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Institut für Angewandte und Numerische Mathematik
Karlsruher Institut für Technologie (KIT)
D-76128 Karlsruhe

Prof. Dr. Christopher A. Beattie
Department of Mathematics
Virginia Tech
522 McBryde Hall
Blacksburg, VA 24061-0123
USA

Prof. Dr. Serkan Gugercin
Department of Mathematics
Virginia Tech
442 McBryde Hall
Blacksburg, VA 24061-0123
USA

Prof. Dr. Athanasios C. Antoulas
Department of Electrical and Computer Engineering
Rice University, MS 380
6100 South Main Street
Houston, Texas 77005-1892
USA



Interpolatory Weighted-H2 Model Reduction
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Abstract

This paper introduces an interpolation framework for the weighted-H2 model reduction problem.
We obtain a new representation of the weighted-H2 norm of SISO systems that provides new interpola-
tory first order necessary conditions for an optimal reduced-order model. The H2 norm representation
also provides an error expression that motivates a new weighted-H2 model reduction algorithm. Several
numerical examples illustrate the effectiveness of the proposed approach.

1 Introduction

Consider a single input/single output (SISO) linear dynamical system with a realization

E ẋ(t) = Ax(t) + bu(t), y(t) = cTx(t) ⇐⇒ G(s) = cT (sE−A)−1b, (1)

for E,A ∈ Rn×n and b, c ∈ Rn. x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, are respectively the state, input, and
output of the system. G(s) is the transfer function. Following common usage, the underlying system will
also be denoted by G. For many examples of scientific and industrial value, the state-space dimension n
is quite large, leading to untenable demands on computational resources. Model reduction attempts to
address this by finding a reduced-order system of the form,

Er ẋr(t) = Arxr(t) + bru(t), yr(t) = cTr xr(t) ⇐⇒ Gr(s) = cTr (sEr −Ar)
−1br (2)

for Er, Ar ∈ Rr×r and br, cr ∈ Rr with r � n such that yr(t) ≈ y(t) over a large class of inputs u(t).
Gr is a low order, yet high fidelity, approximation to G. We construct Gr via state-space projection: two
matrices Vr, Wr ∈ Rn×r are chosen (“reduction bases”) to produce

Er = WT
r EVr, Ar = WT

r AVr, br = WT
r b, and cTr = cTVr (3)

See [2, 3] for more information on model reduction of linear dynamical systems.

1.1 Model Reduction by Interpolation

The reduction bases, Vr and Wr, used in (3) will be chosen to force interpolation: the reduced-order
transfer function, Gr(s), will interpolate G(s) (possibly together with higher order derivatives) at selected
interpolation points. This approach to rational interpolation has been considered in [21, 22, 6, 9, 8, 3]
and depends on the following result. (A set Σ ⊂ C is closed under conjugation if σ ∈ Σ implies σ̄ ∈ Σ.)
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Theorem 1. Given two sets of interpolation points {σk}rk=1 and {ζk}rk=1, that are each closed under
conjugation, and a dynamical system G as in (1), consider matrices Vr and Wr such that

Ran(Vr) = span
{

(σ1E−A)−1b, · · · , (σrE−A)−1b
}

and
Ran(Wr) = span

{
(ζ1E

T −AT )−1c, · · · , (ζrE
T −AT )−1c

}
.

(4)

Then, Vr and Wr can be chosen to be real; Gr(s) = cTr (sEr − Ar)
−1br defined by (2)-(3) is a real

dynamical system that satisfies G(σk) = Gr(σk) and G(ζk) = Gr(ζk) for k = 1, . . . , r; and, if σj = ζj for
some j, then G′(σj) = G′r(σj), as well.

Theorem 1 can be generalized to higher-order derivative interpolation as well, see [21, 22, 6, 9, 8, 3].
The subspaces of Theorem 1 are rational Krylov subspaces and so, interpolatory model reduction methods
for SISO systems are sometimes referred to as rational Krylov methods.

1.2 Weighted Model Reduction

The H∞ norm of a stable linear system associated with a transfer function, G(s), is defined as ‖G‖H∞ =

max
ω∈R
|G(ıω)| . The H2 norm of G is defined as ‖G‖H2

:=

(
1

2π

∫ ∞
−∞
|G(ıω)|2

)1/2

. The vector spaces of

meromorphic functions that are analytic in the right halfplane, having either bounded H∞ norm or
bounded H2 norm will be denoted simply as H∞ or H2, respectively. Let W ∈ H∞ be given. The
(W -)weighted H2 norm is defined as ‖G‖H2(W ) = ‖G ·W‖H2 .

We are interested in the problem of finding a reduced-order model Gr that minimizes a W -weighted
H2 norm, i.e., that solves

‖G−Gr‖H2(W ) = min
dim(G̃r) = r

‖G− G̃r‖H2(W ) (5)

The introduction of the weight function, W (s), allows one to penalize error in certain frequency ranges
more heavily than in others.

An illustrative example: controller reduction Consider a linear dynamical system, P (the plant),
with order nP together with an associated stabilizing controller, G, having order n, that is connected
to P in a feedback loop. Many control design methodologies, such as LQG and H∞ methods, lead
ultimately to controllers whose order is generically as high as the order of the plant, see [18, 23] and
references therein. Thus, high-order plants will generally lead to high-order controllers. However, high-
order controllers are usually undesirable in real-time applications because: (i) Complex hardware: A
large-order controller typically requires complex hardware and a large investment in implementation;
(ii) Degraded accuracy: Due to ill-conditioning in large-scale computations, it might not be possible to
operate such a controller within the required accuracy margins; and, (iii) Degraded computational speed:
The time needed to compute the output response for a complex controller might be too long, possibly
longer than the system sampling time, yielding ineffective and potentially destructive feedback inputs.
Thus, one may prefer to use a reduced order controller Gr with order r � n to replace G.

RequiringGr to be a good approximation toG is often not enough in terms of closed-loop performance;
plant dynamics need to be taken into account during the reduction process. This may be achieved through
frequency weighting: Given a stabilizing controller G, if G has the same number of unstable poles as Gr
and if

∥∥[G−Gr]P [I + PG]−1
∥∥
H∞ < 1, then Gr will also be a also stabilizing controller [1, 23]. Hence the

controller reduction problem may be formulated as finding a reduced-order controller Gr that minimizes
or reduces the weighted error ‖(G−Gr)W‖H∞ with W (s) := P (s)(I + P (s)G(s))−1; i.e., controller
reduction becomes an application of weighted model reduction. This approach has been considered in
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[18, 1, 15, 11, 7, 20, 13, 19, 17] and references therein, leading then to variants of frequency-weighted
balanced truncation. Conversely, the methods in [12] and [16] are tailored instead towards minimizing a
weighted-H2 error as in (5).

2 Weighted-H2 model reduction

The numerical methods proposed in [12] and [16] for approaching (5) require solving a sequence of large-
scale Lyapunov or Riccati equations; they rapidly become computationally intractable as system order, n,
increases. We will approach this problem within an interpolatory model reduction framework requiring
only the solution of (generally sparse) linear systems and no need for dense matrix computations or
solution of large-scale Lyapunov or Riccati equations. Interpolatory approaches can be effectively applied
even when n reaches the tens of thousands.

2.1 A representation of the weighted-H2 norm

Given transfer functions G, H ∈ H2, and W ∈ H∞, define the weighted H2 inner product as

〈G, H〉H2(W )
=

1

2π

∫ ∞
−∞

G(ıω)W (ıω)W (ıω)H(ıω) dω =
1

2π

∫ ∞
−∞

G(−ıω)W (−ıω)W (ıω)H(ıω) dω,

so that ‖G‖H2(W ) =
(
〈G, G〉H2(W )

)1/2
. The following lemma gives a compact expression for the weighted

H2 inner product based on the poles and residues of G(s), H(s) and W (s).

Lemma 2. Suppose G, H ∈ H2 have poles denoted respectively as {λ1, . . . , λn} and {µ1, . . . , µm}, and
suppose W ∈ H∞ has poles denoted as {γ1, . . . , γp}. Assume that H(s) and W (s) have no common poles,
and the poles of W (s) are simple. Then

〈G, H〉H2(W )
=

m∑
k=1

res[G(−s)W (−s)W (s)H(s), µk] +

p∑
i=1

G(−γi)W (−γi)H(γi) · res[W (s), γi].

• If µk is a simple pole of H(s) then

res[G(−s)W (−s)W (s)H(s), µk]=G(−µk)W (−µk)W (µk) · res[H(s), µk].

• If µk is a double pole of H(s) then

res[G(−s)W (−s)W (s)H(s), µk] =G(−µk)W (−µk)W (µk) · res[H(s), µk]

−h−2(µk) ·
d

ds
[G(s)W (s)W (−s)]|s=−µk ,

where h−2(µk) = lim
s→µk

(s− µk)2H(s).

Proof. G(−s)W (−s)W (s)H(s) has poles at

{−λ1, . . . − λn} ∪ {±γ1, . . . ,±γp} ∪ {µ1, . . . , µm}.

For any R > 0, define a semicircular contour in the left halfplane:

ΓR = {z |z = ıω with ω ∈ [−R,R]} ∪
{
z

∣∣∣∣z = Reıθ with θ ∈ [
π

2
,
3π

2
]

}
.
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For R large enough, the region bounded by ΓR contains {γ1, . . . , γp} ∪ {µ1, . . . , µm}, constituting all the
poles of W (s)H(s), and hence all the stable poles of G(−s)W (−s)W (s)H(s). Then, the Residue Theorem
yields

〈G, H〉H2(W )
=

1

2π

∫ +∞

−∞
G(−ıω)W (−ıω)W (ıω)H(ıω) dω = lim

R→∞

1

2πı

∫
ΓR

G(−s)W (−s)W (s)H(s) ds

=

m∑
k=1

res[G(−s)W (−s)W (s)H(s), µk] +

p∑
i=1

res[G(−s)W (−s)W (s)H(s), γi].

This leads to the first assertion. Similarly, if µk is a simple pole for H(s) then

res[G(−s)W (−s)W (s)H(s), µk] = lim
s→µk

[(s− µk)G(−s)W (−s)W (s)H(s)]

= G(−µk)W (−µk)W (µk) lim
s→µk

(s− µk)H(s).

If µk is a double pole for H(s), then it is also a double pole for G(−s)W (−s)W (s)H(s) and

res[G(−s)W (−s)W (s)H(s), µk] = lim
s→µk

d

ds
[(s− µk)2G(−s)W (−s)W (s)H(s)]

= lim
s→µk

G(−s)W (−s)W (s)
d

ds

[
(s− µk)2H(s)

]
+ lim
s→µk

(s− µk)2H(s)
d

ds
[G(−s)W (−s)W (s)]

= G(−µk)W (−µk)W (µk) · res[H(s), µk]

−h−2(µk) ·
d

ds
[G(s)W (s)W (−s)]|s=−µk

Corollary 3. If G(s) and W (s) in Lemma 2 each have simple poles, then

‖G‖2H2(W ) =

n∑
k=1

G(−λk)W (−λk)W (λk) · res[G(s), λk] +

p∑
k=1

G(−γk)W (−γk)G(γk) · res[W (s), γk]. (6)

This new formula (6) for the weighted-H2 norm contains as a special case (with W (s) = 1), a similar
expression for the (unweighted) H2 norm introduced in [10].

Suppose W ∈ H∞ has simple poles at {γ1, . . . , γp} and define a linear mapping F : H2 → H2 by

F[G](s) = G(s)W (s)W (−s) +

p∑
k=1

G(−γk)W (−γk)
res[W (s), γk]

s+ γk
(7)

Notice that G(s)W (s)W (−s) has simple poles at −γ1,−γ2, . . . ,−γp, and

res[G(s)W (s)W (−s),−γk] = lim
s→−γk

(s+ γk)G(s)W (s)W (−s)

= G(−γk)W (−γk) lim
s→−γk

(s+ γk)W (−s) = −G(−γk)W (−γk) lim
s→γk

(s− γk)W (s)

= −G(−γk)W (−γk) · res[W (s), γk].

Thus F[G](s) has poles only in the left half plane and indeed F : H2 → H2.

Corollary 4. Suppose G and W are stable with poles {λ1, . . . , λn} and {γ1, . . . , γp}, respectively. Choose
µ arbitrarily in the left half plane distinct from these points. Then for F (s) = F[G](s),〈

G,
1

s− µ

〉
H2(W )

= F (−µ) and

〈
G,

1

(s− µ)2

〉
H2(W )

= −F ′(−µ)
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Proof. By the theorem,〈
G,

1

s− µ

〉
H2(W )

= G(−µ)W (−µ)W (µ) +

p∑
k=1

G(−γk)W (−γk)
res[W (s), γk]

γk − µ
= F (−µ)

and 〈
G,

1

(s− µ)2

〉
H2(W )

= − d

ds
[G(s)W (s)W (−s)]|s=−µ +

p∑
k=1

G(−γk)W (−γk)
res[W (s), γk]

(γk − µ)2
= −F ′(−µ).

2.2 Weighted-H2 optimality conditions

Consider the problem of finding a reduced order system, Gr, that solves (5). The feasible set for (5)
is nonconvex, so finding a true (global) minimizer is generally intractable. Nonetheless, we are able to
obtain descriptive necessary conditions for Gr to satisfy (5).

Theorem 5. If Gr has simple poles, {λ̂1, . . . , λ̂r}, and solves (5), then Gr must satisfy:

Fr(−λ̂k) = F (−λ̂k) and F ′r(−λ̂k) = F ′(−λ̂k) for k = 1, . . . , r (8)

where F = F[G] and Fr = F[Gr] is defined from (7).

Proof. Suppose by way of contradiction that, for some µ ∈ {λ̂1, . . . , λ̂r},〈
G−Gr,

1

s− µ

〉
H2(W )

= α0 6= 0

By hypothesis, Gr can be represented as Gr(s) =
∑r

i=1
ϕ̂i

s−λ̂i
and for some index k, µ = λ̂k. Define

ϑ0 = arg(α0) and with ε > 0, define

G̃(ε)
r (s) =

ϕ̂k + ε e−ıϑ0

s− µ
+
∑
i 6=k

ϕ̂i

s− λ̂i
.

Then

‖Gr − G̃(ε)
r ‖H2(W ) =

∥∥∥∥−ε e−ıϑ0s− µ

∥∥∥∥
H2(W )

≤ ‖W‖H∞
ε√

2|Re(µ)|

so that ‖Gr(s)− G̃(ε)
r (s)‖H2(W ) = O(ε) as ε→ 0. Since Gr solves (5),

‖G−Gr‖2H2(W ) ≤‖G− G̃(ε)
r ‖2H2(W ) ≤ ‖(G−Gr) + (Gr − G̃(ε)

r )‖2H2(W )

≤‖G−Gr‖2H2(W ) + 2Re
〈
G−Gr, Gr − G̃(ε)

r

〉
H2(W )

+ ‖Gr − G̃(ε)
r ‖2H2(W )

Thus, 0 ≤ 2 Re
〈
G−Gr, Gr − G̃(ε)

r

〉
H2(W )

+ ‖Gr − G̃(ε)
r ‖2H2(W ).

This implies first that 0 ≤ −ε|α0|+O(ε2), which then leads to a contradiction, α0 = 0.
To show the next assertion, suppose that for some µ ∈ {λ̂1, . . . , λ̂r},〈

G−Gr,
1

(s− µ)2

〉
H2(W )

= α1 6= 0.
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Then for some k, µ = λ̂k and we define ϑ1 = arg(ϕ̂k · α1). For ε > 0 sufficiently small, define

G̃(ε)
r (s) =

ϕ̂k
s− (µ+ ε e−ıϑ1)

+
∑
i 6=k

ϕ̂i

s− λ̂i

As ε→ 0, we have

‖Gr − G̃(ε)
r ‖H2(W ) =

∥∥∥∥ −ε ϕ̂k e−ıϑ1
(s− µ)2 − ε e−ıϑ1

∥∥∥∥
H2(W )

= O(ε)

Following a similar argument as before, we find that 0 ≤ −ε|ϕ̂k · α1|+O(ε2) as ε→ 0, which leads to a
contradiction, α1 = 0.

The interpolation conditions described in (8) give first order necessary conditions for Gr to solve
the optimal weighted-H2 model reduction problem (5). Unfortunately, there does not appear to be a
straightforward generalization of the corresponding computational approach as described in [10] for the
optimal (unweighted) H2 model reduction problem. Instead, we consider a computational approach to
this problem motivated by an expression for the weighted-H2 error.

2.3 A weighted-H2 error expression

The expression for the weighted-H2 norm in Corollary 3 leads immediately to an expression for the
weighted-H2 error that forms the basis for our computational approach.

Corollary 6. Suppose that G, Gr and W are stable with simple poles {λi}ni=1,
{
λ̂j

}r
j=1

, and {γk}pk=1,

respectively, and that there are no common poles. Define residues: φi:= res[G(s), λi]; φ̂j:= res[Gr(s), λ̂j ];
and ψk:= res[W (s), γk]. The weighted-H2 error is given by

‖G−Gr‖2H2(W )
=

n∑
i=1

(G(−λi)−Gr(−λi))W (−λi)W (λi) · φi

+

r∑
j=1

(Gr(−λ̂j)−G(−λ̂j))W (−λ̂j)W (λ̂j) · φ̂j (9)

+

p∑
k=1

(G(−γk)−Gr(−γk))W (−γk)(G(γk)−Gr(γk)) · ψk

One may recover the (unweighted) H2 error expression of [10] as a special case by taking W (s) = 1.
Notice that the weighted error depends on the mismatch of G and Gr at the reflected full system poles
{−λi}, reflected reduced poles {−λ̂j}, and reflected weight poles {−γk}.

2.4 An algorithm for the weighted-H2 model reduction problem: W-IRKA

In order to reduce the weighted error, one may eliminate some terms in the error expression, by forcing
interpolation at selected (mirrored) poles. Since r is required to be much smaller than n, there is not
enough degrees of freedom to force interpolation at all the terms in the first and second components of
the weighted-H2 error. However, the second-term, i.e. the mismatch at λ̂j can be completely eliminated

by enforcing G(−λ̂j) = Gr(−λ̂j) for j = 1, . . . , r. Hence, as in the unweighted H2 problem, the mirror
images of the reduced-order poles play a crucial role. This motivates an algorithm with iterative rational
Krylov steps to enforce the desired interpolation property as outlined in Algorithm 1 below. However,
a crucial difference from the unweighted H2 problem is that we will not enforce interpolation of G′(s)
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at these points; instead we will use the remaining r degrees of freedom to reflect the weight information
W (s) and also to eliminate terms from the first component of the error term. The error expression (6)
shows that the interpolation errors are multiplied by the residues φi and ψk. Hence, we use the remaining
r variables to eliminate the terms in the first and third components of the error expression corresponding
to the dominant residues φk and ψk. Note that in several cases, such as in the controller reduction
problem, the state-space dimension of the weight will be of the same as that of G; i.e. O(p) ≈ O(n).
We will measure dominance in a relative sense; in other words, normalized by the largest (in amplitude)
φk and ψk in every set. More details on this selection process can be found in Section 3 where several
examples are used to illustrate these concepts. Note that one never needs to compute a full eigenvalue
decomposition to obtain the residues of G(s) and W (s). Since only a small subset of poles is needed, one
could use, for example, the dominant pole algorithm proposed by Rommes [14] which computes effectively
eigenvalues corresponding to the dominant residues without requiring a full eigenvalue decomposition.

Algorithm 1. Weighted Iterative Rational Krylov Algorithm (W-IRKA)

Given realizations G(s) = cT (sE − A)−1b and W (s) = cTw(sEw − Aw)−1bw, reduction order
r = ν + $ with ν,$ ≥ 0, let {λi}νi=1 denote the ν dominant poles of G and {γk}$k=1 the $
dominant poles of W .

1. Make an initial interpolation point selection:
ζi = −λi for i = 1, . . . , ν, ζj+ν = −γj for j = 1, . . . , $; σk = ζk for k = 1, . . . , r;

2. Construct reduction bases, Vr and Wr, that satisfy (4).

3. Repeat, while (relative change in {σi} > tol)

(a) Ar = WT
r AVr and Er = WT

r EVr

(b) Assign σi ←− −λi(Ar,Er) for i = 1, . . . , r

(c) Update Vr so that Ran(Vr) = span
{

(σ1E−A)−1b, · · · , (σrE−A)−1b
}

.

4. Ar = WT
r AVr, Er = WT

r EVr, br = WT
r b, cTr = cTVr

Upon convergence of Algorithm 1, σi = −λi(Ar,Er); Gr interpolates G at these points, and the
second sum in (9) is eliminated. Wr is unchanged throughout, so Gr interpolates G at r (aggregated)
dominant poles of G and W , eliminating ν and $ terms from the first and third sums in (9), respectively.
Examples in Section 3 illustrate the effectiveness of this approach.

3 Numerical examples

We illustrate the performance of Algorithm 1 with three examples related to controller reduction. Φ(N)

and Ψ(N) denote the set of normalized residues of G(s) and W (s), respectively.

3.1 A building model

The plant P , a model for the Los Angeles University Hospital, has order 48; see [4] for details. An LQG-
based controller, G, of the same order, n = 48, is designed to dampen the oscillations in the impulse
response. The ten highest normalized residues of G(s) and of W (s) are:

Φ(N) = [ 1.0000 1.0000 0.0286 0.0286 0.0088 0.0088 0.0080 0.0080 0.0060 0.0060 ]T

Ψ(N) = [ 1.0000 1.0000 0.8416 0.8416 0.3935 0.3935 0.2646 0.2646 0.0951 0.0951]T

7



There is a significant drop in Φ(N) values after the second entry, so we take the first two residues of G
as dominant. Ψ(N) remains at roughly the same order until the 9th entry. Thus, we choose ν = 2; and
$ = r − ν = r − 2 for a given reduction order, r. To illustrate the effect of this dominant pole selection,
we apply W-IRKA, varying ν from 0 to r. Tables 1 below lists the resulting weighted-H2 errors for
three cases: r = 12, r = 14, and r = 16.

r = 12 :
ν/$ 12/0 10/2 8/4 6/6 4/8 2/10 0/12

‖G−Gr‖H2(W ) 1.4021 1.1433 0.6548 0.6863 0.3576 0.2181 0.2853

r = 14 :
ν/$ 14/0 12/2 10/4 8/6 6/8 4/10 2/12 0/14

‖G−Gr‖H2(W ) 1.4734 1.3436 0.6477 0.3019 0.1538 0.1425 0.1351 0.2224

r = 16 :
ν/$ 16/0 14/2 12/4 10/6 8/8 6/10 4/12 2/14 0/16

‖G−Gr‖H2(W ) 1.4206 1.1934 0.7258 0.2898 0.1917 0.1221 0.1154 0.1309 0.1388

Table 1: Weighted-H2 error as ν and $ vary

The weighted-H2 error decreases as we take more dominant poles of W (s) over those of G(s); suggest-
ing the importance of the residues of W (s) in the error expression 9. Choosing ν=2 is the best choice for
most cases. Tables 1 illustrate that while the weighted error initially decreases as ν decreases, it starts
increasing when ν < 2, justifying the choice ν = 2. For the case of r = 16, similar observations hold
Although ν = 2 is not the optimal choice when r = 16, the error for ν = 2 is nearly smallest, making
ν = 2 still a very good candidate for W-IRKA. These numerical results support the idea of choosing ν
and $ according to the decay of the normalized residues. Even though this choice seems to yield small
weighted errors, there may be variations that are even better. The residues are multiplied by quantities
such as W (−λi)W (λi), so one might consider incorporating these multiplied quantities as well.

A satisfactory reduced-order controller should not only approximate the full-order controller, but also
provide the same closed-loop behavior as the original controller. Let T and Tr denote the full-order and
reduced-order closed-loop systems, respectively: T corresponds to the feedback connection of P with G;
and Tr to the feedback connection of P with Gr. Figure 1-(a) depicts the amplitude Bode plots of G
and Gr for r = 14 obtained with ν = 2. Gr is an accurate match to G. Figure 1-(b) shows that the
reduced-closed loop behavior Tr almost exactly replicates T .
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Figure 1: Bode Plots (a) Full and reduced controller (b) Full and reduced closed-loop system

We now compare W-IRKA with Frequency Weighted Balanced Truncation (WFBT). We vary the
reduction order from r = 10 to r = 20 in increments of 2, and compute weighted H∞ and H2 errors for
each case. We use ν = 2 for all cases even though it might not the best choice for W-IRKA. Results
are listed in Table 2. Note that for every r value, W-IRKA outperforms FWBT with respect to the
weighted-H2 norm. This might be anticipated since W-IRKA is designed to reduce the H2 error. But
W-IRKA outperforms FWBT with respect to the weighted-H∞ norm as well in all except the r = 18
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case. This is significant since balanced truncation approaches generally yield small H∞ norms. This
behavior is similar to the behavior of IRKA for the (unweighted) H2 problem where one often observes
that IRKA consistently yields satisfactory H∞ approximants as well [10]. Note that for r = 10, the
reduced-order controller due to FWBT fails to produce a stable closed-loop system.

r 10 12 14 16 18 20
FWBT 2.1080 1.1723 0.1415 0.1386 0.1214 0.1310

W-IRKA 0.6677 0.2180 0.1351 0.1309 0.1028 0.0956
‖G−Gr‖H2(W )

10 12 14 16 18 20
1.409 0.5286 0.0723 0.0811 0.0498 0.0830
0.9175 0.1562 0.0723 0.0721 0.0722 0.0516

‖G−Gr‖H∞(W )

Table 2: Comparison of W-IRKA and FWBT

3.2 International Space Station 12A Module

The plant P is a model for the International Space Station 12A Module with dimension nP = 1412. It is
lightly damped and its impulse response exhibits long-lasting oscillations. A state-feedback, full-order,
observer-based controller of order n = nP = 1412 is designed to dampen these oscillations. Figures 2-(a)
and 2-(a) illustrate the impulse responses P and T , respectively. Notice that the controller dampens
oscillations significantly.
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Figure 2: (a) Impulse response of P (b) Impulse response of T (c) Decay of the normalized residues

The decay rate of the first 50 normalized residues Φ(k) and Ψ(k) are shown in Figure 2-(c). While
there is almost a two order-of-magnitude drop in Φ(k) between the third and fourth components, Ψ(k)

continues to stay significant. Hence, we take ν = 3 and reduce order from n = 1412 to r = 60 using
W-IRKA. For comparison, we also apply FBWT. We denote the resulting reduced-order closed-loop
systems due to W-IRKA and FWBT by Tr and Tfwbt, respectively. Note that Tfwbt was unstable for
r = 60. Indeed, r = 88 is the smallest order FWBT-derived reduced controller that lead to a stable
closed-system. All FWBT-derived Gr are stable; however for r < 88 when Gr is connected to P , the
resulting Tfwbt is unstable. Hence, we compare below the r = 60 case for W-IRKA with the r = 88 case
for FWBT.

In Figure 3-(a) we plot the impulse responses of T , Tr and Tfwbt. Tr almost exactly replicates T .
In Figure 3-(b), we plot the absolute value of the errors in the impulse responses due to both methods.
W-IRKA outperforms FWBT even with a lower-order controller. We also simulate both T and Tr
for a sinusoidal input of u(t) = cos(2t). Results shown in Figures 3-(c) and 3-(d) illustrate the superior
performance of W-IRKA even more clearly.
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Figure 3: Comparison of W-IRKA and FWBT using closed-loop system responses

3.3 Control of an Unstable Plant

In the previous two examples, the plant was stable and the goal was to dampen the oscillations in the
impulse response. In this example, we start with an unstable plant P of order nP = 2000. Hence, the
goal in this case is to stabilize the plant. An observer-based state-feedback controller of the same order,
n = 2000, has been designed to stabilize P . We note that the full-order controller G has 4 unstable poles.
Therefore, as stated in Section 1.2, we would like to obtain a reduced-order controller with the same
number of unstable poles. The general approach in the frequency weighted balanced truncation setting
would be to decompose the controller into stable and anti-stable parts, and to apply the reduction to the
stable part. However, obtaining such a decomposition requires a full eigendecomposition of the original
controller and and is numerically intractable in large-scale setting. To investigate the behavior of the
proposed approach in the setting of an unstable controller, we have applied W-IRKA to G without the
stable and anti-stable decomposition. The ten highest normalized residues are listed below:

Φ(N) = [ 1.0000 0.6705 0.0275 0.0275 0.0133 0.0111 0.0111 0.0091 0.0091 0.0089 ]T

Ψ(N) = [ 1.0000 1.0000 0.3767 0.3767 0.2570 0.2570 0.0154 0.0154 0.0004 0.0004 ]T

For reduction order r = 30, we choose ν = 2 in W-IRKA since there is an order of magnitude gap
between the second and third highest residues in Φ(N). The reduced-order controller Gr has exactly 4
unstable poles (like the full-order controller, G) and stabilizes P . Moreover, W-IRKA yields unstable
poles in Gr that are accurate approximations to the unstable poles of G; see (10) below. λuns and λ̂uns

denote the unstable poles of G(s) and Gr(s), respectively:

λuns = [ 1.2778× 101 3.9599× 10−1 2.5213× 10−2 ± 1.0482× 10−1 ı ]

λ̂
(r = 30)

uns = [ 1.2778× 101 3.9599× 10−1 2.5276× 10−2 ± 1.0487× 10−1 ı ]

(10)

We do not claim that W-IRKA will always retain the same number of unstable poles, nonetheless we
have observed this behavior in several examples where the unstable poles of the controller are farther away
from the imaginary axis than a significant number of the stable poles. Intuitively, this behavior is similar
to the one observed in eigenvalue computations using rational Krylov subspaces where outliers in the
spectrum are captured more quickly and accurately [5]. In this example, the controller had 1996 stable
poles and 4 unstable poles, the outliers in the spectrum. Typically, the rational Krylov subspaces Vr

captured eigenvectors associated with these outlying eigenvalues very rapidly and produced reduced-order
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Figure 4: Comparison of T and Tr: (a) Impulse responses (b) Sinusoidal responses

controllers with quite accurate replication of the original unstable poles. To investigate this further, we
decreased the reduction order to r = 25. W-IRKA again produced a stabilizing reduced-order controller
with 4 unstable poles:

λ̂
(r = 25)

uns = [ 1.2778× 101 3.9399× 10−1 2.7971× 10−2 ± 1.0558× 10−1 ı ]

Notice that the two unstable poles at 12.778 and 0.39399 (the two farthest from the imaginary axis) are
still captured very accurately. The remaining two poles, situated closer to the imaginary axis, show a
modest loss in accuracy. Note also that the original controller has two stable poles very close to the
imaginary axis at −7.0320× 10−2 ± 1.4035× 10−1ı.

In Figure 4, we show a comparison of the closed-loop responses of T (s) and Tr(s) to a unit pulse,
u(t) = δ(t), and to a sinusoid, u(t) = cos(4t). The reduced closed-loop behavior almost exactly replicates
the full-order behavior.

4 Conclusions

We presented new formulae for the weighted-H2 inner product and the weighted-H2 norm that explicitly
reveals the contribution of the poles and residues of the full-order model and of the weight. One of the
major consequences of this new representation is the interpolatory optimality conditions for the weighted-
H2 approximation. Moreover, we introduced a heuristic method to produce high-fidelity weighted-H2

reduced models. The effectiveness of the proposed method has been illustrated via several examples.
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