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CHAPTER 1

Introduction

High energy particle physics studies the smallest objects and their interactions as summarized in the

so-called Standard Model (SM) which was developed over the last decades. The SM is one of the most

scrutinized theories ever written down. It describes a large variety of phenomena seen in nature and is

incredible successful in describing all known interactions tested at particle physics experiments with

an amazing precision. All particles proposed by the theory were discovered so far, except the Higgs

boson, a scalar neutral particle, which is predicted to be responsible for the masses of the elementary

particles. Recent measurements published by the two experiments CMS and ATLAS at the LHC

might have shown first hints for a Higgs boson with a mass around 125 GeV [1, 2]. But even in case

of a discovery of the Higgs boson in the near future, the SM is far from being complete.

There are a few aspects indicating new physics beyond the Standard Model. Impressive astrophysical

measurements of the matter composition in the universe have shown, that around 80% of the matter

in the universe consists of a new kind of weakly interacting massive particles (WIMP) forming the so

called cold dark matter [3]. The SM has no suitable candidate with the right properties to account for

this massive abundance of matter.

Another frontier of the SM is the so called Higgs fine tuning problem, where the self-energy correction

of the fermions to the Higgs field are orders of magnitude larger than the electroweak breaking scale,

if one assumes the SM to be valid to a much larger scale [4]. An unwanted high precision fine tuning

is needed to avoid the Higgs mass to blow up, which is a thorn in many physicists flesh.

A solution to these and several other problems of the SM can be achieved by an extension of the

theory called Supersymmetry (SUSY). SUSY is a new symmetry between bosons and fermions, which

immediately solves various problems. For each Standard Model particle with spin s = j a new particle

has to be introduced with spin s′ = j±1/2. Since none of these new particles were observed so far the

symmetry must be a broken symmetry increasing the SUSY masses compared to their SM partners.

SUSY models solves the fine tuning problem in an elegant way, because opposite sign amplitudes

for bosons and fermions in the Higgs self energy corrections cancel each other [5]. Assuming the

lightest supersymmetric particle (LSP) to be stable, it has all the properties expected for the dark

1



2 CHAPTER 1. INTRODUCTION

matter in the universe. In many supersymmetric models not only the LSP is introduced, but also

the LSP annihilation cross section is predicted to be in agreement with calculations of the required

WIMP annihilation cross section to form the measured relic density in our universe. This remarkable

coincidence is often called the "WIMP Miracle" [6]. Furthermore if one introduces SUSY particles in

the calculations of the running coupling of the strong and weak interactions, a unification of all three

forces can be achieved at a scale around 1016 GeV [7].

With the start of the Large Hadron Collider (LHC) at CERN (Conseil Européan pour la Recherche

Nucléaire) near Geneva Switzerland in 2009 offers a perfect tool for physicists around the world to

jump into a new energy regime and hopefully answer many open questions. The LHC is a proton pro-

ton collider with a circumference of 27 km accelerating counter rotating proton beams up to 3.5 TeV.

Two large general purpose detectors, CMS and ATLAS, are installed at different interaction points

with the main purpose to discover the Higgs boson and observe hints for, and finally also discover,

new physics beyond the SM, especially SUSY.

The SUSY particle production cross section is tiny, compared to the total SM background production

rate. Thus the challenge of searches for SUSY extensions is to distinguish the rare SUSY events on

top of a huge background. This can be achieved in multileptonic signatures, namely final states with

at least three leptons including electrons, muons and taus. Those signatures are often referred as the

"Golden Channel" since its is a clean signature, clean in the sense that SM processes with three prompt

leptons are rare, whereas it can be enhanced in many SUSY models.

In SUSY models isolated leptons are produced dominantly in the leptonic decay of the next to lightest

neutralino (χ̃0
2 → llχ̃0

1) and the lightest chargino (χ̃±
1 → lνχ̃0

1). The simultaneous production of

neutralinos and charginos with the subsequent decay to leptons leads to multileptonic signatures,

whereas in the Standard Model prompt leptons results from boson decays (W±, Z/γ∗) including

top quark decays t → Wb. The dominant irreducible background with three/four prompt leptons is

formed by the double boson production (W±Z, ZZ). An additional dangerous background consists

of dileptonic SM processes like Drell-Yan or tt̄ with the subsequent decay to leptons accompanied

by so called fake leptons mimicking a multileptonic signature. Fake leptons are mainly leptons from

heavy flavor decays in jets and false identification as prompt leptons.

The search for supersymmetric models in trilepton signatures were studied in former experiments at

the Tevatron proton anti-proton collider situated at Fermilab near Chicago USA [8–11]. The study

presented in this thesis was published the for first time in 2099 with the first recorded data L =

35 pb−1 [12–14] and substantially extended the excluded parameter space from the Tevatron data.

The analysis improved through the second year of data taking. Preliminary results were published in

Summer 2011 corresponding to an integrated luminosity L = 2.1 fb−1 [15]. Further improvements

with the full data set of 2011 corresponding to an integrated luminosity of L = 4.7 fb−1 are presented

in this thesis.

The thesis is organized as follows: In Chapter 2 the Standard Model of particle physics is reviewed

and in Chapter 3 the theoretical framework of SUSY is discussed. The LHC and the CMS experiment

are presented in Chapter 4. Software tools used for reconstruction of physics objects embedded in

the CMS software framework are discussed in Chapter 5. The analysis is described in the Chapters

6-9. First SUSY multileptonic production mechanisms and properties and expected SM background

processes are discussed in Chapter 6. Some prerequisites are reported in Chapter 7 and followed by
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the SM background predictions in Chapter 8. The results and SUSY interpretations are discussed in

Chapter 9. A conclusion is given in Chapter 10.
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CHAPTER 2

The Standard Model of Particle Physics

The Standard Model (SM) of elementary particle physics is one of the most scrutinized theories ever

written down in modern physics. It describes the world around us with an impressive precision and

is continuously being tested and confirmed by a long list of experiments. Three of the four known

forces - electromagnetic, weak and strong interaction - and as well the elementary particles and their

properties are included in a mathematically consistent and beautiful framework, beautiful in the sense

that the SM is a theory based on fundamental symmetries. However, even today not all phenomena

seen in nature can be explained by the SM. The most stringent issues are the masses of the gauge

bosons, which cannot be explained without an ad hoc mechanism including a new scalar boson. Also

the unification of the electromagnetic and weak force into the so called electroweak theory was an

incredible achievement, but the unification of all three forces is not possible without certain theoretical

extensions to the SM. There are more issues which will be discussed after a short introduction to the

Standard Model.

2.1 Introduction

The basic constituents of all matter in our universe, as well as their fundamental ineractions can be

described by a set of particles called fermions with a half integer spin forming the matter constituents

and four different forces: gravitation, electromagnetism, weak and strong interactions distinguished

by their strength, range and type. The SM combines the fermions and three of the four forces (w/o

gravitation) in a widely accepted theory. Within the theory the interactions are mediated via so called

bosons, i.e. particles with an integer spin. Table 2.1 summarizes all SM fermions and bosons with

their corresponding quantum numbers: electric charge Q , hypercharge Y and the third component of

the weak isospoin I3.

The fermions are ordered in two groups: leptons and quarks. Both groups appear in three generations,

where particles within the different generations have the same quantum numbers, except their masses,

e.g. the lefthanded up-type quarks uL, cL and tL have the same electric charge Q = 2/3, hypercharge

5



6 CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS

Table 2.1: Particle spectrum of the Standard Model. The quantum numbers electric charge Q, hypercharge Y

and the third component of the weak isospin I3 are given.

Fermions Spin = 1/2

1. Gen. 2. Gen. 3. Gen. Q Y I3

Quarks

(

u

d

)

L

(

c

s

)

L

(

t

b

)

L

2/3

−1/3
1/3

1/2

−1/2

uR cR tR 2/3 4/3 0

dR sR bR −1/3 −2/3 0

Leptons

(

νe
e

)

L

(

νµ
µ

)

L

(

ντ
τ

)

L

0

−1
−1

1/2

−1/2

eR µR τR −1 −2 0

Bosons Spin = 1

Interaction Boson Q Y I3

Electromagnetic γ 0 0 0

Weak
Z0

W±
0

±1

0

0

0

±1

Strong g1 · · · g8 0 0 0

Y = 1/3 and the third component of the weak isospin I3 = 1/2 with masses mu = 1.7 − 3.3MeV,

mc = 1.27+0.07
−0.09 GeV and mt = 172± 0.9± 1.3GeV respectively [16]. For each fermion there exists

also an anti-particle with same mass, but opposite quantum numbers, e.g. Qu = 2/3 andQū = −2/3.

The mediator of the electromagnetic interaction is the photon γ, which couples to the electric charge

of the particles, whereas the weak interactions is described by the exchange of the W± and Z bosons.

The W± bosons couples to the weak isospin and hence it couples with the same strength to quarks

and leptons. On the other hand the Z boson couples to the isospin and the electric charge as well.

The lefthanded quarks of a doublet of weak interaction eigentstates denoted as d′, s′ and b′ do not

correspond to the mass eigenstates but rather to a linear combination of theses mass eigenstates d, s

and b. Hence there are rare transitions between doublets of different generations. The 3 × 3 matrix

describing the connection between both representations is the Cabbibo-Kobayashi-Maskawa (CKM)

matrix






d′

s′

b′




 =






Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb











d

s

b




 , (2.1)

where the Vij element specifies the coupling of one quark flavor i to another j [17].
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Quarks are the only fermions underlying the strong interaction with its mediators, called gluons, which

couples to the so called color charge of particles. Baryons and mesons are composite particles made

of two or three quarks. The existence of the Ω− particle [18], a meson which consists of three s

quarks with a total spin s = 3/2, required a new degree of freedom. Due to Pauli’s principle particles

with half integer spin quantum number follow the fermi statistics and hence the wavefunction should

be anti-symmetric under permutation of the composite partons. This discrepancy could be solved

by introducing a new quantum number color with three different values red, green and blue and the

opposite colors anti-red/green/blue as well. A combination of all three colors or anti-color leads to

white referring to optics. The invariance of the theory under rotation in the color space yields finally

eight gluons, where the nineth is a color singlet and non-relevant for the interactions.

2.2 Lagrange Formalism

The Lagrange formalism in classical mechanics is a complementary descriptions of Newton’s second

law introduced by Joseph Louis Lagrange in 1788, where the Lagrangian L is given by

L = T − V (2.2)

with T = 1
2mv2 the kinetic energy of a particle in a scalar potential V, where T and V are functions

of the generalized space coordinates qi and their derivatives q̇i. In a relativistic field theory it is

conventional to use instead of L the Lagrange density L in order to describe the field as function

of space and time, hence the Lagrange density is a function of the field φi itself and its covariant

derivatives ∂µφi = ∂φi/∂x
µ with the space time coordinates xµ.

The equations of motions of a desired Lagrange density can be derived from the generalized Euler-

Lagrange equations

d

dt

( L
∂(∂µφi)

)

=
L
∂φi

, i = 1, 2, 3.. . (2.3)

In the following Lagrangian will be used instead of Lagrange density for simplicity.

In high energy physics its all about the determination of the Lagrangian L. If the Lagrangian is known

the equations of motion can be determined and predictions can be tested in experiments. The general

model building, i.e. the construction of the Lagrangian is based on three axioms:

1. Gauge Symmetry,

2. (Irreducible) Representations of fermions and scalars, i.e. the field content,

3. Spontaneous symmetry breaking (SSB),

where L is the most general and renormalizable Lagrangian. The next sections will review the given

axioms followed by the corresponding Standard Model Lagrangian.
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2.3 Local Gauge Invariance

Symmetries play a crucial role in quantum field theory. Emmy Noether showed in 1918 that a group

of transformations on fields φ, where the corresponding Lagrangian is invariant under this transfor-

mations, yields one or more conserved quantities. This implies that symmetries imply conservation

laws. The theory of Quantum Electrodynamics (QED) showed impressively that local gauge symme-

try under the desired symmetry groups U(1) gives also the correct interaction terms in the Lagrangian

of QED and similar principles have been successfully applied in electroweak and strong interactions.

Local gauge symmetries are groups of transformations with space time dependent phases αa = αa(x).

A general transformation SU(N), where N is an array of N × N matrices with determinant 1, are

given by

ψ → ψ′(x) = eiαa(x)Taψ(x) , (2.4)

where Ta are the generators of the group SU(N) and underly the corresponding group algebra

[T a, T b] = ifabcT c , (2.5)

with fabc the structure constants. If the commutator vanishes, e.g. fabc = 0, the underlying group is

called abelian.

Local gauge Invariance of Abelian Groups

The effect of the local gauge invariance of abelian groups will be illustrated for the QED. Free massive

fermions with spin s = 1/2 can be described by the Lagrangian

L = iψ̄γµ∂µψ −mψ̄ψ , (2.6)

with the dirac γ-matrices, ψ a four component dirac spinor and ψ̄ = ψ†γ0. The first part corresponds

to a kinetic term and the second is the mass term. As an example one can consider a simple transfor-

mation of the U(1) group , also known as the circle group, due to the fact that U(1) is the multiplicative

group of all complex numbers with absolute value 1. A transformation of the dirac spinor ψ under

U(1) can be written as

ψ → ψ′(x) = eiα(x)ψ(x) . (2.7)

Considering an electron field the transformation can be interpreted as a simple transformation of the

local phase angle by α(x). Since the derivative term applied acting on the phase α(x) does not vanish,

because

L′ = iψ̄′γµ∂µψ
′ −mψ̄′ψ′

= L − ψ̄γµ(∂µα(x))ψ
︸ ︷︷ ︸

6=0

,

i.e. the Lagrangian considered for free massive fermions is not invariant under this transformation,

because L′ differs from L. The invariance can be achieved by introducing a new gauge field Aµ(x),

referring to classical electromagnetism, which transforms under U(1) like
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Aµ(x) → A′
µ(x) = Aµ(x)−

1

e
∂µα(x) (2.8)

and replacing the derivative ∂µ by the so called covariant derivative Dµ

∂µ → Dµ = ∂µ + ieAµ , (2.9)

which finally leads to a Lagrangian invariant under a local phase transformations

L = iψ̄γµDµψ −mψ̄ψ = iψ̄γµ∂µψ − eψ̄γµAµψ −mψ̄ψ . (2.10)

The terms iψ̄γµ∂µψ and mψ̄ψ describe a free massive fermion as introduced in Eq. 2.6 and the

term eψ̄γµAµψ corresponds to a coupling of the fermions to a new gauge field Aµ. Adding an

additional kinetic term for the massless Aµ with spin s = 1 yields the complete QED Lagrangian,

which describes electron/positron interactions with photons (Aµ).

LQED = iψ̄γµ∂µψ − eψ̄γµAµψ −mψ̄ψ +
1

4
FµνF

µν (2.11)

with Fµν = ∂µAν − ∂νAµ is the field strength tensor. The introduced new gauge field has to be

massless because adding a mass term of the form 1/2mAµAµ for spin 1 particles is not invariant

under an U(1) transformation, since

AµAµ → A′µA′
µ = AµAµ − 1

e
Aµ∂µα(x)−

1

e
(∂µα(x))Aµ − 1

e2
(∂µα(x))(∂µα(x))

︸ ︷︷ ︸

6=0

is not invariance under a local phase transformation.

To summarize: for the example of QED it has been shown, that constructing a Lagrangian for fermions

and photons (2. axiom: field content), which is invariant under an U(1) transformation (1. axiom:

gauge invariance) yields a Lagrangian with the correct coupling to photons. The last axiom of the

model building for the requirement of spontaneous symmetry breaking will be introduced in the con-

text of the electroweak theory.

Local Gauge Invariance of Non-Abelian Groups

The gauge invariance principle applied in QED for constructing a quantum field theory of interacting

fields on basis of fundamental symmetries was further investigated and applied to the weak and strong

interactions. As an example of Non-Abelian symmetries the three dimensional rotation group SU(2)

will be shortly discussed, where the impact of gauge invariance under a transformation of the SU(2)

group was evaluated by Yang and Mills [19] with respect to an isospin rotation of the proton-neutron

doublet. The SU(2) group consists of 2× 2 unitary matrices which can be written as

U = e−iαa
σa
2 (2.12)

with σa the generators of the group for which the components are the Pauli matrices

σ1 =

(

0 1

1 0

)

σ2 =

(

0 −i
i 0

)

σ3 =

(

1 0

0 −1

)

. (2.13)
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The SU(2) has three degrees of freedom given four real numbers (2× 2 matrices) and one constraint

(det(U)=1). Following the same procedure used for the U(1) group applied to the QED Lagrangian,

one will encounter additional complication, due to three orthogonal symmetry motions, which do not

commute. The covariant derivative can be written as [20]:

Dµ = ∂µ + igAµ
a

σa

2
. (2.14)

For each of the group generator σa a new vector field Aa
µ is required which finally leads to a La-

grangian of fermions interacting with three massless vector gauge fields

L = iψ̄γµDµψ −mψ̄ψ − 1

4
(F i

µν)
2 (2.15)

where F i
µν = ∂νA

i
ν −∂νAi

µ+gǫ
ijkAj

µAk
ν is the field strength tensor. The structure of this Lagrangian

is quite similar to the QED Lagrangian, but it contains also cubic and quartic terms inAi
µ which result

in interactions between the vector gauge fields and depends on two parameters: the fermion mass

parameterm and the coupling constant g. This famous Lagrangian is commonly quoted as Yang-Mills

Lagrangian.

2.4 The Standard Model Lagrangian

After reviewing the prerequisites of local gauge symmetry the standard model Lagrangian and its

components will be discussed in the following section. Glashow, Weinberg and Salam were able to

unify the electromagnetic and weak interactions in the so called GSW-model [21–23]. The natural

follow-up question is the question of the possibility of the unification of strong and electroweak inter-

action. Wihin the SM this is not possile. Starting with a short discussion of the strong interaction with

its underlying symmetry property the electroweak interaction will be discussed, where the principle

of spontaneous symmetry breaking has to be introduced in order to describe the measured masses of

the weak vector gauge bosons.

Strong Interaction

The concept of the strong interaction was introduced due to the fact of stable nuclei in spite of repulsive

electromagnetic forces and the existence of the Ω− [18]. A particle consisting of three similar quarks

(sss) with parallel spins. A new quantum number called color with its colors (red, blue green) had to be

introduced in order to preserve the Pauli principle. Referring to optics the theory of strong interaction

is called Quantum Chromo Dynamics (QCD). The first full formulation of the theory was evaluated in

1973 by Fritzsch, Gross, Wilczek and Weinberg [24–26]. The symmetry group SU(3)C consisting of

3×3 matrices describes the quark sector. Analogous considerations as for the SU(2) discussed before

can be applied here. A symmetry transformation of the SU(3)C group can be expressed as:

U = e−iαaTa
, (2.16)

with the generators of the group T a = λa

2 , where λa are the Gell-Mann matrices. Introducing the

covariant derivative
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Dµ = ∂µ + igsG
µ
aT

a , (2.17)

whereGµ
a are the gluon fields and gs is the gauge coupling. Adding a gauge invariant term representing

the dynamics of the gluon fields yields finally the QCD Lagrangian1

LQCD =
1

4
F a
µνF

aµν + q̄j [(iγ
µ∂µ −m)δjk − gsγ

µGµaT
a
jk]qk , (2.18)

with F a
µν = ∂νA

a
ν − ∂νA

a
µ + gsf

abcAa
µA

b
ν and q are the quark fields. Cubic and quartic terms in

Aµ results in gluon self couplings. A more detailed evaluation of the QCD Lagrangian can be found

elsewhere [20, 27].

Electroweak Interaction

The transition of quarks and leptons is mediated via the weak interaction. Experiments have shown

that leptons are ordered in doublets of left-handed and singlets of right-handed leptons (Table 2.1).

Same applies for quarks as well. A new spin quantity I referred as the weak isospin was introduced.

The weak interaction violates the parity first observed in the beta decay of cobalt 60 [28], where the

violation was realized in the way, that only left-handed electrons and right-handed anti-neutrinos were

produced.

Glashow, Weinberg and Salam unified the electromagnetic and weak interaction within the GSW-

model into the so called electroweak interaction. The symmetry group of the electroweak interaction

is the

SU(2)L ⊗ U(1)Y , (2.19)

where Y is the generator of the U(1) symmetry group and is called hypercharge. A local phase

transformation of such combined group can be written as

ψL → ψ′
L = ψLe

−iαaTa
e−iα

ψR → ψ′
R = ψRe

−iα

with ψL/R corresponds to the left/right-handed fermion fields and T a the generators of the SU(2)L
and Y of the U(1)Y , respectivly. We saw before, that the generator U(1)EM of QED was the electric

charge, which is related to the hypercharge Y by the identity

Q =
Y

2
+ I3 , (2.20)

where I3 is the third component of the weak isospin. In total three vector gauge fields W i
µ acting on

left-handed fermions and one scalar field B acting also on right-handed fields are required. Introduc-

ing the covariant derivative

∂µ → Dµ = ∂µ + i
g

2
Wµiσ

i + i
g′

2
B0

µY (2.21)

1There is an additional freedom in choosing the quantization of the eight gluon fields which leads to so called ghost

fields. These ghost fields can be removed by a certain choice of gauge, thus they can be ignored in the calculations.
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where σu are the Pauli matrices and g(g′) are the corresponding couplings, which leads finally to a

local gauge invariant Lagrangian for the electroweak theory

LEW =iψ̄γµ∂µψ − 1

4
W i

µνW
µν
i − 1

4
BµνB

µν

− g

2
ψ̄γµσiWµiψ − g′

2
ψ̄γµBµψ (2.22)

(2.23)

with W i
µν = ∂νW

i
µ−∂µW i

ν +gǫ
ijkW j

µW k
ν and Bµν = ∂νBµ−∂µBν . The actual gauge bosons W±,

Z0 and Aµ are linear combinations of the four gauge fields W i
µ and the B0:

W± =
1√
2
(W 1 ∓ iW 2)

Z0 = −sin(θW )B0 + cos(θW )W 3

Aµ = cos(θW )B0 + sin(θW )W 3

with the Weinberg angle θW measured to be [16]

sin2(θW ) ≈ 0.232 . (2.24)

In summary requiring a Lagrangian invariant under local gauge transformation of the unified elec-

tromagnetic and weak interaction into a combined SU(2)L ⊗ U(1)Y symmetry group introduces the

four gauge bosons W±
µ , Z0 and Aµ. However since mass terms for the gauge bosons would spoil the

gauge invariance, the observation of massive W± and Z0 is in contradiction to the theory.

Spontaneous Symmetry Breaking and the Higgs Mechanism

The dilemma of the electroweak theory predicting massless gauge bosons is resolved using the prin-

ciple of spontaneous symmetry breaking proposed by Higgs, Brout, Guralnik Hagen, Englert and

Kibble [29–31]. Spontaneous symmetry breaking is a principle formerly known from ferromagnetism

in solid state physics. Bosons and fermions get their masses by coupling to the Higgs field. The Higgs

field is a complex scalar SU(2) doublet carrying weak hypercharge Y = 1 consisting of a charged

and neutral part

Φ =

(

Φ+

Φ0

)

=

(

Φ1 + iΦ2

Φ3 + iΦ4

)

(2.25)

described by the Lagrangian

LHiggs = (DµΦ)†(DµΦ)− V (Φ) (2.26)

whereDµ = ∂µ+i
g
2Wµiσ

i+ g′

2 B
0
µY is the covariant derivative and V (Φ) is the Higgs potential given

in the most general renormalizable and SU(2)L invariant form by

V (Φ) = µ2|Φ†Φ|+ λ(|Φ†Φ|)2 (2.27)

with a positive and real parameter λ. The shape of the potential is shown in Fig. 2.1 for µ2 < 0

(right panel) and µ2 > 0 (left panel). In case of µ2 > 0 the ground state of the Higgs field is at the
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Figure 2.1: The Higgs potential for λ > 0 and µ2 > 0 (left) and µ2 < 0 (right). Picture is taken from [32].

minimum of the potential, here chosen to be Φ = 0, and thus the vacuum expectation value vanishes

|〈0|Φ|0〉| = 0. More interesting is the case of µ2 < 0. For µ2 < 0 the vacuum expectations values are

non zero:

|〈0|Φ|0〉| =
√

−µ2
2λ

=
v√
2

. (2.28)

The ground state with its vacuum expectation value can be obtained by different field configurations

(Φ+,Φ0). Hence a transformation of the SU(2)L ⊗ U(1)Y symmetry group rotates one ground state

into another, thus breaking the symmetry. Since the vacuum expectation value is not changed by this

transformation of the ground state, the actual Lagrangian is still invariant. This mechanism is known

as spontaneous symmetry breaking.

The ground state can be chosen to be neutral, e.g. Φ+ = 0, since the vacuum is known to be neutral.

Φ0 =
1√
2

(

0

v

)

(2.29)

The scalar field can be written as

Φ′ =
1√
2
eiχ

aτa

(

0

v + h

)

(2.30)

where χa are three massless goldstone bosons, which can be easily eliminated by a appropriate gauge

transformation Φ → e−iχaτaΦ′, where Φ is the scalar field in the so called unitary gauge. Substituting

Φ into the Lagrangian given in Eq. 2.26 and considering only the scalar kinetic energy term yields

(DµΦ)†(DµΦ) =
1

2

(

0, v
)(g

2
σµWµ − g′

2
BµY

)2
(

0

v

)

+ h-terms . (2.31)
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Substitution withW± = 1√
2
(W 1∓iW 2),Z0 = −sin(θW )B0+cos(θW )W 3 andAµ = cos(θW )B0+

sin(θW )W 3 introduced in the context of the electroweak theory before results in masses of the phys-

ical gauge fields

M2
W± =

1

4
g2v2

M2
Z =

1

4
(g2 + g′2)v2

MA = 0 .

Since the massless photon couples with the electromagnetic strength e and the Weinberg-angle θW is

related with the couplings g and g′, the following relations can de derived:

e = g sin(θW )

e = g′ cos(θW )

tan(θW ) =
g′

g

and the connection between the Z and W± masses can be expressed by

cos(θW ) =
MW±

MZ
(2.32)

The introduction of fermions (quarks, leptons) interacting with the Higgs field and so getting their

mass can be included in a similar fashion as above for the gauge bosons. A detailed description of

these calculation can be found elsewhere [20]. In summary requiring local gauge invariance under a

transformation of the SU(2)L⊗U(1)y and introducing a new scalar field in the context of the unified

electroweak theory yields three massive (W±,Z0) and one massless gauge boson (A).

Standard Model Lagrangian

The Standard Model of particle physics is a gauge theory of the strong, weak and electromagnetic

interactions with the symmetry group

SU(3)C ⊗ SU(2)Y ⊗ U(1)Y (2.33)

The corresponding Lagrangians can be factorized as:

LSM = LSU(3) + LSU(2)⊗U(1)Y (2.34)

Putting the QCD Eq. 2.18, electroweak Eq. 2.22 and the Higgs Eq. 2.26 Lagrangian together yields

the standard model Lagrangian:

LSM =
∑

f

iΨ̄fγ
µDµΨf fermion term

− 1

4
(BµνB

µν +W a
µνW

µν
a +Gb

µνG
µν
b ) gauge term

+ (DµΦ)†(DµΦ)− V (Φ) Higgs term

+ hieL̄
iΦeiR + hijd Q̄

iΦdijR + hiju Q̄
iΦCuijR + h.c. Yukawa term (2.35)
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withDµ = ∂µ+i
g
2Wµaσ

a+ig
′

2 B
0
µY +igs2 Gµbλ

b. The last and before not explicitly discussed Yukawa

term of the SM Lagrangian describes interaction of fermions (quarks, leptons) with the Higgs fields,

where hij are the yukawa couplings with the generation indicies i and j.

2.5 Frontiers of the Standard Model

The Standard Model describes nature with an incredible high precision down to at least 10−16 cm

(electroweak scale ∼ 100GeV) . However the standard model consists of at least 18 free parame-

ters, which is seen to be just too much arbitrariness for a fundamental theory. There are other open

questions in the SM, some of which are listed below:

• Charge Quantization Problem: Why do all particles have charges which are multiplets of e/3?

The SM incorporates, but cannot explain this fact, which is of fundamental importance for the

electrical neutrality of atoms.

• Hierarchy Problem: The hierarchy problem can be summarized with the question why the

Higgs mass, which has to be in the same order as the vector gauge boson mass of the weak

interaction, is small compared to the fundamental Planck mass ∼ 1019 GeV.

• Fine tuning Problem: Huge quantum corrections are expected to increase the Higgs mass to

values many orders of magnitude higher than the electroweak scale, unless an incredible fine-

tuning of parameters leads to cancellation of correction terms.

• Gravitation Problem: The theoretical consideration of the fourth force, namely the gravita-

tion, is missing in the SM. Writing down a consitent quantum theory of gravity has not been

realized so far. For energy regimes, which can be tested in modern high energy particle physics

experiments, the gravitational contributions are negligible. At (much) higher energies it has to

be taken into account into theoretical considerations.

• Dark Matter Problem: The SM provides no appropriate candidate for the so called cold Dark

Matter in the universe, while it is known from cosmological observations that the contribution

of Dark Matter to the total energy density of the universe is about 23% [3].

• Origin of the Electroweak Symmetry Breaking: The new scalar Higgs field is introduced

"by hand". The squared mass parameter µ2 is chosen arbitray to be negative and there is no

fundamental motivation for this choice.

• Gauge Coupling Unification: The couplings g, g′ and gs of the electroweak and strong in-

teraction depend on the energy scale described by the renormalization group equations. In the

framework of the SM an accurate unification of all gauge coupling is not realizable so far.

2.6 Recent CMS Measurements

From the standard model Lagrangian,cross sections can be determined and tested in experiments.

A small summary of recent measurements published by the CMS Collaboration of SM production
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cross sections and properties relevant for this study are presented. The shown results are only a small

piece of the SM puzzle and many more results measured in various experiments can be found in the

literature.

In Fig. 2.2 the production cross sections for W±, Z and double boson combinations Wγ, Zγ, WW ,

WZ and ZZ measured with the CMS experiment in proton proton collisions at a center of mass

energy
√
s = 7TeV are shown. The measured cross section are in good agreement with the theoretical

predictions. Similar in Fig. 2.3 the latest tt̄ production cross section measurements in the various

signatures of the top decays are summarzied. A complete overview of the latest results published by

the CMS Collaboration can be found in Ref. [33].
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Figure 2.2: Electroweak production cross section measured with the CMS experiment. The plot is taken from

[33].
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CHAPTER 3

Supersymmetry

In the last chapter the Standard Model of particle physics has been discussed. Within the theoretical

framework several issues observed in nature can not be described. Hence, new theories expanding

the Standard Model have to be evaluated and tested in experiments. As already discussed model

building in particle physics follows three axioms: (1) gauge invariance, (2) field content and (3) spon-

taneous symmetry breaking. Following these axioms an extension of the SM based on a symmetry

called SUperSYmmetry (SUSY) will be discussed and the Lagrangian invariant under supersymmetric

transformations with its particle spectrum will be presented in this chapter.

3.1 Introduction - Supersymmetry

The supersymmetric extension of the Standard Model is based on an additional symmetry between

fermions and bosons [34]:

Q|Fermion〉 ∝ |Boson〉 , Q|Boson〉 ∝ |Fermion〉 , (3.1)

with Q the generator of the SUSY algebra follows the (anti-)commutator relations:

{Qα, Qβ} = {Q†
α, Q

†
β} = 0 (3.2)

{Qα, Q
†
β} = 2σµαβPµ (3.3)

[Pµ, Q] = [Pµ, Q†] = 0 , (3.4)

where σµ are the Pauli matrices and Pµ is the four-momentum generator of spacetime translations.

Supersymmetry defined like above is a spacetime symmetry since the operators Q and Q† (hermitian

conjugate of Q) are carrying spin angular momentum s = 1/2 (fermionic operators). The mini-

mal supersymmetric extension of the SM (MSSM1) is an N = 1 SUSY model with N referring to

1MSSM: Minimal Supersymmetric Standard Model

19



20 CHAPTER 3. SUPERSYMMETRY

the number of generators Q → Qi(i = 1, 2, ...N). The irreducible representation of the supersym-

metric algebra (supermultiplets) contains an equal number of fermions and bosons, where particles

transforming under Q (Q†) into each other are called superpartners. Q and Q† commute with the ge-

nerators of the gauge transformations and hence all superpartners must have the same electric charges,

weak isospin and color degrees of freedom except the spin, which differs by 1/2. Due to the fact that

Pµ commutes with Q(Q†) also the squared mass parameter −P 2 commutes and hence all superpart-

ners in a supermultiplet must have equal masses.

Up to now no evidence for any supersymmetric particles have been observed in high energy particle

physics experiments, which can only be realized if the masses of the superpartners are large. This is in

contrast to the theory prediction. Breaking the symmetry resolves this issue, i.e. the SM particles and

their superpartners would have different masses, where the mass difference depends on the breaking

mechanism.

The introduction of a set of new particles solves immediately several problems of the SM:

Fine Tuning: The new particles have similar radiative corrections to the Higgs mass as their

partners of the SM unless the symmetry is broken. The only difference is the sign of those

corrections, which are opposite and cancel each other. This property solves the fine tuning

problem. If SUSY is broken the superpartner masses are different and therefore the cancella-

tions depend on the mass differences. To avoid unnatural fine tuning the SUSY breaking scale

has to be MSUSY ≤ 1TeV.

Hierarchy Problem: Similar to the fine tuning the cancellation of quantum corrections induced

by the new particles can explain the large difference of the weak and unification scale. In SUSY

models electroweak symmetry breaking is not ad-hoc introduced, but is triggered by radiative

corrections from the top-quark Yukawa coupling to the Higgs sector. One of the Higgs squared

masses are driven to negative values by this coupling. The logarithmic energy dependency of

the relative corrections lead to large differences of the two scales.

Unification: Introducing new particles changes the energy scale dependent slope of the gauge

couplings. Setting the scale of the new particles at the TeV scale the unification of all gauge

couplings can be achieved, which can be seen in Fig. 3.1.

Dark Matter: Introducing an new quantum number (R-parity) and assuming it to be conserved

yields a massive stable lightest supersymmetric particle (LSP). The LSP would be a perfect

candidate for the cold dark matter in the universe.

3.2 Particle Spectrum of the MSSM

As a first step the naming convention for the supersymmetric partners of the SM particles is discussed.

The superpartner names of quarks and leptons, i.e. supersymmetric bosons, are constructed by adding

a "s" to the name. So, generically squarks are the superpartners of the quarks and sleptons of leptons.

Since the fermions have two spin states, whereas their superpartners are scalars, there are actual two
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Figure 3.1: Evolution of the three coupling constants of the electroweak and strong interaction using the mea-

sured values for MZ and α(MZ) from the Delphi experiment for the SM (left) and the similar

evolution but including contributions of the minimal SUSY model (right). Plots are taken from the

original paper published in 1991, where the effect of gauge coupling unification with a fit to the

SUSY mass scale has been shown for the first time [7].

superpartners for each fermion. In an analogous manner the superpartners of the SM bosons get

an "-ino" attached, e.g. the wino is the superpartner of the W boson, whereas the partner of the

Higgs bosons are called higgsinos. In the context of the MSSM a second Higgs multiplet has to be

introduced with both multiplets having a weak hypercharge Y = ±1/2, because only Y = +1/2

Higgs chiral multiplets can give masses to up-type quarks (up, charm, top) and only Y = −1/2 Higgs

chiral multiplets can give masses to down-type quarks (down, strange, charm). The Higgs multiplets

corresponding to Y = 1/2 and Y = −1/2 are named Hu and Hd, respectively.

Finally, the particle spectrum has the following form: left-handed quarks and leptons as well as gauge

bosons and Higgs doublets build multiplets with their superpartners, whereas right-handed quarks and

leptons are arranged in doublets with their superpartners. The particle spectrum is presented in Table

3.1, where supersymmetric particles are denoted with a "∼" on top.

3.3 Supersymmetric Lagrangian

After defining the symmetry and the field content the supersymmetric Lagrangian can be evaluated.

The MSSM Lagrangian should be invariant under the SU(3)C⊗SU(2)L⊗U(1)Y gauge group similar

to the SM, but include the superfields listed in Table 3.1. Additional terms breaking the supersymme-

try have to be added. The Lagrangian consists of two parts: the supersymmetric generalization of the

standard model Lagrangian (LSUSY) and the SUSY breaking term (LSUSY-Break)

LMSSM = LSUSY + LSUSY-Break , (3.5)

where the first term can be divided further into a gauge part, consisting of the supersymmetric gen-

eralized terms of the kinetic energy of the gauge fields and terms describing the interaction of gauge

and fermion fields, and the Yukawa interactions.

LSUSY = Lgauge + LYukawa (3.6)
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Superfield Bosons Fermions SU(3)C SU(2)L U(1)Y

Gauge

Ga ga g̃a 8 0 0

Vk W k (W±, Z0) w̃k (w̃±, z̃0) 1 3 0

V′ B/γ b̃ / γ̃ 1 1 0

Matter

Li

Ei

Sleptons

{
L̃i = (ν̃, ẽ)L
Ẽi = ẽR

Leptons

{
Li = (ν, e)L
Ei = eR

1

1

2

1

−1

2

Qi

Ui

Di

Squarks







Q̃i = (ũ, d̃)L
Ũi = ũR
D̃i = d̃R

Quarks







Qi = (u, d)L
Ui = uR
Di = dR

3

3

3

2

1

1

1/3

−4/3

2/3

Higgs

Hu

Hd

Higgs

{
Hu

Hd
Higgsino

{
H̃u

H̃d

1

1

2

2

−1

1

Table 3.1: The particle spectrum of the MSSM [35]. i = 1, 2, 3 corresponds to the three generations, a = 1...8

is the index of the SU(3)C and k = 1, 2, 3 is the index of the SU(2)L. For completeness the

quantum numbers for the internal symmetries are given in the last columns.

The Yukawa interaction term is given by the superpotenial WR:

WR = ǫij(h
ab
U Q

j
aU

C
b H

i
d + habDQ

j
aD

C
b H

i
u + habL L

j
aE

C
b H

i
u + µH i

uH
j
d) + h.c. , (3.7)

with i, j the SU(2)L indices, a, b = 1, 2, 3 are the three generation indices, hU,D,L are the Yukawa

couplings and ǫij is the total anti-symmetric tensor. All fields included are superfields, where the

charge conjugated fields are labeled with a C. The superpotenial has a similar form compared to the

Standard Model Yukawa term (Eq. 2.35 ) except the last term describing the Higgs mixing, which is

absent in the SM.

R-parity

In principle, the superpotential given in Eq. 3.7 can be extended by additional renormalizable terms

invariant under gauge transformations. These terms allow transitions of quarks and leptons, which

leads to lepton and baryon number violating processes. In order to suppress such terms in the su-

perpotential a new symmetry called R-parity is introduced, where fields have to be invariant under

discrete transformations Φ → e±iRπΦ. R-parity is a multiplicative quantum number defined as:

R = (−1)3(B−L)+2S , (3.8)

with B the baryon number, L is the lepton number and S is the spin of the particle [34]. SM particles

have R = +1, whereas SUSY particles R = −1. The multiplicative nature of the quantum number

and the requirement of conserved R-parity has several consequences:
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1. Existence of a stable lightest supersymmetric particle (LSP), since a decay to SM particles

would violate the R-parity.

2. SUSY particles can only be produced in pairs and each decaying subsequently to the LSP.

3. Those properties of R-parity conserving supersymmetric models imply that at collider experi-

ments sparticle production results in final states with an odd number of LSPs. This leads in case

of neutral LSPs to signatures including large missing transverse energy.

SUSY Breaking Mechanism

So far no supersymmetric particles have been discovered. Hence, if supersymmetry is realized in

nature, it has to be a broken symmetry, which yields larger masses of the supersymmetric particles.

In the last decades large efforts have been mobilized to understand the soft supersymmetry breaking,

soft in the sense that the mass splitting between standard model particles and their superpartners can

not be too large, in order to still cancel the radiative correction to the Higgs mass on a "natural" level.

The most general form of such breaking terms are :

LSUSY-Break-Soft =m
2
Hd
H†

dHd +m2
Hu
H†

uHu +Bµ(HT
u iτ2Hd + h.c.)

+
∑

i

(m̃2
Qi
Q̃†

i Q̃i + m̃2
Li
L̃†
i L̃i + m̃2

Ui
Ũ †
i Ũi + m̃2

Di
D̃†

i D̃i + m̃2
Ei
Ẽ†

i Ẽi + h.c.)

+
∑

i,j

(Aij
u h

ij
u
˜̄UiHuQ̃j +Aij

d h
ij
d
˜̄DiHdQ̃j +Aij

e h
ij
e
˜̄LiHdL̃j + h.c.)

+
1

2

3∑

l=1

Mlλ̃lλ̃l + h.c. (3.9)

where µ is the Higgs mass parameter introduced in the superpotential Eq. 3.7, B is the bilinear

coupling, Aij
u,d,e are the trilinear couplings with the generation indices i, j = 1, 2, 3 and λ̃l and Ml are

the supersymmetric partners of the gauge bosons and their masses corresponding to the three gauge

groups (l = 1, 2, 3). Introducing the most general soft symmetry breaking terms yield more than 100

free parameters (masses, phases and mixing angles) [36]. In order to reduce the number of parameters,

relations between the soft breaking terms have to be determined. The detailed mechanism of the SUSY

breaking is unknown, but a common approach assumes, that the breaking occurs in a hidden sector

that has no direct couplings to the visible sector and the breaking is mediated by messengers.

The most popular approaches for the mediating interactions are gravity mediated and gauge medi-

ated supersymmetry breaking. In Gauge Mediated Supersymmetry Breaking (GMSB) models the

messenger particles are new chiral multiplets, which have SU(3)C ⊗ SU(2)L ⊗ U(1)Y interactions.

Gravity mediated supersymmetry breaking scenarios assume symmetry breaking via gravitational in-

teractions. In this study a N = 1 supergravity (mSUGRA/cMSSM) [37] will be used as a reference

model. At the GUT scale MGUT the following unifications are assumed:

M1(MGUT ) =M2(MGUT ) =M3(MGUT ) ≡ m1/2 (3.10)

m̃E,L,U i,Di,Qi(MGUT ) ≡ m0 (3.11)

At(MGUT ) = Ab(MGUT ) = Aτ (MGUT ) ≡ A0 (3.12)
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wherem1/2 is the unified gaugino mass,m0 is the unified scalar mass andA0 the unified trilinear cou-

pling at the GUT scale. In Eq. 3.9 it can be seen, that the trilinear couplings only appear in company

with the corresponding Yukawa couplings and since the Yukawa couplings of the first two generations

can be neglected, it is sufficient to consider only the trilinear couplings of the third generation. The

arbitrariness of more than 100 free parameters is reduced to a total of 5 parameters:

• m1/2: unified gaugino mass m1/2 at the GUT scale MGUT

• m0: unified scalar mass m0 at the GUT scale MGUT

• A0: unified trilinear coupling A0 at the GUT scale MGUT

• sign(µ): the sign of the Higgs mass parameter connecting the two Higgs multiplets

• B: bilinear coupling

The bilinear coupling B can be also equivalently replaced by the ratio of the vacuum expectation

values of the two Higgs multiplets tanβ = vu/vd.

3.4 SUSY Mass Spectrum

The mass spectrum of the MSSM can be calculated by solving the renormalization group equations

(RGE), which can be derived from the Lagrangian Eq. 3.5 [38]. In Fig. 3.1 the solution of the RGEs

for the gauge couplings is shown and in Fig. 3.2 for the gaugino masses, sfermion mass breaking

terms and the Higgs potential parameters for a typical cMSSM boundary condition (m0 = 200GeV,

m1/2 = −A0 = 600GeV, tan(β) = 10 and sign(µ) = +1).

Neutralinos and Charginos

The higgsinos and gauginos mix with each other, where the neutral higgsinos (H̃0
u and H̃0

d ) and the

neutral gauginos (B̃, W̃ 0) form the four mass eigenstates of the so called neutralinos denoted with χ̃0
i

(i = 1, 2, 3, 4). The corresponding neutralino mass matrix is

Mχ̃0 =








M1 0 −mZ cosβ sin θW mZ sinβ sin θW
0 M2 mZ cosβ cos θW −mZ sinβ cos θW

−mZ cosβ sin θW mZ cosβ cos θW 0 −µ
mZ sinβ sin θW −mZ sinβ cos θW −µ 0








(3.13)

with the gaugino masses M1, M2, the weak mixing angle θW , the Higgs mass parameter µ and the

ratio of the two Higgs vacuum expectation values tan(β). The eigenstates of the mass matrix can be

obtained by diagonalizing and are denoted by m̃χ̃0
1
< m̃χ̃0

2
< m̃χ̃0

3
< m̃χ̃0

4
, where m̃χ̃0

1
is the lightest

neutralino. In many supersymmetric models the χ̃0
1 is the LSP and stable, unless R-parity is violated.

Since it is neutral and only weakly interacting it would be a perfect candidate for the Dark Matter.



3.4. SUSY MASS SPECTRUM 25

Figure 3.2: MSSM RGE solutions for the gaugino masses, sfermion mass breaking terms and the Higgs po-

tential parameters for a typical cMSSM boundary condition (m0 = 200GeV, m1/2 = −A0 =

600GeV, tan(β) = 10 and sign(µ) = +1)

Charginos are mixtures of the charged higgsino (H̃+
u and H̃−

d ) and charged wino (W̃+ and W̃−)

components and are denoted analogous with χ̃±
1,2. The chargino mass matrix can be related to the

2× 2 matrix

Mχ̃± =

(

M2

√
2mW sin(β)√

2mW cos(β) µ

)

. (3.14)

After diagonalizing the matrix 3.14, two eigenstates with masses m̃χ̃±

i,j
can be obtained, where the

(double generated) mass eigenvalues are given by:

m̃χ±

i,j
=
1

2

[

|M2|2 + |µ|2 + 2m2
W

∓
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|µM2 −m2

W sin(2β)|2
]

(3.15)

Gluino

The gluino is the only color octet fermion in the MSSM and does not mix with any other particle.

Its mass is defined by the gaugino mass parameter m̃g̃ = M3. For typical cMSSM boundary con-

ditions the bino and wino mass parameters are related to the gluino mass via the RGE which yield

approximately

M3 :M2 :M1 = 6 : 2 : 1 (3.16)

near the TeV scale [4].
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Squarks and Sleptons

Sleptons and squarks are the superpartners of the leptons and quarks. Left and right-handed fermions

must have similar masses, but their superpartners are bosons, whose masses can vary, hence in the fol-

lowing the partners of left and right-handed fermions will be distinguished. Non negligible Yukawa

couplings lead to a mixing between the interaction eigenstates and in order to obtain the mass eigen-

states of the MSSM sleptons and squarks, one should diagonalize three 6 × 6 matrices (up-type

squarks, down-type squarks, charged sleptons) and one 3 × 3 matrix for the sneutrinos. For the

first and second generation the Yukawa couplings and therefore also the mixing angles are negligible

and the mass eigenstates correspond to the interaction eigenstates

m̃2
eL

= m̃2
Li

+m2
Ei

+m2
Z cos(2β)

(

−1

2
+ sin2 θW

)

(3.17)

m̃2
νL

= m̃2
Li

+m2
Z cos(2β)

(
1

2

)

(3.18)

m̃2
eR

= m̃2
Ei

+m2
Ei

−m2
Z cos(2β)

(
sin2 θW

)
(3.19)

m̃2
uL

= m̃2
Qi

+m2
Ui

+m2
Z cos(2β)

(

+
1

2
+ sin2 θW

)

(3.20)

m̃2
dL

= m̃2
Qi

+m2
Di

+m2
Z cos(2β)

(

−1

2
+

1

3
sin2 θW

)

(3.21)

m̃2
uR

= m̃2
Ui

+m2
Ui

+m2
Z cos(2β)

(
2

3
sin2 θW

)

(3.22)

m̃2
dR

= m̃2
Di

+m2
Di

−m2
Z cos(2β)

(
1

3
sin2 θW

)

, (3.23)

where i = 1, 2, 3 indicates the three generations. The terms labeled with an "∼" are the solutions

of the RGEs of the soft symmetry breaking terms in Eq. 3.9, all other terms without represent SM

particles.

In contrast, sfermions of the third generation can have substantial mixing and the corresponding mass

matrices can be expressed as:

Mt̃ =

(

m̃2
tL

mt(At − µ cotβ)

mt(At − µ cotβ) m̃2
tR

)

(3.24)

Mb̃ =

(

m̃2
bL

mb(Ab − µ tanβ)

mb(Ab − µ tanβ) m̃2
bR

)

(3.25)

Mτ̃ =

(

m̃2
τL

mτ (Aτ − µ tanβ)

mτ (Aτ − µ tanβ) m̃2
τR

)

, (3.26)

where the mass eigenstates after diagonalization are given by:
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m2
t̃1,2

=
1

2

(
m̃2

tL
+ m̃2

tR

)
±
√

1

4

(
m̃2

tL
− m̃2

tR

)2
+m2

t (At − µ cotβ)2 (3.27)

m2
b̃1,2

=
1

2

(
m̃2

bL
+ m̃2

bR

)
±
√

1

4

(

m̃2
bL

− m̃2
bR

)2
+m2

b (Ab − µ tanβ)2 (3.28)

m2
τ̃1,2 =

1

2

(
m̃2

τL
+ m̃2

τR

)
±
√

1

4

(
m̃2

τL
− m̃2

τR

)2
+m2

τ (Aτ − µ tanβ)2 . (3.29)

Higgs boson

In the MSSM at least two Higgs doublets with weak hypercharges Y = +1/2 and Y = −1/2 have to

be introduced to give all particles masses, where the two complex Higgs doublets read as

Hu =

(

H0
u

H+
u

)

=

(

vu + 1√
2
(Φ1 + iΦ2)

H+
u

)

(3.30)

Hd =

(

H−
d

H0
d

)

=

(

H−
d

vd +
1√
2
(Φ3 + iΦ4)

)

, (3.31)

with the vacuum expectation values vu and vd of the neutral components. After settingH+
u = H−

d = 0

(H−
d = 0 follows from ∂V/∂H+

u = 0 after setting H+
u = 0) gives the scalar potential

V =(|µ|2 +m2
Hd

)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |2 −Bµ(H0
uH

0
d + c.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2 (3.32)

Introducing the relations of the mass parameters

m2
1 = m2

Hu
+ µ2

m2
2 = m2

Hd
+ µ2

m2
3 = Bm0µ , (3.33)

a non trivial minimum of the potential in Eq. 3.32, and therefore electroweak symmetry breaking, can

only be derived, if the following requirement on the mass parameters are fulfilled

m2
1m

2
2 < m4

3

m2
1 +m2

2 > 2m2
3 . (3.34)

In total the two Higgs doublets have 8 degrees of freedom, where three of them correspond to the

Goldstone bosons, which will become the longitudinal polarization of theW± and Z boson analogous

to the SM, resulting into five physical Higgs bosons in the MSSM (h0, H0, A0, H±). The masses for

those can be expressed as:

M2
A0 = m2

1 +m2
2 (3.35)

M2
H0,h0 =

1

2

(

m2
A0 +m2

Z ±
√

(m2
A0 +m2

Z)
2 − 4m2

A0m
2
Zcos(2β)

)

(3.36)

M2
H± = m2

A0 +m2
W . (3.37)
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In principle, the masses of A0, H0 and H± can be arbitrary high, whereas the lightest Higgs h0 has

an upper boundary:

m2
h ≤ m2

Zcos
2(2β) ≤ m2

Z (3.38)

This mass range for the lightest MSSM Higgs is already excluded by former experiments [39] with

the consequences that radiative corrections to the Higgs potential are important.

3.5 Constraints on cMSSM

Supersymmetry, if realized in nature, would affect many different fields of modern physics. Con-

straints on the supersymmetric models are coming from cosmological observations, direct/indirect

WIMP searches, Higgs limits, precision measurements of SM properties and the motivation of the

theory itself. In the following the dominant constraints and their effect on the cMSSM model will be

shortly discussed.

Cosmology - Relic Density: Cosmological measurements of the Cosmic Microwave Back-

ground have shown, that about 23% of the energy of the universe consists of the cold dark

matter (CDM) [40]. In R-Parity conserving SUSY models the lightest supersymmetric particle

(LSP) is stable and in case of a neutralino-like, it would a perfect candidate for the CDM. The

mass and the annihilation cross section of the LSP can be utilized to determine a model de-

pendent expectation of the relic density in the universe. Out of the WMAP measurement (23%

CDM) a constraint on the LSP anihilation cross section of SUSY models consistent with the

relic density in our universe Ωχ̃0
1
h20 ≈ 0.11 can be set, where the Hubble constant is h0 ≈ 0.7.

For fixed tanβ this constraint leads to a narrow band in the cMSSM m0-m1/2 plane, but slight

fine tuning of tanβ and therefore the mass of the pseudo scalar Higgs mA and mostly the

complete m0-m1/2 plane space is allowed [41].

Figure 3.3: (Left) Allowed regions in the cMSSM m0-m1/2 plane for correct relic density in the universe for

various values of tanβ and fixed trilinear coupling A0 = 0 and sign(µ) = +1. (Right) Relic

density after tuning of tanβ. Nearly the complete m0-m1/2 plane can be tuned to be consistent

with the relic density in the universe. Plots are taken from [41].

Cosmology - Direct Dark Matter Searches: Several experiments designed to measure the

nuclear recoils from weakly interacting massive particles (WIMP) of our galactic halo reported
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interesting results over the last years. The experiments CDMS-II [42], Xenon100 [43] and

EDELWEISS-II [44] have achieved the best sensitivities. Typically spin independent WIMP-

nucleon elastic interaction cross section of about 10−9 pb are excluded at 90% confidence level

over a wide range of WIMP masses [43].

B-Physics: Indirect measurements very sensitive to new physics beyond the Standard Model

are the rare decay rates of B mesons. The constraints arising from the decay of a Bs meson into

two muonsBs → µ+µ− will be exemplary discussed. Bs → µ+µ− processes are suppressed at

tree level in the SM, since flavor changing neutral currents (FCNC) are not allowed, and so only

higher order loop diagrams contribute. The branching fraction (BR) in the SM [45] is predicted

to be

BRSM (Bs → µ+µ−) = (3.2± 0.2) · 10−9 (3.39)

Recently, the CDF collaboration published an exciting results, where an excess in Bs → µ+µ−

with a 1.9% probability of a combined background plus SM signal fluctuation was observed

[46]. If one interprets the excess as signal, the corresponding branching fraction is of the order

BRCDF (Bs → µ+µ−) = 1.8+1.0
−0.9 · 10−8. So far the excess could not be confirmed in a

combined search reported by the LHCb and CMS collaboration [47], where an upper limit on

the branching fraction was given as:

BRLHCb+CMS(Bs → µ+µ−) < 1.08(0.9) · 10−8@95% (90%)C.L. . (3.40)

The branching fraction can be significantly enhanced by SUSY models due to additional con-

tributions from supersymmetric particles leading to a BR proportional to tan6β. In principle

one can expect strong constraints on the cMSSM model space from the measured upper limit

on the branching fraction, but it was shown that a simultaneous fit of the trilinear coupling A0

and tan(β) in the combined data of BR(Bs → µ+µ−) and cosmological measurements of the

relic density yields excluded ranges well below the constraints coming from the excluded Higgs

masses [48].

Anomalous Magnetic Moment of the Muon:

The Muon G-2 collaboration has measured the anomalous magnetic moment of the muon [49]

at the Brookhaven National Laboratory very precisely to be:

αµ(Expt) = 11659208.0(63)× 10−10 (0.54 ppm) , (3.41)

which is about 2.2 to 2.7σ away from the SM expectation

∆αµ(Expt− SM) = (22.4± 10 to 26.1± 9.4)× 10−10 (0.54 ppm) . (3.42)

It turns out that the magnetic moment of the muon is very sensitive to radiative corrections

from the SM, whereas additional contributions from SUSY particles can lead to the measured

deviation. The sign of the shift in the magnetic moment, where leading SUSY contributions are

proportional to tan(β)sign(µ)/M2
SUSY

2, fixes the sign of the Higgs mass parameter to positive

values [50, 51].

2MSUSY : a common mass for all superpartners is assumed
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Collider Experiments: Several direct SUSY searches were already performed at former Col-

lider experiments (LEP, Tevatron) and after two years of LHC running mostly already outdated.

In Fig. 3.4 a summary of the actual exclusion limits of the various SUSY searches done within

the CMS Collaboration in the context of the cMSSM are shown [52]. Additionally, the exclu-

sion limit of a hadronic SUSY search performed by the ATLAS Collaboration with comparable

performance is shown for comparison [53]. Both collaborations have quite similar analysis

strategies: the analysis are split in different topologies defined by the number of physics objects

(leptons, jets, Emiss
T ). Translating the exclusion limits from the m0-m1/2 plane in excluded

masses of SUSY particles both experiments gain a foothold at the TeV scale, where in case of

CMS squark and gluino masses of about 1 TeV are already excluded over a wide range of m0

(cMSSM).

Many more analysis not reported here are already published, where the results were also inter-

preted in different SUSY models and so called simplified models as well. A summary of all

recent results can be found elsewhere for CMS [52] and ATLAS [53].
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Figure 3.4: CMS (left) and ATLAS (right) exclusion limits in the context of the cMSSM model (tanβ = 10,

A0 = 0, sign(µ) = +1) corresponding to a data set of about Lint ≈ 1 fb−1 recorded in 2011. In

case of CMS all major results are incorporated in one plot, where hadronic searches (Jets+MHT,

Razor) sets the most stringent limits. In case of ATLAS a similar hadronic analysis is shown with

comparable limits. Plots are taken from [52, 53].

A complete consideration of all constraints3 of precision measurements, SUSY searches at collider

experiments and direct WIMP searches can be incorporated and the compatibility of different models

with the measurements denoted by a χ2 calculation was determined [54–56]. In Fig. 3.5 the 68%

(95%) confidence level contours corresponding to ∆χ2 = 2.30(5.99) in respect to the best fit point are

shown for the pre-LHC scenario and including recent LHC measurements and exclusion limits as well.

In summary the LHC searches for physics beyond the SM just started to probe a new region of the

cMSSM parameter space, which were not excluded by former constraints of precision measurements,

3Not all constraints incorporated in the analysis were discussed explicitly here but can be found in [54] .
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cosmology and collider experiments and therefore its not surprising, that no significant hint on new,

maybe supersymmetric, particles have been appeared so far.

Figure 3.5: The m0-m1/2 plane in the cMSSM . The best-fit point after incorporation constraints including the

LHC 1 fb−1 results is indicated by a filled green star, and the pre-LHC fit [56] by an open star.

The ∆χ2 = 2.30(red) and 5.99(blue) contours, commonly interpreted as the boundaries of the 68

and 95% CL regions. The solid line includes the LHC 1 fb−1 data and the dotted lines show the

pre-LHC fits [54].
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CHAPTER 4

The CMS Experiment at the Large Hadron Collider

In the last decades many discoveries and precision measurements performed in high energy particle

physics were a big step up the ladder towards a better understanding of the universe. The Standard

Model (SM) of particle physics is one of the most tested theories ever written down and describes

numerous phenomena accessible up to now with an amazing precision. But as already discussed in

the previous chapters, the Standard Model is an effective theory working at an energy scale of the

order of 100 GeV and the natural question is: what is at energy scales of 1 TeV or even higher?

Another problem of the Standard Model comes the Dark Matter in the universe, which is presumably

made of the so called Weakly Interacting Massive Particle (WIMP). This Dark Matter cannot be

described within the Standard Model. Supersymmetric theories on the other hand provide a perfect

candidate. Several experiments aimed to detect the WIMP’s were built, but up to now no significant

hints were measured. Those direct, and also indirect, dark matter search experiments are perfect to

confirm the existence of WIMP’s, but not suitable to reveal their nature.

For such purposes collider experiments are predestinated. The Large Hadron Collider (LHC) at the

CERN near Genevea Switzerland, provides a perfect tool to jump into a new energy regime and

hopefully in a time of many new discoveries, which could revolutionize our understanding of the

universe.

CERN was founded in 1954 with 12 member states [57]. Two years later in 1959 the first proton

accelerator Proton-Synchroton (PS) was built with the ability to accelerate protons up to an energy of

28 GeV; it is still operating nowadays. The proton-proton collider history starts also at CERN in 1971

as the first p-p collider Intersecting Storage Rings (ISR) with a diameter of 300 m starts operating.

Parallel in the beginning of the 70ies the CERN success story starts accelerating, beginning with the

discovery of neutral currents in the Gargamelle-bubble chamber in 1973 [58, 59]. New more ener-

getic machines were built in the following years discovering for example the today well known W

and Z boson(1983) [60, 61]: the Super Proton Synchroton (SPS) accelerating protons up to 300 GeV

(400 GeV nowadays ) built in 1976 and the Large Electron Positron (LEP) with a circumference of

27 km finalized in 1989. LEP ends its operation in November of 2000 clearing the way for the con-

33
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struction of the LHC. Following the discoveries of the gauge bosons made at the various experiments

at CERN, it is now the challenge (and duty) of the LHC to discover the last missing boson of the SM.

In the next sections the LHC and in more detail the Compact Muon Solenoid experiment will be

reviewed.

4.1 The Large Hadron Collider

The LHC [62] is today the world largest particle accelerator with a circumference of 26.7 km situated

in average around 100 m beneath the surface in the tunnel of the former LEP1 experiment near Geneva.

With a present center of mass energy of
√
s = 7 TeV in proton-proton collisions it provides also the

world most energetic collider as well. The overall conceptional design of the LHC is running with

two 7 TeV proton beams at a luminosity of L = 1034 cm−2s−1 . Additional, dedicated periods with

heavy ion runs are scheduled with an energy of 2.76 TeV per nucleon and L = 1027 cm−2s−1 . Four

experiments are installed at the collision points: CMS, ATLAS2 [63], LHCb3 [64] and ALICE4 [65].

LHCb and ALICE are experiments designed to study predefined physics, where LHCb is optimized

for precision measurements of CP violation and decays of B mesons and ALICE focuses on physics

of strongly interacting particles and the so called quark-gluon plasma, which is expected at extreme

values of energy density and temperature. CMS and ATLAS are general purpose detectors with the

primary aim to discover the Higgs boson and find evidence for new physics beyond the Standard

Model.

A schematic layout of the CERN accelerator complex is presented in Fig. 4.2. The LHC is a particle-

particle collider consisting of two rings with counter-rotating proton beams. Protons are pre-accelerated

in the PS and SPS facilities up to an energy of 400 GeV and injected afterwards in the LHC ring. The

beam is further accelerated via 16 high frequency cavity resonators and are crossed at four interactions

points, where the main experiments are arranged. In order to bend both proton beams circulating in

the LHC tunnel 1232 dipole magnets able to generate 8.3 T magnetic fields are installed across the

ring. Quadrupole and sextupole magnets are used in order to focus and squeeze the beam. The ad-

vantage of using protons compared to electrons/positrons used in the former LEP experiment is the

highly reduced beam energy loss due to synchroton radiation. Hence higher energies can be achieved

only constrained by the magnetic fields available to bend the beams. A caveat in proton-proton col-

lisions is the composite nature of protons and hence the a priori unknown center-of-mass energy of

the involved partons, except the transverse energy is known to be zero and as a consequence mostly

transverse components of particle observables are used in the analysis of hadron collisions.

Beside the importance of the beam energy another quantity, used several times already, is the lumi-

nosity, whcih is defined as:

L =
γfkBN

2
p

4πǫnβ∗
F , (4.1)

where γ is the Lorentz factor, f is the revolution frequency, kB is the number of bunches, NP is the

number of protons per bunch, ǫn is the normalized transverse emittance, β∗ is the betatron function of

1LEP: Large Electron Positron Collider
2ATLAS: A Torodoil LHC ApparatuS
3LHCb Large Hadron Collider beauty experiment
4ALICE: A Large Ion Collider Experiment



4.1. THE LARGE HADRON COLLIDER 35

Figure 4.1: The CERN accelerator facility with the large LHC ring and the four main experiments. Protons

getting pre-accelerated in the Proton-Synchroton (PS) and Super-Proton-Synchroton (SPS) up to

400 GeV before the injection into the main ring. Other experiments like the CERN-Neutrino to

Gran Sasso (CNGS) beam, which was used by the OPERA [66] (Oscillation Project with Emulsion-

tRacking Apparatus) collaboration for the exciting neutrino time of flight measurement [67], are

shown as well.

the interaction point and F is a reduction factor induced by the crossing angle of the beams. In order

to accumulate a large amount of events in a given time period, a high luminosity is required since it is

directly related with the production rate:

N = σprod · L (4.2)

with σprod the production cross section for a specific process. Further the cross section is anti pro-

portional to the energy σ ∝ E−2 and hence a high luminosity is required to compensate that effect.

At the nominal intensity each beam will consist of 2808 bunches with about 1011 protons in a single

bunch and a spacing of 25 ns between them colliding with a frequency of 40 MHz. A drawback of

this high luminosity is the high average number of collision per bunch crossing, which is on the order

of about 20 collisions. The integrated luminosity is defined as the integration of the luminosity over

time and is mostly quoted as the amount of accumulated events.

N =

∫

σ · L dt = σ Lint (4.3)
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the solenoid an inner tracking system and the calorimeters are installed. The still strong return field

outside the solenoid, including a fully saturated 1.5 m thick iron yoke, harbors four layers of muon

chambers inside this yoke. A more detailed review of the several subsystems will be discussed in the

next sections by following the trajectory of particles emerging from the collision point.

C ompac t Muon S olenoid

Pixel Detector

Silicon Tracker

Very-forward

Calorimeter

Electromagnetic�

Calorimeter

Hadron

Calorimeter

Preshower

Muon�

Detectors

Superconducting Solenoid

Figure 4.3: A schematic overview of the Compact Muon Solenoid detector with its various subsystems. The

inner tracking system is installed closest to the beam line consisting of silicon pixel and strip

detectors and is surrounded by the calorimeters. An electromagnetic and hadron calorimeter are

placed within the superconducting solenoid. Outside the muon system is mounted within the iron

return yokes of the solenoid. The picture is taken from [71].

4.2.1 The Coordinate System

The nominal collision point is the origin of the coordinate system used within the CMS collaboration.

The z-axis is defined by the beam line and the perpendicular y and x axis are forming a right-handed

coordinate system, where the y-axis is pointing vertically upwards and the azimuthal angle φ with

respect to the positive x-axis is measured in the x-y plane. Similar the polar angle θ is defined with

respect to the positive z-axis.

A quantity called pseudo rapidity η will be used in the following and is defined as

η = −ln

(

tan

(
θ

2

))

. (4.4)

The pseudo rapidity depends only on the polar angle θ and is zero for any vector in the x-y plane and

approaches infinity for the limit θ → 0. The sign of η indicates the hemisphere.
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4.2.2 Inner Tracking System

The inner tracker system [70,72–74] is designed to measure the trajectories of charged particles pass-

ing by with a high precision and efficiency. It should also be able to reconstruct primary and secondary

vertices. Its scale is 5.8 m long with a diameter of 2.5 m and is built cylindrical around the beam pipe.

A schematic overview of the inner tracking systems can be seen in Fig. 4.4.

If the LHC is running at the design luminosity of L = 1034cm−2s−1 , there will be around 25 over-

lapping events per proton-proton collision leading to an average of 1000 particles to detect each 25 ns.

A high granularity and fast response is required to ensure a proper trajectory identification with a long

lifetime of the detector modules with respect to radiation damage of the high particle flux. Another

important point is the material budget used in order to minimize multiple scattering, bremsstrahlung,

photon conversions and nuclear interactions.

A tracker design using a combination of silicon pixel and strip detectors is chosen to meet the dis-

cussed requirements. Closest to the beam pipe, where the occupancy of the detector modules is

highest, the silicon pixel elements are used. At higher radii lower occupancy allows to use silicon

strip detectors.

In total the inner tracking systems is composed of 1440 silicon pixel and 15148 strip detector elements

covering pseudo rapidities up to |η| < 2.5 with an total of 200m2 active material.

Figure 4.4: Schematic overview of the CMS inner tracking system [70]. Each line indicates a detector and dou-

ble lines back-to-back elements. The inner tracking system consists of three layers pixel detectors

in the barrel and two disks attached on each endcap. They are surrounded by ten layers of silicon

strip detectors and twelve disks at each endcap. The picture is taken from [71].

Silicon Pixel Detector

The silicon pixel modules are the part of the tracker system closest to the beam pipe. A precise tracking

in r − φ and r − z is crucial for a small impact parameter resolution and identification of secondary

vertices. Three layers of pixel detectors in the barrel region (BPix) at radii 4.4 cm, 7.3 cm and 10.2 cm

and two disks on each endcap (FPix) at z = ±34.5 cm and z = ±46.5 cm with a total amount of 66
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million pixels (48 million BPix + 18 million FPix) leading to 1m2 of active pixel material covering

pseudo rapidities up to |η| < 2.5, where the size of a single cell is 100× 150µm2.

Charged particles passing a silicon pixel detector induce electron-hole pairs perceiving a Lorentz drift

in the crossed electricand magnetic fields in the barrel region. The angle between the Lorentz drift and

the electric field is the so called Lorentz angle, which leads to a charge spreading over more than one

pixel. This charge sharing of multiple pixels improves the spatial resolution. In order to also benefit

in the FPix from the charge charring induced by the Lorentz effect, the pixel modules mounted on the

endcap disks exhibits a turbine like geometry with blades rotated by 20◦.

This design of three layers in the barrel region and two disks on the endcaps yields three tracking

points for each charged particle over almost the full η-range of the pixel detector with a spatial reso-

lution of about 10µm for the r − φ and 20µm for the z-measurement.

Silicon Strip Detector

At higher radii the occupancy is getting lower and silicon strip detectors with a larger surface can

be used, because the particle flux inducing radiation damage is decreasing with increasing radii. Ten

layers of silicon strip- are surrounding the pixel-detectors in the barrel region between the radii 20 cm

and 116 cm. The silicon strip detectors can be classified into three subsystems: (a) the Tracker Inner

Barrel and Disks (TIB, TID) consist of four layers in the barrel (radii 20 cm-55 cm) and three disks in

both endcap regions, (b) followed by six layers of Tracker Outer Barrel (TOB) up to a radii of 116 cm

(c) and nine disks mounted with Tracker EndCap (TEC) elements. All silicon strip detector elements

with 9.6 million strips have an active material area of 198 m2.

The TIB/TID delivers four r−φ tracking points for each charged particles using 320µm thick silicon

micro-strips mounted parallel to the beam axis. The first two layers of TIB consists of strips with a

length of 80µm and layer three and four with a length of 120µm, where the TID’s strip length varies

between 100 and 141µm. The inner part of the tracker system is surrounded with 500µm thick

silicon strip modules of the TOB, where the length of those strips are 183µm on the first four layers

and 122µm on the last two layers. This structure allows six additional r − φ tracking points. The

thickness of the TOB’s can be increased with respect to TIB/D elements, because of another decrease

in occupancy. At each endcap nine disks of TEC’s carrying up to seven rings of silicon strip detectors

with thicknesses of 320µm on the inner four rings and 500µm on the outer three rings are placed,

which extending the z coverage to |z| < 282 cm. A second strip detector is mounted back-to-back

with a stereo angle of 100 mrad on the modules of the first two layers of the TIB, TID, TOB’s and as

well of the first, second and fifth ring of the TEC’s. Such an arrangement allows a measurement of

the z-coordinate as well.

The single point resolution varies from 230− 530µm in z and 23− 52µm in the r− φ measurement

and ensures at least nine tracking points in the η-range of |η| < 2.4.

4.2.3 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) [75] provides an energy measurement of photons, electrons

and charged hadrons. Beside the common criteria like fine granularity, fast response and radiation

resistance, it has to provide an excellent diphoton resolution in order to identify the Higgs decay
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processes into two photons, whose discovery is one of the main goals of the CMS collaboration. A

transverse overview of the ECAL can be seen in Fig. 4.5.

Figure 4.5: A slice through the CMS detector showing a schematic overview of the ECAL configuration. It

consists of three subsystems: the ECAL barrel, the endcap and an electromagnetic preshower sys-

tem in order to identify neutral pions in the forward region. The picture is taken from [71].

The ECAL is a hermetic homogeneous calorimeter built of lead tungstate (PbWO4) crystals. PbWO4

crystals have a high density of ρ = 8.28 g/cm3, a short radiation length of X0 = 0.89 cm and a small

Molière radius of RM = 2.2 cm, which defines the radius of a cylinder containing on average 90%

of the shower energy deposits. Those characteristics of PbWO4 crystals allows to design a compact

ECAL with fine granularity. Another advantage of those crystals is the fast scintillation decay time,

which is in the same order as the LHC bunch crossing rate, namely about 80% of the total light

emission within 25 ns.

Similar to the inner tracking system the ECAL is divided into a barrel region (EB) and endcaps (EE).

The EB crystal volume is in total 8.14m3 with an inner radius of 129 cm and a weight of 67.4 t. It

covers pseudo rapidities up to |η| < 1.479 and the granularity is 360-fold in φ and 2 × 85-fold in η

leading to a total amount of 61200 tapered shaped crystals mounted in a quasi-projective geometry to

avoid cracks aligned with particle trajectories. The crystal have a front face cross section of 0.0174×
0.0174 in η-φ ( 22× 22mm2) and 26× 26mm2 at the rear face. The length of the crystals is 230mm,

which corresponds to 25.8X0.

The EE are extending the pseudo rapidity coverage of the ECAL to 1.479 < |η| < 3.0 and are

placed at |z| = ±315.4 cm, taking already the shift of 1.6cm towards the nominal interaction point

into account once the magnetic field is switched on. It consists of another 14648 identically shaped

crystals mounted in a rectangular x-y grid, where each crystal is pointing slightly off the interaction

point. The front face cross section is 28.62 × 28.62mm2 and the rear face 30 × 30mm2 by a crystal

length of 220mm corresponding to 24.7X0.

The use of PbWO4 crystals with its low light emittance, the high longitudinal magnetic field and

radiation tolerance, especially in the endcap region of the ECAL leads to the choice of two types of

photo detectors collecting the scintillation light of the crystals: avalanche photodiodes (APD) in the

EB and vaccum phototriodes (VPT) in the endcaps. APD’s are insensitive to high magnetic fields and
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the high particle flux in the endcaps favored VPT’s with lower quantum efficiency and internal gain,

but larger surface coverage.

The last missing part of the ECAL is the preshower detector covering a range of 1.653 < |η| <
2.6, which is installed in the endcap in order to identify pions. It is a sampling detector with two

layers of lead radiators with silicon strip sensors attached and aligned orthogonal in the two planes,

where the radiators working as initiators for electromagnetic showering and the silicon strip detectors

measure the deposit energy and the transverse shower shape. The thickness of the first radiator layer

corresponds to a material budget of 2X0 and the second to 1X0, hence 95% of single photons starts

showering before the second sensor plane.

In 2004 the energy resolution of the ECAL was measured with electron beams having momenta be-

tween 20 and 250 GeV to be typically [70]
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)2
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)2

+

(
0.12

E

)2
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where E is the energy in GeV. The energy resolution consists of three parts: (1) the stochastic part

proportional to 1/
√
E, (2) a noise term including electronic, digitization and pileup noise and (3) con-

stant term coming mainly from non-uniformity of the longitudinal light collection. For unconverted

high energetic photons, E ≈ 100 GeV, the dominant contribution to the resolution arises from the

constant part and a good ECAL calibration is mandatory for a good performance.

The absolute energy calibration and the inter-calibration have been performed using electron test

beams and in situ π0 → γγ physics events [76]. The inter-calibration is a channel-to-channel rel-

ative component, which originates from a crystal-to-crystal variation of the scintillation light yield.

Using the first 250 nb−1 the channel-to-channel calibration precision is 0.6% for EB and 2.2% for the

forward preshower. A similar performance was measured for the absolute energy calibration with a

precision of 1% in the barrel and 3% in the endcap. An improvement will be achieved with a larger

collection of data events including also Z and W decays into energetic electrons.

4.2.4 Hadron Calorimeter

A longitudinal view of the hadron calorimeter (HCAL) [77] is shown in Fig. 4.6. The HCAL is

important for the measurements of hadronic jets and also missing transverse energy, due to undetected

neutrinos or new exotic weakly interacting particles. It is splitted into four subsystems. The HCAL

barrel (HB) and endcap (HE) are installed behind the ECAL system and the size is constrained to

R=1.77 m for the inner radius and R=2.95 for the outer to be placed within the magnet coil. Due to

this constrained size the amount of absorber material is limited and an additional outer component

(HO) of the HCAL, outside the solenoid, used as a so called tail catcher is needed. The HB and HE

have a coverage in pseudo rapidity up to |η| < 3.0, which is extended up to |η| < 5.2 by a forward

calorimeter (HF) placed at z ± 11.2m, with respect to the nominal interaction point.

The HB is a sampling calorimeter based on steel and brass as absorber material and scintillators tiles

as active material, which are divided in ∆η × ∆Φ = 0.087 × 0.087. The inner- and outer most

absorber plates are stainless steel absorber for structural strength and the rest are brass plates. Brass

has a density of ρ = 8.53 g/cm3 with a radiation length of X0 = 1.46 cm and an interaction length

of λI = 16.42 cm. At η = 0 the total absorber thickness corresponds to 5.82λI , where at |η| = 1.3 it
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Figure 4.6: Schematic overview of the CMS hadron calorimeter [70] embedded within the superconducting

solenoid. The HCAL is divided into four parts: the barrel hadron calorimeter (HB), the end-

cap calorimeter (HE) and an outer calorimeter (HO) outside the solenoid needed for the limited

absorber material in the central region. An additional calorimeter is placed in the most forward re-

gion (HF). For comparison also the location of the inner tracking system, the ECAL and the muon

system as well are shown. The picture is taken from [71].

is 10.6λI , due to geometry reasons. The ECAL in front of the HCAL adds around 1.1λI of absorber

material. Wavelength-shifting and clear fibers are employed to collect and transport optical signals

emitted in the active material to hybrid photodiodes (HPD), that can operate in high axial magnetic

fields.

Brass as absorber material was also chosen for the HE and the design is driven by minimizing the

amount of cracks between HB and HE, rather than optimize the resolution of hadronic jets in the end-

cap region. In total the HE has a thickness of about 10λI including ECAL material and a granularity

of the scintillator tiles of ∆η×∆Φ = 0.087×0.087 for 1.3 < |η| < 1.6 and ∆η×∆Φ ≈ 0.17×0.17

for 1.6 < |η| < 3.0.

In the central region of the detector the EB and HB have together a thickness of about 7λI , which is

a not sufficient containment for hadron showers. Therefore an additional HO is mounted on top of

the solenoid. The HO consists of scintillator with similar granularity as HB using the solenoid coil as

an additional absorber material and covers ranges up |η| < 1.26. In the most central region, where

the EB and HB absorber material budget is the lowest, two layers of scintillator are installed on either

side of the first 19.5 cm thick iron yoke leading to a minimum of 11.8λI absorber thickness.

Very forward ranges 3.0 < |η| < 5.0 are covered by the HF calorimeter. It is designed to survive

the harsh environment with a high particle flux close to the beam pipe. Quartz fibers collecting the

Cherenkov light of particles traversing through with a good radiation hardness were chosen for the

active material and steel as absorber material.

The HCAL energy resolution has been measured in test beams with electrons, pions, protons and

muons and complementary in cosmic muon data as well [78]. For the barrel and endcap calorimeters
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(HB, HO, HE) the energy resolution has been measured to be [79]
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and analogeous for the forward calorimeter (HF) [80]
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including a stochastic and constant term. The hadronic energy resolution is largely determined by

fluctuations in the neutral pion production in showers. In comparison the energy resolution of the

HCAL is worse than as for the ECAL system.

4.2.5 Magnet

A large superconducting solenoid [81] is installed inside the CMS detector and encloses the inner

tracker system, the ECAL and HCAL except the outer hadron calorimeter. It has a length of 12.9 m

and an inner diameter of 5.9 m. A high magnetic field of 3.8 T inside the magnet is required to

achieve a momentum resolution of ∆p/p ≈ 10% for energetic muons (p = 1TeV). The magnetic

flux generated by the solenoid coil is returned via a 1.5m thick saturated iron yoke, which also hosts

several layers of the muon system.

4.2.6 Muon System

The outermost part of the CMS detector [82] consists of the Muon system shown in Fig. 4.7. Muons

are involved in many interesting physics processes, like Higgs decays and SUSY processes. In addi-

tion they are utilized for many SM precision measurements involving B physics and/or electroweak

processes. The identification, reconstruction and momentum resolution of muons as well as triggering

on muons is therefore of prior importance.

The muons system is splitted into two parts including three types of gaseous detectors to identify muon

candidates and measure their momentum: (1) the central part muon barrel (MB) covering pseudo

rapidities up to |η| < 1.2 and (2) forward parts with two muon endcap’s (ME) extending the coverage

up to |η| < 2.4. In the barrel region drift tube chambers (DT) are used. Although slow because of

the drift time and sensitive to the magnetic field because of the Lorentz force on the drifting electrons,

they can be used in the barrel region with its low neutron background, low muon rate and low residual

magentic field. In contrast the endcap faces a high neutron background, a high muon rate and also

a high magnetic field as well. Hence so called cathode strip chambers (CSC) are used. In both

muon subsystems also resistive plate chambers (RPC) are added with a fast response and good time

resolution in order to assign correct bunch crossings. The spatial resolution of the RPC’s is worse

compared to the resolution of the DT’s and CSC’s and therefore a combination in both subsystem was

chosen.

The DT are 1.2 mm thick and 9.6 mm long aluminium cathodes with stainless steel anodes wires

at their center. A mixture of Ar and CO2 is used as gas. The DT’s have a maximal drift length

of 2 cm and a spatial resolution of about 200µm. The precision in φ is 100µm and 1 mrad in the
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direction of the muon vector with a time resolution of 5 ns. In comparison, the CSC’s are 1m × 2m

trapezoidal chambers consisting of six gas gaps with each having a plane of radial cathodes and a

plane of anode wires oriented perpendicular. As gas a mixture of Ar-CO2-CF4 is filled. The spatial

resolution is typically on the order of 200µm with an angular resolution of about 10 mrad in φ with

a time resolution of 6 ns, which is a little bit higher compared to DT’s. The last detector type used in

the muon system are the RPC’s. They consist of a double-gap chamber operating in avalanche mode

with a gap width of 2 mm. The spatial resolution of the RPC is defined by the cell size.

The MB consists of 4 stations (MB1, MB2, MB3, MB4) at radii of 4.0, 4.9, 5.9 and 7.0 m including

in total 250 drift tube chambers mounted cylindrical around the beam axis inside the iron yoke of the

solenoid arranged in five wheels covering the barrel part. Each wheel is divided into twelve sectors,

each covering 30◦ in azimuthal angle with the three inner stations consisting of 12 DT layers, whereas

the outer stations consists of 14 DT layers. Two RPC’s are attached on each of the first two stations

and one RPC on each of the the two outermost stations. Hence a high pT muon in the barrel region

will pass six RPC’s and four DT chambers leading up to 44 measured space points, which can be

utilized to build a muon candidate.

Similarly the ME consists of 4 stations (ME1, ME2, ME3, ME4) of CSC’s arranged in concentric

rings around the beam axis. The first stations have three rings of CSC chambers and two rings for

the RPCs, while the second ring of the fourth station has been staged out. In total 468 CSC chambers

are installed in the two endcaps, where each ring consists of 36 chambers, except the first rings of the

second, third and fourth station, where 18 chambers are installed. Each CSC measures up to six space

coordinates (r, φ, z). RPC’s are instrumented additionally in the first three stations.

Figure 4.7: The muon system is the largest part of the CMS detector embedded in the iron return yoke of the

solenoid. In the barrel region four stations including several layers of DTs and RPCs are installed,

whereas in the endcap region four disks mounted with CSCs and RPCs are in usage. The picture is

taken from [71].
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4.3 Trigger and Data Acquisition System

At the design luminosity of the LHC with a bunch crossing rate of 40 MHz there will be around 109

collisions per second in the detector. Assuming an event size of 1.5 MB leads to tens of TB/s to record,

which is impossible to handle with the limited computing resources available. Therefore a two level

trigger and data acquisition system were designed in order to reduce the amount of recorded collisions

by six orders of magnitude (see Fig. 4.8). The trigger selects interesting events out of millions of

uninteresting ones, so the trigger is of exceptional importance and needs a very careful consideration

reviewed in the following.

Figure 4.8: The data acquisition and trigger systems consists of the front-end readout electronics, a L1 hard-

ware trigger system and a software based HLT system running on a computer farm. This system

allows to reduce the event rate of about 40 MHz at the design luminosity of the LHC to a manage-

able level of about 100 Hz. The picture is taken from [71].

Level-1 trigger

The Level-1 (L1) trigger system [83] is built of hardware processors and reduces the event rate from

40 MHz to 100 kHz. In total 3.2µs are allocated for the transition from the front-end electronics to

and back from the L1 trigger system including the decision making time. The detector informations

are stored meanwhile in memory buffers of the front-end electronics.

The L1 decision is based on informations of the calorimeters and muon systems with a reduced gran-

ularity and resolution of the detector. Also correlations of both detector subsystem are taken into

account by so called global L1 triggers. In a first step trigger objects are formed from the information

provided by the calorimeter and muon system including photons, electrons, muons and jets. Subse-

quently those objects and additional the total and missing transverse energy and the jet multiplicity are

passed to the global triggers, which take a decision based on the presence of several objects passing

predefined thresholds.

High-Level trigger

If an event is accepted by the L1 trigger system the high resolution detector data is passed to the high-

level trigger software running on a CPU farm. The High-Level trigger (HLT) system [84] is a software
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based routine reducing the event rate of 100 kHz after the L1 decision to finally about 150 Hz at high

luminosity runs. A more sophisticated detailed event reconstruction is used to provide all needed

objects and topologies in order to select events according to the physics goals. Since the HLT’s are

software triggers, the operation is very flexible and due to changing environments or physics goals the

individual trigger rates can easily be adjusted in terms of selection algorithm and/or object thresholds.

The final event rate of about 150 Hz corresponds to the data stream of 225 MB/s (event size ≈ 1.5MB)

is transferred to a central storage system based at CERN.



CHAPTER 5

Software Tools and Event Reconstruction

Each event recorded by the CMS detector is stored including the raw electronic responses of the

detector. The information has to be translated into physics objects and processes, which have took

place within the detector, commonly called reconstruction. In order to compare the measurements

with theoretical predictions, a huge amount Monte Calo events have to be processed and the detector

response simulated. The CMS software (CMSSW) framework, developed to meet these requirements,

will be reviewed in the following as well as the Monte Carlo event generation, detector simulation and

physics object reconstruction. Finally the CMS computing model will be discussed.

5.1 CMSSW: CMS Software Framework

The CMSSW (CMS SoftWare) framework is a modular package built based on the Event Data Model

(EDM). Several services taking for example care of simulation, calibration and reconstuction are

included. It runs with a single executable cmsRun, both for MC and data samples, where the specific

declaration of plugin modules to carried out are specified in a configuration file written in Python [85].

For each event the chain of modules listed in the configuration file with its given parameters are

executed.

The event in the CMS EDM concept is a C++ object container for all raw and reconstructed data for

a single collision. All objects in the event can be written into ROOT [86] files offering a simple tree

structure.

The CMSSW framework uses six different types of loadable modules with different functionalities:

• Source: Generates the event by reading the EventSetup from the ROOT files, or simply an

empty event in case of MC generation.

• EDProducer: Writes new objects to the event.

• EDFilter: Studies the properties of the events and returns a boolean value, which can be used

to stop the execution of further modules, i.e. skip the event.

47
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• EDAnalyzer: Analyzes the event and writes some output, e.g. a set of histograms.

• EDLooper: Controlling of the multi-pass looping.

• OutputModule: After execution of all desired modules, the event information is read and

stored.

A typical processing chain used within cmsRun is illustrated in Fig. 5.1.

Figure 5.1: A sample module chain containing a Source which creates the event, various EDProducers (Dig-

itizer, Tracker) adding additional data to the event and an EDFilter (NTrack filter) filtering only

interesting events. Once all modules have been executed the OuptutModule stores the output. The

plot is taken from [87].

5.2 Monte Carlo Event Generation

Monte Carlo (MC) event generators are tools to help studying the complex particle interactions in high

energy physics. Modern generators split the entire event modeling, including QCD/QED radiation,

secondery interactions, hadronization of partons and hadron decays, in several steps. Starting from

the lagrangian structure of the physics model the hard interaction is calculated, which is provided by

so called matrix element generators. The hadronization and fragmentation processes of colored final

state partons from the matrix element or parton shower transforms them into colorless hadrons, which

will finally decay. Matrix element generation and parton shower evolution are complementary and

the combination is necessary for studying multi-jet processes. But the combination can lead to double

counting. Therefore so called matching schemes are developed in order to match jets from the matrix

element with jets from parton showers.

Interfaces implemented in the CMSSW framework are realized for many event generators (Pythia6

[88] (Pythia8 [89]), Herwig++ [90], Alpgen [91], Sherpa [92], Madgrah [93]). In this study the MC

events used were generated with Madgraph5 interfaced to Pythia6 for hadronization and fragmen-

tation. SUSY mass spectra and branching ratios were calculated with SOFTSUSY [94] and SUSY-

HIT [95] packages. The actual event generation is done with Pythia6.

• Pythia6: is a general purpose event generator offering leading order 2 → 2 matrix element

calculations and parton shower evolution, describing many physics aspects. The hard interac-

tion describing the initial high energetic interaction is implemented in Pythia for more than 300
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processes including the SM and beyond SM models as well. Higher order corrections and ra-

diative effects are described by the concept of parton showers. Coloured particles which might

results from the hard process or parton shower are hadronized via the so called Lund string

fragmentation model [96].

• Madgraph/MadEvent: MadEvent is a multi-purpose tree-level event generator, which uses the

matrix element calculations from Madgraph in order to calculate the cross section and events.

Madgraph can handle processes up 2 → 6 including SM and also beyond SM processes. The

event produced by MadEvent can be passed to a shower MC program, which is in case of

CMSSW framework Pythia6. In order to match the multi parton matrix elements with the

partons added by the concept of parton shower the so called MLM [97] matching scheme is

applied.

• Softsusy: calculates the mass spectras of sparticles in the MSSM with the full flavor mixing

structure by solving the renormalization group equations including theoretical constraints on

soft supersymmetry breaking terms, specified by the user.

• SUSYHIT: is a package for the computation of supersymmetric particle decays in the MSSM. It

is based on HDECAY [98] and SDECAY [99], which calculate the decay widths and branching

ratios of the MSSM higgs boson and SUSY particles, respectivley.

5.3 Detector Simulation

The detector simulation can be split into three components: the simulation of the particles traversing

through and interacting with the detector material, the simulation of the signals coming from the CMS

readout structure and the simulation of the L1 trigger system.

Generated particles emerging from the collision have to pass several detector components and interact

with the material. For this purpose the simulation package Geant4 [100] is implemented within the

CMSSW framework. This package includes tracking, geometry, physics models and hits. The physics

models contain the description of electromagnetic and nuclear interactions in presence of a magnetic

field over an energy range of 250 eV up to the TeV scale.

The simulation of the electronics readout response leading to digital signals in presence of different

energy deposits is called digitization.

5.4 Event Reconstruction

Particles emerging from the collision point deposit energy in the calorimeter systems or signal points

in the active material of the inner tracking or muon system respectively. Out of those signals the

reconstruction and identification of different physics objects is necessary, where the signatures in

the detector vary from object to object. Table 5.1 summarizes the physics objects and the detector

subsystems used to reconstruct and identify them.

Muons for example are minimum ionizing particles and deposit only a small amount of energy in the

calorimeter and can be identified by several hits in the tracker and muon system. Electrons on the
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other hand will deposit most of its energy in the electromagnetic calorimeter, due to bremsstrahlung

and pair conversion. Hadronically decaying taus and hadronic jets can be reconstructed by energy

clusters in the calorimeters, but a more sophisticated algorithm with improved accuracy is available.

The so called Particle Flow (PF) algorithm [101] combines the information from the various CMS

sub-detectors to identify all charged and neutral particles in an event. Tracks reconstructed in the

inner tracking system are extrapolated and linked to energy clusters in the electromagnetic and hadron

calorimeter. Those reconstructed particles are used to determine hadronic jets, hadronic decaying taus

and missing transverse energy.

The following sections summarize the reconstruction and identification algorithm used within this

study. A more detailed description can be found in the corresponding publications given in each part.

Table 5.1: Summary of the information of the CMS sub-detectors used in the reconstruction of physics objects.

The partilce flow (PF) algorithm combines the information of all sub-detectors in order to reconstruct

all physics objects.

Object Tracker ECAL HCAL Muon System

Electron/Photon X X - -

Muon X - - X

Particle Flow Taus X X X X

Calorimeter Jets - X X -

Particle Flow Jets X X X X

Particle Flow Emiss
T X X X X

5.4.1 Track Reconstruction

Most object algorithms are using reconstructed tracks in the inner tracker system for identification.

Charged particles passing through the tracker system leave several signal points in the detector mod-

ules. The algorithm to find and reconstruct track candidates in the CMS collaboration is the combi-

natorial track finder (CTF) [102, 103]. The starting point in the CTF algorithm are pairs or triplets

of hits, which form, with the additional assumption that the track originates from either a known ver-

tex or beam spot, the seed for the propagation. The parameters of the seed are first estimated at the

beam spot using a perfect helix as fit through the hit points and then propagated to the outer hit, while

updating the parameters at each reconstructed point.

Based on the seed parameters a Kalman filter [104] proceeds iteratively through all layers of the

tracker system updating successively the track parameters with each new measurement and finally

yields a track trajectory. The layers compatible with the initial trajectory are determined according to

the equations of motion of a charged particle in a constant magnetic field including energy losses.If

several hits in the new layer are compatible with the predicted trajectory, a new track candidate is

created for each hit and an additional one without any hit to account for cases were the charged track

did not leave a hit.

To avoid ambiguities in the track finding, like the same track candidate is reconstructed starting from

different seeds or more than one track candidate originates from the same seed resulting in double
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counting, the fraction of shared hits of two track candidates should not exceed a predefined value.

If two track candidates do so the candidate with the least number of hits or with the highest χ2 is

discarded.

The last step is a refitting of the track candidate using the identified hits, because the trajectory pa-

rameters are finally determined with the last hit and can be biased by the constraints used before. This

refitting is done in multiple iterations yielding an optimal estimate of the parameters.

5.4.2 Vertex Reconstruction

Another very important task is the correct reconstruction of the interaction vertex. The location and

the uncertainty of the so called primary vertex is computed from a given set of reconstructed tracks

[103, 105]. Tracks emerging from the primary collision point are selected by their transverse impact

parameter significance with respect to the beam line (Sdxy = dxy(BL)/σdxy ), number of hits in

silicon pixel and strip detectors and the normalized track χ2, where no transverse momentum pT
requirements on the tracks were set to ensure also high reconstruction efficiency in minimum bias

events. Vertex candidates are then defined by grouping tracks within ∆zsep ≤ 1 cm with respect to

their nearest neighbors, where z is the longitudinal coordinate of the extrapolated point of closest

approach to the beam line. Candidates containing at least two tracks are then parsed to an adaptive

vertex filter (AVF) [106] to compute the vertex parameters.

The AVF algorithm is an iterative re-weighted least squares fit and does not reject outlying tracks

rather it down-weights them, where the weight depends on the track compatibility via its χ2 with the

vertex. A track consistent with the vertex will get a weight close to one w ≈ 1. The weights for an

initial vertex candidate will be computed and a updated vertex is estimated. More iterations are done

until convergence is reached. For the vertex fitting in each iteration a Kalman filter is used, which

takes also the weights of the tracks into account. The number of degrees of freedom in this procedure

is defined as ndof = 2
∑nTracks

i=0 wi − 3 with wi is the weight of the ith track. It can be easily seen,

that the ndof is directly correlated with the number of compatible tracks with the primary vertex and

hence can be used to select the p-p collisions, where the vertex resolution depends strongly on the

number of tracks belonging to the vertex and their transverse momentum pT . In Fig. 5.2 the vertex

resolutions measured in minimum bias events are shown in comparison with Pythia simulations [103].

The resolution in x(y) and z is typically about 25µm and 20µm for primary vertices reconstructed with

more than 30 tracks with a reconstruction efficiency close to 1 if there are two or more tracks with

transverse momenta greater than 0.5 GeV emerging from the vertex.

5.4.3 Electron and Photon Reconstruction

Electrons and photons have characteristic signatures which can be used in order to reconstruct and

identify the corresponding energy deposits. Both particles interact with the detector material and

loose a significant amount of energy due to bremsstrahlung and pair conversion in form of an elec-

tromagnetic (EM) shower. In order to determine the initial energy of the electrons or photons the

sum of all energy deposits including the characteristic EM shower has to be taken into account. Due

to the tracker material more than 50% of the photons are converted into electron positron pairs and

around 35% of the electrons have radiated about 70% of their initial energy already before reaching
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Figure 5.2: Vertex resolution in x (left) and z (right) as a function of the number of tracks used within the

reconstruction algorithm. For comparison also prediction from simulations (Pythia8) are shown.

The plots are taken from [103].

the ECAL with a shower spread in φ due to the Lorentz drift induced by the magnetic field. The

use of PbWO4 crystals with a Molière radius of RM = 2.2 cm results in a typical energy spread of

unconverted photons within 5× 5 crystals.

Different algorithms for the barrel and endcap region are used to form superclusters out of the ECAL

energy deposits [71,107], where superclusters are aimed to recover the energy of emitted photons due

to bremsstrahlung. In the barrel region the so called hybrid algorithm is performed. This algorithm

starts with the highest ET crystal and forms dominoes of a narrow width in η corresponding to 3 or

5 crystals. Collecting all dominoes along the φ direction up to an extension of 0.3 rad with respect

to the initial seed forms the supercluster. In the endcap the multi5x5 or often also quoted as island

algorithm is used for creating the superclusters, which are the sum of all matrix clusters along the

φ direction with respect to the initial seed, where matrix clusters are energy deposits inside 5 × 5

matrices of crystals. Similar to the hybrid algorithm the maximum radial extension is also 0.3 rad for

superclusters in the endcap.

The definition of superclusters is similar for electron and photon reconstruction, but the final trajectory

is done differently, due to the fact that the electron track can be reconstructed by its hits in the tracker

system, whereas photons do not leave any hits. We start with the electron reconstruction, which

is based on the so called ECAL driven seeding. The ECAL driven seeding uses superclusters with

ET > 4GeV and tries to match hits in the tracker system to those superclusters. The characteristic

narrow width in η and the spread in φ, due to bremsstrahlung in the tracker material and the electron

bending in the magnetic field, is taken into account in the prediction of hit pairs in the innermost

pixel detector layers. If two pixel hits consistent with the propagation are found they will serve as a

seed for the electron track reconstruction. The propagation through the tracker material is done with a

Gaussian Sum Filter (GSF) [108] using a specific Bethe Heitler modeling [109] of the energy loss due

to bremsstrahlung, which describes the electron propagation better in comparison with the standard
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Kalman Filter procedure used within the track reconstruction.

The photon reconstruction uses the same supercluster algorithm as a starting point. In contrast to elec-

trons no track reconstructed with the GSF procedure should coincide with the ECAL superclusters.

Photons reaching the ECAL system can be unconverted and converted photons as well. In order to

distinguish them the R9 observable can be utilized, which is defined as:

R9 =
E3×3

ESC
, (5.1)

where E3×3 is the energy deposit in a 3 × 3 array of crystals around the supercluster crystal with

the highest ET and ESC is the total supercluster energy. Unconverted or close to the ECAL system

converted photons are populating R9 values around unity.

An impression how well the electron/photon reconstruction and identification works can be seen from

Fig. 5.3 where the dielectron invariant mass spectrum in the upsilon region mee = [6, 12]GeV/c2 and

the diphoton invariant mass spectrum for π0 → γγ decays are shown.
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Figure 5.3: Dielectron (left) -photon (right) invariant mass spectrum measured in data corresponding to an

integrated luminosity of L = 35pb−1 and L = 18nb−1, respectively. The dielectron invariant

mass spectrum is zoomed into the upsilon region mee = [6, 12]GeV/c2 and the Υ(1s) and Υ(2s)

resonances can be observed, whit a hint for the Υ(3s) resonance. Similar the diphoton invariant

mass spectrum recorded with an on-line π0 trigger stream shows nicely the π0 peak. The plots are

taken from [76, 110, 111].

5.4.4 Muon Reconstruction

The muon reconstruction algorithm combines information of the muon system and the inner tracker.

Two reconstruction approaches are used, where one starts from track candidates and tries to match

them to hits in the muon system (inside-out), whereas the other approach starts from the so called

standalone muons reconstructed using only the information in the muon system and tries to match

them with track candidates (outside-in).

Standalone muon candidate reconstruction starts with local track segments based on measured drift

times in the various muon chambers. The segments in the first muon station (see Section 4.2.6) are
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used as the candidates seed. In a similar fashion to the track candidate reconstruction using the hits

in the inner tracker system, a muon parameter estimate using the seed is determined and a Kalman

filter procedure adds successively segments of the outer stations until the end is reached. Once the

outermost segments are reached a backward Kalman filter is applied refitting from outside in and the

candidate parameters are determined at the innermost muon segment, which yields a standalone muon

candidate. Throughout the propagation to the outer muon station and backwards the energy losses and

scattering in the material between the stations and also the inhomogeneous magnetic field are taken

into account.

The outside-in algorithm, commonly referred as the global muon reconstruction, uses the standalone

muon candidate collection and matches it to track candidates by propagating the muon trajectory to

the outermost layer of the tracker system including energy loss and multiple scattering in the detector

material, especially in the dense material of the calorimeter and the solenoid. Around the propagated

impact in the outermost layer of the tracker system a region of interest is defined and local seeds are

built using two hits from different layers and the track algorithm described before (section 5.4.1) is

performed creating trajectories out of each seed. Finally a global fit is performed using the track and

the standalone muon candidates leading to the global muon candidate collection.

In contrast to the outside-in algorithm the inside-out algorithm, commonly referred as the tracker

muon reconstruction, uses all track candidates reconstructed in the tracker system and propagates

analogously their trajectories from the outermost tracker layer to the muon system. If at least one

segment in the muon system matches the propagated trajectory, the corresponding track candidates

get classified as a tracker muon.

The majority of muons with a sufficient momentum emerging from the collision point are either

reconstructed as global- or tracker muons, or mostly as both. In about 1% of the cases muons from

collisions are failing both reconstruction algorithms and are flagged as standalone muons. Those

standalone muons have a much higher cosmic muon acceptance and hence the global and tracker

requirement on muon candidates is preferred over standalone muons.

The excellent performance of the muon reconstruction is beautifully demonstrated in Fig. 5.4, where

the dimuon spectrum with different dimuon triggers is shown . Without any quality cuts on the recon-

structed muons well-known resonances can be easily identified by their peak in the spectrum, even

the ω and φ resonances can be observed.

5.4.5 Tauon Reconstruction

Taus can either decay into leptons or hadrons with associated neutrinos, where the leptonic decay

modes can not directly be related to a τ -decay. Two hadronic tau reconstruction and identification

approaches can be utilized. Hadronic decaying taus have a branching fraction into hadronic single-

prong decays of about 50% and into three prong of about 15%. The single prong taus can even be

further spitted into single-prong with associated π0s (BR ≈ 36%) and without (BR ≈ 14%) [16].

The efficient identification of those signatures inspite of a large soft QCD background is done with the

hadron plus strips (HPS) and tau neural classifier (TaNC) algorithms [113]. As a basis all particle flow

particles (charged hadrons, photons, neutral hadrons, muons, electrons) are used in both algorithms in

order to reconstruct the three different hadronic tau topologies separately.

The tau reconstruction starts with the PF jet reconstruction (Section 5.4.6) using the anti-kT clustering
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Figure 5.4: Invariant mass spectrum for pairs of muon. Datasets recorded by different dimuon trigger paths in

2011 corresponding to an integrated luminosity of 1.1 fb−1 are superpositioned. The plot is taken

from [112].

algorithm with a distance parameter of R=0.5 [114]. Afterwards the used algorithm reconstructs the

π0 candidates components of the τhs and combines them with charged hadron candidates in order to

identify the tau decay mode and yields finally the four momentum vector and isolation quantities. The

details of defining τh candidates differs between the algorithms and will be shortly reviewed.

TaNC Algorithm: The TaNC algorithm uses neural networks as classifiers, where for each decay

mode a specific neural network was trained. But first a τh candidate is built out of the PF jet collection.

The four momenta of the τh candidate is reconstructed as a sum of all particles with pT > 0.5GeV in a

signal cone ∆R < 0.15 (∆R < 0.15 for photons and 0.07 < ∆Rcharged < 0.15 for charged hadrons

with ∆Rcharged = 5GeV/Eτh
T ) around the direction of the leading particle with pT > 5GeV. π0

candidates are reconstructed by merging two photons with an invariant mass less than 0.2 GeV/c2 and

unpaired photons with pT > 0.1× pτhT . By just counting the tracks and π0 candidates inside the signal

cone the considered decay modes can be identified and the corresponding neural networks yields to a

continuous discriminant, which can be used to define different working points. The neural networks

are optimized for each decay mode and the input variables are typically the pT spectrum of the nearby

particles, angular correlations, invariant masses and number of charged particles in the signal and

isolation cone, where the neural networks were trained beforehand to discriminate τh from Z decays

(Z → ττ ) versus QCD multi-jet events.

HPS Algorithm: The HPS algorithm gives special attention to the photon conversion, where the

bending of electrons/positrons of converted photons emerging from neutral pions, which broadens

the calorimeter signatures in the azimuth direction, is taken into account by reconstructing photons
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in strips. It collects electromagnetic particles in a η-φ strip (∆η = 0.05, ∆φ = 0.20) iterative, re-

calculating the four momentum vector after each new added particle, until no further particle can be

associated. Pions can produce several strip-signatures: (1) low energetic pions will lead to no strips,

(2) emerging photons close together will be reconstruct within one strip (3) and if they are well sep-

arated two strips. Finally combining all strips with pT > 1GeV and charged hadrons inside a cone

∆R = 2.8GeV/pτhT the individual decay modes can be reconstructed, where the four-vector sum of

strips and charged hadrons have to be consistent with intermediate resonances (π0, ρ, a1). Apart from

the τh decay products there should be no other charged hadrons or photons inside of an isolation cone

∆R = 0.5 around the direction of the τh. Adjusting the transverse momentum pT thresholds for those

particles, different isolation working points can be defined (loose, medium, tight).

The performance of the τh reconstruction and identification algorithm has been measured using Z →
ττ events [113] summarized in Table 5.2 for the pre-defined working points. Commonly the HPS al-

gorithm is used and the TaNC serves as a cross check. The HPS τh identification efficiencies are about

70%, 50% and 30% for the three working points (loose, medium, tight) with a miss-identification rate

of about 1%, 0.4% and 0.2% respectively. The miss-identification rate is defined as the rate of QCD

jets faking hadronic tau candidates.

Table 5.2: Efficiency for τh to pass the HPS and TaNC identification criteria measured in Z → ττ events.

Table is taken from [113].

Algorithm Fit data Expected MC Data/MC

HPS "loose" 0.70± 0.15 0.70 1.00± 0.24

HPS "medium" 0.53± 0.13 0.53 1.01± 0.26

HPS "tight" 0.33± 0.08 0.36 0.93± 0.25

TaNC "loose" 0.76± 0.20 0.72 1.06± 0.30

TaNC "medium" 0.63± 0.17 0.66 0.96± 0.27

TaNC "tight" 0.55± 0.15 0.55 1.00± 0.28

5.4.6 Jet Reconstruction

At hadron colliders one of the main tools to analyze recorded events are jet clustering algorithms.

Quarks and gluons produced in the hard scattering process will undergo fragmentation and hadroniza-

tion processes into collimated streams of color neutral hadrons, due to QCD confinement, which does

not allow free colored particles. A jet is defined as the sum of hadrons within a pre-defined cone or

clustering algorithm. A robust jet algorithm has to be stable towards small variations of the input,

namely the particle activity within the jet. Two common aspects have to be fulfilled by modern algo-

rithms: (1) infrared safe and (2) collinear safe. Infrared safety is the robustness of the algorithm by

facing additional soft partons between two jets, which should not have any influence on the stability

of the jets candidates. Collinear safety ensures on the other hand, that additional collinear gluon radi-

ated by the hadronic jets do not alter the jet reconstruction algorithm. Collinear and infrared safety is

especially important for obtaining meaningful comparison with theoretical models.
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The jet reconstruction algorithms are starting usually by clustering objects within some cone and

a recombination scheme which defines the method to combine all clustered objects into a jet four-

vector. Several jet finding algorithms were developed over the last years, where cone algorithms are

the easier ones and are based on the idea of defining a jet by an angular cone around some seed

direction. Since all cone algorithms were replaced in the CMS reconstruction process by so called

clustering algorithms, a detailed description will be skipped at this point.

Common jet clustering algorithms define two distances: dij between the particles i and j and diB
between particle i and the beam line. Objects with a minimum distance dij getting iterative combined

until only particles with dij > diB remain. The resulting object is called a jet. Those jets are then

removed from the list of particles. This procedure is redone until no particles are left. The algorithms

differ in the definition of the distance parameter:

dij = min(k2pti , k
2p
tj )

∆2
ij

R2

diB = k2pti , (5.2)

here ∆2
ij = (yi − yj)

2 + (φi − φj)
2 and kti, yi and φi are the transverse momentum, rapidity and

azimuth of the particle i, respectively and R is the radius parameter. This radius parameter R serves

to rescale the distance dij such that any pair of jets is separated by at least ∆ij = R. The value p = 1

corresponds to the kt algorithm [115, 116], p = 0 to the Cambridge/Aachen [117] and p = −1 to

the anti-kt algorithm [114]. All three algorithms are infrared and collinear safe and just differ in the

actual distance definition. In CMS the kT and anti-kT algorithm are implemented.

Another crucial ingredient for the jet reconstruction algorithms is the input collection of objects used

for the clustering. The most basic jet input collection are energy deposits in the ECAL and HCAL cells

combined together into calorimeter towers forming the class of so called caloJets. In order to improve

the pT response and resolution of caloJets, information of the tracker system can be added. Charged

particle tracks measured in the tracker system associated with each jets can be used to improve the jet

transverse momentum and direction (Jet Plus Tracks (JPT)) [118]. The last jet input collection used

is the list of all reconstructed particle flow objects, where the PF algorithm combines the information

of all sub-detectors [101]. Fig. 5.5 shows the jet transverse momentum pT resolution for central

jets (|η| < 0.5) measured in data using the dijet-asymmetry method for the different jet definitions

clustered with the anti-kT clustering (radius parameter R = 0.5) [119].

Several corrections are applied on top of the raw jet transverse momentum to relate the average energy

measured for the detector jets to the energy corresponding to the true particle. The correction factor

Ctot is applied as a multiplicative factor on the raw jet four-momentum components

pcorr−jet
µ = Ctotprawµ (5.3)

and is composed of various correction-levels

Ctot = Coffset(prawT )CMC(p′T , η)C
rel(η)Cabs(p′′T ) (5.4)

with p′T is the transverse momentum pT of the jet after the Coffset correction and p′′T after all previous

corrections applied [120]. The offset correction Coffset subtracts the energy contributions not asso-

ciated with the hard scattering process (electronic noise, PileUp). MC correction CMC are applied
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Figure 5.5: Central Jet (|η| < 0.5) pT resolution measured in data compared to MC predictions for caloJets

(left) and PFJets (right). JPTs have comparable pT resolution as PFJets and are not shown explic-

itly. The plots are taken from [119].

to correct the reconstructed jet energy to be equal to the generated jet energy determined in simula-

tions. Non-uniform calorimeter responses in η are corrected with the relative correction Crel and the

absolute correction Cabs accounts for the pT dependent calorimeter response.

5.4.7 Missing transverse Energy Reconstruction

The CMS detector covers nearly 4π solid angle with pseudo rapidities up to |η| < 5, enable to detect

most particles emerging from the collision, except exclusive weakly interacting particles like neutrinos

which escape undetected. Since the initial particles exhibit no transverse momentum, the vectorial sum

of all particles should vanish and hence an indirect indication for the presence of neutrinos is the so

called missing transverse energy (Emiss
T ). It is commonly calculated as the magnitude of the negative

vectorial sum of all reconstructed final state particles.

~Emiss
T = −

N∑

i=0

~Ei
T , with i = ith particle (5.5)

Implemented in the CMS reconstruction process are four different algorithms to calculate Emiss
T ,

varying in the reconstructed objects used for the calculations.

(1) caloEmiss
T : Calorimeter based Emiss

T using the energy deposits in the calorimeter towers up to

|η| < 5 above a noise thresholds and angles defined by a vector pointing from the primary

vertex to the tower. Minimum ionizing muons reconstructed in the inner tracker and outer

muon system have to be added, while subtracting their energy deposits in the calorimeter [121].

(2) tcEmiss
T : The track-corrected Emiss

T starts from the caloEmiss
T and adds subsequently all pT of

reconstructed tracks matched to calorimeter tower, while subtracting the corresponding energy
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Figure 5.6: Resolution of caloEmiss
T , tcEmiss

T and pfEmiss
T measured in minimum bias events and MC. The plot

is taken from [124].

deposits in the towers [122].

(3) pfEmiss
T : The particle flow Emiss

T is calculated by the negative vectorial sum of all objects

reconstructed with the PF algorithm [101].

(4) MHT : Another often used missing transverse energy measurement is MHT (missing HT ) for

which only reconstructed jets are used.

In order to account for the non-compensating and non-linear response of the calorimeter several cor-

rections have to be applied for an adequate reconstruction of caloEmiss
T . For this purpose the jet

energy corrections are used for calorimeter towers within jets and an additional set of corrections for

towers outside any jet. The Emiss
T resolution for the caloEmiss

T , tcEmiss
T and pfEmiss

T algorithm mea-

sured in minimum bias events is shown in Fig. 5.6. tcEmiss
T and especially pfEmiss

T improve the Emiss
T

resolution compared to the traditional caloEmiss
T [123, 124].

5.5 CMS Computing Model

In order to manage the huge amount of data recorded with the CMS detector and MC event production,

the Worldwide LHC Computing Grid Project (WLCG) has been developed [125, 126]. It is based on

a multitier structure with decentralized computing and mass storage resources. One Tier-0 centre

located at CERN performs a first prompt reconstruction on the raw data streams coming from the

HLT and Data Acquisition System. The processed data is distributed to dedicated Tier-1 centers

located in the various CMS Collaboration member states. At the Tier-1 centres a further processing

like rereconstruction or calibration is performed and massive data archiving services are provided.

A larger amount of Tier-2 centres offer substantial CPU ressources for analysis, calibration and MC

sample production. Typically the Tier-2 centers rely upon Tier-1 centers for fast access to large data

sets. Finally the Tier-3 centers provide interactive resources for local groups.
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Figure 5.7: Schematic view of the WLCG tier structure of CMS. The plot is taken from [127].
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5.6 Statistical Procedure

The statistical model used for the determination of the 95% confidence level (C.L.) exclusion limit

within the CLs [128] method is based on the Likelihood formalism and has two main components:

statistical (Poisson) and systematics [129,130]. In the absence of systematics the combination ofNch

search channels can be written as:

L(n|H) =
Nch∏

k

Poiss(nk|νk · s+ bk), (5.6)

where s is the expected signal yield, νk is a signal strength modifier that multiplies the expected SUSY

yield such that s′ = νk · s and bk is the expected background yield. The systematics complicate the

picture, each source of systematics introduces a nuisance parameter distributed according to some

probability density function (pdf). The shape of this pdf is unknown, usually a log-normal distributed

pdf is assumed but also gaussian or gamma distributions have been proposed for uncertainties. The

log-normal distribution is given by

fX(x;µ, σ) =
1

xσ
√
2π
e−

(lnx−µ)2

2σ2 , x > 0 (5.7)

with µ and σ are commonly called location and shape parameter. For simplicity only log-normal

pdfs are used. The log-normal distribution has two important differences in comparison with a simple

truncated gaussian:

• The log-normal distribution has longer tails leading to more conservative results

• The probability density of the log-Normal distribution at b=0 is always zero.

Each channel may have some search specific systematics resulting in Nch nuisance parameters plus

some common systematics. The treatment of large number of nuisance parameters is a challenge

in statistics. On the other hand, as we will see later in Chapter 8, the number of objects in signal

topologies is limited to 3 lepton flavors, Jets and Emiss
T , and the number of major backgrounds is

limited to WZ, ZZ (incl. DY(llγ)), DY +Jets, tt̄ and more rare processes (WW , WWγ, TTZ,

TTW combined). For simplicity the systematics are factorized into 10 nuisance parameters δi.

1-2 . Combined systematics in SM backgrounds : δWZ+ZZ+Rare and δDY+tt̄. The background

nuisance parameters are split into one data-driven estimated for DY+Jets and tt̄ , and one MC

simulation based for WZ, ZZ and rare processes assuming 100% correlation for the individual

elements of the single nuisance parameters for simplicity.

3. MC uncertainties on signal efficiency. Here we assume single nuisance for all channels: δMC .

4. Uncertainties in JES related to the HT and Emiss
T selection: δJES .

5. Uncertainties in muon selection efficiency: δµ.

6. Uncertainties in electron selection efficiency: δe.

7. Uncertainties in tau selection efficiency: δτ .
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8. A common systematic uncertainty affecting signal and MC estimated backgrounds from lumi-

nosity measurements: δlumi.

9. Uncertainties in trigger efficiencies: δtrig.

10. Combined PDF and SCALE uncertainties: δpdf .

Such a factorization also takes care about correlations of systematic uncertainties in different channels.

The model with systematics can be presented as:

L(n|H) =
Nch∏

k

Poiss(nk|µk)
Nnuis∏

i

N(δi|0, σi) (5.8)

where the expectation µk = νk · S + Bk depends on all nuisance parameters and N(δ|0, σ) are the

pdf for the Nnuis=10 nuisance parameters. The contribution of each correlated nuisance parameter

δi in the particular search channel k is defined by the scaling factor f ik, that is, the sensitivity of the

signal efficiency or the background to the variation of the nuisance. The maximum deviations among

all search channels determines the σ of the systematics pdf. The factors f are obtained from MC sim-

ulations using the so called ∆ method: by varying the systematics within the expected uncertainties

the variation of the number of selected events is determined. The signal part is:

Sk =sk · ν ·
∏

l

(1 + f sl · δl) · (1 + fMC
k · δMC) · (1 + fJES

k δJES)

· (1 + f trigk δtrig) · (1 + δpdf ) · (1 + δlumi)

where
∏Nl=3,4

l (1+f sl ·δl) is defined by the lepton combination in the final state (µµµµ, µµµe, µµµ, µµee,

etc) and ν is the signal strength parameter. The background part reads like Bk = BWZ+ZZ+Rare
k +

BDY+tt̄
k where the individual parts can be expressed as:

BX
k = bXK · (1 + fXk · δX)

where X is the corresponding background channel.

All statistical modeling is done within the landS package [131], which was extensively cross checked

with implemented methods in RooStats [132].

In order to set exclusion limits on a SUSY hypothesis, a test statistic Q has to be defined, which

depends on the hypothesised signal rate νk. The test statistic uses a Likelihood Ratio [133, 134] after

performing a maximization with respect to the nuisance and the signal strength parameter:

Q =
max(L(n|ν · s, b, δ̂b)
max(L(n|ν̂ · s, b, δ̂b)

,

where quantities indicated with a hat are used for maximization. The test-statistic Q is then converted

into −2ln(Q). This definition of the test statistics is referred to as the LHC-Style, since it differs

slightly from the one used in searches at LEP and the Tevatron, where a background-only hypothesis

was used in the denominator of Q. In the limit of large number of background events, the expected

distributions of Q are known analytically [1, 135].
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The 95% exclusion limit calculation uses the CLs [128,136] method implemented in the landS code.

CLs is often referred as the modified frequentist analysis and is defined as

CLs = CLs+b/CLb

where CLs+b and CLb are given by the probability that the test-statistic Q is less or equal than the

observed value Qobs:

CLs+b = Ps+b(−2lnQ ≥ −2lnQobs) or CLb = Pb(−2lnQ ≥ −2lnQobs)

where CLs+b corresponds to the signal + background and CLb to the background only hypothesis.

This normalization of the observed confidence level for CLs+b to the observed confidence level for

CLb avoids so called "unphysical" exclusions of zero signal expectations in context of possible down-

ward fluctuations of the background1.

If CLS ≤ α for ν = 1 one can determine that the SUSY model is excluded at the 1 − α confidence

level. To quote the upper limit on ν at the 95% confidence level, ν is adjusted until the desired value

of CLs = 0.05 within a predefined tolerance is obtained.

1More details on this subject can be found in [128]
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CHAPTER 6

Search for Supersymmetry using Multileptonic Signatures

The search strategy for physics beyond the standard model within the CMS SUSY group is split

into different analysis, in the following called reference analysis (RA). They focus each on various

topologies arising from possible supersymmetric extensions of the SM including leptons, a certain

jet activity and/or missing transverse energy. Several hadronic analysis [137, 138], vetoing events

containing leptons, and leptonic analysis requiring one [139], two [140–142] or more leptons [12–15]

in the final state were performed in the first two years of data taking at the LHC. Up to now no evidence

for any supersymmetric model has been observed and the physicists were able to exceed the limits on

new physics of former collider experiments [8–11]. The hadronic analysis set the most striking limits

for the commonly referred SUSY model, the cMSSM introduced in Chapter 3.

The following chapter describes the analysis done using multileptonic events, with at least three lep-

tons (e, µ or τ ) in the final state based on an integrated luminosity of Lint = 4.7 fb−1 . This study

is embedded in the RA7 activity. Multileptonic signatures are commonly called "Golden Channels"

for SUSY searches, because of the clean signature. Clean in the sense that the SM processes leading

to multileptonic final states are quite rare, whereas in many SUSY models those signatures can be

enhanced.

The analysis is organized as follows: in the first part the production of SUSY particles and their

decay signatures at the LHC will be summarized. After defining the object and event selection the

analysis will be discussed and the results shown and interpreted in the context of cMSSM and the so

called simplified model spectra which will be introduced at the given time. Many channels, signal

and control channels, are examined and combined in one statistical model. The focus will be placed

on the various SM background predictions, which are data driven or rely on MC simulations but are

cross checked in various control regions, and the discussion of the results.

65
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6.1 Multilepton Production in SUSY Models

In this section the production of sparticles and their possible decay chains leading to leptons in the

final states at the LHC is presented. Since we focus on the R-parity conserving cMSSM, sparticles

can be produced only in pairs. The superpartners of the quarks and leptons are the squarks (q̃) and

sleptons (l̃). Gauginos (χ̃±,χ̃0) and higgsinos are paired with the gauge and higgs particles. The

sparticle production can be split into the production of colored squarks and gluinos, and the direct

weak production of neutralinos (χ̃0), charginos (χ̃±) or sleptons.

Typical squark and gluino production processes at leading order (LO) with different combinations

in the final state (q̃ ¯̃q, q̃q̃, ¯̃q ¯̃q, g̃g̃, g̃q̃, g̃ ¯̃q) [143], where the chiralities of the squarks (q̃R, q̃L) and the

flavor indices are not given for simplicity, are shown in Fig. 6.1. In order to produce squark-antisquark

final states (q̃ ¯̃q), quark-antiquark or gluon-gluon initial states are required, whereas squark pair final

states (q̃q̃) can only be produced from quark pair initial states. Gluino pair production (g̃g̃) needs a

gluon-gluon or quark-antiquark initial state and only quark-gluon interactions lead to squark-gluino

final states (q̃g̃).

g

g

g q̃

¯̃q

q

q

g̃

q̃

q̃

q

g

q q̃

g̃

g̃

g̃

gg

g

Figure 6.1: Typical LO diagrams for q̃ ¯̃q, q̃q̃, g̃q̃ and g̃g̃ (from left to right) production at hadron colliders. These

diagrams represent only a subset of all possibilities, which can be found elsewhere [143].

The non-colored neutralinos and charginos can not only be produced in cascade decays of squarks/

gluinos, but also in direct production [144] as shown in Fig. 6.2. Since neutralinos are mixtures of

the neutral wino, the bino and the higgsinos and the charginos are mixtures of the charged winos and

higgsinos, the vector bosons (γ, Z,W ) couple to the gaugino and higgsino components, whereas in

the t-channel diagram, with an virtual squark exchange, only the gaugino components are involved.

q

q̄ γ, Z,W χ̃

χ̃

q̃

q

q̄ χ̃

χ̃

Figure 6.2: Typical LO diagrams for direct gaugino production involving vector bosons (left) or squark ex-

change (right).

The cross section for squark/gluino and gaugino production depends, as a good approximation, mainly

on the masses of the sparticles, i.e. m1/2, shown in the m0 - m1/2 parameter space for fixed tanβ =

10, A0 = 0 and sign(µ) = +1 (cMSSM). The total sparticle production cross section is calculated

with Prospino [145] (Fig. 6.3) at next-to-leading order (NLO) for p-p collisions at a center of mass
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energy
√
s = 7TeV. The cross section shows a strong dependence on varying m1/2 and only a

moderate dependence on the unified scalar mass parameter m0. In regions, where the squark/gluino

masses are kinematically accessible, their production channels play a dominant role (Fig. 6.4 bottom

panel). The direct production of charginos and neutralinos nevertheless can have also a significant

contribution, due to typically lower masses compared to squarks/gluinos. With increasing m0 the

squarks get heavier and the electroweak sparticle production takes over as the dominant processes

(Fig. 6.4 (top)). Assuming a signal selection efficiency for a typically SUSY search of ǫ = 0.1% with

a complete background suppression (NBkg = 0), the lowest cross section, where the search would

be sensitive for in the sense of a 95% confidence level exclusion limit for an integrated luminosity of

Lint = 4.7 fb−1 is

N95%C.L. = σProd,95%C.L. × ǫsel × Lint ≈ 3 → σProd,95%C.L. ≈ 0.6 pb ,

which is indicated by the line (constant cross section) added to Figures 6.3 and 6.4. Here a constant

selection efficiency over the full parameter space is assumed. Those lines indicate the maximum

sensitivity with the quoted signal selection efficiency of the LHC in context of the cMSSM predictions

with the data set collected so far.
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Figure 6.3: Sparticle production cross section for p-p collisions at a center of mass energy
√
s = 7 TeV in the

cMSSM m0 −m1/2 parameter space for fixed tanβ = 10, A0 = 0 and sign(µ) = +1.

A selection efficiency of 100% with a negligible background rate of Nbkg << 1 is typically not

achievable. But nevertheless in order to define a selection as sensitive as possible to new physics

signals one has to set thresholds on common objects or kinematic/event properties modifying the

signal selection efficiency ǫsel and simultaneous reducing the SM background rate. Hence the detailed

knowledge of the possible decay chains of the initial produced sparticles and their properties are

important.
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Figure 6.4: Relative fraction of chargino/neutralino pp → χ0χ0, χ0χ±, χ±χ± (top) and squark/gluino pp →
g̃g̃, g̃q̃, q̃q (bottom) production to the total SUSY particle production cross section. At low m0

values the colored squark/gluino production is dominant, whereas at higher values the electroweak

production of charginos/neutralinos is overtaking.
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The fact that we concentrate on R-parity conserving models implies the existence of a lightest stable

supersymmetric particle (LSP) and we assume it to be the lightest neutralino (χ̃0
1).

Gluinos can only decay through a squark and, if kinematically allowed, the two body decays g̃ → qq̃

are dominant. In the case where all squarks are heavier, the gluino have to decay through a virtual

squark into g̃ → qq̄χ̃0 or qq′χ̃±. Similar to gluinos, squarks will decay to quark-gluino q̃ → qg̃

dominantly, if this process is kinematically allowed and elsewhere into neutralino or charginos q̃ →
qχ̃0,q′χ̃±.

Leptons are produced mainly in the decay of the next-to-lightest neutralino (χ̃0
2) and lightest chargino

(χ̃±
1 ), which can be produced either directly in the hard interactions, or in cascade decays of squarks/gluinos.

Following the couplings of the weak interaction, neutralinos and charginos can decay through a two

body decay into a lepton-slepton or quark-squark pair, where squarks are often heavier and lepton-

slepton final states are enhanced. The sleptons then decay into the χ̃0
1 and a lepton.

χ̃0
2 → l̃l → χ̃0

1ll , χ̃0
2 → ν̃ν → χ̃0

1νν

χ̃±
1 → l̃ν → χ̃0

1lν , χ̃±
1 → ν̃l → χ̃0

1νl

Neutralinos and charginos can on the other hand also decay into lighter neutralinos or charginos with

an associated vector or Higgs boson:

χ̃0
2 → χ̃0

1Z , χ̃0
2 → χ̃0

1h
0 , χ̃0

2 → χ̃±
1 W

±

χ̃±
1 → χ̃0

1W
± → χ̃0

1lν

If those two-body decays are kinematically not allowed, they will decay in a three body decay into the

same final states, but through off-shell gauge bosons

χ̃0
2 → χ̃0

1ll and χ̃±
1 → χ̃0

1lν

Similar decays with quark final states can arise from neutralino and chargino decays [4], but not listed

here, since we will focus in the following on signatures including multiple leptons in the final state.

Fig. 6.5 shows the dominant branchings of the lightest chargino and next-to-lightest neutralino in the

corresponding regions in the m0-m1/2 plane for fixed tanβ = 10 , A0 = 0 and sign(µ) = +1.

One has to note that the various regions can vary for different values of tanβ and A0. In most

cMSSM (mSUGRA) parameter points the neutralinos and charginos tend to decay into the lightest

higgs or W boson accompanied by the LSP. At low m1/2 the mass splitting between the next-to-

lightest neutralino/chargino and the lightest neutralino gets small, which results in solely three body

decays. In case of the next-to-lightest neutralino there exists a narrow band around m1/2 ≈ 300GeV,

where the mass difference is well below the lightest higgs mass suppressing this branching, but large

enough for an on-shell Z boson. For low m0 and midrange m1/2 masses, where the sleptons are

relative light and the neutralino/charginos are heavier, the two body decays χ̃0
2 → l̃l and χ̃±

1 → l̃ν get

dominant.

Multileptonic Final States

In Fig. 6.6 two diagrams for possible SUSY processes leading to tri-leptons in the final state are

presented. The gluino-gluino pair production leads to a cascade decay of each gluino down to the LSP,
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Figure 6.5: Regions in the m0-m1/2 plane for fixed tanβ = 10 , A0 = 0 and sign(µ) = +1 corresponding

the dominant decay modes of the lightest charginos χ̃±
1 (left) and next-to-lightest neutralinos χ̃0

2

(right), where additional several benchmark points are indicated. Plots are taken from [146]

where in one leg an intermediate neutralino and in the second leg an intermediate chargino is produced,

each decaying through a vector boson into leptons. Additionally, several quarks hadronizing to jets

are produced simulating a three lepton plus four jets and large missing energy signature. In contrast

the direct neutralino-chargino production leads to a signature with three leptons and missing energy

without any jet activity.
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Figure 6.6: Gluino-gluino (left) and direct neutralino-chargino (right) production leading to tri-lepton final

states. Gluino are decaying down to the LSP via a cascade. A number of jets and leptons are

produced, where in case of electroweak neutralino-chargino production leptons and LSPs without

accompanied jets are produced.

The decay branchings of all intermediate sparticles, and so the cascade length of the gluino de-

cays shown in Fig. 6.6 (left), and the momentum spectra of final state particles depend on the un-

derlying mass spectra and mass differences ∆m. A larger mass difference for gluinos and squarks

∆m = (mg̃ −mq̃) results in longer tails in the associated jet momentum spectra. The mass spectrum
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of two specific models in the cMSSM parameter space LM61 (m0 = 85, m1/2 = 400, tanβ = 10,

A0 = 0, sign(µ) = +1) and LM9 (m0 = 1450, m1/2 = 175, tanβ = 50, A0 = 0, sign(µ) = +1)

are displayed in Fig. 6.7 and Fig. 6.8, respectively. The mass spectra are generated with SoftSusy 3.2

[94] and the decay widths and branching ratios calculated with SUSY-Hit 1.5 [95]. In case of the LM6

point the left handed sleptons (l̃L, τ̃1) and neutralinos/charginos (χ̃0
2, χ̃±

1 ) are nearly mass degenerated

∆m ≈ 11 − 13GeV/c2 (ml̃L
≈ 286GeV/c2, mτ̃2 ≈ 288GeV/c2, mχ̃0

2
≈ mχ̃±

1
≈ 302.8GeV/c2)

and the decay χ̃0
2 → l̃l will lead to relative soft leptons, whereas the lepton produced in the sub-

sequent decay of the slepton l̃ → lχ̃0
1 can have larger momentum due to a higher mass difference

∆m = (ml̃ −mχ̃0
2
) ≈ 126GeV/c2. This results in events with a hard lepton and an associated soft

lepton. On the other hand gluinos/squarks can produce a long cascade with hard jets, due to large

mass splittings in the squark sector. Comparing LM6 with the mass spectrum of LM9 one observes,

that the sleptons are much heavier than the gauginos, and the gluino is the lightest colored sparticle.

The next-to-lightest neutralino and lightest chargino will decay through a three body decay into the

LSP and leptons or quarks via virtual gauge bosons. The fact that the gluino is the lightest colored

sparticle has an interesting effect, because it can only decay via a virtual squark, e.g. a sbottom (b̃)

or stop (t̃) into quark pairs and a chargino or neutralino. Those quarks occur to have lower transverse

momentum pT due to the three-body decay of the gluino. The kinematic distributions Etextmiss
T , HT

=
∑

iE
jet,i
T (ET > 30GeV, |η| < 3), LT =

∑

i p
lepton,i
T (pT > 3GeV, |η| < 3) and ST =Emiss

T

+HT +LT are shown in Fig. 6.9 for both models. The leptons used for the calculation of the LT ob-

servable are well reconstructed and isolated electrons and muons. Details of the individual selection

criteria will be discussed later in Section 7.3. As expected the jet activity is significantly lower for

LM9 compared to LM6. Also the Emiss
T spectrum is softer, due to lighter LSPs.

In summary the kinematically accessible parameter space for sparticle production at the LHC of the

cMSSM is still dominated by gluino/squark pair production. In the decay chains of the initially pro-

duced sparticles a number of jets and leptons can appear and the LSP, which is assumed to be the

lightest neutralino χ̃0
1, will escape undetected resulting in missing energy. Depending on the under-

lying model and especially the mass spectrum, the jet, lepton and missing energy spectra in SUSY

processes vary. Models with degenerated slepton and next to lightest chargino/neutralino masses re-

sult in softer leptons, which can fail the lepton selection thresholds and hence searches based on

multileptonic signatures will not be sensitive.

Since no evidence of any direct SUSY particle production process is observed at the LHC, and other

experiments as well, a search strategy should be as model independent as possible. A split into lepton

topologies as it is conventional in the CMS SUSY group covers most of the possible signatures. Thus

an individual optimization to increase the sensitivity for a special phase space of the SUSY parameter

space with simultaneous reduction of the SM background rate can be achieved.

1LM points: Low Mass benchmark models used by the CMS Collaboration
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Figure 6.7: Mass spectrum for the cMSSM model LM6 (m0 = 85, m1/2 = 400, tanβ = 10, A0 = 0,

sign(µ) = +1) generated with SoftSusy 3.2 + SUSY-HIT 1.3 and visualized with pyslha-1.2.8

[147]. The dashed lines and their widths indicates the branching ratios of the sparticles.
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Figure 6.9: Kinematic distribution for the benchmark points LM6 and LM9. Shown are HT =
∑

iE
jet,i
T (top

left) and Emiss
T (top right), LT =

∑

i p
lepton,i
T (bottom left) and ST =Emiss

T +HT +LT (bottom

right). See also Fig. 6.5 (right) for the definition of the benchmark points.
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6.2 Standard Model Backgrounds

Prompt leptons appear from neutralino/charginos (χ̃0,χ̃±) decays in common SUSY models and from

short living bosons (Z,W,H) in the SM . Those leptons are characterized by a small impact parameter

(dxy) in the xy-plane with respect to the primary vertex or beam spot and small energy deposits in a

cone ∆R =
√

∆Φ2 +∆η2 < 0.3 around the lepton trajectory (isolation). To keep the efficiency for

prompt leptons in SUSY processes high, the requirements on dxy and isolation could not be to strong

and thus one obtains, apart from the irreducible background including prompt leptons, a background

including so called fake leptons. The sources of such fake leptons differ for each lepton flavor.

Muon fakes are mainly produced in jets, predominantly from heavy flavor decays b/c → µ + jet

[148]. Additional false association of tracks with accidental hits from hadronic shower leakage in the

muon system (punch through) may also lead to fake muons. Cosmic ray muons are negligible at the

underground CMS cavern [149].

Electron fakes are mainly caused by an electromagnetic shower overlapping with a charged track, by

leptons from heavy flavor decays or by electrons from asymmetric photon conversion in the material

before the calorimeter [150] .

Taus decay 34% purely leptonically (τ → µνµντ and τ → eνeντ ), 50% into hadronic one-prongs

(τ → πν, etc.) and with 15% into hadronic three-prongs (τ → K−π+π−ντ , etc.) signatures [16]. The

one-prong tau decays are clearly the most important, but have the highest background. Leptonically

tau decays have similar background like muons or electrons, but due to the three-body decays lower

transverse momentum pT . The background for one-prong tau decays are mainly soft jets/pions faking

those processes [151].

In Fig. 6.10 the production mechanism of fake leptons from heavy flavor decays and asymmetric

photon conversions are shown.

b

c

W−

l−

ν̄
l

l

γ
l−

l+

Figure 6.10: Production mechanism of fake leptons from heavy flavor decays (left) and asymmetric photon

conversions (right). The asymmetric photon conversion is indicated by the different length of the

outgoing fermion lines.

Following the prompt and fake lepton definition, the SM background for multileptonic signatures can

be split into fake and prompt SM background. The irreducible prompt background consists domi-

nantly of double boson production (ZZ inclusive γ∗, Z/γ∗W ) decaying into leptons. The ZZ pro-

duction with subsequent Z decays into two leptons can contribute to the 4 lepton (4L) channels, but

also to 3L channels, where one lepton is missed, due to detector acceptance or failing object selection.

The LO diagrams for double boson production are shown in Fig. 6.11. Rare processes like tt̄W , tt̄Z

and WWW with three prompt leptons will also be taken into account.

The other important backgrounds are single- or di-lepton processes with additional isolated fake lep-

tons mimicking tri-lepton processes. Di-lepton processes include leptonic Drell-Yan+Jets, tt̄ and WW
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Figure 6.11: LO order diagrams for double boson production.

processes. Typical diagrams for the dominant DY+Jets and tt̄ processes are presented in Fig. 6.12. To

get contributions in the 3L channels (or 4L as well) from those di-lepton processes, one or more fake

lepton have to be produced and selected. The production cross section of fake leptons can have huge

uncertainties [148] and a careful considerations is appropriate.

With decreasing number of prompt leptons in the final state, the involved number of fake leptons have

to increase to simulate a three lepton signature. Since it has been shown [152] that the fake lepton

rate, e.g the rate of fake leptons to be selected and isolated in simulated QCD events, are in the order

of 0.1% (fake muons) and the probability for having two ore more isolated fake leptons decreases

exponentially, the contributions of leptonic decaying W+Jets with two or QCD processes including

three isolated fake leptons are negligible.

q

g

q

Z0/γ∗

q

l+

l−
t

t̄

b̄

b

W+

l+

ν

W− l−

ν̄]

g
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g

Figure 6.12: Typical Feynman diagrams for Drell-Yan+Jets (left) and tt̄ (right).

Kinematic distributions like Emiss
T , HT , LT , ST , the invariant mass of all opposite sign same flavor

lepton pairs mll, jet multiplicity, loose lepton transverse momentum, relative isolation and transverse

impact parameter are shown in Fig. 6.13 and 6.14 for events with at least three leptons (pT > 8GeV,

|η| < 2.1). At least two of them should pass the tight selection criteria. The detailed lepton selection

criteria will be discussed in Section 7.3. For comparison also the LM9 point is added. One can

easily see the general problem of SUSY searches, which have to handle huge SM backgrounds by

typically small signal expectations. SM processes including at least one fake lepton in the event

can be suppressed by requirements on the relative isolation and transverse impact parameter. The

irreducible backgrounds from double boson production in contrast have similar kinematic properties

compared to the LM9 predictions and are hard to suppress without loosing signal sensitivity. It is

clear that one can find suitable models with specific kinematic properties sitting in the tails of the SM

distributions, which allow a more simple treatment, but this is not subject of this study.
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Figure 6.13: Third loose lepton (e left column, µ right column) transverse momentum pT (top), relative isola-

tion Riso (middle) and transverse impact parameter dxy with respect to the beam spot (bottom)

for the SUSY benchmark point LM9 and dominant SM processes selected with three leptons

(pT > 8GeV, |η| < 2.1), where at least two of them pass the tight selection criteria.
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Figure 6.14: HT (top left), Emiss
T (top right), LT (middle left), ST (middle right), mll (bottom left) and jet mul-

tiplicity (bottom right) for the SUSY benchmark point LM9 and dominant SM processes selected

with three leptons (pT > 8GeV, |η| < 2.1), where at least two of them pass the tight selection

criteria.
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CHAPTER 7

Prerequisites

Before discussing the core analysis some prerequisites have to be defined and discussed. The starting

point of all analysis is, after defining the topology, to simulate the corresponding SM backgrounds

and define the object and event selection. Efficiency of the object selection requirements have to be

measured in data, if possible, and applied to MC to minimize the reliance on simulations of detector

inefficiencies.

The chapter is organized as following: In the first part the used data and MC samples are summa-

rized and the individual cross sections and integrated luminosities are given. Afterwards the issue

of pile up events is discussed before going into the individual object selections and their efficiency

measurements. Finally the trigger path selection and trigger efficiency and as well the event selection

is discussed.

7.1 Data and MC Samples

The raw data sets are skimmed into different trigger streams, e.g. in the data set DoubleMu events are

stored, where at least one double µ HLT trigger has fired. The used data sets in this study correspond

to the chosen trigger paths Single+Double Muon, Single+Double Electron, Muon+Electron and are

listed in Table A.2 in Appendix A, where in addition the integrated luminosity is given. Two runs

throughout the year 2011 were recorded, where RunA corresponds to a data set recorded up to a

technical stop of the LHC in August 2011 and RunB includes the part of the data recorded afterwards.

A run gets certified by the data certification or Data Quality Monitoring (DQM) team. Lumisections1,

where all detector subsystems are working properly, are flagged as good and summarized in so called

JSON (Java Script Object Notation) file. The released JSON files

Cert_160404-163869_7TeV_May10ReReco_Collisions11_JSON_v3.txt

Cert_170249-172619_7TeV_ReReco5Aug_Collisions11_JSON_v3.txt

1Lumisection: a lumi section consists of several beam orbits

79
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Cert_160404-180252_7TeV_PromptReco_Collisions11_JSON.txt

are used and correspond to an accumulated integrated luminosity of Lint = 4.7 fb−1 .

In Section 6.2 all SM backgrounds contributing to multileptonic signatures were reviewed. There

are several MC LO generators on the market and the commonly used generators within the CMS

collaboration are Pythia6 [88] (Pythia8 [89]) and Madgraph5 [93]. Most of the MC samples used in

this study are produced with Madgraph and are summarized in Table A.1 in Appendix A, where also

the total number of simulated events and the cross sections are given. For most of the SM processes

the NLO cross section is calculated with MCFM [153] or the measured cross sections in case of

availability is used [154, 155]. The official produced sample ZZJetsTo4L_TuneZ2_7TeV-madgraph-

tauola has an internal generator cut on the invariant mass of all opposite sign same flavor lepton pairs

of mll > 50GeV/c2, which suppresses a major part of possible backgrounds and is hence not usable.

A private production with reduced generator cuts (mll > 5GeV/c2) is used instead but cross checked

with the official sample. Similar, so called internal conversions (see Section 8.2) are not generated

as well and a MC sample was produced privately with Madgraph5. The data and production cards,

generator distributions and comparisons with the official sample can be found in Appendix B.

Additionally, the SUSY benchmark points LM6 and LM9 are used as a reference point in the follow-

ing. The NLO cross sections for the SUSY points were calculated with Prospino [145].

7.2 Pile Up Events

The excellent performance and the high luminosity during the various LHC data taking runs through-

out the year 2011 results in a fast data taking. A side effect of the high luminosity in the data taking

periods in 2011 is a not negligible probability for recording more than one interaction per bunch cross-

ing. Those events are commonly called pile up events (PU) and require a careful consideration. The

number of interactions n per bunch crossing is poisson distributed around the mean µ value

p(n, µ) = µn
e−µ

n!
, (7.1)

where the mean is defined by the total cross section σ, the instantaneous luminosity L and the bunch

crossing rate fBX . Given the values for the run conditions of the used data set at a center of mass en-

ergy
√
s = 7TeV (σie = 68mb - total inelastic cross section [71], peak luminosity L = 3.54 nb−1s−1,

fBX = 1380/3564 · 40MHz), results in an average number of interactions per bunch crossing

µ =
σie+dL

fBX
≃ 15 (7.2)

reached at the end of the 2011 LHC run. 1380 out of 3564 possible bunch slots were filled, where at

maximum 2808 bunches are colliding with a rate of 40 MHz. For comparison, the mean value µ at

the design luminosity of L = 1034 cm−1s−1, assuming a cross section σie = 80mb (at
√
s = 14TeV)

and a bunch crossing rate fBX = 2808/3564 · 40MHz of the LHC [71] would be µ ≃ 25, a factor of

∼ 1.6 higher.

Charged particles with a well reconstructed track in the tracker system produced in PU events can

be associated to different primary vertices, which can be distinguished by the longitudinal distance

to the vertex of the hard interaction. Nevertheless neutral particles can deposit additional energy in
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both calorimeters (ECal,HCal) without any signals in the tracker system. The angular resolution of

the calorimeters does not allow to associate those energy deposits to particles produced in a PU event

and thus can harm objects of the hard interaction, which are reconstructed using various calorimeter

informations, like the missing transverse energy or jets. Fig. 7.1 shows the Emiss
T and HT distributions

for different PU scenarios of data events selected with two isolated muons with opposite sign and

an invariant mass comparable with the Z boson mass, where indeed a dependency is observed. The

missing transverse energy is smeared to a broader distribution for a larger number of PU events,

whereas it has no or only a small effect on the HT distribution, because only quite hard jets with a

transverse energy of at leastET > 40GeV are taken into account and small additional energy deposits

has little effect on the reconstruction of hard jets. If the jet threshold is lowered the HT distribution

becomes also sensitive to PU, see right panel of Fig. 7.1.
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Figure 7.1: Emiss
T (left) and HT (right) distribution for different PU scenarios (number of primary vertices=1,

4, 7) of data events selected with two isolated muons building an invariant mass consistent with

the Z boson mass. Also various jet ET thresholds (10, 20, 30, 40 GeV) are selected for the HT

distribution. Soft jets and the Emiss
T distributions are modified by an additional contribution of pile

up events.

MC PU scenarios differ from the measured ones. Therefore the MC events are reweighted to repro-

duce the same number of primary vertices in data. This procedure is shown in Fig. 7.2, where the

vertex distribution for MC without and with reweighting is plotted, both compared to data for inter-

mediate instantaneous luminosity settings. As shown the distribution of the number of vertices has

a sharp peak at zero in MC simulation, whereas in data this distribution peaks at 6 in this scenario.

In order to account for the observed difference a weighting factor per number of primary vertices

(nV tx) is calculated as w = NMC(nV tx)/NData(nV tx), with the normalized vertex distribution

NData for data and NMC for MC, respectively. The vertex distribution needs to be normalized in

order to guarantee that the total number of predicted events after and before the reweighting agrees,

and only shapes are modified.
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Figure 7.2: Number of primary vertices in data and MC events normalized to unity. The primary vertex multi-

plicity differences are correct by applying event by event weights on the MC sample.

7.3 Object Definition and Selection

The interplay between the different components of the CMS detector (see Section 4.2) allows to re-

construct most of the physics objects (see Section 5.4). Charged particles can be identified by a track

in the tracker and energy deposits in the calorimeters or signals in the muon system, respectively.

Solely weak interacting particles like neutrinos or the neutral LSP in many SUSY models do not de-

posit energy in any detector subsystem, but an indirect indication for the presence in the event is the

missing transverse energy due to energy conservation.

In this study leptons (e,µ,τ ), jets and missing transverse energy Emiss
T are used. The individual

definitions and selections are presented in this section. Leptons passing all selection criteria are called

tight leptons in the following.

Muon selection

Muons are selected by a simple set of cuts to have a reasonable efficient reduction of fake muons in

the signal region. Starting from global muons (see Section.5.4.4) a set of requirements on the muon

track are applied to select only well reconstructed muons: number of hits in the tracker NTrackHits

and the quality of the global fit χ2.

To suppress fake leptons from jets a cut on the relative isolation Riso, which is the sum of all energy

deposits around the muon in the cone ∆R < 0.3 relative to the transverse momentum of the muon,

and the impact parameter in the xy-plane with respect to the beam spot dxy(BS) is applied. The

longitudinal impact parameter with respect to the primary vertex |dz| allows to distinguish muons

from pile up (see Section 7.2) events.

All selection requirements are listed in Table 7.1. The optimization for muons from SUSY processes

can be found in [156, 157], where the selection criteria were optimized in a prompt muon enriched

sample versus a fake enriched sample.
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Table 7.1: Summary of the muon selection requirements. Several requirements are applied on the muon track

quality. In order to suppress fake muons from jets a small transverse impact parameter dxy(BS) and

low activity in a cone ∆R = 0.3 around the muon trajectory reflected by a small relative isolation

value is required.

Muon Observable Selection

Transverse momentum pT pT > 8GeV

Pseudo rapidity |η| |η| < 2.1

Identification isGlobalMuonPromptTight

Number of hits in the tracker NTrackHits > 10

Global χ2
ndof of the fit χ2

ndof < 10

Longitudinal impact parameter |dz| |dz| < 1.0

Transverse impact parameter dxy with respect to the beam spot |dxy(BS)| < 0.02

Relative isolation Riso = TrackIso+CaloIso
pT

Riso < 0.15

Electron Selection

Similar to muons the electron selection is based on a set of simple cuts. The identification require-

ments follow the VBTF902 recommendation, which corresponds to a 90% selection efficiency for

prompt electrons (pT > 20GeV) from Z decays [150].

Fake electrons are dominated by fakes from jets and fakes from asymmetric photon conversion. To

suppress fake electrons from jets, requirements similar to the muon selection on the relative isolation

Riso and transverse impact parameter dxy are applied.

Electrons from asymmetric photon conversion have a displaced secondary vertex due to the fact, that

a conversion occurs in the detector material (beam pipe or tracker layers), and the dxy requirement is

quite sufficient (∼ 50%) [150]. Further suppression can be achieved by using the conversion partner

track. Typically photon conversion results in two tracks, which can be identified by the parameter

ConvDist, the two dimensional distance between the electron track (GSFTrack) and a surrounding

track (CTFTrack), and by the angle θ relation ConverDCotTheta:

∆cot(Θ) = cot(ΘCTFTrack)− cot(ΘGSFTrack)

of the tracks [150].

For electrons in the barrel region we subtract an additional 1 GeV of the ECalIsolation3 to account for

accumulated noise. To avoid electrons radiated from muons at least a δR =
√

∆η2 +∆Φ2 > 0.1 of

the electron with respect to the nearest tight muon is required.

Table 7.2 summarizes all selection requirements for electrons.

Tau selection

Leptonically decaying taus are already covered by the muon/electron selections. The hadronic decay

modes are reconstructed with the HPS algorithm (see Section 5.4.5). This algorithm allows to distin-

guish between different hadronic tau topologies: single-prong, single-prong with neutral pions (π0)

2https://twiki.cern.ch/twiki/bin/view/CMS/SimpleCutBasedEleID
3ECalIsolation: sum of all energy deposits in the ECal around the lepton track in a cone ∆R < 0.3
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Table 7.2: Summary of the electron selection requirements. Several electron ID criteria are different for the

barrel (|η| < 1.44) and endcap (1.56 < |η| < 2.1) region. The latter are given in brackets. The

requirements corresponds to the VBTF90 working point. .

Electron observable Selection

Transverse momentum pT pT > 8GeV

Pseudo rapidity |η| |η| < 2.1

Transverse shape of the electromagnetic cluster σiηiη < 0.01 (< 0.03)

Spatial (Φ) matching between track and supercluster ∆Φ < 0.8 (< 0.7)

Spatial (η) matching between track and supercluster ∆η < 0.0007 (< 0.009)

Hadronic leakage variable HoE < 0.12 (< 0.05)

Impact parameter z-axis |dz| |dz| < 1.0

Impact parameter |dxy(BS)| |dxy(BS)| < 0.02

Riso = TrackIso+max(0,ECalIso−1.0(Barrel))+HCalIso
pT

Riso < 0.15

Conversion rejection
ConverDist< 0.02

& ConverDCotTheta< 0.02

Number of missing hits in the tracker NumberOfLostHits< 2

δR to nearest muon δR > 0.1

Veto electrons in gap region Veto: 1.44 < |η| < 1.56

and three-prong tau decays. An internal transverse momentum pT threshold classifies the HPS tau

candidates.

Single prong, single prong + π0 and three prong HPS tau candidates are required to be isolated,

i.e. no charged hadrons or photons apart from the tau decay products to be in a cone ∆R < 0.5.

In this sense different working points are defined vloose, loose, medium and tight by adjusting the

pT thresholds for charged hadron candidates considered within the isolation cone. The selection

efficiency over a broad range of the tau transverse momentum for the different isolation working

points are ∼ 50% (loose),∼ 37% (medium) and ∼ 25% (tight), respectively for hadronic taus from Z

decays (Z → τhτh) [151].

The transverse momentum threshold of the tau candidates is pT > 15 GeV, due to internal thresholds

of the HPS algorithm. Table 7.3 summarizes the selection criteria.

Photon Selection

Photon candidates are not used for the final results, but used for the prediction of asymmetric photon

conversions into isolated leptons (see Section 8.2). The selection is summarized in Table 7.4 and

corresponds to the recommended PhotonCutBasedIDTight photon identification criteria [158].

Jet and Emiss
T Selection

Jets reconstructed using particle flow objects clustered with the anti-kt algorithm [114], with a distance

parameter of δ = 0.5, are used for the HT = Σjetsp
jet
T calculation, where only jets with a transverse

momentum pT > 40GeV and pseudo rapidity |η| < 2.5 are taken into account. The distance between
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Table 7.3: Summary of the tau selection requirements. HPS τh candidates are used to reconstruct the single-

prong, single prong + π0 and three prong tau decay modes. The isolation criteria are pre-defined

discriminators and only boolean values are accessible.

Tau observable Selection

Transverse momentum pT pT > 15GeV

Pseudo rapidity |η| |η| < 2.1

Tau decay mode finder decayModeFinding=True

Discriminator against muon misidentification againstMuonTight=True

Discriminator against electron misidentification againstElectronTight=True

HPS Isolation Discriminators

HPS vloose isolation byHPSvloose=True

or HPS loose isolation byHPSloose=True

δR to nearest muon/electron δR > 0.1

Table 7.4: Summary of the photon selection criteria used for prediction of asymmetric photon conversions.

Photon observable selection

Transverse momentum pT pT > 8GeV

Pseudo rapidity |η| |η| < 2.1

Transverse shape of the electromagnetic cluster σiηiη < 0.01(< 0.03)

Hadronic leakage variable HoE< 0.05

ECal Isolation (∆R < 0.4) ISOECal < 4.2 + 0.0006 · pT
HCal Isolation (∆R < 0.4) ISOHCal < 2.2 + 0.0025 · pT
Track Isolation (∆R < 0.4) ISOHCal < 2 + 0.001 · pT
Pixel Seed hasPixelSeed=false

δR to nearest muon/electron δR > 0.1

jets and selected electrons, muons and taus is required to be above ∆R > 0.3. The missing transverse

energy is calculated by the PF algorithm [101]. Jets and Emiss
T are corrected according the latest

correction factors [120].

7.3.1 Lepton Selection Efficiency

The selection efficiency (e, µ) is measured in data using the so called tag&probe method. A detailed

description can be found in [152].

In this study the efficiency of the lepton identification is measured using Z → l+l− events. Events

are selected with tight selection requirements on one lepton, the so called tag-lepton, and a looser

selection on the other probe-lepton. The fraction of probe-leptons passing also the tight selection

criteria gives an estimate of the selection efficiency.

As a tag lepton we define a lepton passing all selection criteria discussed before, except increased pT
threshold of p

µ(e)
T > 35(85) GeV, to ensure the lepton to be triggered by the single muon (electron)

HLT trigger.
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The selection efficiency is factorized into two sequential steps: lepton identification (ID) and isolation

(ISO). To measure the lepton ID (ISO) efficiency the probe lepton is required to pass all selection

criteria except the ID (ISO) cuts and to form a invariant mass with the tagged lepton to be comparable

with the Z mass. The ID (ISO) efficiency is determined by counting probe leptons passing/failing the

ID (ISO) criteria on the Z peak.

ǫ =
Npassing

Npassing +Nfailing

Fig. 7.3 and 7.4 show the measured efficiency in comparison to Z → ll MC predictions in bins of the

probe lepton pT and number of primary vertices, i.e. pileup, for muons and electrons, summarized in

addition in Table 7.5.

Table 7.5: Summary of the measured ID and ISO efficiency for muons and electrons determined in MC and

data using the tag&probe method. The efficiency for electrons/muons are listed for leptons integrated

over the full phase space (pT > 30GeV, |η| < 2.1) as a function of the pimary vertex multiplicity

(nVtx). The tag and probe leptons are required to form an invariant mass comparable with the Z mass

and the efficiency is estimated by the fraction of probe leptons passing/failing the tight selection

criteria. The errors correspond to rounding errors. Statistical errors are an order of magnitude lower.

Lepton flavor T&P Data T&P MC

nVtx 0-4 5-8 9-20 0-4 5-8 9-20

Identification efficiency

Muon 97.0± 0.1 96.7± 0.1 96.0± 0.1 96.6± 0.1 96.5± 0.1 96.4± 0.1

Electron 96.7± 0.1 96.7± 0.1 93.9± 0.1 95.3± 0.1 94.7± 0.1 96.4± 0.1

Isolation efficiency

Muon 99.0± 0.1 98.6± 0.1 97.8± 0.1 99.2± 0.1 98.7± 0.1 97.8− 0.1

Electron 98.7± 0.1 98.4± 0.1 97.7± 0.1 99.0± 0.1 98.3± 0.1 96.7± 0.1

One observes a good agreement between the measured selection efficiency for muons and electrons

in data and MC simulated Z → l+l− events. Differences, especially for soft leptons, and the un-

certainties of the tag&probe method are taken as an additional systematic uncertainties on the final

background predictions (see Section 9.1). The tag&probe method can be used for hadronic taus as

well. The fact that neutrinos are involved in all decay modes of τh complicates the efficiency determi-

nation, since only the visible transverse momentum pvisT can be reconstructed and the Z → ττ mass

peak is shifted to lower values, which has to be taken into account. A complementary approach takes

advantage of the fact, that the decays of the two τs are uncorrelated and by requiring one tau to decay

leptonically (muon) and the other hadronically, the identification efficiency can be checked. Since this

splitting further decreases the statistics of the sample a pT and η binned evolution of the efficiency is

not in the scope so far. The Z → µντνµτh control sample can be selected by requiring one tight muon

with pT > 20GeV (trigger), a τh candidate ( HPS τh candidates ), Emiss
T < 30GeV and the transverse

mass of the muon with mT < 15GeV/c2. In Fig. 7.5 the invariant mass of the tight muon and the

HPS τh candidates are shown. Since in the Run2011B data set the single muon trigger threshold was

increased and the number of selected events is not sufficient. Thus it is assumed that the accuracy of
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Figure 7.3: Muon ID (left) and ISO (right) efficiency in bins of the probe muon pT and number of PileUp

events (0-4 (top), 5-8 (middle), 9-20 (bottom)) measured in data using the tag&probe method. For

comparison the muon ID/ISO efficiency is also shown for a Z → µµ MC sample



88 CHAPTER 7. PREREQUISITES

 [GeV]
T

p
10 20 30 40 50 60 70 80 90 100

E
ff
ic

ie
n

c
y

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Run2011A/B

 +Jets (MadGraph)
-

 e+ e→Z+Jets

-1=4.7�b
int

=7,TeV Ls Electron Identification Efficiency  (NPileUp Events: 0-4)

 [GeV]
T

p
10 20 30 40 50 60 70 80 90 100

E
ff
ic

ie
n

c
y

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Run2011A/B

 +Jets (MadGraph)
-

 e+ e→Z+Jets

-1=4.7�b
int

=7,TeV Ls Electron Isolation Efficiency  (NPileUp Events: 0-4)

 [GeV]
T

p
10 20 30 40 50 60 70 80 90 100

E
ff
ic

ie
n

c
y

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Run2011A/B

 +Jets (MadGraph)
-

 e+ e→Z+Jets

-1=4.7�b
int

=7,TeV Ls Electron Identification Efficiency  (NPileUp Events: 5-8)

 [GeV]
T

p
10 20 30 40 50 60 70 80 90 100

E
ff
ic

ie
n

c
y

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Run2011A/B

 +Jets (MadGraph)
-

 e+ e→Z+Jets

-1=4.7�b
int

=7,TeV Ls Electron Isolation Efficiency  (NPileUp Events: 5-8)

 [GeV]
T

p
10 20 30 40 50 60 70 80 90 100

E
ff
ic

ie
n

c
y

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Run2011A/B

 +Jets (MadGraph)
-

 e+ e→Z+Jets

-1=4.7�b
int

=7,TeV Ls Electron Identification Efficiency  (NPileUp Events: 9-20)

 [GeV]
T

p
10 20 30 40 50 60 70 80 90 100

E
ff
ic

ie
n

c
y

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Run2011A/B

 +Jets (MadGraph)
-

 e+ e→Z+Jets

-1=4.7�b
int

=7,TeV Ls Electron Isolation Efficiency  (NPileUp Events: 9-20)

Figure 7.4: Electron ID (left) and ISO (right) efficiency in bins of the probe electron pT and number of PileUp

events (0-4 (top), 5-8 (middle), 9-20 (bottom)) measured in data using the tag&probe method. For

comparison the electron ID/ISO efficiency is also shown for a Z → ee MC sample
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the MC predictions did not change. The statistical uncertainty of the τh control sample determines the

uncertainty of the tau selection efficiency, which is determined to be ≈ 6% for all decay modes (HPS

single prong, single prong + π0 and three prong τh decay candidates).

7.4 Trigger Selection and Efficiency

In this study only un-prescaled muon and electron based triggers are considered. Tau triggers are

excluded for simplicity, but could be included in future studies. To maximize the trigger efficiency,

i.e. the efficiency of the trigger system to fire for a given lepton multiplicity, all chosen single-, double-

and cross-lepton (µ, e) triggers are combined. A summary of all trigger paths is listed in Table C.1 in

Appendix C.

The trigger efficiency is an important issue, which should be measured in data to minimize the re-

liance on simulations of inefficiencies of the detector, due to dead cells, material structure and or fast

changing recording environments, e.g. luminosity. From the combined trigger efficiency of an event

triggered by the two triggers i and j with efficiency ǫij the efficiency of the single trigger ǫi can be

obtained

ǫi =
Nselected+trigger i + trigger j

Events

Nselected + trigger j
Events

, (7.3)

where i is the signal trigger and j the orthogonal trigger used. The trigger efficiency integrated over

the full phase space (|ηe,µ| < 2.1) varies between 77% and 99% dependend on the trigger. The

measured trigger efficiencies using HT triggered data samples have been summarized in Table C.1 in

Appendix C. The lepton transverse momentum thresholds are set according to the trigger thresholds,

but shifted slightly to higher values (+[2, 5]GeV) depending on the individual trigger to ensure, that

the selected lepton phase space is on the efficiency plateaus. The actual values will be discussed

in Section 7.5. This special consideration is in principle not needed, but would require a careful

consideration in the transition regions.

Since the luminosity has been increased throughout the data taking in 2011, the trigger thresholds

and the requirements on the trigger objects have been adjusted according to the maximum bandwidth

pre-defined for each trigger stream. This results in various trigger paths used to select interesting

events. The trigger efficiency for Double-Muon, Double-Electron and Muon-Electron cross triggers

as a function of the data taking runs are shown in Fig. 7.6. The trigger efficiency as a function of the

leading or next-to-leading leptons pseudo rapidity η are shown in Appendix C.

SM MC predictions are corrected to the measured trigger efficiency in the following and the uncer-

tainties will be treated as a systematic uncertainty in final predictions (see Section 9). Since multiple

triggers can fire for a single event, the combination of all trigger possibilities lead to mostly 100%

efficiency for events with three and more leptons.
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Figure 7.5: Invariant mass distribution mll of a tight muon and HPS single prong (top left), single prong +

π0 (top right) and three prong τh decay candidates (bottom) in the τh isolation and identification

efficiency control sample. An overall good agreement is observed. Electrons and/or muons failing

their identification criteria can be catched by single prong τh candidate reconstruction indicated by

the peak around the Z mass (top left). The peak at mll ≈ 150GeV/c2 originates from the fact, that

all entries above 150 are added to this overflow bin.
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Figure 7.6: Average trigger efficiency of Double-Muon (top), Double-Electron (middle) and Electron-Muon

cross trigger paths (bottom) as a function of the recorded runs. Gaps correspond to technical stops

and test beam phases were no certified runs were recorded. With increasing luminosity the trigger

paths were pre-scaled and/or thresholds increased resulting in changed trigger paths. The trigger

thresholds on the trigger primitives are indicated in the path name, e.g. Ele17 correspond to the

trigger requirement on an electron to be above pT > 17GeV.
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7.5 Event Selection

In this analysis we select events triggered by single or double lepton (µ, e) triggers including cross

triggers (µ+e). The threshold of these triggers define the lower pT cuts for the leading leptons and so

each event has to pass at least one of the following requirements:

• leading muon with pµ1

T > 35GeV

• leading muon with pµ1

T > 20GeV and next to leading muon with pµ2

T > 10GeV

• leading electron with pe1T > 85GeV

• leading electron with pe1T > 20GeV and next to leading electron with pe2T > 10GeV

• leading muon with pµ1

T > 10GeV and leading electron with pe1T > 20GeV

• leading muon with pµ1

T > 20GeV and leading electron with pe1T > 10GeV ,

where the individual thresholds were set slightly above the actual trigger thresholds to ensure a selec-

tion on the efficiency plateaus. For simplicity the thresholds on the transverse momentum pT are set

constant for the full run range and are defined by the last un-prescaled trigger paths with the highest

thresholds. Runs recorded in the beginning of 2011 are characterized by low luminosity and thus

lower thresholds. Hence one could increase the statistics by run dependent pT thresholds, which is for

the time being not applied.

Default cuts to select good events, like a good primary vertex (ndof > 4, |z| < 15 cm, r < 2.0 cm)

[159] and reject beam scraping events, were applied. Protons in the beam halo can hit detector or

accelerator components and form a rich source of secondary particles called beam scraping events.

Proton-proton interactions are distinguished by the number of tracks satisfying basic kinematic re-

quirements; if more than ten tracks are present at least 25% should be high quality [159].

The amount of background decreases with increasing number of prompt leptons per event, but so

does the signal cross section. Hence, the cuts to suppress the SM background, like missing transverse

energy and transverse energy can change with the number of prompt leptons. In Fig. 7.7 the Emiss
T

andHT distributions are shown for SM backgrounds and a SUSY benchmark model (TeV34) selected

with a basic three lepton selection. With a HT cut of 200 GeV or similar a Emiss
T cut of 50 GeV the

SM background can be strongly suppressed with comparable background rejections.

The signal efficiency of the selection cuts are model dependend, e.g. an Emiss
T based analysis is

more sensitive for models, where the direct chargino neutralino production is dominant and HT is

more sensitive for squark/gluino production, which results in cascade decays leading to higher jet

multiplicities and so higher HT . The model dependency of the average <Emiss
T > and < HT > in

the cMSSM parameter space (m0, m1/2) for fixed tanβ = 3 and A0 = 0 is shown in Fig. 7.8. There

are regions in the cMSSM model space, where the HT cut has a worse signal efficiency as Emiss
T , and

vice versa for other regions.

In order to be as model independent as possible the measurement is binnend in HT and Emiss
T . The

basic measurement strategy is shown in Fig. 7.9. An event gets classified in terms of low-HT (HT ≤
4TeV3: m0 = 60, m1/2 = 230, tanβ = 3, A0 = 0 and sign(µ) = +1 benchmark model is already excluded and used

only for visualization.
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Figure 7.7: HT (left) andEmiss
T (right) distribution for SM backgrounds and a SUSY benchmark model (TeV3).

A HT cut of 200 GeV or similar a Emiss
T cut of 50 GeV the SM background can be strongly sup-

pressed with comparable background rejections and similar signal sensitivity.

200 GeV), high-HT (HT > 200 GeV), low-Emiss
T (Emiss

T ≤ 50 GeV) and high-Emiss
T (Emiss

T > 50

GeV). Furthermore events are classified by the kind of lepton pairs with opposite sign (OS) or same

sign (SS), opposite flavor (OF) or same flavor (SS) and if there exists at least one opposite sign same

flavor (OS-SF) lepton pair with an invariant mass comparable with the Z-mass |mll − Zmass| < 15

GeV (on-Z) or not (off-Z). If no OS-SF lepton is present the event gets classified as no-OSSF. The

selection strategy does not cut out phase space were no specific SUSY contributions are expected,

but rather considers simultaneously bins of signal and background dominated region, which allows a

simultaneous control over the background. In the different search regions low-HT high-Emiss
T , high-

HT low-Emiss
T and high-HT high-Emiss

T counting experiments are performed.

To summarize: we select events with at least three tight leptons (µ, e, τ ) with N(τh) ≤ 2, which are

classified by their jet activity (HT ), missing energy (Emiss
T ) and lepton pairs (on-Z, off-Z, no-OSSF).

Two additional requirements will be applied to suppress leptons from low mass resonances and initial

or final state radiation. Low mass resonances like J/Ψ or Ypsilon (Υ) are suppressed by requiring all

OS-SF lepton pairs to have an invariant mass above 12 GeV (mΥ(1S) ≈ 9.5GeV). FSR processes can

be suppressed by requiring the invariant mass of all leptons mlll to be |mlll − Zmass| > 15GeV. The

|mlll −Zmass| > 15GeV veto is applied only in the SM dominated control region "low-Emiss
T low-HT

off-Z". Details are given in Section 8.2.
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Figure 7.8: Average <Emiss
T > (left) and < HT > (right) in the cMSSM parameter space (m0, m1/2) for fixed

tanβ = 10 and A0 = 0. Events are preselected with three tight leptons (e, µ). The selection

efficiency for Emiss
T and HT requirements have strong model dependence.
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Figure 7.9: Event selection strategy displayed in theHT -Emiss
T plane. The measurement is binnend inHT ,Emiss

T

and separated additionally in on-Z and off-Z bins, which are distiguished by the presence of an OS-

SF lepton pair inside or outside the Z-mass window of 75-105 GeV/c2.



CHAPTER 8

SM Background Prediction

Supersymmetric signals are expected to increase smooth over time, and not to pop up immediately

with the first bunch of integrated luminosity. Also many SUSY models predict contributions in the

very tails of the kinematic distributions (like Emiss
T ) of SM processes. Those both assumptions re-

quires a very good knowledge of the background processes in not yet well tested phase spaces, to be

able to establish funded presumptions on the measurement about possible signals of new physics.

In Section 6.2 the dominant SM processes leading to multileptonic signatures were reviewed. Several

processes are expected to contribute: (1) dilepton processes (Z/γ∗, tt̄, WW) with an additional fake

lepton, (2) backgrounds with a lepton from pair conversion of initial/final state radiated photons, (3)

prompt backgrounds (WZ/γ∗, tt̄W , tt̄Z, WWW) and (4) backgrounds with missed leptons (ZZ,

tt̄Z), where leptons can be missed due to detector acceptance or failing object selections.

Since the measurement is split in various search regions in Emiss
T , HT and on/off-Z, each SM process

contribution is distributed over the search channels differently. The challenge is to control all SM

backgrounds simultaneously with a high accuracy.

The easiest way would be to trust the SM MC generation and simulation of generated particle prop-

agation through and their interactions with the detector material. A good description of the data is

in such cases not guaranteed, due to uncertainties in prescription of underlying events, parton density

functions, detector inefficiencies and alignment, and many more sources, which can harm the predic-

tions. Recording further data, MC simulation can be tuned to well known standard model processes

and improve their predictions over time. Nevertheless backgrounds derived from MC simulations

require as many as possible control regions, to reveal any inconsistencies. The definitions of such

control regions should be close enough to the signal regions, to test almost similar phase spaces, but

also be SM dominated, i.e. the expected signal contributions has to be negligible. Otherwise dif-

ference in those control regions can be misinterpreted as poorly data describing MC simulations and

signal excess can drop away.

More sophisticated methods are so called Data Driven Methods, which derive their predictions di-

rectly from data ideally without using MC informations. The advantage is that the reliance on MC is

95
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minimized. Despite that the data driven methods can be rather complicated and are commonly defined

for single phase space regions or special kinematic properties of the processes.

In this chapter the SM backgrounds will be discussed one by one. For each source of background

a prediction method, or at least a control region, is defined and cross checked in closure tests. A

hybrid method, data driven with shapes taken from MC, for dileptons plus an additional fake lepton is

utilized. A data driven calibration is performed in the fake lepton isolation side-band and propagated

to the isolation signal region. This measurement is done for Z/γ ∗ (ll) + lfake, and tt̄(ll) + lfake

processes separately, because the fake lepton composition in those processes can diver, simply due to

the fact, that in tt̄ two hard b-jets occur in every event and Drell-Yan is dominated by light (udsg) jets.

Dileptons and a lepton from photon pair conversion mimicking a three lepton signature need a special

consideration and a dedicated simulation for electrons/muons from pair conversion is generated and

extensivly cross checked to predict those backgrounds. The residual prompt backgrounds (ZW , ZZ)

are taken from MC and are checked in well defined control regions. Only the very rare processes tt̄W ,

tt̄Z andWWW are taken completely from MC without any cross checks, because no suitable control

region can be defined with the accumulated integrated luminosity so far.

8.1 Dilepton - Data Driven Fake Background Calibration

Fake leptons, i.e. leptons mainly produced in light (udsg) and heavy flavor decays (b/c→ µ, e), are a

dominant background sources beside the prompt double boson production. The cross sections of the

Z/γ ∗+Jets and tt̄ production with subsequent branching into two prompt leptons in the final states

are high. Hence the contribution including a third fake lepton from jets can be significant and has to

be controlled. Leptons produced in jets can be identified by their isolation values (Riso), and in case

of heavy flavor decays with a longer lifetime, by their transverse impact parameter (dxy). Typically

the multiplicity around the fake lepton is high in jets and the isolation variable tends to be significant

higher in comparison with prompt leptons produced in Z or W decays.

The basic idea of the Data Driven Fake Background Determination is the extrapolation of the side-

band of the isolation distribution to the signal region using the shape from Monte Carlo simulation.

Since the data driven background determination is applied on the relative isolation side-bands, where

the shape depends on the fake composition, i.e. the heavy flavor content in the events, the side-band

technique has to be performed for light jets dominated backgrounds like Z/γ∗ and the heavy flavor

enriched tt̄ processes separately.

In case of fake electrons and muons the dominant sources are light/heavy flavor decays within jets in

the event. Heavy flavor decays can be identified by a large transverse impact parameter dxy. This can

be used as a closure test of the data driven determination for the fake lepton subset from heavy flavor

decays by repeating the side-band technique from the isolation variable for large transverse impact

parameter values.

In contrast, fake hadronic tau decays are dominated by soft jets misidentified by the tau reconstruction

and identification algorithm. The signatures of taus used in this study are (1) single prong, (2) single

prong with accompanied photons and (3) three prong τh decay candidates. The decay branching

ratios for these channels are 14%, 36% and 15%, respectively. An isolation including information of

the decay properties of the taus can be defined (Section.7.3) and used as signal and side-band region.
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Here a closure test with large dxy values cannot be done because of absence of the dxy variable in

the τh candidate selection. Instead a closure test with a complementary tt̄ sample (tt̄ events with one

prompt lepton) will be performed.

8.1.1 Drell-Yan

The first fake background to be discussed is Z/γ ∗+Jets. Before looking into the fake lepton produc-

tion in such processes control plots for the prompt part has to be defined in order to ensure a proper

description of the underlying process Z/γ∗ → l+l− in MC simulation.

Control Plots

The Z boson has the useful property that it decays with a branching ratio of ∼ 10% into an opposite

sign (OS) same flavor (SF) lepton pair (∼ 3.3% for each lepton flavor) with an invariant mass

ml+l− =
√

(El+ + El−)
2 − (pl+ + pl−)

2 (8.1)

consistent with the Z mass. A relatively pure Z sample can be selected by requiring two tight opposite

sign same flavor leptons on top of the common criteria like a good primary vertex, beam scraping

veto and trigger requirements for single and dilepton triggers (see Section 7.5). The invariant mass

is shown in Fig. 8.1 for e+e−, µ+µ− events with Emiss
T < 50 GeV and HT < 200 GeV. The Emiss

T

andHT requirement ensure a negligible signal contamination. One observes good agreement between

measurement and MC and a good description of the Z peak in the invariant mass distribution.
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Figure 8.1: Invariant mass distributions of two tight leptons with opposite sign same flavor e+e− (left) and

µ+µ− (right). An overall good description of the MC simulation in comparison with the observa-

tion is observed, also the long tails in the invariant mass distribution are described well. The peak

at mll ≈ 500GeV/c2 originates from the fact that all entries above 500 are added to this overflow

bin.
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In order to have an additional fake lepton produced within Drell-Yan events associated jets have to be

present. The production mechanism for additional jets in Z events are similar to γ∗ events, where at

tree level the following processes contribute to pp→ Z/γ ∗+1Jet:

(1) qq̄ → Z/γ ∗+g (2) qg → Z/γ ∗+q (3) q̄g → Z/γ ∗+q̄ .

Processes decaying to two leptons do not have associated neutrinos in the event, which implies no

intrinsic missing transverse energy and so any measured Emiss
T corresponds to miss measurements of

the involved physics objects, accumulated noise in the detector or pile up events.

Nevertheless the source of Emiss
T and the production mechanism for accompanied jets are similar for

processes involving Z or γ∗ and a determination of the fake lepton production for one process is

suitable for conclusions on the other.

Data Driven Determination of Fake Electrons/Muons

After cross checking the Z/γ ∗ +Jets production with the subsequent decay into two tight leptons

Z/γ∗ → l+l−, the data driven side-band technique discussed before can be applied. In order to select

a fake lepton enriched Z data sample the following set of cuts can be applied:

• one OS-SF tight lepton pair

• invariant mass |mll − Zmass| < 10 GeV/c2

• third loose lepton (Riso side-band: Riso= [0.15, 5])

• HT < 200 GeV

• Emiss
T < 50 GeV

The third loose lepton has the same requirements as the tight selection criteria except an inverted

relative isolation requirement Riso > 0.15 with the restriction on the upper boundary Riso < 5.0.

Fake leptons with an relative isolation above 5 are not taken into account, because the fake leptons

close to the signal region Riso < 0.15 allow for a more reliable extrapolation to the signal region.

The transverse momentum pT and pseudo rapidity η of the third loose lepton are presented in Fig. 8.2.

One observes that indeed such a selected sample is dominated by Z + Jets → l+l− + l±fake events and

the transverse momentum pT spectrum is dominated by soft fake leptons (pT < 20 GeV). Using the

full phase space (pT > 8 GeV, |η| < 2.1) any side-band measurement will be defined by soft fake

leptons. In order to account for high pT leptons the data driven determination has to be performed

as a function of the transverse momentum. Due to limited statistics three bins in pT are selected

pT = [8, 12]GeV, pT = [12, 20]GeV and pT = [20, inf]GeV.

The side-bands Riso= [0.15, 5] are presented in Fig. 8.3 for electrons and muons in the various trans-

verse momentum pT bins. The MC prediction (including other SM processes than Drell-Yan events

as well) for the isolation signal region are added to get a feeling for the final contribution. The data in

the signal region (Riso < 0.15) is left out on purpose, since other SM backgrounds contributing have to

be discussed first and also not to open the signal box at this stage in order to be unbiased with respect

to any interpretation. In Section 9 the corresponding search channels will be discussed, where the
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Figure 8.2: Transverse momentum pT and pseudo rapidity η distributions of the third loose lepton for e (top)

and µ (bottom) in Z → l+l− + Jets events selected with HT < 200 GeV, Emiss
T < 50 GeV and

the invariant mass of the opposite sign same flavor lepton pair in the mass range |mll − Zmass| <
10 GeV/c2.
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isolation signal regions discussed above corresponds to the "low-HT , low-Emiss
T , on-Z" 3L channel.

An overall good description of fake leptons in Drell-Yan events is observed.

The discussion of the uncertainty on this data driven fake background determination is postponed to

Section 8.1.4.

Data Driven Fake Rate of τh

HPS τh candidates are used for the reconstruction of the single prong, single prong + π0 and three

prong decay modes. To determine the fake τh prediction using the isolation side-band measurement

requires a slight modification compared to fake electrons and muons. The reason for this is simply the

fact, that the tau identification for HPS τh candidates used within the CMS collaboration is a boolean

member function of the tau candidate collection. As discussed previously in Section 7.3, four different

working points corresponding to different efficiencies can be used, where the loose is chosen as the

isolation signal region in this study. The isolation side-band is defined as a tau candidate passing

the vloose (very loose) identification criteria, but failing the loose criteria. This procedure selects a

complementary data set.

The pT and η distribution of a third "very loose" τh decays in events selected with an OS-SF tight lep-

ton pair (e+e−,µ+µ−) with an invariant mass comparable with the Z mass |mll−Zmass| < 10 GeV/c2

are presented in Fig. 8.4 for the three different τh decay modes, data and MC predictions are in good

agreement.

Again the discussion of the uncertainty on this measurement is postponed to Section 8.1.4.

Closure test

The side-bands for fake leptons from jets in Drell-Yan events are in good agreement with MC predic-

tions, so we take the MC shape to predict the number of fake leptons in the signal region.

In order to cross check the results for fake leptons in Drell-Yan+Jets events, one can select a comple-

mentary fake enriched data set by requiring additionally the transverse impact parameter of the third

loose lepton within a dedicated side-band |dxy| > 0.02. The advantage of this cross check is the

possibility to look into the isolation signal region without opening the signal box and a direct compar-

ison can be done. The dxy side-band selection induces a different fake composition of the fake lepton

enriched sample (and hence only an effective subset of the actual fake contribution are cross checked

by this test), i.e. the heavy flavor contribution is enhanced. The relative isolation distributions of a

third loose lepton (Riso< 5.0, |dxy| > 0.02 cm), where the lepton flavor is either e or µ in events with

an OS-SF tight lepton (e+e−, µ+µ−) pair forming an invariant mass consistent with the Z mass are

shown in Fig. 8.5.

An important fact to note is that in case for electron fakes the isolation signal and close by regions

are also populated with fake electrons from initial/final state radiated photons, which convert (either

in the detector or at matrix element level) into a pair of leptons and if this conversion appears to

be asymmetric one lepton can be mistakenly be identified as a prompt (detailed discussion of those

backgrounds is postponed to Section 8.2). This contamination can harm the conclusion, since if any

discrepancies are observed, both sources can be accounted for. Also in cases like here where the

prediction and the measurement agrees well, the conclusion derived has to be carefully discussed,
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Figure 8.3: Relative isolation Riso distribution of the third loose lepton for e (left column) and µ (right column)

split in various pT bins (pT = [8, 12]GeV (top), pT = [12, 20]GeV (middle), pT = [20, inf]GeV

(bottom)) in Z → l+l− + Jets events selected with HT < 200 GeV, Emiss
T < 200 GeV and the

invariant mass of the opposite sign same flavor lepton pair in the range |mll−Zmass| < 10 GeV/c2.

An overall good description of the Riso distribution is observed. The measurement in the signal

region (Riso) is excluded on purpose.
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Figure 8.4: Transverse momentum pT (left) and pseudo rapidity η (right) distribution of a third vloose HPS

single prong (top), single prong +π0 (middle) and three prong (bottom) HPS τh candidate in Z →
l+l− + Jets events selected with HT < 200 GeV, Emiss

T < 200 GeV and the invariant mass of the

opposite sign same flavor lepton pair in the mass range |mll − Zmass| < 10 GeV/c2. An overall

good agreement is observed.
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since both can be effected by a systematic error in opposite directions resulting in a cancellation.

Nevertheless, if one takes the isolation side-bands in both fake lepton flavor Riso distributions with an

overall good description of the shape into account, a similar conclusion like in the previous measure-

ment can be stated, i.e. the fake lepton description determined in the isolation side-band, can be used

for the extrapolation to the signal region.

τh candidates are not cross checked here, because of the absence of a transverse impact parameter

requirement within the selection. In case of tt̄ events with two prompt leptons discussed in the next

sections an additional closure test including cross checks for fake τh candidates is performed. The

impact on Drell-Yan events is discussed later in Section 8.1.4.

E
v
e

n
ts

 /
 0

.1
5

0

20

40

60

80

100

120

140

160

180

200

220

240

DATA

ZZ+Jets

WZ+Jets

WW+Jets

+Jetstt

DY+Jets

W+Jets

-1=4.7fb
int

=7TeV Ls

Riso
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
C

D
a

ta
-M

C

-0.5

0

0.5

E
v
e

n
ts

 /
 0

.1
5

0

20

40

60

80

100

120

140

160

180

200

DATA

ZZ+Jets

WZ+Jets

WW+Jets

+Jetstt

DY+Jets

W+Jets

-1=4.7fb
int

=7TeV Ls

Riso
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
C

D
a

ta
-M

C

-0.5

0

0.5

Figure 8.5: Relative isolation Riso distribution for loose leptons for e (left) and µ (right) in Z events, where

also the transverse impact parameter is inverted |dxy| > 0.02. The underlying event selection is an

opposite sign same flavor tight lepton pair with an invariant mass consistent with the Z mass and a

third loose lepton in events with HT < 200 GeV and Emiss
T < 50 GeV. A similar good agreement

is measured for fake leptons in the transverse impact parameter side-band, despite a contamination

of fake electron from initial/final state radiated photons in the isolation signal region, included in

the Drell-Yan sample (DY).

8.1.2 tt̄

In this section the background from tt̄ events with two prompt leptons and an additional fake lepton

from jets will be discussed. A similar procedure to Z/γ ∗+Jets will be followed.

tt̄ processes are the next important dilepton process, which can contribute to the signal region with

an additional fake lepton. Top quarks decay instantaneously into a b-quark and a W boson with a

branching ratio of BR(t → bW ) ∼ 100%. Other top decays are suppressed by their corresponding

CKM matrix elements. The subsequent decays of the W bosons to leptons and neutrinos (BR(W →
lν) ∼ 33%) lead to a dilepton signature.
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tt̄→ bW+b̄W− → bl+νb̄l−ν̄

In contrast to Z/γ ∗ +Jets processes tt̄ events with two prompt leptons contain two associated neu-

trinos in the final state leading to intrinsic missing transverse energy and two b-jets. This interplay of

intrinsic missing transverse energy and heavy flavor jets in each leptonic tt̄ event raises the importance

of this background in prospect of SUSY signals, which are expected to have comparable properties.

The contribution to the trilepton signatures requires an additional fake lepton in the event. In principal

the production mechanism for fake leptons in tt̄ is similar to Z/γ ∗+Jets , but the jet composition can

be different, due to fact, that the b-jet density varies in both processes. In that sense the background

determination performed for Z/γ ∗ +Jets events can not be consulted for tt̄ and have to be done

separately.

Control Region

The fake lepton data driven background determination requires a pure seed, populated mainly with the

processes which should be tested. tt̄ events with two prompt leptons can be split according to same

flavor (SF) or opposite flavor (OF) leptons pairs in the event :

(1) tt̄→ bb̄νν̄l+l− (2) tt̄→ bb̄νν̄l+l′−

with l = e, µ and ll′ indicates OF leptons. W decays to τ ’s are not taken into account here for

simplicity. Since the lepton flavors in both W decays are uncorrelated the rate of OF and SF leptons

pairs in tt̄ processes are similar, except small correction due to different reconstruction and selection

efficiency for electrons and muons.

The dominant process, which has to be suppressed in order to select a relative pure tt̄ sample using

same flavor lepton signatures is Z/γ ∗ +Jets with the subsequent decay into a SF-lepton pair, which

can be suppressed to an acceptable level by requirements on Emiss
T , HT , number of b-jets and the

invariant mass of the lepton pair.

On the other hand the advantage of OF signatures is the lack of crucial SM backgrounds contributing

and so additional requirements can be soften. Selecting tt̄ sample with OF leptons, one has to suppress

the dominant process Z/γ∗ → ττ , where each tau decays leptonically τ → lνlντ . The Emiss
T and HT

distribution in events selected with two tight leptons OF and opposite sign on top standard good

event and trigger requirements (see Section 7.5) are shown in Fig. 8.6 with HT > 150GeV applied

for the Emiss
T distribution suppressing Z/γ∗ → ττ processes. Additional backgrounds with smaller

contributions like W+Jets, WW and WZ are shown as well. Requiring additionally HT > 150GeV

selects a tt̄ dominated sample with a purity of > 90%.

The number of tt̄ events with two prompt leptons in such a selected data sample can be further in-

creased by combining OF and SF lepton signatures. The increase in tt̄ events is roughly a factor two,

but as discussed before additional requirements to suppress Z/γ∗ → l+l− (l = e, µ) have to be ap-

plied. As it can be seen in the next section, where fake leptons in tt̄will be discussed, the final increase

in statistical accuracy of the background determination by combining both signatures, is expected to

be low and is disregarded for now.
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Figure 8.6: HT (left) and Emiss
T (right) distribution for two tight leptons opposite sign opposite flavor (e±, µ∓).

In case of the Emiss
T distribution an additional requirement on HT > 150GeV was applied to

suppress Z/γ∗ → ττ and thus selecting a pure tt̄ events with two prompt leptons sample. The HT

and Emiss
T distributions are well described by the MC simulations. The peak at Emiss

T ≈ 400GeV

and HT ≈ 1000GeV originates from the fact, that all entries above 400 (1000) are added to this

"overflow bin".

Data Driven Fake Background Determinaton

The data driven determination of fake leptons was discussed before extensively in case of Drell-Yan

processes and will be applied also to tt̄ processes. As a seed a relative pure tt̄ sample with two prompt

leptons and an additional fake lepton sample can be selected by the following requirements:

• two tight lepton OS-OF (l = e, µ),

• HT > 150GeV,

• third loose lepton (l = e, µ, τ ),

where the loose leptons have again the same selection criteria compared to the tight lepton selection,

but inverted isolation. The definitions of the relative isolation side-bands are similar as discussed

already in Section 8.1.1 for Z/γ ∗+Jets . The transverse momentum pT and pseudo rapidity η distri-

bution of the third loose lepton are presented in Fig. 8.7 for fake electrons/muons and in Fig. 8.8 for

vloose HPS τh candidates, respectively. The τh candidates are not split into the different reconstructed

decay modes due to lack of required number of events.

The data driven fake background determination is again performed in the relative isolation side-bands

(Riso = [0.15, 5]) of electrons and muons or simply in the isolation side-band (ID=vloose) for fake

τh candidates. Despite the fact that the isolation side-band is dominated by soft leptons, no pT binning

is applied because the number of events is too low to have a reasonable binning. The relative isolation

distributions for loose electrons and muons are presented in Fig. 8.9.
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Figure 8.7: Transverse momentum pT (left) and pseudo rapidity η (right) distributions of fake leptons for e

(top) and µ (bottom) in the tt̄ fake enriched data sample selected with two tight opposite sign

opposite flavor leptons (e, µ) and HT > 150GeV.
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Figure 8.8: Transverse momentum pT (left) and pseudo rapidity η (right) distributions for fake τh candidates

(single prong, single prong + π0 and three prong combined) with vloose ID in the tt̄ fake enriched

data sample selected with two tight opposite sign opposite flavor leptons (e, µ) andHT > 150GeV.

Similar reasons as discussed before in case of the fake background predictions for Drell-Yan processes

demands to exclude the observation in the isolation signal region (Riso< 0.15), where only the MC

prediction is shown. Again an overall good description of the isolation side-bands is observed. The

discussion of the uncertainties is postponed to Section 8.1.4.

Closure Test

Following the same procedure as in case of Drell-Yan events the side-band technique for fake electrons

and muons the selected tt̄ fake enriched sample with two prompt leptons can be cross checked in a

complementary data set selected in the fake lepton transverse impact parameter side-band |dxy| >
0.02 cm. With this side-band the same fake background determination can be performed. The results

are presented in Fig. 8.10, where the relative isolation side-bands for the fake electrons and muons with

inverted |dxy| > 0.02 cm requirement are shown. This procedure with an inverted dxy requierement

allows for a direct comparison of the side-band determination in the isolation signal region.

In case of loose muons the observations are in good agreement with the predictions in the side-band

and the signal region as well. For electrons a deviation for low relative isolation values is measured

within Riso= [0.15, 1.5] to be ≈ 50%. Despite this deviation at the lower border of the isolation

side-band, the signal region (Riso< 0.15) prediction and observation are consistent within errors.

Additional Closure Test

The data driven background determination shows consistent results, which implies that the description

of the fake lepton production is well modeled in MC simulations. In principle the scaling factors are

equal to one as has been cross checked in a closure test repeating the side-band technique with the
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Figure 8.9: Relative isolation Riso distribution for fake leptons (e (left), µ (right)) in the leptonic tt̄ fake en-

riched data sample selected with two tight opposite sign opposite flavor leptons(e, µ) and HT

> 150GeV.
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Figure 8.10: Relative isolation Riso distribution for fake leptons (e (left), µ (right)) with the inverted trans-

verse impact parameter requirement |dxy| > 0.02 cm in the leptonic tt̄ fake enriched data sample

selected with two tight opposite sign opposite flavor (OS-OF) leptons(e, µ) and HT > 150GeV.
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orthogonal observable dxy.

Nevertheless tt̄ events with its various decay branchings allows to define several control regions,

where complementary side-band measurements can be performed and the predictions can be verified

once more. An option is to use tt̄ events with no or one prompt lepton, i.e. one semileptonic and one

hadronic or both hadronic top decay. Those branchings allows for an independent cross check of the

fake lepton prediction. tt̄ events with no or one prompt lepton have the following signatures:

tt̄→ bW+b̄W− → bb̄qq̄l±ν

tt̄→ bW+b̄W− → bb̄qq̄qq̄ .

The dominant background of the hadronic tt̄ production are QCD multijet events [160]. QCD events

are hard to control and to suppress. The detailed study of a hadronic tt̄ enriched data sample as a

closure test for the actual measurement of dilepton tt̄ is not worth the effort, because tt̄ events with

one prompt lepton are more easily to use as a closure test. The dominant backgrounds are leptonically

decaying W+Jets and Z+Jets processes [161]. The starting point is one tight lepton in the event.

Here only tight muons are considered, because the trigger threshold for the single electron trigger

is pT > 85GeV in the last runs recorded, which is a far too strong requirement. In principle cross

triggers with electron and jets can be used instead, but also not used for simplicity. W/Z+Jets processes

can be suppressed by requiring high jet activity with at least one b-tagged jet. As a b-tagger the so

called TrackCountingHighPurity [162] tagger at the working point TCHPT> 3.41 is used.

The Track Counting (TC) algorithm relies on tracks with large impact parameter (IP). All tracks get

ranked by decreasing the three dimensional impact parameter significance SIP = IP/σIP and the

discriminator is the SIP value of the Nth track, where the High Purity (HP) discriminator is based

on three associated tracks. For several working points (loose, medium, tight) the efficiency for light

jets (udsg) to be tagged are determined on a simulated QCD sample to be ∼ 10% (loose), ∼ 1%

(medium) and ∼ 0.1% (tight). The miss tag rate for light jets measured in data for jets with a trans-

verse momentum pT = [50, 80]GeV for the Track Counting High Purity Tight (TCHPT) algorithm is

0.0017± 0.0001± 0.0004 with an b-tag efficiency for b-jets with similar pT of 0.37± 0.01 [163].

The HT and Emiss
T distribution for events selected with a tight muon (pT > 45GeV, |η| < 2.1), more

than two jets (pT > 40 GeV, |η| < 2.5) with at least one b-tagged jet (TCHPT:SIP > 3.41) on top of

the common event selection criteria are shown in Fig. 8.11, where one can observe a good agreement

between data and MC prediction.

With requirements of Emiss
T > 35GeV and HT > 150GeV a pure tt̄ sample with one prompt lepton

can be selected. A second loose lepton (l = e, µ, τ ) allows to cross check the findings derived for

leptonic tt̄ events with additional fake leptons from jets. The Riso distributions of the second loose

lepton (e, µ) are presented in Fig. 8.12, where in a similar fashion the relative isolation requirement is

loosened toRiso < 5.0. Two things to note here: (1) the tails of the Riso distribution are dominated by

tt̄ events with one prompt lepton and an additional fake lepton, whereas in the signal region Riso <

0.15 di-prompt lepton tt̄ processes dominate, (2) the overall description of the fake lepton relative

isolation MC prediction are consitent with the observation within erros. Since the contribution of

dilepton tt̄ events is by far the dominant contribution and the uncertainty on the probability of leptons

failing the tight selection criteria is unknown, i.e. it is taken from MC simulation, no direct conclusion

on the fake background in the Riso signal region can be stated. To suppress the di-prompt lepton
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Figure 8.11: HT (left)and Emiss
T (right) distribution in tt̄ events with one prompt lepton selected with a tight

muon (pT > 45GeV, |η| < 2.1) and more than two jets (pT > 40GeV, |η| < 2.5) with at least one

b-tagged jet. The HT and Emiss
T distribution are in good agreement. The peak at Emiss

T ≈ 500GeV

and HT ≈ 1000GeV originates from the fact, that all entries above 500 (1000) GeV are added to

this overflow bin.

tt̄ background the impact parameter requirement on the second loose lepton can be inverted. The

corresponding relative isolation Riso distributions are presented in Fig. 8.13, where the tt̄ events with

one prompt lepton and an additional fake lepton dominate in the side-band region and an overall good

agreement can be observed again, especially in the Riso signal region the MC prediction is consistent

with the measurement.

The tt̄ fake enriched data sample with one prompt lepton can be utilized to perform the fake τh
background determination in the isolation side-band and to cross check the findings in the dedicated

signal region. The result of both measurements are presented in Fig. 8.14.

8.1.3 WW → lνlν

Finally, the last prompt dilepton SM process which can contribute to multileptonic signatures via an

additional fake lepton is WW → lνlν. The dilepton WW cross section is measured by the CMS col-

laboration to be σWW = 55.5±3.3(stats.)±6.9(syst.)±3.3(lumi.) [155], which is in good agreement

with the SM NLO calculations σWW = 43.0 ± 2.0pb [153]. This cross section measurement can be

used as a cross check of WW → lνlν, but since an additional fake lepton is required to contribute,

the interesting processes are WW+Jets processes, which are not directly covered by the cross section

measurement listed above [155].

Partonic processes involved in pp→WW + 1 jet are

(1) qq̄ →W+W−g (2) qg →W+W−q (3) q̄g →W+W−q̄.
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Figure 8.12: Relative isolation distribution of loose electrons (left) and muons (right)) in tt̄ events with one

prompt lepton selected with a tight muon (pT > 45GeV, |η| < 2.1) and more than two jets

(pT > 40 GeV, |η| < 2.5) with at least one b-tagged jet. The isolation signal region is dominated

by leptonic tt̄ processes and only the tail of the Riso distribution is dominated by loose fake

electrons/muons.
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Figure 8.13: Relative isolation distribution of loose electron (left) and muons (right) with an inverted |dxy| >
0.02 requirement in tt̄ events with one prompt lepton selected with a tight muon (pT > 45GeV,

|η| < 2.1) and more than two jets (pT > 40 GeV, |η| < 2.5) with at least one b-tagged jet. In

contrast to the transverse impact parameter signal region |dxy| < 0.02 the complementary data

set is dominated by tt̄ events with one prompt lepton and additional loose fake electrons/muons.
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Figure 8.14: Transverse momentum pT distributions for HPS τh decay mode candidates (single prong, single

prong +π0 and three prong combined) in the isolation side-band (left) and isolation signal region

(right) in tt̄ events with one prompt lepton selected with a tight muon (pT > 30GeV, |η| < 2.1)

and more than two jets (pT > 40 GeV, |η| < 2.5) with at least one b-tagged jet. Note: the

simulated number of event of the used W+Jets MC sample is not sufficient and has huge statistical

uncertainties.

The WW cross section is a factor of ∼ 4 smaller compared to the dilepton tt̄ cross section and adding

additional jets to the matrix element calculation reduces it further by a factor ∼ 2, as estimated with

Madgraph1 [93]. Requiring in addition a fake lepton to be selected the contributions from WW+Jets

are small and a data driven prediction cannot be performed with enough events so far. Hence MC

simulations will be taken for the predictions of W → lνlν and an adequate uncertainty defined by the

data driven fake background determinations done for Drell-Yan+Jets and tt̄ processes will be added

to the cross section uncertainties.

8.1.4 Systematic Uncertainties & Summary

In the last sections a set of data driven background determinations were performed in order to pre-

dict the fake lepton contributions in dilepton processes like Drell-Yan+Jets and tt̄ . The fake lepton

contribution was measured in the isolation side-band and propagated to the signal region using shape

informations from MC simulation. For fake electrons and muons closure tests using the transverse

impact parameter side-band dxy for validation were defined and consistent results were obtained. Ad-

ditionally the tt̄ events with one prompt lepton including additional fake leptons were utilized for

further closure tests including a cross check for fake τh candidates.

An important issue not discussed up to now are the systematic uncertainties in the data driven back-

ground determination. Lets first discuss the fake electron and fake muon measurements in Drell-Yan

1Leading Order cross sections: σpp→W+W− = 29.51± 0.09 pb and σpp→W+W−j = 14.74± 0.05 pb calculated with

Madgraph.
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and tt̄ processes simultaneously. The statistical uncertainty of the side-band measurements varies for

Drell-Yan between 6% and 70% in the tails, where the most important are the Riso bins close to the

signal region, where the uncertainty is determined to be ≈ 6− 10% for electrons and ≈ 6− 11% for

muons. One has to note that the statistical uncertainties are rather arbitrary since the bin wise uncer-

tainty depends on the actual bin sizes and only the total statistical uncertainty is fixed. Additionally

the maximum deviation in all side-band measurements and closure tests are ≈ 20%(20%) for fake

electron (muons). Similar considerations can be applied for tt̄ processes which have higher statisti-

cal uncertainties ≈ 14(10)% for electrons (muons) in the isolation region close to the signal region

and a maximum deviation of ≈ 50(20)%. To be conservative in the uncertainty estimation the max-

imum of 50%(20%) is taken as systematic uncertainty for fake electrons (muons) in tt̄ , 20%(20%)

for fake electrons (muons) in Z/γ ∗ +Jets and as well WW, which is assumed to have a comparable

performance.

An overall combined systematic uncertainty on the fake HPS τh candidates is determined by the side-

band measurement with a statistical uncertainty of ≈ 6% and a maximum deviation in the closure test

in tt̄ events with one prompt lepton of ≈ 50%. Again these systematic uncertainties are conservative

and are applied on Drell-Yan, tt̄ and WW predictions.

To summarize the findings derived for dilepton processes in well defined control regions theEmiss
T and

HT distribution in fake enriched events selected with two tight OS-SF leptons and one loose lepton

(Riso = [0.15, 5.0], |dxy| < 0.02 cm), where the lepton flavor of the two tight leptons are restricted

to e and µ and the loose can be a τh candidate, are presented in Fig. 8.15. Those data samples are

dominated by Drell-Yan+Jets and at higher HT and/or Emiss
T values by tt̄ events. The Emiss

T and HT

MC simulation are consistent with the observation.
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Figure 8.15: HT (left) and Emiss
T (right) distribution for three lepton events including two tight (e, µ) and one

loose lepton, where the loose lepton flavor is either an electron (top), a muon (middle) or a τh
(bottom). The peaks at Emiss

T ≈ 200GeV and HT ≈ 500GeV originate from the fact that all

entries above 200 (500) GeV are added to this overflow bin.
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8.2 Initial/Final State Radiation

Another background, which has to be discussed, is the so called Initial/Final State Radiation (I/FSR)

background. Prompt dilepton processes with a radiated photon converting into an OS-SF lepton pair

can mimic a multileptonic event. The requirement ml+l− > 12GeV/c2 on all OS-SF lepton pairs

suppresses processes from Υ, J/Ψ and low mass Drell-Yan. Only asymmetric photon decay, where

one lepton is soft and failing the selection criteria and the other takes most of the photon momentum,

can contribute. The schematic mechanism of a Z/γ∗ decaying into a OS-SF lepton pair, where one

lepton radiates a photon, is shown in Fig. 8.16. The asymmetric decay of the radiated photon is

indicated by the different length of the fermion lines.

Z/γ∗

l−

l+

γ

l+

l−

Figure 8.16: Asymmetric photon conversion in Drell-Yan events. The asymmetry of the photon decay is indi-

cated by the length of the outgoing fermion lines, where most of the photon energy is taken by

one lepton.

The tight photon selection efficiency can be checked in a control region presented in Fig. 8.17, where

the three body mass mllγ of Z → l+l− + γ events is shown.

2
E

v
e

n
ts

 /
 1

0
 G

e
V

/c

-2
10

-1
10

1

10

2
10

3
10

4
10

5
10

6
10

7
10 DATA

ZZ+Jets

WZ+Jets

WW+Jets

+Jetstt

DY+Jets

W+Jets

-1=4.7fb
int

=7TeV Ls

]2 [GeV/cγllM
0 50 100 150 200 250 300 350 400 450 500

M
C

D
a

ta
-M

C

-0.5

0

0.5

Figure 8.17: Three body mass mllγ distribution of Z → l+l− + γ events. The peak at mllγ ≈ 500GeV/c2

originates from the fact that all entries above 500 GeV/c2 are added to this overflow bin.
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Two kinds of photon conversion are possible: (1) external and (2) internal photon conversion. Exter-

nal conversion are on-shell photons interacting with the detector material and converting into a lepton

pair. In such processes the decay into two muons is suppressed by a factor f ≈ (me/mµ)
2 ≈ 10−4 −

10−5 compared to the decay into two electrons. Hence no contributions of an additional muon pro-

duced via external conversion is expected. The picture changes for internal conversion, where a photon

decays asymmetric into a lepton pair. Here the branching ratios are nearlyBR(e+e−)/BR(µ+µ−) ≈
1.

The most important background for multileptonic searches including asymmetric photon conversion

is Z/γ ∗ +Jets due to the high prompt dilepton production cross section. A FSR photon causes the

invariant mass of the opposite sign same flavor lepton pair of the Z decays to be shifted to lower

values corresponding to the radiated photon momentum. This effect can be nicely seen in Fig. 8.18,

where data events with two tight leptons with opposite sign and same flavor (e+e−, µ+µ−) with an

associated tight photon are distributed in the invariant mass of the leptons ml+l− versus the three

body mass of the leptons and the photon ml+l−γ plane is shown for low HT < 200GeV and low

Emiss
T < 50GeV. FSR photon events are populating the band in three body mass ml+l−γ (y-axis)

around the Z mass, whereas initial state radiated photons in Z events do not effect the two body

mass of the lepton pair, but pushes the three body mass to higher values, which results in the band

around the Z mass of the two body mass ml+l− (x-axis). Similar the three body mass of OS-SF

lepton pair with an additional lepton (l+l−e± and µ+µ−µ±) for low HT and low Emiss
T is presented

in Fig. 8.19. The peak around 90GeV corresponds to Drell-Yan with internal asymmetric photon

conversion and the other peak to double boson (WZ) production or Drell-Yan with an additional fake

lepton from jets, which pushes the invariant mass to higher values. The gap between both peaks is a

result of the transverse momentum thresholds pT > 8GeV of the third lepton, which is visible only

for µ+µ−µ±. In Fig. 8.19 predictions from MC simulations are added for comparison. External

conversion are already included in the corresponding MC simulation. Internal photon conversions are

not included in the official Madgraph samples available, because of pT thresholds on leptons at the

matrix element level, which suppresses asymmetric photon conversion, if one lepton is soft. For this

purpose a private MC sample is produced including those processes2. The private sample including

internal photon conversion besides other double boson production with the subsequent decay to four

leptons processes are labeled with ZZ+Jets.

Internal and external photon conversion can be suppressed by an invariant mass cut on the three body

mass distribution of the selected tight leptons, where at least one OS-SF lepton pair should be present,

but with an two-body mass inconsistent with the Z mass to account for the shift of the reconstructed

like-Z mass. The underlying process of the dominant FSR contribution is the Drell-Yan production

and the Emiss
T and HT shape should not be affected by the FSR. These are presented in Fig. 8.20 for

events including l+l−e± and µ+µ−µ± with ml+l− 6= [75, 105]GeV/c2. Steeply falling distributions

can be observed and expectations in the high-HT or high-Emiss
T region are negligible. As already

mentioned in Section 7.5 the three body invariant mass veto in three lepton channels with no opposite

sign same flavor lepton pair forming an invariant mass consistent with the Z mass (off-Z), is only

needed in the low-HT and low-Emiss
T region.

In Fig. 8.19 the prediction for internal photon conversions are shown and corrected, because they

2Asymmetric photon Madgraph sample: detailed informations in Appendix B



8.2. INITIAL/FINAL STATE RADIATION 117

 [GeV]-
l

+
l

m
0 20 40 60 80 100 120 140

 [
G

e
V

]
γ- l

+ l
m

0

50

100

150

200

250

300

Figure 8.18: Events selected with two tight opposite sign same flavor (OF-SF) leptons and an additional tight

photon distributed in the ml+l− -ml+l−γ plane for low HT and low Emiss
T , where on the y-axis the

three body mass of the leptons and the photon and on the x-axis the two-body mass of the leptons

is plotted . Leptonic Z decays, where one lepton radiated a photon are populating the band around

the Z mass on the y-axis.

appear to be underestimated, especially in the case of µ+µ−µ±, where essentially no external con-

versions are contributing. The reason for this underestimation of the Z peak by a factor ∼ 3 can have

several sources: (1) next to leading cross section corrections can be important (Madgraph used LO

calculation) and (2) the generator threshold on the invariant mass distribution for OS-SF lepton pairs

in the final state is ml+l− > 5GeV/c2 shown in Fig. B.1 in Appendix B. The first effect is expected

to be of the order of DY+Jets NLO corrections (k-factor ≈ 1.3), where the prediction are sensitive

to the generator ml+l− cut and a correction factor is estimated from the invariant mass distribution

of the two leptons produced in the internal photon conversion. This factor is already included in Fig.

8.19 for the predictions of the internal photon conversion included in the MC sample labeled with

"ZZ+Jets".

In addition to asymmetric decays one expects internal photon conversion, where both lepton are se-

lected and mimick four lepton processes. To cross check the internal conversion prediction of the

privatly produced Madgraph sample a data sample selected with four leptons (e, µ) is selected. The

transverse momentum of the leptons is reduced to pT > 3GeV to increase the numnber of selected

events3. In Section 7.3.1 the lepton identification and isolation efficiency are measured and a signifi-

3Note: the trigger requirements with essential higher thresholds on two of the four lepton transverse momentum are still
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Figure 8.19: Three body mass distribution for l+l−e± (left) and µ+µ−µ± (right) events with low HT and

low Emiss
T . The peak around 90 GeV/c2 corresponds to Drell-Yan processes with final state

radiated photons, which decayed asymmetrical. A third (fake) lepton from jets or W decay

pushes the invariant mass distribution to higher values, which corresponds to the other peak

around 100 GeV/c2, which is visible only for µ+µ−µ±, due negligible contributions from ex-

ternal conversions. The peak at mll ≈ 200GeV/c2 originates from the fact, that all entries above

200 GeV/c2 are added to this overflow bin.

cant deviation between MC and data for low momentum leptons has been observed which is corrected

for in this case. Additionally, the invariant mass of two opposite sign same flavor leptons is decreased

to 0 GeV/c2, since in four lepton events the contamination from low mass resonances is negligible. To

account for the momentum shift of one lepton due to the radiated photon and a corresponding shift

of the two body invariant mass to lower values, any OS-SF lepton pair is required to be out of the Z

peak region. The signature of Drell-Yan+Jets with a FSR photon converting to two lepton is a four

body mass consistent with the Z mass, which can be seen in Fig. 8.21, where a clean Z peak can be

observed. The ratio of internal photon conversion to be asymmetric (failing selection criteria) with

respect to symmetric appears to be R(CASY /CSY ) ≈ 7.0. This large ratio is expected from the decay

kinematics: one obtains the highest energy of one lepton if the decay is along the flight direction, but

the other lepton decays in the direction opposite to the photon direction, so it will obtain the minimum

energy and is prone to be lost. In order to estimate the contribution from internal photon conversion

the invariant mass threshold on all OS-SF lepton pairs was successively increased. The result of this

procedure is presented in Fig. 8.21 (R), where the integrated observation and MC prediction for events

including four leptons with a four-body-mass consistent with the Z mass (|mllll −mZ | < 15GeV/c2)

as a function of the two body invariant mass threshold is shown. An overall good agreement can be

observed.

To summarize: an additional requirement on the three body mass ml+l−l± in cases where no opposite

sign same flavor dilepton pair with a mass comparable with the Z mass occurs in the event can suppress

required.
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Figure 8.20: HT (left) and Emiss
T (right) distribution for events including l+l−e± (top) and and µ+µ−µ± (bot-

tom), where the opposite sign same flavor (OS-SF) lepton pair should be off-Z. Internal conver-

sion are corrected by a factor 3 to account for generator cuts. Prediction of FSR SM background

in high-HT or high-Emiss
T regions are negligible and the three body FSR-veto is applied only in

low-HT and low-Emiss
T search channels.
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Figure 8.21: Four-body-mass of events with four leptons with decreased transverse momentum (pT > 3GeV)

and two body mass thresholds (ml+l− > 0GeV/c2) (left). In addition no opposite sign same flavor

(OS-SF) lepton pair should form an invariant mass within the Z mass to account for the shift due

to FSR photon. (Right) The integrated observation and MC prediction for event including four

leptons with a four-body-mass consistent with the Z mass as a function of the two body invariant

mass threshold.

the FSR background contributing to 3L channels sufficiently. The Emiss
T and HT distribution are

similar to the ones of the Z/γ ∗ +Jets processes, where no intrinsic missing transverse energy is

present except for a small contribution from the second missing soft lepton in the photon conversion.

The contributions from FSR are negligible in the highHT and/or highEmiss
T signal regions. Hence the

additional three body mass cut is applied only in events wit low HT , low Emiss
T and no OS-SF lepton

pair building a Z boson. Due to lack the large correction (factor 3) for I/FSR asymmetric internal

conversion background a conservative 100% uncertainty is applied on this and on the symmetric

internal conversion background as well. The description of the external photon conversion is well

modeled by MC simulations (left panel of Fig. 8.19). Since the major part of this background is

vetoed the maximum deviation in the off-Z tight photon three body mass distribution shown in Fig.

8.17 of ≈ 50% is taken as an uncertainty on the remaining external photon conversion background.

This uncertainty is extrapolated to the high-Emiss
T and high-HT by a linear fit of the uncertainties given

in Fig. 8.20 (top panel) for low-Emiss
T (HT ) and are determined to be ≈ 100% (HT ) and ≈ 50%

(Emiss
T ).

This first measurement of internal photon conversions in collaboration with a group at Rutgers Uni-

versity4 in the CMS collaboration has also implication to recent Higgs searches [164]. An additional

background in case of for exampleH →WW [165,166] searches can arise from internal photon con-

version in leptonic W+Jets processes. Also the symmetric conversion leading to four lepton processes

can contribute to recent Higgs searches like H → ZZ [167].

4Richard C. Gray et.al.
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8.3 Prompt Lepton Background

Up to now only SM backgrounds with additional non prompt leptons, i.e. leptons not coming from

Z/W (including t → W ) decays, were discussed. The double boson production with the subsequent

decays to leptons are an irreducible background. Fake leptons can be suppressed by requiring strong

isolation and impact parameter boundaries, whereas the multiple prompt leptons in double boson

processes have similar properties as prompt leptons in SUSY decays. Hence WZ and ZZ processes

have to be controlled and will be discussed in the following. Both production cross sections were

measured by the CMS Collaboration [155], which are in good agreement with NLO calculations.

8.3.1 WZ/γ∗

With higher luminosity the irreducible prompt SM backgroundWZ/γ∗ is getting one of the dominant

backgrounds and the MC predictions are going to be statistical testable. In case of simultaneous

leptonic branching of the Z/γ∗ and W boson, three prompt leptons appear in the final state with an

associated neutrino:

WZ/γ∗ → l±νl+l−.

Those events can be reconstructed by selecting three tight leptons (e, µ) including at least one opposite

sign same flavor lepton pair with a mass consistent with the Z mass. The W decay can be selected

by requiring a transverse missing energy of Emiss
T > 20GeV from the undetected neutrino and the

transverse mass MT (l3, E
miss
T ) > 15GeV, where MT is defined as:

MT =
√

(ΣEi
T )

2 − (ΣpiT )
2 .

The invariant mass mll of all opposite sign same flavor lepton pairs in such a selected data sample is

shown in Fig. 8.22. All combinations (µ+µ−µ±, µ+µ−e±, e+e−µ±, e+e−e±) are combined and in

case of three leptons with the same flavors, i.e. µµµ and eee, the opposite sign same flavor lepton pair

with a two body mass closest to the Z mass is taken and the remaining lepton is used to calculate the

transverse mass MT .

This control sample can be used to check processes with an on-shell Z produced. Processes including

an off-shell Z or W can not be well modeled, especially in the context of higher order QCD. The

available Madgraph sample is produced with up to 2 Jets at the matrix element. Fig. 8.23 shows ex-

ample Feynman diagrams for WZ +X Jets with X = 0, 1, 2 used within the Madgraph production.

For WZ+1Jet a typical initial state radiation gluon is added to the diagram, whereas for WZ+2Jets

also new diagrams with higher order QCD and off-shell W and/or Z have to be added to the cal-

culations (see Fig. 8.23). Including WZ+2Jets to the production the LO cross section calculated

with Madgraph is increased by ∼ 40% compared to WZ+0,1 Jets, which is consistent with the NLO

cross section within errors. The large amount (∼ 2000) of additional diagrams including intermediate

off-shell bosons changes the off-Z/on-Z ratio of those events by ∼ 30%, i.e. the ratio changed from

f(WZ + 0, 1Jets) = off-Z
on-Z ≈ 14% to f(WZ + 0, 1, 2Jets) ≈ 18% 5.

5Comparison of Spring11 VV+Jets Madgraph (pp>llllj) and Summer11 WZ+Jets Madgraph sample (pp>lllljj) per-

formed in low-Emiss
T , low-HT , off-Z/on-Z 3l channels.
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Figure 8.22: Invariant mass distributionmll of all opposite sign same flavor lepton pairs in theWZ/γ∗ control

sample with three tight leptons, at least one OS-SF pair with ml+l− = [80, 100]GeV/c2, Emiss
T

> 20GeV and MT (l3, E
miss
T ) > 15GeV/c2. The MC prediction of the invariant mass distribution

of all OS-SF lepton pairs (left) and same but logarithmic (right) are in good agreement with

measurement.
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Figure 8.23: Example diagrams forWZ + 0 (left), 1 (middle) and 2 (right) Jets in the final state used within the

Madgraph MC production. A new type of diagrams are included for higher order QCD processes,

where intermediate off-shell bosons are playing a crucial role.

Since NLO calculations for WZ+0,1,2,X Jets in the corners of the phase space - off-shell and high-

HT , high-Emiss
T as well - are not available and control regions to cross check the predictions are

not feasible, a reasonable and motivated uncertainty has to be assigned. To do so the control region

selected above are binned in HT (∆HT = 20GeV) and Emiss
T (∆Emiss

T = 10GeV) and a k-like-

factor value is determined in each bin assuming to be the source of possible differences between the

measurement and MC prediction. The uncertainties on those factors are extrapolated to the different

phase space by linear propagation. The resulting uncertainties in the k-like-factors are used as an

estimate of the systematic uncertainty on the MC prediction, which reads as ±50% and ±15% for

high-HT and high-Emiss
T . For low-HT and low-Emiss

T the uncertainty for on-Z WZ events is determined



8.3. PROMPT LEPTON BACKGROUND 123

by the statistical uncertainty in the control regions discussed above to be ≈ 6% . Since the ratio of

off-Z/on-Z is sensitive and cannot be controlled in data a conservative 50% uncertainty is applied to

the WZ prediction classified as off-Z.
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Figure 8.24: HT and Emiss
T distribution of WZ events including three tight leptons (e, µ) with at least one

opposite sign same flavor lepton pair forming an invariant mass consistent with the Z mass and

the remaining lepton a transverse mass with Emiss
T to be above 20 GeV. Those distributions are

used to estimate the systematic uncertainty on the MC predictions in the high-HT and/or high-

Emiss
T regions. The peak at Emiss

T ≈ 200GeV and HT ≈ 400GeV originates from the fact, that all

entries above 200 (400) GeV are added to this overflow bin.

8.3.2 ZZ, Zγ∗, γ ∗ γ∗
The next prompt background is the ZZ, Zγ∗ and γ∗γ∗ background, where the leptonic decay modes

lead to four leptons in the final state. A non-negligible probability that one lepton out of four is out

of the acceptance and/or failing the selection requirements yields a contribution to the 3L channels.

Their probability is taken from MC.

The ZZ production can be checked by selecting four tight leptons with at least two OS-SF pairs each

building a Z candidate, again on top of the common event and trigger selections. In Fig. 8.25 the

invariant mass of OS-SF lepton pairs are shown, where the combinatorial multiplicity due to four

leptons can be high, so the tails are populated as well. A good agreement between observation and

MC prediction is observed and the statistical error of the data sample is taken as an uncertainty on

the ZZ (incl.γ∗) MC predictions, i.e. an uncertainty on the k-factor of the production cross section,

determined to be ≈ 21%.

The k-factor on the ZZ production is assumed to be flat over the full phase space, which is not nec-

essarily true, following the discussion for WZ+Jets production, especially in cases with intermediate

off-shell Z bosons. In order to estimate a reliable uncertainty on the prediction in the phase space

regions HT > 200GeV and/or Emiss
T > 50GeV the ZZ control sample is binned in various ∆HT
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Figure 8.25: ZZ control sample with four tight leptons including two opposite sign same flavor lepton pairs

with each forming an invariant mass consistent with the Z mass.

= 100GeV/ ∆Emiss
T = 25GeV bins, as shown in Fig. 8.26. The uncertainty is estimated by defin-

ing in a similar fashion k-like-factors in the two bins below the channel thresholds and propagate

the uncertainties to the signal region. Those k-like-factors lead to uncertainties in the high-HT and

high-Emiss
T region of +140

−100% and ±75%, respectively.
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Figure 8.26: HT (left) and Emiss
T (right) distribution of ZZ events including four tight leptons (e, µ) with at

least two opposite sign same flavor lepton pairs forming an invariant mass consistent with the Z

mass. Those distributions are used to estimate the systematic uncertainty on the MC predictions

in the high-HT and high-Emiss
T region.



8.4. SUMMARY 125

8.4 Summary

After discussing the SM background processes a short summary follows before looking into results:

dilepton processes with additional fake leptons from light and heavy flavor decays are determined

in dedicated side-band measurements, where the relative isolation side band was utilized and cross

checked in the transverse impact parameter side-bands. For the dominant dilepton processes Z/γ∗ →
l+l− and tt̄ → bb̄l+l−νν̄ a good agreement between the measurement and prediction is observed.

One has to keep in mind that Drell-Yan+Jets processes are playing only a minor role in the signal

regions (high-Emiss
T or high-HT ), whereas tt̄+ Jets is one of the dominant background contribution.

The second type of fake leptons discussed in the last sections is coming from photon conversions.

Two kinds of photon conversion were observed: (1) external where an on-shell photon interacts with

the detector material and converts into two leptons and (2) internal where a virtual photon converts

into leptons at the matrix element level. A dedicated MC sample to account for this background was

produced and cross checked for asymmetric and symmetric photon conversion as well.

Double boson processes with three or more prompt leptons in the final state are an irreducible back-

ground for multileptonic signatures, since the lepton properties are similar to typical SUSY processes,

and are checked in several control regions. All control regions show consistent MC predictions with

observations. Due to lack of recorded events so far a data driven method for predictions in the signal

regions cannot be made, but the uncertainty on the k-factor for off-shell productions were estimated

from extrapolation in HT and Emiss
T bins.

More rare processes like WWγ, TTW, and TTZ are taken completely from MC simulations without

cross checking in control regions, since they are not accessible in the near future.

In Fig. 8.27, 8.28 and 8.29 diagrams with the relative background composition for three lepton (e,

µ, no-τh) channels in the various search regions are presented. Similar to the defined binning the

channels were split into off-Z and on-Z, i.e. if there is an opposite sign same flavor lepton pair with

mass consistent with the Z mass or not. In total only a subset of 12 channels out of the 48 search

channels are shown for reasons of clarity. The evolution of the SM backgrounds between low- and

high-HT (Emiss
T ) signal regions can be nicely seen. Especially in low-Emiss

T and low-HT the dominant

SM process is DY+Jets, which is overtaken by the irreducible WZ background in other channels. Also

tt̄ is one of the primary backgrounds in high-HT (Emiss
T ) regions, especially in off-Z and no-OSSF

channels.
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Figure 8.27: Relative background composition of different SM processes contributing to the three lepton (e, µ)

channels with one opposite sign same flavor pair on-Z. Rare processes include WW, TTZ, TTW

and WWγ. The given observations (Obs.) and expectations (Exp.) will be discussed in Chapter 9

in more detail.
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Figure 8.28: Relative background composition of different SM processes contributing to the three lepton (e, µ)

channels with one opposite sign same flavor lepton pair off-Z. Rare processes include WW, TTZ,

TTW and WWγ. The given observations (Obs.) and expectations (Exp.) will be discussed in

Chapter 9 in more detail.
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Figure 8.29: Relative background composition of different SM processes contributing to the various three lep-

ton (e, µ) channels without opposite sign same flavor lepton pairs . Rare processes include WW,

TTZ, TTW and WWγ. The given observations (Obs.) and expectations (Exp.) will be discussed

in Chapter 9 in more detail.



CHAPTER 9

Results

Finally, after defining the event and object selection, measuring the selection and trigger efficiencies,

cross checking SM backgrounds in control regions and applying methods to predict the most danger-

ous backgrounds in a data driven fashion, the signal regions can be investigated. Table 9.1 summarizes

the observed number of three and four lepton events summed over electron and muon flavors. They

are classified according to the number of tight τh’s involved (N(τ) = 0, 1, 2). The sum of all SM

predictions are shown as well. Different selections are indicated by the labels going down, where

the HT and Emiss
T requirements are given. Furthermore, the selection is separated in events with and

without an opposite sign same flavor (OSSF) lepton pair. If an OSSF pair is present, the sample is

divided in on-Z and off-Z events. Non-signal regions with low-Emiss
T and low-HT are combined in

order to present the whole picture. This presentation allows for a direct comparison of channels next

to the signal regions (HT > 200GeV and/or Emiss
T > 50GeV).

One observes a slight excess in the following three channels:

1. 3L N(τ = 0) off-Z Emiss
T > 50GeV and HT < 200GeV ( 42 obs. and 31.57± 11.98 exp.),

2. 3L N(τ = 0) off-Z Emiss
T < 50GeV and HT > 200GeV ( 10 obs. and 4.47± 3.01 exp.) and

3. 3L N(τ = 1) no-OSSF Emiss
T > 50GeV and HT < 200GeV (14 obs. and 5.89± 3.04 exp.).

The HT and Emiss
T distributions for the 3L (N(τ )=0) channels (on-Z, off-Z) are presented in Fig. 9.1,

where the off-Z distributions corresponds to the first minor deviation listed above. For comparison

the on-Z distributions are presented in the same figure. Additionally the invariant mass distributions

of all OS-SF lepton pairs (e+e−, µ+µ−) are shown as well. One observes a good agreement between

data and SM background expectation for the on-Z distributions, whereas for off-Z a slight excess

occurs starting from Emiss
T > 30GeV. This excess, shown also in the invariant mass distribution of

all OS muon pairs, appears to be at low invariant masses mµ+µ− = [20, 50]GeV/c2. The dominant

background in this phase space arises from Wγ∗ processes. Comparing also the HT distribution for

129
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Table 9.1: Results summed over electron and muon flavors corresponding to an integrated luminosity Lint =

4.7 fb−1 recorded in 2011. The selection labels refer to whether there is an opposite sign same

flavor (OS-SF) lepton pair with a mass (in)consistent with the Z mass (off/on-Z) or not (no-OSSF),

and the HT and Emiss
T requirements. Additionally the results are split into τ candidate multiplicity

(N(τ) = 0, 1, 2). All channels listed are exclusive.

Selection N(τ)=0 N(τ)=1 N(τ)=2

obs expect obs expect obs expect

4 Leptons

OFF Z, HT>200, MET>50, 0 0.04 ± 0.04 0 0.03 ± 0.02 0 0.01 ± 0.02

ON Z, HT>200, MET>50, 0 0.19 ± 0.18 0 0.17 ± 0.08 1 0.01 ± 0.02

OFF Z, HT<200, MET>50, 1 0.09 ± 0.07 1 0.37 ± 0.20 3 2.03 ± 2.82

ON Z, HT<200, MET>50, 2 0.84 ± 0.63 0 1.85 ± 0.77 0 0.67 ± 0.56

OFF Z, HT>200, MET<50, 0 0.028 ± 0.03 0 0.02 ± 0.02 1 0.40 ± 0.68

ON Z, HT>200, MET<50, 1 0.43 ± 0.38 0 0.12 ± 0.06 1 1.21 ± 1.84

OFF Z, HT<200, MET<50, 1 3.19 ± 1.68 3 1.13 ± 0.45 11 12.06 ± 13.49

ON Z, HT<200, MET<50, 32 36.84 ± 7.53 6 5.33 ± 1.61 34 33.60 ± 30.68

3 Leptons

no-OSSF, HT>200, MET>50, 2 0.95 ± 0.56 23 25.51 ± 12.13 - -

no-OSSF, HT<200, MET>50, 10 6.35 ± 2.15 127 110.69 ± 48.07 - -

no-OSSF, HT>200, MET<50, 1 0.43 ± 0.43 14 5.89 ± 3.04 - -

no-OSSF, HT<200, MET<50, 11 6.92 ± 2.59 210 207.27 ± 77.32 - -

OFF Z, HT>200, MET>50, 6 4.86 ± 2.61 14 18.51 ± 9.10 - -

ON Z, HT>200, MET>50, 23 21.39 ± 10.31 9 11.19 ± 4.10 - -

OFF Z, HT<200, MET>50, 42 31.57 ± 11.98 117 89.70 ± 37.99 - -

ON Z, HT<200, MET>50, 162 162.66 ± 29.86 110 83.56 ± 26.93 - -

OFF Z, HT>200, MET<50, 10 4.47 ± 3.01 19 19.15 ± 10.41 - -

ON Z, HT>200, MET<50, 13 18.62 ± 7.33 101 94.43 ± 49.35 - -

OFF Z, HT<200, MET<50, 115 120.91 ± 43.40 3254 3480 ± 1718 - -

ON Z, HT<200, MET<50, 653 681 ± 108 12242 12770 ± 6301 - -

Total 4 Leptons: 37 41.65 ± 10.23 10 9.02 ± 2.52 51 49.98 ± 45.23

Total 3 Leptons: 1048 1060 ± 168 16240 16917 ± 8182 - -
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the SM expectations and observation the excess in this channel has a similar shape as the Wγ∗ pre-

diction, just a factor ≈ 1.5 to high. One has to note, as shown in Section 8.3.1, that the description

of Wγ∗+Jets processes is sensitive to the production mechanism and a large uncertainty has been as-

signed for this channel. Thus, the actual deviation of the observation with respect to the expectation is

less than ∆ ≤ 1σ. The estimate of the deviation is calculated as ∆ = (Nobs −Nexp)/
√

σ2obs + σ2exp.

More details on the expectations split into individual processes, observations and SUSY signal ex-

pectations for the LM9 benchmark1 can be found in Table 9.2. Additionally the flavor decomposition

(eee, eeµ,...) is presented. A complete set of detailed Tables for all channels presented can be found

in Appendix E.

The second excess listed above appears in the channel (3L, N(τ = 0), off-Z, Emiss
T < 50GeV and

HT > 200GeV) channel, where 10 events are observed and 4.47±3.01 expected with a deviation of

1.27σ. Again, more details on the expectations and observations can be found in Table 9.2. The main

deviation is in the subchannel µ+µ−e±, where 7 events are observed and 2.07 ± 2.05 are expected.

Taking into account also the corresponding on-Z subchannel (µ+µ−e±, on-Z, Emiss
T < 50GeV and

HT > 200GeV), where 1 event is observed and 6.80 ± 3.26 are expected, it occurs that 3 of the

7 events measured in the off-Z region have an invariant mass of the OS-SF pair close to the Z-Veto

window ∆m ≤ 8GeV/c2 (mµµ = 67.46GeV/c2, mµµ = 68.62GeV/c2, mµµ = 113.66GeV/c2) and

the interpretation as a statistical fluctuation is appropriate.

A deviation in the order of 1.68σ is observed in the channel (3L,N(τ = 1), no-OSSF,Emiss
T > 50GeV

and HT < 200GeV), where 14 events were observed and 5.89 ± 3.04 are expected. Again, detailed

information about the expectations split into individual processes and observations can be found in

Table E.8 of Appendix E. The excess appears to be only in the subchannel (e±µ±τ , Emiss
T > 50GeV,

HT < 200GeV), where 13 events are observed with an expectation of 5.27 ± 2.93. The dominant SM

process occurs to be tt̄ (4.79 ± 2.89). The Emiss
T distributions for HT < 200GeV and HT > 200GeV

are both presented in Fig. 9.2 for direct comparison. In the lowHT and lowEmiss
T region the dominant

background is Z/γ∗ → ττ → µ±νµντe±νeντ plus an additional fake tau. For HT > 200GeV those

contributions are highly suppressed and the remaining background is tt̄. The overall description of

the shape is in good agreement between data and background prediction and the deviation in the low

Emiss
T region may be a threshold effect induced by the low statistics in the tt̄ (WJets) MC samples.

Another two interesting 4L events are observed with vanishing background predictions. The first event

contains three electron- and one muon candidate, where the invariant masses of the OS electron pairs

are me1e3 ≈ 322GeV/c2 and me2e3 ≈ 54GeV/c2. The jet activity in the event is low (HT ≈ 84GeV)

with Emiss
T ≈ 231GeV and the total background expectation is 0.09±0.07 with a probability of 8% to

fluctuate to 1 or more events2.

The second interesting 4L events consist of two muon and two tau candidates with an invariant mass

of the OS muon pair mµ1µ2 ≈ 84GeV/c2 consistent with a Z decay. The event is accompanied by

one hard jet with ET ≈ 231GeV and the missing transverse energy in the event is Emiss
T ≈ 81GeV.

In total a SM background expectation of 0.01±0.02 is estimated, which correspond to a probability

of 1.2% to fluctuate to one or more events3.

1LM9: m0 = 1450, m1/2 = 175, tanβ=50, A0 = 0, sign(µ) = +1
2Poisson probability for µ=0.09: P (0.09) ≥ 1
3Poisson probability for µ=0.01: P (0.01) ≥ 1
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Figure 9.1: Emiss
T (top) andHT (middle) distribution for three lepton events passing all selection criteria, except

HT or Emiss
T for the top and middle rows, respectively. Plots on the right have the Z-veto applied,

while plots on the left include leptons from Z. The invariant mass distributions of opposite sign

same flavor lepton pairs e+e− (bottom left) and µ+µ− (bottom right), where Emiss
T > 30GeV is

required, are presented as well. Note: The DY_M-10-50 MC sample has only 7 unweighted events

(around 32 weighted) left for the off-ZEmiss
T distribution (top right) and thus no pile up reweighting

is applied.
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Figure 9.2: Emiss
T distribution for three lepton events including one τh candidate and no opposite sign same

flavor lepton pair for low-HT (left) and high-HT (right).

A detailed event display for both events are presented in Fig. H.1-H.2 (eeeµ) and Fig. H.3-H.4 (µµττ ),

respectively (Appendix H). The values shown can differ from the actual values used due to jet energy

corrections applied afterwards.

However given the probability for a statistical 2σ fluctuation in the measured cross sections in as many

as 48 exclusive channels, the observation of the measured deviations discussed above is expected. This

effect is called the look-elsewhere-effect.

Nevertheless, one can check how typical SUSY models would contribute to the individual channels.

Taking a closer look into the kinematic distributions shown in Fig. 9.1 one observes a small excess at

midrange Emiss
T (Emiss

T = [40, 80]GeV) and low HT (HT < 200GeV) dominated by WZ/γ∗ back-

ground processes (disregarding N(τ) = 1 channels for now). Assuming the excess arising from new

physics models and taken into account the fact that the dominant SM background model is electroweak

double boson production, a SUSY model with dominant electroweak production (SUSY benchmark

point: LM9) is added. It can be seen that this specific SUSY model just fills the small excess. How-

ever, the statistical significance of this particular channel is small because of the high systematic

uncertainties on the SM background prediction. The added SUSY prediction is only an example for

the sensitivity to SUSY models in those particular channels. In Appendix E all 48 channels exam-

ined are presented including flavor decomposition, individual process contributions and SUSY signal

expectations for the LM9 benchmark point.
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Figure 9.3: Emiss
T (top left) and HT (top right) distribution for three lepton events passing all selection criteria.

The invariant mass distributions of OS-SF pairs e+e− (bottom left) and µ+µ− (bottom right),

whereEmiss
T > 30GeV is required, are shown in the bottom row. Included are also signal prediction

for the SUSY benchmark model LM9. Note: The DY_M-10-50 MC sample has only 7 unweighted

events (around 32 weighted) left for the off-Z Emiss
T distribution (top left) and thus no pile up

reweighting is applied.
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9.1 Systematic Uncertainties

In this section the various systematic uncertainties for each investigated channel will be reviewed and

the correlations discussed. In Table 9.1 the systematic uncertainties on the total SM background were

already given but the individual components not yet explicitly discussed. They have been summarized

in Table 9.3. We distinguish between systematic uncertainties affecting both signal and background

processes, background only and signal only. Background only uncertainties are systematic induced

by the prediction methods or statistical uncertainties in the control regions and uncertainties in the

propagation to different phase spaces. Since for most SM backgrounds a data driven method or at

least control regions are defined, all systematic uncertainties are included and only some residuals on

the signal processes are evaluated.

Systematic uncertainties affecting signal and SM background processes:

• Luminosity uncertainty: For the systematic uncertainty on the luminosity measurement the

CMS Collaboration uses a value of 4.5%, induced by the van der Meer scan method used to

measure the luminosity of the colliding beams.

• Trigger efficiency: the trigger efficiency uncertainty is measured directly in data for each trig-

ger separately. It is dominated by the statistical error of the data sample used for evaluation,

especially for the high lepton multiplicity triggers the statistics is low. The final combined

trigger efficiency in case of more than one possible trigger to be fired is determined event by

event. The uncertainties on the combined efficiency is calculated via the error propagation:

σcomb =
√∑

i(∂/∂ǫi(1−Πj(1− ǫj)) · σǫi)2 with ǫi the efficiency and σǫi the uncertainty of

the trigger i (see Section 7.4).

• Lepton identification and isolation efficiency: The uncertainty on the lepton identification /

isolation efficiency associated with the tag&probe method for e, µ and the statistics for the τ ID

control sample, respectively, depends on the transverse momentum pT of the lepton. This is due

to the usage of Z → l+l− events to determine the efficiency, where the rate of soft leptons is

quite low. In principle the uncertainty for soft leptons can be reduced by using low resonances

(J/Ψ → l+l−), but since the overall uncertainty is dominated by other systematics a further

study is postponed for now. The uncertainties vary between 1% - 11% for e, µ and 6% for tau

lepton (see Section 7.3.1).

• Jet energy scale: The jet energy scale uncertainty is assumed to be 5%. The effect on the final

selection is approximated by varying the HT and Emiss
T cut by 5% up and down and taking the

difference in the event yield as an uncertainty, which vary between 1-14% for Emiss
T and 1-18%

for HT , depending on the channel.

• MC sample size: The MC statistical uncertainty corresponds to the size of the used MC sam-

ples.

• Vertex reweighting: In Section 7.2 the pile up reweighting technique used in this study was

discussed. Let’s consider the impact of the vertex reweighting on the final result table. Since
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the final table is inclusive in Emiss
T , i.e. Emiss

T >50 GeV and Emiss
T <50 GeV is considered both,

the total number of predicted events should not depend on the number of vertices in simulation,

because the difference in vertex multiplicity only affects the shape of theEmiss
T distribution. The

same holds for the prediction in subchannels which are split inEmiss
T , e.g. on-Z,HT >200 GeV,

Emiss
T <50 GeV and Emiss

T >50 GeV. In order to guarantee that the total number of events in

each channel is conserved for each MC sample and subchannel a weighting factor has to be

calculated. Since the statistics in some subchannels is too small (<10 events) to allow for a

meaningful calculation of the weighting factors, the MC prediction in such channels is instead

assigned an extra 75% uncertainty accounting for the observed difference, as shown in Fig. D.1

in Appendix D.

Systematic Uncertainties affecting SM background processes only:

• DY+Jets: The systematic uncertainties in the DY+Jets processes are defined by the data driven

side-band technique applied. The uncertainties are conservatively estimated to be 20% for

electrons, muons and 50% for taus (see Section 8.1.1).

• tt̄: The systematic uncertainty for the tt̄ processes are defined by the data driven side-band

technique applied. The uncertainties are conservatively estimated to be 20% for muons and

50% for electrons and taus (see Section 8.1.2).

• WZ: The uncertainty of 6% is defined by the statistical uncertainty in the control sample and

cross section uncertainties. A propagation of the uncertainties from low Emiss
T (HT ) to the

high Emiss
T (HT ) regions allows for a more reliable systematic uncertainty assigned in the

corners of phase space. The latter vary between 15% and 50% for high-Emiss
T and/or high-HT ,

respectively. Since the ratio on-Z/off-Z is sensitive to higher order corrections a conservative

50% uncertainty is applied to the off-Z predictions (see Section 8.3.1).

• ZZ: Similar considerations as for WZ are applied for ZZ events, where the uncertainties on the

MC predictions vary between 75% and 100% for high-HT and/or high-Emiss
T , respectively (see

Section 8.3.2).

• Z(llγ): For internal photon conversion a systematic uncertainty of 100% is assigned based on

the large correction factor (∼ 3) needed for the MC to agree with the data. For external photon

conversions a systematic uncertainty of 50% for low-HT and low-Emiss
T was assigned and the

propagation to signal regions high-HT (Emiss
T ) leads to an additional 100%(50%) uncertainty

(see Section 8.2).

Residual systematic uncertainties affecting signal processes:

• Parton Density Function (PDF): A theoretical systematic uncertainty arising from variation

of the parton density functions is determined to be 14% on MC signal simulation.

• Renormalization and factorization scale: This theoretical systematic uncertainty is deter-

mined by varying the factorization and renormalization scale (×2, ×0.5) to be 10% on MC

signal simulation.
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All sources of systematic uncertainties discussed above have been summarized in Table 9.3. The

correlations between different sources have to be taken into account. Common event and object un-

certainties like luminosity, trigger efficiency and lepton identification and isolation efficiency are cor-

related for all channels and background sources. Similarly, the jet energy scale is correlated for the

various signatures. The MC statistical uncertainties are uncorrelated. The uncertainties on dedicated

SM background predictions are assumed to be correlated, which is not necessarly true.The tt̄ and

Drell-Yan+Jets prediction are based on the same method and are assumed to be correlated. Similar

the backgrounds predicted completely from MC simulation, namely WZ and ZZ inclusive γ∗ (and

the other rare processes), are combined corresponding to 100% correlation. A more ideal correlation

model could improve the final results, but for simplicitly in the statistical model this more conserva-

tive approach is used. The PDF and SCALE uncertainties on the signal processes are correlated for

all channels.

The total uncertainty given in Table 9.1 is the linear sum of all correlated and squared sum of all

uncorrelated systematic uncertainties given in Table 9.3.

Table 9.3: The sources and values of systematic uncertainties associated with this analysis. Uncertainties vary

for different phase space of the leptons and/or search channels.

Source of Uncertainty Uncertainty

Luminosity 4.5%

Single Muon Trigger efficiency 1-9%

Single Electron Trigger efficiency 1-6%

Double Muon Trigger efficiency 3-4%

Double Electron Trigger efficiency 1-2%

Electron Muon Cross Trigger efficiency 6-8%

Muon ID/Iso at 8 GeV (>30 GeV) 7%(1%)

Electron ID/Iso at 8 GeV (>30 GeV) 10% (1%)

Jet Energy Scale 1-18%

τ ( HPS τh candidates )ID/ISO 6%

Parton Density Function 14%

Renormalization and Factorization Scale 10%

MC Statistics 3%-100%

Vertex Reweighting 0%-100%

SM Background Uncertainties

DY+Jets 20-50%

DY(llγ) - (external) FSR 50-122%

DY(llγ) - (internal) FSR 100%

tt̄ 20-50%

WZ 6-71%

ZZ 75%-125%
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9.2 Interpretation of the Results

The results of this study can be interpreted in terms of different SUSY models, like the common

cMSSM. In addition the interpretation in terms of so called simplified models is presented: TChiSlep-

Slep and TChiWZ driven by direct neutralino-chargino production, and TChiZZ driven by direct

neutralino-neutralino production. A detailed description can be found in [168] and will be given

at the point needed.

9.2.1 cMSSM (tanβ = 10)

In the cMSSM model one assumes the masses and gauge couplings to be unified at the GUT scale, i.e.

one has a common mass m0 (m1/2) for all spin 0 (1/2) particles at the GUT scale. The real masses

at a low scale are obtained from the renormalization group equations. Most limits have been given

in the m0 − m1/2 plane. However, the masses depend also on the other parameters, notably tanβ,

since the latter causes a mixing between left and right handed particles which depends on the Higgs

sector and hence on tanβ. This mixing is especially important for the third generation, which has

large Yukawa couplings. One observes that for larger values of tanβ the stau becomes lighter than

the other sleptons and in this case the squarks will decay preferentially into staus in the regions of

small m0, where the sleptons are lighter than the squarks, thus reducing the number of final states

with muons and electrons. This will reduce the efficiency.

The observed 95% C.L. exclusion limit for the combination of all channels given in Table 9.1 in-

terpreted as an excluded region in cMSSM is shown in Fig. 9.4 for tanβ = 10 and in Fig. 9.7 for

tanβ = 40. The excluded regions are derived by dividing the cMSSM m0-m1/2 plane for fixed

tanβ = 10(40), A0 = 0(−500) and sign(µ) = +1 into ∼ 7K(∼ 6K) points, corresponding to

∆m0,1/2 = 20GeV and simulating 20k events per point. The SUSY signal prediction for the various

search channels are determined using the NLO cross section calculated with Prospino [145] for each

point. The observed exclusion region is calculated with the statistical procedure discussed in Section

5.6 using the observations and background predictions given in Table 9.1. Additionally, the expected

exclusion region and the 1σ and 2σ bands are added.

Several independent constraints are added to the figures. At low m0 and high m1/2 masses (colored

with dark gray) the LSP is the charged stau (τ̃ ), which is ruled out by cosmological measurements and

is not considered in this study. Previous searches performed with the LEP experiment are displayed

at low m1/2 masses colored with dark green (direct chargino production) and yellow (direct slepton

production). Another constrain is the requirement of electroweak symmetry breaking (EWSB), which

can not be achieved at high values ofm0 colored with light gray and indicated as NO EWSB. Adjacent

to the NO EWSB region is a small band colored with light blue indicated as Non-Convergent RGE’s.

Here the solution of the renormalization group equations (RGE) do not converge and thus the calcu-

lated mass spectrum is not reliable. A more detailed description of the incorporated constraints can

be found in [169].

m1/2 values below ∼ 200GeV are excluded over a wide range of m0 except at low m0, where values

of m1/2 < 300GeV for m0 ≈ [200, 300]GeV and m1/2 < 350GeV for m0 around 150 GeV are

excluded. The spiky structure of the limit curve is due to statistical fluctuations of the dedicated signal

MC samples. The two more fundamental steps in the limit at low values of m0, namely at around



140 CHAPTER 9. RESULTS

 [GeV]0m

500 1000 1500 2000 2500 3000

 [
G

e
V

]
1

/2
m

100

200

300

400

500

600

700

800

900

1000

No EWSB

 =
 L

S
P

τ∼

Non-Convergent R
GE's

) = 500g~m(

) = 1000g~m(

) = 1500g~m(

) = 2000g~m(

) = 1000

q~
m(

) = 1500

q~m(

) = 2000

q~
m(

) =
 2500

q~
m

(

± 
l
~
 LEP2 

± 

1
χ∼ LEP2 

)=10βtan(

 = 0 GeV
0

A

 > 0µ

 = 173.2 GeV
t

m

95% C.L. CLs Limits

Observed

Expected median

σ1±Expected 

σ2±Expected 

Figure 9.4: Excluded regions for the cMSSM scenarios with tanβ = 10. Value of m0, m1/2 below the black

curve (observed limit) are excluded at 95% confidence level by this analysis. The expected limit is

indicated by the red line and the 1σ (2σ) by the blue (light blue) band. Excluded regions of former

experiments are shown as well. The template cMSSM plane including various excluded regions

described in the text can be found in [169].

m0 ≈ 150GeV and m0 ≈ 500GeV, have to be discussed separately:

• The first drop to be discussed in the exclusion limit of Fig. 9.4 at m0 values around 500 GeV

is due to the changing signal contributions to the numerous channels examined and combined

of Table 9.1. In Section 6.1 the different production and decay modes of the next to lightest

neutralino and lightest chargino in the m0 − m1/2 plane have been discussed. It has been

shown that for higher values of m0, where the squarks and sleptons get heavy, the electroweak

production of SUSY particles is dominant and the associated hadronic jet production decreases.

For low m0 masses the dominant signal contributions are in the channel (3L, (N(τ )=0), off-

Z(on-Z), HT > 200GeV, Emiss
T > 50GeV). Starting at m0 ≈ 500GeV the dominant signal

channel changes to (3L, (N(τ )=0), off-Z (on-Z), HT < 200GeV, Emiss
T > 50GeV). Here the

integrated SM background is higher with respect to the HT > 200GeV channel. Hence the

exclusion limit decreases. The selection efficiency of the four main channels discussed are

shown in Fig. 9.5, where the most sensitive regions can be seen. In Appendix F the selection

efficiencies of all channels for tanβ = 40 are presented.
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Figure 9.5: Signal (tanβ = 10, A0 = 0, sign(µ) = +1) selection efficiency for the channels including 3

leptons (N(τ )=0), on-Z (left column), off-Z (right column), Emiss
T > 50GeV, HT > 200GeV (top

row) and HT < 200GeV (bottom row).

• The other drop of the exclusion limit at m0 ≈ 150GeV is due to the fact that at masses be-

low, the next to lightest neutralino (χ̃0
2) decays via the slepton-lepton modes and the subsequent

decay of the slepton into a lepton and the LSP. With increasing m0 the sleptons get heavier

and the decay via slepton-lepton modes is kinematically forbidden. Hence the next to lightest

neutralino decays into two leptons and the LSP via a three body decay, either via a virtual slep-

ton or a gauge boson into a lepton pair and neutralino. Increasing further the slepton masses

(increasing m0) the contribution of diagrams including virtual sleptons decreases and so does

the branching fraction of the neutralino into leptons until it approaches a constant value corre-

sponding to the Z boson branching fraction to two leptons. In addition some interference effects

come into the game. The latter can be seen in Fig. 9.6 for the branching fraction of the next to

lightest neutralino into two muons and the LSP. Shown is also the branching fraction of the

lightest chargino.

Starting with m0 masses of around 600 GeV the observed limit in Fig. 9.4 is ∆ ≈ 2σ off with respect

to the expected limit. The dominant channel which defines the observed limit in this region is (3L,

N(τ=0), off-Z,Emiss
T > 50GeV,HT < 200GeV) with 42 observed events and 31.57± 11.98 expected.

Despite the fact that the deviation in this particular channel is less than ∆ ≤ 1σ, the correlation

between the latter and the SM background dominated control channels (3L, N(τ=0), on-Z/off-Z,Emiss
T
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Figure 9.6: Top: Branching fraction of the next to lightest neutralino (χ̃0
2) into two muons via an intermediate

smuon (µ̃) for low m0 masses (blue line) and via a three body decay for higher m0 masses (red

line). In addition the branching fraction into τ̃ τ with the subsequent decay τ → µνµντ is added

(green lines). In the box the region m0 = [0, 300]GeV is highlighted. The small gap at m0 =

[106, 116]GeV between the decay modes (blue and red line) corresponds to the case where all

slepton masses are higher with respect to the next to lightest neutralino except the lightest stau

τ̃ , hence the decay χ̃2
0 → τ̃ τ is the exclusive branching. The decrease of the branching fraction

χ̃2
0 → χ̃1

0µ
+µ− around m0 = 250GeV is due to interference effects of diagrams involving virtual

sleptons and gauge bosons. Bottom: Branching fraction of the lightest chargino (χ̃±
1 ) into a muon

(including also τ → µνν). For the given value m1/2 = 200GeV the smuon (µ̃) is for all values

of m0 heavier than the lightest chargino. Hence only χ±
1 → ν̃µµ

± is kinematically allowed (blue

line). In the region m0 ≈ [60, 115]GeV all sleptons are heavier except the lightest stau and the

lightest chargino decays exclusively into χ̃±
1 → τ̃ ντ (green line). For even higher m0 masses the

three body decay via virtual sleptons or gauge bosons is dominant (red line) approaching a constant

value of ∼ 11% corresponding to the branching fraction of a W boson into a muon and neutrino.
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Figure 9.7: Excluded regions for the cMSSM scenario with tanβ = 40. Values of m0, m1/2 below the black

curve (observed limit) are excluded at 95% confidence level by this analysis. The expected limit is

indicated by the red line and the 1σ (2σ) by the blue (light blue) band. Excluded regions of former

experiments are shown as well. The template cMSSM plane including various excluded regions

described in the text can be found in [169].

< 50GeV, HT < 200GeV) fixes the nuisance parameters of the statistical model to lower values.

Thus the seen deviation of the observed and expected limit is induced by this correlation.

9.2.2 cMSSM (tanβ = 40)

In case of the exclusion limit for tanβ = 40 shown in Fig. 9.7 a similar line of discussion can be

followed as for tanβ = 10 in Section 9.2.1. The main difference between both models occurs due

to the higher value of tanβ and so the mass difference between selectron/smuon and the lightest stau

is increased, as presented in Fig. 9.8. This results in enhanced tau final states. The effect on the

observed limit in Fig. 9.7 is an increased excluded region for low m0 masses (m0 around 350 GeV).

Analogous to the case of tanβ = 10 with increasing values of m0 the branching fraction of the next

to lightest neutralino, which changes at a given mass from two body decays via intermediate sleptons

to three body decays, into two leptons and the LSP decreases until it approaches a constant value

corresponding to the branching fraction of the Z boson to leptons. The second drop of the observed
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exclusion limit at m0 ≈ 700 GeV is due to a change of the dominant signal channel of Table 9.1

similar to the case of tanβ = 10 described in more detail above. The selection efficiency of the four

dominant channels is shown in Fig. 9.5, where the most sensitive regions for the different channels

can be seen. In summary: over a wide range ofm0 massesm1/2 masses below 220GeV are excluded,

except for low m0, where also masses m1/2 < 300GeV are excluded.

As for tanβ = 10 a ∆ ≥ 2σ deviation of the observed limit with respect to the expected limit

can be seen in Fig. 9.2.2 starting at m0 masses of around 700 GeV. This deviation can be explained

by the interplay of the correlation in the nuisance parameters for the dominant signal channel (3L,

N(τ=0), off-Z, Emiss
T > 50GeV, HT < 200GeV) and SM background dominanted control channels

(3L, N(τ=0), on-Z/off-Z, Emiss
T < 50GeV, HT < 200GeV).

In Appendix G the selection efficiencies of all channels for tanβ = 40 are presented.
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Figure 9.9: Signal (tanβ = 40, A0 = 0, sign(µ) = +1) selection efficiency for the channels including 3

leptons (N(τ )=0), on-Z (left column), off-Z (right column), Emiss
T > 50GeV, HT > 200GeV (top

row) and HT < 200GeV (bottom row).
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9.2.3 Simplified Model Spectra (SMS)

Historically the results of searches for SUSY signals were interpreted in terms of specific models,

e.g. the constrained minimal supersymmetric standard model (cMSSM) or the generalized gauge

mediation models (GGM) [170]. A new kind of models was proposed for interpretation, which allow

a more direct translation for theorists to apply the results to their models without a detailed knowledge

of the detector. The so called Simplified Model Spectra (SMS) [168] are based on a small set of

hypothetical particles. Within this approach several topology driven models have been defined, where

the LSP is the lightest neutralino and stable (R-parity is conserved). Each model consists of a set

of particles produced in the hard interaction and the decay chain. For this study three SMS models

sensitive to multileptonic signatures are investigated: TChiSlepSlep, TChiWZ and TChiZZ.

TChiSlepSlep

The diagram describing the TChiSlepSlep SMS model is presented in Fig. 9.10. The model is

driven by direct chargino-neutralino pair production decaying to slepton-lepton pairs with the sub-

sequent decay of the slepton into the LSP and another lepton. In total three leptons, one neutrino

and two LSP’s are produced. The slepton masses are degenerated and hence the branching fractions

of the neutralino/chargino into different slepton flavors is uniformly distributed. Also the chargino

and neutralino masses are degenerated, which results in three model parameters: the mass of the

neutralino/chargino, the LSP mass and the slepton mass. The latter is fixed by the requirement

ml̃ = (mχ̃ −mLSP )/2 reducing the degree of freedom to two parameters.

Figure 9.10: Schematic diagram for the SMS model TChiSlepSlep.

In total the TChiSlepSlep gives a strong three lepton yield without any contributions from Z and

minor jet activity. Due to the undetected escaping LSP a high Emiss
T is expected. The dominant signal

contribution in a wide range of the parameter space is suited in the channel (3L, N(τ = 0), off-Z,

HT < 200GeV and Emiss
T > 50GeV). Fig. 9.11 demonstrates the acceptance × efficiency for the

signal, and the 95% C.L. upper limit on the production cross section. All 48 examined channels are

incorporated, despite the fact, that only a few channels give significant signal sensitivity. For high

mass splittings, right bottom corner of Fig. 9.11, the acceptance × efficiency is mostly defined by

the τ acceptance efficiency. Smaller mass splittings, close to the diagonal border, result in softer

lepton spectra, where also the acceptance of electrons and muons decreases and so does the integrated
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Figure 9.11: Acceptance × efficiency for the signal (left), and 95 C.L. upper limit on the production cross

section (right) of the SMS model TChiSlepSlep.

acceptance.

The 95% C.L. upper limit on the production cross section is mostly driven by the observation and SM

background prediction in the channel (3L, N(τ = 0), off-Z, HT < 200GeV and Emiss
T > 50GeV).

Following the acceptance × efficiency distribution the upper limit gets higher for smaller mass split-

tings. Adjacent to the border one can observe a narrow band with a worse upper limit lying in the light

green region. The sensitivity decreases because of the kinematic properties of the decay chain. Since

the neutralino decays via a two body decay into a lepton-slepton pair and the slepton subsequently

decays into the LSP and another lepton, the invariant mass distribution of the two leptons exhibits a

particular edge with a kinematic end point corresponding to

Mmax
ll =

√

(m2
χ̃2
0
−m2

l̃
)(m2

l̃
−m2

χ̃1
0
)/ml̃ . (9.1)

Increasing the mass splitting of the neutralino and the LSP the kinematic end point crosses at some

point the Z-veto window defined in the event selection. Those model points, where the kinematic

endpoint lies in or close to the Z window contribute to the corresponding on-Z channel (3L, N(τ = 0),

on-Z,HT < 200GeV and Emiss
T > 50GeV). Since here the SM background is higher compared to the

off-Z channel, the upper limit on the production cross section in worsened to higher values4.

TChiWZ

The second SMS model TChiWZ is also driven by chargino-neutralino production with the excep-

tion that all slepton masses are set to higher values and so the charginos/neutralinos decay via a two

4See Table 9.1: 3L, N(τ = 0), off-Z, HT < 200GeV and Emiss
T > 50GeV” - 42obs. vs 32exp ; 3L, N(τ = 0), on-Z,

HT < 200GeV and Emiss
T > 50GeV” - 162obs. vs 162exp.
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body decay into a LSP and gauge bosons. Thus this model depends on two parameters: the neu-

tralino/chargino mass and the LSP.

Figure 9.12: Schematic diagram for the SMS model TChiWZ.

Similar to the TChiSlepSlep model the TChiWZ gives a strong three lepton yield with minor jet

activity. Here also the hadronic decay modes of the gauge bosons are included and hence the branching

of both W and Z into leptons is around 3%.

Since the neutralino decays into a Z boson the dominant channel is (3L, N(τ = 0), on-Z, Emiss
T

> 50GeV and HT < 200GeV). In comparison with the TChiSlepSlep model, where the upper limit

on the production cross section is typically in the order of σUL,95&C.L. ≈ 30− 100 fb, the upper limit

for TChiWZ is two orders of magnitude worse, namely in the order of σUL,95&C.L. ≈ 2.5− 3 pb. The

reason for this is the lower branching fraction to three leptons and the higher background expectation

in the dominant channel.
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Figure 9.13: Acceptance × efficiency for the signal (left), and 95 C.L. upper limit on the production cross

section (right) of the SMS model TChiWZ.
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SMS: TChiZZ

The last SMS model to be discussed in this study is the TChiZZ. This model is driven by the direct

neutralino-neutralino production for which the diagram is shown in Fig. 9.14. The model is parameter-

ized by two independent parameters: the LSP mass and the neutralino mass. Each neutralino decays

into a Z boson and a LSP.

Figure 9.14: Schematic diagram for the SMS model TChiZZ.

In order to increase the simulated MC signal sample for multileptonic signatures one Z boson is forced

to decay leptonically. Thus the TChiZZ is prone to produce 4L events with low HT activity and high

Emiss
T . The acceptance × efficiency for the signal and the 95% C.L. upper limit on the production cross

section are presented in Fig. 9.15. The most sensitive channel is (4L, N(τ = 0), on-Z,Emiss
T > 50GeV

and HT < 200GeV). For small mass splittings (∆M ≈ 100 GeV) close to the border the Emiss
T

distribution is shifted to lower values and the signal channel changes to Emiss
T < 50GeV with higher

SM background contributions. The upper limit on the production cross section is typically in the order

of 0.5-1 pb. In comparison with the TChiWZ model discussed above, the upper limit is a factor ≈3

better, despite the worser selection efficiency. This is due to smaller background expectations in the

4L channels, which are the dominant signal channels for this model.
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Figure 9.15: Acceptance × efficiency for the signal (left), and 95 C.L. upper limit on the production cross

section (right) of the SMS model TChiZZ.
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Conclusion

Since the start of the LHC in 2009 an integrated luminosity Lint = 4.7 fb−1 of proton-proton collisions

at a center-of-mass energy
√
s = 7TeV has been recorded so far which allows to extend searches for

physics beyond the SM far beyond regions in previous experiments. The multileptonic signatures

including at least three leptons, either electrons, muons or taus, are often called Golden Channels due

to the rare SM processes with multiple prompt leptons.

There are two types of SM processes for multileptonic searches: (i) The dominant irreducible back-

ground with three or more prompt leptons is formed by the double boson (WZ, ZZ incl.γ∗) produc-

tion with the subsequent decay to leptons. For each of these processes well defined control regions

were investigated and good agreement between observations and expectations has been observed. A

propagation of the background normalization determined in the control regions to HT and/or Emiss
T

signal regions yields large uncertainties up to 100%.

(ii) The dominant processes including fake leptons are Drell-Yan and tt̄ with the subsequent decay

to leptons plus an additional fake lepton, which can be either a fake electron, muon or tau. Fake

leptons are predominantly produced in heavy flavor decays within jets. These can be suppressed by

requiring leptons to be isolated from jet activity and associated to the primary vertex. A data driven

method to predict the fake background was defined using the isolation side-band to predict the fake

contributions in the signal region. An overall good agreement between data and the fake background

predictions has been observed. An additional fake lepton background comes from initial/final state

radiated photons converting into two leptons. Two kinds of photon conversions have been observed:

(1) external conversion, where the photon interacts with the detector material and converts into an

electron-positron pair and (2) internal conversion, where the conversion happens at the matrix element

level in which case the decay into a muon pair has a similar branching as into electrons. A large

fraction of the photon conversions into leptons, either external or internal, is asymmetric in pT , so one

lepton may fail the pT cut and the 4L event is reconstructed as a 3L event. Those backgrounds can be

suppresses by a requirement on the three body mass to be outside the Z mass window. A conservative

systematic uncertainty on the remaining tails of 50% (100% internal conversion) has been assigned.
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In total 48 exclusive channels have been examined. The events get classified by their jet activity HT

≷ 200GeV and missing transverse energy Emiss
T ≷ 50GeV. This classification accounts for different

SUSY production modes like strong production via squarks and gluino or direct electroweak produc-

tion of neutralinos and charginos. Furthermore the events get ordered by the number of hadronic tau

candidates N(τh) = 0, 1, 2, because with more hadronic tau decays the SM background rapidly rises.

In addition tau final states can be enhanced in many SUSY models, especially for higher values of

tanβ where the stau becomes lighter. Finally, the classification in multilepton events with and without

a Z boson allows additional control of the dominant backgrounds.

The results presented in this thesis were also significant contributions to the official results published

by the CMS collaboration [171]. In preparation for this publication a series of internal CMS notes

have been published [172–181].

A good agreement between observations and expectations in channels dominated by SM processes has

been seen. Some channels exhibit some tension: (I) two four lepton events in channels with particular

low SM expectations, (II) 1.68σ deviation in one N(τ) = 1 channel and (III) a smaller deviation of

1.27σ in a three lepton channel (N(τ) = 0).

However given the probability for a statistical 2σ fluctuation in the measured cross sections in as

many as 48 exclusive channels, the observation of the measured deviations above is expected. In spite

of large systematic uncertainties more data and improved methods have to be incorporated in future

studies to finally explain the observed deviations.

The overall observation is in agreement with the SM expectations within errors. Given the fact that

there is no evidence for Physics Beyond the SM an upper limit on the σProd.×BR(≥ 3l)× ǫac× ǫsel
can be set, where σProd. is the production cross section, BR(≥ 3l) the branching fraction into three

or more leptons, ǫac the detector acceptance and ǫsel the selection efficiency for a particular SUSY

model. This upper limit can be translated into an excluded region in the MSSM parameter space. Sev-

eral different SUSY models have been investigated: (a) the gravity mediated SUSY breaking model

cMSSM as a reference for previous results (tanβ = 10, 40) and (b) three types of Simplified Model

Spectra (SMS) including direct neutralino-chargino and neutralino-neutralino production sensitive to

multileptonic signatures. In case of the cMSSM the excluded regions of previous experiments have

been extended already with the first Lint = 35 pb−1 [182] and improvements including advanced

background methods and control regions with the full data set of Lint = 4.7 fb−1 allow to exclude

m1/2 < 200GeV over a wide range of m0 values. This corresponds to excluded gluino masses of

mg̃ ≤ 500GeV.
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APPENDIX A

DATA and MC Samples

Table A.1: List of MC samples used in this study. The cross section and number of simulated events are

given. Measured cross sections are used if available otherwise NLO calculations done with MCFM

or Prospino in case of SUSY benchmark models are used. The ZZ+Jets including also γ∗ and

DY+Jets with additional internal conversions are simulated privately, due to insufficient official

samples available so far.

MC sample cross section [pb] Sim Nevents

Summer11 Madgraph

WJetsToLNu_TuneZ2_7TeV-madgraph-tauola 31314 pb 45 · 107
DYJetsToLL_TuneZ2_M-10-50_7TeV-madgraph-tauola 11842 pb 1.8 · 107
DYJetsToLL_TuneZ2_M-50_7TeV-madgraph-tauola 3050 pb 3.5 · 107
TTJets_TuneZ2_7TeV-madgraph-tauola 168 pb 3 · 106
WZJetsTo3LNu_TuneZ2_7TeV-madgraph-tauola 0.64 pb 1.2 · 106
ZZJetsTo4L_TuneZ2_7TeV-madgraph-tauola 0.064 pb 3 · 105
ZGToEEG_TuneZ2_7TeV-madgraph 42.7 pb 3 · 105
ZGToMuMuG_TuneZ2_7TeV-madgraph 41.9 pb 3 · 105
ZGToTauTauG_TuneZ2_7TeV-madgraph-tauola 38,4 pb 3 · 105
WWJetsTo2L2Nu_TuneZ2_7TeV-madgraph-tauola 2.9 pb 1.2 · 106
WWPhoton_TuneZ2_7TeV-madgraph 0.18 pb 5.5 · 104
TTW_TuneZ2_7TeV-madgraph 0.16 pb 9 · 105
TTZ_TuneZ2_7TeV-madgraph 0.14 pb 2.5 · 105
Private Madgraph Ntuples

ZZ + 0, 1, 2 Jets (including γ∗) 0.2 pb 2 · 105
Signal benchmark models (m0, m1/2, tanβ, A0, sign(µ))

LM6 (85, 400, 10, 0, +1) 0.28 pb (0.5 pb NLO) 4 · 105
LM9 (1450, 175, 50, 0, +1) 4.1 pb (7.1 pb NLO) 4 · 105
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Table A.2: List of data samples and the corresponding integrated luminosity used in this study. Data samples

used within the trigger study are listed as well.

Data sample Integrated luminosity

Data streams Run2011A

/SingleMu/Run2011A-May10ReReco-v1/AOD 200 pb−1

/SingleMu/Run2011A-05Aug2011-v1/AOD 357 pb−1

/SingleMu/Run2011A-PromptReco-v4/AOD 886 pb−1

/SingleMu/Run2011A-PromptReco-v6/AOD 642 pb−1

/SingleElectron/Run2011A-May10ReReco-v1/AOD 204 pb−1

/SingleElectron/Run2011A-05Aug2011-v1/AOD 357 pb−1

/SingleElectron/Run2011A-PromptReco-v4/AOD 886 pb−1

/SingleElectron/Run2011A-PromptReco-v6/AOD 642 pb−1

/DoubleMu/Run2011A-May10ReReco-v1/AOD 204 pb−1

/DoubleMu/Run2011A-05Aug2011-v1/AOD 357 pb−1

/DoubleMu/Run2011A-PromptReco-v4/AOD 886 pb−1

/DoubleMu/Run2011A-PromptReco-v6/AOD 642 pb−1

/DoubleElectron/Run2011A-May10ReReco-v1/AOD 204 pb−1

/DoubleElectron/Run2011A-05Aug2011-v1/AOD 357 pb−1

/DoubleElectron/Run2011A-PromptReco-v4/AOD 886 pb−1

/DoubleElectron/Run2011A-PromptReco-v6/AOD 642 pb−1

/MuEG/Run2011A-May10ReReco-v1/AOD 204 pb−1

/MuEG/Run2011A-05Aug2011-v1/AOD 357 pb−1

/MuEG/Run2011A-PromptReco-v4/AOD 886 pb−1

/MuEG/Run2011A-PromptReco-v6/AOD 642 pb−1

Data streams Run2011B

/SingleMu/Run2011B-PromptReco-v1/AOD 2579 pb−1

/SingleElectron/Run2011B-PromptReco-v1/AOD 2579 pb−1

/DoubleMu/Run2011B-PromptReco-v1/AOD 2579 pb−1

/DoubleElectron/Run2011B-PromptReco-v1/AOD 2579 pb−1

/MuEG/Run2011B-PromptReco-v1/AOD 2579 pb−1

Data streams used for trigger study

/HT/Run2011A-May10ReReco-v1/AOD 204 pb−1

/HT/Run2011A-05Aug2011-v1/AOD 357 pb−1

/HT/Run2011A-PromptReco-v4/AOD 886 pb−1

/HT/Run2011A-PromptReco-v6/AOD 642 pb−1

/HT/Run2011B-PromptReco-v1/AOD 2579 pb−1
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Private Madgraph Production

In this section the production of the private Madgraph sample will be discussed and a validation with

official centrally produced samples are shown if possible. Two samples were produced privately to

compensate too hard generator cuts in MC samples available so far.

B.1 ZZ + 0, 1, 2 Jets including γ∗ and Internal Photon Conversions

The process to re-generate is the double boson production ZZ+Jets including also γ∗ events and by

doing so also internal photon conversions are included as well. The official Madgraph sample was

produced with an internal generator cut on the invariant mass of all opposite sign same flavor lepton

pairs mll > 50GeV/c2, which suppresses γ∗ processes, internal photon conversion and off-shell Zs

as well. Since the event selection is based on the splitting into on-Z and off-Z (see Section 7.5) and a

fully data driven prediction of those processes is not possible due to lack of recoreded events so far, it is

crucial to have a simulation covering the full phase space. For this purpose MadEvent/Madgraph5 [93]

is used with following proc_card_mg5.dat:

1 #************************************************************
2 #* MadGraph 5 *
3 #* *
4 #* * * *
5 #* * * * * *
6 #* * * * * 5 * * * * *
7 #* * * * * *
8 #* * * *
9 #* *

10 #* *
11 #* VERSION 1.1.0. 2011-01-21 *
12 #* *
13 #* The MadGraph Development Team - Please visit us at *
14 #* https://server06.fynu.ucl.ac.be/projects/madgraph *
15 #* *
16 #************************************************************
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17 #* *
18 #* Command File for MadGraph 5 *
19 #* *
20 #* run as ./bin/mg5 filename *
21 #* *
22 #* automaticaly generated the Tue Feb 8 11:44:43 2011 *
23 #* *
24 #************************************************************
25

26 import model sm

27 # Define multiparticle labels

28 define p u c d b s u~ c~ d~ b~ s~ g

29 define j = p

30 define l- = e- mu- ta-

31 define l+ = e+ mu+ ta+

32 # Specify process(es) to run

33 generate p p > l+ l- l+ l- /t h

34 add process p p > l+ l- l+ l- j /t h

35 add process p p > l+ l- l+ l- j j /t h

36 # Output processes to MadEvent directory

37 output -f

The proper generation of internal conversion depends strongly on the generator cuts defined for the

production. Dilepton processes with internal photon conversion contribute to the 3L channels, if the

photon converts asymmetric, since one lepton is softer and fails the selection criteria. In order to not

suppress such processes the transverse momentum pT threshold of the fourth lepton (two from Z/γ∗
and two from photon conversion) has been set as low as possible. Since the option to set different

thresholds on individual leptons is not implemented in Madgraph5 so far, the overall threshold has to

be set as low as possible, namely 0.

1 #*********************************************************************
2 # MadGraph/MadEvent *
3 # http://madgraph.hep.uiuc.edu *
4 # *
5 # run_card.dat *
6 # *
7 # This file is used to set the parameters of the run. *
8 # *
9 # Some notation/conventions: *

10 # *
11 # Lines starting with a ’# ’ are info or comments *
12 # *
13 # mind the format: value = variable ! comment *
14 #*********************************************************************
15 #

16 #*******************
17 # Running parameters

18 #*******************
19 #

20 #*********************************************************************
21 # Tag name for the run (one word) *
22 #*********************************************************************
23 ’fermi’ = run_tag ! name of the run

24 #*********************************************************************
25 # Run to generate the grid pack *
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26 #*********************************************************************
27 .true. = gridpack !True = setting up the grid pack

28 #*********************************************************************
29 # Number of events and rnd seed *
30 # Warning: Do not generate more than 100K event in a single run *
31 #*********************************************************************
32 1000 = nevents ! Number of unweighted events requested

33 0 = iseed ! rnd seed (0=assigned automatically=default))

34 #*********************************************************************
35 # Collider type and energy *
36 #*********************************************************************
37 1 = lpp1 ! beam 1 type (0=NO PDF)

38 1 = lpp2 ! beam 2 type (0=NO PDF)

39 3500 = ebeam1 ! beam 1 energy in GeV

40 3500 = ebeam2 ! beam 2 energy in GeV

41 #*********************************************************************
42 # Beam polarization from -100 (left-handed) to 100 (right-handed) *
43 #*********************************************************************
44 0 = polbeam1 ! beam polarization for beam 1

45 0 = polbeam2 ! beam polarization for beam 2

46 #*********************************************************************
47 # PDF CHOICE: this automatically fixes also alpha_s and its evol. *
48 #*********************************************************************
49 ’cteq6l1’ = pdlabel ! PDF set

50 #*********************************************************************
51 # Renormalization and factorization scales *
52 #*********************************************************************
53 F = fixed_ren_scale ! if .true. use fixed ren scale

54 F = fixed_fac_scale ! if .true. use fixed fac scale

55 91.1880 = scale ! fixed ren scale

56 91.1880 = dsqrt_q2fact1 ! fixed fact scale for pdf1

57 91.1880 = dsqrt_q2fact2 ! fixed fact scale for pdf2

58 1 = scalefact ! scale factor for event-by-event scales

59 #*********************************************************************
60 # Matching - Warning! ickkw > 1 is still beta

61 #*********************************************************************
62 1 = ickkw ! 0 no matching, 1 MLM, 2 CKKW matching

63 1 = highestmult ! for ickkw=2, highest mult group

64 1 = ktscheme ! for ickkw=1, 1 Durham kT, 2 Pythia pTE

65 1 = alpsfact ! scale factor for QCD emission vx

66 F = chcluster ! cluster only according to channel diag

67 T = pdfwgt ! for ickkw=1, perform pdf reweighting

68 #*********************************************************************
69 # Automatic ptj and mjj cuts if xqcut > 0

70 # (turn off for VBF and single top processes)

71 #**********************************************************
72 T = auto_ptj_mjj ! Automatic setting of ptj and mjj

73 #**********************************************************
74 #

75 #**********************************
76 # BW cutoff (M+/-bwcutoff*Gamma)

77 #**********************************
78 100 = bwcutoff ! (M+/-bwcutoff*Gamma)

79 #**********************************************************
80 # Apply pt/E/eta/dr/mij cuts on decay products or not

81 # (note that etmiss/ptll/ptheavy/ht/sorted cuts always apply)

82 #**********************************************************
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83 T = cut_decays ! Cut decay products

84 #*************************************************************
85 # Number of helicities to sum per event (0 = all helicities)

86 # 0 gives more stable result, but longer run time (needed for

87 # long decay chains e.g.).

88 # Use >=2 if most helicities contribute, e.g. pure QCD.

89 #*************************************************************
90 0 = nhel ! Number of helicities used per event

91 #*******************
92 # Standard Cuts

93 #*******************
94 #

95 #*********************************************************************
96 # Minimum and maximum pt’s *
97 #*********************************************************************
98 10 = ptj ! minimum pt for the jets

99 10 = ptb ! minimum pt for the b

100 10 = pta ! minimum pt for the photons

101 0 = ptl ! minimum pt for the charged leptons

102 0 = misset ! minimum missing Et (sum of neutrino’s momenta)

103 0 = ptheavy ! minimum pt for one heavy final state

104 1.0 = ptonium ! minimum pt for the quarkonium states

105 1d5 = ptjmax ! maximum pt for the jets

106 1d5 = ptbmax ! maximum pt for the b

107 1d5 = ptamax ! maximum pt for the photons

108 1d5 = ptlmax ! maximum pt for the charged leptons

109 1d5 = missetmax ! maximum missing Et (sum of neutrino’s momenta)

110 #*********************************************************************
111 # Minimum and maximum E’s (in the lab frame) *
112 #*********************************************************************
113 0 = ej ! minimum E for the jets

114 0 = eb ! minimum E for the b

115 0 = ea ! minimum E for the photons

116 0 = el ! minimum E for the charged leptons

117 1d5 = ejmax ! maximum E for the jets

118 1d5 = ebmax ! maximum E for the b

119 1d5 = eamax ! maximum E for the photons

120 1d5 = elmax ! maximum E for the charged leptons

121 #*********************************************************************
122 # Maximum and minimum rapidity *
123 #*********************************************************************
124 5 = etaj ! max rap for the jets

125 1d2 = etab ! max rap for the b

126 5 = etaa ! max rap for the photons

127 5 = etal ! max rap for the charged leptons

128 0.6 = etaonium ! max rap for the quarkonium states

129 0d0 = etajmin ! min rap for the jets

130 0d0 = etabmin ! min rap for the b

131 0d0 = etaamin ! min rap for the photons

132 0d0 = etalmin ! main rap for the charged leptons

133 #*********************************************************************
134 # Minimum and maximum DeltaR distance *
135 #*********************************************************************
136 0.1 = drjj ! min distance between jets

137 0 = drbb ! min distance between b’s

138 0.1 = drll ! min distance between leptons

139 0.1 = draa ! min distance between gammas
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140 0 = drbj ! min distance between b and jet

141 0.1 = draj ! min distance between gamma and jet

142 0.1 = drjl ! min distance between jet and lepton

143 0 = drab ! min distance between gamma and b

144 0 = drbl ! min distance between b and lepton

145 0.1 = dral ! min distance between gamma and lepton

146 1d2 = drjjmax ! max distance between jets

147 1d2 = drbbmax ! max distance between b’s

148 1d2 = drllmax ! max distance between leptons

149 1d2 = draamax ! max distance between gammas

150 1d2 = drbjmax ! max distance between b and jet

151 1d2 = drajmax ! max distance between gamma and jet

152 1d2 = drjlmax ! max distance between jet and lepton

153 1d2 = drabmax ! max distance between gamma and b

154 1d2 = drblmax ! max distance between b and lepton

155 1d2 = dralmax ! maxdistance between gamma and lepton

156 #*********************************************************************
157 # Minimum and maximum invariant mass for pairs *
158 #*********************************************************************
159 0 = mmjj ! min invariant mass of a jet pair

160 0 = mmbb ! min invariant mass of a b pair

161 0 = mmaa ! min invariant mass of gamma gamma pair

162 5 = mmll ! min invariant mass of l+l- (same flavour) lepton pair

163 1d5 = mmjjmax ! max invariant mass of a jet pair

164 1d5 = mmbbmax ! max invariant mass of a b pair

165 1d5 = mmaamax ! max invariant mass of gamma gamma pair

166 1d5 = mmllmax ! max invariant mass of l+l- (same flavour) lepton pair

167 #*********************************************************************
168 # Minimum and maximum invariant mass for all letpons *
169 #*********************************************************************
170 0 = mmnl ! min invariant mass for all letpons (l+- and vl)

171 1d5 = mmnlmax ! max invariant mass for all letpons (l+- and vl)

172 #*********************************************************************
173 # Minimum and maximum pt for 4-momenta sum of leptons *
174 #*********************************************************************
175 0 = ptllmin ! Minimum pt for 4-momenta sum of leptons(l and vl)

176 1d5 = ptllmax ! Maximum pt for 4-momenta sum of leptons(l and vl)

177 #*********************************************************************
178 # Inclusive cuts *
179 #*********************************************************************
180 0 = xptj ! minimum pt for at least one jet

181 0 = xptb ! minimum pt for at least one b

182 0 = xpta ! minimum pt for at least one photon

183 0 = xptl ! minimum pt for at least one charged lepton

184 #*********************************************************************
185 # Control the pt’s of the jets sorted by pt *
186 #*********************************************************************
187 0 = ptj1min ! minimum pt for the leading jet in pt

188 0 = ptj2min ! minimum pt for the second jet in pt

189 0 = ptj3min ! minimum pt for the third jet in pt

190 0 = ptj4min ! minimum pt for the fourth jet in pt

191 1d5 = ptj1max ! maximum pt for the leading jet in pt

192 1d5 = ptj2max ! maximum pt for the second jet in pt

193 1d5 = ptj3max ! maximum pt for the third jet in pt

194 1d5 = ptj4max ! maximum pt for the fourth jet in pt

195 0 = cutuse ! reject event if fails any (0) / all (1) jet pt cuts

196 #*********************************************************************
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197 # Control the Ht(k)=Sum of k leading jets *
198 #*********************************************************************
199 0 = htjmin ! minimum jet HT=Sum(jet pt)

200 1d5 = htjmax ! maximum jet HT=Sum(jet pt)

201 0 = ihtmin !inclusive Ht for all partons (including b)

202 1d5 = ihtmax !inclusive Ht for all partons (including b)

203 0 = ht2min ! minimum Ht for the two leading jets

204 0 = ht3min ! minimum Ht for the three leading jets

205 0 = ht4min ! minimum Ht for the four leading jets

206 1d5 = ht2max ! maximum Ht for the two leading jets

207 1d5 = ht3max ! maximum Ht for the three leading jets

208 1d5 = ht4max ! maximum Ht for the four leading jets

209 #*********************************************************************
210 # WBF cuts *
211 #*********************************************************************
212 0 = xetamin ! minimum rapidity for two jets in the WBF case

213 0 = deltaeta ! minimum rapidity for two jets in the WBF case

214 #*********************************************************************
215 # maximal pdg code for quark to be considered as a light jet *
216 # (otherwise b cuts are applied) *
217 #*********************************************************************
218 5 = maxjetflavor ! Maximum jet pdg code

219 #*********************************************************************
220 # Jet measure cuts *
221 #*********************************************************************
222 0 = xqcut ! minimum kt jet measure between partons

223 #*********************************************************************

An invariant mass cut of mll is sensitive to the internal conversion predictions as shown in Fig. B.1.

For these events the invariant mass of all leptons with pT > 3GeV was required to be inside the

Z-mass window as expected for FSR plus internal conversion. One observes a strong increase in the

number of events if the cut is lowered from the default of 12 GeV/c2 to 5 GeV/c2. This implies, that a

substantial part of the background is still suppressed and has to be corrected for.

Figure B.1: Invariant mass pair mll of the two lepton from internal photon conversion on generator level in the

privatly produced ZZ MC including DY events with FSR followed by internal photon conversion



APPENDIX C

Trigger Efficiency

The trigger efficieny of all used trigger paths in the various runs are presented for Single-Muon trig-

gers in Fig. C.1, Single-Electron triggers in Fig. C.2, Doube-Electron trigger in Fig. C.3, Double-

Muon trigger in Fig. C.4 and Electron-Muon cross trigger in Fig. C.5 measured in a HT triggered data

sample. In Table C.1 the measured trigger efficiencies are summarized.
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Table C.1: Summary of the trigger efficiencies measured in HT triggered data samples. The errors correspond

to the statistical errors of the data sample. Throughout the different runs recorded in 2011 the trigger

thresholds and trigger object requirements changed and hence various trigger paths have been used.

Trigger path Trigger efficiency

Muon triggers

HLT_IsoMu30_eta2p1 0.768± 0.02

HLT_IsoMu30 0.788± 0.02

HLT_IsoMu24 0.791± 0.02

HLT_IsoMu17 0.798± 0.03

HLT_Mu40_eta2p1 0.906± 0.02

HLT_Mu40 0.897± 0.02

HLT_Mu24 0.898± 0.04

HLT_Mu20 0.879± 0.09

HLT_Mu17_Mu8 0.907± 0.04

HLT_Mu13_Mu8 0.907± 0.04

Electron triggers

HLT_Ele80_CaloIdVT_TrkIdT 0.917± 0.06

HLT_Ele65_CaloIdVT_TrkIdT 0.904± 0.02

HLT_Ele52_CaloIdVT_TrkIdT 0.896± 0.02

HLT_Ele45_CaloIdVT_TrkIdT 0.879± 0.03

HLT_Ele17_CaloIdL_CaloIsoVL... 0.993± 0.02

..._Ele8_CaloIdL_CaloIsoVL

HLT_Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL... 0.970± 0.02

..._Ele8_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL

HLT_Ele17_CaloIdT_TrkIdVL_CaloIsoVL_TrkIsoVL... 0.991± 0.02

..._Ele8_CaloIdT_TrkIdVL_CaloIsoVL_TrkIsoVL

Electron-Muon-Crosstriggers

HLT_Mu8_Ele17_CaloIdT_CaloIsoVL 0.940± 0.05

HLT_Mu8_Ele17_CaloIdL 0.934± 0.09

HLT_Mu17_Ele8_CaloIdT_CaloIsoVL 0.918± 0.06

HLT_Mu17_Ele8_CaloIdL 0.917± 0.08



165

muon1
η

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ff

ic
ie

n
c

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HLT_IsoMu17

muon1
η

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ff

ic
ie

n
c

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HLT_IsoMu24

muon1
η

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ff

ic
ie

n
c

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HLT_IsoMu30_eta2p1

muon1
η

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ff

ic
ie

n
c

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HLT_IsoMu30

muon1
η

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ff

ic
ie

n
c

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HLT_Mu20

muon1
η

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ff

ic
ie

n
c

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HLT_Mu24

muon1
η

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ff

ic
ie

n
c

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HLT_Mu40_eta2p1

muon1
η

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ff

ic
ie

n
c

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HLT_Mu40

Figure C.1: Single-Muon trigger efficiency as a function of the muon pseudo rapidity η. The muon is required

to pass all selection criteria given in Section 7.3.1 with increased transverse momentum threshold.
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Figure C.2: Single-Electron trigger efficiency as a function of the electron pseudo rapidity η. The electron is

required to pass all selection criteria given in Section 7.3.1 with increased transverse momentum

threshold.
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Figure C.3: Double-Electron trigger efficiency as a function of η of the leading (left) and second leading (right)

electron. The electrons are required to pass all selection criteria given in Section 7.3.1 with in-

creased transverse momentum threshold.



168 APPENDIX C. TRIGGER EFFICIENCY

muon1
η

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ff

ic
ie

n
c

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HLT_Mu13_Mu8

muon2
η

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ff

ic
ie

n
c

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HLT_Mu13_Mu8

muon1
η

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ff

ic
ie

n
c

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HLT_Mu17_Mu8

muon2
η

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E
ff

ic
ie

n
c

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HLT_Mu17_Mu8

Figure C.4: Double-Muon trigger efficiency as a function of η of the leading (left) and second leading (right)

muon. The muons are required to pass all selection criteria given in Section 7.3.1 with increased

transverse momentum threshold.
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Figure C.5: Electron-Muon cross trigger efficiency as a function of η of the electron (left) or muon (right). The

leptons are required to pass all selection criteria given in Section 7.3.1 with increased transverse

momentum thresholds.
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APPENDIX D

Vertex Reweighting

In Section 7.2 the pile up reweighting technique used in this study was discussed. Let’s consider the

impact of the vertex reweighting on the final result table. Since the final table is inclusive inEmiss
T , i.e.

Emiss
T >50 GeV and Emiss

T <50 GeV is considered both, the total number of predicted events should

not depend on the number of vertices in simulation, because the difference in vertex multiplicity only

affects the shape of the Emiss
T distribution. The same counts for the prediction in subchannels which

are split in Emiss
T e.g. on-Z, HT >200 GeV, Emiss

T <50 GeV and Emiss
T >50 GeV. In order to guarantee

that the total number of events in each channel is conserved, for each MC sample and subchannel a

weighting factor has to be calculated. In Fig. D.1 the Emiss
T disribution of events selected with two

tight leptons OS-SF forming an invariant mass consistent with the Z mass and a third loose lepton

(e, µ, τh ) with and without pile up reweighting is shown. Clearly, the reweigting is important for an

improved description of Emiss
T .

Since the MC statistics in some subchannels is too small (<10 events) to allow for a meaningful

calculation of weighting factor, the MC prediction in such channels is instead assigned with an extra

75% uncertainty corresponding to the maximum deviation in the Emiss
T distributions.
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Figure D.1: Emiss
T distribution for events with two tight leptons OS-SF forming an invariant mass consistent

with the Z mass and a third loose lepton (e (top), µ (middle), τh (bottom)) with (right) and without

(left) pile up reweighting.
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Figure F.1: Signal (tanβ = 10, A0 = 0, sign(µ) = +1) selection efficiency for the channels including 4

leptons (N(τ )=0), on-Z (left column), off-Z (right column), Emiss
T > 50GeV, HT > 200GeV (top

row), Emiss
T > 50GeV, HT < 200GeV (second row), Emiss

T < 50GeV, HT > 200GeV (third row)

andEmiss
T < 50GeV,HT < 200GeV (forth row). White spaces correspond to selection efficiencies

below ǫsel < 0.00005.
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Figure F.2: Signal (tanβ = 10, A0 = 0, sign(µ) = +1) selection efficiencies for the channels including

3 leptons (N(τ )=0), no-OSSF , Emiss
T > 50GeV, HT > 200GeV (top left), Emiss

T > 50GeV,

HT < 200GeV (top right), Emiss
T < 50GeV, HT > 200GeV (bottom left) and Emiss

T < 50GeV,

HT < 200GeV (botoom right). White spaces correspond to selection efficiencies below ǫsel <

0.00005.
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Figure F.3: Signal (tanβ = 10, A0 = 0, sign(µ) = +1) selection efficiencies for the channels including 3

leptons (N(τ )=0), on-Z (left column), off-Z (right column), Emiss
T > 50GeV, HT > 200GeV (top

row), Emiss
T > 50GeV, HT < 200GeV (second row), Emiss

T < 50GeV, HT > 200GeV (third

row) and Emiss
T < 50GeV, HT < 200GeV (bottom row). White spaces correspond to selection

efficiencies below ǫsel < 0.00005.
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Figure F.4: Signal (tanβ = 10, A0 = 0, sign(µ) = +1) selection efficiencies for the channels including 4

leptons (N(τ )=1), on-Z (left column), off-Z (right column), Emiss
T > 50GeV, HT > 200GeV (top

row), Emiss
T > 50GeV, HT < 200GeV (second row), Emiss

T < 50GeV, HT > 200GeV (third

row) and Emiss
T < 50GeV, HT < 200GeV (bottom row). White spaces correspond to selection

efficiencies below ǫsel < 0.00005.
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Figure F.5: Signal (tanβ = 10, A0 = 0, sign(µ) = +1) selection efficiencies for the channels including

3 leptons (N(τ )=1), no-OSSF , Emiss
T > 50GeV, HT > 200GeV (top left), Emiss

T > 50GeV,

HT < 200GeV (top right), Emiss
T < 50GeV, HT > 200GeV (bottom left) and Emiss

T < 50GeV,

HT < 200GeV (botoom right). White spaces correspond to selection efficiencies below ǫsel <

0.00005.
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Figure F.6: Signal (tanβ = 10, A0 = 0, sign(µ) = +1) selection efficiencies for the channels including 3

leptons (N(τ )=1), on-Z (left column), off-Z (right column), Emiss
T > 50GeV, HT > 200GeV (top

row), Emiss
T > 50GeV, HT < 200GeV (second row), Emiss

T < 50GeV, HT > 200GeV (third

row) and Emiss
T < 50GeV, HT < 200GeV (bottom row). White spaces correspond to selection

efficiencies below ǫsel < 0.00005.
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Figure F.7: Signal (tanβ = 10, A0 = 0, sign(µ) = +1) selection efficiencies for the channels including 4

leptons (N(τ )=2), on-Z (left column), off-Z (right column), Emiss
T > 50GeV, HT > 200GeV (top

row), Emiss
T > 50GeV, HT < 200GeV (second row), Emiss

T < 50GeV, HT > 200GeV (third

row) and Emiss
T < 50GeV, HT < 200GeV (fourth row). White spaces correspond to selection

efficiencies below ǫsel < 0.00005.
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Figure G.1: Signal (tanβ = 40, A0 = 0, sign(µ) = +1) selection efficiencies for the channels including 4

leptons (N(τ )=0), on-Z (left column), off-Z (right column), Emiss
T > 50GeV, HT > 200GeV (top

row), Emiss
T > 50GeV, HT < 200GeV (second row), Emiss

T < 50GeV, HT > 200GeV (third

row) and Emiss
T < 50GeV, HT < 200GeV (forth row). White spaces correspond to selection

efficiencies below ǫsel < 0.00005.
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Figure G.2: Signal (tanβ = 40, A0 = 0, sign(µ) = +1) selection efficiencies for the channels including

3 leptons (N(τ )=0), no-OSSF , Emiss
T > 50GeV, HT > 200GeV (top left), Emiss

T > 50GeV,

HT < 200GeV (top right), Emiss
T < 50GeV, HT > 200GeV (bottom left) and Emiss

T < 50GeV,

HT < 200GeV (botoom right). White spaces correspond to selection efficiencies below ǫsel <

0.00005.
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Figure G.3: Signal (tanβ = 40, A0 = 0, sign(µ) = +1) selection efficiencies for the channels including 3

leptons (N(τ )=0), on-Z (left column), off-Z (right column), Emiss
T > 50GeV, HT > 200GeV (top

row), Emiss
T > 50GeV, HT < 200GeV (second row), Emiss

T < 50GeV, HT > 200GeV (third

row) and Emiss
T < 50GeV, HT < 200GeV (bottom row). White spaces correspond to selection

efficiencies below ǫsel < 0.00005.
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Figure G.4: Signal (tanβ = 40, A0 = 0, sign(µ) = +1) selection efficiencies for the channels including 4

leptons (N(τ )=1), on-Z (left column), off-Z (right column), Emiss
T > 50GeV, HT > 200GeV (top

row), Emiss
T > 50GeV, HT < 200GeV (second row), Emiss

T < 50GeV, HT > 200GeV (third

row) and Emiss
T < 50GeV, HT < 200GeV (bottom row). White spaces correspond to selection

efficiencies below ǫsel < 0.00005.
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Figure G.5: Signal (tanβ = 40, A0 = 0, sign(µ) = +1) selection efficiencies for the channels including

3 leptons (N(τ )=1), no-OSSF , Emiss
T > 50GeV, HT > 200GeV (top left), Emiss

T > 50GeV,

HT < 200GeV (top right), Emiss
T < 50GeV, HT > 200GeV (bottom left) and Emiss

T < 50GeV,

HT < 200GeV (botoom right). White spaces correspond to selection efficiencies below ǫsel <

0.00005.
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Figure G.6: Signal (tanβ = 40, A0 = 0, sign(µ) = +1) selection efficiencies for the channels including 3

leptons (N(τ )=1), on-Z (left column), off-Z (right column), Emiss
T > 50GeV, HT > 200GeV (top

row), Emiss
T > 50GeV, HT < 200GeV (second row), Emiss

T < 50GeV, HT > 200GeV (third

row) and Emiss
T < 50GeV, HT < 200GeV (bottom row). White spaces correspond to selection

efficiencies below ǫsel < 0.00005.
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Figure G.7: Signal (tanβ = 40, A0 = 0, sign(µ) = +1) selection efficiencies for the channels including 4

leptons (N(τ )=2), on-Z (left column), off-Z (right column), Emiss
T > 50GeV, HT > 200GeV (top

row), Emiss
T > 50GeV, HT < 200GeV (second row), Emiss

T < 50GeV, HT > 200GeV (third

row) and Emiss
T < 50GeV, HT < 200GeV (fourth row). White spaces correspond to selection

efficiencies below ǫsel < 0.00005.
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Figure H.1: Event display of the interesting 4 lepton (3 electrons and 1 muon) event with HT ≈ 84GeV and

Emiss
T ≈ 231GeV shown in the Rho-Phi coordinate system. The values differ from shown once in

the display, due to energy corrections not applied. The invariant masses of the OS electron pairs

are me0e2 ≈ 322GeV/c2 and me1e2 ≈ 54GeV/c2.

Figure H.2: Event display of the interesting 4 lepton (3 electrons and 1 muon) event with HT ≈ 84GeV and

Emiss
T ≈ 231GeV shown in the Rho-Z coordinate system. Same event as shown in Fig. H.1. Event

display are made with Fireworks [183].
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Figure H.3: Event display of the interesting 4 lepton (2 muons and 2 taus) event with HT ≈ 223GeV and

Emiss
T ≈ 81GeV shown in the Rho-Phi coordinate system. The values differ from shown once in

the display, due to energy corrections not applied. The invariant masses of the OS muon pair is

mµ0µ1
≈ 84GeV/c2.

Figure H.4: Event display of the interesting 4 lepton (2 muons and 2 taus) event with HT ≈ 84GeV and Emiss
T

≈ 231GeV shown in the Rho-Z coordinate system. Same event as shown in Fig. H.3.
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