
Alaa A. K. Ismaeel

Dynamic Hierarchical Graph
Drawing

Alaa A. K. Ismaeel
Dynamic Hierarchical Graph Drawing

Dynamic Hierarchical Graph Drawing
by
Alaa A. K. Ismaeel

Dissertation, Karlsruher Instituts für Technologie (KIT),
Fakultät für Wirtschaftswissenschaften, 2012
Tag der mündlichen Prüfung: 21. Mai 2012
Referent: Prof. Dr. Hartmut Schmeck, Institut für Angewandte Informatik und For-

male Beschreibungsverfahren (AIFB), Karlsruher Instituts für Technologie (KIT),
Karlsruhe, Germany.

Korreferent: Prof. Dr. Jürgen Branke, Warwick Business School, The University of Warwick,
Coventry, United Kingdom.

Dynamic Hierarchical Graph
Drawing

Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften

(Dr. rer. pol.)

von der Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

M.Sc. Alaa Aly Khalaf Ismaeel

aus El-Minia, Ägypten

Tag der mündlichen Prüfung: 21. Mai 2012
Referent: Prof. Dr. Hartmut Schmeck
Korreferent: Prof. Dr. Jürgen Branke

2012 Karlsruhe

Our Lord! Condemn us not if we forget, or miss the mark!

٢٨٦ آية –سورة البقرة
Surah Al-Baqara – Verse 286

Acknowledgements

First and foremost, my praise and deepest thanks are to God the Almighty for guiding me
on the right path. Without HIS help and care, my efforts would have gone astray.

Looking back, I feel immense gratitude to many people around me who have supported me
while I was working on this Ph.D. thesis. The past four and a quarter years have given me
many exciting, challenging and truly valuable experiences.

This thesis is the result of a scholarship to carry out PhD in Computer Science at Karlsruhe
Institute of Technology (KIT) in Germany. The scholarship was financially supported by
the Egyptian Government (Egyptian Ministry of Higher Education) through the Egyptian
Culture Bureau and Study Mission in Berlin. I would like to thank all of the administrative
staff in Berlin and in the Culture Affairs & Mission Sector in Cairo.

I am sincerely thankful to my supervisor, Prof. Dr. Hartmut Schmeck. Despite his busy
schedule in an ever-expanding research group plus his many responsibilities at the KIT, he
frequently had some time for valuable and effective discussions. I am really grateful for you,
Prof. Schmeck, for accepting me as one of your PhD students and also for getting involved as
a member in your Efficient Algorithms research group at the Institute AIFB. Furthermore,
for your encouragement, guidance and support that enabled me to develop an understanding
of the thesis.

Similarly, I would also like to thank Prof. Dr. Jürgen Branke, from the University of
Warwick, United Kingdom. He accepted, without hesitation, the request to serve as a second
reviewer on the examination committee and also for his valuable comments. Before moving
to the United Kingdom, Prof. Branke was working at the Institute AIFB, at the KIT. The
preparation of the PhD proposal of this thesis was based on creative discussions with him.
Moreover, I cannot forget how he helped me in my first few days in Karlsruhe. I am really
very grateful for him. Furthermore, many thanks go to Prof. Dr. Karl-Heinz Waldmann and
Prof. Dr. Ute Werner, both from the Karlsruhe Institute of Technology (KIT), who served
as examiner and chairman, respectively, on the examination committee.

At the AIFB intensive and collaborative cooperation has been carried out with my col-
league Dr. Pradyumn Shukla during the last two years of the thesis. I am greatly indebted
to you for your honestly, help and kind support. Furthermore, I am grateful to all of my
colleagues with whom I have worked during the last few years. The current and former mem-
bers of the research group "Efficient Algorithms" provided a pleasant and productive working
atmosphere. I would like to express my thanks to Dr. Ingo Pänke, Felix Vogel, Lukas König,
Dr. Sanaz Mostaghim, Dr. Holger Prothmann, Dr. Urban Richter, Dr. Andreas Kamper,

xiii

Acknowledgements

Dr. Lei Liu, Dr. André Wiesner, Florian Allerding, Birger Becker, Frederic Toussaint, Nu-
groho Fredivianus, Christian Hirsch, Sabrina Merkel, Marc Mültin, Daniel Pathmaperuma,
Friederike Pfeiffer, Micaela Wünsche, Fabian Rigoll, Fredy Rios, and our secretary Mrs. In-
geborg Götz. Special thanks also go to Felix, Sanaz, Lukas, and my office partner Nug.

In the Graph Drawing community, it is an honour for me to thank Christian Bachmaier
and Andreas Gleißner (University of Passau, Germany) for our valuable discussions and
the implementation of the Gravisto graph visualization toolkit. Furthermore, I am grateful
to Prof. Perter Eades (University of Sydney, Australia), Prof. Roberto Tamassia (Brown
University, USA), Prof. Ulrik Brandes (University of Konstanz, Germany) for our valuable
discussions and the advice they gave during the 2010 and 2011 Graph Drawing conferences.
Also, thanks are presented to Dr. Helen C. Purchase (University of Glasgow, Scotland), for
her valuable comments.

Moreover, for the non-scientific side of my thesis, I offer my sincerest regards and blessings
to all of those who supported me in any capacity during the completion of this thesis. I am
grateful to my family and friends in Egypt for their constant moral support. Special thanks
go to my father, my brothers Ashraf and Osama, father-in-law, mother-in-law, and brothers
and sisters in law, who always believed in me, supported me in every respect and for their
constant encouragement and endless praying for me throughout the last few years.

Last but not least, words fail to express my deepest thanks to my wife and life partner
Mariam. I am so proud to dedicate this thesis to her, as she always enriches my life with her
cheerful, spirited approach to life and countless and endless support. Really, she has been
there for me every time I needed her even in stressful and chaotic times. Finally, I would like
to show my gratitude to my children Alzhraa, Abdelmohsen, and Ashraqat for their innocent
smiles, funny reactions and for making my Karlsruhe years so wonderful and unforgettable.

Karlsruhe, May 2012 Alaa A. K. Ismaeel

xiv

Abstract

Graph Drawing addresses the geometric representation of graphs. It is motivated by appli-
cation fields in which it is crucial to visualize structural information as graphs. The majority
of research into graph drawing has been in regard to efficient algorithms for working with
static graphs in which the graph structure does not change. In dynamic graphs, changes in
the graph structure and/or its drawing at use time of the graph are possible by adding, delet-
ing, or modifying vertices and/or edges. Many graph drawing scenarios are dynamic since
they involve a repeated updating of the graph, and consequently its drawing, after certain
change is executed.

One of the main objectives in dynamic graph drawing is preserving the user’s mental map,
which is minimizes the effort the user has to spend in order to become re-familiarized with the
drawing after some actions have been executed. The recommended approach for preserving
the user’s mental map is to minimize the changes between the new and current drawings.
Effectively, minimizing the changes involves computing a measure of similarity between the
two drawings. Collectively, these measures are known as difference metrics. Some considered
difference metrics are the Euclidean distance, relative distance, edge orthogonality, vertex
width, and vertex ordering.

This thesis is concerned with the problem of proposing and validating difference metrics
of dynamic hierarchical graph drawings. The existing approaches in this direction focus on
how to execute an action on a dynamic hierarchical graph, or on measuring the difference
between drawings of a dynamic hierarchical graph using difference metrics. We introduce a
new general framework on how to formulate difference metrics for hierarchical graphs. This
framework is based on distinguishing between the vertices and edges that are inserted into or
deleted from the graph and those that are still shared in both drawings. The general form of
a difference metric is formulated by considering the topological and geometric characteristics
of hierarchical graphs and have also been applied to existing metrics that are used with non-
hierarchical graph drawings. The proposed formulation could be applied to any hierarchical
graph of any size and could be easily extended to different graph types.

Measuring the similarity between two different drawings should not be done with respect
to some computations of similarity metrics only since the human judgement based on the
perception of what appears aesthetic into account. So, an experimental user study is carried
out in order to validate the introduced difference metrics based on user evaluations.

Another problem for drawing hierarchical graphs aesthetically is minimizing crossings be-
tween edges. Two approaches are considered in solving this problem. The first is the layer-by-
layer sweep and the second is the global approach. In the layer-by-layer sweep approach, the

xv

Abstract

problem is solved repeatedly by computing the order of the vertices in each layer according
to their connectivity in the upper and lower layer, then the algorithm moves to the next two
layers. In the global approach, the order of vertices in all layers is computed simultaneously.
A new algorithm is introduced, named the efficient barycenter, which empirically produces
better results than some recent global algorithms and traditional layer-by-layer algorithms,
in both the number of crossings and the execution time.

Finally, a new method for generating random hierarchical graphs is introduced. This
method is based on a precise counting of the maximum number of edges in a hierarchical
graph. Two generators for proper and generally non-proper hierarchical graph are introduced.
Both generators control all the parameters of a hierarchical graph, like the number of layers,
the number of vertices in each layer, the minimum number of outgoing edges of a vertex, the
edge density and the ratio of the long edges in the graph.

xvi

Contents

Figures List xix

Tables List xxi

Algorithms List xxiii

1 Introduction 1
1.1 Graph Drawing . 1
1.2 Hierarchical Graphs . 5
1.3 Dynamic Graph Drawing . 8
1.4 Organization of the Thesis . 10

2 Basic Concepts 13
2.1 Graphs and Graph Types . 13

2.1.1 Graphs . 13
2.1.2 Directed Graphs . 14
2.1.3 Subgraphs . 15
2.1.4 Paths and Cycles . 15
2.1.5 Graph Connectivity . 16
2.1.6 Complete and Bipartite Graphs . 16
2.1.7 Trees . 17
2.1.8 Planar Graphs . 18
2.1.9 Hierarchical Graphs . 18
2.1.10 Clustered Graphs . 18

2.2 Drawing Styles . 19
2.2.1 Planar Drawing . 19
2.2.2 Straight-Line Drawing . 20
2.2.3 Polyline Drawing . 21
2.2.4 Hierarchical Drawing . 21
2.2.5 Convex Drawing . 22
2.2.6 Orthogonal Drawing . 22
2.2.7 Rectangular Drawing . 22
2.2.8 Grid Drawing . 23
2.2.9 Visibility Drawing . 24
2.2.10 Upward Drawing . 24

2.3 Drawing Aesthetic Criteria . 25
2.4 Summary . 31

xvii

3 Hierarchical Drawing of Directed Graphs 33
3.1 Sugiyama Approach . 34
3.2 Cycle Removal . 36

3.2.1 Vertices Ordering Heuristics . 37
3.2.2 Randomized Heuristic . 39
3.2.3 Cycle Breaking Heuristic . 39
3.2.4 Exact Algorithm . 39

3.3 Layer Assignment . 39
3.3.1 Minimizing The Height . 41
3.3.2 Layering with Given Width . 41
3.3.3 Minimizing the Total Edge Span . 41
3.3.4 Minimum Width . 42

3.4 Crossing Minimization . 43
3.4.1 Crossing Minimization Approaches . 45

3.4.1.1 The Layer-by-Layer Sweep Approach 45
3.4.1.2 Global Approach . 45

3.4.2 One-Sided Crossing Minimization . 46
3.4.2.1 Barycenter Heuristic . 47
3.4.2.2 Median Heuristic . 48
3.4.2.3 Adjacent-Exchange Heuristic 49
3.4.2.4 Split Heuristic . 50
3.4.2.5 Sifting Heuristic . 50
3.4.2.6 Two-Layer Metaheuristic Methods 50
3.4.2.7 Exact Two-Layer Crossing Minimization 51

3.4.3 Multi-Layer Crossing Minimization . 52
3.4.3.1 Tutte’s Algorithm . 53
3.4.3.2 Degree-Weighted Barycenter Algorithm (DWB) 53
3.4.3.3 Barycenter Algorithm . 54
3.4.3.4 Global Sifting Algorithm . 54
3.4.3.5 Exact Multi-Layer Crossing Minimization 56
3.4.3.6 Multi-Layer Metaheuristic Methods 57
3.4.3.7 Efficient Barycenter Algorithm 57
3.4.3.8 Computational Results . 59

3.5 Coordinate Assignment . 60
3.5.1 Exact Algorithm . 66
3.5.2 Heuristic Technique . 67

3.6 Combining Steps . 67
3.7 Generating Random Hierarchical Graphs . 68
3.8 Summary . 70

4 Dynamic Hierarchical Graph Drawing 73
4.1 Introduction . 73
4.2 Preserving the Mental Map . 75

4.2.1 Restricting Changes . 77
4.2.2 Difference Metrics . 77

4.2.2.1 Distance-Based Metrics . 78
4.2.2.2 Proximity Metrics . 78

xviii

4.2.2.3 Partitioning Metrics . 78
4.2.2.4 Orthogonal Ordering Metrics 79
4.2.2.5 Shape Metrics . 79
4.2.2.6 Identical Drawing Pleasing Metrics 80

4.3 Difference Metrics for Hierarchical Graphs . 81
4.3.1 Dynamic Hierarchical Graph Actions 82
4.3.2 Shared and Action Components . 84
4.3.3 General Difference Metric . 86
4.3.4 Euclidean Distance Metric . 88
4.3.5 Relative Distance Metric . 89
4.3.6 Vertex Minimum Angle Metric . 91
4.3.7 Vertex Width Metric . 93
4.3.8 Area Difference Metric . 94
4.3.9 Edge Orthogonality Metric . 94
4.3.10 Edge Length Metric . 95
4.3.11 Edge Crossing Metric . 96
4.3.12 Examples . 97

4.3.12.1 Example 1: Different Actions 97
4.3.12.2 Example 2: Different Possible Drawings 105

4.4 Crossing Minimization in Dynamic Hierarchical Graph Drawing 107
4.5 Summary . 110

5 A User Study in Difference Metrics for Hierarchical Graphs 113
5.1 Introduction . 113
5.2 Study Design . 114

5.2.1 Participants . 115
5.2.2 Tasks . 115
5.2.3 Procedure . 115

5.3 Results . 123
5.3.1 Task 1 Results . 123
5.3.2 Task 2 Results . 123

5.4 Summary . 124

6 Conclusion and Outlook 137
6.1 Conclusion . 137

6.1.1 Minimize Crossings in Hierarchical Graph Drawing 137
6.1.2 Generating random hierarchical graphs 138
6.1.3 Difference metrics for dynamic hierarchical graph drawing 138
6.1.4 Crossing minimization in dynamic hierarchical graph drawing 139
6.1.5 Experimental user study on dynamic hierarchical graph drawing . . . 139

6.2 Outlook . 140

141

xix

Figures List

1.1 Two examples of graph drawing in real life. Drawing (a) [Urb12] shows the
Cairo underground metro map, where the vertices (stations) are represented by
small white boxes and the edges (connections between stations) are represented
as thick coloured straight-line segments. Drawing (b) [Smi09] represents the
connections between products and producers that may be tainted with peanuts
that have food poisoning, where the center vertex (Snack Bar) is the category
pointing to the Recalling Firm which points to the Brand Name. 2

1.2 A newspaper diagram [JM04] representing the dependencies of energy compa-
nies in Germany, where the names of companies are written inside the yellow
boxes and their interdependency percentage values are represented on the edges
that connect the boxes. 4

1.3 A better drawing [JM04] of the graph represented in Figure 1.2. The drawing
here does not have edge crossings, has a shorter edge length, and also fewer
edge bends. 4

1.4 A traditional hierarchical drawing [JM04] of the graph represented in Fig-
ures 1.2 and 1.3 highlighting the dependency hierarchy of energy companies. . 6

1.5 Two examples of hierarchical graph drawings in software engineering and re-
lationship diagram: (a) represents a hierarchical drawing of a summary flow
graph of exa__count total program code [Flo], and drawing (b) represents an
organizational chart of the company McCourt Enterprise [Cha11]. 7

2.1 A graph with 5 vertices and 9 edges. 14
2.2 A graph (a) and one of its subgraphs (b). 15
2.3 A disconnected graph with two components. 16
2.4 Example of complete and bipartite graphs. 17
2.5 A tree with 9 vertices. 17
2.6 Example of proper and non-proper hierarchical graphs. Source vertices are in

black. 19
2.7 Example of a cluster graph. 20
2.8 A planar drawing (a) and a non-planar drawing (b) of the same graph. 20
2.9 A straight-line drawing (a) and a polyline drawing (b). 21
2.10 A hierarchical drawing (a) and a convex drawing (b). 22
2.11 An orthogonal drawing (a), a box-orthogonal drawing (b), a rectangular draw-

ing (c), and a box-rectangular drawing (d). 23
2.12 A straight-line grid drawing (a) and a rectangular grid drawing (b). 24
2.13 A plane drawing of a graph G (a), a visibility drawing G (b), and 2-visibility

drawing of G (c). 25

xxi

Figures List

2.14 An example of upward drawings: an upward planar drawing (a), an upward
non-planar drawing (b), and a non-upward planar drawing (c). 25

2.15 Example of planar orthogonal drawings: an electrical circuit schematic (a) and
an entity-relationship diagram (b). 26

2.16 Two drawings of the same graph considering the symmetry criterion. 28
2.17 Two drawings of the same graph considering the edge crossings criterion. . . . 29
2.18 Two orthogonal drawings of the same graph considering the number of bends

and area criteria. 29
2.19 Two drawing of the same graph considering the angular resolution criterion. . 30

3.1 A directed graph drawing (a) and its hierarchical drawing using the Sugiyama
approach (b). 35

3.2 Example of the Sugiyama approach. A drawing of the directed graph in (a)
and the drawings produced after each step of the Sugiyama approach (b)-(e).
Dummy vertices are represented in unfilled small circles 37

3.3 An example of adding dummy vertices. The hierarchical drawing in (a) con-
tains long edges, where these long edges have been broken in drawing (b) by
adding dummy vertices (drawn as small empty circles) to the traversed layers. 40

3.4 Example of computing edge crossing according to the relative order of the
vertices in their layers. In drawing (a) no crossing between the two edges (1,3)
and (2,4) since (π(2) − π(1)) · (π(4) − π(3)) = 1 · 1 = 1 > 0. In drawing (b),
the two vertices 4 and 5 are switched in their order and hence the same two
edges cross since (π(2) − π(1)) · (π(4) − π(3)) = 1 · (−1) = −1 < 0. 44

3.5 A bipartite graph drawing (a) and its crossing numbers matrix (b). 47
3.6 An example of the effect of a good choice of boundary drawing β. An initial

drawing (a), a non-planar drawing (b) produced by the DWB algorithm, and
a planar drawing (c) produced by the efficient barycenter algorithm. 58

3.7 Results for sparse graphs with fixed number of layers k = 5 and different
number of vertices in each layer |Vi| = 10, 20, ..., 100. 61

3.8 Results for sparse graphs with fixed number of vertices in each layer |Vi| = 10
and different number of layers k = 3, 4, · · · , 12. 62

3.9 Results for dense graphs with different edge densities D = 0.20, 0.25, · · · , 0.65,
a fixed number of vertices in each layer |Vi| = 10, and a fixed number of layers
k = 5. 63

3.10 Results for large sparse graphs with fixed number of vertices in each layer
|Vi| = 100 and different number of layers k = 10, 20, · · · , 100. 64

3.11 Performance of various algorithms for minimizing crossing of the same drawing
of a hierarchical graph. 65

3.12 Example of combining the Sugiyama approach. A directed acyclic graph with
4 vertices and 4 edges which be hierarchically drawn either in two layers but
with crossings (as in drawing (a)) or in at least three layers without crossings
but with long edges (as in drawing (b)). 68

4.1 Current drawing (a) before executing any actions and two possible drawings
(b) and (c) for inserting a new long edge (2,6). Drawing (b) is more similar to
(a) than (c) since it keeps the positions of the vertices and the routings of the
edges. So, drawing (b) preserves the mental map more than (c). 75

xxii

4.2 Proximity example: drawing (c) is similar to drawing (a) more than drawing
(b) because the relative distance between the four vertices 3, 4, 6 and 7 is
smaller. Original alignment of the four vertices in drawing (a) is shown in
light grey colour in the two drawings (b) and (c). 79

4.3 Orthogonal ordering example: although the angle the vertex v moves relative
to vertex u is the same from (a) to (b) and to (c), the perceptual difference
between (a) and (c) is much greater. Note that u′ and v′ are the representations
of the two vertices u and v in drawing D′. Also, the original location of vertex
v in drawing D is shown in grey colour in the two drawings (b) and (c). . . . 80

4.4 Example of action and shared components of hierarchical graphs. 85
4.5 Cases of maximum distance a shared vertex v could move. The black circles

represent the location of a shared vertex v in the current drawing D(H) where
the grey ones represent the location of the same shared vertex v in the new
drawing D′(H′). 90

4.6 Cases of maximum horizontal move between two shared vertices u and v. Cir-
cles in black represent actual positions of the two shared vertices u and v in
the current drawing D(H), where the circles in grey represents the horizontal
positions of u and v in the new drawing D′(H′). 91

4.7 Example of vertex minimum angle deviation. Drawing (a) has a minimum
angle equals to the ideal angle (θmin = ϑ = 120◦) vertex v, where drawing (b)
has a minimum angle θmin = 45◦ and ideal angle ϑ = 120◦ at vertex v. 92

4.8 Angles between incident edges of a boundary layer vertex v ∈ V1 ∪ Vk in a
hierarchical graph G = (V1, V2, · · · , Vk; E). 92

4.9 A graph drawing with 6 edges regarding edge orthogonality metric. The
edge orthogonality metric of the graph drawing is computed as: μEδ(D) =
1
6

(
0 + 0 + 30

45 + 45
45 + 17

45 + 20.5
45

)
= 1

6 (1 + 0.67 + 0.38 + 0.46) = 0.42. 95
4.10 Example of inserting short edge action: inserting short edge (7,8) to connect

the two vertices 7 and 8. 98
4.11 Example of inserting short edge action: inserting short edge (1,20) to connect

the two vertices 1 and 20 . 98
4.12 Example of deleting an existing short edge action: deleting short edge (2,4)

that is connecting the two vertices 2 and 4. 99
4.13 Example of deleting an existing long edge action: deleting long edge (10,21)

that is connecting the two vertices 10 and 21. 99
4.14 Example of modifying an existing edge action: modifying the short edge (2,4)

that connects the two vertices 2 and 4 to be a long one (2,21) to connect the
two vertices 2 and 21. 100

4.15 Example of inserting a new vertex to an existing layer action: inserting a new
vertex 22 to the fifth layer to connect the two vertices 9 and 15 with the two
new short edges (9,22) and (22,15). 100

4.16 Example of inserting a new vertex in a new first layer action: inserting the
new vertex 22 in a new first layer to connect vertex 1 with the new short edge
(22,1). 101

4.17 Example of inserting a new vertex in a new last layer action: inserting a new
vertex 22 in a new last layer to connect the vertex 21 with a new short edges
(21,22). 101

xxiii

Figures List

4.18 Example of inserting a new vertex in a new intermediate layer action: inserting
a new vertex 22 in a new intermediate layer to connect the two vertices 9 and
13 with two new short edges (9,22) and (22,13). 102

4.19 Example of deleting a vertex from its layer action: deleting vertex 2 and its
adjacency edges, since vertex 11 is not the only non-dummy vertex in its layer,
the layer will remain in the graph. 102

4.20 Example of deleting a vertex and its layer action: deleting vertex 2 and its
adjacency edges, since vertex 2 is the only non-dummy vertex in its layer, and
the long edges connecting vertices in the first and third layers will be modified
to short ones. 103

4.21 Example of modifying vertex horizontal position in its layer action: moving
vertex 11 from its original position to be after vertex 8. 103

4.22 Example modifying vertex layer action: moving vertex 11 from its layer one
layer up. This can be done since all its incoming edges to vertex 11 are long
edges, consequently updating its adjacency edges is required. 105

4.23 Current hierarchical graph drawing D in (a) and different 8 possibilities (b)-(i)
for inserting new long edge (1,20). 106

4.24 Difference metrics values for each of the 8 different possible drawings presented
in Figure 4.23(b)-4.23(i) with the current drawing in Figure 4.23(a). 107

4.25 Behaviours of crossing minimization algorithms and a difference metric μ. . . 108
4.26 Behaviours of normalized values of crossing minimization algorithms and a

difference metric. 109
4.27 A hierarchical graph drawing. 110
4.28 6 new possible drawings of the 6 iterations produced using the Efficient Barycen-

ter algorithm (Algorithm 3.12) for the executing action: inserting a new vertex
13 with new 5 short edges (9,13), (13,14), (13,15), (13,16) and (13,17)" to the
drawing in Figure 4.27. 111

4.29 (a) Crossing numbers of the 6 drawings produced in Figure 4.28 and (b) dif-
ference metrics values produced when computing the difference between each
of the 6 drawings in Figure 4.28 and the drawing in Figure 4.27. 112

4.30 Values of the difference metrics and the number of crossings (scaled between
0 and 1) for the 6 possible drawings presented in Figure 4.28 compared with
the original drawing presented in Figure 4.27. 112

5.1 An original drawing (a) and new drawing (b) for inserting a short edge (9,20). 116
5.2 An original drawing (a) and a new drawing (b) for deleting the short edge

(17,18). 116
5.3 An original drawing (a) and 5 new different possible drawings (b)-(f) for in-

serting a long edge (1,20). 117
5.4 Two drawing (a) and new drawing (b) for deleting the long edge (10,20). . . . 117
5.5 An original drawing before modifying edge (a) and 6 new different possible

drawings (b)-(g) for modifying the edge (1,4) to (1,12). 118
5.6 An original drawing (a) and 7 new different possible drawings (b)-(h) for in-

serting vertex 21 into an existing layer. 119
5.7 An original drawing (a) and a new drawing (b) for inserting vertex 1 in a new

first layer. 120

xxiv

5.8 An original drawing (a) and a new drawing (b) for inserting vertex 16 in a new
last layer. 120

5.9 An original drawing (a) and a new drawing (b) for inserting vertex 15 in a new
intermediate layer. 121

5.10 An original drawing (a) and 3 new different possible drawings (b)-(d) for delet-
ing vertex 14 from its layer. 121

5.11 An original drawing (a) and 2 new different possible drawings (b) and (c) for
deleting vertex 15 and its layer. 122

5.12 An original drawing (a) and 5 new different possible drawings (b)-(f) for mod-
ifying vertex 14 layer moving it one layer up. 122

5.13 An original drawing (a) and 2 new different possible drawings (b)-(c) for mod-
ifying vertex 14 horizontal position in its layer. 123

5.14 Difference metrics and user degree of similarity values for the two drawings
presented in Figure 5.1, where the action is to insert a short edge (9,20). . . . 125

5.15 Difference metrics and user degree of similarity values for the two drawings
presented in Figure 5.2, where the action is to delete the short edge (17,18). . 125

5.16 Difference metrics and user degree of similarity values for the two drawings
presented in Figure 5.4, where the action is to delete the long edge (10,20). . 125

5.17 Results for Figure 5.3 for inserting a long edge (1,20). (a) Averaged values
of difference metrics and user evaluations of the degree of similarity between
each of the 5 new possible drawings presented in Figures 5.3(b)-5.3(f) to the
original one in Figure 5.3(a). (b) Percentage values of each possibility of its
order according to the user ordering. (c) Number of ordering shifts each metric
needs to have the user ordering. 126

5.18 Results for Figure 5.5 for modifying the edge (1,4) to (1,12). (a) Averaged
values of difference metrics and user evaluations of the degree of similarity
between each of the 6 new possible drawings presented in Figures 5.5(b)-5.5(g)
to the original one given in Figure 5.5(a). (b) Percentage values of each pos-
sibility of its order. (c) Number of ordering shifts each metric needs to have
the user ordering. 127

5.19 Results for Figure 5.6 for inserting vertex 21 into an existing layer. (a) Aver-
aged values of difference metrics and user evaluations of the degree of similarity
between each of the 7 new possible drawings presented in Figures 5.6(b)-5.6(h)
to the original one given in Figure 5.6(a). (b) Percentage values of each pos-
sibility of its order. (c) Number of ordering shifts each metric needs to have
the user ordering. 128

5.20 Difference metrics and user degree of similarity values for the two drawings
presented in Figure 5.7, where the action is to insert the new vertex 1 into the
new first layer. 129

5.21 Difference metrics and user degree of similarity values for the two drawings
presented in Figure 5.8, where the action is to insert the new vertex 16 into
the new last layer. 129

5.22 Difference metrics and user degree of similarity values for the two drawings
presented in Figure 5.9, where the action is to insert the new vertex 15 into
the new intermediate layer. 129

xxv

Figures List

5.23 Results for Figure 5.10 for deleting the vertex 14 from its layer. (a) Averaged
values of difference metrics and user evaluations of the degree of similarity
between each of the 7 new possible drawings presented in Figures 5.10(b)-
5.10(d) to the original one given in Figure 5.10(a). (b) Percentage values of
each possibility of its order. (c) Number of ordering shifts each metric needs
to have the user ordering. 130

5.24 Results for Figure 5.11 for deleting the vertex 21 and its layer. (a) Averaged
values of difference metrics and user evaluations of the degree of similarity
between each of the 2 new possible drawings presented in Figures 5.11(b)-
5.11(c) to the original one given in Figure 5.11(a). (b) Percentage values of
each possibility of its order. (c) Number of ordering shifts each metric needs
to have the user ordering. 131

5.25 Results for Figure 5.12 for modifying vertex 14 layer by moving it one layer up.
(a) Averaged values of difference metrics and user evaluations of the degree of
similarity between each of the 5 new possible drawings presented in Figures
5.12(b)-5.12(f) to the original one given in Figure 5.12(a). (b) Percentage
values of each possibility of its order. (c) Number of ordering shifts each
metric needs to have the user ordering. 132

5.26 Results for Figure 5.13 for modifying vertex 14 horizontal position in its layer.
(a) Averaged values of difference metrics and user evaluations of the degree of
similarity between each of the 2 new possible drawings presented in Figures
5.13(b)-5.13(c) to the original one given in Figure 5.13(a). (b) Percentage
values of each possibility of its order. (c) Number of ordering shifts each
metric needs to have the user ordering. 133

xxvi

Tables List

4.1 Difference aesthetic metrics values for the 13 graphs presented in Figures 4.10-
4.22. 104

5.1 Percentage values of the average metrics values and their relation to the user
evaluation of the degree of similarity ±10% for the 36 new drawings to their
original drawings given in Figures 5.1-5.13. 124

5.2 User percentage values for the degree of similarity of the new and original
drawing(s) in Figures 5.1 - 5.6. 134

5.3 User percentage values for the degree of similarity of the new and original
drawing(s) in Figures 5.7 - 5.13. 135

5.4 User ordering of the different possible drawings presented in Figures 5.3, 5.5,
5.6, 5.10, 5.11, 5.12, and 5.13. 136

xxvii

Algorithms List

3.1 Greedy Heuristic Cycle Removal . 38
3.2 Enhanced Greedy Heuristic Cycle Removal . 38
3.3 Coffman-Graham Layering . 42
3.4 Barycenter Heuristic Crossing Minimization . 48
3.5 Median Heuristic Crossing Minimization . 49
3.6 Adjacent-Exchange Heuristic Crossing Minimization 49
3.7 Split Heuristic Crossing Minimization . 50
3.8 Sifting Heuristic Crossing Minimization . 51
3.9 Degree-Weighted Barycenter DWB Crossing Minimization 54
3.10 Barycenter Algorithm Crossing Minimization . 55
3.11 Global Sifting Crossing Minimization . 55
3.12 Efficient Barycenter Crossing Minimization . 58
3.13 Proper Hierarchical Graph Generator . 71
3.14 General Hierarchical Graph Generator . 72

xxix

1
Introduction

Un bon croquis vaut mieux qu’un long discours.1

This thesis is concerned with drawing dynamic hierarchical graphs. It focuses on defining
and validating some difference metrics for measuring the geometric difference between two
drawings of a dynamic hierarchical graph.

In this introductory chapter, we present the background to the thesis and reveal our mo-
tivation for this work in dynamic hierarchical graph drawing. We present a brief overview of
the topics investigated and outline the main contributions arising from our study. Further-
more, this chapter provides some basic foundations from the area of graph drawing and some
conceptual notations and conventions shared by the subsequent chapters of this thesis. More
specific definitions are found in the respective chapters.

1.1 Graph Drawing

Graphs are discrete structures (see [GY99,Gro08]) used to represent information models that
can be described as a set of objects and a set of relations or connections between those
objects. In a graph G = (V, E), the objects are represented by the set of vertices V and the
connections between those objects by the set of edges E that link the corresponding vertices.

1Napoleon Bonaparte. English translation: A good sketch is better than a long speech.

1

Chapter 1 Introduction

A drawing of a graph means a geometric representation of that graph in a plane by a
2-dimensional drawing or in space by a 3-dimensional drawing. In a drawing D of a graph G,
vertices represent states, components, agents, or modules and are drawn as dots, boxes, circles
or other geometrical shapes where the edges are drawn using arrows or lines representing
transitions, channels, or message transmissions. Arrows are used to show the direction of
directed edges. The information corresponding to the vertices and edges can be visualized
using text labels at various locations in or next to a graph object, may be in different colours,
or other visual elements such as line thickness, box size, etc.

Many real-life applications consist of structures that can be modelled by graphs [BK02,
CM08]. Some examples are biochemical reactions [SSL+09], email correspondences of organi-
zation members [SR04], maps visualization [GHK10, HGK10], electricity networks [GMS82,
SPS10], international air traffic [DPS11], communication networks [Tri08], network visualiza-
tion [WS98,MMB06], and the world wide web [Men96,HA99a], and the program evaluation
and review technique PERT networks [Elm77, DPS11]. Two examples are presented in Fig-
ure 1.1. The drawing in Figure 1.1(a) shows the underground metro map of Cairo (the
Egyptian capital) and the drawing represented in Figure 1.1(b) shows a network representing
the connections between products and producers that may be tainted with peanuts that have
food poisoning.

(a)

(b)

Figure 1.1: Two examples of graph drawing in real life. Drawing (a) [Urb12] shows the Cairo
underground metro map, where the vertices (stations) are represented by small
white boxes and the edges (connections between stations) are represented as thick
coloured straight-line segments. Drawing (b) [Smi09] represents the connections
between products and producers that may be tainted with peanuts that have food
poisoning, where the center vertex (Snack Bar) is the category pointing to the
Recalling Firm which points to the Brand Name.

2

1.1 Graph Drawing

Graph drawing is an area of mathematics and computer science combining methods from
geometric graph theory and information visualization to derive two-dimensional depictions of
graphs arising from real-life applications. In other words, graph drawing addresses the prob-
lem of producing geometric representations of abstract graphs and networks and is motivated
by those applications where it is crucial to visualize structural information as graphs. Since
graph drawing methods form the algorithmic core of network visualization, bridging the gap
between theoretical advances and implemented solutions is an important aspect.

The importance of graph drawing could be based on the Chinese proverb saying that One
picture is worth ten thousand words, but this requires the picture to be clear and readable.
Almost everybody is aware of graphs, composed of rectangles with information on them, and
lines with arrows connecting them. Just think about the schematic representation of the
organizational structure of a company. Or consider all relations and links in a database or a
huge software program, which must be shown in a convenient way. Also, a plan for a project
has to show clearly the underlying relationships between the tasks of the project, e.g., which
tasks should be carried out concurrently or sequentially. Representing all of this information
in a schematic diagram helps to manage the project.

A deeper and intensive information in the field of graph drawing have been introduced in
several books, e.g., by Kamada [Kam89], Di Battista, Eades, Tamassia, and Tollis [DETT99],
Kaufman and Wagner [KW01], Nishiziki and Rahman [NR04], and Tamassia [Tam07]. Most
of the state-of-the-art graph drawing software tools are presented by Jünger and Mutzel
in [JM04]. The latest research results can be found in the proceedings of the annual graph
drawing conferences that appear in the Lecture Notes in Computer Science series of Springer-
Verlag since 1992.

Graph drawing has been used for numerous and different real applications. Some exam-
ples include VLSI layout circuit designs [BC87, JG09], social networks [Sco00], bioinformat-
ics [BGHM07, SH07], train and metro network maps [Wol07, NW11], subroutine-call graph
visualization [GT02], software evolution visualization [CKN+03], entity-relationship database
diagrams [Che76,BTT84,Auy90], data structures, computer security [TPP09], UML diagram-
ming [BRJ99], and work flowchart management [Mur09].

The two Figures 1.2 and 1.3 (introduced in [JM04]) represent two drawings of the same
graph. Figure 1.2 represents a newspaper drawing showing the network of the electric power
industries concerning the dependencies of energy companies in Germany, where Figure 1.3
shows a more readable drawing, since it is without edge crossing, with shorter edge length,
and with fewer edge bends.

The general graph drawing problem can be put simply:

Given a set of vertices V with a set of edges E of a graph G = (V, E), calculate the
position of every vertex v ∈ V and the curve representing each every e ∈ E .

Actually, this problem has always existed, for the simple reason that a graph is often de-
fined by its drawing. Indeed, Euler (1707-1783) relied on a drawing to solve the Königsberger
Brücken problem in his 1736 paper [Eul36]. The general problem of drawing graphs has ex-
tensively received a great deal of attention [Kam89,DETT94,DETT99,KW01,NR04,Tam07].

3

Chapter 1 Introduction

Southern Energy Holding

Bet. Geselschaft mbH

VIAG AG

GK:1330,7% Mio. DM

95.2%

VEW AG

GK:1000 Mio. DM

VEAG

Vereinigte
Elekrizitätswerke AG

GK:500 Mio. DM

EBH GmbH

 Stk:548,01
 Mio. DM

PreussenElektra AG

GK:1250 Mio. DM

VEBA AG

GK:2486 Mio. DM

Contigas AG

 GK:200 Mio. DM

RWE AG

GK:2777 Mio. DM

22.5% 26.25%

100%

30%

30%

12%

91.1%

26%

26% 23%

100%

17.6%

25%

25%

26.25%

25.3%

15.4%

15.7%

21.8%

1%

25%

Energir-Verwaltungs-
GmbH

Stk:241,52 Mio. DM

Sydkraft AG

Maimö

EnBW

Energie Baden-Würtemberg AG
GK:1250 Mrd. DM

Bayerenwerk AG

GK:1460,6% Mio. DM

RWE Energie AG

 GK:2300 Mio. DM

HEW
Hamburgische

Elekrizitäts-werke AG
GK:460 Mio. DM

VEW Energie AG

GK:800 Mio. DM

Bewag AG

 GK:1120 Mio. DM

100%

Figure 1.2: A newspaper diagram [JM04] representing the dependencies of energy companies
in Germany, where the names of companies are written inside the yellow boxes
and their interdependency percentage values are represented on the edges that
connect the boxes.

Southern Energy Holding

Bet. Geselschaft mbH

VEAG

Vereinigte
Elekrizitätswerke AG

GK:500 Mio. DM

EBH GmbH

 Stk:548,01
 Mio. DM

VEBA AG

GK:2486 Mio. DM

Contigas AG

 GK:200 Mio. DM

EnBW

Energie Baden-Würtemberg AG
GK:1250 Mrd. DM

HEW
Hamburgische

Elekrizitäts-werke AG
GK:460 Mio. DM

VEW Energie AG

GK:800 Mio. DM

25.3%

100%

VEW AG

GK:1000 Mio. DM

25%

25%

26.25%

RWE Energie AG

 GK:2300 Mio. DM
100% 30%

95.2%

26%

25%

25.6%

17.6%

15.4%

21.8% 15.7%

25.3%

22.5%

30%

Sydkraft AG

Maimö

25% 25%

100%

23%

1%

PreussenElektra AG

GK:1250 Mio. DM

RWE AG

GK:2777 Mio. DM
Energir-Verwaltungs-

GmbH

Stk:241,52 Mio. DM

12%

91.1%

VIAG AG

GK:1330,7% Mio. DM

Bayerenwerk AG

GK:1460,6% Mio. DM

Bewag AG

 GK:1120 Mio. DM 26%

Figure 1.3: A better drawing [JM04] of the graph represented in Figure 1.2. The drawing
here does not have edge crossings, has a shorter edge length, and also fewer edge
bends.

4

1.2 Hierarchical Graphs

The history of graph drawing is actually unknown, where the real start was in 1963 with the
paper by Tutte titled "How to draw a graph" [Tut63], in which he suggested an algorithm that
locates each vertex into the center of its neighbours. A recommended intuition says that a
layout satisfying this drawing property is desirable, although it actually seems very difficult to
model the goodness or niceness of a drawing. Nevertheless, there are some geometric pleasing
factors (drawing criteria) that are widely understood as important for a good drawing. Some
of these criteria are: small area, minimum edge crossings, maximum angles between edges,
maximum symmetry, small number of edge bends, edge upwardness, graph clustering or
aligning of related vertices etc.

The main goal of research in graph drawing is to develop techniques for constructing good
drawings for the input abstract graphs. Informally speaking, a drawing is considered "good"
if it is able to communicate effectively and clearly the information being displayed in the
drawing. If a graph is small, then it can easily be drawn by hand, and the problem becomes
more and more difficult if one tries to draw for example the diagram of an electrical network
in a readable form. Here, the concept of automatic graph drawing arises. In automatic graph
drawing, a computer program is using some graph algorithms in order to produce a final
readable drawing of the graph. Automatic drawings are even more crucial for applications
whose standard output is graphical, such as VLSI layouts, PERT networks, organization
charts, etc.

The reason why automatic graph drawing is becoming more and more popular is in fact its
broad application in different scientific areas, such as: biologists need to draw evolutionary
trees, chemists need to draw large molecules, and architects need to draw their modelled
designs. Also, databases are designed using entity relationship diagrams, and decision support
systems for project management need to visualize PERT networks and activity trees. Last
but not least, software engineers want data flow diagrams, subroutine-call graphs and object-
oriented class hierarchies to be visualized.

1.2 Hierarchical Graphs

A fundamental issue in automatic graph drawing is to display hierarchical network structures
as they appear in many applications such as social sciences [War76], graphical used interfaces
[DETT94], VLSI layout [BL84], and many other applications. The network is transformed
into a directed graph G = (V, E), which has to be drawn with straight-line edges that are either
all directed upwards or downwards. General directed acyclic graphs have been considered
as not powerful enough to model every real-life application [ELT96,EFL97,Fen97,YS99] and
hence hierarchical graphs are introduced. In hierarchical graphs, layering information is added
to the directed acyclic graph that should have a hierarchical drawing.

In a hierarchical graph H = (V, E , φ), a layering function φ is considered in order to
partition the set of vertices V into a finite k subsets (layers) V1, V2, · · · , Vk, such that
the vertices belonging to the same layer Vi should be placed on the same horizontal line
Li = i, 1 ≤ i ≤ k and edges connect only vertices that belong to different layers, i.e.,
∀e = (u, v) ∈ E , u ∈ Vi and v ∈ Vj this implies i < j. A more detailed introduction of
hierarchical graphs will follow in Section 2.1.9. A hierarchical graph H = (V, E , φ) could be

5

Chapter 1 Introduction

represented as H = (V1, V2, · · · , Vk, E). Consequently, hierarchical drawing convention is pro-
posed to display a specified layering information based on the direction of the edges. In order
to get a useful hierarchical drawing, the drawing has to be a readable, understandable and
easy to remember. Some of the aesthetic criteria of a good hierarchical drawing are: bends
minimization, symmetry maximization, area minimization, and minimizing the number of
edge crossings.

Southern Energy Holding

Bet. Geselschaft mbH

VIAG AG

GK:1330,7% Mio. DM

95.2%

Bewag AG

 GK:1120 Mio. DM

RWE Energie AG

 GK:2300 Mio. DM

Energir-Verwaltungs-GmbH

Stk:241,52 Mio. DM

VEW AG

GK:1000 Mio. DM

VEW Energie AG

GK:800 Mio. DM

VEAG
Vereinigte Elekrizitätswerke AG

GK:500 Mio. DM

EBH GmbH

Stk:548,01 Mio. DM

EnBW
Energie Baden-Würtemberg AG

GK:1250 Mrd. DM

HEW
Hamburgische

Elekrizitäts-werke AG
GK:460 Mio. DM

Bayerenwerk AG

GK:1460,6% Mio. DM

PreussenElektra AG

GK:1250 Mio. DM

Sydkraft AG

Maimö

VEBA AG

GK:2486 Mio. DM

Contigas AG

 GK:200 Mio. DM

RWE AG

GK:2777 Mio. DM

22.5% 26.25%

100% 30% 30% 12%

91.1% 26% 26% 23%

100%

25%

17.6%

25% 25% 25%

26.25%

25.3%

15.4%

15.7%

21.8%

1%

25%

Figure 1.4: A traditional hierarchical drawing [JM04] of the graph represented in Figures 1.2
and 1.3 highlighting the dependency hierarchy of energy companies.

Drawing hierarchical graphs has many applications in many fields such as PERT networks
[Elm77], subroutine-call graphs [Mye03], organizational charts [Gan03,Gan07], project man-
agement [CR06], visual languages [Cru93], interpretative structural modelling ISM [War76],
entity-relationship database diagrams [Che76, BTT84, Auy90], software evolution diagrams
[JK07,PVAE98], and data flow diagrams [BCD89]. The graph represented in Figure 1.4 rep-
resents a hierarchical drawing of the same graph of energy companies in Germany introduced
in Figures 1.2 and 1.3. Furthermore, two examples of hierarchical drawings are represented
in Figure 1.5. A flow graph of a program code is represented in Figure 1.5(a), where an
organization chart for a company is shown in Figure 1.5(b).

6

1.2 Hierarchical Graphs

(a)

(b)

Figure 1.5: Two examples of hierarchical graph drawings in software engineering and rela-
tionship diagram: (a) represents a hierarchical drawing of a summary flow graph
of exa__count total program code [Flo], and drawing (b) represents an organiza-
tional chart of the company McCourt Enterprise [Cha11].

A great deal of work has been done in producing hierarchical drawings of directed graphs
[War77,Car80,STT81,Sug87,GM89,ELT96,San96,EFL97,Fri97,Lei98,Mut00,NW02,GBPD04,
Ism04,EFN06,KPL06,Bac09,BBBH11,BBG11,DHW11,ZKS11,BBBF12]. Actually, the most
common approach to draw directed graphs in a hierarchical manner was presented in 1981
by Sugiyama, Tagawa, and Toda [STT81] and called the Sugiyama approach. This approach
consists of four main steps: removing graph cycles by reversing some edges, assigning vertices
to layers, reordering the vertices in each layer in order to minimize edge crossings, and finally
assigning the horizontal coordinates for the vertices. The Sugiyama approach and its four
steps, with more focus on the third step of crossing minimization, is introduced in detail in
Section 3.1.

An important criterion for many graph drawing applications is minimizing the number of
edge crossings. Also, in many respects, crossing minimization is an exceptional problem in
the wide range of optimization problems arising in automatic graph drawing generally and
in drawing hierarchical graphs specifically. So, we concentrate on this problem and introduce
it in Section 3.4. Furthermore, we introduce a new barycenter-based algorithm, name it the
efficient barycenter, for minimizing crossings in hierarchical graphs. The proposed algorithm
produces good results in both perspectives, the number of crossings and the running time.

7

Chapter 1 Introduction

alaa

1.3 Dynamic Graph Drawing

The majority of research in graph drawing has gone into efficient algorithms for working with
static graphs. Static graphs are stable during the whole time span in which they are used,
i.e. the graph and its structure remain unchangeable during the time span where the graph is
used. An algorithm may be used in producing a drawing of the graph or just applying some
computation. On the other hand, the problem becomes more difficult if the graph changes
over time. In many scenarios, the considered graphs are dynamic and can continually change
in their structure throughout the time span where they are used. In these dynamic scenarios,
it is important to maintain coherence in the drawing, thereby helping the user to conserve
his/her mental map [ELMS91] of the evolving information. The challenge here is to create a
coherent sequence of drawings provide the necessary information.

When a user looks at a graph, he or she learns about the graph structure, and subsequently
navigates through the drawing to understand its meaning. Hence, the user looking at draw-
ings of a dynamic graph should be able to note changes being unfolded while maintaining
an overall understanding of the data. The effort the user has to spend in order to become
refamiliar with the new drawing , is termed as "building the user’s mental map" and it is
a main objective to minimize the user effort. However, piecing together a series of static
snapshots is not sufficient in order to create drawings of a dynamic graph, since there is no
consideration of preserving the mental map in this case.

Dynamic graph drawing provides many interesting research challenges. Starting from inno-
vative ways of collecting data, moving to techniques of processing data to provide meaningful
insights, and ending with creating cognition amplifying methods of displaying information.
One’s own social network is a good example of a dynamic network structure. The friends and
acquaintances that one builds up throughout life form an interconnected mesh, since many of
the people that you know will also know each other. Consequently and most importantly, the
graph is constantly evolving as new people are encountered or old ties are severed. If data are
available of the state of a social network at some different time steps, these snapshots can be
linked together so that the evolution of the network can be seen. Another application area is
the emerging field of pervasive and autonomic communication networks [DDF+06]. Pervasive
systems, such as those in smart rooms which are aware of individuals and devices that enter
and leave them, are typically concerned with ad-hoc topologies and transient communication
channels. As devices enter the transmission range of the communication equipment in the
system, they begin to transmit relevant contextual data, and in turn receive data from the
system. These vertices are now changeable and will no longer be part of the network when
the user moves out of range. A drawing of these interactions reveals an evolving network
topology [SWQN07], which is useful for application designers to validate that contextual
data is being disseminated correctly throughout their system.

The graph drawing problem gets worse if the graph changes over time by adding, deleting,
or modifying vertices and/or edges. Here, the goal of the dynamic graph drawing is to preserve
the user’s mental map. Many researchers have addressed the dynamic graph drawing problem
and preserving the mental map [MELS95,PST97,LLY06,PHG08,PS08,SP08,MR10,APP11a].

8

1.3 Dynamic Graph Drawing

There are two ways used to preserve the user’s mental map:

1. animating and highlighting the changes and hence the user can easily recognize them,

2. minimizing the changes between the two drawings in order to minimize the user effort
needed to regain familiarity.

Although animation can be used to provide a smooth transition between consecutive draw-
ings, it is still important to preserve some degree of similarity between drawings. If we cannot
preserve the user’s mental map, he or she may have to spend a lot of time relearning the new
graph. So, the second way, minimizing the changes, is the more considered one in preserving
the mental map. When inserting, deleting, or modifying some vertices and/or edges on a
drawing of a graph, a new drawing is produced.

In order to minimize the changes between two drawings of a dynamic graph, the following
two possibilities are considered:

1. Restricting the changes to the added or deleted vertices and edges keeping the remaining
vertices and edges in both drawings the same,

2. Executing the changes freely on all the vertices and edges and then using some mathe-
matical difference metrics to measure the change between the two drawings.

Restricting the changes to the added or deleted vertices and/or edges normally produces
not so pleasing drawings since some aesthetic metrics could not be conveyed. For example,
inserting a new edge may produce many crossings and then the readability of the drawing
decreases. Instead, defining and validating difference metrics is the recommended approach
in minimizing the changes.

Implementing experimental user studies offers a scientifically acceptable measure of a draw-
ing performance. The major reason for using user studies is evaluating the strengths and
weaknesses of different drawing techniques or drawing aesthetics. Studies can show whether
a new visualization technique is useful in a practical sense, according to some objective cri-
teria. User studies can objectively establish which aesthetic metric is more appropriate than
other ones for a specific graph type. A more fundamental goal of conducting user studies is
to seek insight into why a particular technique is effective. This can guide future efforts to
improve existing techniques. We want to understand how aesthetic metrics and geometric
properties yield high-quality results for a particular drawing. A good starting point in any
study is the scientific or visual design question to be examined, and this drives the process
of experimental design. Some experimental user studies have been carried out in order to
validate the difference metrics forms [BT01,SP08,DLF+09,HvW09,PPP12].

For defining difference metrics, Bridgeman and Tamassia [BT00] introduced some formu-
lations of difference metrics to measure the change between two orthogonal drawings of the
same graph. Furthermore, Purchase [Pur02] presented formal metrics for quantifying the
aesthetic presence in a graph drawing for seven common aesthetic criteria.

In this thesis, we study the problem of drawing hierarchical graphs that change in a dynamic
scenario. In this main perspective, we study the problem of drawing dynamic hierarchical
graphs including the following points:

9

Chapter 1 Introduction

• We study the way of executing an action on a hierarchical graph based on the hier-
archical structure of the vertices and the layout of the edges curves, and the different
possibilities of executing an action.

• We define a framework of a general difference metric form for measuring the difference
between two drawings of a dynamic hierarchical graph based on the work presented
in [BT00,Pur02].

• We conducted an experimental user study to validate the proposed difference metrics
of dynamic hierarchical graph drawings.

• We consider the problem of minimizing edge crossings in drawing dynamic hierarchical
graphs, i.e., after executing an action, the produced drawing should have the minimum
number of crossings and at the same time should have minimum changes compared to
the drawing prior to the action being executed.

1.4 Organization of the Thesis

This thesis consists of six chapters, of which this chapter is the first one. The remaining
chapters are organized as follows:

Chapter 2 introduces some basic definitions of graph theory and graph drawing that we
will deal with in this thesis. These basic definitions and terminology include graphs and its
types and the most popular used drawing styles and techniques and their characteristics.
Furthermore, some important drawing properties (criteria) and user requirements in the
drawing.

In Chapter 3, we are addressing the problem of drawing hierarchical graphs, which is
the graph type considered in this thesis. The Sugiyama approach, which is the most recom-
mended method for drawing directed graphs hierarchically, is introduced. The four main steps
of the Sugiyama approach are presented in details including some of the mainly considered
techniques for each step. Also, we consider the problem of crossing minimization of hierar-
chical graphs and introduce a new advanced version of a barycenter-based algorithm, called
the efficient barycenter algorithm, for this problem. The efficient barycenter algorithm out-
performs the existing layer-by-layer techniques and also it produces results that are slightly
better than the most recent technique called global sifting [BBBH11]. This chapter is closed
by some notations about generating random hierarchical graphs.

Chapter 4 presents a main part of the work presented in this thesis, which is drawing
dynamic hierarchical graphs. In this chapter, the basic concepts and terminology in the area
dynamic graph drawing are introduced, including the definition of the user’s mental map and
its preservation methods. Some ideas about how to execute actions on hierarchical graphs
in a dynamic environment are introduced, since these actions have different possibilities
to be executed depending on the topological and geometric characteristics of hierarchical
graphs. A general framework of distinguishing between the action and shared components
(vertices and edges) of a hierarchical graph is proposed. Based on this general framework, a
set of mathematical formulas for difference metrics is introduced in order to measure, more
precisely, the geometric difference between two drawings of a dynamic hierarchical graph.

10

1.4 Organization of the Thesis

The proposed general framework could be applied to any graph type, rather than hierarchical
graphs, and also with some modifications, the introduced difference metric notations could be
applied to any other graph types. Also, a combination of the problem of minimize crossing
and the dynamic drawing of hierarchical graphs is considered. This tries to answer the
following question: Which drawing of a dynamic hierarchical graph has the maximum degree
of similarity (or the minimum value of difference) to the original drawing and at the same
time the minimum number of crossings?

Chapter 5 presents the results we got from an experimental user study, to validate the
proposed difference metrics notations. That user study is performed in order to know how
far the computed values for the mathematical forms of the proposed metrics are away from
the user evaluation of the changes applied to hierarchical graphs in dynamic scenarios.

Finally, Chapter 6 provided some concluding remarks and final comments on the work
that is presented in this thesis and it contains some suggestions for potential directions of
further investigations.

11

2
Basic Concepts

If there were only one truth, you couldn’t paint
a hundred canvases on the same theme.1

In this chapter we introduce some basic information and terminology in graph theory and
graph drawing. The main intention of this chapter is to provide some notational conventions
that we deal with in this thesis. The first section presents notations and mathematical
definitions of graphs and its different models and types. The second section offers a brief
description of the number of drawing styles and techniques that have been developed in
the area of graph drawing. Finally, we introduce some properties of drawings and aesthetic
criteria used in order to get a good, readable, or understandable drawing of a graph.

2.1 Graphs and Graph Types

2.1.1 Graphs

A graph G is a pair (V, E), where V is a finite set of vertices (also called nodes or points) and
E is a finite set of edges (also called links or connections). Each edge e ∈ E consists of an
unordered pair of distinct vertices u, v ∈ V. The set V is called the vertex set of G and the
set E is called the edge set of G.

1Salvador Dali.

13

Chapter 2 Basic Concepts

Let e ∈ E be an edge and u ∈ V be one of its two vertices, then e and u are called incident
to each other. If e ∈ E is an edge with two incident vertices u, v ∈ V, then edge e connects
the vertices u and v, and we say that u and v are adjacent vertices. Two edges e1, e2 ∈ E that
are incident to the same vertex u ∈ V are called adjacent edges. If e ∈ E is an edge incident
to vertices u, v ∈ V, we will use the notation e = (u, v) to represent that edge e. An edge
e ∈ E is called a self-loop (or loop) if it connects a vertex u to itself, i.e. e = (u, u). Two edges
e1, e2 ∈ E are called parallel edges (or multiple edges) if both connect the same two vertices,
i.e. e1 = (u, v) and e2 = (u, v). A simple graph is a graph without self-loops or parallel edges,
otherwise it is a general graph or simply a graph. Figure 2.1 represents a general graph with
5 vertices and 9 edges where the two edges b and c are parallel edges and edge i is a self-loop.

i

6 4 5

 2 1

 3

a

g

h

c b d e

f

Figure 2.1: A graph with 5 vertices and 9 edges.

2.1.2 Directed Graphs

A directed graph (or digraph) G is a pair (V, E), where V is a finite set of vertices and E is
a finite set of edges, where each edge e ∈ E consists of an ordered pair of vertices u, v ∈ V.
Ignoring for every edge the order of its vertices, we get an undirected graph that is called
the undirected graph of G. If e = (u, v) is an edge in a directed graph G, we say that e leaves
vertex u and enters vertex v. Also, the vertex u is the tail vertex of e = (u, v) and the vertex
v is the head vertex of e, with e being the outgoing edge of u and the incoming edge of v. For
an edge e = (u, v), we say that u dominates v. A source vertex is a vertex with no incoming
edges and a target (or sink) vertex is a vertex with no outgoing edges. A directed graph with
one source vertex s and one target vertex t is called st-digraph.

The indegree d−(v) of a vertex v is the number edges entering v and the outdegree d+(v)
of a vertex v is the number edges leaving v. In case of undirected graphs, the degree d(v) of a
vertex v is the number of its incident edges. A vertex v is called an isolated vertex if no edge
is incident on it. Throughout this work, n = |V| denotes the number of vertices and m = |E|
denotes the number of edges of a graph G = (V, E).

14

2.1 Graphs and Graph Types

2.1.3 Subgraphs

A graph G′ = (V ′, E ′) is said to be a subgraph of G = (V, E) or contained in G if V ′ ⊆ V and
E ′ ⊆ E . If V ′ = V, G′ is called a spanning subgraph of G. If E ′ contains exactly those edges of
G that connect two vertices in V ′ then G′ is said to be induced by V ′. If G′ is a subgraph of
G, then G − G′ = (V, E − E ′) denotes the difference of G and G′. Thus G − G′ is the subgraph
of G induced by removing all edges that are in G′. If V ⊆ V ′, then G − V ′ is the subgraph
of G induced by V − V ′. For a single vertex v ∈ V, the graph G − {v} denotes the subgraph
of G induced by V − {v}. A directed graph G′ = (V ′, E ′) is said to be a directed subgraph of
a directed graph G = (V, E) if V ′ ⊆ V and E ′ ⊆ E . If V ′ = V then G′ is called a spanning
directed subgraph of G. Figure 2.2(a) shows a graph of 6 vertices and 8 edges and one of its
subgraphs is represented in 2.2(b).

i

d

b

j

f

g
c

a
h

 5

 4

 2

 6

 1

 3

e

(a)

 4
 1

 2

 3

d

b c

a

e

(b)

Figure 2.2: A graph (a) and one of its subgraphs (b).

2.1.4 Paths and Cycles

A walk w in a graph G = (V, E) is an alternating sequence of vertices and edges v0, e1, v1,
e2, v2, · · · ek, vk begins and ends with two vertices v0, vk ∈ V and ei = (vi−1, vi) ∈ E , for i =
1, 2, · · · , k. This walk w connects v0 and vk and may also be denoted by w = (v0, v1, · · · , vk)
with the edges being evident by context. A walk w is called a path if all vertices are distinct.
The length of a path is the number of edges on that path. A walk is called a cycle (or circle)
if all vertices are distinct except for v0 = vk and k ≥ 3. A graph without any cycles (as
subgraphs) is called a acyclic graph (or forest).

A directed walk w in a directed graph G is a walk w = (v0, v1, · · · , vk) in the underlying
graph of G with ei = (vi−1, vi) ∈ E , for i = 1, 2, · · · , k. An undirected walk w in a directed
graph G is a walk in the underlying graph such that either ei = (vi−1, vi) ∈ E , or ei =
(vi, vi−1) ∈ E for i = 1, 2, · · · , k. A directed or undirected walk w is called a directed or
undirected path if all vertices are distinct. A directed walk w is called a directed cycle if all
vertices are distinct except for v0 = vk. A directed graph that does not have any cycles is
called a directed acyclic graph (DAG).

15

Chapter 2 Basic Concepts

A directed acyclic graph with exactly one source vertex is called a single source digraph.
Consequently, an acyclic digraph with exactly one target vertex is called a single target
digraph. A directed acyclic graph with exactly one source s and exactly one target t is called
an st-dag (or st-directed acyclic graph).

2.1.5 Graph Connectivity

A graph G = (V, E) is connected if every pair of vertices is connected by a path. A component
of G is a maximal connected subgraph of G. Thus, a disconnected graph has at least two
components. A cut vertex is a vertex whose removal increments the number of components.
Thus, if G is connected, at least one vertex has to be removed from G in order to disconnect
it. If no such cut vertex in G exists, G is called biconnected (or 2-connected) graph. A
pair of vertices u, v ∈ V is called a split pair if its removal disconnects the graph. The
components that remain after the removal of a split pair u and v are called split components
with respect to the vertices u and v. If no split pair in G exists, G is called triconnected
(or 3-connected) graph. A digraph is connected, biconnected or triconnected if its underlying
graph is connected, biconnected or triconnected, respectively. Figure 2.3 shows a disconnected
graph, which consists of two components.

 1

 2

 5 6 4

 3

 7 6

 8 9

 10

Figure 2.3: A disconnected graph with two components.

2.1.6 Complete and Bipartite Graphs

A graph G = (V, E) is said to be a complete graph if every vertex v ∈ V is adjacent to every
other vertex w ∈ V − {v}. A complete graph with n vertices is denoted by Kn. Figure 2.4(a)
shows the complete graph K4, where Figure 2.4(b) shows the complete graph K5. A bipartite
graph G = (V1, V2; E) is a graph (V, E) whose vertex set V is partitioned into two sets V1
and V2 such that every edge connects a vertex in V1 and a vertex in V2. If every vertex
in V1 is adjacent to every vertex in V2, G is a complete bipartite graph. Suppose n1 = |V1|
and n2 = |V2|, the complete bipartite graph is denoted by Kn1,n2 . Figure 2.4(c) shows the
complete bipartite graph K3,3.

16

2.1 Graphs and Graph Types

(a) The complete graph K4

(b) The complete graph K5

(c) The complete bipartite
graph K3,3

Figure 2.4: Example of complete and bipartite graphs.

2.1.7 Trees

A tree T is a connected graph without any cycles. Thus, a tree with n vertices has exactly
n − 1 edges. A rooted tree is a tree in which one of the vertices is distinguished from the
others. The distinguished vertex is called the root of the tree. The root of a tree is generally
drawn at the top. Figure 2.5 gives an example of a tree with 10 vertices where the root is
vertex 1.

Every vertex u in a tree T , other than the root vertex, is connected by an edge to some
other vertex p called the parent of u and u is called a child of p. We draw the parent of a
vertex above that vertex. For example, in Figure 2.5, vertex 1 is the parent of the two vertices
2 and 3, while vertex 2 is the parent of the two vertices 4 and 5. Also, the vertices 2 and 3
are children of vertex 1, while vertices 4 and 5 are children of 2. A leaf vertex is a vertex
in a tree that has no children. An internal vertex is a vertex rather than the root vertex,
that has one or more children. Thus, every vertex in a tree, rather than the root vertex, is
either a leaf or an internal vertex. In Figure 2.5, the leaf vertices are 3, 5, 8, 9, and 10, and
the internal vertices are 2, 4, 6 and 7. The height of a vertex u in a tree T is the length of
a longest path from u to a leaf. So, height of a tree is the height of its root. The depth of a
vertex u in a tree T is the length of a path from the root to u. In Figure 2.5, vertex 2 is of
height 2 and depth 1, and the tree has height 3.

 1

 2

 6

 4

 5

 8

 7

 3

 10 9

Figure 2.5: A tree with 9 vertices.

17

Chapter 2 Basic Concepts

2.1.8 Planar Graphs

A graph G = (V, E) is called planar if it can be drawn in the plane such that no two edges cross
each other except at their common endpoints. A planar embedding of a planar graph G is an
embedding with respect to a planar drawing. A graph with a given fixed planar embedding is
also called a plane graph. Given any drawing with respect to a planar embedding of a graph
G, a face of G is any connected region in the drawing surrounded by the edges of G. A face
of a plane graph is uniquely described by its surrounding edges. The one unbounded face of
a plane graph is called the outer face (or exterior face) and all other faces are called inner
faces (or interior faces). The boundary of a face is the set of edges in the closure of the face.

In general, a planar graph has many planar embeddings in the plane, and two embeddings
are said to be equivalent if the boundary of a face in one planar embedding always corresponds
to the boundary of a face in the other planar embedding. A plane embedding of a graph is
said to be unique if the planar embeddings are all equivalent.

2.1.9 Hierarchical Graphs

Let G = (V, E) be a directed acyclic graph. A layering (or levelling) of G is a topological
numbering φ of G, φ : V → Z, mapping the set of vertices V of G to integers such that
φ(v) ≥ φ(u) + 1 for every directed edge (u, v) ∈ E and H = (V, E , φ) is called a hierarchical
(layered or levelled) graph. If φ(v) = j, then v is a layer-j vertex and Vj = φ−1(j) is the jth

layer of G. If H has a layering φ with k being the largest integer such that Vk is not empty, H
is said to be a k-layer hierarchical graph and could be represented as H = (V1, V2, · · · , Vk; E).

A hierarchical graph H = (V, E , φ) is said to be proper if every edge e ∈ E connects only
vertices belonging to consecutive layers. If a hierarchical graph is not proper, it must have
at least one edge e = (v, w) ∈ E such that v ∈ Vi and w ∈ Vj with 1 ≤ i < j − 1 ≤ k − 1,
such an edge is called a long edge and it is said to be traversing the layers l with i < l < j.
Any non-proper hierarchical graph can be transformed into a proper hierarchical graph by
replacing every long edge with a path of short edges having a dummy vertex in every traversed
layer. Figure 2.6 shows an example of proper and non-proper hierarchical graphs.

In a hierarchical graph H = (V1, V2, · · · , Vk; E), the two layers V1 and Vk are the boundary
layers of H. If all source vertices are in layer V1 and all sink vertices are in layer Vk; in
this case H is called a boundary s-t hierarchical graph. A mapping α : V → R2 is called a
sketch and a boundary sketch β of H consists of an x-coordinate β(v) for each vertex v in
the boundary layers V1 and Vk of H. A sketch α of H extends the boundary sketch β if
αx(v) = βx(v) for each vertex v ∈ V1 ∪ Vk in the boundary layers of H.

2.1.10 Clustered Graphs

A clustered graph C = (G, T) consists of an undirected graph G and a rooted tree T such that
the leaves of the tree T are exactly the vertices of the undirected graph G. Each vertex v of T
(except the leaves) represents a cluster C(v) of the vertices of G that are leaves of the subtree
rooted at v. Note that tree T describes an inclusion relation between clusters. The height of

18

2.2 Drawing Styles

5

1

4

3

2

(a) A proper hierarchical graph

5

1

4

3

2

(b) A non-proper hierarchical graph

Figure 2.6: Example of proper and non-proper hierarchical graphs. Source vertices are in
black.

a cluster of vertex v of the tree T , denoted h(v), is defined as the depth of the subtree of T
rooted at v. The span of an edge (u, v) of the tree T is |h(u) − h(v)| where an edge of T of
span greater than one is called a long edge.

In a plane drawing of a clustered graph C = (G, T) (see Figure 2.7 [Fen97] as an example),
graph G is drawn as points and curves in the plane as usual. For each vertex v of T , the
cluster is drawn as a simple closed region R that contains the drawing of G(v), such that:

• The regions for all sub-clusters of R are completely contained in the interior of R.
• The regions of all other clusters are completely contained in the exterior of R.
• If there is an edge e between two vertices of V(v), then the drawing of e is completely

contained in R.

2.2 Drawing Styles

A drawing D of a graph G is a geometric representation of the graph in the plane where vertices
are represented by symbols such as shapes, circles, or points and edges are represented by
simple curves such as line segment connecting the symbols that represent the associated
vertices. In this section we introduce some important well-known drawing styles and related
terminology.

2.2.1 Planar Drawing

A drawing of a graph is planar if no two edges intersect in the drawing except at their
common end points. It is preferable to find a planar drawing of a graph if possible where
unfortunately not all graphs admit planar drawings.

19

Chapter 2 Basic Concepts

(a) A clustered graph in 3 dimensions

(b) 2-dimensional representation of the
cluster graph in drawing (a)

Figure 2.7: Example of a cluster graph.

To find a planar drawing of a given graph, one needs to test whether the given graph
is planar or not; this is called graph planarity testing. If the graph is planar, then finding
a planar representation of the graph is needed. Hopcroft and Tarjan [HT74], and Booth
and Lueker [BL76] developed linear-time algorithms for the graph planarity testing problem.
Chiba, Nishizeki, Abe and Ozawa [CNAO85], Cai, Han and Tarjan [CHT89] and Mutzel
[Mut92] gave linear-time algorithms for finding a planar representation of a planar graph.
A planar graph with a fixed planar drawing is called a plane graph. Recent work in planar
drawings is presented in [Ead08,GMZ09,Bie11,CG12]. Figure 2.8 shows a planar drawing in
2.8(a) and a non-planar drawing 2.8(b) of the same graph.

 b

 e

 a

 f

 d c

(a)

 b f

 a

 c d

 e

(b)

Figure 2.8: A planar drawing (a) and a non-planar drawing (b) of the same graph.

2.2.2 Straight-Line Drawing

A straight-line drawing is a drawing of a graph in which all edges of the graph are drawn as
straight-line segments (see Figure 2.9(a)). Wagner [Wag36], Fáry [Far48] and Stein [Ste51]
independently proved that every planar graph has a straight-line representation. Several
researchers intensively investigated the problem of drawing planar graph with straight-line
edges [DETT94,GR07,Kar09,BDD+10].

20

2.2 Drawing Styles

2.2.3 Polyline Drawing

A polyline drawing [GM98, ZS08, AFT11] is a drawing of a graph in which each edge of
the graph is represented by a polygonal chain. A polyline drawing of a graph is shown in
Figure 2.9(b). The point at which an edge changes its direction in a polyline drawing is called
an edge bend. Polyline drawings provide great flexibility since they can approximate drawings
with curved edges. However, edges with more than two or three bends may be difficult to
follow for the eye. Note that a straight-line drawing is a special case of a polyline drawing,
where edges are drawn without bends.

(a)

(b)

Figure 2.9: A straight-line drawing (a) and a polyline drawing (b).

2.2.4 Hierarchical Drawing

A hierarchical drawing of a directed acyclic digraph is a downward (or upward) straight-line
(or polyline) drawing where the vertices and bends are constrained to lie on a set of horizontal
lines, called layers (see Figure 2.10(a)). In some applications the assignment of vertices to
layers is given, e.g., by the semantics of the graph. Such graphs are called hierarchical (or
layered) graphs. Edges in hierarchical drawing connect vertices belonging to different layers
only. An edge is a short edge if it connects vertices belonging to consecutive layers, otherwise
it is a long edge. Each long edge is broken into a chain of short edges by using a dummy vertex
on each of the intermediate layers that are passed. Dummy vertices have all the attributes
of normal vertices except that dummy vertices are represented as bends.

In a hierarchical drawing of a directed acyclic graph G in the plane the vertices of every
layer Vj , 1 ≤ j ≤ k, are placed on a horizontal line Lj = {(x, k − j) | x ∈ R}, and every edge
(u, v) ∈ E , u ∈ Vi, v ∈ Vi+1, 1 ≤ i < j ≤ k, is drawn as a monotonic decreasing curve between
the lines Li and Lj . A hierarchical drawing of G is called hierarchical planar if no two edges
cross except at common endpoints. A hierarchical graph is a hierarchical planar graph if it
has a hierarchical planar drawing. A hierarchical graph obviously is hierarchical planar if
and only if all its components are hierarchical planar. A graph that is not hierarchical planar
is usually called a non-hierarchical planar graph. The general framework of drawing graphs
hierarchically is presented in detail in Section 3.1.

21

Chapter 2 Basic Concepts

2.2.5 Convex Drawing

A convex drawing is another way for drawing planar graphs by drawing it with convex poly-
gons, i.e., a planar straight-line drawing such that all internal face boundaries are convex poly-
gons. Figure 2.10(b) shows a convex drawing. Although not every graph has a convex draw-
ing, every 3-connected plane graph has such a drawing [Tut60]. Several algorithms are known
for finding a convex drawing of a plane graph [CYN84,Kan93,CGT96,RB06,BMNR10,Rot12].

(a)

(b)

Figure 2.10: A hierarchical drawing (a) and a convex drawing (b).

2.2.6 Orthogonal Drawing

An orthogonal drawing is a drawing of a plane graph in which each edge is drawn as a chain
of horizontal and vertical line segments (see Figure 2.11(a).) Orthogonal drawings have
attracted much attention due to their numerous applications in circuit layouts, database
diagrams, entity relationship diagrams etc. Many results have been published in recent
years on orthogonal drawings [Sto84,Tam87,TTV91,BK94,PT95,Bie96,PT97,Bie98,ESW00,
BDLN05,BKRW11,DKL+12,KT12]. Clearly, each vertex in an orthogonal drawing is drawn
as a point. Obviously a graph having a vertex of degree 5 or more has no orthogonal drawing,
because at most four edges can be incident to a vertex in an orthogonal drawing.

A box-orthogonal drawing of a graph is a drawing such that each vertex is drawn as a
possibly degenerate rectangle, called a box, and each edge is drawn as a sequence of alternate
horizontal and vertical line segments, as illustrated in Figure 2.11(b). Every plane graph has
a box-orthogonal drawing.

2.2.7 Rectangular Drawing

An orthogonal drawing is called a rectangular drawing if it has no bends and each face is
drawn as a rectangle. Figure 2.11(c) shows a rectangular drawing of a graph. A rectangular
drawing of a plane graph G is a drawing of G in which each vertex is drawn as a point,
each edge is drawn as a horizontal or vertical line segment without edge crossings, and each

22

2.2 Drawing Styles

face is drawn as a rectangle. Not every plane graph has a rectangular drawing. Thomassen
[Tho84], and Rahman, Nakano and Nishizeki [RNN02] established necessary and sufficient
conditions for a plane graph of the maximum degree three to have a rectangular drawing.
Linear-time algorithms for finding rectangular drawings of such plane graphs are also known
[BS88, RNN98, RNN02]. Recently Miura, Haga and Nishizeki [MHN05, Nis07] reduced the
problem of finding a rectangular drawing of a plane graph of the maximum degree four to a
perfect-matching problem. A planar graph G is said to have a rectangular drawing if at least
one of the plane embeddings of G has a rectangular drawing.

A box-rectangular drawing of a plane graph G is a drawing of G on the plane such that each
vertex is drawn as a (possibly degenerate) rectangle, called a box, and the contour of each face
is drawn as a rectangle, as illustrated in Figure 2.11(d). If G has multiple edges or a vertex
of degree five or more, then G has no rectangular drawing but may have a box-rectangular
drawing. However, not every plane graph has a box-rectangular drawing.

(a)

(b)

(c)

(d)

Figure 2.11: An orthogonal drawing (a), a box-orthogonal drawing (b), a rectangular drawing
(c), and a box-rectangular drawing (d).

2.2.8 Grid Drawing

A drawing of a graph in which vertices and bends are located at grid points of an integer grid
is called a grid drawing (as illustrated in Figure 2.12.) The grid drawing approach overcomes
the following problems in graph drawing with real number arithmetic [Rah99]:

• When the embedding has to be drawn on a raster device, real vertex coordinates have
to be mapped to integer grid points, and there is no guarantee that a correct embedding
will be obtained after rounding.

23

Chapter 2 Basic Concepts

• Many vertices may be concentrated in a small region of the drawing. Thus the embed-
ding may be messy, and line intersections may not be detected.

• One cannot compare area requirement for two or more different drawings using real
number arithmetic, since any drawing can be fitted into any area using magnification.

The size of an integer grid required for a grid drawing is measured by the size of the
smallest rectangle on the grid that encloses the drawing. The width w of the grid is the
width of the rectangle and the height h of the grid is the height of the rectangle. The
grid size is usually described as w × h. Drawing a plane graph on a grid of the minimum
size is a very challenging problem, since it is a recommended drawing criterion in many
real applications such as VLSI designs. Several results have been devoted to this direction
[Tam87,FPP90,Sch90,BW98,CN98,RNN98,BCMW04,Kar09].

(a)

(b)

Figure 2.12: A straight-line grid drawing (a) and a rectangular grid drawing (b).

2.2.9 Visibility Drawing

In a visibility drawing (or visibility representation) of a planar graph vertices are represented
as horizontal segments and edges as vertical segments such that each edge segment has its
end points on the segments associated with its incident vertices and does not cross any
other vertex segment. Otten and van Wijk [OW78] introduced this representation, which
has applications to circuit schematics, and showed that every planar graph admits one. Note
that instead of using horizontal segments for vertices representations, we can use rectangle
or triangle segments. Some important results about visibility drawing may be found in
[TT86,KLTT97,LE99]. In Figure 2.13, a graph and its visibility representations are presented.

2.2.10 Upward Drawing

An upward drawing of a directed acyclic graph G is a drawing of G such that each edge is
drawn as a curve monotonically increasing in the vertical direction. A digraph is upward
planar if it admits a planar upward drawing (see Figure 2.14(a)). Figure 2.14(b) shows an
upward drawing, which is not planar and Figure 2.14(c) shows a planar drawing which is not
upward.

24

2.3 Drawing Aesthetic Criteria

h

f
c

i

g

e

a b

d

(a)

 h

a

d

c

i

f

b

g

e

(b)

c

f

i

h g

d e

a

b

(c)

Figure 2.13: A plane drawing of a graph G (a), a visibility drawing G (b), and 2-visibility
drawing of G (c).

(a)

(b)

(c)

Figure 2.14: An example of upward drawings: an upward planar drawing (a), an upward
non-planar drawing (b), and a non-upward planar drawing (c).

2.3 Drawing Aesthetic Criteria

There are infinitely many drawings for a graph. In drawing a graph, we would like to take into
account a variety of properties. For example, we may be interested in a planar orthogonal
drawing of a graph corresponding to a VLSI circuit such that the number of bends in the
drawing is as small as possible, because bends increase the manufacturing cost of a VLSI
chip, see [Wid83,BC87,Nis07, IRW99,JG09]. To avoid wasting valuable space in the chip, it
is important to keep the area of the drawing small. Even when we are motivated to obtain
only a nice drawing, we cannot precisely define what a nice drawing is, and hence we consider
some properties of the drawing.

25

Chapter 2 Basic Concepts

The most successful approach to developing algorithms satisfying the readability require-
ments uses the idea of drawing aesthetics. An attempt is made to identify those properties
(aesthetics) which make a particular drawing style successful in representing specific class of
graphs in an easily understood way. See the two drawings presented in Figure 2.15 [DETT99].
A simple example of a drawing aesthetic might be "edges should be drawn as straight lines
of the same length". A drawing is accepted if it satisfies, or maximizes compliance with the
chosen aesthetics.

(a)

 customer car part

dealer factory

(b)

Figure 2.15: Example of planar orthogonal drawings: an electrical circuit schematic (a) and
an entity-relationship diagram (b).

Aesthetics for graph layout can be divided into three categories [EL93]:

1. Global criteria: such as minimizing the number of edge crossings, maximizing sym-
metry, or averaging the graph edge length.

2. Correctness criteria: such as placing the employer above the employees in an orga-
nization tree drawing, or vertex v should be on the right of vertex u.

3. Preferred criteria: which express the preferences of a specific user at a specific time.
These criteria may include placing a particular vertex in the centre of the page, or using
a particular aspect ratio.

The choice of a set of drawing aesthetics is crucial. If the constraints imposed by the
selected aesthetics are too loose, there may be no unique drawing, while if they are too
severe, the situation may arise that no drawing satisfies all the aesthetics simultaneously.
In the former case, additional constraints are needed to uniquely determine a drawing. In
the latter case, the aesthetics conflict and a compromise between them is required, so that
the drawing approximately satisfies all the aesthetics. An optimum choice (in this sense)
prescribes a set of aesthetics, and assigns a relative importance to each, so that a unique
drawing results [Ost96]. Unfortunately, there is no clear ranking among these criteria which
would be valid for all possible applications.

In the following, we introduce some properties of graph drawings with a list of some com-
monly used aesthetics criteria together with examples of their practical importance. Note
that these criteria depend entirely or mostly on the structure of the graph, so algorithms for

26

2.3 Drawing Aesthetic Criteria

optimizing these criteria can be devised easily and plugged in as extension to improve the
output of a graph drawing system. Commonly adopted aesthetics (see for example, the stud-
ies in [STT81, BFN85, PCJ96, Pur00, BT01, Pur02, SP08, DLF+09, HvW09, PPP12]) include
the following items:

• Readability

The information contained in the graph should be easy to read, i.e. it should effec-
tively display the information of interest to the user. Most drawing techniques have
approached this property by simultaneously enforcing readability criteria such as:

– The drawing should exhibit structural properties of the graph, which are of par-
ticular interest to the user (for example, symmetries in the graph).

– The drawing should maximize the angle between adjacent or crossing edges.
– Vertices should be distributed uniformly in the drawing area with adequate vertex

resolution, defined as the minimum distance between vertices in the drawing. Pairs
of adjacent vertices should have similar separations.

• Efficiency

Computational efficiency is an important property of any graph drawing algorithm.
Interactive applications require real-time response, even for large drawings. Hence
efficiency is a crucial issue for any practical graph drawing technique. The drawing
algorithms should complete the display in a time acceptable to the user, typically within
two seconds for an interactive use [Shn86].

• Uniqueness

A graph should be drawn in a unique representation or invariant to its structure. In
other words, a drawing of a digraph is independent of other conditions than its struc-
ture. This is a recommended convention in graph drawing since this helps the user to
deal directly with the unique drawing instead of spending time in comparing multiple
drawings of the same graph to select one of them.

• Symmetry maximization

If a graph contains symmetrical information then it is important to reflect this symme-
try in its layout. Technical drawings often contain hidden symmetries. Unfortunately,
displaying symmetries is not an easy task. Symmetry is an important aesthetic cri-
terion in graph drawing. A symmetry of a two-dimensional drawing is an isometry
of the plane that fixes the drawing [HE03]. There are two types of two-dimensional
symmetry, rotational symmetry and reflectional symmetry. Rotational symmetry is a
rotation about a point where reflectional symmetry is a reflection about an axis. This
aesthetic can be further formalized by introducing a mathematical model of symmetries
in graphs and drawings (see, e.g., [LNS85, Ead88, PKL04, HL06, BL10]). For example,
Figure 2.16 represents two different drawings of the same graph. The second drawing in
Figure 2.16(b) gives a symmetric drawing of the considered graph, whereas the drawing
in Figure 2.16(a) does not.

27

Chapter 2 Basic Concepts

A

B

C

D

E
F G

H

I

K

J

(a) A non-symmetric drawing

K

A

H D

C

J

B

I

E G F

(b) A symmetric drawing

Figure 2.16: Two drawings of the same graph considering the symmetry criterion.

• Area minimization

If the used area of the drawing is large, then we have to use many pages, or we must
reduce the resolution, so either way the drawing becomes unreadable. Therefore, one
major objective is to ensure a small area. Minimizing the area of a layout is again crucial
for VLSI schematics, but it is also a general aesthetics criterion: a picture looks much
better if the vertices and edges fill the space with homogeneous density. The ability to
construct area-efficient drawings is essential in some practical visualization applications,
where saving screen space is so important, see, for example, [PL95, MDV06, YYM12].
This aesthetic is meaningful only if the drawing convention adopted prevents drawings
from being arbitrarily scaled down (e.g., grid drawing, or straight-line drawing where
any two vertices have distance at least one).

The area of a drawing can be formally defined in different ways. For example, we can
define it as the area of the smallest convex polygon covering the drawing (convex hull),
or as the area of the smallest rectangle with horizontal and vertical sides covering the
drawing. In Figure 2.18 we give two drawings of the same graph. The drawing in
Figure 2.18(b) has a smaller area than the drawing in Figure 2.18(a).

• Crossing minimization

If too many edges cross each other, the human eye cannot easily find out which vertices
are connected by an edge. If a graph can be drawn without edge crossings (i.e. planar),
then this is very often preferable to a drawing with edge crossings. Crossing minimiza-
tion is also an important technical criterion. In circuit schematics, wire crossings should
be avoided as much as possible to reduce the number of layers.

In Figure 2.17 we give two drawings of the same graph. The drawing in Figure 2.17(a)
has many edge crossings and it is a difficult drawing to follow and understand, where
the drawing in Figure 2.17(b) has no edge crossings, which is more pleasing and easy
to understand.

28

2.3 Drawing Aesthetic Criteria

5

2

1

6

7 8 4

10

9
3

11

(a) A drawing with many
crossings (non-planar drawing)

3

6

1

8 7

9

5

10 4

11

2

(b) A drawing without crossings
(planar drawing)

Figure 2.17: Two drawings of the same graph considering the edge crossings criterion.

• Edge bends minimization

At a bend, the drawing of the edge changes direction, and hence a bend on an edge
increases the difficulties of following the course of the edge. So, both the total number
of bends and the number of bends per edge should be kept small. This is an important
aesthetics criterion for orthogonal layouts because the human eye can much more easily
follow an edge with none or only a few bends than an edge widely zigzagging through
the picture. In VLSI production, bends in wires are potential spots of trouble, so
minimizing bends is also an important technical criterion.

Figure 2.18 represents two orthogonal drawings of the same graph. Figure 2.18 shows
a drawing with 8 edge bends while the drawing in 2.18 has only 5 edge bends which is
the minimum number of edge bends.

(a) An orthogonal drawing

(b) An orthogonal drawing with
minimum number of bends

Figure 2.18: Two orthogonal drawings of the same graph considering the number of bends
and area criteria.

29

Chapter 2 Basic Concepts

• Angular resolution maximization

Angular resolution is measured by the smallest angle between adjacent edges in a draw-
ing. Higher angular resolution is desirable for displaying a drawing on a raster de-
vice. The angular resolution aesthetic is especially relevant for straight-line drawings,
see [DEG+11, ELMN11, HS12]. See the example presented in Figure 2.19. Some real
needs for this aesthetic criterion are: if a graph is displayed on a video (screen with
low resolution), it is required that the edges are as far apart as possible. In numerics,
simulations using finite element nets behave better if the net drawing have large angle
values.

(a) A drawing with poor angular
resolution

(b) A drawing of the same graph in (a) with a
good angular resolution [LY05]

Figure 2.19: Two drawing of the same graph considering the angular resolution criterion.

• Aspect ratio

The aspect ratio of a drawing is defined as the ratio of the length of the longest side
to the length of the shortest side of the smallest rectangle with horizontal and vertical
sides covering the drawing. A drawing with a high aspect ratio may not be conveniently
placed on a workstation screen, even if it has modest area. Hence it is important to
keep the aspect ratio small ideally and to obtain small area for any aspect ratio in
a given range. This would provide the flexibility of fitting drawings into arbitrarily
shaped windows.

• Edge length minimization:

In transportation networks (like railways networks), the length of roads (edges) should
be kept as minimal as possible. Also, in VLSI schematics, edges correspond to wires
which carry information from one point on the chip to another. To do this fast, wires
should be short.

30

2.4 Summary

• Uniform spatial distribution of the vertices

Distributing the vertices of the graph uniformly over the area of the drawing considers
an aesthetically pleasing drawing that readily and prettily conveys the graph structure.

The above-mentioned aesthetics are naturally associated with optimization problems. How-
ever, most of these problems are computationally difficult. So, many approximation strate-
gies, heuristics, and meta-heuristics have been devised and actually applied.

2.4 Summary

This chapter introduces basic concepts in graph theory and graph drawing and its main
intention is to provide some essential and notational conventions. The first section gives
some general notation about graphs that is also valid for more enhanced models as directed,
planar graphs, and hierarchical graphs. The second section deals with the basic style in
graph drawing, like orthogonal, straight-line, and upward drawing. Finally, the most well-
known drawing aesthetic pleasing criteria and properties are treated in the last section. The
notations of this chapter are mainly taken from [DETT94,DETT99,FH01,NR04].

31

3
Hierarchical Drawing of

Directed Graphs

Every block of stone has a statue inside it and
it is the task of the sculptor to discover it.1

Directed graphs are widely used in applications to model dependency relationships between
objects. Examples of these applications include PERT diagrams, organizational charts, VLSI
circuits layouts, and subroutine-call graphs, (for more details about the applications, see
[DETT99, Chapter 9], [KW01, Chapter 5], [Sug02, Chapter 6], [NR04, Chapter 1]). Directed
acyclic graphs are usually represented with polyline (or straight-line if possible) downward
(or upward) drawing convention.

This chapter presents the standard hierarchical approach, named Sugiyama framework
[STT81], for producing straight-line drawings of directed graphs. In a hierarchical drawing
approach, the vertices are placed on parallel horizontal lines and the edges are drawn, keeping
a uniform geometric direction, e.g., from top to bottom. Then the final drawing visualizes
a common direction of information flow stored by the structure of the original input graph.
This approach is highly intuitive and can be applied to any directed graph. In the area of
graph drawing, Sugiyama framework is one of the most commonly used drawing methods for
graphs.

1Michelangelo.

33

Chapter 3 Hierarchical Drawing of Directed Graphs

The Sugiyama framework consists of four main steps, where each step is considered a
standalone problem and received a lot of attention. In this chapter, we introduce these four
steps as optimization problems, the state-of-the-art solution techniques.

Furthermore, the general way of using random hierarchical graphs is to generate random
directed graphs and then transfer these generated graphs to some layering technique to get
the hierarchical form of these graphs. This way of generating hierarchical graphs is not
accurate since there is a gap in the edge density ratio of the generated graphs and their
hierarchical ones. We introduce the idea of generating random hierarchical graph directly
instead of starting with directed graphs. The proposed techniques for generating random
hierarchical graphs covers the gap of edge density.

The chapter is organized as follows. A brief introduction to the Sugiyama approach is
given in Section 3.1. The four steps of the Sugiyama approach, including the definition of
each problem beside the most considered solution techniques are introduced in Sections 3.2,
3.3, 3.4, and 3.5. The final section, Section 3.7, contains the ideas of the need to generate
random hierarchical graphs and also the proposed algorithms for the generation phase.

3.1 Sugiyama Approach

The first attempts on drawing directed graphs in hierarchical form are represented by Warfield
[War77] and Carpano [Car80]. Nevertheless, the most common and well-known approach for
hierarchical drawings of directed graphs, level graphs, and general arbitrary directed graphs
is presented in 1981 by Sugiyama, Tagawa and Toda [STT81] and named the Sugiyama
approach. Several subsequent methods by Gansner, Koutsofios, North, and Vo [GKNV93],
Eades and Sugiyama [ES91], Messinger, Rowe, Lawrence, and Henry [MRH91], Paulisch
and Tichy [PT90], Gschwind and Murtagh [GM89], Gansner, North, and Vo [GNV88], and
Messinger [Mes88], are closely related.

The Sugiyama approach and its subsequent methods are highly intuitive and can be applied
to any directed graph, regardless of its graph-theoretic properties. Thus, they are attractive
in practice, and variations of them may be found in several existing systems. Figure 3.1 shows
an example of drawing directed graphs in a hierarchical form using the Sugiyama approach.

As it has been mentioned in Chapter 2, we re-assume that the hierarchical graphs have an
overall flow or direction from top to bottom. This will be emphasized by drawing most of
the edges in one specific direction. Also, edges will be represented as straight-line segments
and long edges will be represented as a polyline (or straight-line).

Furthermore, the drawing should achieve some readability aesthetic criteria such as:

1. Edge crossings should be kept as few as possible.
2. Edges with upward direction should be avoided.
3. Long edges should be avoided as possible.
4. Vertices should be uniformly distributed on their layers line.
5. Dummy vertices should be vertically aligned.
6. Aspect ratio of the drawing area should be reasonable.
7. The drawing area should be minimized.

34

3.1 Sugiyama Approach

14

9
3

15

2

10
12

13

7

6

11

8

1
5

4

(a)

2

3

1

4

5 7 4

14

9

3 15

12

13 6

11

1

2

10

8

(b)

Figure 3.1: A directed graph drawing (a) and its hierarchical drawing using the Sugiyama
approach (b).

It is important to notice that achieving all of the above aesthetic criteria together in one
drawing is generally impossible, because some of them are in conflict with each other. For
example, aligning the dummy vertices of long edges vertically may increase the drawing
width and consequently the area. Moreover, it is also very difficult to produce a drawing that
satisfies some of these criteria simultaneously.

The Sugiyama approach for producing hierarchical drawing of directed graphs consists of
the following main four steps:

• Step 1: Cycle Removal
Firstly, the algorithm receives a directed graph G = (V, E) as input. Then, as few
edges as possible that make the graph acyclic are temporarily reversed to make the
graph acyclic. This allows to draw all edges in one direction (downward) which is very
important for the next step. At the end of the algorithm, the reversed edges are reversed
again in order to obtain their original orientation. Techniques for removing cycles in
directed graphs are discussed in Section 3.2.

• Step 2: Layer Assignment
In this step, the algorithm receives as input a directed acyclic graph (dag) G = (V, E)
after the cycle removal step. The set of vertices V of are partitioned into a finite set of
layers V1, V2, · · · , Vk, such that, if (u, v) is an edge with u ∈ Vi and v ∈ Vj , then i < j.
Next, the layered graph is transferred into a proper layered graph such that, if (u, v)
is an edge with u ∈ Vi and v ∈ Vj , then i = j + 1. This is done by inserting dummy
vertices along the edges that span more than two layers, i.e. i < j − 1 for edge (u, v),
u ∈ Vi and v ∈ Vj . In the final drawing, the set of vertices in layer Vi will have the
same y-coordinate equals to i. The output of this step is a layered hierarchical graph
H = (V1, V2, · · · , Vk; E). This step is described in details in Section 3.3.

35

Chapter 3 Hierarchical Drawing of Directed Graphs

• Step 3: Crossing Minimization
The proper layered hierarchical directed graph H = (V1, V2, · · · , Vk; E) produced in the
layer assignment step is the input for this step. Since the orders of the vertices on the
layers determine the topology of the final drawing, these orders are computed in such a
way that the number of crossings is kept as small as possible. The output of this step is
a new proper layered directed graph in which an order is specified for the vertices in each
layer. Some of the well-known algorithms used for minimizing crossings in hierarchical
graphs, including existing techniques and a new proposed efficient barycenter algorithm,
are represented in details in Section 3.4.

• Step 4: Horizontal Coordinate Assignment
In this step, the algorithm receives the proper layered hierarchical directed graph H =
(V1, V2, · · · , Vk; E), produced in the previous step, as input where the final x-coordinate
x(v) for every vertex v ∈ Vi, i = 1, 2, · · · , k are computed. The x-coordinates of the
vertices have actually been computed in the layer assignment step. The x-coordinates
are computed w.r.t. the ordering determined in the crossing minimization step. Then,
each edge is represented as a straight-line segment. Since dummy vertices have no
geometrical representation, each long edge may be represented as polyline or polygonal
line. In this step, several aesthetic criteria could be taken into account. For example,
aligning the dummy vertices of a long edge reduces the number of bends in the final
drawing, or displacing the vertices horizontally emphasizes symmetrical drawing of the
graph, and also the area of the drawing could be minimized if the vertices could be
packed. Some algorithms for this step are represented in Section 3.5.

It is not always necessary to perform all the four steps of the Sugiyama approach. In
some cases, the given graph is directed acyclic, then there is no need to implement the cycle
removal step and the approach starts directly with implementing the layer assignment step.
In other cases, the layering is given together with the graph, i.e. the given graph is a directed
acyclic layered graph, then only the last two steps have to be implemented. Furthermore,
the last two steps in many cases are combined and implemented together.

The Sugiyama approach could also be applied to undirected graphs by representing ar-
bitrary direction to each edge and then transferring this directed graph to the four steps.
Finally, the edges directions are removed from the final drawing keeping the graph edges
undirected as given in the original representation of the graph. A detailed example showing
the output drawing after each step of the Sugiyama approach is shown in Figure 3.2.

3.2 Cycle Removal

In many applications, such as dependency graphs, the input directed graphs are acyclic, where
in other applications the input graph could contain cycles. So, we first have to obtain acyclic
directed graph by reversing those edges that make cycles in the directed graph. Then we
transfer the graph to the next steps of the Sugiyama approach. Lastly, the graph is rendered
with the reversed edges to point in their original direction.

36

3.2 Cycle Removal

3
7

1

5

6 8

4

2

(a) A directed graph drawing

3
7

1

5

6 8

4

2

(b) Drawing after the cycle
removal step

6 8

3 5

7

4

2 1

(c) Drawing after the layer
assignment step

6 8

5

7

3

2 1

4

(d) Drawing after the crossings
minimization step

6 8 7

4 5 3

2 1

(e) Drawing after the horizontal
coordinates assignment step

8 7

4 5 3

2 1

6

(f) Final drawing of the original
graph after retrieving the

direction of the reversed edges

Figure 3.2: Example of the Sugiyama approach. A drawing of the directed graph in (a) and
the drawings produced after each step of the Sugiyama approach (b)-(e). Dummy
vertices are represented in unfilled small circles

The set of edges whose removal from a directed graph makes it acyclic is known as a feedback
arc set (FAS). The problem of reversing a minimum set of edges is known as feedback arc set
problem: find a minimum set Ef ⊂ E such that the graph (V, E \ Ef) contains no cycles. An
alternative problem is the maximum acyclic subgraph problem: find a maximum set Ea ⊂ E
such that the graph G = (V, Ea) contains no cycles. Unfortunately, both problems are N P-
hard [Kar72,GJ79] and thus, efficient heuristics are needed. In the following subsections, we
present some algorithms for the cycle removal problem.

3.2.1 Vertices Ordering Heuristics

Suppose the set of vertices V of a directed graph G = (V, E) has an ordering o : V →
{1, 2, · · · , |V|}. The easiest heuristic for the maximum acyclic subgraph problem is to get an
arbitrary ordering of the graph vertices and then delete the edges (u, v) with o(u) > o(v).
It is possible to use a given ordering, or use an ordering computed by applying breadth first
search [BJG08] or depth first search [BJG08] to the graph. These heuristics do not allow any
quality guarantees to be given, but they are fast [BM01].

Another fast and simple greedy heuristic (Algorithm 3.1) is introduced by Berger and Shor
[BS90]. The idea of this heuristic is to delete for every vertex v ∈ V either its set of incoming
edges N−(v) = {(u, v) | (u, v) ∈ E} or the outgoing ones N+(v) = {(v, w) | (v, w) ∈ E},
N(v) = N−(v)∪N+(v). Taking always the smaller set of N−(v) and N+(v) leads to an acyclic
set FAS with size |FAS| ≤ 1

2 |E|. The greedy heuristic runs in linear time of O(|E| + |V|).

37

Chapter 3 Hierarchical Drawing of Directed Graphs

Algorithm 3.1: Greedy Heuristic Cycle Removal
Input : A directed graph G = (V, E);
Output: A vertex sequence S of G;

1 S = ∅;
2 foreach v ∈ V do
3 if

∣∣N+(v)
∣∣ ≥ |N−(v)| then

4 append N+(v) to S;
5 else
6 append N−(v) to S;
7 delete N(v) from G;

Based on the observation that edges incident edges to source or target vertices cannot be
part of a cycle, an enhanced greedy heuristic (Algorithm 3.2) is introduced [ELS93]. The only
difference between the greedy heuristic and the enhanced greedy heuristic is that the enhanced
one processes the vertices in a special order. Hence, the output of the enhanced greedy
heuristic is acyclic as well and it computes an acyclic edge set FAS with an upper bound
|FAS| ≤ |E|

2 + |V|
6 and it needs O (|E|) running time.

Sander [San99] suggested a more elaborate heuristic but similar version heuristic of the
enhanced greedy heuristic. In the proposed heuristic, we choose the next vertex v ∈ V based on
strongly connected components. Although promising practical results are reported, however,
the computational time is still with the same complexity O (|E| · |V|) [Bac09].

Algorithm 3.2: Enhanced Greedy Heuristic Cycle Removal
Input : A directed graph G = (V, E);
Output: A vertex sequence S of G;

1 S = ∅;
2 while G is not empty do
3 while G contains a sink v do
4 add N−(v) to S;
5 delete v and N−(v) from G;
6 while G contains a source v do
7 add N+(v) to S;
8 delete v and N+(v) from G;
9 if G is not empty then

10 let v be a vertex in G with a maximum value
∣∣N+(v)

∣∣ − |N−(v)|;
11 add N+(v) to S;
12 delete v and N(v) from G;

38

3.3 Layer Assignment

3.2.2 Randomized Heuristic

Berger and Shor [BS90] presented a randomized version of the greedy heuristic (Algorithm 3.1),
which is the randomized greedy heuristic. The only difference is that: in the randomized
version, the vertices are ordered randomly at the beginning. They proved that the expectation
value |FAS| ≤ 1

2 + Ω
(

1√
deg(G)

)
· |E| is valid as the worst-case bound on |FAS| for their

deterministic heuristic.

3.2.3 Cycle Breaking Heuristic

Another way of solving the minimum FAS problem is to build the FAS edge by edge and
choosing those edges that create cycles, instead of focusing on computing linear orderings of
the vertices which provide FAS. A simple heuristic based on this idea is: starting with two
empty sets S and T , we scan all edges one by one. For each edge e ∈ E , if S ∪ {e} is acyclic,
then e is added to S, otherwise e will be added to T . At the end of this process, it is clear
that both sets S and T are acyclic, and the smaller one of S and T contain an FAS which
has at most half of the edges of the directed graph. Note that T is a minimal FAS, while S
might not be.

In the dot system [GKNV93], Gansner, Koutsofios, North, and Vo have introduced a heuris-
tic related to this approach. It takes one non-trivial strongly connected subgraph component
of the directed graph at a time, in some arbitrary order. Within each component it performs
a depth-first traversal and adds to the FAS an edge which participates in a maximum number
of cycles. This is repeated until there are no more non-trivial strongly connected components.
It has been reported in [GKNV93] that this heuristic works well in the experiments. The
best-known approximation algorithm achieves a performance ratio O(log |V| log log |V|) and
is presented by Even, Naor, Rao, and Schieber [ENRS00].

3.2.4 Exact Algorithm

For an exact Integer Linear Programming (ILP) approach to the minimum FAS problem,
Saab proposed a divide-and-conquer algorithm [Saa01]. Also, Grötschel, Jünger and Reinelt
[GJR85] and Rienelt [Rei85] introduced a study of the facial structure of the acyclic subgraph
polytope which can be used for finding the minimum FAS by a branch-and-cut algorithm.

3.3 Layer Assignment

The main goal of this step is to assign a y-coordinate to each vertex in an directed acyclic
graph G = (V, E). A layering φ of G is a partitioning of the set of vertices V into a finite
number k of subsets (called layers) V1, V2, · · · , Vk, i.e. V =

⋃k
i=1 Vi, such that the vertices of

every layer Vj , 1 ≤ j ≤ k, are placed on a horizontal line Lj = {(x, k − j) | x ∈ R}, and every
edge (u, v) ∈ E , u ∈ Vi, v ∈ Vj , 1 ≤ i < j ≤ k, is drawn as a monotone decreasing curve
(normally straight-line segment) between the lines Li and Lj , as shown in Figure 3.3. The

39

Chapter 3 Hierarchical Drawing of Directed Graphs

produced hierarchical graph H = (V, E , φ) is also called a k-layered directed graph and could
be represented as H = (V1, V2, · · · , Vk; E). The span s(e) of an edge e = (u, v) with u ∈ Vi

and v ∈ Vj is j − i or y(v) − y(u). If no edge in the hierarchical has a span greater than one
then the hierarchical graph is proper.

There are three important aesthetic criteria requirements which should be kept when a
layering method is considered:

1. The hierarchical graph should be compact. Compactness can be achieved by minimizing
the width and the height of the graph. The width of a hierarchical graph is the number
of vertices in the longest layer, that is, max1≤i≤k|Vi|, and the height is the number of
layers k. A simple algorithm to compute a layering with minimum height is given in
Section 3.3.1 and another one for compute a layering within a given width is given in
Section 3.3.2. Unfortunately, finding a layering by minimizing the height with respect
to a given width is N P-hard [CG72,GJ79].

2. The hierarchical graph should be proper. This can be easily achieved by introducing
dummy vertices into the layering for every long edge (u, v) with u ∈ Vi and v ∈ Vj

where i < j − 1. In other words, we replace the long edge (u, v), u ∈ Vi, v ∈ Vj , with
the path (u, v1, v2, · · · , vl, v) where a dummy vertex vp, i + 1 ≤ p ≤ j − 1, is inserted in
each intermediate layer Vi+p. Figure 3.3 shows an example of breaking long edges using
dummy vertices. Most of the algorithms used in the subsequent steps of the Sugiyama
approach need to have proper layering.

3. The number of dummy vertices should be kept minimum. There are three reasons for
minimizing the number of dummy vertices. Firstly, the running time (of most of the
algorithms) of the next steps of the Sugiyama approach depends on the total number of
vertices including the dummy ones. Secondly, bends in the drawing will only occur at
dummy vertices, so a small number of dummy vertices means a small number of edge

L5 y=5

L4 y=4

L3 y=3

L2 y=2

L1 y=1

(a)

L5 y=5

L4 y=4

L3 y=3

L2 y=2

L1 y=1

(b)

Figure 3.3: An example of adding dummy vertices. The hierarchical drawing in (a) contains
long edges, where these long edges have been broken in drawing (b) by adding
dummy vertices (drawn as small empty circles) to the traversed layers.

40

3.3 Layer Assignment

bends which is considered as a required aesthetic drawing criterion to increase the final
drawing readability. Finally, the edges will become long if many dummy vertices occur.
An algorithm for computing a layering with minimizing the number of dummy vertices
is presented in Section 3.3.3.

3.3.1 Minimizing The Height

This algorithm requires that the input directed graph G = (V, E) to be acyclic. It computes
a layering with minimum height by applying the longest path method [BJG08]. Firstly, each
source vertex is placed in the first layer V1. Then, the layer φ(v) for every remaining vertex
v is recursively defined by φ(v) = max{φ(u) | (u, v) ∈ E} + 1. This algorithm produces a
layering where many vertices will stay close to the bottom, and hence the number of layers
k is kept minimized. By using a topological ordering of the vertices [Meh84], the algorithm
can be implemented in linear time O(|V| + |E|). The main drawback of this algorithm is that
it may produce drawings that are too wide.

3.3.2 Layering with Given Width

The longest path layering algorithm minimizes the height, while compactness of the final
drawing depends on both the width and the height. The problem of finding a layering with
minimum height is N P-complete if a fixed width greater or equal to three is given [GJ79]. The
Coffman-Graham algorithm [CG72] considers a layering with a maximum width. Minimizing
the number of dummy vertices guarantees minimum height [ES91]. The Coffman-Graham
algorithm takes as input a reduced graph, i.e., no transitive edges are included in the graph,
and a given width w. An edge (u, v) is called transitive if a path (u = v1, v2, · · · , vk = v)
exists in the graph.

The Coffman-Graham algorithm works in two phases. The first orders the vertices by their
distance from the source vertices of the graph. In the second phase, vertices are assigned to
the layers, such that vertices with large distances from the sources will be assigned to layers
as close to the bottom as possible.

Lam and Sethi [LS77] showed that the number of layers k of the computed layering with
width w is bounded by k ≤

(
2 − 2

w

)
· kopt, where kopt is the minimum height of all layerings

with width w. So, the Coffman-Graham algorithm is an exact algorithm for w ≤ 2. The
notion of width does not consider dummy vertices, since dummy vertices have very small
width (usually the thickness of an edge line segment) in comparison to real vertices which
contain normally significant text strings. Even though the Coffman-Graham is currently the
most commonly used layering method [Bac09].

3.3.3 Minimizing the Total Edge Span

The objective to minimize the total edge span (or edge length) is equivalent to minimizing
the number of dummy vertices, which is a reasonable objective in the final drawing. It can be
shown that minimizing the number of dummy vertices guarantees minimum height [ES91].
Gansner, Koutsofios, North, and Vo [GKNV93] introduced the network simplex algorithm,
which is the first attempt to generate layerings with the minimum number of dummy vertices
by modelling the problem as an ILP system (Equation 3.1).

41

Chapter 3 Hierarchical Drawing of Directed Graphs

Algorithm 3.3: Coffman-Graham Layering
Input : A directed acyclic graph G = (V, E), and a positive integer w
Output: Layering of G of width at most w

1 foreach v ∈ V do
2 φ(v) = n + 1;
3 for i = 1 to |V| do
4 Choose a vertex v with φ(v) = n + 1 and minimum set {φ(u) | (u, v) ∈ E} with

respect to ≺;
5 φ(v) = i;
6 k = 1; V1 = ∅; U = V;
7 while U = ∅ do
8 choose u ∈ U , such that every vertex in {v | (u, v) ∈ E} is in V \ U and φ(u) is

maximized;
9 if |Vk| < w and for every edge (u, w), N+(u) ⊆ V1 ∪ V2 ∪ · · · ∪ Vk−1 then

10 add u to Vk;
11 else
12 k := k + 1; Vk := {u};
13 delete u from U ;

span(G) := min
∑

(u,v)∈E
(φ(v) − φ(u)) (3.1)

subject to
φ(v) − φ(u) ≥ 1 for (u, v) ∈ E
φ(v) ∈ N for v ∈ V

Standard linear programming could solve this ILP problem and find an optimal solution
since the constraints matrix is totally unimodular [NW88]. The network simplex algorithm
has been proved to be very efficient experimentally, even though it does not guarantee a
polynomial running time.

Another branch-and-cut approach was introduced by Healy and Nikolov [HN02]. This
branch-and-cut approach finds layerings with the minimum number of dummy vertices subject
to upper bounds on both the width and the height of the layering if there is any feasible
solution. Nikolov and Tarassov [NT06] showed that layerings found by the longest-path and
Coffman-Graham algorithms can be easily improved by a simple vertex-promotion heuristic.

3.3.4 Minimum Width

Practically, minimizing the number of dummy vertices in a hierarchical graph not only gives
shorter edge lengths and fewer dummy vertices, but also gives relatively compact layerings.
Combining the minimization of the height of a drawing with the minimization of the number
of dummy vertices is N P-complete [Lin92].

42

3.4 Crossing Minimization

MinWidth and StretchWidth are two algorithms proposed by Branke, Nikolov, and Tarassov
[TNB04, NTB05] to solve the N P-hard problem of minimum-width layering of a directed
acyclic graph considering the dummy vertices. An earlier attempt is the heuristic developed
by Branke, Leppert, Middendorf, and Eades [BLME02].

The MinWidth heuristic [NTB05] is based on the longest path algorithm that is shown
in Section 3.3.1. Two variables widthCurrent and widthUp are employed to keep the width
of the current layer, and the width of the layer above it, respectively. The current layer
width widthCurrent, is calculated as the summation of the number of original vertices already
assigned to that layer and the number of potential dummy vertices along edges with a source
in V \ U and a target in Z (one dummy vertex per edge). An estimation of the width of any
layer above the current one is saved in the variable widthUp, which is the number of potential
dummy vertices along edges with a source in V \ U and a target in the current layer (one
dummy vertex per edge). When a vertex is selected to be assigned to a layer, an additional
condition ConditionSelect is used, which is True if v is the vertex with the maximum outdegree
among the candidates to be added to the current layer. Such a choice of v results in maximum
reduction to widthCurrent. The Minwidth layering algorithm has a worst-case time complexity
O(|V| log |V| + |E|).

StretchWidth algorithm builds the layering by trying to have its width lower than or equal
to an upper bound, which gradually gets bigger. Initially, we set up the upper bound at
max{max{d+(v) : v ∈ V}, max{d−(v) : v ∈ V}}. If the algorithm reaches a point where it
is impossible to assign a vertex to a layer without going above the upper bound, the upper
bound is incremented by one and start over. StretchWidth can be implemented in a total
worst-case time complexity O(|E||V| log |V| + |E|2).

Promote layering [NT06] is a heuristic whose goal is "to develop a simple and easy to im-
plement layering method for decreasing the number of dummy vertices in a DAG layered by
some list scheduling algorithm." The promote layering method is an alternative to the network
simplex [GKNV93] (presented in Section 3.3.3) but considerably easier to implement and es-
pecially useful when a commercial linear programming solver is not available [AHN07]. It has
been mentioned in [NTB05] that the algorithm MinWidth, followed by the vertex promotion
heuristic produces a layering with the minimum width considering dummy vertices. The ant
colony methaeuristic has been applied by Andreev, Healy and Nikolov [AHN07] in order to
get a layering for directed acyclic graphs.

3.4 Crossing Minimization

This section concerns the problem of drawing hierarchical graphs with minimum number of
crossings between edges. Edge crossings, for readability of drawings, are crucial parameters
that should be considered. In her experimental studies [Pur97, Pur02], Purchase mentioned
that minimizing the number of edge crossings is a major parameter for supporting an easy
human understanding of graph drawing. Crossing minimization is also of special consideration
to VLSI layout researchers and has a history that progressed much of the graph drawing
literature [War77, EK86, EW94a, EW94b, Cat95, VML96, JM97, JLMO97, LMV97, MSM99,
LM99,Mut00,GSBM01,YT00,YT01,EGDB02,MUV02,KPL06,CGMW10,BBBH11,BBG11,
CGMW11]. We assume that the input for the crossing minimization step is a proper layered
hierarchical graph.

43

Chapter 3 Hierarchical Drawing of Directed Graphs

Suppose, e1 = (u1, v1), e2 = (u2, v2) ∈ E are two short edges in a hierarchical graph
H = (V1, V2, · · · , Vk; E) such that u1, u2 ∈ Vi, v1, v2 ∈ Vi+1, 1 ≤ i ≤ k − 1, then e1 and e2
cross each other if (π(u2) − π(u1)) · (π(v2) − π(v1)) < 0 where π(v) is the order of vertex v
in its layer. See the example given in Figure 3.4. Counting the number of edge crossings and
its bounds of a graph drawing has received a lot of attention in the area of graph drawing
(see [War77,GP83,SSV95,SV97,PT00,HS07,CM11]).

6

4 5

2 1

7

3

(a) π(1) = 1, π(2) = 2, π(3) = 1 and π(4) = 2

6

5

2

7

4 3

1

(b) π(1) = 1, π(2) = 2, π(3) = 2 and π(4) = 1

Figure 3.4: Example of computing edge crossing according to the relative order of the vertices
in their layers. In drawing (a) no crossing between the two edges (1,3) and (2,4)
since (π(2) − π(1)) · (π(4) − π(3)) = 1 · 1 = 1 > 0. In drawing (b), the two
vertices 4 and 5 are switched in their order and hence the same two edges cross
since (π(2) − π(1)) · (π(4) − π(3)) = 1 · (−1) = −1 < 0.

An important observation here is that the number of edge crossings in a drawing of a
hierarchical graph does not depend on the precise position (x-coordinates) of the vertices in
their layers, but only on the ordering of the vertices within each layer. Hence, the problem
of minimizing edge crossings in a hierarchical graph is a combinatorial one of choosing an
appropriate vertex ordering for each layer, not a geometric one of choosing an x-coordinate
for each vertex. Although this combinatorialization simplifies the problem, it is still difficult
and has a classification of N P-hard even with a graph having just two layers (i.e. bipartite
graph) [GJ83]. Furthermore, the crossing minimization problem still remains N P-hard even
if one layer has a fixed vertex ordering [EW94a, EW94b] and for sparse graphs with vertex
degree equals to 4 [MUV02].

We assume that the directed acyclic graph G = (V, E) is actually converted into the proper
k-layer hierarchical graph H = (V1, V2, · · · , Vk; E). This means V = V1 ∪ V2 ∪ · · · ∪ Vk such
that Vi ∩ Vj = ∅, 1 ≤ i = j ≤ k and all the edges in E are represented as short ones, i.e.,
E = {(u, v) | u ∈ Vi, v ∈ Vi+1, 1 ≤ i ≤ k − 1}. We let n = |V|, ni = |Vi|, m = |E|, and
the neighbourhood N(v) of vertex v is N(v) = N−(v) ∪ N+(v) such that N−(v) = {u ∈
V | (u, v) ∈ E} and N+(v) = {w ∈ V | (v, w) ∈ E}.

An ordering (or permutation) πi of the set of vertices belonging to layer Vi, 1 ≤ i ≤ k in a
hierarchical graph H = (V1, V2, · · · , Vk; E) provides a solution for the crossing minimization
problem since it is the relative ordering along the line Li = i that causes edges incident on that
layer to cross each other. What we search for is the set of permutations,

∏
= {πi | 1 ≤ i ≤ k}

that minimizes the edge crossings cross(H, πi, πi+1), 1 ≤ i ≤ k.

44

3.4 Crossing Minimization

A rich variety of heuristics is used to minimize crossings in hierarchical graphs. Many
heuristics have been developed to minimize edge crossings but only some work has been
done on minimizing the crossings in the whole graph globally at once. The layer-by-layer
sweep, presented in Section 3.4.1.1, is the general framework of most techniques. The most
critical part of the layer-by-layer sweep is an algorithm for the two-layer crossing minimization
problem, which is a technique for minimizing crossings between two layers, i.e. bipartite graph.
Most of the known techniques for minimizing crossings in the layer-by-layer sweep framework
are introduced in Section 3.4.2.

3.4.1 Crossing Minimization Approaches

3.4.1.1 The Layer-by-Layer Sweep Approach

The layer-by-layer sweep technique works, in the down sweep, as follows: Firstly, a vertex
ordering of the layers is initially chosen, where the vertices get their positions in left-to-right
order. In the next step, a layer with a precomputed ordering, e.g., layer V1, is chosen and for
i = 2, 3, · · · , k, the vertex ordering of layer Vi−1 is kept fixed while the vertices in layer Vi are
reordered to reduce the crossings between the two layers Vi−1 and Vi. We can sweep back from
layer Vk to layer V1 and repeat these two steps until no further reduction of crossings could
be achieved. In the up sweep the roles are switched. This problem is called the one-sided
crossing minimization problem and will be deeply discussed in the next section.

When using any one-sided crossing minimization algorithm, the number of crossings be-
tween the two layers Vi−1 and Vi is reduced by permuting the vertices in layer Vi, while
the number of crossings between Vi and Vi+1 could be increased when permuting Vi. These
heuristics push the crossings downwards or upwards, according to the direction flow, until
they are resolved at layer k or 1, respectively. Other ways of sweeping are possible, for in-
stance we can hold a layer in the middle fixed and sweep from here to the bottom and to
the top layer. So, an extension is the centered 3-level crossing reduction, i.e., considering
the three consecutive layers Vi−1, Vi, and Vi+1 by permuting Vi while the orders of Vi−1 and
Vi+1 are fixed such that the crossings between the three layers are reduced. However, the key
problem of the layer-by-layer sweep is to reduce the crossings between two layers with the
permutation of one side fixed.

In Section 3.4.2, the one-sided two-layer crossing minimization problem and well-known
solving techniques are presented. Also, the multi-layer crossing minimization problem is
discussed in Section 3.4.3 beside its most-mentioned solving techniques.

3.4.1.2 Global Approach

A main drawback of the layer-by-layer approach is that it may be stuck in a local optimum
although the one-sided two-layer crossing reduction returns optimal vertex orderings of the
layers in the sense of a minimum number of crossings. Bastert and Matuszewski claimed
in [KW01, page 102] that the results are even far from optimum. Alas, potentially existing
approximation ratios of one-sided two-layer reduction algorithms cannot be actually extended
to be applied to k-layer hierarchical graphs [Bac09].

45

Chapter 3 Hierarchical Drawing of Directed Graphs

Although two-layer algorithms reduce the crossings between Vi−1 and Vi, the number of
crossings between Vi and Vi+1 (and thus even the total number of crossings) can increase
while permuting the middle layer Vi. These heuristics push the crossings downwards or
upwards until they are resolved at layer k or 1, respectively. Even worse, there may remain
type-2 conflicts (cross between two edges that connect only dummy vertices). Alternatives
are ordered k-layer sifting or the similar centered three-layer crossing reduction described in
Section 3.4.3. However, both generate many type-2 conflicts and are for reaching a global
optimum both restricted to a local view. Thus, they also may tend to get stuck in local
optima.

Bachmaier, Brandenburg, Brunner, and Hübner [BBBH11] introduced a global sifting algo-
rithm (see Section 3.4.3), that does not use the sweeps with two-layer one side fixed crossing
reduction. They consider the block graph − which is the same as their compaction graph
completed with one sweep over all layers − directly for crossing reduction. Then the whole
graph is treated. Experimentally, global sifting algorithm produced better results than any
one-sided two-layer method, it works in higher complexity and has running time bound about
O(|E|2) for a hierarchical k-layered hierarchical graph H = (V, E , φ).

3.4.2 One-Sided Crossing Minimization

A bipartite graph H = (V1, V2; E) is an undirected graph G = (V, E) in which V is partitioned
into two sets V1 and V2 such that (u, v) ∈ E implies either u ∈ V1 and v ∈ V2 or v ∈ V1 and
u ∈ V2. An ordering of layer Vi is specified by a permutation πi of Vi. So, the ordering of
the two layers V1 and V2 are the permutations π1 and π2 respectively.

Let cross(G, π1, π2) be the number of edge crossings in a straight-line drawing of G given by
π1 and π2. If the permutation π1 of V1 is kept fixed, the minimum number of edge crossings
that could be achieved by reordering the vertices in V2 is given by opt(G, π1), where:

opt(G, π1) = min
π2

cross(G, π1, π2)

So, using this terminology, the one-sided crossing minimization problem could now be for-
mulated as follows:

Given a bipartite graph G = (V1, V2, E) with a permutation π1 of V1. Find an
ordering π2 of V2 that minimizes the edge crossings in the drawing of G, such that
cross(G, π1, π2) = opt(G, π1).

The two-layer crossing minimization problem is N P-hard [EW94b] and received a great
deal of attention in the graph drawing area, see, for example, [KW01, ch. 5] and [DETT99, ch.
9]. The rest of this section discusses the main heuristics methods for the two-layer crossing
minimization problem.

The notion of the crossing number, introduced by Eades and Kelly [EK86], is important
for many heuristics. π1 is the permutation of layer V1 and is kept fixed, for each pair of
vertices u, v ∈ V2, cuv represents the number of crossings between edges that incident on u
and edges incident on v, when π2(u) < π2(v). Also, for all u ∈ V2, we define cuu = 0. An
observation should be taken into account that the number of crossings between edges incident

46

3.4 Crossing Minimization

on u and edges incident on v depends only on the relative positions of u and v and not on
the positions of the other vertices. Figure 3.5(a) shows a drawing of a bipartite graph and
its corresponding crossing number matrix for each pair of vertices in the top layer is depicted
in Figure 3.5(b).

c b a d

g e f

(a)

 a b c d
a 0 1 0 1
b 3 0 1 2
c 3 3 0 2
d 2 2 1 0

(b)

Figure 3.5: A bipartite graph drawing (a) and its crossing numbers matrix (b).

We can use the crossing numbers to compute cross(G, π1, π2) as follows:

cross(G, π1, π2) =
∑

π2(u)<π2(v)
cuv =

n2−1∑
i=1

n2∑
j=i+1

cij

The lower bound of the number of crossings of the two-layer crossing minimization problem
is computed as: ∑

π2(u)<π2(v)
min{cuv, cvu}

and the optimal number of edge crossing opt(G, π1) is computed as:

opt(G, π1) ≥
∑
u,v

min(cu,v, cv,u)

Jünger and Mutzel showed in their experiments [JM97] that this simple lower bound is very
tight to the optimum.

We will now consider in details the most interesting heuristics used in the two-layer crossing
minimization problem.

3.4.2.1 Barycenter Heuristic

The barycenter heuristic [STT81] is the most common method considered for the two-layer
crossing minimization problem since it is very popular, easy to implement, runs fast, and gives
good results [KW01]. The barycenter heuristic is based on the intuition that in a drawing with
few crossings, each vertex should be close to its adjacent vertices. In this heuristic, for a two-
layer hierarchical graph G = (V1, V2; E), we compute the x-coordinate x(v) of a vertex v ∈ V2
as the barycenter (average) of the x-coordinates of its neighbours in layer V1. In order to do
this, we compute:

x(v) =
1

deg(v)
∑

u∈N(v)
x(u)

47

Chapter 3 Hierarchical Drawing of Directed Graphs

where N(v) = {u ∈ V1 : {u, v} ∈ E} and deg(v) = |N(v)|. If two values are equal we
separate them arbitrarily by a small amount. Then the vertices in layer V2 are sorted by
their barycenter values. The barycenter heuristic (Algorithm 3.4) gives a planar drawing if
one is possible.

Since the running time for computing x(v) is proportional to the degree of v, the barycenter
values of all vertices can be found in linear time of the number of edges |E|. For the subsequent
sorting step, the time complexity is O(|V2| log |V2|). Hence, the barycenter heuristic runs in
O(|E| + |V2| log |V2|).

Algorithm 3.4: Barycenter Heuristic Crossing Minimization
Input : A bipartite graph G = (V1, V2; E) and a vertex ordering π1 of the vertices in

layer V1
Output: Vertex ordering π2 of the vertices in layer V2

1 repeat
2 for v := 1 to |V2| do
3 x(v) = 1

deg(v)
∑

u∈N(v)
x(u);

4 Sort the vertices in V2 according to their x-coordinates;
5 until the number of crossings does not reduce;

3.4.2.2 Median Heuristic

The median heuristic [EW94a] is similar to the barycenter heuristic. In the median heuristic,
the x-coordinate of each vertex v ∈ V2 is given by the median of the x-coordinates of its
neighbours in layer V1. Here, the median is defined as follows: suppose the neighbours of
v are u1, u2, · · · , uj with π1(u1) < π1(u2) < · · · < π1(uj), then med(v) = π1(u j

2
). This

definition differs from the classical notion of the median since if j is even, then there are
actually two medians at j

2 and j
2 + 1. Here, we take always the left median. Furthermore, we

set med(v) = 0, if vertex v has no neighbours.

As with the barycenter heuristic, we have to sort the vertices in layer V2 according to their
median values. If two vertices have the same median they are separated by a small amount,
with the restriction that if one vertex has an odd degree and the other vertex has an even
degree, then the odd-degree vertex is placed on the left of the vertex with even degree. If the
degrees of the vertices have same parity, we can choose their order arbitrarily. The median
heuristic (Algorithm 3.5) gives a planar drawing if it is possible.

For each vertex v ∈ V2, med(v) can be computed in proportional to the degree of v, and
the median could be found in linear-time algorithm (see, for example [AHU83]). For the
sorting step, the bucket sort technique can be used in order to get a linear-time complexity
of O(|V2|). Hence, the median heuristic runs in O(|E| + |V2|). Note, that the crossing number
matrix is not required to be precomputed in barycenter heuristic and median heuristic as in
several other heuristics.

48

3.4 Crossing Minimization

For a two-layer hierarchical graph G = (V1, V2; E) with a fixed ordering π1 of the layer V1,
the relation between the optimal number of crossing opt(G, π1) and the number of crossings
produced by the median heuristic med(G, π1) is med(G, π1) ≤ 3 opt(G, π1) [EW94a,DETT99].
This result has been proved by Eades and Wormald in [EW94a] and by Di Battista, Eades,
Tammassia and Tollis in [DETT99].

Algorithm 3.5: Median Heuristic Crossing Minimization
Input : A bipartite graph G = (V1, V2; E) and a vertex ordering π1 of the vertices in

layer V1
Output: Vertex ordering π2 of the vertices in layer V2

1 repeat
2 foreach v ∈ V2 do
3 Sort the vertices in N(v) according to their order π1;
4 x(v) = π1(u�j/2�) such that u ∈ N(v) and 1 ≤ j ≤ |N(v)|;
5 Sort the vertices in V2 according to their x-coordinates;
6 until the number of crossings does not reduce;

3.4.2.3 Adjacent-Exchange Heuristic

The adjacent-exchange heuristic (Algorithm 3.6), also called greedy switching, works in a way
similar to bubble-sort. If u and v are two consecutive vertices in V2, then switching their
positions changes the total number of crossings by exactly cvu − cuv. The algorithm scans
all consecutive pairs of vertices and switches them if this reduces the number of crossings.
This process is repeated until no further switching occurs, i.e., for all consecutive pairs (u, v)
the inequality cuv ≤ cvu holds. Such a vertex ordering is called stable. Since one scan of the
vertices can be implemented in O(|V2|) and there are at most |V2| scans, the time complexity
of the greedy switching heuristic is O(|V2|2).

Mäkinen [Mäk90] and Gansner, Koutsofios, North, and Vo [GKNV93] suggested that the
adjacent-exchange heuristic is preferable as a post-processing step in combination with other
heuristics such as barycenter or median heuristic. This is because adjacent-exchange heuristic
does not recompute the sorting completely, but makes changes only when it improves the
result.

Algorithm 3.6: Adjacent-Exchange Heuristic Crossing Minimization
Input : A bipartite graph G = (V1, V2; E) and a vertex ordering π1 of the vertices in

layer V1
Output: Vertex ordering π2 of the vertices in layer V2

1 repeat
2 for v := 1 to |V2| − 1 do
3 if cv(v+1) > c(v+1)v then
4 switch vertices at positions v and v + 1;

5 until the number of crossings does not reduce;

49

Chapter 3 Hierarchical Drawing of Directed Graphs

3.4.2.4 Split Heuristic

The split heuristic (Algorithm 3.7), introduced by Eades and Kelly [EK86], gives better results
than the median or barycenter heuristic at the expense of longer running times. The algorithm
is reminiscent of quick-sort. First, a pivot vertex v ∈ V2 is chosen, and place each other
vertex u = v ∈ V2 to the left of v if cuv < cvu, and to the right of v otherwise. After this
partition, the algorithm is applied recursively to the left set and to the right set until both
sets are ordered and can be concatenated. The split heuristic has a worst-case running time of
O(|V2|2) but in practice it runs in time O(|V2| log |V2|) if we do not consider the computation
of the crossing number matrix.

Algorithm 3.7: Split Heuristic Crossing Minimization
Input : A bipartite graph G = (V1, V2; E) and a vertex ordering π1 of the vertices in

layer V1
Output: Vertex ordering π2 of the vertices in layer V2

1 if V2 is not empty then
2 Choose a pivot vertex v ∈ V2;
3 Vleft = ∅; Vright = ∅;
4 foreach vertex u ∈ V2 such that u = v do
5 if cuv ≤ cvu then
6 place u in Vleft;
7 else
8 place u in Vright;

9 Recursively apply the algorithm to the graph by Vleft and Vright, and output the
concatenation of the outputs of these two applications;

3.4.2.5 Sifting Heuristic

The sifting heuristic was originally introduced by Rudell [Rud93] to minimize the number
of vertices in reduced ordered binary decision diagrams problem. A reduced ordered binary
decision diagrams problem is a graph which represents a boolean function and is primarily
used in logic synthesis and verification. Later it was possible to adapt the sifting heuristic for
the crossing minimization problem by Matuszewski, Schzönfeld, and Molitor [MSM99].

The main idea of the algorithm is to determine the optimal position for every vertex v ∈ V2
under the condition that the positions of the other vertices in layer V2 remain fixed. So, each
vertex is placed at its locally optimal position. Since every vertex has to be set on every
position, the time complexity is O(|V2|2). The sifting heuristic has a higher runtime complexity
than those above; however, it produce fewer crossings in practice [Bac09]. Algorithm 3.8
presents the details of the sifting heuristic.

3.4.2.6 Two-Layer Metaheuristic Methods

Several metaheuristics were applied to solve the one-sided crossing minimization problem.
a genetic algorithm to solve that problem introduced by Mäkinen [Mäk90], Mäkinen and

50

3.4 Crossing Minimization

Sieranta [MS94] and Yamaguchi and Toh [YT00,YT01]. The results of the genetic algorithm
are compared with the barycenter heuristic and induced that the genetic algorithm is better
with the expense of long computation times. Similarly, a tabu search algorithm presented
by Laguna, Martí, and Valls [LMV97]. The tabu search algorithm gives high-quality results
but is usable only when fast computation is not necessary. The GRASP (greedy randomized
adaptive search procedure), introduced by Laguna and Martí [LM99], gives good results
especially for sparse graphs and has moderate computation times.

Algorithm 3.8: Sifting Heuristic Crossing Minimization
Input : A bipartite graph G = (V1, V2; E) and a vertex ordering π1 of the vertices in

layer V1
Output: Vertex ordering π2 of the vertices in layer V2

1 foreach v ∈ V2 do
2 move vertex v to the leftmost position;
3 crossings :=

∑
π2(v)<π2(u) cvu;

4 min_crossings := crossings;
5 for q := 1 to |V2| − 1 do
6 crossings := crossings − cq(q+1) + c(q+1)q;
7 switch vertices at positions q and q + 1;
8 if crossings < min_crossings then
9 min_crossings := crossings;

10 best_position := q;

11 move vertex v to position best_position;

3.4.2.7 Exact Two-Layer Crossing Minimization

Jünger and Mutzel [JM97] presented a branch-and-cut algorithm for solving the two-layer
crossing minimization that draws on solving the linear ordering problem. Let δi

uv be a 0-1
variable representing the ordering of vertices i and j on layer Vi, i = 1, 2. They present an
expression for the number of crossings of a pair of permutations, πi, which is the objective
function we want to minimize.

Let us state the one-sided crossing minimization problem as an integer linear program
ILP. For a two-layer hierarchical graph G = (V1, V2; E), for layer Vi we define δi

uv = 1 if
π1(u) < π1(v), otherwise δ1

uv = 0. For simplicity, the vertices names will be identified with
their ordering index on their layer. The number of crossings could be computed with:

cross(π2) = cross(δ2) =
|V2|−1∑

i=1

|V2|∑
j=i+1

∑
u∈N(i)

∑
v∈N(j)

δ1
uv · δ2

ji + δ1
vu · δ2

ij (3.2)

where the neighbours N(v) of any vertex v ∈ V2 is N(v) = {u ∈ V1 : (u, v) ∈ E}. The
crossing number can be computed with:

cij =
∑

u∈N(i)

∑
v∈N(j)

δ1
uv

51

Chapter 3 Hierarchical Drawing of Directed Graphs

Then Equation 3.2 could be represented as:

cross(π2) =
|V2|−1∑

i=1

|V2|∑
j=i+1

cijδ2
ij + cji

(
1 − δ2

ij

)

=
|V2|−1∑

i=1

|V2|∑
j=i+1

(cij − cji) δ2
ij +

|V2|−1∑
i=1

|V2|∑
j=i+1

cji (3.3)

The problem of finding the vertex order with minimum number of crossings πi could be
reduced to finding the vector δi ∈ {0, 1}(|Vi|

2). Assume n2 = |V2|, xij = δ2
ij and aij = cij − cji

we have to solve the linear ordering problem:

min
n2−1∑
i=1

n2∑
j=i+1

aijxij (3.4)

subject to
0 ≤ xij + xjp − xip ≤ 1 for 1 ≤ i < j < p ≤ n2
0 ≤ xij ≤ 1 for 1 ≤ i < j ≤ n2
xij ∈ Z for 1 ≤ i < j ≤ n2

The optimal crossing number can be then computed with adding
∑n−1

i=1
∑n

j=i+1 cji to the
minimum number of crossing computed in Equation 3.4, i.e.,:

crossopt(π2) = min
n2−1∑
i=1

n2∑
j=i+1

aijxij +
n2−1∑
i=1

n2∑
j=i+1

cji (3.5)

The main advantage of the ILP approach over the previous above heuristics is that it
guarantees to find the optimum solution. While there is no guarantee about the termination
in polynomial time, it seems to be quite successful for small to medium sized directed graphs
[DETT99]. The branch-and-cut algorithm [JM97] could be used to obtain an optimal solution
for directed graphs of limited size (maximum 50 vertices). According to the experiments
of Bachmaier [Bac09], this approach could be applied in practice to graphs with up to 150
vertices.

3.4.3 Multi-Layer Crossing Minimization

In the multi-layer crossing minimization problem a k-layer hierarchical graph H is given,
H = (V1, V2, · · · , Vk; E) and the goal is to find permutations π1, π2, · · · , πk such that the
number of edge crossings is minimized. For the multi-layer crossing minimization problem,
there are two solution approaches. In the first approach we apply a layer-by-layer one-sided
two-layer heuristic recursively to get an order of the vertices in layer Vi while the vertices in
layer Vi−1 have a fixed ordering, and then proceed to the next layer. In the second approach,
all the graph layers are globally considered simultaneously in the same time.

52

3.4 Crossing Minimization

The experiments by Jünger and Mutzel [JM97] for the two-layer crossing minimization
problem show that the results of the layer-by-layer sweep are far from optimum. Better
results could be expected when considering all layers simultaneously, but multi-layer crossing
minimization is a very hard problem [KW01, page 102]. A quick help is to start the layer-by-
layer sweep several times with randomly permuted layers. This approach can tremendously
improve the results in [JM97]. From the global approach side, there are some global techniques
(like global sifting algorithm) presented by Bachmaier, Brandenburg, Brunner, and Hübner
[BBBH11]. Experimentally, it has been shown in [BBBH11] that global sifting technique yields
an improvement of 5-10% in the number of crossings over the layer-by-layer ones; however,
the sifting techniques generally have a worse time complexity.

In this section, we discuss and put together different variants of the recursively layer-by-
layer for the multi-layer crossing minimization beside some global techniques. We analyse
the strengths and weaknesses of these algorithms both from a theoretical and computational
perspective. Based on this, we present an efficient barycenter-based algorithm, we call it
efficient barycenter and introduced separately in Section 3.4.3.7. A comparative study on 300
randomly generated hierarchical graphs with different number of layers, different number of
vertices in each layer, and various edge densities show the efficiency of our proposed efficient
barycenter algorithm.

3.4.3.1 Tutte’s Algorithm

Tutte’s algorithm [ES91] is considered as the first attempt for a global approach, but it does
not address crossings directly. First, the x-coordinates of the vertices in the boundary (first
and last) layers are fixed. In each other layer the x-coordinate of a vertex v ∈ Vi, 2 ≤ i ≤ k−1,
is chosen as a weighted average of the x-coordinates of its neighbours in the two layers Vi−1
and Vi+1 according to the following equation:

x(v) =
1

2 d−(v)
∑

u∈N−(v)
x(u) +

1
2 d+(v)

∑
w∈N+(v)

x(w) (3.6)

where, for vertex v ∈ Vi, d−(v) = |N−(v)|, and d+(v) = |N+(v)|.

Now we have to solve a system of sparse linear equations to compute the value x(v) for each
vertex v. In the last step the vertices of each layer are sorted by their x-coordinates. The
results of Tutte’s algorithm are similar to one-sided two-layer barycenter heuristic [KW01].

3.4.3.2 Degree-Weighted Barycenter Algorithm (DWB)

Eades, Lin, and Tamassia [ELT96] introduced the Degree-Weighted Barycenter algorithm
(DWB). In DWB algorithm, for a proper boundary s-t graph H = (V1, V2, · · · , Vk; E), a bound-
ary drawing β is chosen. This means that the x-coordinate x(u) for any vertex u ∈ V1 ∪ Vk

belonging to the two boundary layers V1 and Vk is kept fixed. Then the x-coordinate x(v)
for each nonboundary vertex v ∈ V \ (V1 ∪ Vk) is computed as a kind of weighted barycenter
of its neighbours in the two layers Vi−1 and Vi+1 as computed in Equation 3.6.

53

Chapter 3 Hierarchical Drawing of Directed Graphs

The difference between Tutte’s algorithm and DWB algorithm is that the sorting step is not
executed in the DWB algorithm. Thus, one round DWB algorithm has time complexity O(|E|)
since computing the x-coordinates is proportional to the degree of vertices and consequently
the number of edges |E|.

Algorithm 3.9: Degree-Weighted Barycenter DWB Crossing Minimization
Input : A proper k-layer s-t hierarchical graph H = (V1, V2, · · · , E) with a boundary

drawing β(G)
Output: Vertex ordering πi of the vertices in the non-boundary layers

V2 ∪ V3 ∪ · · · ∪ Vk−1

1 Choose initial x-coordinate x(v) for each nonboundary vertex v ∈ V \ (V1 ∪ Vk) in a
proper boundary s-t hierarchical graph H = (V1, V2, · · · , Vk; E);

2 repeat
3 for i = 2 to k − 1 do
4 foreach vertex v ∈ Vi do
5 x(v) :=

1
2d−(v)

∑
(u,v)

x(u) +
1

2d+(v)
∑

(v,w)
x(w);

6 until x(v) converges;

3.4.3.3 Barycenter Algorithm

Barycenter algorithm [ELT96] behaves as DWB; however, it uses the barycenter values bary(v)
for every vertex v ∈ V computed according to Equation 3.7.

bary(v) =
1

2 deg−(v)
∑

u∈N−(v)
x(u) +

1
2 deg+(v)

∑
w∈N+(v)

x(w) (3.7)

Then the x-coordinates of the vertices are computed after sorting the set of vertices by their
barycenter values. After finishing computing the barycenter values for all vertices in all layers,
then the x-coordinate of every vertex is considered as its index in its layer.

Since the vertices in layer Vi are sorted according to their barycenter values, the sort-
ing step requires O(|Vi| log |Vi|) running time. Hence, the total running time of one round
for the barycenter algorithm is O(|E| +

∑k
i=1 |Vi| log |Vi|) which could be represented as

O(|E| + |V| log |V|). Practically, the Barycenter algorithm presents results that are far from
the optimum and also, it is not guaranteed that the algorithm always converges and may go
into an oscillation behaviour.

3.4.3.4 Global Sifting Algorithm

Based on the sifting heuristic [MSM99] (introduced in Section 3.4.2), Bachmaier, Branden-
burg, Brunner, and Hübner [BBBH11] have introduced the global sifting algorithm. In the

54

3.4 Crossing Minimization

Algorithm 3.10: Barycenter Algorithm Crossing Minimization
Input : A proper k-layer s-t hierarchical graph H = (V1, V2, · · · , E)
Output: Vertex ordering πi of the vertices in all the graph layers V1 ∪ V2 ∪ · · · ∪ Vk

including the boundary layers

1 Choose initial x-coordinate x(v) for each vertex v ∈ V in H;
2 repeat
3 for i = 1 to k do
4 foreach vertex v ∈ Vi do
5 bary(v) :=

1
2d−(v)

∑
(u,v)

x(u) +
1

2d+(v)
∑

(v,w)
x(w);

6 Sort the vertices of layer Vi into increasing order of bary(v);
7 Let the x-coordinate of vertices in Vi be their sorted indices;
8 until x(v) converges;

global sifting algorithm, for a proper hierarchical graph H = (V, E , φ), a block A is built con-
taining either all dummy vertices of each long edge or an original vertex, afterwards a list of
blocks B is created. Then it finds (in one step) the best position for the entire block in the list
of blocks. All the vertices of a block get the same x-coordinate and, thus, the ordering causes
no crossings produced by edges connecting dummy vertices, i.e. it guarantees the absence of
type-2 conflict crossings.

Algorithm 3.11: Global Sifting Crossing Minimization
Input : Proper k-layers hierarchical graph H = (V, E , φ) and number ρ of sifting rounds
Output: a hierarchical graph H in which the vertices are ordered by value π(v) for each

v ∈ V
1 Create list B of all blocks in proper hierarchical graph H = (V, E , φ);
2 for 1 ≤ i ≤ ρ do
3 foreach block A ∈ B do
4 A ← SIFTING_STEP (G, B, A)

5 foreach v ∈ V do
6 π(v) ← π(block(v))

As an initialization, the list of blocks B is sorted arbitrarily and each block A gets its block
order π(A) in B as its position in B. At any time during the execution of the algorithm,
interpreting π(A) for each block A as an x-coordinate for each vertex v in block A and φ(v),
which is the number of the layer of v, as its y-coordinate results in a drawing respecting the
current ordering of B. There, all positions for a block A are tested and A is moved to that
position where it has the fewest crossings. This is done for each block A ∈ B in the shifting
step and repeated a certain number of times ρ. Finally, each vertex is set to the position of
its block.

Based on the global sifting algorithm, the global barycenter and the global median algorithms
are also proposed [BBBH11], where we iteratively take the π−positions of the blocks in the
blocks list B and compute the barycenter or median of each block, respectively, and then

55

Chapter 3 Hierarchical Drawing of Directed Graphs

sort B according to these values. A recent experimental study [BBBH11] has shown that
the global sifting algorithm is computationally the most efficient method to minimize the edge
crossing. However, global sifting is also the slowest of the above algorithms and has a running
time O

(
|E|2

)
which is quadratic in the number of edges of the input graph.

3.4.3.5 Exact Multi-Layer Crossing Minimization

Jünger, Lee, Mutzel, and Odenthal [JLMO97] introduced an ILP model for computing the
minimum crossing number for multi-layer hierarchical graphs presented in Equation 3.8. To
simplify the description, the vertex names will be identified with their ordering number on
their layers. For levels 1 < i ≤ k and all pairs of edges (u, v), (x, y) ∈ Ei, where Ei is
the set of short edges connecting the vertices in the two consecutive layers Vi−1 and Vi, we
define ci

uvxy = 1 if (u, v) and (x, y) cross and ci
uvxy = 0, otherwise. The variables xi

ux in
Equation 3.8 store after solving it the desired relative vertex positions on layer 1 ≤ i ≤ k. A
value of xi

ux = 1 means u ≺ x and a value of xi
ux = 0 means u � x.

Jünger Lee, Mutzel, and Odenthal [JLMO97] stated that their branch-and-cut approach
is only practicable if additional and deeper polyhedral studies are conducted for speed up.
According to the implementation within the Gravisto framework [BBFMM04], the approach
can be applied to graphs with up to 40 vertices in practice [Bac09].

crossopt = min
k∑

i=2

∑
(u,v),(w,y)∈Ei,

1≤u<w≤|Vi|,
1≤v �=y≤|Vi|

ci
uvwy (3.8)

subject to
−ci

uvxy ≤ xi
vy ≤ xi−1

uw ≤ ci
uvxy for (u, v), (w, y) ∈ Ei,

1 ≤ u < w ≤ |Vi−1|,
1 ≤ v < y ≤ |Vi|,
1 < i ≤ k

1 − ci
uvxy ≤ xi

uv − xi−1
uw ≤ 1 + ci

uvxy for (u, v), (w, y) ∈ Ei,

1 ≤ u < w ≤ |Vi−1|,
1 ≤ y < v ≤ |Vi|,
1 < i ≤ k

0 ≤ xi
uw + xi

wz − xi
uz ≤ 1 for u, w, z ∈ Vi,

1 ≤ u < w < z ≤ |Vi|,
1 ≤ i ≤ k

xi
uw ∈ {0, 1} for u, w ∈ Vi,

1 ≤ u < w ≤ |Vi|,
1 ≤ i ≤ k

ci
uvxy ∈ {0, 1} for (u, v), (w, y) ∈ Ei,

1 ≤ u < w ≤ |Vi−1|,
1 ≤ v < y ≤ |Vi|,
1 < i ≤ k

56

3.4 Crossing Minimization

3.4.3.6 Multi-Layer Metaheuristic Methods

Many different metaheuristic techniques have been proposed in literature to be used in the
global multi-layer crossing minimization problem. An evolutionary algorithm has been intro-
duced by Utech, Branke, Schmeck, and Eades [UBSE98] and genetic algorithms have been
considered by Kuntz, P. and Pinaud, B. and Lehn [KPL06]. Also, tabu search has been ap-
plied by Laguna, Martí, and Valls [LMV97], and windows optimization by Eschbach, Günther,
Drechsler, and Becker [EGDB02]. These general (stochastic) global search approaches usually
compute good solutions with few crossings at the expense of high running times [Bac09].

3.4.3.7 Efficient Barycenter Algorithm

It is clear that the DWB algorithm is limited by a necessity to choose a boundary drawing
β, i.e. the vertices in the boundary layers V1 and Vk have fixed position in a hierarchical
graph H = (V1, V2, · · · , Vk; E). In other words, as noted in [ELT96], the performance of DWB
algorithm is poor, except for a good choice of β. The barycenter algorithm, although it does
not need a boundary drawing β, in many cases we found it enters in an oscillation behaviour
and never converges and produces not good results.

Here, we introduce a new barycenter-based algorithm and call it efficient barycenter al-
gorithm. It combines the theoretical advantages of both the DWB algorithm and barycenter
algorithm. Our proposed efficient barycenter algorithm (as we later show) gives computation-
ally better (similar) results than the global sifting algorithm. Like the barycenter algorithm,
it is not restricted by a choice of β. Moreover, like the DWB algorithm, it computes the
x-coordinates x(v) for every vertex v ∈ Vi in a steady-state way. The updated x-coordinates
for adjacent vertices u in the previous layer Vi−1 are used for this. The idea is to go directly
to the sorting step after finishing computing the barycenter values for all vertices u ∈ Vi−1,
in order to compute the x-coordinates x(u) for these vertices before starting to compute
the barycenter values for the vertices in layer Vi. Detailed steps of the efficient barycenter
algorithm are given in Algorithm 3.12.

The efficient barycenter algorithm works with any proper hierarchical graph, not only with
boundary s-t graphs as the DWB algorithm or s-t graphs as the barycenter algorithm. If any
vertex v belongs to an intermediate layer V \ V1 ∪ Vk, i.e. v ∈ Vi, 2 ≤ i ≤ k − 1, has either
no outgoing edges, i.e. N+(v) = ∅ or d+(v) = 0, or no incoming edges, i.e. N−(v) = ∅ or
d−(v) = 0, it is easily taken into account by the updated form of the barycenter equation
used in these algorithms (Equation 3.9). This also avoids introducing dummy vertices to
convert an arbitrary hierarchical graph to an s-t graph, a technique common to existing
algorithms [EFN06].

bary(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
d−(v)

∑
u∈N−(v)

x(u) if d+(v) = 0;

1
d+(v)

∑
w∈N+(v)

x(w) if d−(v) = 0;

1
2 d−(v)

∑
u∈N−(v)

x(u) +
1

2 d+(v)
∑

w∈N+(v)
x(w) otherwise;

(3.9)

57

Chapter 3 Hierarchical Drawing of Directed Graphs

Algorithm 3.12: Efficient Barycenter Crossing Minimization
Input : A proper k-layers (not necessarily s-t) hierarchical graph

H = (V1, V2, · · · , Vk; E)
Output: A hierarchical graph H with vertices ordered by value bary(v) for each vertex

v ∈ Vi, 1 ≤ 1 ≤ k
1 Choose initial x-coordinate x(v) for each vertex v in a not restricted s-t hierarchical

graph H = (V1, V2, · · · , Vk; E);
2 repeat
3 for i = 1 to k do
4 foreach vertex v ∈ Vi do
5 if d−(v) = 0 then
6 bary(v) ← 1

d+(v)
∑

(v,w)
x(w);

7 else if d+(v) = 0 then
8 bary(v) ← 1

d−(v)
∑
(u,v)

x(u);

9 else
10 bary(v) ← 1

2d−(v)
∑
(u,v)

x(u) +
1

2d+(v)
∑

(v,w)
x(w);

11 Sort the vertices of layer Vi into increasing order of b;
12 Let the x-coordinate of vertices in Vi be their sorted indices;

13 until x(v) converges;

Although, the DWB algorithm has a better time complexity than the efficient barycenter
algorithm, it is limited by the choice of the boundary drawing β, see the example given in
Figure 3.6. Keeping a boundary drawing β of the drawing in Figure 3.6(a), the DWB algorithm
gives a non-planar drawing in Figure 3.6(b), where the efficient barycenter algorithm produces
the planar drawing in Figure 3.6(c). The graph is planar and a planar drawing is obtained
by efficient barycenter algorithm. However, the graph is not β-planar and the DWB algorithm
algorithm cannot produce a planar drawing of the graph.

1

9

3

4 5

7

6

2

8

(a)

1

9

3

4 6

7

5

2

8

(b)

2

9

1

4 5

7

6

3

8

(c)

Figure 3.6: An example of the effect of a good choice of boundary drawing β. An initial
drawing (a), a non-planar drawing (b) produced by the DWB algorithm, and a
planar drawing (c) produced by the efficient barycenter algorithm.

58

3.4 Crossing Minimization

3.4.3.8 Computational Results

We have implemented the median algorithm and the efficient median algorithm in which the
barycenter values are computed in a similar way as in the barycenter algorithm and the efficient
barycenter algorithm respectively. In the median algorithm and efficient median algorithm, the
barycenter value of every vertex v ∈ Vi is computed as the average of the two x-coordinates
of its two medians in the two layers Vi−1 and Vi+1.

In this section we provide the results of a detailed comparative study. We compare the
following algorithms: the one-sided 2-layer barycenter heuristic (BH), the one-sided 2-layers
median heuristic (MH), the degree-weighted barycenter (DWB), the barycenter algorithm (BC),
the median algorithm (MD), the global sifting (GS), the global barycenter (GB), the global median
(GM), the efficient median algorithm (FMD), and the efficient barycenter algorithm (FBC). We
deal with both sparse and dense hierarchical graphs and also small and large graphs. The
implementations of the three algorithms global sifting, global barycenter, and global median
implemented are done through the Gravisto graph drawing tool [BBFMM04].

Sparse graphs are generated as k × b hierarchical graphs, i.e., k-layer hierarchical graphs
H = (V1, V2, · · · , Vk; E) with |Vi| = b, 1 ≤ i ≤ k. Each vertex v ∈ Vi, 1 ≤ i ≤ k − 1, has
two outgoing edges connecting it to two randomly chosen vertices in layer Vi+1. Hence, the
total number of edges will be |E| = 2 · b · (k − 1). Two types of sparse graphs are considered;
in the first type, the number of layers is kept fixed to k = 5 where the number of vertices
in each layer |Vi| varies as |Vi| = 10, 20, · · · , 100, and 10 random graph instances have been
generated for each number of vertices |Vi|. Results for this type of sparse hierarchical graphs
for the number of crossing and execution time are presented in Figure 3.7.

In the second type, the number of vertices in each layer is kept fixed to |Vi| = 10 vertices
where the number of layers k vary as k = 3, 4, · · · , 12, and generating 10 random instances
for each number of layers k. Results for this type of sparse hierarchical graphs for the number
of crossing and execution time are presented in Figure 3.8.

For generating dense hierarchical graphs, we consider 10 different edge densities D which
vary as D = 0.20, 0.25, · · · , 0.65. The number of layers is kept fixed to k = 5 and the number
of vertices in each layer is kept fixed to |Vi| = 10. The number of edges that the dense
graph must contain is computed by multiplying the maximum number of edges the graph
could have

(
2 × (k − 1) × |Vi|2

)
by the desired density D. An edge is added randomly by

choosing two vertices in two consecutive layers. The process of adding the remaining edges is
repeated until all the edges are added such that every vertex v ∈ Vi , 1 ≤ i ≤ k has at least
two outgoing edges. 10 random samples are generated for each edge density. The results
for dense hierarchical graphs for the number of crossing and execution time are presented in
Figure 3.9.

Furthermore, we have dealt with very large graphs. The considered large graphs are
equipped with number of vertices from |V| = 1000 till |V| = 10000 vertices in the graph.
We generate large graphs as sparse ones (each vertex having two outgoing edges) keeping the
number of vertices in each layer fixed to |Vi| = 100 vertex where the number of layers k varies
as k = 10, 20, · · · , 100. 10 random instances for each number of layers k have been randomly
generated. Results for this type of sparse hierarchical graphs for the number of crossings and
execution time are presented in Figure 3.10.

59

Chapter 3 Hierarchical Drawing of Directed Graphs

In the four Figures 3.7-3.10, the charts in subfigures (a) show the results of the number of
crossings of the considered algorithms, where the two charts in the two subfigures (b) and (c)
in each figure present results of the running time. The charts in the subfigures (b) show
the results of the running time of all the considered algorithms, where the charts in the
subfigures (c) present results of the running time in a time interval in which the efficient
barycenter algorithm can be easily compared against the other algorithms.

The following remarks summarize the major results of the experimental study:

• In all the cases (with different number of vertices, number of layers and edge densities)
the efficient barycenter algorithm produces crossings about 17% lower than the barycenter
heuristic, the median heuristics, the global barycenter, and the global median, 43% lower
than the degree-weighted barycenter, 22% lower than the barycenter algorithm, and 4%
lower than the global sifting.

• For small (lower density) graphs, the efficient barycenter produces the lowest number of
crossings (Figure 3.11 gives an example).

• The barycenter algorithm and the median algorithm could not achieve convergence (at
least in 100 iterations for small graphs and 1000 iteration for large ones) with most of
the samples and go to oscillation behaviour.

• In some cases, the minimum number of edge crossings is obtained before the convergence
for most of the considered algorithms. Hence, care must be taken to ensure so-called
elitism in various heuristics. Hence, we recommend that the drawing with minimum
number of crossings should be selected from the initial drawing and all the drawings
produced iteratively till the convergence.

• There are slightly better results of the barycenter algorithm and the efficient barycen-
ter against the median algorithm and efficient median algorithm, respectively. Also the
median algorithm could not achieve convergence with many instances and goes into an
oscillation behaviour, as barycenter algorithm, specially with dense and large graphs.

3.5 Coordinate Assignment

In the last phase of the Sugiyama approach, coordinate assignment, we compute an x-
coordinate x(v) for every vertex v ∈ V. It is usually constrained to preserve the ordering
determined in the third phase and to introduce a minimum separation space δ between ver-
tices within a layer. The y-coordinates are considered as the layers numbers. Finally, the
dummy vertices introduced to break long edges have no geometric representation, i.e. they
are removed and replaced by edge bends. During the coordinates assignment, there are two
main objectives. The first is that the drawing should have as few edge bends as possible, and
the second is that the drawing should be as compact as possible.

Actually, there are several techniques for the horizontal coordinates assignment [STT81,
GNV88, ES91, ELT96, San96, San99, BJL01, BK02, Ism04]. Generally, these techniques use
different approaches of various optimization models and also different iterative techniques. We
will present some exact algorithms for the horizontal coordinates assignment and afterwards
a heuristic is introduced. In the following techniques, it is assumed that the input graph
H = (V, E , φ) is a proper k-layer hierarchical graph.

60

3.5 Coordinate Assignment

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

10 20 30 40 50 60 70 80 90 100

Fi
na

l n
um

be
r o

f c
ro

ss
in

gs

Number of vertices in each layer

FBC

FMD

DWB

BC

MD

BCH

MDH

GB

GM

GS

Initial

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50 60 70 80 90 100

Ru
nn

in
g

tim
e

in
 se

co
nd

s

Number of vertices in each layer

FBC

FMD

DWB

BC

MD

BH

MH

GB

GM

GS

(b)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

10 20 30 40 50 60 70 80 90 100

Ru
nn

in
g

tim
e

in
 se

co
nd

s

Number of vertices in each layer

FBC

FMD

DWB

BC

MD

BH

MH

GB

GM

GS

(c)

Figure 3.7: Results for sparse graphs with fixed number of layers k = 5 and different number
of vertices in each layer |Vi| = 10, 20, ..., 100.

61

Chapter 3 Hierarchical Drawing of Directed Graphs

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

3 4 5 6 7 8 9 10 11 12

Fi
na

l n
um

be
r o

f c
ro

ss
in

gs

Number of layers k

FBC

FMD

DWB

BC

MD

BCH

MDH

GB

GM

GS

Initial

(a)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

3 4 5 6 7 8 9 10 11 12

N
um

be
r o

f c
on

ve
rg

en
ce

la
ye

r

Number of layers k

FBC

FMD

DWB

BC

MD

BCH

MDH

GB

GM

GS

(b)

0

0.0002

0.0004

0.0006

0.0008

0.001

3 4 5 6 7 8 9 10 11 12

Ru
nn

in
g

tim
e

of
 o

ne
 it

er
at

io
n

in
 se

co
nd

s

Number of layers k

FBC

FMD

DWB

BC

MD

BCH

MDH

GB

GM

GS

(c)

Figure 3.8: Results for sparse graphs with fixed number of vertices in each layer |Vi| = 10
and different number of layers k = 3, 4, · · · , 12.

62

3.5 Coordinate Assignment

0

500

1000

1500

2000

2500

3000

3500

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Fi
na

l n
um

be
r o

f c
ro

ss
in

gs

Edge density D

FBC

FMD

DWB

BC

MD

BH

MH

GB

GM

GS

Initial

(a)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

N
um

be
r o

f c
on

ve
rg

en
ce

la
ye

r

Edge density D

FBC

FMD

DWB

BC

MD

BH

MH

GB

GM

GS

(b)

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Ru
nn

in
g

tim
e

of
 o

ne
 it

er
at

io
n

in
 se

co
nd

s

Edge density D

FBC

FMD

DWB

BC

MD

BH

MH

GB

GM

GS

(c)

Figure 3.9: Results for dense graphs with different edge densities D = 0.20, 0.25, · · · , 0.65,
a fixed number of vertices in each layer |Vi| = 10, and a fixed number of layers
k = 5.

63

Chapter 3 Hierarchical Drawing of Directed Graphs

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

10 20 30 40 50 60 70 80 90 100

Fi
na

l n
um

be
r o

f c
ro

ss
in

gs

Number of layers k

FBC

FMD

DWB

BC

MD

BCH

MDH

GB

GM

GS

Initial

(a)

0

50

100

150

200

250

300

350

400

450

10 20 30 40 50 60 70 80 90 100

Ru
nn

in
g

tim
e

in
 se

co
nd

s

Number of layers k

FBC

FMD

DWB

BC

MD

BCH

MDH

GB

GM

GS

(b)

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90 100

Ru
nn

in
g

tim
e

in
 se

co
nd

s

Number of layers k

FBC

FMD

DWB

BC

MD

BCH

MDH

GB

GM

GS

(c)

Figure 3.10: Results for large sparse graphs with fixed number of vertices in each layer |Vi| =
100 and different number of layers k = 10, 20, · · · , 100.

64

3.5 Coordinate Assignment

1

6

2

3 4

108

5

97

12 16151413

11

1917 18

2221

20

(a) Initial drawing (29 crossings)

1

6

2

34

108

5

97

12 161514 13

11

19 1718

2221

20

(b) Final drawing using the
efficient barycenter (3 crossings)

1

6

2

34

108

5

97

12 161514 13

11

19 1718

2221

20

(c) Final drawing using the DWB
(12 crossings)

1

6

2

34

108

5

97

12 1615 14 13

11

19 1718

2221

20

(d) Final drawing using the
barycenter heuristic (4 crossings)

1

6

2

34

108

5

97

12 1615 14 13

11

19 1718

2221

20

(e) Final drawing using the
median heuristic (4 crossings)

1

6

2

34

108

5

9 7

12 161514 13

11

19 1718

2221

20

(f) Final drawing using the
barycenter algorithm (8 crossings)

1

6

2

34

108

5

97

12 16 151413

11

1917 18

2221

20

(g) Final drawing using the
global sifting (9 crossings)

1

6

2

3 4

108

5

9 7

121615 1413

11

19 1718

2221

20

(h) Final drawing using the
global barycenter (8 crossings)

1

6

2

3 4

10 8

5

97

12 16151413

11

1917 18

22 21

20

(i) Final drawing using the
global median (19 crossings)

Figure 3.11: Performance of various algorithms for minimizing crossing of the same drawing
of a hierarchical graph.

65

Chapter 3 Hierarchical Drawing of Directed Graphs

3.5.1 Exact Algorithm

The problem of horizontal coordinates assignment could be stated as an optimization problem.
Consider the directed path p = (v1, v2, · · · , vq), where v2, v3, · · · , vq−1 are dummy vertices.
An edge that is represented in the drawing via a directed path p is called an edge-path. In
order to draw the path p as a straight line, then for 2 ≤ i ≤ q, the x-coordinate x(vi) of the
dummy vertex vq should be computed as:

x(vi) − x(v1) =
i − 1
q − 1

(x(vq) − x(v1)) (3.10)

Note that this formula is only valid for equidistant layers, where it is straightforward to
update it for unequal layer separation distances.

In order to get a compact representation of the formula in Equation 3.10, we define x̄(vi) =
x(v1) + i−1

q−1 (x(vq) − x(v1)) which will be the x-coordinate of vertex vi if vi lie on the straight
line that connects between x(v1) and x(vq). Now, the deviation of the path from a straight
line can be formulated as:

q−1∑
i=2

(x(vi) − x̄(vi))2

To draw the edge as straight as possible, the summation of the deviation should be minimized,
i.e.,

min
∑

p(e) with e∈E

q−1∑
i=2

(x(vi) − x̄(vi))2 (3.11)

subject to
x(w) − x(v) ≥ ρ(w, v) for φ(w) = φ(v), w � v

Since the model in Equation 3.11 is a quadratic function, it can be solved for small instances
only. Every not necessarily proper level planar graph has a planar straight-line drawing which
can be computed in O(|V|2) time [EFN06].

Another linear objective to draw the lines as close to vertical lines as possible is introduced
by Gansner, Koutsofios, North, and Vo [GKNV93]. This objective is presented as follows:

min
∑

(u,v)∈E
Ω ((u, v)) · |x(u) − x(v)| (3.12)

subject to
x(w) − x(v) ≥ ρ(w, v) for φ(w) = φ(v), w � v

where Ω(e) denotes the priority to draw edge e ∈ E vertically. Many authors suggest that
the higher priorities will be Ω(e) = 8 for inner segments, Ω(e) = 2 for outer segments
incident to exactly one dummy vertex, and Ω(e) = 1 for all other outer segments. The linear
program can be interpreted as a rank assignment problem on a compaction hierarchical graph
Ha = (V, {(u, v) : u, v ∈ Vi, |π(u) − π(v)| = 1, 1 ≤ i ≤ k} with length function δ. Each valid
rank assignment corresponds to a valid drawing. The objective function can be modelled by
adding vertices and edges to the graph Ha [GKNV93,KW01].

66

3.6 Combining Steps

The main drawback of the vertical edges approach is, that an edge can have a number
of bends equal to its number of dummy vertices, which consequently reduces the drawing
readability. To avoid this negative behaviour, the linear segments model was proposed, where
each edge is drawn as polyline with at most three segments and two bends, such that the
middle segment is always drawn vertically. In general, linear segment drawings have fewer
bends but normally need more width area. Some algorithms have been proposed for this
model [BK02, BJL01, San95], where the technique produced by Brandes and Köpf [BK02]
produces good results in linear time.

3.5.2 Heuristic Technique

Another possibility to obtain the horizontal coordinates assignment is to use an improvement
heuristic. Generally, any heuristic for this can roughly be considered similar to the following
algorithm framework: The initial coordinates for the vertices could be considered with

1 initial coordinates;
2 while some condition do
3 positioning;
4 straightening;
5 packing;

minimal distance from left to right in the order given by the crossing minimization. In
the positioning step, the ideas applied in the crossing minimization section, like median or
barycenter, between two layers might be considered. Another idea is to think of the vertices
as balls and the edges as strings of a pendulum [San99]. In order to minimize the edge bends
produced from the last two steps, in the straightening step one could try to assign the dummy
vertices of an edge-path to the same x-coordinate. Hence, the edges can be seen as rubber
bends with vertices at both ends and the dummy vertices in between. This increases the width
and consequently enlarges the drawing in x-direction. Finally, the drawing is compressed in
the packing step by moving the vertices closer together again without introducing new bends.
These steps might be iterated to obtain a satisfying drawing.

3.6 Combining Steps

Normally, the single steps of the Sugiyama approach are performed independently. Even,
some steps specially the layering step and crossing minimization step are strongly dependant
and it seems to be reasonable to solve them together in one step. A convincing example
is depicted in Figure 3.12. A first attempt using an evolutionary algorithm is presented
by Utech, Branke, Schmeck, and Eades et al. [UBSE98]. Recently, Bachmaier, Brunner,
and Gleißner [BBG11] introduced the grid sifting algorithm which combines the layering
and crossing minimization steps together. The grid sifting algorithm is based on the sifting
technique, which prioritizes few crossings over few levels. Another recent algorithm, called
upward planar representation (UPR), presented by Chimani, Gutwenger, Mutzel, and Wong
[CGMW11], which computes the layering of the vertices in order to minimize edge crossings.
The UPR algorithm greatly improves the drawing quality and leads to good hierarchical
drawings with few crossings.

67

Chapter 3 Hierarchical Drawing of Directed Graphs

3 4

2 1

(a)

3 4

1

2

(b)

Figure 3.12: Example of combining the Sugiyama approach. A directed acyclic graph with 4
vertices and 4 edges which be hierarchically drawn either in two layers but with
crossings (as in drawing (a)) or in at least three layers without crossings but
with long edges (as in drawing (b)).

3.7 Generating Random Hierarchical Graphs

There are four possibilities to deal with random hierarchical graphs:
1. Generating an undirected graph, giving directions to the edges, then removing the cycles

from the graph, and finally layering the vertices into layers.
2. Generating a directed graph, removing the cycles from the graph, and then layering the

vertices into layers.
3. Generating a directed acyclic graph and then layering the vertices into layers.
4. Generating a layered hierarchical graph directly.

The general way of generating random hierarchical graphs is to generate a directed acyclic
graph and then transfer the graph to a layering technique (such as the Coffman-Graham
algorithm) in order to get the layered graph of the initial directed acyclic graph. This way
has been used quite often [BBBH11,CGMW10].

So, in this section we try to get an answer to the following questions: what is the better
way for generating a hierarchical graph randomly: generating a directed acyclic graph and
then layering it or generating the hierarchical graph directly?

During our experiments in the previous section, we observed that the edge density of the
hierarchical graph changes in both cases, keeping the number of vertices and edges the same
in both graphs. The graph edge density is the ratio of the actual number of edges the graph
has to the maximum number of edges the graph could have (when it is a complete graph
and there is an edge between every pair of vertices). Till now, there is formula for the upper
bound of number of edges in a hierarchical.

Assume that G = (V, Edag) is a directed acyclic graph (dag) with n = |V| vertices and
mdag = |Edag|. The maximum number of edges mdag−max is:

mdag−max =
n (n − 1)

2
(3.13)

68

3.7 Generating Random Hierarchical Graphs

and hence, the edges density Ddag is:

Ddag =
mdag

mdag−max
=

mdag(
n(n−1)

2

) =
2 · mdag

n (n − 1)
(3.14)

Assume H = (V1, V2, . . . , Vk; E) is the hierarchical graph of the directed acyclic graph
G = (V, Edag), such that V = V1 ∪ V2 ∪ · · · ∪ Vk, ni = |Vi|, 1 ≤ i ≤ k and m = |E|. According
to the hierarchical graph properties, edge (u, v) ∈ E where u ∈ Vi and v ∈ Vj this implies j = i
and j ≥ i . This means that there is no edge that could connect two vertices belonging to the
same layer, but this edge set are permitted in the directed acyclic graph before implementing
the layering step. We call this set of forbidden edges E∗ and the number of these forbidden
edges is m∗ = |E∗|. So, there is a set of edges in a directed acyclic graph where these edges
are forbidden in a hierarchical graph, and hence:

E = Edag \ E∗ and m = mdag − m∗

The number of the forbidden edges m∗
i between the set of vertices in layer Vi in H is:

m∗
i = 1 + 2 + · · · + (ni − 1) =

ni (ni − 1)
2

(3.15)

and hence, the total number of the forbidden edges m∗ between all the vertices V in H is:

m∗ =
k∑

i=1
m∗

i =
k∑

i=1

ni (ni − 1)
2

=
k∑

i=1

n2
i

2
−

k∑
i=1

ni

2
=

1
2

[(
k∑

i=1
n2

i

)
− n

]
(3.16)

Now, for a hierarchical graph H, the maximum number of permitted edges mmax could be
computed as:

mmax = mdag−max − m∗ =
n (n − 1)

2
− 1

2

[(
k∑

i=1
n2

i

)
− n

]
=

1
2

(
n2 −

k∑
i=1

n2
i

)
(3.17)

Hence, the edge density D for a general not necessarily proper hierarchical graph H is:

D =
m

m∗
h

=
m

1
2

(
n2 −

k∑
i=1

n2
i

) =
2 · m

n2 −
k∑

i=1
n2

i

(3.18)

A proper hierarchical graph Hp = (V1, V2, . . . , Vk; Ep) with k layers, mp = |Ep|, is considered
as a sequence of k − 1 consecutive bipartite graphs Gi = (Vi, Vi+1; Ei), 1 ≤ i ≤ k − 1, i.e.
Hp =

⋃k−1
i=1 Gi, and Ep =

⋃k−1
i=1 Ei. Any edge in proper hierarchical graph Hp connects vertices

only belonging to consecutive layers, i.e., if (u, v) ∈ Hp then u ∈ Vi and v ∈ Vi+1, 1 ≤ i ≤ k−1.
Hence, the maximum number of edges m∗

Hp
in a proper hierarchical graph Hp is:

m∗
p =

k−1∑
i=1

(ni × ni+1)

69

Chapter 3 Hierarchical Drawing of Directed Graphs

And then, the edge density Dp for a proper hierarchical graph is:

Dp =
mp

m∗
p

=
mp

k−1∑
i=1

(ni × ni+1)
(3.19)

Here we introduce two algorithms (algorithms 3.13,3.14) for generating proper and general
hierarchical graphs. In these two generators, the following symbols will be used:

k as the minimum number of layers,
k̄ as the maximum number of layers,
n as the minimum number of vertices in a layer,
n̄ as the maximum number of vertices in a layer,
d+ as the minimum outdegree of a vertex,
D as the graph edge density, and
l∗ as the ration of the long edges in the graph.

3.8 Summary

In this chapter, we present the hierarchical approach for creating polyline (or straight-line)
drawings of directed graphs with vertices arranged in horizontal layers. This approach was
presented in 1981 by Sugiyama, Tagawa and Toda [STT81], and several subsequent methods
[GKNV93, Car80, ES91, GNV88, GM89, Mes88, MRH91, PT90] are actually closely related.
These methods are highly intuitive and can be applied to any digraph, regardless of its
different theoretical and topological characteristics. The four main steps of the Sygiyama
approach are introduced and also, the well-applied methods in solving the subsequent problem
in each step.

For the third step, crossing minimization, we introduced a new barycenter-based algorithm,
we named it the efficient barycenter algorithm. A empirical study on the proposed efficient
barycenter algorithm and the most recent state-of-the-art algorithm (global sifting) [BBBH11],
besides some barycenter family algorithms, has indicated that the efficient barycenter algo-
rithm produces better results and runs fast.

Finally, a new idea about the need of generating random hierarchical graphs is introduced
proposing a mathematical form for the maximum number of edges in a hierarchical graph.
Furthermore, a hierarchical graph (proper or generally non-proper) generator is considered
controlling all the parameters of a hierarchical graph, like the number of layers, the number
of vertices in each layer, the minimum number of outgoing edges of a vertex, the edge density
and the ratio of the long edges in the graph.

70

3.8 Summary

Algorithm 3.13: Proper Hierarchical Graph Generator
Input : k, k̄, n, n̄, d+, D.
Output: A proper hierarchical graph H = (V1, V2, . . . , Vk; E) with edge density D.

1 k = random generated number between k and k̄;
// Creating the vertices in each layer

2 for i = 1 to k do
3 ni = random generated number between n and n̄;
4 for j = 1 to ni do
5 set the number of the jth vertex in layer Vi be j;

// Creating the edges
6 for i = 1 to k − 1 do
7 for j = 1 to ni do
8 for s = 1 to d+ do
9 Choose a source vertex u ∈ Vi randomly;

10 Choose a target vertex v ∈ Vi+1 randomly;
11 Insert an edge (u, v);
12 m = m + 1;

// Checking isolated vertices in the last layer
13 for j = 1 to nk do
14 Let v be the jth vertex in layer Vk;
15 if d−(v) = 0 then
16 Choose a random source vertex u ∈ Vk−1;
17 Insert an edge (u, v);
18 m = m + 1;

// Inserting the rest edges according to graph density
19 Let the number of maximum edges mmax =

∑k−1
i=1 ni × ni+1;

20 Let the number of the rest edges mrest = (mmax × D) − m;
21 for i = 1 to mrest do
22 Choose a random layer number s, 1 ≤ s ≤ k − 1;
23 Choose a random source vertex u ∈ Vs;
24 Choose a random target vertex v ∈ Vs+1;
25 Insert an edge (u, v);
26 m = m + 1;
27 return (H);

71

Chapter 3 Hierarchical Drawing of Directed Graphs

Algorithm 3.14: General Hierarchical Graph Generator
Input : k, k̄, n, n̄, d+, D, l∗.
Output: A not-necessarily proper hierarchical graph H = (V1, V2, . . . , Vk; E) with edge

density D and long edge ratio l∗.

1 k = random generated number between k and k̄;
// Creating the vertices in each layer

2 for i = 1 to k do
3 ni = random generated number between n and n̄;
4 for j = 1 to ni do set the number of the jth vertex in layer Vi be j;

// Creating the edges
5 for i = 1 to k − 1 do
6 for j = 1 to ni do
7 for p = 1 to d+ do
8 Choose a random source vertex u ∈ Vi;
9 Choose a random layer number t, i + 1 ≤ t ≤ k;

10 Choose a random target vertex v ∈ Vt;
11 Insert an edge (u, v);
12 if t = i + 1 then ms = ms + 1; else ml = ml + 1;

// Checking isolated vertices in the last layer
13 for j = 1 to nk do
14 Let v be the jth vertex in layer Vk;
15 if d−(v) = 0 then
16 Choose a random layer number s, 1 ≤ t ≤ k − 1;
17 Choose a random source vertex u ∈ Vs;
18 Insert an edge (u, v);
19 if t = i + 1 then ms = ms + 1; else ml = ml + 1;

// Inserting the long edges and the rest short edges
20 Let the number of maximum edges mmax = 1

2

(
n2 − ∑k

i=1 n2
i

)
;

21 Let the number of long edges ml−rest = (mmax × l∗) − ml;
22 Let the number of the rest edges ms−rest = mmax − m∗

l − ml − ms;
23 for i = 1 to ms−rest do
24 Choose a random layer s, 1 ≤ s ≤ k − 1;
25 Choose a random source vertex u ∈ Vs;
26 Choose a random target vertex v ∈ Vs+1;
27 Insert an edge (u, v); m = m + 1;
28 for i = 1 to ml−rest do
29 Choose a random layer number s, 1 ≤ s ≤ k − 2;
30 Choose a random source vertex u ∈ Vs;
31 Choose a random layer number t, s + 2 ≤ t ≤ k;
32 Choose a random target vertex v ∈ Vt;
33 Insert an edge (u, v); m = m + 1;
34 m = ms + ml;
35 return (H);

72

4
Dynamic Hierarchical Graph

Drawing

Visualize this thing that you want, see it, feel it,
believe in it. Make your mental blue print, and
begin to build.1

In this chapter we study the problem of dynamic hierarchical graph drawing. We introduce
a general framework for computing the difference between two drawings of a dynamic hierar-
chical graph. The proposed framework is generally enough to be applied to any hierarchical
graph of any size and can also be extended to be applied to any graph type of any size. In the
second part of this chapter, we discuss the problem of crossing minimization in the dynamic
graph drawings of hierarchical graphs. This means, we want to select the drawing that min-
imizes the number of crossings and at the same time minimize the differences between that
drawing and the original one.

4.1 Introduction

In many applications, graphs are dynamic since changing actions are executed on a graph
in order to reflect the evolution of the system behaviour represented by that graph. Dy-
namic graph drawing scenarios are involving a repeated redrawing of the graph after some
frequently occurring actions (changes) to the graph structure and/or some of its geometric
characteristics. Some examples for the dynamic graph drawing scenarios are:

1Robert Collier.

73

Chapter 4 Dynamic Hierarchical Graph Drawing

• Interactive user interfaces systems [OW78,PST97,WB04] allow the user to manipulate
the drawing of a graph and this necessarily needs an algorithm that should be capable
of adapting to the dynamic changes. The system may allow the user to explicitly insert,
delete, or modify vertices and/or edges as a part of a simulation, cluster and minimize
some related vertices, changing some edge curve by modifying its source and/or target
vertex, or simply modify the positions of some individual vertices as they like, such as
vertex v should be on the right of vertex u.

• Internet websites on a server could be moved to another one according to some main-
tenance conditions [HA99a,HA99b]. Also, websites connectivity can change over time.
Consequently this implies that the corresponding network representation for these web-
sites changes.

• In large graphs drawings (such as social networks) [GW06, Sco00, MR10], it should
be possible to scale (expand or collapse) parts of the drawing in order to focus on
the connections and objects relations in this part. In case of expanding parts, those
expanded parts are enlarged where other parts of the drawing will disappear behind
the expanded parts.

The simplest way to solve the above-mentioned dynamic environment situations is to con-
sider the drawing of the graph after each change from scratch as an independent problem
and then apply a static graph drawing algorithm to produce the new drawing after each
action. Unfortunately, this approach has two main disadvantages: firstly, since the graph has
been slightly modified, many existing computations of the old drawing will be recomputed
again, which means that much time will be wasted in a redundant work. Secondly, and
more important, since the user is actually familiar with the current drawing, he/she has to
spend some effort and time to be re-familiarized with the new drawing after executing the
change. The user here has really built a so-called user’s "mental map" [ELMS91, MELS95],
which should be preserved as much as possible. Consequently, this means in dynamic graph
drawing problems, the new drawing should try to maintain the user’s mental map besides
usual static objectives (like minimize the drawing area) of the graph drawing. Sometimes,
dynamic stability is another name of preserving the user’s mental map. A number of authors
addressed the dynamic graph drawing problem and devised algorithms that provide special
treatment of preserving the mental map after a graph changes [Moe90, CDT+92, MELS95,
PCJ96,Nor97,Pur97,BW97,LMR98,Pur98,BT00,Bra01,Pur02,EGK+03,EKLN04,GBPD04,
PKL04,FT04,HEL05,KG06,GW06,SQ07,PB08,APP11b,DHW11,BVB+11,BM12].

This chapter is divided into 4 sections of which this section is the first. Section 4.2 contains
two issues: the first one contains the basic concepts of the mental map and the different tech-
niques for its preservation. The second introduces some mathematical formulations for the
evaluation of a change on a graph drawing. Then, we go deeply into presenting the problem
of dynamic drawing of hierarchical graphs in Section 4.3 by presenting a general framework
of computing the change between two different drawings of two different hierarchical graphs,
then applying the proposed framework to some existing metrics used with drawing types
rather than hierarchical drawing, and introducing some examples of the proposed difference
metrics. Section 4.4 contains some initial attempt for combining the two problems of dynamic
drawing of hierarchical graphs and minimizing edge crossings of hierarchical graphs.

74

4.2 Preserving the Mental Map

4.2 Preserving the Mental Map

The concept of mental map is intuitive. In a dynamic graph drawing environment, when a
user looks at a drawing, he or she will learn about the drawing structure, how to navigate
through the drawing and try to understand the relations between the drawing components.
The effort to become familiar with a drawing has been termed "building mental map". Much
work has been done in preserving the mental map [ELMS91,MELS95,PST97,DG02,GBPD04,
PHG08, SP08, DLF+09]. As noted by Papakostas, Six, and Tollis in [PST97], "Obviously
this is a waste of human resources to continually reanalyze the entire drawing and also of
computational resources to recompute the entire drawing after each modification." Hence,
the drawing must not only remain readable and be easy to be understand over time, but also
the user’s mental map must be preserved as much as possible.

The example shown in Figure 4.1 considers the previous note. Suppose the drawing in
4.1(a) is the current drawing, and the action is to insert a new edge connecting the two
vertices 2 and 6. The drawing depicted in 4.1(b) is more similar to the original one in 4.1(a)
since all the positions of the vertices are kept unchanged and all the edges keep their original
routings. Where applying a graph drawing algorithm from scratch might produce the drawing
presented in 4.1(c), which looks, at first impression, quite different from the original one in
4.1(a).

1

3

6

4

7

2

8

5

(a)

1

3

6

4

7

2

8

5

(b)

1

3

6

4

7

2

8

5

(c)

Figure 4.1: Current drawing (a) before executing any actions and two possible drawings (b)
and (c) for inserting a new long edge (2,6). Drawing (b) is more similar to (a)
than (c) since it keeps the positions of the vertices and the routings of the edges.
So, drawing (b) preserves the mental map more than (c).

There are two suggested solutions of preserving the user’s mental map problem:

1. Highlighting the changes by introducing the inserted or deleted vertices and edges in
different colours (for a few seconds), vertices which are to be removed from the drawing
to slowly fade out of view, or simply animating them. This could easily help the user to
be aware of the changes and that the transitions between the two drawings are clearly
recognized.

75

Chapter 4 Dynamic Hierarchical Graph Drawing

2. Minimize the changes in the new drawing such that the effort to user refamiliarity
is minimized. For the example in Figure 4.1, drawing 4.1(b) keeps the position of all
vertices of the original drawing 4.1(a), hence the graph could be immediately recognized
as it is approximately the same graph as in 4.1(a). Actually, this objective contradicts
with some traditional aesthetic criteria (such as minimization of edge crossings, or
distributing the vertices uniformly etc.). Now, we have a trade-off between these two
objectives and hence a compromise is required.

Recent computational advances have made the use of animation to show smooth changes
between the current drawing and another much more widespread, see, for example, [TMB02,
WB04, GMH+06, RFF+08, APP11a]. This is a significant advantage in allowing the user’s
knowledge of a previous state of a graph drawing to transfer to the new one, since the user can
track the incremental movement of vertices and the routing of edges over time. Obviously,
animation seems to be relatively straightforward and will not be discussed here in more detail.
Instead, we focus in this chapter on the second issue, which is change minimization.

Sometimes, an animation of a dynamic graph is built "off-line", meaning that the evolution
of the graph is already known in advance and the task is to stitch together snapshots of
the network previously taken at various intervals. In this case, rather than taking each
new drawing change in isolation, we can take a higher level approach and aim to minimize
disruption to the mental map throughout the entire animation. Another scenario is the on-
line dynamic graph drawing, in which the original graph G0 with drawing D0, a series of s
actions A1, A2, · · · , As produce a set on s graphs G1, G2, · · · , Gs, where the actions are not
known in advance. The objective here is to produce s drawings D1, D2, · · · , Ds such that Di

is the corresponding drawing of the graph Gi, 1 ≤ i ≤ s, such that the difference between
each one of the new drawings and the original one D0 is minimized.

This requires to clarify the intuitive but rather fuzzy meaning of minimizing changes to
a drawing in a way that the mental map is highly preserved, an effort that has also been
termed maintaining dynamic stability. So far, numerous models have been suggested in the
literature to capture the notion of the mental map. These models can be grouped into
two basic categories: either the allowed changes are restricted to a subset of the vertices, or
execute the action freely and then some mathematical difference metrics to measure the value
of change are used. The second category allows to trade-off aesthetic objectives with change.
These two general approaches will be treated in more detail in the following subsections.

Bridgeman and Tamassia [BT00] systematically examined and compare a set of mathemat-
ical difference metrics for orthogonal drawings, where most of them can be applied to other
drawing styles. We have actually updated some of their mathematical models in computing
the difference in hierarchical drawings. Also, Purchase [Pur02] introduced an attempt to
create a quantifiable method for assessing the aesthetic quality of any graph drawing, where
mathematical metric formulation for seven common aesthetic criteria have been defined.
These metrics are useful both for formally analysing the aesthetic quality of graph draw-
ings produced by different algorithms, and for measuring the status of intermediate drawings
produced in iterative drawing methods like genetic algorithms. The metrics are continuous,
and can, therefore, be used to investigate the extent to which a drawing needs to conform to
an aesthetic, rather than always insisting on an extreme. Many user studies for examining
relevant aesthetic criteria have been introduced [PCJ96,Pur97,Pur00,Pur00,PMCC01,BT01,
PCA02,PHG08,Hua07,SP08,PS08,HvW09,DLF+09,FQ11,ZKS11,APP11b,PPP12].

76

4.2 Preserving the Mental Map

4.2.1 Restricting Changes

An ideal concept of preserving the mental map is to not allow any changes to the current
locations of the vertices and routes of the edges that are not directly affected by an action.
Then, the drawing algorithm only computes the locations of new vertices and depicts the
routing of the new edges, which is done in a way to minimize common traditional aesthetic
criteria. Although this approach perfectly maintains the mental map, the resulting drawing
may be quite bad according to other aesthetic criteria, because, e.g., many edge crossings or
edge bends usually could not be avoided.

Restricting the changes just to a small set of vertices and edges may be weakened by
allowing adjustment of vertices in the vicinity of an action. Böhringer and Paulisch [BP90]
defined the vicinity of an action as all vertices directly affected by that action as well as
vertices with a distance smaller than a certain edge length. This completely reflects the idea
that a user may tolerate changes in a small portion of the drawing around the area where
the graph structure changed, but would prefer the remainder of the drawing to stay fixed. We
introduce a related definition of the vicinity of an action to be just the set of vertices and
edges that will be inserted to or deleted from the current drawing. Afterwards, we build a
general mathematical form of a difference metric based on this definition. The details of this
assumption are introduced in Section 4.3.

Restricting the set of vertices that may be adjusted after a change is particularly useful for
large graphs, since it also reduces the execution time of the considered algorithm and also
for redrawing the new drawing.

4.2.2 Difference Metrics

Many authors suggested another approach to preserve the mental map instead of attempt-
ing fixing parts of the drawing. This approach based on defining some difference metrics,
with mathematical formulations, to measure the similarity (or dissimilarity) between the
current and the new drawings in order to evaluate the effort required to rebuild the men-
tal map after executing an action. The objective here is to measure precisely the value
of changes in a drawing when certain updating changes are executed. The role of an al-
gorithm now is to produce a new drawing that has a good compromise between the con-
sidered traditional aesthetic criteria and the similarity of the new drawing to the current
one. Note that computing the similarity between two drawings (or generally, two shapes)
or drawing graphs symmetrically is a relative problem and has received a lot of atten-
tion [Man91,BT01,AHT02,CY02,BJ03,PKL04,HL06,BL10].

An important advantage of this approach is that it allows arbitrary changes to the current
drawing in order to guarantee the rules of the drawing style. On the other hand, to find
a good trade-off between traditional aesthetic criteria and preserving the mental map may
be difficult. "Also, it does not yet seem to be clear how to actually measure similarity with
respect to the mental map" [Bra01, page 223]. Also, combining traditional aesthetic criterion
(like minimizing area or reduce crossings) in a dynamic drawing environment represents
an interesting multi-objective optimization problem that can be solved using metaheuristic
techniques like evolutionary algorithms or the ant colony technique [Deb01,DF07].

77

Chapter 4 Dynamic Hierarchical Graph Drawing

In the following subsections, a set of the suggested difference metrics are grouped according
to the general concept they are based on.

4.2.2.1 Distance-Based Metrics

The distance metrics [BT00] reflect the simple intuition that drawings look very different
if the vertices cannot be aligned very well. Since vertices alignment is based on distance
minimization, distance metrics basically measure the quality (or inferior) of the vertices
alignment. In order to make the value of the distance metrics comparable between pairs of
vertices, they should be scaled by the drawing unit length U . Some examples of distance
metrics are Hausdorff distance, Euclidean distance and relative distance metrics. Euclidean
distance and relative distance metrics are introduced in Sections 4.3.4 and 4.3.5 with an
extension to be applied to hierarchical drawings.

4.2.2.2 Proximity Metrics

The proximity (or clustering) metrics reflect the idea that vertices near to each other in the
first drawing should remain near to each other in the second drawing. This is stronger than
the distance metrics since it captures the idea that if an entire subgraph moves (such that
there are no changes within the vertices of that subgraph) relative to another subgraphs,
the distance should be less than if each vertex in one of the subgraphs moves in a different
direction. See Figure 4.2 as an example.

Basically any of the methods that are used to find the clustering of a graph may be
considered as proximity metric. The general idea here is to use some proximity relation of
the clusters and compare the relationship between the set of vertices of the current graph
before and after the layout change. There are different proximity metrics are considered such
as: sphere of influence graph [ELMS91], Delaunay triangulation [Lyo92, MELS95, LMR98],
ε-clustering [ELMS91, BT00], nearest neighbour within [LMR98, BT00], nearest neighbour
between [LMR98,BT00].

4.2.2.3 Partitioning Metrics

Instead of capturing the vertices individually as in distance and proximity metrics, parti-
tioning metrics are introduced [BT00]. The partitioning metrics are based on dividing the
vertices into smaller parts according to some criteria, and then measuring qualities of these
parts. The intuition for the partitioning metric is to monitor "visual units" that the user may
use for capturing the new drawing.

The partitioning method and metrics can be computed quite simply. Firstly, the vertices
set can be divided so that the vertices in each part have the same relative position in both
drawings. This identifies blocks of the drawing that are the same in both drawings. Note
that the larger partitions size, the more unchanged parts and the more similar the drawings.
Then, the partition metric can be computed by considering the average partition size or the
number of partitions.

78

4.2 Preserving the Mental Map

9

5 6 8

10

7

4

2 1

3

(a)

9

5

3

6 8

10

7

4

2 1

7 6

3 4

(b)

9

5

3

6 8

10

7

4

2

7

1

6

3 4

(c)

Figure 4.2: Proximity example: drawing (c) is similar to drawing (a) more than drawing (b)
because the relative distance between the four vertices 3, 4, 6 and 7 is smaller.
Original alignment of the four vertices in drawing (a) is shown in light grey colour
in the two drawings (b) and (c).

4.2.2.4 Orthogonal Ordering Metrics

The orthogonal ordering metric reflects the desire to preserve the relative ordering of every
pair of vertices. If v is north-east of u in drawing D, v′ should remain to the north-east of
u′ in the new drawing D′ [ELMS91, MELS95]. The simplest measurement of difference in
the orthogonal ordering is to take the angle between the vectors v − u and v′ − u′ (constant-
weighted orthogonal ordering). This has the desirable feature that if v is far from u, d(v, u)
must be larger in order to result in the same angular move, which reflects the intuition that
the relative position of points near each other is more important than the relative position
of points that are far apart. This problem can be addressed by introducing a weight that
depends on the particular angles involved in the move in addition to the size of the move
(linear-weighted orthogonal ordering). This is because using the angular change fails to take
into account situations like that in Figure 4.3.

Lyons, Meijer, and Rappaport [LMR98] used the λ-matrix model for measuring the differ-
ence of two point sets. The λ-matrix model is based on the concept of order type of a point
set introduced by Goodman and Pollack [GP83]. This model tries to capture the notion of
the relative position of vertices in a straight-line drawing. For a graph with n vertices, a n×n
matrix M is computed. In this matrix M , each entry (i, j) contains the number of points
that lie on the left of the directed line from vertex i to vertex j. Then, the difference metric
is computed as the sum of the differences in all the entries of M before and after a change.

4.2.2.5 Shape Metrics

The shape (or edge routing) metric is motivated by the reasoning that edge routing may have
an effect on the overall look of the graph drawing in case of the positions of the vertices are
the same in both drawings. This metric is based on the intuition that the position of vertices
is more important than the routing of the edges because vertices are remembered as locations,
while edges are traced "on the fly" to discover connections between vertices [Nor97].

79

Chapter 4 Dynamic Hierarchical Graph Drawing

(a)

(b)

(c)

Figure 4.3: Orthogonal ordering example: although the angle the vertex v moves relative to
vertex u is the same from (a) to (b) and to (c), the perceptual difference between
(a) and (c) is much greater. Note that u′ and v′ are the representations of the two
vertices u and v in drawing D′. Also, the original location of vertex v in drawing
D is shown in grey colour in the two drawings (b) and (c).

In the case of orthogonal drawing, Bridgeman and Tamassia [BT00] assumed the shape of an
edge as the sequence of directions (north, south, east, and west) travelled when traversing the
edge. The edge routing is used as distance metric and computed by comparing the sequence
of directions for each edge and then measuring the number of edit operations (insert, delete
or replace) to transform the old sequence of directions into the new one.

For non-orthogonal edges the direction is taken to be the most prominent direction. For
example, if the edge goes from (1,1) to (4,2), then the most prominent direction is east. For
each pair of edges (ei, e′

i), the edit distance between the corresponding shape strings is com-
puted. To determine the edit distance, two algorithms are used. The first one uses dynamic
programming to compute the minimum number of insertions, deletions, or replacements of
characters required to transform one string into the other. The second is similar, but nor-
malizes the measure according to the length of the strings using a techniques introduced by
Marzal and Vidal [MV93]. After that, the value of the shape metric is computed as the
average edit distance over the edges of the graph.

Further suggestions to capture the notion of the mental map include to maintain congruence
[ELMS91] which only allows the operations reflection, rotation, translation and scaling, or to
maintain topology, i.e. the dual graph of a layout [MELS95]. Furthermore, a great deal of
work has been done on point set matching. For several methods of obtaining both optimal
and approximate matching, see, for example, [ISI89,CGH+97,GMO99].

4.2.2.6 Identical Drawing Pleasing Metrics

The measurement of aesthetic criteria within a drawing of a graph is done informally, and
normally differs according to the used algorithm. Also, there is no standard, objective way for
analysing a drawing with respect to the sense of different geometric aesthetics. Furthermore,
continuous measurements of metrics are necessary, so that analysing a drawing with respect
to an aesthetic is not merely a binary decision, for example, considering a drawing to be
"planar" or "not planar", but is rather an indication of the extent to which the drawing
conforms to the aesthetic (for example, a drawing may be considered to have 25% presence
of crossing, i.e. 90% planar).

80

4.3 Difference Metrics for Hierarchical Graphs

An important advantage of providing a formal method for analysing the aesthetic quality
of drawings, is that these computational aesthetic metrics can be used for the definition of
cost functions for some metaheuristic techniques. So, an ideal aesthetic quality of a drawing
can be defined in advance (for example, the drawing should have at least 80% symmetry, at
most 10% "crossings", and 15% "edge orthogonality"). Afterwards, some evaluation function,
which determines whether these criteria are satisfied or not, may then be implemented using
computational metrics for each of these aesthetics, and can also be used to indicate whether
more iterations are needed or not.

Many algorithms try to get the extreme of the aesthetics, for example, removing all bends,
or ensuring that all vertices are placed on an invisible grid. Although there is no doubt
that these aesthetics criteria improve the readability of graph drawings, the usefulness of
an aesthetic is related to a critical mass rather than an extreme: perhaps drawings with at
most 10% "crossings" are as useful as those with 0% "crossings" or perhaps a drawing needs
to be at least 90% orthogonal before the usability effects of the orthogonality aesthetic are
evident. Without continuous measures, this notion of critical mass, and the computational
implication of relaxing the requirement that the aesthetic be satisfied at the extreme cannot
be investigated.

Purchaise [Pur02] presented some formal metrics for measuring the aesthetic presence in
an identical drawing of a graph for seven common aesthetic criteria. These seven aesthetic
criteria are: minimizing edge crossings, minimizing edge bends, maximizing drawing sym-
metry, maximizing the minimum angle between the adjacency edges of a vertex, maximizing
edge orthogonality, maximizing vertex orthogonality and maximizing consistent flow direc-
tion (only for directed graphs). These metrics are applicable to any graph drawing of any
size. The metrics are useful for determining the aesthetic quality of a given graph drawing.
Most of these metrics are presented in the next section and are also extended to be applied
to hierarchical drawing.

4.3 Difference Metrics for Hierarchical Graphs

Bridgeman and Tamassia [BT00] defined some metrics associated with graph drawings. Their
concern was measuring the differences between two drawings of the same graph in a dynamic
environment. These metrics are applied to orthogonal drawings of graphs. Purchase [Pur02]
introduced formal metrics for measuring the aesthetic presence of a drawing of a graph for
seven common aesthetic criteria, applicable to any graph whatever the graph size. These
metrics are intended to be applicable in the analysis of drawings of any hierarchical graph of
any structure or size, and enabling quantitative comparisons between drawings of different
hierarchical graphs.

Significant progress has been made in drawing dynamic clustered graphs [FT04], drawing
dynamic trees [Moe90], dynamic planar graphs [DT89] and dynamic series-parallel graphs
[CDTT95]. Although these are useful techniques for these specific graph types, they could
not be applied to general graph drawing. Hornick, Miriyala and Tamassia [MHT93] described
a practical incremental edge router for orthogonal drawings, such as entity-relation diagrams.

81

Chapter 4 Dynamic Hierarchical Graph Drawing

The Sugiyama heuristic [STT81] and some variants of it are quite popular for drawing
hierarchical graphs. Böhringer and Paulisch [BP90] demonstrated how Sugiyama heuristic
could be modelled in terms of constraints, and then transformed to preserve dynamic stability.
In the layering step, for each edge (u, v) a constraint is introduced assuming that vertex u
should be placed above vertex v, and the layering is decided. Then, the barycenter ordering
is used to derive constraints to determine the horizontal ordering of the vertices in each layer.

The DynaDAG system [Nor97] is an adaptation of the Sugiyama heuristic that allows
interactive changes to the structure of a hierarchical graph. DynaDAG allows to insert,
modify or delete a single vertex or edge. Vertices are originally placed on the highest possible
layer and may be moved down when this becomes necessary by an insertion of another vertex
or edge. Vertices are moved down layer by layer, shifted in each layer to their median
position with respect to their adjacent vertices. When the vertices are in their final position,
the adjacent edges are adjusted. New inserted edges are routed heuristically. The final
vertex coordinates are calculated by a linear program. The placement of the user is taken
into account when inserting a new vertex. A final point about DynaDAG system is that
only distance metrics are used to preserve the mental map. So, for hierarchical graphs,
it is motivated to apply other geometric metrics (like edge orthogonality, vertex minimum
angle, ...) that actually applied in preserving the mental map of other graph types. North
and Woodhull [NW02] propose a heuristic for dynamic hierarchical graph drawing using the
DynaDAG system.

Branke [Bra01] suggested two constraints to preserve the user’s mental map when a hierar-
chical graph is modified. These two constraints are derived from the old drawing determining:

1. the ordering of the vertices in each layer, and
2. the set of vertices belonging to the same layer in the old drawing should also belong to

the same layer in the new drawing.

Then, only vertices close to the change in the graph (i.e. vertices in the vicinity of the
change) are exempt from these two constraints and could move freely. By setting the size of
the vicinity, the user mental map could be highly preserved. Given the total set of constraints
(Sugiyama plus mental map preserving constraints), constraint propagation is used to find
a feasible drawing. By assigning priorities to the constraints, inconsistencies are resolved by
neglecting some of them.

In the next subsections, we introduce first our proposed general framework for computing
the value of change between two drawing of two different hierarchical graphs. Afterwards, we
apply our general framework to a set of difference metrics used in the literature with different
graph types rather than hierarchical graphs.

In the following, we suppose that the considered hierarchical graphs are proper, the layers
are drawn and numbered from top to bottom, and the long edges have been actually broken
into chains of dummy vertices over the intermediate layers.

4.3.1 Dynamic Hierarchical Graph Actions

After executing an action A on a hierarchical graph H = (V, E , φ), another hierarchical graph
H′ = (V ′, E ′, φ′) will be produced, i.e.:

82

4.3 Difference Metrics for Hierarchical Graphs

H = (V, E , φ) A−−−→ H′ = (V ′, E ′, φ′), or
H = (V1, V2, · · · , Vk; E) A−−−→ H′ = (V ′

1, V ′
2, · · · , V ′

k; E ′)

Here, as in some of the literature (as an example [Nor97]), we assume that the executed
action A belongs to the product:

{ insert , delete , modify } × { vertex , edge } (4.1)

More complex actions must be decomposed of basic primitives. This because applications
often require performing a number of actions (updates) at once, since from the user point of
view, it would make sense to collect updates and execute them together at once. The modify
vertex action means moving a vertex vertically to a different layer (if it possible) or moving
a vertex horizontally by changing its position in its layer. The modify edge action means
changing the edge source or target vertex.

Depending on the topological structure of hierarchical graphs, the following 13 actions
represent the different cases of an action that could be executed on a hierarchical graph:

1. Insert a new short edge (u, v) where u ∈ Vi and v ∈ Vi+1. An example of this action is
introduced in Figure 4.10.

2. Insert a new long edge (u, v) where u ∈ Vi and v ∈ Vj such that j > i + 1. This implies
introducing a set of j − i − 1 dummy vertices over the j − i − 1 intermediate layers
Vi+1, Vi+2, · · · , Vj−1. An example of this action is introduced in Figure 4.11.

3. Delete an existing short edge (u, v) where u ∈ Vi and v ∈ Vi+1. An example of this
action is introduced in Figure 4.12.

4. Delete an existing long edge (u, v) where u ∈ Vi and v ∈ Vj such that j > i + 1. This
implies deleting the set of j − i−1 dummy vertices over the j − i−1 intermediate layers
Vi+1, Vi+2, · · · , Vj−1. An example of this action is introduced in Figure 4.13.

5. Modify an existing short/long edge (u, v) where u ∈ Vi and v ∈ Vj such that j ≥ i + 1.
This means changing the source vertex u or the target vertex v. An example of this
action is introduced in Figure 4.14.

6. Insert a new vertex v into layer Vi connecting two vertices u ∈ Vi−1 and vertex w ∈ Vj ,
j ≥ i + 1. This consequently implies inserting two new edges: a short edge (u, v) and
a short/long edge (v, w). An example of this action is introduced in Figure 4.15.

7. Insert a new vertex v into a new first layer V0 connecting vertex w ∈ V1. This conse-
quently implies inserting a new short edge (v, w). An example of this action is intro-
duced in Figure 4.16.

8. Insert a new vertex v into a new last layer Vk+1 connecting vertex u ∈ Vk. This
consequently implies inserting a new short edge (u, v). An example of this action is
introduced in Figure 4.17.

9. Insert a new vertex v into a new intermediate layer Vi connecting two vertices u ∈ Vi−1
and vertex w ∈ Vi+1. This consequently implies inserting two new short edges (u, v)
and (v, w). An example of this action is introduced in Figure 4.18.

83

Chapter 4 Dynamic Hierarchical Graph Drawing

10. Delete an existing vertex v from layer Vi. This consequently implies deleting the adja-
cency edges of v. This means that layer Vi has at least one non-dummy vertex rather
than v. An example of this action is introduced in Figure 4.19.

11. Delete an existing vertex v and its layer Vi. This means that all the vertices (if exist)
in layer Vi, rather that v, are dummy vertices. This consequently implies deleting the
adjacency edges of v and any the long edges (u, w) such that u ∈ Vi−1 and w ∈ Vi+1
will be modified to a short one. An example of this action is introduced in Figure 4.20.

12. Modify the horizontal position of an existing vertex v ∈ Vi by changing its order (or its
x-coordinate) in its layer. An example of this action is introduced in Figure 4.21.

13. Modify the vertical position of an existing vertex v ∈ Vi by moving it to an upward to
some layer Vj , 1 ≤ j < i or down to layer Vq, i < q ≤ k. This action means that all
edges (if exist) incident on or go out from v are long edges. This means modifying the
adjacency edges of v. An example of this action is introduced in Figure 4.22.

The geometric difference between two drawings D(H) and D′(H′) of two different graphs
H and H′, is not completely reflected by the arithmetic difference (|μ(D) − μ(D′)|) between
the two metric values of the two identical drawings μ(D) and μ(D′), as presented in [Pur02].
Consider the following example. The edge orthogonal angle represents how far away the edge
segment deviates from an orthogonal angle and the edge orthogonality metric is computed as
the average of the orthogonal deviations of the set of edges in the graph, i.e. the sum of the
edges orthogonal deviation of the edges over the number of edges. Suppose the action to be
executed is to insert a new short edge. Hence, the number of edges is increased (by 1) and also
the sum of the orthogonal deviations of the edges is increased (by the orthogonal deviation
value of the inserted edge). Consequently, the difference between the two edge orthogonality
metrics is not precisely reflected the geometric difference between the two identical drawings.

So that, we introduce a new general framework of computing the actual geometric change
between the two drawings. To do this, it is better to focus on and compute the change in each
graph component (vertex/edge) in both drawings simultaneously, instead of just comparing
the two metric values of the two identical drawings.

4.3.2 Shared and Action Components

After executing an action, according to the product in Equation 4.1, on a hierarchical graph
H = (V, E , φ), a new hierarchical graph H′ = (V ′, E ′, φ′). We define the action components as
the components (vertices/edges) that will be inserted into or deleted from the hierarchical
graph H, where the remaining components (vertices/edges) will be considered as the shared
components since they will be found in both graphs H and H′. The value of any geometric
difference metric will be computed as the combination of the value for the shared components
and the action components.

Suppose Va and Ea are the two sets of action vertices and action edges in graph H respec-
tively, V ′

a and E ′
a are the two sets of action vertices and action edges in graph H′ respectively,

and Vs and Es are the two sets of shared vertices and shared edges in the two graphs H and
H′ respectively. The relations between the shared and action components could be induced
from the following formulas:

84

4.3 Difference Metrics for Hierarchical Graphs

Va ⊆ V,
V ′

a ⊆ V ′,
Ea ⊆ E ,
E ′

a ⊆ E ′,
Vs = V ∩ V ′ = V \ Va = V ′ \ V ′

a,
Es = E ∩ E ′ = E \ Ea = E ′ \ E ′

a,
=⇒ H = (Va ∪ Vs, Ea ∪ Es, φ), and
=⇒ H′ = (V ′

a ∪ Vs, E ′
a ∪ Es, φ′)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

Figure 4.4 presents an example of the relation between the shared and action components.
In this example, a hierarchical graph H drawn in Figure 4.4(a) 9 vertices in 4 layers and 9
edges where two edges are long and 7 are short. The action here is to move vertex number 6
one layer up. After moving vertex 6 one layer up, the two short edges (6,8) and (6,9) will be
modified in the new drawing D′ to long edges by inserting the two new dummy vertices 10
and 11. Furthermore, the long edge (1,6) will be modified to a short one in the new drawing
D′ and consequently the dummy vertex 3 will be deleted from the current drawing D. So,
for the two graphs H = (Va ∪ Vs, Ea ∪ Es, φ) and H′ = (V ′

a ∪ Vs, E ′
a ∪ Es, φ′), where the shared

and action components sets are:

Va = {3},
V ′

a = {10, 11},
Vs = {1, 2, 4, 5, 6, 7, 8, 9},
Ea = {(1, 3), (3, 6), (6, 8), (6, 9)},
E ′

a = {(1, 6), (6, 10), (6, 11), (10, 8), (11, 9)}, and
Es = {(1, 2), (1, 4), (2, 5), (4, 7), (5, 8), (5, 9), (7, 9)}

8 9

5 7

1

6

2 3 4

(a) Current drawing D(H) before
moving (modifying) vertex 6 one

layer up, action components are in
red colour

8 9

11

1

10

2

7

6

5

4

(b) New drawing D′(H′) after
moving (modifying) vertex 6 one

layer up, action components are in
green colour

Figure 4.4: Example of action and shared components of hierarchical graphs.

85

Chapter 4 Dynamic Hierarchical Graph Drawing

4.3.3 General Difference Metric

The geometric aesthetic metrics measuring the similarity or dissimilarity between two differ-
ent drawings D(H) and D′(H′) of the two different graphs H and H′ could be divided into
two types: vertex metrics and edge metrics. Vertex metrics depend on the values of some
geometric property of the vertices, while edge metrics depend on some geometric property
of the edges. Examples of vertex metrics are Euclidean distance, relative distance, vertex
minimum angle, and vertex size metrics. Examples of edge metrics are edge length, edge
orthogonality and edge crossing metrics. These difference metrics will be presented in the
next subsections.

Now, each graph consists of shared components and action components and the value of
some metric μ(D, D′) of the difference between the two drawings D(H) and D′(H′) could be
divided into two parts. The first part μs is for the shared components and the second μa is
for the action components, i.e:

μ(D, D′) = μs + μa (4.3)

Suppose μV is a vertex metric, then the shared components will be the shared vertices, and
then μs = μ(Vs) and μa = μ(Va, V ′

a). Hence, the value of a vertex metric μV is:

μV (D, D′) = μ(Vs) + μ(Va, V ′
a)

Also, suppose μE is an edge metric, then the shared components will be the shared edges,
and then μs = μ(Es) and μa = μ(Ea, E ′

a). Hence, the value of a vertex metric μE is:

μE(D, D′) = μ(Es) + μ(Ea, E ′
a)

For the shared components, there are two representations for each shared component, one in
each drawing of the two drawings D and D′. So, the metric value of any shared component
could be considered as the difference between the two metric values of that shared component
in each drawing of D and D′. Hence, the metric value μs for each shared component will be
the summation of that metric value for all shared components. For the set of shared vertices
Vs, the change in a metric μ(Vs) is:

μ(Vs) =
∑

v∈Vs

∣∣μ(r(v)) − μ(r′(v))
∣∣ (4.4)

where r(v) and r′(v) are the geometric representations of the shared vertex v ∈ Vs in both
drawings D and D′ respectively. Also, the change in a metric μ(Es) for the shared edges will
be:

μ(Es) =
∑
e∈Es

∣∣μ(r(e)) − μ(r′(e))
∣∣ (4.5)

where r(e) and r′(e) are the representations of the shared edge e ∈ Es in both drawings D
and D′ respectively.

For the action components, there is only one representation for each action component in
just one drawing of the two drawings D and D′. Consequently, the metric value μa of the
action components could be considered as the difference between the two sums of the action
components values in drawing D and that of the action components values in drawing D′.

86

4.3 Difference Metrics for Hierarchical Graphs

So, for the action vertices, the metric value μ(Va) for the action vertices could be considered
as:

μ(Va, V ′
a) =

∣∣∣∣∣∣
∑

v∈Va

μ(r(v)) −
∑

v∈V ′
a

μ(r(v))

∣∣∣∣∣∣ (4.6)

where r(v) is the representation of the action vertex v ∈ Va or v ∈ V ′
a in both drawings D

and D′ respectively. Also, the change in a metric μ(Ea) for the action edges will be:

μ(Ea, E ′
a) =

∣∣∣∣∣∣
∑
e∈Ea

μ(r(e)) −
∑
e∈E ′

a

μ(r(e))

∣∣∣∣∣∣ (4.7)

where r(e) is the representation of the action edge e ∈ Ea or e ∈ E ′
a in both drawings D and

D′ respectively. Hence, by combining Equation 4.4 with Equation 4.6, the total change in a
difference metric of the vertices μV will be:

μV (D, D′) =
∑

v∈Vs

∣∣μ(r(v)) − μ(r′(v))
∣∣ +

∣∣∣∣∣∣
∑

v∈Va

μ(r(v)) −
∑

v∈V ′
a

μ(r(v))

∣∣∣∣∣∣ (4.8)

And, by combining Equation 4.5 with Equation 4.7, the total change in a difference metric
of the vertices μE will be:

μE(D, D′) =
∑
e∈Es

∣∣μ(r(e)) − μ(r′(e))
∣∣ +

∣∣∣∣∣∣
∑
e∈Ea

μ(r(e)) −
∑
e∈E ′

a

μ(r(e))

∣∣∣∣∣∣ (4.9)

All the difference metrics considered here are defined such that the measurement is a real
number in [0,1], where 0 indicates that the two drawings are completely similar (this means
that it is very easy to be refamiliarized with the new drawing and the mental map is highly
preserved) where 1 assumes that the two drawing are completely dissimilar. Scaling the
metrics in this way ensures that the metric value does not depend on the nature of the
underlying the drawing style of the graph.

In order to get a general normalization for the computed change value between 0 and 1,
we compare the value of change against some maximum value. By the definition of the user’s
mental map, after executing a change on the current drawing D, which is the drawing that
the user is actually familiar with, a new drawing is produced. So, it is reasonable to compare
the value of difference between the two drawing D and D′, according to some metric, against
a maximum value μmax(D) of the considered metric in the old drawing D. Hence, after
executing a change on a drawing D and producing a new one D′, the final relative value of
change with respect to some metric μ is:

μ(D, D′) =
μs + μa

μmax(D)
(4.10)

Hence, the final normalized value of a vertex metric μV and edge metric μE are represented
in Equation 4.11 and Equation 4.12 respectively.

μV (D, D′) =

∑
v∈Vs

∣∣μ(r(v)) − μ(r′(v))
∣∣ +

∣∣∣∣∣∣
∑

v∈Va

μ(r(v)) −
∑

v∈V ′
a

μ(r(v))

∣∣∣∣∣∣
μV max(D)

(4.11)

87

Chapter 4 Dynamic Hierarchical Graph Drawing

μE(D, D′) =

∑
e∈Es

∣∣μ(r(e)) − μ(r′(e))
∣∣ +

∣∣∣∣∣∣
∑
e∈Ea

μ(r(e)) −
∑
e∈E ′

a

μ(r(e))

∣∣∣∣∣∣
μEmax(D)

(4.12)

Note that, the general difference metrics produced in Equation 4.10 could also be used
in computing the similarity between two drawings regardless of preserving the mental map,
i.e. when the user is not familiar with any drawings, but he/she just watches both drawing
at the same time and does not care about the change action. The only difference will be
that the denominator will not be considered as the maximum value of the first drawing D,
it will be considered as the maximum values of both maximums in both drawings. This
is because it is not guaranteed that the maximum metric value of the first drawing D will
keep a normalization between 0 and 1 for the final difference metric value, and in order to
control this gap, the maximum of the two maximums is used. Hence, the final normalized
difference metric μS(D, D′) that compute a degree of similarity or dissimilarity between the
two drawings D and D′ of the two hierarchical graphs H and H′ is:

μS(D, D′) =
μs + μa

max{μmax(D), μmax(D′)} (4.13)

In the next subsections, we apply the two equations 4.11 and 4.12 to update the existing
metrics applied to different graph types in order to compute the difference between two
drawings of two different hierarchical graphs. Also, we normalize the computed metrics
between 0 and 1 in order to monitor and scale the behaviour of the computed metrics.

4.3.4 Euclidean Distance Metric

A straightforward method for measuring similarity (or dissimilarity) between two drawings
D(G) and D′(G) of the same graph G = (V, E) is to use the Euclidean distance metric. The
Euclidean distance metric computes the average of the Euclidean distance each vertex moves
from the first drawing to the second [BT00]. The idea is motivated by the notion that if
shared vertices move a long way from their original positions in the first drawing D, the
second drawing D′ will look very different. The Euclidean distance metric was originally
introduced by Lyons, Meijer, and Rappaport [LMR98].

For two drawings D(G) and D′(G) of the same graph G, a matched point set P is the set
of pairs (pi, p′

i) where pi is the location of the point number i in drawing D(G) and p′
i is

the location of the point number i in drawing D′(G). Let the Euclidean distance d(pi, pj)
between two points pi and pj in the plane is d(pi, pj) =

√
|x(pi) − x(pj)|2 + |y(pi) − y(pj)|2.

The Euclidean distance metric is represented as:

1
U × |P|

∑
1≤i≤|P|

d(pi, p′
i) (4.14)

where U represents the drawing unit.

88

4.3 Difference Metrics for Hierarchical Graphs

For the two hierarchical graphs H = (Vs ∪ Va, Es ∪ Ea, φ) and H′ = (Vs ∪ V ′
a, Es ∪ E ′

a, φ′),
we can apply the Euclidean distance metric to compute the average Euclidean distance only
for the set of shared vertices Vs. This is because each shared vertex has two geometric
representations, one in each drawing of D(H) and D′(H′). By applying Equation 4.14 to the
set of shared vertices we get the following:

1
U × |Vs|

∑
v∈Vs

d(l(v), l′(v))

where l(v) and l′(v) are the locations of any shared vertex v ∈ Vs in both drawings D(H)
and D′(H′) respectively.

In order to normalize the Euclidean distance difference metric between 0 and 1, we could not
just consider the previous form of the average of the Euclidean distance each shared vertex
moves, since it is not guaranteed for this average value to be between 0 and 1. However,
we should compare the summation of the Euclidean distance each shared vertex v moves
against some maximum possible distance. In hierarchical graphs, any shared vertex v ∈ Vs

could move horizontally through the horizontal line presenting the layer that contains v
and vertically through consecutive layers. Suppose xmin and xmax are the minimum and
maximum x-coordinate in the drawing D(H) respectively, the maximum horizontal distance
Δxmax could vertex v move is:

Δxmax(v) = max{x(l(v)) − xmin , xmax − x(l(v))}

where the maximum vertical distance between the two locations l(v) and l′(v) of a shared
vertex v in the two drawings D and D′ respectively is |y(l(v)) − y(l′(v))|. Figure 4.5 shows the
maximum distance a shared vertex v ∈ Vs can move. So, the Euclidean distance metric μED
of the set of shared vertices in two drawings D(H) and D′(H′) of the two different hierarchical
graphs H and H′ respectively is:

μED(D, D′) =

∑
v∈Vs

d(l(v), l′(v))

∑
v∈Vs

√
(Δxmax(v))2 + |y(l(v)) − y(l′(v))|2

(4.15)

4.3.5 Relative Distance Metric

The relative distance metric [BT00] measures the average change in the distance between
each pair of vertices between the two drawings D(G) and D′(G) of the same graph G. The
idea is that preserving the relative ordering of the vertices is more important than preserving
their absolute positions, specially if it is possible for the drawing (or a part of it) to transfer
or rotate. In case of transferring or rotating, Euclidean distance produces a huge value of
change although the mental map is not disturbed to the degree of the change of the computed
value. For two drawings D(G) and D′(G) of the same graph G with a matched point set P,
the relative distance is computed as:

1
U × |P| × (|P| − 1)

∑
1≤i,j≤|P|

∣∣∣d(pi, pj) − d(p′
i, p′

j)
∣∣∣ (4.16)

89

Chapter 4 Dynamic Hierarchical Graph Drawing

(a)

(b)

Figure 4.5: Cases of maximum distance a shared vertex v could move. The black circles
represent the location of a shared vertex v in the current drawing D(H) where
the grey ones represent the location of the same shared vertex v in the new
drawing D′(H′).

where U is the drawing unit and d(pi, pj) is the distance between the two points pi, pj ∈ P
where pi and pj are the locations of the ith and jth in the drawing D and p′

i and p′
j are the

locations of the same two points in the drawing D′.

As with Euclidean distance, we could apply the relative distance only for the set of shared
vertices of the two hierarchical graphs H = (Vs ∪Va, Es ∪Ea, φ) and H′ = (Vs ∪V ′

a, Es ∪E ′
a, φ′).

The relative distance metric μRD for the set of shared vertices Vs in the two drawings D(H)
and D′(H′) is:

1
U × |Vs| × (|Vs| − 1)

∑
u,v∈Vs

∣∣d (l (u) , l (v)) − d
(
l′ (u) , l′ (v)

)∣∣

where l(u) and l(v) are the locations of the two shared vertices u, v ∈ Vs in the drawing D(H)
respectively and l′(u) and l′(v) are the locations of the same two shared vertices u, v in the
drawing D′(H′) respectively.

Also, as with the Euclidean distance metric, we have to normalize the relative distance
metric value to be between 0 and 1. To do that, we have to compute the maximum distance
could be found between two shared vertices u and v in the two drawings D and D′. Assume
xmin and xmax are the minimum and maximum x-coordinate in the drawing D respectively.
The maximum horizontal distance u and v could found when one vertex is located on the
left boundary and the other vertices is located on the right boundary. This means that
the maximum horizontal distance between u and v is xmax − xmin. The maximum vertical
distance Δymax between u and v can be computed as:

Δymax(u, v) = max{y(l(v)), y(l′(v))} − min{y(l(u)), y(l′(u))}

Figure 4.6 shows the maximum horizontal distance could be found between two shared vertices
u, v ∈ Vs. Now, the relative distance metric of the set of shared vertices in two drawings D(H)
and D′(H′) of the two different hierarchical graphs H and H′ respectively is:

90

4.3 Difference Metrics for Hierarchical Graphs

(a)

(b)

Figure 4.6: Cases of maximum horizontal move between two shared vertices u and v. Circles
in black represent actual positions of the two shared vertices u and v in the current
drawing D(H), where the circles in grey represents the horizontal positions of u
and v in the new drawing D′(H′).

μRD(D, D′) =

∑
u,v∈Vs

∣∣d(l(u), l(v)) − d(l′(u), l′(v))
∣∣

∑
u,v∈Vs

√
(xmax − xmin)2 + (Δymax(u, v))2

(4.17)

4.3.6 Vertex Minimum Angle Metric

The vertex minimum angle deviation of a vertex v ∈ V in a drawing D(G) of a general graph
G = (V, E) is the ratio of the minimum angle of the vertex adjacent incident edges to the
ideal angle of that vertex v, and computed as:∣∣∣∣ ϑ(v) − θmin(v)

ϑ(v)

∣∣∣∣
where θmin(v) is the actual minimum angle between the set of edges incident at vertex v, and
ϑ(v) is the ideal (maximum) minimum angle at v. See the example given in Figure 4.7. If
d(v) is the degree of vertex v, the ideal angle ϑ(v) is computed as:

ϑ(v) =
360◦

d(v)

The vertex minimum angle aesthetic metric [Pur02] of an identical drawing D(G) of a graph
G = (V, E) is the average of the vertices minimum angle deviation, as represented in Equation
4.18.

1
|V|

∑
v∈V

∣∣∣∣ ϑ(v) − θmin(v)
ϑ(v)

∣∣∣∣ (4.18)

91

Chapter 4 Dynamic Hierarchical Graph Drawing

(a)

(b)

Figure 4.7: Example of vertex minimum angle deviation. Drawing (a) has a minimum angle
equals to the ideal angle (θmin = ϑ = 120◦) vertex v, where drawing (b) has a
minimum angle θmin = 45◦ and ideal angle ϑ = 120◦ at vertex v.

Now we formulate the vertex minimum angle aesthetic metric of two drawings of two
different hierarchical graphs. Firstly, since any vertex v ∈ V1 have no incoming edges and
any vertex v ∈ Vk have no outing edges (see Figure 4.8), the ideal angle ϑ(v) of vertex v ∈ Vi,
1 ≤ i ≤ k in the hierarchical graph H = (V1, V2, · · · , Vk; E) is modified to:

ϑ(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

180◦

d(v) + 1
if v ∈ (V1 ∪ Vk);

360◦

d(v)
if v ∈ V \ (V1 ∪ Vk);

(4.19)

(a) Angles between incident edges of a first
layer vertex v ∈ V1

(b) Angles between incident edges of a last
layer vertex v ∈ Vk

Figure 4.8: Angles between incident edges of a boundary layer vertex v ∈ V1 ∪ Vk in a hier-
archical graph G = (V1, V2, · · · , Vk; E).

Then, for the two hierarchical graphs H = (Vs∪Va, Es∪Ea, φ) and H′ = (Vs∪V ′
a, Es∪E ′

a, φ′),
the change in the vertex minimum angle metric μVϑ(D, D′) of the two drawings D(H) and
D′(H′) can be computed by applying our general framework in Equation 4.11 as:

92

4.3 Difference Metrics for Hierarchical Graphs

μVϑ(D, D′) =

∑
v∈Vs

∣∣θmin(l(v)) − θmin(l′(v))
∣∣ +

∣∣∣∣∣∣
∑

v∈V ′
a

θmin(l(v)) −
∑

v∈Va

θmin(l(v))

∣∣∣∣∣∣∑
v∈Vs∪Va

ϑ(l(v))
(4.20)

where l(v) and l′(v) are the locations of any shared vertex v ∈ Vs in both drawings D and D′

respectively, θmin(l(v)) is the minimum angle between edges incident on vertex v, and ϑ(l(v))
is the ideal angle at vertex v as represented in Equation 4.19.

4.3.7 Vertex Width Metric

Vertices could be represented geometrically with different geometric shapes, e.g., rectangle,
circle, ellipse, etc. Normally the vertex shape contains some text string to identify the vertex
or determine some description of the vertex role in the graph. For example, in an organization
chart, a vertex could have the employee name, position or a brief description of a job. In
these case, it is possible to update the string of the text contained inside the vertex shape.
In some cases the vertex shape could vary in both horizontal and vertical directions and
consequently the width and/or the height of the vertex shape could be modified. In most of
the cases (as we assume), the height of a vertex is kept fixed and just the width is permitted
to be modified. So, the width of the vertex shape is considered as an important parameter
in preserving the user’s mental map.

Simply, a vertex width could be considered as the width of the rectangle that covers the
vertex shape, or could be considered as the number of letters contained in the vertex string
(in case of the vertex has text content). The average vertex width of a drawing D(G) of a
graph G = (V, E) is:

1
|V|

∑
v∈V

w(sh(v)) (4.21)

where w(sh(v)) is the width of the shape sh(v) that represents any vertex v ∈ V.

For the two hierarchical graphs H = (Vs ∪ Va, Es ∪ Ea, φ) and H′ = (Vs ∪ V ′
a, Es ∪ E ′

a, φ′),
the change in the vertex width metric μVW of the two drawings D(H) and D′(H′) can be
computed, as in Equation 4.22, by applying our general framework presented in Equation
4.11.

μVW(D, D′) =

∑
v∈Vs

∣∣w(sh(v)) − w(sh′(v))
∣∣ +

∣∣∣∣∣∣
∑

v∈V ′
a

w(sh(v)) −
∑

v∈Va

w(sh(v))

∣∣∣∣∣∣
|V| × wmax

(4.22)

where sh(v) and sh′(v) are the two shapes represent any shared vertex v ∈ Vs in both
drawings D and D′ respectively, and wmax is the maximum vertex width in drawing D, i.e.,
wmax = max{w (sh (v))}, v ∈ V.

93

Chapter 4 Dynamic Hierarchical Graph Drawing

4.3.8 Area Difference Metric

The area of a drawing is the area of the rectangle with that covers the drawing. The area
difference metric considers the relative difference change of the area of the two drawings D(G)
and D′(G′). Simply, the area difference metric can be represented as:

μAR(D, D′) =
∣∣∣∣ 1 − Ar(D′)

Ar(D)

∣∣∣∣ (4.23)

where Ar(D) and Ar(D′) are the drawings of the two rectangles covers the two drawings D
and D′ respectively.

4.3.9 Edge Orthogonality Metric

In a straight-line drawing of a graph G = (V, E), the edge orthogonal deviation factor δ(e)
of an edge e ∈ E represents how far away from an orthogonal angle the edge straight line
segment has deviated [Pur02]. It is computed as a proportion of the angular deviation of the
line segment of edge e from the horizontal or vertical grid lines:

δ(e) =
θmin(e)

45◦ , θmin(e) = min (θ (e) , |90◦ − θ (e)| , 180◦ − θ (e))

where θ(e) is the positive angle between edge e and the x-axis, restricted to the range 0◦ ≤
θ(e) ≤ 180◦ and 0 ≤ δ(e) ≤ 1.

For a drawing D(G) of a graph G = (V, E), the edge orthogonality metric is the average
orthogonal deviation over all edge segments in D and is defined as in Equation 4.24.

1
|E|

∑
e∈E

δ(e) (4.24)

Figure 4.9 represents a drawing of a graph with 6 edges where the orthogonal deviation of
each edge is shown in the drawing.

Since the maximum orthogonal deviation angle for an edge segment in a graph drawing is
45◦, the maximum edge orthogonal value for a drawing of graph G = (V, E) can be computed
as 45◦ × |E|. The change in the edge orthogonality metric μEδ of the two drawings D(H) and
D′(H′) of the two hierarchical graphs H = (Vs∪Va, Es∪Ea, φ) and H′ = (Vs∪V ′

a, Es∪E ′
a, φ′) can

be computed, as in Equation 4.25, by applying our general framework presented in Equation
4.12.

μEδ(D, D′) =

∑
e∈Es

∣∣θmin(s(e)) − θmin(s′(e))
∣∣ +

∣∣∣∣∣∣
∑

e∈E ′
a

θmin(s(e)) −
∑
e∈Ea

θmin(s(e))

∣∣∣∣∣∣
45◦ × |E| (4.25)

where s(e) and s′(e) are the two line segments represent any shared edge e ∈ Es in both
drawings D and D′ respectively.

94

4.3 Difference Metrics for Hierarchical Graphs

Figure 4.9: A graph drawing with 6 edges regarding edge orthogonality metric. The
edge orthogonality metric of the graph drawing is computed as: μEδ(D) =
1
6

(
0 + 0 + 30

45 + 45
45 + 17

45 + 20.5
45

)
= 1

6 (1 + 0.67 + 0.38 + 0.46) = 0.42.

4.3.10 Edge Length Metric

The edge length aesthetic metric measures the average change in length of each edge in the
first drawing D(G) and the second one D′(G) of the same graph G = (V, E). The idea is
based on the intuition that a great change in edge length makes the second drawing look so
different. The length of an edge is the Euclidean distance between the edge source and target
vertices locations. The edge length metric measures is represented as:

1
|E|

∑
e∈E

L(e) (4.26)

where L(e) is the length of e.

For an edge e = (u, v) in a hierarchical graph H = (V, E , φ) with drawing D(H), if xmin

and mmax are the horizontal boundaries of D, the maximum value of the length of e ∈ E
is
√

|xmax − xmin|2 + |y(l(u)) − y(l(v))|2 , where l(u) and l(v) are the locations of the two
vertices u and v of the edge e = (u, v). This maximum edge length is the same as the
maximum distance between two shared vertices in the relative distance metric in Section
4.3.5.

By applying the proposed general framework presented in Equation 4.12, the edge length
aesthetic metric for the two drawings D(H) and D′(H′) of the two hierarchical graphs H =
(Vs ∪ Va, Es ∪ Ea, φ) and H′ = (Vs ∪ V ′

a, Es ∪ E ′
a, φ′) is:

μEL(D, D′) =

∑
e∈Es

∣∣L(s(e)) − L(s′(e))
∣∣ +

∣∣∣∣∣∣
∑

e∈E ′
a

L(s(e)) −
∑
e∈Ea

L(s(e))

∣∣∣∣∣∣∑
e=(u,v)∈E

√
|xmax − xmin|2 + |y(l(u)) − y(l(v))|2

(4.27)

95

Chapter 4 Dynamic Hierarchical Graph Drawing

where s(e) and s′(e) are the two line segments represent any shared edge e ∈ Es in both
drawings D and D′ respectively.

4.3.11 Edge Crossing Metric

The importance of the number of edge crossings could be induced from the intuition: "in-
creasing the number of edge crossings in a graph drawing decreases the understandability of
the graph" [Pur97]. When calculating the number of crossings in a drawing, only pairwise
edge intersections are considered. To produce a metric value of a drawing D between 0 and 1,
the number of actual crossings C needs to be scaled against the number of maximum possible
crossings Cmax, i.e.:

C(D)
Cmax(D)

(4.28)

For the purposes of the definition of a metric that can be universally applied to a graph
drawing of any structure, a reasonable upper bound of the number of edge crossings is needed.
Some forms for the upper bound of the number of crossings introduced in [SV97] and [PT00],
but these forms were not so accurate [Pur02]. A reasonable approximation for the maximum
possible crossings Cmax in a graph drawing is defined by Purchase [Pur02] by subtracting
the number of impossible crossings Cimp in that drawing from the number of all crossings if
every edge crosses all other edges Call, i.e.,

Cmax(D) = Call(D) − Cimp(D)

In a general (not-necessarily proper) hierarchical graph H = (V1, V2, · · · , Vk; E), an edge
could connect two vertices belong to not necessary consecutive layers while no crossing could
be produced by two edges share the same source vertex. So that, for a vertex vj of order j
in layer Vi, with the outdegree d+(vj), the maximum possible number of crossings Call(vj),
the number of impossible crossings Cimp(vj) and the number of maximum crossings Cmax(vj)
are:

Call(vj) = d+(vj) ×

⎛
⎝ |Vi|∑

l=j+1
d+(vl) +

k−1∑
p=i+1

|Vp|∑
q=1

d+(vq)

⎞
⎠

Cimp(vj) =
d+(vj) ×

(
d+(vj) − 1

)
2

Cmax(vj) = d+(vj) ×

⎡
⎣
⎛
⎝ |Vi|∑

l=j+1
d+(vl) +

k−1∑
p=i+1

|Vp|∑
q=1

d+(vq)

⎞
⎠ − d+(v) − 1

2

⎤
⎦

Hence, the maximum possible number of crossings Call(D), the number of impossible cross-
ings Cimp(D) and the number of maximum crossings Cmax(D) of a drawing D of the hierar-
chical graph H are:

96

4.3 Difference Metrics for Hierarchical Graphs

Call(D) =
k−1∑
i=1

|Vi|∑
j=1

⎡
⎣d+(vj) ×

⎛
⎝ |Vi|∑

l=j+1
d+(vl) +

k−1∑
p=i+1

|Vp|∑
q=1

d+(vq)

⎞
⎠
⎤
⎦

Cimp(D) =
k−1∑
i=1

|Vi|∑
j=1

d+(vj)
(
d+(vj) − 1

)
2

Hence, the number of maximum possible edge crossings Cmax(D) is:

Cmax(D) =
k−1∑
i=1

|Vi|∑
j=1

d+(v) ×

⎡
⎣
⎛
⎝ |Vi|∑

l=j+1
d+(vl) +

k−1∑
p=i+1

|Vp|∑
q=1

d+(vq)

⎞
⎠ − d+(v) − 1

2

⎤
⎦ (4.29)

The actual number of edge crossings C is therefore scaled against the possible number of
crossings Cmax, in order to normalize the edge crossing metric value between 0 and 1. Hence,
the change in the edge crossing aesthetic metric μEC of the two drawings D(H) and D′(H′)
of the two hierarchical graphs H and H′ respectively is:

μEC(D, D′) =
|C(D) − C(D′)|

Cmax(D)

=
|C(D) − C(D′)|

k−1∑
i=1

|Vi|∑
j=1

d+(v) ×

⎡
⎣
⎛
⎝ |Vi|∑

l=j+1
d+(vl) +

k−1∑
p=i+1

|Vp|∑
q=1

d+(vq)

⎞
⎠ − d+(v) − 1

2

⎤
⎦

(4.30)

4.3.12 Examples

In this section, we introduce two examples. The first one considers computing the difference
metrics for hierarchical graphs, introduced in Section 4.3. The second example shows the
behaviour of the considered metrics in case of more than one drawing could be produced
when executing an action on a hierarchical graph.

4.3.12.1 Example 1: Different Actions

In this example, we apply all the 13 possible actions come from the product in Section 4.3.1.
The 13 graphs are shown in Figures 4.10-4.22. Each first subgraph (a) in all these 13 figures
represents the current drawing D of a hierarchical graph with 21 vertices in 8 layers and 46
edges, where the second subgraphs (b) in these 13 figures represents the new drawing D′ after
executing an action. Also, Table 4.1 shows the computed values of the considered difference
metrics for these 13 figures.

97

Chapter 4 Dynamic Hierarchical Graph Drawing

(a) Current drawing D (b) New drawing D′

Figure 4.10: Example of inserting short edge action: inserting short edge (7,8) to connect the
two vertices 7 and 8.

(a) Current drawing D (b) New drawing D′

Figure 4.11: Example of inserting short edge action: inserting short edge (1,20) to connect
the two vertices 1 and 20

98

4.3 Difference Metrics for Hierarchical Graphs

(a) Current drawing D (b) New drawing D′

Figure 4.12: Example of deleting an existing short edge action: deleting short edge (2,4) that
is connecting the two vertices 2 and 4.

(a) Current drawing D (b) New drawing D′

Figure 4.13: Example of deleting an existing long edge action: deleting long edge (10,21) that
is connecting the two vertices 10 and 21.

99

Chapter 4 Dynamic Hierarchical Graph Drawing

(a) Current drawing D (b) New drawing D′

Figure 4.14: Example of modifying an existing edge action: modifying the short edge (2,4)
that connects the two vertices 2 and 4 to be a long one (2,21) to connect the
two vertices 2 and 21.

(a) Current drawing D (b) New drawing D′

Figure 4.15: Example of inserting a new vertex to an existing layer action: inserting a new
vertex 22 to the fifth layer to connect the two vertices 9 and 15 with the two
new short edges (9,22) and (22,15).

100

4.3 Difference Metrics for Hierarchical Graphs

(a) Current drawing D (b) New drawing D′

Figure 4.16: Example of inserting a new vertex in a new first layer action: inserting the new
vertex 22 in a new first layer to connect vertex 1 with the new short edge (22,1).

(a) Current drawing D (b) New drawing D′

Figure 4.17: Example of inserting a new vertex in a new last layer action: inserting a new
vertex 22 in a new last layer to connect the vertex 21 with a new short edges
(21,22).

101

Chapter 4 Dynamic Hierarchical Graph Drawing

(a) Current drawing D (b) New drawing D′

Figure 4.18: Example of inserting a new vertex in a new intermediate layer action: inserting
a new vertex 22 in a new intermediate layer to connect the two vertices 9 and
13 with two new short edges (9,22) and (22,13).

(a) Current drawing D (b) New drawing D′

Figure 4.19: Example of deleting a vertex from its layer action: deleting vertex 2 and its
adjacency edges, since vertex 11 is not the only non-dummy vertex in its layer,
the layer will remain in the graph.

102

4.3 Difference Metrics for Hierarchical Graphs

(a) Current drawing D (b) New drawing D′

Figure 4.20: Example of deleting a vertex and its layer action: deleting vertex 2 and its
adjacency edges, since vertex 2 is the only non-dummy vertex in its layer, and
the long edges connecting vertices in the first and third layers will be modified
to short ones.

(a) Current drawing D (b) New drawing D′

Figure 4.21: Example of modifying vertex horizontal position in its layer action: moving
vertex 11 from its original position to be after vertex 8.

103

Chapter 4 Dynamic Hierarchical Graph Drawing

Table 4.1: Difference aesthetic metrics values for the 13 graphs presented in Figures 4.10-4.22.

Action F
ig

ur
e

E
uc

lid
ea

n
di

st
an

ce
m

et
ri

cs
μ

ED

R
el

at
iv

e
di

st
an

ce
m

et
ri

cs
μ

R
D

V
er

te
x

m
in

im
um

an
gl

e
m

et
ri

c
μ

Vϑ

E
dg

e
or

th
og

on
al

it
y

m
et

ri
c

μ
E

δ

E
dg

e
le

ng
th

m
et

ri
c

μ
EL

E
dg

e
cr

os
si

ng
m

et
ri

c
μ

EC

insert a new short edge 4.10 0.0000 0.0000 0.0205 0.0013 0.0182 0.0147

insert a new long edge 4.11 0.1238 0.0700 0.1606 0.0214 0.0361 0.0049

delete an existing short
edge

4.12 0.0000 0.0000 0.0000 0.0057 0.0045 0.0000

delete an existing long
edge

4.13 0.0000 0.0000 0.0704 0.0098 0.0159 0.0000

modify an existing edge 4.14 0.1238 0.0700 0.1656 0.0141 0.0332 0.0024

insert a new vertex in an
existing layer

4.15 0.1238 0.0700 0.0567 0.0189 0.0285 0.0024

insert a new vertex in a
new first layer

4.16 0.0000 0.0000 0.0153 0.0138 0.0027 0.0000

insert a new vertex in a
new last layer

4.17 0.0000 0.0000 0.0153 0.0138 0.0027 0.0000

insert a new vertex in a
new intermediate layer

4.18 0.2543 0.2215 0.3091 0.0256 0.0771 0.0024

delete a existing vertex
from its layer

4.19 0.0000 0.0000 0.1092 0.0211 0.0303 0.0024

delete an existing vertex
and its layer

4.20 0.0056 0.0066 0.1354 0.0450 0.0355 0.0024

modify vertex horizon-
tal position in its layer

4.21 0.1269 0.0859 0.0377 0.0182 0.0362 0.0122

modify vertex layer 4.22 0.0198 0.0231 0.0250 0.0144 0.0130 0.0000

104

4.3 Difference Metrics for Hierarchical Graphs

(a) Current drawing D (b) New drawing D′

Figure 4.22: Example modifying vertex layer action: moving vertex 11 from its layer one layer
up. This can be done since all its incoming edges to vertex 11 are long edges,
consequently updating its adjacency edges is required.

4.3.12.2 Example 2: Different Possible Drawings

Figure 4.23(a) represents a hierarchical graph with 21 vertices in 8 layers ordered from top
to bottom and 46 edges. The action is to insert a new long edge (1,20) to connect the two
vertices 1 and 20. There are 8 different possibilities to execute this action depending on
where to insert the edge, i.e. the x-coordinates of the dummy vertices of the edge keeping
the new long edge as straight as possible. There are 8 possibilities for inserting the long
edge starting with inserting it in the far-left-hand side starting from the left boundary of
the drawing and going inside the drawing till inserting it on the far-right-hand side. The 8
different possibilities are presented in Figure 4.23. The chart in Figure 4.24 represents the
curves of the considered difference metrics introduced in Section 4.3 to compute the difference
between the current drawing in Figure 4.23(a) and each new drawing from the 8 possibilities
in Figures 4.23(b)-4.23(i).

From this chart 4.24 we could observe that "inserting new component as outside the graph
drawing as possible leads to lower change in most of the considered metrics values." This
observation could be easily captured from the chart since, for most of the metrics (except
edge length metric μEL), the minimum value is in the first and final possible drawing, where
the maximum value is in the middle possible drawing. This completely reflects that the
change between both drawings is small as when a large set of the vertices and edges keep the
same geometric values.

105

Chapter 4 Dynamic Hierarchical Graph Drawing

(a) original drawing D
before executing any

actions

(b) New drawing D′

(Possibility 1)
(c) New drawing D′

(Possibility 2)

(d) New drawing D′

(Possibility 3)
(e) New drawing D′

(Possibility 4)
(f) New drawing D′

(Possibility 5)

(g) New drawing D′

(Possibility 6)
(h) New drawing D′

(Possibility 7)
(i) New drawing D′

(Possibility 8)

Figure 4.23: Current hierarchical graph drawing D in (a) and different 8 possibilities (b)-(i)
for inserting new long edge (1,20).

106

4.4 Crossing Minimization in Dynamic Hierarchical Graph Drawing

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8
Possibility

μED

μRD

μNϑ

μEδ

μEL

μEC

Figure 4.24: Difference metrics values for each of the 8 different possible drawings presented
in Figure 4.23(b)-4.23(i) with the current drawing in Figure 4.23(a).

4.4 Crossing Minimization in Dynamic Hierarchical Graph Drawing

The preservation of structure from the previous graph drawing is found to be far superior in
helping the users to re-orient themselves in a new view. It has been mentioned in preserving
the mental user’s map in Section 4.2, the user has to spend some effort in order to refamiliarize
himself/herself with the new drawing after executing an action to the current drawing. The
value/mass of the effort of user refamiliarity depends actually on how much the executed
change has made the new drawing different from the current one. In other words, the lower
difference between the new and the current drawings, the lower needed effort.

Many graph drawing algorithms are deterministic, i.e. they take a graph as input and
generate a "single" drawing as its output based on a set of rules. On the other hand, non-
deterministic algorithms will iteratively perturb the drawing of a graph until it reaches some
heuristically defined quiescent state or a termination condition is reached. Actually, cross-
ing minimization is solved using a non-deterministic algorithm. Non-deterministic drawing
approaches, like the spring layout [Ead84], are generally used to find optimal layouts for a
static data set. The important characteristic of dynamic graph drawings on the other hand is
that the underlying data of the graph is changing, which means the algorithm must be able
to adapt to these changes, but it is not a requirement that the drawing be done iteratively.
This is not to say that the two cannot go together. We wish to draw a distinction between
dynamic graph drawing and crossing minimization aesthetic criterion.

107

Chapter 4 Dynamic Hierarchical Graph Drawing

Almost of the crossing minimization algorithms, as they are non-deterministic, work heuris-
tically and iteratively produce a drawing in each round till the convergence, and normally the
final drawing has a minimum number of edge crossings. However, any drawing produced in
an iteration of a crossings minimization algorithm in a dynamic graph drawing environment
has two parameters: the number of crossings, and the mass of change between that drawing
and the current one according to some difference metric. A considered question here is: from
the finite drawings produced in every algorithm iteration, which drawing has a minimum
number of edge crossings and in the same time has a minimum value of difference change
(from the original drawing)?

The problem of minimizing edge crossings in dynamic graph drawing could be defined as:

suppose D(H) is the current drawing of a hierarchical graph H with a crossing
number C(D), when executing an action A on D(H) with restricting the changes
of the current drawing D, an initial new drawing D′0(H′) of the new graph H′ is
produced. By transferring the drawing D′0(H′) to an edge crossing minimization
algorithm, a set of s drawings D′1, D′2, · · · , D′

s are produced such that drawing
D′

i is produced in iteration Ii. The objective is to find the drawing D′
i, 0 ≤ i ≤ s,

such that C(D′
i) is minimized and μ(D, D′

i) is minimized.

Consider the previous definition of the problem of minimizing edge crossings in dynamic
graph drawing. Assume that Cmax and Cmin are the minimum and maximum number of
crossings over all the s drawings produced in the s iterations when applying some crossing
minimization algorithm to the new hierarchical graph H′. Since the number of crossings is
smoothly reduced through the algorithm flow over the s iterations from the initial iteration
drawing till the final iteration one, the general behaviour of a crossing minimization algorithm
could be similar to the chart in Figure 4.25(a).

Nu
m

be
r o

f c
ro

ss
in

gs

Iteration number

(a) General behaviour of a crossing minimization
algorithm through the s + 2 iterations I0, I1, · · · , Is

Di
ffe

re
nc

e
m

et
ric

Iteration number

(b) General behaviour of a difference metric μ
through the s + 2 iterations I0, I1, · · · , Is

Figure 4.25: Behaviours of crossing minimization algorithms and a difference metric μ.

108

4.4 Crossing Minimization in Dynamic Hierarchical Graph Drawing

Furthermore, suppose that some difference metric μ is used in measuring the difference
between the current drawing D and the new s + 1 drawings D′0, D′1, · · · , D′

s. Assume that
μmax = max{μi} and μmin = min{μi}, μi = μ(D, D′

i), 0 ≤ i ≤ s, are the maximum and
minimum metric values, respectively. Experimentally, after applying the proposed difference
metrics for hierarchical graphs (introduced in Section 4.3) to many graphs, we could say that
the general behaviour of most of the difference metric μ is similar to the chart in Figure
4.25(b).

In order to compare the two curves of the crossings number and the difference metric values
of each iteration, we have to scale the values of both curves to have the same minimum and
maximum value. In order to do this, we divide each of the curve iteration values Ci and μi by
the difference between its minimum and maximum values, respectively. So, the scaled value
C̄i of the number of crossings Ci of iteration i, and the scaled value μ̄i difference metric value
μi of the same iteration i are:

C̄i =
Ci

Cmax − Cmin
and μ̄i =

μi

μmax − μmin

The chart in Figure 4.25 represents the combination of both curves of the crossings number
and the difference metric values such that all these values are normalized between 0 and 1.

 Nu
m

be
r o

f c
ro

ss
in

gs

 D
iff

er
en

ce
 m

et
ric

Iteration number

Figure 4.26: Behaviours of normalized values of crossing minimization algorithms and a dif-
ference metric.

An example of this problem is given in Figures 4.27 and 4.28. The drawing given in
Figure 4.27 represents the current drawing D before executing any actions. The action to be
executed is inserting a new vertex (number 13) with new 5 new short edges (9,13), (13,14),
(13,15), (13,16) and (13,17). We insert vertex 13 with the new edges is done initially by
keeping all the vertices coordinates and edge routing in drawing 4.28(a) as the same as in
drawing 4.27. Now, we apply the Efficient Barycenter algorithm (Algorithm 3.12) to the new
initial drawing 4.28(a). The algorithm takes 6 iterations till convergence. For each of the
algorithm 6 iterations, the corresponding drawing is introduced in the 6 drawings 4.28(a) to
4.28(f). The question now is which one of these 6 drawings should be selected as the solution
of crossing minimization problem in dynamic drawing scenario.

109

Chapter 4 Dynamic Hierarchical Graph Drawing

An ideal solution to this problem is to define a set of aesthetic qualities in advance. For
example, the selected drawing D′ should have ate least 75% similarity with the current
drawing D, at most 10% edge bendiness, at most 5% edge crossinginess, at least 65% edge
orthogonality, etc. Another way to define these aesthetic qualities could be completely depend
on a comparison between the two drawings D and D′ such as: the difference between D and
D′ should be at most 5% edge crossing metric, at most 10% edge length metric, at most 7%
edge orthogonality metric, at least 15% vertex minimum angle metric, etc.

Figure 4.27: A hierarchical graph drawing.

4.5 Summary

In many applications, graphs are dynamic where changes are executed to a graph in order to
reflect the evolution of the system behaviour represented by that graph. In dynamic graph
drawing scenarios, users have to spend time and effort on refamiliarizing themselves with
the new drawn graphs and here the user’s mental maps have to be preserved. Leaving the
action to be executes freely and using some geometric aesthetic difference metrics in order to
compute the change between the old and the new drawing is the recommended approach for
preserving the mental map.

Although the metrics presented in [Pur02] are applicable to drawings of any graph of any
structure or size, enabling quantitative comparisons between drawings of different graphs, the
two metric values μ(D) and μ(D′) of the two identical drawings D and D′ does not "precisely"
reflect the change between these two drawings. While Bridgeman and Tamassia [BT00]
defined some metrics associated with graph drawings, their concern is with the measurement
of differences between two drawings of the same graph in a dynamic environment.

In this chapter, we introduced a general framework for defining and validating geometric
aesthetic metrics to measure the difference between two drawings of two different hierarchical
graphs when a change is executed. We have applied this proposed framework to some existing
metrics that have been used in different drawing styles (like orthogonal drawings). The
proposed framework could be applied to any hierarchical graph of any size and could also be
extended to be applied to any graph type of any size.

110

4.5 Summary

(a) New drawing D′: Possibility 0 (b) New drawing D′: Possibility 1

(c) New drawing D′: Possibility 2 (d) New drawing D′: Possibility 3

(e) New drawing D′: Possibility 4 (f) New drawing D′: Possibility 5

Figure 4.28: 6 new possible drawings of the 6 iterations produced using the Efficient Barycenter
algorithm (Algorithm 3.12) for the executing action: inserting a new vertex 13
with new 5 short edges (9,13), (13,14), (13,15), (13,16) and (13,17)" to the
drawing in Figure 4.27.

111

Chapter 4 Dynamic Hierarchical Graph Drawing

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5

N
um

be
r o

f C
ro

ss
in

gs

Iteration

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5

M
et

ric
 V

al
ue

Iteration

ED

RD

NMA

EO

EL

EC

(b)

Figure 4.29: (a) Crossing numbers of the 6 drawings produced in Figure 4.28 and (b) difference
metrics values produced when computing the difference between each of the 6
drawings in Figure 4.28 and the drawing in Figure 4.27.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 1 2 3 4 5

M
et

ric
s (

N
or

m
al

ize
d

ag
ai

ns
t m

ax
im

um
)

Possiblity

ED

RD

NMA

EO

EL

EC

#Cr

Figure 4.30: Values of the difference metrics and the number of crossings (scaled between 0
and 1) for the 6 possible drawings presented in Figure 4.28 compared with the
original drawing presented in Figure 4.27.

The proposed framework depends on distinguishing between the graph components (ver-
tices and edges) by identifying which one is strongly related to the action and which one not.
The components related to the action, named action components, are those inserted into or
deleted from the old graph. The rest components of the graph, named shared components,
are those which are found in both graphs. We formulate a general expression of a difference
metric depending on both metric values of the action and shared components. We close the
chapter with an introduction to the problem of crossing minimization in dynamic hierarchical
graph drawing.

112

5
A User Study in Difference

Metrics for Hierarchical Graphs
Every beauty which is seen here by persons of
perception resembles more than anything else
that celestial source from which we all are come.1

In this chapter we introduce the results of an experimental user study in validating the
proposed difference metrics of hierarchical graphs that are presented in Section 4.3.

5.1 Introduction

A great deal of research has been carried out on the algorithmic side of the graph drawing
problem to produce an aesthetically pleasing drawing. While algorithm designers have de-
veloped a number of drawing criteria for what makes an effective layout, such as minimizing
edge crossings or maximizing the angles of incidence of edges where they connect to vertices,
the problems of optimizing such aesthetic criteria are computationally very challenging and
so heuristics have to be adopted to achieve approximate solutions [DLF+09]. Further, im-
proving the drawing with respect to a specific drawing criterion may require a trade-off with
respect to one or more of the others. For example, algorithms exist to lay out a planar graph
(with no crossings) but they do so at the expense of very poor angular resolution. For these
reasons, algorithm design must be extended by studies of the human factors in a readable
layout to decide which heuristics are most important for layout optimization.

1Michelangelo

113

Chapter 5 A User Study in Difference Metrics for Hierarchical Graphs

The need for measuring the similarity or dissimilarity between two drawings of a dynamic
graph arises in many problems. For example, in iterative graph drawing, the graph being
drawn changes over time and hence, it is important to preserve the user’s mental map.
Furthermore, similarities between drawings can be used as a basis for indexing and retrieval.
In character and handwriting recognition, a written character may be transformed into a
graph drawing and then compared to a database of characters in order to find the closest
match.

User studies offer a statistical method to measure the performance of a visualization. The
reasons to pursue user studies are abundant, particularly when evaluating the strengths
and weaknesses of different visualization techniques. Studies can validate whether a new
visualization technique is useful in a practical sense, according to some objective criteria, for
a specific task. User studies can objectively establish which method is most appropriate for
a given situation. While user studies are an important tool for visualization design, they are
not the appropriate choice in every situation. Experiments do not always work as expected
and other techniques (like mathematical or statistical techniques) may be more convenient.

A more fundamental goal of conducting user studies is to seek insight into why a partic-
ular technique is effective. This can guide future efforts to improve existing techniques. We
want to understand what types of tasks and conditions yield high-quality results for a par-
ticular method. This knowledge is critical because different analysis tasks require different
visualization techniques.

A final use for studies in visualization is to show that an abstract theory applies under
certain practical conditions. For example, results from a psychophysics or computer view-
point may not extend to a visualization environment. We can run user studies to test this
hypothesis. Results can show when the theories hold and how they need to be modified to
function correctly for real-world data and tasks [SI10,KHI+03]. A good starting point in any
study is the scientific or visual design question to be examined. This drives the process of
experimental design. A poorly designed experiment will yield results of only limited value.

The chapter is organized into 3 parts from which this is the first one. Section 5.2 repre-
sents the design of the user study including the participants and their characteristics, the
questions that the users have been asked, and the procedure of presenting and answering the
questions. Section 5.3 contains the main results we derived from the users, answers besides
those produced by the difference metrics.

5.2 Study Design

This study focuses on similarity measures for different drawings of a dynamic hierarchical
graph. The focus here is to validate the mathematical formulations of difference metrics of
dynamic hierarchical graphs presented in Section 4.3.

The graphs used were generated from a base set of 50 small graphs with 10-20 vertices each,
randomly generated using the General Hierarchical Graph Generator (Algorithm 3.14). Forty
modified drawings were created by executing the 13 possible actions of changing a hierarchical
graph, as presented in Section 4.3. Depending on the executed action, it is possible to have
one or more new drawings.

114

5.2 Study Design

The experiment consisted of two parts, to address the evaluation criteria. In all cases,
the user was asked to quantify the degree of similarity between two drawings of a dynamic
hierarchical graph, and the user has to sort a set of more than one possible new drawing,
after executing an action on a hierarchical graph, according to the similarity to the original
drawing.

5.2.1 Participants

We recruited 20 participants (17 males and 3 females) representing the members of the
Efficient Algorithms research group of the Institute of Applied Informatics and Formal De-
scription Methods AIFB at the Karlsruhe Institute of Technology KIT. All of the participants
have some information about graphs and their representations but no specialized information
about graph drawing. The user study has been done during the annual Dagstuhl Klausurta-
gung "LST Schmeck" 2011, held 16-18.11.2011.

5.2.2 Tasks

Our primary research task is formulated in the following question:

Given the two drawings D(H) and D′(H′) of the two hierarchical graphs H =
(V1, V2, · · · , Vk; E) and H′ = (V ′

1, V ′
2, · · · , V ′

k′ ; E ′) respectively, such that H′ is pro-
duced by executing an action A on the graph H.
How much (in percent) is drawing D similar to drawing D′?
The users are given the two drawings and are informed about the executed action.

The second task question is presented as follows:

Given a drawing D(H) of a hierarchical graph H = (V1, V2, · · · , Vk; E) and a finite
number s of different possible drawings D′

1(H′), D′
2(H′), · · · , D′

s(H′) of another
hierarchical graph H′ = (V ′

1, V ′
2, · · · , V ′

k′ ; E ′) which is produced by executing an
Action A on the graph H. The drawings D′

1, D′
2, · · · , D′

s are different possible
drawings of H′.
Order the s drawings D′

1, D′
2, · · · , D′

s according to the degree of similarity
to the original drawing D.
The users are given the s+1 drawings and are informed about the executed action.

5.2.3 Procedure

A PDF file containing all the drawings of both questions is sent to each participant. Further-
more, each participant is given a paper with two tables, one for each question. In the first
table, the participant is putting his evaluation percentage to the degree of similarity between
each two of the given drawings. In the second table, for each graph, the participant inputs
his ordering of the possible drawings with respect to the degree of similarity to the original
drawing.

115

Chapter 5 A User Study in Difference Metrics for Hierarchical Graphs

For task 1, the examples given to the users are shown in Figures 5.1-5.13. For the examples
with more than one possible drawing, the users are given the original drawing and each of the
possible drawings separately. For example, in Figure 5.3 there are 5 possible new drawings
for inserting the long edge, hence the users are given 5 samples each having two drawings,
which are the original drawing and one of the possible 5 new drawings. This technique gives
the users 36 examples for all the possible new drawings in these figures.

For task 2, the examples given to the users are shown in Figures 5.3, 5.5, 5.6, and 5.10-5.13.

(a) Original drawing D

(b) New drawing D′

Figure 5.1: An original drawing (a) and new drawing (b) for inserting a short edge (9,20).

(a) Original drawing D

(b) New drawing D′

Figure 5.2: An original drawing (a) and a new drawing (b) for deleting the short edge (17,18).

116

5.2 Study Design

(a) Original drawing D

(b) New drawing D′,
possibility 1

(c) New drawing D′,
possibility 2

(d) New drawing D′,
possibility 3

(e) New drawing D′,
possibility 4

(f) New drawing D′,
possibility 5

Figure 5.3: An original drawing (a) and 5 new different possible drawings (b)-(f) for inserting
a long edge (1,20).

(a) Original drawing D

(b) New drawing D′

Figure 5.4: Two drawing (a) and new drawing (b) for deleting the long edge (10,20).

117

Chapter 5 A User Study in Difference Metrics for Hierarchical Graphs

(a) Original drawing D

(b) New drawing D′,
possibility 1

(c) New drawing D′,
possibility 2

(d) New drawing D′,
possibility 3

(e) New drawing D′,
possibility 4

(f) New drawing D′,
possibility 5

(g) New drawing D′,
possibility 6

Figure 5.5: An original drawing before modifying edge (a) and 6 new different possible draw-
ings (b)-(g) for modifying the edge (1,4) to (1,12).

118

5.2 Study Design

(a) Original drawing D

(b) New drawing D′,
possibility 1

(c) New drawing D′,
possibility 2

(d) New drawing D′,
possibility 3

(e) New drawing D′,
possibility 4

(f) New drawing D′,
possibility 5

(g) New drawing D′,
possibility 6

(h) New drawing D′,
possibility 7

Figure 5.6: An original drawing (a) and 7 new different possible drawings (b)-(h) for inserting
vertex 21 into an existing layer.

119

Chapter 5 A User Study in Difference Metrics for Hierarchical Graphs

(a) Original drawing D

(b) New drawing D′

Figure 5.7: An original drawing (a) and a new drawing (b) for inserting vertex 1 in a new
first layer.

(a) Original drawing D

(b) New drawing D′

Figure 5.8: An original drawing (a) and a new drawing (b) for inserting vertex 16 in a new
last layer.

120

5.2 Study Design

(a) Original drawing D

(b) New drawing D′

Figure 5.9: An original drawing (a) and a new drawing (b) for inserting vertex 15 in a new
intermediate layer.

(a) Original drawing D

(b) New drawing D′,
possibility 1

(c) New drawing D′,
possibility 2

(d) New drawing D′,
possibility 3

Figure 5.10: An original drawing (a) and 3 new different possible drawings (b)-(d) for deleting
vertex 14 from its layer.

121

Chapter 5 A User Study in Difference Metrics for Hierarchical Graphs

(a) Original drawing D

(b) New drawing D′,
possibility 1

(c) New drawing D′,
possibility 2

Figure 5.11: An original drawing (a) and 2 new different possible drawings (b) and (c) for
deleting vertex 15 and its layer.

(a) Original drawing D

(b) New drawing D′,
possibility 1

(c) New drawing D′,
possibility 2

(d) New drawing D′,
possibility 3

(e) New drawing D′,
possibility 4

(f) New drawing D′,
possibility 5

Figure 5.12: An original drawing (a) and 5 new different possible drawings (b)-(f) for modi-
fying vertex 14 layer moving it one layer up.

122

5.3 Results

(a) Original drawing D

(b) New drawing D′,
possibility 1

(c) New drawing D′,
possibility 2

Figure 5.13: An original drawing (a) and 2 new different possible drawings (b)-(c) for modi-
fying vertex 14 horizontal position in its layer.

5.3 Results

5.3.1 Task 1 Results

We compare the metrics values to the user evaluation values of the similarity between the
original drawing D presented in subfigures (a) in all the 13 figures, and the new drawing(s)
D′ presented in the 13 figures starting from subfigure (b). For the 13 graphs, the results for
the user and difference metrics for computing the degree of similarity are presented in Figures
5.14-5.26. Note that for the graphs with more than one possible drawing for the executed
action, the values of the results are presented in subfigure chart (a) in Figures 5.17, 5.18-5.19,
and 5.23-5.26. The 20 participant’s degrees of similarity for the 13 graphs are given in the
two Tables 5.2 and 5.3.

We consider a metric value to be near to the user evaluation if the metric value is ±10%
of the user evaluation, otherwise, the metric value is not considered. The percentage values
of the considered metrics to be near of the user evaluations are presented in Table 5.1.

5.3.2 Task 2 Results

For the graphs with more than one possible drawing for the executed action (Figures 5.17,
5.18-5.19, and 5.23-5.26), the user ordering for these possibilities are given in the subfigure
chart (b) in the figures. We have originally ordered these possible drawings by inserting the
new vertices and edges outside the drawing (starting from the left border of the drawing)
and then go smoothly inside the drawing until they reach the right-hand border. In each of
these (b) subfigures, the presented order of the possibilities is presented with the percentage
of the users who have given that rank.

123

Chapter 5 A User Study in Difference Metrics for Hierarchical Graphs

Table 5.1: Percentage values of the average metrics values and their relation to the user
evaluation of the degree of similarity ±10% for the 36 new drawings to their original
drawings given in Figures 5.1-5.13.

Difference Metric Percentage
Edge length μEL 86%
Vertex minimum angle μVϑ 64%
Edge orthogonality μEδ 58%
Euclidean distance μED 19%
Relative distance μRD 14%
Edge crossing μEC 4%
No metrics near user evaluation 3%

For example, in Figure 5.17, drawing 5 has been selected (by 25% of the participants) as
the most similar drawing to the original one, drawing 3 has been selected (by 35% of the
participants) as the second most similar drawing to the original one, drawing 4 has been
selected (by 25% of the participants) as the third most similar drawing to the original one,
drawing 2 has been selected (by 40% of the participants) as the fifth most similar drawing to
the original one, and drawing 1 has been selected (by 25% of the participants) as the most
different drawing to the original one. The different orderings by the 20 participants for the
Figures 5.17, 5.18-5.19, and 5.23-5.26 are given in Table 5.4.

We compute the relative ordering produced by each difference metric and compare this
ordering with the user ordering. The number of shifts required to transform an ordering of
a metric into a user ordering is computed for each graph. The results for these numbers of
shifts for each metric are given in the subfigure (c) in Figures 5.17, 5.18-5.19, and 5.23-5.26.

Furthermore, we found that 72% of the users follow the order of inserting new vertices and
edges starting from the right border of the drawing and then go gradually inside the drawing
till reaching the left boundary. Also, we found that inserting the new vertices and edges away
from the center of the drawing leads to lower change in most of the difference metrics, which
is reflects that the change between both drawings is smaller when more vertices and edges
keep the same geometric values.

5.4 Summary

In this chapter we introduced the results of an experimental user study. This aim of this
user study is to validate the difference metrics introduced in Section 4.3 depending on user
evaluation of the similarity between two drawings of a dynamic hierarchical graph. From this
user study we found that, in 97% of the examples, the values of the difference metrics are in
the range of ± 10% of the user evaluation of the similarity measure. In case of more than one
possible drawing for executing an action, inserting the new vertices and edges away from the
center of the drawing leads to lower change in most of the difference metrics. This behaviour
completely reflects that the change between both drawings is smaller when more vertices and
edges keep the same geometric values.

124

5.4 Summary

 10
0

10
0

99

97

95
 99

94

0

20

40

60

80

100

E.D. R.D. V.M.A. E.O. E.L. E.C. User

Si
m

ila
rit

y
pe

rc
en

ta
ge

Metric

Figure 5.14: Difference metrics and user degree of similarity values for the two drawings
presented in Figure 5.1, where the action is to insert a short edge (9,20).

 10
0

10
0

99

97

95
 99

94

0

20

40

60

80

100

E.D. R.D. V.M.A. E.O. E.L. E.C. User

Si
m

ila
rit

y
va

lu
e

Metric

Figure 5.15: Difference metrics and user degree of similarity values for the two drawings
presented in Figure 5.2, where the action is to delete the short edge (17,18).

 10
0

10
0

78

91

86
 10

0

94

0

20

40

60

80

100

E.D. R.D. V.M.A. E.O. E.L. E.C. User

Si
m

ila
rit

y
pe

rc
en

ta
ge

Metric

Figure 5.16: Difference metrics and user degree of similarity values for the two drawings
presented in Figure 5.4, where the action is to delete the long edge (10,20).

125

Chapter 5 A User Study in Difference Metrics for Hierarchical Graphs

0

20

40

60

80

100

1 2 3 4 5

Si
m

ila
rit

y
Va

lu
e

Possibility

E.D.

R.D.

V.M.A.

E.O.

E.L.

E.C.

User

(a)

25%
35%

25%

40%

25%

0%

20%

40%

60%

80%

100%

5 3 4 2 1

User ordering of possibilities

(b)

2 2

4 4 4

10

0

2

4

6

8

10

12

E.D. R.D. V.M.A. E.O. E.L. E.C.

N
um

be
r o

f s
hi

ft
s

Metric

(c)

Figure 5.17: Results for Figure 5.3 for inserting a long edge (1,20). (a) Averaged values of
difference metrics and user evaluations of the degree of similarity between each of
the 5 new possible drawings presented in Figures 5.3(b)-5.3(f) to the original one
in Figure 5.3(a). (b) Percentage values of each possibility of its order according
to the user ordering. (c) Number of ordering shifts each metric needs to have
the user ordering.

126

5.4 Summary

0

20

40

60

80

100

1 2 3 4 5 6

Si
m

ila
rit

y
pe

rc
en

ta
ge

Possibility

E.D.

R.D.

V.M.A.

E.O.

E.L.

E.C.

User

(a)

25%

50%

30%
25% 25%

50%

0%

20%

40%

60%

80%

100%

1 6 2 5 4 3

User ordering of possibilities

(b)

9

4 4

6 6 6

0

2

4

6

8

10

E.D. R.D. V.M.A. E.O. E.L. E.C.

N
um

be
r o

f s
hi

ft
s

Metric

(c)

Figure 5.18: Results for Figure 5.5 for modifying the edge (1,4) to (1,12). (a) Averaged values
of difference metrics and user evaluations of the degree of similarity between each
of the 6 new possible drawings presented in Figures 5.5(b)-5.5(g) to the original
one given in Figure 5.5(a). (b) Percentage values of each possibility of its order.
(c) Number of ordering shifts each metric needs to have the user ordering.

127

Chapter 5 A User Study in Difference Metrics for Hierarchical Graphs

0

20

40

60

80

100

1 2 3 4 5 6 7

Si
m

ila
rit

y
pe

rc
en

ta
ge

Possibility

E.D.

R.D.

V.M.A.

E.O.

E.L.

E.C.

User

(a)

65%

40%
35%

40%
30%

35%
45%

0%

20%

40%

60%

80%

100%

1 7 5 6 2 4 3

User ordering of possibilities

(b)

2 2 2
4

10

21

0

5

10

15

20

25

E.D. R.D. V.M.A. E.O. E.L. E.C.

N
um

be
r o

f s
hi

ft
s

Metric

(c)

Figure 5.19: Results for Figure 5.6 for inserting vertex 21 into an existing layer. (a) Averaged
values of difference metrics and user evaluations of the degree of similarity be-
tween each of the 7 new possible drawings presented in Figures 5.6(b)-5.6(h) to
the original one given in Figure 5.6(a). (b) Percentage values of each possibility
of its order. (c) Number of ordering shifts each metric needs to have the user
ordering.

128

5.4 Summary

10
0

10
0

83

10
0

97

10
0

87

0

20

40

60

80

100

E.D. R.D. V.M.A. E.O. E.L. E.C. User

Si
m

ila
rit

y
pe

rc
en

ta
ge

Metric

Figure 5.20: Difference metrics and user degree of similarity values for the two drawings
presented in Figure 5.7, where the action is to insert the new vertex 1 into the
new first layer.

10
0

10
0

95

10
0

98

10
0

87

0

20

40

60

80

100

E.D. R.D. V.M.A. E.O. E.L. E.C. User

Si
m

ila
rit

y
pe

rc
en

ta
ge

Metric

Figure 5.21: Difference metrics and user degree of similarity values for the two drawings
presented in Figure 5.8, where the action is to insert the new vertex 16 into the
new last layer.

77
 85

25

60
 62

10
0

64

0

20

40

60

80

100

E.D. R.D. V.M.A. E.O. E.L. E.C. User

Si
m

ila
rit

y
pe

rc
en

ta
ge

Metric

Figure 5.22: Difference metrics and user degree of similarity values for the two drawings
presented in Figure 5.9, where the action is to insert the new vertex 15 into the
new intermediate layer.

129

Chapter 5 A User Study in Difference Metrics for Hierarchical Graphs

0

20

40

60

80

100

1 2 3

Si
m

ila
rit

y
pe

rc
en

ta
ge

Possibility

E.D.

R.D.

V.M.A.

E.O.

E.L.

E.C.

User

(a)

35%
30%

40%

0%

20%

40%

60%

80%

100%

1 3 2

User ordering of possibilities

(b)

2 2 2

0 0 0
0

0.5

1

1.5

2

2.5

E.D. R.D. V.M.A. E.O. E.L. E.C.

N
um

be
r o

f s
hi

ft
s

Metric

(c)

Figure 5.23: Results for Figure 5.10 for deleting the vertex 14 from its layer. (a) Averaged val-
ues of difference metrics and user evaluations of the degree of similarity between
each of the 7 new possible drawings presented in Figures 5.10(b)-5.10(d) to the
original one given in Figure 5.10(a). (b) Percentage values of each possibility
of its order. (c) Number of ordering shifts each metric needs to have the user
ordering.

130

5.4 Summary

0

20

40

60

80

100

1 2

Si
m

ila
rit

y
pe

rc
en

ta
ge

Possibility

E.D.

R.D.

V.M.A.

E.O.

E.L.

E.C.

User

(a)

 85% 85%

0%

20%

40%

60%

80%

100%

2 1

User ordering of possibilities

(b)

0 0 0

2 2

0
0

1

2

3

E.D. R.D. V.M.A. E.O. E.L. E.C.

N
um

be
r o

f s
hi

ft
s

Metric

(c)

Figure 5.24: Results for Figure 5.11 for deleting the vertex 21 and its layer. (a) Averaged val-
ues of difference metrics and user evaluations of the degree of similarity between
each of the 2 new possible drawings presented in Figures 5.11(b)-5.11(c) to the
original one given in Figure 5.11(a). (b) Percentage values of each possibility
of its order. (c) Number of ordering shifts each metric needs to have the user
ordering.

131

Chapter 5 A User Study in Difference Metrics for Hierarchical Graphs

0

20

40

60

80

100

1 2 3 4 5

Si
m

ila
rit

y
Va

lu
e

Possibility

E.D.

R.D.

V.M.A.

E.O.

E.L.

E.C.

User

(a)

40%
30%

25%
35%

40%

0%

20%

40%

60%

80%

100%

5 2 1 3 4

User ordering of possibilities

(b)

6

10

5

8

4

7

0

2

4

6

8

10

12

E.D. R.D. V.M.A. E.O. E.L. E.C.

N
um

be
r o

f s
hi

ft
s

Metric

(c)

Figure 5.25: Results for Figure 5.12 for modifying vertex 14 layer by moving it one layer
up. (a) Averaged values of difference metrics and user evaluations of the degree
of similarity between each of the 5 new possible drawings presented in Figures
5.12(b)-5.12(f) to the original one given in Figure 5.12(a). (b) Percentage values
of each possibility of its order. (c) Number of ordering shifts each metric needs
to have the user ordering.

132

5.4 Summary

0

20

40

60

80

100

1 2

Si
m

ila
rit

y
Va

lu
e

Possibility

E.D.

R.D.

V.M.A.

E.O.

E.L.

E.C.

User

(a)

65% 65%

0%

20%

40%

60%

80%

100%

2 1

User ordering of possibilities

(b)

2 2 2 2 2

0
0

1

2

3

E.D. R.D. V.M.A. E.O. E.L. E.C.

N
um

be
r o

f s
hi

ft
s

Metric

(c)

Figure 5.26: Results for Figure 5.13 for modifying vertex 14 horizontal position in its layer.
(a) Averaged values of difference metrics and user evaluations of the degree of
similarity between each of the 2 new possible drawings presented in Figures
5.13(b)-5.13(c) to the original one given in Figure 5.13(a). (b) Percentage values
of each possibility of its order. (c) Number of ordering shifts each metric needs
to have the user ordering.

133

Chapter 5 A User Study in Difference Metrics for Hierarchical Graphs

Table
5.2:U

ser
percentage

values
for

the
degree

ofsim
ilarity

ofthe
new

and
originaldraw

ing(s)
in

Figures
5.1

-
5.6.

user
F

igure
F

igure
F

igure
5.3

F
igure

F
igure

5.5
F

igure
5.6

id
5.1

5.2
1

2
3

4
5

5.4
1

2
3

4
5

6
1

2
3

4
5

6
7

1
95

95
95

95
95

95
95

95
90

90
90

90
95

95
70

90
90

90
90

90
90

2
92

82
95

82
78

81
93

98
80

88
64

83
74

90
75

75
65

60
82

85
94

3
75

100
90

65
95

80
95

90
80

70
70

95
90

95
90

95
70

70
90

80
85

4
95

95
95

90
95

90
95

95
90

90
85

85
90

95
90

90
70

75
95

93
93

5
96

100
98

97
95

96
98

96
96

98
90

95
95

96
95

90
85

90
92

97
93

6
90

90
80

90
70

75
90

90
60

65
40

50
70

80
65

68
60

60
60

60
70

7
80

90
90

85
90

80
85

80
70

65
65

65
70

75
83

82
70

69
79

85
88

8
85

100
85

60
60

75
80

90
65

55
40

65
80

80
60

65
55

25
65

75
80

9
90

80
80

70
70

70
80

90
70

60
70

60
70

70
80

70
60

60
70

80
90

10
95

96
92

91
90

91
93

94
90

86
85

90
91

91
85

90
88

90
93

94
90

11
98

98
80

85
85

87
88

90
85

92
85

82
85

80
85

85
70

95
90

90
90

12
92

95
95

50
45

60
95

95
90

85
40

45
80

95
90

90
80

35
70

85
80

13
99

99
99

99
99

99
99

100
98

98
98

98
98

98
95

95
95

95
95

95
95

14
95

100
90

80
80

80
90

100
90

60
50

60
70

95
80

70
50

60
90

90
80

15
95

100
85

85
80

80
80

95
90

90
90

90
90

90
85

85
60

90
90

85
90

16
85

100
75

65
65

70
85

90
75

55
50

75
80

85
80

65
55

65
80

75
60

17
95

95
95

95
95

95
95

95
90

90
90

95
95

90
90

90
60

70
80

80
98

18
95

80
85

70
70

60
70

95
80

70
50

80
90

85
95

90
40

30
60

70
80

19
85

85
85

95
90

90
70

95
85

85
85

85
85

75
85

95
95

95
75

65
65

20
98

98
98

97
97

95
97

98
97

88
95

95
97

97
95

95
90

90
95

95
95

A
verage

92
94

89
82

82
83

89
94

84
79

72
79

85
88

84
83

70
69

82
83

86
M

in.
75

80
75

65
45

70
70

80
60

55
40

45
70

70
60

65
55

25
60

60
60

M
ax.

99
100

99
99

99
99

99
99

100
98

98
95

95
98

98
95

95
95

95
95

95

134

5.4 Summary

Ta
bl

e
5.

3:
U

se
r

pe
rc

en
ta

ge
va

lu
es

fo
r

th
e

de
gr

ee
of

si
m

ila
ri

ty
of

th
e

ne
w

an
d

or
ig

in
al

dr
aw

in
g(

s)
in

Fi
gu

re
s

5.
7

-
5.

13
.

us
er

Fi
gu

re
Fi

gu
re

Fi
gu

re
Fi

gu
re

5.
10

Fi
gu

re
5.

11
F

ig
ur

e
5.

12
F

ig
ur

e
5.

13
id

5.
7

5.
8

5.
9

1
2

3
1

2
1

2
3

4
5

1
2

1
90

90
70

70
70

85
70

75
90

93
90

87
90

95
95

2
93

93
70

93
93

65
75

70
89

80
74

78
87

69
74

3
95

95
60

80
80

80
60

80
90

85
85

90
95

10
0

80
4

93
93

70
85

80
85

85
90

85
80

90
90

90
80

80
5

93
95

80
92

90
90

92
96

95
95

95
10

0
10

0
95

10
0

6
70

70
40

65
68

60
40

60
10

0
10

0
10

0
10

0
10

0
50

80
7

90
85

80
80

75
73

60
62

65
70

70
70

80
75

70
8

95
95

55
40

50
65

40
60

80
75

80
75

70
50

40
9

90
90

70
70

60
80

60
70

60
60

60
60

60
50

50
10

90
92

85
93

94
90

89
91

90
91

89
90

92
91

90
11

75
80

40
80

80
85

85
85

96
92

85
85

90
60

50
12

90
90

30
85

75
60

60
60

70
60

80
80

75
70

70
13

95
95

50
95

95
95

60
60

95
95

95
95

95
10

0
10

0
14

70
70

50
90

90
70

60
60

90
80

85
85

85
90

95
15

90
90

90
85

90
90

99
80

75
75

75
75

75
70

70
16

70
75

40
45

40
55

45
30

65
60

75
80

70
55

85
17

90
90

70
70

70
70

70
80

80
80

80
70

60
40

50
18

95
95

85
85

90
85

50
60

85
80

80
70

90
40

40
19

70
70

60
40

40
40

55
55

60
65

60
50

55
40

40
20

95
95

90
90

90
85

90
90

95
90

90
93

85
80

80

A
ve

ra
ge

87
87

64
77

76
75

67
71

83
80

82
81

85
70

72
M

in
.

70
70

40
40

40
40

40
55

60
60

60
50

55
40

40
M

ax
.

95
95

90
95

95
95

99
96

10
0

10
0

10
0

10
0

10
0

10
0

10
0

135

Chapter 5 A User Study in Difference Metrics for Hierarchical Graphs

Table
5.4:U

ser
ordering

ofthe
different

possible
draw

ings
presented

in
Figures

5.3,5.5,5.6,5.10,5.11,5.12,and
5.13.

user
id

F
igure

5.3
F

igure
5.5

F
igure

5.6
F

igure
5.10

F
igure

5.11
F

igure
5.12

F
igure

5.13

1
3,4,5,2,1

4,6,2,5,1,3
2,6,5,1,7,3,4

1,3,2
2,1

2,5,3,1,4
2,1

2
3,2,1,5,4

1,6,4,2,3,5
5,7,1,6,2,4,3

3,2,1
1,2

5,3,1,4,2
2,1

3
3,4,5,2,1

2,5,1,6,3,4
1,7,6,5,2,4,3

2,1,3
2,1,

5,4,1,3,2
1,2

4
5,3,4,1,2

6,4,5,1,2,1
1,2,5,6,7,3,4

2,1,3
2,1

5,3,2,1,4
1,2

5
2,4,3,5,1

5,6,3,1,2,4
1,2,5,6,3,4,7

1,3,2
2,1

2,1,3,5,4
2,1

6
5,3,4,1,2

5,6,4,2,1,3
7,6,1,2,4,5,3

3,1,2
2,1

3,4,5,1,2
2,1

7
5,1,2,4,3

6,1,2,4,5,3
1,2,5,6,7,4,3

1,3,2
2,1

2,1,5,4,3
2,1

8
4,1,5,2,3

5,4,6,2,1,3
6,7,1,2,5,3,4

3,1,2
2,1

2,5,1,4,3
2,1

9
1,5,3,2,4

1,6,2,5,3,4
1,7,5,6,2,3,4

1,2,2
1,2

1,2,5,3,4
1,2

10
5,1,2,3,4

1,6,5,2,4,3
1,2,7,5,6,3,4

3,2,1
1,2

5,1,2,3,4
2,1

11
4,3,5,2,1

4,5,2,6,1,3
1,7,6,5,2,4,3

1,3,2
2,1

5,3,1,2,4
2,1

12
5,1,4,2,3

5,4,6,1,2,3
5,3,2,4,1,7,6

3,1,2
2,1

3,4,5,1,2
1,2

13
1,5,4,2,3

1,6,2,5,4,3
1,7,6,5,2,4,3

1,2,3,
4,1

1,5,4,2,3
1,2

14
2,3,1,4,5

1,6,5,2,4,3
1,7,5,6,2,4,3

3,4,2
2,1

5,1,2,4,3
2,1

15
3,4,1,2,5

2,3,4,5,6,1
6,1,7,5,4,2,3

3,1,2
2,1

2,1,4,3,5
2,1

16
2,3,4,5,1

6,4,1,5,3,2
1,3,7,2,6,5,4

2,3,1
2,1

5,1,4,2,3
2,1

17
4,2,1,5,3

4,6,5,1,2,3
1,7,2,5,6,4,3

2,3,1
2,1

5,2,3,1,4
2

,1
18

1,3,5,4,2
5,6,1,4,2,3

1,2,3,4,6,5,7
2,3,1

2,1
1,5,2,3,4

1,2
19

2,4,3,1,5
3,4,5,2,6,1

3,4,5,6,2,1,7
2,1,3

2,1
1,2,4,3,5

1,2
20

1,3,2,5,4
6,5,1,4,3,2

1,2,7,6,5,3,4
1,2,3

2,1
3,5,4,2,1

2,1

136

6
Conclusion and Outlook

Der gerade Weg ist der kürzeste, aber es dauert
meist am längsten, bis man auf ihm zum Ziele
gelangt.1

This thesis deals with dynamic hierarchical graph drawing. The core contribution of the
thesis consists in proposing and validating difference metrics to measure the difference be-
tween two drawings of a dynamically changing hierarchical graph. Moreover, we study the
problem of edge crossing minimization in hierarchical graphs. A final concerned point is on
generating random hierarchical graphs controlling all the topological properties of hierarchical
graphs.

6.1 Conclusion

In the following, the main contributions of this thesis are explicitly formulated.

6.1.1 Minimize Crossings in Hierarchical Graph Drawing

The number of crossings in a hierarchical graph drawing depends only on the order of the
vertices in their layer (as a topological entity) not on their absolute positions. After an
intensive comparison between the one-sided crossing minimization techniques, we introduced
the efficient barycenter algorithm in Section 3.4. This algorithm computes the x-coordinates

1Georg Christoph Lichtenberg. English translation: The straight path is the shortest, but it usually takes the
longest time, to reach your target.

137

Chapter 6 Conclusion and Outlook

of the vertices in each layer in an efficient way. Firstly, it computes the barycenter value for
every vertex in the ith layer as the average of the x-coordinates of its neighbours in the two
(i−1)th and (i+1)th layers. Then, before moving to the next layer (i+1) (the (i+1)th layer)
to compute their barycenter value as normal, it sorts the vertices in layer i according to their
recent barycenter values and then directly set their x-coordinates as their ranks after the
sorting step. Computing the x-coordinates in this way leads to a lower number of crossings
in addition to faster convergence. The experiments yield an improvement of around 4% in
the number of crossings over the recent global sifting algorithm and around 15% over the
other layer-by-layer one-sided 2-layer heuristics, specially for small and sparse graphs.

6.1.2 Generating random hierarchical graphs

Since any hierarchical graph is originally a directed acyclic graph, the upper bound of number
of edges in a hierarchical graph depends on the layering of the vertices. This means that we
could not get a precise upper bound of the number of edges before assigning the vertices to
the layers. This completely affects the edge density of the considered graph. The usually
considered way to deal with random hierarchical graphs is to generate a random directed
acyclic graph and then transform it into a hierarchical graph through the Sugiyama approach.
In contrast to this, in our approach a layered hierarchical graph is generated directly. We
could derive a formula of the maximum number of edges in a hierarchical graph and then we
could control precisely the edge density, see Section 3.7. We introduced two generators in
order to randomly generate either proper or general hierarchical graphs. These two generators
control all the parameters of hierarchical graphs like, the number of layers, the number of
vertices in each layer, the number of edges going out of a vertex, the edge density, the long
edges ratio to the short ones (in general non-proper hierarchical graphs).

6.1.3 Difference metrics for dynamic hierarchical graph drawing

In the perspective of drawing dynamic hierarchical graphs we have been concerned with the
following points:

• We study the different cases of executing an action on a hierarchical graph in a dynamic
scenario. The possible actions could be extracted from the product:

{insert, delete, modify} × {vertex, edge}

When an action A is applied to a hierarchical graph H, a new graph H′ is produced.
Based on the topological and structural properties of hierarchical graphs, the action
product induces 13 possible executed actions, as presented in Section 4.3.1.

• Furthermore, we introduced a new general form for computing a quantitative measure of
the difference between two drawings of a dynamic hierarchical graph when executing an
action. The proposed form depends on distinguishing between the graph components in
both current drawing D(H) and new drawing D′(H′). The vertices and edges that will
be inserted to the new drawing D′(H′) or deleted from the current D(H) are called action
components, where the remaining vertices and edges that are found in both drawings
D(H) and D′(H′) are called shared components. Since each shared component has a

138

6.1 Conclusion

geometric representation in each of the two drawings D and D′, the difference metric
value of the shared components is computed as the sum of the difference metric values of
each shared component in D and D′. Moreover, as each action component has just one
representation in either D or D′, the difference metric value of the action components
is computed as the difference between the two sums of the action component’s metric
values in each drawing D and D′. The total difference metric value is sum of the
shared and action component’s metric values. Finally, the difference metric value is
scaled against a maximum value of the considered metric in drawing D (based on the
definition of the mental map) in order to get a normalized value of the metric between
0 and 1. Scaling the metrics in this way ensures that the metric value does not depend
on the nature of the underlying graph [Pur02].

• Some difference metrics formulas have been used, in [BT00], to measure the difference
between two orthogonal drawings of the same graph. Furthermore, formal metrics
for measuring the aesthetic presence in a graph drawing for some common aesthetic
criteria are presented in [Pur02]. In Section 4.3, we use the proposed general form
of difference metrics of a dynamic hierarchical graph to extend these metrics forms
presented in [BT00,Pur02].

6.1.4 Crossing minimization in dynamic hierarchical graph drawing

We introduced the problem of minimizing edge crossings when the hierarchical graph is drawn
in a dynamic environment. In other words, the crossing minimization problem is N P-hard
and solved normally using iterative heuristic techniques. In dynamic scenarios, we have
to minimize the difference between the current drawing and the new one after executing
an action on a hierarchical graph. The question now is: which drawing D′∗ from the s
ones of the s iterations produced during the running of the crossing minimization heuristic
D′0, D′1, · · · , D′

s that has the minimum number of crossings and in the same time has the
minimum change to the current one D? We propose two solutions for this problem. The first
solution is to consider that the required D′∗ should have some predefined aesthetic values of
some aesthetic drawing criteria (as presented in [Pur02]). The second solution is that the
difference metric values of the required drawing D′∗ and the original drawing D should not
exceed some predefined minimum difference metric values.

6.1.5 Experimental user study on dynamic hierarchical graph drawing

In order to validate the proposed difference metrics forms that measure the change between
the current and the new drawing after executing an action, we performed an experimen-
tal user study. The user study has been implemented during the annual meeting Dagstuhl
Klausurtagung "LST Schmeck" 2011 in Schloss Dagstuhl, 16-18 November 2011. The partic-
ipants have been asked two questions: the first regards the degree of similarity between two
drawings after executing an action, and the second regards ordering some possible drawings
of an action according to the similarity to their original drawing. This study proposed a
statistical validation of the difference metrics introduced in Section 4.3. The results of the
user study have been presented in Section 5.3.

139

Chapter 6 Conclusion and Outlook

6.2 Outlook
In addition to the work we have done in the area of drawing dynamic hierarchical graphs
and minimizing edge crossings of hierarchical graphs, there a space for many extensions and
several future points could be investigated. Possible improvements of the presented work in
this thesis include the following.

• Although some work has been carried out in combining more than one step of the
Sugiyama approach [UBSE98,BBG11,CGMW11] in order to get more aesthetic draw-
ing, as presented in Section 3.6, more investigation in this direction should be consid-
ered.

• For the problem of hierarchical graphs crossing minimization, a perspective of using
random sequence of the layers could be considered. Also, a random selection of the
vertices in the whole graph; nevertheless the layer sequence could be considered although
this may increase the running time [SNM99,BKS10].

• Regarding the problem of minimizing edge crossings of dynamic hierarchical graphs
(Section 4.4), an extension to the problem could be done by considering the problem as
a multi-objective optimization model. Hence, some multi-objective heuristic techniques
could be applied [Deb01,DF07].

• More detailed user studies should be implemented with respect to the user’s effort of
extracting the differences between two drawings of a dynamic hierarchical graph. This
could be done by computing the time the user spends in order to recognize the executed
action, as some user studies introduced in [Pur00,KG06,SBOP08].

• An interesting problem of drawing dynamic hierarchical graphs is drawing the graph
in a restricted-width area. In this case, we may be forced to move some vertex from
its layer to some upper or lower layers in order to get a free position for inserting a
new vertex in this layer. Unfortunately, modifying shared vertices layers contradicts
with the second condition introduced by Branke [Bra01] (presented in Section 4.3).
Moving some vertices to a different layer gives the chance to follow the condition of the
restricted width of the drawing instead of exceeding it.

• In a radial drawing of a hierarchical graph [BFF05,Bac07,DDL07,BBBH11], the vertices
are placed on concentric circles rather than on horizontal lines and the edges are drawn
as outward monotone segments of spirals. So, it seems natural to study the following
insights in radial drawings of hierarchical graphs:

– Considering the way of executing an action on a hierarchical graph with that drawn
radially. Furthermore, the different possibility of the executed actions should be
investigated. Drawing some difference metrics based on the properties of the radial
drawing.

– Trying to consider some difference metrics based on the properties of the radial
drawing. This could be done using the same way we introduce the difference
metrics of dynamic hierarchical graphs presented in Section 4.3.

– Combining some drawing aesthetic criteria (like minimizing edge crossings or min-
imizing the drawing area) with the dynamic radial drawing of hierarchical graphs,
as the same way we expressed these problems in Section 4.4.

– In addition to the previous points, practical user studies should be included in the
problem of dynamic radial drawings of hierarchical graphs.

140

Bibliography

[AFT11] E. Ackerman, R. Fulek, and C. D. Tóth, On the size of graphs that admit polyline
drawings with few bends and crossing angles, Rev. Selected Papers from the 18th
Int. Sym. on Graph Drawing (GD’10), LNCS, vol. 6502, Springer-Verlag, 2011,
pp. 1–12. 21

[AHN07] R. Andreev, P. Healy, and N.S. Nikolov, Applying ant colony optimization meta-
heuristic to the dag layering problem, IEEE Int. Sym. on Parallel & Distributed
Processing (IPDPS’07), 2007, pp. 1–9. 43

[AHT02] D. Abelson, S.-H. Hong, and D. E. Taylor, A group-theoretic method for drawing
graphs symmetrically, Rev. Papers from 10th Int. Sym. on Graph Drawing
(GD’02), LNCS, vol. 2528, Springer-Verlag, 2002, pp. 86–97. 77

[AHU83] A. V. Aho, J. E. Hopcroft, and J. D. Ulman, Data structure and algorithms,
Adison-Wiesley, Reading, MA, 1983. 48

[APP11a] D. Archambault, H. Purchase, and B. Pinaud, Animation, small multiples, and
the effect of mental map preservation in dynamic graphs, IEEE Trans. Vis.
Comput. Graph. 17 (2011), 539–552. 8, 76

[APP11b] D. Archambault, H. C. Purchase, and B. Pinaud, Difference map readability
for dynamic graphs, Rev. Selected Papers from the 18th Int. Sym. on Graph
Drawing (GD’10), LNCS, vol. 6502, Springer-Verlag, 2011, pp. 50–61. 74, 76

[Auy90] A. Auyyamathiti, Computer assisted database design normalization and layout
of entity-relationship diagrams, Master’s thesis, University of the Philippines,
1990. 3, 6

[Bac07] C. Bachmaier, A radial adaptation of the sugiyama framework for visualizing
hierarchical information, IEEE Trans. Vis. Comput. Graph. 13 (2007), no. 3,
583 –594. 140

[Bac09] , A generealized framework for drawing directed graphs, Habilitation the-
sis, University of Passau, 2009. 7, 38, 41, 45, 50, 52, 56, 57

[BBBF12] C. Bachmaier, F. J. Brandenburg, W. Brunner, and R. Fülöp, Drawing recur-
rent hierarchies, JGAA 16 (2012), no. 2, 151–198. 7

[BBBH11] C. Bachmaier, F. J. Brandenburg, W. Brunner, and F. Hübner, Global k-level
crossing reduction, JGAA 15 (2011), no. 5, 631–659. 7, 10, 43, 46, 53, 54, 55,
68, 70, 140

141

[BBFMM04] C. Bachmaier, F. J. Brandenburg, P. Forster M., Hilleis, and Raitner M., Grav-
isto: Graph visualization toolkit, Rev. Selected Papers from 12th Int. Sym. on
Graph Drawing (GD’04), LNCS, vol. 3383, Springer-Verlag, 2004, pp. 502–503.
56, 59

[BBG11] C. Bachmaier, W. Brunner, and A. Gleissner, Grid sifting: Leveling and cross-
ing reduction., Technical report mip-1103, University of Passau, 2011. 7, 43,
67, 140

[BC87] N. S. Bhatt and S. S. Cosmadakis, The complexity of minimizing wire lengths
in vlsi layouts, Inf. Process. Lett. 25 (1987), no. 4, 263 – 267. 3, 25

[BCD89] P. Benedusi, A. Cimitile, and U. De Carlini, A reverse engineering methodology
to reconstruct hierarchical data flow diagrams for software maintenance, Proc.
Conf. on Software Maintenance, 1989, pp. 180–189. 6

[BCMW04] P. Bose, J. Czyzowicz, P. Morin, and D. R. Wood, The maximum number of
edges in a three-dimensional grid-drawing, JGAA 8 (2004), 21–26. 24

[BDD+10] C. Binucci, E. Di Giacomo, W. Didimo, A. Estrella-Balderrama, F. Frati, S. G.
Kobourov, and G. Liotta, Upward straight-line embeddings of directed graphs
into point sets, Comp. Geo. 43 (2010), no. 2, 219–232. 20

[BDLN05] C. Binucci, W. Didimo, G. Liotta, and M. Nonato, Orthogonal drawings of
graphs with vertex and edge labels, Comp. Geo. 32 (2005), no. 2, 71–114. 22

[BFF05] C. Bachmaier, F. Fischer, and M. Forster, Radial coordinate assignment for
level graphs, Computing and Combinatorics, LNCS, vol. 3595, Springer-Verlag,
2005, pp. 401–410. 140

[BFN85] C. Batini, L. Furlani, and E. Nardelli, What is a good diagram? a pragmatic ap-
proach, Proc. 4th Int. Conf. on Entity-Relationship Approach, IEEE Computer
Society, 1985, pp. 312–319. 27

[BGHM07] A. Barsky, J. L. Gardy, R. E. W. Hancock, and T. Munzner, Cerebral: a cy-
toscape plugin for layout of and interaction with biological networks using sub-
cellular localization annotation, Bioinformatics 23 (2007), no. 8, 1040–1042.
3

[Bie96] T. Biedl, Optimal orthogonal drawings of triconnected plane graphs, Proc. 5th
Scandinavian Workshop on Algorithm Theory, Springer-Verlag, 1996, pp. 333–
344. 22

[Bie98] , New lower bounds for orthogonal graph drawings, JGAA 2 (1998), 1–31.
22

[Bie11] , Drawing some planar graphs with integer edge-lengths, CCCG’11, 2011,
http://www.cccg.ca/Proc./2011/papers/paper36.pdf. 20

[BJ03] C. Buchheim and M. Jünger, Detecting symmetries by branch & cut, Mathe-
matical Programming 98 (2003), 369–384. 77

142

[BJG08] J. Bang-Jensen and G. Z. Gutin, Digraphs: Theory, algorithms and applications,
2nd ed., Springer Publishing Company, Incorporated, 2008. 37, 41

[BJL01] C. Buchheim, M. Jünger, and S. Leipert, A fast layout algorithm for k-level
graphs, Proc. 8th Int. Sym. on Graph Drawing (GD’00), LNCS, vol. 1984,
Springer-Verlag, 2001, pp. 229–240. 60, 67

[BK94] T. Biedl and G. Kant, A better heuristic for orthogonal graph drawings, Algo-
rithms ESA’94, LNCS, vol. 855, Springer-Verlag, 1994, pp. 24–35. 22

[BK02] C. Borgelt and R. Kruse, Graphical models: methods for data analysis and
mining, J. Wiley, 2002. 2, 60, 67

[BKRW11] T. Bläsius, M. Krug, I. Rutter, and D. Wagner, Orthogonal graph drawing with
flexibility constraints, Rev. Selected Papers from the 18th Int. Sym. on Graph
Drawing (GD’10), LNCS, vol. 6502, Springer-Verlag, 2011, pp. 92–104. 22

[BKS10] M. Bayati, J. H. Kim, and A. Saberi, A sequential algorithm for generating
random graphs, Algorithmica 58 (2010), no. 4, 860–910. 140

[BL76] K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms, Jou. comp. Syst. Sci. 13
(1976), 335–379. 20

[BL84] S. N. Bhatt and F. T. Leighton, A framework for solving vlsi graph layout
problems, Jou. comp. Syst. Sci. 28 (1984), no. 2, 300–343. 5

[BL10] U. Brandes and J. Lerner, Structural similarity: Spectral methods for relaxed
blockmodeling, Journal of Classification 27 (2010), 279–306. 27, 77

[BLME02] J. Branke, S. Leppert, M. Middendorf, and P. Eades, Width-restricted layering
of acyclic digraphs with consideration of dummy nodes, Information Processing
Letter 81 (2002), 59–63. 43

[BM01] O. Bastert and C. Matuszweski, Layered drawings of digraphs, Drawing graphs:
Methods and Models, vol. 2025, Springer-Verlag, 2001, pp. 228–246. 37

[BM12] U. Brandes and M. Mader, A quantitative comparison of stress-minimization
approaches for offline dynamic graph drawing, Rev. Selected Papers from the
19th Int. Sym. on Graph Drawing (GD’11), LNCS, vol. 7034, Springer-Verlag,
2012, pp. 99–110. 74

[BMNR10] S. Biswas, D. Mondal, R. I. Nishat, and M. S. Rahman, Minimum-segment con-
vex drawings of 3-connected cubic plane graphs, Proc. of 16th Annual Int. Conf.
on Computing and Combinatorics (COCOON’10), LNCS, vol. 6196, Springer-
Verlag, 2010, pp. 182–191. 22

[BP90] K.-F. Böhringer and F. N. Paulisch, Using constraints to achieve stability in
automatic graph layout algorithms, Proc. SIGCHI Conf. on Human factors in
computing systems: Empowering people, CHI’90, ACM, 1990, pp. 43–51. 77,
82

143

[Bra01] J. Branke, Dynamic graph drawing, Drawing graphs: Methods and Models, vol.
2025, Springer-Verlag, 2001, pp. 228–246. 74, 77, 82, 140

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson, Unified modeling language user guide,
Adison Wiesley Longman, 1999. 3

[BS88] J. Bhasker and S. Sahni, A linear algorithm to find a rectangular dual of a
planar triangulated graph, Algorithmica 3 (1988), 247–278. 23

[BS90] B. Berger and P. W. Shor, Approximation alogorithms for the maximum acyclic
subgraph problem, Proc. 1st Annual ACM-SIAM Sym. on Discrete Algorithms,
SODA’90, Society for Industrial and Applied Mathematics, 1990, pp. 236–243.
37, 39

[BT00] S. S. Bridgeman and R. Tamassia, Difference metrics for interactive orthogonal
graph drawing algorithms, JGAA 4 (2000), no. 3, 47–74. 9, 10, 74, 76, 78, 80,
81, 88, 89, 110, 139

[BT01] Stina S. Bridgeman and Roberto Tamassia, A user study in similarity measures
for graph drawing, Proc. 8th Int. Sym. on Graph Drawing (GD’00), LNCS, vol.
1984, Springer-Verlag, 2001, pp. 19–30. 9, 27, 76, 77

[BTT84] C. Batini, M. Talamo, and R. Tamassia, Computer aided layout of entity re-
lationship diagrams, Jou. of System. and Soft. 4 (1984), no. 2-3, 163–173. 3,
6

[BVB+11] M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf, Parallel edge splatting
for scalable dynamic graph visualization, IEEE Trans. Vis. Comput. Graph. 17
(2011), no. 12, 2344 –2353. 74

[BW97] U. Brandes and D. Wagner, A bayesian paradigm for dynamic graph layout,
Proc. 5th Int. Sym. on Graph Drawing (GD’97), LNCS, vol. 1353, Springer-
Verlag, 1997, pp. 236–247. 74

[BW98] , Dynamic grid embedding with few bends and changes, Algorithms and
Computation, LNCS, vol. 1533, Springer-Verlag, 1998, pp. 90–99. 24

[Car80] M.-J. Carpano, Automatic display of hierarchized graphs for computer-aided
decision analysis, IEEE Trans. Sys. Man & Cyber. 10 (1980), no. 11, 705–715.
7, 34, 70

[Cat95] T. Catarci, The assignment heuristic for crossing reduction, IEEE Trans. Sys.
Man & Cyber. 25 (1995), no. 3, 515–521. 43

[CDT+92] R. F. Cohen, G. Di Battista, R. Tamassia, I. G. Tollis, and P. Bertolazzi, A
framework for dynamic graph drawing, Proc. 8th annual Sym. on Comp. Geo.,
SCG’92, ACM, 1992, pp. 261–270. 74

[CDTT95] R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis, Dynamic graph
drawings: Trees, series-parallel digraphs, and planar st-digraphs, SIAM Journal
Computing 24 (1995), no. 5, 970–1001. 81

144

[CG72] E. G. Coffman and R. L. Graham, Optimal scheduling for two-processor systems,
Acta Informatica 1 (1972), 200–213. 40, 41

[CG12] M. Chimani and C. Gutwenger, Advances in the planarization method: Effective
multiple edge insertions, Graph Drawing, LNCS, vol. 7034, Springer-Verlag,
2012, pp. 87–98. 20

[CGH+97] L. P. Chew, . T. Goodrich, D. P. Huttenlocher, K. Kedem, J. M. Kleinberg,
and D. Kravets, Geometric pattern matching under euclidean motion, Comp.
Geo. - Theory and Applications 7 (1997), 113–124. 80

[CGMW10] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong, Layer-free upward
crossing minimization, ACM Journal of Experimental Algorithmics 15 (2010),
2.2:2.1–2.2:2.27. 43, 68

[CGMW11] , Upward planarization layout, JGAA 15 (2011), no. 1, 127–155. 43, 67,
140

[CGT96] M. Chrobak, M. T. Goodrich, and R. Tamassia, Convex drawings of graphs
in two and three dimensions (preliminary version), Proc. 12th annual Sym. on
Comp. Geo. (SCG’96) (New York, NY, USA), ACM, 1996, pp. 319–328. 22

[Cha11] McCort enterprise company organization chart, http://itsabout.server304.
com/wp-content/uploads/2011/06/chart.jpg, June, 2011. 7

[Che76] P.-S. Chen, The entity-relationship model—toward a unified view of data, ACM
Transaction on Database Systems 1 (1976), no. 1, 9–36. 3, 6

[CHT89] J. Cai, X. Han, and R. Tarjan, New solutions for planar graph problems, Tech.
report, Department of Computer Science, New York University / Courant In-
stitute, 1989. 20

[CKN+03] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler, A system for
graph-based visualization of the evolution of software, Proc. ACM Sym. on Soft-
ware visualization 2003 (New York, NY, USA), SoftVis ’03, ACM, 2003, pp. 77–
ff. 3

[CM08] M. Chein and M.-L. Mugnier, Graph-based knowledge representation: Compu-
tational foundations of conceptual graphs, 1 ed., Springer Publishing Company,
Incorporated, 2008. 2

[CM11] S. Cabello and B. Mohar, Crossing number and weighted crossing number of
near-planar graphs, Algorithmica 60 (2011), no. 3, 484–504. 44

[CN98] M. Chrobak and S.-I. Nakano, Minimum-width grid drawings of plane graphs,
Comp. Geo. 11 (1998), no. 1, 29–54. 24

[CNAO85] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa, A linear algorithm for embedding
planar graphs using pq-trees, Jou. comp. Syst. Sci. 30 (1985), 54–76. 20

[CR06] Y. Cheung and S. Rowlinson, Relationship management - drawing on interna-
tional experiences, http://eprints.qut.edu.au/17868/, May 2006. 6

145

[Cru93] I. F. Cruz, User-defined visual languages for querying data, Tech. report, Prov-
idence, RI, USA, 1993. 6

[CY02] M.-C. Chuang and H.-C. Yen, On nearly symmetric drawings of graphs, Proc.
6th Int. Conf. on Information Visualisation, 2002, pp. 489 – 494. 77

[CYN84] N. Chiba, T. Yamanouchi, and T. Nishizeki, Linear algorithm for convex draw-
ing of planar graphs, Progress in graph theory, Academic Press, 1984, pp. 153–
173. 22

[DDF+06] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe, F. Massacci,
P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli, A survey of autonomic
communications, ACM Trans. Auton. Adapt. Syst. 1 (2006), no. 2, 223–259. 8

[DDL07] E. Di Giacomo, W. Didimo, and G. Liotta, Radial drawings of graphs: geomet-
ric constraints and trade-offs, Rev. Papers 14th Int. Sym. on Graph drawing
(GD’06), LNCS, vol. 4372, Springer-Verlag, 2007, pp. 355–366. 140

[Deb01] K. Deb, Multi-objective optimization using evolutionary algorithms, Wiley-
Interscience Series in Systems and Optimization, John Wiley & Sons, Chich-
ester, 2001. 77, 140

[DEG+11] C. A. Duncan, D. Eppstein, M. T. Goodrich, S. G. Kobourov, and M. Nöllen-
burg, Drawing trees with perfect angular resolution and polynomial area, Rev.
Selected Papers from the 18th Int. Sym. on Graph Drawing (GD’10), LNCS,
vol. 6502, Springer-Verlag, 2011, pp. 183–194. 30

[DETT94] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Algorithms for draw-
ing graphs: an annotated bibliography, Comp. Geo. Theory and Applications 4
(1994), 235–282. 3, 5, 20, 31

[DETT99] , Graph drawing: Algorithms for the visualization of graphs, Prentice
Hall, New Jersey, USA, 1999. 3, 26, 31, 33, 46, 49, 52

[DF07] Y. Donoso and R. Fabregat, Multi-objective optimization in computer networks
using metaheuristics, Auerbach Publications, Boston, MA, USA, 2007. 77, 140

[DG02] S. Diehl and C. Görg, Graphs, they are changing, Rev. Papers from 10th Int.
Sym. on Graph Drawing (GD’02), LNCS, vol. 2528, Springer-Verlag, 2002,
pp. 23–30. 75

[DHW11] C. Doll, T. Hartmann, and D. Wagner, Fully-dynamic hierarchical graph clus-
tering using cut trees, Proc. 12th Int. Conf. on Algorithms and data structures,
WADS’11, Springer-Verlag, 2011, pp. 338–349. 7, 74

[DKL+12] G. Di Battista, E. Kim, G. Liotta, A. Lubiw, and S. Whitesides, The shape of
orthogonal cycles in three dimensions, Discrete & Comp. Geo. 47 (2012), no. 3,
461–491. 22

[DLF+09] T. Dwyer, B. Lee, D. Fisher, K. I. Quinn, P. Isenberg, G. Robertson, and
C. North, A comparison of user-generated and automatic graph layouts, IEEE
Trans. Vis. Comput. Graph. 15 (2009), no. 6, 961–968. 9, 27, 75, 76, 113

146

[DPS11] T. Dey, D. J. Phillips, and P. Steele, A graphical tool to visualize predicted
minimum delay flights, JCGS 20 (2011), no. 2, 294–297. 2

[DT89] G. Di Battista and R. Tamassia, Incremental planarity testing, Proc. 30th An-
nual Sym. on Foundations of Computer Science, IEEE Computer Society, 1989,
pp. 436–441. 81

[Ead84] Peter Eades, A heuristic for graph drawing, Congressus Numerantium 42
(1984), 149–160. 107

[Ead88] P. Eades, Symmetry finding algorithms, Computational Morphology (G. T. Tou-
ssaint, Ed.), 1988, pp. 41–51. 27

[Ead08] , Some constrained notions of planarity, Proc. 19th Int. Sym. on Al-
gorithms and Computation (ISAAC 2008), LNCS, vol. 5369, Springer-Verlag,
2008, pp. 2–2. 20

[EFL97] P. Eades, Q.-W. Feng, and X. Lin, Straight-line drawing algorithms for hier-
archical graphs and clustered graphs, Proc. Sym. on Graph Drawing (GD’96),
LNCS, vol. 1190, Springer-Verlag, 1997, pp. 113–128. 5, 7

[EFN06] P. Eades, X. Feng, Q. andLin, and H. Nagamochi, Straight-line drawing algo-
rithms for hierarchical graphs and clustered graphs, Algorithmica 44 (2006),
no. 1, 1–32. 7, 57, 66

[EGDB02] T. Eschbach, W. Günther, R. Drechsler, and B. Becker, Crossing reduction
by windows optimization, Rev. Papers from 10th Int. Sym. on Graph Drawing
(GD’02), LNCS, vol. 2528, Springer-Verlag, 2002, pp. 285–294. 43, 57

[EGK+03] j. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull, Graphviz
and dynagraph - static and dynamic graph drawing tools, Graph Drawing Soft-
ware, Springer-Verlag, 2003, pp. 127–148. 74

[EK86] P. Eades and D. Kelly, Heuristics for reducing crossings in 2-layered networks,
Ars Combinatorica 21 (1986), no. A, 89–98. 43, 46, 50

[EKLN04] C. Erten, S. G. Kobourov, V. Le, and A. Navabi, Simultaneous graph drawing:
Layout algorithms and visualization schemes, Rev. Papers from 11th Int. Sym.
on Graph Drawing (GD’03), LNCS, vol. 2912, Springer-Verlag, 2004, pp. 437–
449. 74

[EL93] P. Eades and T. Lin, Algorithmic and declarative approach to aesthetic lay-
out, ALCOM Int. Workshop on Graph Drawing and Topological Algorithms
(GD’93), 1993, pp. 62–63. 26

[Elm77] S. E. Elmaghraby, Activity networks: project planning and control by network
models, Wiley-Interscience publication, Wiley, New York, NY, USA, 1977. 2, 6

[ELMN11] D. Eppstein, M. Löffler, E. Mumford, and M. Nöllenburg, Optimal 3d angular
resolution for low-degree graphs, Rev. Selected Papers from the 18th Int. Sym.
on Graph Drawing (GD’10), LNCS, vol. 6502, Springer-Verlag, 2011, pp. 208–
219. 30

147

[ELMS91] P. Eades, W. Lai, K. Misue, and K. Sugiyama, Preserving the mental map of a
diagram, Proc. of COMPUGRAPHICS (1991), vol. 91, 1991, pp. 24–33. 8, 74,
75, 78, 79, 80

[ELS93] P. Eades, X. Lin, and W. F. Smyth, A fast and effective heuristic for the feedback
arc set problem, Information Processiing Letters 47 (1993), 319–323. 38

[ELT96] P. Eades, X. Lin, and R. Tamassia, An algorithm for drawing a hierarchical
graph, Int. J. Comp. Geo. Appl. 6 (1996), no. 2, 145–156. 5, 7, 53, 54, 57, 60

[ENRS00] G. Even, J. Naor, S. Rao, and B. Schieber, Divide-and-conquer approximation
algorithms via spreading metrics, JACM 47 (2000), 585–616. 39

[ES91] P. Eades and K. Sugiyama, How to draw a directed graph, Journal of Information
Processing 13 (1991), 424–437. 34, 41, 53, 60, 70

[ESW00] P. Eades, A. Symvonis, and S. Whitesides, Three-dimensional orthogonal graph
drawing algorithms, Disc. Appl. Math. 103 (2000), no. 1-3, 55–87. 22

[Eul36] L. Euler, Solutio problematis ad geometriam situs pertinentis, Commentarii
Academiae Scientiarum Imperialis Petropolitanae 8 (1736), 128–140. 3

[EW94a] P. Eades and S. Whitesides, Drawing graphs in two layers, Theoretical Com-
puter Science 131 (1994), 361–374. 43, 44, 48, 49

[EW94b] P. Eades and N. C. Wormald, Edge crossings in drawings of bipartite graphs,
Algorithmica 11 (1994), no. 4, 379–403. 43, 44, 46

[Far48] I. Fary, On straight line representations of planar graphs, Acta Scientiarum
Mathematicarum 11 (1948), 229–233. 20

[Fen97] Q. Feng, Algorithms for drawing clustered graphs, Ph.D. thesis, Department
of Computer Science and Software Engineering, The University of Newcastle,
Australia, 1997. 5, 19

[FH01] R. Fleischer and C. Hirsch, Graph drawing and its applications, Drawing graphs:
Methods and Models, Springer-Verlag, 2001, pp. 1–22. 31

[Flo] Flow-graphs from bound-t analysis of sparc/erc32 example, http:
//www.bound-t.com/targets/sparc/example-brochure/dot-code/fg_
exa__count_007.png. 7

[FPP90] H. Fraysseix, J. Pach, and R. Pollack, How to draw a planar graph on a grid,
Combinatorica 10 (1990), no. 1, 41–51. 24

[FQ11] M. Farrugia and A. J. Quigley, Effective temporal graph layout: A comparative
study of animation versus static display methods., Information Visualization 10
(2011), no. 1, 47–64. 76

[Fri97] A. Frick, Upper bounds on the number of hidden nodes in sugiyama’s algorithm,
Proc. Sym. on Graph Drawing (GD’96), LNCS, vol. 1190, Springer-Verlag,
1997, pp. 169–183. 7

148

[FT04] Y. Frishman and A. Tal, Dynamic drawing of clustered graphs, IEEE Sym. on
Information Visualization, INFOVIS’2004, 2004, pp. 191–198. 74, 81

[Gan03] E. R. Gansner, Drawing graphs with GraphViz, Tech. report, AT&T Bell Lab-
oratories, Murray Hill, NJ, USA, 2003. 6

[Gan07] , Drawing graphs with graphviz, Library (2007), no. August. 6

[GBPD04] C. Görg, P. Birke, M. Pohl, and S. Diehl, Dynamic graph drawing of sequences
of orthogonal and hierarchical graphs, Rev. Selected Papers from 12th Int. Sym.
on Graph Drawing (GD’04), LNCS, vol. 3383, Springer-Verlag, 2004, pp. 228–
238. 7, 74, 75

[GHK10] E. R. Gansner, Y. Hu, and S. Kobourov, Gmap: Drawing graphs as maps, Rev.
Papers 17th Int. Sym. on Graph Drawing (GD’09), LNCS, vol. 5849, 2010,
pp. 405–407. 2

[GJ79] M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the
theory of np-completeness (series of books in the mathematical sciences), W. H.
Freeman & Co., New York, USA, 1979. 37, 40, 41

[GJ83] , Crossing number is NP-complete, SIAM Journal on Algebraic and Dis-
crete Methods 4 (1983), no. 3, 312–316. 44

[GJR85] M. Grötschel, M. Jünger, and G. Reinelt, On the acyclic subgraph polytope,
Mathematical Programming 33 (1985), 28–42. 39

[GKNV93] E. R. Gansner, E. Koutsofios, S. C. North, and K. Vo, A technique for drawing
directed graphs, IEEE Trans. Soft. Eng. 19 (1993), no. 3, 214–230. 34, 39, 41,
43, 49, 66, 70

[GM89] D. J. Gschwind and T. P. Murtagh, A recursive algorithm for drawing hier-
archical directed graphs, Technical report cs-89-02, Department of Computer
Science, Williams College, 1989. 7, 34, 70

[GM98] C. Gutwenger and P. Mutzel, Planar polyline drawings with good angular res-
olution, Proc. 6th Int. Sym. on Graph Drawing (GD’98), LNCS, vol. 1547,
Springer-Verlag, 1998, pp. 167–182. 21

[GMH+06] Amy L Griffin, Alan M MacEachren, Frank Hardisty, Erik Steiner, and Bo-
nan Li, A comparison of animated maps with static small-multiple maps for
visually identifying space-time clusters, Annals of the Association of American
Geographers 96 (2006), no. 4, 740–753. 76

[GMO99] M. T. Goodrich, J. S. B. Mitchell, and M. W. Orletsky, Approximate geometric
pattern matching under rigid motions, IEEE Trans. Pattern Anal. Mach. Intell.
21 (1999), no. 4, 371–379. 80

[GMS82] A. Grinvald, A. Manker, and M. Segal, Visualization of the spread of electrical
activity in rat hippocampal slices by voltage-sensitive optical probes, The Journal
of Physiology 333 (1982), 269–291. 2

149

[GMZ09] C. Gutwenger, P. Mutzel, and B. Zey, On the hardness and approximability of
planar biconnectivity augmentation, Proc. 15th Annual Int. Conf. on Comput-
ing and Combinatorics (COCOON’9), LNCS, vol. 5609, Springer-Verlag, 2009,
pp. 249–257. 20

[GNV88] E. R. Gansner, S. C. North, and K. P. Vo, Dag - a program that draws directed
graphs, Software: Practice and Experience 18 (1988), 1047–1062. 34, 60, 70

[GP83] E. J. Goodman and R. Pollack, Multidimensional sorting, SIAM J. on Com-
puting 12 (1983), 484–507. 44, 79

[GR07] A. Garg and A. Rusu, Area-efficient planar straight-line drawings of outerplanar
graphs, Disc. Appl. Math. 155 (2007), no. 9, 1116–1140. 20

[Gro08] J. L. Gross, Combinatorial methods with computer applications, Discrete math-
ematics and its applications, Chapman & Hall/CRC, 2008. 1

[GSBM01] W. Günther, R. Schönfeld, B. Becker, and P. Molitor, k-layer straightline cross-
ing minimization by speeding up sifting, Proc. 8th Int. Sym. on Graph Drawing
(GD’00), LNCS, vol. 1984, Springer-Verlag, 2001, pp. 253–258. 43

[GT02] A. Garg and R. Tamassia, On the computational complexity of upward and
rectilinear planarity testing, SIAM J. on Computing 31 (2002), no. 2, 601–625.
3

[GW06] M. Gaertler and D. Wagner, A hybrid model for drawing dynamic and evolving
graphs, Algorithmic Aspects of Large and Complex Networks, Dagstuhl Sem-
inar Proc., no. 05361, Internationales Begegnungs-und Forschungszentrum für
Informatik (IBFI), Schloss Dagstuhl, Germany, 2006. 74

[GY99] J. L. Gross and J. Yellen, Graph theory and its applications, CRC Press, Inc.,
Boca Raton, FL, USA, 1999. 1

[HA99a] B. A. Huberman and L. A. Adamic, Evolutionary dynamics of the world
wide web, 1999, http://www.citebase.org/abstract?id=oai:arXiv.org:
cond-mat/9901071. 2, 74

[HA99b] , Growth dynamics of the world-wide web, Nature 401 (1999), http:
//dx.doi.org/10.1038/43604. 74

[HE03] S.-H. Hong and P. Eades, Drawing trees symmetrically in three dimensions,
Algorithmica 36 (2003), no. 2, 153–178. 27

[HEL05] X. Huang, P. Eades, and W. Lai, A framework of filtering, clustering and dy-
namic layout graphs for visualization, Proc. 28th Australasian Conf. on Com-
puter Science, ACSC’05, vol. 38, Australian Computer Society, Inc., 2005,
pp. 87–96. 74

[HGK10] Y. Hu, E. R. Gansner, and S. Kobourov, Gmap: Visualizing graphs and clusters
as maps, IEEE Computer Graphics and Applications 30 (2010), no. 6, 54–66.
2

150

[HL06] X. Huanga and W. Laib, Clustering graphs for visualization via node similari-
ties, J. Vis. Lang. Comput. 17 (2006), 125 – 253. 27, 77

[HN02] P. Healy and N. S. Nikolov, How to layer a directed acyclic graph, Rev. Papers
from 9th Int. Sym. on Graph Drawing (GD’01), LNCS, vol. 2265, Springer-
Verlag, 2002, pp. 16–30. 42

[HS07] P. Hlinený and G. Salazar, On the crossing number of almost planar graphs, Rev.
Papers 14th Int. Sym. on Graph drawing (GD’06), LNCS, vol. 4372, Springer-
Verlag, 2007, pp. 162–173. 44

[HS12] I. Halupczok and A. Schulz, Pinning paloons with perfect angles and optimal
area, Rev. Selected Papers from the 19th Int. Sym. on Graph Drawing (GD’11),
LNCS, vol. 7034, Springer-Verlag, 2012, pp. 154–165. 30

[HT74] J. Hopcroft and R. Tarjan, Efficient planarity testing, JACM 21 (1974), 549–
568. 20

[Hua07] W. Huang, Using eye tracking to investigate graph layout effects, 6th Int. Asia-
Pacific Sym. on Visualization, APVIS’07, 2007, pp. 97–100. 76

[HvW09] D. Holten and J. J. van Wijk, A user study on visualizing directed edges in
graphs, Proc. 27th Int. Conf. on Human factors in computing systems, CHI’09,
ACM, 2009, pp. 2299–2308. 9, 27, 76

[IRW99] E. Ihler, G. Reich, and P. Widmayer, Class steiner trees and vlsi-design, Disc.
Appl. Math. 90 (1999), no. 1-3, 173–194. 25

[ISI89] K. Imai, S. Sumino, and H. Imai, Minimax geometric fitting of two correspond-
ing sets of points, Proc. 5th annual Sym. on Comp. Geo., SCG’89, ACM, 1989,
pp. 206–275. 80

[Ism04] A. A. K. Ismaeel, A study of some akgorithms for drawing level graphs, Master’s
thesis, Computer Science Department, Minia University, Egypt, 2004. 7, 60

[JG09] Z. Jiang and S. K. Gupta, Threshold testing: Improving yield for nanoscale vlsi,
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 28
(2009), no. 12, 1883–1895. 3, 25

[JK07] S. Jenkins and S. R. Kirk, Software architecture graphs as complex networks: A
novel partitioning scheme to measure stability and evolution, JIS 177 (2007),
no. 12, 2587–2601. 6

[JLMO97] M. Jünger, E. K. Lee, P. Mutzel, and T. Odenthal, A polyhedral approach to
the multi-layer crossing minimization problem, Proc. 5th Int. Sym. on Graph
Drawing (GD’97), LNCS, vol. 1353, Springer-Verlag, 1997, pp. 13–24. 43, 56

[JM97] M. Jünger and P. Mutzel, 2-layer straightline crossing minimization: perfor-
mance of exact and heuristic algorithms, JGAA 1 (1997), 1–25. 43, 47, 51, 52,
53

[JM04] , Graph drawing software, Series on Mathematics and Visualization,
vol. 12, 2004. 3, 4, 6

151

[Kam89] T. Kamada, Visualizing abstract objects and relations - a constrained-based ap-
proach, Series in Computer Science, vol. 5, World Scientific, Singapore, 1989.
3

[Kan93] G. Kant, Algorithms for drawing planar graphs, Ph.D. thesis, Faculteit
Wiskunde en Informatica, Utrecht University, The Netherlands, 1993. 22

[Kar72] R. M. Karp, Reducibility among combinatorial problems, Proc. of a Sym. on the
Complexity of Computer Computations, The IBM Research Symposia Series,
Plenum Press, New York, 1972, pp. 85–103. 37

[Kar09] M. R. Karim, Straight-line grid drawings of planar graphs: with sub-quadratic
area, VDM Verlag Dr. Müller, 2009. 20, 24

[KG06] G. Kumar and M. Garland, Visual exploration of complex time-varying graphs,
IEEE Trans. Vis. Comput. Graph. 12 (2006), no. 5, 805–812. 74, 140

[KHI+03] R. Kosara, C. G. Healey, V. Interrante, D. H. Laidlaw, and C. Ware, User
studies: Why, how, and when?, IEEE Computer Graphics and Applications 23
(2003), no. 4, 20–25. 114

[KLTT97] G. Kant, G. Liotta, R. Tamassia, and I. G. Tollis, Area requirement of visibility
representations of trees, Inf. Process. Lett. 62 (1997), no. 2, 81–88. 24

[KPL06] P. Kuntz, B. Pinaud, and R. Lehn, Minimizing crossings in hierarchical digraphs
with a hybridized genetic algorithm, Journal of Heuristics 12 (2006), 23–36. 7,
43, 57

[KT12] E. M. Kornaropoulos and I. G. Tollis, Overloaded orthogonal drawings, Proc.
19th Int. Sym. on Graph Drawing (GD 2011), LNCS, vol. 7034, Springer-Verlag,
2012, pp. 242–253. 22

[KW01] Michael Kaufmann and Dorothea Wagner, Drawing graphs: Methods and mod-
els, LNCS, vol. 2025, Springer-Verlag, London, UK, 2001. 3, 33, 45, 46, 47, 53,
66

[LE99] X. Lin and P. Eades, Area minimization for grid visibility representation of
hierarchically planar graphs, Proc. of 5th Annual Int. Conf. on Computing and
Combinatorics (COCOON’99), LNCS, vol. 1627, Springer-Verlag, 1999, pp. 92–
102. 24

[Lei98] S. Leipert, Level planarity testing and embedding in linear time, Ph.D. thesis,
Computer Science Department, University of Cologne, 1998. 7

[Lin92] X. Lin, Analysis of algorithms for drawing graphs, Ph.D. thesis, Department of
Computer Science, University of Queensland, Australia, 1992. 42

[LLY06] Y.-Y. Lee, C.-C. Lin, and H.-C. Yen, Mental map preserving graph drawing
using simulated annealing, Proc. Asia-Pacific Sym. on Information Visualisation
2006, APVis’06, vol. 60, Australian Computer Society, Inc., 2006, pp. 179–188.
8

152

[LM99] M. Laguna and R. Martí, Grasp and path relinking for 2-layer straight line
crossing minimization, INFORMS Journal on Computing 11 (1999), 44–52.
43, 51

[LMR98] K. A. Lyons, H. Meijer, and D. Rappaport, Algorithms for cluster busting in
anchored graph drawing, JGAA 1 (1998), no. 1, 1–24. 74, 78, 79, 88

[LMV97] M. Laguna, R. Martí, and Valls V., Arc crossing minimization in hierarchi-
cal digraphs with tabu search, Computers and Operations Research 24 (1997),
no. 12, 1175–1186. 43, 51, 57

[LNS85] R. J. Lipton, S. C. North, and J. S. Sandberg, A method for drawing graphs,
Proc. 1rst annual Sym. on Comp. Geo., SCG’85, ACM, 1985, pp. 153–160. 27

[LS77] S. Lam and R. Sethi, Worst case analysis of two scheduling algorithms, SIAM
J. on Computing 6 (1977), no. 3, 518–536. 41

[LY05] C.-C. Lin and H.-C. Yen, A new force-directed graph drawing method based on
edge-edge repulsion, Proc. 9th Int. Conf. on Information Visualisation, IEEE
Computer Society, 2005, pp. 329–334. 30

[Lyo92] K. A. Lyons, Cluster busting in anchored graph drawing, Proc. Conf. of the
Centre for Advanced Studies on Collaborative research 1992, CASCON ’92,
vol. 1, IBM Press, 1992, pp. 7–17. 78

[Mäk90] E. Mäkinen, Experiments on drawing 2-level hierarchical graphs, IJCM 37
(1990), no. 3-4, 129–135. 49, 50

[Man91] J. Manning, Computational complexity of geometric symmetry detection in
graphs, Proc. 1st Great Lakes Computer Science Conf. on Computing in the
90’s, Springer-Verlag, 1991, pp. 1–7. 77

[MDV06] V. Manohararajah, S. B. Dean, and Z. G. Vranesic, Heuristics for area mini-
mization in lut-based fpga technology mapping, IEEE Transactions on CAD of
Integrated Circuits and Systems 25 (2006), no. 11, 2331–2340. 28

[Meh84] K. Mehlhorn, Data structures and algorithms. volume 2: Graph algorithms
and np-completeness., EATCS Monographs on Theoretical Computer Science,
Springer, 1984. 41

[MELS95] K. Misue, P. Eades, W. Lai, and K. Sugiyama, Layout adjustment and the
mental map, J. Vis. Lang. Comput. 6 (1995), no. 2, 183 – 210. 8, 74, 75, 78,
79, 80

[Men96] A. O. Mendelzon, Visualizing the world wide web, Proc. Workshop on Advanced
visual interfaces AVI’96, ACM Press, 1996, pp. 13–19. 2

[Mes88] E. B. Messinger, Automatic layout of large directed graphs, Ph.D. thesis, Uni-
versity of Washington, 1988. 34, 70

[MHN05] K. Miura, H. Haga, and T. Nishizeki, Inner rectangular drawings of plane graphs
(extended abstract), Algorithms and Computation, LNCS, vol. 3341, Springer-
Verlag, 2005, pp. 449–478. 23

153

[MHT93] K. Miriyala, S.W. Hornick, and R. Tamassia, An incremental approach to aes-
thetic graph layout, Proc. 6th Int. Workshop on Computer-Aided Software En-
gineering, CASE’93, july 1993, pp. 297–308. 81

[MMB06] C. Muelder, K.-L. Ma, and T. Bartoletti, Interactive visualization for network
and port scan detection, 8th Int. Sym. of Recent Advances in Intrusion Detec-
tion, RAID 2005, LNCS, vol. 3858, Springer-Verlag, 2006, pp. 265–283. 2

[Moe90] S. Moen, Drawing dynamic trees, IEEE Software 7 (1990), no. 4, 21–28. 74, 81

[MR10] O. Macindoe and W. Richards, Graph comparison using fine structure analysis,
Proc. IEEE Second Int. Conf. on Social Computing 2010 (Washington, DC,
USA), SOCIALCOM ’10, IEEE Computer Society, 2010, pp. 193–200. 8, 74

[MRH91] E. B. Messinger, L. A. Rowe, and R.H. Henry, A divide-and-conquer algorithm
for the automatic layout of large directed graphs, IEEE Trans. Sys. Man &
Cyber. 21 (1991), no. 1, 1–2. 34, 70

[MS94] E. Mäkinen, , and M. Sieranta, Genetic algorithms for drawing bipartite graphs,
IJCM 53 (1994), no. 3-4, 157–166. 51

[MSM99] C. Matuszewski, R. Schzönfeld, and P. Molitor, Using sifting for k-layer straight-
line crossing minimization, Proc. 7th Int. Sym. on Graph Drawing (GD’99),
LNCS, vol. 1731, 1999, pp. 217–224. 43, 50, 54

[Mur09] P. Murrell, Drawing diagrams with r, The R Journal 1 (2009), no. 1, 15–21. 3

[Mut92] P. Mutzel, A fast O(n) linear time embedding algorithm based on the hopcroft-
tarjan planarity test, Technical report 92.107, Köln University, 1992. 20

[Mut00] , An alternative method to crossing minimization on hierarchical graphs,
SIAM Journal on Optimization 11 (2000), 1065–1080. 7, 43

[MUV02] X. Munoz, W. Unger, and I. Vrt’o, One sided crossing minimization is np-hard
for sparse graphs, Rev. Papers from 9th Int. Sym. on Graph Drawing (GD’01),
LNCS, vol. 2265, Springer-Verlag, 2002, pp. 115–122. 43, 44

[MV93] A. Marzal and E. Vidal, Computation of normalized edit distance and appli-
cations, IEEE Trans. Pattern Anal. Mach. Intell. 15 (1993), no. 9, 926 –932.
80

[Mye03] C. R. Myers, Software systems as complex networks: Structure, function, and
evolvability of software collaboration graphs, Phys. Rev. E 68 (2003), 046116–
1–046116–15. 6

[Nis07] T Nishizeki, Inner rectangular drawings of plane graphs: Application of graph
drawing to vlsi layouts, Proc. of First Workshop on Algorithms and Computa-
tion WALCOM’07, Bangladesh Academy of Sciences (BAS), 2007, pp. 1–2. 23,
25

[Nor97] S. North, Incremental layout in dynadag, Proc. Sym. on Graph Drawing
(GD’96), LNCS, vol. 1190, Springer-Verlag, 1997, pp. 409–418. 74, 79, 82,
83

154

[NR04] T. Nishizeki and M. S. Rahman, Planar graph drawing, Lecture Notes Series on
Computing, vol. 12, Elsevier Science Publishers B.V., Amstrdam, The Nether-
lands, 2004. 3, 31, 33

[NT06] N. S. Nikolov and A. Tarassov, Graph layering by promotion of nodes, Disc.
Appl. Math. 154 (2006), 848–860. 42, 43

[NTB05] N. S. Nikolov, A. Tarassov, and J. Branke, In search for efficient heuristics
for minimum-width graph layering with consideration of dummy nodes, ACM
Journal of Experimental Algorithmics 10 (2005). 43

[NW88] G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial optimization,
Wiley-Interscience, 1988. 42

[NW02] S. North and G. Woodhull, Online hierarchical graph drawing, Rev. Papers from
9th Int. Sym. on Graph Drawing (GD’01), LNCS, vol. 2265, Springer-Verlag,
2002, pp. 77–81. 7, 82

[NW11] M. Nollenburg and A. Wolff, Drawing and labeling high-quality metro maps
by mixed-integer programming, IEEE Trans. Vis. Comput. Graph. 17 (2011),
626–641. 3

[Ost96] D. I. Ostry, Some three-dimensional graph drawing algorithms, Master’s thesis,
Department of Computer Science and Software Engineering, The University of
New Castle, Australia, 1996. 26

[OW78] R. Otten and J. van Wijk, Graph representations in interactive layout design,
Proc. IEEE Int. Sym. on Circuits and Systems, 1978, pp. 914–918. 24, 74

[PB08] M. Pohl and P. Birke, Interactive exploration of large dynamic networks, Proc.
10th Int. Conf. on Visual Information Systems: Web-Based Visual Information
Search and Management, VISUAL’08, Springer-Verlag, 2008, pp. 56–67. 74

[PCA02] H. C. Purchase, D. Carrington, and J.-A. Allder, Empirical evaluation of
aesthetics-based graph layout, Empirical Software Engineering 7 (2002), 233–
255. 76

[PCJ96] H. C. Purchase, R. F. Cohen, and M. James, Validating graph drawing aesthet-
ics, Proc. ffSym. on Graph Drawing (GD’95), LNCS, vol. 1027, Springer-Verlag,
1996, pp. 435–446. 27, 74, 76

[PHG08] H. Purchase, E. Hoggan, and C. Görg, How important is the "mental map"?
- an empirical investigation of a dynamic graph layout algorithm, Rev. Papers
15th Int. Sym. on Graph drawing (GD’07), LNCS, vol. 4875, 2008, pp. 184–195.
8, 75, 76

[PKL04] B. Pinaud, P. Kuntz, and R. Lehn, Dynamic graph drawing with a hy-
bridized genetic algorithm, Automatic Computing in Design and Manufacture
VI, Springer-Verlag, 2004, pp. 365–375. 27, 74, 77

[PL95] P. Peichen and C. L. Liu, Area minimization for floorplans, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 14 (1995), no. 1,
123 –132. 28

155

[PMCC01] H. C. Purchase, M. McGill, L. Colpoys, and D. Carrington, Graph drawing
aesthetics and the comprehension of uml class diagrams: an empirical study,
Proc. Asia-Pacific Sym. on Information visualisation 2001, APVis’01, vol. 9,
Australian Computer Society, Inc., 2001, pp. 129–137. 76

[PPP12] H. C. Purchase, C. Pilcher, and B. Plimmer, Graph drawing aesthetics-created
by users, not algorithms, IEEE Trans. Vis. Comput. Graph. 18 (2012), no. 1,
81–92. 9, 27, 76

[PS08] H. Purchase and A. Samra, Extremes are better: Investigating mental map
preservation in dynamic graphs, Diagrammatic Representation and Inference,
LNCS, vol. 5223, Springer-Verlag, 2008, pp. 60–73. 8, 76

[PST97] A. Papakostas, J. M. Six, and I. G. Tollis, Experimental and theoretical results
in interactive orthogonal graph drawing, Proc. 5th Sym. on Graph Drawing
(GD’96), LNCS, vol. 1190, Springer-Verlag, 1997, pp. 371–386. 8, 74, 75

[PT90] F. N. Paulisch and W. F. Tichy, Edge: an extendable graph editor, Software:
Practice and Experience 20 (1990), 63–88. 34, 70

[PT95] A. Papakostas and I. G. Tollis, Improved algorithms and bounds for orthogonal
drawings, Proc. DIMACS Int. Workshop (GD’94), LNCS, vol. 894, Springer-
Verlag, 1995, pp. 40–51. 22

[PT97] , A pairing technique for area-efficient orthogonal drawings, Proc. Sym.
on Graph Drawing (GD’96), LNCS, vol. 1190, Springer-Verlag, 1997, pp. 355–
370. 22

[PT00] J. Pach and G. Tóth, Which crossing number is it anyway?, Journal of Combi-
natorial Theory, Series B 80 (2000), 225–246. 44, 96

[Pur97] H. C. Purchase, Which aesthetic has the greatest effect on human under-
standing?, Proc. 5th Int. Sym. on Graph Drawing (GD’97), LNCS, vol. 1353,
Springer-Verlag, 1997, pp. 248–261. 43, 74, 76, 96

[Pur98] , The effects of graph layout, Australasian Conference on Computer-
Human Interaction (1998), 80. 74

[Pur00] , Effective information visualisation: a study of graph drawing aesthetics
and algorithms, Interacting with Computers 13 (2000), no. 2, 477–506. 27, 76,
140

[Pur02] H. Purchase, Metrics for graph drawing aesthetics, J. Vis. Lang. Comput. 13
(2002), no. 5, 501–516. 9, 10, 27, 43, 74, 76, 81, 84, 91, 94, 96, 110, 139

[PVAE98] I. Park, M. Voss, B. Armstrong, and R. Eigenmann, Parallel programming and
performance evaluation with the ursa tool family, Int. J. Parallel Program. 26
(1998), no. 5, 541–561. 6

[Rah99] M. S. Rahman, Efficient algorithms for drawing planar graphs, Ph.D. thesis,
Tohoku University, Japan, 1999. 23

156

[RB06] G. Rote and I. Bárány, Strictly convex drawings of planar graphs, Documenta
Mathematica 11 (2006), 369–391. 22

[Rei85] Gerhard Reinelt, The linear ordering problem: Algorithms and applications,
Research & Exposition in Mathematics, 1985. 39

[RFF+08] G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko, Effectiveness of
animation in trend visualization, IEEE Trans. Vis. Comput. Graph. 14 (2008),
no. 6, 1325 –1332. 76

[RNN98] M. S. Rahman, S.-I. Nakano, and T. Nishizeki, Rectangular grid drawings of
plane graphs, Comp. Geo. Theory and Applications 10 (1998), 203–220. 23, 24

[RNN02] , Rectangular drawings of plane graphs without designated corners,
Comp. Geo. Theory and Applications 21 (2002), 121–138. 23

[Rot12] G. Rote, Realizing planar graphs as convex polytopes, Proc. 19th Int. Sym. on
Graph Drawing (GD 2011), LNCS, vol. 7034, Springer-Verlag, 2012, pp. 238–
241. 22

[Rud93] R. Rudell, Dynamic variable ordering for ordered binary decision diagrams,
IEEE/ACM Int. Conf. on Computer-Aided Design ICCAD’93, 1993, pp. 42–
47. 50

[Saa01] Y. Saab, A fast and effective algorithm for the feedback arc set problem, Journal
of Heuristics 7 (2001), 235–250. 39

[San95] G. Sander, Graph layout through the vcg tool, Proc. DIMACS Int. Workshop
(GD’94), LNCS, vol. 894, Springer-Verlag, 1995, pp. 194–205. 67

[San96] , A fast heuristic for hierarchical manhattan layout, Proc. Sym. on
Graph Drawing (GD’95), LNCS, vol. 1027, Springer-Verlag, 1996, pp. 447–458.
7, 60

[San99] , Graph layout for applications in compiler construction, Theoretical
Computer Science 217 (1999), 175–214. 38, 60, 67

[SBOP08] J. Sobey, R. Biddle, P. C. Oorschot, and A. S. Patrick, Exploring user reactions
to new browser cues for extended validation certificates, Proc. 13th European
Sym. on Research in Computer Security: Computer Security (ESORICS’08),
LNCS, Springer-Verlag, 2008, pp. 411–427. 140

[Sch90] W. Schnyder, Embedding planar graphs on the grid, Proc. 1st annual ACM-
SIAM Sym. on Discrete algorithms, SODA’90, Society for Industrial and Ap-
plied Mathematics, 1990, pp. 138–148. 24

[Sco00] J. Scott, Social network analysis: A handbook, second. ed., Sage Publications,
2000. 3, 74

[SH07] M. Suderman and M. Hallett, Tools for visually exploring biological networks,
Bioinformatics 23 (2007), no. 20, 2651–2659. 3

157

[Shn86] B. Shneiderman, Designing the user interface: strategies for effective human-
computer interaction, Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1986. 27

[SI10] J. Steele and N. Illinsky, Beautiful visualization: Looking at data through the
eyes of experts (theory in practice), 1 ed., O’Reilly Media, 2010. 114

[Smi09] M. Smith, Peanut tainted product and producer networks, as
seen in nodexl, http://www.smrfoundation.org/2009/02/02/
peanut-tainted-product-and-producer-networks-as-seen-in-nodexl/,
2009. 2

[SNM99] J. Stolfi, H. do Nascimento, and C. de Mendonça, Heuristics and pedigrees for
drawing directed graphs, Journal of the Brazilian Computer Society 6 (1999),
no. 1, 38 – 49. 140

[SP08] P. Saffrey and H. Purchase, The "mental map" versus "static aesthetic" com-
promise in dynamic graphs: a user study, Proc. 9th Conf. on Australasian user
interface, AUIC’08, vol. 76, Australian Computer Society, Inc., 2008, pp. 85–93.
8, 9, 27, 75, 76

[SPS10] K. Soetaert, T. Petzoldt, and R. W. Setzer, Solving differential equations in r,
The R Journal 2 (2010), no. 2, 5–15. 2

[SQ07] R. Shannon and A. J. Quigley, Considerations in dynamic graph drawing:
A survey, http://rossshannon.com/publications/softcopies/rs2007-dynamic-
graphs-survey.pdf, 2007. 74

[SR04] J. Shetty and M. Rey, The enron email dataset database schema and brief statis-
tical report 1, http://www.isi.edu/~adibi/Enron/Enron_Dataset_Report.
pdf, 2004. 2

[SSL+09] I. Surovtsova, N. Simus, T. Lorenz, A. König, S. Sahle, and U. Kummer, Acces-
sible methods for the dynamic time-scale decomposition of biochemical systems,
Bioinformatics 25 (2009), no. 21, 2816–2823. 2

[SSV95] F. Shahrokhi, L. Székely, and I. Vrt’o, Crossing numbers of graphs, lower bound
techniques and algorithms: A survey, Proc. DIMACS Int. Workshop (GD’94),
LNCS, vol. 894, Springer-Verlag, 1995, pp. 131–142. 44

[Ste51] S. K. Stein, Covex maps, Proc. American Mathematical Society 2 (1951), 464–
466. 20

[Sto84] J. A. Storer, On minimal node-cost planar embeddings, Networks 14 (1984),
181–212. 22

[STT81] K. Sugiyama, S. Tagawa, and M. Toda, Methods for visual understanding of
hierarchical system structures, IEEE Trans. Sys. Man & Cyber. 11 (1981),
no. 2, 109–125. 7, 27, 33, 34, 47, 60, 70, 82

[Sug87] K. Sugiyama, A cognitive approach for graph drawing, Cybernetics and Systems
18 (1987), no. 6, 447–488. 7

158

[Sug02] , Graph drawing and applications for software and knowledge engineers,
Series on software engineering and knowledge engineering, vol. 11, World Sci-
entific, Singapore, 2002. 33

[SV97] F. Shahrokhi and I. Vrto, Crossing numbers: Bounds and applications, I.
B’AR’ANY and K. BOROCZKY, Bolyai Society Mathematical Studies 6,
Akademiai Kiado, 1997, pp. 179–206. 44, 96

[SWQN07] R. Shannon, G. Williamson, A. Quigley, and P. Nixon, Visualising network
communications to evaluate a data dissemination method for ubiquitous sys-
tems, Proc. of Workshop on Ubiquitous Systems Evaluation in conjunction
with Ubicomp’07, 2007. 8

[Tam87] R. Tamassia, On embedding a graph in the grid with the minimum number of
bends, SIAM J. on Computing 16 (1987), 421–444. 22, 24

[Tam07] , Handbook of graph drawing and visualization (discrete mathematics
and its applications), Chapman & Hall/CRC, 2007. 3

[Tho84] C. Thomassen, Plane representations of graphs, Progress in graph theory (J.A.
Bondy and U.S.R. Murty eds.), Academic Press, 1984, pp. 43–69. 23

[TMB02] B. Tversky, J. B. Morrison, and M. Betrancourt, Animation: can it facilitate?,
Int. Journal of Human-Computer Studies 57 (2002), 247–262. 76

[TNB04] A. Tarassov, N. Nikolov, and J. Branke, A heuristic for minimum-width graph
layering with consideration of dummy nodes, Experimental and Efficient Algo-
rithms, LNCS, vol. 3059, Springer-Verlag, 2004, pp. 570–583. 43

[TPP09] R. Tamassia, B. Palazzi, and C. Papamanthou, Graph drawing for security
visualization, Rev. Papers 16th Int. Sym. on Graph Drawing (GD’08), LNCS,
vol. 5417, Springer-Verlag, 2009, pp. 2–13. 3

[Tri08] M. Trier, Towards dynamic visualization for understanding evolution of digital
communication networks, Information Systems Research 19 (2008), no. 3, 335–
350. 2

[TT86] R. Tamassia and I. G. Tollis, Algorithms for visibility representations of planar
graphs, Proc. 3rd Annual Sym. on Theoretical Aspects of Computer Science
(STACS’86), LNCS, vol. 210, Springer-Verlag, 1986, pp. 130–141. 24

[TTV91] R. Tamassia, I. G. Tollis, and J. S. Vitter, Lower bounds for planar orthogonal
drawings of graphs., Inf. Process. Lett. (1991), 35–40. 22

[Tut60] W. Tutte, Convex representations of graphs, Proc. London Mathematical Soci-
ety 10 (1960), 304–320. 22

[Tut63] W. T. Tutte, How to draw a graph, Proc. London Mathematical Society 13
(1963), 743–767. 5

[UBSE98] J. Utech, J. Branke, H. Schmeck, and P. Eades, An evolutionary algorithm for
drawing directed graphs, Proc. Int. Conf. on Imaging Science, Systems, and
Technology 1998, CISST 1998, 1998, pp. 154–160. 57, 67, 140

159

[Urb12] Urbanrail.net, http://www.urbanrail.net/af/cairo/cairo.htm, 2012. 2

[VML96] V. Valls, R. Martí, and P. Lino, A branch and bound algorithm for minimizing
the number of crossing arcs in bipartite graphs, European Journal of Operational
Research 90 (1996), no. 2, 303 – 319. 43

[Wag36] K. Wagner, Bemerkungen zum vierfarbenproblem, Jahresbericht der Deutsche
Mathematiker Vereinigung 46 (1936), 26–32. 20

[War76] J. N. Warfield, Societal systems: planning, policy, and complexity, Wiley series
on systems engineering and analysis, Wiley, 1976. 5, 6

[War77] , Crossing theory and hierarchy mapping, IEEE Transactions on Sys-
tems, Man, and Cybernetics 7 (1977), no. 7, 505–523. 7, 34, 43, 44

[WB04] C. Ware and R. Bobrow, Motion to support rapid interactive queries on node–
link diagrams, ACM Trans. Appl. Percept. 1 (2004), 3–18. 74, 76

[Wid83] P. Widmayer, Computational complexity in computer graphics and vlsi layout,
Ph.D. thesis, Department of Economics and Business Engineering, Karlsruhe
University, 1983. 25

[Wol07] A. Wolff, Drawing subway maps: A survey., Informatik - Forschung und En-
twicklung 22 (2007), no. 1, 23–44. 3

[WS98] D. J. Watts and S. H. Strogatz, Collective dynamics of "small-world" networks,
Nature 393 (1998), no. 6684, 440–442. 2

[YS99] A. Yamaguchi and A. Sugimoto, An approximation algorithm for the two-layered
graph drawing problem, Proc. 5th annual Int. Conf. on Computing and combi-
natorics (COCOON’99), LNCS, Springer-Verlag, 1999, pp. 81–91. 5

[YT00] A. Yamaguchi and H. Toh, Visualization of genetic neyworks: Edge crossing
minimization of a graph drawing with vertex pairs, Genome Informatics 11
(2000), 245–246. 43, 51

[YT01] , Two-layered genetic neyworks drawings with minimimum edge cross-
ings, Genome Informatics 12 (2001), 456–457. 43, 51

[YYM12] C.-H. Yang, T.-H. Yu, and D. Markovic, Power and area minimization of re-
configurable fft processors: A 3gpp-lte example, IEEE Journal of Solid-State
Circuits 47 (2012), no. 3, 757–768. 28

[ZKS11] L. Zaman, A. Kalra, and W. Stuerzlinger, The effect of animation, dual view,
difference layers, and relative re-layout in hierarchical diagram differencing,
Proc. of Graphics Interface GI’2011, Canadian Human-Computer Communica-
tions Society, 2011, pp. 183–190. 7, 76

[ZS08] H. Zhang and S. Sadasivam, On planar polyline drawings, Rev. Papers 15th Int.
Sym. on Graph drawing (GD’07), LNCS, vol. 4875, 2008, pp. 213–218. 21

160

Zusammenfassung

Das Graphzeichnen (eng. Graph Drawing) befasst sich mit der geometrischen Darstellung
von Graphen und wird von denjenigen Anwendungsbereichen verwendet, denen wichtig ist, die
strukturellen Informationen als Graphen darzustellen. Der Großteil der Forschung im Bereich
des Graphzeichens beschäftigt sich mit effizienten Algorithmen für die Arbeit mit statischen
Graphen, die während der Ausführung eines Algorithmus die Struktur des Graphen nicht
ändern. Bei dynamischen Graphen ändert sich die Struktur oder die Zeichnung des Graphen
während der Ausführung eines Algorithmus durch Aktionen wie Hinzufügen, Entfernen oder
Bewegen von Kanten und Knoten. Viele Graphenzeichner-Szenarien sind dynamisch, was
eine ständige Aktualisierung des Graphen und schließlich dessen Neuzeichnung erfordert,
nach dem eine gewisse Zahl von Änderungen ausgeführt sind.

Das Hauptziel im dynamischen Graphenzeichen ist die Bewahrung der kognitiven Land-
karte ("mental map") des Benutzers und die Minimierung des Wiedererkennungsaufwands
bei sich wiederholt ändernden Graphzeichnungen. Der empfohlene Ansatz zur Bewahrung
der kognitiven Landkarte eines Benutzers ist, die Änderung zwischen der neuen und ak-
tuellen Zeichnung zu minimieren. Dies erfordert adäquate Grundlagen für die Berechnung
der Ähnlichkeit zwischen zwei Zeichnungen. Derartige Ähnlichkeitsmaße sind insgesamt als
Differenzmetriken bekannt. Einige Differenzmetriken wie der Euklidische Abstand, relative
Abstand, Kantenorthogonalität, Kantenbreite, Kantenanordnung werden hier üblicherweise
hier betrachtet.

Diese Dissertation beschäftigt sich mit der Gestaltung und Validierung von Differenz-
metriken beim Zeichnen von dynamisch veränderlichen hierarchischen Graphen. Die vorhan-
denen Ansätze in dieser Richtung fokussieren sich darauf, wie eine Aktion auf einem dynamis-
chen hierarchischen Graph auszuführen ist und auf die Messung der Unterschiede zwischen
Zeichnungen von dynamischen hierarchischen Graphen mit Hilfe von verschiedenen Metriken.
Wir führen ein neues allgemeines Framework ein, in dem Differenzmetriken für dynamisch
veränderliche hierarchische Graphen formuliert werden. Die allgemeinen Formen von Dif-
ferenzmetriken werden entsprechend der topologischen und geometrischen Charakteristik von
hierarchischen Graphen formuliert und auf die existierenden Metriken angewendet, die beim
nicht-hierarchischen Graphenzeichen verwendet werden. Die vorgeschlagene Formulierung
kann auf jeden hierarchischen Graphen von beliebiger Größe angewendet und auf verschiede-
nen Typen von Graphen erweitert werden.

Messungen zur Ähnlichkeit zwischen zwei verschiedenen Graphen können allerdings nicht
ausschließlich auf Basis formaler Metriken durchgeführt werden. Zur Untersuchung des äs-
thetischen Empfindens bzw. der wahrgenommenen Änderungen der "mental map" sind di-
rekte Rückmeldungen von menschlichen Nutzern erforderlich. Zu diesem Zweck wurde eine

161

Zusammenfassung

experimentale Benutzerstudie durchgeführt, um die eingeführten Differenzmetriken basierend
auf die Benutzerbewertungen zu überprüfen.

Als weiteres Problem des Graphzeichnens wurde die Minimierung von Kreuzungen zwischen
den Kanten beim Zeichen von hierarchischen Graphen. Wir führen einen neuen Algorithmus
mit dem Namen „efficient barycenter“ ein, der bessere Ergebnisse sowohl bei der Anzahl der
Kreuzungen als in der Literatur bekannte Algorithmen.

Ein weiterer Beitrag dieser Arbeit ist eine neue Methode zur Generierung zufälliger hierar-
chischer Graphen als Grundlage für die experimentellen Untersuchungen. Sie kontrolliert alle
Parameter eines hierarchischen Graphen, wie die Anzahl der Ebenen, die Anzahl der Knoten
in jeder Ebene, die minimale Anzahl der ausgehenden Kanten eines Knoten, die Kantendichte
und das Verhältnis der langen Kanten in einem Graph.

162

Curriculum Vitae

Name ISMAEEL, Alaa Aly Khalaf

Nationality EGYPTIAN

Address • Kronenstr. 1, 76133 Karlsruhe, Germany
• Computer Science Dept., Minia University, 61519 El-Minia, Egypt

Phone +49(0)176 6259 6659, +49(0)721 20 888 67, +20(0)100 760 2487

Email • alaa.ismaeel@kit.edu
• alaa.ismaeel@science.miniauniv.edu.eg

Date of Birth 14.12.1975

Place of Birth El-Minia, Egypt

Marital Status Married (with 3 children)

Military Status Completely Exempted

Education • 1981-1987 Al-Horeya Primary School, Matay, El-Minia, Egypt
• 1987-1990 Al-Tahrir Prip School, Matay, El-Minia, Egypt
• 1990-1993 Matay Secondary School, Matay, El-Minia, Egypt
• 1994-1998 Minia University, El-Minia, Egypt

Jobs • Dec. 1999 Demonstrator (Computer Science), Computer Science
Dept., Faculty of Science, Minia University, El-Minia,
Egypt

• Jun. 2004 Assistant Lecturer (Computer Science), Computer Sci-
ence Dept., Faculty of Science, Minia University, El-
Minia, Egypt

• Mar. 2008 Research Associate, Institute AIFB, Karlsruhe Insti-
tute of Technology (KIT), Germany

Karlsruhe, Mai 2012

