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Zusammenfassung 

Der interzellulare polare Transport des Phytohomons Auxin stellt den elementaren Baustein 

der pflanzlichen Polarität und Musterbildung dar. Die Forschung der letzten Jahre hat 

gezeigt, dass die Organisation der Aktinfilamente eine entscheidende Rolle für den polaren 

Auxinfluss spielt und dass dieser durch Auxin selbst reguliert werden kann. Zusätzlich ist 

schon länger bekannt, dass die einzelnen Aktinisotypen stark konserviert sind, was den 

Schluss nahelegt, dass die unterschiedlichen Funktionen auf die Vielzahl unterschiedlichster 

Aktinbindeproteine und deren Komplexen zurückzuführen ist. 

Im ersten Teil der Dissertation wird die mögliche Beteiligung von Aktinbindeproteinen als 

Mediator des Auxinsignals auf die Reorganisation des Aktinzytoskeletts untersucht. Als 

Modellsystem für die Analyse der Beteiligung von Aktinbindeproteinen am Auxinfluss und der 

daraus resultierenden Polarität wurde die Tabakzelllinie BY-2 (Nicotiana tabacum L. cv. 

Bright Yellow 2) herangezogen. Sie zeichnet sich durch ein Zellteilungsmuster aus, das auf 

einer schwachen Kopplung zwischen den Teilungsvorgängen benachbarter Zellen beruht 

und sensitiv auf Veränderungen des Auxinflusses reagiert. Die Überexpression des 

Nicotiana tabacum Actin-depolymerizing factor 2 (NtADF2) im homologen System 

verursachte eine Modifikation der Aktinkonformation und führte zum Zusammenbruch des 

charakteristischen Teilungsmusters. Durch Zugabe von Phosphatidylinositol 4,5-bisphosphat 

(PIP2), einem natürlichen Inaktivierungslipid von ADF, konnte dieses teilweise und durch die 

Zugabe von Phalloidin, das durch seine stabilisierende Wirkung funktionell um ADF-

Funktionen kompetitiert, sogar komplett wiederhergestellt werden. Die 

Komplementationsergebnisse, unterstützt durch Daten einer induzierbaren NtADF2 RNAi 

knockout BY-2 Zelllinie, führten zu einem Modell, in dem NtADF2 durch Modifikation der 

Aktinstabilität eine wichtige Funktion zwischen Auxinsignal und Aktinreorganisation inne hat. 

Im zweiten Teil wurde der fluoreszenzmikroskopischen Unterscheidbarkeit verschiedener 

Actinbindeprotein-dekorierter Aktinpopulationen nachgegangen. Es gelang, das ubiquitär an 

Aktinfilamente bindende Hefepeptid Lifeact an ein fluoreszentes Protein zu fusionieren, das 

aufgrund seiner Tetramerbildung und im Gegensatz zu einer monomeren Sonde, nur 

Aktinfilamente binden konnte, bei denen die Bindestelle sterisch frei lag. Auf diese Weise 

konnte eine funktionelle Aktinpopulation um den Zellkern visualisiert werden, die an der 

Kernbewegung beteiligt war. Zusätzlich war es möglich mit dem verwendeten 

photoaktivierbaren und photostabilen Fluoreszenzprotein psRFP, Photoaktivierungs-

lokalisationsmikroskopie (PALM) zu betreiben und so filamentöses Aktin mit einer Auflösung 

im niedrigen nm-Bereich samt anschließender drei-dimensionaler Rekonstruktion in 

lebenden Pflanzenzellen darzustellen. 
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1. Introduction 

Our entire world is shaped by patterns, which are more or less easy to detect. These 

patterns are often manmade, like road coatings, the cultivation of gardens, parkways, or 

whole acre landscapes in agriculture. Having a closer look to the individual elements 

constituting entire plants reveals, that also here a distinct pattern formation is active. These 

patterns apparently are able to maintain a basic order and can combine unique parts to 

complex patterns without any superior institution like the human brain. The formation of 

roots, branching of shoots, or efflorescences occur in no case randomly, but follow stringent 

patterns that are often highly conserved, such that they can be used for determination of 

different plant species. 

What does a “pattern” mean anyway? In general, it can be defined as a non-random spatial 

or temporal distribution of various parts forming an ensemble (Bünning, 1965). Such 

arrangements exist for the external shape of a plant, its composition of organs and tissues, 

and the assembly of organelles and protein complexes constituting the individual cells. At 

every level of complexity, a coordination of the single elements is necessary. How is this 

achieved? There have to be signals, whose distributions have direct influence on the 

differentiation of specific parts as well as on forming the whole entity. During the last century 

different phytohormones have been identified as pivotal players and could be correlated to 

the previously described phenomena such as the formation of efflorescences or apical 

branching (Beveridge et al., 2003). However, despite intense research, many aspects of the 

relation between phytohormones and pattern formation have remained unsettled. 

In this dissertation, the emphasis was put on sub-cellular patterning – the re-organization of 

filamentous actin as reaction on the phytohormone auxin and the consequences of this re-

organization in tobacco cells. The signaling from auxin to actin during pattern formation had 

Figure 1.1: Patterns from gigantic to small. (Left) Layout of the city Karlsruhe, copper engraving by Heinrich 
Schwarz 1721; http://www.karlsruhe.de/ as of February 2012. (Middle) Various patterns of Buxus sempervirens 
at the Botanical Garden of Madeira. (Right) Efflorescence of Helianthus annuus, single flowers are distributed to 
Fibonacci numbers, picture taken by Christoph Eidenberger. 
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remained unraveled up to now. Therefore, the motivation of this work was to illuminate this 

process by identification of potential auxin-signal mediators. 

1.1 Auxin, small and cryptic but essential and pervasive 

As probably the most important of all plant hormones, auxins play a central role in almost all 

plant developmental processes. It is hard to imagine that such a small molecule forms the 

basis of so many different signaling pathways. But since it is the case, it is not a big surprise 

that auxins have been in focus of science since the first description of a “growth signal” by 

the Darwins (Darwin and Darwin, 1881), and the independent discovery by H. Cholodny 

(1928) in Russia and F.W. Went (Went and Thimann, 1937) in the Netherlands. During more 

than a century of science many questions could be answered, but this raised numerous new 

questions. 

1.1.1 The molecule 

All natural auxins are built up of at least one aromatic ring and a carboxylic acid group (Taiz 

and Zeiger, 2006). They are found in plants as free acid and in conjugated forms. The most 

important auxin is indole-3-acetic acid (IAA) which is responsible for the majority of so far 

known auxin effects in plants. Therefore, in the following, the term “auxin” is defined as IAA if 

not stated otherwise. In addition to IAA, three other natural auxins have been identified up to 

now (for a recent review, see Simon and Petrášek, 2011), which differ from IAA in 

composition and stability (4-chloroindole-3-acetic acid; 4-Cl-IAA) or metabolic derivatization 

(indole-3-butyric acid; IBA). For the third auxin (2-phenyl acetic acid; PAA; Wightman and 

Lighty, 1982) no specific function could be identified in plants. Figure 1.2 shows an overview 

of the four natural auxins and their structural differences. 

 

 

 

 

 

 

 

 

Figure 1.2: Naturally occurring auxins. (A) Indole-3-

acetic acid. (B) Indole-3-butyric acid. (C) 4-chloroindole-
3-acetic acid. (D) 2-phenyl acetic acid. (Simon and 
Petrášek, 2011) 

A C 

D B 
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In addition to these four natural auxin several synthetic auxins such as 2,4-dichlorophenoxy 

acetic acid (2,4-D) or 1-naphthalene acetic acid (NAA) have been developed which are more 

stable and therefore more suitable for scientific or agricultural applications. 

1.1.2 General functions of auxin in plant development 

Auxin plays a key role in the transmission of environmental and endogenous signals. 

Originally defined as enhancer of cell elongation growth (Normanly et al., 2010), auxin 

regulates, in addition, apical dominance, leaf senescence, fruit setting, growth and ripening, 

and plays an essential role in tropistic responses to light and gravity (for review, see Davis, 

2010). As a central function auxin defines directional cues fundamental to patterning (for 

review, see Berleth and Sachs, 2001). 

These patterning events depend mainly on a directional flow of auxin. This cell-to-cell 

process has been described by a modified chemiosmotic model (for review, see Lomax et 

al., 1995), implying influx through locally confined carriers and an (ubiquitously active) ion-

trap mechanism, and locally confined efflux through different carriers. 

1.1.3 Auxin-dependent patterning and how it is achieved 

Auxin-dependent patterning is based on cell polarity. Cell polarity and polar auxin flow are 

linked by dynamic localization of auxin efflux carriers through directional intracellular traffic in 

a self-amplifying feedback loop. Directional flux through carriers and non-directional influx by 

the ion trap generates a lateral inhibition, resulting in an ordered pattern (for review, see 

Friml, 2010; Nick, 2010), elegantly shown for the venation in developing leaves (for review, 

see Sachs, 2000), and the definition of new primordia in the growing meristem (Reinhard et 

al., 2000). 

Figure 1.3 shows a cellular model of IAA influx. Besides the passive diffusion, the two influx 

carriers Auxin resistant 1 and Like Auxin resistant (AUX1; Bennett et al., 1996; Yang et al., 

2006; LAX; Swarup et al., 2008) are involved in this process, both belonging to the family of 

plasma membrane amino acid permeases. Their important role in polarized auxin transport 

was nicely shown by Laňková et al. (2010) using 1-naphthoxy acetic acid (1-NOA), 2-

naphthoxy acetic acid (2-NOA), and 3-chloro-4-hydroxyphenyl acetic acid (CHPAA) to block 

theses auxin influx carriers, leading to a loss of polar cell file growth in tobacco BY-2 

cultures. After entering the cell, IAA is deprotonated because the pH changes from acidic to 

neutral. The fore-mentioned ion trap is now activated and the only way to leave the cell is via 

efflux carriers, which get their energy from H+-ATPases using the free H+ from dissociated 

IAA. These efflux carriers have been identified as PIN-formed proteins (PIN) and they show a 

very specific localization. Their intracellular distribution is asymmetric causing a directional 
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flow of auxin. In addition to this asymmetric pattern, PIN underlay a continuous cycling 

between cell membrane and the endoplasmatic reticulum (ER), which is controlled by auxin 

as regulator and actin as track. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fact that the efflux carriers have to be perpetually transported from ER to the plasma 

membrane and back again and that auxin mediates a re-organization from bundled to fine 

actin filaments places actin into the focus of this mechanism. 

1.2 The actin-auxin oscillator 

During the growth responses of Graminean coleoptiles to light (perceived by phytochrome) 

and auxin, actin undergoes dynamic changes in bundling (Waller and Nick, 1997). This 

bundling became manifest on the biochemical level as increased actin sedimentability and 

correlated with differences in auxin sensitivity (Waller et al., 2002) leading to an oscillator 

model where auxin-signaling triggered the re-organization of F-actin bundles into finer 

filaments. In turn, this enables more efficient transport of auxin-signaling components 

towards the cell pole (for review, see Nick, 2010). The auxin-triggered re-organization could 

Figure 1.3: Model of intracellular auxin transport. Undissociated IAA 

molecules enter cells by passive diffusion, whereas the less lipophilic, and 
therefore less permeable, dissociated auxin anions (IAA

-
) are imported via 

auxin influx 2H
+
 co-transporters of the AUX1/LAX family. In the more alkaline 

intracellular environment, IAA dissociates and requires active transport 
through the PIN or ABCB efflux transporter proteins to exit the cell. 
Asymmetric subcellular localization of PIN proteins determines directionality of 
auxin flow. A part of the cytosolic IAA is transported by PIN5 and presumably 
also PIN6 and PIN8 into the lumen of the endoplasmic reticulum. This 
compartmentalization serves to regulate auxin metabolism. Whereas PIN 
transporter activity is supposed to use an H

+
 gradient that is maintained by the 

action of the plasma membrane H
+
-ATPase, ABCB transporters harbor 

ATPase activity. (Friml, 2010) 
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later be confirmed in vivo (Holweg et al., 2004; Maisch and Nick, 2007), and was shown to 

stimulate polar auxin transport (Nick et al., 2009). 

In addition to cell expansion, also the synchrony of cell division depends on the actin-auxin-

oscillator. Cell divisions in tobacco cell suspensions follow a clear pattern with elevated 

frequencies of files composed of an even number of cells (Campanoni et al., 2003; Maisch 

and Nick, 2007) caused by weak coupling between the divisions of neighboring cells. This 

coupling is dependent on polar auxin flow. When actin was constitutively bundled by 

overexpression of YFP-mTalin, the synchrony of cell division was impaired. However, by 

exogenous auxins, a normal array of actin filaments (AF) could be restored and this 

treatment rescued division synchrony (Maisch and Nick, 2007) demonstrating that a normal 

(debundled) configuration of actin was necessary and sufficient for a polar auxin flow. Later, 

using transgenic rice plants overexpressing YFP-mTalin, the stimulatory effect of actin 

debundling on auxin flow could be demonstrated directly using radioactively labeled 

indole-3-acetic acid (Nick et al., 2009). 

The model of the actin-auxin oscillator postulates that the auxin-signal must be conveyed to 

actin causing its re-organization. Neither the mechanism nor the players for this signaling 

have been identified. Since AF can be modified by a plethora of actin-binding proteins (ABP; 

for review, see Staiger, 2010), it is likely that also the auxin-signal could be mediated by one 

or a complex of several ABP. 

1.3 Actin, highly conserved but flexible in function 

As a part of the plant cytoskeleton, actin has to fulfill a bunch of highly different tasks. For 

example, actin plays an important role as part of the intracellular transport machinery of 

various cargoes. These cargoes are widespread and contain organelles like mitochondria 

(Birtalan et al., 2012). Most of these transport events are widely accepted to be 

accomplished by a class of mechanochemical enzymes called myosins. Myosins are able to 

bind actin filaments, and move along AF carrying their bound cargo under constant 

hydrolysis of ATP and conformational changes (Shimmen and Yokota, 2004; Shimmen, 

2007). In addition to these transport functions, AF structure the vacuolar and transvacuolar 

cytoplasmic strands of plant cells (Staiger et al., 1994; Verbelen and Tao, 1998; Sheahan et 

al., 2007). Additionally to the transport function the actin cytoskeleton is also responsible to 

anchor organelles at defined intracellular positions (nuclear movement and anchorage, for 

review, see Campbell and Reece 2003; Frey et al., 2010; Klotz and Nick, 2012). As a result 

of these different tasks, actin filaments strongly control the whole cellular architecture. To 

achieve this multitude of functional tasks, the conformation of the actin cytoskeleton has to 

be adjusted from a network of fine cross-linked to heavily bundled filamentous structures or 
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vice versa, depending on the particular situation. For instance, to maintain the nucleus at its 

appropriate position during the cell cycle, non-dynamic actin filaments are needed, whereas 

filaments in the cortical region of a cell have to be highly dynamic to give the cell the 

opportunity to react immediately on altered requirements in respect to vesicle transport or 

external stimuli like pathogens (Qiao et al., 2010). 

Plant actins share 83 to 88 % amino acid sequence identity compared to actins of green 

algae, most protists, fungi, and animals. Within the families, the amino acid sequence identity 

is even higher at about 95 % (Meagher et al., 1999a, 1999b). This means that actin is 

extremely conserved. Thus, there is not enough variability of different isoforms to 

accommodate the diverse functionality without binding partners. The basic structure of 

filamentous actin is composed of monomeric asymmetric actin subunits with a molecular 

weight of 42 kDa. Each monomer contains four subdomains, nucleotide- and divalent cation-

binding sites (Kabsch et al., 1990). Assembly of monomeric actin into filamentous actin (F-

actin) as well as maintenance of F-actin and its disassembly is regulated by a huge number 

of actin-binding proteins (Hussey et al., 2002; Staiger and Blanchoin, 2006). 

The distinct decoration of actin filaments with different sets of actin binding proteins leads to 

multiple functional subpopulations and allows to complete the different tasks, mentioned 

above. 

1.4 Actin-binding proteins and their pivotal role in actin 

filament organization 

Actin as part of the cytoskeleton and a backbone of cellular transport is subject to multiple 

structural modifications caused by direct or complex-based binding of actin-binding proteins 

(ABP). Up to now, more than 70 classes of ABP have been identified in eukaryotic cells 

(Kreis and Vale, 1999; Pollard et al., 2000). Because of this abundance functional 

characterization and categorization is essential in addition to their identification. 

1.4.1 Categorization of functional families of actin-binding proteins 

It is more or less possible to distinguish between two main groups of ABP, monomer-binding 

proteins or polymer-binding proteins. In both groups, as pointed out below, several 

subgroups can be differentiated although they often overlap in function. 

As monomer-binding proteins profilins, adenylate cyclase-associated proteins (CAP) or actin-

depolymerization factors (ADF) are well known. Their functions are widespread: They 

prevent spontaneous nucleation, shuttle new actin subunits onto filaments, enhance 
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nucleotide exchange or act as sequestering proteins (for a recent review, see Staiger et al., 

2010). In most cases, different ABP classes have to cooperate to fulfill their actual function. 

Profilins for example, are able to bind stretches of proline residues as they appear in both 

proline-rich formin-homology domains (FH1 and FH2) of formins (for review, see Deeks et 

al., 2002; Blanchoin and Staiger, 2008) leading to a proper localization of this major 

nucleation factor. In addition to this nucleation function from monomers, formins can also 

bundle AF and nucleate new filaments from the side of existing bundles (Michelot et al., 

2005, 2006). Because of this side-binding, formins can also be sorted into the second main 

group of the polymer-binding proteins. These proteins contribute to the formation of higher-

order structures by stabilizing, bundling and crosslinking AF, respectively (Staiger et al., 

2010). Prominent members of this group are LIM-domain containing proteins (LIM; Thomas 

et al., 2006), fimbrins (FIM), both bona fide bundling and crosslinking proteins (Kovar et al., 

2000) or villins (VLN) which belong to the superfamily of gelsolins. The gelsolins cannot only 

bundle, but can also sequester filaments (for review, see Thomas et al., 2009). 

To get better insight into the role of ABP with regard to auxin-mediated actin re-organization, 

selected members of different Nicotiana tabacum ABP families were overexpressed in 

tobacco BY-2 cells. From the results of preliminary phenotyping the Nicotiana tabacum actin-

depolymerizing factor 2 (ADF2) shifted into the focus as most promising candidate (Chen et 

al., 2002). 

1.4.2 Function, structure, and regulation of actin-depolymerizing factors 

Actin-depolymerizing factors (ADFs)/cofilins bind to G- and F-actin with a noticeable 

preference for ADP-G-actin (Carlier et al., 1997; Blanchoin and Pollard, 1999). They 

disassemble AF by a complex mechanism, which depends on the activity of stabilizing ABP 

(Ketelaar et al., 2004; Huang et al., 2005). 

The activity of ADFs can be modulated by several factors, such as pH (Gungabissoon et al., 

2001; Allwood et al., 2002), or phosphorylation of a N-terminal serine residue, which leads to 

a loss of actin-binding when phosphorylated (Allwood et al., 2001). In addition, the 

phosphoinositide lipid Phosphatidylinositol-4,5-bisphosphate (PIP2) can specifically inhibit 

actin-binding ability of ADFs (for review, see Staiger et al., 2010). This inhibition is achieved 

via an electrostatic interaction of PIP2 with a positively charged group of amino acids of ADF 

(Zhao et al., 2010) covering its actin filament binding sites (Figure 1.4 A). 
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1.5 Scope of this dissertation 

This dissertation can be separated into two main parts. The first section deals with the 

search for auxin-signal mediators for actin filament re-organziation, whereas the second part 

is based on the first one and focuses on actin itself. By means of a FP-based approach it 

was tested, if it is possible to discriminate between differently decorated actin filament sub-

populations and their distribution. 

1.5.1 The role of actin-binding proteins for auxin-signaling 

The incorporation of the actin cytoskeleton in auxin dependent patterning plays a pivotal role 

in plant patterning. Actin microfilaments undergo a clearly visible re-organization as response 

to auxin-signaling within minutes. How this signal is mediated, remains still poorly 

understood. As actin is subject to multiple structural modifications caused by direct or 

complex-based binding of ABP, it is possible that these proteins are involved in this re-

organization process and contribute in this manner to the self-amplification loop between 

auxin-signaling and AF. 

The aim of this dissertation is to investigate the role of representative members of different 

ABP-families with a focus on the Nicotiana tabacum actin-depolymerizing factor 2 (NtADF2) 

for auxin dependent, patterned cell division in the homologous system. If NtADF2 is part of 

an auxin-driven feedback loop, it should be possible to manipulate auxin-dependent 

patterning via manipulation of NtADF2-expression levels in BY-2 cell cultures. In particular, 

this work is investigating whether overexpression of NtADF2 will impair the polarity of auxin 

flow. For this purpose, patterned cell division is used as sensitive trait to monitor changes of 

Figure 1.4: (A) Model of the molecular surface of human cofilin-1. The most critical 

residues in PIP2 binding are colored in red and other positively charged residues 
contributing to PIP2 binding are in orange. The mutated residues (Zhao et al., 2010) 
that did not display effects on PIP2 binding are in green. (B) G-actin and F-actin 
binding sites of cofilin. Residues that are critical for ADF/cofilin interactions with G-
actin and F-actin are in yellow. Residues that are critical for interaction with F-actin, 
but not G-actin, are in cyan. (Zhao et al., 2010) 

A B 
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polar auxin fluxes. In addition the phenotype of this NtADF2-overexpressing BY-2 cell line is 

analyzed. 

1.5.2 Discrimination and visualization of actin sub-populations 

As mentioned before, actin is highly conserved but essential for a plethora of different 

essential functions, like the polar transport of auxin examined in the first part of this work. All 

experimental findings led to the assumption, that actin achieves its enormous potential 

through its various binding proteins resulting in functional actin sub-populations. 

The second scope of this dissertation is the visualization and discrimination of diversely 

decorated actin filament sub-populations by means of novel BY-2 actin-marker lines using 

the yeast peptide Lifeact, which is, up to now, the ubiquitary actin-binding probe with fewest 

side effects. Lifeact is fused to a photoswitchable red fluorescent protein (psRFP), or a 

photoswitchable monomeric fluorescent protein called mIRISFP, respectively. The psRFP 

forms tetramers and is therefore much bigger than the monomeric Lifeact-mIRISFP. In actin 

filaments that are heavily decorated by ABP, steric hindrance of the tetrameric psRFP 

reporter is expected which should lead to differentially labeled subset of actins as evidence 

for such functional actin filament sub-populations. As this approach reaches the diffraction 

limit of classical fluorescence microscopy, high resolution PALM-/STORM-microscopy had to 

be employed for the first time in living plant cells. 

1.6 Fluorescent proteins in living plant cells 

The second part of the doctoral thesis deals with the visualization of actin filaments using 

classical fluorescent proteins (FP) fused to different ABP versus the establishment of new 

BY-2 marker lines containing photoactivatable fluorescent proteins (pa-FP). For a better 

understanding of the need and the advantages of pa-FP over classical FP it is necessary to 

illuminate the basics of the techniques and their limitations. 

1.6.1 Fluorescent proteins in microscopy 

After their discovery and utilization by Osamu Shimomura (Shimomura et al., 1962), Martin 

Chalfie (Chalfie et al., 1994) and Roger Tsien (Heim et al., 1994; Heim et al., 1996; Shaner 

et al., 2004), fluorescent proteins (FP) changed the world of cell biology fundamentally. Their 

tremendous importance was appreciated in 2008 with the Nobel prize in Chemistry. 

The first discovered FP was a green fluorescent protein (GFP) from the jellyfish Aequorea 

victoria. It consists of 238 amino acids with a molecular weight of 26.9 kDa (Prasher et al., 

1992). An α-helix and 11 anti-parallel β-sheets form a β-barrel containing the covalently 
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bound chromophore, formed inside of this barrel by cyclization and oxidation reactions from 

the tripeptide Ser65-Tyr66-Gly67 (Ormö et al., 1996; Yang et al., 1996). 

 

 

 

 

 

 

 

 

 

 

GFP as starting point for FP-based microscopy was rapidly followed by molecular 

modification leading to additional FP with different excitation and emission wavelengths as 

compared to the original GFP (excitation: 395 nm major, 475 nm minor; emission: 509 nm), 

which depends on electron-stacking interactions of intra-β-barrel side chains with the 

chromophore (Heim et al., 1994; Heim et al., 1996; Shaner et al., 2004). FP are non-toxic to 

cells and therefore feasible for in vivo live cell imaging in contrast to fixation- and antibody-

based techniques. The possibility to fuse these FP to proteins of interest (POI) enables 

protein localization studies over a certain period of time depending on bleaching properties of 

the FP. Constructs of FP-POI fusions are brought into plant cells via ballistic or A. 

tumefaciens-mediated transformation and can be observed under confocal laser scanning 

microscopes (CLSM) or conventional widefield epifluorescence microscopes. 

To visualize the actin cytoskeleton, FP are fused to entire ABP or selected domains of them. 

The most prominent marker lines in plant cells are based on fusions with the actin-binding 

domain of mTalin (mTalin), LIM-domain containing proteins or the actin-binding domain 2 of 

A. thaliana fimbrin 1 (FABD2). Since 2008, a new actin-binding probe called Lifeact, a small 

17 amino acid peptid from yeast, is considered at the moment as the best available actin 

marker. This is especially valid for combinations with newest FP resulting in the so far 

minimal reported side effects. (Riedl et al., 2008). 

Figure 1.5: GFP molecules in cartoon style (PyMol, http://www.pymol.org/; as 

of December 2011). Chromophore highlighted as ball and stick (created by 
Raymond Keller, 2008). Figure 1.5 is basing on the work of Yang et al., 1996. 
Protein structure information: 1GFL (RCSB Protein Data Bank, 
http://www.rcsb.org/pdb/, as of December 2011) 
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1.6.2 Limitations of classical fluorescent proteins 

FP revolutionized cell biology without any doubt, but as usual all new results have to be 

taken with a pinch of salt. As FP normally cannot bind structures of interest like actin by 

themselves they need linker proteins and these fusions have to be expressed at a relatively 

high level to be visible in the cell. This can lead to side effects or artifacts reaching from 

microfilament bundling (e.g. mTalin overexpression; Ketelaar, 2004; Maisch and Nick, 2007) 

over false localization pattern due to disproportionate amounts of binding partners or steric 

hindrance to even mortality of the transformed cells. Even if there are no side effects 

manifest, it is very important always to keep in mind that the system had to be changed to 

visualize it. 

To reduce artificial effects, experimental procedures based on FP have been subsequently 

advanced. On the one side the vector systems have been modified, making for example 

chemical induction of the FP-fusion expression possible. On the other side, the FP 

themselves had been tailored more precisely to the experimental approaches they are used 

for. The modification of excitation and emission wavelength made techniques like fluorescent 

resonance energy transfer (FRET) possible that allowed a better insight in protein interaction 

in living cells (Campbell et al., 2002). In addition to that improvement, it was possible to alter 

classical FP in a way that enabled specific time point related expression of FP-fusions. This 

sort of FP changes its color while aging (Terskikh et al., 2000). Despite all modifications one 

parameter remained unchanged: FP depend on the emission of light and their microscopic 

detection which binds structural resolution to Abbe’s law as optical limit. In the past the only 

possibility to reach resolution in low nm scale was electron microscopy with all its limitations 

concerning observation of living cells. However, during the last years, the development of 

new microscopic techniques like photoactivation localization microscopy (PALM) allowed to 

circumvent Abbe’s law and reach resolutions of 5-20 nm. As conventional FP are not feasible 

for this approach, new variants had to be found or created that are photoactivatable (pa-FP). 

1.6.3 Photoactivation localization microscopy 

Photoactivation localization microscopy was developed in 2006 by three independent groups 

and is now known as PALM (Betzig et al., 2006), fluorescence photoactivation localization 

microscopy (FPALM; Hess et al., 2006) or stochastic optical reconstruction microscopy 

(STORM; Rust et al., 2006). All three microscopic techniques work with light-regulated on- 

and off-switching of single fluorescent molecules (pa-FP, see 1.6.4, p. 12) using short light 

flashes of adequate wavelength followed by microscopic detection over a certain period of 

time. The advantage in comparison to conventional fluorescence microscopy, where FP are 

simultaneously excited and individual signals are not any longer distinguishable, is that these 
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light flashes are very short or weak and therefore the chance to excite fluorescent molecules 

adjacent to each other is nearly excluded. This leads to a situation where single fluorescent 

molecules are excited and emit a specific signal until they are irreversibly bleached. 

Repeating this step until all molecules have lost their light emitting ability while taking 

thousands of images, makes it possible to calculate the exact position of every single signal 

using the mathematical algorithm of the point spread function (Figure 1.6). This technique 

allows resolutions of single molecules in the range of 5-20 nm in living cells. 

  

 

 

 

 

 

 

 

 

 

1.6.4 Photoactivatable fluorescent proteins 

Photoactivatable fluorescent proteins (pa-FP) are a subclass of fluorescent proteins. They 

are able to change their fluorescence emission properties in response to irradiation with light 

of specific wavelengths and intensity (Adam et al., 2008; Fuchs et al., 2010). 

At the moment pa-FP are used for three kinds of experimental procedures. Super-resolution 

fluorescent microscopy techniques like photoactivation localization microscopy (PALM) are 

based upon these probes, enabling the visualization of cellular structures with a level of 

details never seen before in living cells. In a second approach pa-FP are used for so called 

pulse-chase experiments, in which a sub-population of fluorescent proteins in a cell can be 

activated by irradiation and their movements followed over time. The third application is the 

combination of both approaches using further developed pa-FP (Fuchs et al., 2010). 

Whether a pa-FP is suited for a given experimental question depends on different 

parameters like their appearance as proteins. There are obligate tetramers and monomeric 

Figure 1.6: Single-Molecule Localization Prodedure of PALM. (A) The point-spread function 

of a widefield fluorescence microscope is superimposed on a wireframe representation of 
the pixel array from a digital camera in both two (upper left) and three-dimensional 
diagrams. The pixelated point-spread function of a single fluorophore as imaged with an 
EMCCD is shown in the upper left of (B), and modeled by a three-dimensional Gaussian 
function, with the intensity for each pixel color-mapped in the central portion of (B). (C) A 
contour map of the intensities. In cases where two contour maps overlap due to emission by 
fluorophores with a separation distance shorter than the diffraction limit, the centroid for 
each fluorophore can be individually localized by subtracting the point-spread function of 
one fluorophore from the other (after it enters a dark state or is photobleached) due to the 
temporal mapping strategy for generating PALM images. 
(http://zeiss-campus.magnet.fsu.edu/articles/super-resolution/palm/introduction.html, as of 
December 2011) 
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pa-FP both with unique advantages and disadvantages. Tetrameric pa-FP are characterized 

by a relatively strong fluorescent signal and can be used to label whole cells and organelles. 

A possible disadvantage is the big size of the tetramer which might disrupt the localization 

and function of their fusion partner. Compared to tetrameric pa-FP, monomeric pa-FP are 

smaller and can therefore be used to label and track individual molecules inside a cell (for 

review, see Lukyanov et al., 2005). As a fusion with these proteins carries only one 

chromophore the signal is in theory weaker. Additional to that, pa-FP are sorted into three 

main groups according to their modes of photoactivation. A distinction is drawn between 

reversible photoswitching from a fluorescent to a non-fluorescent state or vice versa after 

photoactivation (photoswitching), and an irreversible change of fluorescent properties, either 

from a non-fluorescent to a fluorescent state or between two fluorescent states with different 

emission wavelengths (photoconversion; Lukyanov et al., 2005). Into the third group fall pa-

FP which combine both mechanisms. 

In this dissertation, a photoswitchable red fluorescent protein (psRFP) belonging to the first 

group of reversible photoswitching from a non-fluorescent to a fluorescent state, and a 

monomeric IRIS fluorescent protein (mIRISFP; Fuchs et al., 2010), combining 

photoconversion with reversible photoswitching, are fused to Lifeact and are stably 

expressed in tobacco BY-2 cells to allow a more detailed understanding of the actin 

cytoskeleton, its polarity and dynamics.  
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1.6.5 The photoactivatable fluorescent proteins psRFP and mIRISFP 

The photoswitchable red fluorescent protein (psRFP) 

The photoswitchable red fluorescent protein (psRFP) is a S-143-G mutation of the 

photoswitchable red fluorescent protein isolated from Anemonia sulcata var. rufescens 

(asRFP) with improved photoswitching properties and was characterized in the group of Prof. 

Dr. Nienhaus (Institute for applied physics and Center for Functional Nanostructures (CFN), 

Karlsruhe Institute of Technology (KIT)). Its structure is characterized by four monomers 

arranged as dimers of dimers, which is typical for FP isolated from anthozoa (Figure 1.7 B). 

The chromophore of psRFP can be isomerized from its non-fluorescent trans-conformation 

by illuminating with light of a wavelength of 561 nm into its red fluorescent cis-conformation 

(Figure 1.7 A). After illumation with light of wavelength of 450 nm, a clear decrease of 

fluorescence and a backshift of the chromophore into the non-fluorescent trans-conformation 

can be observed. Because of this mode of switching, the psRFP is sorted into the group of 

positive switchers. For super-resolution microscopy, this group is preferred over the group of 

negative switchers, which are switched from their fluorescent to their non-fluorescent state 

with the excitation light (Stiel et al., 2008). 

 

 

 

Figure 1.7: (A) The cis (red) and the trans (gray) chromophore of psRFP together with important amino acids in 

the direct chromophore environment are displayed. Color coding for surrounding residues: black = carbon; red = 
oxygen; blue = nitrogen. Water molecules are represented by red spheres, hydrogen bonds by dashed lines 
(Fuchs, 2011). (B) Dimer of dimers of psRFP in its non-fluorescent “off”-state (3CFH, RCSB Protein Data Bank, 
http://www.rcsb.org/pdb/, as of December 2011) 

A B 
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The monomeric IRIS fluorescent protein (mIRISFP) 

This monomeric FP is a further development of IRISFP, a tetrameric pa-FP. It is named after 

the greek goddess of the rainbow and was characterized in the group of Prof. Dr. Nienhaus 

(Institute for applied physics and Center for Functional Nanostructures (CFN), Karlsruhe 

Institute of Technology (KIT)). Tetrameric IRISFP is a F-173-S mutant of tetrameric Eos-FP 

from Lobophyllia hemprichii, which responds to UV-violet-light (380 nm) irradiation with an 

irreversible photoconversion from a green- to red-emitting state (for review, see Lukyanov et 

al., 2005). The monomeric version mIRISFP differs from monomeric Eos-FP by three 

additional mutations (A-69-V, F-173-S, K-145-I and Y-189-A), and combines the advantages 

of monomeric pa-FP with the spectral properties of the tetramer (for review, see 

Wiedenmann et al., 2011). This pa-FP differs strikingly from conventional ones employing a 

single photoactivation mode and can be used either for pulse-chase experiments as well as 

super-resolution imaging. The property of photoconversion from a green- to a red-emitting 

state and the photoswitchablity from an “on” to an “off” state and vice versa, in both emitting 

states, makes a combination of both experimental procedures possible (Fuchs et al., 2010). 

The peak of emitted fluorescence is at 515 nm (excitation at 486 nm) for the green form and 

at 578 nm (excitation at 546 nm) for the red form while the chromophores are in the cis-

conformation. In both non-fluorescent forms, the chromophores are in the trans-conformation 

(Adam et al., 2008). 

 

Figure 1.8: Photoinduced transformations in IrisFP. Structural motions induced by light are represented by 
curved arrows of the same color as those used to represent light illumination at specific wavelengths. cG, cis-
green Iris; tG, trans-green Iris; cR, cis-red Iris; tR, trans-red Iris (Adam et al., 2008). On the right side additional 
protein structure of the tetrameric green cis-conformation (2VVH, RCSB Protein Data Bank, 
http://www.rcsb.org/pdb/, as of December 2011) 
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2. Materials and Methods 

2.1 Tobacco cell cultures 

BY-2 (Nicotiana tabacum L. cv BY-2) suspension cell lines (Nagata et al., 1992) were 

cultivated in liquid medium containing 4.3 g/L Murashige and Skoog salts (Duchefa 

Biochemie, Haarlem, the Netherlands), 30 g/L sucrose, 200 mg/L KH2PO4, 100 mg/L inositol, 

1 mg/L thiamine, and 0.2 mg/L 2,4-D, pH 5.8. The cells were subcultivated weekly, 

inoculating 1.0 to 1.5 mL of stationary cells into fresh medium (30 mL) in 100-mL Erlenmeyer 

flasks. The cells were incubated at 26°C under constant shaking on a KS260 basic orbital 

shaker (IKA Labortechnik, Staufen, Germany) at 150 rpm. Every three weeks the stock BY-2 

calli were subcultured on media solidified with 0.8 % (w/v) agar (Roth, Karlsruhe, Germany). 

Transgenic cells and calli were cultivated on the same media as non-transformed wild-type 

cultures (BY-2 WT), but supplemented with corresponding antibiotics (for more details, see 

Appendix 7.8, p. 96). In some experiments, the cell lines were assessed in the absence of 

selective pressure to exclude possible side effects without any detectable differences in 

patterning or arrangement of actin filaments. 

2.2 Constructs 

2.2.1 RNA preparation and reverse transcription 

2 mL of cycling BY-2 WT (3 d after subcultivation, 100 mg of cells) were pipetted onto filter 

paper to remove the liquid medium. The cells were transferred with a spatula into a 2 mL 

reaction tube, immediately frozen in liquid nitrogen, and ground with a 5 mm steel bead in a 

TissueLyser (Quiagen, Hilden, Germany). Total RNA was extracted using a RNeasy Plant 

Mini Kit (Quiagen). Optional on-column digestion of genomic DNA was performed with 

RNase-free DNAse I (Quiagen) for 30 min at 37°C. Purity and integrity of the RNA-

preparation were checked by electrophoresis. For reverse transcription, the Dynamo cDNA 

Synthesis Kit (Finnzymes, Vantaa, Finland) was used with 1 µg of RNA as template 

according to the manufacturer’s instruction. 

2.2.2 Cloning procedure 

Plasmids for stable and transient transformation of BY-2 WT cells were constructed using the 

Gateway®-Cloning technology (Invitrogen Corporation, Paisley, UK). The sequences 

encoding the genes of interest (Appendix 7.1, p. 84) were amplified by PCR (for more 

details, see Appendix 7.4.1, p. 89) using oligonucleotide primers with Gateway®-specific 
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flanks (Appendix 7.3.1, p. 87). The size of the amplicons were verified by electrophoresis 

and purified via NucleoSpin® Extract II (Machery-Nagel, Düren, Germany) according to the 

manufacturer’s instructions. The resulting gene-regions were inserted into the binary vector 

pK7WGF2 (Karimi et al., 2002; NtADF2, NtADF2, NtVLN1, NtVLN2), pH7WG2 (Karimi et al., 

2002; Lifeact-psRFP, Lifeact-mIRIS), and pK7FWG2 (Karimi et al., 2002; NtWLIM2) following 

the manufacturer’s protocol (Appendix 7.5, p. 91). A complete overview of all constructs can 

be found in the Appendix (7.6, p. 92). 

The Lifeact-VENUS construct (Era et al., 2009) within a binary vector (pGWB2; Nakagawa et 

al., 2007) was a kind gift of Prof. Takashi Ueda (Laboratory of Developmental Cell Biology, 

University of Tokyo, Japan). 

To confirm the accuracy of the sequences, all fusion constructs were verified by restriction 

digest and sequencing (GATC, Konstanz, Germany). 

2.3 Transformation and establishment of tobacco BY-2 cells 

2.3.1 Biolistic, transient expression 

For biolistic transformation, gold particles (1.5-3.0 µm; Sigma-Aldrich, Taufkirchen, Germany) 

were coated with the corresponding construct according to a standard manual of BIO-RAD 

(PDS-1000/He Particle Delivery System manual; for details, see Appendix 7.7, p. 95) with 

the following modifications. Each transformation was performed using gold particles coated 

with 1 µg plasmid-DNA and placed on macrocarriers (BIO-RAD). Non-transformed BY-2 WT 

cells (750 µL), collected at different time points after subcultivation (2-5 d), were placed on 

PetriSlides™ (Millipore, Billerica, USA) containing 2 mL of solid medium. These loaded slides 

were transferred below a particle gun custom-made according to Finer et al. (1992), and 

bombarded by three shots with a pressure of 1.5 bar at a vacuum chamber of -0.8 bar. 

Following bombardment, the cells were incubated for 4-24 h in the dark at 26°C, and 

observed under the fluorescence microscope. 

2.3.2 Agrobacterium-mediated, stable expression 

Stable transformation of non-transformed BY-2 WT cells with the binary vector constructs 

pK7WGF2-NtADF1, pK7WGF2-NtADF2 and pGWB2-Lifeact-VENUS were achieved 

according to An (1985) with minor modifications. The constructs were transformed into 

Agrobacterium tumefaciens (strain LBA 4404; Invitrogen Corporation, Paisley, UK) via 

heatshock (5 min, 37°C). After three days of cultivation on selective medium, a single colony 

was raised in a 3-mL over-night culture. A 2-mL aliquot of 3-d-old BY-2 WT cells was co-
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cultivated for further three days with 150 µl of the A. tumefaciens over-night culture at 28°C. 

Following co-cultivation, the cells were washed three times in liquid medium containing 100 

mg/L cefotaxim, and then plated onto solid medium containing 100 mg/L kanamycin and 100 

mg/L cefotaxim (pK7WGF2-constructs) or 50 mg/L hygromycin and 100 mg/L cefotaxim 

(pGWB2-construct). BY-2 calli, which were resistant to the antibiotics, appeared from 21 

days of incubation in the dark at 26°C. These calli were transferred onto new plates. After 

further 21 days, the calli had reached approximately 1 cm in diameter. At this stage, cell-

suspension cultures were established from these calli using 25-50 mg/L kanamycin 

(pK7WGF2-NtADF1, pK7WGF2-NtADF2) or 30 mg/L hygromycin (pGWB2-Lifeact-VENUS) 

added to the liquid medium for selection. 28 days later, cell lines with clear fluorescence 

were selected by observation under the fluorescence microscope. 

2.3.3 Agrobacterium-mediated, stable expression 

Stable transformation of non-transformed BY-2 WT cells with the binary vector constructs 

pK7WGF2-NtVLN1, pK7FWG2-NtWLIM2, pH7WG2-Lifeact-psRFP, pH7WG2-Lifeact-mIRIS, 

and pOpOff2(kan)-NtADF2 RNAi was achieved according to Buschmann et al. (2010) with 

minor modifications. The preparation of the BY-2 cells started with a subcultivation of 3 mL of 

a 7-d-old non-transformed tobacco BY-2 cell culture in 60 mL MS-media in a sterile 200 mL 

flask for three days at standard conditions (see 2.1, p. 16). Thereafter, the cells were washed 

twice with 200 mL sterile Paul’s medium (4.3 g/L Murashige and Skoog salts without vitamins 

(Duchefa Biochemie, Haarlem, the Netherlands), 10 g/L sucrose, pH 5.8) and resuspended 

in 10 mL of Paul’s media leading to a five-fold concentrated cell density. 1 mL of these 

concentrated cells was added to A. tumenfaciens transformed as described in 2.3.2 and 

processed as follows. The OD600 of the over-night culture was determined and 5 mL of fresh 

LB-media (plus corresponding antibiotics) were inoculated with these bacteria to an OD600 of 

0.15. After several hours of growth 1 mL of the transformed A. tumenfaciens bacteria was 

harvested at an OD600 of 0.8 by centrifugation at 10000 g (HERAEUS Pico 17 Centrifuge, 

Thermo Scientific, Langenselbold, Germany) for 1 min in a 1.5 mL reaction tube. The 

supernatant was removed and the pellet resuspended in 30 µL of Paul’s medium. After 

adding the BY-2 cells to the resuspended bacteria the reaction tube was agitated for 5 min at 

100 rpm for a better mixing of the cells. In the next step this mixture was dropped in 100 µL 

aliquots on plates with Paul’s agar (Paul’s media solidified with 0.5 % (w/v) Phytagel (Sigma 

P8169), without antibiotics). After 4 days of incubation at 26°C in the dark the grown cell 

plaques were transferred and cultivated on new plates with MS agar under selective 

pressure as described above (see 2.1). 
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2.4 Visualization of actin filaments by phalloidin-based 

staining 

Actin filaments were visualized by the method of Kakimoto and Shibaoka (1987) modified 

according to Olyslaegers and Verbelen (1998) as described in Maisch et al., 2009. 200 µL of 

suspended cells were fixed for 10 min in 1.8 % (w/v) paraformaldehyde in standard buffer 

(0.1 M PIPES, pH 7.0, supplemented with 5 mM MgCl2, and 10 mM EGTA). After a 

subsequent 10-min fixation in standard buffer, cells were rinsed twice for 10 min with 

phosphate-buffered saline (0.15 M NaCl, 2.7 mM KCl, 1.2 mM KH2PO4, and 6.5 mM 

Na2HPO4, pH 7.2). Then, the resuspended cells were incubated for 35 min with 0.5 mL of 

0.66 µM TRITC-phalloidin (Sigma-Aldrich, Taufkirchen, Germany) prepared freshly from a 66 

mM stock solution in 96 % (w/v) ethanol by dilution (1:100, v/v) with phosphate-buffered 

saline. Cells were then washed three times for 10 min in phosphate-buffered saline and 

observed immediately. The same protocol was used to visualize the colocalization of GFP-

NtADF2 with actin filaments. To visualize the colocalization of Lifeact-psRFP with actin 

filaments the TRITC-phalloidin was exchanged by Alexa-Fluor® 488. 

2.5 Quantification of pattern and morphology 

All experiments related to division synchrony, mitotic index, cell length and width were 

observed to be not affected by antibiotic selection. 

2.5.1 Determination of frequency distribution, cell length and width 

Division synchrony of tobacco BY-2 cells was quantified by collecting 0.5-mL aliquots of cells 

4 d after inoculation and immediate observation under an AxioImager Z.1 microscope (Zeiss, 

Jena, Germany). In addition, the NtADF2 RNAi knockout cell line was induced at inoculation 

using 10 µM dexamethasone (Roth, Karlsruhe, Germany). Differential interference contrast 

images were obtained by a digital imaging system (AxioVision; Zeiss). For each picture, the 

MosaiX module of the AxioVision software was used to cover a 5x5 mm area with 256 single 

pictures at an overlay of 15 %. Using the stitching-function, frequency distributions over the 

number of cells per individual file were constructed (Maisch et al., 2007). Each data point 

represents between 921 and 1158 cell files from at least three independent experimental 

series. Cell length and width were also determined from the central section of the cells using 

the length function of the AxioVision software according to Maisch et al. (2007). Each data 

point represents mean and standard error from 500 individual cells from three independent 

experimental series. The results were tested for significance by a Student’s t-test at a 95 % 

confidence level. 
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2.5.2 Determination of mitotic indices 

The mitotic index (MI) of tobacco BY-2 cell suspension was determined following fixation with 

Carnoy fixative [3:1 (v/v) 96 % (v/v) ethanol:glacial acetic acid, supplemented with 0.25 % v/v 

Triton X-100]. Nuclei were stained with 1 µg mL-1 of Höchst 33258 (2’-(4-hydroxyphenyl)-5-

(4-methyl-1-piperazinyl)-2,5’-bi(1H-benzimidazole)-trihydrochloride; Sigma-Aldrich, 

Taufkirchen, Germany), diluted from a 0.5 mg mL-1 filter-sterilized stock solution in distilled 

water for 5 min. Samples were observed after further 5 min of incubation under an 

AxioImager Z.1 microscope (Zeiss, Jena, Germany) using the filter set 49 (excitation at 365 

nm, beamsplitter at 395 nm, and emission at 445 nm). Mitotic indices were determined as the 

relative frequency of mitotic cells out of a sample of 500 cells scored for each data point. 

2.6 Microscopy and image analysis 

For morphological studies, cells were examined under an AxioImager Z.1 microscope (Zeiss, 

Jena, Germany) equipped with an ApoTome microscope slider for optical sectioning and a 

cooled digital CCD camera (AxioCam MRm; Zeiss). TRITC-/RFP-, YFP- and GFP-/Alexa-

Fluor® 488-fluorescence were observed through the filter sets 43 HE (excitation: 550 nm, 

beamsplitter: 570 nm, emission: 605 nm), 46 HE (excitation: 500 nm, beamsplitter: 515 nm, 

emission: 535 nm) and 38 HE (excitation: 470 nm, beamsplitter: 495 nm, emission: 525 nm), 

respectively (Zeiss). Stacks of optical sections were acquired at different step sizes between 

0.4 and 0.8 µm. Images were processed and analyzed using the AxioVision (Rel. 4.8.2) 

software as described above. 

For analysis of division pattern, cells were observed under the same microscope with a 20x 

objective and differential interference contrast illumination. Images were processed for 

publication with respect to contrast and brightness using ImageJ (NIH, Bethesda, USA). 

For photoactivation localization microscopy (PALM) of Lifeact-psRFP ox BY-2 cells 0.5 mL 

cells of various days after subcultivation were transferred from their standard cultivation 

flasks (see 2.1, p. 16) into Chamber SlidesTM (4 chambers, Thermo Scientific, Langenselbold, 

Germany) and observed under the photoactivation localization microscope kindly provided by 

the lab of Prof. U. Nienhaus (Institute for Applied Physics and Center for Functional 

Nanostructures - CFN, Karlsruhe Institute of Technology – KIT). The microscope setup for 

imaging of living Lifeact-psRFP ox BY-2 cells was as follows: 100x objective, 30-50 ms 

camera exposure time, 300 gain, 4.7x preamp, 5-20 mW 561 nm, <1 mW 473 nm, Andor 

Solis (Rel. 4.0; http://www.andor.com/software/solis/ as of January 2012). The calculation of 

the exact position of every single signal using the mathematical algorithm of the point spread 
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function was performed using an inhouse software written in Matlab R2009b 

(http://www.mathworks.de/products/matlab/ as of January 2012). 

The test for photostability of the Lifeact-psRFP and the RFP-FABD2 BY-2 cell line was 

performed in the Institute for Applied Physics and Center for Functional Nanostructures by 

P.N. Hedde. Transgenic cells were taken 3 d after subcultivation and constantly excitated 

with light of a wavelength of 561 nm at 10 W/cm2. For 1200 sec every 10 sec an image was 

taken and the emission intensity measured using the software mentioned above. 

2.7 PIP2 , phalloidin, latrunculin B, and auxin treatments 

PIP2 (Phosphatidylinositol 4,5-bisphosphate; Sigma-Aldrich, Taufkirchen, Germany) was 

added at inoculation from filter-sterilized stocks of 2 µM in chloroform:methanol:0.5 M HCl 

(10:5:1) to a final concentration of 50 nM, a concentration that had been found in preparatory 

studies to leave cell division and culture growth unaffected. 

Phalloidin from Amanita phalloides (Sigma-Aldrich) was added directly to the final 

concentration of 1 µM into the standard culture medium using a filter-sterilized stock of 1 mM 

phalloidin dissolved in 96 % (v/v) ethanol. 

Latrunculin B from Latrunculia magnifica (Sigma-Aldrich) was added directly to the final 

concentration of 65 nM into the standard culture medium using a filter-sterilized stock of 1 µM 

latrunculin B dissolved in 96 % (v/v) ethanol. 

NPA (1-N-naphthylphthalamic acid; Sigma-Aldrich) was added at inoculation from a filter-

sterilized stock of 10 mM in dimethyl sulfoxide to a final concentrations of 10 µM. Auxins 

were also added directly to the final concentration of 2 µM into the standard culture medium 

using filter-sterilized stocks of 10 mg/mL IAA (Sigma-Aldrich) and 10 mg/mL 2,4-D (Sigma-

Aldrich) dissolved in 96 % (v/v) ethanol, respectively. 

Equal aliquots of sterile solvents were added to the control samples as solvent controls. 

2.8 Preparation of tobacco BY-2 protoplasts 

For preparation of tobacco BY-2 protoplasts 4 mL of Lifeact-psRFP ox cells were taken 3 d 

after subcultivation according to Kuss-Wymer and Cyr (1992) and Wymer et al. (1996). The 

cells were pipetted into petrislides (diameter 10 cm) together with 4 mL of enzyme solution 

(sterile filtered 1 % (w/v) cellulase YC, and 0.1 % (w/v) pectolyase Y-23 in 0.4 M mannitol, 

pH 5.5) and incubated for 6 h at 27°C under constant shaking on an orbital shaker (100 rpm). 
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In the next step the protoplasts were transferred from the petrislides into 15 mL reaction 

tubes and sedimented by centrifugation for 5 min at 250 g. The supernatant was discarded. 

Following this step, the protoplasts were washed three times with washing solution (sterile 

filtered 4.3 g/L Murashige and Skoog salts (Duchefa Biochemie), 10 g/L sucrose, 100 mg/L 

inositol, 0.5 mg/L nicotinic acid, 0.5 mg/L pyroxidine-HCl, 0.1 mg/L thiamine in 0.25 M 

mannitol). After each washing and centrifugation step the protoplasts were resuspended in 

fresh washing solution. 

For regeneration, the washed protoplasts were transferred into small petrislides (diameter 5 

cm) with regeneration solution (sterile filtered 4.3 g/L Murashige and Skoog salts (Duchefa 

Biochemie, Haarlem, the Netherlands), 10 g/L sucrose, 100 mg/L inositol, 0.5 mg/L nicotinic 

acid, 0.5 mg/L pyroxidine-HCl, 0.1 mg/L thiamine, 0.1 mg/L NAA, 1 mg/L benzylaminopurine 

in 0.25 M mannitol). The slides were sealed and stored at 27°C in darkness without shaking. 

To all used solutions hygromycin in a final concentration of 30 mg/L was added. Observation 

of the protoplasted Lifeact-psRFP ox BY-2 cells started immediately after the transfer into 

regeneration solution using an AxioImager Z.1 microscope (Zeiss, Jena, Germany) equipped 

with an ApoTome microscope slider for optical sectioning and a cooled digital CCD camera 

(AxioCam MRm; Zeiss), and was repeated every 24 h up to 3 d. 

2.9 Determination of actin-binding-protein expression by 

semi-quantitative RT-PCR 

2.9.1 General procedure 

The overexpression of the introduced ABP in the corresponding cell line was verified by 

semi-quantitative RT-PCR in samples of non-transformed BY-2 WT and mTalin 

overexpressing cells collected at day 4 after subcultivation. The reverse transcription, 

performed as described in 2.2.1, was followed by a PCR using standard Taq polymerase 

(NEB, Ipswich, USA) according to the manufacturer’s instructions. PCR conditions were 

chosen as described in Appendix (7.4.2, p. 90). To ensure a reproducible quantification, the 

number of cycles was selected such that the amplification of templates for all primers was in 

an exponential range (Appendix 7.4.2, p.91), and the products were clearly visible on 2 % 

agarose gels, stained with SYBR Safe (Invitrogen Corporation, Paisley, UK). For detection of 

ABP cDNA levels in tobacco BY-2, the primers listed in Appendix 7.3.2 (p. 88) were used. 

NtActin (for primers, see Appendix 7.3.2, p. 88) and NtGAPD (Hu et al., 2010) were used as 

internal standards. The gels were quantified by grey-value analysis using ImageJ (NIH, 

Bethesda, USA). 
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2.9.2 Expression tests after auxin treatment 

The expression level of representative ABP of different families was checked after treatment 

with IAA. Therefore IAA was added to a final concentration of 10 and 30 µM to non-

transformed BY-2 WT and mTalin-YFP-overexpressing cells 4 days after subcultivation. 

Every 15 min a sample of 2 mL was taken from both cell lines up to 2 h. Each sample was 

processed as described in 2.2.1 followed by a PCR and analyzed as described in 2.8.1 (for 

primers and PCR protocol, see Appendix 7.3.2, p. 88 and 7.4.2, p. 90). All data points 

represent mean of three independent experimental series. 
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3. Results 

This chapter is separated into three main parts. The generation of new transgenic Nicotiana 

tabacum BY-2 cell lines and expression analysis of selected actin-binding proteins after 

auxin treatment is described in the first part. The second part focuses on the results dealing 

with the Nicotiana tabacum actin-depolymerizing factor 2 (NtADF2). Finally, the last part 

deals with photoactivatable fluorescent proteins (pa-FP) in super-resolution microscopy of 

living plant cells with the aim to discriminate actin filament sub-populations that are 

differentially decorated with ABP. 

3.1 Efficient transformation of BY-2 cells using the TAMBY-2 

method 

The functional screen of selected ABP requires a transformation protocol that is highly 

efficient and reliable. Although BY-2 cells are amenable to transformation, the yield has been 

very low. Therefore, a new method for stable transformation had to be developed. The 

method of transient Agrobacterium-mediated transformation of BY-2 cells (TAMBY-2) was 

developed by Buschmann et al. (2011). In this dissertation the transient method was 

modified and expanded in order to stably transform BY-2 cells. After the respective ABP 

homologues had been cloned from the homologous system (BY-2), it was possible to 

generate ABP overexpressing (ox) BY-2 marker cell lines of several selected families at high 

efficiency using this method. In addition to the already existing A. thaliana fimbrin actin-

binding domain 2 ox (GFP-FABD2; Maisch et al., 2009), the mTalin ox (mTalin-YFP; Maisch 

and Nick, 2007) and the WLIM-domain containing protein 1 ox cell line (GFP-WLIM1; 

Thomas et al., 2006), new Nicotiana tabacum villin 1 ox (GFP-NtVLN1 ox), Nicotiana 

tabacum WLIM-domain containing protein 2 ox (NtWLIM2-GFP ox), Nicotiana tabacum actin-

depolymerizing factor 1 ox (GFP-NtADF1 ox), Nicotiana tabacum actin-depolymerizing factor 

2 ox (GFP-NtADF2 ox), and two Lifeact-based marker lines (Lifeact-psRFP ox; Lifeact-mIRIS 

ox) could be established during this work. A third Lifeact-based BY-2 cell line with a modified 

yellow fluorescent fusion protein called VENUS (Lifeact-VENUS ox; Era et al., 2009) was 

produced using the traditional transformation method of An (1982). 

These ABP ox cell lines are now available to address the question of this work, if or how 

representative members of different ABP-families are important for auxin dependent, 

patterned cell division in the homologous system, as well as for other microfilament-based 

approaches. From this effort a cell line “library” could be established comprising lines where 

actin filaments only slightly bundled to lines with heavy bundling. Figure 3.1 shows 
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exemplarily fluorescence microscopic images of these new transgenic cell lines. As 

reference a non-transformed WT cell with TRITC-phalloidin stained actin filaments is 

depicted (Figure 3.1 A). 

 

Figure 3.1: Representative Images of TRITC-phalloidin stained non-transformed BY-2 WT cells (A) and  

transgenic actin marker lines (B-L). (A) 3 d old non-transformed BY-2 WT cells; actin stained with TRITC-
phalloidin. (B,C) Transient GFP-NtADF2 ox BY-2 cells. (D) Stable Lifeact-VENUS ox BY-2 cells. (E) Transient 
Lifeact-psRFP ox BY-2 cell. (F) Stable Lifeact-mIRIS ox BY-2 cell, sub-cortical section. (G) GFP-FABD2 ox BY-2 
cell; Maisch et al., 2009. (H) Stable NtWLIM2-GFP ox BY-2 cell. (I) Stable Lifeact-mIRIS ox BY-2 cell, cortical 
section of a cell file tip. (J-L) Stable GFP-NtVLN1 ox BY-2 cells; cortical (J), sub-cortical (K) and central (L) 
section. Bars: 20 µm. 
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3.2 Pre-screening of ABP ox BY-2 cell lines revealed 

promising candidate for auxin-induced pattern formation 

A screening for auxin-dependent alterations in the different ABP ox cell lines was performed, 

focusing on the division pattern (DP), which was known as sensitive monitor for polar auxin 

flow (Campanoni et al., 2003; Maisch and Nick, 2007). In addition to this parameter also 

mitotic index and the ratio of cell length over width was checked with more (GFP-NtADF2 ox) 

or less (other screened ABP) clear differences as compared to the non-transformed BY-2 cell 

line. 

3.2.1 Comparison of division pattern in different ABP ox cell lines 

Especially the DP showed distinctive differences between the representatives of ADF 

(NtADF2), the other ABP ox lines, and the non-transformed BY-2 cell line (Figure 3.2). 

 

 

 

 

 

 

 

A non-transformed WT BY-2 cell culture was used as control for DP and showed the 

characteristic pattern with clear peaks at even numbers of cells per file as expected and 

described in Maisch and Nick (2007). All transgenic cell cultures tested in this pre-screening 

featured also at least a similar pattern. However, peaks were more pronounced for bicellular 

(Lifeact ox: +62 %; FABD2 ox: +49 %; WLIM2 ox: +82 %; VLN1 ox: +44 %), and 

quadricellular (Lifeact ox: +21 %; FABD2 ox: +36 %; WLIM2 ox: +36 %; VLN1 ox: +49 %) 

and a simultaneously slightly reduced peak for hexacellular files, which is the diagnostic 

Figure 3.2: Pre-screening of the division pattern of several transgenic BY-2 cell cultures, overexpressing selected 

representatives of different actin-binding protein families. BY-2 WLIM2 ox and BY-2 VLN1 ox data (Leonhard, 
2011). BY-2 Lifeact ox data are derived from Lifeact-Venus ox cell line. All bars represent data of at least 2 
independent experimental series. Error bars=SE. 
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marker for the efficiency of auxin transport (Lifeact ox: -35 %; FABD2 ox: -39 %; WLIM2 ox: -

55 %; VLN1 ox: -43 %). The lines expressing the actin markers Lifeact and FABD2 were 

closest to the DP of non-transformed cells with even the frequency of octacellular files being 

at a comparable level. Up to hexacellular files, diagnostic for directional synchrony 

(Campanoni et al., 2003), also the actin-bundling protein overexpressing cell lines showed 

only moderate alterations from the characteristic oscillatory behaviour with clear peaks at 

even cell numbers. However the frequency of octacellular files was clearly reduced by 63 % 

(WLIM2 ox) and 44 % (VLN1 ox). The GFP-NtADF2 ox cell line behaved completely different 

from the other ABP ox cell lines with a massively elevated peak of bicellular (+ 149 %), and a 

clear reduction for quadricellular files (-30 %) accompanied by an almost complete loss of 

files with more than four cells (-97 % hexacellular files; -86 % octacellular files). This 

qualitative difference shifted the GFP-NtADF2 ox cell line into the focus. It was therefore 

decided to characterize this cell line in more detail (see 3.3, p. 29). 
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3.2.2 IAA does not affect expression level of selected ABP 

In parallel to the pre-screening of the transgenic cell lines, an analysis of ABP transcript 

levels after auxin treatment was performed. For this experimental procedure, auxin was 

added in different final concentrations (10 µM and 30 µM for up to 1 h) to a mTalin-YFP ox 

cell line, where actin filaments are constitutively bundled. It was known from Maisch and Nick 

(2007) that actin filaments are clearly debundled after addition of exogenous auxin within 

20 min. If this debundling were mediated by an altered expression level of ABP, it would 

become detectable by this approach. In a first test a final concentration of 10 µM external IAA 

was added to the cells and the transcript level checked by qPCR every 15 min. However, it 

was not possible to detect any significant up- or down-regulations during this experiment 

(Figure 3.3 A). Even an increased concentration of 30 µM IAA produced no detectable effect 

during the monitored time frame (Figure 3.3 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.3: Expression analysis of different actin-binding protein family members in BY-2 

cell culture after IAA treatment (A) 10 µM final concentration. (B) 30 µM final 
concentration. All experimental data are derived from three independent experimental 
series. Error bars=SE. 
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3.3 Nicotiana tabacum actin-depolymerizing factor 2 

Nicotiana tabacum actin-depolymerizing factor 2 (NtADF2; NCBI accession number: 

AAL91667; Chen et al., 2002) was chosen as promising candidate for auxin-dependent actin 

re-organization from a screen, where tobacco homologues of ABP were investigated for their 

intracellular localization and the division pattern of the corresponding overexpressing cell 

lines (see 3.2, p. 26). 

3.3.1 NtADF2 – a member of ADF-subgroup 2 

Compared to animals, plants harbor numerous ADF/cofilin genes. In 2000 Mun et al. 

classified plant ADF/cofilins into four groups (Figure 3.4) which was supported by further 

analysis and expansion of the dataset by Maciver and Hussey (2002). For this dissertation, 

some representatives of important cell biological model plants were selected for each group. 

Group 1 contains exclusively ADFs of dicots with one exception, an ADF of O. sativa (NCBI 

accession number: NP_001054456) whereas Group 2 and Group 3 combine monocots as 

well as dicots. The first identified member of Group 4 was ADF3 of Z. mays (NCBI accession 

number: NP_001105474). Southern blot analysis by Danyluk et al. (1996) revealed similar 

sequences only in monocots, leading to the assumption that this group is also exclusive for 

monocots. 

NtADF2 clusters together with NtADF1 into subgroup 2 of plant ADF/cofilin members 

(Maciver & Hussey, 2002), so far thought to be exclusively present in pollen (Figure 3.4). The 

nearest non-tobacco homologs are the ADF7 and ADF10 of A. thaliana. 
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Figure 3.4: A phylogenetic tree of representative model plant ADFs. An alignment of the complete 

sequences was made with MEGA 4.1 (beta 3); from this data a phylogenetic tree was derived using 
neighbor-joining method and bootstrapping (1000 reiterations). The output tree was plotted also 
using MEGA 4.1 (beta 3). All data were taken from published literature and genomic databases. 
Entries marked with + are listed in the Tree Families Database (Treefam) of the Sanger Institute, all 
other entries are derived from the National Center for Biotechnology Information database (NCBI). 
Categorization into 4 groups was performed in accordance with Maciver and Hussey (2002). 
Arabidopis thaliana AtADF; Vitis vinifera VvADF; Oryza sativa OsADF; Zea mays ZmADF; as 
outgroup cofilin 1 of Saccheromyces cerevisiae ScCof1 and Saccheromyces pombe SpCof1 was 
used. 
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NtADF2 is predicted to consist of 137 amino acid residues with a molecular mass of 15 kD 

(Chen et al., 2002) and several highly conserved domains. A serine-6 identified as 

phosphorylation site (Chen et al., 2002) is followed by an actin-binding motif (amino acids 6, 

7, 96, 98, 123 and 126). This actin-binding motif is accompanied by a second signature 

specific for F-actin binding with conserved amino acids 80, 82, 134 and 135. Interestingly, 

from amino acid 22-28, a predicted nuclear localization sequence is highly conserved in 

NtADF2 as in all former investigated ADF homologs (Maciver et al., 2002). Moreover, 

NtADF2 also contains all positively charged amino acids essential for the electrostatic 

interaction with PIP2 (Zhao et al., 2010) at position 80 (Lys), 98 (Lys), 109 (Lys), 110 (Arg) 

suggesting that NtADF2 is able to interact with and can be regulated by PIP2 (Figure 3.5). 

3.3.2 Intracellular localization of NtADF2 

To get insight into the role of NtADF2 for actin organization and auxin-dependent patterning, 

a N-terminal fusion of GFP and the Nicotiana tabacum ADF2 (GFP-NtADF2) was 

overexpressed in the homologous system BY-2, either by transient transformation via particle 

bombardment (Figure 3.6 A-C) or in a stable manner via Agrobacterium tumefaciens 

followed by selection on kanamycin leading to the GFP-NtADF2 ox cell line (Figure 3.6 D-F). 

Figure 3.6 A-C exemplarily shows transiently transformed BY-2 cells 4 h (A), 17 h (B), and 

24 h (C) after biolistic transformation. To test for potential changes dependent on the 

development of the culture, this experiment was performed at different time points. As shown 

Figure 3.5: An alignment of selected representative model plant ADFs derived from phylogen etic tree analysis of 
Figure 3.4. As representative protein sequences of Vitis vinifera  VvADF XP_002284292 and for Oryza sativa  
OsADF NP_001054456 were chosen. All other sequences correspond to Figure 3.5.  Black color marks important 
protein domains: Phosphorylation site circumflex ; G-actin-binding sites asterisks; nuclear localization site overline; 
specific F-actin-binding sites number sign (NCBI); PIP2 interacting sites grey boxes (Zhao et al., 2010). 
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exemplarily for 3 d (B), 4 d (A), and 5 d (C) after subcultivation, GFP-NtADF2 labeled 

filamentous structures that resembled actin bundles consistent with observations in 

transformed pollen tubes (Chen et al., 2002). The fine cortical filaments visualized by other 

markers such as GFP-FABD2 (Maisch et al., 2009; Figure 3.1 G) or Lifeact-psRFP (Figure 

3.1 E) were not observed. Additionally to the bundled filaments, the GFP-signal was found in 

the nucleus and the cytoplasm, independent of culture stage and incubation time after 

biolistic transformation. 

Cytoplasmic localization was also dominant in the stably transformed tobacco cell line 

(Figure 3.6 D). However, in a sub-population of stably transformed cells, the GFP marked 

filamentous (Figure 3.6 E) or fragmented structures (Figure 3.6 F). 

To test, whether the filaments visualized by the GFP-marker are AF, the GFP-NtADF2 ox line 

was stained with TRITC-phalloidin. Since phalloidin and ADF2 share their binding site on 

actin, they are expected to compete for binding (Nishida et al., 1987; Hayden et al., 1993; 

Jiang et al., 1997). In fact, in the staining experiment, most cells either showed the GFP-

labeled bundles or the TRITC-labeled AF. However, in a sub-population of cells, where the 

GFP-signal was moderate, dual visualization was successful (as exemplarily shown in Figure 

3.6 H, I). Those cells lacked the cortical actin meshwork that can be observed in non-

transformed BY-2 WT cells after staining with TRITC-phalloidin (Figure 3.6 J). 

Comparison of actin organization revealed clear differences according to the existence of 

fine AF. Although NtADF2 is overexpressed, the thick actin cables in the transgenic line 

(Figure 3.6 K1) remained unaltered compared to non-transformed cells (Figure 3.6 J1). In 

GFP-NtADF2 ox cells the fine actin meshwork was either completely missing (Figure 3.7 B) 

or highly fragmented (Figure 3.6 F, K2) which was in contrast to non-transformed BY-2 WT 

cells (Figure 3.6 J2). Interestingly, after pre-treatment with unlabeled phalloidin for three days 

it was possible to visualize fine AF in GFP-NtADF2 ox cells (Figure 3.6 K3), although non-

transformed BY-2 WT cells were only minimally impaired by this treatment (Figure 3.6 J3). 
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Figure 3.6: Representative fluorescent microscopic images of GFP-NtADF2 ox tobacco BY-2 cells. (A-C) 

Transient transformed BY-2 cells 4 h (A), 17 h (B) and 24 h (C) after biolistic transformation. Stable transformed 
GFP-NtADF2 ox BY-2 cells showed a cytoplasmic localized GFP-signal (D) and filamentous structures (H). (E) 
Semi-quantitative PCR of NtADF2 expression using Nicotiana tabacum actin and GAPD as reference genes. 
Lines marked with minus are samples prepared without reverse transcriptase. (H-I) Multi channel confocal images 
and details of TRITC-phalloidin stained cells: GFP-NtADF2 (1); TRITC-phalloidin (2); Merge (3). (J) Fine actin 
filaments of TRITC-phalloidin stained non-transformed BY-2 WT and NtADF2 ox BY-2 cells (K) after (3) and 
without (2) phalloidin pre-treatment. Bars: 20 µm. 
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To verify the expression of the transgene, a semi-quantitative PCR using cDNA prepared at 

4 d after subcultivation was performed. Figure 3.6 G shows an elevation of NtADF2 transcript 

level in the GFP-NtADF2 ox cell line over the non-transformed BY-2 WT by a factor of about 

3. As reference genes, Nicotiana tabacum actin and Glyceraldehyde 3-phosphate 

dehydrogenase (GAPD) were used. 

3.3.3 NtADF2 overexpression alters mitosis and cell elongation 

To identify possible effects of NtADF2 overexpression on cell morphology a phenotopic 

analysis was performed. Mitotic Index (MI), cell length, and cell width of the GFP-NtADF2 ox 

cell line compared to the non-transformed BY-2 WT control were followed through the entire 

culture cycle. As shown in Figure 3.7, MIs were diminished in the GFP-NtADF2 ox cell line by 

20-30 % in comparison to the control from day 1 after subcultivation. 

Parallel to the MI, the ratio of cell length and cell width was followed as measure for 

morphological proportionality, as the cells of the GFP-NtADF2 ox appeared more stunted 

than the non-transformed control. Since BY-2 WT and GFP-NtADF2 ox did not differ in width 

(34.6 ± 1.8 µm) throughout the whole cultivation cycle, the impression was exclusively 

caused by a reduced cell length in the GFP-NtADF2 ox line (13 ± 3 %, Figure 3.7 B). 

 

 

 

 

 

  

Figure 3.7: Phenotypic analysis of BY-2 WT (filled boxes, continuous curve) and BY-2 GFP-NtADF2 ox (filled 

triangles, dashed curve) tobacco cell cultures. (A) Mitotic index (mean of n=1500). (B) Cell shape indicated as 
ratio of cell length over cell width (mean of n≥1000). All experimental data are derived from three independent 
experimental series; error bars=SE. 
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3.3.4 NtADF2 overexpression affects division patterns in BY-2 cells 

Divisions are synchronized by a polar flow of auxin over a cell file (Campanoni et al., 2003), 

and this pattern is highly sensitive to perturbations of actin (Maisch and Nick, 2007). 

Therefore cell-division patterns in the GFP-NtADF2 ox cell line were monitored in 

comparison with non-transformed controls. In fact, the pattern was altered in the GFP-

NtADF2 ox as monitored by frequency distributions over the number of cells within individual 

files. The non-transformed BY-2 cells showed a characteristic oscillatory behaviour with clear 

peaks at even cell numbers (Figure 3.8 A). In particular, a clear peak at six cells per file 

diagnostic for directional synchrony (Campanoni et al., 2003) could be observed. In contrast, 

this pattern was affected in the GFP-NtADF2 ox. Here, bicellular files were more frequent by 

2.5-fold, whereas the frequency of quadricellular files was reduced by almost 30 %. Longer 

files were almost completely missing (Figure 3.8 A), such that the average number of cells 

per file dropped to 2.43 (as compared to 4.05 in the non-transformed BY-2 WT cell line). 

Representative cell files are shown in Figure 3.8 B1, B2. The difference between the lines 

persisted when the selective pressure on the cell line was removed by omitting kanamycin 

from the medium (data not shown), confirming that the disturbed pattern was an effect of the 

transgene and not an effect of the selection pressure. 

  

 

 

 

 

3.3.5 Disturbed morphology and division pattern in the GFP-NtADF2 ox 

can be partially rescued by PIP2 and phalloidin 

As NtADF2 contains a PIP2 interaction site, and PIP2 is able to compete with actin for ADF-

binding, it was tested, whether the phenotype of the GFP-NtADF2 ox could be rescued by 

addition of exogenous PIP2. 

Figure 3.8: Phenotypic analysis of BY-2 WT (filled boxes, continuous curve) and BY-2 GFP-NtADF2 ox (filled 

triangles, dashed curve) tobacco cell cultures. (A) Division pattern 4 d after subcultivation (mean of n=921 to 
1158). All experimental data are derived from three independent experimental series; error bars=SE. (B) 
Representative cell files of BY-2 WT (B1) and GFP-NtADF2 ox (B2) 4 d after subcultivation. Bar: 20 µm. 
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PIP2 was diluted from a 2 µM stock solution to a final concentration of 50 nM in the standard 

cultivation medium. As control, every experiment was conducted with the same volume of the 

solvent. These solvent controls showed no detectable effects (data not shown). As illustrated 

in Figure 3.9 A, it was possible to completely rescue the diminished MI of the GFP-NtADF2 

ox cell line. To test for potential negative effects on cell viability, packed cell volume was 

measured. This test did not reveal any significant difference between treated and untreated 

cells (data not shown). 

 

 

 

 

 

With regard to division pattern, assessed at the end of the logarithmic phase, 4 days after 

subcultivation and addition of PIP2 to the GFP-NtADF2 ox, a partial rescue could be 

observed. The strong frequency peak for bicellular files was clearly reduced by 22.0 ± 2.8 % 

in the treated cell culture. The reduced frequency peak for quadricellular files was completely 

rescued by 50 nM PIP2 to the level observed in non-transformed BY-2 WT cells. Most 

interestingly, the peak at six cells per file, diagnostic for polar auxin transport (Campanoni et 

al., 2003) and completely eliminated as consequence of ADF2-overexpression, was partially 

restored (Figure 3.9 B) as well as the peak for files composed of eight cells (frequencies of 

5.2 ± 1.1 and 4.4 ± 0.7). The division pattern of non-transformed BY-2 WT cells remained 

largely unaltered (Figure 3.11 B). 

In a second approach, the GFP-NtADF2 ox and the non-transformed BY-2 WT lines were 

treated with phalloidin at a working concentration of 1 µM, a concentration that in BY-2 

causes a mild stabilization of actin without causing toxicity (Berghöfer et al., 2009). For the 

reduced MI of the GFP-NtADF2 ox, that had been completely rescued by PIP2 treatment, no 

effect was detectable. MI remained reduced by 20-30 % throughout the cultivation cycle as 

compared to the non-transformed BY-2 WT (Figure 3.10 A). 

Figure 3.9: Effect of PIP2 on mitotic indices (A) and division pattern (B). BY-2 WT control (filled boxes, continuous 

curve), BY-2 GFP-NtADF2 ox control (filled triangles, dashed curve) and BY-2 GFP-NtADF2 ox PIP2-treated 
(open triangles, dotted curve) tobacco cell cultures. All experimental data are derived from three independent 
experimental series; error bars=SE. 
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When the division pattern was scored at the end of the logarithmic phase, 4 days after 

subcultivation, there was no effect of phalloidin on the non-transformed BY-2 WT. The 

characteristic oscillatory behaviour with clear peaks at even cell numbers of cells per cell file 

was maintained (Figure 3.11 A). In contrast, the aberrant division pattern of the GFP-NtADF2 

ox was rescued by phalloidin and now became nearly identical to the BY-2 WT pattern. The 

massive peak at two cells per file was reduced to that of the non-transformed BY-2 WT 

(Figure 3.10 B). 

 

 

 

 

 

Figure 3.10: Effect of phalloidin on mitotic indices (A) and division pattern (B). BY-2 WT control (filled boxes, 

continuous curve), BY-2 GFP-NtADF2 ox control (filled triangles, dashed curve) and BY-2 GFP-NtADF2 ox 
phalloidin-treated (open triangles, dash-dotted curve) tobacco cell cultures. All experimental data are derived from 
three independent experimental series; error bars=SE. 

Figure 3.11: Effect of phalloidin (A) and PIP2 (B) on division pattern. BY-2 WT control (filled boxes, continuous 

curve), BY-2 WT phalloidin-treated (open boxes, dash-dotted curve) and BY-2 WT PIP2-treated (open boxes, 
dotted curve) tobacco cell cultures. All experimental data are derived from three independent experimental series; 
error bars=SE. 
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3.3.6 Auxin and auxin-transport inhibitor treatments do not alter the 

division pattern of the GFP-NtADF2 ox line 

Further it was investigated how the pattern of cell division responded to manipulation of auxin 

transport. Neither treatment with auxins (2 µM IAA, 2 µM 2,4-D; data not shown) nor with 

NPA (10 µM 1-N-naphthylphthalamic acid), an inhibitor of polar auxin transport, altered the 

disturbed division pattern of the GFP-NtADF2 ox line significantly (Figure 3.12 A). 

Conversely, the effect of 65 nM latrunculin B (LatB) in the non-transformed BY-2 WT line was 

comparable to the affected division pattern of the untreated GFP-NtADF2 ox line (Figure 

3.12 B). The DP of non-transformed BY-2 WT cells treated with 10 µM NPA (Maisch and 

Nick, 2007) is also very similar to the affected division pattern of the untreated GFP-NtADF2 

ox line. 

 

 

 

 

 

 

3.3.7 Inducible NtADF2 RNAi knockout alters division patterns in BY-2 

cells 

The phenotyping and complementation experiments indicated an involvement of NtADF2 in 

auxin-dependent division patterning. To test, whether NtADF2 is necessary for patterning, a 

second approach was performed in parallel. An inducible NtADF2 RNAi knockout BY-2 cell 

line was established and characterized in the background of NtADF2 ox results. The only 

difference in the experiment was the induction of the NtADF2 knockout by adding 10 µM 

dexamethasone at inoculation. For visualization of a functional knockout the employed 

pOpOff2(kan) vector harbored a β-glucuronidase (β-Gluc) reporter gene which can be 

detected by PCR as well as by histochemical staining using 5-bromo-4-chloro-3-indolyl 

glucuronide (X-Gluc). In the following experiments the first reporter assay was chosen. 

Figure 3.12: Effect of NPA (A) and LatB (B) on division pattern. BY-2 GFP-NtADF2 ox control (filled triangles, 

dashed curve), BY-2 GFP-NtADF2 ox NPA-treated (open triangles, dash-double-dotted curve), BY-2 WT control 
(filled boxes, continuous curve) and BY-2 WT LatB treated (open boxes, long-dashed curve) tobacco cell cultures. 
All experimental data are derived from three independent experimental series; error bars=SE. 
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Especially the division pattern of this cell line was of major interest. Appropriate controls 

tested for potential differences in DP in the absence of the dexamethasone inducer 

(tightness of the promotor) or potential side - effects of the dexamethasone on the cell division 

( Figure 3.1 3 ) .  

 

 

 

 

 

 

 

 

 

 

The DP of the non - induced NtADF2 RNAi knockout cell line was comparable to the non -

transformed WT cell culture as well as the DP of the non - transformed WT cell culture was 

not affected by dexamethasone treatment. After induction at inoculation and analysis 4 d 

after subcultivation ,  the DP of the NtADF2 knockout cell line showed a clear shift towards 

even - numbered cell file s  comprising six and eight cells .  T he typical pattern characterized by 

a prevalence of even - numbered files persisted.  The amount of bicellular and quadricellular 

files was reduced by about 40 % and 24 %, respectively, whereas the frequency of  

hexacellular a nd octocellular cell files was increased by about 88 % and 71 %, respectively 

Figure 3.13: Cell division pattern of an inducible NtADF2 RNAi knockout  BY-2 cell line 4 d after subcultivation. (A) 

Control for potential side-effects of dexamethasone induction. Non-transformed BY-2 WT cell culture (filled boxes, 
continous line), dexamethasone-treated non-transformed BY-2 WT cell culture (open boxes, short dashed line). 
(B) Control of cell division pattern in the non-induced NtADF2 RNAi knockout cell line (filled circles, dotted line) 
compared to dexamethasone-treated non-transformed BY-2 WT cell culture (open boxes, short dashed line). (C) 
Comparison of the cell division pattern of a non-induced (filled circles, dotted line) and an induced NtADF2 RNAi 
knockout BY-2 cell line (open circles, dash-dotted line). (D) Verification of the NtADF2 knockout using the 
expression of the GUS-reporter gene. All experimental data are derived from three independent experimental 
series; error bars=SE. 
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(Figure 3.13 C). In other words, the pattern was shifted towards higher ordered even-

numbered peaks including the peak at n=6 diagnostic for the efficiency of polar auxin 

transport. 

3.4 Visualization and discrimination of different actin sub-

populations using pa-FP and PALM 

The first part of this dissertation identified NtADF2 as important mediator of auxin signaling 

towards actin leading to functional sub-populations of AF within the same cell. The second 

part of this dissertation posed the question whether it is possible to visualize the proposed 

sub-populations of actin filaments, which differ in respect to their ABP decoration. For this 

purpose, a FP-based approach was chosen. The yeast peptid Lifeact, which can ubiquitously 

bind filamentous actin was used as actin-binding probe and fused to two different FP. The 

first construct contained a psRFP, which forms tetramers, typical for anthozoan FP (Fuchs, 

2011). Due to the molecular size of the tetramer, binding of the Lifeact to actin should be 

sensitive to steric hindrance by competing ABP, whereas in AF that are not or only scarcely 

decorated by ABP, binding of psRFP should not be impeded. To verify that the Lifeact 

marker recognized all AF sub-populations, a second construct comprising the monomeric 

mIRISFP was selected. Both FP belong to the class of pa-FP and therefore offer the 

possibility of super-resolution microscopy using photoactivation localization microscopy 

(PALM). As PALM in living plant cells has never been tested before, the approach at the 

same time represented a proof-of-principle experiment. 

Applying this approach, it was possible to reveal different functional sub-populations of actin 

filaments in BY-2 cells. In addition, the super-resolution PALM delivered images of actin 

filaments with a resolution of about 20 nm. 

3.4.1 Localization of Lifeact-psRFP differs after transient and stable 

transformation 

Each of the new FP-fusion constructs was tested for functionality by a biolistic transient 

transformation. In a standard approach 750 µl of cells 3 d after subcultivation were pipetted 

on a microslide and biolistically transformed with 1 µg of binary plasmid containing the 

sequence of Lifeact-psRFP and Lifeact-mIRIS, respectively. After 24 h of incubation the 

slides have been checked for transformants. The two constructs differed clearly in 

transformation efficiency even though they consisted of the same backbone vector. 

Numerous (up to 10) of Lifeact-psRFP expressing cells, but only 1-2 Lifeact-mIRIS 

expressing cells could be scored per transient transformation. In contrast to the difference in 
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transformation efficiency, the intracellular pattern was nearly identical. Both constructs 

marked highly specific and distinctive structures with characteristic properties of actin 

filaments like Y-crossings and cortical arrangements (Figure 3.14 A-C). 

After this positive test for functionality both vectors were stably transformed into non-

transformed BY-2 WT cell lines using a modified TAMBY-2 method (Buschmann et al., 

2011). Again, differences in transformation efficiency could be observed. The Lifeact-psRFP 

approach succeeded instantly, but the Lifeact-mIRIS batch was much more difficult to handle 

and especially the inhomogeneity of the calli and the transfer from solidified agar plates into 

liquid medium was difficult and required several attempts to reach success. 

In addition, a qualitative difference between both cell lines and the transient pre-test was 

immediately visible. The Lifeact-mIRIS ox cells displayed again all sub-populations of the 

plant actin cytoskeleton including the characteristic structures in the cell cortex and the cell 

center (Figure 3.14 D). In contrast, the stable Lifeact-psRFP ox cells differed from the 

transient expressors (where transgenes are expressed at higher levels). They did not exhibit 

even a single red fluorescent filamentous structure in the cell cortex or in transvacuolar 

strands. Only a tight filamentous basket around the nucleus was labeled by the Lifeact-

psRFP construct (Figure 3.14 E). Interestingly, a small sub-population of cells that were 

obviously undergoing cell death as indicated by an almost complete cessation of cytoplasmic 

streaming, membrane detachment and deformation in cell shape sometimes displayed a fully 

decorated actin cytoskeleton comprising both central and cortical arrays (Figure 3.14 F). 
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The specific labeling of one actin sub-population (subsequently termed nuclear basket) in the 

Lifeact-psRFP ox cell line stimulated further analysis of actin conformation, dynamics and 

localization pattern during cell cycle. 

3.4.2 Colocalization of Lifeact-psRFP and AlexaFluor® 488 phalloidin 

To understand, why only the perinuclear actin was manifest in the Lifeact-psRFP BY-2 ox 

cells these cells were PFA-fixed and stained using Alexa-Fluor® 488 labeled phalloidin at 

day 3 after subcultivation. This approach visualized in addition to the nuclear basket 

additional actin sub-populations which were not marked via Lifeact-psRFP expression. For 

the nuclear basket, a clear colocalization of red Lifeact-psRFP (Figure 3.15 A2, B2, C2) and 

green Alexa-Fluor® 488 (Figure 3.15 A1, B1, C1) resulting in a yellow signal in the merged 

image (Figure 3.15 A3, B3, C3) could be detected. However, in the cell cortex only the signal 

from Alexa-Fluor® 488 phalloidin was seen, whereas the Lifeact-psRFP signal was 

Figure 3.14: Representative images of Lifeact -pa-FP ox BY-2 cells. (A) Transient expression of Lifeact-mIRIS. 

(B) Specific psRFP-marked filamentous structures in a BY-2 cell after transient transformation; two pairs of 
filaments forming a needle eye and thread. (C) Transient expression of Lifeact-psRFP. Images of transiently 
transformed cells were recorded 3 d after subcultivation; 24 h incubation after particle bombardment. (D) Stable 
Lifeact-mIRIS ox BY-2 cells (lower part: central region; upper part: cortical region). (E) Stable Lifeact-psRFP ox 
BY-2 cells; RFP-signal nuclear basket exclusive. (F) Extremely stressed stable Lifeact-psRFP ox BY-2 cells at 
ensuing cell death.(1) RFP-channel (2) merge of RFP-channel and DIC-channel. Bars: 20 µm. 
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completely absent (Figure 3.15 B1, C1) leading to the assumption that there should be a 

difference between actin sub-populations. 

 

 

 

 

 

Figure 3.15: Actin staining of fixed Lifeact-psRFP ox BY-2 cells. (A) Nuclear basket; green channel (1) 

AlexaFluor® 488 phalloidin; red channel (2) Lifeact -psRFP; Merge (3) yellow signal marks colocalization. (B) 
Whole BY-2 cell; green channel (1) AlexaFluor ® 488; red channel (2) Lifeact -psRFP; Merge (3); additional DIC -
channel; yellow signal marks colocalization  (white arrow). (C) Whole BY-2 cell; green channel (1) AlexaFluor® 
488; red channel (2) Lifeact -psRFP; Merge (3); additional blue DAPI-channel (nuclear staining); yellow signal 
marks colocalization, image recorded by Linda Brochhausen. Bars: 20 µm. 
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3.4.3 The Lifeact-psRFP ox BY-2 cell culture is sensitive to latrunculin B 

treatment 

In contrast to Lifeact-mIRIS the Lifeact-psRFP fusion protein forms tetramers, which means 

that one protein complex harbors also four Lifeact peptides for actin-binding. This could 

cause cross-linking effects of the actin around the nucleus, where the microfilament 

meshwork is very dense in comparison to the cortical region. Cross-linked AF are stabilized 

and less sensitive to cytoskeletal drugs like latrunculin B. Therefore sensitivity of the Lifeact-

psRFP ox cell line was compared to a non-transformed BY-2 WT cell culture using a dose 

response assay measuring the effect of different latrunculin B concentrations on packed cell 

volume. 

 

 

 

 

 

 

 

 

As Figure 3.16 shows, the Lifeact-psRFP ox cell line is not less but even more sensitive to 

latrunculin B as compared to the non-transformed WT BY-2 cells. Both lines were treated 

with latrunculin B in different concentrations (50, 100, and 200 nM), incubated for 4 d and 

evaluated after further 24 h of settling down at 4°C. At a final concentration between 60 and 

80 nM latrunculin B the Lifeact-psRFP ox cell volume was already reduced to 50 % 

compared to the untreated Lifeact-psRFP ox cells, whereas the non-transformed BY-2 WT 

cell volume was only diminuished by 5-10 % in relation to the control. 

In a second approach, Lifeact-psRFP ox BY-2 cells were treated with 10 µM latrunculin B for 

up to 45 min. This treatment caused a disintegration of the nuclear basket leading to freely 

floating Lifeact-psRFP marked actin filament fragments in the cytoplasm especially in cells at 

interphase state. The nuclear basket of cells at or briefly after mitosis were more resistant to 

Figure 3.16: Latrunculin B treatment of non-transformed BY-2 WT (open boxes, continous 

curve) and Lifeact-psRFP ox (open circles, long-dash-dotted curve). Values represent 
relative cell volume of 15 mL liquid cell culture. All experimental data are derived from 
three independent experimental series; error bars=SE. 
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the drug. However, during all cell cycle stages no cortical actin structures seemed to be 

decorated, even after LatB treatment. 

3.4.4 Lifeact-psRFP marks the direction of nuclear migration 

The intracellular localization and signal intensitiy of the fusion protein in stably transformed 

Lifeact-psRFP ox cells persisted through the whole cell cycle (data not shown). 

Nevertheless, signal intensities and the localization around the nuclear envelop shifted 

sometimes and formed a gradient. Three main types of gradients could be identified. The 

most frequent type was a relative homogenous distribution around the whole nucleus. 

Secondly, a clear gradient towards the nearest cell wall (which in most cases is the wall that 

has been deposited most recently), and, at comparable frequency, a gradient directed 

towards the cell center. These gradients of the Lifeact-psRFP signal were correlated with the 

nuclear migrations characteristic for the cell cycle of vacuolated plant cells (Figure 3.17). 
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In Lifeact-psRFP ox BY-2 cells passing through late G1-phase, the psRFP signal was mainly 

localized between nucleus and the lateral cell wall (Figure 3.17 A). Elsewhere, they formed a 

tight slightly reduced nuclear basket with preferred orientation to this lateral wall. During 

movement of the nucleus towards the cell center, the Lifeact-psRFP signal was always 

strongest at the side of the nucleus oriented to the cell center (Figure 3.17 B-D). Cells, where 

the nucleus had reached this position, more or less lost the Lifeact-psRFP gradient and the 

signal was homologously distributed as a nuclear basket (Figure 3.17 E). This conformation 

Figure 3.17: Representative images of Lifeact -psRFP ox BY-2 cells during cell cycle. White arrows indicate 

peaks of Lifeact -psRFP signal gradient. (A) Interphase cell; nucleus is attached to the lateral cell wall, Lifeact -
psRFP signal between cell wall and nucleus. (B -D) Interphase cells; nucleus is moving into the center of the cell 
and prepare for mitosis; Li feact-RFP signal is oriented towards the cell center. (E1) Interphase cell; nucleus 
reached cell center; Lifeact -psRFP signal labels whole nuclear basket. (E2) Start of mitosis; nuclei of both cells 
in prophase; very fine filaments of nuclear basket homoge nously marked by Lifeact -psRFP signal. (F) Mitotic cell 
in anaphase; Lifeact -psRFP signal at both poles of the former nucleus; right cell with abnormal position of 
division plane leading to insertion of a non -perpendicular new cross wall. (G) End of mitosi s; new cell wall has 
been formed; Lifeact -psRFP signal exclusivly between new cell wall and nuclei. (H) Mitosis completed; nuclei 
completely sourrounded by Lifeact -psRFP-labeled nuclear basket; upper cell forms gradient towards cell center. 
Bars: 20 µm.  
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was relatively stable until the end of mitosis. In anaphase, a clear psRFP signal was 

exclusively localized at the poles of the former nucleus (Figure 3.17 F). Whereas at the end 

of mitosis in late telophase, the whole Lifeact-psRFP signal was located between new cell 

wall and nuclei (Figure 3.17 G). Following this stage of cell cycle, a rotation of the whole 

nuclei, but not a re-orientation of AF around the nuclei could be observed, leading to Lifeact-

psRFP gradients in direction of the new cell centers. 

In addition to the observation of the entire cell cycle, mitosis was followed in more detail over 

time in Lifeact-psRFP ox BY-2 cells. As observed during cell cycle, the nuclear basket of 

Lifeact-psRFP labeled actin filaments was quite stable in mitosis. Until the end of metaphase, 

the whole structure was contiguous and the filaments were arranged in a fine mesh-like 

conformation (Figure 3.18 A-C). Starting with anaphase, the AF of the basket became more 

bundled and a slight gradient of the Lifeact-psRFP signal appeared. Especially during the 

later mitotic phases, a clear increase of signal intensity in direction towards the cell poles 

was detectable (Figure 3.18 D, E). Upon completion of mitosis and cytokinesis, the new 

nuclei migrated to the center of both daughter cells and were completely coated by Lifeact-

psRFP marked nuclear baskets (Figure 3.18 F). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Different cell cycle stages in Lifeact -psRFP ox BY-2 cells. Lifeact-psRFP signal: red; 

Hoechst 33528 stained DNA: blue. (A) (B) Prophase; chromosomes already condensed; fine 
filamentous nuclear basket intact. (C) Metaphase; chromosomes arranged in the equatorial plane; 
nuclear basket consists of very fine Lifeact -psRFP marked AF. (D) Anaphase; chromosomes are 
pulled to the cell poles; nuclear basket reduced to slightly bundeled filaments with moderate 
gradient towards cell poles. (E) Telophase; new nuclear envelop has been formed and the nucleus 
becomes round again; clear gradient of the Lifeact-psRFP marked AF towards the cell poles. (F) 
Two daughter cells short after finished mitosis; nuclei already in center of the cells; very 
homogenous nuclear actin basket. Bars: 20 µm. 
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3.4.5 The nuclear basket remains stable evenduring protoplasting 

The migration of the nucleus plays a pivotal role in cell division. It is directly connected with 

cellular events like formation of cell axis and cell polarity. In order to pull (or to push) the 

nucleus into a new position the anchor point at its envelope has to be established first. 

If the nuclear basket decorated by Lifeact-psRFP is relevant for nuclear migration, it should 

be relatively stable and established early in cell development. A diploma thesis (Zaban, 

2010) showed that it is possible to bring BY-2 cells into a tabula-rasa state without polarity by 

chemical digestion of the cell wall (protoplasting). Following this step, the re-orientation and 

re-organization of the cytoskeleton accompanied by de-novo formation of cell axis and 

polarity can be observed in vivo (publication in preparation). An actin meshwork essential for 

nuclear migration should also exist in this state. 

 

Figure 3.19: Protoplasts of GFP -FABD2 ox (A -C) and Lifeact -psRFP ox (D -F) BY-2 cells. (A) 0 d after 

protoplast ing; cytoplasmic and perinuclear GFP-signal. (B) 1 d after protoplastation; GFP-signal cytoplasmic and 
perinuclear, but filamentous structures visible in the cortical region. (C) 3 d after protoplasting; nearly regenerated 
cell with clear axis; GFP-signal around the nucleus, additional GFP-labeled filamentous structures. (D) 0 d after 
protoplasting; filamentous psRFP-signal exclusively around the nucleus. (E) 1 d after protoplasting; filamentous 
psRFP-signal around the nucleus, cell was protoplasted at end of mitosis before cytokinesis. (F) 3 d after 
protoplasting; nearly regenerated cell with clear axis; psRFP-signal exclusive around the nucleus. (1) DIC. (2) FP. 
Bars: 20 µm. 
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Up to now it was merely feasible to visualize diffuse actin signals using classical actin marker 

lines like the GFP-FABD2 ox cell line (Maisch et al., 2009) due to the restriction limit and 

photostability of the FP, making an assertive statement nearly impossible. The observed 

signal was mainly cytoplasmic but also localized around the nucleus (Figure 3.19 A-C). 

Therefore, Lifeact-psRFP ox BY-2 cells were protoplasted 3 d after subcultivation and tested 

for the presence of an actin-based nuclear basket and possible additionally marked 

structures. 

Indeed it was possible to detect a nuclear basket also in Lifeact-psRFP ox protoplasts. 

Similar to the Lifeact-psRFP ox BY-2 cells no additional signal could be detected except for 

the specifically labeled fine filaments around the nucleus (Figure 3.19 E-F). Through the 

regeneration phase of the protoplasts this situation remained stable until day 3, while the 

diffuse signal of the GFP-FABD2 ox cell line associated slightly more with filamentous actin-

towards the cortical region (Zaban, 2010; Figure 3.19 C). 
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3.4.6 Photoactivation localization microscopy of living Lifeact-psRFP ox 

BY-2 cells 

Additionally to conventional fluorescent microscopic methods, this work aimed to visualize 

actin filaments of living tobacco BY-2 cells in super-resolution. As promising tools for this 

approach, the photoactivatable psRFP c-terminally fused to Lifeact was used for 

photoactivation localization microscopy (PALM). Images of stably transformed Lifeact-psRFP 

ox BY-2 cells recorded by cofocal laser scanning and epifluorescence microscops always 

showed a nuclear basket of actin filaments without any signal in the cortical or transvacuolar 

cell regions. In this experimental approach two questions were of substantial interest. The 

first issue was directly connected to the microscopic technique PALM itself: Is it possible to 

do super-resolution microscopy in living plant cells? The second question was linked to the 

specific localization pattern of the fusion protein which is exclusively visible around the 

nucleus. For these two questions the lab of Prof. U. Nienhaus (Institute for Applied Physics 

and Center for Functional Nanostructures - CFN, Karlsruhe Institute of Technology - KIT) 

kindly provided an adequate microscope for PALM and P.N. Hedde performed PALM 

imaging. 

As shown in Figure 3.20, PALM could be successfully employed in plant cells using the 

Lifeact-psRFP ox BY-2 cell line. It was not only possible to switch the FP-signal on and off 

(data not shown), but also to calculate total image projections collected from more than 

27000 single images. Additionally, it was possible to combine up to nine independent 

sections of 3000 frames into a 3D projection. By this way a whole BY-2 nucleus with its 

nuclear actin basket could be imaged (Figure 3.20 B). The surface of the nuclear basket next 

to the cell cortex was the starting point of the series, followed by 8 sections (2 µm z-axis 

distance) towards the central region of the cell. Similar to the results mentioned above 

Figure 3.20: PALM analysis of Lifeact -psRFP ox BY-2 cells. (A) Widefield image of a nuclear actin basket. (B) 

Projection of 27000 single images of 9 sections (each 3000 frames) with distance in z-axis of 2 µm; fine actin 
filaments are exclusively found around the nucleus after calculating the exact position of every single signal 
using the mathematical algorithm of the point spread function. (C) mathematical calculation of every single 
Lifeact-psRFP molecule; color represents time of occurrence and corresponds to z -axis. Microscopic setup : 30 
ms camera exposure time, 300 gain, 4.7x preamp,  5 - 20 mW 561 nm, <1 mW 473 nm. Bar: 5 µm. 
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(classical fluorescence microscopy, Figure 3.14 E), again only actin around the nucleus was 

visualized by the Lifeact-psRFP fusion protein. 

The gradient indicating the direction of nuclear migration detected by classical fluorescence 

microscopy (Figure 3.17) was now analyzed in more detail. Stably transformed Lifeact-

psRFP ox cells were checked for the occurrence of this pattern using PALM in combination 

with 3D projection as described above. For this purpose, 18000 images of six sections (3000 

frames each) with a distance of 2 µm were taken and processed. By this approach a clear 

gradient of the Lifeact-psRFP signal could be detected (Figure 3.21). Through all sections 

the Lifeact-psRFP signal was oriented towards one favored side of the nucleus. 

Figure 3.21: PALM analysis of Lifeact-psRFP signal gradient of the nuclear basket in Lifeact-

psRFP ox BY-2 cells. (A) Widefield image of a nuclear actin basket. (B) Projection of 18000 single 
images of 6 sections (each 3000 frames) with a z-axis distance of 2 µm; fine actin filaments 
exclusive around the nucleus with clear orientation to direction of nuclear migration. Microscopic 
setup: 30 ms camera exposure time, 300 gain, 4.7x preamp, 5 - 20 mW 561 nm, <1 mW 473 nm. 
Bars: 5 µm. 
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3.5 Summary 

The prerequisite to investigate the role of actin-binding proteins (ABP) in auxin-dependent 

pattern formation was the availability of appropriate Nicotiana tabacum L. cv. Bright Yellow 2 

(BY-2) cell lines expressing tagged variants of these ABP in the homologous system. 

Therefore, selected ABP were cloned from BY-2, coupled with different fluorescent proteins, 

and then transformed and expressed in BY-2 using a modified version of the TAMBY-2 

method developed by Buschmann et al. (2010). This dissertation clearly shows, that the 

modified version is applicable for stable transformation and provides a good, fast, and 

reliable alternative superior to the classical transformation procedure established by An 

(1982). 

During the pre-screening of the newly created ABP ox BY-2 cell lines phenotypic parameters 

like intracellular localization, mitotic index, cell length, cell width, cell proportionality, relative 

expression level after auxin (IAA) treatment, and cell division pattern were checked to select 

promising candidates for further investigations. The semi-quantitative PCR after IAA 

treatment revealed no significant changes of transcript levels, and most cell lines did not 

reveal obvious phenotypes as compared to the non-transformed BY-2 cell line for most 

assayed criteria. There was one exception: The division pattern of the Nicotiana tabacum 

actin-depolymerizing factor 2 ox (NtADF2 ox) BY-2 cell line massively differed from the 

pattern of all other cell lines. Since the division pattern is a highly sensitive monitor for 

alterations in polar auxin flow (Campanoni et al., 2003; Maisch and Nick, 2007), this cell line 

was investigated in more detail. The mitotic index of this cell line was reduced by around 

20 % and the cells were eminently shorter than the non-transformed WT. In addition, cell files 

with six and eight cells per file, which are diagnostic for polar auxin flow, were nearly totally 

missing. During localization studies it could be shown, that NtADF2 binds to actin filaments in 

addition to a diffuse localization. In NtADF2 ox BY-2 cells only a few thick actin bundles and 

totally disrupted actin filaments could be detected. The next step of investigation comprised 

complementation experiments which allowed to rescue the impaired division pattern by 

adding PIP2 (partially) and phalloidin (complete) as well as the the normal fine actin filaments 

in the cell cortex (using the stabilizing drug phalloidin). To investigate, whether ADF2 was 

necessary for actin bundling, a dexamethasone-inducible NtADF2 RNAi BY-2 knockout cell 

line was created. This cell line, upon induction, behaved antagonistically with respect to the 

division pattern as compared to the NtADF2 ox line, but was indistinguishable from non-

transformed BY-2 cells in the absence of the inducer. 

To test, how functionally different sub-populations of actin can coexist in one cell despite a 

strong conservation of actin, super-resolution microscopy in combination with tetrameric FP 

reporters were used to distinguish between differentially ABP-decorated actin filament sub-
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populations. Establishment and analysis of transgenic BY-2 cell lines expressing fusions of 

the photoactivated fluorescent proteins psRFP or mIRISFP with Lifeact on the one hand 

revealed that especially psRFP is a powerful tool for super-resolution microscopy. On the 

other hand it turned out that there are obviously different functional actin sub-populations 

within the plant actin cytoskeleton. To test the usability of the tetrameric psRFP construct in 

PALM applications of living cells, it was possible to acquire images of actin filaments with a 

brilliant resolution in the range of a few nm. In addition, the signal was that stable that even 

z-stacks could be produced resulting in one of the first three-dimensional PALM images in 

plant cell biology. Using classical fluorescence microscopy as well as PALM, central actin 

filaments structures could be visualized forming a basket around the nucleus. This basket 

was very stable and marked the leading edge of nuclear migration that accompanies mitosis 

in vacuolated plant cells. 
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4. Discussion 

In contrast to animals, where patterns and polarity are mostly bound to the whole entity, 

every single plant cell is characterized by an own polarity, leading to an interaction with 

neighboring cells to generate an overall polarity and pattern. As a result of their sessile 

lifestyle plants are eminently dependent on rapid and adequate reactions with respect to 

exogenous alteration. These reactions reach from transcription to cytoskeletal re-

organization. 

Previous work could show, that tobacco cell lines such as VBI-0 (Nicotiana tabacum L. cv. 

Virginia Bright Italia 0; Campanoni et al., 2003) and BY-2 (Nicotiana tabacum L. cv. Bright 

Yellow 2; Maisch and Nick, 2007) constitute minimal systems capable of pattern formation. 

Campanoni et al. (2003) demonstrated a weak coupling between the divisions of neighboring 

cells, leading to a clear pattern with elevated frequencies of files composed of an even 

number of cells. This minimal pattern could later be linked to actin organization by Maisch 

and Nick (2007). Inhibition experiments identified the polar flow of the phytohormone auxin 

as responsible signal. In addition to this signal a pivotal role was played by the conformation 

of filamentous actin culminating in a model, which combined actin conformation with a self-

amplifying auxin feedback loop. 

These results raised new issues, which were the motivation of the first part of this doctoral 

thesis. Do actin-binding proteins (ABP) play a role in the mediation of polarly transported 

auxin-signal and the mentioned self-amplifying feedback loop? Is the conformation of actin 

necessary and sufficient to maintain the division pattern in BY-2 cell files? The experimental 

approaches led to a model on patterned cell division in respect to actin, auxin and ABP, 

which will be discussed below. 

In the second part of this work the following questions were in the center: Is it possible to 

discriminate between different actin sub-populations characterized by a different actin-

binding protein (ABP) decoration? Is it possible to use photoactivatable fluorescent proteins 

(pa-FP) for high resolution PALM-/STORM-Microscopy in living plant cells which could 

deliver new insights into the configuration of the actin cytoskeleton and its dynamics? The 

new microscopical techniques not only allowed to discriminate and visualize actin filaments 

in the low nm-scale, they also led to a model on the function and appearance of intracellular 

actin sub-populations, which will be discussed in the second part of this chapter. 
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4.1 Usability of TAMBY-2 for stable BY-2 transformation 

The availability of accordant Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cell lines 

overexpressing these ABP was the pre-condition to investigate the role of actin-binding 

proteins (ABP) for auxin-dependent patterning in the homologous system. Therefore, 

selected ABP were cloned from BY-2, fused to different fluorescent proteins, transformed 

and expressed in BY-2 cells applying a modified version of the TAMBY-2 method developed 

by Buschmann et al. (2010). As BY-2 cells react definitely sensitive to alterations of the 

cytoskeleton caused by modifications of the abundance of cytoskeleton-modifying proteins, 

the correct expression level of the ABP in the transgenic BY-2 cell cultures overexpressing 

ABP is eminently important to maintain viability. Therefore transformation failures are the 

norm rather than an exception. To obtain a transgenic BY-2 cell culture overexpressing ABP 

in an expression level which leaves the cells viable, can last quite a long period of time and 

require many repeats. To reduce the lag time to reach a functional cell line, a method for 

transient BY-2 transformation (Buschmann et al., 2010) was modified to meet the 

requirements for stable transformation. During this work it could clearly been shown that the 

modified method is not only suitable for stable transformation, but even superior to the 

classical transformation procedure established by An (1982). The method of An contains 

some tricky steps which can reduce the transformation rate to zero. Wounding the BY-2 cells 

for better transformation efficiency by A. tumefaciens without killing them and plating the co-

cultivated cells with the correct cell density on the selection plates needs not only a lot of 

experience, but also luck. All these steps are much simpler in the modified TAMBY-2 

protocol and even consume considerably less time. As positive side-effect the number of 

paralleles can be easily raised in the TAMBY-2 method (Buschmann et al., 2010) over the 

classical protocol raising the probability for successful transformation. Further advantage of 

the new method is that positive transformants already grow on selection medium. They form 

calli and are already separated at the initial stage from cell populations without a successful 

transformation event. Thus, a subsequent separation becomes obsolete, and the positive 

calli can be transferred immediately into liquid medium saving at least four additional weeks 

of re-cultivation after screening which was inevitable using the method of An (1982). 

4.2 Pre-screening of ABP ox BY-2 cell lines revealed NtADF2 

as promising candidate 

After establishment of all transgenic ABP ox BY-2 cell cultures, a fluorescent microscopic 

and a molecular biological analysis followed. On the one side, intracellular localization of the 

FP-tagged ABP, mitotic index, cell width, cell length and the division pattern of the transgenic 

cell lines were investigated. On the other side, the expression level of ABP transcripts was 
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followed by semi-quantitative PCR in response to auxin. These pre-screening experiments 

supported the work of Maisch and Nick (2007), which showed the incorporation of actin in 

synchronized cell division in BY-2, as well as a promising candidate (Nicotiana tabacum actin 

depolymerizing factor 2) could be identified playing an essential role in auxin-signaling 

pathway. 

4.2.1 IAA does not affect transcript levels of selected ABP 

The initial question of this work was whether an auxin-signal can directly affect actin filament 

(AF) re-organization through ABP. Therefore, as a first step a semi-quantitative PCR was 

performed and the transcript levels of selected ABP from different ABP-families were 

analyzed after treatment with 10 and 30 µM IAA. In the non-transformed BY-2 WT cell culture 

auxin did not cause any alterations of transcipt levels (data not shown). As additional test, 

the auxin response in a line with constitutively bundled actin (mTalin ox BY-2 cell culture; 

Maisch and Nick, 2007) was performed. If there is an effect at all, it should be most readily 

detectable in this cell line. However, even after increasing the IAA concentration to 30 µM no 

significant alteration of the expression level of any tested ABP was observable. 

The observed re-organization of AF after adding exogenous IAA (Kusaka et al., 2009) starts 

immediately and is finished after about 20 min. An alteration of ABP expression level should 

be visible in the tested period of time of about 60 min, whereas a regulation via protein de 

novo synthesis and degradation is not fast enough for the observed actin re-organization 

(Guilfoyle, 2009). A much faster mode of regulation, for example a kinase-dependent 

phosphorylation or a transient inhibition of protein function by covering binding-sides, would 

be much more conceivable. The result of the semi-quantitative PCR supported the 

assumption that the re-organization of AF is not regulated by the transcription of ABP genes. 

In addition, the result emphasized the need to search for protein domains in ABP making a 

fast regulation possible (see 4.3.1, p. 59). 

The results of this screening seemed to be clear but there is one point, which should be kept 

in mind. Due to relatively high similarity of the ABP homologs it is possible that the selected 

primers had also a certain affinity to several members of the tested family. Under normal 

restricted conditions the PCR could work as intended and the correct sequence is amplified. 

As reaction to the auxin treatment the relation of the expression level of different ABP family 

members could be shifted towards one member while others could be downregulated. The 

lower affinity for the “false” family member could be still big enough for an amplification as 

result of the modified abundance of the single homologues and by this way a reaction after 

auxin treatment could be covered. 



Discussion 

 

57 
 

4.2.2 Division pattern in ABP ox BY-2 cell lines 

The division pattern (DP) of the transgenic BY-2 cell cultures in comparison to that of the 

non-transformed BY-2 WT cell line was the most important screening parameter during this 

study. It was known that this pattern is the most sensitive sensor known so far for alterations 

in polar auxin flow (Campanoni et al., 2003; Maisch and Nick, 2007) and can be monitored 

quite easy by means of frequency distributions. 

A non-transformed WT BY-2 cell culture was used as control for DP and showed the 

characteristic pattern with clear peaks at even numbers of cells per file as expected and 

described in Maisch and Nick (2007). All transgenic cell cultures tested in this pre-screening 

featured at least a similar pattern. They possessed higher peaks at bicellular, quadricellular 

and a slightly reduced frequency of hexacellular files. Both lines expressing the actin markers 

Lifeact and FABD2 were most comparable in their DP to non-transformed cells. Even the 

frequency of octacellular files was at a comparable level (Figure 3.2, p. 26). This was not that 

surprising because both binding proteins used as actin-probes harbor only binding and no 

bundling functions. They are therefore used as state-of-the-art actin markers and they only 

marginally stabilize AF by decorating them (Sano et al., 2005). However this mild 

stabilization seemed to have a positive effect on the division pattern of the accordant actin 

marker lines such that a slight but clearly visible higher peak of octacellular cell files could be 

detected. Due to the mild stabilization of actin filaments their dynamic or innate turnover 

might be slightly slowed down making the filaments a longer time accessible for transport 

processes. The slight increase in the range of auxin-signaling in these two actin marker lines 

as compared to the non-transformed BY-2 WT is consistent with a role of actin in this 

process (Maisch and Nick, 2007) and indicated the importance of filament stability in this 

background. Up to hexacellular files that are diagnostic for directional synchrony of cell 

division (Campanoni et al., 2003), also the transgenic cell lines overexpressing ABP showed 

only moderate alterations in comparison to the characteristic oscillatory behaviour (Figure 3.2 

p. 26) with clear peaks at even cell numbers. However, the frequency of octacellular files was 

clearly reduced in the WLIM2 ox and the VLN1 ox lines. This result is in accordance with the 

findings of Maisch and Nick (2007) that due to the overexpression of mTalin the AF were 

constitutively heavily bundled which abolished the division pattern. In contrast to mTalin, the 

LIM-domain containing (Thomas et al., 2006), and the villin proteins (for review, see Staiger 

et al., 2010) are only weak actin bundlers, such that an impaired but still coordinated cell 

division is conceivable resulting in the observed pattern. 

These findings strongly support the role of actin organization and especially the role of fine 

AF for division synchrony and pattern. 
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During the screening for altered division patterns it turned out that one candidate, the 

Nicotiana tabacum actin-depolymerizing factor 2 ox (NtADF2 ox) BY-2 cell line differed 

qualitatively from the other ABP ox cell lines by a massive increase of bicellular, a clear 

reduction of quadricellular, and an almost complete loss of files with more than four cells. 

Especially the lack of files with six cells is relevant, as this peak is diagnostic for directional 

weak coupling of cell division and cannot be explained by any other model (Campanoni et 

al., 2003). One of the already known functions of actin depolymerizing factors (for review, 

see Staiger et al., 2010) is the binding and depolymerizing of AF. This would comply with the 

assumption that an overexpression of NtADF2 leads to an abnormal increase of AF 

depolymerization resulting in hindered auxin-signal mediation and an impaired cell division 

pattern. The observed division pattern where cell files with more than four cells per file were 

absent would be a natural consequence of actin depolymerization. Therefore, the 

subsequent work was centered on this cell line and NtADF2 itself. 

4.3 NtADF2 is involved in auxin-dependent patterning 

In this section the localization and potential function of NtADF2, a member of the ADF/cofilin-

family, will be analyzed and discussed in more detail. During this work the first stable 

NtADF2 ox BY-2 cell line was created, which enabled the visualization of intracellular 

localization of NtADF2 in vivo in the context of patterned cell division. It was possible to 

detect a link between ADF function, the stability of fine AF, and auxin-dependent division 

patterning in BY-2 cell files. This NtADF2 ox cell line allowed to study ADF functions in the 

homologous system and to rescue the altered cell division pattern of this cell line chemically 

with PIP2 and phalloidin. In addition, further ABP overexpressing BY-2 cell lines as well as a 

NtADF2 RNAi knockout BY-2 cell line could be established also supporting the results 

obtained from observations of the NtADF2 ox BY-2 cell line. 

4.3.1 Phylogenetic and protein domain analysis of the ADF/cofilin family 

Phylogenetic analysis using representative plant homologues of selected model plants 

revealed that NtADF2 contains all characteristic domains of the ADF/cofilin family including a 

PIP2 interaction side and clusters together with NtADF1 into subclass II of the plant ADF 

phylogenetic tree (Figure 3.4, p. 30) described by Mun et al. (2000) and extended by Maciver 

et al. (2002). This subclass II is defined as “pollen exclusive expressed“. Since the isolation 

of two “pollen-specific” paralogs of ADF (Chen et al., 2002), no additional ADF had been 

reported for Nicotiana tabacum. This is quite untypical for plants, which normally possess 

more ADF homologs than animals (Maciver et al., 2002). Since the source of the NtADF2 
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cloned in this work was a non-transformed BY-2 line, this is the first report that this ADF 

isoform is expressed in vegetative cells. 

It is necessary to revisit the characteristic protein domains of the ADF/cofilin family. As 

mentioned before, the re-organization of AF is a very fast process and therefore the 

regulation has also to be very rapid. The ADF/cofilin family and especially the NtADF2 

protein sequence harbors some very interesting domains. The possibility of regulation 

NtADF2 function by phosphorylation of a serine-6 residue (Allwood et al., 2001) and masking 

of the binding side for filamentous actin by PIP2 (for review, see Staiger et al., 2010) resulting 

in a loss of function offers at least in theory two ways of fast regulation which would be 

advantageous for a rapid reaction on an auxin signal. In addition to that, Lanteri et al. (2008) 

could show a rapid and transient accumulation of PIP2 after IAA treatment. Subsequently, 

more PIP2 interacts with ADF, blocking its filamentous actin binding site, which would lead to 

an altered level of active ADF and a modified rate of AF depolymerization. 

4.3.2 Actin cytoskeleton is impaired by NtADF2 overexpression 

A closer look on the AF of the NtADF2 ox BY-2 cell culture revealed that only thick actin 

bundles could be detected both after transient transformation (Figure 3.6, p. 33) and TRITC-

phalloidin staining (Figure 3.6 H, I), whereas fine filaments were totally absent or fragmented 

(Figure 3.6 F). This shift towards the bundled conformation would be expected when ADF 

preferentially acted on the more dynamic fine AF. ADF binds at the pointed-end and twists 

the filament leading to an enhanced decay (for review, see Bamburg, 1999). In contrast, thick 

filaments are stabilized by actin-bundling proteins, and AF that are bundled by mTalin 

(Ketelaar et al., 2004) or Arabidopsis-villin (Huang et al., 2005) persist the depolymerizing 

activity of ADF in vitro. The thick AF observed after transient transformation probably 

persisted because they were protected from depolymerization due to their bundling. Due to 

the artificial stabilization of AF by phalloidin pre-treatment, fine AF could be protected from 

decay in the NtADF2 ox line (Figure 3.6 K3). In addition to bundled actin cables a strong 

cytoplasmic and nuclear GFP-signal was detectable (Figure 3.6 D), probably due to the high 

affinity of ADFs for G-actin (Carlier et al., 1997; Blanchoin & Pollard, 1999). To test for 

potential effects of overexpression or cell cycle, different incubation times and cell ages were 

checked, without any significant effects on localization (Figure 3.6 A-C). The absence of fine 

filaments was confirmed by the observation of the stable transformant (Figure 3.6 E), and is 

congruent with findings published for pollen tubes (Chen et al., 2002). 
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4.3.3 NtADF2 overexpression affects cell growth and division pattern 

The phenotypic characterization revealed clear differences between non-transformed and 

NtADF2 ox cell culture. NtADF2 ox cells were significantly shorter and exhibited a reduced 

MI (Figure 3.7, p. 34), indicating that, due to the overexpression of NtADF2, there are no fine 

filaments left or stable enough to fulfill their role in intracellular trafficking, affecting growth 

and mitosis. Similar results have been shown by Chen et al. (2002) for tip growth in tobacco 

pollen tubes and by Dong et al. (2001) for longitudinal growth of Arabidopsis thaliana 

cotyledons, hypocotyls, and roots at the seedling stage. 

Non-transformed BY-2 cells grow in files up to eight cells per file with an enhanced amount of 

even-numbered cells per file before decay into shorter even-numbered files. This 

synchronized file growth is, as mentioned before, dependent on polar flow of auxin (Maisch 

and Nick, 2007; Nick et al., 2009; for review see Nick, 2010). The NtADF2 ox cell line 

behaved significantly different. Files with more than four cells were hardly detectable (Figure 

3.8, p. 35). Thus, the depolymerization of fine AF, caused by overexpression of NtADF2, 

interfered with the auxin-dependent synchrony of cell division. This synchrony should be, at 

least partially, restored when fine AF are protected from depolymerization via exogenous 

PIP2 which competes with F-actin binding of NtADF2 reducing the depolymerizing activity of 

NtADF2. In fact, it was possible to partially restore the division pattern by exogenous PIP2 

(Figure 3.9 B, p. 36) demonstrating the participation of NtADF2. 

In addition to this direct complementation of NtADF2 functional upregulation by adding 

exogenous PIP2, a chemical complementation downstream of NtADF2 was tested. The 

question was, whether a rescue can be achieved by reducing actin dynamics per se. If the 

missing existence of stable fine filaments is the reason for the impaired division synchrony, 

the stabilization of the fine AF should decrease ADF depolymerizing activity and rescue the 

normal division pattern in the NtADF2 ox line as well. To test this reasoning, the NtADF2 ox 

BY-2 cell line was treated with phalloidin at a low concentration that was not causing toxicity 

even for prolonged treatments. Indeed, the phalloidin treatment resulted in a complete 

rescue of division pattern in the NtADF2 ox BY-2 cell line (Figure 3.10 B, p. 37) at a 

concentration that did not cause a significant effect on the non-transformed control culture 

(Figure 3.11 A, p. 37). This observation correlates with the findings described above (see 

4.3.2, p. 60), where due to the artificial stabilization of AF by phalloidin pre-treatment fine AF 

could be protected from decay in the NtADF2 ox line and visualized by TRITC-phalloidin 

staining (Figure 3.6 K3, p. 33). 

In the work of Maisch and Nick (2007), the altered division pattern could be rescued by 

adding IAA, which led to a debundling of the AF in the mTalin ox BY-2 cell culture. 
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Fluorescent microscopy of the NtADF2 ox BY-2 cell line showed also thick strains of bundled 

AF. Therefore it could be possible that the missing fine filaments were not depolymerized but 

just bundled and that this effect is responsible for the similar division pattern of the NtADF2 

ox and mTalin ox BY-2 cell lines. This interpretation could be tested with a simple 

experiment. If only the bundles of AF are the reason for the impaired division pattern, the 

addition of IAA should lead to a recovery of the DP in the NtADF2 ox BY-2 cell line but it 

failed to do so (data not shown). 

This finding supported the suggestion that the stability of fine filamentous actin plays a 

pivotal role in auxin-dependent patterning supported by the results of the phenotypic 

characterizations of additional actin marker lines overexpressing actin-bundling proteins like 

NtVLN1 or NtWLIM2 (Figure 3.2, p. 26), and LatB treatment of non-transformed BY-2 WT 

cells (Figure 3.12 B, p. 38), respectively. In the latter approach it was possible to phenocopy 

the NtADF2 ox BY-2 DP phenotype by treating the non-transformed BY-2 WT cells with a low 

concentration of LatB. 

4.3.4 Inducible NtADF2 RNAi knockout BY-2 cell line supports NtADF2 

ox BY-2 phenotype 

As nearly all results were derived from ABP overexpressing BY-2 cell lines where side-

effects might obscure interpretation, a dexamethasone inducible NtADF2 RNAi knockout BY-

2 cell line was established and investigated with respect to patterning. Control experiments 

verified that the division pattern of the non-transformed BY-2 WT was not affected by the 

inducer dexamethasone (Figure 3.13 A, p. 39), and that the NtADF2 RNAi knockout BY-2 

cell line behaved as the non transformed line in the absence of the inducer (Figure 3.13 B). A 

clear shift from cell files with fewer cells towards files with six and eight cells could be 

observed when the RNAi lines were induced with dexamethasone (Figure 3.13 C). This 

phenotype was antagonistic to that observed in the NtADF2 ox BY-2 cell line, which supports 

the notion that the observed DP of the transgenic cell line is NtADF2-specific and not a side-

effect of transformation per se. Moreover, the stability and abundance of fine filamentous 

actin seems to be crucial for auxin-dependent signaling. Nevertheless the results of the 

NtADF2 RNAi cell line have to be taken with a pinch of salt. To fulfill the requirements of the 

pOpOff vector the whole sequence of the NtADF2 was chosen as probe. As indirect proof of 

functionality the β-glucuronidase marker gene transcript level was tested. An additional test 

for downregulation of the NtADF2 has to be performed at the protein level. Keeping in mind, 

that the high level of ADF identity could also lead to off target effects. 



Discussion 

 

62 
 

4.3.5 Model of auxin signaling towards actin 

Summing up all derived data of the different transgenic BY-2 cell lines and experiments, the 

observations can be integrated into a first working model comprising a putative pathway from 

auxin signaling via actin re-organization to synchronized cell division with NtADF2 as pivotal 

player. The working model is composed of four interdigitated regulatory mechanisms: 

I.) (Figure 4.1, cyan) Auxin passes the cell membrane via diffusion or transmembrane 

proteins (Lanková et al., 2010) activating several auxin-dependent pathways, among others, 

ADF-related events. Here, one of the first steps is the alteration of the PIP2-level in the inner 

membrane layer causing a rapid and transient accumulation of PIP2 (Lanteri et al., 2008). 

Subsequently, more PIP2 interacts with ADF, hindering its actin binding site. This leads to a 

reduced depolymerization activity of ADF. Additional to this interaction, ADF is able to inhibit 

the activity of PLC (Gungabissoon et al., 1998), thus raising the PIP2 level even further. 

II.) (Figure 4.1, yellow) A second regulatory mechanism is based on the phosphorylation 

state of ADF. This phosphorylation at serine-6 is mediated by a yet unidentified Ca2+-

dependent kinase (CDPK), which, in turn, is affected by Rac/Rop GTPases (Smertenko et 

al., 1998; Allwood et al., 2001; Chen et al., 2003). Phosphorylated ADF is not able to 

depolymerize actin and was long thought to be a completely inactive form of the protein. 

However, Han et al. (2007) could show a direct stimulation of PLD activity for phosphorylated 

ADF/cofilin which is again linked to a Calcium-dependent protein kinase (CDPK) via 

phosphatidic acid (PA) signalling (Farmer & Choi, 1999). 

III.) (Figure 4.1, red) In interaction with other ABP like profilin, capping proteins (for review, 

see Staiger et al., 2010), or actin-related proteins (for review, see Bernstein & Bamburg, 

2010), ADF affects actin dynamics and conformation by modulation of the equilibrium 

between polymerized F-actin and cytoplasmic G-actin. Both forms of actin are able to interact 

directly with PLD to control their intracellular amount. G-actin inhibits PLD-activity, whereas 

F-actin is stimulating (Pleskot et al., 2010), such that ADF-phosphorylation rate can be 

regulated via this pathway (see regulatory mechanism II). 

IV). (Figure 4.1, green) Downstream of the three described regulatory mechanisms, the auxin 

signal transmitting pathway is dependent on the actin conformation. Bundled AF impair 

intracellular transport and, thus, interfere with the proper localization of PIN-formed proteins, 

that are essential for auxin export (for review, see Nick, 2010). 
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4.4 Conclusion (NtADF2) 

In conclusion, actin-binding proteins in general and actin-depolymerizing factor 2 in particular 

fullfill an important role in auxin-signal mediation. The results of this dissertation were 

consistent with the work of Maisch and Nick (2007) and Nick et al. (2009), in which they 

could decipher the incorporation of actin filaments in auxin-dependent synchronized cell 

division in BY-2 and in rice, by artificial actin-bundling due to massive overexpression of 

mTalin in combination with rescue experiments. Especially the stable overexpression of 

actin-binding proteins like the Nicotiana tabacum homologs of Villin 1 and WLIM 2 in BY-2 

with moderate actin-bundling properties (for review, see Thomas et al., 2009), whose 

phenotypes could be sorted in between the extreme pattern of the mTalin ox BY-2 cell 

Figure 4.1: Model of the putative pathway from auxin signaling via actin re-
organization to synchronized cell division (arrows in bold). References: (1) Lanteri et 
al., 2008; (2) Van Troys et al., 2008; (3) Gungabissoon et al., 1998; (4) Lin et al., 

2004; (5) Chen et al., 2003; (6) Bernstein and Bamburg, 2010; (7) Farmer and Choi, 
1999; (8) Campanoni and Nick, 2005, Maisch and Nick, 2007; (9) Bernstein and 
Bamburg, 2010, Staiger et al., 2010; (10) Pleskot et al., 2010; (11) Wang, 2000; (12) 
Lanteri et al., 2008. 
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culture and the characteristic natural division pattern in non-transformed BY-2 WT cell 

cultures. It was possible to identify a relation between actin-bundling intensity and the 

impaired division pattern of the cell cultures. Additionally to this already expected correlation, 

the identification of the Nicotiana tabacum actin-depolymerizing factor 2 as a pivotal key 

protein for a predicted auxin-signal pathway represents the first attempt to link an actin-

binding protein to this auxin-driven phenomenon of actin re-organization. In combination with 

the results from overexpression and complementation, this work clearly indicate, that 

abundance and activity of NtADF2 control the stability of fine AF as prerequisite for functional 

auxin-dependent signalling with respect to synchronized cell division (Campanoni and Nick, 

2005; Maisch and Nick, 2007). In addition, the stability of fine AF is involved in keeping the 

mentioned actin-auxin oscillator running. 

4.5 Outlook (NtADF2) 

The present dissertation contributed to the understanding of the complex system of auxin-

dependent patterning while leading to further questions related to auxin-signal perception, 

mediation and actin organization, which should be in focus of future research: 

Combining the already known information about interaction partners of actin-depolymerizing 

factors like profilins or capping proteins (for review, see Staiger et al., 2010) with results of 

this work (partial complementation after PIP2 treatment) implicates that the non-linear and 

dynamic activity of NtADF2 in the regulation of actin organization is expected to involve 

complexes with other ABPs. To identify possible interaction partners connected to this auxin-

induced actin re-organization, titration of complex composition through genetic engineering 

would be a logical next step. 

In addition to this first point, it is crucial to have a closer look at the first border the auxin-

signal has to cross – the plasma membrane. Besides ion channels (especially Ca2+; 

phosphorylation of ADF is directly affected by a Ca2+-dependent protein kinase; Allwood et 

al., 2001), and recently identified influx carriers like AUX/LAX (Petrášek and Friml, 2009; 

Friml, 2010), further actin-binding proteins could play an essential role in this system as well. 

During the last years, the formins were put in the focus of attention (Yang et al., 2011). Due 

to their localization next to the cell membrane, their role as anchor points for actin filaments, 

and further functions like actin polymerization (Cvrcková et al., 2004; Michelot et al., 2005, 

2006; Blanchoin and Staiger, 2010), they could be of elementary importance for auxin-

signaling. First cloning approaches of two Nicotiana tabacum homologues have already been 

initiated. 
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In parallel to ABPs (like the formins), also the role of the phospholipases C and D should be 

investigated in more detail. Both are located in the zone of initial contact with the auxin-

signal. While phospholipase C is directly connected to PIP2-level regulation in the membrane 

and affected by cytoplasmic ADF, phospholipase D can directly bind actin filaments 

(Bernstein and Bamburg, 2010), and microtubules (Gardiner et al., 2001). Microtubules are, 

with respect to auxin-dependent patterning, quite unattended but probably important as 

shown in the work of Heisler et al. (2010) for the correlation of microtubule orientation and 

PIN1 (auxin efflux carrier and responsible for polar flow of auxin) polarity. 

A very promising method to address these complex mechanisms in the future is the 

technique of RNA interference, which gives the opportunity to silence single components of 

the system and enables the observation of possible effects for example in transgenic BY-2 

cultures. Nevertheless, the cellular mechanisms responsible for silencing and their potential 

side-effects are still far from being completely understood. Thus, it is of elemental need to 

critically examine every single result. 

In addition to the before mentioned experimental approaches to auxin-signal perception and 

signaling, a closer look on the BY-2 cell culture itself is of major interest. The division pattern 

of this cell line has been successfully used as reporter for auxin signaling and several 

regulatory circuits could be identified. However, the disintegration of cell files into single cells 

is still a promising topic. NtADF2 ox BY-2 cell files only possessed a low number of cells per 

file at the point of examination with a high amount of bicellular files, the smallest regular unit. 

But also non-transformed tobacco cell files disintegrate during their cell cycle into even-

numbered cell files with fewer cells and this pair-cell rule can be disrupted by inhibitors of 

polar auxin transport (Qiao et al., 2010). Even though the polar transport of auxin obviously 

plays an important role, the processes linked to auxin habituation or the dampening of this 

flow are also far from being understood. Therefore, beside the formation of cell files also their 

decay has to be investigated. 

As last point of this section it is necessary to mention that ABP as possible mediators of 

auxin-dependent patterning probably cooperate with additional factors such as reactive 

oxygen species that can be modulated by pathogens or stress leading to actin re-

organization. Not only BY-2 cells, but also “real” plants respond to these signals by 

cytoskeletal bundling (for recent review, see Smertenko and Franklin-Tong, 2011) or 

disruption (Qiao et al., 2010). 
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4.6 Visualization and discrimination of different actin sub-

populations 

The second aim of this work was the visualization and discrimination of different actin sub-

populations. Actin has to fulfill many various different tasks while its isoforms are highly 

conserved even between different species (Meagher et al., 1999a, 1999b). Therefore, 

structural differences between actin isotypes can be excluded as factor controling functional 

differentiation between AF sub-populations. In fact, it is the different subsets of actin-binding 

proteins and their complexes that are responsible for the functional variability of the single 

filaments. This raised the question whether it is possible to discriminate between different 

sub-populations of actin filaments, which differ in respect to their ABP decoration. In this 

work, a FP-based strategy was designed. The yeast peptid Lifeact, binding to an ubiquitous 

motif in filamentous actin was used as actin-binding probe and fused with two different FP. 

For the first construct a psRFP, which forms tetramers, typical for anthozoan FP (Fuchs, 

2011), was used. Due to its molecular size a binding of the Lifeact motif to actin should be 

sensitive to steric hindrance in case of a dense decoration with ABP. As control, a second 

construct consisting of the monomeric mIRISFP was selected, which is comparable in size to 

the classical GFP and should therefore bind actin filaments without steric hindrance. There 

was an additional reason for selecting these two FP. Both belong to the class of pa-FP and 

offered the possibility of super-resolution microscopy using photoactivation localization 

microscopy (PALM), a technology that so far, to our knowledge, has never been applied in 

living plant cells. 

Indeed, this “steric-hindrance approach” revealed different functional sub-populations of actin 

filaments in BY-2 cells and the super-resolution PALM delivered images of actin filaments 

with a resolution of about 20 nm, both discussed in the following in more detail. 

4.6.1 Differences in localization pattern of Lifeact-psRFP after transient 

and stable transformation 

As routinely done with all newly cloned constructs, the fusion of Lifeact and psRFP was 

tested for functionality by transient transformation using the ballistic method of a particle gun 

(Figure 3.14, p. 42). The efficiency of the transformation was at a moderate level compared 

to other constructs produced in this work (e.g. GFP-NtADF2), and the Lifeact-psRFP signal 

labeled filamentous structures very clearly. As it was expected that the Lifeact peptide would 

bind filamentous actin, the observed localization of the psRFP-signal was not surprising. The 

psRFP belongs to the group of positive switchers (Fuchs, 2011), which means that the 

ground state of the FP is its “off”-mode. Therefore, screened areas had to be illuminated first 
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with light of 561 nm wavelength. This procedure helped to localize the transgenic cells in the 

population much faster. The filaments labeled by Lifeact-psRFP as well as by Lifeact-

mIRISFP were homogenously distributed through the entire cell. A difference in localization 

could not be observed. 

The constructs seemed to be functional and the next logical step was the stable 

transformation into BY-2 cells because the transient transformed cells could not be used for 

PALM anyway, as the number of transformed cells was too small. As mentioned before, a 

second Lifeact-fusion with the pa-FP mIRIS was also generated and tested. The localization 

was identical to the Lifeact-psRFP signal, but the transformation efficiency was much lower. 

This was not that spectacular but it was a first small difference between the two selected FP 

for the Lifeact-fusions. However, after stable transformation, more conspicuous differences 

between the two constructs emerged. Whereas in the Lifeact-mIRISFP expressing cells, 

similar to the transient approaches, filamentous structures were labeled throughout the entire 

cell, in the Lifeact-psRFP expressing cells, only a basket-like structure around the nucleus 

was marked (Figure 3.14 E, p. 42). A control staining with Alexa-Fluor® 488 phalloidin 

revealed that the structures marked by the Lifeact-fusions were indeed filamentous actin 

including the basket-like structure around the nucleus. This control staining showed further 

that there are additional sub-populations of filamentous actin existent in Lifeact-psRFP 

expressing cells, which are not labeled by the probe (Figure 3.15, p. 43) but only by Alexa-

Fluor® 488 phalloidin. 

This finding, in combination with the Lifeact-mIRISFP data, exclude the possibility that the 

observed localization was nuclear basket specific. But this also meant that it was possible to 

specifically label different sub-populations of actin within a cell. The sole difference between 

both probes was the nature of the FP label. Thus, the Lifeact-psRFP expressing BY-2 cells 

clearly reveal a difference between central and cortical actin filaments with respect to the 

availability of the Lifeact binding side. As pointed out in the introduction (see 1.3, p. 5), 

stability and dynamics of filamentous actin are controlled by actin-binding proteins (ABP) and 

their complexes. Since actin isoforms are very conserved, it is straightforward to assume that 

the decoration with different ABP differentiates functionally different sub-populations of actin. 

The sub-population constituting the nuclear basket might be accessible for the Lifeact-psRFP 

fusion protein, because they are more scarcely decorated with ABP, whereas the cortical 

filaments are densely covered impeding the access of the tetrameric probe (Figure 4.2). 
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This model is supported by the observation that cortical AF are labeled in cells going to die, 

such that the functionality of cortical actin is expected to be disrupted. These cells may have 

ceased their regulated decoration and the Lifeact-psRFP binding motif became freely 

accessible. 

The observed complete decoration of actin filaments in transiently transformed BY-2 cells 

can be explained in a similar way: In transient transformation only the cells with the highest 

level of expression are detected. These cells are not viable in the long term, but are 

extremely stressed due to functional disruption of the cytoskeleton as consequence of 

overexpression. In stable transformation, only those cells will survive where the expression of 

the probe does not impair cellular functions leading to natural selection of physiological levels 

of the probe. 

Figure 4.2: Model of the putative Lifeact-psRFP and Lifeact-mIRISFP binding to the nuclear actin basket and to 

cortical or transvacuolar actin filaments. The Lifeact-mIRISFP construct is able to bild both sub-populations of 
actin, whereas the tetrameric Lifeact-psRFP is excluded at the small binding sites left freely accessible by ABP 
decoration. The FP and especially the tiny Lifeact peptide are not true to scale for better visibility. 
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4.6.2 The nuclear basket of Lifeact-psRFP expressing BY-2 cells alters 

during cell cycle 

The Lifeact-psRFP signal around the nucleus was very stable (data not shown), but varied 

through the cell cycle (Figure 3.17, p. 46). A clear cell cycle-dependent gradient could be 

observed. In BY-2 cells at the onset of mitosis, the nucleus was positioned in the cell center, 

and the psRFP-labeled actin filament basket was very homogenous and formed a tight 

meshwork around the nucleus. In contrast, nuclei, which moved towards the cell center in 

preparation of mitosis, showed a clear signal-gradient towards their direction of migration. 

During mitosis, the labeled actin filaments moved to the poles of the new daughter nuclei and 

subsequently formed a homogeneous meshwork around the nuclei (Figure 3.18, p. 47). After 

cytokinesis, the Lifeact-psRFP signal was exclusively found between the new cell wall and 

the daughter nuclei. It was possible to observe, how whole nuclei were turned, without re-

orientation of the labeled actin filaments, and pulled into the new center of the cell. The 

signal of the nuclear basket was observed to be most intense at the “anchor” points (see 

supplementary movie on DVD) of transvacuolar cytoplasmic strands that are maintained by 

actin filaments and microtubules. These observations clearly show that the labeled actin 

filaments are actively regulated by the cell. 

This raised the question for the reason of this regulation. Eventually, the open epitope, which 

could be labeled by the psRFP tetramer is a kind of an intracellular signal. An indication for 

binding proteins or complexes is imaginable. This question could not be answered in this 

work, but without any doubt, the labeled actin basket was characterized by a clearly visible 

stability and stability is definitely advantageous for saving informations. The nuclear basket 

and its polarity could probably function as a spatial memory for cell polarity. 

4.6.3 Nuclear actin basket - a spatial memory for cell polarity 

The questions how cell polarity is inherited from the mother to the daughter cell, the role of 

the cytoskeleton as spatial memory during cell division, and how nuclear position and 

migration affect this process are essentiall but poorly understood. Until now unidentified 

signals have to be responsible to maintain growth direction and formation of polarity after cell 

division. The stability and orientation of the nuclear basket observed in Lifeact-psRFP 

expressing BY-2 cells could be a part in this re-formation of cell polarity. 

To exclude a stabilization caused by mere overexpression, the Lifeact-psRFP expressing 

BY-2 cell line was tested for its drug sensitivity. The chosen drug latrunculin B (LatB), which 

binds and irreversibly sequesters G-actin, leads to an elimination of actin filaments 

depending on their innate turnover. Stable actin bundles require a longer action or higher 
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concentrations of the inhibitor, dynamic actin filaments are rapidly eliminated (Coué et al., 

1987). Therefore, LatB sensitivity can be used to monitor actin filament stability. If the 

expression of Lifeact-psRFP would have led to a raised stability of actin filaments per se, the 

cell culture should be less sensitive. The packed cell volume would have been in this case at 

least at the same level compared to LatB-treated non-transformed BY-2 WT control cells. 

However, the clear opposite was observed (Figure 3.16, p. 44). The Lifeact-psRFP 

expressing cells were even more sensitive to LatB treatment, indicating that there is no 

general stabilization of actin filaments. Nevertheless, data of a recent bachelor thesis 

(Brochhausen, 2011) showed a slightly delayed nuclear migration compared to the non-

transformed BY-2 WT short before mitosis. A similar effect was described by Frey et al. 

(2010) for BY-2 cells, where a kinesin with the calponin-homology domain (KCH) from Oryza 

sativa had been overexpressed. Actin filaments, microtubules and KCH seem to cooperate in 

the premitotic nuclear migration (Frey, 2011; Klotz and Nick, 2012). 

Although every visualization alters and impairs the marked system, the participation of the 

Lifeact-psRFP labeled actin basket in nuclear migration is consistent with the nuclear pulling 

model worked out for the KCH kinesins (Frey et al. 2010; Klotz and Nick, 2012). 

If the stability and orientation of the nuclear basket observed in Lifeact-psRFP expressing 

BY-2 cells plays a pivotal role in the establishment of cell polarity in cells after mitosis, the 

basket should be a kind of starting scaffold for cytoskeletal re-formation. Therefore, Lifeact-

psRFP expressing cells had been protoplasted to mimick the loss of polarity following 

mitosis. Due to protoplasting BY-2 cells are transferred into a non-polar state, in which the 

cytoskeleton does not possess any special predominant direction. After re-organization of the 

cytoskeleton in combination with nuclear movement, a new polarity develops in the cell 

providing the direction of growth. The persistence of the nuclear basket during this tabula 

rasa state (Figure 3.19, p. 48) and its clear gradient during the cell cycle (Figure 3.17, p. 46) 

stimulates a model where the nucleus itself or rather its actin basket already harbor a basic 

polarity. This polarity could be inherited to the daughter cells and trigger the establishment of 

the cell polarity. 

4.6.4 Super-resolution microscopy in living plant cells using 

photoactivation localization microscopy (PALM) 

In comparison to animal cells, in which super-resolution microscopy already led to enormous 

progress in comprehension of the cytoskeleton, microscopy in plant cells is limping behind. 

One of the reasons is the cell wall. Because of its thickness an intact cell wall renders 

methods like total internal reflection microscopy (TIRF) impossible in plant cells without 

protoplastation. A second problem are autofluorescent compounds such as chlorophyll or 
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secondary plant metabolites. The development of photoactivation localization microscopy 

(PALM) along with the discovery and further development of photoactivated fluorescent 

proteins (pa-FP) enables an insight in living plant cells never seen before. Due to the 

combination of an improved protocol for plant cell transformation, the usage of pa-FP instead 

of classical FP, and computer-based signal localization of the PALM technique it became 

possible for the first time to perform super-resolution microscopy in living plant cells with 

intact cell wall, and at a low nm scale. This dissertation shows not only the feasibility of a 

stably expressed Lifeact-psRFP fusion for PALM in plant cells, but also the possibility to 

reconstruct three-dimensional images out of several planes constructed from thousands of 

individual frames. As PALM was used before only for solitary sections, this is an important 

step towards application of super-resolution microscopy in cell biology in general, and in 

plant cells in particular. The results of super-resolution PALM supported and extended the 

findings observed by classical fluorescence microscopy in the transgenic Lifeact-psRFP 

expressing BY-2 cell line. 

PALM of living Lifeact-psRFP ox BY-2 cells 

Additional target of this work, in addition to the interesting insights into nuclear migration and 

polarity, was to test the applicability of psRFP for super-resolution imaging applying PALM in 

living plant cells. As shown in Figure 3.14 (p. 42), it was possible to stably transform BY-2 

cell cultures with Lifeact-psRFP and Lifeact-mIRISFP fusions, which was the first step on the 

way to super-resolution images of actin filaments in plants. The mIRISFP expressing cells 

were only used as control cell line for the nuclear basket labeling of the Lifeact-psRFP 

expressing BY-2 cells and were not tested for PALM imaging. On the one hand, it was 

possible to depict the nuclear actin basket with a resolution in the low nm-scale. On the other 

hand, the excellent photostability of the psRFP-signal allowed to visualize several z-stacks of 

one individual nuclear basket, which could be used for reconstruction of the complete three-

dimensional structure (Figure 3.20 B, p. 50). This represents an advance of the PALM 

technique, because super-resolution was limited to a single focal layer (e.g. Appendix 7.9, p. 

98 shows single sections typical for PALM). Especially plant cells possess a distinct three-

dimensional structure stabilized by the cell wall, posing a further challenge to microscopic 

imaging as compared to the flat adhering animal cells. There are several possible reasons 

for this observed photostability. The fluorescent molecule could be either more resistant to 

bleaching in general or the signal stability could be connected to the maturation of the 

chromophore. Both possibilities should be investigated in future work. 
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4.7 Conclusion (super-resolution microscopy) 

It was possible to visualize and discriminate between different functional actin sub-

populations by means of the Lifeact-psRFP construct expressing BY-2 cell culture. The 

psRFP-labeled nuclear actin basket seemed to have a stabilizing function on the nucleus 

additional to its presumed role for nuclear migration. In contrast to animals, plants do not 

have intermediate filaments - at least up to now they could not be demonstrated, despite 

considerable effort. Intermediate filaments maintain the nuclear structure in animal cells. The 

localization of the Lifeact-psRFP revealed a sub-population of actin filaments which might 

represent the functional plant analogue of intermediate filaments. The discovery of a 

sterically different AF population in the nuclear basket expands existing models on nuclear 

migration, even though the whole mechanism is still far from being understood. 

Independent of these findings, it was possible to use super-resolution PALM in living plant 

cells and resolve cytoskeletal structures at a scale of about 20 nm. In this doctoral thesis it 

could be demonstrated, that the BY-2 cell culture as well as the psRFP fused to Lifeact (or 

other proteins of interest) is amenable to get a better understanding of cellular processes in 

plant cell biology. 

4.8 Outlook (super-resolution microscopy) 

To gain and expand knowledge, applicability is the ultimate goal of technical progress in any 

field of science. Therefore, it is necessary to put technical developments into practice under 

defined conditions and specific questions. PALM and psRFP have been successfully 

employed in living plant cells to address the question of functionally different actin sub-

populations. In this approach, the imaging velocity of the PALM setup and the photostability 

of the psRFP were crucial for image acquisition at the low nm-scale. The relative low 

dynamics of the actin filament basket enabled the sequential imaging of 3000 single frames 

at 30 ms excitation. Highly dynamic structures are still a serious challenge for super-

resolution microscopy, which is the starting point of further development. It would be a great 

benefit, if the imaging speed of the microscopes could be improved, for example by shorter 

excitation periods of advanced fluorescent proteins or by increasing the sensitivity of signal 

detection. In parallel, the ongoing search for new fluorescent proteins or engineered variants 

of FPs already in use has great potential. 

In case of psRFP, this engineering would comprise the breakage of the tetrameric structure 

into monomers by introducing sequence mutations comparable to the development of 

mIRISFP based on its tetrameric precursor. As this procedure is not that easy as it sounds, a 

larger period of time has to be scheduled. Not only the identification of the structurally 



Discussion 

 

73 
 

relevant amino acids is time-consuming, but also problems linked to monomerization can 

pose challenges leading for example to unintended localization of the fluorescent protein in 

the cell. After successful engineering, the localization of the monomeric version of the psRFP 

would be an ultimate proof of the presumed reasons for the localization of the tetrameric 

psRFP used in this work. 

A very fundamental question in cell biology is the question, how actin-binding proteins are 

targeted to the filaments and locations in the cell they are designed for? There are no 

membrane encased compartments in the cytoplasm. Are the ABP translated and 

subsequently transported to their area of activity, or are they synthesized directly at their site 

of activity? If the first assumption is correct and they are synthesized next to the nucleus, 

how does the protein find the correct filament? All these questions probably could be 

answered by labeling single ABP using photoactivatable fluorescent proteins like Eos-FP, 

photoswitching subpopulations of the FP-tagged ABP at defined cellular regions, and 

following their localization over time. To construct a vector system based on the Gateway® 

technique and a pa-FP instead of a conventional FP will be a future project. For this purpose, 

a monomeric Eos-FP and the monomeric IRISFP will be choosen (both FP are developed by 

the group of Prof. U. Nienhaus, Institute for applied physics and Center for Functional 

Nanostructures (CFN), Karlsruhe Institute of Technology (KIT)). The monomeric IRISFP 

would additionally enable super-resolution imaging beside its pulse-chase possibility and 

combine both powerful tools. 
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7. Appendix 

7.1 Coding sequences of actin-binding proteins 

7.1.1 NtADF1 gene (Accession number NCBI database: AAL91666) 

MANAVSGMAVQDECKLKFLELKTKRNYRFIIFKIDGQEVVVEKLGSPEESYEDFANSLPADEC

RYAVFDLDFITNENCQKSKIFFIAWSPETSRVRMKMVYASSKDRFKRELDGIQVELQATDPSE

MSFDIVKARAY- 

7.1.2 NtADF2 gene (Accession number NCBI database: AAL91667) 

MANAASGMAVLDECKLKFLELKAKRNYRFIVFKIEGQQVVVEKLGNPEENYDDFTNSLPADEC

RYAVFDFDFITTENCQKSKIFFIAWSPDTSKVRMKMVYASSKDRFKRELDGIQVELQATDPSE

MSFDIIKSRAL- 

7.1.3 NtNFH1 gene (Accession number NCBI database: AAF24496) 

MLSSSFFFFLLLFSATVSATNRRVLHHPFFPVDSQPPSPSPTGTTTPKYPFDSSTTPNNNNYN

NNTPFFPFPPPPPPSPSAFASFPANISTLILPHSAKSKPLSSKLIATAIICVVAAVLVLSLAV

FLHIRKRRNQAASTSDAKTQRSNSSTHFNYSNANSNNGNNSSSGNRSHIPKLQRPSQTSSEFL

YLGTMVSSHGGIDGPHNPPQRRRSGNVTSVPASRKMDSPEIHPLPPLLGRNLSQNYGNNNDNN

NNADVISGRTEEDEEFYSPRGSLDGRESSIGTGSVSRRAFAAVEVENFGGGSRSSSSSSYSSS

SSCSGSPARSVSLSISPPVSLSPKSLMPKSPELVAIHTAPPPQYSPPPPPPPLPPRANFVPIL

VMGNESDSPSPPSSSSPERYSSRSIDSSPRSFNVWDQNLESPARITNQIQQIEPVSVASPPPP

PPPLSISIPASVPPPPPPPPCKNWDSPKTLTPPTSKPPVLVTPLRPIALESPVLISPMDQLPS

NSEPIEKNEQKIENEETPKPKLKTLHWDKVRASSDRETVWDQLKSSSFKLDEEMIETLFVVKT

PTSNPKETTRRAVLPSQSQENRVLDPKKSQNISIQLRALSVTVEEVCEALLEGNADALGTELL

ESLLKMAPSKEEERKLKEYKDDSPFKLGPAEKFLKAVLDIPFAFKRVDAMLYISNFDSEVDYL

KKSFETLEASCEELRSNRMFLKLVEAVLKTGNRLNVGTNRGDAHAFKVDTLLKLADVKGADGK

TSFLHFVVQEIIRLQAVESVAMSLVKEITEYFHGNSAREEAHPFRIFMVVRDFLMVLDRVCKE

VGMINERTIVSSAHKFPVPVNPTLQPAIGGLTAIRQHSFSDDDSSSP- 

7.1.4 NtNFH2 gene (Accession number NCBI database: AAF24497) 

MVFPFFFFLLFLFCSTHCISFAAVSAHNRRVLHESFFPIDSPPPSQPPIPAPPAPPTPYPFQP

STPDNNNPFFPTYRSPPPPPPPPSPSSLVSFPANISDINLPNTSKSKHVSSKLIITAITCVLA

AIIVLSIAICLHAKKRRRHFNDPKTQRSDNSNRLNHGSSKNDGNTNNSIPKLQQPSQTSSEFL

YLGTIVNSHGGINSGSNPDTAPSSRKMASPELRPLPPLNGRNLSQNYRNTRNDDDFYSTEESV
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GYIESSFGAGSLSRRGFAAVEVNKFVGSSLSGSDSSSSSGSGSPNRSVSLSISPPVSVSPKRE

SCSRPKSPELIAVVTPPPPQRPPPPPPPFVHGPQVKVTANESPVLISPMEKNDQNVENHSIEK

NEEKSEEILKPKLKTLHWDKVRASSDCEMVWDQLKSSSFKLNEEMIETLFVVKNPTLNTSATA

KHFVVSSMSQENRVLDPKKSQNIAILLRVLNGTTEEICEAFLEGNAENIGTELLEILLKMAPS

KEEERKLKEYKDDSPFKLGPAEKFLKAVLDIPFAFKRIDAMLYISNFDYEVDYLGNSFETLEA

ACEELRSSRMFLKLLEAVLKTGNRMNVGTNRGDAHAFKLDTLLKLVDVKGADGKTTLLHFVVQ

EIIKSEGARLSGGNQNHQQSTTNDDAKCKKLGLQVVSNISSELINVKKSAAMDSEVLHNDVLK

LSKGIQNIAEVVRSIEAVGLEESSIKRFSESMNRFMKVAEEKILRLQAQETLAMSLVKEITEY

VHGDSAREEAHPFRIFMVVKDFLMILDCVCKEVGTINERTIVSSAQKFPVPVNPNLQPVISGF

RAKRLHSSSDEESSSP- 

7.1.5 NtVLN1 gene (Accession number NCBI database: CAE17316) 

MEGGGKIEVWRINGSAKTPVPGDDIGKFYSGDCYIVLYTYHCNDRKEDYYLCWWIGKDSVEED

QNMAAKLASTMCNSLKARPVLGRVYQGKEPPQFVAIFQPMLVLKGGLSSGYKSYIADKGLNDE

TYTADSVALIRLSGTSVHNNKAVQVDAVATSLNSNECFLLQSGSSVFSWHGNQSTYEQQQLAA

KVAEFLKPGVTVKHAKEGTESSTFWFALGGKQSYTSKKVASEVARDPHLFAYSFNKGKFEIEE

IYNFSQDDLLTEDVLLLDTHAEVFVWVGQSSDPKEKQSSFEVGQKYIEMAASLEGLSPHVPLY

KVMEGNEPCFFTTFFSWDPAKAIAHGNSFQKKVMLLFGVGHASENQQRFNGTNQGGATQRASA

LAALNSAFSSSPAKSSSAPRSAGKSPGSQRAAAIAALSSALSAEKKQPPEGGSPLRLSRTSSV

DAIAPGNEVSTAEIEDSKEVPERKEIETVEPAETDGEDVGPKPEPEQDETGNDSSQTTFSYER

LKAKSENPVTGIDLKRREAYLSDEEFESVLEMTKEAFYKLPKWKQDIHKKKVDLF- 

7.1.6 NtVLN2 gene (Accession number NCBI database: CAE17317) 

MREDYYLCWWIGKDSIEEDQSMAARLASTMCNSFKGRPVLGRVFQGKEPPQFVAIFQPMLVLK

GGLSSGYKNYIADKGLNDETYAADSVALIRLSGTSVHNNKAVQVDAVPASLNSNECFLLQSGS

SIFSWHGNQSTYEQQQLAAKVAEFLKPGATVKHTKEGTESSAFWFAVGGKQSYTSKKVATEVS

RDPHLFAYSFNKGKFEVEEIYNFSQDDLLTEDVLLLDTHAEVFVWIGQSADSKEKQSAFDVGQ

KYVEMAASLEGLSPNVPLYKVTEGNEPCFFTTFFSWDPAKASAHGNSFQKKVMLLFGVGHASE

NQQRSNGSGGPTQRASALAALNSAFSPSPPKSSSATRPAGTSSASQRAAAIAALSGVLTAEKK

QSSEGGSPVRSNRSSPVRSSRSSPVRSADSGPTENDLSTAEVQDSEKASEPKEIVEPAESNGS

EPKPEAEQDEGGNESGQAIFSYEQLKAKSDNPVTGIDFKRREAYLSDEEFESVLGMKKEAFYK

LPKWKQDMHKRKVDLF- 

7.1.7 NtWLIM2 gene (Accession number NCBI database: AAD56951) 

MSFIGTQQKCKACEKTVYPVELLSADGVNYHKSCFKCSHCKGTLKLSNFSSMEGVLYCKPHFE

QLFKESGNFNKNFQSPAKSAEKLTPELTRSPSKAAGM- 
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7.2 Accession numbers 

All sequences were taken from NCBI gen database (http://www.ncbi.nlm.nih.gov/; as of April 

2011) and Tree families database (Treefam; http://www.treefam.org/; as of April 2011). 

Organism Gene Annotation Accession number Source 

Nicotiana tabacum NtADF1 AAL91666 NCBI 

  NtADF2 AAL91667 NCBI 

Arabidopsis thaliana AtADF1 At3g46010 Treefam 

  AtADF2 NP_566882 NCBI 

  AtADF3 NP_851227 NCBI 

  AtADF4 NP_851228 NCBI 

  AtADF5 At2g16700 Treefam 

  AtADF6 At2g31200 Treefam 

  AtADF7 NP_194289 NCBI 

  AtADF8 NP_567182 NCBI 

  AtADF9 At4g34970 Treefam 

  AtADF10 NP_568769 NCBI 

  AtADF11 NP_171680 NCBI 

Vitis vinifera VvADF predicted XP_002284292 NCBI 

  VvADF predicted XP_002284029 NCBI 

  VvADF predicted XP_002273958 NCBI 

  VvADF predicted XP_002268512 NCBI 

Oryza sativa OsADF predicted NP_001054456 NCBI 

  OsADF predicted NP_001053519 NCBI 

  OsADF predicted NP_001047657 NCBI 

  OsADF predicted NP_001059648 NCBI 

  OsADF predicted NP_001049525 NCBI 

  OsADF predicted AAG13444 NCBI 

  OsADF predicted NP_001067327 NCBI 

  OsADF predicted NP_001051449 NCBI 

  OsADF predicted NP_001051721 NCBI 

  OsADF predicted NP_001051720 NCBI 

Zea mays ZmADF1 NP_001105463 NCBI 

  ZmADF2 NP_001105590 NCBI 

  ZmADF3 NP_001105474 NCBI 

Saccheromyces cerevisiae ScCof1 NP_013050 NCBI 

Saccheromyces pombe SpCof1 NP_594741 NCBI 
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7.3 Primer 

7.3.1 Primer for Gateway®-Cloning 

Primer Code Sequence 

attB1-ADF1  5’-GGGG ACA AGT TTG TAC AAA AAA GCA GGC 

TTC ATG GCG AAT GCA GTG TCT GG-3‘ 

attB2-ADF1  5’-GGGG AC CAC TTT GTA CAA GAA AGC TGG 

GTC TCA ATA GGC TCG TGC TTT TAC-3‘ 

attB1-ADF2  5’-GGGG ACA AGT TTG TAC AAA AAA GCA GGC 

TTC ATG GCG AAT GCT GCG TCT GG-3‘ 

attB2-ADF2  5’-GGGG AC CAC TTT GTA CAA GAA AGC TGG 

GTC TCA AAG TGC TCG TGA CTT TAT-3‘ 

attB1-VLN1  5’-GGGG ACA AGT TTG TAC AAA AAA GCA GGC 

TTC GAA GGG GGT GGA AAA ATA GAG GTC-3‘ 

attB2-VLN1  5’-GGGG AC CAC TTT GTA CAA GAA AGC TGG 

GTC CTA GAA GAG ATC AAC TTT CTT TTT GTG-3‘ 

attB1-VLN2  5’-GGGG ACA AGT TTG TAC AAA AAA GCA GGC 

TTC CAG AGA AGA TTA TTA TCT ATG CTG G-3‘ 

attB2-VLN2  5’-GGGG AC CAC TTT GTA CAA GAA AGC TGG 

GTC CTA GAA GAG ATC AAC CTT TC-3‘ 

attB1-WLIM2  5’-GGGG ACA AGT TTG TAC AAA AAA GCA GGC 

TTC ATG TCT TTT ATT GGG ACA C-3‘ 

attB2-WLIM2  5’-GGGG AC CAC TTT GTA CAA GAA AGC TGG 

GTC AGA ATC TGG AAC GGT TGC-3‘ 

attB1-Lifeact-pa-FP  5’-GGGG ACA AGT TTG TAC AAA AAA GCA GGC 

TTC ATG GGA GTA GCA GAT CTA ATC-3‘ 

attB2-Lifeact-mIRIS  5’-GGGG AC CAC TTT GTA CAA GAA AGC TGG 

GTC TTA TCG TCT GGC ATT GTC AG-3‘ 

attB2-Lifeact-psRFP  5’-GGGG AC CAC TTT GTA CAA GAA AGC TGG 

GTC TTA GTG ATG TCC AAG CTT GG-3‘ 
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7.3.2 Primer for semi-quantitative expression analysis 

Primer Code Sequence 

sq-ADF1 fw  5’-GAA TGG CAG TGC AAG ATG AAT G-3‘ 

sq-ADF1 rv  5’-CAT CGG CAG GCA GAG AGT TAG-3’ 

sq-ADF2 fw  5’-AGT GCC GCT ATG CTG TCT TTG-3’ 

sq-ADF2 rv  5’-GTG TCA GGT GAC CAA GCA ATG-3’ 

sq-VLN1 fw  5’-GAA GTT CCA GAA CGC AAG GAG-3’ 

sq-VLN1 rv  5’-CAT TGC CAG TCT CAT CCT GTT-3’ 

sq-VLN2 fw  5’-GAT CAG CAG ACT CTG GCC CTA C-3’ 

sq-VLN2 rv  5’-CAT TAG ACT CTG CGG GCT CAA-3’ 

sq-NFH1 fw  5’-TGG GAA AAC ATC CTT CTT GC-3’ 

sq-NFH1 rv  5’-GAG CCT CTT CTC TGG CTG AA-3’ 

sq-NFH2 fw  5’-GAA GGT GCT CGT CTT TCT GG-3’ 

sq-NFH2 rv  5’-GAA TCC ATG GCA GCA GAT TT-3’ 

sq-NtActin fw  5’-ACA ACG AGC TTC GTG TTG C-3’ 

sq-NtActin rv  5’-CAG TGT GAC TCA CAC CAT CAC-3’ 

sq-NtGAPD fw  5’-CTG GAG AAA GAA GCT ACC TAC GAT GAA A-3’ 

sq-NtGAPD rv  5’-CAG ACT CCT CAC AGC AGC ACC ACT A-3’ 

 

 

 

 

 

 



Appendix 

 

89 
 

7.4 PCR protocols 

7.4.1 Gateway®-Cloning 

Timetable for preparative PCRs: 

Temperature  Duration 

98°C 240 sec 

98°C 8 sec 

35 cycles 55-58°C 20 sec 

72°C 30 sec / kb  

72°C 300 sec 

4°C  

 

Annealing temperatures were calculated using the web-based Primer3 software 

(http://frodo.wi.mit.edu/primer3/) ignoring all nucleotides which belonged to the Gateway®-

attB-flanks. 

 

PCR preparation (20 µl): 

Component Amount 

Template (cDNA, plasmids; 2-500 ng/µl) 1 µl 

5x HF Phusion buffer (NEB, Frankfurt, Germany) 4 µl 

10 mM each dNTP Mix (NEB, Frankfurt, Germany) 0.4 µl 

10 μM primer forward 1 µl 

10 μM primer reverse 1 µl 

2 U/μl Phusion Polymerase (NEB, Frankfurt, Germany) 0.2 µl 

dd H2O 12.4 µl 
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7.4.2 Semi-quantitative expression analysis 

Annealing temperatures were calculated using the web-based Primer3 software 

(http://frodo.wi.mit.edu/primer3/). Number of cycles was chosen such that the amplification of 

templates for all primers was in an exponential range, and the products were clearly visible 

on 2 % agarose gels. As a representative image of the saturation test the documented gel of 

both Nicotiana tabacum villins was chosen. 

Timetable for analytical PCRs: 

Temperature  Duration 

94°C 240 sec 

94°C 30 sec 

30 cycles 60°C 30 sec 

72°C 45 sec 

72°C 300 sec 

4°C  

 

PCR preparation (20 µl): 

Component Amount 

Template (cDNA; 50 ng/µl) 2 µl 

10x ThermoPol buffer (NEB, Frankfurt, Germany) 2 µl 

10 mM each dNTP Mix (NEB, Frankfurt, Germany) 0.4 µl 

10 μM primer forward 1 µl 

10 μM primer reverse 1 µl 

5 U/μl Taq Polymerase (NEB, Frankfurt, Germany) 0.2 µl 

dd H2O 13.4 µl 
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Test for PCR saturation: 

 

 

 

 

7.5 Gateway® recombination reactions technology 

The Gateway® technology (Invitrogen Corporation, Paisley, UK) uses the bacteriophage site-

specific lambda recombination system to facilitate transfer of heterologous DNA sequences 

between vectors (Hartley et al., 2000). The components of the lambda recombination sites 

(att sites) are modified to improve the specificity and efficiency of the system (Bushman et 

al., 1985). 

Two recombination reactions constitute the basis of this technology: 

1.  BP reaction: Facilitates recombination of an attB substrate (attB-PCR 

product) with an attP substrate (called “donor vector”) to create an attL-

containing entry clone. This reaction is catalysed by BP Clonase™ II enzyme 

mix (Invitrogen). 

2.  LR reaction: Facilitates recombination of an attL substrate (called “entry 

clone”) with an attR substrate (called “destination vector”) to create an attB-

containing expression clone. This reaction is catalysed by LR Clonase™ II 

enzyme mix (Invitrogen). 

The presence of the ccdB gene within this system allows negative selection of the donor and 

destination vectors in E. coli following recombination and transformation. The CcdB protein 

interferes with E. coli DNA gyrase (Bernard and Couturier, 1992), thereby inhibiting growth of 

most E. coli strains. When recombination occurs (i.e. between an attB-PCR product and a 

donor vector or between an entry clone and a destination vector), the ccdB gene is replaced 

by the gene of interest. Cells that take up unreacted vectors carrying the ccdB gene or by-

product molecules retaining the ccdB gene will fail to grow. This allows high-efficiency 

recovery of the desired clones. For more information concerning the Gateway® technology, 

refer to the manual “Gateway® Technology with Clonase™ II” (Invitrogen; 

http://www.invitrogen.com). This summary of the Gateway® technology was taken from the 

doctoral thesis of Dr. Jan Maisch (Botanical Institute I, KIT, Karlsruhe; Maisch, 2007). 
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In this work chemi-competent E.coli (strain DH5α, Invitrogen) were transformed by heat 

shock (42°C, 90 sec) according to the manufacturer’s protocol to amplify the gene of interest 

carrying vectors after BP (selection by 50 mg/L zeocin) and LR reaction (selection by 75 

mg/L spectinomycin) on LB agar plates (1 % [w/v] tryptone, 0.5 % [w/v] NaCl, 0.5 % [w/v] 

yeast extract, 2 % [w/v] agar). 

7.6 Gateway® vectors 

7.6.1 Overview 

The following codes are used for naming the different elements of the constructs: 

K: kanamycin resistance   H: hygromycin resistance 

7: t35S terminator 

WG: attR2, ccdB, attR1 orientation  GW: attR1, ccdB, attR2 orientation 

B: Binary vector 

F: GFP 

2: p35S promoter 

 

pDONR/Zeo Gateway®-adapted vector designed to generate attL-flanked entry 

clones containing gene of interest; 4291 bp; selection in E. coli: zeocin. 

(Invitrogen Corporation, Paisley, UK) 

Used for: pDONOR-NtADF1; pDONR-NtADF2; pDONOR-NtVLN1; 

pDONOR-NtVLN2; pDONOR-NtWLIM2 

pK7WGF2.0 Gateway®-adapted binary vector designed to generate attB-flanked 

expression clones containing gene of interest; 11876 bp; selection in E. 

coli: spectinomycin; selection in plants: kanamycin; GFP is fused to the 

N-terminus of the protein of interest. Karimi et al., 2002. 

Used for: pK7WGF2-NtADF1; pK7WGF2-NtADF2; pK7WGF2-

NtVLN1; pK7WGF2-NtVLN2 
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pK7FWG2.0 Gateway®-adapted binary vector designed to generate attB-flanked 

expression clones containing gene of interest; 11880 bp; selection in E. 

coli: spectinomycin; selection in plants: kanamycin; GFP is fused to the 

C-terminus of the protein of interest. Karimi et al., 2002. 

 Used for: pK7FWG2-NtWLIM2 

pH7WG2.0 Gateway®-adapted binary vector designed to generate attB-flanked 

expression clones containing gene of interest; 11880 bp; selection in E. 

coli: spectinomycin; selection in plants: hygromycin; no FP. Karimi et 

al., 2002. 

 Used for: pH7WG2-Lifeact-psRFP; pH7WG2-Lifeact-mIRIS 

pGWB2.0 Gateway®-adapted binary vector designed to generate attB-flanked 

expression clones containing gene of interest; 17236 bp; selection in E. 

coli: chloramphenicol; selection in plants: hygromycin; no FP. 

Nakagawa et al., 2007; kind gift of Prof. Takashi Ueda (Laboratory of 

Developmental Cell Biology, University of Tokyo, Japan). 

 Used for: pGWB2-Lifeact-VENUS 

pOpOff2(kan) Dexamethasone inducible Gateway®-adapted binary vector designed 

to generate hairpin structures for gene silencing in plants; 23017 bp; 

selection in E. coli: spectinomycin; selection in plants: kanamycin; 

coding for β-glucuronidase gene as expression marker. Wielopolska et 

al., 2005. 

 Used for: pOpOff2(kan)-NtADF2 RNAi 
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7.6.2 Vector maps 

The following maps represent all vectors of expression clones produced in this work using 

the Gateway® Cloning system. Further sequence information and a digital version as 

VectorNTI format can be found on the attached DVD. 
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7.7 Preparation of DNA-coated gold particles for biolistic 

transformation 

120 mg of gold particles (1.5–3.0 μm; Sigma-Aldrich) were suspended in 1 mL 50 % (v/v) 

sterile glycerol by mixing on a platform vortexer (Bender & Hobein, Zurich, Switzerland). 

Continuous agitation of the suspended gold particles was needed for uniform DNA 

precipitation onto gold particles maximizing uniform sampling. 

For each sample, 12.5 μL of gold suspension was removed to a 1.5 mL reaction tube. 
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While mixing vigorously, the following components were added successively: 1 μg of DNA, 

12.5 μL of 2.5 M sterile CaCl2, and 5 μL of 0.1 M sterile spermidine (Roth, Karlsruhe, 

Germany). 

Following supplementary mixing for 3 minutes, the DNA-coated gold particles were spun 

down briefly, and the supernatant was discarded. Subsequently, the gold particles were 

washed with 125 μL of absolute ethanol and resuspended in 40 μL of absolute ethanol. 

DNA-coated gold particles were loaded onto the macrocarrier (BIO-RAD, Hercules, CA, 

USA) in 10 μL steps. Particle bombardment was performed immediately after total 

evaporation of the ethanol. 

This protocol was taken and modified from the doctoral thesis of Dr. Jan Maisch (Botanical 

Institute I, KIT, Karlsruhe; Maisch, 2007). 

7.8 BY-2 cell line cultivation conditions 

BY-2 cell line sub. volume antibiotic conc. source 

non-transformed WT 1 mL --- Nagata et al., 1992 

GFP-NtADF1 ox 1.5 mL 25 mg/L Kanamycin this work 

GFP-NtADF2 ox 1.5 mL 25 mg/L Kanamycin this work 

GFP-NtVLN1 ox 1.5 mL 25 mg/L Kanamycin this work 

WLIM1-GFP ox 1.5 mL 30 mg/L Hygromycin Thomas et al., 2006 

WLIM2-GFP ox 1.5 mL 25 mg/L Kanamycin this work 

mTalin-YFP ox 3.0 mL 25 mg/L Kanamycin Maisch and Nick, 2007 

Lifeact-psRFP ox 1.5 mL 30 mg/L Hygromycin this work 

Lifeact-mIRIS ox 1.5 mL 30 mg/L Hygromycin this work 

Lifeact-VENUS ox 1.5 mL 30 mg/L Hygromycin this work 

NtADF2 RNAi 1.5 mL 50 mg/L Kanamycin this work 
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7.9 PALM images 

Single section images of a Lifeact-psRFP ox BY-2 cell nucleus total projection (Figure 3.20, 

p. 50, Bar: 5 µm). 

 

 

 

 

 

 

 

 

 

 

 

 

Single section images of a Lifeact-psRFP ox BY-2 cell nucleus total projection (Figure 3.21, 

p. 51, Bar: 5 µm). 
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