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Abstract

We show uniform convergence in the energy norm for an automatic hp-adaptive
refinement strategy for the finite element method applied to Maxwell’s equa-
tions.
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1. Introduction

The finite element method is a widely used tool for the numerical solution
of partial differential equations. Its performance can be improved by adaptively
creating problem-dependent approximation spaces. This can be done by mesh-
refinement (h-FEM) or the use of higher-order ansatz spaces (p-FEM). Taking
a combination of both (hp-FEM) can lead to exponentially fast convergence
with respect to the number of degrees of freedom [23]. Although in recent years
there has been big interest in solving Maxwell’s equations numerically, there is
only few literature considering the problem-adapted creation of approximation
spaces for this system of partial differential equations. The h-adaptive finite
element method is discussed in e.g. [3, 7, 16]. For the p- and the hp-adaptive
finite element method Demkowicz, Pardo and co-workers have introduced a
global optimization scheme in [10, 12, 21, 22]. However this global procedure is
computationally quite expensive, since a finer version of the whole problem has
to be solved.
In this paper we present an automatic hp-adaptive refinement strategy, which
is based on the solution of local boundary value problems. Therefore we apply
the refinement strategy proposed in [6, 14] to Maxwell’s equations in the electric
field formulation and prove convergence of the adaptive algorithm.
The paper is organized as follows. In Section 2 we introduce the boundary
value problem, which we want to consider in this work, and state some general
assumptions and notations. The refinement strategy is presented in Section 3
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and in Section 4 we prove its convergence. To conclude the paper we present
some numerical examples in Section 5.

2. Preliminaries

In this section we introduce Maxwell’s equations in the electric field formula-
tion and derive the Dirichlet boundary value problem, which we want to consider
here. Then we introduce some basic notations and general assumptions, which
we use throughout the paper. To conclude this section the weak formulation of
the boundary value problem is derived.

2.1. Maxwell’s equations
In recent years big interest in the simulation of electromagnetic fields has

come up. In many situations these fields can – after exploiting some basic
material properties – be described by Maxwell’s equations in the electric field
formulation [15, 19]

d2

dt2
(σE) +∇× (α∇× E) = −dJ

dt
in Ω× [0, T ]

div(σE) = 0 in Ω× [0, T ],
(1)

where Ω ⊂ R3 is some connected domain, E : Ω × [0, T ] → C3 denotes the
electric field, σ : Ω → C3,3 the conductivity, α : Ω → C3,3 the inverse of the
magnetic permeability and J : Ω× [0, T ]→ C3 the current.
In realistic applications there usually is a sharp distinction between regions,
where σ can be bounded away from zero, called the conductor, and regions,
where σ = 0 holds (cf. Figure 1). Since div(J) = 0 for physical reasons, it

Figure 1: Example for a conductor

follows div(σE) = 0 and the first equation of system (1) is sufficient to determine
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the electric field E uniquely inside the conductor. Only outside the conductor
the divergence condition is needed. If we drop this condition here, E cannot be
determined uniquely anymore. However, the quantity ∇× E, which usually is
the one which we are interested in, is still uniquely determined. Therefore we
switch from problem (1) to the formulation

d2

dt2
(σE) +∇× (α∇× E) = −dJ

dt
in Ω

and after applying some time stepping-scheme we arrive at the Dirichlet bound-
ary value problem to find u : Ω→ C3 such that

∇× (α∇× u) + βu = f in Ω
n× u = n× g on ∂Ω

(2)

for given right-hand side function f : Ω→ C3 and boundary function g : ∂Ω→
C3. Here f depends on J and the values of u from the previous time step(s)
and β is given by σ scaled with the length of the current time step. From
div(∇× u) = 0 in Ω for all sufficiently regular u : Ω→ C3 and div(f) = 0 in Ω
it follows

div(βu) = 0 in Ω. (3)

2.2. Notations and assumptions
Throughout this paper let Ω ⊂ R3 be some bounded, open and simply-

connected domain with Lipschitz continuous boundary.

Remark 1. Although, under certain conditions, a generalization of the analysis
in this paper into complex space C3 is straightforward, we restrict ourselves to
real-valued functions u and coefficients α and β for simplicity.

We denote the space of all square integrable functions in Ω by L2(Ω) and
the space of all essentially bounded functions in Ω by L∞(Ω). Let γ ∈ N3

0 be
some multi-index and define for r ≥ 0 the Sobolev spaces Hr(Ω) by

Hr(Ω) :=

{
u ∈ L2(Ω) : ∂γu ∈ L2(Ω) for all γ such that

3∑
i=1

γi ≤ r

}
.

The space H(curl,Ω) is given by

H(curl,Ω) := {u ∈ L2(Ω)3 : ∇× u ∈ L2(Ω)3}

and equipped with the norm

‖ · ‖2H(curl,Ω) := ‖ · ‖2L2(Ω)3 + ‖∇ × · ‖2L2(Ω)3 .

The space of all functions u ∈ H(curl,Ω), which additionally satisfy the homo-
geneous Dirichlet boundary conditions

n× u = 0 on ∂Ω,

is dentoted by H0(curl,Ω). Further let K be a triangulation of Ω. Throughout
this paper we assume that K satisfies the following regularity property [23, 25].

3



Definition 1 (Shape regularity). Let K ∈ K be the image of reference cell K̂
under some map FK : K̂ → K and set hK := diam(K). Then K is γ1-shape
regular, if and only if there exists some constant γ1 > 0 such that

‖∇FK‖L∞(K̂)
hK

+ hK
∥∥(∇FK)−1 ◦ FK

∥∥
L∞(K̂) ≤ γ1 ∀K ∈ K. (4)

For K ∈ K arbitrary we define the local patch ωK by

ωK := K ∪ {L ∈ K : K and L have a common edge}.

Let p := (pK)K∈K, pK ∈ N0, be the polynomial degree vector on mesh K. By
Q̂ := [0, 1]3 we denote the reference cube and by

T̂ := {x ∈ R3 : 0 ≤ x1, x2, x3, x1 + x2 + x3 ≤ 1}

the reference tetrahedron. Then the finite-dimensional approximation space of
piecewise, vector-valued polynomials is defined by

V p0 (K,Ω) :=
{
u ∈ H0(curl,Ω) : ((∇FK)−Tu|K) ◦ FK ∈ PpK

(
K̂
)
∀K ∈ K

}
,

where the polynomial space PpK

(
K̂
)

is given by

PpK

(
K̂
)

=


QpK+1,pK ,pK

(
K̂
)
×QpK ,pK+1,pK

(
K̂
)

×QpK ,pK ,pK+1

(
K̂
)
, if K̂ = Q̂

TpK+1

(
K̂
)3

, if K̂ = T̂

with

Qp,q,r

(
K̂
)

= span
{
xi1x

j
2x
k
3 : x ∈ K̂, i ∈ {0, . . . , p}, j ∈ {0, . . . , q}, k ∈ {0, . . . , r}

}
and

Tp

(
K̂
)

= span
{
xi1x

j
2x
k
3 : x ∈ K̂, 0 ≤ i+ j + k ≤ p

}
for p, q, r ∈ N0. Further we define the finite-dimensional approximation space
of piecewise, scalar polynomials Xp

0 (K,Ω) by

Xp
0 (K,Ω) :=


{
q ∈ H1

0 (Ω) : q|K ◦ FK ∈ QpK+1,pK+1,pK+1

(
K̂
)
∀K ∈ K

}
, if K̂ = Q̂{

q ∈ H1
0 (Ω) : q|K ◦ FK ∈ TpK+1

(
K̂
)
∀K ∈ K

}
, if K̂ = T̂

.

Then the space of functions u ∈ V p0 (K,Ω), which additionally satisfy divergence
condition (3) weakly, is denoted by

W p
0 (K,Ω;β) :=

{
u ∈ V p0 (K,Ω) :

∫
Ω

(∇q)Tβu = 0 ∀q ∈ Xp
0 (Ω,K)

}
.
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The local L2-projection of the vector-valued function f onto the space of vector-
valued polynomials of degree p is denoted by fp. Let α, β : Ω → R3,3 be some
piecewise matrix-valued polynomials, which are uniformly positive definite, i.e.
there exist constants αmax ≥ αmin > 0 and βmax ≥ βmin > 0 such that for all
u ∈ L2(Ω)3 it holds

αmin‖u‖2L2(Ω)3 ≤
∫

Ω

|uTαu| ≤ αmax‖u‖2L2(Ω)3 (5)

and
βmin‖u‖2L2(Ω)3 ≤

∫
Ω

|uTβu| ≤ βmax‖u‖2L2(Ω)3 (6)

a.e. in Ω, respectively.

Remark 2. Note that assumptions (5) and (6) are quite restrictive, but we
require these for the analysis of our problem. However, we applied our method
successfully to a much broader range of problems, where not all of these assump-
tions are satisfied.

2.3. Weak formulation
To derive the weak formulation of problem (2) we assume that there exists

a lifting function ug : Ω→ R3 such that

∇× (α∇× ug) + βug = 0 in Ω
n× ug = n× g on ∂Ω

(cf. [9]). In this case it suffices to find u : Ω→ R3 such that

∇× (α∇× u) + βu = f in Ω
n× u = 0 on ∂Ω

(7)

and adding up the lifting function ug and the solution of problem (7) gives
the solution of problem (2). Then we multiply the first equation of (7) by
φ ∈ H0(curl,Ω) and integration by parts yields∫

Ω

(∇× φ)Tα∇× u+
∫

Ω

φTβu =
∫

Ω

φT f ∀φ ∈ H0(curl,Ω). (8)

Analogously we obtain the discrete problem to find uN ∈ V p0 (K,Ω) such that∫
Ω

(∇× φ)Tα∇× uN +
∫

Ω

φTβuN =
∫

Ω

φT f ∀φ ∈ V p0 (K,Ω). (9)

For u, v ∈ H0(curl,Ω) we define the bilinear form a : H0(curl,Ω)×H0(curl,Ω)→
R by

a(u, v) :=
∫

Ω

(∇× u)Tα∇× v +
∫

Ω

uTβv
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and the energy norm ‖ · ‖Ω : H0(curl,Ω)→ R+ is given by

‖u‖2Ω := a(u, u).

Then one can show that the bilinear form a is elliptic, i.e. for some constant
Cell > 0 depending on αmin and βmin it holds

a(u, u) ≥ Cell‖u‖2H(curl,Ω) ∀u ∈ H0(curl,Ω), (10)

and continuous, i.e. for some constant Cc > 0 depending on αmax and βmax it
holds

|a(u, v)| ≤ Cc‖u‖H(curl,Ω)‖v‖H(curl,Ω) ∀u, v ∈ H0(curl,Ω)

(for proofs see for example [19]). Then it follows with the Lax-Milgram Theorem
that there exists a unique solution u ∈ H0(curl,Ω) of (8) and a unique solution
uN ∈ V p0 (K,Ω) of (9) for f ∈ L2(Ω)3 with div(f) = 0 in Ω.

3. hp-Adaptive Refinement Strategy

In this section we present our fully automatic hp-adaptive refinement strat-
egy. The refinement strategy is a modification of the adaptive refinement algo-
rithm, which was proposed in [6, 14] for simple elliptic equations.
Let TOL > 0 be some prescribed tolerance. We start the algorithm with a
coarse triangulation K0 of Ω and some finite-dimensional approximation space
V p0 (K0,Ω) ⊂ H0(curl,Ω). Then we solve discrete problem (9) with this initial
configuration and check, if the energy error ‖u− uN‖Ω is below the prescribed
tolerance.

3.1. Error estimator
Usually we do not know the analytic solution u ∈ H0(curl,Ω) of (8). Thus

we have to estimate the energy error ‖u − uN‖Ω in terms of the computed
solution uN ∈ V p0 (K0,Ω) and the given data. This can be done by computing
some reliable a posteriori error estimator η, which can be bounded in terms
of the energy error from above and below with constants independent of mesh
size vector h and polynomial degree vector p. In [5] the following residual-
based a posteriori error estimator for the hp-adaptive finite element method for
Maxwell’s equations was proposed.

Definition 2 (Error estimator). The residual-based a posteriori error estimator
η is defined as the sum of local error indicators ηK , K ∈ K:

η2 :=
∑
K∈K

η2
K .

For K ∈ K the local error indicators ηK are given by

η2
K := η2

R,K + η2
B,K ,
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where ηR,K denotes the residual-based term and ηB,K denotes the boundary
term. The residual-based term ηR,K is defined by

η2
R,K :=

h2
K

(pK + 1)2

(
‖ resK ‖2L2(K)3 + ‖div(βuN )‖2L2(K)

)
,

where
resK := fpK+1 −∇× (α∇× uN )− βuN ,

and the boundary term ηB,K by

η2
B,K :=

∑
f̃⊂∂K∩Ω

hf̃
2(pf̃ + 1)

(∥∥∥nf̃ × [α∇× uN ]
∥∥∥2

L2(f̃)3 +
∥∥∥nT

f̃
[βuN ]

∥∥∥2

L2(f̃)

)
.

Here nf̃ denotes the outward-pointing unit normal of cell K on face f̃ and [·]
denotes the jump over the face.

For this a posteriori error estimator the following estimates were shown in
[5].

Theorem 1 (A posteriori error estimates). Let uN ∈ V p0 (K,Ω) be the solution
of discrete problem (9) and u ∈ H0(curl,Ω) ∩ Hr(Ω)3 be the solution of weak
problem (8) for some ε > 0 and r > 1

2 + ε. Further we assume that K is a
γ1-shape regular triangulation of Ω and there exists some constant γ2 > 0 such
that

pK1 + 1
γ2

≤ pK2 + 1 ≤ γ2(pK1 + 1) (11)

for all K1,K2 ∈ K with K1 ∩K2 6= ∅. Then there exist constants C1, C2(ε) > 0
independent of mesh size vector h and polynomial degree vector p such that

‖u− uN‖2Ω ≤ C1

∑
K∈K

(pK + 1)2ε

(
η2
K +

h2
K

(pK + 1)2
‖f − fpK+1‖2L2(K)3

)
(12)

and

η2 ≤ C2(ε)
∑
K∈K

(pK +1)2(2+ε)

(
‖u− uN‖2ωK

+
h2
K

(pK + 1)2
‖f − fpK+1‖2L2(ωK)3

)
.

(13)

Proof. See [5], Theorems 5 and 6.

3.2. Refinement patterns
A local procedure to enhance the finite element space is called refinement

pattern.
For the h-adaptive finite element method the common refinement pattern to
choose is the equal-weighted bisection in every coordinate direction. If we pick
some cell K ∈ K and perform an h-refinement step, then we probably introduce
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some hanging nodes on the faces and edges of the cell. Thus the boundary con-
tribution of the error would not decay sufficiently. Therefore we also introduce
at least some anisotropic refinements on the neighbouring cells, which share at
least one edge with cell K. This can be seen in Figure 2 on the left-hand side.
For the p-adaptive finite element method the common choice is to increase the

Figure 2: Refinement patterns on cell K. Left: Bisection in x1-, x2- and x3-direction. Right:
Increase polynomial degree pK by one.

polynomial degree pK on cell K by one. Also in this case we have to make sure
that the boundary contribution of the error is reduced appropriately. Therefore
we increase the polynomial degree on all neighbouring cells, which share at least
one edge with cell K, also by one. This can be seen on the right-hand side of
Figure 2.
Thus for the hp-adaptive finite element method we have at least two different
refinement patterns to choose from, the bisection in every coordinate direction
and the increase of the polynomial degree. Of course there are much more re-
finement patterns, which can be applied here, e.g. anisotropic h-refinements,
anisotropic p-refinements and increase of the polynomial degree by some arbi-
trary integer n ∈ N. Thus, without loss of generality we may assume that we
have n ∈ N with n ≥ 2 different refinement patterns to choose from.

3.3. Convergence indicators
Let j ∈ {1, . . . , n} and K ∈ K be arbitrary. Then we denote the finite el-

ement spaces of functions compactly supported in ωK with refinement pattern j
applied to cellK by V p0,K,j(K|ωK

, ωK), W p
0,K,j(K|ωK

, ωK ;β) andXp
0,K,j(K|ωK

, ωK),
respectively. Let εK,j ∈ R+ be the solution of the optimization problem

εK,jηK = sup
φ∈Wp

0,K,j(K|ωK
,ωK ;β)

(Φ(φ)) , (14)
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where the mapping Φ : W p
0,K,j(K|ωK

, ωK ;β)→ R is given by

Φ(φ) :=

∫
ωK

φT resωK

‖φ‖ωK

.

To solve optimization problem (14) let us consider the following boundary value
problem first: Find vj ∈W p

0,K,j(K|ωK
, ωK ;β) such that∫

ωK

(∇×φ)Tα∇×vj +
∫
ωK

φTβvj =
∫
ωK

φT resωK
∀φ ∈W p

0,K,j(K|ωK
, ωK ;β).

(15)
However for solving this we cannot proceed as we did in Section 2.1 before.
Because the residual function resωK

is unlikely to be weakly divergence-free,
this will not hold for the solution vj either, if we do not enforce the condition∫

ωK

(∇q)Tβvj = 0 ∀q ∈ Xp
0 (K|ωK

, ωK)

explicitly. Therefore we are now looking for a solution of the following mixed
boundary value problem: Find (zj , pj) ∈ V p0,K,j(K|ωK

, ωK) ×Xp
0,K,j(K|ωK

, ωK)
such that∫

ωK

(∇× φ)Tα∇× zj +
∫
ωK

φTβzj +
∫
ωK

φTβT∇pj =
∫
ωK

φT resωK∫
ωK

(∇ψ)Tβzj = 0

for all φ ∈ V p0,K,j(K|ωK
, ωK) and all ψ ∈ Xp

0,K,j(K|ωK
, ωK). Then vj := zj ∈

W p
0,K,j(K|ωK

, ωK ;β) is the solution of problem (15) and it follows

Φ(φ) =

∫
ωK

(∇× φ)Tα∇× vj +
∫
ωK

φTβvj

‖φ‖ωK

≤

∥∥∥α 1
2∇× φ

∥∥∥
L2(ωK)3

∥∥∥α 1
2∇× vj

∥∥∥
L2(ωK)3

+
∥∥∥β 1

2φ
∥∥∥
L2(ωK)3

∥∥∥β 1
2 vj

∥∥∥
L2(ωK)3

‖φ‖ωK

with the Cauchy-Schwarz inequality. We see easily

Φ(φ) ≤ ‖vj‖ωK

=

∫
ωK

vTj resωK

‖vj‖ωK

= Φ(vj)

and thus vj solves optimization problem (14).
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3.4. Marking cells for refinement
As we have seen above, for every cell we get an indication which refinement

pattern performs best, if we solve problem (14) for every refinement pattern on
every cell. However this information alone might not be enough, because we
would like to take into account the work, which is required to achieve the pre-
dicted error reduction, too. Therefore we define numbers wK,j to be the number
of degrees of freedom, which the local finite element space V p0,K,j(K|ωK

, ωK) has.
Then we mark cells for refinement by looking for a solution (A, (jK)K∈A) of the
maximization problem ∑

K∈A

εK,jK
wK,jK

= max (16)

under the constraint∑
K∈A

(εK,jKηK)2 ≥ max
K∈K

(pK + 1)2εθ2η2, (17)

where ε > 0 and θ ∈ (0, 1] can be chosen arbitrarily. Unfortunately this problem
is NP-hard and, hence, it cannot be solved in polynomial time [8]. Therefore we
suggest the following strategy to approximate the solution of the maximization
problem: In a first step we define the numbers jK ∈ {0, . . . , n} by

εjK
wjK

:= max
j∈{1,...,n}

(
εj
wj

)
for all K ∈ K and then we construct a minimal set A satisfying constraint (17)
by using the SER algorithm, which was presented in [13].

3.5. The hp-adaptive refinement algorithm
By combining the steps from above we can now state the fully automatic

hp-adaptive refinement algorithm for Maxwell’s equations. It reads as follows:

(S0) Set up a coarse triangulation K0 of Ω and some polynomial degree vector
p. Set N := 0 and define a tolerance TOL > 0.

(S1) Solve discrete problem (9) to obtain an approximate solution uN ∈ V p0 (KN ,Ω)
of problem (8).

(S2) Compute the residual-based error estimator η.
If η < TOL: STOP

(S3) Compute the local convergence indicators εK,j for all refinement cases
j ∈ {1, . . . , n} and all cells K ∈ KN .

(S4) Mark the cells for refinement by constructing the tuple (AN , (jK)K∈AN
)

as proposed in Section 3.4.
(S5) Refine the cells contained in the set AN according to refinement patterns

(jK). Set N := N + 1 and goto step (S1).

Remark 3 (Computing time). Note that in step (S3) the computations for all
refinement patterns and all cells are independent of each other. Thus this step
can be highly parallelized such that the computing time is reduced significantly
in comparison to a sequential approach (cf. Figure 4 on the right-hand side).
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4. Convergence

In this section we want to prove convergence of the algorithm presented in
Section 3.5. One way to do this is to show that the energy error decays in every
refinement step, i.e. for all N ∈ N0 there exists some constant κ ∈ (0, 1) such
that

‖u− uN+1‖Ω ≤ κ‖u− uN‖Ω.

4.1. Interpolation
Before we start with the actual proof let us state an interpolation result,

which we need in the proof. This result was shown in [5]. It clarifies the
existence of an H(curl)-conforming interpolation operator and gives an upper
bound for its interpolation error. For a detailed insight into the construction of
the interpolation operator we refer the reader to [5] and [11].

Theorem 2 (H(curl)-conforming interpolation). Let K ∈ K, ε > 0, r > 1
2 + ε

and u ∈ H0(curl,Ω) ∩ Hr(Ω)3. Then there exists an interpolation operator
Πcurl : H0(curl,Ω) ∩Hr(Ω)3 → V p0 (K,Ω) such that

‖Πcurlu− u‖L2(K)3 ≤ Ccurl
hkK

(pK + 1)r−ε
‖u‖Hr(ωK,1)3

for some constant Ccurl > 0, Ccurl ∈ O
(

1
ε

)
for ε → 0, independent of hK and

pK , k := min{r, pK + 2} and

ωK,1 := {L ∈ K : K ∩ L 6= ∅}.

Proof. See [5], Theorem 3.

4.2. Discrete Helmholtz decomposition
With the use of this interpolation operator we can prove the existence and

stability of a semi-discrete Helmholtz decomposition for functions from the space
W p

0 (K,Ω;β). In [17] a similar result was derived for the lowest-order edge
elements.

Lemma 1 (Discrete Helmholtz decomposition). Let uN ∈ W p
0 (K,Ω;β) and

ε > 0 arbitrary. Then there exist some zN ∈ V p0 (K,Ω), ζN ∈ Xp
0 (K,Ω)3 and

pN ∈ Xp
0 (K,Ω) such that it holds

uN = zN + ΠcurlζN +∇pN .

Further there exists some constant CH > 0 independent of hK and pK such that

‖zN‖L2(Ω)3 +
hK

(pK + 1)1−ε ‖ζN‖H1(Ω)3+‖∇pN‖L2(Ω)3

≤ CH
hK

(pK + 1)1−ε ‖∇ × uN‖L2(Ω)3 .
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Proof. In [17], Lemma 5.1, it was shown that there exist some zN ∈ V p0 (K,Ω),
ζN ∈ Xp

0 (K,Ω)3 and pN ∈ Xp
0 (K,Ω) such that

uN = zN + ΠcurlζN +∇pN .

Further, Theorem 1.2.3 in [15] implies that there exist some z ∈ H0(curl,Ω) and
p ∈ H1(Ω) such that

uN = z +∇p

with
div(βz) = 0 in Ω.

Since uN ∈W p
0 (K,Ω;β), we have

0 =
∫

Ω

(∇ψ)TβuN =
∫

Ω

(∇ψ)Tβ(z +∇p)

= −
∫

Ω

ψ div (βz) +
∫

Ω

(∇ψ)Tβ∇p

=
∫

Ω

(∇ψ)Tβ∇p

(18)

for all ψ ∈ Xp
0 (K,Ω). From [17] we know that there exists some q ∈ H1(Ω) such

that pN = p+ q. Then we see

‖∇pN‖2L2(Ω)3 ≤
1

βmin

∫
Ω

(∇pN )Tβ∇pN

from (6) and it follows

‖∇pN‖2L2(Ω)3 ≤
1

βmin

∫
Ω

(∇pN )Tβ∇(p+ q)

=
1

βmin

∫
Ω

(∇pN )Tβ∇q

with (18). By the Cauchy-Schwarz inequality we obtain

‖∇pN‖2L2(Ω)3 ≤
1

βmin

∥∥∥β 1
2∇pN

∥∥∥
L2(Ω)3

∥∥∥β 1
2∇q

∥∥∥
L2(Ω)3

≤ βmax
βmin

‖∇pN‖L2(Ω)3‖∇q‖L2(Ω)3

with (6). Thus

‖∇pN‖L2(Ω)3 ≤
βmax
βmin

‖∇q‖L2(Ω)3

and the estimate follows in exactly the same way as in Lemma 5.1, [17], but
replacing the interpolation operator by the one from Theorem 2.
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4.3. Convergence theorem
Now we are ready to prove the convergence of our fully automatic hp-

adaptive refinement strategy.

Theorem 3 (Convergence). Let N ∈ N0 be arbitrary and KN a γ1-shape regular
triangulation of Ω, which satisfies regularity assumption (11). For r > 1

2 + ε
and ε > 0 let u ∈ H0(curl,Ω) ∩ Hr(Ω)3 be the solution of weak problem (8).
Further let uN ∈ V p0 (KN ,Ω) and uN+1 ∈ V p0 (KN+1,Ω) be the solutions of
discrete problem (9) in iteration steps N and N + 1, respectively. We assume
that in every refinement step N the maximization problem (16), (17) has a
unique solution (AN , (jK)K∈AN

). Let θ ∈
(
0,min

{
1,
√

20C1

}]
such that

θ2 ≥ 5C1CcovC
2
H

Cell max
K∈KN

(pK + 1)3ε
(19)

with CH > 0 from Lemma 1, C1 from Theorem 1 and Ccov from (24). Addi-
tionally we assume that the data error is controlled by the discretization error,
i.e. there exists some constant

µ ∈

0,min

1,
1√

2C2(ε)Ccov max
K∈KN

(pK + 1)2+ 5
2 ε


 , (20)

where C2(ε) is from Theorem 1, such that

∑
K∈KN

h2
K

(pK + 1)2(1−ε) ‖f − fpK+1‖2L2(K)3 ≤ µ
2η2. (21)

Then there exists some constant κ ∈ (0, 1) such that

‖u− uN+1‖Ω ≤ κ‖u− uN‖Ω,

i.e. the energy error decreases in every refinement step of the algorithm from
Section 3.5.

Proof. We see

‖u− uN‖2Ω = a(u− uN+1, u− uN ) + a(uN+1 − uN , u− uN )

and, since V p0 (KN ,Ω) ⊂ V p0 (KN+1,Ω), we can use the Galerkin orthogonality
to obtain

‖u− uN‖2Ω = ‖u− uN+1‖2Ω + ‖uN+1 − uN‖2Ω.

Thus it suffices to show the existence of some constant κ ∈ (0, 1) such that

‖uN+1 − uN‖2Ω ≥ (1− κ2)‖u− uN‖2Ω. (22)
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Let K ∈ AN be arbitrary and φN+1 ∈W p
0 (KN+1,Ω;β) with supp(φN+1) ⊂ ωK .

Since W p
0 (KN+1,Ω;β) ⊂ V p0 (KN+1,Ω), we have∫

ωK

(∇× φN+1)Tα∇× (uN+1 − uN ) +
∫
ωK

φTN+1β(uN+1 − uN )

=
∫
ωK

(
(∇× φN+1)Tα∇× u+ φTN+1βu

)
−
∫
ωK

(
(∇× φN+1)Tα∇× uN + φTN+1βuN

)
by Galerkin orthogonality. Then it follows∫

ωK

(∇× φN+1)Tα∇× (uN+1 − uN ) +
∫
ωK

φTN+1β(uN+1 − uN )

=
∫
ωK

φTN+1(f −∇× (α∇× uN )− βuN )

=
∫
ωK

φTN+1 resωK
+
∫
ωK

φTN+1(f − fpωK
+1)

with integration by parts, where

pωK
:= max

L⊂ωK

(pL).

For all φN ∈ V p0 (KN ,Ω) with supp(φN ) ⊂ ωK it holds∫
ωK

(∇× φN+1)Tα∇× (uN+1 − uN ) +
∫
ωK

φTN+1β(uN+1 − uN )

=
∫
ωK

φTN+1 resωK
+
∫
ωK

(φN+1 − φN )T (f − fpωK
+1)

with the definition of fpωK
+1. This implies∣∣∣∣∫

ωK

(∇× φN+1)Tα∇× (uN+1 − uN )
∣∣∣∣+
∣∣∣∣∫
ωK

φTN+1β(uN+1 − uN )
∣∣∣∣

≥
∣∣∣∣∫
ωK

φTN+1 resωK

∣∣∣∣− ∣∣∣∣∫
ωK

(φN+1 − φN )T (f − fpωK
+1)
∣∣∣∣

and by using the Cauchy-Schwarz inequality it follows∣∣∣∣∫
ωK

φTN+1 resωK

∣∣∣∣ ≤ ∥∥∥α 1
2∇× φN+1

∥∥∥
L2(ωK)3

∥∥∥α 1
2∇× (uN+1 − uN )

∥∥∥
L2(ωK)3

+
∥∥∥β 1

2φN+1

∥∥∥
L2(ωK)3

∥∥∥β 1
2 (uN+1 − uN )

∥∥∥
L2(ωK)3

+ ‖φN+1 − φN‖L2(ωK)3

∥∥∥f − fpωK
+1

∥∥∥
L2(ωK)3

.

By using the definition of the enery norm we get∣∣∣∣∫
ωK

φTN+1 resωK

∣∣∣∣ ≤ ‖φN+1‖ωK
‖uN+1 − uN‖ωK

+ ‖φN+1 − φN‖L2(ωK)3

∥∥∥f − fpωK
+1

∥∥∥
L2(ωK)3

.

(23)
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From Lemma 1 we know that there exist some zN+1 ∈ V p0 (KN+1|ωK
, ωK),

ζN+1 ∈ Xp
0 (KN+1|ωK

, ωK)3 and pN+1 ∈ Xp
0 (KN+1|ωK

, ωK) such that

φN+1 = zN+1 + Πcurl
N+1ζN+1 +∇pN+1

with Πcurl
N+1 : H0(curl,Ω) ∩Hr(Ω)3 → V p0 (KN+1,Ω) as in Theorem 2. Choosing

φN := Πcurl
N ζN+1 with Πcurl

N : H0(curl,Ω)∩Hr(Ω)3 → V p0 (KN ,Ω) as in Theorem
2 implies

‖φN+1 − φN‖L2(ωK)3

=
∥∥zN+1 + Πcurl

N+1ζN+1 +∇pN+1 −Πcurl
N ζN+1

∥∥
L2(ωK)3

≤ ‖zN+1‖L2(ωK)3 + ‖∇pN+1‖L2(ωK)3 +
∥∥Πcurl

N+1ζN+1 − ζN+1

∥∥
L2(ωK)3

+
∥∥Πcurl

N ζN+1 − ζN+1

∥∥
L2(ωK)3

and by using Theorem 2 and regularity assumptions (4) and (11) it follows

‖φN+1 − φN‖L2(ωK)3 ≤ ‖zN+1‖L2(ωK)3 + ‖∇pN+1‖L2(ωK)3

+ 2Ccurl
hK

(pK + 1)1−ε ‖ζN+1‖H1(ωK,1)3 .

Then, Lemma 1 implies

‖φN+1 − φN‖L2(ωK)3 ≤ CH
hK

(pK + 1)1−ε ‖∇ × φN+1‖L2(ωK,1)3

for some constant CH > 0 independent of hK and pK . Since supp(φN+1) ⊂
ωK ⊂ ωK,2, it follows

‖φN+1 − φN‖L2(ωK)3 ≤ CH
hK

(pK + 1)1−ε ‖∇ × φN+1‖L2(ωK)3

≤ CH√
Cell

hK
(pK + 1)1−ε ‖φN+1‖ωK

from (10). Inserting into (23) yields∣∣∣∣∫
ωK

φTN+1 resωK

∣∣∣∣
≤
(
‖uN+1 − uN‖ωK

+
CH√
Cell

hK
(pK + 1)1−ε

∥∥∥f − fpωK
+1

∥∥∥
L2(ωK)3

)
‖φN+1‖ωK

.

Then we divide by ‖φN+1‖ωK
and take the supremum on both sides to obtain

sup
φ∈Wp

0,K,jK
(KN |ωK

,ωK ;β)

(∫
ωK

φT resωK

‖φ‖ωK

)

≤ sup
φN+1∈Wp

0 (KN+1,Ω;β)
supp(φN+1)⊂ωK

(∫
ωK

φTN+1 resωK

‖φN+1‖ωK

)

≤ ‖uN+1 − uN‖ωK
+

CH√
Cell

hK
(pK + 1)1−ε

∥∥∥f − fpωK
+1

∥∥∥
L2(ωK)3
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and with (14) we have

εK,jKηK ≤ ‖uN+1 − uN‖ωK
+

CH√
Cell

hK
(pK + 1)1−ε

∥∥∥f − fpωK
+1

∥∥∥
L2(ωK)3

.

Squaring both sides and summing up over all K ∈ AN yields

∑
K∈AN

(εK,jKηK)2 ≤ 2

( ∑
K∈KN

‖uN+1 − uN‖2ωK

+
C2
H

Cell

∑
K∈KN

h2
K

(pK + 1)2(1−ε)

∥∥∥f − fpωK
+1

∥∥∥2

L2(ωK)3

)
,

since AN ⊂ KN . With regularity assumptions (4) and (11) and the minimal
property of fpωK

+1 in L2(K)3 for all K ⊂ ωK this implies

∑
K∈AN

(εK,jKηK)2 ≤ 2Ccov

(
‖uN+1 − uN‖2Ω

+
C2
H

Cell

∑
K∈KN

h2
K

(pK + 1)2(1−ε) ‖f − fpK+1‖2L2(K)3

)
,

where the covering constant Ccov > 0 is given by

Ccov := max
K∈KN

|{L ∈ KN : L ⊂ ωK}| (24)

with |A| denoting the cardinality of set A. Finally by assumption (21) we get∑
K∈AN

(εK,jKηK)2 ≤ 2Ccov

(
‖uN+1 − uN‖2Ω +

C2
H

Cell
µ2η2

)
. (25)

From Theorem 1 we know that there exists some constant C1 > 0 independent
of hK and pK such that

‖u− uN‖2Ω ≤ C1

∑
K∈KN

(pK + 1)2ε

(
η2
K +

h2
K

(pK + 1)2
‖f − fpK+1‖2L2(K)3

)
≤ C1(1 + µ2) max

K∈KN

(pK + 1)2εη2

by (21) and with the additional assumption µ ≤ 1 we obtain

θ2‖u− uN‖2Ω ≤ 2C1 max
K∈KN

(pK + 1)2εθ2η2

for some θ ∈ (0, 1]. With constraint (17) we have

θ2‖u− uN‖2Ω ≤ 2C1

∑
K∈AN

(εK,jKηK)2

16



and we see

θ2‖u− uN‖2Ω ≤ 4C1Ccov

(
‖uN+1 − uN‖2Ω +

C2
H

Cell
µ2η2

)
(26)

by inserting estimate (25). From Theorem 1 we also know

η2 ≤ C2(ε)
∑

K∈KN

(pK + 1)2(2+ε)

(
‖u− uN‖2ωK

+
h2
K

(pK + 1)2+ε
‖f − fpK+1‖2L2(ωK)3

)

≤ C2(ε)Ccov max
K∈KN

(pK + 1)2(2+ε)

(
‖u− uN‖2Ω

+
∑

K∈KN

h2
K

(pK + 1)2(1−ε) ‖f − fpK+1‖2L2(K)

)

and with data regularity assumption (21) it follows

η2 ≤ C2(ε)Ccov max
K∈K

(pK + 1)2(2+ε)
(
‖u− uN‖2Ω + µ2η2

)
.

Hence for
µ <

1√
C2(ε)Ccov max

K∈KN

(pK + 1)2+ε

we have

η2 <
C2(ε)Ccov max

K∈KN

(pK + 1)2(2+ε)

1− C2(ε)Ccov max
K∈KN

(pK + 1)2(2+ε)µ2
‖u− uN‖2Ω

and with the more restrictive assumption

µ ≤ 1√
2C2(ε)Ccov max

K∈KN

(pK + 1)2+ε

we get
η2 ≤ 2C2(ε)Ccov max

K∈KN

(pK + 1)2(2+ε)‖u− uN‖2Ω.

Inserting into (26) yields

θ2‖u− uN‖2Ω

≤ 4C1Ccov

(
‖uN+1 − uN‖2Ω +

2C2
HC2(ε)Ccov
Cell

max
K∈KN

(pK + 1)2(2+ε)µ2‖u− uN‖2Ω
)

and with the assumption

µ ≤ 1√
2C2(ε)Ccov max

K∈KN

(pK + 1)2+ 5
2 ε

17



we obtain

θ2‖u−uN‖2Ω ≤ 4C1Ccov

(
‖uN+1 − uN‖2Ω +

C2
H

Cell
max
K∈KN

(pK + 1)−3ε‖u− uN‖2Ω
)
.

Therefore

1
4C1Ccov

θ2 − 4C1CcovC
2
H

Cell max
K∈KN

(pK + 1)3ε

 ‖u− uN‖2Ω ≤ ‖uN+1 − uN‖2Ω

and by assumption (19) we have

θ2 − 4C1CcovC
2
H

Cell max
K∈KN

(pK + 1)3ε
≥ θ2

5
.

Since Ccov > 1 and θ ≤
√

20C1, inequality (22) holds with

κ2 := 1− θ2

20C1Ccov
.

This completes the proof.

Remark 4. 1. For θ ∈
(
0,min

{
1,
√

20C1

}]
assumption (19) can always be

satisfied by choosing pK large enough for some K ∈ KN .
2. Data regularity assumption (21) can only be satisfied, if the integrals on

the left-hand side are computed with negligible error. To achieve this one
can use high-order quadrature rules or perform local refinement according
to the local interpolation error ‖f − fpK+1‖L2(K)3 until (21) is satisfied.
Another option is to build some data error control into the whole algorithm
as proposed in [18, 20].
Note, since estimates (12) and (13) are not uniform with respect to the
polynomial degree pK , data regularity assumption (21) becomes more and
more restrictive for increasing pK .

3. If the convergence indicators εK,jK are too small or ε and θ are chosen
too large, then constraint (17) cannot be satisfied and thus no solution of
maximization problem (16), (17) exists. Especially this is the case, if

max
K∈KN

(εK,jK ) < max
K∈KN

(pK + 1)εθ.

Then our algorithm will continue with global h-refinement to enforce at
least some convergence. If εK,jK is uniformly bounded from below, ε and
θ can be chosen such that uniform convergence is assured due to Theorem
3. This might be shown by following the ideas of Theorem 5 in [14]. A
practical approach might be to monitor the computed values of εK,jK and
thus check convergence in an a posteriori way.
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4. Our analysis does not guarantee optimality of the algorithm, but our con-
vergence result might be a first step towards proving optimality [4, 24].
The difficulty lies in the maximization of (16) and its connection with
approximation properties of solutions. However, we can observe that our
refinement strategy performs well for the class of problems, which we con-
sider here. Especially we did not observe any lock-up of the refinement
algorithm due to a series of inefficient refinements as long as assumption
(20) was satisfied.

5. Numerical Examples

In this section we apply our fully automatic hp-adaptive refinement strat-
egy to some representative problems of the form (7). All computations are
performed with the finite element library deal.II [1, 2].

5.1. Example 1
In our first example we consider a problem with a smooth solution. Let

Ω := (0, 1)3, α(x) := (sin(2πx1) sin(2πx2) sin(2πx3) + 1.5)I and β := I. The
solution u is given by

u(x) :=

 0
0

sin(πx1)

 . (27)

We start our algorithm with an initial triangulation K0 consisting of 8 cells
and polynomial degree vector p = 0. As refinement patterns we offer bisection
in every coordinate-direction as h-refinement and increase of the polynomial
degree by one as p-refinement. For later reference we denote this strategy by
Θ1. Further we choose ε = 10−5 and θ = 0.9. In Figure 3 on the left-hand side
we plot the number of degrees of freedom vs. the energy error. On the right-

Figure 3: Example 1. Left: Number of degrees of freedom vs. energy error. Right: Final grid.

hand side the final grid after refinement step 7 is shown. The refinement history
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Step max(p) #h #p
0 0 0 8
1 1 0 8
2 2 0 8
3 3 0 8
4 4 0 8
5 5 0 8
6 6 0 8
7 7 0 8

Step max(p) #h #p
0 0 0 8
1 2 0 8
2 4 0 8
3 6 0 8

Table 1: Example 1: Refinement history. Left: Strategy Θ1. Right: Strategy Θ2.

can be seen in Table 1 on the left-hand side. Here #h denotes the number of
h-refinements and #p the number of p-refinements, which were performed in
the refinement step. Since in this example there are no local features to detect
and the solution is smooth, the algorithm chooses global p-refinement in every
refinement step.
In a second run we additionally provide the possibility to increase the polynomial
degree by two. This strategy is denoted by Θ2. In Table 1 on the right-hand
side the refinement history of this strategy can be seen. We observe that our
algorithm takes profit from the additional possibility to increase the polynomial
degree by two and, hence, reduces the number of refinement steps required to
obtain the final grid. This also pays out in the total computation time. Whereas
the first run took 11:12 minutes the second one took only 5:01 minutes on one
node with 24 cores and 64 GB of total memory.

5.2. Example 2
In this example we choose again Ω := (0, 1)3, but α(x) := I for all x ∈ Ω

and

β(x) :=

I , if max
i∈{1,2,3}

|xi − 0.5| ≤ 0.25

0 , else
.

The solution u is given by (27). This example already has the usual geometry of
a realistic electromagnetic problem, namely a conducting region, where β 6= 0
holds, and a nonconducting region, where β = 0 holds. Note that β does not fit
into our analytical setting, because it is not uniformly positive definite. Thus
we have to replace β by

χδ(β) :=


δI, if min

u∈L2(ωK)3

u6=0

( ∫
ωK
|uT βu|

‖u‖L2(ωK )3

)
< δ

β, else

for some δ > 0 with δ � 1. With this modification we are back in our analyt-
ical background, since χδ(β) now satisfies assumption (6) and problem (15) is
uniquely solvable on all patches ωK . We start our computation with a coarse
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grid K0 consisting of 64 equal-sized cells and polynomial degree vector p = 0.
As in Example 1 we try both strategies, Θ1 and Θ2, in two different runs. To
be able to compare these two strategies fairly well we choose θ := 0.9 quite big,
ε = 10−5 and δ = 10−10. In Figure 4 on the left-hand side we plot the number
of degrees of freedom vs. the energy error. Also in this example we observe that

Figure 4: Example 2: Left: Number of degrees of freedom vs. energy error. Right: Scaling of
computing time for refinement patterns.

the fully automatic hp-adaptive refinement algorithm recognizes the smoothness
of the solution and performs p-refinement only. On the right-hand side of Figure
4 we have plotted the average computational time, which is required to compute
the convergence indicators εj,K from Section 3.3, in strategy Θ2 for a varying
number of CPU cores. We observe that the computation time decreases with
growing number of cores.

5.3. Example 3
In this example we choose almost the same setting as in Example 2. Let

Ω, α, β and χδ(β) be as above. Further let f = 1 and g = 0. By this choice
the solution u becomes singular and we finally have a more realistic example.
The analytic solution u of this problem is unknown. We start with the same
grid and polynomial degree vector as in Example 2. Further we choose ε =
10−5, δ = 10−10 and θ = 0.275. In Figure 5 we plot the number of degrees of
freedom vs. the estimated error. Also in this example the algorithm captures
the edge singualrities quite well and performs h-refinement around the edges of
the nonconducting regions (cf. Figure 5). The refinement history can be seen in
Table 2.

5.4. Example 4
In the last example we solve a classical academic problem. Let Ω := (−1, 1)3\

([0, 1)×(−1, 0]×(−1, 1)) and α := β := I. The analytic solution of this problem
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Figure 5: Example 3: Left: Number of degrees of freedom vs. estimated error. Right: Final
grid.

Step max(p) #h #p
0 0 64 0
1 0 256 64
2 1 988 156
3 2 36 296
4 2 4056 32
5 3 15128 725
6 3 57112 3703

Table 2: Example 3: Refinement history.

is given by

u(r, φ, x3) :=
2
3
r−

1
3


− sin

(
φ
3

)
cos
(
φ
3

)
0

 ,

where r ∈ R+ and φ ∈ [0, 2π) denote the polar coordinates. We start the
algorithm with an initial grid K0 consisting of 48 cells and polynomial degree
vector p = 0. For the parameters ε > 0 and θ ∈ (0, 1] we choose ε = 10−5

and θ = 0.2. We plot the number of degrees of freedom vs. the energy error
in Figure 6 on the left-hand side. On the right-hand side the (x1, x2)-cut of
the final grid is shown. Also in this example the algorithm recognizes the edge
singularity along the corner edge (0, 0, x3) quite well.

6. Conclusion

We have shown a fully automatic hp-adaptive refinement strategy for Maxwell’s
equations in the electric field formulation. Further we have proven its conver-
gence and gave some numerical examples to see how the refinement strategy
performs under different circumstances.
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Figure 6: Example 4: Left: Number of degrees of freedom vs. energy error. Right: Final grid.
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