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A TRIGONOMETRIC METHOD FOR THE LINEAR STOCHASTIC WAVE
EQUATION

DAVID COHEN∗, STIG LARSSON†, AND MAGDALENA SIGG‡

Abstract. A fully discrete approximation of the linear stochastic wave equation driven by additive noise is
presented. A standard finite element method is used for the spatial discretisation and a stochastic trigonometric
scheme for the temporal approximation. This explicit time integrator allows for error bounds independent of the
space discretisation and thus do not have a step size restriction as in the often used Störmer-Verlet-leap-frog scheme.
Moreover it enjoys a trace formula as does the exact solution of our problem. These favourable properties are
demonstrated with numerical experiments.
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1. Introduction. We consider the numerical discretisation of the linear stochastic wave
equation with additive noise

du̇−∆udt = dW in D × (0,∞),

u = 0 in ∂D × (0,∞),

u(·,0) = u0, u̇(·,0) = v0 in D ,

(1.1)

where u = u(x, t), D ⊂R
d , d = 1,2,3, is a bounded convex domain with polygonal boundary

∂D , and the dot “·” stands for the time derivative. The stochastic process {W (t)}t≥0 is an
L2(D)-valued Q-Wiener process with respect to a normal filtration {Ft}t≥0 on a filtered
probability space (Ω,F ,P,{Ft}t≥0). The initial data u0 and v0 are F0-measurable random
variables. We will numerically solve this problem with a finite element method in space [17]
and a stochastic trigonometric method in time [1] and [3] (see Section 3).

There are many reasons to study stochastic wave equations. Let us mention the motion
of a suspended cable under wind loading [6]; the motion of a strand of DNA in a liquid
[5]; or the motion of shock waves on the surface of the sun [5]. All these stochastic partial
differential equations are of course nonlinear and highly nontrivial. But in order to derive
efficient numerical schemes, we first look at model problems like (1.1).

The numerical analysis of the stochastic wave equation is only in its beginning in com-
parison with the numerical analysis of parabolic problems. We refer to the introduction of
[17] for the relevant literature on the space discretisation of our stochastic partial differential
equation. We now comment on works dealing with the time discretisation of (1.1). Strong
convergence estimates for implicit one-step methods can be found in [16], despite the main
theme of the paper which is weak convergence. Both for spatial and temporal approxima-
tion the order of convergence is found to be somewhat lower than the order of regularity, see
Remark 2.2 below. In [26] the leap-frog scheme is applied to the nonlinear stochastic wave
equation with space-time white noise on the whole line. A strong convergence rate O(h1/2) is
proved, where h is the step size in both time and space, which is in agreement with the order
of regularity in this case. The reason for this is that the Green’s functions of the continuous
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and the discrete problems coincide at mesh points. A similar trick is also used in [19] and [20]
to derive an “exact” solver. Let us finally mention the work [13], where error bounds in the
p-th mean for general semilinear stochastic evolution equations are presented. The authors
consider a Fourier Galerkin discretisation in space and the exponential Euler scheme in time.
This exponential time integrator (see also [11], [12], [18] and references therein) is, in the
linear case, precisely the one that we use [3].

The paper is organised as follows. Some preliminaries and the main results from [17]
on strong convergence estimates for the finite element approximation of our problem are pre-
sented in Section 2. The stochastic trigonometric scheme is introduced in Section 3 and a
convergence analysis is carried out in Section 4. A trace formula for the numerical integra-
tor is obtained in Section 5 and finally in Section 6 numerical experiments demonstrate the
efficiency of our discretisation.

2. A finite element approximation of the stochastic wave equation. Before we can
state the main result on the finite element approximation of [17], we must define the spaces,
norms and notations we will need. Let U and H be separable Hilbert spaces with norms
‖·‖U , resp. ‖·‖H . L (U,H) denotes the space of bounded linear operators from U to H and
L2(U,H) the space of Hilbert-Schmidt operators with norm

‖T‖L2(U,H) :=
( ∞

∑
k=1

‖Tek‖2
H

)1/2
,

where {ek}∞
k=1 is an orthonormal basis of U . If H = U , then L (U) = L (U,U) and HS =

L2(U,U). Furthermore, if (Ω,F ,P,{Ft}t≥0) is a filtered probability space, then L2(Ω,H)
is the space of H-valued square integrable random variables with norm

‖v‖L2(Ω,H) = E[‖v‖2
H ]

1/2.

Let Q∈L (U) be a self-adjoint, positive semidefinite operator. The driving stochastic process
W (t) in (1.1) is a U-valued Q-Wiener process with respect to the filtration {Ft}t≥0 and has
the orthogonal expansion [22, Section 2.1]

W (t) =
∞

∑
j=1

γ1/2
j β j(t)e j, (2.1)

where {(γ j,e j)}∞
j=1 are eigenpairs of Q with orthonormal eigenvectors and {β j(t)}∞

j=1 are
real-valued mutually independent standard Brownian motions. It is then possible to define
the stochastic integral

∫ t
0 Φ(s)dW (s) together with Itô’s isometry, [22]:

E

[∥

∥

∥

∫ t

0
Φ(s)dW (s)

∥

∥

∥

2

H

]

=
∫ t

0
‖Φ(s)Q1/2‖2

L2(U,H) ds, (2.2)

where Φ : [0,∞)→ L (U,H) is such that the right side is finite.
For the stochastic wave equation (1.1), we define U = L2(D) and Λ =−∆ with D(Λ) =

H2(D)∩H1
0 (D). We assume that the covariance operator Q of W satisfies

‖Λ(β−1)/2Q1/2‖HS < ∞ (2.3)

for some β ≥ 0 and with the Hilbert-Schmidt norm defined above. If Q is of trace class, i. e.,
Tr(Q) = ‖Q1/2‖2

HS < ∞, then β = 1. If Q = Λ−s, s ≥ 0, then β < 1+ s− d/2. This follows
from the asymptotic behaviour of the eigenvalues of Λ, λ j ∼ j2/d . In particular, if Q = I, then
β < 1

2 and d = 1. Note that we do not assume that Λ and Q have a common eigenbasis.
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We will use the spaces Ḣα = D(Λα/2) for α ∈ R. The corresponding norm is given by

‖v‖α := ‖Λα/2v‖L2(D) =
( ∞

∑
j=1

λ α
j (v,ϕ j)

2
L2(D)

)1/2
,

where {(λ j,ϕ j)}∞
j=1 are the eigenpairs of Λ with orthonormal eigenvectors. We also write

Hα = Ḣα × Ḣα−1 and H = H0 = Ḣ0 × Ḣ−1.
We use a standard piecewise linear finite element method for the spatial discretisa-

tion. Let {Th} be a quasi-uniform family of triangulations of D with hK = diam(K), h =
maxK∈Th hK , and denote by Vh the space of piecewise linear continuous functions with re-
spect to Th which vanish on ∂D . Hence, Vh ⊂ H1

0 (D) = Ḣ1.
We introduce a discrete variant of the norm ‖·‖α :

‖vh‖h,α = ‖Λα/2
h vh‖L2(D), vh ∈Vh,

where Λh : Vh →Vh is the discrete Laplace operator defined by

(Λhvh,wh)L2(D) = (∇vh,∇wh)L2(D), ∀wh ∈Vh.

Denoting the velocity of the solution by u2 := u̇1 := u̇, one can rewrite (1.1) as

dX(t) = AX(t)dt +BdW(t), t > 0,

X(0) = X0,
(2.4)

where A :=

[

0 I
−Λ 0

]

, B :=

[

0
I

]

, X :=

[

u1

u2

]

and X0 :=

[

u0

v0

]

. The operator A with D(A) =

H1 = Ḣ1 × Ḣ0 is the generator of a strongly continuous semigroup of bounded linear opera-
tors E(t) = etA on H0 = Ḣ0 × Ḣ−1, in fact, a unitary group.

Let Ph : Ḣ0 → Vh and Rh : Ḣ1 → Vh denote the orthogonal projectors onto the finite
element space Vh ⊂ H1

0 (D) = Ḣ1, where we recall that Vh is the space of piecewise linear
continuous functions. The finite element approximation of (1.1) can then be written as

du̇h,1(t)+Λhuh,1(t)dt = Ph dW(t), t > 0,

uh,1(0) = uh,0, uh,2(0) = vh,0,
(2.5)

or in the abstract form

dXh(t) = AhXh(t)dt +PhBdW (t), t > 0,

Xh(0) = Xh,0,
(2.6)

where Ah :=

[

0 I
−Λh 0

]

, Xh :=

[

uh,1
uh,2

]

and Xh,0 :=

[

uh,0
vh,0

]

. Again, Ah is the generator of a

C0-semigroup Eh(t) = etAh on Vh.
It is known, see, e. g., [4, Example 5.8] and [17], that under assumption (2.3) the linear

stochastic wave equation (2.4) has a unique weak solution given by

X(t) = E(t)X0 +

∫ t

0
E(t − s)BdW (s), (2.7)

with mean-square regularity of order β ,

‖X(t)‖L2(Ω,Hβ ) ≤C
(

‖X0‖L2(Ω,Hβ )+ t1/2‖Λ(β−1)/2Q1/2‖HS

)

, t ≥ 0. (2.8)
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Similarly, the unique solution of the finite element problem (2.6) is given by

Xh(t) = Eh(t)Xh,0 +

∫ t

0
Eh(t − s)PhBdW(s). (2.9)

We quote the following theorem on the convergence of the spatial approximation.
THEOREM 2.1 (Theorem 5.1 in [17]). Assume that Q satisfies (2.3) for some β ∈ [0,4].

Let X0 = [u0,v0]
T ∈ Hβ = Ḣβ × Ḣβ−1, X = [u1,u2]

T and Xh = [uh,1,uh,2]
T be given by (2.7)

and (2.9), respectively. Then the following estimates hold for t ≥ 0, where C(t) is an increas-
ing function of the time t.
• If uh,0 = Phu0, vh,0 = Phv0 and β ∈ [0,3], then

‖uh,1(t)− u1(t)‖L2(Ω,Ḣ0) ≤C(t)h
2
3 β{‖X0‖L2(Ω,Hβ )+ ‖Λ

1
2 (β−1)Q

1
2 ‖HS

}

.

• If uh,0 = Rhu0, vh,0 = Phv0 and β ∈ [1,4], then

‖uh,2(t)− u2(t)‖L2(Ω,Ḣ0) ≤C(t)h
2
3 (β−1){‖X0‖L2(Ω,Hβ )+ ‖Λ

1
2 (β−1)Q

1
2 ‖HS}.

REMARK 2.2. Note that the order of convergence in the position, 2
3 β , is lower than the

order of regularity, β , in (2.8). This is a known feature of the finite element method for the
wave equation, see [17]. The upper limits for β are only dictated by the fact that the maximal
order for piecewise linear approximation is 2; higher regularity will not yield higher rate of
convergence unless higher order finite elements are used, which can be done of course, see
[17]. Similarly, it is shown in [16, Theorem 4.1] that the order of convergence of implicit

one-step temporal approximations is O(kmin(β p
p+1 ,1)), where k is the steplength and p is the

order of the method. Thus, p = 1 and p = 2 for the backward Euler-Maruyama and Crank-
Nicolson-Maruyama methods, respectively.

We will also use the following relation between Λh and Λ, see the proof of Theorem 4.4
in [15],

‖Λα
h PhΛ−α v‖2

L2(D) ≤ ‖v‖2
L2(D), α ∈ [− 1

2 ,1], v ∈ Ḣ0 = L2(D), (2.10)

where Ph is the orthogonal projector Ph : Ḣ0 →Vh.
Finally, we remark that the assumption that D is convex and polygonal guarantees that

the triangulations can be exactly fitted to ∂D and that we have the elliptic regularity ‖v‖H2(D)≤
C‖Λv‖L2(D) for v ∈ D(Λ). This simplifies the error analysis of the finite element method. The
assumption of quasi-uniformity guarantees that we have an inverse inequality and is only used
in the proof of the case α ∈ [0, 1

2 ] of (2.10). In particular, it is not needed for the proof of
Theorem 2.1 and not for the case β = 1 (trace class noise) in the error analysis in Theorem 4.1
below.

3. A stochastic trigonometric method for the discretisation in time. In order to dis-
cretise efficiently the finite element problem (2.5), or (2.6), in time one is often interested
in using explicit methods with large step sizes. A standard approach for the deterministic
case is the leap-frog scheme, but unfortunately one has a step-size restriction due to stabil-
ity issues. In the present paper, we will consider a stochastic extension of the trigonometric
methods. The trigonometric methods are particularly well suited for the numerical discretisa-
tion of second-order differential equations with highly oscillatory solutions, see [9, Chapter
XIII] for more details. As stated above, the exact solution of (2.6) is found by the variation-
of-constants formula and given by (2.9). We can write Eh(t) as

Eh(t) =

[

Ch(t) Λ−1/2
h Sh(t)

−Λ1/2
h Sh(t) Ch(t)

]

(3.1)
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with Ch(t) = cos(tΛ1/2
h ) and Sh(t) = sin(tΛ1/2

h ). Discretising the stochastic integral in the
sense of Itô, that is, evaluating the integrand at the left-end point of the interval, leads us
to the stochastic trigonometric method. We let k be the time step size and U0

1 = uh,0 and
U0

2 = vh,0, and obtain the numerical scheme Un+1 = Eh(k)Un +Eh(k)PhB∆W n, that is,

[

Un+1
1

Un+1
2

]

=

[

Ch(k) Λ−1/2
h Sh(k)

−Λ1/2
h Sh(k) Ch(k)

]

[

Un
1

Un
2

]

+

[

Λ−1/2
h Sh(k)
Ch(k)

]

Ph∆W n, (3.2)

where ∆W n =W (tn+1)−W(tn) denotes the Wiener increments. Here we thus get an approx-
imation Un

j ≈ uh, j(tn) of the exact solution of our finite element problem at the discrete times
tn = nk.

REMARK 3.1. The stochastic trigonometric methods (3.2) are easily adapted to the
numerical time discretisation of (N-dimensional) systems of nonlinear stochastic differential
equations of the form

Ẍ(t)+ω2X(t) = G(X(t))+Ẇ(t),

where ω ∈ R
N×N is a symmetric positive definite matrix and G(x) ∈ R

N is a smooth nonlin-
earity. In this case, one obtains the following explicit numerical scheme [3]

[

Xn+1
1

Xn+1
2

]

=

[

cos(kω) ω−1 sin(kω)
−ω sin(kω) cos(kω)

][

Xn
1

Xn
2

]

+

[

k2

2 ΨG(ΦXn
1 )

k
2

(

Ψ0G(ΦXn
1 )+Ψ1G(ΦXn+1

1 )
)

]

+

[

ω−1 sin(kω)
cos(kω)

]

∆W n,

(3.3)

where k denotes the step size and ∆W n = W (tn+1)−W (tn) the Wiener increments. Here
Ψ = ψ(kω) and Φ = φ(kω), where the filter functions ψ ,φ are even, real-valued functions
with ψ(0) = φ(0) = 1. Moreover, we have Ψ0 = ψ0(kω), Ψ1 = ψ1(kω) with even functions
ψ0,ψ1 satisfying ψ0(0) = ψ1(0) = 1. The purpose of these filter functions is to attenuate
numerical resonances. Moreover, the choice of the filter functions may also have a substantial
influence on the long-time properties of the method, see [9, Chapter XIII] for the deterministic
case. We will not deal with these issues in the present paper.

Numerical experiments for the nonlinear stochastic wave equation

du̇−∆udt = G(u)dt + dW

with a smooth nonlinearity G will be provided in Section 6 in order to demonstrate the effi-
ciency of this approach. We leave a theoretical investigation of the nonlinear case for future
works.

For a more detailed derivation of the trigonometric method and its use for nonlinear wave
equations we refer to [9, Chapter XIII] and [2] for the deterministic case and to [1] and [3]
for the stochastic case.

In the next section we will see that this explicit numerical method permits the use of large
time step sizes k and that the error bounds are independent of the spatial mesh size h; some
of these properties are not shared by, for example, the backward Euler-Maruyama scheme,
the Störmer-Verlet scheme or the Crank-Nicolson-Maruyama scheme, as we will see in the
numerical experiments in Section 6.

4. Mean-square convergence analysis. In this section, we will derive mean-square
error bounds for the stochastic trigonometric method (3.2). Our main result is a global error
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estimate for the time discretisation in Theorem 4.1. Its proof is based on bounds for the local
errors in Lemma 4.2. Finally, we formulate an error estimate for the full discretisation.

THEOREM 4.1. Consider the numerical discretisation of (2.5) by the stochastic trigono-
metric scheme (3.2) with temporal step size k. The global strong errors of the numerical
scheme satisfy the following estimates:
• If ‖Λ(β−1)/2Q1/2‖HS < ∞ for some β ≥ 0, then

‖Un
1 − uh,1(tn)‖L2(Ω,Ḣ0) ≤Ckmin{β ,1}‖Λ(β−1)/2Q1/2‖HS.

• If ‖Λ(β−1)/2Q1/2‖HS < ∞ for some β ≥ 1, then

‖Un
2 − uh,2(tn)‖L2(Ω,Ḣ0) ≤Ckmin{β−1,1}‖Λ(β−1)/2Q1/2‖HS.

The constant C =C(T ) is independent of h, k, and n with tn = nk ≤ T .
For the proof of the above theorem, we will need the following lemma:
LEMMA 4.2. Let the local defects dn = [dn

1 ,d
n
2 ]

T be defined by

dn
1 :=

∫ tn+1

tn
Λ−1/2

h Sh(tn+1 − s)Ph dW (s)−Λ−1/2
h Sh(k)Ph∆W n,

dn
2 :=

∫ tn+1

tn
Ch(tn+1 − s)Ph dW (s)−Ch(k)Ph∆W n.

We have the following estimates:
• If ‖Λ(β−1)/2Q1/2‖HS < ∞ for some β ≥ 0, then

E[‖dn
1‖2

L2(D)]+E[‖Λ−1/2
h dn

2‖2
L2(D)]≤Ckmin{2β+1,3}‖Λ(β−1)/2Q1/2‖2

HS.

• If ‖Λ(β−1)/2Q1/2‖HS < ∞ for some β ≥ 1, then

E[‖Λ1/2
h dn

1‖2
L2(D)]+E[‖dn

2‖2
L2(D)]≤Ckmin{2β−1,3}‖Λ(β−1)/2Q1/2‖2

HS.

The constant C =C(T ) is independent of h, k, and n with tn = nk ≤ T .
Proof. We begin by showing

‖(Sh(t)− Sh(s))Λ
−β/2
h ‖L (Ḣ0) ≤C|t − s|β , β ∈ [0,1]. (4.1)

For β = 0 and vh ∈Vh we use the triangle inequality and the boundedness of Sh(t):

‖(Sh(t)− Sh(s))vh‖L2(D) ≤ 2‖vh‖L2(D) = 2‖vh‖h,0.

For β = 1 and vh ∈Vh we use the fact that

(Sh(t)− Sh(s))vh =

∫ t

s
DrSh(r)vh dr =

∫ t

s
Ch(r)Λ

1/2
h vh dr

and hence

‖(Sh(t)− Sh(s))vh‖L2(D) ≤ |t − s|‖Λ1/2
h vh‖L2(D) = |t − s|‖vh‖h,1.

A well-known interpolation argument then yields

‖(Sh(t)− Sh(s))vh‖L2(D) ≤C|t − s|β‖vh‖h,β , vh ∈Vh, β ∈ [0,1],
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which is (4.1).
We now consider dn

1 with β ∈ [0,1]. By Itô’s isometry (2.2) and (4.1) we have

E[‖dn
1‖2

L2(D)] = E

[∥

∥

∥

∫ tn+1

tn
Λ−1/2

h (Sh(tn+1 − s)− Sh(k))Ph dW (s)
∥

∥

∥

2

L2(D)

]

=

∫ k

0
‖Λ−1/2

h (Sh(s)− Sh(k))PhQ1/2‖2
HS ds

≤
∫ k

0
‖(Sh(s)− Sh(k))Λ

−β/2
h ‖2

L (Ḣ0) ds‖Λ(β−1)/2
h PhQ1/2‖2

HS

≤Ck2β+1‖Λ(β−1)/2
h PhQ1/2‖2

HS.

Using also (2.10) with α = (β − 1)/2 ∈ [− 1
2 ,0] we obtain

‖Λ(β−1)/2
h PhQ1/2‖HS = ‖Λ(β−1)/2

h PhΛ−(β−1)/2Λ(β−1)/2Q1/2‖HS

≤ ‖Λ(β−1)/2
h PhΛ−(β−1)/2‖L (Ḣ0)‖Λ(β−1)/2Q1/2‖HS

≤C‖Λ(β−1)/2Q1/2‖HS.

This proves

E[‖dn
1‖2

L2(D)]≤Ck2β+1‖Λ(β−1)/2Q1/2‖2
HS,

which is the desired bound when β ∈ [0,1]. When β ≥ 1, we simply observe that ‖Λ−(β−1)/2‖L (Ḣ0) ≤
C, so that by the already proven case

E[‖dn
1‖2

L2(D)]≤Ck3‖Q1/2‖2
HS ≤Ck3‖Λ(β−1)/2Q1/2‖2

HS‖Λ−(β−1)/2‖2
L (Ḣ0)

≤Ck3‖Λ(β−1)/2Q1/2‖2
HS.

This is the desired result for β ≥ 1.
Similarly we find for the second component dn

2 with β ∈ [1,2]:

E[‖dn
2‖2

L2(D)]≤
∫ k

0
‖(Ch(s)−Ch(k))Λ

−(β−1)/2
h ‖2

L (Ḣ0) ds‖Λ(β−1)/2
h PhQ1/2‖2

HS,

where, similar to (4.1),

‖(Ch(t)−Ch(s))Λ
−(β−1)/2
h ‖L (Ḣ0) ≤C|t − s|β−1, β ∈ [1,2].

Hence, using also (2.10) now with α = (β − 1)/2 ∈ [0, 1
2 ], we obtain

E[‖dn
2‖2

L2(D)]≤Ck2β−1‖Λ(β−1)/2Q1/2‖2
HS

for β ∈ [1,2]. For β ≥ 2 the defect is of the order k3.

The bounds for E[‖Λ1/2
h dn

1‖2
L2(D)] and E[‖Λ−1/2

h dn
2‖2

L2(D)] are proved in the same way.
We now turn to the proof of our main result on the strong convergence of the numerical

method (3.2).
Proof. [Proof of Theorem 4.1] We define Fn

j := Un
j − uh, j(tn), j = 1,2, and Fn =

[Fn
1 ,F

n
2 ]

T . First of all we remark that

‖Un
1 − uh,1(tn)‖2

L2(Ω,Ḣ0) = ‖Fn
1 ‖2

L2(Ω,Ḣ0) = E
[

‖Fn
1 ‖2

L2(D)

]

.
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Substituting the exact solution Xh = [uh,1,uh,2]
T of (2.5) into the numerical scheme (3.2), we

obtain

Xh(tn+1) = Eh(k)Xh(tn)+Eh(k)PhB∆W n + dn

with the defects dn := [dn
1 ,d

n
2 ]

T defined in Lemma 4.2 and Eh(t) defined in (3.1). We thus
obtain the following formula for the error Fn+1:

Fn+1 = Eh(k)F
n + dn = Eh(tn+1)F

0 +
n

∑
j=0

Eh(tn− j)d
j =

n

∑
j=0

Eh(tn− j)d
j,

since F0 = 0. Taking expectations gives us for the first component

E
[

‖Fn
1 ‖2

L2(D)

]

= E

[∥

∥

∥

n−1

∑
j=0

(

Ch(tn−1− j)d
j
1 +Λ−1/2

h Sh(tn−1− j)d
j
2

)

∥

∥

∥

2

L2(D)

]

= E

[(n−1

∑
j=0

Ch(tn−1− j)d
j
1,

n−1

∑
i=0

Ch(tn−1−i)d
i
1

)

+

(n−1

∑
j=0

Ch(tn−1− j)d
j
1,

n−1

∑
i=0

Λ−1/2
h Sh(tn−1−i)d

i
2

)

+

(n−1

∑
j=0

Λ−1/2
h Sh(tn−1− j)d

j
2,

n−1

∑
i=0

Ch(tn−1−i)d
i
1

)

+

(n−1

∑
j=0

Λ−1/2
h Sh(tn−1− j)d

j
2,

n−1

∑
i=0

Λ−1/2
h Sh(tn−1−i)d

i
2

)]

.

Here we use the independence of di
1,2 and d j

1,2 with i, j = 0, . . . ,n− 1 for i 6= j to get

E
[

‖Fn
1 ‖2

L2(D)

]

= E

[ n−1

∑
j=0

(Ch(tn−1− j)d
j
1,Ch(tn−1− j)d

j
1)

+
n−1

∑
j=0

(Ch(tn−1− j)d
j
1,Λ

−1/2
h Sh(tn−1− j)d

j
2)

+
n−1

∑
j=0

(Λ−1/2
h Sh(tn−1− j)d

j
2,Ch(tn−1− j)d

j
1)

+
n−1

∑
j=0

(Λ−1/2
h Sh(tn−1− j)d

j
2,Λ

−1/2
h Sh(tn−1− j)d

j
2)
]

=
n−1

∑
j=0

E

[

‖Ch(tn−1− j)d
j
1 +Λ−1/2

h Sh(tn−1− j)d
j
2‖2

L2(D)

]

≤ 2
n−1

∑
j=0

(

E
[

‖d j
1‖2

L2(D)

]

+E
[

‖Λ−1/2
h d j

2‖2
L2(D)

]

)

.

Now we can apply Lemma 4.2 for the estimates of the defects d j
1 and d j

2 and get

E
[

‖Fn
1 ‖2

L2(D)

]

≤C
n

∑
j=0

kmin{2β+1,3}‖Λ(β−1)/2Q1/2‖2
HS

≤C(T )kmin{2β ,2}‖Λ(β−1)/2Q1/2‖2
HS.
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Therefore we obtain

‖Un
1 − uh,1(tn)‖L2(Ω,Ḣ0) =

√

E
[

‖Fn
1 ‖2

L2(D)

]

≤Ckmin{β ,1}‖Λ(β−1)/2Q1/2‖HS

for β ≥ 0.
For the second component of Fn we obtain

E
[

‖Fn
2 ‖2

L2(D)

]

= E

[∥

∥

∥

n−1

∑
j=0

(

−Λ1/2
h Sh(tn−1− j)d

j
1 +Ch(tn−1− j)d

j
2

)

∥

∥

∥

2

L2(D)

]

=
n−1

∑
j=0

E
[

‖−Λ1/2
h Sh(tn−1− j)d

j
1 +Ch(tn−1− j)d

j
2‖2

L2(D)

]

≤C
n−1

∑
j=0

(

‖Λ1/2
h d j

1‖2
L2(D)+ ‖d j

2‖2
L2(D)

)

.

Thus we get with Lemma 4.2, if β ≥ 1:

E
[

‖Fn
2 ‖2

L2(D)

]

≤C
n

∑
j=0

kmin{2β−1,3}‖Λ(β−1)/2Q1/2‖2
HS

≤Ckmin{2β−2,2}‖Λ(β−1)/2Q1/2‖2
HS

and

‖Un
2 − uh,2(tn)‖L2(Ω,Ḣ0) =

√

E
[

‖Fn
2 ‖2

L2(D)

]

≤Ckmin{β−1,1}‖Λ(β−1)/2Q1/2‖HS.

We can now collect the convergence results for the space discretisation and for the time
discretisation. This gives us the following theorem.

THEOREM 4.3. Consider the numerical solution of (1.1) by the finite element method in
space with a maximal mesh size h and the numerical scheme (3.2) with a time step size k on
the time interval [0,T ]. Let us denote the discrete time by tn = nk. Let X0 = [u0,v0]

T and let
X = [u1,u2]

T and Xh = [uh,1,uh,2]
T be given by (2.7) and (2.9), respectively. If ‖X0‖L2(Ω,Hβ ) <

∞, the following estimates hold for t ≥ 0, where C(t) is an increasing function of the time t.
• If uh,0 = Phu0, vh,0 = Phv0 and if ‖Λ(β−1)/2Q1/2‖HS < ∞ for some β ∈ [0,3], then

‖Un
1 − u1(tn)‖L2(Ω,Ḣ0) ≤C(T )

(

h2β/3 + kmin{β ,1}
)

‖Λ(β−1)/2Q1/2‖HS.

• If uh,0 = Rhu0, vh,0 = Phv0 and if ‖Λ(β−1)/2Q1/2‖HS < ∞ for some β ∈ [1,4], then

‖Un
2 − u2(tn)‖L2(Ω,Ḣ0) ≤C(T )

(

h2(β−1)/3+ kmin{β−1,1}
)

‖Λ(β−1)/2Q1/2‖HS.

Proof. This follows from Theorems 2.1 and 4.1 by the triangle inequality.

5. A trace formula for the numerical solution. In this section, we look at a geometric
property of the exact solution of the wave equation. It is known that, in the deterministic
setting, the linear wave equation is a Hamiltonian partial differential equation, wherein the
total energy (or Hamiltonian) of the problem is conserved for all times. However, in the
stochastic case considered here, the expected value of the energy grows linearly with the time
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t. This is stated in the next theorem for the semidiscretisation of our linear stochastic wave
equation (1.1). For a nonlinear version of this so-called trace formula we refer to [24].

THEOREM 5.1. Consider the numerical solution of (1.1) by the finite element method
in space with a maximal mesh size h. Let Xh = [uh,1,uh,2]

T be given by (2.9). The expected
value of the energy of the exact solution of the semidiscrete problem (2.5) with initial values
Xh(0) = [uh,0,vh,0]

T ∈ L2(Ω,Vh) satisfies:

E

[1
2

(

‖Λ1/2
h uh,1(t)‖2

L2(D)+ ‖uh,2(t)‖2
L2(D)

)

]

= E

[1
2

(

‖Λ1/2
h uh,0‖2

L2(D)+ ‖vh,0‖2
L2(D)

)

]

+
1
2

tTr(PhQPh)

for all times t ≥ 0.
Proof. We recall that the solution of (2.5), Xh(t) = [uh,1(t),uh,2(t)]T , with initial values

Xh(0) = [uh,0,vh,0]
T can be written as

Xh(t) = Eh(t)Xh(0)+
∫ t

0
Eh(t − s)PhBdW(s).

Therefore we get for the first summand of the energy, i. e., the potential energy,

E

[

‖Λ1/2
h uh,1(t)‖2

L2(D)

]

= E

[
∥

∥

∥
Λ1/2

h Ch(t)uh,0 + Sh(t)vh,0 +

∫ t

0
Sh(t − s)Ph dW(s)

∥

∥

∥

2

L2(D)

]

= E

[

‖Λ1/2
h Ch(t)uh,0‖2

L2(D)+ ‖Sh(t)vh,0‖2
L2(D)

+
∥

∥

∥

∫ t

0
Sh(t − s)Ph dW (s)

∥

∥

∥

2

L2(D)
+ 2

(

Λ1/2
h Ch(t)uh,0,Sh(t)vh,0

)

+ 2
(

Λ1/2
h Ch(t)uh,0,

∫ t

0
Sh(t − s)Ph dW (s)

)

+ 2
(

Sh(t)vh,0,
∫ t

0
Sh(t − s)Ph dW(s)

)]

= E

[

‖Λ1/2
h Ch(t)uh,0‖2

L2(D)+ ‖Sh(t)vh,0‖2
L2(D)

+
∥

∥

∥

∫ t

0
Sh(t − s)Ph dW (s)

∥

∥

∥

2

L2(D)
+ 2

(

Λ1/2
h Ch(t)uh,0,Sh(t)vh,0

)

]

using the fact that the above Itô integrals are normally distributed with mean 0.
For the second summand we obtain

E

[

‖uh,2(t)‖2
L2(D)

]

= E

[

‖Λ1/2
h Sh(t)uh,0‖2

L2(D)+ ‖Ch(t)vh,0‖2
L2(D)

+
∥

∥

∥

∫ t

0
Ch(t − s)Ph dW(s)

∥

∥

∥

2

L2(D)
− 2

(

Λ1/2
h Ch(t)uh,0,Sh(t)vh,0

)

]

.

Now, we use Itô’s isometry to compute, for example,

E

[∥

∥

∥

∫ t

0
Sh(t − s)Ph dW (s)

∥

∥

∥

2

L2(D)

]

=

∫ t

0
‖Sh(t − s)PhQ1/2‖2

HS ds.

Then, combining these expressions and using a trigonometric identity leads to the statement
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of the theorem:

E

[1
2

(

‖Λ1/2
h uh,1(t)‖2

L2(D)+ ‖uh,2(t)‖2
L2(D)

)

]

= E

[1
2

(

‖Λ1/2
h uh,0‖2

L2(D)+ ‖uh,0‖2
L2(D)

)

]

+
1
2

t‖PhQ1/2‖2
HS

=
1
2

(

‖Λ1/2
h uh,0‖2

L2(D)+ ‖uh,0‖2
L2(D)

)

+
1
2

tTr(PhQPh).

The last equality follows from the definitions of the HS-norm, of the operator Q and of the
projector Ph:

‖PhQ1/2‖2
HS = Tr((PhQ1/2)(PhQ1/2)∗) = Tr(PhQPh).

This concludes the proof.
REMARK 5.2. We would like to point out, that an alternative proof of the above result

can be obtained using Itô’s formula, see for example [4, Theorem 4.17], to the function

F(Uh) =
1
2

(

‖Λ1/2
h Uh,1‖2

L2(D)+ ‖Uh,2‖2
L2(D)

)

.

We are now able to show that the numerical solution given by our stochastic trigonometric
scheme preserves this geometric property of the exact solution of the finite element problem
(2.5).

THEOREM 5.3. Under the assumptions of Theorem 5.1, the numerical solution of (2.5)
by the stochastic trigonometric method (3.2) with a step size k preserves the linear drift of the
expected value of the energy, i. e.,

E

[1
2

(

‖Λ1/2
h Un

1 ‖2
L2(D)+ ‖Un

2‖2
L2(D)

)

]

= E

[1
2

(

‖Λ1/2
h uh,0‖2

L2(D)+ ‖vh,0‖2
L2(D)

)

]

+
1
2

tnTr(PhQPh)

for all times tn = nk ≥ 0.
Proof. The stochastic part of the method can be written as an Itô integral and we obtain

due to the Itô isometry

E

[

‖Sh(k)Ph∆W n−1‖2
L2(D)

]

= E

[∥

∥

∥

∫ tn

tn−1

Sh(k)Ph dW (s)
∥

∥

∥

2

L2(D)

]

=

∫ tn

tn−1

‖Sh(k)PhQ1/2‖2
HS ds.

Similarly to the proof of Theorem 5.1 we thus get

E

[1
2

(

‖Λ1/2
h Un

1

∥

∥

2
L2(D)

+ ‖Un
2‖2

L2(D)

)

]

= E

[1
2

(

‖Λ1/2
h Un−1

1 ‖2
L2(D)+ ‖Un−1

2 ‖2
L2(D)

)

]

+
k
2

Tr(PhQPh).

A recursion now concludes the proof. To conclude this section, we would like to remark that
already for stochastic ordinary differential equations, the growth rate of the expected energy
along the numerical solutions given by the forward (or backward) Euler-Maruyama scheme
and the midpoint rule, see [1] and references therein, is not correct. Indeed, for the forward
Euler-Maruyama scheme, one has an exponential drift in the expected value of the energy.
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6. Numerical examples. Let us consider the example given in [17]:

du̇−∆udt = dW, (x, t) ∈ (0,1)× (0,1),

u(0, t) = u(1, t) = 0, t ∈ (0,1),

u(x,0) = cos(π(x− 1/2)), u̇(x,0) = 0, x ∈ (0,1).

(6.1)

The solution of this stochastic partial differential equation will now be numerically approx-
imated with a finite element method in space and the stochastic trigonometric method (3.2)
in time. For the below numerical experiments, we will consider two kinds of noise: a space-
time white noise with covariance operator Q = I and a correlated one. For correlated noise
we choose Q = Λ−s with s ∈ R and recall the relation β < 1+ s− d/2, where d = 1 is the
dimension of the problem, see the discussion after (2.3).

Before we start with our numerical experiments, let us briefly explain how we approxi-
mate the noise present in the above stochastic partial differential equation. From the Fourier
expansion (2.1), we have for all χ ∈Vh:

(Ph∆W n,χ)L2(D) =
∞

∑
j=1

γ1/2
j ∆β n

j (e j,χ)L2(D),

where {γ j,e j}∞
j=1 are the eigenpairs of the covariance operator Q with orthonormal eigenvec-

tors {e j}∞
j=1, and {β j}∞

j=1 are mutually independent standard real-valued Brownian motions

with Gaussian increments ∆β n
j = β j(tn)−β j(tn−1)∼

√
kN (0,1). As explained in [17], un-

der some assumptions on the triangulation and the operator Q, one can approximate the above
expansion with

(Ph∆W n,χ)L2(D) ≈
J

∑
j=1

γ1/2
j ∆β n

j (e j,χ)L2(D),

with an integer J ≥ Nh, where Nh = dim(Vh), while retaining the convergence rate, to obtain
the semidiscrete solution, see (2.9),

X J
h (t) = Eh(t)Xh,0 +

J

∑
j=1

γ1/2
j

∫ t

0
Eh(t − s)PhBe j dβ j(s).

Figure 6.1 confirms the results on the spatial discretisation of our linear stochastic wave
equation stated in Theorem 2.1. The spatial errors in the first component of our problem
are displayed for various values of the parameter s. On the one hand we consider a space-
time white noise with Q = I, and hence β < 1/2, and on the other hand, different correlated
noises with Q = Λ−s, i. e., β < 1/2+ s. The corresponding convergence rates are observed.
Here, we simulate the exact solution with the numerical one using a very small step size,
i. e., kexact = hexact = 2−8. The expected values are approximated by computing averages over
M = 100 samples.

We are now interested in the time-discretisation of the above stochastic wave equation
for various spatial meshes. Figure 6.2 displays the strong error at time t = 1 in the first
component of the solution for space-time white noise with s = 0 and for correlated noise with
s = 1/2, respectively. One observes the order of convergence stated in Theorem 4.1 and the
fact that these errors are independent of the spatial discretisation. Again, the exact solution is
approximated by the stochastic trigonometric method with a very small step size kexact = 2−6.
We use hexact = 2−9,2−10, resp., 2−11 for the spatial discretisations. Again M = 100 samples
are used for the approximation of the expected values.
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β < 1/2
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Order 2/3
β < 3/2
Order 1
β < 3
Order 2

FIGURE 6.1. Spatial errors: The L2-error in the first component decreases with order h
2
3 β .

Next, we compare our time integrator with the following classical numerical schemes for
stochastic differential equations. When applied to the wave equation in the form (2.4), these
schemes are:

1. The backward Euler-Maruyama scheme Xn+1 = Xn + kAXn+1 +B∆Wn, see for ex-
ample [14] or [21]. The strong rate of convergence for this method is O(kmin(β/2,1),
see [16, Theorem 4.12].

2. A stochastic version of the Störmer-Verlet scheme, writing X = [X1,X2]
T ,

Xn+1/2
2 = Xn

2 +
k
2

ΛXn
1 +W(tn+1/2)−W(tn),

Xn+1
1 = Xn

1 + kXn+1/2
2 ,

Xn+1
2 = Xn+1/2

2 +
k
2

ΛXn+1
1 +W(tn+1)−W(tn+1/2).

For an application of this scheme to the Langevin equation, we refer to [23]. We
were not able to find any references on the strong rate of convergence of this numer-
ical method.

3. The Crank-Nicolson-Maruyama scheme [10]

Xn+1 = Xn +
k
2

A(Xn+1 +Xn)+B∆Wn.

The strong rate of convergence is O(kmin(2β/3,1), see [16, Theorem 4.12].
We apply these schemes to the finite element approximation of the linear problem (6.1)
with truncated noise. Note that both the backward Euler-Maruyama scheme and the Crank-
Nicolson-Maruyama scheme are implicit. Figure 6.3 presents the various strong convergence
rates of the above numerical integrators, once with white noise and once with correlated
noise with Q = Λ−1/2. One observes that the numerical solution given by the Störmer-Verlet
method explodes for larger values of the step-size k (this computation was stopped when
the deterministic non-stable regime of the scheme was attained). For all the experiments we
use hexact = 2−10 for the spatial discretisation. The reference solution is computed using the
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FIGURE 6.2. Temporal errors: The L2-error in the first component decreases with order kβ and is independent
of the mesh-grid h.

stochastic trigonometric method with the step size kexact = 2−16. Again M = 100 samples are
used.

In the following numerical experiment, we are concerned with the trace formula of Sec-
tion 5. Figure 6.4 illustrates the trace formula of the numerical solution. Here, we choose
s = 1/2 and hence β < 1 and display the expected value of the energy along the numerical so-
lution of the above stochastic linear wave equation with mesh grids h= 0.1 and k = 0.1 on the
long time interval [0,500]. We took M = 15000 samples to approximate the expected energy
of our problem. A comparison with other time integrators is presented in Figure 6.5. One
notes that all these numerical schemes do not reproduce the linear growth of the expected en-
ergy correctly. This fact is already known for the backward Euler-Maruyama scheme applied
to a finite-dimensional linear stochastic oscillator [25].

Finally we consider a nonlinear stochastic wave equation, the Sine-Gordon equation
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FIGURE 6.3. L2-error in the first component of the numerical solutions given by the Störmer-Verlet method
(SV), the backward Euler-Maruyama scheme (BEM), the Crank-Nicolson-Maruyama scheme (CNM) and the
stochastic trigonometric method (STM).

driven by additive noise:

du̇−∆udt =−sin(u)dt + dW, (x, t) ∈ (0,1)× (0,1),

u(0, t) = u(1, t) = 0, t ∈ (0,1),

u(x,0) = 0, u̇(x,0) = 1[ 1
4 ,

3
4 ]
(x), x ∈ (0,1),

where 1I(x) denotes the indicator function for the interval I. The corresponding deterministic
problem is studied for example in [7]. We solve this problem again with a finite element
method in space and in time we use the stochastic trigonometric method (3.3) with G(X(t)) =
−sin(X(t)) and the filter functions proposed in [8]:

ψ(ξ ) = sinc3(ξ ), φ(ξ ) = sinc(ξ ), ψ0(ξ ) = cos(ξ )sinc2(ξ ), ψ1(ξ ) = sinc2(ξ ),
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FIGURE 6.4. Trace-formula: The stochastic trigonometric method preserves exactly the linear growth of the
expected value of the energy.
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FIGURE 6.5. Although using a small time step size, the backward Euler-Maruyama scheme (BEM) does
not reproduce the linear growth of the expected energy. The Störmer-Verlet method (SV) and the Crank-Nicolson-
Maruyama scheme (CNM) yield better results even with a larger time step size.

where sinc(ξ ) = sin(ξ )/ξ . In the upper plot of Figure 6.6, we show the expected energy of
the numerical solution of the Sine-Gordon equation where the covariance operator is given by
Q= I. Even for a large step-size k = 0.1, one can observe the good behaviour of the numerical
scheme. In the lower figure, we display the convergence rate for the first component with a
covariance operator Q = Λ−1. Again, we approximate the exact solution with a finite element
solution and the stochastic trigonometric scheme using kexact = 2−6 and hexact = 2−9.
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FIGURE 6.6. In the nonlinear case, the stochastic trigonometric method preserves almost exactly the linear
growth of the expected value of the energy (above figure). The L2-error in the first component of the numerical
solution given by the stochastic trigonometric method decreases with order 1.
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