
Fr
an

z
B

ro
sc

h

9

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner

With the increasing importance of reliability in business and industrial IT systems,
new techniques for architecture-based software reliability prediction are becom-
ing an integral part of the development process. These techniques assist system
architects in evaluating the reliability impacts of their design decisions. However,
existing approaches are limited in their applicability as they either neglect rel-
evant impact factors on reliability or hard-code them into formal models.

This dissertation thesis introduces a novel reliability modelling and prediction
technique that explicitly considers the software architecture with its component
structure, the control and data flow of the system’s services and the included
recovery mechanisms, the deployment of software components to a distributed
hardware resource environment and the system’s usage profile. A design-ori-
ented modelling notation is offered that builds upon the Palladio Component
Model. Design models are automatically transformed into Markov chains and
analysed to obtain the prediction results. The thesis includes two case studies
that demonstrate the applicability of the technique and validate the obtained
prediction results against a reliability simulation.

Integrated Software
Architecture-Based Reliability
Prediction for IT Systems

Franz Brosch

ISSN 1867-0067
ISBN 978-3-86644-859-9 9 783866 448599

ISBN 978-3-86644-859-9

The Karlsruhe Series on
Software Design

and Quality

9

In
te

g
ra

te
d

 S
o

ft
w

ar
e

A
rc

h
it

ec
tu

re
-B

as
ed

R

el
ia

b
ili

ty
 P

re
d

ic
ti

o
n

 f
o

r
IT

 S
ys

te
m

s

859_cover_Brosch_SoftwareDesign9_V4.indd 1 09.07.2012 08:53:10

Franz Brosch

Integrated Software Architecture-Based
Reliability Prediction for IT Systems

The Karlsruhe Series on Software Design and Quality

Volume 9

Chair Software Design and Quality
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

Integrated Software Architecture-Based
Reliability Prediction for IT Systems

by
Franz Brosch

Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Informatik,
Tag der mündlichen Prüfung: 29.06.2012
Erster Gutachter: Prof. Dr. Ralf Reussner
Zweiter Gutachter: Prof. Dr. Alexander Pretschner

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und
nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

KIT Scientific Publishing 2012
Print on Demand

ISSN 1867-0067
ISBN 978-3-86644-859-9

Abstract

The ever-increasing demand for IT support within businesses, communi-
ties and everyday life has raised the complexity and distribution of modern
IT systems, as well as the amount of included software, to levels never
known before. In this situation, assuring the reliability of an IT system
– namely, its ability to deliver service as expected to its users – consti-
tutes a major challenge. The reliability of an IT system during its run-time
depends on its software implementation, its usage and its underlying hard-
ware infrastructure.

Approaches to architecture-based software reliability prediction (ASRP)
constitute a means to anticipate the reliability of an IT system before its
operation. They build upon an architectural model capturing the software
components together with their interactions and reliability characteristics.
Evaluating the model – through analytical solving or through simulations
– yields the expected operational reliability of the system under study. Be-
ing model-based, such approaches allow for early reliability assessments
already during design stages, guiding design decisions and helping to iden-
tify critical parts of the architecture with respect to reliability.

However, existing reliability prediction approaches are limited in their
applicability because they implicitly “hard-code” or neglect several factors
which influence a system’s reliability: (i) the reliability impact of imper-
fect hardware resources, (ii) the system’s ability to recover from local fail-
ures and to prevent them from reaching the system’s boundaries, and (iii)
the system’s usage profile and its influence on the control and data flow
throughout the architecture. Neglecting these factors leads to inaccurate
prediction results; implicit “hard-coding” of information strongly reduces

i

the reusability of the models and the support they can give in evaluating
different design alternatives.

This thesis proposes PCM-REL, a novel approach to integrated software

architecture-based reliability prediction for IT systems, which explicitly
considers the reliability-relevant factors discussed above, offering

• a combined consideration of software and hardware reliability im-
pacts by modelling both software components and hardware resour-
ces with their specific failure potentials, and by providing an inte-
grated analysis method taking into account these potentials;

• a consideration of fault tolerance capabilities by modelling how ser-
vice execution can recover from local failure occurrences, carry out
failure-handling behaviours and avoid the occurrence of system fail-
ures;

• explicit modelling of a system’s usage profile and the influence of
input parameters on the service execution through the concept of pa-
rameter dependencies.

The approach is realized based on the Palladio Component Model (PCM),
which offers a design-oriented modelling language for component-based
software architectures. While the PCM traditionally allows for perfor-
mance predictions based on the created architectural specifications, the the-
sis adds capabilities for reliability modelling and prediction by extending
the PCM modelling language with reliability-specific constructs, and by
providing an automated analysis method – based on a discrete-time Markov

chain (DTMC) model – for the reliability evaluation of architectural spec-
ifications created in terms of PCM-REL instances. Compared to related
ASRP approaches, PCM-REL offers a significantly improved decision sup-
port for software architects during system design, improved reusability of
the created model artefacts and support for a distributed component-based
development process.

ii

The thesis includes two major case studies to validate the PCM-REL ap-
proach, giving evidence of

• the feasibility of the included abstractions of the provided modelling
language;

• the feasibility of deriving input estimates for the required reliability
annotations;

• the validity of the Markov analysis itself;

• the significance and robustness of the obtained prediction results in
the light of uncertain inputs.

The first case study features a prototypical system implementation and
compares prediction results with measurements. The second study relates
to an industrial system and allows for demonstrating the estimation of relia-
bility annotations based on existing information sources. Together, the two
studies provide comprehensive evidence for the validity of PCM-REL.

The approach and its contributions have been described in the Trans-
actions of Software Engineering (TSE) journal [BKBR11] (currently ac-
cepted for publication and available in an online pre-print version) and fur-
ther peer-reviewed publications [BZ09, BKBR10, BBKR11].

iii

Kurzfassung

Der ständig steigende Bedarf an IT-Lösungen in Wirtschaft, Gesellschaft
und Alltag hat die Komplexität und Verteilung moderner IT-Systeme auf
einen nie dagewesenen Grad ansteigen lassen. Angesichts dieser Tatsache
stellt die Zusicherung der Zuverlässigkeit eines IT-Systems – d.h. seiner
Fähigkeit, eine Dienstleistung wie von seinen Benutzern erwartet zu er-
bringen – eine große Herausforderung dar. Die Systemzuverlässigkeit zur
Laufzeit hängt von der Software-Implementierung ab, ebenso wie von der
Systemnutzung und der zugrundeliegenden Hardware-Infrastruktur.

Ansätze zur architekturbasierten Vorhersage der Software-Zuverlässig-
keit stellen eine Möglichkeit dar, die zu erwartende Zuverlässigkeit eines
IT-Systems schon vor seiner Laufzeit abzuschätzen. Sie basieren auf Archi-
tekturmodellen, welche Software-Komponenten, deren Interaktionen und
Zuverlässigkeitsaspekte erfassen. Eine analytische oder simulationsbasierte
Auswertung dieser Modelle liefert die gewünschte Abschätzung. Mit Hil-
fe solcher Methoden ist es möglich, Zuverlässigkeitsbetrachtungen bereits
in frühe Phasen des Systementwurfs miteinzubeziehen, um so Entwurfs-
entscheidungen zu unterstützen und kritische Bereiche der Architektur zu
erkennen.

Allerdings sind bestehende Ansätze für Zuverlässigkeitsvorhersagen in-
sofern eingeschränkt, als sie wesentliche zuverlässigkeitsrelevante Aspekte
einer Systemarchitektur implizit in das Modell “hartkodieren” oder gänz-
lich vernachlässigen. Diese Aspekte beinhalten erstens die Beeinträchti-
gung der Systemzuverlässigkeit durch fehlerhafte Hardware-Ressourcen,
zweitens die Fähigkeit des Systems, intern auftretende Fehler selbständig
zu behandeln und vor seinen Benutzern zu verbergen, und drittens das Be-

v

nutzungsprofil des Systems und seinen Einfluss auf den Kontroll- und Da-
tenfluss innerhalb der Architektur. Eine Vernachlässigung dieser Aspekte
führt zur Verfälschung der Vorhersageergebnisse; eine implizite Abbildung
der Informationen im Modell verringert dessen Wiederverwendbarkeit er-
heblich, so dass die Auswertung verschiedener Entwurfsalternativen nur
sehr eingeschränkt unterstützt wird.

Die vorliegende Arbeit führt mit PCM-REL einen neuartigen Ansatz zur
integrierten Zuverlässigkeitsvorhersage für IT-Systeme basierend auf ihrer
Software-Architektur ein, der die oben diskutierten zuverlässigkeitsrele-
vanten Aspekte wie folgt berücksichtigt:

• durch eine kombinierte Betrachtung von Zuverlässigkeitsbeeinträch-
tigungen durch Software und Hardware, bei der sowohl Software-
Komponenten als auch Hardware-Ressourcen mit ihren spezifischen
Fehlerpotentialen modelliert und durch eine integrierte Analyseme-
thode bei der Vorhersage berücksichtigt werden,

• durch die Betrachtung von Fehlertoleranzmechanismen, bei der die
Behandlung lokal auftretender Dienstausführungsfehler durch aus-
gleichende Maßnahmen zur Verhinderung von Systemfehlern in die
Modellierung mit aufgenommen wird,

• durch eine explizite Modellierung des Benutzungsprofils des Sys-
tems sowie der Auswirkung von Eingabeparametern auf die Dienst-
ausführung, ausgedrückt durch das Konzept der parametrischen Ab-
hängigkeiten.

Der Ansatz basiert auf dem Palladio-Komponentenmodell (PCM), das eine
entwurfsorientierte Modellierungssprache für komponentenbasierte Soft-
ware-Architekturen bereitstellt. Während der PCM-Ansatz traditionell die
Systemmodellierung und Modellauswertung hinsichtlich der Systemper-
formanz ermöglicht, fügt die vorliegende Arbeit die Fähigkeit der zuver-
lässigkeitsorientierten Modellierung und Zuverlässigkeitsvorhersage hin-
zu. Dazu erweitert die Arbeit die bestehende PCM-Modellierungssprache

vi

um zuverlässigkeitsspezifische Konstrukte und stellt – basierend auf einem
diskreten Markovkettenmodell – eine automatisierte Analysemethode zur
Verfügung, welche als PCM-REL-Modellinstanzen bereitgestellte Archi-
tekturspezifikationen hinsichtlich ihrer Zuverlässigkeit auswertet. Im Ver-
gleich zu verwandten Arbeiten bietet PCM-REL eine wesentlich verbes-
serte Entscheidungsunterstützung für Software-Architekten beim System-
entwurf, eine erhöhte Wiederverwendbarkeit der entstehenden Modellarte-
fakte, sowie die Unterstützung eines verteilten komponentenbasierten Ent-
wicklungsprozesses.

Die vorliegende Arbeit beinhaltet zwei umfassende Fallstudien zur Vali-
dierung von PCM-REL. Die Fallstudien geben Anhalt dafür,

• dass die in der bereitgestellten Modellierungssprache beinhalteten
Abstraktionen für die Zuverlässigkeitsvorhersage nicht ungeeignet
sind,

• dass die als Eingaben für das Verfahren benötigten Zuverlässigkeits-
abschätzungen machbar sind,

• dass die Analysemethode selbst valide ist, und

• dass die Methode signifikante und im Hinblick auf unsichere Einga-
ben ausreichend robuste Vorhersageergebnisse erzielt.

Die erste Fallstudie stellt eine prototypische Systemimplementierung zur
Verfügung und vergleicht die erhaltenen Vorhersageergebnisse mit Mess-
werten. Die zweite Studie behandelt ein industrielles System und demons-
triert die für die Eingaben benötigten Zuverlässigkeitsabschätzungen basie-
rend auf realen Informationsquellen. Insgesamt geben die beiden Fallstudi-
en umfassenden Anhalt für die Validität von PCM-REL.

Der Ansatz und seine Beiträge wurden in einem Artikel [BKBR11] im
Journal “Transactions of Software Engineering” (TSE) und in weiteren von
Experten begutachteten Veröffentlichungen beschrieben [BZ09, BKBR10,

vii

BBKR11]. Der TSE-Artikel ist gegenwärtig für die Veröffentlichung ak-
zeptiert und in einer vorläufigen Online-Version verfügbar.

viii

Acknowledgements

I am deeply thankful for so many people who have guided, supported and
encouraged me during the last four and a half years. The help of these
people was very fundamental and important to me throughout my disser-
tation project.

First, I want to thank Heidi, my wife, for her great love and support.
Heidi always encouraged me to go on, kept me grounded and endured even
my most stressful periods of work with admirable patience. A very big
thank you also goes to my parents Christine and Stefan Brosch, who have
given me their full and unconditional love ever since my birth, and who
kept encouraging me throughout the dissertation.

In many respects, my supervisor Ralf Reussner paved the way for my
dissertation. Not only did he invite me to join an inspiring team of re-
searchers, but he also taught me the principles and standards of good re-
search. Furthermore, he gave direction to my dissertation with thematic
help and advice. I also thank Alexander Pretschner, who was willing to act
as a second referee for my thesis, and who provided me with highly insight-
ful and valuable feedback towards the final dissertation stages. A further
thank you goes to Steffen Becker, who – at the early dissertation stages
– gave me additional supervision and guided my introduction to founda-
tional topics such as component-based software engineering, model-driven
software development and the Palladio Component Model.

Throughout the whole dissertation process, my most faithful and inspir-
ing discussion partners and publication co-authors were Barbora Bühnová
and Heiko Koziolek. They had a great impact on my work and my thematic
progress, and I very much enjoyed all of our discussions. I am especially

ix

thankful for the regular meetings I had with Barbora during the months of
her stay in Karlsruhe in 2008/2009, which helped me to shape my topic
and its focus.

An important milestone with respect to the credibility of my thesis ap-
proach was the Astaro Security Gateway (ASG) case study. I am deeply
thankful for the efforts of Dietrich Rebmann, who helped me to establish
contact with the Sophos (formerly Astaro) company, and who greatly sup-
ported me throughout the study. I also thank Micha Lenk from Sophos for
his additional support, as well as Marcel Gehrlein for giving me permission
to conduct the study and to include its description in my thesis.

Furthermore, I thank the students which I had the pleasure to supervise.
They supported me in various ways. In particular, Igor Lankin developed
concepts for predicting the reliability of fault-tolerant software systems in
his diploma thesis, Daniel Patejdl contributed to the realization of my the-
sis approach in terms of an Eclipse-based implementation, and Desislava
Demirova helped me to investigate the Markov theory foundations required
for the dissertation.

A big thank you also goes to Lars Grunske, who made it possible for
me to join the Centre for Complex Software Systems and Services at Swin-
burne University of Technology (Melbourne, Australia) as a visiting scien-
tist for seven weeks in 2010. This stay was a very special experience for me,
and I greatly enjoyed the discussions with other Ph.D. students whose top-
ics were close to mine, especially Indika Meedeniya and Aldeida Aleti.

I also want to thank my current and former colleagues at the software en-
gineering department of the Research Center for Information Technology
(FZI) and the Chair for Software Design and Quality at the Karlsruhe Insti-
tute of Technology (KIT). It would have been very hard to keep dissertation
progress going without the very motivating and inspiring atmosphere that
these great colleagues provided. In particular, I thank Klaus Krogmann and
Samuel Kounev for their great encouragement and thematic support dur-

x

ing our discussions, which often enough emerged spontaneously and were
driven by a shared passion for our research topics.

As department heads at FZI, Steffen Becker, Mircea Trifu and Klaus
Krogmann provided me with solid funding and a stable work environment
which constituted a framework for my research. Moreover, several col-
leagues greatly supported me as team members working for industrial and
research projects, ensuring that, even at peak times, I still had freedom to
advance my dissertation. In this regard, I want to thank Christian Bartsch,
Zoya Durdik, Giovanni Falcone, Thomas Goldschmidt, Henning Groenda,
Jens Happe, Benjamin Klatt, Martin Küster, Christof Momm, Christoph
Rathfelder and Mircea Trifu (hoping very much that I did not forget other
names to mention).

Another special thank you goes to Christoph Rathfelder, Barbora Büh-
nová, Heiko Koziolek and Klaas Andries de Graaf for reviewing parts of
my thesis and providing me with very helpful feedback.

Finally, and even though this may seem unusual, my biggest thank you
goes to my Lord Jesus Christ. It is my deepest conviction that He has cre-
ated me and made me all that I am today. It is ultimately through Jesus
that I had all the power and strength that was necessary to accomplish this
dissertation.

xi

Contents

Abstract . i

Kurzfassung . v

Acknowledgements . ix

1 Introduction . 1
1.1 Motivation . 1
1.2 Problem Statement . 4
1.3 Existing Solutions and Thesis Contributions 5
1.4 Realization and Validation 8
1.5 The Audio Hosting Example 9
1.6 Contents and Outline . 11

2 Foundations . 15
2.1 IT Systems and Reliability 15

2.1.1 Basic Concepts . 16
2.1.2 Hardware and Software Reliability Analyses 18

2.2 Hardware Reliability Estimation 22
2.3 Software Reliability Estimation 25

2.3.1 Software Reliability Growth Models 26
2.3.2 Software Defect Prediction Models 29
2.3.3 Further Approaches to Software Reliability Estimation 31

2.4 Markov Chains for Reliability 33
2.5 Architecture-Based Software Reliability Prediction 36
2.6 Fault-Tolerant IT Systems 40

xiii

2.7 The Palladio Component Model 43
2.7.1 PCM Developer Roles 44
2.7.2 Repository Model . 45
2.7.3 System Model . 51
2.7.4 Resource Environment and Allocation Models 53
2.7.5 Usage Model . 55
2.7.6 PCM Variables and Parameter Solving 58

3 PCM-REL Methodology . 61
3.1 Reliability Concepts for Integrated IT Systems 62
3.2 A Reliability-Aware System Engineering Process 67
3.3 Adoption of PCM Methodology by PCM-REL 70
3.4 Degrees of Freedom for Reliability Modelling 72

4 Modelling IT Systems with PCM-REL 75
4.1 Overview . 75
4.2 Failure-on-Demand Types 81
4.3 Software Failure Potentials 84
4.4 Hardware Failure Potentials 88
4.5 Network Failure Potentials 92
4.6 System-External Failure Potentials 94
4.7 Failure Recovery . 97
4.8 Implementation . 106

5 PCM-REL Reliability Evaluation 109
5.1 PCM-REL Evaluation Overview 110

5.1.1 PCM-REL Markov Analysis 111
5.1.2 Markov Chain Structure 115
5.1.3 Markov Transformation Algorithm 117

5.2 Hardware States Evaluation 123
5.2.1 System Hardware States 123
5.2.2 Standard Evaluation 125

xiv

5.2.3 Single-State Evaluation 128
5.2.4 Approximated Evaluation 131

5.3 Compact Behavioural Evaluation 138
5.3.1 Action Sequences . 139
5.3.2 Action Types . 144
5.3.3 Branch Actions . 146
5.3.4 Loop Actions . 148
5.3.5 Fork Actions . 151
5.3.6 Pointer Actions . 154
5.3.7 Computation Actions 167
5.3.8 Recovery Actions . 171

5.4 Complexity . 178
5.4.1 Execution Time . 179
5.4.2 Memory Consumption 184

5.5 Implementation . 186

6 PCM-REL Case Studies and Validation 189
6.1 Validating IT System Reliability 189
6.2 Validation Goals . 193

6.2.1 Feasibility of Modelling Abstractions 193
6.2.2 Feasibility of Estimation of Reliability Annotations . . 194
6.2.3 Validity of Markov Analysis 195
6.2.4 Significance and Robustness of Prediction Results . . . 196

6.3 PCM-REL Case Study Features 196
6.4 Audio Hosting Case Study 197

6.4.1 Design Alternatives 198
6.4.2 Audio Hosting Reliability Evaluation 202
6.4.3 Comparison with Simulation 209
6.4.4 Comparison with Measurements 217
6.4.5 Case Study Assessment 221

xv

6.5 Astaro ASG Case Study . 222
6.5.1 Case Study Outline 223
6.5.2 Case Study Scenario and Questions 225
6.5.3 ASG Architectural Model 229

6.5.3.1 Model Overview 229
6.5.3.2 Behavioural Specifications 236
6.5.3.3 Model Parametrization 245

6.5.4 Estimation of Reliability Annotations 248
6.5.4.1 Software Failure-on-Demand Probabilities . . 249
6.5.4.2 Further Reliability Annotations 254

6.5.5 ASG Reliability Evaluation 255
6.5.6 Case Study Assessment 261

6.6 Further PCM-REL Case Studies 263

7 Related Work . 265
7.1 Combined Consideration of Software and Hardware Failure

Potentials . 265
7.1.1 MTTF/MTTR Model for Software Components 266
7.1.2 Usage Period Model for Hardware Resources 268
7.1.3 Alternative Modelling Approaches 269
7.1.4 Combined Software/Hardware Consideration in General 271

7.2 Consideration of Fault Tolerance Capabilities 273
7.2.1 Availability Evaluation of Fault-Tolerant System

Architectures . 274
7.2.2 Non-Architectural Fault Tolerance Modelling and

Prediction . 275
7.2.3 Architectural Reliability Prediction Considering Fault

Tolerance . 277
7.2.4 Further Fault Tolerance Considerations 280

7.3 Usage Profiles and Input Parameter Propagation 281
7.3.1 Usage-Agnostic Prediction Approaches 282

xvi

7.3.2 Implicit Consideration of Usage Profiles 282
7.3.3 Scenario-Based Software Reliability Prediction 284
7.3.4 Parametrized Reliability Prediction Approaches 285
7.3.5 Further Usage Profile Considerations 286

7.4 PCM-REL and Architecture-Based Software Reliability
Prediction . 287

8 Summary and Outlook . 293
8.1 Summary of Contents . 293
8.2 Research Overview . 297
8.3 Future Work Potentials . 299
8.4 Conclusions . 303

xvii

1 Introduction

This thesis proposes PCM-REL, an approach to integrated software archi-
tecture-based reliability prediction for IT systems, which explicitly consid-
ers software and hardware failure potentials of a system under study, in-
cluded fault tolerance capabilities, as well as the system’s usage profile and
the propagation of input parameters. This chapter motivates and introduces
the approach and its contributions from a high-level perspective. The chap-
ter starts by motivating the need for architecture-based software reliability
prediction (Section 1.1), formulates a problem statement (Section 1.2), dis-
cusses existing solutions, their shortcomings and the corresponding thesis
contributions (Section 1.3), briefly describes the realization and validation
of the proposed approach (Section 1.4), introduces an illustrating example
(Section 1.5) and gives an outline of the remaining chapters (Section 1.6).

1.1 Motivation

IT systems are steadily growing in size and complexity, in response to the
expanding demands of businesses and communities for IT support. The
systems possess potentially complex architectures of interconnected and
hierarchically composed software components, and they are often based on
IT infrastructures with physically distributed computing nodes. They re-
quire the interoperation of their constituent software, hardware and network
parts, and they provide a potentially heterogeneous set of software services
to their users. The development and engineering of such systems presents
significant challenges, which are tackled by the software engineering disci-
pline through providing corresponding processes, methods and tools.

1

1 Introduction

One of the most fundamental characteristics of an IT system beyond its
pure functionality is its reliability – namely, its ability to deliver its in-
tended services to its users. Formally, the IEEE Standard Glossary of Soft-
ware Engineering Terminology [IEE90] defines reliability as “the ability of
a system or component to perform its required functions under stated con-
ditions for a specified period of time”. A system service should meet the
expectations of its users, conducting all required processing steps, achiev-
ing valid computational results, delivering all expected outputs, and not
producing any unwanted side effects. If a system deviates from its intended
service, it exhibits a failure. As a quality attribute, reliability is especially
important if a system’s provided services are mission-critical, with failure
occurrences implying high reputational or financial losses, environmental
damage, or even loss of life. The critical role of reliability is demonstrated
by numerous historical and current IT project failures, which involve re-
liability problems of the developed IT systems. One such example is the
case of the Sainsbury’s food retailer attempting to introduce an automated
supply chain management system in 2004 to manage its stocks [Mes04].
As the system failed to properly trigger the flow of merchandise from the
company’s depots and warehouses to its stores, Sainsbury’s was forced to
hire approximately 3 000 additional clerks to stock its shelves manually.
The overall loss resulting from the failed project was estimated to more
than USD 500 million. As another example, a defective computer-assisted
dispatch system introduced at the London Ambulance Service in 1992 was
held responsible for several losses of life due to significantly delayed as-
signing of ambulances [Fin93].

Out of the various efforts to attain and assure IT system reliability, this
thesis focuses on the problem field of architecture-based software reliabil-

ity prediction (ASRP) [Gok07, GPT01, IN08]. This problem field is mo-
tivated by the observation that the achievable reliability levels of many IT
systems are essentially determined by the fundamental architectural deci-
sions made during the design stages of those systems. This is especially

2

1.1 Motivation

true for systems with complex software architectures, such as business in-
formation systems or industrial control systems. As a consequence, sys-
tem design activities, which precede the actual development for initial sys-
tem creation as well as system evolution, should be enriched by systematic
consideration of reliability aspects. Approaches in the field of ASRP sup-
port software architects, who face principal questions such as the following
ones: Which design alternative (out of a given set of possible alternatives)

promises the highest system reliability? What are the expected reliability

impacts of individual failure potentials contained in the system’s architec-

ture? Which architecture parts or service execution steps are most criti-

cal (namely, most likely to cause failures)? Does a planned architectural

change have an effect on the expected reliability of the system? If so, is

the effect positive or negative? Out of a given set of possible architectural

changes, which one promises the greatest reliability improvement? Such
questions are answered by ASRP approaches through evaluating an archi-
tectural specification of a system under study in terms of a system model,
enriched by probabilistic annotations representing the system’s failure po-
tentials. Based on these inputs, the approaches quantitatively predict the
reliability of the final system. Multiple design alternatives can be evaluated
and ranked according to their reliability by conducting individual predic-
tion runs for all alternatives. Being based on a system model rather than
the system itself, the approaches can already be applied at early design
stages, when the system is not yet available and ready for observation of
its actual reliability.

While ASRP approaches do constitute a promising means for a more
systematic consideration of reliability aspects throughout system develop-
ment processes, they also face significant and partially unsolved challenges
with respect to their practical applicability. To this end, modelling lan-
guages must be provided that adequately capture the different reliability-
influencing factors of a system and its environment, such that relevant de-
sign decisions can be reflected in the system models, and input estimates

3

1 Introduction

for the required probabilistic model annotations can be feasibly determined.
Moreover, the reliability evaluation of the models must take into account
the individual specified failure potentials, reflecting their specific natures,
their interplay and their influence on the system’s reliability as perceived
by its users. This thesis focuses on a specific set of factors which are insuf-
ficiently captured by existing ASRP approaches, namely hardware-related
failure potentials, fault tolerance capabilities of a system under study, as
well as the system’s usage profile. The following sections introduce the
tackled scientific problem, the state-of-the-art of existing ASRP approaches
and the contributions of the thesis in greater detail.

1.2 Problem Statement

Motivated by the discussion of the previous section, the central prob-
lem tackled by this thesis is to predict the reliability of IT systems with
component-based software architectures, taking into account relevant relia-
bility-influencing factors in a comprehensive way, and supporting the cor-
responding design decisions. To solve this problem, an approach shall be
developed that provides an architecture modelling language and a method
for analysing a system’s architectural specification to obtain the predic-
tion results.

The goal of comprehensive reliability modelling and prediction includes
the challenge of adequately representing the individual failure potentials of
a system under study, as well as evaluating their quantitative impacts on
the system’s reliability. The failure potentials may relate to each of the
software, hardware or network dimensions. Software implementations can
be flawed due to programming errors, specification errors or natural limi-
tations of the implemented computational procedures. Hardware resources
exhibit limited availability due to physical degradations and wear-out. Net-
work connections can be affected by various phenomena such as commu-
nication overload, transmission protocol errors, physical interference of

4

1.3 Existing Solutions and Thesis Contributions

transmission lines or unavailability of transmission devices. Moreover, fail-
ure potentials can be introduced in a system by utilizing imperfect system-
external services. However, existing failure potentials do not necessarily
lead to failures perceived by the system’s users. A flawed implementation
part may never be visited by the system’s service execution, an unavail-
able hardware resource may not be required, a failing network link may not
be utilized, and an imperfect system-external service may not be invoked.
Moreover, the system may include capabilities to tolerate certain failure
potentials and to recover from local failure occurrences during the service
execution, preventing them from reaching the system’s boundaries.

The reliability impacts of existing failure potentials significantly depend
on the overall software architecture, including the system’s internal struc-
ture of interconnected software components with their interfaces and be-
haviour, as well as the allocation of software components to a hardware
resource environment, the utilization of system-external services and the
system’s usage profile. These factors determine the potential points of fail-
ure within the architectural control flow, as well as the probability that they
are actually visited by the service execution upon a certain system service
invocation. The additional consideration of the system’s included fault tol-
erance capabilities allows for determining points of recovery in the control
flow including their reliability-improving effects. The envisioned reliability
modelling language shall capture all these aspects, and the analysis method
shall take them into account in order to achieve an integrated reliability
evaluation of the system under study.

1.3 Existing Solutions and Thesis Contributions

As discussed earlier, the thesis is situated in the problem field of architec-
ture-based software reliability prediction (ASRP). Approaches in this field
constitute the closest related work with respect to the targeted problem of
comprehensive reliability modelling and prediction. They build upon a

5

1 Introduction

model of a software architecture, which – in its prevalent form – repre-
sents the involved software components and the transfer of control between
them during the service execution; existing failure potentials are expressed
through independent failure probabilities associated with individual visits
to components. Based on such a model, the approaches predict the reliabil-
ity of the software architecture as the probability that the service execution
is successfully completed, without any failure occurrence triggered by a
visited component.

When comparing the state-of-the-art in the ASRP field with the problem
statement given earlier, several limitations of existing ASRP approaches
become apparent, which significantly limit their applicability to software
development processes in practice. By overcoming these limitations, this
thesis achieves its main scientific contributions:

• Combined consideration of software and hardware failure potentials:

Most ASRP approaches focus purely on software failure potentials,
thereby neglecting the reliability impacts of imperfect hardware re-
sources. As a consequence, predictions tend to be over-optimistic,
and the introduced inaccuracies may lead to wrong design decisions,
if such decisions relate to the overall architecture of an IT system
rather than its software parts only. While a few ASRP approaches
do consider hardware failure potentials, they do not provide an inte-
grated analysis combining both dimensions [ST07a, ST06], or they
have a less differentiated view on the hardware layer [Gra05]. In
contrast, the thesis offers a combined consideration of software and
hardware failure potentials, taking into account the specific nature
of the failure potentials of both dimensions, and deriving an overall
system reliability value as the result of an integrated analysis method.

• Consideration of fault tolerance capabilities: Typically, ASRP ap-
proaches assume that each local failure occurrence during service
execution inevitably leads to a system failure perceived by the users,

6

1.3 Existing Solutions and Thesis Contributions

even though many systems exhibit fault tolerance (FT) capabilities
allowing for autonomous failure recovery. This assumption either
leads to over-pessimistic prediction results, or it forces modellers
to implicitly encode FT capabilities into correspondingly decreased
software failure probabilities, providing insufficient model expres-
siveness and decision support with respect to FT. Some approaches
take a step forward and offer basic FT considerations limited to spe-
cific FT mechanisms and failure situations (such as [CG07b, GL05,
ST06, WPC06]). This thesis offers a significantly advanced consider-
ation of FT capabilities, explicitly modelling how certain parts of the
service execution can recover from failure occurrences by carrying
out failure-handling behaviours. These capabilities enable software
architects to comprehensively evaluate different FT mechanisms and
their effect on the system’s reliability.

• Explicit consideration of usage profiles and the propagation of input

parameter properties: The success probability of service execution
depends on the execution paths taken through the architecture, which
in turn depend on the sequences of service invocations of a specific
usage scenario, as well as the properties of the input parameters of
each invocation1. Existing ASRP approaches generally provide only
implicit means to account for a system’s usage profile and its in-
fluence on the service execution. Hence, the usage influences are
“hard-coded” in the architectural models, which strongly reduces the
reusability of the corresponding model artefacts. This is also true for
a few advanced approaches (such as [CSC02, GPHG+03, PDAC05,
YCA04]), which explicitly model some usage aspects but hard-code
other aspects. In contrast, this thesis provides an explicit representa-
tion of a system’s usage profile with all its relevant aspects, including

1The term “property” refers to any characteristic of an input parameter that may influence
the process of service execution, such as the value of an integer parameter, the size of a list
of data objects, or the encoding of a string parameter.

7

1 Introduction

the input parameter properties of service invocations and their influ-
ence on the service execution. Thanks to this contribution, software
architects can easily evaluate architectural candidates under varying
usage profiles.

1.4 Realization and Validation

In order to realize the envisioned contributions, this thesis proposes PCM-
REL, an approach to integrated software architecture-based reliability pre-

diction for IT systems, which builds upon the existing Palladio Compo-

nent Model (PCM) [BKR09]. The PCM provides a design-oriented mod-
elling language for component-based software architectures, enforcing a
strict separation of modelling concerns along the lines of multiple envi-
sioned developer roles in a distributed component-based development pro-
cess. The modelling language includes a repository model for the specifi-
cation of software components, a system model capturing component in-
stances and their interconnections, a resource environment model specify-
ing computing nodes, hardware resources and network connections, an al-
location model mapping software components to computing nodes, as well
as a usage model capturing the system’s usage profile. While traditional
applications of the PCM are in the area of software performance predic-
tion, the thesis extends its capabilities to realize comprehensive reliability
modelling and prediction. To this end, the thesis develops a methodolog-
ical basis for integrated IT system reliability prediction, extends the PCM
meta-model by corresponding reliability-specific modelling constructs and
develops an analysis method based on Markov chains [Tri02] for the relia-
bility evaluation of architectural specifications created in terms of PCM-
REL instances.

The thesis includes two major case studies, which serve to give evidence
of the feasibility of PCM-REL’s included modelling abstractions, the fea-
sibility of deriving input estimates for the required reliability annotations,

8

1.5 The Audio Hosting Example

the validity of the Markov analysis itself, as well as the significance and
robustness of the obtained prediction results in the light of uncertain inputs.
The first case study is based on the audio hosting example as introduced
in the following section; it features a prototypical system implementation
and compares prediction results with measurements. The second study re-
lates to an industrial system with SMTP processing functionality and allows
for demonstrating the estimation of reliability annotations based on exist-
ing information sources. Both studies support the claim for the validity
of the approach.

In conclusion, PCM-REL fulfils the criteria defined with respect to the
targeted scientific problem; it overcomes central weaknesses of existing
ASRP approaches, and it constitutes a comprehensive and validated solu-
tion for supporting software architects through integrated reliability predic-
tion for IT systems.

1.5 The Audio Hosting Example

This section introduces an exemplary application scenario for PCM-REL,
which serves to illustrate reliability modelling concepts throughout the the-
sis, and which provides a basis for one of the case studies conducted for
validation purposes. The example focuses on MediaServ, a fictive com-
pany that offers various hosting solutions for media files such as images,
audio or video files. MediaServ pursues two types of business models. As
a software provider, the company offers software components to third party
service providers, which use the components to build and promote their
own hosting services. Additionally, MediaServ acts as a service provider
itself and offers a hosting service to end customers. Figure 1.1 gives an
overview of these scenarios.

MediaServ provides solutions for different kinds of media hosting use
cases, ranging from repositories for online media shops and portals to stor-
age facilities for limited user groups or communities. The required instal-

9

1 Introduction

MediaServ – Media Hosting Solutions

Media Hosting as a Service

Media Hosting Software

Service Provider

Service Customer
Service Customer

Service Customer

Media Hosting
Components

MediaServ
Hosting Service

Third Party
Media Hosting

Services

Figure 1.1: Media Hosting Solutions Offered by MediaServ

lation sizes and expected functionalities vary accordingly. A new devel-
opment project of the company aims at a lightweight audio hosting ser-

vice, providing a centralized storage for audio files, corresponding up- and
download functionality and user management enabling restricted data ac-
cess and individual audio collections per user account. A web-based front
end allows for user registrations and transfers of individual files and file
collections. The service also includes processing capabilities such as the
adaptation of audio compression levels.

The hosting solutions developed by MediaServ exhibit a non-perfect re-
liability. Even though the company applies rigorous quality assurance to
its development processes, a certain probability of failure always remains.
Software bugs in the developed components may lead to failures during
the execution of MediaServ’s and third party hosting services. Addition-
ally, unavailable hardware resources and transmission failures of network
connections may lead to failures on the service level. Depending on the
established service usage contracts, MediaServ may be held responsible
for failures of its hosting service, as well as third party service failures

10

1.6 Contents and Outline

caused by MediaServ’s software components. Hence, reliability is an im-
portant factor for the company to consider. However, the impact of the
different failure potentials on the overall service reliability is not trivial to
determine, as it depends on the underlying software architecture and the
service usage profile.

MediaServ attaches importance to the reliability of its offered hosting
solutions. The company uses PCM-REL for reliability modelling and pre-
diction throughout the system design stages. The application of PCM-REL
allows MediaServ to anticipate the expected reliability of its planned audio
hosting service, to assess the reliability impacts of individual failure poten-
tials contained in the architecture, and to select out of a range of possible
design alternatives the most reliable one.

1.6 Contents and Outline

This section gives a brief overview of the contents and structure of the the-
sis. First, Chapter 2 introduces the existing foundations upon which the
PCM-REL approach builds. The discussion covers basic concepts related
to IT systems and reliability (Section 2.1.1), the overall scientific context of
reliability engineering and software reliability engineering (Section 2.1.2),
as well as the directly related field of architecture-based software reliabil-
ity prediction (ASRP, Section 2.5). Further relevant areas of discussion
include existing methods for specifying and estimating software and hard-
ware failure potentials (Sections 2.2 and 2.3), an overview of the area of
fault tolerance (FT, Section 2.6) and a brief introduction to Markov chains
and their underlying theory (Section 2.4), upon which PCM-REL and many
ASRP approaches build. In addition, Section 2.7 introduces the PCM as a
conceptional and technical foundation for PCM-REL.

Chapter 3 builds upon the foundations given in the previous chapter and
develops an own PCM-REL methodology, based on an integrated perspec-
tive on IT systems (Section 3.1) which combines the perspectives of the

11

1 Introduction

hardware-oriented and software-oriented reliability communities. The dis-
cussion is complemented by putting reliability prediction into the context
of an envisioned reliability-aware system engineering process (Section 3.2).
Further discussions cover the adoption of PCM methodology by PCM-REL
(Section 3.3), as well as the degrees of freedom that PCM-REL offers for
reliability modelling (Section 3.4).

Chapter 4 focuses on the modelling capabilities of PCM-REL, which
extend the PCM meta-model by reliability-specific concepts and modelling
constructs. Section 4.1 introduces the notion of an overall behavioural view,
which combines all specifications of user and system behaviour, and which
serves as a basis for defining the concepts of a successful run through a
usage scenario, the potential points of failure and points of recovery in the
control flow, the occurrence of failures-on-demand and their propagation
throughout the architecture. Section 4.2 further introduces the differenti-
ation of multiple failure-on-demand types, and the following Sections 4.3
to 4.6 deal with the specification of failure potentials related to software,
hardware, network and system-external services. Section 4.7 describes the
specification of capabilities for failure recovery, and Section 4.8 shortly in-
troduces PCM-REL’s tool support for reliability modelling.

Chapter 5 describes the Markov analysis method provided by PCM-REL
for the reliability evaluation of its architectural specifications. In order to
cover all relevant aspects for integrated IT system reliability prediction,
PCM-REL develops novel ways to apply existing Markov theory, and it
includes a space- and time-efficient algorithm for transforming a PCM-REL
instance into a discrete-time Markov chain. Section 5.1 gives an overview
of the involved concepts, before Sections 5.2 and 5.3 go into the details of
evaluating the potential hardware states of a system under study, as well
as its behavioural specifications. Section 5.4 adds a consideration of the
method’s complexity, and Section 5.5 shortly describes the integration of
automated evaluation capabilities in PCM-REL’s tool support.

12

1.6 Contents and Outline

Chapter 6 reports on two major case studies that serve to validate the PCM-
REL approach. Against the background of the overall state-of-the-art in
the validation of software reliability predictions (Section 6.1), the thesis
sets up its specific validation goals (Section 6.2) and develops a plan how
to achieve these goals through the case studies (Section 6.3). Sections 6.4
and 6.5 then describe the studies. The first study is based on the audio host-
ing example. It demonstrates PCM-REL’s reliability evaluation capabilities
and compares the obtained prediction results against a simulation, as well as
measurements conducted on an implemented prototype. The second study
examines the Astaro Security Gateway (ASG) as an industrial IT system.
The study focuses on the SMTP processing functionality of ASG instal-
lations. It derives an architectural specification including input estimates
for reliability annotations from existing information sources and conducts
a reliability evaluation to answer relevant system design questions. Sec-
tion 6.6 briefly reports on further case studies and validation experiments
conducted for PCM-REL.

Chapter 7 provides an in-depth review of the PCM-REL approach com-
pared to its related work. Three Sections 7.1 to 7.3 specifically focus on
the three main contributions of PCM-REL, namely the combined consid-
eration of software and hardware failure potentials, the consideration of an
IT system’s fault tolerance capabilities, as well as the explicit consideration
of usage profiles and the propagation of input parameter properties. The
discussion mainly focuses on, but is not limited to, related approaches in
the field of ASRP. Section 7.4 then summarises the innovative features of
PCM-REL and sets them in relation to existing efforts and results specif-
ically in the ASRP field.

Chapter 8 concludes the thesis with a short summary (Section 8.1), an
overview of completed and ongoing research efforts related to PCM-REL
(Section 8.2), an examination of future work potentials (Section 8.3) and a
final assessment and outlook (Section 8.4).

13

2 Foundations

The PCM-REL approach presented in this thesis builds upon a significant
amount of existing knowledge and methodology in several areas related to
IT systems and their reliability characteristics. As a foundation for the pre-
sentation of the approach itself, this chapter provides overviews and discus-
sions of all relevant aspects which form the context of the approach. More
concretely, Section 2.1 explains basic reliability concepts and presents ex-
isting approaches in the area of hardware and software reliability analyses.
Sections 2.2 and 2.3 then discuss the state of the art in deriving hardware
and software reliability estimates, which are required for the application
of PCM-REL. An introduction to Markov chains as the underlying formal-
ism of PCM-REL is provided by Section 2.4, and the field of architecture-
based software reliability prediction (ASRP), to which PCM-REL belongs,
is introduced by Section 2.5. Section 2.6 gives an overview of fault toler-
ance in IT systems, and Section 2.7 concludes by presenting the Palladio
Component Model (PCM) as the conceptional and technical foundation of
PCM-REL.

2.1 IT Systems and Reliability

This section provides a high-level overview of the scientific context of the
PCM-REL approach. Section 2.1.1 discusses foundational concepts and
terms of IT systems with a special focus on reliability, before Section 2.1.2
introduces the problem field of analysing hardware and software reliability,
to which PCM-REL presents an integrated solution.

15

2 Foundations

2.1.1 Basic Concepts

Although there is ongoing discussion about notions and terms in the field
of IT systems and reliability, Avižienis et al. [ALRL04] have defined a set
of core concepts as part of a widely accepted taxonomy of dependable and

secure computing. The thesis takes part of their definitions as a terminolog-
ical foundation. The authors introduce a system generically as an entity that
interacts with its environment delivering services through well-defined ser-

vice interfaces. The system may be recursively composed of components

which are systems themselves. A service failure is any deviation of the sys-
tem’s behaviour from its intended functionality, as perceived by a system
user1. Errors are defective parts of a system’s state which may lead to ser-
vice failures. Faults, in turn, constitute the adjudged or hypothesized causes
of errors. Reliability is associated with the ability of a system to provide
service free of failures. It is one out of several dependability attributes next
to availability, safety, integrity and maintainability. While the scope of the
taxonomy provided by Avižienis et al. is very broad, the thesis focuses on
IT systems as computer-based systems comprising software components,
hardware resources and network connections. PCM-REL measures sys-
tem reliability as the probability that a system usage scenario comprising a
series of service invocations is completed without any system-level failure-

on-demand (see Section 4.1).
Apart from the basic definitions given above, the taxonomy also includes

a classification of service failures that illustrates the broad range of possi-
ble deviations from the intended system functionality. In case that a ser-
vice includes the provision of data to its users, deviations are classified as
content failures if the provided data is not as intended. Any service that
involves actions within specified time frames may suffer from timing fail-

ures if actions are conducted too early or too late. Halt failures result from
a complete cancellation of service delivery; erratic failures are temporary

1The term failure may be used as an abbreviation for service failure.

16

2.1 IT Systems and Reliability

service disruptions that usually occur at unpredictable points in time. De-
pending on the question if a system can detect a service failure and notifies
its users about it, the failure is either signalled or unsignalled. A further
important criterion is the severity of the consequence of failure for the sys-
tem’s environment ranging from minor failures up to catastrophic failures.
Based on the confined scope of the thesis, PCM-REL allows for specifying
custom types of failures-on-demand (see Section 4.2) induced by software,
hardware or network. The possible range of those types is comparable to
the range of service failure types described here.

The taxonomy further categorizes the efforts to attain dependability and
security into four major groups:

• Fault prevention aims to reduce the number of faults introduced in a
system. The range of measures includes following best practice for
system design and implementation, as well as improving the quality
of the engineering process.

• Fault tolerance summarizes all built-in capabilities of a system to
avoid service failures in the presence of faults. It involves error de-
tection (identifying the presence of errors) and system recovery (re-
moving the errors and possibly identifying the error-causing faults
and reconfiguring the system so that they cannot be activated again).

• Fault removal aims to reduce the number and severity of faults. Dur-
ing system development, a wide range of measures may be taken to
identify and eliminate different kinds of faults, including static soft-
ware analysis, theorem proving, model checking, symbolic software
execution and various software and hardware testing methods. Dur-
ing system operation, faults may be removed through corrective or
preventive maintenance.

• Fault forecasting aims to estimate current or future dependability and
security characteristics of a system under study, such as the number

17

2 Foundations

of existing faults or the expected frequency and severity of service
failures. Available analysis methods can roughly be classified as be-
ing qualitative (e.g. Failure Modes And Effects Analysis), quantita-
tive (e.g. Markov chains, stochastic Petri nets) or mixed (e.g. relia-
bility block diagrams, fault trees).

Each of the four categories has its own importance, even if the focus is
narrowed down to reliability as one specific dependability attribute. PCM-
REL as a reliability prediction approach belongs to the fourth category.
While the first three categories aim to decrease the likelihood of service
failures as far as possible, approaches in the fourth category acknowledge
the fact that in virtually all cases a certain potential of failure remains, and
they make estimates about this potential and its consequences.

2.1.2 Hardware and Software Reliability Analyses

The scientific context of the PCM-REL prediction approach is determined
through the reliability-tailored fraction of the analysis methods introduced
in Section 2.1.1 under the aggregated term fault forecasting. While var-
ious methods have been researched extensively and are widely accepted,
they do not necessarily focus on software or on the software part of IT
systems. Most approaches that have gained a certain level of industrial ac-
ceptance by now are more generally tailored towards industrial products
with mainly electronic components or parts. The approaches focus on the
physical wear-out effects of individual parts and on the various states of
degraded service – referred to as failure modes – of a whole product or
system resulting from the failure of its individual parts. Hence, their rea-
soning is based on a primarily hardware-oriented perspective. Target met-
rics of interest may be qualitative (such as identifying the different failure
modes of a system) or quantitative (such as estimating system failure rates
or frequencies of occurrence of critical failure modes). Available analy-
sis methods include the Failure Modes And Effects Analysis (FMEA) and

18

2.1 IT Systems and Reliability

its extension for consideration of criticality (FMECA), fault trees, relia-
bility block diagrams, Markov-based analyses, reliability growth analy-
ses and others. Each method comes in a number of variations, and often
a combination of multiple analyses is applied to a certain system under
study. A number of standards exist describing how the methods can be
applied [Aut08, Int04, Int06a, Int06b, Int06c, Int06d, Uni06]. Both com-
mercial tool suites and consulting services are offered for conducting the
analyses, and they are used mainly by automotive, aeronautics, telecom-
munications, medical and electronics industries. The term reliability en-

gineering has been coined to denote the systematic consideration of relia-
bility aspects throughout design and production processes (see [Bir10] for
a comprehensive overview).

The ever increasing amount of software in modern products and systems
has led to a situation where the failure potential of many systems is sig-
nificantly influenced by both their software and hardware portions, or even
dominated by software. Determining reliability characteristics of such sys-
tems, which have been termed software-intensive systems [WH07] or soft-

ware systems, presents a severe challenge to reliability engineers [Ham92].
On the one hand, there exist similarities between the logical composition of
software components and the physical composition of electronic parts. In
both cases, individual components or parts may fail, and failures may have
effects on other parts as well as the whole system, leading it into states of
degraded service. On the other hand, while electronic parts can be char-
acterised through basic failure models (see Section 2.2) and failure rates
can be feasibly determined for them, software components are significantly
more difficult to handle. They do not fail due to wear-out but due to the
activation of their comprised software faults. Fault activation patterns may
be complex and unique for each individual component. Moreover, com-
ponent reliability heavily depends on the usage of the components, which
in turn depends on the system’s usage in non-trivial ways. Even minimal
changes in system usage (such as a changed input parameter value of a ser-

19

2 Foundations

vice invocation) may lead to a completely different control and data flow
throughout the system, activating different software faults. Hence, the ag-
gregation of component reliabilities to a system-level reliability metric is
far less intuitive than for hardware-dominated systems.

In spite of these differences, there have been efforts to reuse hardware-
oriented analysis methods for software systems, resulting in software-
specific or combined hardware-software analyses (see [PA02] for an ex-
ample of FMEA tailored towards software and [LN97] for an overview).
However, such efforts remain limited in their applicability to systems with
rather basic functionality and static control and data flow. For more com-
plex software, the abstractions are either too simplistic or the analysis effort
gets out of hand. Even the enumeration of potential failure modes of soft-
ware systems may be hard to achieve in a comprehensive and consistent
manner (for example, Vijayaraghavan identified more than 700 individual
failure modes in e-commerce systems [Vij03]). The only analysis methods
that have undergone a major evolution towards software-specific applica-
tion are reliability growth analyses. In their software-specific form, these
methods focus on the process of testing software systems or components
and removing detected faults. Software Reliability Growth Models (SRGM,
see [Ape05] for an introduction and [SGNG10] for a most recent overview)
map the increasing reliability of the systems or components under test to
parametrized statistical functions, allowing for estimations how the relia-
bility growth will continue during further test activities, and when given
reliability goals are expected to be reached (see Section 2.3.1 for a detailed
discussion). Traditionally, SRGMs have been applied at the system level,
thereby avoiding the consideration of individual software components and
their reliability impact. Authors such as Musa [Mus04] have much focused
on the SRGM approach and have coined the term software reliability engi-

neering to denote the software-specific evolution of reliability engineering
with SRGMs as a central ingredient (also see [Lyu07] for a more recent

20

2.1 IT Systems and Reliability

overview). The IEEE Standard 1633 “Recommended Practice on Software
Reliability” [IEE08] follows this pattern and focuses mainly on SRGMs.

However, the applicability of system-level SRGMs to modern highly dis-
tributed component-based software systems is limited. SRGM analysis re-
sults cannot be reused across a family of similar systems, as the individ-
ual reliability impacts of the changed components are unclear. Moreover,
the application of SRGMs requires the installation and execution of the
complete system under study. Hence, SRGMs cannot easily be used to
make comparisons between several system design alternatives, especially
not at early design stages, when the system is not yet ready for execu-
tion. To this end, another family of analysis methods has emerged within
a field of research called Architecture-Based Software Reliability Predic-

tion (ASRP) throughout the thesis (see Section 2.5 for further details).
Approaches in this field explicitly take into account the architecture of
a software system, namely its internal structure as a composition of soft-
ware components. They model the transfer of control between components
and provide a means to express system-level reliability based on individual
component reliabilities. Still, the approaches face the challenge of esti-
mating the failure rates of the individual components. To this end, they
can employ component-level SRGMs and other estimation methods (see
Section 2.3).

While ASRP approaches constitute a major step forward in analysing
the reliability of component-based software architectures, their practical
applicability is still limited due to missing support for expressing hardware
failure potentials and fault tolerance capabilities, as well as implicit usage
profile encoding in the employed architectural models (see Chapter 7). This
thesis proposes PCM-REL to overcome these weaknesses and to provide a
comprehensive approach to integrated IT system reliability prediction.

21

2 Foundations

2.2 Hardware Reliability Estimation

This section gives an overview of existing failure models and reliability
estimation techniques for hardware resources in IT systems such as hard
disk drives and CPUs, based on results from the reliability engineering do-
main. The discussion provides a foundation for the modelling of hardware
resources and their reliability in PCM-REL (see Section 4.4).

time t

Time To
Repair
(TTR)

NA

OK

t0 = 0

Time To Failure
(TTF)

Time To Failure
(TTF)

t1 t2 t3

Time Between Failures (TBF)

time t

NA

OK

availability
state

t0 = 0

Time To Failure (TTF) =
Time Between Failures (TBF)

t1

availability
state

Repairable Hardware Resources

Non-Repairable Hardware Resources

Figure 2.1: Hardware Resource Failure Model

Typically, a hardware resource is modelled as having two basic service lev-
els or resource availability states which may be termed OK (fully available
– the resource serves all requests) and NA (not available – the resource
does not serve any request). The main reason for a resource becoming un-
available is physical wear-out. Although the model is coarse-grained and
does not account for intermediate service levels, it is a widely established
abstraction chosen for individual resources. As Figure 2.1 shows, non-

repairable resources have a lifetime measured from the start of operation t0

22

2.2 Hardware Reliability Estimation

to the first failure t1. In contrast, repairable resources switch between in-
tervals of uptime (such as [t0, t1] and [t2, t3]) and downtime (such as [t1, t2]).
A switch back from NA to OK is often achieved through replacing a broken
resource with a functionally equivalent one, rather than actually repairing
the existing resource2. The length of a resource uptime interval is referred
to as Time To Failure (TTF); the downtime interval length is called Time

To Repair (TTR). The Time Between Failures (TBF) refers to the time span
between two consecutive switches to NA. The notions of TTF and TBF
may also refer to the lifetimes of non-repairable resources.

Based on the described failure model, the reliability of a hardware re-
source is characterised through statistical measures such as its expected
TTF, TTR and TBF values – also referred to as Mean Time To Failure

(MTTF), Mean Time To Repair (MTTR) and Mean Time Between Fail-

ures (MTBF, which constitutes the inverse of the resource failure rate). For
repairable resources, a Steady-State Availability Av denotes the expected
fraction of uptime measured over the infinite time interval [t0,∞):

MT T F MT T F
Av := = (2.1)

MT T F +MT T R MT BF

To model the availability state progression of resources over time, TTF
and TTR values are typically assumed to follow an exponential distribution
with expected values equal to MTTF and MTTR. The exponential distri-
bution is chosen because it readily lends itself to analytical evaluations,
even though it is not the most accurate abstraction [SG07]. Alternatively,
Weibull, Gamma and Lognormal distributions have been used to charac-
terise the TTF and TTR values.

The problem of hardware resource reliability estimation can be narrowed
down to estimating MTTF and MTTR values. Based on these estimates,
MTBF and Av values can be readily determined. The estimation of MTTR

2Hence, a repairable resource model often reflects the usage of a series of non-repairable
resources with replacement intervals after each resource wear-out.

23

2 Foundations

values is relatively straightforward as resource repair and replacement fol-
lows a controlled process rather than physical indeterminism. A TTR may
include several aspects such as the time to detect a resource failure, the
time to conduct the repair or replacement, and the duration of required re-
initializations. These aspects can be determined for most IT systems and
application scenarios to derive MTTR values. For the estimation of MTTF
values, several sources of information are available. First, hardware ven-
dors conduct internal studies of their products and publish MTTF values
denoting their expected lifetimes. Vendor estimates are based on data gath-
ered from customer reclamations and conducted service jobs, as well as
accelerated stress tests, where “stress” refers to environmental character-
istics such as voltage, temperature, humidity, physical vibration and me-
chanical forces [Yan99]. Second, vendor-independent studies have been
conducted evaluating empirical resource failure and replacement data, es-
pecially for hard disk drives [PWB07, SG07]. These studies calculate
Annualized Failure Rates (AFR) over a large population of functionally
equivalent resources, from which MTTF estimates can be derived. Third,
IT system or infrastructure providers can estimate MTTF values for their
hardware resources based on their own experiences gathered during sys-
tem operation.

As an alternative to direct resource reliability estimation, existing reli-
ability engineering techniques (see Section 2.1.2) can be used to assess
complex hardware resources based on their constituent parts. For example,
an MTTF estimate for an array of hard disks may result from a reliability
block diagram that models the internal structure of the array and contains
MTTF estimates for the individual hard disks. Such an analysis may be
performed as a preliminary step providing input to PCM-REL resource en-
vironment models (see Section 4.4).

24

2.3 Software Reliability Estimation

2.3 Software Reliability Estimation

This section discusses strategies for software reliability estimation, with a
special focus on determining failure rates or failure probabilities of soft-
ware components. Such estimates can be used as an input information for
approaches to architecture-based software reliability prediction (ASRP).
Software reliability is modelled stochastically because – although software
fails systematically (in contrast to randomly failing hardware) – software
failures are uncertain from an engineer’s point of view [Lit05]. “System-
atic” means that the same failures will always result from the same set of
circumstances. “Uncertainty” relates to the nature and frequency of those
circumstances and includes several aspects. First, there is missing knowl-

edge about the faults contained in the software, as well as their activation
patterns. Second, reliability models include probabilistic abstractions from
the actual system behaviour to reduce modelling complexity. Third, the sys-
tem usage presents a source of indeterminism as the exact nature, sequence
and timing of system invocations by users is unknown in advance.

Reliability estimations for software components are significantly more
difficult than for hardware resources, for reasons outlined in Section 2.1.2.
However, the need for corresponding methods is steadily increasing, and an
own field of research has emerged around the issue. While this thesis does
not focus on the problem of software reliability estimation itself, the appli-
cation of PCM-REL does require deriving input estimates for the modelled
software failure potentials. To this end, an exemplary estimation process
was conducted as part of a PCM-REL case study, which is documented in
Section 6.5. Here, the discussion focuses on major families of software
reliability estimation methods, including software reliability growth mod-
els (Section 2.3.1), software defect prediction models (Section 2.3.2) and
others (Section 2.3.3).

25

2 Foundations

2.3.1 Software Reliability Growth Models

Software Reliability Growth Models (SRGM), which have been briefly in-
troduced in Section 2.1.2, are one of the most successful families of analy-
sis methods within the software reliability engineering discipline [Lyu07].
Beyond system-level black box testing, they can also be used to determine
failure rates of software components as an input to Architecture-Based Soft-
ware Reliability Prediction (ASRP) [GPT01]. The following discussion
introduces the basics of SRGM approaches and reflects possibilities and
challenges of their application.

Execution time /
Number of
performed runs

Number of faults (NOF)

undetected /
residual faults
(estimated)

total NOF
(estimated)

total detected NOF
(estimated)

t0 = 0
start of test

t2
planned

end of test

t1
current

test time

currently detected NOF
m(t) – mean value function

testing phase operational phase

Figure 2.2: Software Reliability Growth Modelling Scheme

Figure 2.2 depicts the general SRGM scheme. SRGM approaches observe
a software system or component under test and record how the number of
detected faults increases during the test. The test time may be measured in
terms of system or component execution time (for continuous applications)
or as the number of performed test runs (for terminating applications). At
any point in time t1 during testing, a parametrized statistical mean value

function m(t) can be fitted to the existing history of fault detection since

26

2.3 Software Reliability Estimation

test start t0, and this function can be used to predict the further progres-
sion of the testing process. Such information allows for estimating the
total detected number of faults at the planned end of test t2. More im-
portantly, many SRGMs include an estimation of the total number of faults
comprised in the system or component under test at t0, thereby indicating
the remaining or residual number of faults during the operational phase
(namely, after t2). Corresponding to the different test progression types
one may encounter in practice, various different mean value functions have
been proposed by several authors (see [SGNG10] for an overview of the
most important ones). The proposals are generally based on the assump-
tion that the rate of fault detection decreases over time, leading to mean
value functions with decreasing slopes. Moreover, most SRGM approaches
share the common assumptions that each detected fault is removed instanta-
neously (or alternatively, testing stops upon fault detection and is resumed
after fault removal), and that fault removal activities do not introduce new
faults into the system or component under test.

Beyond the essentially static information about the number of existing
faults comprised in systems and components under test, SRGM approaches
also reason about their dynamic reliability characteristics, namely their fail-
ure rates. Assuming that each failure occurring during the test corresponds
to the detection of one new fault, the fault detection history also indicates
all times between failures in [t0, t1]. From this information, a failure inten-

sity function λ (t) may be derived that indicates the system or component
failure rate at time t. Failure intensity functions directly follow from mean

dm(t)value functions through derivation (namely, λ (t) =) and are expected dt

to decrease over time. Through determining λ (t), the expected failure rate
at the planned end of test t2 can be predicted. Alternatively, t2 can be dy-
namically chosen to fulfil a given failure rate requirement. It may also be
possible to anticipate a system’s or component’s operational failure rate as
being the one expected at the end of test, namely λ (t2). However, such an
estimation is only credible if an overall field usage profile of the system

27

2 Foundations

or component at the operational phase can be determined, and if statistical

testing is applied – namely, if test inputs are randomly selected according
to the field usage profile.

SRGM approaches have been pointed out by several authors as a pos-
sible means of gathering input information for ASRP approaches [Eve99,
GPT01, GWTH98]. SRGMs may be used to estimate current or future
failure rates of software components which already exist and have under-
gone a certain amount of testing. A very recent case study by Koziolek
et al. [KSB10] on a large industrial control system illustrates this usage
of SRGMs. On the other hand, successful usage of SRGMs is still chal-
lenging. Apel [Ape05] lists open issues directly related to SRGM research,
including the problem of choosing between the various proposed SRGMs
and characteristic mean value functions for concrete use cases3, as well as
the lack of empirical validation (especially regarding long-term prediction
quality). Moreover, it is often not feasible or possible to apply SRGMs in
practice without violating their underlying assumptions [BKH09, Woo97],
thereby weakening the significance of their prediction results. In particular,
if SRGM analyses are based on standard unit tests and their failure reports,
it may be difficult to gain meaningful results from their application. Time
stamps of bug entries usually refer to calendar time instead of execution
time, test inputs are generated to locate as many faults as possible (and not
to represent an identified field usage profile), fault removals may not be in-
stantaneous, and new faults may be introduced during removal activities.
If, on the other hand, SRGMs are applied under strict conformance to all
their underlying assumptions, their practical applicability is limited. For
example, they can only be used to assess relatively low reliability levels
(such as failure rates of 10−2 to 10−4h−1 [BF93, GPT01]); otherwise, the
testing effort gets out of hand.

If system test runs are used to derive component-level reliability esti-
mates, additional issues need to be considered. For example, to evaluate

3However, a recent work of Sharma et al. [SGNG10] tackles this issue.

28

2.3 Software Reliability Estimation

failure rates of components as the ratio between their overall invocation
counts and successful invocation counts, it must be determined how of-
ten each component is invoked in each test run, and which component is
to blame in case of a failed test run. Moreover, a potentially large num-
ber of test runs must be conducted so that a statistically relevant amount
of successful and failed invocations of each component can be observed.
If, on the other hand, SRGMs are applied to each component in isolation,
care must be taken to test each component according to its individual usage
profile within the overall architecture (which means that component-level
usage profiles need to be determined prior to the application of SRGMs).

A body of work exists to improve SRGM approaches and tackle their
issues (see [Lyu07] for a summary). Still, successful application of SRGMs
in practice requires care. The use of SRGMs as an input to ASRP has
been demonstrated by Koziolek et al. [KSB10], but needs to be further
investigated with respect to the challenges discussed above.

2.3.2 Software Defect Prediction Models

The notion of Software Defect Prediction Models (SDPMs) captures a wide
and heterogeneous field of efforts related to estimating the amount of faults
or defects comprised in software systems or components. Widely estab-
lished target metrics are defect count (number of defects) and defect density

(number of defects related to code size). Defect prediction approaches use
various kinds of artefacts emerging from specification, design, implementa-
tion and test stages as possible sources of information. The most important
factors that have been assumed to influence the amount of defects in soft-
ware include the following:

• Size and complexity: The amount of software defects is expected
to generally increase with the size and complexity of the system or
component under study. Measures of code size include the number
of Lines Of Code (LOC), code segments or machine code instruc-

29

2 Foundations

tions. Examples for code complexity metrics include Halstead’s Vol-

ume, Difficulty and Effort metrics [Hal77] (correlated with the num-
ber of operands and operators in the code) and McCabe’s Cyclomatic

Complexity [McC76] (correlated with the number of decision state-
ments). As an alternative, Function Points (originally defined by Al-
brecht [Alb79]) measure the amount of functionality offered by a
system or component and examine requirements and design specifi-
cations rather than code.

• Test-related factors: At any point in time during the testing stages, an
existing test history may be exploited to estimate the total or remain-
ing number of defects. Metrics of interest include the number of al-
ready detected defects (differentiated according to test iterations, test
approaches or associated function points) and the already achieved
test coverage (which may refer to statement coverage, branch cover-
age, code sequence and jump coverage, see [VM94]). Another metric
of interest is the testability [VM95] of a given system or component
(namely, the likelihood that potential defects will be detected through
test), which is determined through static code analyses.

• Process quality: Software is expected to generally contain less de-
fects if created following a high-quality development process. A
process quality model that has been used to derive defect density
estimates is the SEI Capability Maturity Model (CMM) [DS97].

Many earlier works on SDPMs tried to derive straightforward general for-
mulae for the number of defects based on existing sets of empirical data
from software development (see, for example, [CW90, Gaf84]); however,
the validity of their results is questionable. Fenton et al. [FN99] have iden-
tified substantial flaws in such works including incorrect use of statisti-
cal analyses with misleading results, as well as a tendency towards over-
simplification by focussing on a partial subset of the relevant factors only.
Nevertheless, research in this field is very active until today (see [CD09]

30

2.3 Software Reliability Estimation

for a recent review). More advanced prediction approaches have been
developed using Bayesian networks [FNM+08], Capture-Recapture mod-
els [BEFL00] and other formalisms. Machine learning and data mining
techniques are increasingly employed to derive defect estimations from
code metrics data [MGC07, MGF07].

While the wealth of existing SDPMs can in theory be used to derive input
information for ASRP approaches, there is no straightforward relation be-
tween the number of faults of a software component and its failure rate. The
latter depends on the likelihood that existing faults will actually be activated
under a certain component usage profile. In contrast to SRGMs (see Sec-
tion 2.3.1), SDPMs do not define the process of gathering data in such a way
that it provides information about both faults and failures. This is a major
obstacle against the use of SDPMs for architecture-based software reliabil-
ity prediction – in fact, it is a weakness of SDPMs as such [FN99], limiting
the significance of their prediction results. Moreover, a recent study by
Zimmermann et al. [ZNG+09] suggests that reusing defect prediction re-
sults across multiple software development projects may be invalid, even if
these projects stem from the same domain or employ the same underlying
development process model. Still, SDPMs are an extensively researched
means guiding decisions in software development processes, and further re-
search efforts may close the gap towards usage for reliability prediction.

2.3.3 Further Approaches to Software Reliability Estimation

Beyond SRGMs and SDPMs, various further efforts have been made to
estimate failure rates of software systems and components. At late test-
ing stages, a validation test or operational test may be conducted to assure
required reliability levels [MMN+92, MIO90, LW97]. The system or com-
ponent is tested as if executed in the field – namely, according to its field
usage profile. By applying frequentist inference [Cox06], upper bounds
for failure rates can be deduced with certain levels of confidence from a

31

2 Foundations

certain amount of failure-free execution. For example, 4603 successfully
executed independent test runs give a 99 percent upper confidence bound
on a failure rate of 10−3. Methods and tools from model-based testing

(MBT) [UPL11, Pre03, PPW+05] can be applied to support and partially
automate the testing process4. For example, the J Usage Model Builder

Library (JUMBL) [Pro03] automatically generates test cases according to
a usage profile specified in terms of a Markov model, and it determines re-
liability estimates and confidence levels from a set of executed test cases
and their results. As of today, the potentially very high testing effort as-
sociated with such methods constitutes a major challenge and essentially
limits their applicability to cases with relatively low reliability require-
ments [GPT01].

Component reliability models are a further means specifically tailored
to component-level reliability estimation [CRMG08, CMRK10, Imm06,
TW99]. Markov models are used to indicate different component states
between which a component switches forth and back over time according
to specified transition probabilities. Typically, the states are grouped into
two categories, where one category corresponds to normal operation and
the other one to failure. Cheung et al. [CRMG08] identify several sources
of information that can be used to construct component reliability models,
including existing component specifications, expert knowledge, component
use case descriptions, simulations and existing functionally similar compo-
nents. Applying Markov theory allows for determining reliability charac-
teristics of a component such as the component failure rate or the fraction
of time in which the component provides normal operation. Approaches
to component reliability modelling seem promising due to their flexibility.
Being model-based in nature, they do not necessarily require a component
to already be implemented and executed under test, and they are not re-

4In general, the main goal of MBT is to support the identification of faults in the system, or
to verify that certain parts of the system’s behaviour conform to its specification. A model
captures the system’s intended behaviour; it serves as a way to specify the possible system
inputs, as well as the relation between inputs and expected outputs.

32

2.4 Markov Chains for Reliability

stricted to assessment of low reliability levels. On the other hand, there is
no straightforward general way to construct the models, and the problem
of stochastic estimation is not resolved but rather decomposed to a set of
intra-component properties. When used as an input to ASRP approaches,
care has to be taken so that each component reliability model reflects the
individual usage profile of the component within the architecture. Further
research regarding component reliability models would be valuable to fa-
cilitate a more wide-spread use.

Further attempts to derive component reliability estimations from vari-
ous influencing factors have been summarized by Palviainen et al. [PEO11]
under the term heuristic reliability evaluation. Considered factors may in-
clude component maturity levels, size and complexity metrics (as also used
for software defect prediction, see Section 2.3.2), testing and operational
data from existing similar components, reputation of or experiences with
component vendors (in case of externally acquired components), level of
experience of involved software developers (in case of in-house develop-
ment), and others. However, the results of such estimations are typically
only valid within specific project contexts and cannot be easily transferred
across development projects or companies. Palviainen et al. [PEO11] con-
sider them as weak compared to component reliability models and test-
based approaches.

2.4 Markov Chains for Reliability

This section gives a short introduction to Markov chains, which are used as
a modelling formalism by many approaches to architecture-based software
reliability prediction (ASRP), and which also constitute the underlying for-
malism of PCM-REL (see Chapter 5). The discussion is limited to aspects
relevant in the context of the thesis; for a detailed account, see [Tri02].
A Markov chain is a random process (namely, a process whose devel-
opment over time is not pre-determined but described by probability dis-

33

2 Foundations

tributions) which (i) has a discrete (finite or countable) state space, and
which (ii) exhibits the Markov property (namely, the future development
of the process does not depend on its history but only on its present state).
Continuous-time Markov Chains (CTMC) allow for state transitions at any
time; Discrete-time Markov Chains (DTMC) restrict transitions to certain
points in time, according to a discrete time scale. Many real-life processes
can feasibly be represented by Markov chains, and a comprehensive theory
has been developed to examine various properties of the created chains.

0.6

s1:
Sun

s2:
Rain

s3:
Snow

0.20.4

0.3 0.1
0.4

0.2

0.3

0.5
ܲ ൌ 											

0.6 0.3 0.1
0.4 0.4 0.2
0.5 0.3 0.2

Sun
Rain
Snow

SnowSun Rain

159.9 mm = 0.7
Figure 2.3: DTMC Example

A DTMC can be described through a set of states S := {s1, ...,sn} and tran-
sitions T := {t1, ..., tm}, where each transition tk connects a source state
Source(tk) ∈ S and a target state Target(tk) ∈ S and is associated with a
transition probability value P(tk) ∈ [0,1]. Alternatively, the DTMC can
be described through its n-by-n transition matrix P, with each entry pi j ∈
[0,1] ∀i, j ∈ {1, ..,n} denoting the transition probability from si to s j. For
each row, the sum of its entries equals to one: ∑n

j=1 pi j = 1 ∀i ∈ {1, ..,n}.
As an example, Figure 2.3 shows a DTMC that represents weather condi-
tions, together with its transition matrix. On each day, the weather is in one
of the states Sweather := {s1 := Sun,s2 := Rain,s3 := Snow}. The weather
may change between days or stay the same. For example, a sunny day is
followed by another sunny day with probability p11 = 0.6, by rain with
p12 = 0.3 or by snow with p13 = 0.1. The Markov property dictates that
tomorrow’s weather only depends on today and not on the weather history

34

2.4 Markov Chains for Reliability

of previous days. While this is a simplifying assumption compared to re-
ality, it keeps the model analytically tractable. In spite of its simplifying
abstractions, the model may still be a feasible representation of the cor-
responding real-world process with respect to a certain purpose, such as
forecasting tomorrow’s weather.

A DTMC state si ∈ S is an absorbing state if it – once visited – is never
left again: pii = 1 and pi j = 0 ∀ j �= i. An absorbing DTMC has at least
one absorbing state and a possible path from each state to an absorbing
state. Each run through an absorbing DTMC eventually finishes in one of its
absorbing states with probability 1, no matter how the DTMC is structured
and in which state the process starts. If the DTMC has multiple absorbing
states, Markov theory allows for calculating the absorption probabilities
for each of them (depending on the initial state in which the process starts).
This calculation involves determining two reduced transition matrices Q

(considering non-absorbing states only) and R (considering transitions from
non-absorbing to absorbing states), calculating the fundamental matrix N =

(I −Q)−1 based on Q and the identity matrix I, as well as multiplying N

and R (for further details, see [KB09]).
A CTMC is described through a set of states S and transitions T like a

DTMC. However, the transitions tk of the CTMC are annotated with tran-

sition rates R(tk) ∈ R+
0 rather than probabilities, and the CTMC is char-

acterized through a rate matrix R. A positive rate ri j > 0 indicates that
transitions from state si to s j occur with frequencies determined by an ex-
ponential distribution Exp(1/ri j) with parameter 1/ri j. A zero rate ri j = 0
indicates that the corresponding transition never occurs. In contrast to a
DTMC specification, each state of a CTMC has an individual variable so-

journ time according to a continuous time scale. The expected sojourn time
of each state can be determined based on all outgoing transitions and tran-
sition rates of the state.

DTMCs, CTMCs and related formalisms (such as semi-Markov pro-

cesses [BL08]) are a powerful and widely established means for ASRP

35

2 Foundations

approaches to represent software architectures in terms of interconnected
components, as well as the transition of control between them during ser-
vice execution (see Section 2.5). In contrast to other formalisms that fo-
cus on a system’s inputs, internal state progressions and produced outputs
(such as finite state machines [HMU01], state charts [Har87] or timed au-
tomata [AD94]), Markov models provide a high-level architecture-oriented
representation of system behaviour, naturally capturing uncertain aspects
such as system usage and its influence on the service execution through
the probabilistic model annotations. Existing Markov theory [Tri02] can
readily be applied to evaluate the created models with respect to reliabil-
ity. The PCM-REL approach developed in this thesis focuses on absorbing
DTMCs and explores novel ways to use them for comprehensive reliability
modelling and prediction (see Chapter 5).

2.5 Architecture-Based Software Reliability Prediction

This section shortly introduces the field of architecture-based software re-
liability prediction (ASRP; for surveys, see [Gok07, GPT01, IN08]), to
which also PCM-REL belongs. As the general discussion in Section 2.1.2
shows, ASRP approaches aim to overcome the weaknesses of traditional
reliability analysis methods regarding component-based software systems.
Like reliability block diagrams, fault trees and related analyses, ASRP ap-
proaches assume that the overall failure potential of a system can be de-
termined from a set of internal failure potentials associated with individual
system components or parts, together with a structural view indicating how
the components themselves or their failure potentials are related to each
other. However, traditional ways to express system structure and usage re-
lationships between components (such as OR or AND relationships in fault
trees) are too simplistic to cover the potentially complex interrelations of
software components. Therefore, ASRP approaches choose more expres-

36

2.5 Architecture-Based Software Reliability Prediction

sive formalisms to represent system structure, based on an architectural
view on the system and the control flow of its service execution.

An early publication of Roger Cheung in 1980 [Che80] had much influ-
ence on the development of the field and serves as a raw model for many
ASRP approaches until today. The approach expresses a system’s archi-
tecture through an absorbing DTMC whose states represent the individual
software components. Transitions represent the transfer of control between
components when executing a certain system service operation or task. The
transition probabilities allow for expressing the fact that different control
flow paths through the architecture may be taken, depending on the sys-
tem’s internal state at the time of service execution, as well as the specific
input data given to the service invocation. For reliability evaluation, each
component is annotated with an individual independent failure probability,
denoting the possibility that a visit to this component during service execu-
tion produces a service failure. The DTMC is augmented with two “final”
absorbing states, indicating successful service execution and service fail-
ure. Without loss of generality, another “initial” state can be added such
that service execution always starts in this state. Markov theory allows for
calculating the probability of successful service execution as the probability
of reaching the success state from the initial state (see Section 2.4). By its
construction, the formalism assumes a “terminating application” (namely,
a limited service behaviour that always ends up in either of the success
and failure states). Being based on the architectural model and component
failure probabilities only, the approach can be applied even before the sys-
tem itself is implemented, thereby anticipating or predicting the expected
reliability of the implemented system at run-time. However, applying the
approach is only possible if the required inputs can feasibly be obtained;
sensitivity analyses should be conducted to assess the impact of uncertain
input estimations (see Section 6.1).

As an example for a software architecture modelled through an absorb-
ing DTMC, Figure 2.4 shows an architecture with three components A, B

37

2 Foundations

I

A

B

C

S

F

p2

1 ‐ fp(A)

1 ‐ fp(B)(1 ‐ fp(C)) * p3

1.0

1.0

157.2 mm = 0.688
Figure 2.4: Example of an Architectural DTMC Model

and C, augmented by an initial state I and the absorbing success and failure
states S and F . The parameters of the model to estimate are the transi-
tion probabilities p1 to p3, as well as the failure probabilities of the com-
ponents f p(A) to f p(C). Given these estimations, the model allows for
calculating the probability of successful service execution. Moreover, the
model indicates the possible control flow paths and their probabilities. For
example, service execution may follow the path I-B-C-S with probability
p2 × (1 − f p(B))× (1 − f p(C))(1 − p3). A cycle exists between states B

and C, leading to an infinite overall number of possible paths through the
model. By its construction, the model assumes the Markov property with
respect to the transfer of control between components. This assumption can
lead to paths that are possible in the model but not in reality. For example,
the number of performed cycles between components B and C in the fig-
ure may be limited to a maximum number of n in reality, while the model
allows for an arbitrary number of cycles before moving on to either suc-
cess or failure. However, the method can still provide sufficiently accurate
results, if transition probabilities are chosen such that the additional paths
of the model have low occurrence probabilities or mutually even out their
reliability impacts. For architectural cycles such as the one between B and
C, a well-established method is to choose transition probabilities such that
the expected number of performed cycles in the model corresponds to the
average number of performed cycles in reality.

38

2.5 Architecture-Based Software Reliability Prediction

Throughout the years, numerous ASRP approaches have been presented,
including [BMP09, CG07a, DS95, FGGM10, GL05, GPHG+03, Gra05,
KM97, PDAC05, RSP03, RRU05, ST07a, ST06, WPC06, YCA04, ZL10],
and others. Beyond absorbing DTMCs, other DTMC and CTMC types, as
well as semi-Markov processes, have been used to represent the software
architecture and its failure potentials; a comprehensive overview is given
by the survey of Goseva-Popstojanova et al. [GPT01]. Further categories of
approaches use less related formalisms, but are still counted towards ASRP
by the survey. These categories include the path-based and the additive ap-
proaches. Path-based approaches explicitly enumerate the possible control
flow paths through the architecture, together with their occurrence proba-
bilities. While these approaches are not affected by the Markov assump-
tion, the potentially high number of possible paths often makes a compre-
hensive enumeration impossible and instead requires considering the most
frequent paths only. Additive approaches calculate a system’s failure rate
in a straightforward fashion as the sum of the individual component fail-
ure rates, thereby imposing the strong assumption that service execution
essentially always visits each of the system’s components.

Existing ASRP approaches include several differences and extensions
compared to the Cheung model, such as the consideration of error propaga-
tion [CG07a, FGGM10, MZ08, PDAC05], inclusion of uncertainty analy-
sis [GPK03, YST01] or provision of a design-oriented input modelling lan-
guage [BMP09, CSC02, GPHG+03, RSP03, RRU05, YCA04]. However,
their consideration of reliability-influencing factors is still incomplete, and
their capabilities to support software architects during system design are
correspondingly limited. They have no or only basic means to take hard-
ware failure potentials into account (see Section 7.1) and to express fault
tolerance capabilities of the system under study (Section 7.2). Further-
more, they encode the influence of the system’s usage profile implicitly into
model parameters such as transition probabilities, thereby strongly reduc-
ing the reusability of the architectural specifications (Section 7.3). Hence,

39

2 Foundations

the PCM-REL approach presented in this thesis constitutes further progress
in the ASRP field. It overcomes the mentioned weaknesses and provides a
comprehensive solution supporting the design of IT systems.

2.6 Fault-Tolerant IT Systems

Fault tolerance (FT) has briefly been introduced in Section 2.1.1 as one
of the four means to attain dependability and security. The notion of FT
includes any capabilities of an IT system to autonomously prevent the oc-
currence of system service failures in the presence of faults that have al-
ready been activated and resulted in errors within the system5. Obviously,
such capabilities influence the probability of successful service execution.
PCM-REL allows for explicit modelling of FT capabilities and takes them
into account for reliability prediction. This section introduces the most
important concepts related to FT, based on existing overviews and sur-
veys [ALRL04, Kie03, Lyu95, Lyu07, MR07, Ran75].

Existing techniques to achieve fault tolerance have a wide and heteroge-
neous scope. In order to achieve a categorization, several authors distin-
guish between hardware fault tolerance and software fault tolerance, de-
pending on the question if a FT technique mainly targets hardware faults
or software faults. Typically, both kinds of faults are different in nature
(physical faults in hardware versus design faults in software) and produce
different failure behaviour (randomly failing hardware versus systemati-
cally failing software, see Section 2.3). However, various interdependen-
cies between both dimensions exist, and several FT techniques combine
capabilities for tolerating hardware and software faults [LABK90].

Other proposals for FT categorization refer to redundancy. Employing
redundancy means provisioning a system with additional resources beyond
those that are required as a minimum for proper functioning. Redundancy
is the most fundamental concept enabling fault tolerance. Kienzle [Kie03]

5Existing FT synonyms include self-repair, self-healing and resilience [ALRL04].

40

2.6 Fault-Tolerant IT Systems

distinguishes functional redundancy, data redundancy and temporal redun-

dancy for software FT. Functional redundancy denotes the presence of mul-
tiple software designs (namely, different implementations, also referred to
as design diversity) of the same functionality. Data redundancy refers to the
presence of multiple different expressions of the same data (also referred to
as data diversity), as well as the presence of additional FT-specific data.
Temporal redundancy includes all time overheads during service execution
induced by FT activities. Other authors [Lyu07, TP00] more roughly dis-
tinguish between single-version software techniques (denoting the absence
of functional redundancy) and multi-version software techniques (employ-
ing functional redundancy). To include hardware FT into the consideration,
one could extend Kienzles categorization by adding physical redundancy,
namely the replication of identical hardware resources.

A wide variety of fault tolerance mechanisms has been proposed that fol-
low a general pattern of activities as outlined by Avižienis et al. [ALRL04].
The two main involved activities are error detection and system recovery,
where the latter includes error handling and possibly fault handling. Error
detection denotes identifying the presence of an error and can be performed
on-demand (for example, checking the result of a computation with an ac-
ceptance test) or pre-emptively (for example, by regular system health tests,
heartbeat or ping/echo signalling). Error handling removes the error from
the system and may involve a rollback to a prior error-free system state,
a rollforward that reaches a new state without error, or a compensation

that masks an existing error using the redundancy contained in the system.
The system may conduct error handling on-demand (for example, after the
identification of a wrong computational result by an acceptance test) or
pre-emptively (for example, by regular restart of software components as a
means of software rejuvenation [HKKF95]). Fault handling shall prevent
existing faults from being activated again and may include fault diagnosis,
isolation, component or system reconfiguration and reinitialization. Fault
handling may be followed by fault removal through corrective maintenance

41

2 Foundations

(which requires the participation of an external agent and is therefore not
included in the notion of FT).

The majority of the proposed software FT mechanisms are either com-
pletely pre-emptive in nature (carried out as independent periodic activi-
ties), or they focus on the ability of an individual service execution to toler-
ate activated faults in an on-demand fashion. The latter category includes,
amongst others, Recovery Blocks, Retry Blocks, N-Version Programming

and N-Copy Programming [Kie03]. Recovery Blocks include the sequen-
tial execution of a primary behaviour and, potentially, further alternative
behaviours. The result of each alternate is checked by an acceptance test;
upon failure, a rollback to an established checkpoint is performed. The re-
covery block is left after either one alternate succeeds or the last alternate
fails. Recovery Blocks employ functional redundancy (multiple alternates
providing equal functionality) and temporal redundancy (the overhead of
executing alternative behaviours). Retry Blocks are similar to Recovery
Blocks but do not employ functional redundancy. Instead, they execute the
same behaviour multiple times with different re-expressions of the input
data. N-Version-Programming and N-Copy-Programming are the parallel
equivalents to Recovery and Retry Blocks, respectively: they execute all
functional or data alternatives concurrently. Instead of conducting costly
acceptance tests for explicit error detection, they typically rely on voting

algorithms to select among the results of the alternatives. Several varia-
tions of these mechanisms have been proposed, including their extension
towards hardware FT through replication of the underlying hardware re-
sources [LABK90]. Additionally, FT mechanisms have been proposed that
explicitly consider the interdependencies of multiple concurrent service ex-
ecutions. These include Transactions with FT-specific extensions, Conver-

sations and Atomic Actions [Kie03].
Traditionally, fault tolerance has been associated with implementation

and technological levels of an IT system rather than the architectural level.
Hence, it was not in the primary focus of research related to software ar-

42

2.7 The Palladio Component Model

chitecture. Within the specific field of ASRP, still very few approaches ex-
plicitly consider FT capabilities (see Section 7.2). However, the structural
and behavioural aspects of FT mechanisms clearly have an architectural
dimension. FT mechanisms may assign special responsibilities to architec-
tural components or even introduce new components for FT-specific pur-
poses. Muccini et al. [MR07] provide a comprehensive survey of works
that deal with the architectural aspects of FT. Examples of FT capabili-
ties explicitly introduced as architectural patterns or styles include Ideal-

ized Fault-Tolerant Components [GRdL02], Recovery-Aware Components

(RAC) [YSP09, YSP11] and Redundant Arrays of Independent Compo-

nents (RAIC) [LR02]. Furthermore, Harrison et al. [HA08] examine sev-
eral traditional architectural patterns and describe how they can be extended
with FT capabilities.

PCM-REL acknowledges the fact that fault tolerance is part of an IT sys-
tem’s design and may considerably influence its reliability. The approach
offers explicit modelling of FT capabilities in terms of a specific action type
that has the ability to recover from failure-on-demand occurrences during
service execution. See Section 4.7 for a detailed discussion.

2.7 The Palladio Component Model

This section introduces the Palladio Component Model (PCM) [BKR09],
which provides the conceptional and technical foundation for PCM-REL.
The description focuses on the PCM as a design-oriented modelling lan-
guage for component-based software architectures, allowing for distributed
model creation by multiple independent developer roles. The discussion of
the PCM’s meta-model is not exhaustive but reduced to the core concepts
that are required for understanding the following thesis chapters. In particu-
lar, all performance-specific parts are omitted from the discussion (for a full
discussion of the original PCM meta-model, see [RBB+11]). PCM-REL

43

2 Foundations

builds upon the presented core concepts and adds new concepts to create an
architectural modelling language for IT system reliability (see Section 4).

2.7.1 PCM Developer Roles

Component-based development is – ideally – a distributed process with
multiple contributing developer roles which are independent and decou-
pled from each other. The PCM approach supports this idea by splitting
the meta-model into independent parts along the concerns of each role,
and by representing reusable real-world artefacts through reusable speci-
fications on the model level. In the envisioned development process, com-

ponent developers create individual software components and store them
in a repository. As “units of composition with contractually specified in-
terfaces and explicit context dependencies only” [Szy02], software com-
ponents are subject to being reused in varying contexts [RPS03]. System

architects take components from the repository, connect them according
to their provided and required interfaces, and define a system boundary
with system-provided and system-required service interfaces. System de-

ployers know about the available IT infrastructure and allocate a system’s
software components to the computing nodes of the infrastructure. Finally,
domain experts contribute knowledge about the expected usage profile of
the system.

According to the discussed developer roles and responsibilities, the PCM
provides a repository model representing the component repository and
containing the individual component specifications, a system model spec-
ifying component instances, connections and the system’s boundaries, a
resource environment model for the IT infrastructure, an allocation model

mapping software components to computing nodes, and a usage model

specifying the system’s usage profile. All these meta-model parts are in-
troduced in detail in the following subsections.

44

2.7 The Palladio Component Model

Repository

+id : string
+entityName : string

Entity

RepositoryComponent

Interface

1

+components

*

1

+interfaces*

BasicComponent CompositeComponent

InterfaceProvidingRequiringEntity

Role RequiredRoleProvidedRole

1

+providedRoles *

1

+requiredRoles *

VariableUsage

1

+componentParameters

*

*

+providedInterface

1 *+requiredInterface

1

Figure 2.5: PCM Meta-Model Classes for Components, Roles and Interfaces

2.7.2 Repository Model

The PCM repository model contains all specifications for which component
developers are responsible, namely component types, interfaces, data types
and component behaviour. Figure 2.5 gives a high-level overview of the
meta-model classes involved in component definitions. The Repository
constitutes the top-level entry point to the model and contains a list of
RepositoryComponents and Interfaces. RepositoryComponents

are InterfaceProvidingRequiringEntities – namely, they can pro-
vide or require Interfaces through the specification of contained Pro-
videdRoles and RequiredRoles. This concept allows for reusing in-
terface definitions within multiple component specifications. A compo-
nent is either a BasicComponent (which cannot be further decomposed)
or a CompositeComponent (see Section 2.7.3 for further explanation of
composition concepts). Each component can be parametrized through
VariableUsages (see Section 2.7.6), expressing variable component con-

45

2 Foundations

PrimitiveDataType

CollectionDataType

CompositeDataType

InnerDeclaration

1

+declarations *

+type1

*

Repository

1

*

Interface

1

+interfaces

* 1
+signatures*

Parameter

0..1

+parameters*

+type 1
*

+returnType

0..1

*

«Enumeration»
PrimitiveTypes

int
string
bool
double
char
byte
long

+type1

*

DataType

1

*

Signature

Figure 2.6: PCM Meta-Model Classes for Data Types and Parameters

figurations. Moreover, components, roles and the repository itself are
Entities, equipped with a unique id and a name.

Figure 2.6 further details the specification of interfaces and data types.
Each Interface contains a list of Signatures, defining input Parame-
ters and a return type of a specific service operation. Both the parameters
and the return type refer to DataTypes specified within the repository.
While a fully featured type system is out of scope of PCM modelling,
the approach does support the specification of PrimitiveDataTypes,
CollectionDataTypes and CompositeDataTypes. Primitive types con-
form to one out of a list of given types including “int”, “string”, “bool”,
and others. Collection types represent a set of data items of a specific base
type. Composite types contain a list of InnerDeclarations pointing
to contained types.

For BasicComponents, each offered service operation (as specified
through the provided roles of the component) must be accompanied by
a corresponding behavioural specification as shown in Figure 2.7, defin-

46

2.7 The Palladio Component Model

BasicComponent

1

+specifications

*
*

+describedServiceOperation1

ResourceDemandingSEFF

ResourceDemandingBehaviour

AbstractAction

0..1
+steps*

BranchAction

ParametricResourceDemand 1
+demands

*

AbstractLoopAction

CollectionIteratorActionLoopAction

ForkAction

InternalAction

StartAction

StopAction

AbstractBranchTransition

+branchProbability : double

ProbabilisticBranchTransition

GuardedBranchTransition

1

* 0..1
+body1

PCMRandomVariable

0..1

+condition1
0..1

+body

1

0..1

+iterationCount 1

Parameter 1

+parameter

*

0..1

+behaviours

1..*

RequiredRole

*
+role1

*

1

ExternalCallAction

+predecessor 0..1
+successor

0..1

Signature

VariableUsage

+inputs

ProcessingResourceType
*

1

Figure 2.7: PCM Meta-Model Classes for Behavioural Specifications

ing how the component reacts when the service operation is invoked. To
this end, the component’s execution is represented by a hierarchy of nested
ResourceDemandingBehaviours, with the topmost behaviour being a
ResourceDemandingSEFF (where “SEFF” stands for service effect speci-
fication). Each behaviour contains a sequence of AbstractActions, with
each action pointing to its predecessor and its successor. Different action
types represent different kinds of execution steps. AbstractLoopActions
represent a repeated execution of a referenced body behaviour. They are
either standard LoopActions with a loop iteration count specified through
a PCMRandomVariable (see Section 2.7.6) or CollectionIterator-
Actions with an iteration count given by the size of a Parameter with
a CollectionDataType. BranchActions represent decisions within the
service execution control flow. They contain a set of AbstractBranch-

47

2 Foundations

Transitions between which a decision is to be made. Each transition
references an own body behaviour. While a ProbabilisticBranchTran-
sition contains a fixed value expressing the probability of being taken, a
GuardedBranchTransition evaluates a PCMRandomVariable (see Sec-
tion 2.7.6) as a condition for being taken. A ForkAction defines a set
of concurrently executed forked behaviours. An ExternalCallAction
represents an invocation of another service operation provided by a foreign
component. To avoid direct wiring between components, the call only ref-
erences the corresponding RequiredRole of the current component and
the Signature of the invoked service operation. Moreover, input parame-
ter properties of the call can be determined through VariableUsages. An
InternalAction represents a computational step during service execu-
tion. It abstracts from the details of the computation and instead only lists
its associated resource consumption through ParametricResourceDe-
mands. A resource demand refers to a certain ProcessingResourceType
(e.g. a CPU or hard disk). StartActions and StopActions act as de-
limiters of action sequences.

Figure 2.8 shows part of a modelled PCM repository instance for the au-
dio hosting example as introduced in Section 1.5. The figure shows defini-
tions of components, interfaces, roles and data types. A BasicComponent
“WebFrontend” has RequiredRoles pointing to Interfaces “IUserMan-
agement” and “IAudioManagement” and a ProvidedRole pointing to an
Interface “IWebFrontend”. “IAudioManagement” is provided by the
“AudioManagement” component, which in turn requires multiple other in-
terfaces. The interfaces contain signatures specifying service operations,
including input parameter names and data types, as well as a return data
type. The example contains PrimitiveDataTypes such as “string” or
“int”, as well as CompositeDataTypes “UserLoginInfo” and “AudioFile”
with inner declarations and a CollectionDataType “AudioFileList” rep-
resenting a set of audio files. Furthermore, the figure indicates that each

48

2.7 The Palladio Component Model

«Repository»
AudioHostingRepository

«provides»

«Interface»
IWebFrontend

«Signature» bool Login(UserLoginInfo info)
«Signature» AudioFile Download(int ID)
«Signature» AudioFileList DownloadCollection(IdList IDs)
...

«BasicComponent»
WebFrontend

«Interface»
IUserManagement

«Signature» bool
AuthenticateUser(UserLoginInfo info)
...

«Interface»
IAudioManagement

«CompositeDataType»
UserLoginInfo

«InnerDeclarations»
string name
string password

«requires» «requires»

«CompositeDataType»
AudioFile

«InnerDeclarations»

«CollectionDataType»
AudioFileList

«BaseType»
AudioFile

«ResourceDemandingSEFF» Login
«ResourceDemandingSEFF» Download
«ResourceDemandingSEFF» DownloadCollection
...

«BasicComponent»
AudioManagement

«Interface»
IAudioDBAccess

«Interface»
IEncoding

«Interface»
IWatermarking

«Interface»
IPackaging

«provides»

«requires»«requires»«requires»

«requires»

«Signature» AudioFile RetrieveFile(int ID)
«Signature» AudioFile RetrieveFiles(IdList IDs)
...

Figure 2.8: Repository Model for the Audio Hosting Example (Excerpt)

component contains a behavioural specification for each provided service
operation in terms of a ResourceDemandingSEFF.

Figure 2.9 continues the example by showing two of the Resource-
DemandingSEFFs specified for the audio hosting scenario. When the “I-
WebFrontend.DownloadCollection” operation of the “WebFrontend” com-
ponent is invoked, a sequence of 5 actions is executed. After the Start-
Action, an InternalAction “ParseWebRequest” represents initial re-
quest processing requiring a “CPU” ProcessingResourceType. As a
consequence, the “WebFrontend” component must be allocated to a com-
puting node with a modelled CPU resource (see Section 2.7.4). The fol-
lowing ExternalCallAction represents an invocation of the “Retrieve-

49

2 Foundations

«ResourceDemandingSEFF»
AudioManagement.RetrieveFiles

«ResourceDemandingSEFF»
WebFrontend.DownloadCollection

«ExternalCallAction»
IPackaging.CreateZipArchive

«VariableUsage»
FileList.NumberOfElements =
this.IDs.NumberOfElements

«InternalAction»
ParseWebRequest

«ParametricResourceDemand»
CPU

«ExternalCallAction»
IAudioManagement.RetrieveFiles

«VariableUsage»
IDs.NumberOfElements =

this.IDs.NumberOfElements

«InternalAction»
CreateWebResponse

«ParametricResourceDemand»
CPU

«LoopAction»
ProcessRequestedElements

«ProbabilisticBranchTransition» PerformEncoding

«BranchAction»
EncodingCases

«BranchProbability» 0.5

«ProbabilisticBranchTransition» NoEncoding

«BranchProbability» 0.5

«IterationCount» Ids.NumberOfElements

«ExternalCallAction»
IEncoding.EncodeFile

«ExternalCallAction»
IAudioDBAccess.RetrieveFile

«ExternalCallAction»
IWatermarking.WatermarkFile

Figure 2.9: Behavioural Specifications for the Audio Hosting Example (Excerpt)

50

2.7 The Palladio Component Model

Files” operation of the required “IAudioManagement” interface, speci-
fying a VariableUsage for the “IDs” input parameter of the call (see
Section 2.7.6). Another InternalAction “CreateWebResponse” and a
StopAction conclude the modelled behaviour.

The second ResourceDemandingSEFF shown in Figure 2.9 depicts the
behaviour of the “AudioManagement” component upon invocation of the
“IAudioManagement.RetrieveFiles” operation. A LoopAction “Process-
RequestedElements” iterates over all IDs given as an input to the call. Its
body behaviour includes an invocation to “IAudioDBAccess.RetrieveFile”
for retrieving the audio file from the underlying database, as well as further
invocations to trigger file encoding and watermarking. File encoding is only
to be performed if the requested bitrate for the download is smaller than the
original encoding stored in the database. In the PCM model, the encod-
ing decision is represented by a BranchAction “EncodingCases” and two
ProbabilisticBranchTransitions “PerformEncoding” and “NoEn-
coding”, each with an estimated branch probability 0.5 of being taken.
In the latter case, no encoding is performed and “NoEncoding” contains an
empty body behaviour with only a StartAction and a StopAction. Af-
ter all requested IDs have been processed, the last execution step is another
ExternalCallAction triggering the packaging of all collected audio files
into a ZIP archive that is offered for download.

2.7.3 System Model

The PCM system model captures the modelling responsibilities of sys-
tem architects. Figure 2.10 shows the involved meta-model classes. The
System is the topmost entry point to the model. It is both an Interface-
ProvidingRequiringEntity and a ComposedStructure. The latter
provides the ability to instantiate RepositoryComponents through As-
semblyContexts and to to connect these instances through Assembly-
Connectors. The connectors associate component instances through their

51

2 Foundations

System

ComposedProvidingRequiringEntity

InterfaceProvidingRequiringEntity

ComposedStructure

AssemblyContext

1

+contexts

*

Connector

1

+connectors *

CompositeComponent

*

+providingContext 1

*

+requiringContext 1

SpecifiedQoSAnnotation

1

+annotations*
Signature

*
+signature 1

Role

*

+role 1

ProvidedRole

1

+providedRoles *

RequiredRole

1

+requiredRoles *

*

+requiredRole1

*

+providedRole1

RepositoryComponent

*

+component

1

AssemblyConnector

Figure 2.10: PCM System Meta-Model Classes

RequiredRoles and ProvidedRoles (such that a component requiring a
certain interface is connected to another component providing this inter-
face). The system itself offers services to users or requires services from
other systems through its own required and provided roles. It can also
contain SpecifiedQoSAnnotations associating quality properties to pro-
vided or required service operations (identified by a referenced Role and
Signature). While systems represent the highest level of composition, the
corresponding meta-model concepts can also be used to express composi-
tion on lower levels through CompositeComponents, which are contained
in a PCM Repository along with BasicComponents (see Figure 2.5).

Figure 2.11 depicts a system definition for the audio hosting example.
The “AudioHostingSolution” contains 7 AssemblyContexts instantiating

52

2.7 The Palladio Component Model

«System»
AudioHostingSolution

«AssemblyContext»

WebFrontend

IWebFrontend IAudioManagement

IUserManagement

«AssemblyContext»

Audio-
Management

«AssemblyContext»

AudioCache

«AssemblyContext»

AudioDBAccess

IUserDBAccess

«AssemblyContext»

UserDBAccess

IAudioDBAccess

IEncoding

IWatermarking

IPackaging

IAudioCache

«AssemblyContext»

AudioProcessing
«AssemblyContext»

UserManagement

IEnco-
ding

Figure 2.11: System Model for the Audio Hosting Example

component types from the underlying repository model. The system pro-
vides the “IWebFrontend” Interface to its users. Calls to this interface
are served by the instantiated “WebFrontend” component, which in turn
relies on the provided services of “AudioManagement” and “UserManage-
ment”. “UserDBAccess” and “AudioDBAccess” allow for storing and re-
trieving user-related data and audio files. The “AudioProcessing” aggre-
gates encoding, watermarking and packaging functionality, and the “Au-
dioCache” enables fast audio file retrieval without accessing the database
itself. The core encoding functionality is not provided by the system itself
but by an external encoding engine upon which the system relies. In the
model, this is expressed through the system’s RequiredRole referencing
the “IEncoding” Interface.

2.7.4 Resource Environment and Allocation Models

The perceived quality of IT service execution typically not only depends
on the software layer but also on the properties of the underlying IT infras-
tructure. Therefore, PCM includes modelling constructs for a physical re-
source environment and the allocation of software components to comput-
ing nodes, as shown in Figure 2.12. This information is contributed by sys-

53

2 Foundations

ResourceEnvironment

ResourceContainer

1

+containers*

LinkingResource

1
+links*

0..1

+connectedContainers

*

ProcessingResourceSpecification

1

+resources*

CommunicationLinkResourceSpecification

1

+resource1

ProcessingResourceType

*

+resourceType1

CommunicationLinkResourceType

*

+resourceType1

AllocationAllocationContext

System

*

1

*

1

1

+contexts

*

*

1

AssemblyContext

*

+container 1

Figure 2.12: PCM Meta-Model Classes for Resource Environments and Allocations

tem deployers, as discussed in Section 2.7.1. The ResourceEnvironment
contains a set of ResourceContainers (namely, computing nodes) and
LinkingResources (network links). Each ResourceContainer hosts
physical resources declared as ProcessingResourceSpecifications
of specific ProcessingResourceTypes. A LinkingResource contains
a single CommunicationLinkResourceSpecification that references
a CommunicationLinkResourceType (such as a LAN communication
link). An Allocation maps a System to a ResourceEnvironment and
contains AllocationContexts, each of which associates an Assembly-
Context (namely, an instantiated component within the system) to a Re-
sourceContainer (namely, a computing node).

A resource environment and allocation specification for the audio host-
ing solution is shown by Figure 2.13. The software components defined
in the repository model (see Figure 2.8) and instantiated in the system
model (Figure 2.11) are distributed across two ResourceContainers

54

2.7 The Palladio Component Model

«ResourceContainer»
ApplicationServer

«ProcessingResource
Specification»

CPU

«AllocationContext»
AudioManagement

«AllocationContext»
UserManagement

«AllocationContext»
WebFrontend

«ResourceContainer»
DatabaseServer

«ProcessingResource
Specification»

HDD

«AllocationContext»
UserDBAccess

«AllocationContext»
AudioDBAccess

«LinkingResource»
LANConnection

«AllocationContext»
AudioProcessing

«AllocationContext»
AudioCache

«ProcessingResource
Specification»

HDD

«ProcessingResource
Specification»

CPU

Figure 2.13: Audio Hosting Resource Environment and Allocation

“ApplicationServer” and “DatabaseServer”, which are connected through
a LinkingResource “LANConnection”. The distribution is chosen such
that the data storage and the corresponding access functionality is sepa-
rated from the rest of the application. The modelled connection allows
for system-internal service invocations including input and return data to
be transmitted between the servers. Each server includes a “CPU” and
“HDD” (hard disk drive) ProcessingResourceSpecification allow-
ing for consumption of those resources by service execution.

2.7.5 Usage Model

The PCM offers explicit modelling constructs to express an IT system’s
usage profile and its influence on service execution. Figure 2.14 depicts the
involved meta-model constructs, which are used by domain experts (as dis-
cussed in Section 2.7.1). A UsageModel is the topmost entry point for the
specification of user behaviour. It consists of a list of UsageScenarios,
where each scenario describes a certain use case of the system. The user be-
haviour itself is captured through ScenarioBehaviours, similarly to the
specification of system behaviour through ResourceDemandingBehav-
iours (see Figure 2.7). Each ScenarioBehaviour contains a sequence

55

2 Foundations

UsageModel

UsageScenario

1

+scenarios *

ScenarioBehaviour
1

+behaviour

1

AbstractUserAction

1

+actions*+predecessor 0..1
+successor

0..1

Loop Branch Start Stop EntryLevelSystemCall

VariableUsage

0..1

+inputs

*

ProvidedRole

Signature

0..1

+role

1

0..1

+signature

1

0..1

+body

1

PCMRandomVariable

0..1

+iterationCount

1

+branchProbability : double

BranchTransition

1

+transitions*

0..1

+body1

Figure 2.14: PCM Usage Meta-Model Classes

of AbstractUserActions, referencing each other as successors and pre-
decessors. The actions represent repetition (Loop), decision (Branch),
begin and end of behaviour (Start, Stop) and invocations of system
service operations (EntryLevelSystemCall). Loops specify iteration
counts through PCMRandomVariables (see Section 2.7.6); branches con-
tain BranchTransitions with individual branch probabilities. Both loops
and branch transitions reference nested body behaviours. An Entry-
LevelSystemCall references one of the system’s ProvidedRoles and
a Signature pointing out a certain service operation; input parameter val-
ues can be determined through VariableUsages.

In the audio hosting example, two separate modes of usage are of inter-
est and modelled through individual ScenarioBehaviours, as shown in
Figure 2.15. A user session with the system may be interactive or may be
a batch request (used for automated management of stored audio contents).
Both modes are highly similar, conducting either an audio upload or down-

56

2.7 The Palladio Component Model

«ScenarioBehaviour»
InteractiveBehaviour

«EntryLevelSystemCall»
WebFrontend.Logout

«BranchTransition» CaseInteractiveUpload

«Branch»
InteractiveUploadDownloadCases

«BranchProbability» 0.1

«EntryLevelSystemCall»
IWebFrontend.Upload

«EntryLevelSystemCall»
WebFrontend.Login

«BranchTransition» CaseInteractiveDownload

«BranchProbability» 0.9

«EntryLevelSystemCall»
IWebFrontend.

Download

«ScenarioBehaviour»
BatchRequestBehaviour

«EntryLevelSystemCall»
WebFrontend.Logout

«BranchTransition» CaseBatchUpload

«Branch»
BatchUploadDownloadCases

«BranchProbability» 0.1

«EntryLevelSystemCall»
IWebFrontend.Upload

«EntryLevelSystemCall»
WebFrontend.Login

«BranchTransition» CaseBatchDownload

«BranchProbability» 0.9

«EntryLevelSystemCall»
IWebFrontend.

DownloadCollection

«VariableUsage»
IDs.NumberOfElements

= 30

Figure 2.15: Specification of User Behaviour in the Audio Hosting Example

load, surrounded by login and logout commands. The Branches “Inter-
activeUploadDownloadCases” and “BatchUploadDownloadCases” model
the decision between up- and download. Downloads are far more frequent
than uploads, with corresponding BranchTransition probabilities of 0.9
versus 0.1. The only difference between the interactive and batch modes
lies in the download case, which requests a single file in interactive mode
(invoking “IWebFrontend.Download”) and multiple files in batch mode (in-
voking “IWebFrontend.DownloadCollection”). The number of requested
files in batch mode is given through a VariableUsage (see Section 2.7.6)
and set to an estimated average number of 30.

57

2 Foundations

2.7.6 PCM Variables and Parameter Solving

An essential feature of the PCM modelling language is its ability to express
parameter properties and their propagation throughout the component-
based architecture. While the PCM does not aim at capturing all details
of the data flow through the architecture, it enables modelling those prop-
erties of service invocation inputs which have an influence on the sub-
sequent control flow and hence on the execution paths taken through the
system. Figure 2.16 shows the involved meta-model classes. Through Va-
riableUsages, EntryLevelSystemCalls and ExternalCallActions
can specify input parameter properties, and RepositoryComponents can
specify component parameter properties. These inputs can be used by
Loops and LoopActions to specify iteration counts, by GuardedBranch-
Transitions to specify branch conditions, and again by ExternalCall-
Actions to specify parameter properties depending on given input parame-
ters of the current ResourceDemandingSEFF. A VariableUsage includes
a parameter identification through an AbstractNamedReference and a
characterisation of a parameter property through a VariableCharacteri-
sation. The identification may be a VariableReference (such as “ID”
references the input parameter of the service operation “IWebFrontend.-
Download” in Figure 2.8) either on its own or combined with Namespace-
References (such as “info.name” references an inner declaration of the
input parameter “info” of “IWebFrontend.Login”). The characterisation
specifies one out of a given set of properties (such as “Value” or “Num-
berOfElements”) and provides the value of this property through a PCM-
RandomVariable. The PCMRandomVariable may be a single number, a
probability distribution or a mathematical expression, and it may contain
references to any parameter that is available in the current execution con-
text. PCM provides a dedicated Stochastic Expressions (StoEx) language
for the specification of PCMRandomVariables [Koz08].

58

2.7 The Palladio Component Model

VariableUsage

+name : string

AbstractNamedReference

NamespaceReference VariableReference

1

+reference1

1

+inner

1

VariableCharacterisation

1

+characterisations*

«Enumeration»
CharacterisationTypes

Value
Type
Structure
NumberOfElements
Bytesize

+type 1
*

PCMRandomVariable

1

+reference1

EntryLevelSystemCall

0..1

+inputs

*

ExternalCallAction

0..1

+inputs*

RepositoryComponent

1

+componentParameters

*

GuardedBranchTransition

0..1

+condition

1

Loop

0..1

+iterationCount

1

LoopAction

0..1

+iterationCount 1

Figure 2.16: PCM Meta-Model Classes for Variable Usages

In the audio hosting example, the EntryLevelSystemCall to “IWeb-
Frontend.Download-Collection” (see Figure 2.15) contains a Variable-
Usage referencing the input parameter “IDs” of the invoked service op-
eration (see Figure 2.8) and characterising its property “NumberOfEle-
ments” with the value “30”. According to the system definition (Fig-
ure 2.11, the call is served by the “WebFrontend” component and its Re-
sourceDemandingSEFF “DownloadCollection” (Figure 2.9). The Exter-
nalCallAction within this behaviour employs another VariableUsage
to propagate the value of the “NumberOfElements” property of “IDs” to
the equally named input parameter of “IAudioManagement.RetrieveFiles”.
The call is served by the “AudioManagement” component with its “Re-
trieveFiles” ResourceDemandingSEFF. The propagated input parameter
property guides the iteration count of the LoopAction “ProcessRequest-
edElements”, and it is further propagated to the “IPackaging.CreateZip-

59

2 Foundations

Archive” service operation through another VariableUsage of the corre-
sponding ExternalCallAction.

Putting all information together, it is evident that the LoopAction dis-
played in Figure 2.9 has 30 iterations, and that the invocation of “IPackag-
ing.CreateZipArchive” includes a list of 30 audio files as an input param-
eter. This is due to the fact that the system user has invoked “IWebFron-
tend.DownloadCollection” with 30 requested IDs (Figure 2.15). This re-
solving of parameter dependencies to concrete values or probability dis-
tributions throughout the modelled behavioural specifications is automated
by PCM’s tool support and a preliminary step to further model transforma-
tions and analyses. It is done by the dependency solver [Koz08], which
transforms an original PCM instance to one without any parameter depen-
dencies. The PCM-REL Markov analysis (see Chapter 5) builds upon the
output of the dependency solver.

60

3 PCM-REL Methodology

While the preceding foundations chapter has introduced a rich set of exist-
ing methodology related to IT systems and reliability, the individual dis-
cussed aspects are not yet connected and cannot be directly used for in-
tegrated IT system reliability prediction. First, basic reliability concepts
are established through the taxonomy of Avižienis et al. [ALRL04] (Sec-
tion 2.1.1). However, this taxonomy has a broad scope. It covers multiple
dependability attributes, and it does not go into the details of distinguishing
software-level and hardware-level reliability aspects. Second, the Palladio
Component Model (PCM, Section 2.7) provides a comprehensive archi-
tectural modelling language capturing software components and their be-
haviour, hardware resources and their consumption by service execution,
as well as the system’s usage profile and its influence on the control and
data flow throughout the architecture. However, the PCM does not include
any reliability-specific considerations. Finally, approaches to architecture-
based software reliability prediction (ASRP, Section 2.5) provide analysis
methods for reliability based on software architecture, but do not consider
relevant architectural factors required for supporting design decisions.

This chapter combines the discussed methodological aspects and fills the
remaining gaps, in order to create a unified methodology as a comprehen-
sive basis for PCM-REL reliability modelling and prediction. Section 3.1
develops a refined view on reliability concepts for integrated IT systems,
followed by a discussion in Section 3.2 how reliability prediction can be
embedded in a system engineering process. Section 3.3 focuses on method-
ology adoption from PCM, and Section 3.4 concludes with a discussion of
relevant degrees of freedom during reliability modelling.

61

3 PCM-REL Methodology

3.1 Reliability Concepts for Integrated IT Systems

As the discussion of reliability analyses (see Section 2.1.2) shows, hard-
ware-oriented and software-oriented reliability communities each build
upon their own failure models and related assumptions. This section devel-
ops an integrated view, capturing how service execution – from the user’s
point of view – is affected by both software-level and hardware-level fail-
ure potentials. To this end, the discussion revisits the definition of the term
“failure” and examines the interplay of the hardware and software parts
of an IT system.

In their taxonomy, Avižienis et al. [ALRL04] define a “service failure” –
of a component or system service – as “the transition from correct service
to incorrect service”, where “correct” means in accordance with the expec-
tation of the service users. The authors further state that an error becomes
a failure when it “reaches the external state” of a component or a system,
where “external” means “perceivable at the service interface”. This defi-
nition does not necessarily imply that a failure is actually perceived by a
user of the system or component service. The failure may be completely
unrecognised if no invocations of the service occur. On the other hand,
a failure may also be perceived multiple times, if the transition to incor-
rect service is permanent and multiple service invocations occur. On the
other hand, Cheung [Che80] states in his foundational ASRP publication:
“A failure is said to occur if, given the input values and specifications of
the computations to be performed by the program, the output values are ei-
ther incorrect or indefinitely delayed”. Hence, Cheung focuses on the user-
perceived effect of a transition to incorrect service, rather than the transition
itself. Many subsequent publications in the software and hardware reliabil-
ity fields use the term “failure” (and related terms such as “failure rate”
or “failure-free operation”) without clarifying these inconsistencies, which
reduces the understandability and clarity of the presentation. This problem
becomes particularly apparent if failure potentials of both the software and

62

3.1 Reliability Concepts for Integrated IT Systems

hardware dimensions shall be considered in an integrated way. Therefore,
the following discussions in this thesis distinguish between a service failure

and a failure-on-demand (FOD). The former denotes a transition from nor-
mal service to any type of degraded service; the latter is the user-perceived
effect of the transition in terms of an unwanted service invocation result.
An unwanted result is any phenomenon that deviates from the expected
course of service execution, including delivery of wrong outputs, untimely
delivery of outputs, or infinitely delayed processing.

A second prerequisite for the integrated consideration of the software and
hardware dimensions is an explicit identification of the specifics of both of
them, as well as the relations between them. Avižienis et al. introduce a
system as an “entity that interacts with other entities, i.e. other systems, in-
cluding hardware, software, humans, and the physical world with its natural
phenomena”. Furthermore, they see a system as being “composed of a set
of components bound together in order to interact, where each component
is another system, etc. The recursion stops when a component is consid-
ered to be atomic”. Hence, while providing a unified and compositional
view on all imaginable types of components, the authors do not go into
the specifics of software components as opposed to hardware components.
On the other hand, Cheung and many subsequent ASRP publications focus
purely on software components (see Section 7.1), thereby reducing the per-
spective to the software part of an IT system only. A more comprehensive
picture is given by PCM (see Section 2.7), which models an IT system as a
set of instantiated basic and composite software components, executed in a
physical resource environment. The environment includes a set of resource
containers representing computing nodes, as well as linking resources rep-
resenting network connections. Each resource container includes a set of
modelled hardware resources, and each software component is allocated to
one of the containers. During service execution, each visited software com-
ponent consumes hardware resources on its allocated container, depending
on its modelled software behaviour. The PCM semantics provide a differ-

63

3 PCM-REL Methodology

entiated IT system perspective and hence a solid foundation for integrated
reliability modelling.

Based on the refined terminology and the distinction of software and
hardware specifics, Figures 3.1 and 3.2 illustrate how system users are
affected by failure potentials on both levels. For clarity of presentation,
the discussion initially focuses on a basic configuration with a single soft-
ware component and a single supporting hardware resource only. First,
Figure 3.1 depicts software-induced FOD occurrences, caused by existing
faults in the software component’s implementation. The left-hand side of
the figure shows the software component initially providing normal ser-
vice, and a first service invocation being successfully completed. Then, the
component exhibits a service failure, changing over to degraded service.
The failure may be triggered by another service invocation, or it may be
a consequence of autonomously conducted actions of the component. If
the failure is triggered by an invocation, this invocation results in a FOD.
In the example, the resulting state of degraded service persists, and sub-
sequent service invocations result in further FODs. Generally, states of
degraded service may be temporary, or they may require a re-initialization
or restart of the component. Service invocations to degraded components
may always result in FODs, or they may just have a higher probability of
resulting in FODs. The right-hand side of the figure shows the component
again providing normal service, and a first successful service invocation. A
second invocation results in a FOD, but it does not have any consequences
on further service execution, as indicated by a third – again successful –
invocation. Typical examples for such situations are calculation errors that
produce wrong outputs but do not impact any of the component’s inter-
nal state. Technically, the component can be considered as experiencing a
service failure with a zero-time duration.

Figure 3.2 shows an extended scenario comprising both a software com-
ponent and a hardware resource, with each of them initially providing nor-
mal service. Correspondingly, a first service invocation is successfully

64

3.1 Reliability Concepts for Integrated IT Systems

success

time t

Software
Component

Service
Invocations

(software component)
service failure

failure-on-
demand

normal service degraded service

success

time t(software component)
service failure

failure-on-
demand

success

normal service normal service

failure-on-
demand

Figure 3.1: Software-induced Failures-on-Demand

success

time t

Software
Component

Service
Invocations

(hardw. res. & softw. comp.)
service failure

failure-on-
demand

normal service service outage

success

time t(hardw. res.)
service failure

sucess failure-on-
demand

normal service normal
service

normal service service outage
(availability state = NA)

Hardware
Resource

normal
service

(softw. comp.)
service failure

service outage
(availability state = NA)

Figure 3.2: Hardware-induced Failures-on-Demand

completed. Then, the hardware resource exhibits a service failure and
changes to a state of degraded service. Following the well-established hard-
ware failure model as presented in Section 2.2, the service degradation cor-
responds to a service outage, with the resource being in availability state
NA. In the example, the execution of the software component depends en-
tirely on the availability of the resource; hence, the resource failure instantly
causes a corresponding software component service failure. Such a situa-
tion can occur if a central hardware resource of a computing node, such as a
CPU, is strictly required for the operation of the node. Any further service
invocations to the component result in hardware-induced FODs until the

65

3 PCM-REL Methodology

underlying hardware resource is repaired or exchanged by a new one. The
right-hand side of the figure depicts both the component and the resource
providing normal service again, as well as a first successful service invoca-
tion. Here, the execution of the component does not strictly depend on the
resource, and an occurring resource service failure does not have an imme-
diate impact on the component. Examples include data storage devices that
may become unavailable while the overall computing node keeps operat-
ing. Service invocations during the service outage of the resource may fail
or may be successful, depending on the question if access to the resource
is required by the specific service operation. If so, the invocation results in
a hardware-induced FOD, and the component can be considered as experi-
encing a service failure with a zero-time duration. Alternatively, the com-
ponent may be able to mask the resource failure and, in spite of the resource
being unavailable, provide service as expected (not shown in the figure).

A further extended scenario of an IT system with multiple software com-
ponents and hardware resources can be based on the discussion of a “funda-
mental chain of dependability and security threats” introduced by Avižienis
et al. in their survey. In short, the authors state that if a system component
C1 receives service from another system component C2, a service failure of
C2 constitutes a fault for C1 and can eventually result in a service failure
of C1. Applying this principle to FOD occurrences and software compo-
nents, a service invocation to a software component S1 can result in a FOD
if the service execution of S1 includes a service invocation of another com-
ponent S2, and if this invocation results in a FOD (alternatively, S1 may
mask the FOD of S2 and still provide service as expected). In this sense,
FOD occurrences can be “propagated” along a hierarchy of service invoca-
tions. Furthermore, each software component can require one or multiple
hardware resources for its service execution, and each service failure of a
required resource can cause FOD occurrences on the software level.

Considering all discussed scenarios, both software components and hard-
ware resources may exhibit service failures. For software components, ser-

66

3.2 A Reliability-Aware System Engineering Process

vice failures may not have any impact on further execution, or they may
lead to temporary or permanent service degradations or outages. Service
failures of hardware resources lead to service outages, making the resources
unavailable until repair or replacement. Service invocations can result in
FODs as a consequence of both software-level and hardware-level service
failures. FOD occurrences can be propagated along a service invocation
hierarchy involving multiple software components, until they reach the sys-
tem border and are perceived as a FOD by a system user. Reliability mod-
elling as done by PCM-REL builds upon this integrated view of IT system
reliability (see Section 4.1).

3.2 A Reliability-Aware System Engineering Process

While many ASRP publications claim that their presented approaches sup-
port architectural decisions during system design stages, they typically
do not discuss how reliability predictions can be embedded in and used
throughout a system engineering process. Yet, such a discussion is im-
portant to give evidence that software architects can actually benefit from
applying the approaches. Therefore, this section outlines how a system
engineering process can be enriched by continuous IT system reliability
prediction as provided by PCM-REL.

System Provisioning
Deployment / Configuration

System
Operation

System Development
Implementation / Test

System Design
Reliability Modelling

and Evaluation

Design
decisions

Target
architecture

System
parameters

De facto
architecture

Figure 3.3: System Engineering Process

67

3 PCM-REL Methodology

Figure 3.3 gives an overview of the envisioned process. As the figure
shows, the creation of the final product involves two major activities, name-
ly system design and system development. Without restricting the scenario
to any single process type or definition, the figure only assumes that both
activities run in parallel (with the main focus shifting over time from de-
sign to development), inform each other, and are iterative each for itself.
Design, which includes reliability modelling and evaluation activities, in-
forms development with design decisions and the definition of a target ar-
chitecture. Development includes implementation and test as its main ac-
tivities and delivers (potentially re-engineered) information about the ex-
isting or de facto architecture, as well as estimations or measurements for
a variety of system parameters. The parameters refer to usage properties
of the system, included failure potentials, as well as system-internal be-
haviour and state properties. Information about software and hardware fail-
ure potentials can be derived using methods such as the ones described in
Sections 2.2 and 2.3.

Within a single system design iteration, the provided inputs are used for
reliability modelling, creating a set of architectural candidates for the sys-
tem under study. Multiple candidates are created to reflect possible de-
sign alternatives or to vary system parameter values, accounting for ex-
isting uncertainties during their estimation. Reliability evaluation analy-
ses all created candidates to determine their expected reliabilities. Based
on the obtained prediction results, design alternatives can be ranked, sup-
porting the required design decisions and providing a recommended target
architecture. If the results are not significant enough to allow for decision-
making, the scope of considered design alternatives can be increased by
creating and evaluating new candidates. If the results violate given relia-
bility requirements, new candidates can be created with the specific goal
to improve reliability compared to the previously considered candidates.
Reliability-improving measures include decreasing individual failure po-
tentials (for example, employing intensively tested software components or

68

3.2 A Reliability-Aware System Engineering Process

high-availability hardware resources) and introducing fault tolerance mech-
anisms throughout the architecture. Other architectural changes such as ad-
justed component configurations or changed allocations of components to
computing nodes may have reliability-improving effects as well. The pro-
cess of creating and evaluating architectural candidates continues until sat-
isfactory results are available and stable recommendations can be derived.
Being based on PCM, the PCM-REL approach proposed in this thesis of-
fers a design-oriented modelling language, strong capabilities for reusing
model artefacts and comprehensive tool support, thereby enabling efficient
handling of system design iterations.

As the number of performed design and development iterations increas-
es, the amount of available information grows. The target architecture be-
comes more stable, complete and detailed. At the same time, the infor-
mation delivered by development becomes more reliable and exact. This
fruitful exchange is only possible if reliability modelling and prediction ac-
companies the development as a continuous design activity. If reliability is
only considered late in development, it may not be feasible or possible any
more to apply necessary but fundamental changes to the architecture. Once
the implementation is finalized, the system can be provisioned (i.e. de-
ployed and configured) and brought into operation. Being operating in the
field, the system may still undergo revisions for fault elimination and evo-
lution. These revisions again involve design and development activities. At
this stage, existing reliability measurements and experiences regarding sys-
tem usage and behaviour in the field may constitute a valuable additional
input to reliability modelling and prediction.

Apart from reliability considerations, other quality attributes such as per-
formance, safety and security also influence design decisions, and trade-
offs between the attributes may arise. Furthermore, reliability-improving
measures are typically associated with monetary costs and have to be as-
sessed against these costs. While trade-off analyses and economical con-
siderations are not in the focus of the thesis itself, the proposed engineer-

69

3 PCM-REL Methodology

ing process can be augmented to take these aspects into account. To this
end, an extended system design iteration creates not only reliability-specific
models of architectural candidates, but also other representations suited
for evaluating further quality attributes and associated costs. In the case
of PCM-REL (which is based on the existing PCM modelling and eval-
uation capabilities), it is even possible to create one common model and
evaluate this model with respect to reliability, performance [BKR09] and
costs [Koz11]. Furthermore, automated optimization can be conducted to
cope with a high number of possible candidates within a large design space,
and existing trade-off relations are presented to software architects as a ba-
sis for decision-making [Koz11]. Hence, reliability prediction as done by
PCM-REL is well suited to be embedded in an overall engineering process
considering reliability and other system quality attributes.

3.3 Adoption of PCM Methodology by PCM-REL

This section explicitly discusses methodological aspects of the original
PCM approach [BKR09] that have been developed from a performance
point of view but are also relevant and reused in the context of this the-
sis. The discussion shows why these aspects are relevant with respect to
reliability, and how PCM-REL benefits from their adoption. The discussed
aspects include (a) the explicit modelling of the different factors influenc-
ing service quality, (b) the separation of modelling concerns along the lines
of multiple developer roles, (c) the representation of component behaviour
through a high-level service effect specification, and (d) the concept of pa-
rameter dependencies and their solving.

Regarding the quality influence factors (a), PCM distinguishes between
four major influences on the quality of a component service, namely its im-

plementation, usage, quality of required services, and quality of the physi-
cal execution environment. These four factors are also essential when rea-
soning about reliability. The implementation of a component service de-

70

3.3 Adoption of PCM Methodology by PCM-REL

fines its behaviour, which may result in a FOD upon service execution,
caused by software faults contained in the implementation. The service us-
age governs the execution paths taken through the component’s implemen-
tation and influences the progression of the component’s software state.
The failure potential of required services affects the service under study,
as it depends on the results of the external service invocations. Finally, un-
available hardware resources may prevent a successful service execution (as
discussed in Section 3.1), which makes the execution environment a further
influencing factor to the component’s service reliability. By explicitly tak-
ing all these factors into account, the developed PCM-REL approach allows
for a differentiated view upon service reliability and its influencing factors,
enabling well-informed design decisions for the system under study.

The separation of modelling concerns (b) provided by PCM as discussed
in Section 2.7.1 is an essential ingredient to supporting a truly distributed
software development process. It is a feature not discussed by existing
ASRP approaches (see Section 7.4); hence, their application is essentially
limited to scenarios where a single role possesses or collects all required
information for creating the entire architectural model. In contrast, the de-
veloped PCM-REL approach adheres to the separation of concerns. All
developed meta-model extensions are included in such a way that each de-
veloper role contributes only the information that is available from its own
specific perspective (see Chapter 4).

The PCM behavioural specifications (c) (or ResourceDemandingSEFFs
as described in Section 2.7.2) represent high-level component behaviour,
including control flow decisions, external service invocations and the con-
sumption of hardware resources. They abstract from component-internal
computations and state dependencies. Compared to existing ASRP ap-
proaches building upon the Cheung model (Section 2.5), these behavioural
specifications allow for more accurate modelling of possible control flow
paths and are not affected by the Markov assumption regarding inter-
component control transfer. PCM-REL reuses the capabilities for its be-

71

3 PCM-REL Methodology

havioural specifications and extends them with reliability-specific con-
structs and annotations, thereby also providing highly flexible modelling
capabilities for failure potentials included in the control flow (see Sec-
tion 4).

Parameter dependencies (d) are vital to the PCM (see Section 2.7.6).
They are a prerequisite to the separation of modelling concerns between
component developers and domain experts. Furthermore, their automatic
solving [Koz08] releases software architects from the burden to explicitly
specify the usage profile of each component within an architecture, and
instead automatically deduces all component usage profiles from a given
system-level usage profile. The thesis takes full advantage of this concept
and integrates the dependency solver into the prediction workflow as pre-
sented in Section 5.1, in order to perform the Markov analysis based on a
PCM-REL instance with solved parameter dependencies.

3.4 Degrees of Freedom for Reliability Modelling

This section discusses further requirements for reliability prediction in
terms of relevant modelling degrees of freedom. Even though a context
for reliability prediction is given through the envisioned reliability-aware
system engineering process (see Section 3.2), concrete use cases may vary
significantly in their characteristics. The system under study may vary in
its size and complexity, and the knowledge about the system may be de-
tailed or coarse. Existing ASRP publications rarely discuss this issue. In
order to adapt to the specifics of each use case, relevant degrees of freedom
include (a) the modelling granularity, (b) the modelled system fragment,
(c) the distinction of FOD types, and (d) the flexible modelling of points
of failure. The PCM-REL approach developed in this thesis offers all of
these degrees of freedom.

Regarding the modelling granularity (a), reliability modelling should of-
fer a hierarchical view on a software component architecture, with com-

72

3.4 Degrees of Freedom for Reliability Modelling

ponents being compositions of other components. Thus, a system can first
be modelled very coarse-grained, as an assembly of top-level components.
This model can stepwise be refined by adding the inner structure of higher-
level components being composed of lower-level components. Typically,
this process also leads to a refinement of the involved interfaces and be-
havioural specifications. Modellers are free to choose the level of detail
when modelling the system under study. This level of detail may also vary
for different parts of the architecture, or for different stages of a surrounding
system engineering process. While a higher level of detail rises the mod-
elling effort and requires more system knowledge, it also generally yields
a higher quality (accurateness and significance) of the results. Through the
concept of CompositeComponents (see Section 2.7.2), PCM-REL sup-
ports hierarchical software architecture modelling – a feature used by both
case studies reported in the thesis (see Chapter 6).

A further degree of freedom refers to the modelled system fragment (b).
To keep modelling efforts within feasible bounds, modellers should be able
to determine system cuts that are most relevant to the reliability analysis,
and limit the modelling scope to these cuts. A vertical cut takes advantage
of the fact that under a certain system usage, only certain parts of the system
(such as a subset of application-level components and their services) are
active and can contribute to the system’s failure potential. Limiting the
model to those parts reduces its reusability with respect to usage profile
changes, but also reduces the modelling effort. A horizontal cut refrains
from explicit modelling of supporting software layers (such as middleware
or operating systems). However, these layers are still active and have to
be taken into account in an implicit way (e.g. by integrating the failure
potential of the operating system into application-level FOD probabilities).
Such implicit modelling reduces effort, but also the reusability with respect
to changes in supporting software layers.

Another desirable degree of freedom is the specification of custom FOD
types (c). While most ASRP approaches only consider a generic “failure”

73

3 PCM-REL Methodology

situation capturing any deviation from service as expected (see Section 7.4),
failure situations may actually be categorized according to various dimen-
sions (some of which are discussed in Section 2.1.1). Modellers should be
free to determine a use case specific set of relevant FOD types. A more
differentiated distinction of FOD types requires more detailed knowledge
about the system under study (such as individual FOD occurrence proba-
bilities), but also yields more differentiated prediction results (such as user-
perceived FOD probabilities per FOD type). PCM-REL allows for specify-
ing custom FOD types for each system under study (see Section 4.2).

Finally, modellers should be free to flexibly specify a relevant set of
potential points of failure (PPOF) (d) throughout the architectural model.
While the Cheung model (Section 2.5) and related approaches assume a
strict 1 : 1 relationship between software components and PPOFs by anno-
tating each component with a “per-visit” failure probability, modellers may
want to specify failure potentials of different components with different
granularities. A more fine-grained PPOF modelling requires more detailed
knowledge about the system’s failure potentials but tends to yield more ac-
curate predictions. The modelling of component behaviour with PCM-REL
allows for specifying a variable number of PPOFs visited during a compo-
nent’s service execution (see Section 4.1).

74

4 Modelling IT Systems with PCM-REL

This chapter discusses how to create reliability-tailored abstractions of IT
systems using PCM-REL. The discussion focusses on the aspects that are
specific to system reliability, and hence on the distinguishing modelling
features of PCM-REL compared to PCM. Section 4.1 defines the concrete
meaning of system reliability in the context of the approach and gives an
overview over the involved modelling concepts. The following sections
from 4.2 to 4.7 discuss those concepts in detail. They introduce the cor-
responding meta-model constructs, along with an explanation of their se-
mantics, design rationales and examples. The examples generally refer to
the audio hosting service as introduced in Section 1.5, and show how the
model of the service as presented throughout Section 2.7 can be extended
to account for all relevant reliability-specific aspects. Section 4.8 concludes
the chapter with a short presentation of the implemented tool support.

4.1 Overview

Summarizing the central theme of the thesis, the proposed approach pre-
dicts the reliability of IT systems based on their component-based software
architectures, represented through fully specified PCM-REL instances, as
the probability of successful service execution. More concretely, the main
output of the approach is the probability of a successful run through a given
usage scenario, as part of a PCM-REL usage model (see Section 2.7.5). A
usage scenario run is successful if each system service invocation during
the run finishes without any system-level failure-on-demand (FOD). There
may be FODs within the system during service execution, but they must be

75

4 Modelling IT Systems with PCM-REL

handled before they reach the system border. If the usage model contains
multiple usage scenarios, reliability prediction is conducted independently
for each scenario.

In the following, the concept of a successful run through a usage sce-
nario is further illustrated by taking a closer look at the specifications of
user and system behaviour in PCM, and by describing how these speci-
fications – together with the PCM-REL-specific modelling extensions –
form the basis of the reliability evaluation. The behavioural specifica-
tions comprise the ScenarioBehaviours of the usage model and the
ResourceDemandingSEFFs of the repository model (Sections 2.7.5 and
2.7.2). The given assembly of BasciComponents to CompositeCompo-
nents and to the System allows for the aggregation of the behavioural
specifications to an overall behavioural view that integrates the user be-
haviour (i.e. the user actions in the involved ScenarioBehaviours) and
the system behaviour (i.e. the system actions in the involved Resource-
DemandingBehaviours). This view constitutes a tree of nested action
sequences. The topmost action sequence begins with the Start of the
ScenarioBehaviour referenced by the considered UsageScenario and
ends with its Stop. Loops and Branches of system users contain one or
several nested action sequences. An EntryLevelSystemCall points to a
ResourceDemandingSEFF (i.e. the behavioural specification that belongs
to the corresponding Signature within the executing BasicComponent)
as its nested action sequence. Within the system, LoopActions, Branch-
Actions, ForkActions, RecoveryBlockActions (see Section 4.7) and
ExternalCallActions contain nested action sequences.

As an example, Figure 4.1 depicts parts of the behavioural view of the
audio hosting service, based on the behavioural specifications shown in
Figures 2.9 and 2.15. The figure integrates the user behaviour in batch
mode with the relevant system behaviour, showing not all individual ac-
tions but only the set of nested action sequences. The “BatchRequest-
Behaviour” constitutes the topmost sequence. It includes two Entry-

76

4.1 Overview

«ScenarioBehaviour»
BatchRequestBehaviour

«ScenarioBehaviour»
CaseBatchUpload

«ScenarioBehaviour»
CaseBatchDownload

«ResourceDemandingSEFF»
WebFrontend.Login

«ResourceDemandingSEFF»
WebFrontend.Logout

«ResourceDemandingSEFF»
WebFrontend.Upload

«ResourceDemandingSEFF»
WebFrontend.DownloadCollection

«ResourceDemandingSEFF»
AudioManagement.RetrieveFiles

«ResourceDemandingSEFF»
Packaging.CreateZipArchive

«ResourceDemandingBehaviour»
ProcessRequestedElements

«ResourceDemandingSEFF»
AudioDBAccess.RetrieveFile

«ResourceDemandingSEFF»
Watermarking.WatermarkFile

«Res.Dem.Beh.»
PerformEncoding

«Res.Dem.Beh.»
NoEncoding

«ResourceDemandingSEFF»
Encoding.EncodeFile

Figure 4.1: Behavioural View Example (Excerpt)

LevelSystemCalls and a Branch with two BranchTransitions (see
Figure 2.15). Hence, it has a total of four nested sequences, namely the
ResourceDemandingSEFFs “WebFrontend.Login” and “WebFrontend.-
Logout” and the body behaviours of the “CaseBatchUpload” and “Case-
BatchDownload” BranchTransitions. Each of these sequences has other
nested sequences in turn. For example, the “CaseBatchDownload” be-
haviour includes an EntryLevelSystemCall referencing the “IWebFront-
end.DownloadCollection” service operation and a corresponding nested
ResourceDemandingSEFF “WebFrontend.DownloadCollection”. In the
example, further action sequences are included in the view by External-
CallActions (such as the call to “IAudioManagement.RetrieveFiles”), as
well as body behaviours of LoopActions (such as the “ProcessRequest-
edElements” loop) and ProbabilisticBranchTransitions (such as the

77

4 Modelling IT Systems with PCM-REL

transitions of the “EncodingCases” branch). The tree reaches its leaves
when an action sequence contains no further nested sequences (such as the
body behaviour of the “NoEncoding” transition). Notice that any action
sequence specified in the architectural model may occur at multiple places
in the tree, if the usage scenario execution includes invocations of the same
component service operations at different points in the control flow. For ex-
ample, if the batch mode scenario included multiple invocations of the “En-
codeFile” service operation of the “Encoding” component, the behavioural
view would contain multiple occurrences of the corresponding action se-
quence (as well as all nested sequences)1.

Each run through a usage scenario proceeds along the action sequences
of its corresponding behavioural view, beginning with the Start of the top-
most ScenarioBehaviour and ending with its Stop. Within each action
sequence, actions are visited according to their specified order. Nested ac-
tion sequences are processed according to the specified PCM behavioural
semantics (see Section 2.7.2). For example, the invoked ResourceDe-
mandingSEFF of an ExternalCallAction is completely executed before
the control flow moves on to the successor action of the call. The body
behaviour of a LoopAction is executed multiple times, according to the
specification of loop iteration counts. In case of a BranchAction, exactly
one of the given body behaviours is executed. The nested behaviours of
a ForkAction are all executed in parallel. Overall, the behavioural view
specifies a set of possible sequences of system service invocations and a
set of possible execution paths for each such invocation. The occurrence
probabilities of all invocation sequences and execution paths are implic-
itly given through probabilistic annotations to control flow constructs (such
as loop iteration counts and branch transition probabilities). Each usage

1Multiple occurrences of an action sequence representing a certain component service op-
eration (namely, a certain ResourceDemandingSEFF) are not unified in the behavioural
view, because each invocation of the service operation may have different characterisations
of input parameter properties, leading to different behaviours during service execution.

78

4.1 Overview

Category Action Type Failure Cause Quantification of
Failure Potential

Potential Point-of-
Failure (PPOF)

InternalAction

system-internal software faults FOD probabilities

unavailable system-internal hardware
resources

MTTF / MTTR values

ExternalCallAction

system-external service failures FOD probabilities

system-internal network communication faults FOD probabilities

unavailable system-internal hardware
resources

MTTF / MTTR values

Point-of-Recovery
(POR)

RecoveryBlockAction (recovers from all failure types)

160 mm = 1.0

Table 4.1: PCM-REL Points of Failure and Recovery

scenario run selects one invocation sequence and one execution path per
invocation, according to the given occurrence probabilities.

Along the execution paths of a service invocation, certain types of ac-
tions may exhibit local FOD occurrences (i.e. their execution may not
finish successfully or lead to unexpected behaviour and unwanted results).
The term “local” indicates that the FOD is initially internal to the executing
software component and not instantly perceived at the component’s bor-
der. Instances of these action types constitute the potential points of failure

(PPOF) of the service execution. Table 4.1 summarizes PPOFs and cor-
responding failure causes (which will be discussed in greater detail in the
following sections). As the table shows, service execution may fail either at
InternalActions or at ExternalCallActions. Other action types have
their purpose in determining the control and data flow, but do not represent
PPOFs. InternalActions (as introduced in Section 2.7.2) represent the
computations along the execution path and may fail due to software faults
in the implementation (Section 4.3) or due to unavailable required hardware
resources (Section 4.4). ExternalCallActions involve inter-component
communication. If they invoke service operations provided by components
on other ResourceContainers within the system (Section 4.5), they may
exhibit FODs due to network transmission failures or due to unavailable
resources required for the operation of the target containers (Section 4.4).

79

4 Modelling IT Systems with PCM-REL

Component-level
Failure-on-Demand

System-level
Failure-on-DemandComponent level

reached?

System level
reached?

yes

yes

no

no

Propagated
Failure-on-Demand

Local
Failure-on-Demand

Component level
reached?

yes

no

Figure 4.2: PCM-REL Failure-on-Demand Propagation

If they represent invocations of system-external services, they may exhibit
FODs due to failures of these (Section 4.6).

Based on the considerations of Section 3.1, PCM-REL defines a standard
“propagation” of FOD occurrences. In contrast to many existing ASRP
approaches (Section 7.4), failure potentials are not associated with visits
to software components but with individual actions that represent PPOFs
within the behavioural view. Correspondingly, FOD occurrences are prop-
agated along nested action sequences rather than component service invo-
cations only. Figure 4.2 illustrates this principle. A local FOD occurrence
at an action representing a PPOF leads to an FOD of the surrounding action
sequence in the behavioural view, which is in turn a propagated FOD oc-

currence of the action pointing to this sequence (such as a BranchAction
pointing to the action sequence of a contained ProbabilisticBranch-
Transition). The FOD propagates upwards the hierarchy of nested action
sequences, until it reaches the component-level ResourceDemandingSEFF
and becomes a component-level FOD occurrence. After that, the failure
propagates to the calling component and further upwards, until it finally
reaches the system border as a system-level FOD occurrence. The only
way to interrupt this propagation chain is a RecoveryBlockAction situ-
ated within the hierarchy that handles the FOD occurrence and prevents it
from further propagation, thereby representing a point of recovery (POR,

80

4.2 Failure-on-Demand Types

see Table 4.1 and Section 4.7). In the audio hosting example, a local FOD
occurrence at the InternalAction “ParseWebRequest” (see Figure 2.9)
leads to an FOD of the surrounding ResourceDemandingSEFF and thus to
a component-level FOD of the “WebFrontend” component, which in turn
constitutes a system-level FOD occurring at the EntryLevelSystemCall
to “IWebFrontend.DownloadCollection” within the batch mode usage sce-
nario (assuming the behavioural view as shown in Figure 4.1). In conclu-
sion, each FOD occurrence along the service execution path is either han-
dled within the hierarchy of nested action sequences or leads to a system-
level FOD and thus ultimately to a failed usage scenario run.

As Table 4.1 shows, the failure potentials of individual PPOFs are given
as an input to the approach in terms of software and network FOD probabil-
ities, as well as MTTF and MTTR values for hardware resources. Based on
this information, the reliability evaluation (Chapter 5) determines the prob-
abilities of system-level FOD occurrences, and ultimately the envisioned
success probability of a usage scenario run. The following sections discuss
all reliability-specific modelling constructs in detail.

4.2 Failure-on-Demand Types

In the conception of PCM-REL, any FOD occurring during service exe-
cution is of a certain FOD type. The notion of FOD types allows for a
differentiated reliability evaluation calculating the occurrence probability
of each FOD type rather than the overall FOD occurrence probability only
(see Section 5.1.1). Moreover, when specifying RecoveryBlockActions
as PORs in the control flow, it is important to determine the exact types of
FODs that can be handled by these (see Section 4.7). The differentiation
of multiple FOD types is one of the distinguishing features of PCM-REL
compared to many other ASRP approaches that only consider a single type
of failure (see Section 7.4).

81

4 Modelling IT Systems with PCM-REL

FODType

SoftwareInducedFODType HardwareInducedFODType

+id : string
+entityName : string

Entity

Repository
1

+failureTypes

*

ProcessingResourceType

*
+resourceType

1

NetworkInducedFODType

CommunicationLinkResourceType

*
+resourceType

1

Figure 4.3: Meta-Model for Failure-on-Demand Type Specifications

The PCM-REL meta-model explicitly captures FOD types through corre-
sponding meta-model classes, as shown in Figure 4.3. On the highest level,
an abstract class FODType inherits from the common Entity class, thereby
gaining an entityName and an id. FODTypes are specified within and be-
long to a PCM-REL Repository. Like data types, they constitute a com-
mon ground that is shared by all component developers contributing to the
Repository. PPOFs and PORs within behavioural specifications can only
refer to FODTypes that have been specified in the Repository.

The first level of differentiation below the general FODType is given
through the SoftwareInducedFODType, the HardwareInducedFODType
and the NetworkInducedFODType. These classes correspond to the main
failure dimensions in IT systems, and they are used to describe FOD occur-
rences caused by software-level, hardware-level and network-level failure
potentials, respectively. The distinction of dimensions assures that each
PPOF can only be associated with appropriate failure causes as shown in
Table 4.1. Moreover, prediction results show which dimension contributes
to the overall failure potential of the system to what extend, thereby deliv-
ering valuable additional information to system designers.

Within each of the three categories, concrete FOD types are specified
through instantiating the meta-model classes. For SoftwareInducedFOD-

82

4.2 Failure-on-Demand Types

:SoftwareInducedFODType
entityName = WebRequestFailure

:SoftwareInducedFODType
entityName = CacheAccessFailure

:SoftwareInducedFODType
entityName = DBQueryFailure

:HardwareInducedFODType
entityName = CPUFailure

:HardwareInducedFODType
entityName = HDDFailure

:NetworkInducedFODType
entityName = LANFailure

:ProcessingResourceType
entityName = CPU

:ProcessingResourceType
entityName = HDD

:Comm.LinkResourceType
entityName = LAN

:SoftwareInducedFODType
entityName = StorageAccessFailure

:SoftwareInducedFODType
entityName = EncodingFailure

:SoftwareInducedFODType
entityName = WatermarkingFailure

:SoftwareInducedFODType
entityName = PackagingFailure

:Repository
entityName = AudioHostingRepository

Figure 4.4: Failure-on-Demand Type Specifications in the Audio Hosting Example

Types, system designers are free to decide about the level of modelling
granularity (see Section 3.4). They may use the FOD type instantiation
to create sub categories as they wish. Examples for possible sub cate-
gories include the failure-causing software layer (e.g. application-level,
middleware, operating system), the failing task (e.g. wrong computation
result, synchronisation error) and the consequence of failure (e.g. mi-
nor, critical, catastrophic). Alternatively, instantiated failure types may
be specific to the system under study (such as an audio file encryption
failure in the audio hosting example). HardwareInducedFODTypes are
restricted to the ProcessingResourceTypes that have been defined in
the model; each HardwareInducedFODType describes a FOD occurrence
caused by an unavailable hardware resource of the corresponding type.
Similarly, a NetworkInducedFODType is used to describe network trans-
mission failures due to unreliable LinkingResources of the associated
CommunicationLinkResourceType.

83

4 Modelling IT Systems with PCM-REL

Figure 4.4 shows the specified FOD types for the audio hosting example.
The model distinguishes several SoftwareInducedFODTypes according
to the main tasks during the upload and download of audio files, namely the
processing of user requests through the web interface (“WebRequestFail-
ure”), the audio processing (“EncodingFailure”, “WatermarkingFailure”,
“PackagingFailure”), as well as the data storage and retrieval (“DBQuery-
Failure”, “StorageAccessFailure”, “CacheAccessFailure”). Moreover, the
Repository contains two HardwareInducedFODTypes “CPUFailure”
and “HDDFailure”, according to the CPU and HDD resources contained
in the audio hosting ResourceEnvironment (see Section 2.7.4). Finally, a
NetworkInducedFODType “LANFailure” represents communication fail-
ures of the modelled “LANConnection”.

4.3 Software Failure Potentials

This section describes how software-level failure potentials are specified
within a PCM-REL architectural model. These failure potentials stem from
faults that are included in the implementation of the software components
involved in service execution. A fault may be a bug introduced by a pro-
gramming error, the realization of a flawed requirements specification, or a
natural limitation of a computational procedure (such as a virus detection
algorithm with an imperfect success rate). As software failures are sub-
ject to multiple types of uncertainty (see Section 2.3), the thesis follows
the path of the Cheung model (Section 2.5) and many other subsequent
ASRP approaches by using probabilistic abstractions in terms of indepen-
dent “per-visit” failure probabilities to specify software failure potentials.
For clarity of presentation, the thesis denotes these as failure-on-demand
(FOD) probabilities (see Section 3.1).

While the Cheung model associates each software component in the ar-
chitecture with one FOD probability, this method may be too inflexible
in practice. The specification of potential points of failure (PPOF) during

84

4.3 Software Failure Potentials

service execution is associated with computational tasks rather than com-
ponent borders. Some components carry out many individual tasks; other
components provide only thin wrappers for existing functionality. There-
fore, the thesis allows for a flexible specification of PPOFs by assigning
FOD probabilities to individual InternalActions, which represent any
data processing or other computational steps during service execution (see
Section 2.7.2).

InternalAction

+FODProbability : double

FODOccurrenceDescription

SoftwareInducedFODType

0..1

+FODOccurrenceDescriptions

*

*
+FODType1

AbstractActionResourceDemandingBehaviour

0..1

+steps

*

ResourceDemandingSEFF

InternalFODOccurrenceDescription

Figure 4.5: Meta-Model for Software Failure Potentials

Figure 4.5 shows the PCM-REL meta-model constructs involved in the
specification of software failure potentials. Component developers specify
such potentials through InternalFODOccurrenceDescriptions, which
inherit from the abstract base class FODOccurrenceDescription. These
descriptions are associated with InternalActions, which thereby be-
come PPOFs within the action sequence of a ResourceDemandingBe-
haviour, or in particular, a ResourceDemandingSEFF. Each Internal-
FODOccurrenceDescription includes a FODProbability between 0.0
and 1.0 and references a SoftwareInducedFODType, specifying that a
software-induced FOD of the given type may occur with the given proba-
bility upon the execution of the associated InternalAction. If an Inter-
nalAction contains multiple InternalFODOccurrenceDescriptions,

85

4 Modelling IT Systems with PCM-REL

then each description must reference another SoftwareInducedFODType.
The InternalAction either executes successfully or results in one of the
specified SoftwareInducedFODTypes. The cumulated FOD probability
of all InternalFODOccurrenceDescriptions of an InternalAction
represents its overall software failure potential and must not exceed 1.0.
If the InternalAction does not contain any InternalFODOccurrence-
Descriptions, it may only fail due to unavailable required hardware re-
sources (see Section 4.4).

The association of software FOD probabilities with InternalActions
allows for specifying a component service operation as a sequence of
executed PPOFs. The sequence is structured through control flow con-
structs such as BranchActions and LoopActions, with branch transition
probabilities and loop iteration counts specified depending on properties
of service invocation input parameters and component configuration pa-
rameters. The individual InternalActions are atomic entities within
the behavioural specification; no details about the represented code are
revealed, and no context information is considered when evaluating the
associated FOD probabilities. Modellers are free to adjust the granular-
ity of the behavioural specification such that independent estimates for all
InternalFODOccurrenceDescriptions of each InternalAction can
feasibly be obtained. Alternatively, if the model shall distinguish PPOFs at
fine granularity but only coarse-grained estimates are available, individual
PPOFs can be aggregated to groups, and estimations can be done for the
groups rather than the individual PPOFs. In all cases, existing uncertainties
with respect to input estimations can be tackled by sensitivity analyses (as
done for the audio hosting service in Section 6.4.2). The estimates them-
selves can be determined through methods such as the ones discussed in
Section 2.3. In the thesis, the Astaro ASG case study (Section 6.5) includes
the estimation of software FOD probabilities for an industrial IT system
based on existing qualitative and statistical failure data.

86

4.3 Software Failure Potentials

:BasicComponent
entityName = WebFrontend

:InternalAction
entityName = ParseWebRequest

:InternalFODOccurrenceDescription
FODProbability = 1.0E-8

:SoftwareInducedFODType
entityName = WebRequestFailure

:Signature
entityName = DownloadCollection

:ResourceDemandingSEFF

Figure 4.6: A Software Failure Potential in the Audio Hosting Example

To illustrate the specification of software failure potentials, Figure 4.6
shows how the “DownloadCollection” service operation in the audio host-
ing example (see Figure 2.9) is enriched by a corresponding annotation.
The BasicComponent “WebFrontend” references a ResourceDemand-
ingSEFF that describes the behaviour of the component when “Download-
Collection” is invoked. Within the action sequence of the ResourceDe-
mandingSEFF, there is an InternalAction “ParseWebRequest” which
represents the initial processing of user requests. To express that this
processing may lead to a FOD occurrence of type “WebRequestFailure”
(see Figure 4.4), an InternalFODOccurrenceDescription is added to
the InternalAction that references this FOD type. A FOD probabil-
ity of 10−8 indicates that a visit to “ParseWebRequest” during service
execution is expected to result in a “WebRequestFailure” in one out of
10−8 cases on average. Overall, the audio hosting model contains 19
system-internal software failure potentials, each associated with an indi-
vidual InternalAction and mapped to the SoftwareInducedFODTypes
as shown in Figure 4.4. The corresponding FOD probabilities are set to
10−8 (for InternalFODOccurrenceDescriptions referring to “WebRe-
questFailures”) or 10−6 (for other FOD types). In the example, illustrative

87

4 Modelling IT Systems with PCM-REL

FOD probabilities are chosen as a basis for demonstrating the capabilities
of PCM-REL in the audio hosting case study (see Section 6.4).

4.4 Hardware Failure Potentials

One contribution of PCM-REL is that it does not only consider FOD oc-
currences due to software faults, but also due to unavailable hardware re-
sources. Both sources of failure add to the overall risk of a system-level
FOD occurrence, as discussed in Section 3.1. Related approaches that do
not consider hardware unavailability effects either produce over-optimistic
prediction results (assuming perfect hardware) or implicitly encode the im-
pact of unavailable hardware resources into software-level FOD probabil-
ities, thus strongly reducing the reusability of software component speci-
fications. PCM-REL includes the specification of hardware resources as
part of its resource environment model (see Section 2.7.4) and allows for
associating an independent failure potential with each hardware resource.
A corresponding specification of hardware usage during service execution
allows for determining the likeliness that hardware unavailability actually
leads to user-perceived FOD occurrences.

+MTTF : double
+MTTR : double
+requiredByContainer : bool

ProcessingResourceSpecification

ResourceContainer

ResourceEnvironment

ProcessingResourceType

HardwareInducedFODType

1 +resourceContainers

*

1
+resourceSpecifications*

*

+resourceType 1

*

+resourceType1

Figure 4.7: Meta-Model for Hardware Failure Potentials

88

4.4 Hardware Failure Potentials

Figure 4.7 depicts the part of the PCM-REL meta-model that allows for
the specification of hardware resources and their failure potentials. Sys-
tem deployers specify the ResourceEnvironment including a set of Re-
sourceContainers. A ResourceContainer represents a computing
node and contains several hardware resources, whose characteristics are
captured through ProcessingResourceSpecifications. Each Pro-
cessingResourceSpecification references a ProcessingResource-
Type and includes an MTTF and MTTR value. Hence, PCM-REL follows
the well-established failure model as presented in Section 2.2 for each in-
dividual hardware resource. The MTTF and MTTR values are specified
in abstract time units, which implicitly translate to concrete time units
(such as seconds, hours or days) in the context of a concrete PCM in-
stance. Generally, the values must be positive. As an exception to this rule,
system deployers may set both the MTTF and MTTR values of a certain
resource to zero, in order to express that this resource never fails. The ref-
erenced ProcessingResourceType can be selected from a list of prede-
fined types. Currently, PCM-REL supports “CPU” and “HDD” (hard disk
drive) as the two main types of hardware resources. Alternatively, mod-
ellers can define custom ProcessingResourceTypes for a specific PCM-
REL instance. A further boolean attribute requiredByContainer of the
ProcessingResourceSpecification expresses how the operation of
the surrounding ResourceContainer depends on the resource, according
to the possible cases discussed in Section 3.1. If requiredByContainer =

true, the resource is central to the container, and the container cannot op-
erate while the resource is unavailable. A value requiredByContainer =

f alse indicates that the overall container keeps operating even if the re-
source is unavailable.

Beyond capturing the hardware failure potentials themselves, the se-
mantics of PCM-REL must clearly specify the impact of hardware un-
availability on the control and data flow during service execution. Fig-
ure 4.8 shows the involved meta-model classes. The impact of hardware

89

4 Modelling IT Systems with PCM-REL

ParametricResourceDemand

1

+resourceDemands

*

ProcessingResourceType

*

+requiredResource1

InternalAction

AbstractActionResourceDemandingBehaviour
0..1

+steps

*

ResourceDemandingSEFF

BasicComponent
1

*

RepositoryComponent

AssemblyContext

*

+component 1

AllocationContext

*

+container 1

ResourceContainer

*

+container1

ProcessingResourceSpecification

*

+resourceType 1

1

+resources

*

Figure 4.8: Meta-Model for Impacts of Hardware Failure Potentials on Service Ex-
ecution

failure potentials depends on the question if a hardware resource is re-
quired for the operation of the surrounding ResourceContainer as spec-
ified through the requiredByContainer attribute of the corresponding
ProcessingResourceSpecification. If this attribute is set to true, any
BasicComponent instantiated in the system through an AssemblyCon-
text and allocated to the container through an AllocationContext is
only operational when the resource is available. Hence, the unavailability
of the resource leads to a hardware-induced FOD occurrence of the corre-
sponding HardwareInducedFODType for any ExternalCallAction in-
voking a service operation of the non-operational component. If the re-
source is not strictly required for the operation of the container, an FOD oc-
curs only if the resource is specifically requested by an InternalAction
while being unavailable. To this end, InternalActions may specify a
list of ProcessingResourceTypes which they require for their execu-
tion, each embedded into a corresponding ParametricResourceDemand.
The connection of the abstract ProcessingResurceType to a concrete
ProcessingResourceSpecification is given through the allocation of

90

4.4 Hardware Failure Potentials

the executing BasicComponent to the ResourceContainer. The un-
availability of a resource requested by an InternalAction leads to a
hardware-induced FOD of the corresponding HardwareInducedFODType.
Hence, InternalActions may fail either due to software faults (as dis-
cussed in Section 4.3) or due to unavailable hardware resources. If an
InternalAction requires multiple unavailable resources, it fails with a
HardwareInducedFODType that corresponds to one of the unavailable re-
sources.

:BasicComponent
entityName = WebFrontend

:InternalAction
entityName = ParseWebRequest

:ProcessingResourceSpecification

:ProcessingResourceType
entityName = CPU

:AllocationContext
entityName = AL_WebFrontend

:AssemblyContext
entityName = AS_WebFrontend

:ParametricResourceDemand

:ResourceContainer
entityName = ApplictionServer

:HardwareInducedFODType
entityName = CPUFailure

MTTF = 105120.0
MTTR = 2.0
requiredByContainer = true

:Signature
entityName = DownloadCollection

:ResourceDemandingSEFF

Figure 4.9: A Hardware Failure Potential in the Audio Hosting Example

In the audio hosting example, the “WebFrontend” BasicComponent is in-
stantiated through the “AS_WebFrontend” AssemblyContext and allo-
cated through the “AL_WebFrontend” AllocationContext to the “Ap-
plicationServer” ResourceContainer (see Figure 2.13). As Figure 4.9
shows, the container includes a ProcessingResourceSpecification
for the “CPU” ProcessingResourceType. The CPU is required by the
container and has a MTTF of 105120 hours or 12 years and a MTTR of
2 hours. Overall, both the “ApplicationServer” and the “DatabaseServer”
have a CPU and a HDD with MTTF values of 12 years (for the CPUs) and
4 years (for the HDDs). Each server strictly requires its CPU to operate but
can tolerate the HDD (which holds user data only) being unavailable. As

91

4 Modelling IT Systems with PCM-REL

the figure shows, the unavailability of the “ApplicationServer” CPU leads
to a “CPUFailure” whenever the “WebFrontend.DownloadCollection” ser-
vice operation is invoked because the “WebFrontend” is allocated to the
“ApplicationServer”. In the example, the operation would fail even if the
CPU was not strictly required by the container, because it includes the
InternalAction “ParseRequest”, which is always executed as part of the
operation (see Figure 2.9), and which explicitly requires the “CPU” Pro-
cessingResourceType through its included ParametricResourceDe-
mand. Considering both Figures 4.6 and 4.9, there are three possible out-
comes of the execution of “ParseRequest”: the execution either succeeds,
or it fails with a SoftwareInducedFODType (“WebRequestFailure”), or
with a HardwareInducedFODType (“CPUFailure”).

4.5 Network Failure Potentials

Beyond software and hardware failure potentials, PCM-REL also considers
the possibility of network transmission failures, which may have significant
impact on the system’s reliability, depending on the degree of distribution of
the application, as well as the amount of required remote communication.
PCM-REL does not aim to provide a comprehensive network simulation,
nor does it consider the specifics of network devices and protocols. In-
stead, the approach considers the overall probabilities that communication
messages sent over network links get lost or corrupted, thereby preventing
service execution from being successful.

Figure 4.10 shows the involved meta-model constructs. LinkingRe-

sources represent network links over which service invocation and return
messages travel between the software components of the system. Each
LinkingResource contains a CommunicationLinkResourceSpecifi-
cation with a FODProbability attribute. The FODProbability is a
value between 0.0 and 1.0 and represents the probability that a message sent
over this link is corrupted or lost, which may happen due to a number of

92

4.5 Network Failure Potentials

ResourceEnvironment

ProcessingResourceType

CommunicationLinkResourceType

+FODProbability : double

CommunicationLinkResourceSpecification

LinkingResource
1

+linkingResources

*

*
+resourceType1

1

+resourceSpecification1

NetworkInducedFODType

*
+resourceType 1

Figure 4.10: Meta-Model for Network Failure Potentials

reasons including communication overload, transmission protocol errors,
physical interference of transmission lines, or unavailability of transmis-
sion devices. The specified FODProbability is evaluated independently
for each message transport. The CommunicationLinkResourceSpeci-
fication references a CommunicationLinkResourceType. By default,
PCM-REL supports one CommunicationLinkResourceType “LAN”. In
the PCM-REL behavioural specification, ExternalCallActions repre-
sent invocations of other component services. A network-induced FOD
occurs if an ExternalCallAction refers to a component that is allocated
to a remote ResourceContainer, and if either the invocation message
or the return message is not correctly transported over the corresponding
LinkingResource. Hence, ExternalCallActions are the PPOFs with
respect to network failure potentials.

To illustrate the specification of network failures potentials, Figure 4.11
shows an ExternalCallAction “RetrieveFileCall” that is part of the “Re-
trieveFiles” service operation of the “AudioManagement” component. “Re-
trieveFileCall” refers to the “RetrieveFile” operation provided by the “Au-
dioDBAccess” component. Both components are allocated on different
ResourceContainers “ApplicationServer” and “DatabaseServer”, as in-

93

4 Modelling IT Systems with PCM-REL

:ResourceDemandingSEFF

:BasicComponent
entityName = AudioDBAccess

:AssemblyContext
entityName = AS_AudioDBAccess

entityName = LanConnection

entityName = RetrieveFileCall

:BasicComponent
entityName = AudioManagement

:AssemblyContext
entityName = AS_AudioManagement

:ResourceContainer
entityName = ApplicationServer

:ResourceContainer
entityName = DatabaseServer

:Comm.LinkRes.Specification
FODProbability = 1.0E-7

:Comm.LinkRes.Type
entityName = LAN

entityName = RetrieveFile

:LinkingResource

:Signature

:ExternalCallAction

entityName = RetrieveFiles

:Signature

:AssemblyConnector

:AllocationContext
entityName = AL_AudioDBAccess

:AllocationContext
entityName = AL_AudioManagement

:ResourceDemandingSEFF

Figure 4.11: Network Reliability Specifications in the Audio Hosting Example

dicated by the corresponding AssemblyContexts and AllocationCon-
texts. The two ResourceContainers are connected through a Lin-
kingResource “LANConnection”, which includes a Communication-
LinkResourceSpecification with a failure probability of 10−7 and
a reference to the CommunicationLinkResourceType “LAN”. Over-
all, the specification indicates that the message transports over “LanCon-
nection” required for the invocation of (and return from) “AudioDBAc-
cess.RetrieveFile” through “RetrieveFileCall” may fail with a probability
of 10−7, leading to a network-induced FOD occurrence at “RetrieveFile-
Call”.

4.6 System-External Failure Potentials

Although an IT system can be completely represented through a PCM-REL
instance, the approach also takes into account interdependencies between
multiple systems. Such interdependencies are increasingly common in the

94

4.6 System-External Failure Potentials

sense that systems act as users of other systems and invoke their services.
However, integrating all systems into a common architectural model may
not be feasible due to several reasons. First, the complexity of the overall
system landscape may be very high. Second, the individual systems may be
provided by different parties, with each party having architectural knowl-
edge only of their own system (in particular, service-oriented architectures
may span across multiple providers and organizational boundaries). There-
fore, PCM-REL principally focusses on individual systems and their ar-
chitectures, but includes the possibility of system-external calls, invoking
services that have to be provided by other systems at run-time.

System
1 +annotations*

SpecifiedQoSAnnotation

Signature

Role

*

+role

1

*

+signature1

SpecifiedReliabilityAnnotation

+FODProbability : double

FODOccurrenceDescription

1

1..*

ExternalFODOccurrenceDescription

FODType

*

+failureType1

Figure 4.12: Meta-Model for System-External Failure Potentials

The system’s reliability is influenced by the reliability of its system-external
services, as a FOD occurrence resulting from an external invocation can
lead to a FOD of the target service invoked by the system users. A system-
external service invocation is represented by an ExternalCallAction
that does not refer to a service operation provided by another component
in the system, but instead references a RequiredRole of the modelled
System (see Section 2.7.3). As Figure 4.12 shows, the System references
a set of SpecifiedQoSAnnotations. Each SpecifiedQoSAnnotation
refers to an external service operation through a system-required Role
and a Signature. The SpecifiedReliabilityAnnotation inherits
from SpecifiedQoSAnnotation and adds a list of ExternalFODOccur-

95

4 Modelling IT Systems with PCM-REL

renceDescriptions, expressing the possibility that certain FODTypes
may occur with given FODProbabilies when the external service oper-
ation is invoked. The list of ExternalFODOccurrenceDescriptions
must adhere to the same rules as the InternalFODOccurrenceDescrip-
tions specified for an InternalAction (see Section 4.3): Each descrip-
tion must reference another FOD type, and the cumulated FOD probability
of all descriptions must not exceed 1.0. In contrast to InternalActions,
system-external calls may exhibit all FOD types including Hardware-
InducedFODTypes and NetworkInducedFODTypes, because a FOD of
an external service invocation may have arbitrary reasons. If an external
service operation does not have a corresponding SpecifiedReliabili-
tyAnnotation, the reliability prediction assumes that invocations of this
service operation always succeed.

It is the task of system architects to determine SpecifiedReliabili-
tyAnnotations for the external services of their systems. As these exter-
nal services may be under the control of third party service providers, there
may be no direct possibilities to change their FOD probabilities, or to esti-
mate the probabilities based on internal knowledge of the providing system
architecture. Rather, the FOD probabilities may be contractually specified
between the providers, or they may be collected from historical data of the
target service provider using the external service.

The System definition of the audio hosting example contains one Re-
quiredRole for using external audio encoding engines rather than built-
in functionality (see Figure 2.11). Figure 4.13 shows how the System is
annotated to account for the involved failure potential. To this end, the
System containes a SpecifiedReliabilityAnnotation that references
its RequiredRole, as well as the “EncodeFile” Signature. Addition-
ally, the annotation specifies an ExternalFODOccurrenceDescription
denoting that any invocation of the external service operation “IEncod-
ing.EncodeFile” may lead to a software-induced FOD occurrence of type
“EncodingFailure” with a probability of 10−6. The specified failure po-

96

4.7 Failure Recovery

:System
entityName = AudioHostingSolution

:RequiredRole

:Signature
entityName = EncodeFile

:ExternalFODOccurrenceDescription
FODProbability = 1.0E-6

:SoftwareInducedFODType
entityName = EncodingFailure

:SpecifiedReliabilityAnnotation

:Interface
entityName = IEncoding

Figure 4.13: System-External Failure Potentials in the Audio Hosting Example

tential is taken into consideration by the reliability evaluation whenever an
ExternalCallAction during service execution performs an invocation of
the system-external service operation.

4.7 Failure Recovery

All modelling constructs for reliability discussed so far deal with the spec-
ification of the various failure potentials and PPOFs of an IT system (see
Section 4.1). Thereby, the general assumption is that any FOD occurrence
eventually “propagates” to the system border and constitutes a system-level
FOD occurrence (as shown in Figure 4.2). In practice, however, IT systems
exhibit capabilities for fault tolerance (FT). In PCM-REL terminology, FT
is the ability to recover from FOD occurrences so that they do not propa-
gate to the system border. Ideally, the user perceives the system as operating
failure-free despite local FODs occurring during service execution. As dis-
cussed in Section 2.6, a wide variety of FT mechanisms exist that introduce
different types of redundancy in the system under study. FT mechanisms
may be tailored towards tolerating all kinds of FOD occurrences, including
software-induced, hardware-induced and network-induced FODs.

Existing ASRP approaches typically do not provide explicit modelling
constructs to consider FT mechanisms (see Section 7.2). Depending on the

97

4 Modelling IT Systems with PCM-REL

system under study, an implicit consideration of FT capabilities may be
possible through adaptation of certain model annotations such as software
FOD probabilities. For example, the FOD probability of the InternalAc-
tion “ParseWebRequest” in Figure 4.6 could be changed from 10−8 to 0
under the assumption that “ParseWebRequest” has internal FT mechanisms
in place to recover from FOD occurrences of type “WebRequestFailure”.
However, architecture-level FT mechanisms cannot be represented in this
implicit way. Rather, they need an explicit representation in the architec-
ture. This is especially true if recovery activities change the high-level con-
trol and data flow throughout the architecture, or if components have capa-
bilities to recover from FOD occurrences that have been propagated to them
from other components. In such cases, the system’s behaviour in the pres-
ence of FOD occurrences can only be accurately represented through model
constructs that explicitly reflect the activities related to failure recovery.

RecoveryAction RecoveryActionBehaviour
1

+recoveryActionBehaviours

1..* 1

+FODHandlingAlternatives*

FODHandlingEntity

ResourceDemandingBehaviour

Entity

AbstractAction

0..1

+steps *

FODType

*

+handledFODTypes *

1 +primaryBehaviour 1

Figure 4.14: Meta-Model for Failure Recovery Specifications

PCM-REL accounts for the need for explicit FT modelling through the
RecoveryAction, which is a general construct for recovery from FOD
occurrences during service execution. The semantics of this construct in-
clude three fundamental aspects of the recovery process, namely (i) stop-
ping the FOD occurrence from its further propagation (according to Fig-

98

4.7 Failure Recovery

ure 4.2), (ii) handling the failure situation through the execution of one
or multiple alternative behaviours, and (iii) returning back to normal ser-
vice execution. Thus, RecoveryActions constitute the points of recovery
(POR) in the control and data flow (as listed in Table 4.1). Figure 4.14
shows the involved meta-model constructs. The RecoveryAction in-
herits from the AbstractAction and includes a list of one or multiple
RecoveryActionBehaviours. Being a ResourceDemandingBehav-
iour, each RecoveryActionBehaviour represents an action sequence
within the overall behavioural view as introduced in Section 4.1. More-
over, each behaviour constitutes a FODHandlingEntity, defining a set of
handled FODTypes. Within a RecoveryAction, each RecoveryAction-
Behaviour may reference other behaviours through the “FODHandlingAl-
ternatives” property. Exactly one of the behaviours is pointed out by the
RecoveryAction as its “primaryBehaviour”.

Did a failure-on-demand
occur during the execution

of the behaviour?

Is one of the FOD
handling alternatives of

the behaviour
applicable to the

occurred failure type?

NO

START

Execute primary RecoveryActionBehaviour

Execute Identified RecoveryActionBehaviour

SUCCESS

FOD

NO

YES

YESExecute RecoveryActionBehaviour identified
as applicable FOD handling alternative

Figure 4.15: Execution Flow through Recovery Actions

Figure 4.15 illustrates the general flow of execution through a Recovery-
Action. Upon entering the action, the control flow proceeds to the primary
behaviour and executes it. If a FOD occurs, the control flow searches
through the “FODHandlingAlternatives” of the primary behaviour. If one
of the alternatives is specified to handle the occurred FODType, the exe-
cution proceeds with this alternative. If not, the RecoveryAction fails

99

4 Modelling IT Systems with PCM-REL

by the occurred FODType. If the primary behaviour executes failure-free,
the RecoveryAction is deemed successful and the control flow proceeds
to its successor action. As the figure indicates, RecoveryActions may
specify multiple stages of recovery so that FOD occurrences during re-
covery procedures may be handled in turn by other recovery procedures.
The RecoveryActionBehaviours within a RecoveryAction constitute
a tree with each behaviour referencing a list of successor behaviours by
its “FODHandlingAlternatives” property. To ensure a consistent tree struc-
ture, none of the behaviours may reference itself as a successor, and no
behaviour may be a successor of multiple other behaviours. Furthermore,
all successors of a certain behaviour must differ in the FODTypes that
they handle. Hence, upon a FOD occurring during the execution of a
RecoveryActionBehaviour, its list of “FODHandlingAlternatives” con-
tains at most one applicable successor, which – if existent – will be executed
next. The process of moving through the tree of RecoveryActionBehav-
iours continues until either one behaviour completes failure-free or no
more applicable successors exist. In the first case, the RecoveryAction is
successful; in the second case, it fails by its last FOD occurrence.

Figures 4.16, 4.17 and 4.18 illustrate typical examples of modelling
FT capabilities through RecoveryActions (the audio hosting example
does not contains any modelled RecoveryActions by default, but fur-
ther design alternatives including FT capabilities are introduced in Sec-
tion 6.4.1). First, Figure 4.16 shows how a recovery block (as introduced
in Section 2.6) can be represented in the model. The RecoveryActionBe-
haviours “Main” and “Alternative_i” (1 ≤ i ≤ n) of the RecoveryAction
denote the primary behaviour and the alternative behaviours of the recov-
ery block. Each “Alternative_i” handles the same “fodType” to which the
whole recovery block is designated, and it references a single successor
“Alternative_i+1”. The recovery block is left upon either the first success-
ful execution of an “Alternative_i” or a FOD of the last “Alternative_n”.
Upon any FOD occurrence other than “fodType”, the execution directly

100

4.7 Failure Recovery

«RecoveryAction»
RecoveryBlock

«RecoveryActionBehaviour»
Main

«RecoveryActionBehaviour»
Alternative_1

«InternalAction»
EstablishCheckpoint

«InternalAction»
AcceptanceTest

«InternalAction»
PerformRollback

«InternalAction»
AcceptanceTest

«handles» fodType

«RecoveryActionBehaviour»
Alternative_n

«InternalAction»
AcceptanceTest

«handles» fodType

«InternalAction»
PerformRollback

Figure 4.16: Recovery Block Example

leaves the recovery block as it is only designated to handle “fodType” oc-
currences. As shown in the figure, modellers can add typical activities
of a recovery block such as establishing checkpoints, acceptance testing
and roll-backs as InternalActions to the model. This may help to un-
derstand the modelled recovery block pattern. Furthermore, the activities
can be annotated with resource demands and failure probabilities to reflect
additional failure potentials during recovery or performance impacts intro-
duced by the recovery block (when used in combination with performance
prediction for trade-off analyses, see Section 3.1).

Fig. 4.17 shows an example of multiple stages of recovery, where each
stage handles a specific FOD type that occurs at the previous stage. In the
example, three RecoveryActionBehaviours represent a fault-tolerant
data retrieval process. The first behaviour accesses a primary data source
for data retrieval. Corruption of the data may lead to a software-induced

101

4 Modelling IT Systems with PCM-REL

«RecoveryAction»
FaultTolerantDataRetrieval

«RecoveryActionBehaviour»
Stage_1

«RecoveryActionBehaviour»
Stage_2

«handles»
ChecksumFailure

«RecoveryActionBehaviour»
Stage_3

«handles» ParsingFailure

«InternalAction»
RepairData

«InternalFOD
OccurrenceDescr.»

ParsingFailure: p_2

«InternalAction»
AccessPrimary

DataSource

«InternalFOD
OccurrenceDescr.»
ChecksumFailure:

p_1

«InternalAction»
AccessSecondary

DataSource

«InternalFOD
OccurrenceDescr.»
AccessFailure: p_3

Figure 4.17: Multi-Stage Recovery Example

FOD type “ChecksumFailure” (with probability p_1), upon which a second
behaviour tries to repair the retrieved data. The repair requires parsing the
data contents and may lead to a “ParsingFailure” (with probability p_2),
which is in turn handled by the third behaviour through switching to a sec-
ondary data source. If the data cannot be successfully retrieved from the
secondary source, no further alternative is available and the whole retrieval
process fails. While in the example, the action sequences of each behaviour
consist of a single InternalAction, they could also be more complex,
comprising ExternalCallActions, BranchActions, LoopActions and
other action types as presented in Section 2.7.2.

The third example shown in Fig. 4.18 models a case in which multiple
different types of recovery are available depending on the type of FOD oc-
currence. The example again represents a data retrieval process (the figure
omits the action sequences within the behaviours for brevity). The pri-
mary behaviour accesses a remote data source to retrieve the data. Multiple
FOD types may occur in this scenario, and each one requires a specific
handling. First, a network connection problem may prevent successful data

102

4.7 Failure Recovery

«RecoveryAction»
FaultTolerantDataRetrieval

«RecoveryActionBehaviour»
AccessRemoteDataSource

«RecoveryActionBehaviour» AccessSecondaryHost

«handles» RemoteHostUnavailableFailure

«RecoveryActionBehaviour» RepairReceivedData

«handles» ChecksumFailure

«RecoveryActionBehaviour» WaitAndRetry

«handles» NetworkConnectionFailure

Figure 4.18: Multi-Type Recovery Example

transport; a handling alternative behaviour performs a wait-and-retry strat-
egy to obtain the data. Second, the remote host itself may be unavailable;
a corresponding alternative handles this case by switching to a secondary
host. Finally, data corruption may be indicated by a “ChecksumFailure”
and is handled by a data-repairing alternative. A second FOD occurrence
within any of the alternative behaviours leads to a FOD of the whole re-
trieval process.

While each of the discussed examples illustrates certain possibilities of
modelling FT capabilities through RecoveryActions, they can be freely
adapted to reflect individual FT mechanisms of an IT system under study.
An adaptation can be achieved by combining the demonstrated possibili-
ties (for example, combining multiple recovery types and stages), but also
by integrating RecoveryActions with other PCM-REL behavioural con-
structs. In the context of PMC-REL modelling, RecoveryActions allow
for a highly flexible and expressive modelling of FT capabilities, consid-
ering the following aspects:

103

4 Modelling IT Systems with PCM-REL

Interplay of software and hardware layers: PCM-REL considers the var-
ious interdependencies that may exist between software components and
hardware resources when evaluating FT capabilities. A software FT mech-
anism may be designed to tolerate hardware faults (for example, the Re-
coveryActionBehaviours in Figure 4.16 may send requests to different
replicated servers, and each alternative may test one of the replicas for its
availability). Even a “pure” software FT mechanism is affected by the un-
availability of the underlying resources. PCM-REL accurately models the
boundaries of this impact through the well-defined PPOFs within the con-
trol flow (see Section 4.1). For example, if exactly one out of the differ-
ent recovery stages in Figure 4.17 required a certain hardware resource,
only this recovery stage would be affected by the unavailability of the re-
source.

System usage: The system’s usage profile influences the execution and
effect of an FT mechanism in various ways. The usage modelling and
input parameter propagation of PCM-REL allows for considering the us-
age dependencies of FT execution, namely the number of executions of a
RecoveryAction during a usage scenario run, the control and data flow
within each RecoveryActionBehaviour, as well as the success and FOD
probabilities of each included invocation of other component service op-
erations.

Limited FT coverage: Considering the coverage of an FT mechanism,
namely the fraction of failure situations handled by the mechanism, is an
important ingredient to realistic FT modelling, as virtually no FT mech-
anism can handle all potential kinds of FOD occurrences [DT89]. PCM-
REL expresses limited FT coverage through the differentiation of multi-
ple FODTypes (see Section 4.2) and a specification of the types that each
RecoveryActionBehaviour handles. In the presence of a FOD occur-
rence, a RecoveryAction cannot be successfully completed if it does
not contain a RecoveryActionBehaviour that handles the correspond-
ing FODType.

104

4.7 Failure Recovery

Imperfect recovery and multiple recovery stages: Any activity that a sys-
tem performs to recover from a FOD occurrence is itself subject to fail-
ure. PCM-REL allows for considering imperfect recovery and its influence
on the FT effectiveness. For example, the checkpoint establishing, accep-
tance testing and roll-back activities in Figure 4.16 can be annotated with
InternalFODOccurrenceDescriptions to express their included fail-
ure potentials. Furthermore, FOD occurrences during recovery may again
be handled by further recovery stages or levels [VPMM05], as illustrated
by Figure 4.17.

Multiple recovery types: In many practical cases, a FT mechanism offers
multiple recovery procedures, and a concrete procedure is selected based
on the characteristics of a concrete failure situation to be handled. This
is due to the fact that different failure situations may require completely
different strategies for recovery. PCM-REL allows for explicit modelling of
the different recovery procedures and their selection based on the occurred
FODType, as illustrated by Figure 4.18.

Failure correlation: The effectiveness of a FT mechanism may be se-
verely affected by failure correlation between its different recovery alter-
natives [AKL90, EL85, LM89, PSMK03]. For example, different versions
of a software algorithm tend to fail for the same inputs, even if they are
created by different developer teams. PCM-REL allows for a consideration
of failure correlation between multiple RecoveryActionBehaviours, as
in each behaviour the history of already executed behaviours and occurred
FODs is known. For instance, when specifying each “p_i” in Figure 4.17,
one can take into account the fact that recovery stages 1 to i − 1 have al-
ready failed2. Moreover, multiple RecoveryActionBehaviours that de-
pend on the same hardware resources (either directly or indirectly via ex-

2Notice that the capabilities of PCM-REL to account for failure correlation are limited due
to its included state abstractions. For example, it is not possible to consider stochastic
dependencies due to failure correlation between two external service invocations within a
RecoveryAction.

105

4 Modelling IT Systems with PCM-REL

ternal component service invocations) are all equally affected by resource
unavailability and thus automatically correlated.

Interplay of multiple FT mechanisms: While the great majority of ex-
isting work evaluating FT reliability and availability impacts targets indi-
vidual FT mechanisms and structures (see Section 7.2.2), PCM-REL al-
lows for an integrated consideration of multiple FT mechanisms employed
within a component-based software architecture. If multiple components
in the architecture exhibit different FT capabilities, they can mutually in-
fluence each other’s effectiveness in positive or negative ways. For ex-
ample, a component may propagate internal FOD occurrences through a
specific failure mode (modelled as a custom FODType in PCM-REL) to its
callers. FT capabilities of the callers are only effective if they are prepared
to handle the received failure mode. If multiple components are designed to
work together, their FT capabilities can complement each other, or multiple
components can join a co-operative effort to handle a certain failure situ-
ation. Such joint FT capabilities can be expressed in PCM-REL through
multiple RecoveryActions in different components and through custom
FODTypes propagated between the components.

4.8 Implementation

This section briefly describes the implemented tool environment for relia-
bility modelling with PCM-REL. The implementation is based on the ex-
isting PCM Workbench [FZI12] for PCM architectural modelling and anal-
ysis. The Workbench is an Eclipse Rich Client Platform application (RCP,
see [Ecl12b]); Figure 4.19 shows a screenshot of the environment. The
PCM meta-model, as well as the PCM-REL extensions, have been created
using the Eclipse Modeling Framework (EMF, see [Ecl12a]). Thanks to
this technological base, the user can create PCM-REL instances through
tree-structured model editors, with each of the PCM’s sub models (see Sec-
tion 2.7) being represented by a specific EMF editor. Moreover, graph-

106

4.8 Implementation

Figure 4.19: PCM-REL Modelling Environment

107

4 Modelling IT Systems with PCM-REL

ical editors for various model parts have been realized using the Eclipse
Graphical Modeling Framework (GMF, see [Ecl12c]), allowing for com-
fortable model creation and editing. The figure shows different views on
a PCM-REL instance and its parts, including a listing of model files and
directories (left-hand side), a graphical system model editor (upper part), a
tree-structured repository model editor (lower middle part) and a graphical
editor for ResourceDemandingSEFFs (lower right part). The separation
of the PCM-REL instance in multiple model files allows for reusing model
parts for multiple architectural variations of a system under study (for ex-
ample, multiple PCM-REL System definitions can reuse the same PCM-
REL Repository definition). Advanced modelling features include auto-
mated consistency checks for created models, as well as integrated brows-
ing of model contents across individual model parts in the provided EMF
editors. In conclusion, the PCM Workbench with integrated PCM-REL
extensions provides a comprehensive graphical tool environment for reli-
ability modelling of IT systems. For further details about the reliability
evaluation of the created models, see Section 5.5.

108

5 PCM-REL Reliability Evaluation

Once a complete PCM-REL instance has been created specifying the com-
ponent-based architecture of a system under study and its included failure
potentials (see Section 4), PCM-REL provides the capabilities for auto-
mated evaluation of the model and delivers the prediction of the system’s
reliability as a result. The main outcome of the evaluation is the probability
of a successful (in other words, failure-free) progression through a speci-
fied PCM-REL usage scenario. In analogy to related work, PCM-REL uses
discrete-time Markov chains (DTMCs) in order to represent the system un-
der study and to predict its reliability. DTMCs have been introduced in
Section 2.4 and are a well-established means for architecture-based soft-
ware reliability prediction (ASRP). However, while other approaches use
DMTCs to represent software components and the transfer of control be-
tween them (see Section 2.5), PCM-REL additionally reflects the user be-
haviour, the intra-component (high-level) control flow, the state of the sys-
tem’s hardware resources and multiple failure modes through DTMCs. This
representation allows for a much more differentiated analysis, but it may
also lead to significantly larger DTMC models. To assure the feasibility
of DTMC creation and evaluation, PCM-REL takes three measures. First,
system engineers don’t need to go through the laborious and error-prone
process of manually creating DTMCs according to a given set of rules.
Instead, the DTMCs are automatically derived through a model-to-model
transformation from the design-oriented PCM-REL meta-model, which is
called Markov transformation in the following. Second, the approach re-
alizes the transformation through a time- and space-efficient transforma-
tion algorithm. This algorithm exploits specific structural properties of a

109

5 PCM-REL Reliability Evaluation

given PCM-REL instance and produces a very compact DTMC as its result.
Third, the approach offers configuration options which speed up the evalua-
tion on the cost of prediction accuracy or granularity of results, allowing for
a flexible adaptation to the requirements of a specific application scenario
and the complexity of the underlying PCM-REL instance. In conclusion,
PCM-REL provides a fine-grained reliability evaluation that is fully auto-
mated and employs an efficient algorithm to realize the underlying Markov
transformation in a flexibly configurable manner.

This chapter discusses the process of predicting a system’s reliability
through evaluation of a PCM-REL instance. First, Section 5.1 gives an
overview of the process and discusses methodological aspects. Sections 5.2
and 5.3 then present the two major building blocks of the Markov trans-
formation, namely the evaluation of system hardware states and system
behaviour. Section 5.4 investigates the complexity of the evaluation proce-
dures, before Section 5.5 briefly introduces the corresponding implemen-
tation.

5.1 PCM-REL Evaluation Overview

This section provides an overview of the concepts and methodology of the
reliability evaluation as done by PCM-REL. The evaluation uses DTMCs to
represent IT systems and their failure potentials. Hence, it is called Markov

analysis in the following. Although basic semantics and solution meth-
ods of DTMCs are well established (see Section 2.4), the representation
of an IT system architecture and its failure potentials through a DTMC,
as well as an efficient handling of this DTMC, are highly context-specific
problems, and the PCM-REL Markov analysis provides unique solutions
to these problems.

The discussion starts with an overview of the Markov analysis steps,
results and configuration options in Section 5.1.1, followed by an introduc-
tion to the employed DTMC meta-model and structural properties of cre-

110

5.1 PCM-REL Evaluation Overview

PCM-REL Instance
(with solved parameter

dependencies)

System
Reliability Metrics

(success and failure
mode probabilities)

Dependency
Solver

Basic DTMC
(absorbing)

Markov Transformation

PCM-REL Instance
(with reliability
annotations)

Full DTMC
(absorbing)

Markov

Transformation

(no state reduction)

Matrix

Solving

Direct Solving

Analysis Configuration Options:

- Markov Evaluation Level
- Markov State Reduction
- System Hardware States Handling

Figure 5.1: PCM-REL Markov Analysis Overview

ated DTMCs in Section 5.1.2. Finally, Section 5.1.3 outlines the Markov
transformation algorithm and specifies its basic operations.

5.1.1 PCM-REL Markov Analysis

Figure 5.1 gives an overview of the PCM-REL Markov analysis and its
most important configuration options. This analysis is carried out for relia-
bility evaluation during system design iterations (see Section 3.2). It builds
upon the work of the dependency solver, which resolves all parameter de-
pendencies contained in the model to concrete values or probability distri-
butions (see Section 2.7.6). At the core of the analysis is the Markov trans-
formation, generating an absorbing DTMC from a PCM-REL instance. The
transformation uses a proprietary DTMC meta-model as its target, which
accounts for the specific PCM-REL context (see Section 5.1.2). After-
wards, a solving procedure determines the system’s reliability metrics from
the DTMC. The figure shows two alternative ways to conduct the analysis.
In the default case (shown in grey), the Markov transformation includes
inherent state reduction operations (see Section 5.1.3). A state reduction
decreases the number of states in the DTMC without changing the results
of the analysis. The transformation finally produces a basic DTMC, namely
a DTMC with a basic structure (see Figure 5.3b). The basic DTMC allows

111

5 PCM-REL Reliability Evaluation

for direct solving without the need for further calculation – the results of
the analysis are equal to the transition probabilities of the DTMC. As an
alternative, the Markov transformation can be performed without any state
reductions. In this case, it produces a full (and potentially large) DTMC,
which can be tackled through matrix solving as discussed in Section 2.4
(calculating the absorption probabilities of the DTMC). This second alter-
native is far less efficient than the first one, but it can be used to learn
about the structure of the resulting DTMC for debugging purposes and for
comparison with other DTMC-based reliability prediction approaches. The
PCM-REL user decides between the two alternatives through a configura-
tion option named “Markov State Reduction”.

Regarding the analysis results, PCM-REL predicts the probability of a
successful run through a specified usage scenario, as denoted in Section 4.1.
More concretely, the analysis results comprise the occurrence probabilities
of all possible outcomes of the random experiment constituted by a usage
scenario run. The two main outcomes of the random experiment are Suc-

cess – namely, completion of the scenario run without any system-level
failure-on-demand (FOD) occurrence – and Failure (meaning that at least
one system-level FOD occurs). The analysis further differentiates the Fail-

ure outcome into multiple failure modes (meaning possible categories or
types of failure) and evaluates the occurrence probability of each failure
mode. The set of considered failure modes follows from the FODTypes that
have been specified for the PCM-REL instance (see Section 4.2), as well
as a user-selected evaluation level (as indicated through the configuration
option “Markov Evaluation Level” in Figure 5.1), which balances the time
needed for the analysis and the granularity of its results.

Table 5.1 shows the available evaluation levels. At the fastest and most
basic level 0 (or Single), the analysis only considers a single failure mode.
This level is suited for cases in which only the probability of success ver-
sus the general probability of failure-on-demand is of interest. Level 1 (or
Category) distinguishes between FOD occurrences induced by software,

112

5.1 PCM-REL Evaluation Overview

Evaluation
Level

Distinguished Failure Modes Markov
Analysis

0
(Single)

• FOD Simplified
(no failure
recovery)

1
(Category)

• Software-induced FOD
• Hardware-induced FOD
• Network-induced FOD

Simplified
(no failure
recovery)

2
(Type)

• Software-induced FOD per SoftwareInducedFODType
• Hardware-induced FOD per ProcessingResourceType
• Network-induced FOD per CommunicationLinkResourceType

Full

3
(PointOf-
Failure)

• Internal software-induced FOD
per SoftwareInducedFODType per InternalAction

• Internal hardware-induced FOD
per ProcessingResourceType per ResourceContainer

• Internal network-induced FOD
per CommunicationLinkResourceType per LinkingResource

• External software-induced FOD
per SoftwareInducedFODType per Role per Signature

• External hardware-induced FOD
per ProcessingResourceType per Role per Signature

• External network-induced FOD
per CommunicationLinkResourceType per Role per Signature

Full

160 mm = 1.0

Table 5.1: Markov Evaluation Levels

hardware and network, thereby indicating the individual failure potential
of each of these dimensions. Level 2 (or Type) further distinguishes the in-
dividual user-defined SoftwareInducedFODTypes, as well as the failure-
inducing ProcessingResourceTypes as well as CommunicationLink-
ResourceTypes. Finally, level 3 (or PointOfFailure) provides the most
detailed analysis, differentiating all failing InternalActions, failure-
causing ResourceContainers and LinkingResources, as well as the
individual Roles and Signatures that cause system-external service fail-
ures. As a general distinction, levels 0 and 1 use a predefined set of failure
modes, while levels 2 and 3 use an instance-specific set of failure modes.

The different granularities of the evaluation levels influence the rela-
tionship between FODTypes and failure modes. At level 2, each FODType
of a PCM-REL instance corresponds to one distinguished failure mode
in the Markov analysis. At levels 0 and 1, multiple FODTypes are ag-
gregated to one failure mode. In contrast, each FODType may be re-
lated to multiple failure modes at level 3, if the PCM-REL instance con-

113

5 PCM-REL Reliability Evaluation

tains multiple potential points of failure (PPOF) where this FODType can
occur. As a consequence, RecoveryBlockActions (see Section 4.7)
are fully evaluated at levels 2 and 3 only. At the other levels 0 and 1,
the distinguished failure modes are too coarse-grained to determine if a
RecoveryBlockAlternativeBehaviour handles a certain FOD occur-
rence (see Section 5.3.8). Hence, levels 0 and 1 do not consider failure
recovery and introduce inaccuracies for PCM-REL instances that include
RecoveryBlockActions.

Given a PCM-REL instance with a set of specified usage scenarios U :=
{U1, . . . ,Um} and a selected evaluation level, the Markov analysis deter-
mines the corresponding set of failure modes F := {F1, . . . ,Fn} and pre-
dicts the occurrence probabilities of each possible outcome per scenario,
as shown in Table 5.2. Each scenario is evaluated independently, and the
probabilities of all possible outcomes per scenario sum up to 1. As a further
illustration, Table 5.3 depicts all distinguished outcomes for the batch mode
usage scenario of the audio hosting example (see Section 1.5) under all pos-
sible evaluation levels. As for all PCM-REL instances, the analysis predicts
the overall success and failure probabilities at level 0 and distinguishes the
main FOD dimensions at level 1. At level 2, all specified FODTypes (see
Figure 4.4) are individually considered, leading to 7 software-induced and
2 hardware-induced failure modes, as well as 1 network-induced failure
mode. Finally, level 3 distinguishes 13 InternalActions where indi-
vidual software-induced FODs may occur, 4 specified hardware resources
which may become unavailable (see Figure 2.13), 1 specified network link
and 1 system-external service operation which may result in an “Encod-
ingFailure”.

Another element shown in Figure 5.1 is the “System Hardware States
Handling” configuration option, which refers to different evaluation vari-
ants for the hardware failure potential of the system under study. Sec-
tion 5.2 discusses these variants in detail.

114

5.1 PCM-REL Evaluation Overview

PCM-REL
UsageScenario

Markov Analysis Results Ʃ

U1 P(Success|U1) P(F1|U1) P(F2|U1) … P(Fn|U1) 1.0

U2 P(Success|U2) P(F1|U2) P(F2|U2) … P(Fn|U2) 1.0

… … …

Um P(Success|Um) P(F1|Um) P(F2|Um) … P(Fn|Um) 1.0

139.5 mm = 0.872

Table 5.2: Markov Analysis Results

Evaluation
Level

Markov Analysis Results (“batch mode” Usage Scenario)

0
(Single)

• [1] P(Success)
• [1] P(Failure)

1
(Category)

• [1] P(Success)
• [1] P(Software-induced FOD),
• [1] P(Hardware-induced FOD)
• [1] P(Network-induced FOD)

2
(Type)

• [1] P(Success)
• [7] P(WebRequestFailure), P(CacheAccessFailure), P(DBQueryFailure), …
• [2] P(CPUFailure), P(HDDFailure)
• [1] P(LANFailure)

3
(PointOf-
Failure)

• [1] P(Success)
• [13] P(ParseWebRequest-WebRequestFailure), P(CreateWebResponse-WebRequestFailure), …
• [4] P(ApplicationServer-CPUFailure), P(DatabaseServer-CPUFailure), …
• [1] P(LANConnection-LANFailure)
• [1] P(IEncoding-Encode-EncodingFailure)

160 mm = 1.0

Table 5.3: Distinguished Analysis Results for the Audio Hosting Example

5.1.2 Markov Chain Structure

Figure 5.2 shows the DTMC meta-model used by PCM-REL as the tar-
get of the Markov transformation. This meta-model follows a standard
DTMC definition as presented in Section 2.4), but it adds a few addi-
tional concepts required by PCM-REL. A MarkovChain contains a set of
States and Transitions. All three classes inherit a name attribute from
Entity. Each transition is directed and connects exactly two states, deter-
mined by its fromState and toState attributes, with a given transition
probability. Each state has a StateType, which allows certain states
to be marked as “Initial”, “Success” or “Failure”. Additionally, states can
contain further information in terms of Labels, each with a key and value
attribute. The labels are used to distinguish the individual failure modes

115

5 PCM-REL Reliability Evaluation

+name : string

Entity

+key : string
+value : string

Label

MarkovChain

+traces : string

State

+type

1

«Enumeration»
StateType

Default
Initial
Success
Failure

+states*

+labels *

+probability : double

Transition

+transitions*

*+fromState 1

*

+toState

1

Figure 5.2: DTMC Meta-Model

that are considered by the Markov analysis. Additionally, states can con-
tain traces. This feature is used by the Markov transformation to equip
each created state with a unique identification, enabling comparisons be-
tween multiple created DTMCs. Additional constraints limit the set of valid
MarkovChain instances: The probabilities of all outgoing transitions of a
state must sum up to 1. Each MarkovChain has exactly one initial and one
success state. The initial state has no incoming transitions. The success
and failure states each have exactly one outgoing transition leading back
to the same state. Hence, these states are absorbing. They are the only
absorbing states of the MarkovChain. The DTMC states and transitions
are used to represent different aspects of the system under study such as its
hardware states, its usage and its behaviour; a detailed discussion is given
by Sections 5.2 and 5.3.

All DTMCs generated by the Markov transformation, during intermedi-
ate steps or as a final result, exhibit specific structural properties as shown
in Figure 5.3. In the general case, a created DTMC corresponds to a generic

structure (Figure 5.3a). This structure includes an initial state I, a success
state S, a set of failure states {F1, . . . ,Fn} and an inner region with addi-
tional states and transitions. The generic structure constitutes an absorbing

116

5.1 PCM-REL Evaluation Overview

F1

I

FnS

inner Markov structure
(contains no cycles)

S F1 Fn

p1

I

p2 pn+1

(a) Generic Structure (b) Basic Structure

Figure 5.3: Markov Chain Structure

DTMC (see Section 2.4) with S and all Fi as its absorbing states (the self-
transitions of the absorbing states with probability 1 are omitted from the
figure). Moreover, the structure is free of cycles – starting from I, each
state can be visited at most once. The Markov transformation creates the
DTMCs in a way such that the wanted success and failure mode probabili-
ties are equal to the probabilities of reaching S and Fi starting from I.

Through the application of state reduction operations (Section 5.1.3),
each generic DTMC structure can be converted to a basic structure (Fig-
ure 5.3b). The basic structure (which is itself a special case of the generic
structure) contains no inner states and transitions; the only transitions are
the ones leading from I to S and all Fi. Hence, the success and failure mode
probabilities are equal to the transition probabilities {p1, . . . , pn+1}.

5.1.3 Markov Transformation Algorithm

One factor determining the feasibility of reliability prediction with PCM-
REL is the efficiency of the Markov transformation as the central part of
the Markov analysis (see Section 5.1.1). To this end, the thesis does not de-
fine a pure mapping from the PCM-REL meta-model to the DTMC meta-
model, but it describes a time- and space-efficient algorithm that realizes
the transformation. The description is given as a set of pseudo-code proce-
dures throughout Sections 5.2 and 5.3, together with corresponding DTMC

117

5 PCM-REL Reliability Evaluation

illustrations. As a foundation, this section specifies basic operations that
are repeatedly executed throughout the transformation, and it introduces
the general pattern followed by the transformation algorithm. Section 5.4
completes the discussion by examining the transformation’s computational
complexity.

p1q1 (+ r11)
Y1

YmXn

X1

pnqm (+ rnm)

Y1

YmXn

X1

Z

p1

pn

q1

qm

(r11)

(rnm)

Figure 5.4: Markov State Reduction

1 / / DTMC: c o n s i d e r e d DTMC
2 / / Z : i n n e r s t a t e o f c o n s i d e r e d DTMC
3

4 r e d u c e (DTMC, Z) {
5 X := g e t S e t O f P r e d e c e s s o r S t a t e s (DTMC, Z) ;
6 Y := g e t S e t O f S u c c e s s o r S t a t e s (DTMC, Z) ;
7 n := ge tNumberOfElements (X) ;
8 m := ge tNumberOfElements (Y) ;
9 f o r (i = 1 ; i <= n ; i ++) {

10 f o r (j = 1 ; j <= m; j ++) {
11 p _ i := g e t T r a n s i t i o n P r o b a b i l i t y (DTMC, X(i) , Z) ;
12 q _ j := g e t T r a n s i t i o n P r o b a b i l i t y (DTMC, Z , Y(j)) ;
13 i f (t r a n s i t i o n E x i s t s (DTMC, X(i) , Y(j)) {
14 r _ i j := g e t T r a n s i t i o n P r o b a b i l i t y (DTMC, X(i) , Y(j)) ;
15 s e t T r a n s i t i o n P r o b a b i l i t y (DTMC, X(i) , Y(j) ,
16 p _ i ∗ q _ j + r _ i j) ;
17 } e l s e {
18 c r e a t e T r a n s i t i o n (DTMC, X(i) , Y(j) , p _ i ∗ q _ j) ;
19 }
20 d e l e t e T r a n s i t i o n (DTMC, X(i) , Z) ;
21 d e l e t e T r a n s i t i o n (DTMC, Z , Y(j)) ;
22 }
23 }
24 d e l e t e N o d e (DTMC, Z) ;
25 }

Listing 5.1: State Reduction Procedure

118

5.1 PCM-REL Evaluation Overview

The repeatedly performed basic operations of the transformation algorithm
are state reduction, state substitution and state resolution. Figure 5.4 shows
the state reduction, which may be conducted on each inner state of a generic
DTMC structure as shown in Figure 5.3a. The state Z that shall be re-
moved has n incoming transitions from a set of states X := {X1, . . . ,Xn}
with probabilities {p1, . . . , pn} and m outgoing transitions to a set of states
Y := {Y1, . . . ,Ym} with probabilities {q1, . . . ,qm}. As the DTMC contains
no cycles, the sets X and Y are disjoint, and there are no backward tran-
sitions from a state in Y to a state in X . However, there may be direct
transitions from X to Y (as suggested in the figure). Moreover, the ini-
tial, success and failure states may be contained in the two sets. The state
reduction removes Z from the chain without changing the probabilities of
reaching the success and failure states from the initial state. To this end, Z

and its incoming and outgoing transitions are replaced by direct transitions
from X to Y according to the procedure shown in Listing 5.1. After the
reduction, the overall DTMC still conforms to the generic structure.

Y1

Ym

Xn

X1

I’

p1

pn F1

Fn

S’

F’1

F’n

q1

qm

1

1

r1

r2

rn+1

F1 Fn

Y1

YmXn

X1

Z

p1

pn

q1

qm

I’
r1

S’ F’1 F’n

r2

rn+1

Figure 5.5: Markov State Substitution

Figure 5.5 illustrates the state substitution, which is done for an inner state
Z of a generic DTMC. In analogy with the presentation in Figure 5.4, the

119

5 PCM-REL Reliability Evaluation

sets X and Y denote the states with incoming and outgoing transitions to
and from Z. Additionally, the figure shows the failure states of the DTMC
(although not depicted in the figure, the set of failure states can overlap
with Y). The substitution replaces Z with an existing intermediate DTMC
that conforms to the basic structure (see Figure 5.3b), according to the pro-
cedure depicted in Listing 5.2. The intermediate DTMC provides a refined
view on a certain activity or step that was formerly aggregated by Z. The
incoming transitions of Z now lead to the intermediate initial state I'. From
the intermediate success state S', further states are reachable as they were
from Z. However, the failure potential of the intermediate DTMC is di-
rectly propagated to a failure of the surrounding DTMC. Hence, a transi-
tion with probability 1 is added from each intermediate failure state F '

k to
its outer counterpart Fk. The state substitution adds to the overall failure
potential and thus changes the success and failure probabilities of the sur-
rounding DTMC, but it does not break its generic structure. The newly
introduced states I', S' and F ' become part of the inner structure of the k

surrounding DTMC.
The state resolution operation is a combination of the substitution and

reduction operations. Given a generic DTMC structure with an inner state Z

to replace and an intermediate basic DTMC, the resolution first substitutes
Z with the intermediate DTMC as shown in Figure 5.5 and then reduces
all intermediate states, namely the initial state I', the success state S' and
the failure states F '

k . As a result, the state Z and all intermediate states are
completely removed from the surrounding DTMC, which still conforms to
its generic structure. Listing 5.3 shows the corresponding procedure.

With the basic transformation operations in place, the transformation al-
gorithm can be described as following a hierarchical DTMC creation pat-
tern, which is outlined by Figure 5.6. As the figure shows, DTMC creation
takes place at multiple levels within a hierarchy. At the top level, the trans-
formation considers the possible hardware states of the system. All other
levels are devoted to the evaluation of user and system behaviour. The

120

5.1 PCM-REL Evaluation Overview

1 / / DTMC: c o n s i d e r e d DTMC
2 / / Z : i n n e r s t a t e o f c o n s i d e r e d DTMC
3 / / DTMC_inter : i n t e r m e d i a t e DTMC
4

5 s u b s t i t u t e (DTMC, Z , DTMC_inter) {
6 X := g e t S e t O f P r e d e c e s s o r S t a t e s (DTMC, Z) ;
7 Y := g e t S e t O f S u c c e s s o r S t a t e s (DTMC, Z) ;
8 n := getNumberOfElements (X) ;
9 m := ge tNumberOfElements (Y) ;

10 F := g e t S e t O f F a i l u r e S t a t e s (DTMC) ;
11 n_f := getNumberOfElements (F) ;
12 I _ i n t e r := g e t I n i t i a l S t a t e (DTMC_inter) ;
13 S _ i n t e r := g e t S u c c e s s S t a t e (DTMC_inter) ;
14 F _ i n t e r := g e t S e t O f F a i l u r e S t a t e s (DTMC_inter) ;
15 f o r (i = 1 ; i <= n ; i ++) {
16 p _ i := g e t T r a n s i t i o n P r o b a b i l i t y (DTMC, X(i) , Z) ;
17 c r e a t e T r a n s i t i o n (DTMC, X(i) , I _ i n t e r , p _ i) ;
18 d e l e t e T r a n s i t i o n (DTMC, X(i) , Z) ;
19 }
20 f o r (j = 1 ; j <= m; j ++) {
21 q _ j := g e t T r a n s i t i o n P r o b a b i l i t y (DTMC, Z , Y(j)) ;
22 c r e a t e T r a n s i t i o n (DTMC, S _ i n t e r , Y(j) , q _ j) ;
23 d e l e t e T r a n s i t i o n (DTMC, Z , Y(j)) ;
24 }
25 f o r (k = 1 ; k <= n_f ; k ++) {
26 c r e a t e T r a n s i t i o n (DTMC, F _ i n t e r (k) , F (k) , 1) ;
27 }
28 d e l e t e N o d e (DTMC, Z) ;
29 }

Listing 5.2: State Substitution Procedure

1 / / DTMC: c o n s i d e r e d DTMC
2 / / Z : i n n e r s t a t e o f c o n s i d e r e d DTMC
3 / / DTMC_inter : i n t e r m e d i a t e DTMC
4

5 r e s o l v e (DTMC, Z , DTMC_inter) {
6 I _ i n t e r := g e t I n i t i a l S t a t e (DTMC_inter) ;
7 S _ i n t e r := g e t S u c c e s s S t a t e (DTMC_inter) ;
8 F _ i n t e r := g e t S e t O f F a i l u r e S t a t e s (DTMC_inter) ;
9 n := getNumberOfElements (F _ i n t e r) ;

10 s u b s t i t u t e (DTMC, Z , DTMC_inter) ;
11 r e d u c e (DTMC, I _ i n t e r) ;
12 r e d u c e (DTMC, S _ i n t e r) ;
13 f o r (k = 1 ; k <= n ; k ++) {
14 r e d u c e (DTMC, F _ i n t e r (k)) ;
15 }
16 }

Listing 5.3: State Resolution Procedure

121

5 PCM-REL Reliability Evaluation

Hardware States
DTMC

Behavioural
DTMC

Behavioural
DTMC

Behavioural
DTMC

Behavioural
DTMC

Behavioural
DTMC

Behavioural
DTMC

Figure 5.6: Hierarchical DTMC Creation Pattern

DTMC creation procedures at all levels are similar in that they include
two generic steps:

1. DTMC Initialization: At level l, an initial generic DT MCl is cre-
ated that reflects a certain aspect of the original PCM-REL instance.
DT MCl contains a set of inner states S := {S1, . . . ,Sn} that aggregate
other aspects and need to be resolved.

2. Repeated State Resolution: For each Si, the transformation creates a
corresponding lower-level DT MCl+1(i), converts it to its basic struc-
ture and resolves Si with DT MCl+1(i). After all Si have been re-
solved, DT MCl conforms to the basic structure.

At the lowest level of the DTMC creation hierarchy, DTMCs are initialized
directly with a basic structure (which means that S = /0). Hence, there is no
need for further state resolution. The overall result of the transformation
is the top-level DTMC, converted to its basic structure. The alternative
transformation with Markov state reductions switched off (as introduced
in Section 5.1.1) is equal to the one described here, apart from the fact
that only state substitutions are done instead of state resolutions. With this
alternative, the transformation results in a top-level DTMC that explicitly
incorporates all lower-level DTMCs and reflects the whole original PCM-
REL instance at once.

122

5.2 Hardware States Evaluation

The following Sections 5.2 and 5.3 discuss the transformation algorithm
in detail. The description refers to a transformation with state reduction
switched on. However, the alternative transformation can be directly de-
duced from this description by replacing all state resolution operations in
the provided listings with state substitutions.

5.2 Hardware States Evaluation

A major distinguishing feature of PCM-REL compared to related approach-
es is the explicit consideration of hardware failure potentials and their im-
pact on the system’s reliability (see Section 4.4). In PCM-REL, these fail-
ure potentials are associated with individual hardware resources such as
CPUs and hard disks, and they are annotated to these resources in terms
of MTTF and MTTR values. An unavailable hardware resource in an IT
system causes hardware-induced FOD occurrences whenever the service
execution tries to access the resource (see Section 3.1). By the principles
of FOD propagation, a system-level FOD occurrence may be the ultimate
consequence of the unsuccessful resource request (see Section 4.1). Hence,
unavailable hardware resources impact the system’s reliability and are con-
sidered as a possible source of failure by PCM-REL’s Markov analysis.

In the following, the consideration of a system’s hardware failure poten-
tial by the Markov transformation is discussed in detail. To this end, Sec-
tion 5.2.1 introduces system hardware states as combinations of individual
resource availability states. The following Sections 5.2.2 to 5.2.4 discuss
different alternatives of how the Markov transformation can account for the
different possible hardware states of a system under study.

5.2.1 System Hardware States

The consideration of hardware failure potentials constitutes a challenge for
the PCM-REL Markov analysis. On the one hand, the approach generally
expresses failure potentials through failure probabilities, thereby abstract-

123

5 PCM-REL Reliability Evaluation

ing from the system’s state and its progression over time. On the other hand,
the typical hardware failure model introduced in Section 2.2 is a stateful
one. At each point in system execution time t > 0, each hardware resource
r in the system is in one out of two resource availability states OK and NA

(not available). The probability of a request to r at time t being success-
ful depends on the whole state progression history of r since the system’s
start at t0 = 0 and is a function of the initial state of r at t0 and its TTF and
TTR distributions. To derive a more generic expression of r’s failure poten-
tial, the Markov transformation condenses the specified MTTF and MTTR
values of r to its steady-state availability (as introduced below), and it uses
this value as the probability that r is available when requested at an arbitrary
point in time. While this strategy may seem to be a strong simplification in
the light of the potentially complex TTF and TTR distributions of r, it helps
to keep the complexity of the analysis within feasible bounds. Furthermore,
it releases the modeller from the burden of specifying complete TTF and
TTR distributions for each hardware resource.

The following describes how the Markov transformation expresses the
possible hardware states of the system and calculates their occurrence prob-
abilities. Let R := {r1, . . . ,rn} denote the set of resources in the system, and
let S(t) := {s1(t), . . . ,sm(t)} denote all possible system hardware states at
time t > 0, where each s j(t) ∈ S(t) is a unique combination of possible
states of all n resources at time t:

s j(t) := (s j(r1, t), . . . ,s j(rn, t)) ∈ {OK,NA}n

∀t > 0, j ∈ {1, . . . ,m} (5.1)

Furthermore, let MT T Fi and MT T Ri be the given reliability annotations
of resource ri. The steady-state availability Av(ri) of resource ri is cal-
culated as follows:

MT T FiAv(ri) := ∀i ∈ {1, . . . ,n} (5.2)
MT T Fi +MT T Ri

124

5.2 Hardware States Evaluation

In compliance with the hardware failure model presented in Section 2.2,
Av(ri) denotes the expected fraction of time in which ri is in the state OK.
PCM-REL interprets Av(ri) as the probability that resource ri, requested at

an arbitrary point in time during system execution, is available and can
serve the request:

P(s(ri, t) = OK) = Av(ri), P(s(ri, t) = NA) = 1 −Av(ri)

∀t > 0, i ∈ {1, . . . ,n} (5.3)

where s(ri, t) denotes the state of resource ri at time t. From the state proba-
bilities of the individual resources, the probability of each system hardware
state can be deduced:

n
P(s j(t)) = ∏P(s(ri, t) = s j(ri, t)) ∀t > 0, j ∈ {1, . . . ,m} (5.4)

i=1

This calculation assumes that the state distributions of the individual re-
sources are independent, which means that resources fail and are repaired
independently. Because of the time-independent evaluation of resource
state probabilities, P(s j(t)) constitutes a constant value P(s j) := P(s j(t)),
regardless of the time t.

5.2.2 Standard Evaluation

The Markov transformation offers multiple alternatives to account for the
possible hardware states of the system under study, as suggested by the
configuration option “System Hardware States Handling” in Figure 5.1.
In the standard case, the hardware states consideration is situated at the
highest level of the DTMC creation hierarchy (see Figure 5.6). The trans-
formation initializes a top-level DT MCtop(Ui) for each PCM-REL usage
scenario Ui as shown in Figure 5.7, which conforms to the generic struc-
ture (Figure 5.3a). Starting from the initial state I(Ui), transitions lead to
a set of states {E(Ui,s1), . . . ,E(Ui,sm)}, where each E(Ui,s j) represents

125

5 PCM-REL Reliability Evaluation

I(Ui)

F1(Ui) Fn(Ui)S(Ui)

(Ui,sm)(Ui,s1)

P(s1) P(sm)

1
1

(0) (0) (0)
(0)

I(Ui,sj)

(Ui,sj)

P(Success|Ui,sj)

P(F1|Ui,sj)
P(Fn|Ui,sj)

I(Ui)

F1(Ui) Fn(Ui)S(Ui)

P(Success|Ui)

P(F1|Ui) P(Fn|Ui)

E E

S
(Ui,sj) (Ui,sj)

F1 Fn

DTMCtop(Ui)

DTMCscen(Ui,sj)

Figure 5.7: Standard Evaluation of System Hardware States

1 / / U_i : c o n s i d e r e d usage s c e n a r i o
2 / / R : s e t o f hardware r e s o u r c e s
3 / / F : s e t o f c o n s i d e r e d f a i l u r e modes
4 / / r e t u r n s : top − l e v e l DTMC w i t h b a s i c s t r u c t u r e
5 / / f o r t h e c o n s i d e r e d usage s c e n a r i o
6

7 e v a l u a t e S c e n a r i o (U_i , R , F) {
8 S := d e t e r m i n e S e t O f H a r d w a r e S t a t e s (R) ;
9 P := d e t e r m i n e S e t O f H a r d w a r e S t a t e P r o b a b i l i t i e s (R) ;

10 DTMC_top_i := initTopLevelDTMC (U_i , S , P , F) ;
11 m := S . ge tNumberOfElements () ;
12 f o r (j = 1 ; j <= m; j ++) {
13 DTMC_scen_ij := e v a l u a t e S c e n a r i o E x e c u t i o n (U_i , F , S (j)) ;
14 E _ i j := g e t S c e n a r i o E x e c u t i o n S t a t e (DTMC_top_i , S (j)) ;
15 r e s o l v e (DTMC_top_i , E_ i j , DTMC_scen_ij) ;
16 }
17 re turn DTMC_top_i ;
18 }

Listing 5.4: System Hardware States Evaluation Procedure (Standard)

126

5.2 Hardware States Evaluation

the scenario execution under the precondition of the system hardware state
being equal to s j. The transition probabilities are the occurrence probabil-
ities P(s j) of each hardware state. From each E(Ui,s j), a transition to the
success state S(Ui) is initialized with probability 1. Transitions to the fail-
ure states are initially set to probability 0. During the transformation, an
intermediate DT MCscen(Ui,s j) is created for the scenario execution under
each hardware state s j (as described in Section 5.3), and each E(Ui,s j) is
resolved accordingly. The resulting DTMC conforms to the basic structure,
directly showing the success and failure mode probabilities of scenario Ui

(Figure 5.7). Hence, direct solving as discussed in Section 5.1.1 can be ap-
plied to retrieve the wanted Markov analysis results (Table 5.2). Listing 5.4
depicts the corresponding procedure.

Numerically, the overall success probability P(Success|Ui) of scenario Ui

can be derived from the success probabilities P(Success|Ui,s j) of Ui under
the precondition of the hardware state s j:

m
P(Success|Ui) = ∑ (P(Success|Ui,s j)×P(s j)) (5.5)

j=1

Similarly, the probabilities of each failure mode Fk resulting from the ex-
ecution of Ui are:

m
P(Fk|Ui) = ∑ (P(Fk|Ui,s j)×P(s j)) (5.6)

j=1

The described standard evaluation of system hardware states has two fun-
damental consequences. First, the evaluation assumes that the hardware
resources do not change their availability states during the scenario execu-
tion; each resource keeps the state it has when the execution begins. Being
in line with the time-independent evaluation of state occurrence probabil-
ities (see Section 5.2.1), this assumption allows for abstracting from the
duration of the scenario execution itself or individual actions within the ex-

127

5 PCM-REL Reliability Evaluation

ecution, as well as the concrete TTF and TTR distributions of the involved
hardware resources. The assumption is feasible based on the observation
that typical TTF and TTR values are significantly longer than a single sce-
nario execution. The former are in the range of years (for TTF) or hours
and days (for TTR), the latter mostly in the range of seconds or minutes.
Hence, most scenario executions will not experience a changing system
hardware state.

As a second consequence, the evaluation needs to explicitly consider
each possible system hardware state and evaluate the scenario execution un-
der this state. Hence, the evaluation exhibits exponential complexity with
respect to the number of hardware resources in the system – for n hardware
resources, there are m = 2n system hardware states to consider, as each re-
source can take one out of two possible availability states OK and NA. As
this issue constitutes the most severe limitation to the scalability of the ap-
proach, PCM-REL takes several measures to tackle it. First, the approach
provides an efficient evaluation of the scenario execution under each indi-
vidual state (Section 5.3). Second, the user-selected evaluation levels allow
for speeding up the analysis if the required level of detail of the analysis
results is low (Section 5.1.1). Third, the transformation offers two further
alternatives for the consideration of system hardware states (Sections 5.2.3
and 5.2.4). Each of these alternatives is significantly more efficient than the
standard evaluation, on the cost of prediction accuracy.

5.2.3 Single-State Evaluation

The single-state evaluation constitutes an alternative way to consider a
system’s hardware failure potential, compared to the standard evaluation
(see Section 5.2.2). Without distinguishing different system hardware
states at the top-level, the transformation creates a DT MCtop(Ui) with
only one generic Markov state E(Ui) representing the execution of the
scenario Ui. Correspondingly, a single intermediate DT MCscen(Ui) repre-

128

5.2 Hardware States Evaluation

I(Ui)

F1(Ui) Fn(Ui)S(Ui)

P(Success|Ui)

P(F1|Ui) P(Fn|Ui)

I’(Ui)
P’(Success|Ui)

P’(F1|Ui)
P’(Fn|Ui)

I(Ui)

F1(Ui) Fn(Ui)S(Ui)

E(Ui)

1

1

(0) (0)

S’(Ui) F1’(Ui) Fn’(Ui)

DTMCtop(Ui)

DTMCscen(Ui)

Figure 5.8: Single-State Evaluation of System Hardware States

1 / / U_i : c o n s i d e r e d usage s c e n a r i o
2 / / F : s e t o f c o n s i d e r e d f a i l u r e modes
3 / / r e t u r n s : top − l e v e l DTMC w i t h b a s i c s t r u c t u r e
4 / / f o r t h e c o n s i d e r e d usage s c e n a r i o
5

6 e v a l u a t e S c e n a r i o (U_i , F) {
7 DTMC_top_i := i n i t S i n g l e S t a t e T o p L e v e l D T M C (U_i , F) ;
8 DTMC_scen := e v a l u a t e S c e n a r i o E x e c u t i o n (U_i , F) ;
9 E_i := g e t S c e n a r i o E x e c u t i o n S t a t e (DTMC_top_i) ;

10 r e s o l v e (DTMC_top_i , E_i , DTMC_scen) ;
11 re turn DTMC_top_i ;
12 }

Listing 5.5: System Hardware States Evaluation Procedure (Single-State)

sents the scenario execution. The consideration of hardware failure po-
tentials is effectively delayed to the processing of the InternalActions
that request the hardware resources (see Section 5.3.7), as well as the
ExternalCallActions and EntryLevelSystemCalls pointing to po-
tentially non-operational ResourceContainers (Section 5.3.6). List-
ing 5.5 shows the adapted procedure.

With respect to the numerical solution, no summation across individual
hardware states as shown in equations 5.5 and 5.6 is necessary. Instead, the

129

5 PCM-REL Reliability Evaluation

results follow directly from the intermediate DT MCscen(Ui):

P(Success|Ui) = P '(Success|Ui) (5.7)

P(Fk|Ui) = P '(Fk|Ui) (5.8)

The single-state evaluation is highly efficient because the scenario execu-
tion is evaluated only once, rather than repeatedly for all possible system
hardware states. Although the effort for evaluating pointer and compu-
tation actions slightly increases compared to the standard evaluation (see
Sections 5.3.6 and 5.3.7), this additional overhead is small compared to the
savings at the top-level DTMC. On the other hand, the single-state evalu-
ation may exhibit poor prediction accuracy. Although it does not assume
fixed resource availability states during the scenario execution (as assumed
by the standard evaluation), it introduces a significantly harder assumption
by ignoring the stochastic dependencies between subsequent accesses to
the same resource. Each access to a resource r is evaluated independently
from earlier accesses to r within the same scenario execution. To further
illustrate the consequences of this assumption by an example, let P be a
PCM-REL instance and U a specified usage scenario of P. Let r be a hard-
ware resource that is requested exactly n ≥ 1 times during the execution of
U . Let Fk be the failure mode expressing a FOD occurrence due to r being
unavailable. Furthermore, let the unavailability of r be the only potential
source of failure (meaning that the execution of U is either successful or
results in failure mode Fk), and let there be no recovery actions specified
in P (Section 5.3.8). Denoting the probabilities of FOD occurrences ac-
cording to the standard and single-state evaluation by Pstandard (Fk|U) and
Psingle(Fk|U), the following relationship holds:

Pstandard (Fk|U) = 1 −Av(r)≤ 1 −Av(r)n = Psingle(Fk|U) (5.9)

130

5.2 Hardware States Evaluation

In the standard evaluation variant, the decision about the availability of r

is made once, at the beginning of the execution. The probability of r be-
ing available (which is equal to Av(r) according to Equation 5.3) directly
decides about success or failure of the execution. In contrast, the single-
state evaluation decides about the availability of r independently for each
request. Accordingly, there are n chances for r to be unavailable, leading to
a higher overall failure mode probability. Based on the observation that the
standard evaluation of system hardware states is fairly accurate (as shown
for the audio hosting case study, see Section 6.4), the single-state evalu-
ation exhibits a potentially high over-estimation of the system’s hardware
failure potential. This is also true if P includes other sources of failure and
recovery actions, which makes the calculation significantly more complex.
Hence, the applicability of the single-state evaluation remains limited to
cases with few resource requests during service execution only, or to cases
where the hardware failure potential turns out to be very low, without sig-
nificant influence on architectural decisions.

5.2.4 Approximated Evaluation

In addition to the single-state evaluation (Section 5.2.3), the Markov trans-
formation provides another means to fight the exponential complexity of
the standard evaluation (Section 5.2.2), namely the approximated evalua-

tion. This evaluation method generally provides a very good trade-off be-
tween analysis effort and prediction accuracy. The analysis effort is at most
as high as that of the standard evaluation. The PCM-REL user can specify
stop conditions to freely configure the analysis towards being faster or more
accurate. Using these stop conditions, the user can force the approximated
evaluation to deliver a result arbitrarily close to that of the standard evalua-
tion. Due to these characteristics, the approximated evaluation is generally
the preferred choice if the number of modelled hardware resources in a
PCM-REL instance is too high to perform a standard evaluation.

131

5 PCM-REL Reliability Evaluation

The approximated evaluation takes advantage of two general aspects of the
Markov transformation. First, the standard evaluation procedure of sys-
tem hardware states as shown in Listing 5.4 is incremental through its for
loop. An increasing amount of information is available with each executed
increment, even though the procedure is not yet finished. Second, a normal
hardware resource r can be assumed to be available with high probability:
0 « Av(r)≈ 1. The following discusses the details of the approximation.

In its initial form, the DT MCtop(Ui) created for the standard evalua-
tion (Figure 5.7) has a success probability of 1. With each increment
j of Listing 5.4, the failure potential of hardware state s j(t) is added to
DT MCtop(Ui), thereby reducing its resulting success probability. After
x ∈ {1, . . . ,m} increments, the failure potential of states s1(t) to sx(t) has
been subtracted from the original success probability 1, weighted by their
occurrence probabilities P(s j). The result is an upper bound of the over-
all P(Success|Ui):

x n
P(Success|Ui)≤ Bx := 1 − ∑ (∑

j=1 k=1
P(Fk|Ui,s j)×P(s j))

m x

∑ P(s j)− ∑ ((1 −P(Success|Ui,s j))×P(s j))=
j=1 j=1
x x

∑ ∑(P(Success|Ui,s j)×P(s j))+1 − P(s j)=
j=1 j=1

(5.10)

On the other hand, P(Success|Ui) is at least as high as the success prob-
abilities of s1(t) to sx(t), again weighted by their occurrence probabilities
(see also Equation 5.5):

x
P(Success|Ui)≥ Ax := ∑

j=1
(P(Success|Ui,s j)×P(s j)) (5.11)

132

5.2 Hardware States Evaluation

Together, both equations yield P(Success|Ui) ∈ [Ax,Bx] ∀x ∈ {1, . . . ,m}
with Ax and Bx being calculated from the well-known P(s j) and the already
evaluated P(Success|Ui,s1) to P(Success|Ui,sx). Hence, P(Success|Ui) can
be approximated through [Ax,Bx] after x increments with a maximal inac-
curacy Ix depending only on the state occurrence probabilities P(s j) and
decreasing with each calculated increment:

x
Ix := Bx −Ax = 1 − ∑ P(s j) (5.12)

j=1

The failure probabilities P(Fk|Ui) can be approximated in the same way:

x x
P(Fk|Ui)≤ ∑

j=1
(P(Fk|Ui,s j)×P(s j))+1 − ∑ P(s j) (5.13)

j=1
x

P(Fk|Ui)≥ ∑
j=1

(P(Fk|Ui,s j)×P(s j)) (5.14)

With these results, it is not necessary to calculate all increments of List-
ing 5.4. Instead, stop criteria such as a minimal required accuracy, a max-
imal evaluation time or a maximal number of increments can be defined.
Then, the Markov evaluation approximates P(Success|Ui) and P(Fk|Ui) ac-
cordingly.

The proposed approximation strategy is only effective if the order of sys-
tem hardware states s j(t) to evaluate is well-chosen, so that the remaining
inaccuracy Ix is reduced as fast as possible. Ideally, the states should be
sorted according to their occurrence probabilities P(s j), and the state with
the highest occurrence probability should be evaluated first. However, this
sorting would already imply evaluating P(s j) for all m = 2n states, and
the sorting algorithm would have exponential complexity O(m logm) =

O(n · 2n) with respect to the number n of resources in the system. In-
stead, the Markov transformation follows a heuristic that generally eval-
uates probable states first, based on the known availabilities Av(ri) of the

133

�

5 PCM-REL Reliability Evaluation

individual resources. To this end, a dominant availability state D(ri) is
defined for each resource ri as follows:

OK i f Av(ri)≥ 0.5
D(ri) := (5.15)

NA i f Av(ri)< 0.5

Let p(i, t) := P(s(ri, t) = D(ri)) be the probability that ri is in its domi-
nant availability state at time t. Because of the timeless availability eval-
uation (see Section 5.2.1), p(i, t) is constant over time and can be ab-
breviated as p(i) := p(i, t). From the definition of D(ri), it follows that
p(i)∈ [0.5,1] ∀i ∈{1, . . . ,n}. In most practical cases, we have D(ri)=OK

and 0.5 « p(i)≈ 1. Next, let Num :=R×{OK,NA}→{0,1} be a function
that maps resources and availability states to numerical values:

0 i f s = D(ri)Num(ri,s) := (5.16)
1 i f �s = D(ri)

Then, the set of system hardware states S(t) can be partitioned into a set
of n + 1 classes Ck(t) as follows:

Ck(t) := s j(t) ∈ S(t)

 ∑n

i=1
Num(ri,s j(ri, t)) = k ∀k ∈ {0, . . . ,n}

(5.17)

Thus, each class Ck(t) comprises all system hardware states with k re-
sources being not in their dominant state. The classes are disjoint, and
their union results in S(t). The number of elements in Ck(t) corresponds to
the binomial coefficient for selecting k out of n elements:

n n! |Ck(t)|= = (5.18)
k k!(n − k)!

134

5.2 Hardware States Evaluation

With these definitions, the heuristic to evaluate probable system hardware

states first can be formulated as follows:

1. Sort the set R of resources according to their dominant state proba-
bilities, namely ∀ri1 ,ri2 ∈ {r1, . . . ,rn} : i1 > i2 ⇒ p(i1)≥ p(i2).

2. Evaluate each class Ck(t) separately, starting from C0(t) up to Cn(t).
Within each class, prioritize the evaluation of resources with low in-
dices being not in their dominant states. In particular, the first eval-
uated system hardware state of class Ck(t) is the one with resources
r1 to rk being not in their dominant availability states; the last eval-
uation refers to rn−k+1 to rn being not in their dominant availability
states.

If D(ri) = OK for all resources ri, the heuristic can be reformulated as
follows: First, sort all resources ri according to their availabilities Av(ri).
Then, evaluate the classes from C0(t) up to Cn(t); in each class, let the
resources with the lowest availabilities fail first. Intuitively, this heuris-
tic evaluates probable system hardware states first because states in higher
classes are generally less likely to occur than states in lower classes, and
because resources with low availabilities are more likely to be unavailable.
Moreover, the heuristic avoids the exponential complexity for the sorting of
the m = 2n states – it only sorts n resources with complexity O(n logn).

The following example further illustrates how the discussed heuristic can
improve the efficiency of the evaluation. Let Av(ri) = p ≥ 0.5 ∀ri ∈ R.
Then, each system hardware state s j(t) of each class Ck(t) has an occur-
rence probability of P(s j) = (1 − p)k pn−k (see Equation 5.4). Furthermore,
let fn,p : {0, . . . ,m}→ [0,1] be the function indicating the maximal remain-
ing inaccuracy of the approximation after x evaluation increments, depend-
ing on the number of resources n and their common availability p:

1 i f x = 0
fn,p(x) := (5.19)

Ix i f x > 0

135

5 PCM-REL Reliability Evaluation

1,0E-06

1,0E-05

1,0E-04

1,0E-03

1,0E-02

1,0E-01

1,0E+00

0 20 40 60 80 100

f n
,p

(x
)

x

n = 20 n = 15

n = 10 n = 5
p = 0.999

1,0E-06

1,0E-05

1,0E-04

1,0E-03

1,0E-02

1,0E-01

1,0E+00

0 20 40 60 80 100

f n
,p

(x
)

x

n = 20 n = 15

n = 10 n = 5
p = 0.99

1,0E-06

1,0E-05

1,0E-04

1,0E-03

1,0E-02

1,0E-01

1,0E+00

0 20 40 60 80 100

f n
,p

(x
)

x

n = 20 n = 15

n = 10 n = 5
p = 0.9

1,0E-06

1,0E-05

1,0E-04

1,0E-03

1,0E-02

1,0E-01

1,0E+00

0 20 40 60 80 100

f n
,p

(x
)

x

n = 20 n = 15

n = 10 n = 5
p = 0.9999

Figure 5.9: Relationship Between Evaluation Increments and Inaccuracy

Figure 5.9 shows the values from fn,p(0) to fn,p(100) for varying n and p.
The function values are shown on a logarithmic scale from 1 to 10−6. The
function progresses in segments, and each segment marks the full evalua-
tion of a certain class Ck(t). For example, for n = 10, the first classes C0(t)

to C2(t) have 1, 10 and 45 elements. Hence, segment boundaries occur at
x = 1, x = 11 and x = 56. Within each segment, the function progresses
linearly (due to the logarithmic scale, the figure shows curve segments in-
stead of linear segments). For resources with high availability p = 0.9999,
the approximation reaches a very low inaccuracy of 10−6 within the first
100 increments for systems with up to 20 modelled hardware resources.
For p = 0.999, an inaccuracy of 10−4 or lower is reached, depending on
n. For low or very low availabilities p = 0.99 and p = 0.9, the remaining
inaccuracy may require more than 100 evaluation increments, at least for

136

5.2 Hardware States Evaluation

systems with more than 5 (or 10) modelled resources. In the theoretical
worst case p = 0.5, all states s j(t) ∈ S(t) have the same occurrence proba-
bility P(s j) = 1/m, and the application of the heuristic has no benefit.

1 / / U_i : c o n s i d e r e d usage s c e n a r i o
2 / / R : s e t o f hardware r e s o u r c e s
3 / / F : s e t o f c o n s i d e r e d f a i l u r e modes
4 / / C: s e t o f s t o p c o n d i t i o n s
5 / / r e t u r n s : e v a l u a t i o n r e s u l t f o r t h e c o n s i d e r e d
6 / / usage s c e n a r i o
7

8 e v a l u a t e S c e n a r i o (U_i , R , F , C) {
9 r e s u l t := i n i t E v a l u a t i o n R e s u l t (F) ;

10 i t e r a t o r := c r e a t e H a r d w a r e S t a t e I t e r a t o r (R) ;
11 whi le ((h a s M o re H a r d w a r e S t a t e s (i t e r a t o r) == t rue) &&
12 (i s S t o p C o n d i t i o n R e a c h e d (C , i t e r a t o r , r e s u l t) == f a l s e)) {
13 S := g e t N e x t H a r d w a r e S t a t e (i t e r a t o r) ;
14 P := g e t H a r d w a r e S t a t e P r o b a b i l i t y (S) ;
15 DTMC_scen_ij := e v a l u a t e S c e n a r i o E x e c u t i o n (U_i , F , S) ;
16 u p d a t e E v a l u a t i o n R e s u l t (r e s u l t , DTMC_scen_ij , P) ;
17 }
18 re turn r e s u l t ;
19 }

Listing 5.6: System Hardware States Evaluation Procedure (Approximated)

Listing 5.6 shows the procedure to evaluate a usage scenario through the
approximation method. With this method, the resulting success and failure
mode probabilities are approximation intervals rather than single values.
Hence, the return value of the procedure cannot be a single basic Markov
chain. Instead, the procedure returns a data structure EvaluationResult,
which contains the cumulated occurrence probability of all evaluated sys-
tem hardware states P(s1) + · · ·+P(sx), as well as the lower bounds for
success and failure, calculated as shown in Equations 5.11 and 5.14. With
these data, it is possible to also determine the upper bounds (Equations 5.10
and 5.13) and the remaining maximal inaccuracy (Equation 5.12). The
logic to select states for evaluation according to the described heuris-
tic is encoded into the call getNextHardwareState, which relies on a
HardwareStateIterator data structure capturing information about the
states visited so far. Additionally, a set of stop conditions (such as a sat-
isfying upper bound for the inaccuracy) is given as an input to the pro-

137

5 PCM-REL Reliability Evaluation

cedure, and the call isStopConditionReached performs a correspond-
ing test after each increment. As with the standard evaluation procedure
(Listing 5.4), each increment requires creating and evaluating an interme-
diate DT MCscen(Ui,s j). However, this DTMC is not used to resolve an-
other Markov state, but as an input for the updateEvaluationResult
call. The call includes a straightforward calculation adding the occur-
rence probability of the currently evaluated hardware state, as well as its
success and failure probabilities, to the existing cumulated values of the
EvaluationResult. In general, this procedure substantially improves
the scalability of the approach compared to the standard evaluation (Sec-
tion 5.2.2).

5.3 Compact Behavioural Evaluation

This section discusses how the Markov transformation accounts for the fail-
ure potential that arises from the execution of a specified PCM-REL usage
scenario. The provided analysis is very comprehensive considering system-
internal as well as system-external failure potentials related to software,
hardware or network that may lead to FOD occurrences during the scenario
execution. The DTMCs generated by the transformation reflect the inter-
component and intra-component control and data flow including its poten-
tial points of failure (PPOF) and points of recovery (POR, see Table 4.1).
Such a level of detail comes at a cost – the resulting DTMCs are potentially
large, and the transformation procedures to generate them may be very
time-consuming. Moreover, it may be necessary to repeat the behavioural
evaluation multiple times during the transformation, if the consideration
of system hardware states follows the standard evaluation method (Sec-
tion 5.2.2) or the approximated evaluation method (Section 5.2.4). There-
fore, a special focus lies on a compact behavioural evaluation, realized
through a time- and space-efficient transformation algorithm.

138

5.3 Compact Behavioural Evaluation

In the following, Sections 5.3.1 and 5.3.2 introduce the general pattern of
the behavioural evaluation being aligned to the action sequences of the con-
sidered PCM-REL usage scenario and the contained action types. After-
wards, Sections 5.3.3 to 5.3.8 discuss the evaluation of the different action
types, along with the measures taken for compactness and the accompa-
nying assumptions.

5.3.1 Action Sequences

The behavioural evaluation of a PCM-REL usage scenario execution is
triggered as part of the top-level DTMC creation procedure through the
evaluateScenarioExecution call in Listings 5.4, 5.5 or 5.6 (depend-
ing on the evaluation of system hardware states). The evaluation is itself
hierarchical and comprises the second and all further DTMC creation lev-
els as shown in Figure 5.6. It proceeds along the action sequences of
the behavioural view that unfolds from the specified usage scenario (see
Section 4.1). The evaluation is carried out in a time- and space-efficient
way. Time efficiency is achieved because each action sequence in the be-

havioural view is evaluated exactly once (more precisely, each action se-
quence occurrence is evaluated exactly once – there may be multiple oc-
currences of a specified action sequence in the behavioural view). Where a
repeated evaluation of any part of the behavioural view would be necessary
in order to reflect different possible preconditions or execution iterations,
the Markov transformation makes corresponding assumptions to avoid the
repeated evaluation. Space efficiency is achieved through the hierarchical
DTMC creation as discussed in Section 5.1.3, which includes Markov state

reduction operations on the fly. Thanks to these operations, the DTMCs
are never hold in memory as a whole. Instead, created DTMCs at each
level are reduced to their most basic form before being incorporated into
the next-higher level DTMCs.

139

5 PCM-REL Reliability Evaluation

The Markov transformation algorithm traverses the behavioural view by
processing all of its action sequences AS = {AS1, . . . ,ASn} hierarchically,
such that the evaluation of each sequence includes evaluating all nested se-
quences. Referring to the behavioural view depicted in Figure 4.1, evaluat-
ing the topmost “BatchRequestBehaviour” includes the evaluation of the
“WebFrontend.Login” ResourceDemandingSEFF (and all its nested se-
quences), followed by the “CaseBatchUpload” and “CaseBatchDownload”
ScenarioBehaviours, as well as the “WebFrontend.Logout” Resource-
DemandingSEFF. Evaluating “CaseBatchDownload” includes “WebFron-
tend.DownloadCollection”, which in turn includes “AudioManagement.-
RetrieveFiles”, and so on. Each visited action sequence belongs either to
a specified ScenarioBehaviour specifying user actions or a Resource-
DemandingBehaviour (with the ResourceDemandingSEFF as its special
case) specifying system actions in the PCM-REL instance.

I(ASi)

F1(ASi) Fn(ASi)S(ASi)

1

1 (0) (0)

Pij(Success)

Pij(F1)

Pij(Fn)

I(ASi)

F1(ASi) Fn(ASi)S(ASi)

Pi(Success) Pi(F1) Pi(Fn)

A1)
E(ASi,

(ASi,Aj)
F1

DTMCseq(ASi)

DTMCact(ASi,Aj)

(ASi,Aj)
S

(ASi,Aj)
Fn

(ASi,Aj)
I

11
Am)

E(ASi,

Figure 5.10: Evaluation of Action Sequences

To evaluate an action sequence ASi with m actions, the Markov transfor-
mation creates an intermediate DT MCseq(ASi) as shown in Figure 5.10,

140

5.3 Compact Behavioural Evaluation

1 / / AS_i : c o n s i d e r e d a c t i o n s e q u e n c e
2 / / F : s e t o f c o n s i d e r e d f a i l u r e modes
3 / / s : c o n s i d e r e d hardware s t a t e (o p t i o n a l parameter ,
4 / / n o t used f o r s i n g l e −s t a t e e v a l u a t i o n)
5 / / r e t u r n s : b a s i c DTMC f o r t h e c o n s i d e r e d a c t i o n s e q u e n c e
6

7 e v a l u a t e A c t i o n S e q u e n c e (AS_i , F , s) {
8 DTMC_seq_i := in i tAct ionSequenceDTMC (AS_i , F) ;
9 m := ge tNumberOfAct ions (AS_i) ;

10 f o r (j = 1 ; j <= m; j ++) {
11 A_j := g e t A c t i o n (AS_i , j) ;
12 E _ i j : = g e t A c t i o n E x e c u t i o n S t a t e (DTMC_seq_i , A_j) ;
13 DTMC_act_ij : = e v a l u a t e A c t i o n (A_j , F , s) ;
14 r e s o l v e (DTMC_seq_i , E _ i j , DTMC_act_ij) ;
15 }
16 re turn DTMC_seq_i ;
17 }

Listing 5.7: Action Sequence Evaluation Procedure

1 / / U_i : c o n s i d e r e d usage s c e n a r i o
2 / / F : s e t o f c o n s i d e r e d f a i l u r e modes
3 / / s : c o n s i d e r e d hardware s t a t e (o p t i o n a l parameter ,
4 / / n o t used f o r s i n g l e −s t a t e e v a l u a t i o n)
5 / / r e t u r n s : b a s i c DTMC f o r t h e e x e c u t i o n o f t h e
6 / / c o n s i d e r e d usage s c e n a r i o
7

8 e v a l u a t e S c e n a r i o E x e c u t i o n (U_i , F , s) {
9 AS_top := ge tTopmos tAc t ionSequence (U_i) ;

10 DTMC_seq_top := e v a l u a t e A c t i o n S e q u e n c e (AS_top , F , s) ;
11 re turn DTMC_seq_top ;
12 }

Listing 5.8: Scenario Execution Evaluation Procedure

where each action of the sequence (specified through a subclass of Ab-
stractAction in the PCM-REL instance) is represented by a correspond-
ing state E(ASi,A j). Transitions starting from the initial I(ASi) across the
E(ASi,A j) with probabilities 1 express the sequential control flow through
the actions of the behaviour; the last transition leads from E(ASi,Am) to
S(ASi). For each action, the transformation creates a DT MCact (ASi,A j)

and resolves the state E(ASi,A j) accordingly, eventually transforming the
DT MCseq(ASi) to its basic structure. Listing 5.7 shows the action sequence
evaluation procedure.

For the topmost action sequence (which is the “BatchRequestBehaviour”
in the example of Figure 4.1), the result can be used to resolve the corre-

141

5 PCM-REL Reliability Evaluation

sponding scenario execution state in the top-level DT MCtop(Ui) (see Fig-
ures 5.7 and 5.8). Listing 5.8 depicts the relevant scenario evaluation pro-
cedure.

Numerically, the success and failure mode probabilities of each action
sequence can be determined as:

m
Pi(Success) = ∏ Pi j(Success) (5.20)

j=1

m l−1
Pi(Fk) = ∑(∏ Pi j(Success)×Pil (Fk)) (5.21)

l=1 j=1

Equation 5.20 expresses the assumption that the whole action sequence ASi

is only successful if each action A j is successfully executed. Equation 5.21
evaluates the probability Pi(Fk) of failure mode Fk as the probability of Fk

occurring in action Al after successful execution of the first l − 1 actions,
for l ∈ {1, . . . ,m}.

The evaluation of an action sequence ASi as conducted by the Markov
transformation assumes that the first failing action A j of ASi determines
the failure mode Fk of the whole sequence. There is no chance that a suc-
cess or a second FOD occurring at a later action ‘overwrites’ Fk. Neither
can multiple unhandled FOD occurrences add up to an ‘aggregated’ failure
mode as the result of the sequence. Effectively, the transformation ignores
cases where two or more unhandled FODs occur within a single action se-
quence. An explicit consideration of such cases would require extra effort
in terms of modelling as well as analysis. Modellers would need to specify
the influence of FOD occurrences on the subsequent control and data flow
(which may be arbitrary in theory), and the Markov transformation would
need to evaluate individual actions (together with their associated subse-
quences) multiple times, to account for different preconditions in terms of
already occurred FODs. Taken to the extreme, the transformation would
need (n +1) j−1 evaluations of action A j in order to account for all possible

142

5.3 Compact Behavioural Evaluation

execution histories of actions A1 to A j−1 in the sequence, each with n + 1
possible outcomes. Hence, the evaluation of each sequence would have
exponential complexity with respect to the number of required evaluations
of the contained actions.

In contrast, the above-described assumption enables a compact evalua-
tion of an action sequence ASi, where each contained action A j is evaluated
exactly once. The inaccuracy introduced by this assumption is generally
low, provided that FOD occurrences are rare events and occur indepen-
dently from each other. As an example, consider an action sequence ASi

with three actions A1, A2 and A3 which may fail independently, each with
one specific FOD type F1, F2 and F3 and non-zero FOD probability. In the
example, a FOD occurrence during the execution of any individual action
does not prevent the subsequent actions from being executed. Hence, the
probabilities of success and failure are:

Pi(Success) = Pi1(Success)×Pi2(Success)×Pi3(Success) (5.22)

Pi(Fk) = Pik(Fk)> 0 ∀k ∈ {1,2,3} (5.23)

As multiple FODs of different types Fk may occur during the execution of
the sequence, the individual outcomes of ASi are not mutually exclusive:

3
Pi(Success)+ ∑ Pi(Fk)> 1 (5.24)

k=1

Table 5.4 shows how the PCM-REL Markov analysis evaluates ASi. PCM-
REL distinguishes only four out of the eight possible execution results.
In all cases, the approach considers the first occurred FOD type as being
the overall failure mode of ASi. For PCM-REL, all possible outcomes are
mutually exclusive. Regarding prediction accuracy, the approach correctly
evaluates Pi(Success) and Pi(F1), but introduces a numerical error when
evaluating Pi(F2) and Pi(F3). However, if the probabilities of FOD occur-

143

5 PCM-REL Reliability Evaluation

Execution Results PCM-REL Evaluation

A1 A2 A3 Result of ASi Occurrence Probability

Success Success Success Success Pi(Success) = Pi1(Success) x Pi2(Success) x Pi3(Success)

Success Success F3 F3 Pi (F3) = Pi1(Success) x Pi2(Success) x Pi3(F3)  Pi3(F3)

Success F2 Success
F2 Pi (F2) = Pi1(Success) x Pi2(F2)  Pi2(F2)

Success F2 F3

F1 Success Success

F1 Pi (F1) = Pi1(F1)
F1 Success F3

F1 F2 Success

F1 F2 F3

160 mm = 1.0
Table 5.4: Action Sequence Evaluation Example

rences are small, then the introduced error is also small, as Pi1(Success)≈ 1
and Pi2(Success) ≈ 1.

5.3.2 Action Types

Each action sequence (see Section 5.3.1) includes a set of individual ac-
tions, which belong to the corresponding PCM-REL ScenarioBehaviour
or ResourceDemandingBehaviour. The evaluation of the sequence in-
volves evaluating all of its actions (see Listing 5.7). The Markov trans-
formation distinguishes multiple action types and evaluates each action ac-
cording to its type. Table 5.5 shows the considered action types, as well
as the mapping of PCM-REL actions to the action types. Branches, loops,
forks and pointer actions specify the flow of user behaviour and system
execution in the failure-free case. Sections 5.3.3 to 5.3.6 discuss their
evaluation. Computation actions represent all data processing and com-
putational steps in the system execution (see Section 5.3.7), and recovery

actions specify the control flow of the system execution when FODs oc-
cur (see Section 5.3.8). Default actions are all actions that do not exhibit
an own potential for failure. This last category includes actions that de-
note the start and the end of behavioural specifications (namely, the Start,
Stop, StartAction and StopAction), actions that influence the data
flow of the system execution (namely, the SetVariableAction), and ac-

144

5.3 Compact Behavioural Evaluation

tions that are part of the PCM behavioural specification language but do
not impact system reliability (namely, the Delay, ReleaseAction, and
AcquireAction). Listing 5.9 shows how each action in a sequence is
evaluated according to its type.

Action Type User Actions System Actions

Branch Branch BranchAction

Loop Loop LoopAction, CollectionIteratorAction

Fork --- ForkAction

Pointer EntryLevelSystemCall ExternalCallAction

Computation --- InternalAction

Recovery --- RecoveryBlockAction

Default Start, Stop, Delay StartAction, StopAction,
SetVariableAction, ReleaseAction,
AcquireAction

109 mm = 0.681

Table 5.5: Markov Action Types

1 / / A : c o n s i d e r e d a c t i o n
2 / / F : s e t o f c o n s i d e r e d f a i l u r e modes
3 / / s : c o n s i d e r e d hardware s t a t e (o p t i o n a l parameter ,
4 / / n o t used f o r s i n g l e −s t a t e e v a l u a t i o n)
5 / / r e t u r n s : b a s i c DTMC f o r t h e e x e c u t i o n o f t h e
6 / / c o n s i d e r e d a c t i o n
7

8 e v a l u a t e A c t i o n (A, F , s) {
9 t y p e := g e t A c t i o n T y p e (A) ;

10 i f (t y p e == BRANCH) {
11 re turn e v a l u a t e B r a n c h A c t i o n (A, F , s) ;
12 } e l s e i f (t y p e == LOOP) {
13 re turn e v a l u a t e L o o p A c t i o n (A, F , s) ;
14 } e l s e i f (t y p e == FORK) {
15 re turn e v a l u a t e F o r k A c t i o n (A, F , s) ;
16 } e l s e i f (t y p e == POINTER) {
17 re turn e v a l u a t e P o i n t e r A c t i o n (A, F , s) ;
18 } e l s e i f (t y p e == COMPUTATION) {
19 re turn e v a l u a t e C o m p u t a t i o n A c t i o n (A, F , s) ;
20 } e l s e i f (t y p e == RECOVERY) {
21 re turn e v a l u a t e R e c o v e r y A c t i o n (A, F , s) ;
22 } e l s e {
23 re turn e v a l u a t e D e f a u l t A c t i o n (A, F) ;
24 }

Listing 5.9: Action Evaluation Procedure

145

5 PCM-REL Reliability Evaluation

I

F1 FnS

1 (0) (0)

DTMCdef

Figure 5.11: Evaluation of Default Actions

1 / / A_def : c o n s i d e r e d d e f a u l t a c t i o n
2 / / F : s e t o f c o n s i d e r e d f a i l u r e modes
3 / / r e t u r n s : b a s i c DTMC f o r t h e e x e c u t i o n o f t h e
4 / / c o n s i d e r e d d e f a u l t a c t i o n
5

6 e v a l u a t e D e f a u l t A c t i o n (A_def , F) {
7 DTMC_def := in i tDefau l tDTMC (A_def , F) ;
8 re turn DTMC_def ;
9 }

Listing 5.10: Default Action Evaluation Procedure

For default actions, the evaluation is trivial, as shown in Figure 5.11. The
corresponding DT MCde f is directly created in its basic form, and a transi-
tion from the start I to the success S with probability 1 indicates that the
action never fails. Listing 5.10 shows the corresponding procedure. The
success and failure mode probabilities of the default action execution are:

Pde f ault (Success) = 1, Pde f ault (Fk) = 0 (5.25)

5.3.3 Branch Actions

A branch action Abranch is specified through a PCM-REL Branch (Sec-
tion 2.7.5) or BranchAction (Section 2.7.2). It contains a set of one ore
more branch transitions T := {t1, . . . , tm}, where each transition ti has an oc-
currence probability P(ti) and an associated behaviour, expressed through
an action sequence ASi (the dependency solver resolves any more complex
conditional expressions for transitions in the original PCM-REL instance
to simple probabilities, see Section 2.7.6). When executing Abranch, exactly

146

5.3 Compact Behavioural Evaluation

I

F1 FnS

P(t1) P(tm)

1
1

(0) (0) (0)
(0)

I(ASi)
Pi(Success)

Pi(F1)
Pi(Fn)

I

F1 FnS

Pbranch(Success)

Pbranch(F1)

Pbranch(Fn)

DTMCbranch

DTMCseq(ASi)

E(AS1) E(ASm)

S(ASi) F1(ASi) Fn(ASi)

Figure 5.12: Evaluation of Branch Actions

1 / / A_branch : c o n s i d e r e d branch a c t i o n
2 / / F : s e t o f c o n s i d e r e d f a i l u r e modes
3 / / s : c o n s i d e r e d hardware s t a t e (o p t i o n a l parameter ,
4 / / n o t used f o r s i n g l e −s t a t e e v a l u a t i o n)
5 / / r e t u r n s : b a s i c DTMC f o r t h e e x e c u t i o n o f t h e
6 / / c o n s i d e r e d branch a c t i o n
7

8 e v a l u a t e B r a n c h A c t i o n (A_branch , F , s) {
9 DTMC_branch := initBranchDTMC (A_branch , F) ;

10 T := g e t S e t O f B r a n c h T r a n s i t i o n s (A_branch) ;
11 m := ge tNumberOfElements (T) ;
12 f o r (i = 1 ; i <= m; i ++) {
13 AS_i := g e t A c t i o n S e q u e n c e (T (i)) ;
14 E_i := g e t A c t i o n S e q u e n c e E x e c u t i o n S t a t e (DTMC_branch , AS_i) ;
15 DTMC_seq_i := e v a l u a t e A c t i o n S e q u e n c e (AS_i , F , s) ;
16 r e s o l v e (DTMC_branch , E_i , DTMC_seq_i) ;
17 }
18 re turn DTMC_branch ;
19 }

Listing 5.11: Branch Action Evaluation Procedure

147

5 PCM-REL Reliability Evaluation

one transition is taken; the transition probabilities sum up to 1:

m

∑ P(ti) = 1 (5.26)
i=1

The Markov transformation evaluates branch actions as shown in Fig-
ure 5.12. Each branch transition ti and associated action sequence ASi is
represented through a state E(ASi), and a Markov transition from the initial
state I to E(ASi) with probability P(ti) denotes the possibility that ASi is
executed. The transformation creates an intermediate DT MCseq(ASi) for
each ASi and resolves each E(ASi) accordingly, as shown in Listing 5.11.
Hence, each branch transition and associated action sequence is evaluated
exactly once by the transformation. The success and failure mode probabil-
ities of Abranch can be determined as the weighted sum over each individual
branch transition:

m
Pbranch(Success) = ∑(Pi(Success) ·P(ti)) (5.27)

i=1
m

Pbranch(Fk) = ∑(Pi(Fk) ·P(ti)) (5.28)
i=1

5.3.4 Loop Actions

Loop actions Aloop are specified through PCM-REL Loops (Section 2.7.5),
LoopActions or CollectionIteratorActions (Section 2.7.2). A loop
contains a body behaviour with a corresponding action sequence ASb, and
– after resolving stochastic expressions and parameter dependencies (Sec-
tion 2.7.6) – a specification of loop iteration counts C := {c1, . . . ,cm} ⊂ N
with occurrence probabilities P(ci) that sum up to 1:

m

∑ P(ci) = 1 (5.29)
i=1

148

5.3 Compact Behavioural Evaluation

I(ASb)
Pb(Success)

Pb(F1)

Pb(Fn)

DTMCseq(ASb)

(ASb)
F1

(ASb)
S

(ASb)
Fn

I

F1 FnS

P(c1) P(cm)

1
1

(0) (0) (0)
(0)

DTMCloop

E1(c1) Em(cm)

E1(1) Em(1)

1

1

1

1 I

F1 FnS

Ploop(Success)

Ploop(F1)

Ploop(Fn)

Figure 5.13: Evaluation of Loop Actions

1 / / A_loop : c o n s i d e r e d l oop a c t i o n
2 / / F : s e t o f c o n s i d e r e d f a i l u r e modes
3 / / s : c o n s i d e r e d hardware s t a t e (o p t i o n a l parameter ,
4 / / n o t used f o r s i n g l e −s t a t e e v a l u a t i o n)
5 / / r e t u r n s : b a s i c DTMC f o r t h e e x e c u t i o n o f t h e
6 / / c o n s i d e r e d l oop a c t i o n
7

8 e v a l u a t e L o o p A c t i o n (A_loop , F , s) {
9 DTMC_loop := initLoopDTMC (A_loop , F) ;

10 C := g e t S e t O f L o o p I t e r a t i o n C o u n t s (A_loop) ;
11 m := ge tNumberOfElements (C) ;
12 AS_b := ge tBodyAct ionSequence (A_loop) ;
13 DTMC_seq_b := e v a l u a t e A c t i o n S e q u e n c e (AS_b , F , s) ;
14 f o r (i = 1 ; i <= m; i ++) {
15 f o r (j = 1 ; j <= C(i) ; j ++) {
16 E _ i j := g e t B o d y E x e c u t i o n S t a t e (DTMC_loop , i , j) ;
17 r e s o l v e (DTMC_loop , E_ i j , DTMC_seq_b) ;
18 }
19 }
20 re turn DTMC_loop ;
21 }

Listing 5.12: Loop Action Evaluation Procedure

149

5 PCM-REL Reliability Evaluation

Each P(ci) expresses the probability that the loop body ASb is executed ci

times before the control flow moves on to the successor action of the loop.
The Markov transformation must account for the failure potential of each
individual execution of ASb, but evaluates ASb only once. As Figure 5.13
shows, the initial DT MCloop structure reflects all possible iteration counts
ci by a path leading from the initial state I to a sequence of states Ei(1)
to Ei(ci), where each Ei(j) reflects one execution of ASb. The transitions
starting from I represent the different possible loop iteration counts and
have the probabilities P(ci) attached. From the last body execution states
Ei(ci), transitions lead to the success state S with probability 1. The trans-
formation generates an intermediate DT MCseq(ASb) and uses it to resolve
all of the states Ei(j). Listing 5.12 shows the procedure.

The success and failure mode probabilities of the loop action are:

m
Ploop(Success) = ∑(Pb(Success)ci ·P(ci)) (5.30)

i=1
m ci

Ploop(Fk) = ∑((∑ Pb(Success) j−1 ·Pb(Fk)) ·P(ci)) (5.31)
i=1 j=1

These two equations express the probabilities that, for any loop iteration
count ci, either all ci executions of the loop body ASb succeed (Equa-
tion 5.30), or that a FOD of type Fk occurs in any of the body executions
(Equation 5.31).

The evaluation of loop actions as described here is based on an assump-
tion similar to the evaluation of action sequences (see Section 5.3.1): the
first failing execution of the loop body ASb determines the overall failure
mode Fk of the loop. This assumption is necessary to avoid the need for
evaluating ASb multiple times accounting for all possible execution histo-
ries. See Section 5.3.1 for a more detailed discussion. Even though – thanks
to the described assumption – the Markov transformation evaluates ASb

only once, loop actions can still constitute a scalability issue for the anal-
ysis. The DT MCloop which needs to be constructed during the evaluation

150

5.3 Compact Behavioural Evaluation

procedure contains a potentially large number of c1 + ...+cm inner Markov
states, corresponding to the specified loop iteration counts ci. However,
most modelled loop actions have only a small number of iteration counts,
as PCM-REL specifies control flow on a high abstraction level.

5.3.5 Fork Actions

A fork action A f ork, specified by a PCM-REL ForkAction (see Sec-
tion 2.7.2), denotes the parallel execution of m forked behaviours with
corresponding action sequences AS1 to ASm. After the execution of all
ASi has started, the control flow either moves on to the successor ac-
tion of A f ork immediately, or it waits until the completion of all ASi, if
a SynchronizationPoint has been specified. The Markov transforma-
tion abstracts from the involved parallelism and instead evaluates the ASi as
if they were executed sequentially. Figure 5.14 shows the DT MCf ork struc-
ture initialized with m states E(ASi) representing the execution of each
ASi, starting from the initial I and finally reaching the success state S.
An intermediate DT MCseq(ASi) evaluates each individual sequence and is
used to resolve the corresponding E(ASi). Hence, the Markov transforma-
tion evaluates each forked behaviour exactly once. Listing 5.13 shows
the procedure.

The execution of A f ork is successful if all ASi complete without a FOD
occurrence. In contrast, a FOD Fk of A f ork is the result of Fk occurring
within any of the forked behaviours ASi, leading to the following success
and failure mode probabilities of A f ork:

m
Pf ork(Success) = ∏Pi(Success) (5.32)

i=1
m i−1

Pf ork(Fk) = ∑(∏ Pj(Success)×Pi(Fk)) (5.33)
i=1 j=1

151

5 PCM-REL Reliability Evaluation

I

F1 FnS

1

1 (0) (0)

I

F1 FnS

Pfork(Success)
Pfork(F1) Pfork(Fn)

DTMCfork

11
E(ASm) E(AS1)

I(ASi)
Pi(Success)

Pi(F1)
Pi(Fn)

DTMCseq(ASi)

S(ASi) F1(ASi) Fn(ASi)

Figure 5.14: Evaluation of Fork Actions

1 / / A_ fo rk : c o n s i d e r e d f o r k a c t i o n
2 / / F : s e t o f c o n s i d e r e d f a i l u r e modes
3 / / s : c o n s i d e r e d hardware s t a t e (o p t i o n a l parameter ,
4 / / n o t used f o r s i n g l e −s t a t e e v a l u a t i o n)
5 / / r e t u r n s : b a s i c DTMC f o r t h e e x e c u t i o n o f t h e
6 / / c o n s i d e r e d f o r k a c t i o n
7

8 e v a l u a t e F o r k A c t i o n (A_fork , F , s) {
9 DTMC_fork := initForkDTMC (A_fork , F) ;

10 B := g e t S e t O f F o r k e d B e h a v i o u r s (A_fork) ;
11 m := ge tNumberOfElements (B) ;
12 f o r (i = 1 ; i <= m; i ++) {
13 AS_i := g e t A c t i o n S e q u e n c e (B(i)) ;
14 E_i := g e t A c t i o n S e q u e n c e E x e c u t i o n S t a t e (DTMC_fork , AS_i) ;
15 DTMC_seq_i := e v a l u a t e A c t i o n S e q u e n c e (AS_i , F , s) ;
16 r e s o l v e (DTMC_fork , E_i , DTMC_seq_i) ;
17 }
18 re turn DTMC_fork ;
19 }

Listing 5.13: Fork Action Evaluation Procedure

152

5.3 Compact Behavioural Evaluation

Due to the involved parallelism, a FOD while executing a forked behaviour
ASi may occur after the surrounding action sequence – or even the whole
UsageScenario control flow – has already come to its end. Still, from the
reliability prediction point of view, a failing ASi means a failed A f ork and
ultimately a failed scenario execution, unless recovery mechanisms are in
place (also see the FOD propagation principle described in Section 4.1).

Treating forked behaviours as if they were sequential is possible because
the Markov transformation considers all FOD occurrences as being stochas-
tically independent. The success and failure mode probabilities of any
forked behaviour ASi do not depend on the other behaviours or on the rel-
ative timing of their execution. While the modeller can generally express
a potential for concurrency-related FODs through defining corresponding
SoftwareInducedFODTypes and annotating the computation with FOD
probabilities, PCM-REL does not explicitly capture how synchronization
issues and other problems arise as a result of concurrent system execution.
Doing so would shift the focus of the approach towards fault identification
and system verification and would require different types of analyses (using
time-based synchronisation-aware analysis models).

Based on the sequential treatment of forked behaviours, the transforma-
tion assumes that the first failing behaviour ASi determines the overall fail-
ure mode Fk of A f ork. This assumption corresponds to the one taken for
action sequences (Section 5.3.1) and loop actions (Section 5.3.4). See Sec-
tion 5.3.1 for a more detailed discussion of the assumption. For fork ac-
tions, the additional question arises in which order to consider the forked
behaviours (as the behaviours are executed concurrently, there is no nat-
ural order given). The Markov transformation chooses an arbitrary or-
der, assuming that the order of executed actions or behaviours does not
significantly influence the success and failure mode probabilities resulting
from the analysis. This assumption is valid as long as the individual FOD
probabilities are not too high. As an example, consider a re-ordering of
actions A1, A2 and A3 in Table 5.4 – any such re-ordering leads to very

153

5 PCM-REL Reliability Evaluation

similar prediction results, provided that the individual FOD probabilities
Pik(Fk) ∀k ∈ {1,2,3} are low.

5.3.6 Pointer Actions

A pointer action Apointer represents an invocation of a service operation.
The invocation is triggered by a system user (specified through a PCM-REL
EntryLevelSystemCall, see Section 2.7.5) or by a service call as part of
the system’s behaviour (specified through an ExternalCallAction, see
Section 2.7.2). The invoked service operation may be provided by a soft-
ware component in the system, or it may be routed to the system’s bor-
der and provided by a system-external service. In the first case, the called
component provides a behavioural specification in terms of a Resource-
DemandingSEFF for the service operation, and Apointer references the top-
most action sequence ASb representing the ResourceDemandingSEFF. In
the latter case, the system-external behaviour is regarded as a black-box. A
SpecifiedReliabilityAnnotation may exist for the system-external
call (see Section 4.6) indicating its success and failure mode probabilities1.
If Apointer represents a service call between two software components that
are deployed on different ResourceContainers, the invocation involves
communication via the LinkingResource that connects both containers
(see Section 2.7.4).

The Markov transformation classifies pointer actions according to their
different targets as local, entry-level, remote and system-external pointers,
and it applies an individual transformation scheme to each of these classes.
Local pointers are invocations between software components deployed on
the same ResourceContainer. They reference a system-internal be-
haviour, represented by ASb, and they do not involve remote communi-

1More concretely, the target of Apointer is determined depending on the executed compo-
nent instance, which is uniquely identified by the surrounding set of nested AssemblyCon-
texts. To avoid overloading the presentation, the passing of AssemblyContext hierar-
chies as parameters is omitted from the presented listings.

154

5.3 Compact Behavioural Evaluation

I

F1 FnS

Ppointer(Success)

Ppointer(F1)

Ppointer(Fn)

I

F1 FnS

1
(0)

(0)

DTMCpointer

1

E(ASb)

I(ASb)
Pb(Success)

Pb(F1)

Pb(Fn)

DTMCseq(ASb)

(ASb)
F1

(ASb)
S

(ASb)
Fn

Figure 5.15: Evaluation of Local Pointer Actions

I

F1 FnS

Ppointer(Success)

Ppointer(F1)

Ppointer(Fn)

I(ASb)
Pb(Success)

Pb(F1)

Pb(Fn)

DTMCseq(ASb)

(ASb)
F1

(ASb)
S

(ASb)
Fn

I(sj)
Pj(Success)

Pj(F1)

Pj(Fn)

DTMCres(sj)

S(sj) F1(sj) Fn(sj)

I

F1 FnS

1

1 (0) (0)

DTMCpointer

1
R(sj)E(ASb)

Figure 5.16: Evaluation of Entry-Level Pointer Actions

155

5 PCM-REL Reliability Evaluation

cation. As shown in Figure 5.15, the initial DT MCpointer contains only one
inner state E(ASb), which is resolved by the intermediate DT MCseq(ASb)

representing ASb. The success and failure mode probabilities are:

Ppointer(Success) = Pb(Success), Ppointer(Fk) = Pb(Fk) (5.34)

Entry-level pointers represent invocations that are triggered by system us-
ers through EntryLevelSystemCalls. As an additional required step
compared to the evaluation of local pointers, the ResourceContainer
that hosts the service-providing component must be checked for being op-
erational. The operability check is done before evaluating the invoked
service behaviour, as the operability of the container is a precondition for
any service execution to take place. The container is operational if all in-
cluded hardware resources that are strictly required for its operation (as
indicated by the requiredByContainer attribute of the corresponding
ProcessingResourceSpecification, see Section 4.4) are available.
The evaluation of Apointer varies depending on the way of handling sys-
tem hardware states, namely through standard or approximated evaluation
(see Sections 5.2.2 and 5.2.4) or through single-state evaluation (see Sec-
tion 5.2.3). With standard or approximated evaluation, Apointer is always
evaluated under the precondition of a certain system hardware state s j. The
Markov transformation creates a DT MCpointer as shown in Figure 5.16 with
an additional state R(s j), compared to the local pointer case.

To evaluate the operability of the target container, the transformation
creates an intermediate DT MCres(s j) and resolves R(s j) accordingly. To
this end, the transformation first determines the set of hardware resources
Rpointer ⊆ R included in the container and strictly required for its opera-
tion. If all resources in Rpointer are OK under the precondition s j, a tran-
sition from I(s j) to S(s j) with probability 1 marks the assured success of
the operability check. If one resource ri ∈ Rpointer is NA, the check fails
with the corresponding failure mode Fk (which depends on the selected

156

5.3 Compact Behavioural Evaluation

evaluation level, see Section 5.1.1), denoted by a transition from I(s j) to
Fk(s j) with probability 1. If there are multiple unavailable resources, it is
not predetermined which one causes Apointer to fail. In this situation, the
Markov transformation divides the failure potential equally between all un-
available resources. As an example, consider a ResourceContainer with
two ProcessingResourceSpecifications of type “CPU” and “HDD”,
both with their requiredByContainer attributes set to true. If both re-
sources are NA under a certain state s j, and if Type is selected as an eval-
uation level, the corresponding DT MCres(s j) contains two transitions from
I(s j) to two failure states representing a CPU failure and a HDD failure,
each with probability 0.5. Overall, the success and failure mode probabil-
ities for entry-level pointers are as follows:

Ppointer(Success) = Pj(Success)×Pb(Success) (5.35)

Ppointer(Fk) = Pj(Fk)+Pj(Success)×Pb(Fk) (5.36)

Equation 5.35 reflects the fact that a successful completion of Apointer re-
quires a successful operability check of the target container, as well as a
successful execution of the invoked service operation. If either of these two
factors results in a failure mode Fk, so does Apointer (see Equation 5.36).

Remote pointers are invocations between two physically separated soft-
ware components. Figure 5.17 shows their evaluation (under standard or
approximated evaluation of system hardware states). The evaluation differs
from entry-level pointers in that two additional states E1(N) and E2(N)

represent the transfer of the invocation and return messages over the cor-
responding network LinkingResource. An additional DT MCcomm(N) is
used to resolve these two states. It represents the message transfer itself,
which may either be successful or result in a transmission failure. The cor-
responding failure mode Fi depends on the selected evaluation level (see
Section 5.1.1). For example, at level 1 (or Category), Fi is the “network-
induced FOD”.

157

5 PCM-REL Reliability Evaluation

For remote pointers, the success and failure mode probabilities are:

Ppointer(Success) = Pj(Success)×Pcomm(Success)2

×Pb(Success) (5.37)

⎧
Pcomm(Success)×Pj(Fk)

+ Pcomm(Success)×Pj(Success)×Pb(Fk) i f �k = i

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ Pcomm(Fk)Ppointer(Fk) =
+ Pcomm(Success)×Pj(Fk)

+ Pcomm(Success)×Pj(Success)×Pb(Fk)

+ Pcomm(Success)×Pj(Success)

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ × Pb(Success)×Pcomm(Fk) i f k = i

(5.38)

Equation 5.37 expresses that the remote pointer action is only successful
if both involved transmissions as well as the referenced behaviour ASb

are successfully executed, and if the target ResourceContainer is oper-
ational. Equation 5.38 states that failure modes Fk may result from failing
transmissions, a failed operability check of the target container, or failing
execution of ASb. If a failure mode does not represent a transmission fail-
ure (k �= i), it can only be the result of a failed operability check or failing
execution of ASb after a successful transmission of the service invocation
to the target container.

System-external pointers invoke an operation of a system-external ser-
vice. The corresponding initial DT MCpointer as shown in Figure 5.18 con-
tains a single inner state E(EC) representing the execution of the external
call. An intermediate DT MCext (EC) is directly instantiated with success
and failure mode probabilities Pext (Success) and Pext (Fk) determined from
the given PCM-REL instance. If a SpecifiedReliabilityAnnotation

158

5.3 Compact Behavioural Evaluation

I(ASb)

Pb(Success)

Pb(F1)

Pb(Fn)

DTMCseq(ASb)

(ASb)
F1

(ASb)
S

(ASb)
FnI(N)

Pcomm(Fi)

DTMCcomm(N)

S(N) Fi(N)
Pcomm(Suc‐

cess)

I

F1 FnS

1

1 (0) (0)

DTMCpointer

11
R(sj)E2(N) E(ASb)

E1(N)

1

I(sj)
Pj(Success)

Pj(F1)

Pj(Fn)

DTMCres(sj)

S(sj) F1(sj) Fn(sj)

I
Ppointer(Success)

Ppointer(F1)

Ppointer(Fn)

S F1 Fn

Figure 5.17: Evaluation of Remote Pointer Actions

I

F1 FnS

Ppointer(Success)

Ppointer(F1)

Ppointer(Fn)

I

F1 FnS

1
(0)

(0)

DTMCpointer

1

E(EC)

I(EC)
Pext(Success)

Pext(F1)

Pext(Fn)

DTMCext(EC)

S(EC) F1(EC) Fn(EC)

Figure 5.18: Evaluation of System-External Pointer Actions

159

5 PCM-REL Reliability Evaluation

exists for the call, the probabilities are taken from the annotation. If not,
the call is assumed to be fully reliable, namely, Pext (Success) = 1 and
Pext (Fk) = 0. The success and failure mode probabilities of the pointer
action are:

Ppointer(Success) = Pext (Success), Ppointer(Fk) = Pext (Fk) (5.39)

Listing 5.14 shows the evaluation procedure covering all types of pointer
actions under standard or approximated evaluation of system hardware
states.

1 / / A _ p o i n t e r : c o n s i d e r e d p o i n t e r a c t i o n
2 / / F : s e t o f c o n s i d e r e d f a i l u r e modes
3 / / s _ j : c o n s i d e r e d hardware s t a t e
4 / / r e t u r n s : b a s i c DTMC f o r t h e e x e c u t i o n o f t h e
5 / / c o n s i d e r e d p o i n t e r a c t i o n
6

7 e v a l u a t e P o i n t e r A c t i o n (A _po in t e r , F , s _ j) {
8 t y p e := g e t P o i n t e r T y p e (A _ p o i n t e r) ;
9 i f (t y p e == LOCAL) {

10 re turn e v a l u a t e L o c a l P o i n t e r A c t i o n (A _po in t e r , F , s _ j) ;
11 } e l s e i f (t y p e == ENTRY) {
12 re turn e v a l u a t e E n t r y P o i n t e r A c t i o n (A _po in t e r , F , s _ j) ;
13 } e l s e i f (t y p e == REMOTE) {
14 re turn e v a l u a t e R e m o t e P o i n t e r A c t i o n (A _po in t e r , F , s _ j) ;
15 } e l s e {
16 re turn e v a l u a t e E x t e r n a l P o i n t e r A c t i o n (A _po in t e r , F) ;
17 }
18 }
19

20 e v a l u a t e L o c a l P o i n t e r A c t i o n (A _po in t e r , F , s _ j) {
21 DTMC_pointer := i n i tLoca lPo in t e rDTMC (A _po in t e r , F) ;
22 AS_b := g e t R e f e r e n c e d A c t i o n S e q u e n c e (A _ p o i n t e r) ;
23 E_b := g e t R e f e r e n c e d E x e c u t i o n S t a t e (DTMC_pointer) ;
24 DTMC_seq_b := e v a l u a t e A c t i o n S e q u e n c e (AS_b , F , s _ j) ;
25 r e s o l v e (DTMC_pointer , E_b , DTMC_seq_b) ;
26 re turn DTMC_pointer ;
27 }
28

29 e v a l u a t e E n t r y P o i n t e r A c t i o n (A _po in t e r , F , s _ j) {
30 DTMC_pointer := i n i t E n t r y P o i n t e r D T M C (A _po in t e r , F) ;
31 RC := g e t T a r g e t R e s o u r c e C o n t a i n e r (A _ p o i n t e r) ;
32 AS_b := g e t R e f e r e n c e d A c t i o n S e q u e n c e (A _ p o i n t e r) ;
33 R_j := g e t O p e r a b i l i t y C h e c k S t a t e (DTMC_pointer) ;
34 E_b := g e t R e f e r e n c e d E x e c u t i o n S t a t e (DTMC_pointer) ;
35 DTMC_res_j := c rea teOperab i l i t yCheckDTMC (RC, F , s _ j) ;
36 DTMC_seq_b := e v a l u a t e A c t i o n S e q u e n c e (AS_b , F , s _ j) ;
37 r e s o l v e (DTMC_pointer , R_j , DTMC_res_j) ;
38 r e s o l v e (DTMC_pointer , E_b , DTMC_seq_b) ;
39 re turn DTMC_pointer ;

160

5.3 Compact Behavioural Evaluation

40 }
41

42 e v a l u a t e R e m o t e P o i n t e r A c t i o n (A _po in t e r , F , s _ j) {
43 DTMC_pointer := in i tRemotePointerDTMC (A _po in t e r , F) ;
44 LR := g e t R e q u i r e d L i n k i n g R e s o u r c e (A _ p o i n t e r) ;
45 RC := g e t T a r g e t R e s o u r c e C o n t a i n e r (A _ p o i n t e r) ;
46 AS_b := g e t R e f e r e n c e d A c t i o n S e q u e n c e (A _ p o i n t e r) ;
47 R_j := g e t O p e r a b i l i t y C h e c k S t a t e (DTMC_pointer) ;
48 E_b := g e t R e f e r e n c e d E x e c u t i o n S t a t e (DTMC_pointer) ;
49 DTMC_comm_N := crea teTransmiss ionDTMC (LR) ;
50 DTMC_res_j := c rea teOperab i l i t yCheckDTMC (RC, F , s _ j) ;
51 DTMC_seq_b := e v a l u a t e A c t i o n S e q u e n c e (AS_b , F , s _ j) ;
52 f o r (i = 1 ; i <= 2 ; i ++) {
53 E_i := g e t T r a n s m i s s i o n S t a t e (DTMC_pointer , i) ;
54 r e s o l v e (DTMC_pointer , E_i , DTMC_comm_N) ;
55 }
56 r e s o l v e (DTMC_pointer , R_j , DTMC_res_j) ;
57 r e s o l v e (DTMC_pointer , E_b , DTMC_seq_b) ;
58 re turn DTMC_pointer ;
59 }
60

61 e v a l u a t e E x t e r n a l P o i n t e r A c t i o n (A _po in t e r , F) {
62 DTMC_pointer := i n i t E x t e r n a l P o i n t e r D T M C (A _po in t e r , F) ;
63 EC := g e t R e f e r e n c e d E x t e r n a l C a l l (A _ p o i n t e r) ;
64 E := g e t R e f e r e n c e d E x e c u t i o n S t a t e (DTMC_pointer) ;
65 DTMC_ext := c r ea t eEx te rna lCa l lDTMC (EC) ;
66 r e s o l v e (DTMC_pointer , E , DTMC_ext) ;
67 re turn DTMC_pointer ;
68 }

Listing 5.14: Pointer Action Evaluation Procedures

The single-state evaluation as introduced in Section 5.2.3 allows for a
significantly faster top-level usage scenario evaluation (Figure 5.8) com-
pared to the standard evaluation (Figure 5.7). On the other hand, it re-
quires slightly more effort with respect to entry-level and remote pointer
actions. As illustrated by Figures 5.19 and 5.20, the Markov transfor-
mation must take into account all possible hardware states Spointer(t) :=
{s̄1(t), . . . , s̄m̄(t)} at time t arising from the reduced set of hardware re-
sources Rpointer = {r1, . . . ,rn̄} ⊆ R required by the target ResourceCon-
tainer of Apointer:

ns̄ j(t) := (s̄ j(r1, t), . . . , s̄ j(rn̄, t)) ∈ {OK,NA} ¯

∀t > 0, j ∈ {1, . . . , m̄} (5.40)

161

5 PCM-REL Reliability Evaluation

I(ASb)
Pb(Success)

Pb(F1)

Pb(Fn)

DTMCseq(ASb)

(ASb)
F1

(ASb)
S

(ASb)
Fn

I(sj)
Pj(Success)

Pj(F1)

Pj(Fn)

DTMCres(sj)

S(sj) F1(sj) Fn(sj)

I
Ppointer(Success)

Ppointer(F1)

Ppointer(Fn)

S F1 Fn

I

F1 FnS

1
(0)

(0)

DTMCpointer

E(ASb)

R(s1) R(sm)

P(s1) P(sm)

1 1

Figure 5.19: Evaluation of Entry-Level Pointer Actions (Single-State)

The probability P(s̄ j) := P(s̄ j(t)) of the system being in state s̄ j is deter-
mined in analogy to the probabilities of the overall system hardware states
(see Equation 5.4), taking into account only the state probabilities of the
resources in Rcompute:

n̄
P(s̄ j(t)) = ∏P(s(ri, t) = s̄ j(ri, t)) ∀t > 0, j ∈ {1, . . . , m̄} (5.41)

i=1

The size m̄ of Scompute(t) is exponential with respect to the size n̄ of Rcompute

(namely, m̄ = 2n̄), but Scompute(t) is significantly smaller than S(t): n̄ «
n ⇒ m̄ « m. In practice, n̄ ≤ 2 often holds. For example, the case study
models used for validation (see Chapter 6) contain at most 2 modelled in-
dividual hardware resources per container. This is due to the fact that a
resource environment is modelled from a high-level perspective in PCM-
REL, following the two-state availability model for hardware resources (see

162

5.3 Compact Behavioural Evaluation

I(N)
Pcomm(Fi)

DTMCcomm(N)

S(N) Fi(N)
Pcomm(Suc‐

cess)

I
Ppointer(Success)

Ppointer(F1)

Ppointer(Fn)

S F1 Fn

I(ASb)
Pb(Success)

Pb(F1)

Pb(Fn)

DTMCseq(ASb)

(ASb)
F1

(ASb)
S

(ASb)
Fn

I(sj)
Pj(Success)

Pj(F1)

Pj(Fn)

DTMCres(sj)

S(sj) F1(sj) Fn(sj)

E1(N)

DTMCpointer

E(ASb)

R(s1) R(sm)

P(s1) P(sm)

1 1

F1 FnS

1 (0) (0)

1
E2(N)

I
1

Figure 5.20: Evaluation of Remote Pointer Actions (Single-State)

Section 2.2) rather than focusing on the details of individual hardware ele-
ments and their failure behaviour. Hence, the single-state evaluation is gen-
erally significantly faster than the standard evaluation, even though some
additional effort arises for the evaluation of entry-level and remote pointer
actions (as well as computation actions, see Section 5.3.7).

Figure 5.19 illustrates the single-state evaluation of entry-level pointer
actions. In contrast to the standard and approximated evaluations, the
DT MCpointer contains m̄ states R(s̄1) to R(s̄m̄) representing the operabil-
ity check of the target ResourceContainer of Apointer under the differ-
ent possible hardware states s̄1 to s̄m̄. Each R(s̄ j) is reached from the
initial state I with probability P(s̄ j), and it is resolved through an inter-
mediate DT MCres(s̄ j), which is created according to the same rules as
the DT MCres(s j) in the standard and approximated evaluation cases (see

163

5 PCM-REL Reliability Evaluation

Figure 5.16). A further state E(ASb) representing the invoked service be-
haviour is resolved through a corresponding DT MCseq(ASb) as in the stan-
dard and approximated cases. The success and failure mode probabilities
of the entry-level Apointer determined through single-state evaluation are:

m̄
Ppointer(Success) = ∑ (Pj(Success)×P(s̄ j))×Pb(Success) (5.42)

j=1

m̄ m̄
Ppointer(Fk) = ∑ (Pj(Fk)×P(s̄ j))+ ∑

j 1=

(Pj(Success)×P(s̄ j))×Pb(Fk)
j=1

(5.43)

The calculation is similar to that of Equations 5.35 and 5.36, but it takes
into account the different possible hardware states s̄ j that occur each with
its specific probability P(s̄ j).

Figure 5.20 depicts the single-state evaluation of remote pointer actions,
which is extended compared to the standard and approximated cases (Fig-
ure 5.17) in the same way as the single-state evaluation of entry-level point-
ers (Figure 5.19) compared to their standard or approximated evaluation
(Figure 5.16). Instead of a single state R(s j) for the operability check of the
target container, m̄ states R(s̄1) to R(s̄m̄) account for the different possible
hardware states s̄1 to s̄m̄ and are resolved each by its specific DT MCres(s̄ j).
Correspondingly, the success and failure mode probabilities of the remote
Apointer determined through single-state evaluation are the extended ver-
sions of equations 5.37 and 5.38:

m̄
Ppointer(Success) = ∑ (Pj(Success)×P(s̄ j))

j=1

×Pcomm(Success)2 ×Pb(Success) (5.44)

164

5.3 Compact Behavioural Evaluation ⎧
m̄

Pcomm(Success)× ∑ (Pj(Fk)×P(s̄ j))
j=1

m̄
+ Pcomm(Success)× ∑

j=1
(Pj(Success)×P(s̄ j))

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
× Pb(Fk) i f �k = i

Pcomm(Fk)Ppointer(Fk) = m̄
+ Pcomm(Success)× ∑

j=1
m̄

(Pj(Fk)×P(s̄ j))

+ Pcomm(Success)× ∑
j=1

× Pb(Fk)
m̄

(Pj(Success)×P(s̄ j))

+ Pcomm(Success)× ∑ (Pj(Success)×P(s̄ j))

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ j=1

× Pb(Success)×Pcomm(Fk) i f k = i

(5.45)

To complete the consideration of pointer actions, Listing 5.15 shows the
evaluation procedure covering all types of pointer actions under the single-
state evaluation of system hardware states. For local and system-external
pointers, there are no changes compared to the standard and approximated
cases, and the details of the corresponding procedures are omitted from
the listing.

1 / / A _ p o i n t e r : c o n s i d e r e d p o i n t e r a c t i o n
2 / / F : s e t o f c o n s i d e r e d f a i l u r e modes
3 / / r e t u r n s : b a s i c DTMC f o r t h e e x e c u t i o n o f t h e
4 / / c o n s i d e r e d p o i n t e r a c t i o n
5

6 e v a l u a t e P o i n t e r A c t i o n (A _po in t e r , F) {
7 t y p e := g e t P o i n t e r T y p e (A _ p o i n t e r) ;
8 i f (t y p e == LOCAL) {
9 re turn e v a l u a t e L o c a l P o i n t e r A c t i o n (A _po in t e r , F) ;

10 } e l s e i f (t y p e == ENTRY) {
11 re turn e v a l u a t e E n t r y P o i n t e r A c t i o n (A _po in t e r , F) ;
12 } e l s e i f (t y p e == REMOTE) {
13 re turn e v a l u a t e R e m o t e P o i n t e r A c t i o n (A _po in t e r , F) ;
14 } e l s e {
15 re turn e v a l u a t e E x t e r n a l P o i n t e r A c t i o n (A _po in t e r , F) ;

165

5 PCM-REL Reliability Evaluation

16 }
17 }
18

19 e v a l u a t e L o c a l P o i n t e r A c t i o n (A _po in t e r , F) {
20 . . . / / ana logous t o s t a n d a r d or a p p r o x i m a t e d e v a l u a t i o n
21 }
22

23 e v a l u a t e E n t r y P o i n t e r A c t i o n (A _po in t e r , F) {
24 RC := g e t T a r g e t R e s o u r c e C o n t a i n e r (A _ p o i n t e r) ;
25 R := g e t S e t O f R e q u i r e d H a r d w a r e R e s o u r c e s (RC) ;
26 S := d e t e r m i n e S e t O f H a r d w a r e S t a t e s (R) ;
27 P := d e t e r m i n e S e t O f H a r d w a r e S t a t e P r o b a b i l i t i e s (R) ;
28 DTMC_pointer := i n i t E n t r y P o i n t e r D T M C (A _po in t e r , S , P , F) ;
29 AS_b := g e t R e f e r e n c e d A c t i o n S e q u e n c e (A _ p o i n t e r) ;
30 E_b := g e t R e f e r e n c e d E x e c u t i o n S t a t e (DTMC_pointer) ;
31 m := ge tNumberOfElements (S) ;
32 f o r (j = 1 ; j <= m; j ++) {
33 R_j := g e t O p e r a b i l i t y C h e c k S t a t e (DTMC_pointer , S (j)) ;
34 DTMC_res_j := c rea teOperab i l i t yCheckDTMC (RC, F , S (j)) ;
35 r e s o l v e (DTMC_pointer , R_j , DTMC_res_j) ;
36 }
37 DTMC_seq_b := e v a l u a t e A c t i o n S e q u e n c e (AS_b , F , s _ j) ;
38 r e s o l v e (DTMC_pointer , E_b , DTMC_seq_b) ;
39 re turn DTMC_pointer ;
40 }
41

42 e v a l u a t e R e m o t e P o i n t e r A c t i o n (A _po in t e r , F) {
43 LR := g e t R e q u i r e d L i n k i n g R e s o u r c e (A _ p o i n t e r) ;
44 RC := g e t T a r g e t R e s o u r c e C o n t a i n e r (A _ p o i n t e r) ;
45 R := g e t S e t O f R e q u i r e d H a r d w a r e R e s o u r c e s (RC) ;
46 S := d e t e r m i n e S e t O f H a r d w a r e S t a t e s (R) ;
47 P := d e t e r m i n e S e t O f H a r d w a r e S t a t e P r o b a b i l i t i e s (R) ;
48 DTMC_pointer := in i tRemotePointerDTMC (A _po in t e r , S , P , F) ;
49 AS_b := g e t R e f e r e n c e d A c t i o n S e q u e n c e (A _ p o i n t e r) ;
50 E_b := g e t R e f e r e n c e d E x e c u t i o n S t a t e (DTMC_pointer) ;
51 m := ge tNumberOfElements (S) ;
52 f o r (j = 1 ; j <= m; j ++) {
53 R_j := g e t O p e r a b i l i t y C h e c k S t a t e (DTMC_pointer , S (j)) ;
54 DTMC_res_j := c rea teOperab i l i t yCheckDTMC (RC, F , S (j)) ;
55 r e s o l v e (DTMC_pointer , R_j , DTMC_res_j) ;
56 }
57 DTMC_comm_N := crea teTransmiss ionDTMC (LR) ;
58 DTMC_seq_b := e v a l u a t e A c t i o n S e q u e n c e (AS_b , F , s _ j) ;
59 f o r (i = 1 ; i <= 2 ; i ++) {
60 E_i := g e t T r a n s m i s s i o n S t a t e (DTMC_pointer , i) ;
61 r e s o l v e (DTMC_pointer , E_i , DTMC_comm_N) ;
62 }
63 r e s o l v e (DTMC_pointer , E_b , DTMC_seq_b) ;
64 re turn DTMC_pointer ;
65 }
66

67 e v a l u a t e E x t e r n a l P o i n t e r A c t i o n (A _po in t e r , F) {
68 . . . / / ana logous t o s t a n d a r d or a p p r o x i m a t e d e v a l u a t i o n
69 }

Listing 5.15: Pointer Action Evaluation Procedures (Single-State)

166

5.3 Compact Behavioural Evaluation

5.3.7 Computation Actions

Computation actions Acompute represent the execution of algorithms, data
processing steps and other computations in the system. They are specified
through PCM-REL InternalActions (see Section 2.7.2) containing both
a set of InternalFODOccurrenceDescriptions (Section 4.3) and a set
of required ProcessingResourceTypes. While the former expresses the
software failure potentials of the represented computation, the latter indi-
cates the dependencies to hardware resources and the associated failure po-
tentials. As with entry-level and remote pointer actions (see Section 5.3.6),
the evaluation of Acompute depends on the way the Markov transformation
handles system hardware states. With standard or approximated evalua-
tion, Acompute is always evaluated under the precondition of a certain system
hardware state s j, and the transformation creates a DT MCcompute structure
as shown in Figure 5.21. The DT MCcompute contains a state R(s j) express-
ing the consumption of hardware resources by Acompute under the precondi-
tion s j, as well as a state E expressing the computation itself. The consump-
tion of hardware resources is evaluated first, assuming that the computation
cannot even start if a required hardware resource is unavailable.

The transformation creates an intermediate DT MCres(s j) to account for
hardware resource consumption and resolves R(s j) accordingly. The cre-
ated DT MCres(s j) considers the set of hardware resources Rcompute ⊆ R

required by Acompute through mapping the ParametricResourceDemands
of the specified InternalAction to the ProcessingResourceSpeci-
fications of the allocated ResourceContainer2. The construction of
DT MCres(s j) based on Rcompute follows the same rules as with entry-level
and remote pointer actions (Figures 5.16 and 5.17) based on Rpointer: if
all required resources are available, Pj(Success) is set to 1; else, an over-

2As with the invocation target of a pointer action, the mapping of the required resource types
of Acompute to allocated hardware resources depends on the executed component instance.
Hence, knowledge about the set of nested AssemblyContexts is again required.

167

5 PCM-REL Reliability Evaluation

all FOD probability of 1 is equally divided between all unavailable re-
sources.

I
Pcompute(Success)

Pcompute(F1)

Pcompute(Fn)

S F1 Fn

I(sj)
Pj(Success)

Pj(F1)

Pj(Fn)

DTMCres(sj)

S(sj) F1(sj) Fn(sj)

I(E)
Psoft(Success)

Psoft(F1)

Psoft(Fn)

DTMCsoft(E)

S(E) F1(E) Fn(E)

I

F1 FnS

1
(0)

(0)

DTMCcompute

1

E

R(sj)

1

Figure 5.21: Evaluation of Computation Actions

For the computation itself, the Markov transformation resolves the state E

with an intermediate DT MCso f t (E) which reflects the InternalFODOc-
currenceDescriptions of the specified InternalAction. The struc-
ture of DT MCso f t (E) depends on the FODProbability and the Soft-
wareInducedFODType of each InternalFODOccurrenceDescription,
as well as the selected evaluation level. If no InternalFODOccurrence-
Descriptions have been specified, a single transition from I(E) to S(E)
with probability 1 denotes the assured success of the computation. In
the audio hosting example (Section 1.5), the InternalAction “ParseWe-
bRequest” of the “WebFrontend.DownloadCollection” operation (see Fig-

168

5.3 Compact Behavioural Evaluation

1 / / A_compute : c o n s i d e r e d c o m p u t a t i o n a c t i o n
2 / / F : s e t o f c o n s i d e r e d f a i l u r e modes
3 / / s _ j : c o n s i d e r e d hardware s t a t e
4 / / r e t u r n s : b a s i c DTMC f o r t h e e x e c u t i o n o f t h e
5 / / c o n s i d e r e d c o m p u t a t i o n a c t i o n
6

7 e v a l u a t e C o m p u t a t i o n A c t i o n (A_compute , F , s _ j) {
8 DTMC_compute : = ini tComputat ionDTMC (A_compute , F) ;
9 R_j : = g e t R e s o u r c e C o n s u m p t i o n S t a t e (DTMC_compute) ;

10 E : = g e t C o m p u t a t i o n S t a t e (DTMC_compute) ;
11 DTMC_res_j : = createResourceConsumptionDTMC (A_compute , F , s _ j) ;
12 DTMC_soft_E := c rea te InnerComputa t ionDTMC (A_compute , F) ;
13 r e s o l v e (DTMC_compute , R_j , DTMC_res_j) ;
14 r e s o l v e (DTMC_compute , E , DTMC_soft_E) ;
15 re turn DTMC_compute ;
16 }

Listing 5.16: Computation Action Evaluation Procedure

ure 2.9) specifies a single InternalFODOccurrenceDescription of type
“WebRequestFailure” with a probability of 10−8 (Figure 4.6). Assuming
evaluation level 2 (or Type), the corresponding DT MCso f t (E) contains two
transitions – one from I(E) to S(E) with probability 1 −10−8 denoting the
success, and one from I(E) to a failure state Fk(E) representing the “We-
bRequestFailure”, with probability 10−8.

According to this description, the success and failure mode probabilities
of Acompute are as follows:

Pcompute(Success) = Pj(Success)×Pso f t (Success) (5.46)

Pcompute(Fk) = Pj(Fk)+Pj(Success)×Pso f t (Fk) (5.47)

A successful completion of Acompute requires a successful hardware re-
source consumption and a successful computation; a failure mode Fk in
either of the two aspects leads to failure mode Fk as a result of Acompute.
Listing 5.16 shows the evaluation procedure for computation actions under
standard and approximated hardware states evaluation.

In the case of a single-state evaluation of system hardware states, a
slightly extended evaluation of Acompute is required, as Figure 5.22 shows.
As with entry-level and remote pointer actions, the extended version takes

169

5 PCM-REL Reliability Evaluation

I
Pcompute(Success)

Pcompute(F1)

Pcompute(Fn)

S F1 Fn

I(sj)
Pj(Success)

Pj(F1)

Pj(Fn)

DTMCres(sj)

S(sj) F1(sj) Fn(sj)

I(E)
Psoft(Success)

Psoft(F1)

Psoft(Fn)

DTMCsoft(E)

S(E) F1(E) Fn(E)

I

F1 FnS

1
(0)

(0)

DTMCcompute

E

R(s1) R(sm)

P(s1) P(sm)

1 1

Figure 5.22: Evaluation of Computation Actions (Single-State)

into account a set Scompute(t) := {s̄1(t), . . . , s̄m̄(t)} of possible hardware
states at time t, based on the required resources Rcompute of Acompute. The
correspondingly extended DT MCcompute includes m̄ states R(s̄1) to R(s̄m̄)

instead of a single state R(s j) only. Each R(s̄ j) is resolved through its spe-
cific intermediate DT MCres(s̄ j). The success and failure mode probabilities
of Acompute determined through single-state evaluation are:

m̄
Pcompute(Success) = ∑ (Pj(Success)×P(s̄ j))×Pso f t (Success) (5.48)

j=1

m̄ m̄
Pcompute(Fk) = ∑ (Pj(Fk)×P(s̄ j))+ ∑ (Pj(Success)×P(s̄ j))×Pso f t (Fk)

j=1 j=1

(5.49)

170

5.3 Compact Behavioural Evaluation

1 / / A_compute : c o n s i d e r e d c o m p u t a t i o n a c t i o n
2 / / F : s e t o f c o n s i d e r e d f a i l u r e modes
3 / / r e t u r n s : b a s i c DTMC f o r t h e e x e c u t i o n o f t h e
4 / / c o n s i d e r e d c o m p u t a t i o n a c t i o n
5

6 e v a l u a t e C o m p u t a t i o n A c t i o n (A_compute , F) {
7 R := g e t S e t O f R e q u i r e d H a r d w a r e R e s o u r c e s (A_compute) ;
8 S := d e t e r m i n e S e t O f H a r d w a r e S t a t e s (R) ;
9 P := d e t e r m i n e S e t O f H a r d w a r e S t a t e P r o b a b i l i t i e s (R) ;

10 DTMC_compute := i n i t S i n g l e S t a t e C o m p u t a t i o n D T M C (A_compute ,
11 S , P , F) ;
12 m := ge tNumberOfElements (S) ;
13 f o r (j = 1 ; j <= m; j ++) {
14 R_j := g e t R e s o u r c e C o n s u m p t i o n S t a t e (DTMC_compute , S (j)) ;
15 DTMC_res_j := createResourceConsumptionDTMC (A_compute ,
16 F , S (j)) ;
17 r e s o l v e (DTMC_compute , R_j , DTMC_res_j) ;
18 }
19 E := g e t C o m p u t a t i o n S t a t e (DTMC_compute) ;
20 DTMC_soft_E := c rea te InnerComputa t ionDTMC (A_compute , F) ;
21 r e s o l v e (DTMC_compute , E , DTMC_soft_E) ;
22 re turn DTMC_compute ;
23 }

Listing 5.17: Computation Action Evaluation Procedure (Single-State)

In contrast to Equations 5.46 and 5.47, the calculation takes into account
the different possible hardware states s̄ j, each occurring with its specific
probability P(s̄ j). Listing 5.17 shows the evaluation procedure.

5.3.8 Recovery Actions

Recovery actions Arecover are specified through PCM-REL RecoveryAc-
tions (see Section 4.7). They express the system’s ability to recover from
FOD occurrences during service execution by switching to alternative be-
haviours. More concretely, Arecover contains a set of RecoveryAction-
Behaviours B := {b1, . . . ,bm} with each bi being represented through a
corresponding action sequence ASi. For i > 1, each bi is associated with
a set of handled FODTypes, which are mapped to a set of handled failure
modes Fhandled (bi) ⊆ F for reliability prediction3. Moreover, each bi ref-

3For evaluation levels 0 and 1, the considered failure modes are more coarse-grained than
the individual FODTypes (see Section 5.1.1). Hence, Fhandled (bi) cannot be unambiguously
determined and is assumed to be empty. As a consequence, alternative behaviours for failure

171

5 PCM-REL Reliability Evaluation

F1

FkI

p1

Fk+1

Fn

S

p2

pk+1

pk+2

pn+1

I’

1

1

F*1

F*k

F*k+1

F*n

S*

r1

r2

rk+1

rk+2

rn+1

1

1

1

I

p1

S F1 Fn

p2 pn+1

DTMC

I’

r1

S’ F’1 F’n

r2 rn+1

DTMCinter

Figure 5.23: Markov Chain Appending (Single DTMC)

erences a set of FODHandlingAlternatives, such that a tree structure
arises with each bi having its FODHandlingAlternatives as its child
nodes. The execution of Arecover starts with its primaryBehaviour b1

and proceeds through the tree of recovery behaviours until one bi either
completes successfully or results in a failure mode that is not handled by
any of its child nodes.

Recovery actions represent the only actions that can be successfully com-
pleted in spite of FODs occurring during their execution. Due to this spe-
cial ability, the Markov transformation needs two basic operations chain-

appending and failure-handling in addition to the ones described in Sec-
tion 5.1.3. Figure 5.23 shows the chain-appending operation, which aug-
ments an existing DT MC with an intermediate DT MCinter by attaching the
latter to a subset Fhandled ⊆ {F1, . . . Fn} of its failure states. DT MCinter con-
forms to the basic structure (see Section 5.1.2), and DT MC to the generic
structure (although the figure shows DT MC conforming to the basic struc-
ture, this is not a necessary precondition). Without loss of generality, let
Fhandled consist of the first k failure states of DT MC, namely Fhandled :=

recovery are effectively ignored by the Markov analysis if the evaluation level is switched
to 0 or 1.

172

5

10

15

20

25

30

35

40

5.3 Compact Behavioural Evaluation

1 / / DTMC: c o n s i d e r e d DTMC
2 / / SUCC: s e t o f s u c c e s s o r s o f c o n s i d e r e d DTMC;
3 / / each s u c c e s s o r c o n s i s t s o f an i n t e r m e d i a t e
4 / / b a s i c DTMC and a s e t o f hand led f a i l u r e modes ;

/ / t h e s e t s o f hand led f a i l u r e modes o f a l l
6 / / s u c c e s s o r s are d i s j o i n t
7

8 append (DTMC, SUCC) {
9 S := g e t S u c c e s s S t a t e (DTMC) ;

F := g e t S e t O f F a i l u r e S t a t e s (DTMC) ;
11 n := getNumberOfElements (F) ;
12 S _ f i n a l := c r e a t e F i n a l S u c c e s s S t a t e (DTMC) ;
13 F _ f i n a l := c r e a t e S e t O f F i n a l F a i l u r e S t a t e s (DTMC) ;
14 m := ge tNumberOfElements (SUCC) ;

f o r (j = 1 ; j <= m; j ++) {
16 DTMC_inter := ge t In te rmedia teDTMC (SUCC(j)) ;
17 F_hand led := g e t S e t O f H a n d l e d F a i l u r e M o d e s (SUCC(j)) ;
18 I _ i n t e r := g e t I n i t i a l S t a t e (DTMC_inter) ;
19 S _ i n t e r := g e t S u c c e s s S t a t e (DTMC_inter) ;

F _ i n t e r := g e t S e t O f F a i l u r e S t a t e s (DTMC_inter) ;
21 F_h := g e t S e t O f H a n d l e d F a i l u r e S t a t e s (DTMC, F_hand led) ;
22 q := ge tNumberOfElements (F_h) ;
23 f o r (k = 1 ; k <= q ; k ++) {
24 c r e a t e T r a n s i t i o n (DTMC, F_h (k) , I _ i n t e r , 1) ;

}
26 r _ s := g e t T r a n s i t i o n P r o b a b i l i t y (DTMC_inter , I _ i n t e r ,
27 S _ i n t e r) ;
28 c r e a t e T r a n s i t i o n (DTMC, I _ i n t e r , S _ f i n a l , r _ s) ;
29 f o r (i = 1 ; i <= n ; i ++) {

r _ f := g e t T r a n s i t i o n P r o b a b i l i t y (DTMC_inter , I _ i n t e r ,
31 F _ i n t e r (i)) ;
32 c r e a t e T r a n s i t i o n (DTMC, I _ i n t e r , F _ f i n a l (i) , r _ f) ;
33 }
34 }

c r e a t e T r a n s i t i o n (DTMC, S , S _ f i n a l , 1) ;
36 f o r (i = 1 ; i <=n ; i ++) {
37 i f (i s U n h a n d l e d (F (i)) == t ru e) {
38 c r e a t e T r a n s i t i o n (DTMC, F (i) , F _ f i n a l (i) , 1) ;
39 }

}
41 }

Listing 5.18: Chain-Appending Procedure

173

5 PCM-REL Reliability Evaluation

{F1, . . . Fk} , k ≤ n. The append operation includes four individual steps:
First, it adds a new set of final success and failure states S∗ and F∗ :=
{F1

∗, . . . F∗} to DT MC. Second, it adds transitions with probability 1 from n

all failure states in Fhandled to the initial state I' of DT MCinter. Third, it
adds transitions from I' to all final states S∗ and F∗ with probabilities cor-
responding to the original transitions of DT MCinter. Finally, it adds transi-
tions with probability 1 from the success state S and the unhandled failure
states Funhandled := {Fk+1, . . . Fn} of DT MC to their final counterparts. Af-
ter the operation, the original success and failure states of DT MC are not
longer absorbing. Instead, they either lead on to their final counterparts or
to further execution as represented through DT MCinter. After the operation
has been conducted, DT MC has altered success and failure mode probabil-
ities, but it still conforms to the generic structure.

While Figure 5.23 depicts the chain-appending operation with a single
intermediate DTMC, the operation more generally copes with a finite set of
intermediate DTMCs by repeating the second and third step for each of the
DTMCs, based on the precondition that the sets of handled failure modes of
all DTMCs are disjoint. Listing 5.18 shows the corresponding procedure.

The failure-handling operation builds upon the chain-appending opera-
tion and additionally reduces the intermediate states I', as well as the orig-
inal success and failure states S and {F1, . . . Fn} of DT MC. In summary,
the operation expresses that certain failure modes resulting from a certain
part of the execution (represented by the original DTMC) are handled by
other execution parts (represented by the set of intermediate DTMCs). List-
ing 5.19 shows the procedure.

To evaluate Arecover, the Markov transformation creates a DT MCrecover as
shown by Figure 5.24. A state E(AS1) represents the execution of the pri-
mary behaviour. Following a recursive procedure, the transformation evalu-
ates the whole tree of recovery behaviours, creating a basic DT MCseq(ASi)

from each behaviour bi. The evaluation of each bi involves considering
all of its child nodes and using the failure-handling operation for the in-

174

5.3 Compact Behavioural Evaluation

1 / / DTMC: c o n s i d e r e d DTMC
2 / / SUCC: s e t o f s u c c e s s o r s o f c o n s i d e r e d DTMC;
3 / / each s u c c e s s o r c o n s i s t s o f an i n t e r m e d i a t e
4 / / b a s i c DTMC and a s e t o f hand led f a i l u r e modes ;
5 / / t h e s e t s o f hand led f a i l u r e modes o f a l l
6 / / s u c c e s s o r s are d i s j o i n t
7

8 h a n d l e (DTMC, SUCC) {
9 S := g e t S u c c e s s S t a t e (DTMC) ;

10 F := g e t S e t O f F a i l u r e S t a t e s (DTMC) ;
11 n := getNumberOfElements (F) ;
12 append (DTMC, SUCC) ;
13 m := ge tNumberOfElements (SUCC) ;
14 f o r (j = 1 ; j <= m; j ++) {
15 DTMC_inter := ge t In te rmedia teDTMC (SUCC(j)) ;
16 I _ i n t e r := g e t I n i t i a l S t a t e (DTMC_inter) ;
17 r e d u c e (DTMC, I _ i n t e r) ;
18 }
19 r e d u c e (DTMC, S) ;
20 f o r (i = 1 ; i <= n ; i ++) {
21 r e d u c e (DTMC, F (i)) ;
22 }
23 }

Listing 5.19: Failure-Handling Procedure

I

F1 FnS

Precover(Success)

Precover(F1)

Precover(Fn)

I(ASi)
Pi(Success)

Pi(F1)
Pi(Fn)

DTMCseq(ASi)

S(ASi) F1(ASi) Fn(ASi)

I

F1 FnS

1
(0)

(0)

DTMCrecover

1

E(AS1)

Figure 5.24: Evaluation of Recovery Actions

175

5 PCM-REL Reliability Evaluation

1 / / A_recover : c o n s i d e r e d r e c o v e r y a c t i o n
2 / / F : s e t o f c o n s i d e r e d f a i l u r e modes
3 / / s : c o n s i d e r e d hardware s t a t e (o p t i o n a l parameter ,
4 / / n o t used f o r s i n g l e −s t a t e e v a l u a t i o n)
5 / / r e t u r n s : b a s i c DTMC f o r t h e e x e c u t i o n o f t h e
6 / / c o n s i d e r e d r e c o v e r y a c t i o n
7

8 e v a l u a t e R e c o v e r y A c t i o n (A _recover , F , s) {
9 DTMC_recover := initRecoveryDTMC (A_recover , F) ;

10 E_r := g e t R e c o v e r y E x e c u t i o n S t a t e (DTMC_recover) ;
11 B := g e t P r i m a r y R e c o v e r y B e h a v i o u r (A _ recover) ;
12 DTMC_beh := e v a l u a t e R e c o v e r y B e h a v i o u r (B , F , s) ;
13 r e s o l v e (DTMC_recover , E_r , DTMC_beh) ;
14 re turn DTMC_recover ;
15 }
16

17 e v a l u a t e R e c o v e r y B e h a v i o u r (B , F , s) {
18 AS := g e t A c t i o n S e q u e n c e (B) ;
19 DTMC_seq := e v a l u a t e A c t i o n S e q u e n c e (AS , F , s) ;
20 ALT := g e t S e t O f A l t e r n a t i v e B e h a v i o u r s (B) ;
21 m := ge tNumberOfElements (ALT) ;
22 i f (m > 0) {
23 SUCC := c r e a t e E m p t y S e t O f S u c c e s s o r s () ;
24 f o r (j = 1 ; j <= m; j ++) {
25 F_hand led = g e t S e t O f H a n d l e d F a i l u r e M o d e s (ALT(j)) ;
26 DTMC_alt_j = e v a l u a t e R e c o v e r y B e h a v i o u r (ALT(j) , F , s) ;
27 a d d S u c c e s s o r (SUCC, DTMC_alt_j , F_hand led) ;
28 }
29 h a n d l e (DTMC_seq , SUCC) ;
30 }
31 re turn DTMC_seq ;
32 }

Listing 5.20: Recovery Action Evaluation Procedures

tegration of the corresponding failure-handling behaviours. The topmost
DT MCseq(AS1) is then used to resolve E(AS1). Listing 5.20 shows the in-
volved procedures, which result in DT MCrecover conforming to the basic
structure. An alternative transformation without Markov state reductions
(as introduced in Section 5.1.1) is achieved by replacing failure-handling
operations in the listing through chain-appending operations (in analogy to
replacing state resolutions through state substitutions in the other trans-
formation listings).

To describe the success and failure probabilities of Arecover mathemati-
cally, several additional definitions are necessary. To begin with, let O :=
{Success,F1, . . . ,Fn} be the set of possible outcomes of each recovery be-

176

5.3 Compact Behavioural Evaluation

haviour bi. A step represents the execution of a certain behaviour with a
certain outcome:

ST EP := (bi,o j) | bi ∈ B, o j ∈ O (5.50)

A function Beh : ST EP → B; Beh((bi,o j)) = bi maps each step to its
associated behaviour, and Res := ST EP → O; Res((bi,o j)) = o j maps
each step to its outcome. Furthermore, the semantics of the specified
RecoveryActionBehaviours, each with its list of handledFODTypes,
allow for a unique definition of the function Next : ST EP → B ∪{x}. This
function maps any step s = (bi,o j) to its next executed behaviour bk, or to
an artificially introduced x, if no other behaviour is executed after s. The
overall execution of Arecover involves proceeding through its behaviours in
a sequence of steps. A sequence represents a possible flow of execution,
starting with the primary behaviour b1, proceeding to the next behaviour
depending on the outcome of each step, and ending when no more be-
haviour can be executed: ⎫⎧ ⎪⎪⎪⎪⎪⎪⎨ l ∈ N,

Beh(s1) = b1,

⎪⎪⎪⎪⎪⎪⎬
SEQ := (s1, . . . ,sl) ∈ ST EPl Next(sl) = x, (5.51)⎪⎪⎪⎪⎪⎪⎩ ∀i ∈ {1, . . . , l −1} :

Beh(si+1) = Next(si)

⎪⎪⎪⎪⎪⎪⎭

Finally, SEQ(o j) := (s1, . . . ,sl) ∈ SEQ | Res(sl) = o j is the set of all se-
quences with result o j. With these definitions, the success and failure prob-
abilities of Arecover can be written as:

Precover(Success) = ∑
seq ∈ SEQ(Success)

P(seq)

Precover(Fk) = ∑
seq ∈ SEQ(Fk)

P(seq)

(5.52)

(5.53)

177

5 PCM-REL Reliability Evaluation

The occurrence probability of each sequence is the product of the occur-
rence probabilities of the outcomes of each step:

l
P((s1, . . . ,sl) ∈ SEQ) = ∏PI(si)(Res(si)) (5.54)

i=1

with I : ST EP → {1, . . . ,m} mapping each step si to the index of its as-
sociated behaviour.

The evaluation of recovery actions as described here is based on the rule
that the action sequence ASi of each recovery behaviour bi results in ei-
ther a success or exactly one failure mode Fk. As Section 5.3.1 discusses,
the Markov transformation obeys this rule by assuming that Fk is uniquely
determined by the first failing action within ASi. Although in practice, mul-
tiple FODs may occur during the execution of ASi, such cases are rare and
can typically be ignored if FODs occur independently from each other and
each one has a low occurrence probability (see the illustrating example in
Section 5.3.1).

5.4 Complexity

This section investigates the complexity of the PCM-REL Markov analy-
sis in terms of execution time (Section 5.4.1) and memory consumption
(Section 5.4.2). The discussion focuses on the Markov transformation step
with Markov state reductions switched on (see Section 5.1). A transforma-
tion without reduction operations may be used for special purposes such
as comparisons to related approaches, but it is not the generally preferred
choice. With state reductions switched on, the transformation results in a
basic DTMC. Hence, the following solving step is trivial and can be omit-
ted from complexity considerations. The complexity of parameter depen-
dency solving preceding the Markov analysis (see Section 2.7.6) has been
discussed in [Koz08] and is also omitted from consideration here.

178

5.4 Complexity

5.4.1 Execution Time

The PCM-REL Markov transformation is realized through an algorithm
outlined in Sections 5.2 and 5.3. This algorithm consists of several DTMC
creation procedures, which follow a general scheme of DTMC initialization
and repeated state resolution, and which invoke each other according to
an overall hierarchical pattern (see Section 5.1.3). In the following, the
execution time of the algorithm is assumed to be proportional to the number
of created Markov states. State creation is a heavily repeated atomic step
of the algorithm; it involves the effort of initializing a new state object in
memory. Other atomic steps include the creation of Markov transitions,
as well as the later deletion of states and transitions. The amount of these
other steps is roughly proportional to the state creation. A created state
is first connected to an existing structure of states through newly created
transitions; later, these transitions and the state itself are again deleted as
part of a reduction operation.

Table 5.6 lists the DTMC creation procedures involved in the Markov
transformation, which can be categorized as procedures for evaluating sys-
tem hardware states (SHS), action sequences (AS) and individual actions
(ACT). Further abbreviations used in the table are as follows:

• F : number of failure modes for a given PCM-REL instance and eval-
uation level;

• R: number of hardware resources specified for a PCM-REL instance;

• A: number of actions specified for an action sequence;

• BT : number of branch transition behaviours specified for a branch
action;

• ∑Ci: sum over all iteration counts specified for a loop action;

• BF : number of forked behaviours specified for a fork action;

179

5 PCM-REL Reliability Evaluation

• C: number of hardware resources strictly required for the opera-
tion of a resource container that represents the invocation target of
a pointer action;

• L: number of hardware resources required locally by a computation
action;

• BR: number of recovery behaviours specified for a recovery action.

Each procedure listed in the table includes DTMC-creating calls. Although
these calls are not further detailed in the provided Listings 5.4 to 5.20,
DTMC sizes and structures follow from the accompanying DTMC illustra-
tions and the textual descriptions. The table indicates the names of the calls,
their invocation counts within the procedures and the number of Markov
states that they create. Generally, the created DTMCs include F +2 states
for start, success and failure modes, as well as further states which are to
be resolved through lower-level DTMCs. In most cases, the number of
invocations of DTMC-creating calls per procedure is strictly limited to at
most 4, and DTMC sizes are bounded by the number of provided model
elements. For example, the “evaluateForkAction” procedure creates a sin-
gle DTMC of size F +2 +BF , where F is limited by the number of model
elements expressing individual failure potentials4, and BF is equal to the
number of specified forked behaviours. However, some procedures show
increased complexity. First, the standard “evaluateScenario” procedure cre-
ates a DTMC with exponential size with respect to R. Second, the “evalu-
ateLoopAction” procedure creates a potentially large DTMC reflecting the
sum over all specified loop iteration counts ∑Ci. Third, the single-state
procedures “evaluteEntryPointerAction”, “evaluateRemotePointerAction”
and “evaluateComputationAction” each create an exponential number of
DTMCs with respect to C and L, respectively; each procedure contains one

4The most differentiated evaluation level 3 (or PointOfFailure) includes one failure mode for
each specified FODOccurrenceDescription, one for each ProcessingResourceSpec-
ification and one for each CommunicationLinkResourceSpecification.

180

5.4 Complexity

Type Listing No. / Procedure DTMC Creation Required
Lower-Level
Procedures

DTMC-creating Calls Included in
Procedure

Size of Crea-
ted DTMCs

Count Type

SHS

(5.4) evaluateScenario
[Standard]

1 x initTopLevelDTMC F + 2 + 2R 2R AS

(5.5) evaluateScenario
[Single-State]

1 x initSingleStateTopLevelDTMC F + 2 + 1 1 AS

(5.6) evaluateScenario
[Approximated]

- -
min: 1
max: 2R AS

AS
(5.7) evaluateAction-

Sequence
1 x initActionSequenceDTMC F + 2 + A A ACT

ACT

(5.10) evaluateDefaultAction 1 x initDefaultDTMC F + 2 - -

(5.11) evaluateBranchAction 1 x initBranchDTMC F + 2 + BT BT AS

(5.12) evaluateLoopAction 1 x initLoopDTMC F + 2 + Ci 1 AS

(5.13) evaluateForkAction 1 x initForkDTMC F + 2 + BF BF AS

(5.14) evaluateLocalPointer-
Action

1 x initLocalPointerDTMC F + 2 + 1 1 AS

(5.14) evaluateEntryPointer-
Action

1 x initEntryPointerDTMC
1 x createOperabilityCheckDTMC

F + 2 + 2
F + 2

1 AS

(5.14) evaluateRemotePointer-
Action

1 x initRemotePointerDTMC
1 x createOperabilityCheckDTMC
2 x createTransmissionDTMC

F + 2 + 4
F + 2
3

1 AS

(5.14) evaluateExternalPointer-
Action

1 x initExternalPointerDTMC
1 x createExternalCallDTMC

F + 2 + 1
F + 2

- -

(5.15) evaluateEntryPointer-
Action [Single-State]

1 x initEntryPointerDTMC
2C x createOperabilityCheckDTMC

F + 2 + 2C + 1
F + 2

1 AS

(5.15) evaluateRemotePointer-
Action [Single-State]

1 x initRemotePointerDTMC
2C x createOperabilityCheckDTMC
2 x createTransmissionDTMC

F + 2 + 2C + 3
F + 2
3

1 AS

(5.16) evaluateComputation-
Action

1 x initComputationDTMC
1 x createResourceConsumptionDTMC
1 x createInnerComputationDTMC

F + 2 + 2
F + 2
F + 2

- -

(5.17) evaluateComputation-
Action [Single-State]

1 x initSingleStateComputationDTMC
2L x createResourceConsumptionDTMC
1 x createInnerComputationDTMC

F + 2 + 2L + 1
F + 2
F + 2

- -

(5.20) evaluateRecoveryAction 1 x initRecoveryDTMC F + 2 + 1 BR AS

167,5 mm = 1.047

Table 5.6: Complexity of DTMC Creation Procedures

181

5 PCM-REL Reliability Evaluation

DTMC of exponential size. In practice, all of ∑Ci, C and L can be assumed
to be low enough to keep the number of Markov states created by ACT

procedures within feasible bounds (see Sections 5.3.4, 5.3.6 and 5.3.7).
The approximated “evaluateScenario” procedure is included in the table
for completeness but does not create an own DTMC structure.

The overall execution time is not only determined by the complexity of
individual procedures, but also by the number of executed procedures dur-
ing the transformation. As Table 5.6 indicates, a top-level SHS procedure
invokes one or multiple AS procedures. Each AS procedure invokes one
ACT procedure for each action contained in the evaluated sequence. In
turn, each ACT procedure invokes one AS procedure for each behavioural
specification referenced by the evaluated action (the table omits intermedi-
ate procedures for invocation routing as shown in Listings 5.8, 5.9, 5.14 and
5.15). Default actions, external pointer actions and computation actions do
not reference any further behavioural specifications. Hence, their evalua-
tion procedures constitute the lowest level of the DTMC creation hierarchy.
Overall, the AS and ACT procedures consider each action sequence occur-
rence of a behavioural view (as introduced in Section 4.1) – as well as each
action within the sequence – exactly once.

To give an upper bound for the Markov transformation’s execution time
TI (U) for a usage scenario U of a PCM-REL instance I, consider the fol-
lowing definitions:

• S: number of Markov states created during the transformation;

• Smax(U): maximal number of Markov states created for a behavioural
evaluation of the execution of U ;

• Smax(AS): maximal number of Markov states created by an AS pro-
cedure;

• Smax(ACT): maximal number of Markov states created by an ACT

procedure;

182

5.4 Complexity

• CAS: number of action sequence occurrences in the behavioural view
of U ;

• Amax: maximal number of actions in any action sequence belonging
to I;

• Tmax: maximal time effort associated with a created Markov state.

With standard evaluation of system hardware states, EI (U) is bounded as
follows:

TI (U)≤ S ×Tmax

≤ (F +2 +2R × (1 +Smax(U)))×Tmax

≤ (F +2 +2R × (1 +CAS × (Smax(AS)+Amax ×Smax(ACT))))

×Tmax

= (F +2 +2R × (1 +CAS × (F +2 +Amax × (1 +Smax(ACT)))))

×Tmax (5.55)

Equation 5.55 relates the execution time TI (U) to the number of created
Markov states S. The transformation creates F + 2 + 2R states at the top
level and includes 2R behavioural evaluations, each with at most Smax(U)

created states. Each behavioural evaluation requires the consideration of
CAS action sequence occurrences with at most Smax(AS) = F + 2 + Amax

states, as well as up to Amax individual actions per sequence with at most
Smax(ACT) states. CAS depends on the number of behavioural specifica-
tions (ScenarioBehaviours and ResourceDemandingBehaviours) in
I and on the number of pointer actions (EntryLevelSystemCalls and
ExternalCallActions) that refer to each behaviour. Smax(ACT) depends
on the concrete action specifications (see Table 5.6). The most signif-
icant factor influencing the execution time is the exponential number of
behavioural evaluations, which leads to an overall complexity of O(2R) for
the Markov transformation with standard evaluation of system hardware

183

5 PCM-REL Reliability Evaluation

states. With single-state evaluation, the factor 2R is omitted from Equa-
tion 5.55, and the complexity can be expressed as O(CAS) relating to the
size of the behavioural view instead. The execution time of the approxi-
mated evaluation lies between single-state and standard, depending on the
specified stop criteria.

5.4.2 Memory Consumption

A second complexity dimension refers to the maximal amount of mem-
ory required at a time during the Markov transformation. The discussion
is based on the assumption that, at any point in time, the amount of re-
quired memory is proportional to the number of currently existing Markov
states. Markov transitions require memory as well, but their number can
be seen as being roughly proportional to the number of states. Due to the
Markov reduction steps performed on-the-fly, the transformation algorithm
is highly space-efficient. The discussion reuses definitions and results from
the preceding Section 5.4.1 about execution time complexity.

Table 5.6 shows the number and sizes of the DTMCs created by each in-
dividual transformation procedure. The specified sizes are the initial ones
directly after DTMC creation. They are also the maximal sizes, as each
procedure ultimately results in a single basic DTMC with only F +2 states
(see Section 5.1.2 for a definition of the basic DTMC structure). All other
states are removed during the execution of the procedure through state res-
olution steps as specified in Listings 5.4 to 5.205. As the procedures invoke
each other according to a hierarchical pattern as shown in Figure 5.6, the
maximal number of Markov states existing at any time is directly related
to the maximal depth of the DTMC creation hierarchy. Let MI (U) be the
required amount of memory for a UsageScenario U of a PCM-REL in-
stance I. Consider further definitions as follows:

5Although a state resolution step temporarily adds another F +2 states itself, these additional
states are the ones created by a lower-level procedure. Hence, the summation over all
currently active procedures as done in this section is correct.

184

5.4 Complexity

• ST : maximal number of Markov states existing at any step of the
transformation;

• Dmax: maximal depth of nested action sequence occurrences in the
behavioural view of U ;

• Mmax: maximal required amount of memory associated with a Mar-
kov state.

Additionally, consider Smax(AS), Smax(ACT) and Amax as defined in Sec-
tion 5.4.1. With standard evaluation of system hardware states, MI (U) is
bounded as follows:

MI (U)≤ ST ×Mmax

≤ (F +2 +2R +Dmax × (Smax(AS)+Smax(ACT)))×Mmax

= (F +2 +2R +Dmax × (F +2 +Amax +Smax(ACT)))×Mmax

(5.56)

Equation 5.56 decomposes the number of existing Markov states ST into
F +2 +2R states at the top level and Smax(AS)+Smax(ACT) states at each
of the Dmax further levels (each level includes an AS procedure for the se-
quence and an ACT procedure for a certain action within the sequence).
Dmax depends on the structure of the behavioural view and has a value
between 1 and – in the theoretical worst case – CAS (as defined in Sec-
tion 5.4.1). The space complexity may be dominated either by the 2R states
at the top level or by the Dmax DTMC creation levels, depending on the
nature of I. Hence, it can be expressed as O(2R +Dmax). Although this
complexity contains an exponential part, the 2R states in Equation 5.56 are
not a multiplied factor as in Equation 5.55. With single-state evaluation,
the 2R states at the top level are omitted and the complexity is O(Dmax).
The same holds for the approximated evaluation, which avoids building a
top-level DTMC and instead collects the results in a single data structure
(see Section 5.2.4).

185

5 PCM-REL Reliability Evaluation

5.5 Implementation

The Markov analysis described in this chapter has been implemented and
included in the PCM Workbench (see Section 4.8) to allow for evaluating
the architectural IT system models created with PCM-REL. The implemen-
tation includes the complete Markov transformation and solving of the re-
sulting DTMC. The analysis is triggered through the Eclipse Run Configu-
ration mechanism; each analysis run can be flexibly configured with respect
to the options discussed in Section 5.1.1, namely the Markov evaluation
level, usage of Markov state reductions and handling of system hardware
states. In case of the approximated evaluation (Section 5.2.4), the users
can specify one or multiple stop conditions regarding the maximal number
of evaluated system hardware states, the minimal required accuracy of the
prediction results, or the maximal execution time of the analysis. Then,
the analysis run finishes as soon as any of the specified stop conditions is
fulfilled. Further configuration options for the analysis refer to the logging
of the analysis steps and results.

Figure 5.25 gives an impression of how prediction results are returned
as a feedback to the user of the Workbench. The central form of feedback
is a report (upper middle part) showing all prediction results for all usage
scenarios of the analysed PCM-REL instance. The granularity of the re-
sults depends on the selected evaluation level (Section 5.1.1). At the most
differentiated level 3 (or PointOfFailure), an additional failure impact
analysis shows aggregated failure potentials of the specified components
and component services, allowing for identifying critical architecture parts
at a glance. The Workbench supports persisting the generated report and
sharing it with other users. Further parts shown in the figure include a con-
sole (lower part) showing the progress of conducted analysis runs, as well
as a tree-structured EMF editor (right-hand side, upper part) that shows
the contents of the DTMC model resulting from the Markov transforma-

186

5.5 Implementation

Figure 5.25: PCM-REL Reliability Evaluation Tool Support

187

5 PCM-REL Reliability Evaluation

tion (the DTMC has a basic structure unless Markov state reductions are
switched off, see Section 5.1.1).

A further feature of the implementation is its built-in support for re-
peated analysis runs over multiple architectural variations of the system
under study, thereby supporting sensitivity analyses (see Section 6.1). To
this end, an EMF meta-model has been provided capturing variations of
individual parameters of an underlying PCM-REL instance. Parameters
may refer to PCM-REL entities such as specifications of VariableUsages
(Section 2.7.5) and reliability annotations. Variations of parameter values
are specified in terms of sequences or ranges, based on double or string
values, either absolute or relative to the given base values of the PCM-
REL instance. Multiple parameter variations can be combined to express
more extensive architectural changes. Being provided with a specification
of parameter variations, the Workbench automatically conducts a series of
analysis runs and adjusts the underlying PCM-REL instance in each run
according to the specification. The obtained prediction results allow for as-
sessing the influence of changing architectural properties and usage profile
aspects on the system’s reliability. In Figure 5.25, a specification of param-
eter variations for a PCM-REL instance is visualised by a corresponding
EMF editor (right-hand side, middle part). Overall, the Workbench pro-
vides a comprehensive and flexible environment for reliability evaluation
of PCM-REL instances through the built-in Markov transformation and
support for sensitivity analyses.

188

6 PCM-REL Case Studies and Validation

This chapter presents efforts devoted to validate the PCM-REL approach as
presented in the thesis. Due to the nature of the approach belonging to the
field of architecture-based software reliability prediction (ASRP), estab-
lished validation tools and methods in this field also form the basic set of
means for the validation of PCM-REL. A corresponding review of the state
of the art in validating related ASRP approaches is provided by Section 6.1.
The following Section 6.2 sets up a list of validation goals along the activ-
ities required for applying PCM-REL, assuring that all relevant aspects of
the approach are covered by the validation efforts. An overview of these
efforts is then given by Section 6.3. At the core of the chapter, Sections 6.4
and 6.5 present two major case studies, applying PCM-REL to concrete
IT systems under study. The first one is the audio hosting service used
as illustrating example throughout the thesis, with an existing prototypical
implementation as its base. The second one is an existing industrial sys-
tem with e-mail processing functionalities. The studies complement each
other and, in summary, provide evidence for the validation of all targeted
PCM-REL aspects. The chapter is completed by a short discussion of other
existing PCM-REL experiments and case studies in Section 6.6.

6.1 Validating IT System Reliability

This section discusses challenges that PCM-REL has to face for its valida-
tion, which to a large extent comply with the general validation challenges
of architecture-based software reliability prediction (ASRP). Although val-
idation is an indispensable means of giving evidence for the applicability

189

6 PCM-REL Case Studies and Validation

Pu
bl

ic
at

io
n

Ty
pe

Au
th

or
s

Ye
ar

Ill
us

tr
at

in
g

Ex
am

pl
e

Se
ns

iti
vi

ty
 A

na
ly

si
s

Pr
ot

ot
yp

e
C

as
e

St
ud

y

R
ea

l-W
or

ld
 C

as
e

St
ud

y

Methodological

Cheung et al. [Che80] 1980 X X - -
Dolbec et al. [DS95] 1995 X - - -

Cortellessa et al. [CSC02] 2002 X X - -
Gokhale et al. [GT02] 2002 X X - -

Goseva-Popstojanova et al. [GPHG+03] 2003 X X - -
Reussner et al. [RSP03] 2003 X X X -

Gokhale et al. [GWHT04] 2004 X X - (X)
Yacoub et al. [YCA04] 2004 X X - -

Grassi [Gra05] 2005 X X - -
Popic et al. [PDAC05] 2005 X X - -

Rodrigues et al. [RRU05] 2005 X - - -
Sharma et al. [ST06] 2006 X X - -
Wang et al. [WPC06] 2006 X - - X

Cortellessa et al. [CG07a] 2007 X X - -
Sato et al. [ST07a] 2007 X - - -

Sharma et al. [ST07c] 2007 X X - X
Lipton et al. [LG08] 2008 X X - -

Cooray et al. [CMRK10] 2010 X X X -
Filieri et al. [FGGM10] 2010 X X - -

Case Study
Goseva-Popstojanova et al. [GPHP05] 2005 - - - X

Koziolek et al. [KSB10] 2010 - - - X

122 mm = 0.763

Table 6.1: Validation of Software Reliability Prediction

of software quality prediction approaches, specific issues arise in the field
of reliability prediction. A single – most probably successful – run of a
usage scenario or system service invocation gives little insight into the reli-
ability properties of an IT system. Only when a statistical relevant number
of failure-related events is observed, reliability can be deduced from the
relative occurrence frequencies of those events. The required observation
time may be several years or even longer than the system’s mission time,
which makes reliability measurement experiments in the field impractica-
ble at best, or impossible at worst. Nevertheless, certain means of valida-
tion have been established over the years in the ASRP domain. Table 6.1
shows several ASRP publications and their included validation efforts. The
table distinguishes methodological papers, which propose a novel predic-
tion approach, and case study papers, which apply existing prediction ap-

190

6.1 Validating IT System Reliability

proaches to specific systems under study. The validation efforts can be
categorized as follows:

• Illustrating examples: The presentation of an exemplary software ar-
chitecture, application of the approach to this architecture and inter-
pretation of the results is always conducted to reason for the general
plausibility of the approach. Many examples are taken from real-
world domains, but there is generally no implementation available
against which to check the prediction results.

• Sensitivity analyses: Most authors examine the effects of input vari-
ations to the prediction results of their approaches, either formally or
through repeated prediction runs. If an input variation is chosen such
that it represents existing uncertainty regarding input estimations, the
prediction results can be checked for their robustness. If the approach
allows for drawing conclusions from the prediction results with high
confidence in spite of uncertain inputs, an argument for its validity
has been established.

• Prototype case study: A few authors (such as [RSP03, CMRK10])
apply their predictions to prototypical software implementations of
limited complexity and compare prediction results to simulations or
measurements. To assure the feasibility of the conducted experi-
ments, several simplifications are introduced compared to a real mea-
surement in the field. Such simplifications may include the injection
of artificial faults instead of natural faults, an artificial usage profile
that provokes frequent failures-on-demand, substitution of applica-
tion logic through code skeletons, and others.

• Real-world case study: More recently, there are increased efforts to
apply predictions to real-world open source or industrial systems,
including dedicated case study papers (such as [GPHP05, KSB10]).
Although these experiments have strong potential to show the ap-

191

6 PCM-REL Case Studies and Validation

plicability of the examined prediction approaches, they still require
certain simplifications. For example, Goseva-Popstojanova et al.
[GPHP05] investigate an open source compiler of the C program-
ming language using an artificial usage profile (namely, a regres-
sion test suite) that provokes frequent failures due to known software
faults. Thus, the authors degrade the reliability of the application to
much lower levels than those expected in the field, in order to obtain
measured reliability values. Koziolek et al. [KSB10] conduct predic-
tions for a large industrial control system and interpret the results, but
do not compare the overall predicted system reliability to measured
values.

For PCM-REL, there is an additional validation challenge compared to
ASRP in general, as the approach also considers hardware failure poten-
tials. Hardware resources typically only fail after several years of opera-
tion. While for software, failure rates can be artificially increased through
specific usage profiles, provoking frequent hardware failures is associated
with unacceptable costs. Nevertheless, the thesis provides validation ex-
periments that are up to the state of the art in the ASRP domain. The
audio hosting example (introduced in Section 1.5) serves as an illustrat-
ing example throughout the thesis and as a case study based on a proto-
typical implementation (Section 6.4). While the reliability measurements
do not account for hardware failure potentials, an additional simulation is
conducted that takes all failure potentials considered by PCM-REL into ac-
count. A second case study applies PCM-REL to an industrial IT system
with e-mail processing functionalities (Section 6.5). In both case studies,
sensitivity analyses are conducted to examine the robustness of prediction
results against uncertain input estimations.

192

6.2 Validation Goals

6.2 Validation Goals

This section discusses the validation goals in terms of statements for which
the conducted validation experiments shall provide evidence. The top-level
goal is to show that PCM-REL can feasibly be applied to predict the re-
liability of IT systems, and that its application is useful (namely, answers
relevant questions regarding system design)1. Considering the whole pro-
cess of applying PCM-REL, including creation of an architectural model,
input estimation of reliability annotations, Markov analysis and interpreta-
tion of prediction results, the top-level goal includes several sub goals dis-
cussed in Sections 6.2.1 to 6.2.4. The validation does not focus on founda-
tional concepts employed by PCM-REL that are commonly established and
accepted in the scientific communities of component-based software engi-
neering (CBSE), reliability engineering and architecture-based software re-
liability prediction (ASRP). More concretely, PCM-REL assumes without
further validation that it is generally feasible to represent software failure
potentials through independent “per-visit” failure-on-demand (FOD) prob-
abilities, hardware failure potentials through MTTF values, and to view
software architectures from a component-based perspective.

6.2.1 Feasibility of Modelling Abstractions

Like every architecture modelling language, PCM-REL includes modelling
abstractions which inevitably lead to a simplified view on a represented sys-
tem under study. The most significant abstractions of the approach refer to
the simplified high-level representation of control and data flow, stateless
software component modelling and the restriction to synchronous compo-
nent interactions. More concretely, dependencies of loop iteration counts

1This goal formulation implies that the validation does not aim at measuring the benefits and
costs of a whole system engineering process enriched by continuous reliability modelling
and prediction (as introduced in Section 3.2). Rather, the scope of validation roughly cor-
responds to a system design iteration (see Figure 3.3), focussing not on performance but
purely on reliability.

193

6 PCM-REL Case Studies and Validation

and branch transition probabilities on component-internal state can only
be implicitly expressed through probabilistic abstractions. Loop iteration
counts are always finite and determined in advance; they may not depend
on termination conditions evaluated within the loop bodies. All behavioural
specifications are finite and must not contain cyclic invocations of compo-
nent service operations. Concurrent behaviours are modelled as being in-
dependent from each other; synchronisation issues that may lead to effects
such as deadlocks, starvation or racing conditions can only be captured
through probabilistic abstractions. Invocations of component service oper-
ations are generally modelled as being synchronous and blocking.

The two case studies presented in this validation chapter give evidence
that, in spite of the discussed abstractions, PCM-REL can feasibly be used
to express an IT system under study with all its reliability-relevant aspects.
For the audio hosting case study (Section 6.4), the compliance of the model-
based reliability predictions with measurements conducted on the imple-
mented system explicitly shows that the simplifications of the model do not
prevent the obtained prediction results from being sufficiently accurate.

6.2.2 Feasibility of Estimation of Reliability Annotations

When applying PCM-REL to an IT system under study, the modelled PCM-
REL instance includes several reliability-specific annotations in terms of
software FOD probabilities, hardware MTTF and MTTR values, as well
as network transmission failure probabilities. A central assumption of the
modelling step is that input estimations can feasibly be derived for those
annotations, with a level of confidence sufficient for trusting the prediction
results. In particular, the estimation of software FOD probabilities often
constitutes a challenge and is a threat to the validity of ASRP approaches
in general (see Section 2.3). In this validation chapter, the Astaro ASG
case study (see Section 6.5) explicitly goes through the process of estimat-
ing reliability annotations for PCM-REL. The study shows that the required

194

6.2 Validation Goals

estimations can be achieved based on existing information sources in a typ-
ical industrial software development context.

6.2.3 Validity of Markov Analysis

PCM-REL can only be successfully applied if the included Markov analy-
sis is valid – namely, if it produces accurate prediction results when pro-
vided with accurate inputs (where “input” refers to the whole architec-
tural model including reliability annotations). Threats to this validity in-
clude all known assumptions of the analysis that constitute simplifications
compared to reality, as well as any further flaws that might falsify the
obtained prediction results. Regarding known assumptions, the Markov
analysis abstracts from all time-related aspects. In particular, it treats a
system under study as if its mission time was unlimited, and as if all us-
age scenario runs were instantaneous (namely, having zero time duration).
Furthermore, it abstracts from the concrete impact of local FOD occur-
rences to the subsequent control and data flow, assuming that the first oc-
curred FOD within a ResourceDemandingBehaviour determines the re-
sult of the behaviour (see Section 5.3.1). The dependency solver, upon
which the Markov analysis builds (see Section 2.7.6), additionally neglects
stochastic dependencies between multiple variable usages within the same
ResourceDemandingSEFF (see Figure 2.7), which can lead to incorrect
occurrence probabilities of service execution paths.

The validity of the Markov analysis is examined as part of the audio
hosting case study, which compares prediction results obtained by analysis
with a simulation of the system (Section 6.4.3). The simulation constitutes
an alternative evaluation method of the original PCM-REL instance based
on a queueing network (QN) formalism; it explicitly considers time-related
aspects and is not affected by dependency solver assumptions.

195

6 PCM-REL Case Studies and Validation

6.2.4 Significance and Robustness of Prediction Results

The prediction results obtained from the application of PCM-REL are only
useful if they allow for answering relevant design questions regarding the
IT system under study, and if the drawn conclusions are sufficiently sta-
ble against existing input estimation uncertainties. To this end, the case
studies presented in this validation chapter demonstrate how PCM-REL
can be used to determine rankings between the reliabilities of multiple de-
sign alternatives and between reliability impacts of different failure poten-
tials throughout the architecture. Moreover, both studies include sensitivity
analyses in terms of repeated prediction runs with varying input parameter
values to account for the effects of uncertain inputs. The results allow for
drawing significant conclusions supporting relevant design decisions and
for allocating quality assurance efforts during system development.

6.3 PCM-REL Case Study Features

Out of the set of available case studies conducted for PCM-REL, two stud-
ies have been selected and are discussed in detail in this validation chapter,
namely the audio hosting case study (Section 6.4) and the Astaro ASG case
study (Section 6.5). Together, both studies exhibit a comprehensive set
of features, as shown in Table 6.2, to provide convincing evidence for the
validity of PCM-REL. The audio hosting study is based on a prototypical
implemented system of limited complexity. Illustrative reliability anno-
tation values are chosen to demonstrate the capabilities of the approach.
The study features multiple design alternatives and establishes a ranking
between those alternatives with respect to reliability, supporting software
architects in their design decisions. In addition, predictions are compared
to a simulation approach, as well as measurements conducted for the imple-
mented system. The ASG study refers to an industrial IT system and derives
input estimations from existing qualitative and statistical failure data. The
analysis mainly focuses on the reliability impacts associated with individ-

196

6.4 Audio Hosting Case Study

Feature Audio Hosting
Case Study

Astaro ASG
Case Study

Real-world industrial IT system - X

Reliability annotations estimated based on
existing qualitative and statistical failure data

- X

Examination and ranking of multiple design
alternatives

X (X)

Examination of reliability impacts of existing
architectural failure potentials

X X

Investigation of robustness of prediction
results through sensitivity analyses

X X

Comparison to simulation X -

Comparison to measurements X -

140.6 mm = 0.879

Table 6.2: Overview of PCM-REL Case Study Features

ual system processing steps and establishes a ranking between those steps,
guiding the allocation of future testing and quality assurance efforts. Due
to the high reliability levels of the application, no comparison to simulation
or measurements was conducted for the ASG study. However, both stud-
ies include sensitivity analyses to examine the robustness of the obtained
prediction results against input estimation uncertainties. Other conducted
PCM-REL case studies are shortly discussed in Section 6.6.

6.4 Audio Hosting Case Study

This section presents the audio hosting case study, which is based on the
scenario introduced in Section 1.5 and on the modelled PCM-REL instance
presented throughout Section 2.7. The audio hosting service constitutes
an illustrating example and a typical use case for PCM-REL. It features
a component-based software architecture whose components can be dis-
tributed across multiple computing nodes. Furthermore, its functionality is
centred around data storage and processing, which is at the core of many
business information systems.

The case study adds additional design alternatives (Section 6.4.1) as a set
of known possibilities at the start of a system design iteration. Section 6.4.2
demonstrates how PCM-REL can be used to examine these alternatives and

197

6 PCM-REL Case Studies and Validation

derive relevant insights about the system under study. Further validation of
the approach is provided through comparison of prediction results with a
queueing network simulation (Section 6.4.3) and with measurements con-
ducted on an implemented prototype (Section 6.4.4). Finally, Section 6.4.5
reviews the case study and its achievements.

The modelled PCM-REL instances of the audio hosting service and its
design alternatives are available for download at [BBKR12].

6.4.1 Design Alternatives

To demonstrate the assessment of multiple design alternatives through
PCM-REL, this case study does not only consider the initial architectural
candidate as presented throughout Section 2.7. Rather, it takes into account
a set of architectural improvements which show promise for increased re-
liability:

• High-Availability Server (“ha”): Uses a single server hosting all in-
stantiated components. Replicated hardware resources on the server
allow for fast fail-over in case of resource breakdowns. Addition-
ally, the potential for network transmission failures is eliminated as
all communications are local on the single server.

• High-Reliability Audio Processing (“hr”): Replaces standard algo-
rithms for encoding, watermarking and packaging of audio files by
high-quality implementations with significantly reduced FOD prob-
abilities.

• Replicated Database Server (“re”): Uses two database servers with
synchronized databases so that fail-over between the servers is pos-
sible.

These improvements can also be partially combined to further increase the
expected reliability of the system. Together with the initial architectural
candidate, the case study considers six design alternatives, namely “std”

198

6.4 Audio Hosting Case Study

(denoting the initial or standard candidate), “ha”, “hr”, “re”, “ha+hr” (de-
noting the combined usage of a high-availability server and high-reliability
audio processing) and “re+hr” (denoting a replicated DB server and high-
reliability audio processing).

From a modelling point of view, all considered design alternatives must
be represented through corresponding PCM-REL instances. Thanks to the
reuse capabilities built into the modelling language, existing specifications
of the “std” alternative can be reused to a large extent for the other alterna-
tives. Other specifications are added as a supplement. For the “ha” alter-
native, a new ResourceContainer is added to the resource environment
model (see Section 2.7.4) representing the high-availability server, with re-
source MTTR values reduced by factors 20 (for the hard disk) and 200 (for
the CPU), accounting for the fast fail-over. A new allocation model maps all
component instances from the system definition to the new server. For “hr”,
new BasicComponents “EncodingHR”, “WatermarkingHR” and “Pack-
agingHR” are added to the repository model (Section 2.7.2), along with
a new CompositeComponent “AudioProcessingHR”, to represent the new
high-reliability audio processing. An adjusted system model (Section 2.7.3)
instantiates “AudioProcessingHR” instead of “AudioProcessing”, and this
change is also propagated to the allocation model. Furthermore, the system
now relies on its own encoding engine and does not longer need its re-
quired role for the “IEncoding” interface. For the “re” alternative, a second
database server is added to the resource environment model, and a new link-
ing resource is established connecting the application server and the sec-
ond database server. Moreover, an additional BasicComponent “DBAc-
cessManagement” includes fault-tolerant data storage and retrieval and is
instantiated by an accordingly adjusted system definition. The “UserD-
BAccess” and “AudioDBAccess” components are both instantiated twice
and deployed on the two database servers through an adjusted allocation
model. PCM-REL instances for the “ha+hr” and “re+hr” alternatives are
obtained by corresponding combinations of the discussed specifications.

199

6 PCM-REL Case Studies and Validation

«System»
AudioHostingSolution ReplicatedDBServer + HighReliabilityProcessing (re+hr)

«AssemblyContext»
WebFrontend

IWebFrontend IAudioManagement

IUserManagement

«AssemblyContext»
AudioCache

IUserDBAccess

IEncoding

IWatermarking

IPackaging

IAudioCache

«AssemblyContext»
AudioProcessingHR

«AssemblyContext»
UserManagement

IUserDBAccess (1) IUserDBAccess (2) IAudioDBAccess (1) IAudioDBAccess (2)

«AssemblyContext»
UserDBAccess

(primary)

«AssemblyContext»
UserDBAccess

(secondary)

«AssemblyContext»
AudioDBAccess

(primary)

«AssemblyContext»
AudioDBAccess

(secondary)

IAudioDBAccess

«AssemblyContext»

Audio-
Management

«AssemblyContext»
DBAccessManagement

Figure 6.1: Audio Hosting System Model (re+hr)

To further illustrate how the modelled design alternatives emerge from
the initial architectural candidate “std”, the following figures depict parts
of the PCM-REL instance for the “re+hr” alternative. First, Figure 6.1
shows the corresponding system definition. The model differs from the
“std” system model (as shown in Figure 2.11) by instantiating “AudioPro-
cessingHR” instead of “AudioProcessing”, by omitting the “IEconding”
required system role, by duplicating the “UserDBAccess” and “AudioD-
BAccess” component instances, and by introducing “DBAccessManage-
ment”, which enables fault-tolerant data storage to and retrieval from the
two database servers. “DBAccessManagement” provides both “IUserD-
BAccess” (to the “UserManagement”) and “IAudioDBAccess” (to the “Au-
dioManagement”). In turn, it includes two required roles for each of these
interfaces, connected to the individual data accessing components.

Figure 6.2 shows the resource environment and allocation models of the
“re+hr” alternative. In contrast to “std” (see Figure 2.13), the environment

200

6.4 Audio Hosting Case Study

«ResourceContainer»
ApplicationServer

«ProcessingResource
Specification»

CPU

«AllocationContext»
AudioManagement

«AllocationContext»
UserManagement

«AllocationContext»
WebFrontend

«ResourceContainer»
DatabaseServer (primary)

«ProcessingResource
Specification»

CPU

«AllocationContext»
UserDBAccess

(primary)

«AllocationContext»
AudioDBAccess

(primary)

«AllocationContext»
AudioProcessingHR

«AllocationContext»
AudioCache

«ProcessingResource
Specification»

HDD

«ProcessingResource
Specification»

HDD

«AllocationContext»
DBAccessManagement

«ResourceContainer»
DatabaseServer (secondary)

«ProcessingResource
Specification»

CPU

«AllocationContext»
UserDBAccess

(secondary)

«AllocationContext»
AudioDBAccess

(secondary)

«ProcessingResource
Specification»

HDD
«LinkingResource»
LANConnection2

«LinkingResource»
LANConnection1

Figure 6.2: Audio Hosting Resource Environment and Allocation (re+hr)

contains two database servers, each with its own allocated “UserDBAc-
cess” and “AudioDBAccess” instances and with a modelled “CPU” and
“HDD” (hard disk drive) hardware resource. Both database servers are con-
nected to the application server by two individual linking resources “LAN-
Connection1” and “LANConnection2”. The application server hosts the
additional “DBAccessManagement” component instance, which controls
the propagation of service invocations to the database servers.

As an example for the fault-tolerant behavioural specifications of “DB-
AccessManagement”, Figure 6.3 shows the “RetrieveFile” service opera-
tion provided by the component as part of the provided “IAudioDBAccess”
interface. The specification contains a RecoveryAction (see Section 4.7)
with two inner behaviours. The first behaviour tries to access the primary
database server by invoking “IAudioDBAccess_Primary.RetrieveFile”. If
this invocation fails, a second behaviour performs the same invocation on
the secondary server. The represented FT mechanism does not only tol-
erate a hardware breakdown of the primary server (through its handled
HardwareInducedFODTypes “CPUFailure” and “HDDFailure”) but also
software failure potentials that prevent the data access from being success-

201

6 PCM-REL Case Studies and Validation

«RecoveryAction»
PerformFaultTolerantFileRetrieval

«RecoveryActionBehaviour» AccessPrimaryDBServer

«RecoveryActionBehaviour» AccessSecondaryDBServer

«handles»
CPUFailure, HDDFailure, DBQueryFailure,

StorageAccessFailure

«ExternalCallAction»
IAudioDBAccess_Primary.RetrieveFile

«ExternalCallAction»
IAudioDBAccess_Secondary.RetrieveFile

Figure 6.3: RDSEFF “DBAccessManagement.RetrieveFile” (re+hr)

ful (handled SoftwareInducedFODTypes “DBQueryFailure” and “Stor-
ageAccessFailure”). Hence, the mechanism represents combined software-
level and hardware-level FT.

6.4.2 Audio Hosting Reliability Evaluation

This section demonstrates how PCM-REL’s Markov analysis can be used
to gain insights about the system under study. All analysis runs were
conducted with Markov state reductions switched on (see Section 5.1.1)
and standard evaluation of system hardware states (Section 5.2.2); the in-
dividual runs took less than 5 seconds on a standard laptop computer2.
Based on the illustratively chosen values of reliability annotations as pre-
sented throughout Chapter 4 (including software FOD probabilities, hard-
ware MTTF and MTTR values, and network transmission failure proba-
bilities), PCM-REL predicts the reliability of the audio hosting service as
shown in Figure 6.4. Subfigures (a) and (b) show the predicted FOD prob-
abilities f p_inter(alt) and f p_batch(alt) of the considered audio hosting

2The experiments were conducted on a laptop computer with an Intel R� CoreTMi7-620M
Processor, 8.0 GB RAM memory and a 64 Bit Windows 7 Professional operating system.

202

6.4 Audio Hosting Case Study

1,E-06

1,E-05

1,E-04

1,E-03
fp

_i
nt

er
(a

lt)
(a)

alt

1,E-08

1,E-07

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02
Software Hardware Network

fp
_i

nt
er

(a
lt)

(c)

alt

1,E-06

1,E-05

1,E-04

1,E-03

fp
_b

at
ch

(a
lt)

(b)

alt

1,E-08

1,E-07

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02
Software Hardware Network

fp
_b

at
ch

(a
lt)

(d)

alt

Figure 6.4: Audio Hosting Reliability Predictions by Design Alternatives, Usage
Scenarios and Failure Dimensions

design alternatives alt (as introduced in Section 6.4.1) for the two existing
usage scenarios inter and batch (see Figure 2.15)3. As the figures show,
the predicted FOD probabilities range from 6.89 ∗ 10−6 to 1.52 ∗ 10−4 for
interactive usage and from 5.82 ∗10−5 to 2.94 ∗10−4 for batch usage. Al-
though the concrete predicted values are subject to uncertainty, the figures
allow for drawing general conclusions. First, the initial candidate “std” has
lowest reliability among all design alternatives, for both modes of usage.
This corresponds to the construction of the other alternatives as architec-
tural improvements of “std”. Second, the batch mode differs from interac-
tive mode by generally lower reliabilities and smaller differences between

3The FOD probability is the counterpart of reliability (f p = 1 −P(Success)) and is chosen
as the displayed metric in the figures of this section. The lower a bar in the presented bar
charts is, the higher is the corresponding reliability.

203

6 PCM-REL Case Studies and Validation

the alternatives. While a significant improvement of more than factor 10
is achieved by “ha” and “ha+hr” (compared to “std”) in interactive mode,
no such improvements are seen in batch mode. Further observation re-
veals that “ha+hr” is the best alternative in both modes, and that “hr” and
“re+hr” are least affected by a change of mode. In conclusion, the results
allow for recommending the “ha” and “ha+hr” alternatives for audio host-
ing installations whose main mode of usage is interactive. For batch mode,
none of the alternatives achieves significant reliability improvements over
“std”. It may be worthwhile to examine further possible design alternatives
especially for this mode.

Subfigures (c) and (d) of Figure 6.4 provide refined information by de-
noting the individual reliability impacts of the software, hardware and net-
work dimensions. This information is available because the PCM-REL
Markov analysis explicitly determines the reliability impacts of failure po-
tentials throughout the system’s architecture at different levels of granular-
ity (see Section 5.1.1). The refined perspective allows for further expla-
nation of observations made from Subfigures (a) and (b), and it indicates
which failure potentials should be tackled to obtain further reliability im-
provements. Overall, Subfigures (c) and (d) indicate that the lower reliabil-
ities of the batch mode compared to interactive mode stem from increased
software and network failure potentials. This corresponds to the fact that
batch downloads include 30 audio files on average (see Figure 2.15) and
hence require much more processing and network communication than in-
teractive downloads of a single file. On the other hand, the impact of hard-
ware failure-potentials does not depend on the amount of required software
processing, and it stays constant across both modes.

Going further into detail, Subfigure (c) reveals that most design alter-
natives are dominated by hardware failure potentials in interactive mode.
As an explanation for the significant improvements of “ha” and “ha+hr”
compared to “std”, the figure shows that these two alternatives are the ones
lowering the hardware impacts. This corresponds to the usage of a high-

204

6.4 Audio Hosting Case Study

availability server in these alternatives (see Section 6.4.1). Furthermore,
“ha” and “ha+hr” are single-server solutions and hence do not include any
network failure potentials. However, the latter fact is not a significant ad-
vantage over the other alternatives, as network-induced FOD probabilities
are generally low. Further observation of Subfigure (c) reveals that the
“re+hr” alternative has the lowest software-induced FOD probability (ap-
proximately 10−6) and promises high reliability, provided that software ar-
chitects find a way to further modify the alternative and improve it with
respect to hardware. Subfigure (d) shows that the reliability impacts of the
different dimensions are more balanced in batch mode compared to inter-
active mode. The “re+hr” alternative has a very low software-induced FOD
probability but is dominated by hardware and network impacts. Still, this
alternative could significantly benefit from an adjusted resource environ-
ment with improved conditions for reliability.

If software architects wish to examine reliability impacts throughout the
architecture in detail, PCM-REL supports them by fine-grained predic-
tion results. As an example, Figure 6.5 details the software reliability
impacts of the audio hosting service according to the individual modelled
SoftwareInducedFODTypes (see Section 4.2). Without going through all
aspects shown in the figure, the discussion here focuses on the “re+hr” al-
ternative (combining database server replication and high-reliability audio
processing) in batch mode. In Figure 6.4(d), this alternative shows a very
low software-induced FOD probability, even though the software impacts
of both “re” and “hr” are similar to that of “std”. From Figure 6.5(b), it
is evident that both “re” and “hr” lower the impacts of a subset of the rel-
evant SoftwareInducedFODTypes, but only “re+hr” lowers all relevant
types. The database server replication lowers the occurrence probabilities
of database query and storage access failures, and the high-reliability audio
processing decreases encoding, watermarking and packaging FOD prob-
abilities.

205

6 PCM-REL Case Studies and Validation

1,E-11

1,E-10

1,E-09

1,E-08

1,E-07

1,E-06

1,E-05

1,E-04

std ha ha + hr re re + hr hr

CacheAccess

DBQuery

Encoding

StorageAccess

Watermarking

WebRequestfp
_i

nt
er

(a
lt)

(a)

alt

1,E-11

1,E-10

1,E-09

1,E-08

1,E-07

1,E-06

1,E-05

1,E-04

std ha ha + hr re re + hr hr

DBQuery

Encoding

Packaging

StorageAccess

Watermarking

WebRequestfp
_b

at
ch

(a
lt)

(b)

alt

Figure 6.5: Software-Induced Failure-on-Demand Probabilities by Design Alterna-
tives, Usage Scenarios and Failure-on-Demand Types

While the prediction results discussed so far give insight into the reliability
characteristics of the audio hosting service, further examination is neces-
sary to determine the robustness of those results in the light of uncertain
reliability annotations given as an input to the analysis. To this end, Fig-
ure 6.6 shows the results of a sensitivity analysis, focusing on groups of
reliability annotations and examining all cases in which one of the groups
is off by factor 10. In the example, the granularity of the groups (which,
in the general case, should be equal to the granularity of conducted input
estimations) is chosen such that all software FOD probabilities of a cer-
tain SoftwareInducedFODType (such as cache access failures or database
query failures) form each a group, supplemented by the groups of hardware
MTTF values, hardware MTTR values and network transmission failure

206

6.4 Audio Hosting Case Study

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02

std ha
ha + hr re
re + hr hr

fp_inter(var)

(a)

var

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02

std ha
ha + hr re
re + hr hr

fp_inter(var)

(b)

var

1,E-05

1,E-04

1,E-03

1,E-02

std ha
ha + hr re
re + hr hr

fp_batch(var)

(c)

var

1,E-05

1,E-04

1,E-03

1,E-02

std ha
ha + hr re
re + hr hr

fp_batch(var)

(d)

var

Figure 6.6: Robustness of Ranking of Design Alternatives Against Parameter Group
Variations, Differentiated by Usage Scenarios and Change Directions

207

6 PCM-REL Case Studies and Validation

probabilities. The figure shows the FOD probabilities f p_inter(var) and
f p_batch(var) of the audio hosting design alternatives over the individual
parameter group variations var for the two modes of usage inter and batch.
While Subfigures (a) and (c) deal with improvements of individual parame-
ter groups (which means multiplying hardware MTTF values by 10 or other
annotations by 0.1), the other two Subfigures (b) and (d) denote degrada-
tions of the respective groups. Although the variation scales are discrete,
the figure connects the individual predictions through line segments. This
presentation allows for recognizing changes in the ranking of design alter-
natives as crossings of line segments.

The first and most important observation from Figure 6.6 is that the rank-
ing of design alternatives is very stable in interactive mode (no line cross-
ings) and less stable in batch mode. As expected, improvements regarding
individual parameter groups – as shown in Subfigures (a) and (c) – also
improve the overall reliability of each design alternative, compared to the
original setting (namely, each alternative has its highest FOD probability in
the leftmost “original” category). Subfigures (b) and (d) show that the ar-
gument can be reversed, with degradations of individual parameter groups
also degrading the overall reliability of each alternative. Generally, the
biggest impacts are caused by changing hardware MTTF or MTTR val-
ues. This corresponds to Figures 6.4(c) and 6.4(d) showing that hardware
failure potentials have the greatest reliability impact on most design al-
ternatives. The unstable ranking of alternatives in Subfigures (c) and (d)
is generally in line with the observation that the differences between the
alternatives are only marginal in batch mode, as shown in Figure 6.4(b).
Moreover, software-induced FOD probabilities are significantly increased
in batch mode compared to interactive mode (Figures 6.4(c) and (d)), which
explains why the reliabilities of the design alternatives are more sensitive
to software-related input variations in batch mode than in interactive mode.
As the improvements obtained by the design alternatives with respect to
individual SoftwareInducedFODTypes in batch mode are highly diverse

208

6.4 Audio Hosting Case Study

(Figure 6.5(b)), it is plausible that – especially in the case of software-
related degradations (Figure 6.6(d)) – the ranking of the design alternatives
changes over the individual variations. In conclusion, the results of the sen-
sitivity analysis support the initial findings: Design alternatives “ha” and
“ha+hr” can be recommended in interactive mode with high confidence. In
batch mode, no unambiguous recommendation is possible. Instead, further
design alternatives should be evaluated.

6.4.3 Comparison with Simulation

While the preceding Section 6.4.2 has demonstrated how PCM-REL can
analyse an IT system under study with respect to reliability, the only cause
of inaccuracy of prediction results considered so far is the uncertainty of
input estimations, whose consequences have been examined through a sen-
sitivity analysis. However, a flawed Markov analysis could likewise lead
to inaccurate results, and it might not be possible to detect such flaws just
by repeated analysis runs. Therefore, this section compares prediction re-
sults obtained through PCM-REL with the results of a simulation-based
approach. The simulation is based on the same original PCM-REL in-
stance, but it uses a queueing network (QN) formalism as its simulation
model and provides an own transformation from the PCM-REL instance
to an instance of the simulation model. Hence, it constitutes an alternative
evaluation method of the PCM-REL instance, and the obtained results can
be compared to those of the Markov analysis.

Figure 6.7 shows the two evaluation methods, namely the Markov anal-
ysis (coloured in grey) and the QN simulation. The latter is an exten-
sion of SimuCom, an existing PCM discrete-event performance simula-
tion (see [Bec08] for a detailed description). SimuCom takes into account
performance-specific annotations which are neglected by the Markov anal-
ysis, such as inter-arrival times between consecutive usage scenario runs
and resource demand sizes. It observes user behaviour, system execution

209

6 PCM-REL Case Studies and Validation

PCM-REL Instance

(with solved para-
meter dependencies)

System
Reliability Metrics

(success and failure
mode probabilities)

Dependency
Solver

Discrete-time
Markov Chain

Queueing Network
TransformationPCM-REL Instance

(with reliability and
performance
annotations)

System
Reliability Metrics

(success and failure mode
occurrence frequencies)

Queueing
Network System

Performance Metrics

Markov
Transformation Solving

Simulation

Figure 6.7: PCM-REL Markov Analysis and Simulation

and hardware resource consumptions over a simulated timeline and col-
lects data about the system’s performance such as completion times of ser-
vice execution and the utilization of resources. For validation of PCM-
REL, SimuCom was extended to take the reliability-specific aspects of the
model into account, and to trigger FOD occurrences according to the mod-
elled failure potentials. The extended simulation represents software FODs
through exceptions thrown according to the specified probabilities, draw-
ing samples from a random number generator to decide about the result
of each visited potential point of failure (PPOF). The same procedures are
employed to trigger network transmission failures. For hardware resources,
the simulation uses the given MTTF and MTTR values as mean values of
an exponential distribution and draws samples from the distribution to de-
termine actual resource failure and repair times. Whenever service exe-
cution requires a currently unavailable hardware resource, it fails with an
exception. Overall, the simulation records the execution results of all usage
scenario runs, and the so-determined occurrence frequencies of success-
ful and failed scenario runs constitute a benchmark to which the Markov
analysis results can be compared.

Besides being an alternative evaluation method, the simulation also dif-
fers in its assumptions from the Markov analysis. While the analysis ab-

210

6.4 Audio Hosting Case Study

stracts from time-related aspects, the simulation takes the concept of time
explicitly into account. Each simulation experiment observes a system over
a limited mission time interval and records a finite number of usage scenario
runs during this interval. It tracks hardware resource failures and repairs
along the simulated timeline, rather than using an aggregated steady-state
availability value per resource (see Section 5.2.1). It is not affected by
dependency solver assumptions such as the disregard of stochastic depen-
dencies between variable usages (see Section 6.2.1). Hence, the simulation
experiment serves to validate that the additional abstractions of the anal-
ysis compared to simulation do not lead to insufficient accuracy of the
prediction results.

«ScenarioBehaviour»
SingleDownloadBehaviour

«EntryLevelSystemCall»
IWebFrontend.Download

Figure 6.8: Single-Download Usage Scenario for the Audio Hosting Service

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02

1,E-01

1,E+00

1.0 10.0 100.0 1000.0

std ha

ha + hr re

re + hr hr

fp
(s

ca
le

)

(a)

scale
1,E-07

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02

1,E-01

1,E+00

1.0 10.0 100.0 1000.0

Software

Hardware

Network

fp
_s

td
(s

ca
le

)

(b)

scale

Figure 6.9: Audio Hosting Reliability Predictions with Varying Reliability Annota-
tions, Based on the Single-Download Usage Scenario

The most severe limitation of the simulation is that it consumes signifi-
cantly more time than the Markov analysis. The time consumption depends

211

6 PCM-REL Case Studies and Validation

on the number of events to be processed during the simulation experiment,
which in turn is proportional to the number of observed usage scenario runs
and the complexity of the executed behaviour in each run. In the context
of this case study, two simplifications are introduced to keep the number
of simulation events within feasible bounds. First, a simplified usage sce-
nario as shown in Figure 6.8, which consists of a single-file download only,
simplifies the user and system behaviour involved in each scenario run.
Second, all reliability annotations in the model are upscaled so that FODs
occur more frequently, which allows for observing a statistically relevant
number of failure events within fewer usage scenario runs. The upscaling
includes multiplying all software FOD probabilities and network transmis-
sion failure probabilities with a constant factor, as well as dividing hardware
resource MTTF values by the same factor. Figure 6.9 depicts FOD prob-
abilities f p(scale) and f p_std(scale) obtained through Markov analysis
for different scaling factors scale, ranging from the original setting 1.0 to
1000.0. The predictions are based on the singe-download scenario. As the
figure shows, the scaling changes the absolute reliability levels of the audio
hosting service but preserves the proportions between design alternatives
(Subfigure (a)) and failure dimensions (shown by example for the “std” al-
ternative in Subfigure (b)). Hence, the simplifications are introduced in a
way such that the fundamental characteristics of the case study scenario are
changed as little as possible.

Figure 6.10 shows the result of a series of simulation experiments Exp1,
compared to predictions obtained by the Markov analysis. The series con-
sists of one simulation experiment per design alternative, based on the
single-download scenario and upscaled reliability annotations by factor
1000.0. Each experiment includes 10000 usage scenario runs. While Sub-
figure (a) depicts the overall FOD probabilities f p_1000(alt) of the design
alternatives alt, the other subfigures show the reliability impacts of each of
the software, hardware and network dimensions. In spite of the simulation
results being based on observed instances of usage scenario runs and thus

212

6.4 Audio Hosting Case Study

1,E-04

1,E-03

1,E-02

1,E-01

1,E+00 predicted

simulated

fp
_1

00
0(

al
t)

(a)

alt

1,E-04

1,E-03

1,E-02

1,E-01

1,E+00 SW predicted

SW simulated

fp
_1

00
0(

al
t)

(b)

alt

1,E-04

1,E-03

1,E-02

1,E-01

1,E+00 HW predicted

HW simulated

fp
_1

00
0(

al
t)

(c)

alt

1,E-04

1,E-03

1,E-02

1,E-01

1,E+00 NW predicted

NW simulated

fp
_1

00
0(

al
t)

(d)

alt

Figure 6.10: Comparison of Reliability Predictions with Simulation by Design Al-
ternatives and Failure Dimensions

subject to statistical variation, prediction results and observations are gen-
erally very close. In particular, fundamental findings such as the superior
reliability of the “ha” and “ha+re” alternatives are supported by both eval-
uations. Existing differences vary in sizes and directions and can safely be
accredited to the effects of statistical variation.

To give further evidence that the comparison between prediction results
and simulation is meaningful in spite of the introduced simplifications,
further simulation experiments Exp2 and Exp3 were conducted with de-
creased scaling factors 100.0 and 10.0, which are closer to the original
setting. Because of the effects of statistical variation, the achieved degree
of compliance of Exp1 (as shown in Figure 6.10) can only be expected to
be upheld if the number of observed usage scenario runs is increased in

213

6 PCM-REL Case Studies and Validation

1,E-07

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02

1,E-01

1000.0 100.0 10.0

std ha ha + hr
re re + hr hr

di
ff_

ab
s(

sc
al

e)
(a)

scale
1,E-07

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02

1,E-01

1000.0 100.0 10.0

std ha ha + hr
re re + hr hr

di
ff_

no
rm

(s
ca

le
)

(b)

scale

1,E-05

1,E-04

1,E-03

1,E-02

1000.0 100.0 10.0

abs

norm

Ø
di

ff(
sc

al
e)

(c)

scale

Figure 6.11: Differences Between Reliability Predictions and Simulations, by Scal-
ing Factors and Design Alternatives

proportion to the change of scaling. Hence, each experiment of the EXP2

series was conducted with 100000 usage scenario runs, and the EXP3 se-
ries included 1000000 scenario runs per experiment. Experiments with
further downscaled reliability annotations and accordingly increased sce-
nario run numbers are possible but increasingly difficult to conduct due to
time limitations. Figure 6.11 depicts the differences between prediction re-
sults and simulation of all experiments Exp1 to Exp3 with corresponding
scaling factors 1000.0 to 10.0. Subfigure (a) shows the absolute differ-
ences di f f _abs(scale) across all scaling factors scale and design alterna-
tives. While the concrete differences are subject to statistical variation, the
overall trend clearly shows that the differences decrease together with the
scaling factor, due to the increasing number of observed scenario runs per

214

6.4 Audio Hosting Case Study

experiment. On the other hand, this trend is actually required to maintain
the same degree of compliance across all experiments. To this end, Subfig-
ure (b) shows normalized differences di f f _norm(scale), multiplying each
difference in Exp2 by factor 10 and each difference in Exp3 by factor 100.
The normalized differences are stable across all experiments (apart from the
effects of statistical variation). Subfigure (c) further summarizes the find-
ings by showing the absolute and normalized differences ∅di f f (scale) for
the scaling factors, averaged across all design alternatives. In conclusion,
the same level of compliance between predictions and simulations could
be achieved for all series of experiments Exp1, Exp2 and Exp3, giving
evidence for the assumption that validating also high-reliability values by
simulation would be possible if the available time for experiment execu-
tion was not limited.

The simulation experiments discussed so far do not consider the influ-
ence of a limited real-world mission time on the observed system relia-
bility. Exp1 included 10000 usage scenario runs over a simulated time
interval of 0.6 years (which translates to an average inter-arrival time of ap-
proximately 32 minutes between two scenario runs). Due to the increased
number of observed scenario runs, system mission times covered by Exp2

and Exp3 are 6 years and 60 years, respectively. Such mission times may
be unrealistically high for real-world IT systems, which leads to the ques-
tion if it is possible to validate reliability predictions for systems with lim-
ited mission times. For software and network failures potentials, it can be
reasoned that the expected number of observed FOD occurrences depends
only on the modelled FOD probabilities and the overall number of scenario
runs during the system’s mission time, but not on the mission time itself.
One must only be aware that low input FOD probabilities will not lead to
any observed FOD occurrences if the overall number of scenario runs is
too low. However, hardware-induced FOD occurrences depend on resource
Times-to-Failure (TTF) and Times-to-Repair (TTR). There may not be a

215

6 PCM-REL Case Studies and Validation

statistically relevant number of hardware failure and repair events during
a limited system mission time.

1,E-05

1,E-04

1,E-03

0 5 10 15 20 25 30 35 40 45 50

HW predicted

HW simulated (new HW)

HW simulated (used HW)

fp
_H

W
([0

,t]
)

t [years]

Figure 6.12: Variation of Hardware-Induced Reliability Impacts Depending on Sys-
tem Mission Time

For a closer examination of this question, another experiment Exp4 is con-
ducted simulating the modelled PCM-REL instance for the “std” alternative
in its original setting (namely, without scaling of reliability annotations)
based on the single-download usage scenario as shown in Figure 6.8. The
system is observed over a theoretical mission time of 50 years with 250000
usage scenario runs. Figure 6.12 shows the hardware-induced FOD prob-
ability f p_HW ([0, t]) as predicted by the Markov analysis and observed
by simulation between system start at t0 = 0 and t. Two separate sim-
ulations are conducted, where one simulation assumes new hardware at
t0 and the other one already used hardware4. While the predicted value
is constant (due to the time-abstracting character of the Markov analysis),
the observations by simulation initially differ from this value and eventu-
ally converge to it. In the experiment, both simulations do not experience
any hardware-induced FOD occurrences in the first three years, leading to
f p_HW ([0, t]) = 0 during that time. The experiment results suggest that,
4Both simulations assume exponentially distributed TTFs and TTRs for hardware resources,
based on the modelled MTTF and MTTR values.

216

6.4 Audio Hosting Case Study

in spite of a principally valid prediction of hardware-induced FOD proba-
bilities, significant differences from the predicted values may be observed
in practice. This is due to statistical variation, whose impact depends on
the length of the system’s mission time, the number of hardware resources
used by the system, as well as the number of observed system installations
(if considering the average results across all installations). All these as-
pects influence the expected overall number of hardware failure and repair
events. The higher this number, the closer the expected compliance be-
tween prediction and observation. An additional finding of the experiment
is that the simulation of the system running with initially new hardware
stays below the predicted threshold, until it eventually converges towards
it. In this case, the assumption of steady-state availability as included in the
Markov analysis (see Section 5.2.1) is not correct in the early stages of the
system’s lifetime, which starts with all hardware resources being available
at t0 = 0 with probability 1.0. In conclusion, it has to be noted that observed
hardware reliability impacts may differ from predicted ones for scenarios
with a low number of overall hardware failure and repair events, and that
predictions are rather conservative in cases where a system’s mission time
starts with initially new hardware resources.

6.4.4 Comparison with Measurements

The previous discussion of simulation experiments as part of the audio
hosting case study has provided evidence of the validity of the Markov
analysis. However, both the analysis and the simulation have the original
PCM-REL instance as a common starting point and are equally affected
by all abstractions included into the PCM-REL modelling language. This
section provides a supplementary discussion validating those modelling ab-
stractions. To this end, a prototypical implementation of the audio hosting
service has been created which the PCM-REL instance represents. Reli-
ability measurements conducted on the implementation are compared to

217

6 PCM-REL Case Studies and Validation

predictions to observe if any significant deviations are caused by the mod-
elling abstractions. The implementation is based on Enterprise Java Beans
(EJB [Ora12b]) deployed on a GlassFish Application Server [Ora12a] and
using an Apache Derby database [Apa12] for storage of user and audio
data. For the measurements, the application is executed in a testbed that
triggers usage scenario runs and service invocations according to a built-in
workload driver and records the results of all scenario runs.

In order to feasibly conduct the measurements, several simplifications
had to be included compared to a real-world field experiment. First, the
overall number of scenario runs is limited to 4000 (divided into four mea-
surement runs with 1000 scenario runs each). This limitation is due to
the fact that the scenarios are executed in real time (unlike the accelerated
simulated time in the previous experiments). Second, the implementation
comprises only basic functionality for user registration, user login, audio
data storage and processing. System reliability is not measured due to real
faults but rather to injected ones, with externally controlled FOD proba-
bilities of individual processing steps. Third, the executed system instance
is deployed on a single hardware node (ruling out network transmission
failures), and this node is assumed to be perfectly available (as the dura-
tion of the measurement runs is too short to observe any hardware break-
downs). For comparison between predictions and measurements, a PCM-
REL instance is created that represents the specific implemented architec-
tural candidate of the audio hosting service. This candidate corresponds
to a modified “std” design alternative with a single computing node host-
ing all software component instances. While hardware resources possess
perfect availability (with MTTF and MTTR values equal to zero), software
FOD probabilities are upscaled compared to the original settings by factor
10000. This scaling is done so that a statistically relevant amount of FODs
can be observed during the measurements. The single-download usage sce-
nario as shown in Figure 6.8 is employed to represent user behaviour, and
it is implemented by the testbed’s workload driver.

218

6.4 Audio Hosting Case Study

The most significant modelling abstraction of PCM-REL with respect to the
implemented prototype is the abstraction from component-internal state,
which, in the implementation, governs certain control flow decisions. For
example, the “AudioManagement” component conducts file encoding dur-
ing download only if the requested bitrate is smaller than the bitrate of
the audio file retrieved from the database (see Figure 2.9). The model
does not explicitly represent the stored audio files and their bitrates; in-
stead, a BranchAction “EncodingCases” represents the decision using
fixed branch transition probabilities of 0.5 for each of the two possible
cases (conduct or omit encoding). Similarly, the result of a cache access
(which may be a hit or a miss) influences the subsequent control flow and
is modelled by PCM-REL through fixed hit and miss probabilities. Both
the decisions about encoding and about cache accesses have a potential
to influence the resulting system reliability. Omission of encoding elimi-
nates one source of software-induced FOD occurrences during download.
A cache hit saves database accesses and most of the required audio process-
ing, thereby significantly reducing the failure potentials of the conducted
service operation.

Figure 6.13 shows the results of the conducted measurements as well as
the comparison to prediction. Each subfigure depicts one out of four con-
ducted measurement runs with its FOD probabilities f p_10000(type) for
each occurring SoftwareInducedFODType type. By manual alteration
of the stored cache and database contents for the implemented prototype,
different relative frequencies of cache hits and conducted encodings were
observed during each of the measurement runs. As the results indicate,
these variations have significant impact on the occurrence probabilities of
individual FOD types. A high cache hit probability lowers the occurrence
probabilities of DB query failures, storage access failures, encoding fail-
ures and watermarking failures. Additionally, the occurrence probability
of encoding failures rises and falls together with the rate of conducted en-
codings. Each of the measurement runs is accompanied by a reliability

219

6 PCM-REL Case Studies and Validation

1,E-04

1,E-03

1,E-02

1,E-01 predicted
measured

cache prob. = 0.3336
encoding prob. = 0.4993

fp
_1

00
00

(ty
pe

)
(a)

type

1,E-04

1,E-03

1,E-02

1,E-01 predicted
measured

cache prob. = 0.6922
encoding prob. = 0.6350

fp
_1

00
00

(ty
pe

)

(b)

type

1,E-04

1,E-03

1,E-02

1,E-01 predicted
measured

fp
_1

00
00

(ty
pe

)

(c)
cache prob. = 0.0793
encoding prob. = 0.8915

type

1,E-04

1,E-03

1,E-02

1,E-01 predicted
measured

fp
_1

00
00

(ty
pe

)

(d)
cache prob. = 0.8420
encoding prob. = 0.3416

type

Figure 6.13: Comparison of Reliability Predictions with Simulation by Failure-on-
Demand Types and Measurement Runs

prediction with modelled cache and encoding probabilities adjusted to the
observed values. The so-calibrated model leads to accurate predictions in
all four cases, with deviations that can safely be accredited to statistical
variation. As Figure 6.13 shows, the consistent absolute variations across
all failure types imply lower relative variations for types with high occur-
rence probabilities (such as cache access failures) compared to types with
low occurrence probabilities (such as web request failures). An increased
number of scenario runs per measurement run would be required to further
improve the overall compliance to the predicted values.

As the experiment shows, the cache and encoding probabilities have a
significant influence on the system’s reliability, and accurate predictions
can only be achieved with an accordingly calibrated model. However, it is

220

6.4 Audio Hosting Case Study

feasible to assume that these probabilities can be estimated by experience
or derived from observations obtained from similar systems. The model
calibration is not a process of data fitting. No prediction results are used as
a feedback for the calibration. Rather, the relevant parameters are directly
estimated for the system under study and included in the model.

6.4.5 Case Study Assessment

Within the context of the audio hosting case study, the PCM-REL ap-
proach presented in this thesis could successfully be applied to an IT system
which features typical characteristics of business information systems with
component-based software architectures. A comprehensive set of exper-
iments was conducted that demonstrates the capabilities of the approach
and validates several of its assumptions. More concretely, the achieve-
ments of the case study with respect to the original validation goals (see
Section 6.2) are as follows:

Feasibility of modelling abstractions: Reliability predictions obtained
by PCM-REL were compared to measurements conducted for a prototyp-
ical implementation which the modelled PCM-REL instance represents.
The probabilistic abstraction of control flow dependencies on component-
internal state received special attention. While a model calibration step is
required estimating the control flow probabilities, such calibration can fea-
sibly be achieved, and the resulting predictions are highly accurate.

Feasibility of estimation of reliability annotations: In this case study,
reliability annotations were illustratively chosen. The full process of input
estimation is demonstrated by the Astaro ASG study (Section 6.5).

Validity of Markov analysis: Several simulation experiments were con-
ducted and compared to predicted reliability values. The simulation uses
an own underlying formalism and is not affected by the known assump-
tions of the analysis. Simulation and prediction results generally showed
a high level of compliance. For hardware-induced FOD probabilities, ob-

221

6 PCM-REL Case Studies and Validation

served values may deviate from predictions for systems with short mission
times or few used hardware resources. Predictions are conservative if the
system starts its mission time with initially new resources.

Significance and robustness of prediction results: The results of the
Markov analysis could be used to gain several insights into the reliability
characteristics of the audio hosting service. Recommendations for choos-
ing between multiple design alternatives could be given with high confi-
dence, based on a sensitivity analysis examining the robustness of the re-
sults. Conclusions could be drawn about further potential for improvement
which might be exploited in future system design iterations.

6.5 Astaro ASG Case Study

This section presents a PCM-REL case study for the Astaro Security Gate-

way (ASG) [Ast12], a system that enables a secure interconnection between
company-internal IT infrastructures and and external communication net-
works. The system includes functionality in the area of network security
(such as a network firewall, remote access capabilities and bandwidth con-
trol), mail security (such as spam and virus detection), web security (fil-
tering, reporting and control) and web application security (such as an ap-
plication firewall). A full installation includes dedicated hardware hosting
the system’s software on top of a Linux operating system. Multiple repli-
cated hardware nodes may co-operate for improved system performance
and availability. Different node sizes are available supporting a recom-
mended number of 10 to 4 000 users per node. The ASG is a product of the
Sophos (formerly Astaro) company. There are a worldwide estimated total
of 60 000 ASG installations operating in the field.

The case study focuses on a specific part of the ASG’s functionality,
namely the processing of e-mails received via SMTP. The study includes
modelling the involved parts of the software architecture and examining
the ASG’s reliability with respect to e-mail processing. The description

222

6.5 Astaro ASG Case Study

Reliability Prediction
Results (20)

Architecture Do-
cumentation (5)

System Imple-
mentation (6)

Software Failure
Statistics (13)

Hardware Data
Sheets (15)

Case Study Input Information

Additional Information Source

Activity

Data Input / Output

Flow of Information

Hardware MTTF /
MTTR Values (14)

Software FOD
Probabilities (10)

Scenario Parameters
(17)

System Architecture
Scope (4)

System Usage
Scenario (3)

Perform Reliability
Modelling (16)

PCM-REL Instance
and Variations (18)

Expert Know-
ledge (12)

Bug Tracker
Database (9)

FOD Types and
PPOFs (7)

Case Study
Questions (2)

Case Study
Scenario (1)

Estimate Software
Reliability Baseline

(11)

Analyse Failure
Data (8)

Perform Reliability
Evaluation (19)

Figure 6.14: ASG Case Study Activities and Information Flows

respects the need for confidentiality and omits several details. However,
it is comprehensive in giving evidence for the applicability of PCM-REL
to an industrial system such as the ASG. The following gives a general
outline of the study (Section 6.5.1), introduces its inputs (Section 6.5.2),
describes the modelling activities (Section 6.5.3) including the estimation
of required input parameters (Section 6.5.4), illustrates the analysis results
(Section 6.5.5) and assesses the case study achievements (Section 6.5.6).

6.5.1 Case Study Outline

This section provides an outline of the ASG case study, which can also more
generally serve as a raw model of how to apply PCM-REL to an existing
industrial system under study. Figure 6.14 shows the case study’s activities

223

6 PCM-REL Case Studies and Validation

and information flows. The study comprises four main activities: failure
data analysis, software reliability baseline estimation, reliability modelling
and reliability evaluation. There is no need to perform these activities in
a strictly sequential order. Rather, there are flows of information between
the activities, as well as data outputs of activities that serve as inputs to
other activities. A set of information sources provides the required input
information, and a set of ASG reliability predictions constitutes the result
of the study.

As the figure shows, the starting point of the study is given by the def-
inition of a case study scenario (1) specifying the considered part of the
system’s functionality and usage, as well as a set of reliability-specific ques-
tions (2) that shall be answered by the study’s results. The considered sys-
tem usage scenario (3) specifying relevant system service invocations and
input parameters follows directly from the case study scenario. The system
architecture scope (4) specifies the relevant part of the system’s architecture
in terms of software components, interfaces, behaviour and allocation to the
hardware resource environment. It is obtained from existing architectural
documentation (5) and, as required, reviews of the system’s implementation
(6). Furthermore, the case study scenario and questions help to determine
the relevant fraction and required modelling granularity of the architecture.
The considered FOD types and potential points of failure (PPOFs) within
the architecture (7) follow mainly from the case study scenario; however,
the analysis of failure data (8) from the bug tracker database (9) may reveal
additional FOD types and PPOFs not originally considered. Eventually, the
specified PPOFs must be annotated with software FOD probabilities (10).
In the ASG case study, a mixed approach was chosen to obtain those prob-
abilities, with a baseline estimation (11) for all probabilities determined
from expert knowledge (12), enriched by existing failure statistics (13),
and further weighted by the results of the bug tracker analysis. Addition-
ally, hardware MTTF and MTTR values (14) are determined from existing
hardware data sheets (15).

224

6.5 Astaro ASG Case Study

All gathered data as discussed in the previous paragraph serves as an in-
put to the reliability modelling activity (16). Furthermore, a set of scenario
parameters (17) specifying variable aspects of the system’s usage and con-
figuration need to be reflected in the model so that their influence on the
system’s reliability can be examined. The set of relevant parameters fol-
lows from the case study scenario definition. The modelling activity pro-
duces a PCM-REL instance (18) which serves as an input to the reliability
evaluation (19). The evaluation includes repeated Markov analysis runs for
the PCM-REL instance and its variations (created to examine the sensitivity
of the system’s reliability to varying scenario parameters and reliability an-
notations). A set of reliability prediction results (20) constitutes the output
of the evaluation activity and is interpreted to answer the initial case study
questions. The following sections discuss the outlined case study inputs,
activities and results in detail.

6.5.2 Case Study Scenario and Questions

This section introduces the case study scenario and relevant questions to
answer, which emerged from initial discussions with ASG developers and
constitutes the first input to the case study (see Figure 6.14). The study fo-
cuses on the processing of e-mails received via SMTP, which may be either
incoming (sent from an external origin to a recipient within the company-
internal network) or outgoing (sent to an external recipient from an internal
origin). The processing includes a series of performed processing steps

for each e-mail, namely mail acceptance checks (such as spam detection)
and mail-handling operations (such as content encryption). The set of per-
formed processing steps may differ depending on the properties of the e-
mail and the ASG’s configuration. If an e-mail does not pass an acceptance
check, it is not further processed but either rejected or deposited in a quar-

antine storage. In the first case, the ASG returns a rejection notice to the
sender. In the second case, an administrator has to decide about the fur-

225

6 PCM-REL Case Studies and Validation

ther treatment of the e-mail. If an e-mail passes all acceptance checks, the
ASG forwards it to its destination. Information about processed e-mails
and processing outcomes is written to the system logs and partially stored
in a local ASG database.

The described system functionality provides the context for the defini-
tion of the central scenario of the case study, namely the SMTP processing

scenario. This scenario starts with the arrival of an incoming or outgoing
e-mail and includes all processing steps performed on this e-mail. The ex-
ecution of the scenario has three possible regular outcomes, namely (i) the
acceptance and sending, (ii) the rejection or (iii) the quarantining of the pro-
cessed e-mail. A further (unwanted) outcome is the cancellation of the pro-
cessing before its completion and loss of the e-mail. The scenario execution
is considered successful if all of the following success criteria are met:

• Mail Processing: Each processing step is performed on the e-mail if
and only if it is expected to be performed.

• Mail Integrity: Each performed processing step completes without
corrupting the e-mail (namely, changing header data or contents of
the e-mail in unexpected ways).

• Mail Classification: Each performed mail acceptance check produces
its expected result (either passing or disapproving the e-mail), lead-
ing also to the expected scenario outcome5.

Minor problems such as wrong logging are not considered as being FODs.
Processing delays are only considered as being FODs if they are extreme,
such as one day or more. Furthermore, the analysis only considers problems
that are directly related to the described scenario. This excludes FODs dur-
ing the further processing of quarantined e-mails from consideration. Un-

5Notice that the overall scenario outcome may be as expected even though an individual
acceptance check produces a wrong result. It was decided to consider such cases as failed
processing. Beyond the overall outcome of the scenario, each individual processing step is
expected to perform failure-free.

226

6.5 Astaro ASG Case Study

wanted side effects during e-mail processing (such as writing wrong data to
the local database) are not considered as being FODs if they do not violate
the defined success criteria of the scenario, even though they might impact
the processing of further e-mails or other ASG functionality. However, the
analysis must consider the fact that a side effect during the processing of
one e-mail may manifest itself as a FOD while processing another e-mail.

The definition of the SMTP processing scenario provides the basis for de-
termining relevant FOD types and PPOFs (as shown in Figure 6.14). From
the defined success criteria, it is evident that the PPOFs are connected to
the individual e-mail processing steps. Furthermore, FOD occurrences can
be categorized according to the type of violation that they constitute:

• Mail Wrongly Passed: A mail acceptance check wrongly classifies
an e-mail as “OK” instead of “BAD”. This may lead to acceptance
and sending of the e-mail as an overall unexpected scenario outcome
(instead of rejecting or quarantining the e-mail).

• Mail Wrongly Disapproved: A mail acceptance check wrongly clas-
sifies an e-mail as “BAD” instead of “OK”. The e-mail will not be
accepted and sent, even if this scenario outcome is the expected one.

• Mail Corrupted: A processing step results in a corruption of an e-
mail. The e-mail will not arrive at the expected recipient or in its
expected form, even if the ASG accepts and forwards it.

• Mail Wrongly Processed: A processing step is performed on an e-
mail even though it is expected to be skipped. This may have several
implications; for example, an e-mail may be rejected instead of ac-
cepted.

• Mail Processing Wrongly Omitted: A processing step of an e-mail is
skipped even though it is expected to be performed. One potential
implication is that the e-mail may be accepted instead of rejected.

227

6 PCM-REL Case Studies and Validation

• Mail Processing Cancelled: The processing of an e-mail stops unex-
pectedly before its completion. The e-mail is lost and can neither be
sent nor rejected or quarantined.

Another observation with respect to FOD occurrences during SMTP pro-
cessing is that they may significantly differ in their criticality; highly crit-
ical ones are less tolerable than minor ones. In this respect, FODs can be
categorized as follows:

• Minor: This category includes spam classification problems due to
imperfect spam detection. A non-spam e-mail may be wrongly dis-
approved as being spam, or a spam e-mail may not be identified as
such. Spam detection is a heuristic method performed under high un-
certainty. Misclassifications with a certain frequency of occurrence
are generally accepted by users and are not particularly critical.

• Major: This is the standard category for failed SMTP processing. It
includes all FOD occurrences which are neither minor nor critical.

• Critical: This category includes the non-identification of virus e-
mails due to imperfect virus detection. Undetected viruses may
severely and unpredictably damage data and computation within the
ASG, and they may further propagate and cause damage at the recipi-
ent’s side. Hence, FODs of this kind should have very low occurrence
probabilities in the field.

For the ASG case study, the described categorization of FOD occurrences
according to violation type and criticality guides the specification of FOD
types during reliability modelling (see Table 6.3).

The case study questions of interest are centred around two major issues.
First, as the development of the ASG’s software continues, the question
arises which parts of the software are most critical and should receive spe-
cial attention in terms of quality assurance efforts (which may comprise
extended testing, code reviews or even partial re-implementation). Second,

228

6.5 Astaro ASG Case Study

the central means to avoid critical FOD occurrences is a redundant virus
check of processed e-mails by two independent virus detection engines.
The case study shall quantify the relative improvement gained by this re-
dundancy compared to a single-engine check, as a basis for justifying the
introduced runtime performance overhead.

6.5.3 ASG Architectural Model

This section introduces the PCM-REL instance created during the relia-
bility modelling activity (see Figure 6.14). The discussion focuses on the
model parts that result from the determined system usage scenario (element
3 in the figure), system architecture scope (4), FOD types and PPOFs (7), as
well as scenario parameters (17). These inputs follow from the case study
scenario (1) and questions (2) as introduced in Section 6.5.2. Additionally,
existing architectural documentation (5) was leveraged and the system’s
implementation was inspected (6) to determine the required information.

6.5.3.1 Model Overview

The PCM-REL instance which represents the SMTP processing part of
an ASG installation specifies 16 BasicComponents, 5 CompositeCom-
ponents, 8 Interfaces and 3 model-specific DataTypes. Figure 6.15
shows the top-level structure, which consists of 10 AssemblyContexts
instantiating the BasicComponents ClusterProtocol, SMTPDatabase and
CONFDatabase, as well as the SMTPProxy CompositeComponent. The
model represents an average-sized cluster ASG installation with triple re-
dundancy. Each of the three SMTPProxies implements IMessageProcessor

so that it can serve e-mail processing requests. The proxies negotiate the
distribution of e-mails between them through the cluster protocol. Even
though each proxy takes an active part in the protocol, this cannot be di-
rectly expressed in PCM-REL, which only allows for modelling passive
components. Hence, the model contains a “virtual” ClusterProtocol com-

229

6 PCM-REL Case Studies and Validation

«System»
ASG_SMTP_Processing

«AssemblyContext»
SMTPDatabase (1)

«AssemblyContext»
CONFDatabase (1)

«AssemblyContext»
SMTPDatabase (2)

«AssemblyContext»
CONFDatabase (2)

«AssemblyContext»
SMTPDatabase (3)

«AssemblyContext»
CONFDatabase (3)

«AssemblyContext»
SMTPProxy (1)

«AssemblyContext»
SMTPProxy (2)

«AssemblyContext»
SMTPProxy (3)

«AssemblyContext»
ClusterProtocol

IMessage
Processor

IMessageProcessor (1)

IDatabase
(SMTP)

IDatabase
(CONF)

IMessage
Processor (2)

IMessageProcessor (3)

IDatabase
(SMTP)

IDatabase
(CONF)

IDatabase
(SMTP)

IDatabase
(CONF)

Figure 6.15: ASG SMTP Processing System Model

ponent that receives e-mails first and propagates them to the proxies. This
modelling variant is chosen such that it does not change any of the system’s
reliability characteristics with respect to the context of the case study. Fur-
thermore, the SMTP processing involves two databases whose contents are
replicated for each proxy. The SMTPDatabase is used to store information
about processed e-mails; the CONFDatabase contains the ASG’s configu-
ration information and is queried to decide about the set and conditions of
performed mail acceptance checks and mail-handling operations.

Figure 6.16 shows the ASG resource environment and the allocation
of software components to hardware hosts. The model contains four Re-
sourceContainers ASGSwitch, ASGHost (1), ASGHost (2) and ASGHost

(3). Each of the three hosts contains a full ASG software installation in-
cluding an SMTPProxy and local replica of the SMTPDatabase and CONF-

Database. Each host receives and sends e-mails via the ASGSwitch, which
contains the virtual ClusterProtocol. Hardware resources within the hosts
and the switch are not individually modelled but aggregated to single Pro-
cessingResourceSpecifications per node using two custom Pro-
cessingResourceTypes ASGHostHW and ASGSwitchHW. Each Pro-

230

6.5 Astaro ASG Case Study

«ResourceContainer»
ASGHost (1)

«ProcessingResource
Specification»
ASGHostHW

«AllocationContext»
CONFDatabase (1)

«AllocationContext»
SMTPDatabase (1)

«AllocationContext»
SMTPProxy (1)

«ResourceContainer»
ASGHost (2)

«ProcessingResource
Specification»
ASGHostHW

«AllocationContext»
CONFDatabase (2)

«AllocationContext»
SMTPDatabase (2)

«AllocationContext»
SMTPProxy (2)

«ResourceContainer»
ASGHost (3)

«ProcessingResource
Specification»
ASGHostHW

«AllocationContext»
AL_CONFDatabase (3)

«AllocationContext»
AL_SMTPDatabase (3)

«AllocationContext»
AL_SMTPProxy (3)

«ResourceContainer»
ASGSwitch

«ProcessingResource
Specification»

ASGSwitchHW

«AllocationContext»
ClusterProtocol

«LinkingResource»
SwitchConnection1

«LinkingResource»
SwitchConnection2

«LinkingResource»
SwitchConnection3

Figure 6.16: ASG Resource Environment and Allocation Model

cessingResourceSpecification has its “RequiredByContainer” flag
set to “true” to indicate that the node is only operational when its hard-
ware is available.

Figure 6.17 depicts the ASG usage model, which specifies a single
UsageScenario “SMTPProcessingScenario” with a single EntryLev-
elSystemCall to the “ProcessMessage” operation of the “IMessagePro-
cessor” Interface. Several VariableUsages specify properties of the
invoked operation’s input parameter “message” and its sub parameters.
“Message” is a CompositeDataType contained in the ASG Repository
Model, representing the e-mail that is to be processed by the ASG. It has
a set of inner declarations to reflect properties that influence its treatment
in the system. These properties include the number of recipients of the
e-mail, the classification of the e-mail as being spam or containing a virus,
containing forbidden expressions in the subject or body, containing crit-

231

6 PCM-REL Case Studies and Validation

«ScenarioBehaviour»
SMTPProcessingScenario

«VariableUsage»
message.recipients.NumberOfElements = IntPMF[(1;1.0)]

«VariableUsage»
message.hasVirus.Value = BoolPMF[(true;0.0)(false;1.0)]

«VariableUsage»
message.isSpam.Value = BoolPMF[(true;0.0)(false;1.0)]

«EntryLevelSystemCall»
IMessageProcessor.ProcessMessage

«VariableUsage»
message.hasBadExpressions.Value = BoolPMF[(true;0.0)(false;1.0)]

«VariableUsage»
message.hasBadFileNames.Value = BoolPMF[(true;0.0)(false;1.0)]

«VariableUsage»
message.isOutgoing.Value = BoolPMF[(true;0.5)(false;0.5)]

Figure 6.17: ASG Usage Model

ical file name extensions in the set of attached files, as well as being an
incoming or outgoing e-mail. Using the PCM-specific Stochastic Expres-

sions (StoEx) language [Koz08], Probability Mass Functions (PMFs) of
type Integer (IntPMF) and Boolean (BoolPMF) are employed to specify
those properties. The figure shows the specification of a processing request
for an e-mail with one recipient, which is no spam, does not contain a virus,
has no bad expressions or file name extensions, and is either incoming or
outgoing, each with probability 0.5. The request properties can be mod-
ified during a sensitivity analysis to examine how the system’s reliability
is influenced by such changes.

The inner structure of the SMTPProxy CompositeComponent is shown
in Figure 6.18. The proxy makes use of the open source mail transfer
agent Exim [HWW+12] for the initial handling of received e-mails (re-
alized through the SMTPServerExim component), as well as the sending
of completely processed e-mails (realized through SMTPClientExim). The

232

6.5 Astaro ASG Case Study

«CompositeComponent»
SMTPProxy

IMessage
Processor

IMessageQueue

IVirusDetector

ISpamDetector

«AssemblyContext»
SMTPServerExim

«AssemblyContext»
SMTPClientExim

IMessage
Processor

«AssemblyContext»
SMTPDaemon IDatabase

(CONF)

IDatabase
(SMTP)

Figure 6.18: ASG SMTP Proxy Model

SMTPServerExim performs initial checks on each received e-mail and ei-
ther rejects it or passes it on to a message queue for further internal pro-
cessing by the SMTPDaemon. Depending on the configuration of the ASG
and the properties of a received e-mail, the SMTPServerExim may perform
a check for spam or viruses using the spam and virus detection engines
of the SMTPDaemon. The latter can access the SMTP and configuration
databases, and it can hand e-mails over to the SMTPEximClient for send-
ing after all processing steps have been completed. The PCM-REL instance
further divides the SMTPServerExim in two sub components ServerEximC-

trl and ServerEximChecks (not shown in the figure) to distinguish between
the control flow that decides over the execution of individual processing
steps and the execution of those steps itself.

Figure 6.19 further details the inner structure of the SMTPDaemon. The
included sub components can be categorized in message queues (namely
InputQueue, WorkQueue and OutputQueue, which implement the “IMes-
sageQueue” Interface), message processors (QueueManager and Mail-

Analyzer, implementing “IMessageProcessor”) and the message deposit
Quarantine (implementing “IMessageDeposit”). While in reality, the mes-
sage processors are active components that observe the queues and fetch e-
mails from them for processing, this cannot be directly expressed in PCM-

233

6 PCM-REL Case Studies and Validation

«CompositeComponent»
SMTPDaemon

IMessage
Queue

IMessageQueue

«AssemblyContext»
InputQueue

IDatabase
(SMTP)«AssemblyContext»

OutputQueue

«AssemblyContext»
QueueManager

IMessage
Processor

IMessage
Processor

«AssemblyContext»
WorkQueue

«AssemblyContext»
Quarantine

IMessageQueue

IMessage
Processor

IMessage
Deposit

IVirus
Detector

ISpam
Detector

«AssemblyContext»
MailAnalyzer

IDatabase
(CONF)

Figure 6.19: ASG SMTP Daemon Model

REL. Instead, the queues are modelled as actively invoking the message
processors to trigger the processing of an e-mail. This modelling variant
allows for considering the SMTP processing scenario as defined in Sec-
tion 6.5.2 as a whole and for deriving its overall success probability, rather
than only considering the reliability of individual scenario parts. When-
ever an e-mail is placed in the InputQueue (through the “IMessageQueue”
Interface), it is propagated to the QueueManager, which stores infor-
mation about the e-mail in the SMTP database and then places it in the
WorkQueue. From there, it further propagates to the MailAnalyzer, which
is the central component responsible for all internal mail processing steps.
The MailAnalyzer queries the CONF database to decide upon the set of
processing steps to be performed for the e-mail. As a result of the executed
mail acceptance checks, the MailAnalyzer either accepts the e-mail and
places it in the OutputQueue or disapproves it and places it in the Quaran-

tine (through the “IMessageDeposit” Interface). The further processing

234

6.5 Astaro ASG Case Study

of quarantined e-mails requires further user interaction. It is excluded from
the case study model because it is not part of the considered SMTP process-
ing scenario. From the OutputQueue, the e-mail visits the QueueManager

one more time and is finally passed on to the SMTPClientExim for sending
(via the “IMessageProcessor” Interface, see Figure 6.18).

«CompositeComponent»
MailAnalyzer

IMessage
Processor

IMessage
Queue

IMessage
Deposit

IDatabase

«AssemblyContext»
Scanner

«AssemblyContext»
SpamDetector

«AssemblyContext»
VirusDetector_A

«AssemblyContext»
VirusDetector_B

ISpam
Detector

IVirus
Detector (A)

IVirus
Detector (B)

Figure 6.20: ASG Mail Analyzer Model

Figure 6.20 gives further insight in the internals of the MailAnalyzer Com-

positeComponent. The central Scanner accepts e-mails via the “IMes-
sageProcessor” Interface and is responsible for performing the required
processing steps. The PCM-REL instance further distinguishes two sub
components ScannerCtrl and ScannerChecks of the Scanner (not shown in
the figure) to separate the decisions about the execution of the individual
processing steps from the execution itself. The range of possible process-
ing steps includes checking an e-mail for forbidden expressions and critical
file name extensions in the attachments, as well as performing spam and
virus detection (if not already done by SMTPServerExim, see Figure 6.18).
Furthermore, e-mail contents may be encrypted (for outgoing e-mails) or
decrypted (for incoming e-mails), and a digital signature may be checked

235

6 PCM-REL Case Studies and Validation

(for incoming e-mails) or created (for outgoing e-mails). For spam and
virus detection, the Scanner employs the existing engines SpamDetector,
VirusDetector_A and VirusDetector_B (the original names of the engines
are omitted for confidentiality reasons). Having an e-mail checked by two
independent virus detection engines is a fault-tolerance capability of the
ASG that decreases the probability of critical FOD occurrences due to
undetected viruses. The provided Interfaces of the SpamDetector and
VirusDetector_A are not only used internally but also offered as provided
Interfaces of the MailAnalyzer. Hence, the engines can be used by the
SMTPServerExim if required.

6.5.3.2 Behavioural Specifications

The system behaviour modelled for SMTP processing through the ASG
comprises 24 ResourceDemandingSEFFs. The core behaviour consists
of the execution of mail acceptance checks and mail-handling operations
by the SMTPServerExim (see Figure 6.18) and Scanner (see Figure 6.20).
Further relevant aspects include the distribution of e-mails to SMTPProxies

by the ClusterProtocol (Figure 6.15) and the final processing of an accepted
e-mail for sending by the SMTPClientExim (Figure 6.18). The following
exemplary excerpts of behavioural specifications illustrate how the PCM-
REL instance captures SMTP processing behaviour.

Figure 6.21 shows part of the “ProcessMessage” ResourceDemanding-
SEFF of ServerEximCtrl. The Exim server performs different mail ac-
ceptance checks on each received e-mail based on Access Control Lists

(ACL). The ACL Connect Check and ACL Data Check are performed
once per e-mail; the ACL Recipient Check is performed for each recipi-
ent. Each individual check may lead to disapproval and rejection of the
e-mail without any further checks being performed. If the e-mail passes all
checks, the Exim server places it in the InputQueue of the SMTPDaemon

(see Figure 6.19). The execution of the individual checks by ServerEx-

imChecks is triggered within a RecoveryAction “PerformACLChecks”

236

6.5 Astaro ASG Case Study

«RecoveryActionBehaviour»
HandleDisapproval

«RecoveryActionBehaviour»
Main

«RecoveryAction»
PerformACLChecks

«InternalAction»
EvaluatePerformACLConnectCheck

«InternalFODOccurrenceDescription»
ACLConnectCheckWronglyOmitted

«ExternalCallAction»
IServerEximChecks.PerformACLConnectCheck

«ExternalCallAction»
IMessageQueue.AddMessageToQueue

«handles»
ACLConnectDisapproval

ACLDataDisapproval
ACLRecipientDisapproval

«VariableUsage»
...

Figure 6.21: RDSEFF “ServerEximCtrl.ProcessMessage” (Excerpt)

(the figure shows only the invocation of the Connect Check and omits
the Data and Recipient Check invocations). The model captures the gen-
eral potential of an ACL check being wrongly omitted through custom
FailureTypes (such as “ACLConnectCheckWronglyOmitted”) and an
additional InternalAction before each check indicating a correspond-
ing point of failure (such as “EvaluatePerformACLConnectCheck”). The
final ExternalCallAction places the e-mail in the queue and passes
all its relevant properties through VariableUsages on to the called be-
haviour. When invoked, ServerEximChecks indicates any disapproval of
the e-mail through one of the SoftwareInducedFODTypes “ACLConnect-
Disapproval”, “ACLDataDisapproval” or “ACLRecipientDisapproval”. In
ServerEximCtrl, the RecoveryActionBehaviour “HandleDisapproval”
specifies that no further checks are invoked after a disapproval, and the
e-mail is not passed on to the queue. Hence, the “PerformACLChecks”
RecoveryAction does not represent fault-tolerant behaviour in a strict

237

6 PCM-REL Case Studies and Validation

«GuardedBranchTransition» CaseTrue

«BranchAction»
ACLConnectDisapproveCases

«BranchCondition»
ACLConnectDisapprove.Value == true

«InternalAction»
IndicateACLConnectDisapproval

«InternalFODOccurrenceDescription»
ACLConnectDisapproval: 1.0

«InternalAction»
PerformACLConnectCheck

«GuardedBranchTransition» CaseFalse
«BranchCondition»

ACLConnectDisapprove.Value == false

«InternalAction»
PerformACLConnectCheck

«InternalFODOccurrenceDescription»
ACLConnectCheckFalsePositive

«InternalFODOccurrenceDescription»
MailCorruptedByACLConnectCheck
«InternalFODOccurrenceDescription»

MailProcessingCancelledByACLConnectCheck

«InternalFODOccurrenceDescription»
ACLConnectCheckFalseNegative

«InternalFODOccurrenceDescription»
MailCorruptedByACLConnectCheck
«InternalFODOccurrenceDescription»

MailProcessingCancelledByACLConnectCheck

Figure 6.22: RDSEFF “ServerEximChecks.PerformACLConnectCheck”

sense. Rather, it controls the handling of e-mail rejection during the ACL
checks.

Figure 6.22 shows the execution of the ACL Connect Check through
ServerEximChecks as invoked by ServerEximCtrl. The specification has to
account for the general probability of a reject and the possibility of wrong
passing, wrong disapproval, corruption or cancelled processing of the e-
mail. The expected result of the check (pass or disapprove) depends on
the properties of the e-mail (such as the sender domain) and the configu-
ration of the ASG (such as the set of sender domains that are considered
legitimate). However, detailed modelling of all relevant e-mail proper-

238

6.5 Astaro ASG Case Study

ties and ASG configuration options would not be feasible. For example,
it would not be possible to specify a probability distribution over all pos-
sible sender domains as part of the usage model. Instead, the model ag-
gregates all influencing factors into a general probability of rejection spec-
ified as a component parameter “ACLConnectDisapprove” of ServerExim-

Checks, which is directly estimated for a given ASG application scenario.
In the behavioural specification, the BranchAction “ACLConnectDisap-
proveCases” evaluates this parameter to determine the expected result of
the check. The check itself is represented by an InternalAction “Perfor-
mACLConnectCheck”, which may produce an FOD occurrence of one of
the types “ACLConnectCheckFalseNegative”, “ACLConnectCheckFalse-
Positive”, “MailCorruptedByACLConnectCheck” or “MailProcessingCan-
celledByACLConnectCheck”. An additional InternalAction indicates
the “ACLConnectDisapprove” with probability 1.0 in the case where this
result is expected.

Figure 6.23 depicts the e-mail decryption as an example for a mail-
handling operation. The operation is invoked by ScannerCtrl and carried
out by ScannerChecks. The specification accounts for the general probabil-
ity that decryption is to be performed, for the possibility of wrong omission
or wrong execution of the operation, as well as FOD occurrences during
the operation that lead to e-mail corruption or cancellation of the process-
ing. As decryption is only performed on incoming e-mails, the “isOutgo-
ing” property must be checked to decide about the execution of the opera-
tion. Further aspects that influence the probability of decryption are aggre-
gated into a component parameter “PerformDecryption” of ScannerChecks.
As the figure shows, the BranchAction “PerformDecryptionCases” de-
cides about the execution of the decryption. The probability of a wrong
decision is expressed through an InternalAction “EvaluatePerformDe-
cryption” that may produce FODs of type “DecryptionWronglyOmitted” or
“DecryptionWronglyPerformed”. The operation itself is represented by an

239

6 PCM-REL Case Studies and Validation

«GuardedBranchTransition» CaseTrue

«BranchAction»
PerformDecryptionCases

«BranchCondition»
(PerformDecryption.Value == true)

AND (message.isOutgoing.Value == false)

«InternalAction»
PerformDecryption

«InternalFODOccurrenceDescription»
MailCorruptedByDecryption

«InternalAction»
EvaluatePerformDecryption

«InternalFODOccurrenceDescription»
DecryptionWronglyOmitted

«GuardedBranchTransition» CaseFalse

«BranchCondition»
(PerformDecryption.Value == false)

OR (message.isOutgoing.Value == true)

«InternalAction»
EvaluatePerformDecryption

«InternalFODOccurrenceDescription»
DecryptionWronglyPerformed

«InternalFODOccurrenceDescription»
MailProcessingCancelledByDecryption

Figure 6.23: RDSEFF “ScannerChecks.PerformDecryption”

InternalAction “PerformDecryption” that may produce a “MailCorrupt-
edByDecryption” or a “MailProcessingCancelledByDecryption” FOD.

Figure 6.24 shows part of the “AnalyzeExpressions” operation carried
out by ScannerChecks, as an example for a mail acceptance check that con-
siders the general probability of the check to be performed, the possibility
of wrong omission or wrong execution of the check, wrong mail passing
or disapproval as a check result, as well as mail corruption or cancelled
mail processing due to the check. The probability that the check is ex-
pected to be performed is captured through the component parameter “Per-
formExpressionsAnalysis”. A wrong decision about the execution leads
to FODs “ExpressionsAnalysisWronglyOmitted” or “ExpressionsAnaly-
sisWronglyPerformed” in the InternalAction “EvaluatePerformExpres-

240

6.5 Astaro ASG Case Study

«BranchAction»
PerformExpressionsAnalysisCases

«GuardedBranchTransition» CaseTrue
«BranchCondition»

PerformExpressionsAnalysis.Value == true

«InternalAction»
EvaluatePerformExpressionsAnalysis

«InternalFODOccurrenceDescription»
ExpressionsAnalysisWronglyOmitted

«GuardedBranchTransition» CaseTrue

«BranchAction»
HasBadExpressionsCases

«BranchCondition»
message.hasBadExpressions.Value == true

«GuardedBranchTransition» CaseFalse
«BranchCondition»

message.hasBadExpressions.Value == false

«GuardedBranchTransition» CaseFalse
«BranchCondition»

PerformExpressionsAnalysis.Value == false

«InternalAction»
EvaluatePerformExpressionsAnalysis

«InternalFODOccurrenceDescription»
ExpressionsAnalysisWronglyPerformed

Figure 6.24: RDSEFF “ScannerChecks.AnalyzeExpressions” (Excerpt)

sionsAnalysis”. The inner BranchAction “HasBadExpressionsCases”
examines the “hasBadExpressions” property of the “message” parame-
ter. Its structure is similar to that of the BranchAction in Figure 6.22,
potentially producing FODs of type “AnalyzeExpressionsFalseNegative”,
“AnalyzeExpressionsFalsePositive”, “MailCorrupedByExpressionsAnaly-
sis” or “MailProcessingCancelledByExpressionsAnalysis”. Furthermore,
the BranchAction indicates an “AnalyzeExpressionsDisapproval” with
probability 1.0 (which is handled by the invoking ScannerCtrl) in the
GuardedBranchTransition “CaseTrue”.

241

6 PCM-REL Case Studies and Validation

«RecoveryAction»
PerformFaultTolerantVirusDetection

«RecoveryActionBehaviour» Main

«ExternalCallAction»
IVirusDetector_A.PerformVirusDetection

«VariableUsage»
message.hasVirus.Value =

this.message.hasVirus.Value

«ExternalCallAction»
IVirusDetector_B.PerformVirusDetection

«VariableUsage»
message.hasVirus.Value =

this.message.hasVirus.Value

«RecoveryActionBehaviour» HandleFalseNegative

«InternalAction»
EvaluateFailureCorrelation

«VariableUsage»
VirusDetectionFalseNegative

«ExternalCallAction»
IVirusDetector_B.PerformVirusDetection

«VariableUsage»
message.hasVirus.Value =

this.message.hasVirus.Value

«handles» VirusDetectionFalseNegative

Figure 6.25: RDSEFF “ScannerChecks.PerformVirusDetection” (Excerpt)

The next two figures 6.25 and 6.26 show the parts of the system’s be-
haviour that are related to fault tolerance. First, Figure 6.25 illustrates
the fault-tolerant virus detection triggered through the “PerformVirusDe-
tection” operation of ScannerChecks. The detection itself is carried out by
the engines VirusDetector_A and VirusDetector_B (see Figure 6.20) and in-
voked by ScannerChecks through corresponding ExternalCallActions.
The contamination of an e-mail with a virus is explicitly modelled through
the “hasVirus” boolean property of the “message” parameter and passed
on to the engines. If the e-mail does contain a virus, the engines indicate
this condition through a “VirusDetected” SoftwareInducedFODType, if

242

6.5 Astaro ASG Case Study

no mail corruption or cancelled mail processing occurs (the corresponding
behavioural specification is similar to that of Figure 6.22). As shown in
Figure 6.25, the overall virus detection invokes both engines and can tol-
erate a single “VirusDetectionFalseNegative” FOD. The execution of the
displayed RecoveryAction “PerformFaultTolerantVirusDetection” starts
with the “Main” RecoveryActionBehaviour and proceeds as follows:

• If the processed e-mail contains no virus, it may successfully pass
both engines, or a “VirusDetectionFalsePositive” may occur, which
is not handled by the modelled fault tolerance mechanism.

• If the e-mail contains a virus, the first invoked engine VirusDetec-

tor_A may indicate this virus through a “VirusDetected” Failure-
Type (which is handled outside the displayed RecoveryAction),
or it may produce a “VirusDetectionFalseNegative” FOD. The latter
case leads to the execution of the “HandleFalseNegative” behaviour,
which gives the virus a second chance to be detected by VirusDe-

tector_B. However, the ability of VirusDetector_B to detect the virus
may be compromised by failure correlation (taking into account that
this virus was already overlooked by VirusDetector_A). The addi-
tional probability of a second “VirusDetectionFalseNegative” FOD
due to failure correlation is expressed through the “EvaluateFail-
ureCorrelation” InternalAction.

• In both discussed cases, VirusDetector_A and VirusDetector_B may
also produce FOD occurrences of type “MailCorruptedByVirusDe-
tection” or “MailProcessingCancelledByVirusDetection”. None of
these FODs are handled by the modelled fault tolerance mechanism.

A design alternative with only a single virus check can be represented by
substituting the displayed RecoveryAction with a single ExternalCall-
Action invoking one of the engines. Having both design alternatives mod-
elled enables a quantitative comparison of their reliability and an assess-

243

6 PCM-REL Case Studies and Validation

ment of the relative improvement gained by the introduction of the sec-
ond engine.

Further parts of the “PerformVirusDetection” operation of Scanner-
Checks, which are not shown in Figure 6.25, deal with the general proba-
bility of virus detection to be performed (captured through a ScannerChecks

component parameter) and with the possibility of wrong omission or wrong
execution of the check. The decision about the execution is done individu-
ally for each e-mail recipient, but the check itself is executed at most once,
as it refers to the e-mail as a whole.

«RecoveryAction»
PerformFaultTolerantMailDistribution

«RecoveryActionBehaviour» SelectFirstHost

«ExternalCallAction»
IMessageProcessor_1.ProcessMessage

«VariableUsage»
...

«RecoveryActionBehaviour» SelectThirdHost

«handles» ASGHostHWUnavailable

«RecoveryActionBehaviour» SelectSecondHost

«handles» ASGHostHWUnavailable

«ExternalCallAction»
IMessageProcessor_2.ProcessMessage

«VariableUsage»
...

«InternalAction»
HandleFailover

«InternalFODOccurrenceDescription»
ClusterProtocolFailure

Figure 6.26: RDSEFF “ClusterProtocol.ProcessMessage” (Excerpt)

Figure 6.26 shows how the distribution of e-mails to ASG hosts through
the ClusterProtocol is modelled in PCM-REL. From the viewpoint of re-

244

6.5 Astaro ASG Case Study

liability, the most relevant aspect of the cluster protocol is that an e-mail
can be processed if at least one of the three ASG hosts is operating. The
model abstracts from the details of the distribution of e-mails between mul-
tiple operating hosts. Instead, all hosts are targeted in a constant order
until the first operating host is detected. A host is deemed operational if its
hardware (modelled by ProcessingResourceSpecifications of type
“ASGHostHW”) is available at the moment of the processing request. This
modelling reflects the feedback of ASG developers saying that unavailable
hardware is the single most important reason for an ASG host being not
operational. As the figure shows, the first RecoveryActionBehaviour
“SelectFirstHost” of the displayed RecoveryAction “PerformFaultToler-
antMailDistribution” invokes the “ProcessMessage” operation of the first
SMTPProxy instance, which is allocated to ASGHost_1 (see Figure 6.16).
All relevant message properties are passed as input parameters to the re-
spective ExternalCallAction (not fully shown in the figure). A fur-
ther RecoveryActionBehaviour “SelectSecondHost” handles the case
that the unavailability of the first host’s hardware prevents it from being
operational. A corresponding HardwareInducedFODType “ASGHostH-
WUnavailable” has been defined in the ASG Repository model and is
pointed out as a handledFODType of the behaviour. Beyond the invo-
cation of the second SMTPProxy instance, the behaviour also expresses
the possibility that the fail-over process triggered by the unavailability
of ASGHost_1 might not be correctly handled by the cluster protocol,
leading to an unhandled FOD of type “ClusterProtocolFailure”. The last
RecoveryActionBehaviour “SelectThirdHost” is structured like the sec-
ond one, invoking the third SMTPProxy instance.

6.5.3.3 Model Parametrization

This section introduces the parts of the created PCM-REL instance that re-
fer to failure potentials and scenario parameters (elements 7 and 17 in Fig-
ure 6.14), which can be viewed as the dynamic parameters of the model.

245

6 PCM-REL Case Studies and Validation

The software-related reliability annotations comprise a total of 93 software
FOD probabilities associated to 65 SoftwareInducedFODTypes and oc-
curring at 57 InternalActions as potential points of failure (PPOFs) dur-
ing service execution. Table 6.3 shows a list of considered FOD classes

and gives examples of specified SoftwareInducedFODTypes related to
each class. The table distinguishes initial classes, which were added to
the model according to the initially identified success criteria and violation
types of the case study scenario (see Section 6.5.2), and additional classes,
which were identified during the analysis of the bug tracker database (see
Figure 6.14). These additional classes show that a cancellation of e-mail
processing can be caused not only by individual malfunctioning processing
steps but also by other problems such as complete inoperability of ASG
software parts. Beyond the software FOD probabilities, the ASG PCM-
REL instance contains further reliability annotations in its ResourceEn-
vironment model (see Figure 6.16), namely MTTF and MTTR values
for each of the four ProcessingResourceSpecifications and network
FOD probabilities for each of the three specified LinkingResources).
Section 6.5.4 discusses how input estimations for the modelled reliability
annotations were derived within the case study process.

The scenario parameters refer to usage and configuration aspects of ASG
installations, as well as probabilistic abstractions from ASG-internal states.
They constitute the calibration parameters of the model an were estimated
by ASG developers from experience. More concretely, the scenario pa-
rameters comprise input properties of e-mail processing requests, as well
as execution probabilities and expected outcomes of individual processing
steps. The former are expressed through VariableUsages in the modelled
UsageScenario (see Figure 6.17) and comprise a total of six probability
values (modelled as boolean probability mass functions) and one probabil-
ity distribution (modelled as integer probability mass function). The latter
are expressed through a total of 12 component parameters of the ServerEx-

imChecks and ScannerChecks components, as shown in Table 6.4. Each

246

6.5 Astaro ASG Case Study

Failure-on-Demand Class Modelled Failure-on-Demand Type(s)
In

iti
al

 C
la

ss
es

MailCorruptedByProcessingStep:
A mail acceptance check or mail-handling operation results
in a failure-on-demand and corrupts the e-mail.

• MailCorruptedByACLConnectCheck
• MailCorruptedByDecryption
• …

MailProcessingCancelledByProcessingStep:
A mail acceptance check or mail-handling operation results
in a failure-on-demand and cancels the e-mail processing.

• MailProcessingCancelledByACLConnectCheck
• MailProcessingCancelledByDecryption
• …

AcceptanceCheckFalsePositive:
A mail acceptance check disapproves an e-mail even
though it should pass the e-mail.

• ACLConnectCheckFalsePositive
• ExpressionsAnalysisFalsePositive
• …

AcceptanceCheckFalseNegative:
A mail acceptance check passes an e-mail even though it
should disapprove the e-mail.

• ACLConnectCheckFalseNegative
• ExpressionsAnalysisFalseNegative
• …

ProcessingStepWronglyOmitted:
A mail acceptance check or mail-handling operation is
omitted for an e-mail even though it should be performed.

• ExpressionsAnalysisWronglyOmitted
• DecryptionWronglyOmitted
• …

ProcessingStepWronglyPerformed:
A mail acceptance check or mail-handling operation is
performed on an e-mail even though it should be omitted.

• ExpressionsAnalysisWronglyPerformed
• DecryptionWronglyPerformed
• …

Ad
di

tio
na

l C
la

ss
es

MailProcessingCancelledByClusterProtocol:
The cluster protocol does not properly operate and the
e-mail processing is cancelled.

• ClusterProtocolFailure

MailProcessingCancelledByASGDown:
The ASG software is not ready to process e-mails and the
e-mail processing is cancelled.

• SMTPDown
• ScannerDown

MailProcessingCancelledByDatabaseCorruption:
The SMTP or CONF databases cannot be properly
accessed and the e-mail processing is cancelled.

• SMTPDatabaseCorrupted
• CONFDatabaseCorrupted

161 mm = 1.006
Table 6.3: ASG Software-Induced Failure-on-Demand Types

component parameter is modelled as a boolean probability mass function
and represents either an expected outcome of a mail acceptance check (such
as “ACLConnectDisapprove”) or an expected decision about conducting a
mail-handling operation (such as “PerformDecryption”). The parameters
abstract from ASG configuration options and e-mail properties that are not
explicitly modelled to avoid an overly complex specification. The mod-
elled ResourceDemandingSEFFs evaluate the component parameters for
control flow decisions. For example, Figure 6.22 shows that the “ACLCon-
nectDisapprove” parameter is evaluated to decide about the expected out-
come of the ACL Connect Check. The actual outcome may differ from the
expected one, as indicated by the modelled “ACLConnectCheckFalseNeg-
ative” and “ACLConnectCheckFalsePositive” FailureTypes of the “Per-
formACLConnectCheck” InternalAction.

247

6 PCM-REL Case Studies and Validation

Modelled Component
Parameter

Description

Se
rv

er
Ex

im
C

he
ck

s

PerformVirusDetection
Probability that virus detection is to be performed by SMTPServerExim on a
received e-mail.

PerformSpamDetection
Probability that spam detection is to be performed by SMTPServerExim on a
received e-mail.

ACLConnectDisapprove
Probability that a received e-mail is to be disapproved by the ACL Connect
Check.

ACLRecipientDisapprove
Probability that a received e-mail is to be disapproved by the ACL Recipient
Check (evaluated for each recipient).

ACLDataDisapprove
Probability that a received e-mail is to be disapproved by the ACL Data Check
(evaluated based on the precondition that the e-mail is not disapproved based
on classification as spam or virus).

Sc
an

ne
rC

he
ck

s

PerformVirusDetection
Probability that virus detection is to be performed by the Scanner on a
received e-mail (evaluated for each recipient).

PerformSpamDetection
Probability that spam detection is to be performed by the Scanner on a
received e-mail (evaluated for each recipient).

PerformEncryption Probability that a received outgoing e-mail is to be encrypted by the Scanner.

PerformDecryption Probability that a received incoming e-mail is to be decrypted by the Scanner.

PerformExpressionsAnalysis
Probability that expressions analysis is to be performed by the Scanner on a
received e-mail.

PerformFileNamesAnalysis
Probability that file names analysis is to be performed by the Scanner on a
received e-mail.

PerformMessageSigning
Probability that message signing is to be performed by the Scanner on a
received e-mail.

160 mm = 1.0
Table 6.4: ASG Component Parameters

6.5.4 Estimation of Reliability Annotations

This section describes the estimation of reliability annotations as an input
to the reliability modelling activity (see Figure 6.14). The reliability anno-
tations comprise the software FOD probabilities (element 10 in the figure)
and hardware MTTF / MTTR values (14). The former part required a major
effort analysing failure data (8) from a bug tracker database (9) and combin-
ing the results with a software reliability baseline estimation (11) derived
from expert knowledge (12), as well as existing failure statistics (13). The
latter part could be determined from hardware data sheets (15).

248

6.5 Astaro ASG Case Study

6.5.4.1 Software Failure-on-Demand Probabilities

The estimation of model parameters representing software FOD probabili-
ties constituted the most significant challenge among all input estimations.
Due to the high number of modelled parameters (see Section 6.5.3.3), es-
timations were done for parameter groups (rather than individual parame-
ters) and based on a common software reliability baseline estimation. The
most important source of information for the estimations was a bug tracker
database that supports the ASG software development. The bug tracker is
used to report about the occurrence of software-induced FODs, the iden-
tification of underlying implementation faults, as well as the status and
responsibilities of fault removal. Failure reports stem from internal soft-
ware tests as well as external customer feedback for devices operating in
the field. The development, test and fault removal of current and new ASG
software releases is a continuous process, and each bug tracker entry re-
lates to a certain release version.

While the bug tracker entries describe implementation faults and result-
ing ASG failures, they provide no direct input for the reliability modelling
activity. They describe circumstances of failure, but not the frequency of
occurrence of those circumstances. The provided information is qualitative
rather than quantitative. Furthermore, existing entries are historical and
relate to faults that have already been removed. They do not impact cur-
rent or future ASG software releases. Hence, the bug tracker data can only
serve as a preliminary input that needs further interpretation and analysis
to derive quantitative estimations. One way to do this analysis is to use
software reliability growth models (SRGMs, see Section 2.3.1) on a com-
ponent level (more precisely, on a PPOF level). However, the existing ASG
bug tracking process significantly violates the underlying assumptions of
SRGMs (for example, the software continues to evolve during the data col-
lection), and important input information for the analysis is missing (such
as the number of visits to each PPOF per test run). The analysis method

249

6 PCM-REL Case Studies and Validation

had to be adjusted to be applicable to the existing ASG bug tracker data.
Like conventional SRGMs, the analysis assumed that current and future
failure rates can be deduced from historical failure rates. However, the
historical failure rates were not directly available but had to be estimated
from the qualitative failure data. Because of the involved uncertainty, the
analysis did not aim at determining absolute FOD probabilities but rather
relative weights of the individual FOD types and PPOFs. More concretely,
the analysis included the following steps:

1. Selection of bug tracker entries to consider;

2. Semantic examination of each selected entry;

3. Deduction of a relative weight for each modelled PPOF (differenti-
ated according to occurring FOD types).

The first step involved the assessment of existing data fields that each entry
possesses in order to select a relevant set of entries for the analysis. A cate-

gory field describes the part of the ASG’s functionality that is impacted by
a certain reported problem. This field is used to reduce the set of consid-
ered entries to those related to SMTP processing. A project field captures
the major release version to which an entry is related. In order to exclude
entries which are insignificant due to their age, the analysis was limited
to the current and the previous major ASG software release, spanning a
time interval of roughly 1.5 years. Within this scope, the SMTP process-
ing architecture as modelled through PCM-REL can be considered stable.
Furthermore, each entry has an associated severity level that assesses the
impact of a certain reported problem. The analysis was limited to the most
and second-most severe levels to exclude minor problems such as wrong
logging from consideration. After applying all described reductions, 65
entries remained as being relevant for the analysis.

The second step involved an in-depth semantic examination of each rel-
evant entry, covering all contents of the entry. The entries include natural-

250

6.5 Astaro ASG Case Study

language discussion threads between several parties (software testers, de-
velopers and customer support staff). The relevant information about the
nature of occurred FODs, the triggering circumstances, the underlying
faults and any actions taken for their removal had to be extracted from
these discussions. During the semantic examination, the validity of each
entry was checked first. The following entries were considered invalid with
respect to the case study and excluded from further consideration:

• Entries that are duplicates of other (valid) entries;

• Entries that describe problems resulting from user operation or con-
figuration errors rather than implementation faults;

• Entries that describe feature or documentation requests;

• Entries that are related to security rather than reliability;

• Entries whose included information is incomplete and cannot further
be exploited.

After the validity check, 27 entries remained for consideration, each of
which describes a distinct SMTP processing problem leading to FOD oc-
currences, namely violations of the specified success criteria of the case
study scenario (see Section 6.5.2). Each of these entries was further ex-
amined and categorized as shown in Table 6.5 in order to make more sys-
tematic and refined statements about the induced FOD occurrences. The
first three categories refer to the location within the architecture where the
FODs originate. More concretely, FOD occurrences are mapped to one
of the InternalActions in the modelled PCM-REL instance (category
“Point of Failure”), which is part of an RDSEFF (category “Service Op-
eration”) of a BasicComponent (category “Software Component”). The
table contains an example in which FODs are located to the “Evaluate-
PerformACLConnectCheck” action within the “ProcessMessage” opera-
tion of the “ServerEximCtrl” component (see Figure 6.21). Two more

251

6 PCM-REL Case Studies and Validation

Category Values

In
du

ce
d

Fa
ilu

re
s-

on
-D

em
an

d

Lo
ca

tio
n Software Component e.g. “ServerEximCtrl”

Service Operation e.g. “ProcessMessage”

Point-of-Failure e.g. “EvaluatePerformACLConnectCheck”

Ty
pe Failure-on-Demand Class e.g. “ProcessingStepWronglyOmitted”

Failure-on-Demand Type e.g. “ACLConnectCheckWronglyOmitted”

Pr
ob

ab
ili

ty
 o

f O
cc

ur
re

nc
e

Failure-on-Demand
Occurrence Likelihood

• Very low (not expected to occur in practice)
• Low (may occur in practice under specific cirumstances)
• Medium (likely to occur for a few customers and installations)
• High (likely to occur for a considerable number of customers and

installations)
• Very high (occurs for all customers and installations)
• Unknown

Failure-on-Demand
Persistence

• Single (single failures-on-demand without further impact)
• Transient (disrupted processing for limited period of time)
• Until ASG restart
• Until ASG reconfiguration
• Until ASG version update
• Unknown

Configuration Dependencies
e.g. spam detection enabled, expression filters configured, …
(can be “none” or “unknown”)

Request Dependencies
e.g. mail with >100 recipients, mail with special characters, …
(can be “none” or “unknown”)

160 mm = 1.0

Table 6.5: Semantic Categorization of ASG Bug Tracker Entries

categories refer to type information, selecting a certain class of FODs
(as listed in Table 6.3) and a modelled SoftwareInducedFODType. To-
gether, the type and location categories unambiguously select a certain
FODOccurrenceDescriptionwithin the modelled PCM-REL instance.

The remaining categories serve as indications for the probability of oc-

currence of the FODs, namely the “FODProbability” attribute of the mod-
elled FODOccurrenceDescriptions (see Figure 4.5). First, the category
“FOD Occurrence Likelihood” specifies the fraction of existing customers
and ASG installations that are expected to experience FODs due to the re-
ported problem, with values ranging from “very low” (namely, no FODs are
expected to occur in the field) to “very high” (namely, FODs are expected to
occur for all customers and installations). The category “FOD Persistence”
describes the system behaviour after a FOD has occurred. There may be no
consequences on further e-mail processing requests (value “single”), or the
processing may be temporarily disrupted and then function again (value

252

6.5 Astaro ASG Case Study

“transient”). Alternatively, the processing may be permanently disrupted
until administrative action is taken (values “until ASG restart / reconfigura-
tion / version update”). The two remaining categories “Configuration De-
pendencies” and “Request Dependencies” describe preconditions of FOD
occurrences in terms of ASG configuration options and request properties.
For example, a reported problem may only lead to FODs if the ASG is
configured to perform spam detection, and if an e-mail contains specific
characters in its body message. All categories contain an additional value
“unknown” in case that the bug tracker entry does not contain enough in-
formation to determine a concrete value.

(1)
Baseline

Estimation

(2) Bug Tracker Analysis (3) Resulting
Software Failure-on-
Demand ProbabilityConditions Weight

1.0E-b • At least 4 reported problems
• At least 1 reported problem with occurrence likelihood “low”

(or higher) OR persistence “restart” (or higher) OR occuring
for all configurations and requests

3 1.0E-(b-3)

1.0E-b • At least 2 reported problems
• At least 1 reported problem with occurrence likelihood “low”

(or higher) OR persistence “transient” (or higher)

2 1.0E-(b-2)

1.0E-b • At least 1 reported problem with occurrence likelihood “low”
(or higher)

1 1.0E-(b-1)

1.0E-b All other cases 0 1.0E-b

155.6 mm = 0.973
Table 6.6: Determination of Software Failure-on-Demand Probabilities

As a result of the semantic examination of the bug tracker entries, each FOD
type occurring at a PPOF (represented by a FODOccurrenceDescription
in the modelled PCM-REL instance) is associated with a set of zero or more
entries. As Table 6.6 shows, the corresponding software FOD probability is
determined by a baseline estimation 10−b and adjusted by a relative weight
w ∈ {0, ..,3} resulting in 10−b+w (the actual probabilities are omitted for
confidentiality reasons). The weight values w were deduced in a third and
final step of the bug tracker analysis. They are a relative indication of the
estimated historical FOD probabilities connected to each PPOF and FOD
type. The exact range of weight values and the conditions of each value

253

6 PCM-REL Case Studies and Validation

result from a manual assessment of the whole considered failure data set;
they may vary for other data sets in similar case studies. Generally, the
assigned weights depend on the number of associated entries, the FOD oc-
currence likelihood, the degree of FOD persistence, as well as the degree
of existing configuration and request dependencies. The adjustment of the
baseline estimations by the determined weights is based on the assump-
tion that historical FOD probabilities can be extrapolated to the future –
the higher a historical FOD probability for a certain PPOF and FOD type
is, the higher is also its current and future FOD probability expected to be.
The baseline estimation value b is the same for all software FOD proba-
bilities. It was manually contributed by ASG developers and is subject to
relatively high uncertainty. For this reason, the reliability evaluation done
for the case study refrains from absolute statements about the ASG’s reli-
ability (see Section 6.5.5).

In addition to the described bug tracker analysis, some software FOD
probabilities related to false negatives and false positives during spam and
virus detection were directly estimated from existing statistical failure data.
The corresponding FODs are not caused by implementation faults in a strict
sense, and they are not reported in the bug tracker database. Rather, they
result from natural limitations of the existing detection engines, which can-
not achieve perfect success rates. Corresponding failure statistics are com-
monly available (for example, see failure statistics of commercial anti-virus
engines in [AV-10]). Likewise, concrete FOD probabilities for the ASG’s
spam and virus detection engines could be determined from existing fail-
ure statistics.

6.5.4.2 Further Reliability Annotations

Besides the software failure potential of the ASG’s SMTP processing, there
is also a failure potential stemming from the system’s resource environment
(see Figure 6.16) that impacts its reliability. To this end, different hardware
configurations are available for the ASG hosts with specified data sheet

254

6.5 Astaro ASG Case Study

MTTF values between 50 000 and 100 000 hours. In the modelled PCM-
REL instance, MTTF values were set to 60 000 hours reflecting a common
default installation. The MTTF value for the ASG switch was also taken
from data sheet specifications and set to 200 000 hours. MTTR values of all
hardware devices depend on the repair times of each specific customer and
installation. For the case study, average values of 12 hours were assumed.
As a local ASG installation does not contain any complex or long-range
network communication technology, network transmission failure proba-
bilities were set to a low value of 10−9.

6.5.5 ASG Reliability Evaluation

This section presents the results of the reliability evaluation done for the
ASG case study through Markov analysis (see Figure 6.14, element 19).
The evaluation is based on the PCM-REL instance (18) created by the
modelling activity (16). From the overall set of possible analysis exper-
iments, those experiments were chosen that can answer the relevant case
study questions (2), which have been described in Section 6.5.2. For sensi-
tivity analysis, the existing PCM-REL instance was altered with respect to
the variable model parameters identified in Section 6.5.3.3. All presented
result diagrams denote FOD probabilities on the vertical axis on a logarith-
mic scale to the power of ten. The actual probability values are omitted
for confidentiality reasons. The analysis runs were conducted with Markov
state reductions switched on (see Section 5.1.1) and standard evaluation
of system hardware states (Section 5.2.2). Each run took approximately 4
seconds on a standard laptop computer.

First, Figure 6.27 presents the results of a single analysis run without
any model variations, aggregated according to different categories of inter-
est. Subfigure (a) shows the general distinction of failure potentials accord-
ing to the software, hardware and network dimensions dim. While overall,
software-induced FODs clearly dominate the other dimensions, Subfigure

255

6 PCM-REL Case Studies and Validation

fp
(d

im
)

(a)

dim

fp
(d

im
)

(b)

dim

ch
_1

ch
_2

ch
_3

sp
am

ch
_5

ch
_6

ch
_7

op
_1

op
_2

op
_3

op
_4

op
_5

op
_6

op
_7

ge
n_

1

ge
n_

2

ge
n_

3

fp
(x

)

x

(c)

Figure 6.27: ASG Reliability Predictions by Failure Dimensions and Mail Process-
ing Steps

(b) presents a more fine-grained distinction according to criticality (see Sec-
tion 6.5.2). When focussing on major and critical FOD occurrences, it turns
out that reliability impacts of similar significance are caused by the hard-
ware and software dimensions (assuming that hardware and network FOD
occurrences are generally “major”). Subfigure (c) further differentiates the
software failure potential according to individual mail acceptance checks
ch_1 to ch_7, mail handling operations op_1 to op_7 and generic failure
potentials gen_1 to gen_3 which cannot be associated with a single check
or operation (the original names have been altered for confidentiality). Each
distinguished category x includes a list of modelled FOD types. For exam-
ple, a check ch_i may be wrongly conducted or wrongly omitted, it may
wrongly pass or wrongly disapprove an e-mail, and it may cause corrup-

256

6.5 Astaro ASG Case Study

b-2 b-1 b b+1 b+2

SW Minor

SW Major

SW Critical

SW All

HW

base

fp
(b

as
e)

(a)

SW Minor

SW Major

SW Critical

SW All

HW

P(spam)
P(virus)

fp
(s

pa
m

,v
iru

s)

(b)

10%
0.01%

99%
10%

- - - - - - - - - - - -
- - - - - - - - - - - -

1 2 5 10 20 50 100

SW Minor

SW Major

SW Critical

SW All

HW

#rec

fp
(r

ec
)

(c)

Figure 6.28: Robustness of Ranking of Failure Dimensions Against Software Base-
line and Usage Profile Variations

tion of the e-mail or even the cancellation of its processing. As the figure
shows, the spam detection, gen_2, gen_3, ch_5 and op_7 contain the most
significant failure potentials. The specifically high FOD occurrence prob-
ability associated with the spam detection is acceptable as it causes only
minor FODs. In summary, the analysis results indicate to which dimen-
sions and individual mail processing steps future quality assurance efforts
should predominantly be allocated.

To further investigate how existing input uncertainties and varying us-
age properties influence the expected reliability of SMTP processing, Fig-
ure 6.28 shows reliability impacts differentiated according to criticality and
failure dimensions (excluding network) over varying model parameters.
The biggest uncertainty in the model is caused by the estimation of software

257

6 PCM-REL Case Studies and Validation

FOD probabilities relative to a baseline value b, yielding probability val-
ues 10−b+w (w ∈ {0, ..,3}) (see Section 6.5.4.1). Subfigure (a) varies these
probabilities on a logarithmic scale between 10−b+w−2 and 10−b+w+2 to ac-
count for the uncertainty of the baseline estimation. As the figure indicates,
the results allow for stable statements about the “minor” and “critical” fail-
ure categories, and the baseline variation affects only the “major” category.
This is due to the fact that the “minor” and “critical” categories refer to
spam and virus detection, for which baseline-independent estimations were
possible due to available statistical failure data. The figure further shows
that one can assume the “major” potential to be in an acceptable range be-
tween “minor” and critical” (only for the border case of b +2, the “major”
category overtakes the “minor” one). Subfigure (b) introduces another vari-
ation regarding the probability of malicious inputs (namely, spam or virus
e-mails). For different customers and installations, this probability varies,
depending on the trustworthiness of the involved communication partners
and transmission paths. More concretely, the figure varies the probability of
spam e-mails between P(spam) = 10% and P(spam) = 90% and the prob-
ability of viruses between P(virus) = 0.01% and P(virus) = 10% (each on
a linear scale). As the figure shows, the variation affects mainly the “mi-
nor” and “critical” categories, while leaving “major” relatively stable. For
high probabilities of malicious content, the “critical” category rises to lev-
els above the “major” one. Hence, it may be worthwile to increase efforts
avoiding critical FODs specifically for environments with many malicious
inputs. Subfigure (c) varies the average number of recipients #rec per e-
mail between 1 and 100 to examine the influence of this usage parameter.
More recipients require more processing, as some processing steps have to
be repeated for each recipient. However, major influences on the resulting
failure potentials can only be observed for #rec ≥ 20. Interestingly, the
“minor” and “critical” categories even decrease with increasing #rec. A
possible explanation is that each recipient may trigger spam and virus de-
tection (if not already done for the current e-mail), lowering the probability

258

6.5 Astaro ASG Case Study

1 2 5 10 20 50 100

ch_1

ch_2

ch_3

spam

ch_5

ch_6

ch_7

#rec

fp
(r

ec
)

(a)

1 2 5 10 20 50 100

op_1

op_2

op_3

op_4

op_5

op_6

op_7

gen_1

gen_2

gen_3

fp
(r

ec
)

(b)

#rec

Figure 6.29: Robustness of Ranking of Processing Step Reliability Impacts Against
Usage Profile Variations

of undetected malicious inputs. In sum, the software-induced reliability
impact is stable and hence independent from the number of recipients.

While the sensitivity analysis presented so far only distinguishes the
main failure dimensions, Figure 6.29 goes one step further and shows the
influence of a varying model parameter – namely, the number of e-mail
recipients – on the reliability impacts of the individual processing steps.
Depending on the concrete step, increasing #rec has a slightly negative ef-
fect (ch_2, ch_6, ch_7, op_1 to op_3), a strongly negative effect (op_4
to op_7), no effect (ch_1, gen_1 to gen_3), or even a slightly positive ef-
fect (spam, ch_3, ch_5). Apart from the spam detection, gen_3 and op_7
may rise to relatively high levels and should be specifically tested for e-
mails with many recipients. Overall, the results support the findings of
Figure 6.27(c) about which processing steps have the most significant fail-

259

6 PCM-REL Case Studies and Validation

0.01% 0.1% 1% 10%

c = 1.0

c = 0.8

c = 0.6

c = 0.4

c = 0.2

c = 0.0

target

P(virus)

fp
(c

rit
ic

al
,v

iru
s)

Figure 6.30: Effectiveness of Redundant Virus Detection

ure potentials. The variation of #rec additionally reveals that ch_5 is more
critical for lower numbers of recipients than for higher ones.

Figure 6.30 presents the results of another experiment that specifically
focuses on the redundant virus detection which the ASG performs during
e-mail processing. To this end, the figure depicts the occurrence proba-
bility of critical FODs and varies the most important influencing factors –
namely, the probability of a virus e-mail (between P(virus) = 0.01% and
P(virus) = 10%) and the conditional probability that a virus not detected
by the first engine is also missed by the second one (between c = 0.0 and
c = 1.0). The border case of c = 1.0 corresponds numerically to the design
alternative with only one virus engine. With both the x-axis and the y-axis
being logarithmic, the occurrence probability of critical FODs presents it-
self as a steadily increasing. The relative benefit of using a second engine
is stable against the occurrence probability of viruses and only depends on
the degree of correlation between both engines, with a FOD probability
reduced by up to approximately one power of ten in case of complete in-
dependence c = 0.0. For an example target value as shown in the figure,
determining an envisioned upper bound for critical FOD occurrences, the
second engine is required for P(virus)≥ 1%, and even further measures for
avoiding critical FODs should be considered for P(virus)≥ 10%.

260

6.5 Astaro ASG Case Study

6.5.6 Case Study Assessment

The ASG case study is an important milestone providing evidence of the
applicability of PCM-REL to an industrial IT system. The approach could
successfully be used to model the ASG’s SMTP processing part with all as-
pects relevant for reliability prediction. Based on this model, the conducted
analysis could answer the relevant case study questions. This section re-
views the most important aspects of the case study process and results along
the line of the validation goals presented in Section 6.2.

Feasibility of modelling abstractions: Even though the ASG’s archi-
tecture does not follow a component-based paradigm as strictly as as-
sumed by PCM-REL, it could be adequately represented by a PCM-REL
instance providing a valid base for reliability prediction. Some adapta-
tions were necessary to build the model (such as substituting the asyn-
chronous queue-based e-mail processing through a chain of synchronous
component calls) but did not impact the reliability calculations or the flex-
ibility of the model. The behavioural specifications were capable of ex-
pressing all required details of the ASG’s behaviour. Future potential re-
mains to reduce the size and complexity of the specifications through more
advanced modelling constructs (for example, encoding parameter condi-
tions directly in FailureOccurrenceDescriptions could save the ef-
fort of duplicate InternalActions with surrounding BranchActions
and BranchConditions, as seen in Figure 6.22).

Feasibility of estimation of reliability annotations: The available in-
put information sources of the case study as shown in Figure 6.14 can be
deemed typical for many industrial software development projects. While
for the ASG, enough information was available to conduct the case study,
more significant and detailed analysis results would be possible with more
comprehensive and stable failure data. Improved input data could be gath-
ered through measures such as extended statistical tests of ASG products or
extended collection of failure data in the field. The process of extracting es-

261

6 PCM-REL Case Studies and Validation

timates of FOD probabilities from a bug tracker database (see Section 6.5.4)
was subject to high uncertainty and could only provide relative estimates;
more research on how to extract the statistical FOD probabilities required
for PCM-REL would be desirable.

Validity of Markov analysis: Validation of Markov analysis was not in
the focus of this case study. For a validation of this aspect, see the audio
hosting study (Section 6.4).

Significance and robustness of prediction results: Experiments could be
conducted that answered the relevant case study questions. Sensitivity anal-
ysis was applied to gain further evidence about the robustness of the results
in the light of existing input uncertainties. Even though the estimation of
most software FOD probabilities was only relative to a baseline estimation
value (see Table 6.6), it was possible to reveal the most critical process-
ing steps and the relative benefits of redundant virus detection with high
confidence (see Section 6.5.5). Due to the high number of variable model
parameters (see Section 6.5.3.3), considerable effort was required to iden-
tify the most significant ones with the respect to the case study questions.
Further automation to support the identification of significant parameters
would be desirable.

Further findings of the case study are related to scalability and efforts:
The created PCM-REL instance did not pose any scalability issues to the
analysis, with individual analysis runs requiring less than 5 seconds on a
standard laptop computer. The overall effort for conducting the case study
was acceptable; interaction with ASG developers and architects was re-
quired to establish the case study scenario and questions, to analyse the
bug tracker database, to evaluate the relevant information sources and to
conduct a baseline estimation for the software FOD probabilities. The in-
teraction comprised five interview sessions and further e-mail communica-
tion with four involved ASG team members. The main work took approx-
imately two weeks (one week for analysing the bug tracker database and
one week for reliability modelling and evaluation). This does not include

262

6.6 Further PCM-REL Case Studies

initial learning efforts on how to apply PCM-REL in an industrial context
and how to leverage the relevant information sources, nor the documenta-
tion of the study for the thesis.

6.6 Further PCM-REL Case Studies

Besides the two case studies presented in this chapter, further studies have
been conducted for the PCM-REL approach, based on modelled system
architectures of a web-based media store product line [BBKR11], an in-
dustrial control system [BKBR11], a distributed business reporting sys-
tem [BKBR11] and a sales support system for retail chains [KB09]. The
experiments conducted within these case studies include ranking multiple
design alternatives, assessing quantitative improvements gained by differ-
ent fault tolerance mechanisms, identifying critical architectural compo-
nents and processing steps, as well as assuring the robustness of obtained
prediction results. To give an impression of one of the conducted studies,
Figure 6.31 gives an overview of the PCM-REL instance modelled for the
business reporting system, which generates management reports from busi-
ness data collected in a database. The model features multiple usage scenar-
ios reflecting different user roles (accounting manager, sales manager and
administrator), multiple servers with dedicated computing tasks, as well as
fault-tolerant design in terms of triple redundancy of certain software and
hardware parts of the architecture. Beyond the mentioned case studies, fur-
ther conducted experiments give evidence of the scalability of the Markov
analysis and of the savings that can be realized in terms of model size by
using parameter dependencies as offered by PCM-REL [BKBR11]. Due to
space limitations, the details of the mentioned case studies and experiments
are omitted from this thesis. Further information and case study models for
download can be found at [BBKR12].

263

6 PCM-REL Case Studies and Validation

Ap
pl

ic
at

io
n

Se
rv

er
Ap

pl
ic

at
io

n
Se

rv
er

Co
re

 O
nl

in
e

En
gi

ne
Co

re
 O

nl
in

e
En

gi
ne

Co
re

 G
ra

ph
ic

 E
ng

in
e

Co
re

 G
ra

ph
ic

 E
ng

in
e

U
se

r
M

an
ag

em
en

t
Co

re
 G

ra
ph

ic
 E

ng
in

e

D
at

ab
as

e
Ac

ce
ss

Ap
pl

ic
at

io
n

Se
rv

er

«r
es

ou
rc

e»
CP

U

D
at

ab
as

e
Se

rv
er

«r
es

ou
rc

e»
CP

U

O
nl

in
e

Pr
oc

es
si

ng

G
ra

ph
ic

al

Pr
oc

es
si

ng
Co

re
 O

nl
in

e
En

gi
ne

«r
es

ou
rc

e»
H

D

fp
:

0.
00

00
01

fp
:

0.
00

00
01

fp
:

0.
00

00
01

M
TT

F:
 3

34
00

h
M

TT
R:

 1
5h

M
TT

F:
 5

56
00

h
M

TT
R:

 1
0h

M
TT

F:
 5

56
00

h
M

TT
R:

 1
0h

In
ne

rC
or

e
Re

po
rt

in
gE

ng
in

e
CR

ES
in

gl
e

M
es

sa
ge

Ad
ap

te
r

Fa
st

Co
re

Re
po

rt
in

gE
ng

in
e

CR
ES

in
gl

e
M

es
sa

ge
Ad

ap
te

r

G
ra

ph
ic

al
Lo

ad
 B

al
an

ce
r

Tr
ip

le

Re
du

nd
an

cy

Tr
ip

le

Re
du

nd
an

cy

Ca
ch

e
Ca

ch
e

Ca
ch

e
Ac

ce
ss

O
nl

in
e

Lo
ad

 B
al

an
ce

r

Sc
he

du
le

r

U
sa

ge
 S

ce
n.

Ad

m
in

is
tr

at
or

P
=

0.
1

U
sa

ge
 S

ce
n.

Sa

le
s

M
an

ag
er

P
=

0.
7

U
sa

ge
 S

ce
n.

Ac
co

un
tin

g
M

an
ag

er
P

=
0.

2

P(
re

po
rt

) =
 0

.9
P(

de
ta

ile
d)

 =
 0

.6
4

P(
re

po
rt

) =
 0

.1
P(

de
ta

ile
d)

 =
 0

.0
8 Sc

he
du

le
r S

er
ve

r

«r
es

ou
rc

e»
CP

U

M
TT

F:
 2

78
00

h
M

TT
R:

 2
0h

W
eb

 S
er

ve
r

«r
es

ou
rc

e»
CP

U

M
TT

F:
 2

78
00

h
M

TT
R:

 2
0h

W
eb

Pr

oc
es

si
ng

Figure 6.31: Business Reporting System (Overview)

264

7 Related Work

The PCM-REL approach presented in this thesis belongs to the field of
architecture-based software reliability prediction (ASRP). While the ap-
proach benefits from the experiences gained in this field, it also presents
unique features that enhance the state-of-the-art. The main distinguish-
ing aspects of PCM-REL are the combined consideration of software and
hardware failure potentials (Section 7.1), the consideration of fault toler-
ance capabilities (Section 7.2), as well as usage profile modelling and input
parameter propagation (Section 7.3). The covered related work mostly be-
longs to the field of ASRP, but further approaches are also mentioned that
are related to PCM-REL in one or multiple specific aspects. A final discus-
sion in Section 7.4 includes a general assessment of PCM-REL against the
state-of-the-art in the field of ASRP.

7.1 Combined Consideration of Software and Hardware Failure
Potentials

One of the factors that make PCM-REL unique is the way how the ap-
proach integrates failure potentials of software components and hardware
resources into a common analytical model and derives a system reliability
value that accounts for both dimensions. If only software failure poten-
tials are considered for ASRP, the prediction results are over-optimistic,
neglecting the potential for failure-on-demand (FOD) occurrences due to
unavailable hardware resources. If, on the other hand, software and hard-
ware failure potentials are analysed independently, it remains unclear how
an overall system reliability value should be derived. Only an integrated

265

7 Related Work

analysis can consider the circumstances under which a hardware resource
is actually used by the service execution, such that its hardware failure re-
sults in a system level FOD (see Section 4.4).

In spite of the relevance of hardware failures to system reliability, and
although mathematical foundations for a combined consideration were pre-
sented by Laprie et al. already in 1992 [LK92], until today many ASRP ap-
proaches and related case studies focus purely on software [CG07b, DS95,
GWTH98, GPHP05, KSB10, PEO11, RSP03, ST07b, ST07c, WPC06,
YCA04, KM97]. However, some approaches have made steps towards
an integrated consideration of hardware and software failure potentials.
A closer investigation of those approaches reveals that they do not match
the generality and comprehensiveness of the combined software/hardware
consideration as done by PCM-REL. The following Sections 7.1.1 to 7.1.4
discuss existing strategies and approaches for the combined consideration,
within the field of ASRP and beyond.

7.1.1 MTTF/MTTR Model for Software Components

A number of approaches exist that aim at reusing hardware-oriented anal-
yses for combined software/hardware considerations [DW04b, DW04a,
KMT09, RS07, STTA08, TWH+08]. These approaches extend the scope
of the standard failure model for hardware resources (see Section 2.2) by
applying it also to software components. Hence, software and hardware
components in a system are treated in a unified manner, annotated each
with a pair of MTTF and MTTR values, from which a steady-state avail-
ability Av can be derived. Formalisms such as fault trees can be used to
express static relations between components such as “component C1 re-
quires component C2”. A component is regarded as ready for service only
when it is available, and when all its required components are also avail-
able. One or several components are marked as being top-level (namely,
providing the system-level services), and the system is by definition ready

266

7.1 Combined Consideration of Software and Hardware Failure Potentials

for service when all its top-level components are. Standard combinatorial
calculation yields the fraction of time in which the system is ready, or –
under a slightly different interpretation – the probability that the system is
ready for service when accessed at an arbitrary point in time, hence de-
livering service as expected. As this calculation is based on component
availabilities, most authors speak of system availability prediction, rather
than reliability prediction.

While the discussed strategy seems intuitive and therefore attractive, its
applicability to software-intensive systems is limited. Probably the most
severe limitation is the missing consideration of transient FOD occurrences
of software components. As an extreme example, consider a software com-
ponent C that does not have any permanent failures but produces wrong
computational results for 50% of all service invocations. The proposed ap-
proaches would mark C as being perfectly available even though it has a
very high failure rate. Musa [Mus04] restricts software availability con-
siderations to “major software failures” such as crashes or hang-ups, which
require system restarts and possibly data recovery actions before the system
is again ready for service. However, such a policy certainly captures only
part of the possible failure behaviours of software.

A further drawback is the fact that the approaches do not cover the re-
lation of system availability or reliability to the system usage. Software
component availability and component interdependencies are statically for-
mulated without taking into account any usage parameters. The authors
do not even implicitly account for usage aspects when determining soft-
ware MTTF and MTTR values in their demonstrating examples [KMT09,
STTA08, TWH+08].

Another distinguishing aspect of PCM-REL and the discussed approach-
es is that most of them focus on special kinds of IT systems, such as
virtualized systems [KMT09, RS07], blade server systems [STTA08] or
the IBM c© SIP Application Server [TCD+08]. Only Das et al. [DW04b,
DW04a] provide a generalized architectural modelling formalism.

267

7 Related Work

7.1.2 Usage Period Model for Hardware Resources

A few approaches have proposed to account for hardware failures in ASRP
by considering hardware failure rates and usage periods during service exe-
cution [Gra05, GMS07, Hap04]. The approaches explicitly model the indi-
vidual requests for hardware resource consumption by software. The time
needed by the resource for processing each request is directly annotated to
the model [Hap04] or can be calculated from a given requested process-
ing amount and resource processing speed [Gra05]. Based on the given
resource failure rates, the probabilities that the required resources complete
their processing without failure are determined per request [Gra05] or over
all requests of a resource [Hap04]. The system’s reliability is determined
as the probability that no software and no hardware failures occur during
service execution.

The main drawback of this strategy is that it treats hardware resources
as if they were non-repairable entities. The failure probability for each
resource request is calculated under the precondition that the resource is
non-failed at the beginning of the request. Hence, the predicted system
reliability is the probability that service execution at a point in time t suc-
ceeds if all resources of the system have survived until t. Furthermore, a
general system reliability value R independent from t can only be calcu-
lated under the assumption of exponential hardware TTFs, which has been
demonstrated to be a rather inaccurate approximation in practice [SG07].
Although the significance of the prediction results is questionable in light
of these limitations, the authors do not discuss them. In contrast, the PCM-
REL prediction yields the probability of successful service execution at an
arbitrary point in time t, accounting for the fact that hardware resources can
fail and be repaired or replaced over the system’s lifetime.

268

7.1 Combined Consideration of Software and Hardware Failure Potentials

7.1.3 Alternative Modelling Approaches

Beyond the approaches discussed so far, several other works aim at sys-
tem reliability or availability prediction based on modelling formalisms
featuring a combined consideration of software and hardware components
[CMRK10, KKM03, KOBMP99, KOB00, MRKE09, MKK03, RKK07,
RFKK08, ST06, ST07a, WT05]. However, these approaches focus on spe-
cific failure scenarios, they do not make the influence of software and hard-
ware failures explicit in the model, or they do not take both dimensions
into account for predicting system reliability.

Kaaniche et al. [KKM03] and Martinello et al. [MKK03] examine the
availability of services provided over the Internet. They focus on replica-
tion schemes for web servers [MKK03] and on the example of a web-based
travel agency [KKM03]. The consideration of failures is limited to special
failure types, namely overflowing service request buffers as software fail-
ures and unavailability of computer hosts as hardware failures. Due to this
special focus, the authors avoid explicit modelling of software architecture
and components. Instead, they use queueing theory to directly calculate the
reliability impact of the considered failure potentials.

Wang [WT05] combines a system availability model (SAM) with a user

behaviour graph (UBG) to determine the probability that user sessions are
successfully completed in spite of the risk of the system becoming partially
or totally unavailable. The SAM is a CTMC capturing the different possible
availability states of the system under study. However, the author does not
give any general rule how to construct the SAM. Hence, the reader is left
alone with the exercise to express software and hardware failures and their
effects implicitly in the states of the SAM.

The specific domain of mobile applications is targeted by the approaches
of Malek et al. [MRKE09] and Cooray et al. [CMRK10]. The authors intro-
duce the notion of the context of mobile devices and software components
executed on them. The context includes all aspects of the frequently chang-

269

7 Related Work

ing environment, such as the location, reachability of other hosts, available
network bandwith, battery charge, and others. Hence, the context includes
software and hardware aspects. The authors propose continuous reliability
prediction during system operation based on component reliability models
(see Section 2.3.3) with the dynamically changing context properties im-
plicitly encoded in the transition probabilities. However, the context prop-
erties are only generically specified as a vector of numeric parameters. No
further instruction is given as to which individual context properties should
actually be considered, and how they should be encoded in the vector. Fur-
thermore, the main focus is on context changes due to mobility rather than
failures in the software or hardware environment.

The approach of Sato et al. [ST07a] is close to PCM-REL in that it pre-
dicts the reliability of a system with software services and hardware re-
sources, explicitly taking into account the usage of the resources by the
service execution, as well as the hardware-specific failure potentials. The
approach models the software architecture as a DTMC whose states repre-
sent service invocations and resource usages. The availability states of each
resource are captured through a CTMC. The central difference to PCM-
REL is that Sato et al. do not consider software failure potentials. Their
approach assumes that all service failures are due to hardware resource un-
availability. Consequently, the approach yields over-optimistic prediction
results for systems with imperfect software.

The approach of Sharma et al. [ST06] predicts the software reliability
of a component-based system subject to software failures during service
execution, as well as operating system (OS) and hardware failures in the
execution environment. A DTMC captures the software components and
their failure behaviour; hardware and OS failures are expressed through
a CTMC per involved machine. Based on the assumption that a failing
machine does not lead to a service failure but only to a delayed service ex-
ecution (where the delay is caused by the waiting time of service requests
until the machine is rebooted and again ready for service), machine fail-

270

7.1 Combined Consideration of Software and Hardware Failure Potentials

ures are not taken into account for reliability prediction, but only for the
performance-related evaluation of the goodput, namely the rate of success-
fully completed service requests per unit of time. Hence, the reliability
prediction only accounts for the software failures in the system.

Kanoun et al. [KOBMP99, KOB00] provide an alternative approach
to availability modelling and prediction of IT systems using Generalized

Stochastic Petri Nets (GSPN), which can be viewed as an evolution of the
strategy discussed in Section 7.1.1. Instead of providing a single MTTF
and MTTR value per software and hardware component, the approach flex-
ibly models failure and repair processes with multiple stages and transition
rates through a dedicated GSPN per component. Additional interaction
GSPNs capture relations between components, where a state change in
one component impacts the behaviour of other components. Rugina et
al. [RKK07, RFKK08] build upon these results and provide a transfor-
mation from the SAE Architectural Analysis and Design Language (SAE-
AADL) to the GSPNs for IT system availability prediction. While these
approaches offer detailed modelling capabilities for software and hardware
availability states and interactions, they still share significant shortcomings
with those discussed in Section 7.1.1. First, they do not consider purely
transient FOD occurrences but only failures that lead a component into an
error state with a non-zero duration. Second, they do not account for system
usage and its reflection in the component and interaction models.

7.1.4 Combined Software/Hardware Consideration in General

Several approaches exhibit a combined consideration of software and hard-
ware components and their failure potentials, but differ in their scope
and their goals from the field of ASRP [BMP09, DJP96, DL93a, DL93b,
DDPH94, GHK+99, GI93, HLL+05, KOBMP99, KP00, SL88, VPMM05].

Bernardi et al. [BMP09] present a dependability profile as part of UML
MARTE [Obj07] offering comprehensive capabilities for modelling soft-

271

7 Related Work

ware and hardware failures and their effects. The main focus of this work
is on modelling rather than prediction and on dependability rather than re-
liability only. The authors demonstrate a transformation from a case study
design model to a deterministic and stochastic Petri net (DSPN) and con-
duct availability prediction for the case study, but they do not propose a
transformation and prediction method for the general case.

Several authors [DJP96, GI93, HLL+05] have proposed approaches for
the simulative or analytical evaluation of software behaviour over imperfect
hardware resources. Considered hardware faults are low-level (such as de-
structed memory bits or CPU registers), and metrics of interest are fault de-
tection times and coverages rather than system reliability. The approaches
aim at improving given hardware designs; software behaviour is not mod-
elled through an architecture but captured in terms of types and frequencies
of hardware requests, thus functioning as a hardware usage profile.

An early work of Shin et al. [SL88] proposes an architectural model for
systems composed from modules, where a module may refer to either soft-
ware, hardware or a combination of both. However, the approach is con-
cerned with error propagation times rather than system reliability.

Vilkomir et al. [VPMM05] evaluate the availability of a system with soft-
ware and hardware failures and multiple recovery procedures. Instead of
modelling the system architecture, the approach constructs a DTMC repre-
senting multiple system failure levels and considers the sojourn times and
failure and restauration probabilities at each level. Similarly, Stark [Sta87]
presents a specific DTMC with 6 system availability states (of which 2 are
deemed failure states) and estimates transition probabilities for a Shuttle
Mission Simulator (SMS) in order to evaluate its availability and reliability.
Section 7.2.1 contains a related discussion of non-architectural availabil-
ity and reliability evaluation of fault tolerance mechanisms and structures;
most of the approaches mentioned there include combined software/hard-
ware consideration.

272

7.2 Consideration of Fault Tolerance Capabilities

A further class of approaches deals with the problem of finding optimal re-
dundancy allocations for components in a system (see [KP00] for a survey).
These approaches belong to the field of reliability optimization. A system
is defined as a sequential or parallel structure of redundant components,
where each component may refer to software, hardware or both dimen-
sions. Each component is associated with a time- and usage-independent
reliability value, and the overall system reliability is optimized using ge-
netic algorithms or other methods, subject to a set of constraints. The focus
is on the efficiency and quality of the employed optimization algorithms
rather than a differentiated system reliability model.

7.2 Consideration of Fault Tolerance Capabilities

This section discusses the ability of PCM-REL related work to model fault
tolerance (FT) capabilities of an IT system under study, and to quantita-
tively evaluate their influence on its reliability. FT capabilities are com-
monly included in IT systems (see Section 2.6) and constitute an important
means to improve reliability. Therefore, PCM-REL explicitly considers
such capabilities in terms of failure recovery during service execution (see
Section 4.7). The approach allows software architects for taking FT-related
measures into consideration during system design, as demonstrated in both
the audio hosting case study (Section 6.4) and the Astaro ASG case study
(Section 6.5).

In contrast, many other ASRP approaches do not provide any mod-
elling constructs to express FT [Che80, CSC02, DS95, GWTH98, GT02,
GWHT04, GPK03, GPHG+03, GPHW06, KM97, LG08, PEO11, RSP03,
ST07a, ST07c, YCA04, ZL10] or have only basic FT expressiveness (see
Section 7.2.3). Further approaches provide more detailed FT analysis, but
their scope is limited to individual FT mechanisms and structures consid-
ered in isolation (see Section 7.2.2). PCM-REL is unique in combining
highly expressive FT modelling with an architectural scope, analysing how

273

7 Related Work

individual FT capabilities employed in different parts of a system’s ar-
chitecture influence the overall reliability of the system. The following
Sections 7.2.1 to 7.2.4 give a detailed overview of PCM-REL related work
with respect to FT modelling and analysis.

7.2.1 Availability Evaluation of Fault-Tolerant System
Architectures

Several approaches target system availability rather than reliability but are
still closely related to the field of ASRP [DW04b, DW04a, KOBMP99,
KOB00, KMT09, RKK07, RFKK08, STTA08, TWH+08]. Typically, they
treat software and hardware components in a unified manner, assigning
MTTF and MTTR values to each component (also see Section 7.1.1). Es-
pecially for software components, MTTR annotations may indicate FT ca-
pabilities either within the components or in their execution environment
(which may, for example, have the ability to restart components upon de-
tection of an error). However, component repair may also be an act of main-
tenance carried out by an external agent [ALRL04]. The MTTR annotation
does not distinguish between both cases, and it does not explicitly denote
any FT capabilities which lead to component repair. Hence, the possibility
to account for FT through MTTR annotations is limited to a basic level.

Some approaches have enriched the standard availability evaluation with
specific constructs for considering FT. One possibility of doing so is to ex-
tend inter-component relationships from simple “C1 requires C2” relations
to “C1 requires C2 OR . . . OR Cn ” relations [DW04b, DW04a, STTA08,
TWH+08]. Such relations express that a system contains redundancy, stat-
ing that only 1 out of the set of hardware and / or software components
{C2, ..,Cn} has to be ready for service so that C1 can deliver its respec-
tive service.

While the consideration of OR relationships is still limited to special
kinds of FT capabilities, the approaches of Kanoun et al. [KOBMP99,

274

7.2 Consideration of Fault Tolerance Capabilities

KOB00] and Rugina et al. [RKK07, RFKK08] (which have been discussed
in Section 7.1.3) offer a highly expressive availability evaluation includ-
ing detailed FT modelling capabilities. The modeller is free to specify
each component and each inter-component dependency through a dedicated
Generalized Stochastic Petri Net (GSPN), capturing system structure and
functional interactions between components, as well as reconfiguration and
maintenance activities.

Compared to PCM-REL, all discussed approaches are limited in that
they only evaluate the availability impact of the modelled FT capabilities,
thereby leaving their influence on system reliability unclear. For example,
wait-and-retry strategies can significantly improve the reliability of dis-
tributed applications with purely transient network transmission failures.
However, as the availability of the network is not impacted by the tran-
sient failures, availability-tailored approaches cannot evaluate the benefits
of the wait-and-retry. Moreover, the approaches do not take the system’s
usage into consideration (see also Section 7.1.1). Hence, they cannot ac-
count for the usage dependencies of the fault-tolerant service execution (see
Section 4.7).

7.2.2 Non-Architectural Fault Tolerance Modelling and
Prediction

A substantial amount of work focuses on availability and reliability eval-
uations of individual FT mechanisms and structures – examples include
[BDT+87, CLL78, DT89, DL93a, DL93b, DDPH94, DL95, GHK+99,
GLT97, KKB+93, LKBK91, MSHT92, TG83, YSP09, YSP11]. The eval-
uation is done based on DTMCs, CTMCs, Stochastic Petri Nets (SPNs) or
variations of these formalisms. However, the formalisms are not used as ar-
chitectural models, denoting components and transitions of control flow be-
tween them. Rather, they denote a set of different availability states and the
possible transitions between those states, annotated with transition proba-

275

7 Related Work

bilities or rates. While the expressiveness of such modelling approaches
with respect to the targeted FT mechanisms or structures may be as high or
even higher than that of PCM-REL, their scope is limited to system frac-
tures rather than whole system architectures. Even though some authors
speak of “system” availability or reliability as an achieved prediction re-
sult, they assume that the considered structure essentially forms the system.
This assumption holds for specific systems under study, but it is generally
infeasible with respect to modern distributed and heterogeneous system ar-
chitectures. Moreover, approaches targeted at reliability evaluation mostly
focus on the time-dependent probability that a considered FT structure “sur-
vives” from a defined start t0 = 0 up to a point in time t without visiting
any failure states, which differs from the goal of PCM-REL to predict the
probability of successful service execution at an arbitrary point in time.

Costes et al. [CLL78] examine the availability and reliability of single or
redundant units or elements that may be affected by both software and hard-
ware failures. The authors take maintenance activities into account, namely
hardware replacements and software fault removal (thereby accounting for
software reliability growth processes). Laprie et al. [LKBK91] take a sim-
ilar approach, but more generally consider n redundant or non-redundant
components.

Further approaches [DL93a, DL93b, DDPH94, DL95] examine certain
variations of well-established FT mechanisms, namely Distributed Recov-

ery Blocks (DRB), N-Version Programming (NVP) and N-Self-Checking

Programming (NSCP). The authors aim at a combined consideration of
software and hardware failures through Markov Reward Models (MRM)
and Fault Trees. Gokhale et al. [GLT97] propose an alternative evalua-
tion through simulation instead of analysis. Kanoun et al. [KKB+93] use
Generalized Stochastic Petri Nets (GSPN) to evaluate the reliability of Re-

covery Blocks (RB) and NVP.
Garg et al. [GHK+99] focus on Passive Replication Schemes and evalu-

ate the performance and reliability of server applications with either Cold

276

7.2 Consideration of Fault Tolerance Capabilities

Replication or Warm Replication. For the evaluation, the authors include
hardware and software failure and repair events in a common CTMC. Mup-
pala et al. [MSHT92] evaluate the availability of VAX-cluster systems using
Stochastic Reward Nets (SRN) as a variation of the SPN formalism. Other
authors [BDT+87, DT89, TG83] introduce the notion of behavioural de-

composition as a two-level modelling formalism, including high-level case-
specific fault trees or CTMCs representing the availability states of a con-
sidered FT structure, as well as lower-level CTMCs or Extended Stochas-

tic Petri Nets (ESPN) representing fault detection and recovery processes
within each FT structural element.

Yusuf et al. [YSP09, YSP11] propose the Recovery-Aware Component

(RAC) pattern for grid applications and employ Parameterized Markov

Models (PMM) to evaluate the pattern’s reliability. In contrast to other
approaches discussed in this section, the authors introduce RACs explicitly
as an architectural pattern, and they propose a reference architecture based
on RACs. The reference architecture includes specific components desig-
nated to the FT management of grid applications. In contrast to PCM-REL,
the authors focus on the specific domain of grid applications, as opposed
to IT systems in general.

7.2.3 Architectural Reliability Prediction Considering Fault
Tolerance

This section discusses approaches that evaluate software architectures re-
garding reliability, considering certain FT capabilities of a system under
study [CG07a, CG07b, FGGM10, GLT98, GL05, Gok05, Gra05, MZ08,
PDAC05, ST06, WWC99, WPC06]. Although the goals of these approach-
es are closely related to PCM-REL, their FT expressiveness is significantly
more limited than that of PCM-REL (which has been presented in Sec-
tion 4.7).

277

7 Related Work

The approach of Sharma et al. [ST06], which has also been discussed in
Section 7.1.3, takes the possibility of component restarts and application
retries into consideration. More concretely, if a software component ex-
hibits a FOD during service execution, it may be either visited again (in-
terpreted as a component restart), or the whole service execution may be
repeated from start (interpreted as application retry), or the service execu-
tion results in failure (denoting that the component FOD could neither be
handled by component restart nor application retry). Fixed probabilities for
component restart, application retry and system failure are annotated per
component to the architectural DTMC. The authors also consider hardware
failures and repairs, but they do not take them into account for reliabil-
ity prediction (see Section 7.1.3). Compared to PCM-REL, the approach
lacks FT expressiveness in several respects, including individual recovery
behaviours in response to FOD occurrences, multi-stage recovery, multi-
type recovery, as well as influencing aspects of service usage and recovery
from hardware failures.

Wang et al. [WWC99, WPC06] propose several architectural styles, in-
cluding a fault-tolerant architectural style, and use an extended architec-
tural DTMC to evaluate the reliability of system architectures incorporat-
ing those styles. Similar to the OR relation discussed in Section 7.2.1, the
FT architectural style considers a set of n redundant software components
{C1, . . . ,Cn}. Only 1 out of the n components is required to be ready for
service for an overall successful service execution. The FT architectural
style is the only FT capability considered by the authors.

Gokhale et al. [GLT98, GL05] propose a simulation approach to evalu-
ate an architectural DTMC for reliability. The simulation takes individual
FT configurations per software component into account. An FT configu-
ration may refer to FT structures such as N-Version Programming (NVP)
or Distributed Recovery Block (DRB). In contrary to PCM-REL, the ap-
proach does not take into account hardware failures and recovery, system
usage influences on FT execution, nor any FT structures that involve mul-

278

7.2 Consideration of Fault Tolerance Capabilities

tiple components. Other aspects such as limited FT coverage, imperfect
recovery, multiple recovery stages and types might be realized by the simu-
lation procedures but are not explicitly discussed by the authors. Moreover,
the authors do not discuss the scalability of the approach, which may be
critical with respect to failure probabilities. While in practice, failure prob-
abilities may be as small as 10−9, the demonstrating examples in [GL05]
only show reliability values between 0.69 and 0.96.

Another approach of Gokhale [Gok05] proposes to annotate software
components in an architectural DTMC with an additional coverage factor

per component that indicates the possibility of component-level FOD oc-
currences to be recovered from before resulting in an overall service execu-
tion failure. This approach provides only basic FT capabilities compressed
into a single FT-specific value per component.

Cortellessa and Grassi [CG07b, Gra05] focus on reliability prediction for
service-oriented architectures (SOA). They consider recursively composed
services, where each service may invoke multiple external services in order
to complete its own execution. The approach conducts an algorithmic eval-
uation of the probability of successful execution of a top-level user-invoked
service. Similarly to previously-discussed approaches, the authors intro-
duce the OR completion model denoting the possibility that a composed
service requires only 1 out of n invoked external services to be successful
in order for its own execution to succeed.

Several ASRP approaches enrich their analysis by explicit considera-
tion of error propagation [CG07a, FGGM10, MZ08, PDAC05], relaxing
the prevalent assumption of each component-level FOD automatically re-
sulting in a system-level FOD. They introduce specific concepts such as
multiple failure types and error propagation probabilities, which may be
used to express the masking or conversion of FOD occurrences, represent-
ing FT capabilities of the modelled system. In contrast to PCM-REL, these
approaches do not model FT mechanisms and structures explicitly. Instead,
they rely on direct estimation of the additional error propagation probabili-

279

7 Related Work

ties, which may be hard to acquire in practice. Moreover, the approaches do
not reflect the influence of system usage or hardware failures and recovery
on the FT-related component behaviour.

7.2.4 Further Fault Tolerance Considerations

This section shortly discusses approaches that consider FT capabilities of
IT systems but differ in their goals and scope from PCM-REL [BMP09,
CL04, CLV05, EL85, KP00, LM89, PSMK03, TST02, Wol10]. Some of
these approaches focus on specific problems related to FT and provide
detailed accounts of these. For example, Eckhardt, Littlewood, Popov et
al. [EL85, LM89, PSMK03] examine the theoretical effects of failure cor-
relation on the overall failure probability of multi-version software. Cai
et al. [CL04, CLV05] complement these considerations through empirical
studies and experiments. Wolter [Wol10] examines the timeout selection

problem, aiming at a good choice for the frequency of periodic FT activi-
ties such as restart, rejuvenation and checkpointing.

The work of Trapp et al. [TST02] targets embedded systems and specif-
ically focuses on the data flow throughout a system’s architecture. The
authors explicitly consider how the quality of input data (such as the accu-
racy of a measured temperature value) affects the operation of the system
and its produced outputs. An object-oriented hierarchical Petri net is used
to represent the system with its components and performed tasks. As with
approaches considering error propagation (see Section 7.2.3), the approach
can be used to implicitly reflect FT capabilities of the system under study.

Further approaches, which have been introduced in Section 7.1.4, include
FT considerations: Bernardi et al. [BMP09] provide capabilities for mod-
elling redundant system structures; Kuo et al. [KP00] provide an overview
of reliability optimization, covering the redundancy allocation problem as
a specific component-level redundancy pattern.

280

7.3 Usage Profiles and Input Parameter Propagation

7.3 Usage Profiles and Input Parameter Propagation

This section assesses the capabilities of approaches related to PCM-REL
for consideration of system usage aspects. As discussed in Section 2.1.2,
the usage profile may heavily affect the reliability of a software-intensive
system in non-intuitive ways. Hence, it is an important factor that should
be explicitly considered for reliability modelling and prediction.

PCM-REL is particularly strong in its consideration of usage aspects.
Based on the capabilities of the existing PCM approach [BKR09], it offers
an explicit meta-model capturing a system usage profile with multiple us-
age scenarios, as well as an explicit specification of input parameter prop-
erties for individual system service invocations (see Section 2.7.5). The
specification of system behaviour includes parameter dependencies (Sec-
tion 2.7.6) to account for the influence of input parameter properties on
the service execution. A sophisticated Stochastic Expressions (StoEx) lan-
guage [Koz08] allows for specifying the properties through arbitrary prob-
ability distributions rather than single values only. Moreover, user and
system behavioural specifications are strictly separated to assure the in-
dependence of developer roles and the reusability of model artefacts (Sec-
tion 2.7.1). While these features are essentially part of the existing PCM
approach for software performance prediction, they are highly innovative
and unique for reliability predictions and the ASRP field. In the thesis, ex-
periments conducted for the Astaro ASG case study (Section 6.5) show how
usage profile changes can significantly influence the expected reliability of
an IT system (Figures 6.28 and 6.29).

The following Sections 7.3.1 to 7.3.5 examine capabilities of PCM-REL
related work for consideration of usage profiles aspects, including the num-
ber and sequence of system service invocations, as well as input parame-
ter properties of individual invocations and their influence on service ex-
ecution.

281

7 Related Work

7.3.1 Usage-Agnostic Prediction Approaches

Several approaches, which typically speak of predicting software availabil-
ity rather than reliability, have been proposed that do not take any usage as-
pects into account [DW04b, DW04a, KOBMP99, KOB00, KMT09, RS07,
RKK07, RFKK08, STTA08, TWH+08]. Many of these approaches assign
MTTF and MTTR values to software and hardware components and have
been discussed in Section 7.1.1. Their applicability is essentially limited
to the consideration of crash failures and other permanent failure situations
whose occurrence frequencies do not depend on specific usage patterns.
While some of the approaches [KOBMP99, KOB00, RKK07, RFKK08]
(see Section 7.1.3) are more expressive in modelling failure and repair pro-
cesses, they still share the principal disadvantage of neglecting usage as-
pects. With these approaches, modellers have no means to determine which
parts of a created system model are affected by changes in the envisioned
system usage; analysing a system under a different usage profile requires
restarting the modelling activity from scratch.

7.3.2 Implicit Consideration of Usage Profiles

Most of the related approaches of PCM-REL fall under the category of
implicit usage profile consideration [CG07a, CG07b, Che80, FGGM10,
GLT98, GT02, GWHT04, GL05, GPK03, LG08, RSP03, RPS03, ST07a,
ST06, ST07c, WWC99, WPC06, ZL10, GWTH98]. These approaches em-
ploy either an architectural model expressing the transfer of control be-
tween the services or components of a system, or a workflow model ex-
pressing the flow of execution within “composite” services or components,
invoking further “basic” or “atomic” services. Modelling formalisms of
choice are either equal or closely related to DTMCs, or they include ex-
plicit control flow constructs such as branches, loops or forks. All models
include probabilistic annotations, such as DTMC transition probabilities,
branch transition probabilities and loop iteration counts. These annota-

282

7.3 Usage Profiles and Input Parameter Propagation

tions influence the set and occurrence probabilities of possible sequences
of visited components or steps during service execution. Hence, the an-
notations merge aspects of system behaviour (namely, the implementa-
tion) and system usage (namely, input parameter properties). Although
several approaches call their models “usage profiles” or “operational pro-
files”, they express system behaviour influenced by its usage, rather than
user behaviour. However, by considering the topmost level of composition
as being the usage scenario itself, it is actually possible to represent the
behaviour of system users. In conclusion, the main differences between
the discussed approaches and PCM-REL are that (a) their modelling for-
malisms do not explicitly distinguish between user and system behaviour,
and that (b) they do not explicitly reflect how input parameter properties
of service invocations influence service execution; instead, they merge sys-
tem and usage aspects when modelling the service execution. Hence, the
approaches suffer from significantly reduced reusability with respect to us-
age profile changes.

The following gives a short overview of the approaches in this cate-
gory. A well-known representative approach is the Cheung model [Che80]
(see Section 2.4), which expresses inter-component control flow through
an absorbing DTMC and encodes the system’s usage profile into the tran-
sition probabilities. Cortellessa et al. [CG07a] and Filieri et al. [FGGM10]
build upon the same formalism and additionally superimpose error prop-
agation models. Wang et al. [WWC99, WPC06] extend the formalism to
capture heterogeneous software architectures that incorporate different ar-
chitectural styles. Further approaches building upon the Cheung model
are [GWTH98, GLT98, GT02, GWHT04, GL05, GPK03, LG08, ST06,
ST07c]. Reussner et al. [RSP03, RPS03] employ the Rich Architecture
Definition Language (RADL) for model creation but build upon the same
underlying theory as Cheung for model resolution and reliability prediction.
Cortellessa et al. [CG07b] (Section 7.2.3) and Sato et al. [ST07a] (Sec-
tion 7.1.3) use the absorbing DTMC formalism to express execution work-

283

7 Related Work

flows of composite services with the states representing external service in-
vocations, internal operations or resource usages. Zheng et al. [ZL10] em-
ploy a workflow description for composite services with sequences, loops
and parallel structures.

7.3.3 Scenario-Based Software Reliability Prediction

Several approaches can be subsumed as being scenario-based [CSC02,
GPHG+03, PDAC05, RRU05, YCA99, YCA04]. These approaches share
the idea that systems experience different scenarios occurring with different
frequencies or probabilities, and that system reliability should be expressed
averaged across all scenarios. Yacoub et al. [YCA99, YCA04] specify sce-
narios through component sequence diagrams (similar to UML sequence
diagrams) and attach an occurrence probability to each scenario. An over-
all component dependency graph (which extends the DTMC formalism
through variable state sojourn times and transition reliability values) is de-
duced from the given scenario specifications and used as a basis for relia-
bility prediction. Cortellessa et al. [CSC02] and Popic et al. [PDAC05] em-
ploy annotated UML use case diagrams to specify system users, use cases
and occurrence probabilities, as well as UML sequence diagrams to specify
a set of scenarios per use case. The authors predict the success probability
of scenario execution averaged over all specified scenarios, considering per-
visit FOD probabilities of the involved software components and network
transmission failure probabilities for remote inter-component invocations.
Goseva-Popstojanova et al. [GPHG+03] use a similar method but addition-
ally differentiate multiple failure severities from minor to catastrophic and
derive risk factors from component state charts, predicting an overall sys-
tem risk factor across all specified scenarios and use cases. Rodrigues
et al. [RRU05] specify scenarios through basic message sequence charts

(BSMCs) and use an overall high-level message sequence chart (HMSC,

284

7.3 Usage Profiles and Input Parameter Propagation

similar to an absorbing DTMC) to capture possible sequences of scenario
executions and their occurrence probabilities.

While scenario-based approaches provide modelling concepts (such as
use case diagrams) or annotations (such as scenario occurrence probabil-
ities) that explicitly refer to usage aspects, they still merge system and
usage aspects in their scenario specifications, because component invoca-
tion sequences are generally influenced by input parameter properties of the
scenario-triggering system service invocations. None of the discussed ap-
proaches keeps track of parameter properties and their propagation through-
out the invocation sequences. Hence, the approaches are significantly lim-
ited compared to PCM-REL with respect to usage profile consideration.

7.3.4 Parametrized Reliability Prediction Approaches

A few approaches explicitly deal with the effect of input parameter prop-
erties on the service execution and provide a correspondingly parametrized
service specification [HMW01, Gra05, GMS07]. One of these approaches
is provided by Hamlet et al. [HMW01], whose main focus is on the data

flow throughout a component-based software architecture, rather than its
control flow. The approach considers service execution as a sequence of
component executions, where each component takes an input (from the sys-
tem user or the previous component) and produces an output (which is, in
turn, the input of the next component). The set of possible component exe-
cution sequences is specified through a reliability algebra that can express
linear sequences, loops and branches. Moreover, each component visit may
trigger a FOD; the approach predicts the probability of successful execution
of the overall sequence. The authors explicitly consider parameter proper-
ties by breaking down the overall input domain (namely, the set of possible
input values) into a set of disjoint subdomains, and by expressing the FOD
probability of each component, as well as its produced output, as a function
of the subdomain of its received input. A set of occurrence probabilities

285

7 Related Work

of the individual subdomains characterizes the initial user input and hence
constitutes a usage profile for the service execution. The most significant
disadvantage of the approach is that the authors do not provide any means
to capture the component-internal mapping from input to output domains
through modelling; instead, they rely on software architects to assemble
and execute the system under study in order to derive the mapping. This
method may be associated with very high efforts and effectively prevents
the application of the approach at early system design stages.

The approach of Grassi [Gra05] is very close to the approaches discussed
in Section 7.3.2, especially to the one of Cortellessa et al. [CG07b] (also
see Sections 7.1.2 and 7.2.3), expressing execution workflows of compos-
ite services through absorbing DTMCs. Additionally, Grassi explicitly re-
flects input parameter properties of the composite service invocation, their
propagation to external service invocations, and the resulting influence on
the FOD probabilities of atomic services. The same concepts are reused by
Grassi et al. [GMS07], who propose the Kernel Language for Performance

and Reliability Analysis (KLAPER). Compared to PCM-REL, limitations
still exist in that user and system behaviour are not explicitly distinguished,
and the DTMC transition probabilities still merge both aspects.

7.3.5 Further Usage Profile Considerations

Besides the previously discussed categories, a few further approaches ex-
hibit capabilities for consideration of usage aspects [BMP09, KKR01,
KKM03, WT05]. Kaaniche et al. [KKR01, KKM03] (see Section 7.1.3)
provide a dependability modelling framework, allowing for combining dif-
ferent modelling formalisms and prediction methods. They distinguish
multiple modelling levels, namely user, function, service and resource. In
a demonstrating example of a web-based travel agency, the authors model
the user level through a DTMC-style operational profile graph, with states
representing the execution of functions. In turn, each function is modelled

286

7.4 PCM-REL and Architecture-Based Software Reliability Prediction

by an interaction diagram expressing possible sequences of invocations of
services. The interaction diagrams include branches, loops and parallel
structures, with probabilistic annotations for branch transition probabili-
ties and loop iteration counts. Hence, the approach is similar to those
discussed in Section 7.3.2 but additionally distinguishes user and system
behaviour explicitly.

The approach of Wang et al. [WT05] (see Section 7.1.3) also explicitly
expresses user behaviour through its user behaviour graph (UBG). How-
ever, the approach does not consider input parameter properties of service
invocations, and it specifies the system through a set of availability states
rather than an architectural model. Bernardi et al. [BMP09] (Section 7.1.4)
demonstrate the combination of annotated UML use case diagrams, deploy-
ment diagrams, sequence diagrams and statecharts for availability predic-
tion in their reported case study.

7.4 PCM-REL and Architecture-Based Software Reliability
Prediction

This section reviews the overall degree of innovation of PCM-REL com-
pared to existing ASRP approaches. As discussed in the previous Sec-
tions 7.1 to 7.3, the main scientific contributions of the approach are the
combined consideration of software and hardware failure potentials, the
consideration of fault tolerance (FT) capabilities for reliability prediction
and the explicit modelling of usage profiles and input parameter propaga-
tion. Although these are individual contributions, they are related to each
other, and PCM-REL combines them to significantly advance the support
that software architects can get from ASRP during system design. To this
end, the consideration of hardware failures could be misleading if a sys-
tem’s ability to recover from them was not considered as well. On the other
hand, the consideration of FT capabilities should not be limited to the soft-
ware level only and benefits from an integrated software/hardware view.

287

7 Related Work

In addition, both the software/hardware integration and the FT modelling
benefit from the explicit consideration of usage profiles and input parame-
ter propagation. The system’s usage influences the service execution paths
taken throughout the architecture and the involved accesses to hardware re-
sources, as well as the alternative behaviours executed for failure recovery.
Together, the modelling and analysis capabilities of PCM-REL allow for
a differentiated view on an IT system and a comprehensive assessment of
relevant questions during system design, as shown by the audio hosting and
Astaro ASG case studies reported in the thesis (see Chapter 6).

Table 7.1 provides an overview of ASRP approaches and assesses these
with respect to the innovative features of PCM-REL. The focus of this
overview is narrowed down compared to the discussion in the previous sec-
tions to ASRP approaches in a strict sense only (see Section 2.5), excluding
further discussed approaches (such as the ones predicting a system’s avail-
ability rather than its reliability). Furthermore, the overview omits publi-
cations with a main focus on reporting experiments and case studies rather
than new methodologies, as well as survey and overview papers. Any entry
in parentheses indicates that an approach exhibits capabilities with respect
to a certain feature but is limited compared to PCM-REL.

As the table shows, related ASRP approaches are generally limited com-
pared to PCM-REL with respect to its main scientific contributions (which
are listed in the first three feature columns). All approaches exhibit cer-
tain capabilities for usage profile considerations; most of them implic-
itly include usage aspects in probabilistic annotations to their underly-
ing modelling formalisms (see Section 7.3.2). Several approaches pro-
vide basic consideration of FT capabilities (Section 7.2.3), and a few ap-
proaches provide some form of differentiation between software and hard-
ware failure potentials (Sections 7.1.2 and 7.1.3). Overall, the approaches
of Grassi [Gra05], Grassi et al. [GMS07] and Sharma et al. [ST06] are close
to PCM-REL in that they exhibit capabilities in all three aspects. Sato et
al. [ST07a] show conceptual similarity to PCM-REL as they consider a ser-

288

7.4 PCM-REL and Architecture-Based Software Reliability Prediction

Au
th

or
s

Ye
ar

C
om

bi
ne

d
H

W
/S

W
 C

on
si

de
ra

tio
n

FT
 C

on
si

de
ra

tio
n

U
sa

ge
 P

ro
fil

e
C

on
si

de
ra

tio
n

N
et

w
or

k/
C

on
ne

ct
or

 F
ai

lu
re

s

M
ul

tip
le

 F
ai

lu
re

 M
od

es

Fl
ex

ib
le

 P
PO

F
M

od
el

lin
g

D
es

ig
n-

O
rie

nt
ed

M
od

el
ln

ig

D
ev

el
op

er
 R

ol
es

To
ol

 S
up

po
rt

Cheung et al. [Che80] 1980 - - (X) - - - - - -
Dolbec et al. [DS95] 1995 - - (X) - - - - - -

Gokhale et al. [GWTH98] 1998 - - (X) - - - - - (X)
Gokhale et al. [GLT98] 1998 - (X) (X) - - - - - (X)
Wang et al. [WWC99] 1999 - (X) (X) - - - - - -
Yacoub et al. [YCA99] 1999 - - (X) X - - (X) - -

Cortellessa et al. [CSC02] 2002 - - (X) X - - X - -
Gokhale et al. [GT02] 2002 - - (X) - - - - - -

Goseva-Popstojanova et al. [GPHG+03] 2003 - - (X) X X - X - (X)
Goseva-Popstojanova et al. [GPK03] 2003 - - (X) - - - - - (X)

Reussner et al. [RSP03] 2003 - - (X) X - - X - (X)
Reussner et al. [RPS03] 2003 - - (X) X - - X - (X)

Gokhale et al. [GWHT04] 2004 - - (X) - - - - - (X)
Yacoub et al. [YCA04] 2004 - - (X) X - - (X) - -
Gokhale et al. [GL05] 2005 - (X) (X) - - - - - (X)

Gokhale [Gok05] 2005 - (X) (X) - - - - - -
Grassi [Gra05] 2005 (X) (X) (X) X - (X) - - -

Popic et al. [PDAC05] 2005 - (X) (X) X - - X - X
Rodrigues et al. [RRU05] 2005 - - (X) - - - (X) - (X)

Sharma et al. [ST06] 2006 (X) (X) (X) - - - - - (X)
Wang et al. [WPC06] 2006 - (X) (X) - - - - - -

Cortellessa et al. [CG07a] 2007 - (X) (X) - - - - - -
Cortellessa et al. [CG07b] 2007 - (X) (X) X - X - - -

Grassi et al. [GMS07] 2007 (X) (X) (X) X - (X) (X) - (X)
Sato et al. [ST07a] 2007 (X) - (X) (X) - - - - -
Sato et al. [ST07b] 2007 - - (X) - - - - - -

Sharma et al. [ST07c] 2007 - - (X) - - - - - (X)
Lipton et al. [LG08] 2008 - - (X) X - - - - -

Mohamed et al. [MZ08] 2008 - (X) (X) - X - (X) - -
Cooray et al. [CMRK10] 2010 (X) - (X) - - - (X) - X

Filieri et al. [FGGM10] 2010 - (X) (X) - X - - - -
Zheng et al. [ZL10] 2010 - - (X) - - - - - (X)

Palviainen et al. [PEO11] 2011 - - (X) - - - X - X

132 mm = 0.825

Table 7.1: Feature Overview of ASRP Approaches

289

7 Related Work

vice execution flow (modelled through a DTMC) and its accesses to a set
of independent and potentially unavailable hardware resources. Further-
more, Bernardi et al. [BMP09] (Section 7.1.4) provide very comprehensive
reliability modelling capabilities; their work is not mentioned in the ASRP
overview table as the authors do not target automated transformation and
reliability prediction for general specified architectures.

Looking beyond the central contributions, the table indicates that several
but not all approaches share with PCM-REL the ability to express failure
potentials related to component interoperations. While PCM-REL assigns
transmission failure probabilities to network links (Section 4.5), FOD prob-
abilities have also been assigned to component connectors or interfaces by
related approaches. Furthermore, several approaches allow for modelling
architectures in a design-oriented way, rather than directly using DTMCs
or related formalisms. On the other hand, a distinction between multiple
failure modes (Section 4.2) is rarely offered by related approaches. The
same holds for a flexible modelling of potential points of failure (PPOFs)
that are not strictly related to the software components or invoked services
of an architecture (see Section 4.3). Moreover, the issue of a separation of
modelling concerns along the lines of multiple developer roles (in order to
support a truly distributed software development process, see Section 2.7.1)
is – to the best of the author’s knowledge – not explicitly discussed and
considered by any of the related ASRP approaches. Regarding tool sup-
port, several but not all approaches point out tools and implementations
created or used for realizing the presented methodologies. However, most
presented tool support is limited in that it covers only part of the method-
ology (such as only the prediction but not the modelling part), it focuses
on accompanying tasks rather than the centre of the approach (such as test
coverage tools for deriving component reliability values), or there is no
reference to any publicly available version of the tool. The most com-
prehensive tool support is provided by Popic et al. [PDAC05], Cooray et
al. [CMRK10] and Palviainen et al. [PEO11].

290

7.4 PCM-REL and Architecture-Based Software Reliability Prediction

In conclusion, none of the related ASRP approaches matches PCM-REL
in its overall set of innovative features, which are targeted at providing
comprehensive and differentiated ready-to-use support for software archi-
tects during IT system design. While Table 7.1 lists a set of features rel-
evant for this goal, related ASRP approaches have presented other kinds
of contributions. To this end, some approaches investigate alternative
modelling formalisms such as Markov reward models (MRM) [ST07a] or
Bayesian networks (BN) [CSC02], focus on prediction through simula-
tion [GLT98, GL05], integrate ASRP and software reliability growth mod-

elling (SRGM) [GL05], conduct reliability optimization [LG08, FGGM10],
offer combined predictions of multiple quality attributes [GT02, ST07b,
ST06, ST07c], focus on service oriented architectures (SOA) [CG07b,
Gra05, ZL10], describe methods for deriving reliability annotations [ZL10,
GWTH98, GWHT04, PEO11] and provide closed-formula considerations
of input uncertainties and the corresponding sensitivity of analysis re-
sults [GT02, GPK03]. In future work, PCM-REL may benefit from adopt-
ing those contributions and integrating them with its existing achieve-
ments.

291

8 Summary and Outlook

This chapter concludes the thesis, providing a summary of the presented
contents and achievements (Section 8.1), an overview of completed and
ongoing research efforts associated with the PCM-REL approach (Sec-
tion 8.2), a discussion of promising directions for future developments
(Section 8.3), as well as a final assessment of the approach and its bene-
fits (Section 8.4).

8.1 Summary of Contents

This thesis has presented PCM-REL, an approach to integrated software
architecture-based reliability prediction for IT systems. PCM-REL offers
a design-oriented modelling language that comprehensively integrates the
different reliability-influencing factors into an overall architectural specifi-
cation of a system under study. A corresponding analysis method evalu-
ates the architectural specification and obtains the probability of success-
ful service execution as a prediction result. Overall, the following aspects
are explicitly expressed by the modelling language and considered for the
analysis:

• the structure of an IT system in terms of its included software com-
ponent instances and their interconnections;

• the provided and required interfaces of each software component, as
well as its internal (high-level) control and data flow;

• the resource environment of the system with its computing nodes,
their interconnections and included hardware resources;

293

8 Summary and Outlook

• the allocation of software components to computing nodes and the
usage of hardware resources during service execution;

• the usage of system-external services for providing the system’s own
services;

• the system’s usage profile in terms of a set of usage scenarios, where
each scenario specifies the sequences of invoked system services and
their input parameter properties;

• the software, hardware and network failure potentials that the system
comprises;

• the failure potentials associated with system-external service invoca-
tions;

• the capabilities of service execution to recover from local failure oc-
currences and to prevent them from reaching the system’s bound-
aries.

With the help of PCM-REL, software architects can assess multiple design
alternatives of a system under study and rank them with respect to their
expected reliabilities. They can identify reliability-critical parts in the ar-
chitecture or processing steps during service execution, and they can assess
the influence of envisioned changes in a system’s architecture and usage
on its reliability. The application of PCM-REL does not require the actual
system being assembled and executed; hence, the approach can already be
applied at early system design stages, when the most fundamental architec-
tural decisions are to be made.

While a broader scientific context of PCM-REL is given through the
existing fields of reliability engineering, software reliability engineering

and component-based software engineering, the approach more concretely
belongs to the field of architecture-based software reliability prediction

(ASRP). The state-of-the-art in this field is advanced by PCM-REL through
the following central contributions:

294

8.1 Summary of Contents

• Combined consideration of software and hardware failure potentials:

PCM-REL allows for modelling both software components and hard-
ware resources with their specific failure potentials. The approach
considers how unavailable resources affect service execution, and it
derives an overall reliability value accounting for both dimensions of
failure.

• Consideration of fault tolerance capabilities: PCM-REL offers mod-
elling constructs to express how service execution can recover from
local failure-on-demand (FOD) occurrences by carrying out alter-
native behaviours, thereby avoiding the occurrence of system-level
FODs. Failure recovery can compensate for FOD occurrences in-
duced by software, hardware and network failure potentials. The
definition of system-specific FOD types allows for precisely describ-
ing which failure situations are handled by a modelled recovery con-
struct.

• Explicit consideration of usage profiles and the propagation of input

parameter properties: PCM-REL explicitly specifies a system’s us-
age profile as a set of usage scenarios, describing possible sequences
of system service invocations and their occurrence probabilities. Ser-
vice invocations can be annotated with stochastic specifications of in-
put parameter properties, and control flow constructs within the ser-
vice execution are specified depending on those properties. Hence,
the approach explicitly considers how the input parameter properties
of system service invocations influence the service execution.

In contrast, related ASRP approaches provide none or only limited capa-
bilities in these respects, thereby significantly reducing the reusability of
model artefacts and the decision support offered to software architects. Fur-
ther innovative aspects of PCM-REL include the consideration of network
transmission failures, the flexible specification of potential points of failure

295

8 Summary and Outlook

(PPOFs) within the service execution control flow, as well as its design-
oriented modelling language providing a consequent separation of mod-
elling concerns along the lines of multiple envisioned developer roles. In
addition, the approach offers comprehensive tool support including a graph-
ical modelling environment and automated analysis capabilities.

To realize the set of features discussed above, PCM-REL builds upon the
existing Palladio Component Model (PCM), which allows for modelling
component-based software architectures, as well as its associated tool sup-
port. The approach extends the PCM meta-model by the specification of
software, hardware and network failure potentials, as well as modelling
constructs for failure recovery. Furthermore, PCM-REL adds a Markov
analysis that transforms a modelled PCM-REL instance to an absorbing
discrete-time Markov chain (DTMC) and resolves this DTMC by applying
existing Markov theory. As a result, the analysis delivers the probability
of successful execution of each specified usage scenario, as well as the oc-
currence probabilities of potential failure modes differentiated according to
the software, hardware and network categories, individual FOD types or
individual PPOFs. Compared to the use of DTMCs in related ASRP ap-
proaches, PCM-REL’s Markov analysis is innovative in that it includes the
user behaviour, the intra-component control flow, the state of the system’s
hardware resources and multiple failure modes in its DTMC representation.
A time- and space-efficient transformation procedure compensates for the
significantly increased size of the resulting DTMC models. The transfor-
mation has been implemented and included in the tool environment, allow-
ing for a fully automated Markov analysis and the display of the obtained
prediction results as a visual feedback.

The thesis includes two major case studies, which demonstrate the capa-
bilities of the approach and validate that PCM-REL can feasibly be applied
to predict the reliability of IT systems. More concretely, the validation
gives evidence of the feasibility of the included modelling abstractions, the
feasibility of estimating the required reliability annotations, the validity of

296

8.2 Research Overview

the Markov analysis itself, as well as the significance and robustness of the
obtained prediction results. The first case study is about a system providing
audio hosting functionality. The study assesses and ranks multiple design
alternatives, compares the prediction results to those obtained by a simula-
tion approach and to measurements conducted for an implemented system
prototype. The second case study features the Astaro Security Gateway
(ASG), a well-established industrial IT system, focussing on the system’s
SMTP processing functionality. The study creates an architectural system
model based on existing documentation and feedback from developers, de-
rives input estimations for the required reliability annotations from existing
qualitative and statistical failure data, and it assesses the reliability impacts
associated with individual system processing steps, as well as the quantita-
tive reliability improvements achieved by the system’s included fault toler-
ance capabilities. While the conducted case studies generally support the
validity of the approach, they also reveal certain potentials for future work,
such as further research devoted to the input estimation of reliability anno-
tations, as well as further extensions of PCM-REL’s modelling capabilities
to allow for a more intuitive representation of system behaviour. More-
over, occurrence frequencies of hardware-induced FODs observed over a
limited system mission time interval may deviate from the predicted val-
ues if the expected number of hardware failure and repair events during the
observation period is small.

8.2 Research Overview

The PCM-REL approach and its contributions have been described in mul-
tiple peer-reviewed publications [BZ09, BKBR10, BBKR11, BKBR11]; a
preliminary integration of parameter dependencies in component reliability
specifications has been developed in [KB09]. The most significant work is
an article in the IEEE Transactions on Software Engineering (TSE) jour-
nal [BKBR11], which is currently accepted for publication and available

297

8 Summary and Outlook

in an online pre-print version. The article describes the combined consid-
eration of software and hardware failure potentials by PCM-REL, as well
as its capabilities for usage profile modelling and input parameter propa-
gation. Two reported case studies demonstrate and validate the approach
for a business reporting system and an industrial control system. PCM-
REL’s capabilities for fault tolerance consideration are specifically covered
in [BBKR11].

Further completed and ongoing research efforts build upon the approach
or include it as part of a broader methodology. The European research
project SLA@SOI [SLA12] has focused on the comprehensive and con-
sistent management of service-level-agreements (SLAs) across the stages
of an IT-based service life cycle. Within the context of this project, meth-
ods for automated SLA negotiation have been developed, using PCM per-
formance predictions and PCM-REL reliability predictions for determin-
ing feasible SLA parameters. Corresponding prediction functionality has
been integrated in an open source SLA management framework that consti-
tutes the main technological outcome of the project. Furthermore, method-
ologies for reliability assessment of web services and mashups have been
created based on PCM-REL, and corresponding tool support has been in-
tegrated in a mashup composition platform developed by the German re-
search project COCKTAIL [COC12]. PCM-REL is also employed by an
approach to multi-criteria optimization for automated improvement of soft-
ware architecture models [Koz11], and it is included in the corresponding
PerOpterix optimization framework [KRKB12]. Other research efforts are
targeted at an integrated consideration of business process and IT system
reliability; this research is ongoing and has not yet resulted in a publica-
tion. Finally, PCM-REL is integrated in the overall open source PCM tool
environment [FZI12], allowing for being used and further enhanced by any
interested third parties.

298

8.3 Future Work Potentials

8.3 Future Work Potentials

While PCM-REL constitutes a comprehensive solution for architecture-
based reliability prediction of IT systems, several new research questions
emerged during the development of the approach, and various aspects
lend themselves to being further explored. These aspects can be roughly
grouped into the following categories: (a) advanced methods for input es-
timations, (b) extended modelling capabilities, (c) extended analysis ca-
pabilities, (d) advanced evaluation of prediction results and (e) long-term
future work potentials.

Regarding input estimations (a), each PCM-REL instance includes reli-
ability annotations (namely software FOD probabilities, hardware MTTF
and MTTR values and network FOD probabilities), and it can include fur-
ther parameters for model calibration (encoded in component parameters
or otherwise included in the model). The ability to conduct all required
input estimations with sufficient confidence is a crucial prerequisite for a
successful application of the approach. An exemplary process of obtain-
ing input estimates has been demonstrated for the Astaro ASG case study,
but the development of systematic estimation methods is not in the scope
of the thesis itself and remains as an open task for future work. In spite of
existing research efforts regarding software and hardware reliability estima-
tion, significant challenges remain, and new methods are required that are
specifically tailored to PCM-REL, providing adequate input metrics (such
as software FOD probabilities) at adequate granularity levels (namely, dis-
tinguished according to FOD types and modelled PPOFs). The envisioned
methods should consider the phase of application of PCM-REL (such as
early design time versus system evolution) and the available information
sources in each phase. An equally important effort should be devoted to
the question how relevant statistical failure data can feasibly be collected
during development processes and during a system’s field operation, which
can serve as a stable and comprehensive source of information for the re-

299

8 Summary and Outlook

quired input estimations. In order to achieve credible results, the develop-
ment of data collection and input estimation methods should take place in
and be validated against the context of real-world industrial development
processes.

The existing modelling capabilities of PCM-REL (b) could be extended
in various directions. Typically, any extension requires the modellers to
provide more input information, and it may also require advanced analy-
sis methods to cope with the extended specifications. Hence, each possi-
ble extension has to be assessed against the potentially extended involved
modelling and analysis efforts. According to the author’s appraisement, the
following extensions promise the most significant benefits:

• Active components and asynchronous component interoperations:

These concepts are commonly found in event-based IT systems (and
were also present in the Astaro ASG case study) but cannot directly
be expressed in PCM-REL. An explicit support would enable a more
direct and intuitive modelling of this class of systems. A corre-
sponding extension could build upon existing recent work integrating
event-based communication in the PCM meta-model [KRK11].

• Reliability impacts through concurrency effects: Many FOD occur-
rences in multi-user/multi-tasking systems are induced by concur-
rency effects such as race conditions, starvations and deadlocks.
PCM-REL allows for modelling such failure potentials in an implicit
way only, by creating custom FOD types related to concurrency and
specifying PPOFs with corresponding FOD probabilities. More ex-
plicit modelling capabilities would be desirable to support software
architects in foreseeing and resolving concurrency issues at the soft-
ware architecture level.

• Variance of input estimations: To account for the uncertainty of
PCM-REL’s required input estimations, the approach could explic-
itly consider the involved variances, and it could calculate the corre-

300

8.3 Future Work Potentials

sponding variances of the resulting success and failure mode prob-
abilities. One of the possible applications of this extension is the
ranking of design alternatives with a known degree of confidence.
While uncertainty analyses have been provided by related ASRP ap-
proaches, extending these analyses to a combined consideration of
software and hardware failure potentials would constitute a new con-
tribution to the field.

• Stochastic dependencies between modelled failure potentials: Fail-
ure potentials in PCM-REL are modelled as being independent, while
interdependencies do exist in reality. Examples include physical in-
terferences such as power outages affecting multiple hardware re-
sources at once, as well as crash failures of software processes affect-
ing all executed components. Likewise, multiple visits to the same
PPOF during a usage scenario run may be stochastically dependent,
with the result of the first visit strongly influencing the success and
FOD probabilities of all further visits. Capturing such stochastic de-
pendencies must be done with care to avoid overstraining modellers;
still, the approach could benefit from corresponding extensions.

• Time-dependent failure potentials: A significant class of software-
induced FOD occurrences refers to aging effects, which slowly de-
grade the service levels provided by the system’s software compo-
nents and are commonly tackled by measures of software rejuvena-

tion [HKKF95]. A time-dependent specification of failure potentials
such as software FOD probabilities could account for aging effects
and would enable new kinds of analyses, such as the minimum and
maximum system reliability within a given interval of the system’s
mission time.

• Extended behavioural specifications: PCM-REL’s capabilities to ex-
press system behaviour could be extended to achieve more flexibility
and higher expressiveness. Examples of possible extensions include

301

8 Summary and Outlook

parametric specifications of FOD probabilities using the Stochastic

Expressions (StoEx) language [Koz08], multiple alternative paths be-
tween modelled actions (instead of sequences only), as well as loop
conditions that may change dynamically within a loop’s body be-
haviour.

Further future work potentials specifically target PCM-REL’s analysis ca-
pabilities (c). To this end, the consideration of stochastic dependencies
between multiple consecutive scenario runs would add further value to the
approach. Especially (but not only) for hardware resource failures, longer
periods of degradations or disruptions of system services can be expected,
and the extent and frequency of such periods is an important information
for the system’s users (beyond the averaged success probability of an in-
dividual scenario run only). Moreover, the analysis could be extended to
account for the possibility of multiple FOD occurrences during service ex-
ecution. Such an extension would enable asking for the number of occurred
FODs, rather than the individual failure mode probabilities only.

Another category of extensions refers to the support for automated eval-
uation of prediction results (d). As the case studies reported in the thesis
have shown, a single Markov analysis run may produce a high number of
individual results, and many variable model parameters may exist whose
values additionally influence the results. Hence, finding the most signifi-
cant parameters and deriving solid result interpretations constitutes a chal-
lenge. Systematic methods for automated selection of experiment runs and
interpretation of the obtained prediction results would provide improved
assistance for answering the relevant design questions with respect to the
system under study. Such capabilities could be built upon existing research
efforts for PCM-based multi-criteria optimization [Koz11].

The discussion of future work potentials is not limited to the aspects
mentioned so far. From a long-term perspective (e), additional possibilities
for extensions and transfers of scientific results to new problem domains
arise. To this end, modelling a system’s failure potentials does not only

302

8.4 Conclusions

lend itself to reliability predictions as described in the thesis – it can also
be a basis for the consideration of further dependability attributes, such as
availability, safety and integrity [ALRL04]. In particular, the differentiation
of multiple failure modes allows for considering the criticality of failure
occurrences and performing risk analyses [GPHG+03]. Such capabilities
could be combined with existing PCM-based performance and cost predic-
tions and corresponding trade-off analyses [Koz11] for a holistic support of
system design activities. Furthermore, PCM-REL’s separation of modelling
concerns allows for supporting scenarios with strongly distributed design
and development activities. For example, the reliability of service com-
positions could be predicted at composition time based on an automated
synthesis of existing independent reliability models of the required basic
services, taking into account the usage profile and execution environment
of the composition. Also, the approach could be used to efficiently evaluate
the different variants of a software product line [CN01], representing the
common set of core assets through an equivalent set of core specifications
that are reused across all variants. Finally, further contributions may be
achieved by extending PCM-REL towards new system domains, including
embedded systems and cloud-based systems.

8.4 Conclusions

The PCM-REL approach presented in this thesis tackles the fundamen-
tal challenge of predicting the reliability of IT systems with component-
based software architectures, and it fulfils the initially formulated criteria
of comprehensive reliability modelling and prediction. While being part
of the field of architecture-based software reliability prediction (ASRP),
PCM-REL overcomes weaknesses of existing ASRP approaches, includ-
ing insufficient scope (such as neglecting FT capabilities of a system un-
der study), missing differentiation (such as merging system behaviour and
usage aspects in probabilistic model annotations) and an oversimplified

303

8 Summary and Outlook

view on real-world failure processes and circumstances (such as using
the same modelling constructs for software and hardware failure poten-
tials). Through its advanced modelling and analysis capabilities, PCM-
REL achieves the following main benefits:

• Improved decision support for software architects: PCM-REL sup-
ports a comprehensive set of design decisions, covering changes in
a system’s software component structure, the component behaviours
and their included FT capabilities, the usage of hardware resources
by service execution, the physical distribution of the system to mul-
tiple computing nodes, the usage of system-external services, as well
as the system’s usage profile and its included usage scenarios. The
approach realizes the decision support through providing explicit
modelling constructs for all these architectural aspects. Furthermore,
the analysis provides detailed prediction results for each evaluated
architectural candidate, allowing for identification of critical parts in
the architecture or processing steps during service execution.

• Increased reusability of model artefacts: Thanks to the differenti-
ated modelling of individual architectural views and aspects through
PCM-REL, multiple variations of architecture specifications can re-
use significant parts of an underlying model base, lowering the over-
all effort and error-proneness of the modelling activity. Component
types specified in a PCM-REL repository model can be instantiated
within multiple system models, which in turn can be assigned to a
resource environment in different ways through multiple allocation
models. Moreover, different usage profiles are expressed through
multiple usage models referring to the same system model.

• Support of a truly distributed component-based development pro-

cess: The separation of modelling concerns provided by the approach
allows for multiple envisioned developer roles in a distributed devel-
opment process to independently contribute their respective parts of

304

8.4 Conclusions

an architectural specification; each role provides only the information
that it naturally possesses. Building upon the methodology of the ex-
isting PCM approach, the envisioned roles include component devel-
opers, software architects, component deployers and domain experts.

These benefits support the primary goal of PCM-REL to be applicable and
relevant to real-world software development processes; further important
features in this respect are the provision of a design-oriented modelling
language readily understandable by software architects, the consequent as-
sessment of system reliability from the user’s point of view and the cor-
responding utilization of the failure-on-demand (FOD) concept, as well as
the provision of comprehensive and ready-to-use tool support for reliability
modelling and analysis.

From a broader perspective, PCM-REL contributes to the overall vision
of a systematic consideration of reliability throughout system engineering

processes. Such a systematic approach should replace the currently still
prevalent best-effort strategies to eliminate as many failure potentials as
possible until resource and budget limits are reached. An attitude is re-
quired accepting failure potentials as a natural part of an IT system rather
than the result of failed development and production processes. Then, the
impacts of such potentials can be quantified, predicted and set in relation to
the system’s architecture. As a result, system reliability will be much more
plannable. Operators of IT systems and providers of IT-based services will
be able to interoperate on the basis of contractually specified quantitative
service reliability parameters. Quality assurance efforts will be allocated to
those parts of a software architecture where they exhibit the highest bene-
fits. Reliability targets of IT systems will be achieved more efficiently and
with higher confidence, ultimately leading to a more sustainable support of
businesses, communities and everyday life through these systems.

305

List of Figures

1.1 Media Hosting Solutions Offered by MediaServ 10

2.1 Hardware Resource Failure Model 22
2.2 Software Reliability Growth Modelling Scheme 26
2.3 DTMC Example . 34
2.4 Example of an Architectural DTMC Model 38
2.5 PCM Meta-Model Classes for Components, Roles and

Interfaces . 45
2.6 PCM Meta-Model Classes for Data Types and Parameters . 46
2.7 PCM Meta-Model Classes for Behavioural Specifications . 47
2.8 Repository Model for the Audio Hosting Example (Excerpt) 49
2.9 Behavioural Specifications for the Audio Hosting Example

(Excerpt) . 50
2.10 PCM System Meta-Model Classes 52
2.11 System Model for the Audio Hosting Example 53
2.12 PCM Meta-Model Classes for Resource Environments and

Allocations . 54
2.13 Audio Hosting Resource Environment and Allocation . . . 55
2.14 PCM Usage Meta-Model Classes 56
2.15 Specification of User Behaviour in the Audio Hosting

Example . 57
2.16 PCM Meta-Model Classes for Variable Usages 59

3.1 Software-induced Failures-on-Demand 65
3.2 Hardware-induced Failures-on-Demand 65

307

List of Figures

3.3 System Engineering Process 67

4.1 Behavioural View Example (Excerpt) 77
4.2 PCM-REL Failure-on-Demand Propagation 80
4.3 Meta-Model for Failure-on-Demand Type Specifications . 82
4.4 Failure-on-Demand Type Specifications in the Audio

Hosting Example . 83
4.5 Meta-Model for Software Failure Potentials 85
4.6 A Software Failure Potential in the Audio Hosting Example 87
4.7 Meta-Model for Hardware Failure Potentials 88
4.8 Meta-Model for Impacts of Hardware Failure Potentials on

Service Execution . 90
4.9 A Hardware Failure Potential in the Audio Hosting Example 91
4.10 Meta-Model for Network Failure Potentials 93
4.11 Network Reliability Specifications in the Audio Hosting

Example . 94
4.12 Meta-Model for System-External Failure Potentials 95
4.13 System-External Failure Potentials in the Audio Hosting

Example . 97
4.14 Meta-Model for Failure Recovery Specifications 98
4.15 Execution Flow through Recovery Actions 99
4.16 Recovery Block Example 101
4.17 Multi-Stage Recovery Example 102
4.18 Multi-Type Recovery Example 103
4.19 PCM-REL Modelling Environment 107

5.1 PCM-REL Markov Analysis Overview 111
5.2 DTMC Meta-Model . 116
5.3 Markov Chain Structure 117
5.4 Markov State Reduction 118
5.5 Markov State Substitution 119
5.6 Hierarchical DTMC Creation Pattern 122

308

List of Figures

5.7 Standard Evaluation of System Hardware States 126
5.8 Single-State Evaluation of System Hardware States 129
5.9 Relationship Between Evaluation Increments and Inaccuracy 136
5.10 Evaluation of Action Sequences 140
5.11 Evaluation of Default Actions 146
5.12 Evaluation of Branch Actions 147
5.13 Evaluation of Loop Actions 149
5.14 Evaluation of Fork Actions 152
5.15 Evaluation of Local Pointer Actions 155
5.16 Evaluation of Entry-Level Pointer Actions 155
5.17 Evaluation of Remote Pointer Actions 159
5.18 Evaluation of System-External Pointer Actions 159
5.19 Evaluation of Entry-Level Pointer Actions (Single-State) . 162
5.20 Evaluation of Remote Pointer Actions (Single-State) . . . 163
5.21 Evaluation of Computation Actions 168
5.22 Evaluation of Computation Actions (Single-State) 170
5.23 Markov Chain Appending (Single DTMC) 172
5.24 Evaluation of Recovery Actions 175
5.25 PCM-REL Reliability Evaluation Tool Support 187

6.1 Audio Hosting System Model (re+hr) 200
6.2 Audio Hosting Resource Environment and Allocation (re+hr)201
6.3 RDSEFF “DBAccessManagement.RetrieveFile” (re+hr) . . 202
6.4 Audio Hosting Reliability Predictions by Design

Alternatives, Usage Scenarios and Failure Dimensions . . 203
6.5 Software-Induced Failure-on-Demand Probabilities by

Design Alternatives, Usage Scenarios and
Failure-on-Demand Types 206

6.6 Robustness of Ranking of Design Alternatives Against
Parameter Group Variations, Differentiated by Usage
Scenarios and Change Directions 207

309

List of Figures

6.7 PCM-REL Markov Analysis and Simulation 210
6.8 Single-Download Usage Scenario for the Audio Hosting

Service . 211
6.9 Audio Hosting Reliability Predictions with Varying

Reliability Annotations, Based on the Single-Download
Usage Scenario . 211

6.10 Comparison of Reliability Predictions with Simulation by
Design Alternatives and Failure Dimensions 213

6.11 Differences Between Reliability Predictions and
Simulations, by Scaling Factors and Design Alternatives . 214

6.12 Variation of Hardware-Induced Reliability Impacts
Depending on System Mission Time 216

6.13 Comparison of Reliability Predictions with Simulation by
Failure-on-Demand Types and Measurement Runs 220

6.14 ASG Case Study Activities and Information Flows 223
6.15 ASG SMTP Processing System Model 230
6.16 ASG Resource Environment and Allocation Model 231
6.17 ASG Usage Model . 232
6.18 ASG SMTP Proxy Model 233
6.19 ASG SMTP Daemon Model 234
6.20 ASG Mail Analyzer Model 235
6.21 RDSEFF “ServerEximCtrl.ProcessMessage” (Excerpt) . . 237
6.22 RDSEFF “ServerEximChecks.PerformACLConnectCheck” 238
6.23 RDSEFF “ScannerChecks.PerformDecryption” 240
6.24 RDSEFF “ScannerChecks.AnalyzeExpressions” (Excerpt) 241
6.25 RDSEFF “ScannerChecks.PerformVirusDetection” (Excerpt)242
6.26 RDSEFF “ClusterProtocol.ProcessMessage” (Excerpt) . . 244
6.27 ASG Reliability Predictions by Failure Dimensions and

Mail Processing Steps . 256
6.28 Robustness of Ranking of Failure Dimensions Against

Software Baseline and Usage Profile Variations 257

310

List of Figures

6.29 Robustness of Ranking of Processing Step Reliability
Impacts Against Usage Profile Variations 259

6.30 Effectiveness of Redundant Virus Detection 260
6.31 Business Reporting System (Overview) 264

311

List of Tables

4.1 PCM-REL Points of Failure and Recovery 79

5.1 Markov Evaluation Levels 113
5.2 Markov Analysis Results 115
5.3 Distinguished Analysis Results for the Audio Hosting

Example . 115
5.4 Action Sequence Evaluation Example 144
5.5 Markov Action Types . 145
5.6 Complexity of DTMC Creation Procedures 181

6.1 Validation of Software Reliability Prediction 190
6.2 Overview of PCM-REL Case Study Features 197
6.3 ASG Software-Induced Failure-on-Demand Types 247
6.4 ASG Component Parameters 248
6.5 Semantic Categorization of ASG Bug Tracker Entries 252
6.6 Determination of Software Failure-on-Demand Probabilities 253

7.1 Feature Overview of ASRP Approaches 289

313

Listings

5.1 State Reduction Procedure 118
5.2 State Substitution Procedure 121
5.3 State Resolution Procedure 121
5.4 System Hardware States Evaluation Procedure (Standard) . 126
5.5 System Hardware States Evaluation Procedure (Single-State) 129
5.6 System Hardware States Evaluation Procedure

(Approximated) . 137
5.7 Action Sequence Evaluation Procedure 141
5.8 Scenario Execution Evaluation Procedure 141
5.9 Action Evaluation Procedure 145
5.10 Default Action Evaluation Procedure 146
5.11 Branch Action Evaluation Procedure 147
5.12 Loop Action Evaluation Procedure 149
5.13 Fork Action Evaluation Procedure 152
5.14 Pointer Action Evaluation Procedures 160
5.15 Pointer Action Evaluation Procedures (Single-State) 165
5.16 Computation Action Evaluation Procedure 169
5.17 Computation Action Evaluation Procedure (Single-State) . 171
5.18 Chain-Appending Procedure 173
5.19 Failure-Handling Procedure 175
5.20 Recovery Action Evaluation Procedures 176

315

Bibliography

[AD94] R. Alur and D. L. Dill, “A theory of timed automata,” The-

oretical Computer Science (TCS), vol. 126, no. 2, pp. 183–
235, 1994.

[AKL90] J. Arlat, K. Kanoun, and J.-C. Laprie, “Dependability model-
ing and evaluation of software fault-tolerant systems,” IEEE

Transactions on Computers (TC), vol. 39, no. 4, pp. 504–513,
Apr. 1990.

[Alb79] A. Albrecht, “Measuring application development productiv-
ity,” in Joint SHARE/GUIDE/IBM Application Development

Symposium, vol. 83, 1979, pp. 83–92.

[ALRL04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” IEEE Transactions on Dependable and Secure

Computing (TDSC), vol. 1, no. 1, pp. 11–33, 2004.

[Apa12] Apache Software Foundation, “Apache Derby,”
[Online]. Available: http://db.apache.org/derby/

2012.

[Ape05] S. Apel, “Software reliability growth prediction - state of the
art,” Fraunhofer IESE, Kaiserslautern, Tech. Rep., 2005.

[Ast12] Astaro GmbH & Co. KG, “Astaro Security Gateway,”
2012. [Online]. Available: http://www.astaro.com/products/
hardware-appliances

317

Bibliography

[Aut08] Automotive Industry Action Group (AIAG), Potential Fail-

ure Mode and Effects Analysis (FMEA), 2008.

[AV-10] AV-Comparatives e.V. (www.av-comparatives.org), “Anti-
Virus Comparative Report No. 25,” Tech. Rep., 2010.

[BBKR11] F. Brosch, B. Buhnova, H. Koziolek, and R. Reussner, “Re-
liability prediction for fault-tolerant software architectures,”
in International Conference on the Quality of Software Ar-

chitectures (QoSA), 2011, pp. 75–84.

[BBKR12] ——, “Reliability Prediction for Component-based Software
Architectures,” 2012. [Online]. Available: http://sdqweb.ipd.
kit.edu/wiki/ReliabilityPrediction

[BDT+87] S. J. Bavuso, J. B. Dugan, K. S. Trivedi, E. M. Rothmann,
and W. E. Smith, “Analysis of Typical Fault-Tolerant Ar-
chitectures using HARP,” IEEE Transactions on Reliability

(TR), vol. R-36, no. 2, pp. 176–185, Jun. 1987.

[Bec08] S. Becker, “Coupled Model Transformations for QoS En-
abled Component-Based Software Design,” Ph.D. disserta-
tion, University of Oldenburg, Germany, 2008.

[BEFL00] L. Briand, K. Emam, B. Freimut, and O. Laitenberger, “A
comprehensive evaluation of capture-recapture models for
estimating software defect content,” IEEE Transactions on

Software Engineering (TSE), vol. 26, no. 6, pp. 518–540,
2000.

[BF93] R. W. Butler and G. B. Finelli, “The infeasibility of quanti-
fying the reliability of life-critical real-time software,” IEEE

Transactions on Software Engineering (TSE), vol. 19, no. 1,
pp. 3–12, 1993.

318

Bibliography

[Bir10] A. Birolini, Reliability Engineering: Theory and Practice.
Springer, 2010.

[BKBR10] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner,
“Parameterized Reliability Prediction for Component-based
Software Architectures,” in International Conference on

the Quality of Software Architectures (QoSA), vol. 6093.
Springer, 2010, pp. 36–51.

[BKBR11] ——, “Architecture-Based Reliability Prediction with the
Palladio Component Model,” IEEE Transactions on Software

Engineering (TSE), vol. Pre-Print, 2011.

[BKH09] A. Beckhaus, L. Karg, and G. Hanselmann, “Applicability
of Software Reliability Growth Modeling in the Quality As-
surance Phase of a Large Business Software Vendor,” IEEE

International Computer Software and Applications Confer-

ence (COMPSAC), vol. 1, pp. 209–215, 2009.

[BKR09] S. Becker, H. Koziolek, and R. Reussner, “The Palladio
component model for model-driven performance prediction,”
Journal of Systems and Software (JSS), vol. 82, no. 1, pp. 3–
22, 2009.

[BL08] V. S. Barbu and N. Limnios, Semi-Markov Chains and Hid-

den Semi-Markov Models toward Applications. Springer,
US, 2008.

[BMP09] S. Bernardi, J. Merseguer, and D. C. Petriu, “A dependabil-
ity profile within MARTE,” Software & Systems Modeling

(SoSyM), vol. 10, no. 3, pp. 313–336, Aug. 2009.

[BZ09] F. Brosch and B. Zimmerova, “Design-Time Reliability Pre-
diction for Software Systems,” in International Workshop on

319

Bibliography

Software Quality and Maintainability (SQM), 2009, pp. 70–
74.

[CD09] C. Catal and B. Diri, “A systematic review of software
fault prediction studies,” Expert Systems with Applications

(ESWA), vol. 36, no. 4, pp. 7346–7354, May 2009.

[CG07a] V. Cortellessa and V. Grassi, “A Modeling Approach to
Analyze the Impact of Error Propagation on Reliability of
Component-Based Systems,” in International Symposium on

Component Based Software Engineering (CBSE), ser. Lec-
ture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2007, pp. 140–156.

[CG07b] ——, “Reliability Modeling and Analysis of Service-
Oriented Architectures,” in Test and Analysis of Web Ser-

vices. Springer Berlin / Heidelberg, 2007, pp. 339–362.

[Che80] R. C. Cheung, “A user-oriented software reliability model,”
IEEE Transactions on Software Engineering (TSE), vol. 6,
no. 2, pp. 118–125, 1980.

[CL04] X. Cai and M. R. Lyu, “An Empirical Study on Reliability
Modeling for Diverse Software Systems,” in IEEE Interna-

tional Symposium on Software Reliability Engineering (IS-

SRE), 2004, pp. 125 – 136.

[CLL78] A. Costes, C. Landrault, and J.-C. Laprie, “Reliability and
Availability Models for Maintained Systems Featuring Hard-
ware Failures and Design Faults,” IEEE Transactions on

Computers (TC), vol. C-27, no. 6, pp. 548–560, 1978.

[CLV05] X. Cai, M. R. Lyu, and M. A. Vouk, “An Experimental Eval-
uation on Reliability Features of N-Version Programming,”

320

Bibliography

in IEEE International Symposium on Software Reliability

Engineering (ISSRE), 2005, pp. 161 – 170.

[CMRK10] D. Cooray, S. Malek, R. Roshandel, and D. Kilgore, “RE-
SISTing reliability degradation through proactive reconfig-
uration,” in IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE), 2010, pp. 83–92.

[CN01] P. Clements and L. Northrop, Software Product Lines: Prac-

tices and Patterns. Addison-Wesley Professional, 2001.

[COC12] COCKTAIL, “Skalierbare, KMU-zentrierte Mashup &
SaaS Diensteplattform,” 2012. [Online]. Available: http:
//www.cocktail-projekt.de/

[Cox06] D. Cox, Principles of statistical inference.
versity Press, 2006.

Cambridge Uni-

[CRMG08] L. Cheung, R. Roshandel, N. Medvidovic, and L. Gol-
ubchik, “Early prediction of software component reliabil-
ity,” in International Conference on Software Engineering

(ICSE). ACM, 2008, pp. 111–120.

[CSC02] V. Cortellessa, H. Singh, and B. Cukic, “Early reliability as-
sessment of UML based software models,” in International

Workshop on Software and Performance (WOSP). New
York, New York, USA: ACM Press, 2002, pp. 302–309.

[CW90] T. Compton and C. Withrow, “Prediction and control of ADA
software defects,” Journal of Systems and Software (JSS),
vol. 12, no. 3, pp. 199–207, Jul. 1990.

[DDPH94] J. B. Dugan, S. A. Doyle, and F. A. Patterson-Hine, “Simple
models of hardware and software fault tolerance,” in Reli-

ability and Maintainability Symposium (RAMS), 1994, pp.
124–129.

321

Bibliography

[DJP96] T. Delong, B. Johnson, and J. Profeta III, “A fault injec-
tion technique for VHDL behavioral-level models,” Design

& Test of Computers, vol. 13, no. 4, pp. 24–33, 1996.

[DL93a] J. B. Dugan and M. R. Lyu, “System-level reliability and
sensitivity analyses for three fault-tolerant system architec-
tures,” in International Working Conference on Dependable

Computing for Critical Applications, 1993, pp. 1–22.

[DL93b] ——, “System reliability analysis of an N-version program-
ming application,” in IEEE International Symposium on Soft-

ware Reliability Engineering (ISSRE), 1993, pp. 103–111.

[DL95] ——, “Dependability Modeling for Fault-Tolerant Software
and Systems,” in Software Fault Tolerance, M. R. Lyu, Ed.
John Wiley & Sons, 1995, pp. 109–138.

[DS95] J. Dolbec and T. Shepard, “A Component Based Software
Reliability Model,” in Conference of the Centre for Advanced

Studies on Collaborative Research (CASCON), 1995.

[DS97] M. Diaz and J. Sligo, “How software process improvement
helped Motorola,” IEEE Software, vol. 14, no. 5, pp. 75–81,
1997.

[DT89] J. B. Dugan and K. S. Trivedi, “Coverage modeling for de-
pendability analysis of fault-tolerant systems,” IEEE Trans-

actions on Computers (TC), vol. 38, no. 6, pp. 775–787, Jun.
1989.

[DW04a] O. Das and C. M. Woodside, “Computing the performabil-
ity of layered distributed systems with a management archi-
tecture,” in International Workshop on Software and Perfor-

mance (WOSP), vol. 29, no. 1, 2004, pp. 174–185.

322

Bibliography

[DW04b] ——, “Dependability modeling of self-healing client-server
applications,” in Architecting Dependable Systems, lncs ed.
Springer Berlin / Heidelberg, 2004, vol. 3069, pp. 128–165.

[Ecl12a] Eclipse Foundation, “Eclipse Modeling Framework (EMF),”
2012. [Online]. Available: http://www.eclipse.org/modeling/
emf/

[Ecl12b] ——, “Eclipse Rich Client Platform (RCP),” 2012. [Online].
Available: http://www.eclipse.org/home/categories/rcp.php

[Ecl12c] ——, “Graphical Modeling Framework (GMF),” 2012.
[Online]. Available: http://www.eclipse.org/modeling/gmp/

[EL85] D. E. Eckhardt and L. D. Lee, “A theoretical basis for the
analysis of multiversion software subject to coincident er-
rors,” IEEE Transactions on Software Engineering (TSE),
vol. SE-11, no. 12, pp. 1511–1517, 1985.

[Eve99] W. Everett, “Software Component Reliability Analysis,” in
IEEE Symposium on Application Specific Systems and Soft-

ware Engineering and Technology (ASSET). IEEE, 1999,
pp. 204–211.

[FGGM10] A. Filieri, C. Ghezzi, V. Grassi, and R. Mirandola, “Relia-
bility Analysis of Component-Based Systems with Multiple
Failure Modes,” in International Symposium on Component

Based Software Engineering (CBSE), 2010, pp. 1–20.

[Fin93] A. Finkelstein, “Report of the Inquiry Into The London Am-
bulance Service,” South West Thames Regional Health Au-
thority, Tech. Rep., 1993.

[FN99] N. Fenton and M. Neil, “A critique of software defect predic-
tion models,” IEEE Transactions on Software Engineering

(TSE), vol. SE-10, no. 4, pp. 675–689, 1999.

323

Bibliography

[FNM+08] N. Fenton, M. Neil, W. Marsh, P. Hearty, L. Radlinski, and
P. Krause, “On the effectiveness of early life cycle defect pre-
diction with Bayesian Nets,” Empirical Software Engineer-

ing (EMSE), vol. 13, no. 5, pp. 499–537, 2008.

[FZI12] FZI Forschungszentrum Informatik, “The Palladio Ar-
chitecture Simulator,” 2012. [Online]. Available: http:
//www.palladio-simulator.com/

[Gaf84] J. Gaffney, “Estimating the Number of Faults in Code,” IEEE

Transactions on Software Engineering (TSE), vol. 29, no. 2,
pp. 459–464, 1984.

[GHK+99] S. Garg, Y. Huang, C. Kintala, K. S. Trivedi, and S. Yajnik,
“Performance and reliability evaluation of passive replication
schemes in application level fault tolerance,” in International

Symposium on Fault-Tolerant Computing (FTCS). IEEE
Comput. Soc, 1999, pp. 322–329.

[GI93] K. Goswami and R. Iyer, “Simulation of software behav-
ior under hardware faults,” in International Symposium on

Fault-Tolerant Computing (FTCS), vol. 1, 1993, pp. 218–
227.

[GL05] S. S. Gokhale and M. R. Lyu, “A simulation approach to
structure-based software reliability analysis,” IEEE Trans-

actions on Software Engineering (TSE), vol. 31, no. 8, pp.
643–656, Aug. 2005.

[GLT97] S. S. Gokhale, M. R. Lyu, and K. S. Trivedi, “Reliability
simulation of fault-tolerant software and systems,” in Pa-

cific Rim International Symposium on Fault-tolerant Systems

(PRFTS), 1997, pp. 167–173.

324

Bibliography

[GLT98] ——, “Reliability simulation of component-based software
systems,” in International Symposium on Software Reliabil-

ity Engineering (ISSRE), 1998, pp. 192–201.

[GMS07] V. Grassi, R. Mirandola, and A. Sabetta, “Filling the
gap between design and performance/reliability models of
component-based systems: A model-driven approach,” Jour-

nal of Systems and Software (JSS), vol. 80, no. 4, pp. 528–
558, Apr. 2007.

[Gok05] S. S. Gokhale, “Software reliability analysis with
component-level fault tolerance,” in Reliability and

Maintainability Symposium (RAMS), 2005, pp. 610–614.

[Gok07] ——, “Architecture-Based Software Reliability Analysis:
Overview and Limitations,” IEEE Transactions on Depend-

able and Secure Computing (TDSC), vol. 4, no. 1, pp. 32–40,
2007.

[GPHG+03] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W. Ab-
delmoez, D. E. M. Nassar, H. H. Ammar, and A. Mili,
“Architectural-level risk analysis using UML,” IEEE Trans-

actions on Software Engineering (TSE), vol. 29, no. 10, pp.
946–960, 2003.

[GPHP05] K. Goseva-Popstojanova, M. Hamill, and R. Perugupalli,
“Large Empirical Case Study of Architecture-Based Soft-
ware Reliability,” in IEEE International Symposium on Soft-

ware Reliability Engineering (ISSRE), 2005, pp. 43–52.

[GPHW06] K. Goseva-Popstojanova, M. Hamill, and X. Wang,
“Adequacy, Accuracy, Scalability, and Uncertainty of
Architecture-based Software Reliability: Lessons Learned
from Large Empirical Case Studies,” in IEEE International

325

Bibliography

Symposium on Software Reliability Engineering (ISSRE),
2006, pp. 197–203.

[GPK03] K. Goseva-Popstojanova and S. Kamavaram, “Assessing un-
certainty in reliability of component-based software sys-
tems,” in International Symposium on Software Reliability

Engineering (ISSRE), 2003, pp. 307–320.

[GPT01] K. Goseva-Popstojanova and K. S. Trivedi, “Architecture-
based approach to reliability assessment of software sys-
tems,” Performance Evaluation (PEVA), vol. 45, no. 2-3, pp.
179–204, 2001.

[Gra05] V. Grassi, “Architecture-based reliability prediction for
service-oriented computing,” in Architecting Dependable

Systems, lncs ed. Springer Berlin / Heidelberg, 2005, vol.
3549, pp. 279–299.

[GRdL02] P. A. Guerra, C. M. F. Rubira, and R. de Lemos, “An ideal-
ized fault-tolerant architectural component,” in Workshop on

Architecting Dependable Systems (WADS), 2002.

[GT02] S. S. Gokhale and K. S. Trivedi, “Reliability Prediction and
Sensitivity Analysis Based on Software Architecture,” in
IEEE International Symposium on Software Reliability En-

gineering (ISSRE), 2002, pp. 64–75.

[GWHT04] S. S. Gokhale, E. Wong, J. Horgan, and K. S. Trivedi, “An
analytical approach to architecture-based software perfor-
mance and reliability prediction,” Performance Evaluation,
vol. 58, no. 4, pp. 391–412, Dec. 2004.

[GWTH98] S. S. Gokhale, E. Wong, K. S. Trivedi, and J. Horgan, “An
analytical approach to architecture-based software reliability

326

Bibliography

prediction,” in IEEE International Computer Performance

and Dependability Symposium (IPDS), 1998, pp. 13–22.

[HA08] N. B. Harrison and P. Avgeriou, “Incorporating fault toler-
ance tactics in software architecture patterns,” in Interna-

tional Workshop on Software Engineering for Resilient Sys-

tems (SERENE), 2008, pp. 9–18.

[Hal77] M. Halstead, Elements of Software Science (Operating and

programming systems series). New York: Elsevier Science
Inc., 1977.

[Ham92] D. Hamlet, “Are We Testing for True Reliability?”
Software, vol. 9, no. 4, pp. 21–27, 1992.

IEEE

[Hap04] J. Happe, “Predicting the Reliability of Component-Based
Software Architectures,” Master Thesis, 2004.

[Har87] D. Harel, “Statecharts: A visual formalism for complex sys-
tems,” Science of Computer Programming (SCP), vol. 8,
no. 3, pp. 231–274, 1987.

[HKKF95] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Soft-
ware rejuvenation: Analysis, module and applications,”
in International Symposium on Fault-Tolerant Computing

(FTCS). IEEE, 1995, pp. 381–390.

[HLL+05] B. Huang, X. Li, M. Li, J. Bernstein, and C. Smidts, “Study
of the Impact of Hardware Fault on Software Reliability,” in
IEEE International Symposium on Software Reliability En-

gineering (ISSRE), 2005, pp. 63–72.

[HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction

to Automata Theory, Languages, and Computation, 2nd ed.
Addison-Wesley Longman, Amsterdam, 2001.

327

Bibliography

[HMW01] D. Hamlet, D. Mason, and D. Woit, “Theory of software re-
liability based on components,” in International Conference

on Software Engineering (ICSE), 2001, pp. 361–370.

[HWW+12] P. Hazel, A. Williams, D. Woodhouse, G. Fowler, J. Jetmore,
M. Haber, M. Cardwell, N. Metheringham, P. Bowyer,
P. Pennock, T. Kistner, and T. Sheen, “Exim Internet
Mailer,” 2012. [Online]. Available: http://www.exim.org/

[IEE90] IEEE Computer Society, IEEE Standard Glossary of Soft-

ware Engineering Terminology (IEEE 610.12-1990), 1990.

[IEE08] IEEE Reliability Society, Recommended Practice on Soft-

ware Reliability (IEEE 1633), 2008.

[Imm06] A. Immonen, “A Method for Predicting Reliability and
Availability at the Architecture Level,” in Software Product

Lines. Berlin, Heidelberg: Springer, 2006, pp. 373–422.

[IN08] A. Immonen and E. Niemelä, “Survey of reliability and avail-
ability prediction methods from the viewpoint of software
architecture,” Software & Systems Modeling (SoSyM), vol. 7,
no. 1, pp. 49–65, 2008.

[Int04] International Electrotechnical Commission (IEC), Reliability

growth - Statistical test and estimation methods (IEC 61164),
2004.

[Int06a] ——, Analysis techniques for dependability - Reliability

block diagram and boolean methods (IEC 61078), 2006.

[Int06b] ——, Application of Markov techniques (IEC 61165), 2006.

[Int06c] ——, Fault Tree Analysis (IEC 61025), 2006.

328

Bibliography

[Int06d] ——, Procedures for failure mode and effect analysis FMEA

(IEC 60812), 2006.

[KB09] H. Koziolek and F. Brosch, “Parameter Dependencies
for Component Reliability Specifications,” in International

Workshop on Formal Engineering Approaches to Software

Components and Architectures (FESCA), ser. ENTCS, vol.
253, no. 1. Elsevier, 2009, pp. 23–38.

[Kie03] J. Kienzle, “Software fault tolerance: an overview,” in Ada-

Europe International Conference on Reliable Software Tech-

nologies, ser. Ada-Europe’03. Berlin, Heidelberg: Springer-
Verlag, 2003, pp. 45–67.

[KKB+93] K. Kanoun, M. Kaaniche, C. Beounes, J.-C. Laprie, and
J. Arlat, “Reliability growth of fault-tolerant software,” IEEE

Transactions on Reliability (TR), vol. 42, no. 2, pp. 205–219,
Jun. 1993.

[KKM03] M. Kaaniche, K. Kanoun, and M. Martinello, “A user-
perceived availability evaluation of a web based travel
agency,” in International Conference on Dependable Sys-

tems and Networks (DSN), 2003, pp. 709–718.

[KKR01] M. Kaaniche, K. Kanoun, and M. Rabah, “A Framework for
Modeling Availability of e-Business Systems,” in Interna-

tional Conference on Computer Communications and Net-

works (ICCCN), 2001, pp. 40–45.

[KM97] S. Krishnamurthy and A. Mathur, “On the Estimation of Re-
liability of a Software System Using Reliabilities of its Com-
ponents,” in IEEE International Symposium on Software Re-

liability Engineering (ISSRE), 1997, pp. 146–155.

329

Bibliography

[KMT09] D. Kim, F. Machida, and K. S. Trivedi, “Availability Mod-
eling and Analysis of a Virtualized System,” in IEEE Pa-

cific Rim International Symposium on Dependable Comput-

ing (PRDC), Nov. 2009, pp. 365–371.

[KOB00] K. Kanoun and M. Ortalo-Borrel, “Fault-tolerant system
dependability-explicit modeling of hardware and software
component-interactions,” IEEE Transactions on Reliability

(TR), vol. 49, no. 4, pp. 363–376, 2000.

[KOBMP99] K. Kanoun, M. Ortalo-Borrel, T. Morteveille, and A. Pey-
tavin, “Availability of CAUTRA, a subset of the French air
traffic control system,” IEEE Transactions on Computers

(TC), vol. 48, no. 5, pp. 528–535, May 1999.

[Koz08] H. Koziolek, “Parameter Dependencies for Reusable Perfor-
mance Specifications of Software Components,” Ph.D. dis-
sertation, University of Oldenburg, 2008.

[Koz11] A. Koziolek, “Automated Improvement of Software Ar-
chitecture Models for Performance and Other Quality At-
tributes,” Ph.D. dissertation, Karlsruhe Institute of Technol-
ogy (KIT), Germany, 2011.

[KP00] W. Kuo and R. Prasad, “An annotated overview of system-
reliability optimization,” IEEE Transactions on Reliability

(TR), vol. 49, no. 2, pp. 176–187, Jun. 2000.

[KRK11] B. Klatt, C. Rathfelder, and S. Kounev, “Integration of event-
based communication in the palladio software quality predic-
tion framework,” in International Conference on the Quality

of Software Architectures (QoSA), 2011, pp. 43–52.

330

Bibliography

[KRKB12] A. Koziolek, R. Reussner, H. Koziolek, and S. Becker,
“PerOpterix,” 2012. [Online]. Available: http://sdqweb.ipd.
kit.edu/wiki/PerOpteryx

[KSB10] H. Koziolek, B. Schlich, and C. Bilich, “A Large-Scale In-
dustrial Case Study on Architecture-based Software Reliabil-
ity Analysis,” in IEEE International Symposium on Software

Reliability Engineering (ISSRE). IEEE, 2010, pp. 279–288.

[LABK90] J.-C. Laprie, J. Arlat, C. Beounes, and K. Kanoun, “Defi-
nition and analysis of hardware-and software-fault-tolerant
architectures,” Computer, vol. 23, no. 7, pp. 39–51, 1990.

[LG08] M. Lipton and S. S. Gokhale, “Heuristic Component Place-
ment for Maximizing Software Reliability,” in Recent Ad-

vances in Reliability and Quality in Design. Springer, 2008,
pp. 309–330.

[Lit05] B. Littlewood, “Dependability Assessment of Software-
based Systems : State of the Art,” in International Confer-

ence on Software Engineering (ICSE), 2005, pp. 6–7.

[LK92] J.-C. Laprie and K. Kanoun, “X-ware reliability and avail-
ability modeling,” IEEE Transactions on Software Engineer-

ing (TSE), vol. 18, no. 2, pp. 130–147, 1992.

[LKBK91] J.-C. Laprie, K. Kanoun, C. Beounes, and M. Kaaniche,
“The KAT (Knowledge-Action-Transformation) approach to
the modeling and evaluation of reliability and availability
growth,” IEEE Transactions on Software Engineering (TSE),
vol. 17, no. 4, pp. 370–382, 1991.

[LM89] B. Littlewood and D. R. Miller, “Conceptual modeling of
coincident failures in multiversion software,” IEEE Trans-

331

Bibliography

actions on Software Engineering (TSE), vol. 15, no. 12, pp.
1596–1614, 1989.

[LN97] P. Lakey and A. Neufelder, System and Software Reliability

Assurance Notebook. Rome Lab, FSC-RELI, 1997.

[LR02] C. Liu and D. J. Richardson, “RAIC: Architecting depend-
able systems through redundancy and just-in-time testing,”
in Workshop on Architecting Dependable Systems (WADS),
2002.

[LW97] B. Littlewood and D. Wright, “Some conservative stopping
rules for the operational testing of safety critical software,”
IEEE Transactions on Software Engineering (TSE), vol. 23,
no. 11, pp. 673–683, 1997.

[Lyu95] M. R. Lyu, Ed., Software Fault Tolerance.
Sons, 1995.

John Wiley &

[Lyu07] M. R. Lyu, “Software reliability engineering: A roadmap,”
in Future of Software Engineering (FOSE), Washington, DC,
2007, pp. 153–170.

[McC76] T. McCabe, “A Complexity Measure,” IEEE Transactions on

Software Engineering (TSE), vol. SE-2, no. 4, pp. 308–320,
Dec. 1976.

[Mes04] S. Mesure, “Sainsbury’s supply problems lead to
first loss in 135 years,” 2004. [Online]. Avail-
able: http://www.independent.co.uk/news/business/news/
sainsburys-supply-problems-lead-to-first-loss-in-135-years/
6157819.html

[MGC07] Y. Ma, L. Guo, and B. Cukic, “A statistical framework for
the prediction of fault-proneness,” in Advances in Machine

332

Bibliography

Learning Application in Software Engineering.
2007, pp. 237–265.

Idea Group,

[MGF07] T. Menzies, J. Greenwald, and A. Frank, “Data Mining Static
Code Attributes to Learn Defect Predictors,” IEEE Transac-

tions on Software Engineering (TSE), vol. 33, no. 1, pp. 2–13,
2007.

[MIO90] J. Musa, A. Iannino, and K. Okumoto, Software reliabil-

ity: measurement, prediction, application (professional ed.).
New York, NY, USA: McGraw-Hill, Inc., 1990.

[MKK03] M. Martinello, M. Kaaniche, and K. Kanoun, “Web Service
Availability - Impact of Error Recovery,” Reliability Engi-

neering & System Safety (RESS), vol. 89, no. 1, pp. 6–16,
2003.

[MMN+92] K. Miller, L. Morell, R. Noonan, S. Park, D. Nicol, B. Mur-
rill, and J. Voas, “When Testing Reveals No Failures,” IEEE

Transactions on Software Engineering (TSE), vol. 18, no. 1,
pp. 33–43, 1992.

[MR07] H. Muccini and A. Romanovsky, “Architecting Fault Toler-
ant Systems,” Technical Report CS-TR-1051, p. 62, 2007.

[MRKE09] S. Malek, R. Roshandel, D. Kilgore, and I. Elhag, “Improv-
ing the reliability of mobile software systems through contin-
uous analysis and proactive reconfiguration,” in International

Conference on Software Engineering (ICSE) - Companion

Volume, 2009, pp. 275–278.

[MSHT92] J. K. Muppala, A. S. Sathaye, R. C. Howe, and K. S. Trivedi,
“Dependability modeling of a heterogeneous VAX-cluster

333

Bibliography

system using stochastic reward nets,” in Hardware and soft-

ware fault tolerance in parallel computing systems. Ellis
Horwood, 1992, pp. 33–59.

[Mus04] J. Musa, Software Reliability Engineering: More Reliable

Software Faster and Cheaper, 2nd ed. AuthorHouse, 2004.

[MZ08] A. Mohamed and M. Zulkernine, “On Failure Propagation in
Component-Based Software Systems,” in International Con-

ference on Quality Software (QSIC), Aug. 2008, pp. 402–
411.

[Obj07] Object Management Group (OMG), UML profile for Model-

ing and Analysis of Real Time Embedded Systems (MARTE),
2007.

[Ora12a] Oracle Corporation, “GlassFish Application Server,” 2012.
[Online]. Available: http://glassfish.java.net/

[Ora12b] ——, “The Enterprise JavaBeans (EJB) 3.0 Specification,”
2012. [Online]. Available: http://java.sun.com/products/ejb/
docs.html

[PA02] H. Pentti and H. Atte, “Failure mode and effects analysis of
software-based automation systems,” Radiation and Nuclear
Safety Authority (STUK), Tech. Rep., 2002.

[PDAC05] P. Popic, D. Desovski, W. Abdelmoez, and B. Cukic, “Error
Propagation in the Reliability Analysis of Component Based
Systems,” in IEEE International Symposium on Software Re-

liability Engineering (ISSRE), 2005, pp. 53–62.

[PEO11] M. Palviainen, A. Evesti, and E. Ovaska, “The reliability es-
timation, prediction and measuring of component-based soft-
ware,” Journal of Systems and Software (JSS), vol. 84, no. 6,
pp. 1054–1070, 2011.

334

Bibliography

[PPW+05] A. Pretschner, W. Prenninter, S. Wagner, C. Kühnel,
M. Baumgartner, B. Sostawa, R. Zölch, and T. Stauner, “One
Evaluation of Model-Based Testing and its Automation,” in
International Conference on Software Engineering (ICSE),
no. 2, 2005, pp. 392–401.

[Pre03] A. Pretschner, “Zum modellbasierten funktionalen Test reak-
tiver Systeme,” Ph.D. dissertation, Technische Universität
München, Germany, 2003.

[Pro03] S. J. Prowell, “Jumbl: A tool for model-based statistical
testing,” in International Conference on System Sciences

(HICSS), 2003.

[PSMK03] P. Popov, L. Strigini, J. May, and S. Kuball, “Estimating
bounds on the reliability of diverse systems,” IEEE Trans-

actions on Software Engineering (TSE), vol. 29, no. 4, pp.
345–359, Apr. 2003.

[PWB07] E. Pinheiro, W.-D. Weber, and L. Barroso, “Failure trends
in a large disk drive population,” in USENIX Conference on

File and Storage Technologies (FAST). Berkeley: USENIX
Association, 2007, pp. 17–29.

[Ran75] B. Randell, “System structure for software fault tolerance,”
IEEE Transactions on Software Engineering (TSE), vol. SE-
1, no. 2, pp. 220–232, 1975.

[RBB+11] R. Reussner, S. Becker, E. Burger, J. Happe, M. Hauck,
A. Koziolek, H. Koziolek, K. Krogmann, and M. Kuper-
berg, “The Palladio Component Model,” Karlsruhe Institute
of Technology (KIT), Tech. Rep., 2011.

[RFKK08] A.-E. Rugina, P. H. Feiler, K. Kanoun, and M. Kaaniche,
“Software dependability modeling using an industry-

335

Bibliography

standard architecture description language,” in European

Congress of Embedded Real Time Software (ERTS), 2008.

[RKK07] A.-E. Rugina, K. Kanoun, and M. Kaaniche, “A system de-
pendability modeling framework using aadl and gspns,” in
Architecting Dependable Systems, 2007, pp. 14–38.

[RPS03] R. Reussner, I. Poernomo, and H. Schmidt, “Reasoning about
software architectures with contractually specified compo-
nents,” Component-Based Software Quality, vol. 2693, pp.
287–325, 2003.

[RRU05] G. N. Rodrigues, D. Rosenblum, and S. Uchitel, “Using sce-
narios to predict the reliability of concurrent component-
based software systems,” in International Conference on

Fundamental Approaches to Software Engineering (FASE).
Springer LNCS, 2005, pp. 111–126.

[RS07] H. Ramasamy and M. Schunter, “Architecting dependable
systems using virtualization,” in Workshop on Architecting

Dependable Systems (WADS). Citeseer, 2007.

[RSP03] R. Reussner, H. Schmidt, and I. Poernomo, “Reliability pre-
diction for component-based software architectures,” Jour-

nal of Systems and Software (JSS), vol. 66, no. 3, pp. 241–
252, 2003.

[SG07] B. Schroeder and G. Gibson, “Disk failures in the real world:
What does an MTTF of 1,000,000 hours mean to you?”
in USENIX Conference on File and Storage Technologies

(FAST). USENIX Association, 2007, pp. 1–6.

[SGNG10] K. Sharma, R. Garg, C. Nagpal, and R. Garg, “Selection of
Optimal Software Reliability Growth Models Using a Dis-

336

Bibliography

tance Based Approach,” IEEE Transactions on Reliability

(TR), vol. 59, no. 2, pp. 266–276, 2010.

[SL88] K. Shin and T.-H. Lin, “Modeling and measurement of er-
ror propagation in a multimodule computing system,” IEEE

Transactions on Computers (TC), vol. 37, no. 9, pp. 1053–
1066, 1988.

[SLA12] SLA@SOI, “Empowering the service industry with SLA-
aware infrastructures,” 2012. [Online]. Available: http:
//sla-at-soi.eu/

[ST06] V. Sharma and K. S. Trivedi, “Reliability and Performance
of Component Based Software Systems with Restarts, Re-
tries, Reboots and Repairs,” IEEE International Symposium

on Software Reliability Engineering (ISSRE), pp. 299–310,
Nov. 2006.

[ST07a] N. Sato and K. S. Trivedi, “Accurate and efficient stochastic
reliability analysis of composite services using their compact
Markov reward model representations,” in IEEE Interna-

tional Conference on Services Computing (SCC), Jul. 2007,
pp. 114–121.

[ST07b] ——, “Stochastic modeling of composite web services for
closed-form analysis of their performance and reliability bot-
tlenecks,” in International Conference on Service Oriented

Computing (ICSOC), no. Figure 1. Springer, 2007, pp. 107–
118.

[ST07c] V. Sharma and K. S. Trivedi, “Quantifying software perfor-
mance, reliability and security: An architecture-based ap-
proach,” Journal of Systems and Software (JSS), vol. 80,
no. 4, pp. 493–509, Apr. 2007.

337

Bibliography

[Sta87] G. E. Stark, “Dependability Evaluation of Integrated Hard-
ware/Software Systems,” IEEE Transactions on Reliability

(TR), vol. R-36, no. 4, pp. 440–444, Oct. 1987.

[STTA08] W. E. Smith, K. S. Trivedi, L. Tomek, and J. Ackaret, “Avail-
ability analysis of blade server systems,” IBM Systems Jour-

nal, vol. 47, no. 4, pp. 621–640, 2008.

[Szy02] C. Szyperski, Component Software: Beyond Object-Oriented

Programming, 2nd ed. Boston: Addison-Wesley Longman
Publishing Co., Inc., 2002.

[TCD+08] K. S. Trivedi, G. Ciardo, B. Dasarathy, M. Grottke,
A. Rindos, and B. Vashaw, “Achieving and assuring high
availability,” in IEEE Workshop on Dependable Parallel,

Distributed and Network-Centric Systems (DPDNS). Ieee,
Apr. 2008, pp. 1–7.

[TG83] K. S. Trivedi and R. M. Geist, “Decomposition in reliabil-
ity analysis of fault-tolerant systems,” IEEE Transactions on

Reliability (TR), vol. R-32, no. 5, pp. 463–468, 1983.

[TP00] W. Torres-Pomales, “Software Fault Tolerance: A Tutorial,”
NASA, Tech. Rep., 2000.

[Tri02] K. S. Trivedi, Probability and statistics with reliability, queu-

ing and computer science applications, 2nd ed. Chichester,
UK: John Wiley and Sons Ltd., 2002.

[TST02] M. Trapp, B. Schürmann, and T. Tetteroo, “Failure Behavior
Analysis for Reliable Distributed Embedded Systems,” in In-

ternational Parallel and Distributed Processing Symposium

(IPDPS). IEEE Computer Society, 2002.

338

Bibliography

[TW99] M. Thomason and J. Whittaker, “Rare failure-state in a
Markov chain model for software reliability,” in IEEE In-

ternational Symposium on Software Reliability Engineering

(ISSRE), 1999, pp. 12–19.

[TWH+08] K. S. Trivedi, D. Wang, D. J. Hunt, A. Rindos, W. E. Smith,
and B. Vashaw, “Availability Modeling of SIP Protocol on
IBM c� WebSphere c�,” in IEEE Pacific Rim International

Symposium on Dependable Computing (PRDC), 2008, pp.
323–330.

[Uni06] United States Army, “Failure Modes, Effects and Critical-
ity Analysis (FMECA) for Command, Control, Communica-
tions, Computer, Intelligence, Surveillance, and Reconnais-
sance (C4ISR) Facilities (Technical Manual TM 5-698-4),”
Washington, DC, Tech. Rep. September, 2006.

[UPL11] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of
model-based testing approaches,” Software Testing, Verifica-

tion and Reliability (STVR), 2011.

[Vij03] G. Vijayaraghavan, “A Taxonomy of e-commerce Risks and
Failures,” Ph.D. dissertation, Florida Institute of Technology,
2003.

[VM94] A. Veevers and A. Marshall, “A relationship between soft-
ware coverage metrics and reliability,” Software Testing, Ver-

ification and Reliability (STVR), vol. 4, no. 1, pp. 3–8, 1994.

[VM95] J. Voas and K. Miller, “Software testability: the new verifi-
cation,” IEEE Software, vol. 12, no. 3, pp. 17–28, May 1995.

[VPMM05] S. Vilkomir, D. Parnas, V. Mendiratta, and E. Murphy,
“Availability Evaluation of Hardware/Software Systems with

339

Bibliography

Several Recovery Procedures,” in International Computer

Software and Applications Conference (COMPSAC), 2005,
pp. 473–478.

[WH07] M. Wirsing and M. Hölzl, “Software-intensive systems: Re-
port of the Beyond-the-Horizon WG6,” 2007.

[Wol10] K. Wolter, Stochastic Models for Fault Tolerance: Restart,

Rejuvenation and Checkpointing. Springer, 2010.

[Woo97] A. Wood, “Software reliability growth models: assumptions
vs. reality,” IEEE International Symposium on Software Re-

liability Engineering (ISSRE), pp. 136–141, 1997.

[WPC06] W.-L. Wang, D. Pan, and M.-H. Chen, “Architecture-based
software reliability modeling,” Journal of Systems and Soft-

ware (JSS), vol. 79, no. 1, pp. 132–146, 2006.

[WT05] D. Wang and K. S. Trivedi, “Modeling user-perceived service
availability,” in Service Availability, lncs ed. Springer Berlin
/ Heidelberg, 2005, vol. 3694, pp. 107–122.

[WWC99] W.-L. Wang, Y. Wu, and M.-H. Chen, “An Architecture-
Based Software Reliability Model,” in IEEE Pacific Rim In-

ternational Symposium on Dependable Computing (PRDC),
1999, pp. 143–150.

[Yan99] J. Yang, “A comprehensive review of hard-disk drive reliabil-
ity,” in Reliability and Maintainability Symposium (RAMS),
1999, pp. 403–409.

[YCA99] S. M. Yacoub, B. Cukic, and H. H. Ammar, “Scenario-
Based Reliability Analysis of Component-Based Software,”
in IEEE International Symposium on Software Reliability

Engineering (ISSRE), 1999, pp. 22–31.

340

Bibliography

[YCA04] ——, “A Scenario-Based Reliability Analysis Approach for
Component-Based Software,” IEEE Transactions on Relia-

bility (TR), vol. 53, no. 4, pp. 465–480, Dec. 2004.

[YSP09] I. Yusuf, H. Schmidt, and I. Peake, “Evaluating recovery
aware components for grid reliability,” in European Software

Engineering Conference / ACM SIGSOFT Symposium on the

Foundations of Software Engineering (ESEC / FSE). New
York, New York, USA: ACM Press, 2009, pp. 277–280.

[YSP11] ——, “Architecture-Based Fault Tolerance Support for Grid
Applications,” in International Conference on the Quality of

Software Architectures (QoSA). New York: ACM, 2011,
pp. 177–182.

[YST01] L. Yin, M. Smith, and K. S. Trivedi, “Uncertainty analysis in
reliability modeling,” in Reliability and Maintainability Sym-

posium (RAMS), 2001, pp. 229–234.

[ZL10] Z. Zheng and M. R. Lyu, “Collaborative reliability prediction
of service-oriented systems,” in International Conference on

Software Engineering (ICSE), 2010, pp. 35–44.

[ZNG+09] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and
B. Murphy, “Cross-project defect prediction,” in European

Software Engineering Conference / ACM SIGSOFT Sympo-

sium on the Foundations of Software Engineering (ESEC /

FSE). New York, New York, USA: ACM Press, 2009, pp.
91–100.

341

Fr
an

z
B

ro
sc

h

9

Integrated Software
Architecture-Based Reliability
Prediction for IT Systems

Franz Brosch

The Karlsruhe Series on
Software Design

and Quality

9

In
te

g
ra

te
d

 S
o

ft
w

ar
e

A
rc

h
it

ec
tu

re
-B

as
ed

R

el
ia

b
ili

ty
 P

re
d

ic
ti

o
n

 f
o

r
IT

 S
ys

te
m

s

859_cover_Brosch_SoftwareDesign9_V4.indd 1 09.07.2012 08:53:10

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner

With the increasing importance of reliability in business and industrial IT systems,
new techniques for architecture-based software reliability prediction are becom-
ing an integral part of the development process. These techniques assist system
architects in evaluating the reliability impacts of their design decisions. However,
existing approaches are limited in their applicability as they either neglect rel-
evant impact factors on reliability or hard-code them into formal models.

This dissertation thesis introduces a novel reliability modelling and prediction
technique that explicitly considers the software architecture with its component
structure, the control and data flow of the system’s services and the included
recovery mechanisms, the deployment of software components to a distributed
hardware resource environment and the system’s usage profile. A design-ori-
ented modelling notation is offered that builds upon the Palladio Component
Model. Design models are automatically transformed into Markov chains and
analysed to obtain the prediction results. The thesis includes two case studies
that demonstrate the applicability of the technique and validate the obtained
prediction results against a reliability simulation.

ISSN 1867-0067
ISBN 978-3-86644-859-9 9 783866 448599

ISBN 978-3-86644-859-9

