefore obvious that the solutions can be assembled by
summing over all possible paths through the structure that contribute to the amplitude
of γ at a given point.a We also observe that βη is real and smaller than 1, i.e. the more
propagations a path contains, the stronger its contribution will be suppressed. One may
hence also adopt the standpoint that this sum over paths is an expansion of the solution
in powers of βη, in which higher order terms are exponentially suppressed. We hence
adopt an iterative scheme for calculating the coherence functions which is designed so that
after a given number n of iterations, all paths up to order n in βη are taken into account.
This is achieved by iterating the solutions of the boundary conditions and of the transport
equations along certain loops through the structure, details are provided in the appendix.
At T → 0 the modulus of the propagation factors approaches 1 for the lowest Matsubara-
frequency. I.e., the coherence functions do not decay inside the FM. In this case, inelastic
scattering must be taken into account to ensure convergence.b

In the presence of impurities, the Riccati-equation must be solved numerically and the
impurity self-energy has to be determined self-consistently. Other than that, the basic
scheme remains the same.

The equation from which we calculate the current inside the FM-layer can be simplified
to:

�jη(�R, t) = 4eNFηkBT
∑
εn>0

〈
�vFη(�pFη)Re

[
gMη
]〉

η+
, (6.4)

by exploiting the symmetry relations and the fact that the Green’s functions inside the FM
are spin-scalar. Again, 〈•〉η+ denotes an FS-average over trajectories whose momentum
projection on the z-axis is positive.

6.2. Linearised Solutions

If the proximity effect inside the FM-layer is weak, we can obtain analytical solutions for
the coherence functions in the clean limit. This situation is typically realised when the
transparency of the interfaces is small. The approximation consists in retaining only those

aThis is not to be confused with the summation-over-paths reasoning that applies to the diagrammatic
technique and the boundary conditions.

bThe same is true if real frequencies are considered.
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6. Long Range Triplet Supercurrents

Figure 6.2. – Paths contributing to the solutions of equation 6.6. The terms corresponding
to these paths are AI

2 (left) and ρI3β3ρ
II
32β2AI

2 (right).

terms which are maximally second order in t, where t is any of the transmission elements
of the S-matrix. This allows us to separate the solutions of the boundary conditions at
an SC-FM interface into a ’source-term’ part, which depends on the incoming coherence
function from the SC-side only, and a reflection part, which arises from reflections of
quasiparticles on the FM-side of the interface. The source-terms can easily be assembled
with the diagrammatic technique, by neglecting all paths which contain incoming coherence
functions from the FM-side:

Aη = Tη1γ1T̃1η +
∑
n

Tη1γ1R̃1(γ̃1R1γ1R̃1)
nγ̃1R1γ1T̃1η

= Tη1γ1T̃1η + Tη1γ1R̃1(1− γ̃1R1γ1R̃1)
−1γ̃1R1γ1T̃1η. (6.5)

These source-terms are identical to the solutions of the outgoing coherence functions for
the point-contact geometry that were discussed in chapter 5. Moreover, the reflection
amplitudes are given by the trivial paths rη2γ2r̃2η, and rη3γ3r̃3η. All other paths are
neglected in this approximation.

In combination with the propagation through the FM-layer, this yields the following set
of linear equations [51, 52]:

ΓI
2 = AI

2 + [|r2|2]Iβ2ΓII
2 + [r23r

∗
32]

Iβ3Γ
II
3 , ΓI

3 = AI
3 + [r32r

∗
23]

Iβ2Γ
II
2 + [|r3|2]Iβ3ΓII

3 , (6.6)

ΓII
2 = AII

2 + [|r2|2]IIβ2ΓI
2 + [r23r

∗
32]

IIβ3Γ
I
3, ΓII

3 = AII
3 + [r32r

∗
23]

IIβ2Γ
I
2 + [|r3|2]IIβ3ΓI

3,

for the outgoing amplitudes at interfaces I and II. These equations can be solved explicitly,
the solutions are stated in the appendix. However, these explicit solutions are not very
instructive. Again, more insight can be gained by understanding them as a sum over paths
through the structure. Such an interpretation is obvious. Each of the above equations
states that the outgoing coherence functions at a given interface are the sum of a source
term and contributions arising from outgoing coherence functions at the opposite interface
which propagate through the structure and undergo reflection. Thus, every such path
starts with a source-amplitude that propagates and reflects an arbitrary number of times.
Two such paths are illustrated in Fig. 6.2, the left path is the elementary contribution
to ΓI

2, i.e. simply the source term. The right path is a contribution to ΓI
3, arising from

the same source term. This reasoning will prove to be useful for understanding the exotic
current-phase relation that we discuss in the next section and the Josephson effect in
multi-domain junctions.

6.3. Current-Phase Relation

We first investigate the exotic current-phase relation of a SC/FM/SC Josephson junction
with a single ferromagnetic domain, depicted in Fig. 6.3. We shall see that a very important
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6.3. Current-Phase Relation

Figure 6.3. – Sketch of the single domain junction illustrating the orientation of quantisation
axes in the system. The relative misalignment between interface quantisation axes, Δϕ =
ϕII − ϕI, implies important modifications of the current-phase relation.
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Figure 6.4. – τ -parameters as defined in the text and spin-mixing angle ϑ as a function of
parallel momentum for the interface parameters stated in Fig. 6.5.

quantity in this regard is the relative misalignment of the interface quantisation axes,
given by Δϕ = ϕII − ϕI here. To avoid a large ’zoo of angles’, we assume that both
interface quantisation axes rotate in the x-y-plane, while that of the FM is aligned with
the z-axis. This implies that the second spherical angle characterising the misalignment
is α = 0.5π for both interfaces. In the tunnelling limit, the functional dependence of the
critical current on α is ∝ sin(αI) sin(αII), i.e., the critical current is maximal if the interface
quantisation axes are perpendicular to that of the bulk – which is what we assume. The
calculations done here are in the clean limit and for high-transparency junctions, since
we are mainly interested in higher harmonics contributions to the current-phase relation
(CPR). In Fig. 6.5, we consider a junction with a thin interface layer, a = 0.25 λF/2π.
We assume that the interfaces are exactly mirror symmetric, which implies that the ϕ-
angles are identical, i.e. Δϕ = ϕII − ϕI = 0. Moreover, we have chosen VI = 1.05 EF,
VFM = 0.3 EF and h = J = 0.2 EF. This implies that the interface layer is not fully
insulating but half metallic. This has some influence on the spin-mixing angle ϑ, which
we define here as ϑ = arg[(R1)11 · (R1)

∗
22] here. ϑ is plotted on the right-hand side of

Fig. 6.4, and is found to be negative for this choice of parameters. The sign of the angle
has no relevance for the Josephson effect, what is important, however, is that is enhanced
for larger values of k||. As can be seen from inspecting the solutions of the boundary

conditions for ΓR
2 and ΓR

3 , the ’injection’ of superconducting correlations from the SC to
the FM is proportional to τ2 = T21iσyT

∗
12 and τ3 = T31iσyT

∗
13, respectively. We plot these

quantities on the left-hand side of Fig. 6.4 as a function of parallel momentum and observe
that τ2 is enhanced for half metallic trajectories. The reason for this counterintuitive
enhancement at high-impact angles was discussed in chapter 4. It is important here, as it
helps to understand the different contributions to the supercurrent in the following. While
the absolute values of τ2,3 suggest that the junction is in the low transparency limit, we
still find a current-phase relation with substantial contributions from higher harmonics at
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Figure 6.5. – Current phase relation of a high transmission junction (a = 0.25 λF/2π)
for T = 0.1 Tc (top panel) and T = 0.5 Tc (lower panel) and Δϕ = 0. The parameters
defining the normal state dispersion are VI = 1.05 EF, VFM = 0.3 EF and the exchange fields
J = h = 0.4 EF. The junction length is L = 0.5 ξ0 (ξ0 = �vF1/2πkBTc). The right plots show
the odd Fourier-components, the even ones are 0 for Δϕ = 0.
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6.3. Current-Phase Relation

T = 0.1 Tc, as shown in Fig. 6.5. The junction is in a π-state, which is a ubiquitous feature
of the long range triplet Josephson effect. We plot the total current and the individual
contributions from the HM-trajectories (IHM) and the majority (I↑) and minority (I↓)
band part of the FM-trajectories. The current-phase relation (CPR), being a 2π-periodic
function, can be expanded in the complete basis set {sin(nΔχ), cos(nΔχ)|n ∈ N}. The
even Fourier-components are strictly zero for the Δϕ = 0 junction. The first 10 odd-
components are shown for T = 0.1 Tc and T = 0.5 Tc. At T = 0.5 Tc, higher harmonics
are almost completely suppressed. A first observation that we make is that the odd-
components alternate in sign, which can likely be attributed to the π-state behaviour, i.e.,
when n Cooper-pairs travel coherently across the junction, the additional phase is n · π.
As far as the individual contributions are concerned, we see that their CPRs are very
different at T = 0.1 Tc. The HM-contribution has no higher moments, the reason for this
is that trajectories with high impact angles contribute to this part of the current. Their
effective path-length through the junction is a lot longer than that of trajectories with
almost perpendicular impact angle and consequently, the decay of the coherence functions
after one passage through the junction is stronger. Higher harmonics of the current-phase
relation arise from trajectories traversing the junction at least two times. The long path-
length suppresses these contributions. The contributions from the FM-trajectories, I↑ and
I↓, both show higher harmonics, but are still different from one another. Surprisingly,
higher harmonics are more important for the minority band than for the majority band.
This could be related to the fact that τ2 is strongly enhanced for trajectories with high
impact angle, leading to an enhanced injection of correlations from the SC, which then
decay faster due to the longer path-length and hence contribute little to higher harmonics.
τ3, on the other hand, stays almost constant, implying that trajectories with perpendicular
impact, being the most relevant for higher harmonics, have a higher relative weight in I↓
compared to I↑. Generally, one can conclude from this that the Fermi-surface geometry
and scattering properties at the interfaces are of utmost importance for understanding the
Josephson effect of such junctions in the clean limit.

We now turn to the more interesting case of a junction where the magnetisation directions
of the two interfaces are rotated against each other in the x-y-plane, i.e. Δϕ �= 0. In the
simplest case, this angle results in a phase-shift of the CPR [40], a situation which has
also been referred to as ϕ-junction [17]. There are different proposals for realising such a
phase-shift of the CPR,a we shortly comment on the case of triplet superconductors at the
end of this section.

If, however, higher harmonics are present, the situation is more complicated, as can clearly
be seen in Fig. 6.6, where we plot the CPR for Δϕ = 0.25π. While still being 2π-periodic,
the CPR acquires a highly irregular form. In Ref. [52], we showed that this CPR can be
well approximated by:b

Iσ(Δχ) ≈ Icp(2Δχ)− Iσ(2Δχ) · sin(Δχ− σΔϕ), (6.7)

where σ = ± for the majority/minority band and Icp was called crossed-pair-transmission
contribution. The intuitive picture is the following. The higher harmonic contributions
to the CPR in nΔχ are usually interpreted as the coherent transfer of n Cooper-pairs
across the junction, i.e., Δχ acts as a counting field for the number of pairs. Obviously,
the first contribution to the approximative relation (6.7) is an even function of Δχ and
therefore all processes contributing to this term involve an even number of pairs. Secondly,
this contribution is the same in both spin-bands and independent of the phase difference
Δϕ. These facts led us to the conclusion that this term must be interpreted in terms of

aSee, for instance, Ref. [17] and references therein.
bNote that there is a sign change again, since the definition of Δϕ is different in the original article.
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6. Long Range Triplet Supercurrents

Figure 6.7. – Sketch of the crossed-pair transmission process (right), where two triplet pairs
with opposite spin-orientation are transmitted coherently across the junction. This process
can be understood as the analogue of the singlet Cooper-pair transmission in a normal-metal
junction (left), which is suppressed here due to the exchange field. Figure from Ref. [52].
Copyright 2009 by the American Physical Society.

processes where the same number of Cooper-pairs is transferred in both spin-bands, as
illustrated in Fig. 6.7 – we thus called it crossed-pair transmission contribution. The
second contribution to eq. (6.7) is an odd-function of Δχ and only contains first order
harmonics in Δϕ. In line with the above discussion, we interpret this as a contribution of
processes that involve an odd number of pairs which depends on Δϕ, since these processes
are not spin-neutral. Δϕ enters with opposite sign for opposite spin, which is immediately
clear from the structure of the scattering matrix.

To get to the bottom of this, we analyse the CPR for a single trajectory as a function of
Δχ and Δϕ. It is convenient to rewrite the current density in terms of the dimensionless
quantity

jη(εn, p||) = Re[gMη (εn, p||, pz > 0)]. (6.8)

We then consider:

Jη = 4kBT
∑
εn

jη(εn, p|| = 0) (6.9)

to analyse the CPR of the perpendicular trajectory, for which the contribution of higher
harmonics is maximal. Note that the respective Fermi-velocity does not enter this expres-
sion. The reason for this is:

j2(εn, p||) = j3(εn, p||), ∀p|| ⇒ 〈�vF2(�pF2)j2(εn, p||)〉2+ = 〈�vF3({�pF3)j3(εn, p||)〉3+, (6.10)

i.e., j2,3 being identical for all p|| is equivalent to total currents being identical.

In Fig. 6.8, we present the Fourier-analysis of J (Δχ,Δϕ). It indeed turns out that the
CPR can be written as:

Jη =
∑
n≥1

J (2n)
cp,η sin(2nΔχ)+ (6.11)

+
∑
n≥1

J (2n−1)
even,η sin((2n− 1)Δχ) cos(Δϕ)+

+
∑
n≥1

J (2n−1)
odd,η cos((2n− 1)Δχ) sin(Δϕ).

Where J (n)
cp,2 = J (n)

cp,3 within our numerical accuracy. Moreover, J (1)
even,2 = −J (1)

odd,2 and

J (1)
even,3 = J (1)

odd,3, but the odd moments in Δϕ are suppressed a lot faster than the even
ones. Higher order harmonics in Δϕ are completely suppressed.

To fully understand this behaviour, we analyse the solutions of the linearised equations,
eq. (6.6), discussed in the previous section. For simplification, we choose χI = ϕI =
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cp components of the majority and minority band. T = 0.1 Tc,

other parameters are the same as in Fig. 6.5.

0 and χII = Δχ, ϕII = Δϕ. Regarding the dependence on Δχ and Δϕ, this implies
AII

2 ∝ ei(Δχ−Δϕ), AII
3 ∝ ei(Δχ+Δϕ) and ρII23 ∝ e−i2Δϕ, ρII32 ∝ ei2Δϕ. Thus, although it is

immediately clear from these equations that higher harmonics in Δχ are not possible in
this weak proximity effect limit, the same is not true for the Δϕ phase. Still, we did not
find higher harmonics in Δϕ even for a junction which is not in the tunnelling limit.

We are interested in the current, whose dependence on the coherence functions can be
approximated at z = 0 by:

jη(εn, p||, pz > 0, z = 0) ∝ Im

[
1 + γγ̃

1− γγ̃

]I
η

= Im 2

∞∑
n=1

[(γγ̃)n]Iη ≈ [Im 2γIηγ̃
I
η](pz > 0)

= 2 · Im ΓI
ηβη[Γ

II
η ]
∗, (6.12)

if the proximity effect is weak. Insight can now be gained by invoking the sum-over-paths
perspective for the solution of the linearised equations (6.6). The terms contributing to
the solutions of the linearised equations up to second order in path length are listed in
table 6.1. One thus finds the leading order term contributing to the current at interface I
(z = 0) with a higher order harmonic dependence on Δϕ to be:

Im β2β3

(
[Â2Â∗3]I · [ρ̂II23]∗ · ei2Δϕ + [Â3Â∗2]II · ρ̂I23 · ei2Δϕ

)
∝ sin(2Δϕ), (6.13)

where a hat implies that the dependence of the given quantity on Δχ and Δϕ was factored
out.
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Table 6.1. – All contributions to the solutions of equation (6.6) up to second order in path
length.

Figure 6.9. – Leading order terms contributing to ΓI
2β2[Γ

II
2 ]

∗ with a higher harmonic depen-
dence on Δϕ.

The leading order contribution to the current reads, on the other hand:

Im β2AI
2

[
AII

2

]∗ ∝ sin(Δχ−Δϕ), (6.14)

which contains one less propagation factor and also no additional suppression from re-

flection. This leading order term is contained in the J (1)
even,odd,η-terms of equation (6.11),

and since the corresponding contribution in band 3 is proportional to sin(Δχ+Δϕ), the

relations J (1)
even,2 = −J (1)

odd,2 and J (1)
even,3 = J (1)

odd,3 are now obvious. Moreover, the fact that

J (1)
even,2 < 0 and J (1)

even,3 < 0 is consistent with the observation that the junction is in a
π-state for Δϕ = 0.

Higher moments in Δχ can obviously not be explained in terms of the linearised equations.
By combining the sum-over-paths reasoning for the boundary conditions with that for
propagations through the structure, we can identify the leading terms that generate a
higher order dependence on Δχ. To this effect, we consider the graphical solution of the
boundary conditions presented in appendix D. From the structure of the graph, we infer
that any path contributing to the solutions is either proportional to γη, where η = 1, 2, 3,
or to (γδ1 γ̃ν1 ...γδn γ̃νn)γη, if the path passes n-times through a sub-loop of the graph.a On
that basis, it is now easy to identify the higher order terms in Δχ. We consider the solution
at the second interface, where the phase is picked up, i.e., we have γ1 ∝ eiΔχ. The leading
order contributions to γ2,3 propagated only once through the interlayer, which implies
that they originate from the SC-electrode at the first interface and are thus independent
of Δχ. To find the path that gives us a second order moment in Δχ, we now look for
the contribution that depends on γ21 , which we find in the first branch of the graph. Its
contribution to ΓII

2 reads:

[T21γ1T̃13]
IIβ3ÃI

3[T31γ1T̃12]
II, (6.15)

aWe assume γ̂1 = γ1iσy here, i.e., γ1 is scalar.
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where β3ÃI
3 is the leading order in β contribution to γ̃II3 . The leading order contribution

to the current is thus proportional to:

Im β2AI
2

{
[T21γ1T̃13]

IIβ3ÃI
3[T31γ1T̃12]

II
}∗

∝ sin(2Δχ). (6.16)

We hence identified the first contribution to the crossed-pair transmission. Obviously, it
is identical to the corresponding contribution in band 3, which is obtained by replacing
2 ↔ 3, in agreement with our numerical findings.

In regard to the current contribution of the process described by equation (6.15), it will be
second order in β-factors, since an additional propagation enters in the current expression.
Thus, it is of the same order in β as the sin(2Δϕ) contribution described above. Still,
the latter seems to be suppressed here. This is because it is proportional to ρ23, which is
necessarily small if the transmission of the junction is high.

To make the sin(2Δϕ) term appear, we may introduce an asymmetry in the junction by
increasing the thickness of the second interface. That this works can easily be understood
from eq. (6.13) and Fig. 6.9. Apparently, the processes contributing to this term couple to
one of the SC-electrodes only, which is also why they are independent of Δχ. So if one of the
two electrodes is decoupled from the interlayer by making the interface a perfectly reflecting
barrier, all terms that contain contributions from this second electrode are suppressed,
while one of the two terms contributing to (6.13) remains. Obviously, there must be
an identical contribution with opposite sign in the other spin-band to maintain charge
conservation – a net charge current cannot flow through the junction if one interface is
perfectly reflecting. This situation is illustrated in Fig. 6.10, where we plot Jη for different
widths of the second interface, starting from a symmetric junction and arriving eventually
at a junction where the second superconductor is fully decoupled from the FM-layer (a =
20 λF/2π). While the symmetric junction has only a first harmonic contribution, the
second harmonic increases as the second interface becomes thicker and the first harmonic
decreases. When the second superconductor is fully decoupled, the dependence on Δϕ is
governed by the second harmonic and the total current vanishes (J2+J3 = 0), which is in
agreement with current conservation. This corresponds to the pure spin-supercurrent in
a SC/FM-bilayer that we discussed in Ref. [52]. While we focused on the Δϕ dependence
here, it is also clear that the current is strongly suppressed as the thickness of the second
interface increases. This cannot be seen in Fig. 6.10, since the currents were normalised
to their maximum value there. We discuss the critical current in these junctions in the
following section.

Fig. 6.11 shows how this spin-supercurrent can be understood in terms of Cooper-pair
transport. A singlet pair entering from the superconductor is converted to a triplet pair
in the FM and travels through the junction to the opposite surface, which is now perfectly
reflecting. Since this surface still allows for spin-flip scattering, some of the triplet pairs
undergo spin-flip and travel back in the opposite band. The phase difference Δϕ which
corresponds to the total scattering phase difference picked up by the Cooper-pairs at the
interface to the superconductor and the surface plays the role of the order parameter phase
difference.

An analogous effect in triplet superconductors was predicted by Brydon et al. (see Ref.
[16], for instance). In this case, the spin-quantisation axis of the triplet order parameter
plays a similar role as the interface magnetisation does here.

The fact that the CPR of a single-domain junction depends on ϕII and ϕI only through
Δϕ is a fundamental requirement of the junction symmetry and can be proven rigorously
in a fashion similar to what we discuss in the last section of this chapter (see appendix G).
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Figure 6.10. – Supercurrent for the perpendicular trajectory (p|| = 0) for the majority (solid
lines) and minority (dashed lines) band as a function of Δϕ and for Δχ = 0. The thickness
of the first interface is kept constant at a = 0.25 λF/2π, while that of the second interface is
varied and shown for a = 0.25, 5, 10, 20 λF/2π. T = 0.1 Tc, other parameters are the same
as in Fig. 6.5.

Figure 6.11. – The spin-Josephson effect in a SC/FM bilayer – Triplet Cooper-pairs propa-
gate in opposite direction through the FM-layer and flip their spin at the opposite interface.
Thus, there is no charge-current due to this process.

Figure 6.12. – Left: Critical current of a SC/FM/SC Josephson junction as a function of
the spin-polarisation P of the FM layer (blue) and the corresponding normal state resistance
of the contact (red). Right: Maximal spin-supercurrent in a SC/FM-bilayer (blue) and the
corresponding normal state conductance of the SC/FM-interface (red) as function of P . Pa-
rameters (left): a = 1 λF/2π, α = π/2, Δϕ = 0, L = 0.5 ξ0 (mistakenly 1 ξ0 in the original
article), pF2 = 1.18pF1, pF3 is varied, P = P (pF3). JI = JFM (is also a function of pF3) and
VI −JI/EF = 10e−4 (dotted line), 0.2 (solid line), 0.5 (dashed line). RnA is plotted in units of
(e2NF1vF1)

−1. Δ = 1.76 meV, T = 0.5 Tc. Parameters (right): the same as in the left figure,
but the thickness of the second interface is set to infinity (perfectly reflecting barrier). Figure
from Ref. [52]. Copyright 2009 by the American Physical Society.
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6.4. Critical Currents as a Function of Spin-Polarisation

Now that we have a theory of the triplet Josephson effect that is valid for a wide range
of spin-polarisations, an interesting question to address is the dependence of the critical
current on the spin-polarisation P [52]. Recall that P was defined as P = (pF2−pF3)/(pF2+
pF3), where pF2,3 are the Fermi-momenta of the two spin-bands. We plot the IcRn product
of a SC/FM/SC junction as a function of P on the left side of Fig. 6.12. To vary P ,
we varied the Fermi-momentum in the spin-down band. This implies that the normal
state properties of the junction change as well, which is why we also plot the normal state
resistance of the junction.a It is obvious from the plot that the behaviour of Ic cannot be
attributed to the variation of Rn. The shaded regions indicate values of P for which the
assumptions underlying the quasiclassical approximation are in principle ill-founded. For
very small P , the exchange energy cannot be considered to be large compared to the SC
gap. This implies that singlet-correlations will not be fully suppressed in that case, but they
are generically eliminated in our quasiclassical model. For large P , the Fermi-momentum
in the minority band approaches zero, and the oscillations on the kF-scale, which are
integrated out, are thus not ’fast’ anymore. Not surprisingly, the current is suppressed
for small P . This is because the spin-mixing angle is suppressed for small exchange fields
and the singlet-triplet conversion thus becomes ineffective. That the current is maximal
for about P ≈ 0.3 and approaches a constant, smaller value for P → 1, is a bit harder to
understand. The reason is that the triplet-current carried by the ferromagnetic trajectories
is larger than that carried by the half metallic ones. This is because the spin-mixing
phases ϑ2,3, that control the magnitude of the spin-mixing effect for these trajectories, are
enhanced compared to the mixing angle ϑ/2, which is relevant for the half metallic ones.

On the right side of Fig. 6.12, we plot the maximal spin-supercurrent for the bilayer
geometry discussed before. In this case, Rn refers to the resistance of the single SC/FM
interface. The spin-supercurrent is suppressed for both small and large P . The explanation
is obvious, the singlet-triplet conversion is suppressed for small P , while for large P , the
minority band is eliminated and a half metallic ferromagnet can obviously not support the
transport process shown in Fig. 6.11.

6.5. Multi-domain Junctions

We now turn to multi-domain junctions and study critical Josephson currents in these
systems. As explained in the introduction, investigating this problem is very relevant for
recent experiments where triplet Josephson currents were measured in Co-junctions with
an anti-ferromagnetic domain structure enforced by Ru interlayers [68, 71, 70, 69]. The
Ru-layer will be ignored here, we simply assume that anti-ferromagnetic domains exist,
which implies backscattering due to wave vector mismatches all by itself. The transparency
of the domain boundary thus depends on the wave vector mismatch between the majority
and minority band in our model and consequently, the effect of backscattering at the
domain boundaries will be most important for strongly spin-polarised materials. The
solutions of the boundary conditions and the numerical implementation of this calculation
are discussed in the appendix. What is important here, is the general structure of the
S-matrix at the domain boundary:

S =

(
R T
T� R

)
, R =

(
r 0
0 −r

)
, T =

(
0 t
−t 0

)
. (6.17)

aThe normal state resistance was calculated by solving the transport equations for the distribution func-
tions in the normal state. In the clean limit we consider here, it is exclusively determined by the
interfaces. Technically, we thus calculated Gn/A = 1/(RnA). For the spin-supercurrent setup, Rn

refers to the resistance of the transparent interface.
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Figure 6.13. – Critical current vs. temperature for a single domain junction (left) and a two
domain junction (right). The junction parameters are: a = 2 λF/2π, VI = 2 EF, VFM = 0.5 EF,
J = h = 0.9 EF, L = 0.5 ξ0, Δϕ = 0.

Figure 6.14. – Correlations switch channels at an anti-ferromagnetic domain boundary
(right).

The anti-parallel magnetisation and the neglect of other scattering effects implies that
there is no spin-flip scattering and that the domain boundary does not break pairs, but
the minority and majority band are interchanged. In regard to the coherence functions,
this means that they have a chance of being reflected at the domain boundary into the
band they originated from, or be transmitted across the boundary into the other band (see
Fig. 6.14).

In regard to the dependence of the critical current on temperature, an anomaly, i.e., a non-
monotonical functional dependence on T , was predicted for half-metallic junctions [40], and
later also for ferromagnetic junctions with high P [52]. From our analysis, we concluded
that this anomaly is due to the half-metallic trajectories, and therefore appears in the
total critical current if these dominate transport. If the FM-interlayer has at least two
domains with opposite magnetisation, these trajectories cannot contribute to transport,
as quasiparticles travelling in these channels will be perfectly reflected at the domain
boundaries. One would hence expect a suppression of the anomaly in such junctions even
if P is high.

Thus, the presence of domain boundaries implies a suppression of the critical current for
two reasons. On one hand, the contribution of half-metallic trajectories is fully absent
– a substantial part of the states on the Fermi-sphere does not contribute to transport.
Secondly, the domain boundaries cause backscattering even for those trajectories that can
pass through. This increases the effective junction length and thereby further suppresses
the current. Furthermore, the fact that any quasiparticle travelling through the junction
must spend some time in the minority band is important for understanding the suppression
of the critical current in long junctions, L� ξ0.
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Figure 6.15. – Critical current vs. junction length on a logarithmic scale at T = 0.5 Tc.
All other parameters are the same as in Fig. 6.13. The dashed lines indicate exponential fits
to the data. The inverse decay length κ is κ = 0.52/ξ0 for the single domain, κ = 1.43/ξ0 for
two domains, and κ = 1.135/ξ0 for three domains.

In Fig. 6.13, we plot the temperature dependence of the critical current for a single-
domain and a two-domain junction. The junction parameters are chosen so that we are in
the tunnelling limit, meaning that the CPR of these junctions contains no higher Fourier-
components in Δχ. The critical current is thus obtained for Δχ = 3/2π in the single
domain junction, since the junction is in a π-state. An important finding is that this is
not true for the two-domain junction, which we find to be in a 0-state, i.e., the critical
current is found at Δχ = 1/2π, while the three domain junction is in a π-state again.
I.e., if the number of domains is even and there is an odd number of band switchings, the
junction is not in a π-state. Note that one must be cautious in regard to the definition
of the ϕ-phases when the number of domains is even. In that case, the orientation of the
bulk-magnetisation will be along −ẑ rather than ẑ at the second interface. By mapping
−ẑ �→ ẑ with a rotation of the coordinate system around the x-axis, we see that ϕII must
be replaced with −ϕII. We show in the appendix that the CPR still depends on Δϕ
only, since an even number of domains implies an odd number of band-switchings, which
effectively undoes the sign change of ϕII.

The temperature anomaly predominantly arises from the half metallic contribution in the
single domain junction and is strongly suppressed in the two domain case. Moreover, we
see that the critical current is reduced in the latter scenario compared to the first. The
junction is in a strongly polarised limit (P=0.63), which is why I↓ is very small in the
single-domain case. Note also that the current contributions of I↑ and I↓ are identical in
the two domain junction. This is because the junction is now symmetric with respect to
an exchange of the bands. The current due to the ferromagnetic trajectories only is, as
expected, smaller in the two domain case. This is understood from the fact that, due to
the band switching, all coherence functions are suppressed by

√
β2β3 after one propagation

through the interlayer in the two domain case. Since β3 < β2, as a result of the different
Fermi-velocities, this implies a reduction of the current in band 2 and an enhancement in
band 3.
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In Fig. 6.15, we plot the total critical current as function of junction length. If we appeal
again to the path-expansion of the current expression, we can arrange terms in orders of
(β2, β3), that is, the total length of the paths associated to the two coherence functions
which enter the current expression. The leading order contribution to the current is given
by the shortest path through the junction at the lowest Matsubara frequency. If the
junction is very long, this will be the only surviving contribution, since the exponential
suppression of all other terms is faster. Thus, if b2 = β2(ε0, k|| = 0) and b3 = β3(ε0, k|| = 0),
we expect that the critical current depends on the junction length as b2 in the 1 domain
case, as

√
b2b3 in the two domain case and as (b22b3)

1/3 in the three domain case if L� ξ0.
These are the fastest paths in the majority band, the fasted minority band path will be
slower in all but the 2 domain case, since the Fermi-velocity is smaller in this band. For
the parameters used in Fig. 6.15, we obtain 0.513, 1.375 and 1.087 as the respective inverse
decay lengths from this reasoning. The values that we fitted to our data agree quite well
with that, but are all a bit higher. This is likely due to the Fermi-surface average, i.e.,
transport channels with small but finite k|| still give a non-negligible contribution at the
lengths that we calculated.

That the decay seems to be super-exponential for short junctions is easily understood
from the fact that longer paths with different decay lengths also contribute in that case.
For short junctions, we also observe that the single domain current is substantially larger
than the multi-domain one, while the latter differ little. This can be attributed to the
elimination of the half-metallic contribution as explained above.

The somewhat counterintuitive result that the fastest decay of the current occurs in the
2 domain junction is hence understood as an effect of the different Fermi-velocities in the
two spin bands. In the two domain junction, the shortest path must travel through half
of the junction in the minority band, while in the 3 domain case, it is only one third.
While backscattering at the domain boundaries does imply an additional suppression of
the current, the scaling law in the long junction limit is insensitive to it, as the current is
carried by the shortest path anyway, which does not undergo backscattering.

In regard to the experimental observations of Khasawneh et al. [70], it is clear that
the model we investigated here cannot explain their results. They find an exponential
suppression of the critical current as the number of Ru-interlayers is increased, while the
total length of the junction is kept constant. We conclude that this behaviour cannot be
accounted for by spin-conserving backscattering at the domain boundaries and different
Fermi-velocities in the spin-bands of the FM. Including spin-flip scattering at the domain
boundaries would likely allow us to model this data, since such scattering effects would
break triplet pairs rather than just reflecting them. In terms of our formalism, this can
straight-forwardly be included in the scattering matrix of the domain boundary.

6.6. px ± ipy State induced by a Rashba-Interface

In this final section of the chapter on the triplet proximity effect, we shortly comment on
a proposal that is related to what we discussed so far, but has quite different implications.
More precisely, we discuss the triplet proximity effect induced by an interface whose spin-
activity arises from spin-orbit coupling rather than a ferromagnetic exchange field. That
this works is easily understood. The Rashba-term can be considered as an exchange
field whose orientation depends on k||. Thus, the only formal difference with respect
to a ferromagnetic exchange field is that the misalignment of the quantisation axes is
k-dependent. Specifically, the Rashba term has the structure:

HSO = α�gk · �σ, (6.18)
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Figure 6.16. – Bilayer structure with a Rashba-interface.

with

�gk =
k× ẑ

|k× ẑ| =
1

k2x + k2y
(ky,−kx, 0) = (sinϕk,− cosϕk, 0), (6.19)

since the structure in grown in the z-direction. Thus, the quantisation axis of the spin-orbit
term rotates in the x-y-plane. This implies that only the ϕ-angle acquires a k-dependence.
In fact, we can simply replace ϕ → ϕk, as shown in appendix B. This problem was first
considered by Löfwander and Eschrig for half metallic junctions, but they did not publish
their results so far [41]. Recently, the idea was investigated by Chung et al. [22], using a
different method. They argue that this scenario may allow to engineer an instance of the
spin-less px+ ipy state in the half metal. We will see in a second that this is in fact a very
obvious result. As we pointed out in the introduction, px + ipy superconducting states
attracted a lot of attention recently in the context of topological quantum computation
[93], and we will be concerned with another proposal of this type in the second part of this
thesis.

As discussed at length in chapter 5, the symmetry classification of pairing correlations
is based on analysing the symmetry of the anomalous Green’s function fη(R,pF, εn, t),
which, in the context of our formalism, is given by:

fη = −sgn(εn)iπ
2γη

1− γηγ̃η
. (6.20)

If the dependence of fη on ϕk is given by eiϕk , then it has a px + ipy-symmetry. Recall
that γ̃η(εn,k) = γ∗η(−εn,−k). Hence, if γη(εn,k) depends on ϕk as eiϕk , then γη(εn,−k)

depends on it as ei(ϕk+π) and γ̃η(εn,k) as e
−i(ϕk+π). Thus, fη has a px + ipy symmetry if

γη has this ϕk dependence. What we will prove in the following is that f2 has a px − ipy
symmetry and f3 a px + ipy symmetry.

To this end, we consider a SC/FM bilayer structure terminated by a spin-inactive surface,
as shown in Fig. 6.16. This implies that the boundary conditions at the surface are trivial,
we have

ΓII
η = γIIη . (6.21)

The reasons for considering a finite FM layer are the following. First, it is easy to see
from the definition of the DOS, N ∝ Tr(g), that there will not be a an energy gap in
the single particle DOS if the FM layer is infinite. In that case, the coherence amplitudes
propagating towards the SC/FM interface would be zero, as they originate from the FM
bulk. In the diagonal entries of g, the coherence functions enter in γγ̃ pairs, which, for a
given momentum, have opposite group velocities. Hence, for any momentum, one of the
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two would be zero and thus N(ε) = NF = const. Secondly, we would like the engineered
px + ipy state to be effectively two-dimensional, i.e., as homogenous as possible in the
z-direction and confined to a thin layer. From our previous discussion of the current-phase
relation, it is not obvious that γη(k) ∝ e±iϕk and that there are no higher moments in ϕk

appearing.

The prove of this assertion is fully analogous to the one we discuss in appendix G in
regard to the Josephson current. We start by writing the boundary conditions in a matrix
notation [37]:

Γ = Γk→k′ , Γ = Γ− Γkδkk′ , (6.22)

γ = γkδkk′ ,γ
′ = S ◦ γ ◦ S̃, (6.23)

where ◦ denotes a matrix product including ’channel’-space. The boundary conditions
read [37]:

Γ = γ ′ + Γ ◦ γ̃ ◦ γ ′. (6.24)

As discussed in chapter 4, the scattering matrix S(k||, ϕk) is related to S(k||, 0) by:

S(k||, ϕk) = ΦS(k||, 0)Φ∗, Φ =

(
e−iσzϕk/2 02×2

02×2 e−iσzϕk/2

)
. (6.25)

To achieve consistency with the boundary conditions at the opposite surface (6.21), we
assume γ2,ϕ = e−iϕkγ2 and γ3,ϕ = eiϕkγ3. Moreover, γ1,ϕ = γ1 and it is easy to see that:

γ = Φ∗ ◦ γϕ ◦ Φ∗, γ̃ = Φ ◦ γ̃ϕ ◦ Φ. (6.26)

Some simple algebra then shows:

Γϕ =
[
γ ′ + Γ ◦ γ̃ ◦ γ ′

]
ϕ
= Φ ◦

[
γ ′ +Φ∗ ◦ Γϕ ◦ Φ∗ ◦ γ̃ ◦ γ ′

]
◦ Φ, (6.27)

which implies

Γϕ = Φ∗ ◦ Γ ◦ Φ∗. (6.28)

This result is consistent with the initial assumption and therefore proves that it is indeed a
valid solution. The proof is completed by the fact that eq. (6.28) stays the same when γ2,3 =
0 and the observation that the coherence functions inside the FM must have originated
from the SC at some point.

We hence showed that a pure px ± ipy state is induced in a clean FM-layer by the triplet
proximity effect, where the different spin-bands have opposite chirality. Whether the
+/- state is induced in the majority/minority band or the other way around depends on
whether the orientation of the magnetisation in the FM is in the z or −z direction [22].
However, the assumption that the device is in the clean limit is crucial here, as disorder
would destroy the bijective correspondence between ϕ and k when quasiparticles scatter
between different momentum states inside the FM.
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7. The Discovery of Topological
Insulators

Topological insulators represent a new phase of matter which was first proposed on theo-
retical grounds by Kane and Mele in 2005 [64, 65]. While the concept of the ’topological
insulator’ state is very general, their specific proposal was that it may be realised in
graphene. However, the spin-orbit interaction which usually drives the transition from the
’trivial’ band insulator to the ’topological’ one, turned out to be to weak in this material
[13]. In 2006, Bernevig et al. [13] predicted that this state may be realised in HgTe/CdTe
quantum wells and this finding was experimentally confirmed by König et al. [72], who
fabricated (Hg,Cd)Te/HgTe/(Hg,Cd)Te wells and tuned the chemical potential to lie in-
side the band gap. As predicted by Bernevig and coworkers, they found the longitudinal
conductance to be suppressed when the thickness of the HgTe layer was smaller than ap-
proximately 6.3 nm, but a conductance of about one conductance quantum was observed
when the width exceeded that threshold. It was demonstrated that this value hardly
changed for different widths of the well, from which the group concluded that the current
must indeed be carried by edge states. The emergence of these edge states at a certain
HgTe layer thickness can be understood from the fact that the valence and conduction
band of HgTe are inverted with respect to CdTe and that this inversion also happens in
the quantum well if the HgTe layer is thick enough. This band inversion, which is driven
by spin-orbit coupling, signals the transition from the trivial to the topological insulator
[13, 56] and comes along with the edge states that were observed in the experiment.

The fundamental symmetry of the topological insulator is time-reversal invariance. In this
regard, another important observation made in the experiment of König et al. was that the
residual current could be destroyed by a small magnetic field, confirming the theoretical
understanding that the edge states of a topological insulator are protected from elastic
backscattering by time-reversal symmetry only [72].

It is instructive to compare this state to the Quantum Hall state [131], as shown in Fig. 7.1.
In the Quantum Hall state, edge states counterpropagate on different sides of the sam-
ple. The longitudinal current through these states is dissipationless, since backscattering
would imply that a quasiparticle must tunnel to the other side of the sample to reach the
counterpropagating state. The topological insulator, on the other hand, is time-reversal
invariant and this symmetry must hence also apply to its edge states. Consequently, the
edge states come in Kramer’s pairs of counterpropagating states with opposite spin on
both sides of the sample and the robust protection from backscattering does not exist in
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Figure 7.1. – Edge states of a two dimensional topological insulator (Quantum Spin Hall
state (QSH)) on the left and of the usual Quantum Hall state on the right. The edge states
of the QSH insulator come in pairs on either side of the sample, where states with opposite
spin-orientation counterpropagate. In the QH state, the states are spin-polarised due to the
magnetic field and counterpropagate on opposite sides of the sample. Figure adapted from
Ref. [99].

this case. However, one can show that as long as time-reversal symmetry is maintained, at
least elastic backscattering is prohibited [13]. If this symmetry is broken by, for instance,
magnetic impurities or a magnetic field, the protection is lost, as demonstrated in the
experiment.

Bernevig et al. argued that this state can essentially be understood as two copies of the
Quantum Hall state with opposite magnetic field direction [14]. This restores time-reversal
symmetry and implies that for any state contributing to the Hall conductance, there is a
partner with the opposite contribution, and consequently, the Hall conductance vanishes.
Yet, these partners also have opposite spin, which means that the spin-conductance is finite
and this state was therefore dubbed Spin Quantum Hall (SQH) state [64, 65, 14]. Naturally,
a spin-effect is harder to measure than a charge-effect, but this reasoning does fortunately
not apply to the longitudinal current through the edge states which was measured in the
experiment.

This initial discovery triggered a massive research activity over the past four years which
we are utterly unable to review here. Instead, we refer the reader to two extensive re-
view articles on the subject, authored by Kane and Hasan [56] and Qi and Zhang [101]
respectively.

In the following, we will strictly focus on those parts of the story which are relevant to
the problem we wish to discuss. Specifically, that is the proximity effect in the surface
states of three-dimensional topological insulators. Naturally, these surface states are now
two-dimensional and can be characterised as a ’helical metal’ with a Dirac cone dispersion
at small energies [56]. As stated in the introduction, the interest in this problem is based
on the conjecture that proximity induced superconductivity in these states may create
an instance of the much sought after (px + ipy)-superconductor, which hosts Majorana
excitations at vortex cores [47].

To this end, we shortly discuss what the topological order of the topological insulator
actually is. We choose the band theoretical approach to this problem [64, 48, 90], which
we deem to be the most transparent and – from a practical point of view – most relevant,
but also the least general perspective on the matter. Band theory is naturally restraint
to the single-particle picture. The interacting case can be covered by the more abstract
topological field theory approach [14, 100]. Subsequently, we discuss the nature of the
surface states and eventually review existing work on the proximity effect.

7.1. Topological Order in Bloch Theory

Understanding in what sense topological insulators are ’topological’ is a rather subtle issue
but again quite analogous to the Quantum Hall state, where the connection to topology
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was first established by Thouless et al. [125].

In both cases, the physical problem at hand is mapped onto a differentiable manifold which
belongs to the special class of fibre bundles. They can be understood as a ’product’ of two
sub-manifolds, called the base and the fibre. The bundle is then constructed by gluing one
copy of the fibre to each point of the base [92]. In the context of our problem, the base
is the Brillouin zone (the magnetic Brillouin zone in the case of the Quantum Hall Effect)
and the fibre a Hermitian matrix whose dimensionality is given by the number of bands
that are considered. For each point k of the base, the copy of the fibre glued to it is the
Bloch-Hamiltonian H(k) [90].a The topological order of the physical state can then be
understood by analysing the topology of this manifold. Any property of the system which
depends only on this topology is robust in the sense that it is invariant under changes of
the system’s Hamiltonian which result in a smooth deformation of the associated manifold.

Therefore, finding such robust quantities is identical to the mathematician’s quest of identi-
fying topological invariants. These have been studied intensively, as they can (not always)
provide an answer to the prominent question whether two given topological spaces are
equivalent, i.e., can be continuously deformed into each other. To this effect, one tries to
find a prescription that associates certain mathematical objects, which do not change un-
der such continuous deformations,b to a given topological space. In regard to fibre bundles,
an important class of topological invariants are so-called Chern-numbers. In analogy to
the Gauss-Bonnet theorem, they are obtained by integrating a certain relation, the Chern-
form, over the base of the manifold [92]. In the case of the Quantum Hall effect, the first
Chern-number characterises the topological order and has a very immediate connection to
the physical problem – it is the quantised Hall conductance [6].c

In the case of topological insulators, the relevant manifolds – given by the Bloch-Hamiltonian
over the Brillouin zone – are characterised by time-reversal symmetry. For fermionic parti-
cles, the time-reversal operator is an anti-unitary operator, and if applied to a time-reversal
invariant Bloch-Hamiltonian implies the symmetry [90]:

H(−k) = ΘH(k)Θ−1, (7.1)

where Θ is the time-reversal operator. Using nothing but this constraint, a topological
classification of time-reversal invariant Bloch-Hamiltonian has been provided in arbitrary
dimensions, and can also be extended to disordered systems through the classification of
replica sigma-models [105]. The topological classes are characterised by Z2-invariants, i.e.,
the cyclic group with two elements. In 2 dimensions, a single invariant of this type provides
the classification scheme [64, 65], while 4 are required in the 3-dimensional case [90]. This
implies that there are 2 topologically distinct classes in 2 dimension and 16 in 3. However,
only half of the classes in the 3D case are stable against disorder and therefore called strong
topological insulators, while the other half can be deformed to a trivial band-insulator if
translational invariance is broken [48].

7.2. Bulk-Boundary Correspondence - Topological Surface
States

That time-reversal invariant band insulators fall into different classes whose band struc-
tures cannot be deformed continuously into each other would be a highly academic question

aThe fibre at k can also be considered to be the Hilbert-space spanned by the Bloch-states at k [56].
bThis formulation is a bit vague, but in fact, these ’objects’ are not always numbers, they may be more

complicated algebraic entities. The most prominent example is the homotopy group.
cFrom a pedagogical point of view, this reference is an excellent introduction to the topological perspective
on the Quantum Hall effect.
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to pursue, if there were no physical phenomena associated to it. As discussed in the be-
ginning of this chapter, the principal feature setting aside the non-trivial from the trivial
insulator is the existence of edge or surface states. This can be understood in an intuitive
way from the fact that spin-orbit interaction leads to a band inversion of valence and con-
duction bands in topological insulators, if the band structure without spin-orbit interaction
is taken as a reference [13, 141].a If an insulator with such an inverted band structure is
brought into contact with a non-inverted one – as the vacuum, for instance – the inversion
must be undone at the interface, i.e., the bands cross and create states inside the bulk gap
that are localised at the surface [56]. Due to time-reversal symmetry, these states always
come in pairs of time-reversed partners. The surface states of a three-dimensional topolog-
ical insulator thus form a two-dimensional metal and were first observed in Bi1−xSbx by
means of ARPES measurements [58]. The strong topological insulator in three dimensions
is characterised by an odd number of surface state dispersions, 5 were observed in the case
of Bi1−xSbx [58], while Bi2Se3 features only one [137]. Generally, one can show that an
even number of surface states can always be lifted, i.e., merged and deformed so that the
spectrum is fully gapped again, without destroying time-reversal symmetry or closing the
bulk-gap. This provides an intuitive understanding of the even/odd-classification, formally
encoded in the Z2-invariant [56].

The low-energy dispersion of these states can be approximated by a Dirac-cone for small
energies, whose Dirac-point is pinned to one of the time-reversal invariant points in the
Brillouin-zone (the Γ-point, for instance) [56]. An effective surface state Hamiltonian can
be derived which has the same structure as that of graphene and describes the surface
states close to the Dirac-point. The difference is, however, that the Pauli-matrices appear-
ing in this Hamiltonian now refer to real spin instead of pseudo-spin [56]. This implies
that the dispersion of a single-pair of surface states features spin-momentum locking, i.e.,
for every momentum k = (kx, ky), there is only one state with a definite spin-orientation
and the state at −k has opposite spin-orientation. This was demonstrated experimen-
tally by measuring a suppression of backscattering in the surface states [60]. We will
demonstrate the derivation of this surface state Hamiltonian in chapter 10 in terms of the
k · p-Hamiltonian that we introduce in chapter 8.

To conclude, the bulk topological order of topological insulators gives rise to conducting
states at their boundary. An odd number of surface state pairs indicates a robust topo-
logical phase. The surface states of three-dimensional topological insulators realise a new
type of low dimensional conductor, dubbed ’helical metal’.

7.3. The Proximity Effect at the Surface of 3D Topological
Insulators

The proximity effect in the helical metal realised at the surface of 3D topological insulators
was first investigated by Fu and Kane on the basis of the following model-Hamiltonian
[47]:b

Hsurface =

(
H0(k) Δiσ2
−Δ∗iσ2 −H∗0 (−k)

)
, H0(k) = �vF(kxσ1 + kyσ2)− μ. (7.2)

Here, H0 is the normal state effective Hamiltonian of the surface states, Δiσy is a singlet,
s-wave gap and k = (kx, ky). This phenomenological model of the proximity effect is
essentially inspired by the theory of McMillan [85], who proposed that the superconducting
proximity effect in a thin normal layer can be described by a self-energy. The crucial

aSwitching spin-orbit interaction ’on’ or ’off’ in a given material is of course only possible in theory.
bNote that the Hamiltonian is adapted to our definition of the Nambu-spinor.
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Figure 7.2. – Spectrum of the Fu-Kane Hamiltonian stated in eq. (7.3) for �vF = 4, μ = 1.0,
Δ = 1.0.

point for this model to work is that the itinerant states are localised at the interface
to the superconductor, only then an effective, homogeneous pair-potential arises due to
permanent interactions with the SC.a This condition is realised in the original McMillan
theory by the assumption that the normal layer is thin. In the case of topological insulators,
the relevant states are confined to the interface because they are surface states. The
spectrum of the above Hamiltonian is given by [47]:

±ε±(k) =
√

Δ2 + (μ± �vFk||)2, (7.3)

with k|| = |k| and plotted in Fig. 7.2. We will use it later on to compare this model to our
numerical results. Fu and Kane argued that the state characterised by this Hamiltonian
is an instance of a topological superconductor. To see this, one rewrites the Hamiltonian
in a basis that diagonalises H0(k) and finds that the pairing-term acquires the form of a
px + ipy order parameter, the Fu-Kane Hamiltonian thus corresponds to a time-reversal
invariant px + ipy superconductor [47]. Topological superconductors can be classified in
full analogy to topological insulators if a mean-field perspective is adopted [110, 105].
According to this general classification scheme, their defining property is that they feature
protected boundary modes which cannot be localised by disorder, too. However, Fu and
Kane argue that their model was already the boundary of a 3D material and could therefore
not have a boundary of its own [47]. Instead, they pursue a number of different proposal
for creating Majorana quantum wires and bound states by manufacturing different types
of junctions on the TI. Majorana fermions play an important role in topological quantum
computation [93], and the Fu-Kane proposal attracted a lot of attention in this context.
The question we address here, namely whether the model of the proximity effect assumed
at the outset of this argument is valid, is certainly more modest but nonetheless important,
as a proper understanding of the superconducting proximity effect in such surface states
is a prerequisite for any ulterior proposal based on it.

Stanescu et al. [121] were the first to consider a microscopic model of this problem based
on a three-dimensional tight-binding Hamiltonian of the TI-SC heterostructure. The spec-
trum of this Hamiltonian was then calculated with exact diagonalisation. This is obviously
only possible for a finite sized system of relatively small dimensions, which implies that
finite size effects cannot be avoided unless the interface states are strongly localised. The

aNote that this reflects our current understanding of this model and not necessarily that of Fu and Kane,
who did not comment on that question in their original article.
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localisation of these states on either side of the interface is controlled by the magnitude
of the respective gap. While the band gap of topological insulators can be larger than 0.1
eV [58], the gap energy of conventional superconductors is a lot smaller than that. This
implies that the interface states will extend on the scale of the coherence length into the
SC. Stanescu et al. did, however, assume a superconducting gap of the order of the TI
band gap, and thus avoided this problem in their calculation. They also showed that the
proximity effect can indeed be understood in terms of McMillan-theory by explicitly cal-
culating the effective self-energy of the superconductor from a Green’s function formalism.
A general analytical discussion of this procedure was provided at about the same time by
Sau et al. [108].

A second analysis was performed by Lababidi and Zhao [74] in the BdG-framework. They
used the k·p-Hamiltonian of Bi2Se3 as a model for the TI. We shall see in the next chapter,
that this is a two-orbital model. Hence, they also had to assume a second band in their
superconductor model to maintain the same Hilbert-space dimensionality throughout the
structure. The interface was then simply modelled by a step-function crossover from the
TI to the SC. Rather than matching wave functions at the interface, they employed the
numerical method of Halterman and Valls [55] to solve this model. At least the starting
point of this investigation is quite similar to our approach and we will thus get back to this
work when discussing our approach. Lababidi and Zhao assumed a realistic energy scale
for the SC gap and also carried out a self-consistent calculation of the gap profile inside
the SC. They also claim that their study was complementary to that of Stanescu et al.,
since the latter was restrained to the tunnelling limit. We do not quite agree with that,
since a transfer-Hamiltonian approach is not necessarily a tunnelling theory. That is only
true if the coupling through the transfer-Hamiltonian is treated as a perturbation, which
is not the case in the work of Stanescu et al., given that they used exact diagonalisation.

The model we consider here is based on a real space discretisation of the k ·p-Hamiltonian
of Bi2Se3, Bi2Te3 and Sb2Te3 [80] and the BCS mean-field Hamiltonian. Thanks to trans-
lational invariance in the contact plane, this discretisation must only be carried out in the
z-direction, since k|| = (kx, ky) is a conserved quantum number. The coupling between the
two materials is modelled by a transfer-Hamiltonian and we employ the recursive Green’s
function technique to solve it [54]. This is a non-perturbative approach which allows us to
consider an infinite tight-binding model and hence avoid potential finite size effects. This
comes at the expense of not being able to calculate the eigenstates of the tight-binding
model, but only the spectral function. This is, however, sufficient to obtain the dispersion
of the surface states and calculate the effective self-energy that enters the phenomeno-
logical model. In agreement with the earlier studies discussed above, we find that the
Fu-Kane model is a reasonable low-energy theory if the coupling between the SC and the
TI is small or intermediate and that it can be recovered from our theory if the coupling to
the superconductor is approximated by the zero-energy and zero-momentum value of the
superconductor self-energy. However, the phenomenological model is not valid at energies
close to the superconducting bulk-gap, and we also show that if the coupling is strong,
the Fu-Kane model breaks down completely. In that case, the energy and momentum
dependence of the self-energy must be retained as first argued by Sau et al. [108].a The
spatial profile of the interface states is analysed and, not surprisingly, we find that they
extend on the scale of the superconducting coherence length into the SC. We also discuss
how a self-consistent calculation can be carried out in this formalism.

Finally, we shortly comment on the few experimental achievements that have been reported
so far in regard to superconductivity in topological insulators. Very recently, Bi2Se3 with
intercalated Cu was found to be a superconductor with a Tc of about 3K [107, 73]. While

aIf, EF � Δ, the momentum dependence can still be ignored.
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specific heat data was interpreted to point towards a fully gapped order parameter [73],
recent point-contact measurements found a zero-bias conductance peak [107], which must
be taken as an indication of unconventional superconductivity and the presence of an
Andreev bound state at the interface. The authors claim that this in-gap state was a
signature of helical Majorana Fermions at the surface of the SC. These are exciting findings,
but further investigations are necessary to understand the superconducting order in this
material.

Concerning the proximity effect, Josephson currents were very recently observed at the sur-
face of Bi2Se3 [106, 140]. While Sacepe et al. report a gate-tunable supercurrent through a
thin Bi2Se3 crystal contacted with Al/Ti electrodes [106], Zhang et al. investigate Bi2Se3
nanoribbons with tungsten as the superconductor [140] and find a Josephson coupling
over a distance of ≈ 580nm, which, they argue, points towards a supercurrent carried by
ballistic surface states.

We did not investigate transport so far, but this is evidently an important question to
address and we do believe that the method used here to study a microscopic model of the
proximity effect in topological insulators can be of use in this regard, too.
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In this chapter, we introduce the tight-binding Hamiltonian that we use to model the
superconductor-topological insulator heterostructure. The tight-binding models of the
respective bulk-materials are obtained from a finite differences discretisation of the con-
tinuum models, being a k · p-Hamiltonian for the topological insulator and the stan-
dard mean-field BCS-Hamiltonian for the superconductor. The interface is modelled by a
transfer-Hamiltonian. The whole Hamiltonian is extended to Nambu-space, which allows
us to apply the recursive Green’s function technique to it in a straight-forward manner.

8.1. k ·p-Hamiltonian of Bi2Se3, Bi2Te3 and Sb2Te3 in Nambu-
space

We consider a specific class of 3D topological insulators which are binary compounds
made of Bi or Sb as the first and Te or Se as the second element. These materials were
first predicted to belong to the topologically non-trivial class in [141] on the basis of first
principle band structure calculations. In the same article, a k · p-Hamiltonian fitted to
the DFT band-structure was provided, which involves only those orbitals that are relevant
for the topological surface states. In a later publication [80], this model Hamiltonian was
further elaborated on, and we shall use it as the starting point for our model of the TI-SC
device. We call it the Zhang-model in the following.

The Zhang-model is a low energy-theory fitted to the band structure around the Γ-point
up to third order in k. The relevant states are the hybridised pz orbitals of Bi or Sb and Se
or Te, respectively. These have definite (and opposite) parity and the basis can hence be
labeled as |+ ↑〉, |− ↑〉, |+ ↓〉, |− ↓〉, where ± denotes the orbital and ↑, ↓ the spin [141].
In addition to that, including superconductivity will require to extend this Hamiltonian
to Nambu space. Thus, we consider a Hamiltonian acting on a 8 dimensional vector space
given by the direct product particle-hole⊗spin⊗orbital, in this order. As a basis of the
8× 8 matrices above this space, we define{

τj ⊗ σk ⊗ νl | i, j, k ∈ {0, 1, 2, 3}
}
, (8.1)

where i, j, k = 0 refers to the respective 2× 2 identity matrix and the other values to the
corresponding Pauli-matrices. We define the Nambu-spinor as:

Ck =
(
bk b†−k

)T
, (8.2)
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with

bk =
(
cc+,↑(k) c+,↑(k) c−,↓(k) c−,↓(k)

)T
. (8.3)

The Nambu-Hamiltonian HTI(k) is then defined by demanding:

∑
k

b†kHTI(k)bk =
1

2

∑
k

C†kHTI(k)Ck, (8.4)

where HTI(k) is the Zhang-Hamiltonian. It is important to understand that the k · p-
Hamiltonian describes only the subset of Bloch-states with momentum k. The total
Hamiltonian of the system is hence given by the left-hand side of the above equation.
The right-hand side then implies that HTI(k) corresponds to two copies of the original
Hamiltonian once the sum is taken over all k. This is because we consider two copies of
the system, one from the ’hole’ and one from the ’particle’ perspective. In his original
proposal [91], Nambu was able to exploit the particular structure of the BCS-Hamiltonian
to avoid this double counting by considering spin-up quasiparticles from the particle and
spin-down quasiparticles from the ’hole’-perspective only. The structure of the Hamilto-
nian in particle-hole space is now straightforwardly derived from eq. (8.4):

HTI(k) =

(
HTI(k) 0

0 −HT
TI(−k)

)
. (8.5)

What remains is, obviously, the k · p-Hamiltonian itself. In terms of the matrices:

γ0 = σ0 ⊗ ν0, γ1 = σ0 ⊗ ν3, γ2 = σ3 ⊗ ν1, (8.6)

γ3 = σ1 ⊗ ν1, γ4 = σ2 ⊗ ν1, γ5 = σ0 ⊗ ν2,

the Hamiltonian reads [80]:

HTI(k) =ε0(k)γ0 +M(k)γ1 + B(kz)kzγ2 +A(k||)[kxγ3 + kyγ4] (8.7)

− R1(k
3
+ + k3−)
2

γ5 − i
R2(k

3
+ − k3−)
2

γ2,

with the following parameters:

k± = kx ± iky k2|| = k2x + k2y ε0(k) = C0 + C1k
2
z + C2k

2
|| (8.8)

M(k) =M0 +M1k
2
z +M2k

2
|| A(k||) = A0 +A2k

2
|| B(kz) = B0 +B2k

2
z .

It contains terms up to third order in k. We will mainly be interested in very small values
of k. Thus, keeping terms up to second order only will be sufficient for our purpose. The
Hamiltonian can either be obtained from k · p-theory or from the theory of invariants,
i.e. the representation theory of the relevant crystal point group [80]. The values of the
constants are given in Ref. [80], the model may be used for Bi2Se3, Bi2Te3 and Sb2Te3 and
was shown to provide reasonable fits for small values of k [80]. To keep the length of this
thesis within reasonable limits, we refrain from an extensive discussion of the theory and
material properties behind this model Hamiltonian and refer the reader to Ref. [141, 80]
for further details.

8.2. Tight-binding Discretisation

With HTI(k), we now dispose of a continuum model of the topological insulator which
is sufficient for the energy scale that we are interested in and directly connected to real
materials. However, when considering a TI-SC heterostructure, we break the translational
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invariance of the crystal in at least one direction. If we assume a layered structure in the
z-direction, translational invariance in the x-y-plane can be assumed to be maintained and
kx, ky are still good quantum numbers. For kz on the other hand, we need to make the
replacement [80]:

kz �→ −i∂z, (8.9)

which simply results from tracing back the action of the original differential operator on the
plane wave ansatz eikz . This obviously implies that HTI(kx, ky, ∂z) becomes a Hermitian
differential operator in the z-direction, while kx and ky can still be treated as parameters.
We now discretise this operator on a 1-dimensional lattice following the standard procedure
[27]. The Hamiltonian contains first-order and second-order derivatives with respect to z if
we consider terms up to second order in k only. We define the action of the corresponding
discretised operators on the lattice wave function by:

∂zψn =
ψn+1 − ψn−1

2a
, ∂2zψn =

ψn+1 − 2ψn + ψn−1
a2

, (8.10)

where a is the lattice spacing. Note that to obtain next-neighbour couplings only, we
implicitly used a lattice spacing of a/2 rather than a for discretising ∂2z . As long as a is
chosen sufficiently small, this is of no relevance and only means that the approximation
for ∂2z is a bit better than for ∂z.

We hence obtain the following tight-binding (TB) Hamiltonian, if terms up to second order
in k are kept:a

HTI(kx, ky) =
∑
n

OTI(kx, ky)|n〉〈n|+ VTI|n+ 1〉〈n|+ V†TI|n〉〈n+ 1|, (8.11)

with:

OTI(kx, ky) =(C0 + C2k
2
||)γ0 + (M0 +M1k

2
||)γ1 (8.12)

+A0[kxγ3 + kyγ4]− 8t2[M1γ1 + C1γ0],

VTI =tB0γ2 + 4t2[M1γ1 + C1γ0],

and t = −i/2a. Analogously, a discretisation of the standard BCS-Hamiltonian in Nambu-
space,b

HSC(k) =

(
ξ(k) −Δiσ2
Δiσ2 −ξ(k)

)
, (8.13)

with ξ = �
2k2/2m, is obtained:

HSC(k||) =
∑
n

OSC(k||)|n〉〈n|+ VSC|n+ 1〉〈n|+ V†SC|n〉〈n+ 1|. (8.14)

Here, we have:

OSC(k||) =
�
2

2m
(k2|| − 8t2)τ3 ⊗ σ0 +Δτ2 ⊗ σ2, (8.15)

VSC =
2�2t2

m
τ3 ⊗ σ0.

aNote that the tight-binding approach proposed here was also used by Zhao et al. [145] to obtain the
spectral function and S-Matrix of a topological insulator/normal metal interface.

bAlso called Bogoliubov-de-Gennes Hamiltonian.
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The final step of our modelling now consists in coupling the two tight-binding Hamiltonians
HTI(kx, ky) and HSC(k||) at the interface. This is done by specifying the hopping-elements
between the final site of the TI tight-binding chain and the first site of the SC tight-
binding chain. One thus obtains a Hamiltonian of the complete SC-TI heterostructure,
i.e., instead of solving the two systems individually and matching the solutions by means
of boundary conditions, we will solve the entire structure and such conditions are not
required. Evidently, this comes at the expense of having to choose a transfer-Hamiltonian,
that is, the aforementioned hopping elements.

8.3. Interface Model: Transfer-Hamiltonian Approach

So far, the individual tight-binding Hamiltonians of the respective subsystem have been
derived from the corresponding continuum models, and in principle, these can be recovered
when the lattice constant is tuned to zero. The standard way of describing an interface in
the tight-binding framework is to introduce a tunnelling or transfer-Hamiltonian, that is to
say, specify hopping elements that connect the two tight-binding Hamiltonians describing
the respective bulk-systems. In this section, we introduce such a transfer-Hamiltonian for
our model. The choice is in principle ad hoc, but it allows us to describe both strong and
weak coupling between the TI and the SC, as we will show in the results section.

An alternative but comparable approach to this problem was considered by Lababidi and
Zhao [74]. It’s starting point is a continuum Hamiltonian of the SC-TI structure. It
consists of the Zhang-Hamiltonian on the TI-side and a SC-model, which is obtained from
the Zhang-Hamiltonian by putting B0 = A0 = 0 and assuming a singlet-pair potential in
the ’+’-orbital. This effectively corresponds to a two band Hamiltonian with a conduction
band formed by the ’+’-orbital and a split-off valence band formed by the ’−’-orbital.
This ’trick’ is required since the TI and SC part of the structure must share the same
Hilbert-space in this approach. The Fermi-energy is then chosen so that it lies deep inside
the conduction band, and the valence band is essentially irrelevant. As in our case, the
model is transformed to a real space coordinate in the z-direction and the transition from
the TI to the SC part is simply modelled by a change of the Hamiltonian with a functional
dependence proportional to Θ(z). The solution of this problem is then calculated with
the method of Halterman and Valls, which relies on expanding the eigenfunctions of the
Hamiltonian in a complete basis set of wave functions in a certain energy range [55]. In a
sense, this corresponds to a discretisation in k-space, while we discretise in real space.

Irrespective of the specific model used to the describe the interface, there will be a spatial
variation of the Hamiltonian. If this only applied to those parameters which are inde-
pendent of kz, this would not pose a problem at all, as only the on-site components of
the TB-Hamiltonian acquire a z- or, equivalently, n-dependence in that case, while the
hopping elements are the same everywhere.a

In the case we consider here, however, the switching between the two Hamiltonians requires
a symmetrisation of the terms containing the derivative ∂z to maintain the hermiticity of
the Hamiltonian. We hence have to deal with symmetrised operators of the general form:

χ(z)∂z �→
1

2

(
χ(z)∂z + ∂zχ(z)

)
(8.16)

χ(z)∂2z �→ ∂zχ(z)∂z,

where χ can be assumed to be a real function. The symmetrisation of the operator con-
taining the second derivative is only unique if χ(z) is linear in z. Otherwise, there is an
infinite number of choices. Note that Lababidi and Zhao circumvent the symmetrisation

aThis is, for instance, true for the model we used to describe the SC/FM interface, cf. appendix C.
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of the second derivative operators by assuming that the corresponding parameters of the
Zhang-Hamiltonian do not change at all (only B0 and A0 change).

If χ(z) is a smooth function, we can obtain a discretised Hamiltonian of the whole structure
which has a proper continuum limit. In this case, the discretised operators read:

1

2
(∂zχ(z) + χ(z)∂z) =

1

2a

∑
n

|n+ 1〉〈n| ⊗ χn + h.c., (8.17)

∂zχ(z)∂z =
1

a2

∑
n

(
|n+ 1〉〈n| − |n〉〈n| − |n+ 1〉〈n+ 1|+ |n〉〈n+ 1|

)
⊗ χn,

with χn = 1
2(χn+1 + χn).

a Such a continuum model can be used for studying structures
where an interface region of finite size is included. However, we found that this generically
yields a weak coupling and is hence less interesting. We can still use this result to propose
a choice for the hopping elements between the final TI-site N and first SC-site N + 1
within our model. Inspired by the fact that the arithmetic average χn enters the hopping
elements between neighbouring sites, we propose the transfer-Hamiltonian [54]:

HT = T |N + 1〉〈N |+ T †|N〉〈N + 1|, (8.18)

with

T =
t

2
(PVTI + VSCP) . (8.19)

Here, we introduced the projector P, which projects the single band of our SC-model onto
the ’+’-orbital of the Zhang-Hamiltonian. More precisely, we have:

P =

⎛
⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

⎞
⎟⎟⎠ . (8.20)

This is required to match the different on-site Hilbert-spaces of the two semi-infinite tight-
binding chains. Alternatively, one may use the same superconductor model as Lababidi
and Zhao, but including a ’dummy’ band is not necessary in our approach and changes the
results only quantitatively. The same is true if a coupling to the second orbital is included
in the choice of P. Lababidi and Zhao argued that coupling the SC to the ’+’-orbital would
correspond to using Cu doped Bi2Se3 as a superconductor. However, the superconducting
order in this compound is still under investigation and the order-parameter symmetry is
not clear as of yet [107].

The dimensionless parameter t allows us to tune the coupling between the SC and TI.
We will see that with this choice of T , the system can be tuned from the weak-coupling
to the strong-coupling regime as a function of t. We call HT transfer-Hamiltonian rather
than tunnelling-Hamiltonian to underline that our approach is not perturbative in T and
therefore not restrained to the weak-coupling limit. It may also be possible to derive such
a transfer-Hamiltonian from the step-function switching assumed by Lababidi and Zhao.
In that case, a δ-function would appear in the symmetrised operators, which one could,
for instance, approximate by a box.

a Here again, a lattice spacing of a/2 was used to discretise the second operator. This results in χn+1/2

rather than χn appearing in the second equation – but the first can be approximated by the latter.
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Figure 8.1. – Sketch of the tight-binding model used here to describe the SC-TI heterostruc-
ture. The two semi-infinite tight-binding chains of the TI and SC are coupled by a transfer-
Hamiltonian. Eventually, we consider only a small number of sites explicitly, which are coupled
through self-energies (ΣSC, ΣTI) to semi-infinite leads. Figure from Ref. [54].

8.4. Transformation under Rotations in the x-y-Plane

The tight-binding Hamiltonian depends parametrically on (kx, ky) = k||. To ease numerical
effort, it is advantageous to exploit the symmetry of the Hamiltonian under rotations
in the x-y-plane.a All terms depending on k|| only are obviously invariant under these
rotations, but terms proportional to k± transform non-trivially. In polar coordinates, we
have k± = k||e±iϕ. These terms only appear in OTI(k||, ϕ), and it is easy to see that:

OTI(k||, ϕ) = UTI

[
OTI(k||, 0)

]
U†TI, (8.21)

with

UTI = ν0 ⊗ e−iϕσ3 ⊗ τ0 + τ3
2

+ ν0 ⊗ eiϕσ3 ⊗ τ0 − τ3
2

, (8.22)

holds. UTI is unitary and the transformation in equation (8.21) is a similarity trans-
formation. From this ’local’ relation, we must now construct a transformation of the full
tight-binding Hamiltonian. Since VTI = UTIVTIU†TI, the TB-Hamiltonian of a finite TI-slab
abides the following transformation rule:

HTI(k||, ϕ) = UTIHTI(k||, 0)U
†
TI, UTI =

∑
n

UTI|n〉〈n|. (8.23)

The SC-part, on the other hand, is in principle fully invariant under these rotations. Still,
to obtain a global unitary transformation that leaves the transfer-Hamiltonian, which is
independent of k||, invariant, we have to apply a transformation here, too. Specifically, we
propose:

USC = e−iϕσ3 ⊗ τ0 + τ3
2

+ eiϕσ3 ⊗ τ0 − τ3
2

. (8.24)

We then have:

HSC(k||) = USCHSC(k||)U
†
SC, USC =

∑
n

USC|n〉〈n|, (8.25)

for a finite SC-slab, i.e., the transformation leaves the SC-Hamiltonian invariant as re-
quired. We now straightforwardly define:

U =

J∑
n=1

UTI|n〉〈n|+
N∑

n=J+1

USC|n〉〈n|, (8.26)

aThis reasoning is inspired by Lababidi and Zhao, who applied it to their continuum model.
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where J is the site of the TI next to the interface. Since T = USCT U†TI, we then have:

H(k||, ϕ) = UH(k||, 0)U †. (8.27)

A consequence of this symmetry is that the spectrum of the Hamiltonian is invariant under
rotations in the x-y-plane. When calculating the dispersion of the surface states, it is thus
sufficient to consider a single cut along any axis in the plane. All quantities we calculate
will be obtained from the retarded Green’s function of this Hamiltonian:

G(ε, k||, ϕ) = (ε+ iη −H(k||, ϕ))−1, (8.28)

for which the above relation implies:

G(ε, k||, ϕ) = UG(ε, k||, 0)U †. (8.29)

Note that this symmetry only pertains to the second order Zhang-Hamiltonian. If the third
order in k terms are retained, the surface state dispersion will show hexagonal warping.

8.5. Choice of Parameters

For our calculations, we choose the parameters of Bi2Se3 for the k ·p-Hamiltonian. These
are [80]: C0 = −0.2343 eV, C1 = 5.74 eVÅ2, C2 = 30.4 eVÅ2, M0 = −0.28 eV, M1 = 6.86
eVÅ2, M2 = 44.5 eVÅ2, A0 = 3.33 eVÅ, B0 = 2.26 eVÅ. The value of C0 was shifted from
its literature value of −0.0083 eV to move the chemical potential to the Dirac-point of the
surface state. A lot of topological insulators are actually not insulators when naturally
grown, i.e., their chemical potential is in the conduction band and must be tuned to lie
inside the band gap by gating [20] or chemical doping [59], if one wishes to access surface
state physics in transport. Our results only depend quantitatively on that choice, as long
as the chemical potential lies inside the gap.a As we shall see, the proximity coupling will
shift the surface state dispersion anyway.

For the superconductor, we choose a Fermi-energy of EF = 0.4 eV, to model a metal.
The effective mass of the conduction electrons is chosen to be the free electron mass,
�
2/2m = 3.81 eVÅ2. Changing these parameters only affects our results quantitatively. In

particular, the value of t in the transfer-Hamiltonian for which ideal coupling is achieved
depends on these parameters.

aOne may object that as long as we consider a band structure only and not its occupation, there is no
point in talking about a chemical potential. However, the BCS-Hamiltonian that we couple to the TI
implicitly introduces a chemical potential by specifying the position of the superconducting energy gap.
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9. Recursive Green’s Function Technique
in the Superconducting State

9.1. A Quick Tour of the RGF-technique

The Recursive Green’s Function (RGF) technique is a standard tool for transport calcu-
lations in mesoscopic physics [44]. It is based on the finite differences method for solving
the Schrödinger equation [27], i.e. tight-binding discretisations as the one discussed in
the previous section. We use a recent extension of this method [86, 87], that allows us to
calculate the local spectral function and also adopt the notation of Metalidis [86]. The
fundamental object of this formalism is the retarded Green’s function of the tight-binding
Hamiltonian, which can formally be defined as [86]:

G(E) = (E + iη −H)−1. (9.1)

We omit the ’R’, since the retarded Green’s function is the only one we need, GA is simply
obtained from GA = [GR]†. This definition of the Green’s function is only sensible for a
single-particle Hamiltonian, i.e., if interactions are ignored or described at the mean-field
level, as it is the case here.

Obviously, G has the same size as the Hamiltonian H. However, for the calculation of
observables like the current density or the density of states, only certain matrix-elements
of G in site-space are required:

Gn,m = 〈n|G|m〉. (9.2)

Specifically, these are the elements Gn,n for the spectral function and if currents are to be
calculated within the Landauer-Büttiker framework, the matrix elements between sites on
the respective leads are required [86].

We now turn to the fundamental equation which makes this formalism tick. Consider

H = h+ V, g = (E + iη − h)−1, (9.3)

i.e., we assume that H is the sum of a Hamiltonian h, of which we know the Green’s
function, and some perturbation V . Some simple algebra then shows that the Green’s
function of the full Hamiltonian can be obtained from [44]:

G = g + gV G. (9.4)
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9. Recursive Green’s Function Technique in the Superconducting State

Figure 9.1. – The sketch depicts the calculation of GL
n+1,n+1. Grey sites are sites that have

already been connected, the dark grey site is the site j of the connected subsystem of which
we know GL

j,j . Figure adapted from Ref. [86].

This is a Dyson-type equation that one can use to successively obtain the desired elements
of G by gluing together disconnected parts of the system, which is the fundamental idea
behind the RGF technique [44, 86].

We are interested in spectral properties of the system and the local spectral function is
obtained as usual:

An(k||, ε) = − 1

πa
Im Tr[〈n|G|n〉], k|| = (kx, ky), (9.5)

assuming that the system is discretised in one dimension only, as it is the case here. The
factor 1/a stems from the fact that the projection of G on the site n is not perfectly local,
i.e., the site carries a spatial weight, which is exactly the lattice constant in one dimension.
One can check that if the factor 1/a is included, An(k||, ε) is invariant under changes of a
in an infinite system and coincides with the local spectral function of the corresponding
continuum model.

Consequently, only the diagonal elements in site-space Gn,n are of interest, and the recur-
sive scheme for their calculation is the following. First, one calculates the Green’s function
of the isolated individual sites [86]:

Gisol
n = (ε+ iη −On)

−1. (9.6)

Here, On is the on-site part of the TB-Hamiltonian at site n.

Subsequently, Green’s functions GL
n,n and GR

n.n are calculated by starting from the left
or the right end of the TB-chain respectively and adding single sites successively.a The
recursive scheme for their calculation is [86]:

GL
n+1,n+1 = [1−Gisol

n+1,n+1Vn+1,nG
L
n,nVn,n+1]

−1Gisol
n+1,n+1, (9.7)

GR
n,n = [1−Gisol

n,nVn,n+1G
R
n+1,n+1Vn+1,n]

−1Gisol
n,n.

These relations can easily be proven from equation (9.4) by projecting it on the relevant
sites. A subtlety hereb is that GL

n,n always refers to the Green’s function of the subsystem

that has been connected so far, i.e., in GL
n,n and GL

n+1,n+1 the GL are not the same, they
refer to different Hamiltonians (see Fig. 9.1). The notation is still unique in the sense that
for each subsystem, we only know the Green’s function at its final site.

Eventually, we obtain Gn,n from the relation [86]:

Gn,n = [1−GL
n,nVn,n+1G

R
n+1,n+1Vn+1,n]

−1GL
n,n, (9.8)

aThis obviously implies that the chain is finite. Eventually, we will couple this finite chain to semi-infinite
leads via self-energy terms.

bOne may also say: a deficiency of this notation.
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which can also be derived from (9.4). The point is that for each subsystem constructed
from the left, we also constructed the complementary subsystem from the right; and if we
want to join them to construct the full system, we only need the respective surface Green’s
functions - and those were calculated in the previous step.

This scheme is easily extended to two dimensions. In that case, one adds up slices rather
than single sites and the local Hilbert-space is spanned by the sites of an individual slice
[44, 86]. This implies that the matrices which need to be inverted by standard means in the
above relations grow with the size of the system in the second dimension. Consequently,
the scheme is best suited for systems which are small in this second dimension and can only
be used for rectangular lattices. Alternatively, one can devise recursive schemes based on
adding single sites even in two or three dimensions. However, this involves more elaborate
book-keeping.a

Coupling to leads

A particular advantage of the RGF technique is that it effectively allows us to consider
infinite tight-binding models by coupling a finite ’device’ region to semi-infinite leads via
self-energy terms [86]. Again, it is eq. (9.4) which makes that work.

We illustrate this for a single, semi-infinite lead attached to a finite TB-chain. Let g be
the Green’s function of the Hamiltonian where the coupling V between the final site N
of the central device and the first site N + 1 of the lead is turned off. We thus have a
Hamiltonian with two independent blocks, one of them being the central device and finite
dimensional. We are only interested in the central device, i.e. matrix elements 〈i|G|j〉
with i, j ≤ N . Exploiting that V = V0|N + 1〉〈N |+ V †0 |N〉〈N + 1|, we obtain:

〈i|G|j〉 = 〈i|g|j〉+ 〈i|g|N〉V †0 〈N + 1|g|N + 1〉V0〈N |G|j〉, (9.9)

from the Dyson-equation.

Inspecting this result shows that the only matrix element of g on the lead is the surface
Green’s function 〈N + 1|g|N + 1〉. If we limit G and g to the central device, we can hence
write:

G = 1 + gΣG. (9.10)

with Σ = |N〉V †0 〈N + 1|g|N + 1〉V0〈N | independent of the central device Green’s func-
tions. This Dyson-equation is equivalent to defining G with respect to the renormalised
Hamiltonian Hcd + Σ, i.e. the central device Hamiltonian with the self-energy added to
the on-site term at site N [86].

We now still have to calculate the surface Green’s function of the lead. It turns out that
due to its semi-infinity and translation invariance, this can be done very efficiently with a
recursive algorithm that basically doubles the size of the lead at each step [86].b Since this
scheme does not exploit the structure of the Hamiltonian in any kind of way – apart from
the fact that it must have next-neighbour coupling only – it applies to superconductor or
topological insulator leads without any limitations or extra effort.

9.2. Nambu-Gor’kov-Green’s Function on a Lattice

The RGF technique is traditionally used in transport calculations for low-dimensional
mesoscopic conductors like semi-conductor quantum wells [44] or graphene flakes [31], but

aPersonal communication from T. Löfwander.
bThis scheme is explained in detail in the appendix of Ref. [86].
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9. Recursive Green’s Function Technique in the Superconducting State

has also been used to describe superconducting structures [122, 123, 5]. This extension
is straight-forward, since – as shown in the previous section – the Nambu-notation allows
us to write the mean-field Hamiltonian of BCS-theory as an operator which is quadratic
in (Nambu) field-operators and therefore complies to the basic requirement of the RGF-
technique, i.e., the Hamiltonian in question must be a single-particle Hamiltonian.

We denote Green’s functions and Hamiltonians in Nambu-space be calligraphic letters and
define the Nambu-Gor’kov Green’s function by:

G = (ε+ iη −H)−1, (9.11)

where H is a tight-binding Hamiltonian in Nambu-space. Naturally, G has a matrix struc-
ture in particle-hole space, and the familiar Gor’kov Green’s functions are:

〈n|G|m〉 =
(

Gn,m Fn,m

−F̃n,m −G̃n,m

)
, (9.12)

in this context. Let us now assume that we know all eigenfunctions ψλ ofH with eigenvalues
ελ. Generically, they have the structure:

ψλ(k||) =
∑
n

un,λ(k||)⊗ γp ⊗ |n〉+ vn,λ(−k||)⊗ γh ⊗ |n〉. (9.13)

Here, γp, γh are the canonical basis of particle-hole space, and un,λ(k||), vn,λ(−k||) are
vectors in spin- and potentially orbital-space. It is then straight-forward to show that:

Gn,n =
∑
λ

un,λu
†
n,λ

ε+ iη − ελ
, G̃n,n = −

∑
λ

vn,λv
†
n,λ

ε+ iη − ελ
, (9.14)

Fn,n =
∑
λ

un,λv
†
n,λ

ε+ iη − ελ
, F̃n,n = −

∑
λ

vn,λu
†
n,λ

ε+ iη − ελ
.

The Green’s function defined in (9.11) coincides with the usual definition of the Nambu-
Gor’kov Green’s function [3] in the absence of impurities or other self-energies.

Symmetry relations

As always, considering Nambu-space implies redundancy and thus a particle-hole sym-
metry relation. Our Green’s function is defined with respect to the BdG-Hamiltonian
H(k). Due to the symmetry of the operator in particle-hole space, for every eigenstate
ψλ = (uλ(k), vλ(−k))T with energy ελ, ψ̃λ = (vλ(−k), uλ(k))

T is an eigenstate of H∗(−k)
with energy −ελ. It is then easy to show that:[

G̃(−ε,−k)
]∗

= G(ε,k). (9.15)

In our case k = k|| and H(k||) is a tight-binding Hamiltonian, which does not change
anything about this result, since the particle-hole symmetry of H still holds.

Usually, the spectral function is defined as the trace over G only. From equation (9.14),
we see that this corresponds to the particle-like weight of the eigenstates. To extract the
full dispersion of the BdG-Hamiltonian, we will, however, consider a more unconventional
definition of A, i.e., take the full trace over G. In this case, the above symmetry relation
implies:

A(ε,k) =− 1

aπ
Im
[
Tr G(ε,k)− Tr G̃(ε,k)

]
(9.16)

=− 1

aπ
Im
[
Tr G(ε,k) + Tr G(−ε,−k)

]
= A(−ε,−k).

We will compare both definitions in our discussion of the results.
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9.3. The Gap-equation

The gap-equation for this problem, where the z-coordinate is in real space and the x, y-
coordinates in k-space, was given in Ref. [74] in terms of the BdG wave functions:

Δ(z) = −g(z)
∫
dk||

′∑
λ

uλ,↑(k||, z)v∗λ,↓(−k||). (9.17)

Where the accent on the sum indicates that the sum is to be taken over eigenvectors with
0 < ελ < εc, εc being the energy cut-off.a Using that:

lim
η→0

(
1

ε+ iη − ελ
− 1

ε− iη − ελ

)
−→ −2πiδ(ε− ελ), (9.18)

is is straight-forward to show that this is identical to

Δn,n = g(n)

∫
dk||

∫
ε>0

dε

2iπ
(F (↑,↓)

n,n (ε,k||) + [F̃ (↑,↓)
n,n ]†(ε,k||)), (9.19)

in the context of our model, where (↑, ↓) refers to the up-down entry in the spin-matrices
Fn,n, F̃n,n. Given that τ3GAτ3 = [GR]† and GK = (GR − GA) tanh(ε/2kBT ), this is also
consistent with the usual definition of the gap-equation in terms of FK at zero-temperature.

To perform the calculation of the gap-profile in the most efficient way, one must consider
a SC tight-binding chain coupled to the TI-lead on the left and the SC-lead on the right.
The part of the TB-chain considered to be the central device must contain the whole region
of varying Δ(n), i.e., must extend over several coherence lengths. The self-energy of the
TI-lead is then given by:

ΣTI(k||, ϕ) = T 〈J |gTI(k||, ϕ)|J〉T †|J + 1〉〈J + 1|. (9.20)

Here, 〈J |gTI(k||, ϕ)|J〉 is the surface Green’s function of the TI, and J+1 the site of the SC
next to the interface. Exploiting the transformation rules under rotations in the x-y-plane
discussed in the previous section, we obtain:

ΣTI(k||, ϕ) = USCT U†TIUTI〈J |gTI(k||, 0)|J〉U†TIUTIT †U†SC, (9.21)

and thus

ΣTI(k||, ϕ) = USCΣTI(k||, 0)U†SC. (9.22)

The same holds for the self-energy ΣSC from the SC-lead and we arrive at:

G(k||, ϕ) = (ε+ iη −HSC(k||, ϕ)− ΣTI(k||, ϕ)− ΣSC(k||, ϕ))−1 = USCG(k||, 0)U †SC. (9.23)

This relation can be used to reduce the numerical effort for the calculation of the dk|| =
k|| · dk||dϕ-integral, since only G(k||, 0) must be calculated with the RGF-technique.

aIn their definition of the BCS mean field Hamiltonian, Lababidi and Zhao choose the sign of the pairing
terms to be positive, as opposed to us. This leads to an additional minus sign in the gap-equation
stated here.
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We briefly discuss the results obtained from our model and first show that our one-
dimensional TB-Hamiltonian correctly reproduces the bulk band structure of topological
insulator and also the surface states by comparing our numerical results to the solutions of
the continuum model. We then turn to the TI/SC heterostructure and discuss the induced
superconductivity in the interface states in terms of the spectral function which provides
their dispersion. Finally, we briefly comment on the spatial profile of the interface states,
which, not surprisingly, extend far into the superconductor, as already noted by Lababidi
and Zhao [74].

10.1. Analytical Discussion of the k·p-Model and Comparison
with Numerical Results

We first provide an analytical solution of the k·p-model at a vacuum boundary. Specifically,
we derive the surface state solutions and their dispersion. While this has been done already
[141, 80], we repeat the analysis here – the purpose being to check the validity of our tight-
binding model. We show that so-called hard wall boundary conditions for the TB-model,
i.e., simply terminating the tight-binding chain, implement the open boundary condition
(ψ(z = 0) = 0) of the continuum model, and that the analytical solution of the surface
state dispersion and the spatial profile of these states is reproduced.

First, we need to obtain the plane wave solutions of HTI(k) for a given k|| and ε, i.e., we
have to solve the Schrödinger equation for kz. Since we have second order terms in kz that
is a non-linear problem, but a system of linear equations can be obtained by introducing
the auxiliary vector Φ′ = kzΦ [145] and:

ĤTI = ĥ0(kx, ky) + ĥ1kz + ĥ2k
2
z . (10.1)

The Schrödinger equation HTI(k)Φ = εΦ then becomes [145]:(
0 1

−ĥ−12 (ĥ0 − ε) −ĥ−12 ĥ1

)(
Φ
Φ′

)
= kz

(
Φ
Φ′

)
, (10.2)

i.e., an eigenvalue equation for kz. The solutions for kz and the corresponding eigenvectors
are easily inferred from this equation. Analytical expression can be obtained [79], but they
are cumbersome and will thus not be stated here. All we need to know at this point, is
that there are four eigenvalues for kz with kz = ±k1,2. We are looking for states inside the
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band-gap of HTI(k). For energies ε inside the gap, the solutions for kz will be complex, and
a surface state solution satisfying ψ(z = 0) = 0 can be obtained from a linear superposition
of the corresponding eigenvectors. Assuming a semi-infinite crystal implies that only two
of the possible kz solutions allow for normalisability of the wave function. These are both
twofold degenerate, i.e., have a two dimensional eigenspace. We hence have the ansatz:a

Ψ(k||, z, ε) = eik1z
[
α · Φ(1)

1 (k||, ε) + β · Φ(2)
1

]
+ eik2z

[
γ · Φ(1)

2 (k||, ε) + δ · Φ(2)
2 (k||, ε)

]
,

(10.3)

where ((Φ′1,2)(1,2) Φ
(1,2)
1,2 )T form a basis of the eigenspace of k1,2 in eq. (10.2). We know that

eigenspaces of different eigenvalues are necessarily orthogonal. The boundary condition

can however only be fulfilled with the above ansatz, if < Φ
(1)
1 ,Φ

(2)
1 > and < Φ

(1)
2 ,Φ

(2)
2 >

share a common subspace which is at least one-dimensional. This is not a contradiction,
since they are not eigenspaces of equation (10.2).b This condition provides an additional
constraint, resulting in the surface state dispersion ε(kx, ky). The dispersion can hence be
obtained from:

0 = Det([Φ
(1)
1 ,Φ

(2)
1 ,Φ

(1)
2 ,Φ

(2)
2 ]), (10.4)

since these vectors need to be linearly dependent for the surface state to exist.

Surface state Hamiltonian

The surface state Hamiltonian can be obtained by solving the problem outlined above for
k|| = 0 and projecting the full Hamiltonian HTI(k) on these solutions [80]. This provides
a reasonable description of the surface states for small values of k||. For k|| = 0, the
Hamiltonian reads:

ĤTI(k|| = 0) =(C0 + C1k
2
z) · 14×4+ (10.5)

+

⎛
⎜⎜⎝

M0 +M1k
2
z B0kz 0 0

B0kz −(M0 +M1k
2
z) 0 0

0 0 M0 +M1k
2
z −B0kz

0 0 −B0kz −(M0 +M1k
2
z)

⎞
⎟⎟⎠ ,

i.e., is block-diagonal, and we have solutions with the structure Ψ↑ = (ψ↑ 0)T , Ψ↓ =

(0 ψ↓)T [80]. We consider the upper block, the eigenvalue equation ĤTI(k|| = 0)Ψ↑ = εΨ↑
can be rewritten as [80]:c[

(C0 − ε+ C1k
2
z)ν1 − (M0 +M1k

2
z)iν2

]
ψ↑ = −B0kzψ↑. (10.6)

Diagonalising the matrix yields two solutions for ψ↑, which we call ϕ±, since they are the
same for the lower block (note that the difference between the upper and the lower block
is only a sign change on the right side of equation (10.6)). The equation then becomes:

±
[
(−ε̃+ C1k

2
z)

2 − (M0 +M1k
2
z)

2
]1/2

ϕ± = −B0kzϕ±, (10.7)

with ε̃ = −C0 + ε, which yields an equation for kz:

(−ε̃+ C1k
2
z)

2 − (M0 +M1k
2
z)

2 = B2
0k

2
z , (10.8)

aThis ansatz implicitly assumes that k1,2 are the decaying solutions. This assumption can be made
without loss of generality, since the solutions come in ±-pairs.

bOnly the spaces spanned by the full eigenvectors (Φ′,Φ)T are.
cRecall that ν1,2,3 are the Pauli-matrices in orbital-space.
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that has the same solutions as above, i.e. kz = ±kα. From (10.7), we now see immediately
that if kα is a solution for ϕ+, then −kα is a solution for ϕ−. ϕ± are given by:

ϕ+ = c

(√
(−ε̃+ C1k2α)− (M0 +M1k2α)

(−ε̃+ C1k2α) + (M0 +M1k2α)
1

)T

, (10.9)

ϕ− = c

(
−
√

(−ε̃+ C1k2α)− (M0 +M1k2α)

(−ε̃+ C1k2α) + (M0 +M1k2α)
1

)T

,

where c is a normalisation constant. The existence condition of the surface state implies
that ϕ± must be the same for α = 1, 2, which gives an implicit equation for the energy of
the surface state:

ε̃ =M0 − (C1 +M1)
√
k21k

2
2. (10.10)

This equation is quadratic in ε and hence has two solutions:

ε̃1 =M0 ε̃2 = −C1M0

M1
, (10.11)

but there should only be one. Plugging ε̃1 into (10.8), however, shows that either k1 or k2
is zero, which does not allow for the construction of a surface state, i.e. ε2 = ε̃2 + C0 is
the energy of the surface state. The surface state hence has the structure:

ψ↑ = (αeik1z + βeik2z)ϕ+ + (γe−ik1z + δe−ik2z)ϕ−. (10.12)

Due to normalisability, we have δ = γ = 0, and consequently:

ψ↑ =
√

1

2
(eik1z − eik2z)ϕ+, (10.13)

fulfils the boundary condition. This implies on the other hand:

ψ↓ =
√

1

2
(eik1z − eik2z)ϕ−. (10.14)

Thus, we fully solved the edge states for k|| = 0. One may now try to construct the

solutions for finite k|| from these states. To this end, we separate ĤTI = ĥ(∂z) + ĥ(kx, ky)

and observe that the states constructed above solve ĥ(∂z) since ĥ(kx = 0, ky = 0) = 0. For
the states ϕ± we introduce the notation:

ϕ+ = c (χ 1)T ϕ− = c (−χ 1)T , (10.15)

Now that we know k1, k2 and ε, χ only depends on model parameters. Projecting the
Hamiltonian ĥ(kx, ky) on the states ϕ+, ϕ− then results in [80]:

(ϕ†+ ϕ†−)ĥ(kx, ky)
(
ϕ+

ϕ−

)
=

(
ε2 + C̃2k

2
|| iÃ0k−

−iÃ0k+ ε2 + C̃2k
2
||

)
, (10.16)

with

C̃2 = |c|2 · [(C2 +M2)|χ|2 + (C2 −M2)], Ã0 = −|c|2 · 2Imχ ·A0. (10.17)

In the special case of C0 = C1 = 0, we have ε2 = 0 and χ = i, resulting in C̃1 = 0, the
surface state Hamiltonian reduces to [80]:

Hsurface = −A0(kyσx − kxσy), (10.18)

which agrees with the standard model Hamiltonian that enters the Fu-Kane model after
the transformation:

A0(σxkx + σyky) = UHsurfaceU
†, (10.19)

with U = e−iσzπ/4.
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Figure 10.1. – Left: Dispersion of the surface states calculated from (10.4) (blue) and from
the effective surface state Hamiltonian (10.16) (dashed-green) and the pair of bulk-bands for

kz = 0 (solid-red) and kz = 0.21Å−1 (dashed-red). The parameters of the k ·p-model are those
of Ref. [80] for Bi2Se3, but C0 has been shifted so that the crossing-point of the surface state
dispersion lies as ε = 0. The dispersion is plotted along the cut kx = ky. Right: Dispersion of
the bulk states for kx = ky = 0 as a function of kz.

Numerical results and comparison

In Fig. 10.1, we compare the dispersion of the surface states obtained from the effective
surface state Hamiltonian in equation (10.16) to that inferred from the general existence
condition (10.4). The agreement is perfect, even far away from the Γ-point. This is
surprising, since the solutions k1,2 do in general depend on k||, which should imply a
renormalisation of the surface state dispersion. We also plot two pairs of bulk-states. At
kz = 0, we have the band-minimum of the conduction band and at kz = 0.21Å−1 the
maximum of the valence band. The dispersion of the bulk bands as a function of kz is
plotted on the right-hand side of Fig. 10.1. Note that the valence band has a very flat
dispersion around the band maximum.

For comparison, we plot the numerical result obtained from the tight-binding model we in-
troduced before in Fig. 10.3. We consider a semi-infinite topological insulator, the spectral
function An(k||, ε) is evaluated at site n=200. We see that the dispersion of the surface
states agrees exactly with the analytical model. The spectral weight of the surface states
is, however, not homogenous, which implies that their spatial profile in the z-direction
changes as a function of k||. The spectral density of the bulk-states also agrees well with
what one would expect from the analytical solution. The band maxima and minima are
consistent with the analytical solution and the enhanced spectral weight in the valence
band agrees with its flat dispersion. The spectral weight of the conduction band is small
in comparison and decreases for higher energies. Given the steep dispersion of this band,
this is not surprising.

In Fig. 10.4, we compare the spatial profile of the surface states at k|| = 0. The local
spectral function is proportional to the square modulus of the wave function and must
thus be compared to:

|χ(z)|2 = |eik1z − eik2z|2, (10.20)

with k1 = 0.5237iÅ−1 and k2 = 0.0779iÅ−1 for the given set of parameters. We normalise
both quantities to their maximum value and find that the spatial profile agrees perfectly
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Figure 10.2. – The tight-binding model used to calculate the spectral function for a topo-
logical insulator with a single surface.
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Figure 10.3. – Left: Spectral function at site n=200 for a = 0.1Å and η = 0.005eV. Right:
cut along kx = 0 and kx = 0.0065Å−1. kx = ky was assumed for these calculations.

if z = n · a is assumed, where n is the site number and a the lattice constant of the TB-
model.a We also checked this for finite values of k||, using equation (10.2) to obtain the
values of k1,2. We find that the spatial profile of the states indeed changes with k|| and
that the negative energy states decay faster than the positive energy ones. This can be
understood from the fact that the negative branch moves deeper into the bulk-gap, while
the positive branch approaches the conduction band. The agreement with the TB-model
is again perfect (not shown here).

To conclude, we established that the tight-binding model we put forward reproduces ma-
terial specific properties, i.e. the band structure, correctly and that terminating the tight-
binding chain implements the vacuum boundary condition. Both the dispersion and the
spatial profile of the surface states are found to be in perfect agreement with analytical
results.

10.2. Interface State Dispersions

In the following, we discuss how the dispersion of the surface states is renormalised when
the TI is coupled to the superconductor. If we are interested in the dispersion only, the
most effective model to consider is a single TI-site coupled to semi-infinite leads on the left
and right (see Fig. 10.5). This single site is the one sitting right next to the interface. The
spectral weight is relatively small here, since the states reach their maximum amplitude
deeper inside the TI. The relevant energy scale is given by the superconducting gap, this
implies that compared to Fig. 10.3, we stay very close to the Γ-point. Note that the spectral
function is calculated from the full trace over the Nambu-Gor’kov Green’s function G, in
order to obtain the full dispersion of the BdG-Hamiltonian. Usually, the trace is taken

aThis implies that the first site of the semi-infinite TB-chain does not correspond to the surface, i.e. z = 0,
but to z = a.
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Figure 10.4. – The spectral function An(k|| = 0, ε = 0) was calculated for a = 0.1Å and
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Figure 10.5. – Model used to calculate the interface state dispersion. A single TI-site is
coupled to semi-infinite leads on the left and right. The green line indicates that the surface
Green’s function of the superconductor couples through the transfer-Hamiltonian to the site.

over G only. We will consider that case later on. The surface state dispersion is plotted in
the top panel of Fig. 10.6, i.e., the coupling to the SC is turned off. In the other plots, we
show the result for finite coupling (t �= 0). We observe that a gap opens in the dispersion of
the interface states and the spectral function is symmetric both in energy and momentum.
Two pairs of dispersions appear due to the doubling of states that arises as a consequence
of the Nambu-space construction. The spectral weight of the states is enhanced for energies
smaller than the bulk-gap of the superconductor. This is because truly localised states
exist only for these energies. For energies exceeding |ΔSC|, the surface states of the TI
hybridise with the continuum of bulk-states of the superconductor. The size of the induced
gap increases with the coupling parameter t that enters the transfer-Hamiltonian (8.19)
until the point of ideal coupling is reached at about t = 0.85 for this choice of parameters.
At this point, the interface states merge fully into the DOS of the superconductor, and
there are basically no states left inside the superconducting gap. As t increases further,
the coupling becomes weaker again and the induced gap eventually closes. For large t, the
superconductor is effectively decoupled, but the surface state dispersion is shifted in energy
compared to the t = 0 case. The plot shown for t = 20 in Fig. 10.6 is a bit confusing in
this respect, since a second pair of states appears that is shifted in the opposite direction.
Again, this is a consequence of the fact that we trace over the whole Nambu-Gor’kov
Green’s function. For clarity, the spectral function calculated from the trace over G only
is plotted in Fig. 10.7. Obviously, the Γ-point of the surface state dispersion is shifted to
negative energies. In terms of the Fu-Kane model, this corresponds to μ > 0. This shift
increases with the coupling strength and is maximal for t = 0.85.a

At energies smaller than ΔSC and for intermediate couplings, the dispersion looks indeed
very similar to that of the Fu-Kane model, which we plotted in Fig 7.2. We shall discuss

aNote that the momentum scale is larger by a factor of 10 in the t = 0.85 plot.
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Figure 10.6. – The spectral function An(k||, ε) for a = 0.1Å and η = 5e−5eV. The blue
dashed lines indicate the bulk-gap of the superconductor. Top-left: t = 0; top-right: t = 0.65;
middle-left: t = 0.75; middle-right: t = 0.85; bottom-left: t = 1.05; bottom-right: t = 20.
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Figure 10.7. – The spectral function An(k||, ε) with the trace over G only for a = 0.1Å and
η = 5e−5eV. The blue dashed lines indicate the bulk-gap of the superconductor. Left: t = 0.65;
right: t = 0.75.

this in more detail in the next section.

An important question to address is the dependence of these results on the lattice param-
eter a. As shown in the previous section, the spectral function is invariant under changes
of a and reproduces the continuum model, provided that a is small enough. This does,
however, only hold if the tight-binding model has a proper continuum limit, as it is the case
for the semi-infinite TI we considered before. The model we consider here does not have
a continuum limit. The transfer-Hamiltonian was chosen ad-hoc and does not increase in
size when a is reduced. Consequently, our results depend quantitatively on the choice of
a, but the conclusions we draw from our analysis do not. For two different choices of a,
we find two choices of t which give us the same coupling strength. This is illustrated in
Fig. 10.8, where we plot the position of the minimum (εmin, kx,min) of the interface state
dispersion as function of t for two values of the lattice constant. The point where the
coupling is maximal is almost invariant at around t ≈ 0.845−0.85, but is suppressed more
quickly for a = 0.01Å than for a = 0.1Å. In fact, for two different lattice constants a1,2,
we find that if the curves for a2 are rescaled with the formula:

t′ = (t− tmax) ·
a1
a2

+ tmax, (10.21)

where tmax is the position of the maximum, they agree relatively well around the maximum,
but not for large t. For t → ∞, a shift of the dispersion in energy remains, which is
different for different values of a. In the context of a real system, the transfer-Hamiltonian
is supposed to model the interface coupling of the two materials and should in principle
be calculated from overlaps of atomic orbitals. In the ad-hoc model we chose, t has does
not have the meaning of a transmission coefficient as in the scattering matrix approach we
considered in the context of quasiclassical theory. It rather serves to interpolate between
the band dispersions of the adjacent materials. Thus, there is some ideal value of it, which
depends on the material parameters. Other choices for this transfer-Hamiltonian have been
considered in the literature, as, for instance, the mean-square of the hopping elements [123].
But in any case, our choice allows us to model the superconducting proximity effect in the
surface states of a topological insulator both in weak and strong coupling limits, and the
conclusion we draw from it for the validity of the Fu-Kane model are independent of the
lattice-parameter choice.
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Figure 10.8. – Position of the minimum εmin, kx,min of the interface state dispersion as
inferred from the spectral function for η = 5e−5eV and an energy resolution of Δε = 4e−6eV
and a momentum resolution of Δkx = 3.33e−5Å−1 and ky = kx. Blue: a = 0.1Å; green:

a = 0.01Å; red: a = 0.01Å with t rescaled as t = (t−0.845) ·10. The position of the minimum
was determined from the maximum of the spectral function at the bottom of the interface
state dispersion, which lies slightly above the SC bulk-gap for ideal coupling. The values of
εmin in the range of weak coupling (εmin < 0.1ΔSC) are not very accurate, as it is hard to tell
in these cases, whether the gap already closed or not.

10.3. Comparison with the Fu-Kane Model

In Fig. 10.9 , we plot the spectral function for a = 0.1Å and t = 0.65, 0.75 and fit the
dispersion of the Fu-Kane Hamiltonian (7.3) to our numerical data. The fit-values are
stated in table 10.1. Naturally, the Fu-Kane model does not capture the fact that apart
from the gap induced in the interface states, ΔFK, the bulk-gap of the superconductor
does also play an important role. Thus, it is not surprising that this theory does not
describe the dispersion correctly at energies comparable to ΔSC. As long as the interface
states do not merge completely into the bulk-DOS of the superconductor, it is, however,
always possible to obtain a reasonable fit to the Fu-Kane model around the minimum of
the interface state dispersion.

Fu-Kane theory assumes a singlet-gap which is independent of momentum and energy. In
the context of McMillan theory, this pair-potential must be provided by the self-energy ΣSC

of the superconducting lead coupled through the transfer-Hamiltonian to the topological
insulator. While it is easy to show that with our choice of the transfer-Hamiltonian,
this self-energy does indeed have the spin-structure of a singlet pair potential in its off-
diagonal terms in particle-hole space, it also depends on energy and momentum. However,
this dependence is weak for small ε and k||, and one is thus tempted to approximate:

ΣSC(k||, ε) ≈ ΣSC(k|| = 0, ε = 0). (10.22)

In the bottom row of Fig. 10.9, we show the spectral function calculated from our model
with this approximation. In regard to the plot for t = 0.65, we observe that (a) the
spectrum is in reasonable agreement with the one using the correct self-energy for small
energies and (b) it can be perfectly fitted with the Fu-Kane model. In the case of stronger
coupling, however, the approximation does not make any sense at all; the induced gap
in the interface states would be even larger than the bulk-gap of the superconductor, as
shown in the plot for t = 0.75.

In conclusion, one may say that the phenomenological Fu-Kane model provides a reason-
able description of the proximity effect in surface states of topological insulators if the
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Figure 10.9. – Top row: spectral function for t = 0.65 (left) and t = 0.75 (right), a = 0.1Å,
η = 5e−5eV, with fitted dispersions of the Fu-Kane Hamiltonian. Bottom row: spectral
function for the same parameters but with the approximation ΣSC(k||, ε) = ΣSC(k|| = 0, ε = 0).

ΔFK/ meV μ/ meV �vF/ eVÅ

t = 0.65 0.385 0.46 1.2

t = 0.75 0.83 0.37 0.4

t = 0.65, ΣSC = ΣSC(k|| = 0, ε = 0) 0.57 0.73 1.9

Table 10.1. – Fit-parameters for the fits shown in Fig 10.9.

coupling to the SC is weak to intermediate, i.e., ΔFK ≈ 0.5ΔSC, but is not a valid ap-
proximation if the coupling is strong. In the latter case, the proximity effect is properly
described if the energy and momentum dependence of the self-energy ΣSC is taken into
account. From the structure of the self-energy:

ΣSC = T †gSC(k||, ε)T , (10.23)

we also see that the induced gap is not necessarily of the singlet type if T contains spin-flip
elements.

These results are in line with the general argument of Sau et al. [108], who derived an
analytical expression for this self-energy assuming a general basis of normal-state wave
functions for the superconducting lead and directly included it in the surface state Hamil-
tonian of the TI.

10.4. Spatial Profile of the Interface States

Finally, we shortly discuss the spatial profile of the interface states shown in Fig. 10.10
for the states at the bottom of the interface state dispersion and t = 0.65, 0.75. We
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Figure 10.10. – Spatial profile of the interface states for t = 0.65 (blue) and t = 0.75

(green), a = 0.1Å and η = 5e−5eV, at the bottom of the interface state dispersion, i.e.,

kx = ky = 0.00273Å−1(blue), = 0.00657Å−1(green) and ε = 0.38meV (blue), = 0.83meV

(green). The interface is at z = 2Å, the left plot shows the profile inside the TI, the right
plot the profile inside the SC. The oscillations on the kF-scale are very fast and not properly
resolved in the plots shown here.

observe that most of the spectral weight of the states still resides inside the TI, even for
relatively strong coupling and that the states are well localised on the TI-side. In the
superconductor, the local spectral weight is a lot smaller, the wave function oscillates on
the interatomic scale and decays on the scale of the superconducting coherence length.
We also observe that the decay is stronger for t = 0.65, which can be understood from
the fact that the corresponding state lies deeper inside the gap than the state we plot for
t = 0.75. Thus, the interface states are in fact not well localised inside the SC, which
is not surprising, since the relevant energy gap, ΔSC, is two orders of magnitude smaller
than the band-gap of the TI.
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Conclusion

In the first part of this thesis we presented a comprehensive study of the triplet proximity
effect at superconductor-ferromagnet interfaces, focusing on two prominent problems: the
Andreev spectra of point-contacts and the Josephson effect. This analysis was carried
out with the quasiclassical Green’s function method using a generalisation of its boundary
conditions at interfaces and surfaces.

We derived a theory of conductance spectra that fully accounts for effects due spin-
dependent scattering and Fermi-surface geometry in the ballistic limit and showed that
it contains earlier theoretical models of this problem as limiting cases. In this context,
we also analysed the scattering effects responsible for the creation of triplet-correlations
in terms of various models for interface potentials. The theory was directly compared to
experimental data on CrO2 and (Ga,Mn)As. We were able to show that these cannot only
be fitted with our theory, but that our model also provides new physical interpretations
that we believe to be more sound than the conclusions inferred from extended BTK-theory.

In regard to the Josephson effect, the most prominent prediction resulting from our analysis
is the emergence of exotic current-phase relations (CPRs) that arise from the magnetisa-
tion of the interfaces. An implication of this is the prediction of a spin Josephson effect
in superconductor-ferromagnet heterostructures with only one superconducting electrode.
The Fourier-analysis of the current-phase relation shows that there are two dominant pro-
cesses of Cooper-pair transfer. The first is the spin-neutral crossed pair transmission, with
an equal number of triplet pairs transferred in both spin-bands, and the second one are
the spin-polarised contributions that depend on the first harmonics in Δϕ.a This addi-
tional handle, which is provided by the relative misalignment of interface magnetisation
directions, may offer interesting perspectives for controlling the CPR through magnetic
fields. However, experiments on the long range triplet Josephson effect focused on crit-
ical currents so far, while current-phase relations have, to our knowledge, not yet been
investigated.

We showed that the presence of anti-ferromagnetic domain structure in the interlayer
implies additional backscattering of quasiparticles and hence an additional suppression of
the supercurrent. We also found that this domain structure may imply a 0-π switching
behaviour of the current-phase relation. We provided a comprehensive study of the critical
current as a function of junction length and temperature. In particular, we investigated
the temperature anomaly predicted for half metallic junctions in the ferromagnetic case
and in the presence of domain walls. Additional pair-breaking at the domain boundaries,
which would be provided by spin-flip scattering, was neglected here, but must be included
to explain the observations of Khasawneh et al. [70], who refer to it as ’spin-memory loss’.

The idea of creating a px + ipy state by means of the triplet-proximity effect, where the
singlet-triplet conversion is caused by spin-orbit coupling, was briefly commented on. We
showed that if a ferromagnet is considered instead of half metal, two such states with

aΔϕ is the relative angle between the quantisation axes of the two interfaces.
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opposite chirality can be induced and are stable against backscattering at a surface. We
therefore conclude that such states could be engineered in thin ferromagnetic layers, if the
samples are clean.

In the second part, a numerical analysis of the superconducting proximity effect in the
surface states of topological insulators was presented and compared to the phenomenolog-
ical model of Fu and Kane. In agreement with earlier work on this problem, we found
that the phenomenological model can be understood in terms of McMillan’s theory of the
proximity effect in the regime of weak to intermediate coupling. If the effective self-energy
of the superconductor is approximated by its zero-energy and zero-momentum value, its
anomalous part has exactly the same structure as a singlet pair-potential if the interface is
not spin-active. This picture breaks down if the coupling to the superconductor becomes
strong and the energy and momentum dependence of the self-energy must be retained in
that case. While this problem has been studied before, the numerical method that we de-
scribe and employ is very efficient and allows for material specific calculations by starting
from multi-orbital tight-binding models. We believe that it can be useful in the future for
transport calculations in topological insulator nanostructures.
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[61] Hübler, F., Wolf, M. J., Beckmann, D., and v. Löhneysen, H. Observation
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Appendix

A. Parameterisation of U(4) matrices

The boundary conditions discussed in chapter 3 are formulated in terms of incoming Riccati
amplitudes and the scattering matrix for quasiparticles in the normal state. The only
fundamental symmetry of this matrix is unitarity. Other symmetries may be implied by
symmetries of the physical problem under consideration. In the case we consider here,
i.e. an N/I/FM interface, the only remaining symmetry is translational invariance in the
x-y-plane, implying the conservation of parallel momentum. Spin-rotation symmetry is
fully broken if the quantisation axes of the interface and the ferromagnet are misaligned.

A general unitary 4 × 4 matrix has 16 free parameters, a 3 × 3 matrix has 9. Thus, to
facilitate the interpretation of results, it is highly desirable to find a representation of the
S-matrix that supplies a set of parameters with a clear physical meaning, and, if possible,
eliminate at least some of them. The latter is indeed possible, since we are free to choose
the spin-quantisation in the superconductor (normal metal here), and because the region
which we define to be the interface can extend into the asymptotic regions (N and FM
parts) without changing physical results. Eventually, the considerations we discuss here
lead to the parameterisations stated in eqs. (4.2) and (4.3).

It is a well-known result of linear algebra that any n × n matrix possesses at least one
singular value decomposition (SVD):

A = UΛV †, (A.1)

where Λ = diag(λ1, λ2, ..., λn), with λi real and ≥ 0 and U, V unitary. Our starting point
is a ’partial’ singular value decomposition of the S-matrix, i.e., a SVD is computed for the
transmission and reflection sub-blocks independently [40, 53]:

S =

(
URV † WTZ̃†

W̃ T̃Z† −Ũ R̃Ṽ †
)
, (A.2)

where U, V, W, Z̃, W̃ , Z, Ũ and Ṽ are unitary 2 × 2-matrices, while R, T, T̃ , R̃
are diagonal, real matrices with positive entries. These singular values can be identified
with generalised transmission and reflection parameters, while the outer unitary matrices
contain all scattering phases and rotations in spin-space implied by the spin-activity of the
interface. As explained above, the SVD is general, which means that we did not exploit
the unitarity of S so far. The unitarity relation SS† = 1 provides us with the equations:

U(1−R2)U † =WTT †W †, V (1−R2)V † = ZT̃ †T̃Z†, (A.3)

Ũ(1− R̃2)Ũ † = W̃ T̃ T̃ †W̃ †, Ṽ (1− R̃2)Ṽ † = Z̃T †T Z̃†,

which are the diagonal parts of S†S = 1 and SS† = 1. The first of these equations can
be written as W †U(1 − R2)U †W = TT †. Obviously (1 − R2) and TT † are related to
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one another by what is called a similarity transformation. A similarity transformation
preserves the eigenvalues of any matrix. In this case, both matrices are diagonal and one
may erroneously infer that they should thus be identical. However, it is clear that while
the eigenvalues are the same, a similarity transformation still allows for a permutation, so
(1−R2) = TT † does not hold in general. Then again, permuting the eigenvalues of a 2×2
diagonal matrix corresponds to the similarity transformation Σ → σxΣσx and we may just
redefine the matrices W,Z, W̃ , Z̃ by X → Xσx if needed to exclude this possibility. Note
that such a redefined matrix is again unitary, which implies that this construction does not
cause any contradictions to the SVD that we started with. To sum it up, we can assume
without loss of generality that

(1−R2) = TT † = T̃ †T̃ , (A.4)

(1− R̃2) = T †T = T̃ T̃ †. (A.5)

Since both T and T̃ are real with positive eigenvalues, we can infer T = T̃ and R = R̃ =√
1− T 2 from this.

To proceed, we need to assume that the matrices Φ = W †U , Ψ = Z†V , Φ̃ = W̃ †Ũ and
Ψ̃ = Z̃†Ṽ are diagonal. This is necessarily the case if the eigenvalues of T,R are not
degenerate. Since we consider a ferromagnetic interface, this is generically true. If they
are degenerate, i.e., R and T are proportional to the unit matrix, the following argument
holds as well. Namely, it follows from the remaining unitarity conditions

URV †ZT̃ †W̃ † =WTZ̃†Ṽ R̃Ũ †, (A.6)

V RU †WTZ̃† = ZT̃ †W̃ †Ũ R̃Ṽ † (A.7)

that

Φ†Ψ̃ = Ψ†Φ̃. (A.8)

This can be used to simplify the partial SVD [53]:

S =

(
UΦ†RΦV † WTZ̃†

W̃ T̃Z† −ŨΨ̃†R̃Ψ̃Ṽ †

)
=

(
U 0

0 Ũ

)(
R T
T −R

)(
V† 0

0 Ṽ†
)
, (A.9)

with the definitions UΦ† → U , ŨΨ̃† → Ũ , ΦV † → V† and Ψ̃Ṽ † → Ṽ†. This means that the
partial SVD is first redefined for the diagonal blocks and the equation then follows from
(A.8) and the fact that either, Ψ,Φ, Ψ̃, Φ̃ are diagonal, or R and T are proportional to the
unit matrix. Thus, we arrived at a decomposition with an appealing structure. The central
part is a block-diagonal scattering matrix with real entries that can be identified with
generalised reflection and transmission coefficients. The outer matrices define rotations in
spin-space and phase factors for incoming (V, Ṽ) and outgoing (U , Ũ) scattering states on
either side of the interface. One may continue to decompose them in matrices containing
scattering phases and matrices belonging to SU(2), i.e., rotations in spin-space. We do
not discuss further details of this and simply state the final result [53]:

S =

(
Q 0

0 Q̃

)(
Φ

1
2 0

0 Φ̃
1
2

)(
Y 0

0 Ỹ

)

×
( √

1− TT ΨT

Ψ†T −
√
1− TT

)

×
(
Y † 0

0 Ỹ †

)(
Φ

1
2 0

0 Φ̃
1
2

)(
Q† 0

0 Q̃†

)
. (A.10)
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The matrices Q, Q̃, Y , Ỹ ∈ SU(2) are the rotations in spin-space. They can be parame-
terised as:

rot(α,ϕ) ≡
(

cos(α/2) − sin(α/2)e−iϕ

sin(α/2)eiϕ cos(α/2)

)
. (A.11)

The matrices Φ
1
2 , Φ̃

1
2 and Ψ

1
2 contain the scattering phases (Ψ = (Ψ

1
2 )2). They can be

written as:
phase(η, ϑ) ≡ eiηeiσzϑ/2. (A.12)

For reasons that are obvious from our discussion of the spin-mixing effect, we choose a def-
inition where η is a global phase and ϑ a relative phase [53]. Note that this decomposition
has exactly 16 independent parameters and thus describes a general U(4) matrix.

On the basis of this decomposition, we may now try to reduce the number of free parameters
using the ’gauge’ freedom that we have. To this effect, we exploit the fact that we are
free to choose a spin-quantisation axis in the normal region, since the scattering states on
that side of the interface are invariant under spin-rotations. We thus assume Q = 1 [53].
Moreover, as explained in chapter 4, we may assume that the quantisation axis rotates in
the x-z-plane only, since an additional rotation in the x-y-plane can be accounted for by
the transformation stated in eq. (4.4). We hence have Y † = Y T , Ỹ † = Ỹ T , Q̃† = QT and
Ψ is real [53].

The second ’gauge’ freedom we have arises from the fact that the choice of an interface
region is arbitrary in the sense that all physical results must be independent of how far
we define the interface to extend into the asymptotic regions.a This results in a gauge
transformation that accounts for the additional propagation of the scattered waves inside
these asymptotic regions [53]:

S′ = ηSη (A.13)

with

η =

(
eiη1 0

0 ei(η2+η3+(η2−η3)σz)/2

)
. (A.14)

By plugging the transformed S-matrix into the boundary conditions, one can show that
both the outgoing coherence and the distribution functions are indeed invariant [53]. The
additional phases η, η2, η3 can be used to obtain exactly the structure of the S-matrix
shown in eq. (4.2) [53]. Finally, we discuss the relation of this decomposition to the spin-
mixing phases. For reflections on the left side of the interface (superconductor side), the

only complex phase that remains is the relative phase in Φ
1
2 , which must thus be identified

with the spin-mixing angle [53]:
ϑ = ϑΦ. (A.15)

It is also clear that the rotation angle α entering the reflection block on the SC side, is
due to Y , which is why we refer to it as αY in chapters 4 and 5. Unfortunately, there is
no simple relation for the mixing phases ϑ2,3.

We focused on the more complicated case of ferromagnetic trajectories here. The 3×3 case
relevant for the half metallic ones is fully analogous, but also simpler, as all ∼-matrices
above are just scalar phases [40]. This also implies the important relation [53]:

ϑ2 = ϑΦ/2, (A.16)

that we refer to in chapter 4.

aObviously, the interface must still be a lot smaller than the coherence length.
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B. Scattering Matrix of the Box-Potential

The normal-state scattering matrix entering the quasiclassical boundary conditions cannot
be obtained within QC theory itself. In the case of a box-potential, we calculate it from
plane wave matching in the normal state, using the model described in chapter 4.

We will consider two types of interface Hamiltonians, either containing a ferromagnetic
exchange field:

HI =
∑
kμν

c†kμ(ξ
I
kδμν +

�JI
2

· �σ)ckν (B.1)

or a spin-orbit coupling term:

HI =
∑
kμν

c†kμ(ξ
I
kδμν + α�gk · �σ)ckν . (B.2)

Here, the �g-vector is given by [41]:

�gk =
k× ẑ

|k× ẑ| =
1

k2x + k2y
(ky,−kx, 0) (B.3)

= (sinϕk,− cosϕk, 0).

Accordingly, the normal state Hamiltonians of the ferromagnet and the superconductor
read:

HFM =
∑
kμν

c†kμ(ξ
FM
k δμν +

�J

2
· �σ)ckν , (B.4)

HSC =
∑
kμν

c†kμ(ξ
SC
k δμν)ckν . (B.5)

Obviously, HSC is invariant under rotations in spin-space, while both HI and HFM break
spin-rotation symmetry. For ξI,SC,FM

k , we assume a parabolic dispersion with the same
effective mass in all cases. The dispersions ξIk and and ξFMk are, however, shifted by a
constant energy VI and VFM respectively compared to ξSCk . No matter whether an interface-
layer with spin-orbit coupling or with a ferromagnetic exchange field is considered, for any
wave vector k, there is a unitary matrix Uk mapping the spin-eigenbasis of the interface
to that of the ferromagnet:

Uk =

(
cos αk

2 − sin αk
2 e

−iϕk

sin αk
2 e

iϕk cos αk
2

)
. (B.6)

The k-dependence arises only in the spin-orbit case and is the crucial mechanism leading
to p-wave superconductivity in the FM layer.

The scattering matrix is obtained by diagonalising the Hamiltonians and inferring the
respective values of kz at the Fermi-level for a given k||. The corresponding wave-functions
in the three layers are then matched at the SC/I and the I/FM interface, respectively,
assuming that the spin-quantisation axis in the SC is aligned with that of the interface,
while at the I/FM interface, the rotation Uk must be taken into account [53, 51]. Solving
this problem is an exercise in elementary quantum mechanics, we presented a solution of
it in Ref. [51].

As explained in chapter 3, the requirement that k|| be conserved across the interface
implies that even if the ferromagnet is not fully spin-polarised, some trajectories will have
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an evanescent solution in the minority band of the FM, corresponding to the half metallic
case. In the case where this minority band solution is propagating, we obtain a 4 × 4
scattering matrix. If it is evanescent, the matrix is 3× 3.

The plane wave ansatz for the normal metal (more precisely, the superconductor in the
normal state) is [53]:

ΨSC =
ei
�k||�r||
√
v1

[(
s1+
s1−

)
eik1z +

(
A1+

A1−

)
e−ik1z

]
, (B.7)

with |�k|||2 + k21 = 2mEF /�
2. The plane waves inside the interface have imaginary wave

vectors if the interface potential is larger than the Fermi-energy. We thus have [53]:

ΨI = ei
�k||�r||Uk

(
B+e

κ+z + C+e
−κ+z

B−eκ−z + C−e−κ−z

)
. (B.8)

The values κ± depend on the interface Hamiltonian. In chapter 6, we also considered the
case where some of the interface plane waves are propagating. The interface spinor must
be rotated onto the quantisation axis of the FM, which is why Uk appears here.

Finally, the ansatz for the FM reads [53]:

ΨFM = ei
�k||�r||

[(
s2√
v2
e−ik2(z−a)

s3√
v3
e−ik3(z−a)

)
+

(
A2√
v2
eik2(z−a)

A3√
v3
eik3(z−a)

)]
, (B.9)

where |�k|||2 + k22 = 2m(EF − VFM + J/2)/�2 and |�k|||2 + k23 = 2m(EF − VFM − J/2)/�2 if
both solutions are propagating (FM-case), and

ΨFM = ei
�k||�r||

[(
s2√
v2
e−ik2(z−a)

0

)
+

(
A2√
v2
eik2(z−a)

D3e
−κ3(z−a)

)]
, (B.10)

where |�k|||2 + k22 = 2m(EF − VFM + J/2)/�2 and |�k|||2 − κ23 = 2m(EF − VFM − J/2)/�2, in
the half metallic case.

The scattering matrices are then defined by the relations [53]:⎛
⎜⎜⎝

A1+

A1−
A2

A3

⎞
⎟⎟⎠ = SFM

⎛
⎜⎜⎝

s1+
s1−
s2
s3

⎞
⎟⎟⎠ ,

⎛
⎝ A1+

A1−
A2

⎞
⎠ = SHM

⎛
⎝ s1+

s1−
s2

⎞
⎠ , (B.11)

for these two cases.

Spin-rotation matrix

We discuss the spin-orbit coupled case first and introduce a spin-rotation mapping the
quantisation axis of the interface onto the ẑ-axis [41]:

Uk =
1√
2

(
1 −ie−iϕk

−ieiϕk 1

)
. (B.12)

If the quantisation axis of the FM is not aligned with the ẑ-axis, a second rotation, mapping
the FM-quantisation axis onto the ẑ-axis, must be considered:

D =

(
cos α

2 − sin α
2

sin α
2 cos α

2

)
, (B.13)
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Figure B.1. – Definition of angles for the spin-orbit interface (left) and the ferromagnetic
interface (right).

assuming that the rotation is in the x-z-plane. We then have Uk = D†Uk.

In the ferromagnetic case, Uk is independent of k and given by:

U =

(
cos α

2 − sin α
2 e
−iϕ

sin α
2 e

iϕ cos α
2

)
, (B.14)

where α and ϕ characterise the misalignment between �JI and �J .
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C. Scattering Matrix of the Smooth Potential

C. Scattering Matrix of the Smooth Potential

The scattering matrix for the smooth potential model is obtained numerically with the
Recursive Green’s Function technique. Since the effective mass is assumed to be the same
throughout the structure, we do not have the problem of having to introduce a transfer-
Hamiltonian, as in the case of the topological insulator-superconductor interface. Instead,
the hopping elements of the tight-binding model are the same everywhere and read:

V =
2�2t2

m
σ0, (C.1)

with t = −i/2a. The on-site Hilbert-space only has a spin degree of freedom, since we
consider a single band and the normal state of the system. The on-site term reads:

O(n, k||) =
�
2

2m
(k2|| − 8t2)σ0 + V (n), (C.2)

where V (n) is a matrix in spin-space that accounts for the interface potential whose spatial
variation is stated in chapter 3. We couple a central device region, where V (n) varies, to
semi-infinite leads on both sides, where V = 0 (left lead) and V = VFM+ J

2σ3 (right lead).

The scattering matrix is calculated from the Green’s function by means of the Fisher-Lee
relations:

S(k||) =
(

RL TLR
TRL RR

)
, (C.3)

with:

RL = −σ0 + iv1G1,1, TLR = i
√
v1G1,Nν (C.4)

TRL = i
√
v1νGN,1, RR = −σ0 + iνGN,Nν,

where v1 is the Fermi-velocity of the normal metal and ν2 = diag(v2, v3), with v2,3 the
Fermi-velocities of the FM-bands. 1 and N are the sites at the endpoints of the central
device, and G = G(k||, ε = EF). As discussed in the section on the parameterisation of the
S-matrix, it is irrelevant how far the central-device region extends into the region where
V = const.
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D. Solution of the Boundary Conditions for the Josephson
Geometry

Solutions at the SC/FM-interface

The solutions of the boundary conditions for FM-trajectories read:

Γ2 = γ′22 + Γ2←1γ̃1γ
′
12 + Γ2←3γ̃3γ

′
32, Γ3 = γ′33 + Γ3←1γ̃1γ

′
13 + Γ3←2γ̃2γ

′
23, (D.1)

with the auxiliary amplitudes:

Γ2←1 = (γ′21 + Γ2←3γ̃3γ
′
31) ·N1, Γ3←1 = (γ′31 + Γ3←2γ̃2γ

′
21) ·N1, (D.2)

Γ2←3 = (γ′23 + γ′21N1γ̃1γ
′
13) ·N3, Γ3←2 = (γ′32 + γ′31N1γ̃1γ

′
12) ·N2,

and

N1 = (1− γ̃1γ
′
11)

−1, (D.3)

N2 = (1− γ̃2γ
′
22 − γ̃2γ

′
21N1γ̃1γ

′
12)

−1, N3 = (1− γ̃3γ
′
33 − γ̃3γ

′
31N1γ̃1γ

′
13)

−1.

These solutions hold for both retarded and Matsubara amplitudes. We do not state the
solution for Γ1, as it is irrelevant here.

The diagrammatic representation of these solutions can be cast into a finite graph, as
demonstrated in Fig. D.2 for Γ2. The graph is to be understood in the following sense:
The complete solution is obtained by summing over all paths that can be generated by
walking through the graph, starting at one of the three ’entrance’ diagrams in the topmost
row and ending at on of the three ’exit’ diagrams shown in the second row. Obviously,
there are loops in the graph through which one can pass an arbitrary number of times,
and thus the number of paths contributing to the solution is infinite.

For HM-trajectories, the solution simplifies to:

Γ2 = γ′22 + Γ2←1γ̃1γ
′
12, (D.4)

with the auxiliary amplitude:

Γ2←1 = γ′21 ·N1. (D.5)

Solution at the anti-ferromagnetic domain boundary

We need to match four transport channels in this case, as we have a FM-layer on both sides
of the interface. In the most general case, this would imply a very cumbersome solution.
However, since we consider an anti-ferromagnetic orientation of the magnetisation, the
scattering matrix, which in this simplified picture is determined by wave vector mismatches
only and spin conserving, has the following structure:

S =

(
R T
T� R

)
(D.6)

with

R =

(
r 0
0 −r

)
, T =

(
0 t
−t 0

)
(D.7)

and

r =
k↑ − k↓
k↑ + k↓

, t =
2
√
k↑k↓

k↑ + k↓
. (D.8)
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Figure D.2. – Diagrammatic solution of the boundary conditions for Γ2. The terms corre-
sponding to these diagrams are (always left to right): (top row) γ1T̃12, γ2r̃22, γ3r̃32; (second
row) T21, r22, r23; (third row) γ̃3T31, γ̃1R11, γ̃3r32, γ̃1T12, γ̃3r33, γ̃1T13; (fourth row) γ2r̃23,
γ3r̃33, γ1T̃13, γ1R̃11, γ2T̃21, γ3T̃31. Red circles indicate the endpoints of finite sub-loops.

Note the off-diagonal structure of T , which implies that quasiparticles change bands when
transmitting through the boundary. The structure of the S-matrix implies that the bound-
ary conditions decouple into two sets of independent equations, each involving two of the
four channels:

Γ1′ = γ′1′1′ + Γ1′←4′ γ̃4′γ
′
4′1′ , (D.9)

Γ2′ = γ′2′2′ + Γ2′←3′ γ̃3′γ
′
3′2′ ,

Γ3′ = γ′3′3′ + Γ3′←2′ γ̃2′γ
′
2′3′ ,

Γ4′ = γ′4′4′ + Γ4′←1′ γ̃1′γ
′
1′4′ ,

with the auxiliary amplitudes:

Γ1′←4′ = γ′1′4′ · (1− γ̃4′γ
′
4′4′)

−1, (D.10)

Γ4′←1′ = γ′4′1′ · (1− γ̃1′γ
′
1′1′)

−1,

Γ2′←3′ = γ′2′3′ · (1− γ̃3′γ
′
3′3′)

−1,

Γ3′←2′ = γ′3′2′ · (1− γ̃2′γ
′
2′2′)

−1.

We included an accent in the channel labels to express that these labels do not correspond
to the convention followed otherwise in this thesis. Specifically, we have 1′ ≡↑ (left),
2′ ≡↓ (left), 3′ ≡↑ (right) and 4′ ≡↓ (right).
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Figure E.3. – Iteration loop for the 1 domain (top left) 2 domain (top right) and 3 do-
main (bottom) junctions. Red arrows indicate simultaneous propagations. At the end of
each propagation, the boundary conditions are solved at the respective interface or domain
boundary.

E. Numerical Scheme for Multilayer Junctions

In the multilayer geometries discussed in chapter 6, we obtain the coherence function
numerically by iterating the boundary conditions and propagations through the FM-layer.
The iteration steps are shown in Fig. E.3. Every iteration starts by solving the boundary
conditions at all interfaces and domain boundaries. We use the incoming bulk-coherence
functions in the SC-electrode, while those inside the FM-layer are initialised with 0 at the
beginning of the iteration. We repeat the iteration steps two times in the 1-domain and in
the 2-domain case, and three times in the 3-domain case before we check the convergence
condition:

|γI,new2 (εn, k|| = 0)− γI,old2 (εn, k|| = 0)|
|γI,new2 (εn, k|| = 0) + γI,old2 (εn, k|| = 0)|

≤ η, (E.1)

and update γI,old2 (εn, k|| = 0) = γI,new2 (εn, k|| = 0). This is to avoid a spurious termination
of the iteration caused by the initialisation of the FM-coherence functions.

Apart from η, the Matsubara sum cut-off and the number of k-points considered for the
FS-average control the numerical precision of our calculation. These parameters were
generally chosen so that all plots are free of perceptible imprecision.
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F. Solution of the Linearised Equations

In this appendix, we briefly state the solutions of the linearised equations (eq. (6.6)) for
the Josephson geometry.

We first define the quantities:

ÃII
2 = AII

2 + ρII2 β2AI
2 + ρII23β3AI

3, ÃII
3 = AII

3 + ρII32β2AI
2 + ρII3 β3AI

3, (F.1)

and

ρ̃II2 = ρI2ρ
II
2 β

2
2 + ρII23ρ

I
32β2β3, ρ̃II3 = ρI3ρ

II
3 β

2
3 + ρII32ρ

I
23β3β2, (F.2)

ρ̃II23 = ρII2 ρ
I
23β2β3 + ρI3ρ

II
23β

2
3 , ρ̃II32 = ρII3 ρ

I
32β3β2 + ρII32ρ

I
2β

2
2 .

In the next step, we define:

ĀII
3 = ÃII

3 + ρ̃II32(1− ρ̃II2 )
−1ÃII

2 , ρ̄II3 = ρ̃II32(1− ρ̃II2 )
−1ρ̃II23 + ρ̃II3 . (F.3)

In terms of these parameters, the solutions read:

ΓII
3 = (1− ρ̄II3 )

−1ĀII
3 , ΓII

2 = (1− ρ̃II2 )
−1(ÃII

2 + ρ̃II23Γ
II
3 ), (F.4)

ΓI
2 = AI

2 + ρI2β2Γ
II
2 + ρI23β3Γ

II
3 , ΓI

3 = AI
3 + ρI32β2Γ

II
2 + ρI3β3Γ

II
3 .
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G. Invariance of the CPR under Rotations in the x-y-Plane

The Josephson-geometry is invariant under rotations in the x-y-plane. Obviously, such a
rotation implies a shift of the spherical angles that characterise the interface magnetisation
direction in the interface plane, ϕI,II �→ ϕI,II + δ. Naturally, all observables must be
invariant under such rotations and therefore independent of δ. This is true if the current-
phase relations depends on Δϕ only. We provided a general, but not very elegant proof
of this in Ref. [51]. We propose a more compact proof here and extend it to the case of
multi-domain junctions. Only the ferromagnetic trajectories are discussed, it is easy to
convince oneself that the simpler half metallic case follows from our proof by eliminating
the minority band.

To this end, we consider the matrix notation of the boundary conditions [37]:

Γ = Γk→k′ , Γ = Γ− Γkδkk′ , (G.1)

γ = γkδkk′ ,γ
′ = S ◦ γ ◦ S̃, (G.2)

where ◦ denotes a matrix product including ’channel’-space. The boundary conditions
then read [37]:

Γ = γ ′ + Γ ◦ γ̃ ◦ γ ′. (G.3)

As discussed in chapter 4, the scattering matrix Sϕ of a trajectory with finite ϕ is related
to the matrix of the trajectory with the same k||, but ϕ = 0 by a spin-rotation in the
x-y-plane:

Sϕ = ΦSΦ∗, Φ =

(
e−iσzϕ/2 02×2
02×2 e−iσzϕ/2

)
. (G.4)

We now make the following ansatz for the incoming coherence functions at the two inter-
faces:

γI2 = bI2e
−iϕII , γI3 = bI3e

iϕII , γ̃I2 = b̃I2e
iϕII , γ̃I3 = b̃I3e

−iϕII , (G.5)

γII2 = bII2 e
−iϕI , γII3 = bII3 e

iϕI , γ̃II2 = b̃II2 e
iϕI , γ̃II3 = b̃II3 e

−iϕI ,

where all b quantities depend on ϕI,II through Δϕ only. The incoming amplitudes from
the superconductor are the bulk-coherence functions, and – as such – independent of the
ϕ-phases. We now prove that this ansatz is consistent with the solutions of the boundary
conditions at both interfaces in the single domain case. Adopting the matrix notation for
the incoming coherence functions, we observe that

[Φ∗ ◦ γ ◦ Φ∗]I,II, [Φ ◦ γ̃ ◦ Φ]I,II (G.6)

depend on ϕI,II through Δϕ only. In combination with equation (G.4) and the particle-hole
symmetry of the S-matrix this implies that

[Φ∗ ◦ γ ′ ◦ Φ∗]I,II, [Φ ◦ γ̃ ′ ◦ Φ]I,II (G.7)

also depend on Δϕ only.

In what follows, all quantities refer to one of the two interfaces, which one does not matter.
We thus omit the interface index in the following. In regard to the boundary conditions
at this interface, we then have:

Γ = γ ′ + Γ ◦ γ̃ ◦ γ ′ (G.8)

= Φ ◦
[
Φ∗ ◦ γ ′ ◦ Φ∗ +Φ∗ ◦ Γ ◦ Φ∗ ◦ Φ ◦ γ̃ ◦ Φ ◦ Φ∗ ◦ γ ′ ◦ Φ∗

]
◦ Φ,
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and thus

Φ∗ ◦ Γ ◦ Φ∗ = Φ∗ ◦ γ ′ ◦ Φ∗ +Φ∗ ◦ Γ ◦ Φ∗ ◦ Φ ◦ γ̃ ◦ Φ ◦ Φ∗ ◦ γ ′ ◦ Φ∗. (G.9)

This is an implicit equation for Φ∗ ◦Γ ◦Φ∗. It follows from the above that all parts of this
equation save Φ∗ ◦ Γ ◦ Φ∗a depend on Δϕ only. However, since the latter is determined
by the equation, it must depend on Δϕ only as well. This, in turn, implies that Γ
itself has exactly the same structure as the ansatz we made for the incoming coherence
functions. And thanks to the particle-hole symmetry relation, the same holds for Γ̃. Since
the propagation through the interlayer cannot change anything about the ϕ-dependence,
the incoming coherence functions at the opposite interface are also consistent with the
ansatz. We thus proved that our ansatz is a self-consistent solution for the coherence
functions in the SC/FM/SC structure. In principle, this is only a necessary but not a
sufficient condition. But obviously, the conclusion remains true if the incoming coherence
functions from the FM are assumed to be zero. Since any particle-hole coherence inside
the FM layer must have been induced by the superconductors, we can assume that this
was indeed the case at some point in time, which completes the prove.

In the case of multi-domain junctions with the domain boundary scattering matrix that
we assume, the rotational invariance of the junction in the x-y-plane is maintained and
our conclusion for the ϕ-dependence must remain true. This is obviously true if the
number of domains is odd, nothing changes in that case. There is an even number of
boundaries, and the propagation through the bulk will thus not change the ϕ-dependence
of the coherence functions. Secondly, the orientation of the bulk-magnetisation is the same
at both interfaces, and the ϕ-angles are thus not modified compared to the single domain
case. If, however, the number of domains is even, the propagation through the bulk will
interchange the coherence functions and the orientation of the bulk-magnetisation will be
opposite at the two interfaces.

We begin by discussing the consequences of the first modification. We propose the ansatz:

γI2 = bI2e
iϕII , γI3 = bI3e

−iϕII , γ̃I2 = b̃I2e
−iϕII , γ̃I3 = b̃I3e

iϕII , (G.10)

γII2 = bII2 e
iϕI , γII3 = bII3 e

−iϕI , γ̃II2 = b̃II2 e
−iϕI , γ̃II3 = b̃II3 e

iϕI ,

where all b quantities depend on ϕI,II through ϕI+ϕII only. The remainder of the prove is
fully analogous to what we discussed before, just that Φ∗ΓΦ∗ is now shown to be a function
of ϕI + ϕII rather than Δϕ. The consistency of the ansatz then follows if the scattering
at the domain boundary is properly taken into account.b To complete the prove, we now
recall that ϕII must be replaced by −ϕII in the scattering matrix, due to the orientation
of the bulk magnetisation at the second interface. Thus the ansatz is mapped back onto
the one we had for the single domain case.

To show that the supercurrent depends on Δϕ only, we inspect the diagonal entries of
gM(pF,z > 0) at interface (I) and observe that they depend on the coherence functions
through [Γγ̃]I. From the structure of the solutions, we then infer that this quantity depends
on ϕI,II through Δϕ exclusively.

aNote that Φ∗ ◦ Γ̄ ◦ Φ∗ is just a part of Φ∗ ◦ Γ ◦ Φ∗.
bWe do not discuss this in detail here. It follows from the solutions stated in the previous section and

e−iϕI,II = eiϕII,I · e−i(ϕI+ϕII).

157


