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Abstract

We introduce a new method for computing eigenvalues of the Maxwell opera-
tor with boundary finite elements. On bounded domains with piecewise con-
stant material coefficients, the Maxwell solution for fixed wave number can
be represented by boundary integrals, which allows to reduce the eigenvalue
problem to a nonlinear problem for determining the wave number along with
boundary and interface traces. A Galerkin discretization yields a smooth
nonlinear matrix eigenvalue problem which is solved by Newton’s method or,
alternatively, the contour integral method. Several numerical results includ-
ing an application to the band structure computation of a photonic crystal
illustrate the efficiency of this approach.

1. Introduction

The boundary element method is a well established discretization for in-
definite Helmholtz problems which allows to reduce volume computations to
surface computations. This is a severe reduction of degrees of freedom. On
the other hand, the resulting Galerkin matrices are dense (if no reduction
technique is applied) and the assembling requires the integration of strongly
singular functions. Thus, it is quite challenging to realize this method effi-
ciently.

In principle, the boundary element method applies to a broad class of
linear operators with constant coefficients, as long as a fundamental solution
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is available. For Maxwell’s equations the fundamental solution, a representa-
tion formula, and a corresponding boundary integral equation is well-known
and for smooth boundaries classical techniques can be used. Nevertheless,
a weak formulation for Lipschitz domains requires a careful analysis of the
underlying trace spaces, and the full analysis of a Galerkin boundary element
method is quite involved (see [4] for an overview).

Eigenvalues of the Maxwell operator are wave numbers for which a non-
trivial solution for the problem with homogeneous right-hand side exists.
This results into a nonlinear (in fact holomorphic) eigenvalue problem. The
boundary element approach for the computation of eigenvalues was recently
proposed for the Helmholtz case by Steinbach and Unger [15, 16, 17] using
a Newton method. Based on the theory of holomorphic operator functions,
they provide a full convergence analysis which shows cubic convergence for
lowest order boundary element discretizations.

Alternatively, the contour integral method can be applied to compute
directly all eigenvalues within a prescribed complex set. Following the al-
gorithmic approach proposed in [1], the resolvent and its first moment are
integrated numerically along a smooth closed curve in the complex plane.
This allows to recover the singular points of the resolvent via the residual
formula.

Both methods are applied to the Maxwell problem in a single domain.
For the application to coupled problems with different coefficients in every
subdomain, we transfer the coupling method proposed by Langer et. al.
in [11] to the Maxwell system. For this purpose the two equations in the
Calderon projection for each subdomain together with the interface condi-
tions are combined to a self-adjoint problem for the Dirichlet and Neumann
traces on the interfaces. In discrete form, this leads again to a nonlinear
matrix eigenvalue problem.

The paper is organized as follows. We start with a review on the bound-
ary element method for Maxwell’s equations in bounded domains with con-
stant coefficients and fixed wave number. Then, a domain decomposition
formulation is introduced. Next, we consider the eigenvalue problem as a
nonlinear equation to find wave numbers which allow for nontrivial homoge-
neous solutions. Finally, this is transferred to piecewise constant coefficients
via domain decomposition. For all problems we present numerical results,
where—for comparison—the eigenvalues are also computed with a standard
finite element approach.
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2. The Maxwell boundary value problem

We start with a review on Maxwell’s equations, and then we define the
appropriate function spaces for a weak boundary integral setting summariz-
ing the results from [5, 6, 3, 2], where we mainly follow the overview given
by Buffa and Hiptmair in [4].

2.1. Maxwell’s equations in linear isotropic materials

Let Ω ⊂ R3 be a bounded Lipschitz domain with piecewise smooth bound-
ary Γ = ∂Ω. We consider Maxwell’s equations in linear isotropic materials:
determine the magnetic field H and the electric field E such that

µ∂tH +∇× E = 0 , ε∂tE−∇×H = 0 ,

∇ · E = 0 , ∇ ·H = 0 ,

where we assume constant permittivity ε > 0 and permeability µ > 0. Special
solutions of this equation can be obtained by the ansatz for monochromatic
waves E(t, x) = exp(−iωt)u(x) with frequency ω, which yields

∇× (∇× u)− k2u = 0 and ∇ · u = 0 (1)

with the wave number k = ω
√
εµ. If k2 is not an eigenvalue of the homoge-

neous Dirichlet problem with n× u = 0 on Γ, the solution of (1) is uniquely
determined by Dirichlet values

n× u = f on Γ .

On the other hand, if k2 is not an eigenvalue of the homogeneous Neumann
problem with n × (∇ × u) = 0 on Γ, a unique solution of (1) for given
Neumann values

n× (∇× u) = g on Γ

exists. Since we consider the case that the boundary Γ is only piecewise
smooth, the boundary conditions hold—even for smooth solutions—only al-
most everywhere on Γ.

The main observation for the boundary integral formulation is that the
solution u of the Maxwell problem (1) can be reconstructed if both boundary
data—the Dirichlet values f and the Neumann values g—are known.
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2.2. The representation formula for Maxwell’s equations

The starting point to derive the representation formula is the fundamental
solution for the Helmholtz equation

Ek(x, y) =
exp(ik|x− y|)

4π|x− y|

satisfying −(∆x + k2)Ek(x, y) = δ(x − y) in distributional sense. Then,

we find that Gk(x, y) = Ek(x, y)I + k−2∇x

(
∇yEk(x, y)

)T
is a fundamental

solution for Maxwell’s equations. Since the fundamental solution is complex,
all function spaces in this section will be complex-valued. Nevertheless, in
many cases the actual computation can be reduced to the real part.

Integrating the fundamental solutionEk along the boundary Γ with bound-
ary data v defines the single-layer potential

Ṽk(v)(x) =

∫
Γ

Ek(x, y)v(y) dsy x ∈ Ω ,

and we observe that Ṽk(v) solves the homogeneous Helmholtz problem in Ω.
The corresponding vectorial single-layer potential for given boundary data
v = (v1, v2, v3) is denoted by Ṽk(v) =

(
Ṽk(v1), Ṽk(v2), Ṽk(v3)

)
.

In the same way we obtain the Maxwell single-layer potential by integrat-
ing the fundamental solution Gk along the boundary

Ψk
SL(v)(x) = −

∫
Γ

Gk(x, y)v(y) dsy

= −Ṽk(v)(x)− 1

k2
∇xṼk(divΓ v)(x)

= −
∫

Γ

Ek(x, y)v(y) dsy −
1

k2
∇x

∫
Γ

Ek(x, y) divΓ(v(y)) dsy

(observe the sign convention), and the Maxwell double-layer potential

Ψk
DL(w)(x) = −∇x × Ṽk(w)(x) = −∇x ×

∫
Γ

Ek(x, y)w(y) dsy , x ∈ Ω

where v,w are tangential boundary data with v · n = w · n = 0 and where
divΓ is the adjoint to the surface gradient for tangential vector fields on Γ.
Again, by construction the potentials Ψk

SL(v) and Ψk
DL(w) are solutions of
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the homogeneous Maxwell’s equations (1). For smooth solutions u, using
Green’s first and second formulae, the representation formula

u(x) = Ψk
SL(n× (∇× u))(x) + Ψk

DL(n× u)(x) x ∈ Ω , (2)

can be derived, cf. [9, Sect. 6.2] and [4, Sect. 4].

2.3. Trace operators and function spaces

Let Γ be composed of smooth manifolds Γj with exterior normals nj such
that Γ =

⋃
j Γj and Γj ∩ Γm = ∅, j 6= m. Dirichlet and Neumann trace

operators are defined for smooth vector fields v in Ω and x ∈ Γj by

γt(v)(x) = lim
x̃∈Ω→x∈Γj

nj(x)× v(x̃) , γkN(v)(x) =
1

k
γt(∇× v)(x) .

Note that we include the dependence of k in the Neumann trace only to
obtain symmetry in the Calderon operator below.

Let ejm = ∂Γj ∩ ∂Γm be a boundary edge with a tangent tjm, and let
n∂Γj

∈ affine(Γj) be the tangential normal along ∂Γj, i.e., n∂Γj
= nj × tjm

on the edge ejm. From the identity

γt(v)|Γ̄j
· n∂Γj

= (nj × v|Γ̄j
) · (nj × tjm) = tjm · v|Γ̄j

on ejm (3)

we obtain for smooth vector fields v and functions w∑
j

∫
∂Γj

γt(v)|Γ̄j
· n∂Γj

w dl =
∑
j 6=m

∫
ejm

tjm · v|Γ̄j
w dl = 0 (4)

since tjm = −tmj. For smooth functions w in Ω̄, we define a.e. the tangential
gradient ∇Γw = ∇w − (n · ∇w)n ∈ L∞t (Γ) := {h ∈ L∞(Γ) : h · n = 0} on
the boundary. Then, Green’s formula in Ω, Gauss formula on Γj, and the
identity (4) together yield∫

Ω

∇× v · ∇w dx =

∫
∂Ω

(n× v) · ∇w ds =
∑
j

∫
Γj

γt(v) · ∇Γw ds

=
∑
j

(∫
∂Γj

γt(v)|Γ̄j
· n∂Γj

w dl −
∫

Γj

divΓ γt(v)w ds

)

= −
∫

Γ

divΓ γt(v)w ds . (5)
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Now, we extend these definitions from smooth functions to distributions. For
v ∈ H(curl,Ω) the weak Dirichlet trace operator γt(v) ∈ H−1/2(Γ) is defined
by〈

γt(v),w|Γ
〉

=

∫
Ω

∇× v ·w dx−
∫

Ω

v · ∇ ×w dx , w ∈ C∞(Ω) . (6)

Then, extending the equation (5) to v ∈ H(curl,Ω) shows that in distribu-
tional sense divΓ γt(v) ∈ H−1/2(Γ) is defined by

〈
divΓ γt(v), w|Γ

〉
= −

∫
Ω

∇× v · ∇w dx , w ∈ C∞(Ω) .

In particular, this gives for the trace space

W−1/2(Γ) = γt
(
H(curl,Ω)

)
⊂ H−1/2(Γ)

that divΓ W−1/2(Γ) ⊂ H−1/2(Γ) is well-defined. This property indeed charac-
terizes the trace space, i.e., W−1/2(Γ) = {v ∈ H−1/2(Γ) : divΓ v ∈ H−1/2(Γ)
and v · n = 0}, cf. [3].

Finally, we define the anti-linear pairing

〈v,w〉τ,Γ =

∫
Γ

(v × n) ·w ds , v,w ∈ L2
t(Γ) , (7)

and we observe again from Green’s first formula that this pairing extends to
v ∈ H(curl2,Ω) and w ∈ H(curl,Ω) by

〈
γkN(v), γt(w)

〉
τ,Γ

=
1

k

∫
Ω

(
∇×∇× v ·w −∇× v · ∇ ×w

)
dx .

2.4. Boundary integral operators

For smooth functions v in Ω we define the Dirichlet and Neumann traces
for x ∈ Γj by

γ0(v)(x) = lim
x̃∈Ω→x∈Γj

v(x̃) , γ1(v)(x) = lim
x̃∈Ω→x∈Γj

∇v(x̃) · n(x) .

The single-layer potential operator Ṽk is well-defined from H−1/2(Γ) to H1(Ω)
[14, Sect. 6.9]. This shows that the potential operators Ψk

SL and Ψk
DL are

also well-defined on W−1/2(Γ) [4, Thm. 5]. For v ∈ W−1/2(Γ) we have
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γt(Ψ
k
SL(v)), γt(Ψ

k
DL(v)) ∈W−1/2(Γ) [4, Thm. 5 and Cor. 2], which allows to

define the boundary operators Sk and Ck

Sk =γtΨ
k
SL : W−1/2(Γ)→W−1/2(Γ) ,

1

2
I + Ck =γtΨ

k
DL : W−1/2(Γ)→W−1/2(Γ) .

The definition of the operator Ck includes the jump relation, which is the
Maxwell counterpart of the jump relation for the single-layer potential oper-
ator Ṽk and the adjoint double-layer boundary operator

γ1

(
Ṽk(v)

)
(x) =

1

2
v(x) + p.v.

∫
Γ

γ1,x

(
Ek(x, y)

)
v(y) dsy (8)

for a.a. x ∈ Γ [14, Lem. 6.8]. Finally, note that we have the identities

γtΨ
k
SL = γkNΨk

DL and γtΨ
k
DL = γkNΨk

SL (9)

[4, Sect.4], so we just need to consider the Dirichlet trace.
For the explicit evaluation of the boundary operators we use the following

lemma, where we sketch the proof for convenience of the reader [4, Sect. 5].

Lemma 1. For v,w ∈ L∞t (Γ) with divΓ v, divΓ w ∈ L∞(Γ) we have〈
Sk(v),w

〉
τ,Γ

=

∫
Γ

∫
Γ

(1

k
divΓ v(y) divΓ w(x)− kv(y) ·w(x)

)
Ek(x, y) dsydsx ,〈

Ck(w),v
〉
τ,Γ

= −
∫

Γ

∫
Γ

∇xEk(x, y) ·
(
w(y)× v(x)

)
dsydsx .

Proof. For smooth vector fields v, the definition of the potential Ψk
SL and

the tangential trace yields for a.a. x ∈ Γ

Sk(v)(x) =− k
∫

Γ

n(x)× (Ek(x, y)v(y)) dsy

− 1

k
p.v.

∫
Γ

n(x)×∇x

(
divΓ(v(y))Ek(x, y)

)
dsy .

Now, inserting (7), the vector identity (n×(w×n)) ·v = w ·v−(n ·w)(n ·v)
and integration by parts yields the first assertion. The definition of Ck and
the jump relation (8) directly yields for a.a. x ∈ Γ

Ck(w)(x) =− p.v.

∫
Γ

n(x)×∇x ×
(
Ek(x, y)w(y)

)
dsy .

Inserting (7) and the vector identity above gives the assertion.
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2.5. The weak formulation of the Maxwell boundary value problem

The Calderon operator C : W−1/2(Γ)×W−1/2(Γ)→W−1/2(Γ)×W−1/2(Γ)
is given by

C :=

(
1
2
I + Ck Sk

Sk
1
2
I + Ck

)
=

(
γtΨ

k
DL γtΨ

k
SL

γtΨ
k
SL γtΨ

k
DL

)
,

and from the representation formula (2) and the identity (9) we obtain

C
(

γt(v)
γkN(v)

)
=

(
γt(v)
γkN(v)

)
, v ∈ H(curl2,Ω) .

This yields the boundary integral equations for the Dirichlet and Neumann
problems. E.g., for given Dirichlet data f ∈ W−1/2(Γ), the Neumann data
σ = γkN(u) ∈W−1/2(Γ) is determined by the equation

Sk(σ) =

(
1

2
I−Ck

)
(f) . (10)

Existence and uniqueness of the solution (if k2 is not an eigenvalue) is estab-
lished in [4, Sect. 6].

3. The boundary element method for Maxwell’s equations

The boundary element method is a Galerkin method for the variational
formulation of the integral equation. For the Dirichlet problem (10) this
reads as follows: find σ ∈W−1/2(Γ) such that〈

Sk(σ),χ
〉
τ,Γ

=
〈

1
2
f −Ck(f),χ

〉
τ,Γ
, χ ∈W−1/2(Γ) .

For a given subspace W
−1/2
h (Γ) ⊂W−1/2(Γ) find σh ∈W

−1/2
h (Γ) such that〈

Sk(σh),χh
〉
τ,Γ

=
〈

1
2
f −Ck(f),χh

〉
τ,Γ
, χh ∈W

−1/2
h (Γ) .

Introducing a numbering of the boundary element basis Φ1, ...,ΦN we obtain
the stiffness matrix and the right-hand side (using Lem. 1 for the evaluation
of the integral operators)

A(k) ≈
(〈

Sk(Φn),Φm

〉
τ,Γ

)
n,m=1,...,N

, b(k) ≈
(〈

1
2
f −Ck(f),Φn

〉
τ,Γ

)
n=1,...,N

,
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where we compute all singular integrals approximately with the transforma-
tion technique in [13, Chap. 5]. Then, if ξ ∈ CN solves A(k)ξ = b(k), the
boundary element solution is given by σh =

∑
n ξnΦn. Note that for real

data all computations can be restricted to the real part.
If k2 is not an eigenvalue of the continuous problem, a mesh size h0 exists

such that for h < h0 the finite element matrix A(k) is regular [4, Sect. 9].

3.1. A boundary element discretization

We assume that Γ is a polygonal boundary, and let Γh be a triangulation
into triangles Γj. Moreover, let Ωh be a tetrahedral mesh with boundary Γh,
and let Eh be the edges of the boundary triangulation.

Let Γ̂ be the reference triangle. The Raviart-Thomas elements (Γ̂,PΓ̂,ΣΓ̂)

of degree l use the polynomial ansatz space PΓ̂ := P2
l ⊕ P̃lx. Here, we only

consider the lowest order case l = 0. Then, the degrees of freedom are the
functionals Φ̂′ê ∈ ΣΓ̂ ⊂ P′

Γ̂
defined by the flux across the edges

〈Φ̂′ê, v̂〉 =

∫
ê

v̂ · n̂ê dl̂ , v̂ ∈ PΓ̂ ,

where ê ⊂ ∂Γ̂ is an edge with normal n̂ê. Let Φ̂ê ∈ PΓ̂ be the associated

basis function, i.e., 〈Φ̂′ê, Φ̂ê〉 = 1 and 〈Φ̂′ê, Φ̂ê′〉 = 0 for ê 6= ê′, see Tab. 1.

edge ê conv{ẑ0, ẑ1} conv{ẑ1, ẑ2} conv{ẑ2, ẑ0}

basis function Φ̂ê(ξ, η) (ξ, η − 1) (ξ, η) (ξ − 1, η)

d̂ivΦ̂ê 2 2 2

Table 1: Basis functions for lowest order Raviart-Thomas elements on the
reference triangle Γ̂ = conv{ẑ0 = (0, 0), ẑ1 = (1, 0), ẑ2 = (0, 1)}.

Let ϕj : Γ̂ −→ Γj be the linear affine transformation onto a boundary tri-
angle Γj, and let Fj = Dϕj be the Jacobian and Gj = F T

j Fj be the associated
Gram’s matrix. Let ê = conv{ẑm, ẑn} be an edge with unit tangent vector

t̂ê = 1
|ẑm−ẑn|(ẑm − ẑn) and outer normal n̂ê on ∂Γ̂. This defines for the edge

e = ϕj(ê) ⊂ ∂Γj the normalized tangent vector te = 1
|Fj t̂ê|

Fj t̂ê. Now, from

t̂ê · n̂ê = (Fj t̂ê)
TF−Tj n̂ê = 0 we observe that ne = sign(e)

|F−T
j n̂ê|

F−Tj n̂ê ∈ affine(Γj)

is the tangential normal vector. Here, the direction of the tangential normal
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at e = ∂Γj ∩ ∂Γm depends on the orientation, where we choose sign(e) = 1 if
j < m and −1 else.

For the construction of the discrete space W
−1/2
h (Γ) we define the degrees

of freedom by

〈Φ′e,v〉 =

∫
e

v · ne dl , v ∈ PΓj
.

We obtain by direct calculus

|Fj t̂ê|2 = | det(Fj)F
−T
j n̂ê|2 = det(Gj) |FjG−1

j n̂ê|2 ,

which gives |Fj t̂ê|ne = sign(e)
√

det(Gj)FjG
−1
j n̂ê and preserves normal com-

ponents up to scaling by the evaluation

〈Φ′e,v〉 =

∫
ê

(v ◦ ϕj) · ne|Fj t̂ê| dl̂

= sign(e)

∫
ê

(v ◦ ϕj) · (
√

det(Gj)FjG
−1
j n̂ê) dl̂

= sign(e)

∫
ê

(
√

det(Gj)G
−1
j F T

j v ◦ ϕj) · n̂ê dl̂ .

Thus, the boundary element basis function Φe defined by duality to the
degrees of freedom satisfies sign(e)

√
det(Gj)G

−1
j F T

j Φe ◦ ϕj = Φ̂ê, i.e.,

Φe ◦ ϕj = sign(e)

(√
det(Gj)

)−1

FjΦ̂ê .

Moreover, since div PΓ̂ ∈ P0, we obtain from∫
Γ̂

(divΓ Φe ◦ ϕj)
√

det(Gj) dŝ =

∫
Γj

divΓ Φe ds =
∑
e∈Γj

∫
e

Φe · ne dl

=
∑
ê∈Γ̂

∫
ê

Φ̂ê · n̂ê dl̂ =

∫
Γ̂

d̂ivΓ̂Φ̂ê dŝ

the explicit relation

divΓ Φe ◦ ϕj =

(√
det(Gj)

)−1

d̂ivΓ̂Φ̂ê .
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Together, this defines the Raviart-Thomas boundary element space by

W
−1/2
h (Γ) = span

{
Φe : e ∈ Eh

}
=

{
v ∈W−1/2(Γ) : G−1

j F T
j v ◦ ϕj ∈ PΓ̂ for all j

}
.

Alternatively, using the identity (3), one can characterize W
−1/2
h (Γ) = γt(Vh(Ω))

as the trace of the lowest order Nédélec space Vh(Ω) ⊂ H(curl,Ω).

3.2. A numerical test for the boundary value problem

The matrix A(k) and the vector b(k) are assembled in parallel in the finite
element code M++ [19, 18], and the resulting equation is solved by a direct
solver for dense matrices. We test the method for the unit cube Ω = (0, 1)3

with k = 1 and given solution

u(x) =

 x2 cos(x3) + x3 cos(x2)

x1 cos(x3) + x3 cos(x1)

x1 cos(x2) + x2 cos(x1)

 (11)

by prescribing the corresponding boundary data for the Dirichlet and the
Neumann case, respectively.

We use a sequence of meshes obtained by regular refinement with mesh
size hm = 2−mh0 and number of degrees of freedom Nm = dimW

−1/2
hm

(Γ).
The boundary element solution of the Dirichlet problem on refinement level
m is denoted by σm ∈ W−1/2

hm
(Γ) and the solution of the Neumann problem

by ϕm ∈ W
−1/2
hm

(Γ). The error σm − γkN(u) and ϕm − γt(u), respectively, is
measured in L2

t(Γ), and the convergence rate is estimated by the logarithmic

reduction factors ηD
m = log2

‖σm−1 − γkN(u)‖
‖σm − γkN(u)‖

and ηN
m = log2

‖ϕm−1 − γt(u)‖
‖ϕm − γt(u)‖

.

The results for level m = 0, ..., 4 are presented in Tab. 2. One clearly observes
linear convergence for the lowest order Raviart-Thomas elements in both
cases, which is the expected rate predicted by the a priori analysis in [4,
Sect. 9].
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m Nm ‖σm − γkN(u)‖ ηD
m ‖ϕm − γt(u)‖ ηN

m

0 36 0.52560 0.69761
1.01484 1.33217

1 144 0.26011 0.27707
0.99884 1.06230

2 576 0.13016 0.13268
1.00711 1.03188

3 2 304 0.06476 0.06489
1.00580 1.01452

4 9 216 0.03225 0.03212

Table 2: Convergence of the boundary element method for the Maxwell
Dirichlet problem (left) and the Maxwell Neumann problem (right).

4. A domain decomposition method

The coupling of different materials can be realized by a domain decom-
position approach, where in every subdomain the boundary element method
is used and the full problem arises from suitable interface conditions.

Let Ω =
⋃P
p=1 Ωp be a decomposition into open and non-overlapping

subdomains Ωp with constant permittivity εp and permeability µp, and we
set βp =

√
εp/µp. Let Γ = ∂Ω, Γp = ∂Ωp, Γpq = Γp∩Γq, and let ΓI =

⋃
p<q Γpq

be the skeleton of inner boundaries. Set ΓS = ΓI
⋃

Γ.
Again, we aim for monochromatic solutions with fixed frequency ω. This

corresponds to the wave number kp = ω
√
εpµp on Ωp. We consider Maxwell’s

equations for up

∇×∇× up − k2
pu

p = ~0 and ∇ · up = 0 (12)

in the subdomains Ωp, the conditions

γpt (up) + γqt (uq) = 0 (13a)

βpγ
kp,p
N (up) + βqγ

kq ,q
N (uq) = 0 (13b)

on the interfaces Γpq, and the Dirichlet boundary condition on the boundary Γ

γt(u) = f . (14)

For ϕp = γpt (up) and σp = γ
kp,p
N (up) the Calderon projection yields(

ϕp

σp

)
=

(
1
2
I + CΓp

kp SΓp

kp

SΓp

kp
1
2
I + CΓp

kp

)(
ϕp

σp

)
. (15)
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4.1. The boundary integral formulation the interface problem

Here we transfer the method proposed in [11] to the Maxwell system. For
given Dirichlet data on Γ = ∂Ω, we have to compute the Dirichlet trace on
the skeleton ϕ = (ϕpq)p<q ∈ W−1/2(ΓI) =

∏
p<q W−1/2(Γpq) and in every

subdomain the Neumann trance σ = (σp) ∈
∏

p W−1/2(Γp). We define ϕp

by ϕp|Γpq = ϕpq for p < q, ϕp|Γpq = −ϕpq for p > q, and ϕp|Γ = 0, and we
extend the Dirichlet boundary data f to the skeleton by f |ΓI

= 0.
On the inner skeleton ΓI , the interface conditions (13a) are fulfilled by

construction. From the first equation in (15) we obtain〈(
1
2
I−C

Γp

kp

)
(ϕp), τ p

〉
τ,Γp

+
〈
S

Γp

kp (σp), τ p
〉
τ,Γp

= −
〈(

1
2
I−C

Γp

kp

)
(f), τ p

〉
τ,Γp

for all τ p ∈ W−1/2(Γp), and signp = 1 if ϕp = ϕ and −1 else. On the
interface ΓI , the second equation in (15) together with (13b) yields for all
χ = (χpq)p<q ∈W−1/2(ΓI)∑

p<q

(〈(
βpS

Γp

kp − βqS
Γq

kq

)
(ϕpq),χpq

〉
τ,Γpq

+
〈
βp
(

1
2
I + C

Γp

kp

)
(σp) + βq

(
1
2
I + C

Γq

kq

)
(σq),χpq

〉
τ,Γpq

)
= −

∑
p<q

〈(
βpS

Γp

kp + βqS
Γq

kq

)
(f),χpq

〉
τ,Γpq

.

Together, this defines a bilinear form a(·, ·) and a right-hand side `(·) so that
the interface problem has the form

a
(
(ϕ,σ), (χ, τ )

)
= `((χ, τ )) , (χ, τ ) ∈W−1/2(ΓI)×

∏
p

W−1/2(Γp) .

Correspondingly, the discrete interface problem aims to find a boundary el-
ement solution (ϕh,σh) ∈W

−1/2
h (ΓI)×

∏
p W

−1/2
h (Γp) of

a
(
(ϕh,σh), (χh, τ h)

)
= `((χh, τ h)) , (χh, τ h) ∈W

−1/2
h (ΓI)×

∏
p

W
−1/2
h (Γp) .

Analogously to [11] it can be shown that the bilinear form (with a suitable
scaling) is Hermitian, and a unique solution exists if ω is not an eigenfre-
quency.
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4.2. A numerical test for Maxwell’s interface problem

We test the domain decomposition method for a simple configuration
with two subdomains with Ω1 = (1/3, 2/3)3 and Ω2 = (0, 1)3 \ Ω1, i.e.,
ΓI = Γ12. For simplicity, we use k = 1, ε1 = ε2 = 1, µ1 = µ2 = 1 and
the solution (11). For given Dirichlet data on Γ, we have to compute the
Dirichlet trace ϕIh = ϕ12

h ∈ W−1/2(ΓI) on the interface and the Neumann

traces (σ1
h,σ

2
h) ∈W

−1/2
h (Γ1)×W

−1/2
h (Γ2) on the subdomain boundaries.

A sequence of meshes with mesh size hm = 2−mh0 is obtained by regular
refinement. Let Nm = dim W

−1/2
hm

(ΓI) + dim W
−1/2
hm

(Γ1) + dim W
−1/2
hm

(Γ2).
The results in Tab. 3 clearly show linear convergence as expected, the solution
is illustrated in Fig. 1.

m Nm ‖σ2
m − σ2‖ ηN2

m ‖ϕIm −ϕI‖ ηD2

m ‖σ1
m − σ1‖ ηN1

m

0 432 0.17426 0.04834 0.01998
1.01732 0.94266 0.97850

1 1 728 0.08609 0.02515 0.01014
1.01330 0.98800 1.02006

2 6 912 0.04265 0.01268 0.00500

Table 3: Convergence and logarithmic reduction factor for the Maxwell in-
terface problem with Dirichlet boundary condition.

Neumann trace σ2
2 Dirichlet trace ϕI2 Neumann trace σ2

2

Figure 1: An interface problem for Maxwell’s equations with two subdomains.

5. The Maxwell eigenvalue problem

Following the idea proposed by Steinbach and Unger in [15, 17], the
boundary element method can be extended to a solution method for the

14



Maxwell eigenvalue problem: find a non-trivial solution pair (u, k) of the
homogeneous Maxwell system, i.e.,

∇×∇× u + k2u(x) =0 ∀x ∈ Ω , (16a)

∇ · u(x) =0 ∀x ∈ Ω , (16b)

u(x)× n =0 ∀x ∈ Γ . (16c)

In order to obtain a unique solution, a suitable normalization of the eigen-
function u is required.

In terms of boundary integral equations, the Neumann trace σ = γkN(u)
of an eigenpair (u, k) solving (16) yields a solution (σ, k) of the nonlinear
problem Sk(σ) = 0. This corresponds to the variational problem to find
(σ, k) ∈W−1/2(Γ)× R+ with σ 6= 0 satisfying

〈Sk(σ),χ〉τ,Γ = 0 ∀χ ∈W−1/2(Γ) .

The Galerkin discretization is to find (σh, kh) ∈W
−1/2
h (Γ)×R+ with σh 6= 0

such that

〈Skh(σh),χh〉τ,Γ = 0 ∀χh ∈W
−1/2
h (Γ) . (17)

Since S(k) = Sk : Λ ⊂ C→ L(W−1/2(Γ),W−1/2(Γ)) is holomorphic and sat-
isfies a generalized Garding inequality, the eigenvalue convergence analysis in
[16, 17, Chap. 4] applies, and the results for the Helmholtz case [17, Chap. 5]
transfer to the Maxwell problem. Thus, on uniform meshes we can expect
cubic convergence for the approximation of isolated eigenvalues.

5.1. Newton’s Method

The matrix realization of (17) together with a normalization yields the
Euclidean formulation to find (ξ, kh) ∈ CN × R such that

A(kh)ξ = 0 ,

ξ̂Hξ − 1 = 0 ,

where a suitable fixed vector ξ̂ ∈ CN is a priori chosen. Newton’s method
starts with some initial guess (ξ0, k0) ∈ CN ×R. Then, for n = 0, 1, 2, ..., the
next iterate (ξn+1, kn+1) ∈ CN × R is computed by

A(kn)(ξn+1 − ξn) + (kn+1 − kn)JA(kn)ξn = −A(kn)ξn , (18a)

ξ̂H(ξn+1 − ξn) = −ξ̂Hξn + 1 , (18b)
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where the matrix JA(k) = lim
δ→0

1
δ

(
A(k + δ) − A(k)

)
is the derivative of A(·)

with respect to k. Again, this matrix can be assembled from the boundary
integral representation of ∂kSk derived from the expression in Lem. 1

〈
∂kSk(v),w

〉
τ,Γ

=

∫
Γ

∫
Γ

((1

k
divΓ v(y) divΓ w(x)− kv(y) ·w(x)

)
∂kEk(x, y)

−
( 1

k2
divΓ v(y) divΓ w(x) + v(y) ·w(x)

)
Ek(x, y)

)
dsydsx .

Note that the Newton convergence depends extremely sensitive on the start-
ing iterate, so that global convergence or the convergence to a specific eigen-
value requires additional effort.

5.2. The contour integral method

The contour integral method allows to compute all eigenvalues in a pre-
scribed subset of C. It is based on the observation that A(k) extends to a
holomorphic matrix function A : C −→ CN×N with isolated singular points
λ ∈ C. Thus, the matrix function A(z)−1 is meromorphic. Now, fix D ⊂ C
such that A(z)−1 is regular for z ∈ ∂D, and assume that λ1, ..., λn are the
eigenvalues in D with normalized eigenvectors ξj ∈ CN , i.e., A(λj)ξj = 0 and
ξHj ξj = 1. If all eigenvalues λj are simple, the matrix function A(z)−1 admits
a representation

A(z)−1 =
n∑
j=1

1

z − λj
ξjξ

H
j +B(z) ,

where B(z) is a holomorphic matrix function in D [1, Thm. 2.4]. The residual
theorem yields for the contour integral matrices

A0 :=
1

2πi

∫
∂D

A(z)−1R dz =
n∑
j=1

ξjξ
H
j R ,

A1 :=
1

2πi

∫
∂D

zA(z)−1R dz =
n∑
j=1

λjξjξ
H
j R ,

where R ∈ CN×n are suitable (random) test matrices such that A0 and A1

have full rank. By construction we have A1A
+
0 =

∑n
j=1 λjξjξ

H
j ∈ CN×N ,
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since the pseudo-inverse of A+
0 is of the form A+

0 =
∑n

j=1 R
+ξjξ

H
j with R+ ∈

Cn×N satisfying R+R = In. Moreover, we have for the spectrum σ(A1A
+
0 ) =

σ(A+
0 A1) ∪ {0}, which shows that λ1, ..., λn are the eigenvalues of the small

matrix A+
0 A1 ∈ Cn×n.

For simply connected D and a parametrization ϕ : [0, 2π] −→ ∂D with
ϕ(0) = ϕ(2π) we compute approximations

A0,M =
1

iM

M−1∑
m=0

ϕ′(tm)A(ϕ(tm))−1R , (19a)

A1,M =
1

iM

M−1∑
m=0

ϕ(tm)ϕ′(tm)A(ϕ(tm))−1R (19b)

with equidistant steps tm = m/M . Then, the approximated eigenvalues λj
can be recovered from A+

0,MA1,M ∈ Cn×n, where the pseudo-inverse can be
computed via a singular value decomposition of A0,M . For more details on
the convergence of the method, the case of multiple eigenvalues, and the case
of arbitrary dimensions of the test matrix R we refer to [1, Sect. 3.3].

5.3. Numerical results for Maxwell’s eigenvalue problem in one domain

A test example. Again, we start with a simple test in Ω = (0, 1)3 with
ε = µ = 1, where the eigenvalues k = π

√
κ2

1 + κ2
2 + κ2

3 with κj ∈ N0 and
eigenfunctions

uk =

 a1 cos(κ1πx1) sin(κ2πx2) sin(κ3πx3)

a2 sin(κ1πx1) cos(κ2πx2) sin(κ3πx3)

a3 sin(κ1πx1) sin(κ2πx2) cos(κ3πx3)

 (20)

with a1κ1 + a2κ2 + a3κ3 = 0 are known explicitly. We use the same dis-
cretization as in Sect. 3.2. The eigenvalue convergence with respect to the

mesh size is estimated by ηm = log2

|km−1 − k|
|km − k|

, where the eigenvalues of the

discrete problem on level m are denoted by km (see Fig. 2 for the Neumann
trace of the eigenfunctions).
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Figure 2: Neumann trace σh of the eigenfunctions for the first and second
eigenvalue of the problem (17) in the unit cube.

Results for the Newton iteration are presented in Tab. 5 and for the
contour integral method in Tab. 6. Both methods approximate k by km on
level m.

κ = (1, 1, 0) κ = (1, 1, 1)

m Nm km ηm km ηm

1 144 4.396130 5.319289
3.4003 3.5230

2 576 4.438455 5.430776
3.2378 3.2216

3 2 304 4.442414 5.440259
3.2957 3.2034

4 9 216 4.442832 5.441274

∞ 4.442883 5.441398

Table 4: Discrete eigenvalue convergence of the boundary element method
for the test configuration in the unit cube.

As expected from the analysis in [17, Chap. 4] we observe cubic conver-
gence of km to k, cf. Tab. 4. Moreover, we observe quadratic convergence for
the iterates knm of the Newton steps n = 1, 2, 3, 4 in (18), cf. Tab. 5. Here,
we find the different eigenvalues by different initial values. This is compared
with the contour integral method in Tab. 6, where the first two eigenvalues
are approximated simultaneously. The accuracy depends on the discretiza-
tion parameter M for the evaluation of the approximations A0,M and A1,M in
(19) which depends on the discretization level. For this example, the Newton
method is more efficient, since a reasonable initial guess can be computed
on a coarse mesh. Then, a few Newton steps are sufficient to obtain the
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discrete solution, while the contour method requires to assemble more than
20 boundary element matrices to be sufficiently accurate.

m step 1 step 2 step 3 step 4

κ = (1, 1, 0) 1 4 4.406446 4.395935 4.396130 4.396122

2 4 4.467300 4.437744 4.438455 4.438453

3 4 4.478139 4.441526 4.442414 4.442411

4 4 4.480503 4.441905 4.442836 4.442832

κ = (1, 1, 1) 1 5 5.333690 5.319298 5.319289 5.319289

2 5 5.469660 5.430716 5.430776 5.430776

3 5 5.487507 5.440236 5.440259 5.440259

4 5 5.490671 5.441273 5.441275 5.441274

Table 5: Convergence of the Newton iteration for the approximation of the
first and second eigenvalue on level m.

κ = (1, 1, 0) k = 4.442883 κ = (1, 1, 1) k = 5.441398

m M = 10 M = 20 M = 40 M = 10 M = 20 M = 40

1 4.396122 4.396106 4.396106 5.313493 5.319359 5.319359

2 4.438467 4.438454 4.438455 5.432038 5.430647 5.430777

3 4.442305 4.442380 4.442414 5.447252 5.440236 5.440259

Table 6: Contour integral method for the test example in the unit cube, where
D ⊂ C contains the first two eigenvalues, and where ∂D is approximated by
a polygon with M segments.

A benchmark problem. Next we compare different finite element approxima-
tions and the boundary element approach for a well-known benchmark prob-
lem, Maxwell’s eigenvalue problem for the Fichera cube Ω = (−1, 1)3 \ [0, 1]3,
see Fig. 3. Here, no analytical solution is available (some reference values are
collected in Tab. 7).
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M. Duruflé S. Zaglmayr IGA (q = 3) IGA (q = 5)

λ1 3.21987401386 3.21999388904 3.21943057045 3.21720448084

λ2 5.88041891178 5.88044248619 5.88046040750 5.88058776744

λ3 5.88041891780 5.88045528405 5.88046040842 5.88058776745

λ4 10.6854921311 10.6856632462 10.6866213844 10.6881376444

λ5 10.6937829409 10.6936955486 10.6949642900 10.6979155528

λ6 10.6937829737 10.6937289163 10.6949642906 10.6979155528

λ7 12.3165204656 12.3168796291 12.3179492061 12.3159290944

λ8 12.3165204669 12.3176900965 12.3179492065 12.3159290944

Table 7: Reference values for the Maxwell eigenvalues for the Fichera corner
from [21, 10, 7].

The results with less then 10 000 degrees of freedom obtained with the
boundary element method are already quite close to the reference values
(cf. Tab. 8). For the same accuracy, more than 1 000 000 degrees of freedom
are required for finite element computations with lowest order elements on
uniform meshes, cf. Tab. 9 and 10.

Figure 3: Surface mesh on level 2 for the Fichera corner (left) and Neumann
trace σh of the first and second eigenvector.
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dof 576 2 304 9 216

λ1 3.2280695 3.2251952 3.2223595

λ2 5.8548203 5.8764043 5.8795235

λ3 5.8548412 5.8764080 5.8797125

λ4 10.5418958 10.6589381 10.6773519

λ5 10.5817928 10.6670787 10.6853442

λ6 10.5818145 10.6674636 10.6853942

λ7 12.2377402 12.3050465 12.3144923

λ8 12.2378382 12.3051555 12.3157028

Table 8: Boundary element approximations on the Fichera cube.

Here, the contour integral method is more efficient for the boundary ele-
ment method, since the smallest 8 eigenvalues are computed simultaneously.

The finite element results are obtained by a block iteration with multi-
grid preconditioning, see [12] for details. The eigenvalue convergence for
the uniform finite element discretization is limited by the regularity of the
eigenfunctions; we obtain at most quadratic convergence. For the boundary
element discretization again better convergence is observed.

dof 13 720 105 008 821 344 6 496 448 51 675 520

λ1 3.1171459 3.1814903 3.2053136 3.2142846 3.21771357

λ2 5.8822584 5.8807766 5.8804931 5.8804338 5.88042136

λ3 5.8862376 5.8815864 5.8806502 5.8804635 5.88042683

λ4 10.7361369 10.7021916 10.6912510 10.6875704 10.68626082

λ5 10.7767298 10.7257200 10.7064673 10.6988093 10.69576043

λ6 10.8046850 10.7314936 10.7075544 10.6990047 10.69579461

λ7 12.2978374 12.3052278 12.3111027 12.3141269 12.31550075

λ8 12.3168109 12.3087798 12.3117339 12.3142344 12.31551839

Table 9: Finite element approximations on tetrahedral meshes.
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dof 12 336 92 256 712 896 5 603 712 44 434 176

λ1 3.1929332 3.2081781 3.2149844 3.2178785 3.21907530

λ2 5.9044888 5.8867626 5.8821394 5.8809027 5.88056085

λ3 5.9044888 5.8867626 5.8821394 5.8809027 5.88056085

λ4 10.8214832 10.7242918 10.6971777 10.6891996 10.68672148

λ5 10.8380828 10.7374513 10.7078085 10.6985195 10.69544315

λ6 10.8380828 10.7374513 10.7078085 10.6985195 10.69544315

λ7 12.4435516 12.3468811 12.3235783 12.3180667 12.31681186

λ8 12.4435517 12.3468811 12.3235783 12.3180667 12.31681186

Table 10: Finite element approximations on hexahedral meshes.

5.4. The interface eigenvalue problem

The domain decomposition method introduced in Sect. 4 easily transfers
to the eigenvalue problem: find a frequency ω and a nontrivial solutions up

of

∇×∇× up − (ω/cp)
2up = 0 and ∇ · up = 0 (21)

in every subdomain Ωp satisfying the interface conditions (13) on all inner
boundaries Γpq and homogeneous Dirichlet boundary conditions γt(u) = 0.
Here, cp = 1/

√
εpµp is the local wave speed.

For the special configuration in Sect. 4.2 with one interface Γ12, we have
to compute ω > 0 and (ϕ12,σ1,σ2) ∈W−1/2(Γ12)×W−1/2(Γ1)×W−1/2(Γ2)
such that(
β1S

Γ1

ω/c1
+ β2S

Γ2

ω/c2

)
(ϕ12)

+β1

(
1

2
I + CΓ1

ω/c1

)
(σ1) + β2

(
1

2
I + CΓ2

ω/c2

)
(σ2) = 0 on Γ12 ,(

1

2
I−CΓ1

ω/c1

)
(ϕ12) + SΓ1

k1
σ1 = 0 on Γ1 ,(

−1

2
I + CΓ2

ω/c2

)
(ϕ12) + SΓ2

k2
σ2 = 0 on Γ2 .

This yields in variational form the following boundary element problem: find
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ωh > 0 and (ϕ12
h ,σ

1
h,σ

2
h) ∈W

−1/2
h (Γ12)×W

−1/2
h (Γ1)×W

−1/2
h (Γ2) such that

0 = β1

〈
SΓ1

ωh/c1
(ϕ12

h ),χ12
h

〉
τ,Γ12

+ β2

〈
SΓ2

ωh/c2
(ϕ12

h ),χ12
h

〉
τ,Γ12

+β1

〈
1
2
σ1
h + CΓ1

ωh/c1
(σ1

h),χ
12
h

〉
τ,Γ12

+ β2

〈
1
2
σ2
h + CΓ2

ωh/c2
(σ2

h),χ
12
h

〉
τ,Γ12

+
〈

1
2
ϕ12
h −CΓ1

ωh/c1
(ϕ12

h ), τ 1
h

〉
τ,Γ1

+
〈
SΓ1

ωh/c1
(σ1

h), τ
1
h

〉
τ,Γ1

+
〈
− 1

2
ϕ12
h + CΓ2

ωh/c2
(ϕ12

h ), τ 2
h

〉
τ,Γ2

+
〈
SΓ2

ωh/c2
(σ2

h), τ
2
h

〉
τ,Γ2

for all test functions (χ12
h , τ

1
h, τ

2
h) ∈W

−1/2
h (Γ12)×W

−1/2
h (Γ1)×W

−1/2
h (Γ2).

Since this problem is Hermitian, also the discrete approximations ωh are real.

σ2
h ϕ12

h σ1
h

Figure 4: Traces on the subdomain boundaries for the solution of the first
and second Maxwell interface eigenvalue problem with homogeneous Dirichlet
boundary condition.

In the numerical example we test the convergence for the interface eigen-
value problem using the exact solution (20), see Fig. 4; again, we observe
cubic convergence, see Tab. 11.
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κ = (1, 1, 0) κ = (1, 1, 1)

m Nm kNM
m kIM

m ηm kNM
m kIM

m ηm

0 432 4.42676 4.42675 5.37587 5.37588
3.5593 3.6474

1 1 728 4.44152 4.44152 5.43617 5.43617
3.4450 3.3271

2 6 912 4.44276 5.44088

∞ 4.44288 4.44288 5.44140 5.44140

Table 11: Eigenvalue convergence for the interface boundary element method.
Here, kNM

m and kIM are the approximations computed with the Newton
method and the contour integral method, respectively.

5.5. Band structure computation for photonic crystals

Finally, we discuss an application to the Maxwell eigenvalue problem on
a periodic medium with ε(x+ z) = ε(x) and µ(x+ z) = µ(x) for all z ∈ Z3.
In this case—as a consequence of the Floquet theory—the spectrum of the
Maxwell operator is the union of all eigenvalues in the periodicity cell Ω =
(0, 1)3 with quasi-periodic boundary conditions for all x ∈ Gj (j = 1, 2, 3)

γt(u)(x+ ej) + eiα·ejγt(u)(x) = 0 , γkN(u)(x+ ej) + eiα·ejγkN(u)(x) = 0 (22)

on the boundary faces G1 = [0, 1]2 × {0}, G2 = [0, 1] × {0} × [0, 1] and
G3 = {0} × [0, 1]2, where ej are the unit vectors and α ∈ (−π, π]3 is a
parameter in the Brillouin zone.

In the periodicity cell, an interface eigenvalue problem has to be solved.
We consider an example with Ω1 = (1/8, 7/8)3 and Ω2 = (0, 1)3 \ Ω1, µ1 =
µ2 = 1, ε1 = 1, and ε2 = 13. For every α we compute the n lowest frequencies
ωh and (ϕ12

h ,σ
2
h|Γ,σ2|Γ12 ,ϕ

2
h|Γ,σ1) ∈W

−1/2
h (Γ12)×W

−1/2
h (Γ)×W

−1/2
h (Γ12)×

W
−1/2
h (Γ)×W

−1/2
h (Γ1) satisfying the equations (21), the interface conditions

(13), and the constraint (22). This leads to the problem to find ωh such that
the matrix of the form

A11(ωh) A12(ωh)Bα A13(ωh) A14(ωh)Bα A15(ωh)

BH
αA21(ωh) BH

αA22(ωh)Bα BH
αA23(ωh) BH

αA24(ωh)Bα 0

A31(ωh) A32(ωh)Bα A33(ωh) A34(ωh)Bα 0

BH
αA41(ωh) BH

αA42(ωh)Bα BH
αA43(ωh) BH

αA44(ωh)Bα 0

A51(ωh) 0 0 0 A55(ωh)


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is singular, where the constraint (22) is realized by the matrix Bα extending
the degrees of freedom on G1 ∪G2 ∪G3 to Γ = ∂Ω.

Figure 5: Band structures along a path in the Brillouin zone (−π, π]3 for a
photonic crystal computed with boundary elements (left) and finite elements
(right).

The results for the first four bands are presented in Fig. 5, where we com-
pare the eigenvalues for 25 sample points α in the Brillouin zone. Here, the
boundary element method can be used efficiently. It is sufficient to assemble
the matrices Ajl(zm) (m = 0, ...,M − 1) along the contour. Then, for each
sample point α, the full matrix can be easily compiled using Bα, and the
four smallest eigenfrequencies can be computed simultaneously. For compar-
ison, we also present the band structure approximation with finite element
solution computed with the techniques developed in [8, 20].
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