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Abstract

Biological processes involving the random interaction of d species with integer particle
numbers are often modeled by a Markov jump process on Nd

0. Realizations of this pro-
cess can, in principle, be generated with the classical stochastic simulation algorithm
proposed in [19], but for very reactive systems this method is usually inefficient. Hy-
brid models based on piecewise deterministic processes offer an attractive alternative
which can decrease the simulation time considerably in applications where species with
rather low particle numbers interact with very abundant species. We investigate the
convergence of the hybrid model to the original one for a class of reaction systems
with two distinct scales. Our main result is an error bound which states that, under
suitable assumptions, the hybrid model approximates the marginal distribution of the
discrete species and the conditional moments of the continuous species up to an error
of O

`
M−1

´
where M is the scaling parameter of the partial thermodynamic limit.

Keywords: Stochastic reaction systems, Gillespie algorithm, hybrid models, piecewise
deterministic processes, error bounds, chemical master equation, thermodynamic limit
AMS subject classifications: 60J22, 60J27, 65C20, 65C40, 92-08, 92C42, 92D25

1 Introduction

Many processes inside living cells are characterized by low particle numbers and a high
degree of randomness which brings about stochastic effects such as, e.g., the switching of
a genetic toggle switch or random extinction [34, 33, 13, 39]. Such effects are crucial for
the understanding of the biological system but can usually not be reproduced with the
traditional deterministic reaction-rate approach where the concentrations of the species are
modeled by a set of ordinary differential equations. Often much better results are obtained
when the system is considered as a continuous-time Markov jump process on the state space
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of vectors of particle numbers, because this approach respects both the discreteness of the
populations and the randomness of the dynamics; cf. [19, 18, 26, 16, 3]. Unbiased realizations
of the Markov process can be generated with the stochastic simulation algorithm derived
in D. Gillespie’s seminal paper [19]. Although this algorithm is widely used, its efficiency
is constrained by the fact that each single reaction event requires an update of the system,
which makes the simulation of highly reactive systems very costly.

This has motivated the construction of many new numerical methods which either
reformulate the original scheme in a more economical way (cf. [17]) or reduce the simulation
time at the price of a a small approximation error; cf. [22, 5, 36, 32, 11, 12, 29, 2] and
references therein. A second group of approaches aims to simplify the model by assuming,
e.g., that a part of the reaction system is nearly in equilibrium [35, 7] or that the highly
reactive (“fast”) part of the problem can be described in terms of ordinary or stochastic
differential equations which can be solved more efficiently; cf. [1, 6, 24, 23, 4, 38]. Such
hybrid models reduce the numerical costs significantly in many applications, but a rigorous
analytical investigation of the error caused by simplifying the model is missing in most cases.

The aim of this article is to prove an error bound for one of these hybrid models. In
the investigated approach, a Markov jump process describing the dynamics of the species
with low particle numbers is coupled to ordinary differential equations representing the
highly abundant species, which removes the fast time-scales from the system and makes
numerical simulations (e.g. by a Strang splitting method) much faster. Such an approach
is called a piecewise deterministic model in the literature (cf. [10, 9, 8, 4, 37, 40]) because
between two jumps of the Markov jump process the other part of the systems simply evolves
according to an ordinary differential equation. Intuitively it can be expected that in a partial
thermodynamic limit (i.e. when the abundance of the “large” species tends to infinity but
the reaction constants are rescaled in a way to be explained below) the hybrid system
converges to the original Markov jump process. This conjecture has recently been confirmed
in [8] where convergence of the process in distribution was proved. Although the objective
of our work is very similar, our analysis follows a rather different approach. In the error
bound presented in Theorem 1 we only consider the error in the marginal distribution
of the species described by the Markov process and the conditional expectations of the
other species. In exchange, we prove not only convergence but also determine the rate of
convergence. In fact, it will be shown that the error in the marginal distribution and in the
conditional expectations is proportional to M−1 where M is the scaling parameter of the
partial thermodynamic limit.

This goal is motivated and formulated in more detail in Section 2. As a starting
point, stochastic reaction systems modeled by continuous-time Markov jump processes are
considered (Section 2.1). The convergence to the classical reaction-rate equations in the
thermodynamical limit (Section 2.2) motivates the use of a hybrid model based on a piece-
wise deterministic process (Section 2.3). Instead of discussing these concepts in an abstract
setting, the derivation and the advantage of the piecewise deterministic process is first illus-
trated by a model problem which serves as an example throughout the paper. In Section 3
we pass from the model problem to a general class of scaled and partitioned reaction systems
and define the associated Markov jump process and the corresponding piecewise determin-
istic process. The probability density of these processes evolve according to the chemical
master equation (Section 3.3) and the Liouville-master equation (Section 3.4), and these dif-
ferential equation will play a central role in the proof of the main result, which is presented
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and proved in Section 4.
Throughout the article, most of the constants which appear in inequalities and which

are of minor interest are denoted by the same symbol C although the value of these constants
may differ from case to case.

2 Motivation

2.1 Modeling reaction systems with Markov processes

It is widely acknowledged that modeling reaction systems by ordinary differential equa-
tions (ODEs) yields qualitatively wrong results if the discreteness of the species and/or the
stochastic nature of the dynamics cannot be neglected. In these cases, a significantly better
approach is to consider the system as a Markov jump process on a discrete state space. This
well-known model has been discussed, e.g., in [19, 18, 26, 16, 3], but in order to introduce
our notation and to keep the exposition self-contained, we briefly summarize the basic facts.

Consider a discrete number of particles which move randomly in a bounded domain.
It is assumed that the conditions of the environment (i.e. the temperature, the size of the
domain, etc.) do not change, and that the system is well-stirred in the sense that at any
time the random position of each of the particles is uniformly distributed. Each particle
belongs to exactly one of d ∈ N different species S1, . . . ,Sd, and particles of the same species
are indistinguishable. It is assumed that the position of a single particle does not matter
and that only the number of particles of Sk at time t ≥ 0, denoted by Xk(t) ∈ N0 = N∪{0},
is relevant. The vector X(t) =

(
X1(t), . . . , Xd(t)

)T of particle numbers changes according
to r reaction channels R1, . . . , Rr which represent events such as, e.g., a reactive collision
between two particles from different species which produces a particle of another type, the
decomposition of a particle into two particles, the conversion of a particle from one species
to another one, the inflow of new particles into the systems from an exterior source, the
“death” of particles and so on. Each reaction channel is defined by the equation

Rj : κinj1S1 + . . .+ κinjdSd
cj−→ κoutj1 S1 + . . .+ κoutjd Sd (1)

with constants κinjk, κ
out
jk ∈ N0 and j ∈ {1, . . . , r}. If Rj fires at time t, then the particle

numbers jump from the old state X(t−) to the new state X(t) = X(t−) + νj where

νj =
(
κoutj1 − κinj1, . . . , κoutjd − κinjd

)T
∈ Zd (2)

is called the stoichiometric vector of Rj . The time of the next reaction event and the number
of the reaction channel which fires are both random, but depend only on the current state,
such that X(t) is a realization of a Markov jump process. To be more precise, we assume
that

X(t) = n0 +
r∑
j=1

Pj
(∫ t

0

αj(X(s))ds
)
νj (3)
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with independent Poisson processes Pj (cf. [16, 4, 2]) and initial state X(0) = n0 ∈ Nd. The
function αj is called the propensity of Rj and is typically defined as

αj(n) = cj

d∏
k=1

(
nk
κinjk

)
(4)

with a reaction constant cj > 0 which depend on physical properties such as, e.g., the
temperature or the volume of the domain. Here and below

(
x

k

)
=


1
k!

k−1∏
j=0

(x− j) if x > k − 1 and k ∈ N

0 if x ≤ k − 1 and k ∈ N
1 if k = 0

(5)

denotes the generalized binomial coefficient. For later use we remark that (5) is not restricted
to positive integers and can also be evaluated for x ∈ R.

The probability distribution p(t, n) = P(X(t) = n | X(0) = n0) associated to X(t) is
the solution of the chemical master equation (CME)

∂tp(t, n) =
r∑

k=1

(
αk(n− νk)p(t, n− νk)− αk(n)p(t, n)

)
(6)

p(0, n) = δn0(n) =
{

1 if n = n0

0 otherwise

(cf. [20]) with the convention that p(t, n − νk) = 0 for all n − νk 6∈ Nd0. Solving the CME
numerically is a highly non-trivial problem because in most cases (6) has to be solved on a
large state space, which excludes all standard methods. Constructing efficient deterministic
methods for the CME is a new and very active field of research, which, in spite of its
importance, is beyond the scope of this work. In this article, the CME will be used for
analytical purposes only.

As a typical interpretation of the above model one may consider a chemical reaction
system where the particles of the species correspond to the molecules of the chemical sub-
stances, but the same setting can be used to model, e.g., discrete stochastic predator-prey
systems, viral kinetics, and gene regulatory networks.

The stochastic evolution of X(t) can be simulated with the Stochastic Simulation
Algorithm (SSA) derived in [19]:

1. Let t = 0 and X = n0 where n0 ∈ Nd0 is the initial state.

2. Compute |α(X)| =
r∑
j=1

αj(X).

3. Draw two random numbers %1 and %2 from the uniform distribution on [0, 1].

4. Compute the time increment: τ = ln(1/%1)/|α(X)|,
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5. Determine the number of the reaction channel which fires next: find j such that

j−1∑
k=1

αk(X) < %2|α(X)| ≤
j∑

k=1

αk(X).

6. Update the time t← t+ τ and the state X ← X + νj .

7. If t < tend go to step 2.

The SSA is very popular among computational biologists but its efficiency is severely affected
if the system is highly reactive, i.e. if some of the propensities are large. This happens in
particular if the particle numbers of some of the species are relatively high. In this case, the
expected value of the time increment τ (i.e. the waiting time between two reaction events)
is so small that a huge number of steps is necessary to simulate the system over the full
time-interval, and since each step requires two random numbers and an update of the state
variable X, the total runtime increases considerably.

2.2 Thermodynamic limit

Before this approach is discussed, we briefly recall that the stochastic model (Markov jump
process) converges to the deterministic one (reaction-rate equations, ODEs) in the thermo-
dynamic limit. Consider the scaled kinetics

X [M ](t) = Mn0 +
r∑
j=1

Pj
(∫ t

0

α
[M ]
j (X [M ](s))ds

)
νj , (7)

α
[M ]
j (n) = M(1−|κin

j |1)αj(n), |κinj |1 =
d∑
i=1

κinji (8)

where M ∈ N is a scaling parameter which can be thought of as the volume of the domain in
which the particles move. If M increases, then the initial particle numbers X [M ](0) = Mn0

and thus the reactivity of the system increase, too. At the same time, the propensities (8)
are rescaled in such a way that for n ∈ Nd0 one obtains

α
[M ]
j (Mn) = cjM

(1−|κin
j |1)

d∏
k=1

(
Mnk
κinjk

)

≈ cjM
(1−|κin

j |1)
d∏
k=1

(Mnk)κ
in
jk

κinjk!
= cjM

d∏
k=1

n
κin

jk

k

κinjk!
= O(M)

for every reaction channel j = {1, . . . , r}. For M = 1, the original process (3) is recovered.
The thermodynamic limit is the limit dynamics of the normalized process X [M ](t)/M for
M →∞. In his seminal work [30, 31, 16] T. Kurtz proved that

lim
M→∞

P

(
sup

s∈[0,tend]

∣∣∣X [M ](t)
M

− y(t)
∣∣∣ > ε

)
= 0 (9)
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j Reaction channel Rj κinj1 κoutj1 νj Propensity αj(n) Propensity α[M ]
j (n)

1 R1 : ? −→ S 0 1 1 c1 Mc1

2 R2 : S + S −→ S 2 1 -1 c2
n(n− 1)

2
c2
n(n− 1)

2M

Table 1: Example I: A reaction system with one species S = S1 and two
reaction channels R1 and R2. For simplicity, we write n instead of n1.

where y(t) is the solution of the classical reaction-rate equation

ẏ(t) =
r∑
j=1

νjcj

d∏
k=1

y
κin

jk

k (t)
κinjk!

, y(0) = n0. (10)

This convergence means, roughly speaking, that for sufficiently large particle numbers the
discrete, stochastic model (7) can be replaced by the deterministic ordinary differential equa-
tion (10). The advantage is that solving (10) is considerably less expensive than generating
a sufficient number of realizations of the highly reactive Markov process (7).

This can be illustrated by the following simple example. Consider one single species
S = S1 which evolves according to the two reaction channels R1 and R2 defined in Table 1.
The first reaction channel R1 represents an inflow of new particles from an infinite source.
The growth of the population is limited by R2 which represents competition among the
particles. In this example (7) takes the special form

X [M ](t) = Mn0 + P1(tMc1)− P2

(
c2

∫ t

0

X [M ](s)(X [M ](s)− 1)
2M

ds

)
, (11)

and the normalized process X [M ](t)/M converges to the solution of the reaction-rate equa-
tion

dy

dt
(t) = c1 − c2

y2(t)
2

, y(0) = n0. (12)

Equation (12) can be derived from (11) in a loose but intuitively plausible way by dividing
(11) by M , by approximating (X [M ](t)− 1)/M ≈ X [M ](t)/M ≈ y(t), and by approximating

1
M
P1(tMc1) ≈ tc1 and

1
M
P2

(
M
c2
2

∫ t

0

y2(s)ds
)
≈ c2

2

∫ t

0

y2(s)ds

according to the law of large numbers. This yields

y(t) = n0 + tc1 −
c2
2

t∫
0

y2(s)ds (13)

which is the integral form of the reaction-rate equation (12).
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j Reaction channel Rj Propensity α[M ]
j (n1, n2, n3) Stoich. vector νj

1 R1 : S1 −→ S1 + S3 Mc1n1 (0, 0, 1)T

2 R2 : S1 + S3 −→ S2
c2
M
n1n3 (−1, 1,−1)T

3 R3 : S2 −→ S1 + S3 c3n2 (1,−1, 1)T

4 R4 : S3 + S3 −→ ∅ c4
n3(n3 − 1)

2M
(0, 0,−2)T

Table 2: Example II: A reaction system with three species and four reac-
tions.

2.3 Partial thermodynamic limit and piecewise deterministic pro-
cesses

In many biological systems the average particle numbers of the species can differ by several
orders of magnitude, and often the dynamics of the abundant species is crucially affected by
the stochastic behavior of the species with rather low particle numbers. We thus consider
now a more complicated model problem consisting of three species S1, S2, S3 which interact
via the four reaction channels defined in Table 2. S1 represents a gene which catalyzes
the production of a protein S3 via R1. For simplicity, the processes of transcription and
translation are merged. The protein can auto-regulate the production of new copies by
binding to the promoter region of the gene and blocking the transcription. S2 denotes
the group of blocked genes, and the binding process is described by R2. With a certain
probability, however, the protein can be released from the gene via the third reaction channel
R3. Finally, R4 describes dimerization of the protein to some irrelevant waste product. Since
the waste product is not of any interest and does not have any feedback on S1, S2 and S3,
its particle numbers do not have to be computed. This is the reason why this species is
called ∅ instead of S4. Due to the particular structure of the system, the total number of
genes X [M ]

1 (t)+X [M ]
2 (t) = X

[M ]
1 (0)+X [M ]

2 (0) = 10 is constant. As a consequence, one could
easily reduce the system to a two-dimensional problem by expressing X

[M ]
2 (t) in terms of

X
[M ]
1 (t) or vice versa, but this does not matter here.

We assume that at t = 0 there are 10 open genes and no blocked genes, and that there
are much more proteins than open or blocked genes. Thus, the scaling from the previous
example is now applied to S3 only. To be more precise, we let

X [M ](0) = (10, 0,M)T

and scale the propensities as indicated in Table 2. For a general reaction system, the scaling
rules will be defined in Section 3. At the moment, we only remark that due to this scaling
we have

X1(t) +X2(t) = 10� E
(
X

[M ]
3 (t)

)
= O(M)
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on bounded time intervals, which means that the expected particle numbers lie on two clearly
separated scales. For this reaction system, (3) takes the form

X [M ](t) =

 10
0
M

 + P1

(∫ t

0

Mc1X
[M ]
1 (s)ds

) 0
0
1


+ P2

(∫ t

0

c2
M
X

[M ]
1 (s)X [M ]

3 (s)ds
) −1

1
−1


+ P3

(∫ t

0

c3X
[M ]
2 (s)ds

) 1
−1
1

 (14)

+ P4

(∫ t

0

c4
X

[M ]
3 (s)(X [M ]

3 (s)− 1)
2M

ds

) 0
0
−2

 .

Now the example from 2.2 suggests that the abundant species S3 could be represented by a
traditional reaction-rate equation while S1 and S2 should still be described in the discrete
and stochastic setting. Approximating

y(s) ≈ X
[M ]
3 (s)
M

≈ X
[M ]
3 (s)− 1
M

and proceeding as in the previous example leads to

Z [M ](t) =
(

10
0

)
+ P2

(∫ t

0

c2Z1(s)y[M ](s)ds
)(

−1
1

)
(15)

+P3

(∫ t

0

c3Z2(s)ds
)(

1
−1

)
y[M ](t) = 1 +

∫ t

0

c1Z
[M ]
1 (s)ds− 1

M

∫ t

0

c2Z
[M ]
1 (s)y[M ](s)ds (16)

+
1
M

∫ t

0

c3Z
[M ]
2 (s)ds−

∫ t

0

c4

(
y[M ](s)

)2

ds

where Z [M ]
i (s) ≈ X

[M ]
i (s) for i ∈ {1, 2}. In contrast to the previous example, the equation

for y[M ](t) is not a purely deterministic ODE since the stochastic variables Z1 and Z2 appear
on the right-hand side of (16). However, these variables only jump at discrete times and
remain constant in between. If no jump occurs in the time interval [t1, t2], then there are
constants z1, z2 ∈ N0 such that Z1(s) = z1 and Z2(s) = z2 for all s ∈ [t1, t2], and (16) is
thus equivalent to the ODE

dy[M ]

dt
(t) = c1z1 −

c2z1
M

y[M ](t) +
c3z2
M
− c4

(
y[M ](t)

)2

(17)

for t ∈ [t1, t2]. This explains why such approaches are called piecewise deterministic models
in the literature, see, e.g., [10, 9, 8, 37, 40] and references therein.
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The piecewise deterministic model (15)-(16) can be simulated, e.g., with a stochastic
Strang splitting method:

1. Choose tend > 0 and N ∈ N. Let h = tend/N and ti = ih for all i = 0, . . . , N .

2. Initialize: Set i = 0, Z0 = (10, 0), y0 = M .

3. Half-step in Z:
Perform a stochastic simulation of (15) on the interval [ti, ti+h/2] with initial state Zi
and while keeping y[M ](s) ≡ yi constant. This can be done with SSA or approximate
methods such as, e.g., tau-leaping [22]. Let Zi+ 1

2
be the result of this step.

4. Full step in y:
Solve the ordinary differential equation (17) on the interval [ti, ti+1] with initial value
yi while keeping (z1, z2) = Zi+ 1

2
fixed. This can be done, e.g., with a Runge-Kutta or

multi-step method. Let yi+1 be the result of this step.

5. Half-step in Z:
Perform a stochastic simulation of (15) on the interval [ti+h/2, ti+1] with initial state
Zi+ 1

2
and while keeping y[M ](s) ≡ yi+1 constant at the updated value. Let Zi+1 be

the result of this step.

6. If i < N : set i← i+ 1 and go to step 3.

The values Zi and yi are approximations to Z [M ](ti) and y(ti), respectively. In addition
to the model error which arises when the exact process X [M ](t) is replaced by the hybrid
approach (15)-(16), there is a splitting error due to the fact that the two parts of the system
are not propagated simultaneously, but in an alternating way. It is well-known, however,
that under suitable regularity conditions the Strang splitting converges in distribution with
order 2 to the exact solution; see, e.g. [29]. The main topic of this article is an analysis of
the model error, and we will henceforth assume that the time-step h is so small that the
numerical error can be neglected.

In order to investigate the accuracy of the piecewise deterministic process (15)-(16),
the splitting method was applied to the model problem with M = 5, 10, 20, 30, 40, 50, 100
and

c1 = 0.5, c2 = 3, c3 = 1, c4 = 5, tend = 0.5, N = 100, h = 0.005. (18)

For each value of M , 106 realizations have been computed, with the exception of M = 100
where 2.5 · 106 realizations were generated to increase the accuracy. From this data, the
marginal distribution n1 7→ P(Z [M ]

1 (tend) = n1) was estimated by producing a histogram
and dividing by the number of samples. This approximate marginal distribution is not only
affected by the model error and the splitting error, but also by the sampling error – the
error due to estimating the marginal distribution from a finite number of realizations. But
because of the large number of samples and the small step size h, it can be assumed1 that
the total error is dominated by the model error. The approximate marginal distribution was

1We have checked this by rerunning the experiment with different time-steps and a larger number of
samples.
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compared with a reference solution which was obtained by solving the CME (6) with high
accuracy2 and taking sums over n2 and n3. Figure 1 shows a considerable model error for
M = 10 (left panel). For M = 50, however, the piecewise deterministic process yields a very
accurate approximation to the true marginal distribution (right panel). The convergence for
increasing values of M is illustrated in the left panel of Figure 2. This plot suggests that
the error in the marginal distribution is proportional to M−1, and the goal of this article is
to prove that this is indeed the case; cf. Theorem 1.

We remark that the model problem considered here is obviously very small. This is
unavoidable because a highly accurate reference solution is not available for larger problems.
Moreover, in order to investigate the model error, the sampling error has to be reduced by
a huge number of realizations, and the required number increases when larger problems
are considered. However, our intention is not to demonstrate the efficiency of piecewise
deterministic processes nor their applicability to large, complex biological systems; such
applications can be found, e.g., in [9, 40]. Our example is only supposed to serve as an
illustration of the somewhat abstract analysis in the second part of the paper.

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

n
1

Marginal distribution (M=10)

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

n
1

Marginal distribution (M=50)

Figure 1: Marginal distributions of the piecewise deterministic model (15)-
(16) (thin line) and of the exact process (14) (bold line) for M = 10 (left)
and M = 50 (right) with the configuration given in (18). The marginal
distribution n1 7→ P(Z [M ]

1 (tend) = n1) of the piecewise deterministic model
was estimated from the histogram of 1, 000, 000 samples. The marginal
distribution of the exact Markov process was obtained by solving the CME
(6) with high accuracy and taking sums over n2 and n3.

2In this special case, the CME can be solved with a standard ODE integrator because the state space
is small. As we have pointed out before, such a straightforward computation is not possible when larger
reaction systems are investigated.
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Figure 2: Illustration of Theorem 1 by the model problem defined in Ta-
ble 2 with the parameters from (18). The left panel shows the convergence
of the marginal distribution of the piecewise deterministic model (15)-(16)
to the marginal distribution of the full process (14). The former was es-
timated from stochastic simulations whereas the latter was obtained by
solving the CME (6) with high accuracy and taking sums over n2 and n3.
The right panel shows the left-hand side of the inequality (43). In both
panels, the comparison with the function M 7→ 1/M (dotted line) sug-
gests that each of the two error terms decays proportional to 1/M , which
will be confirmed by the error bounds (42) and (43) from Theorem 1.

3 The general setting: two-scale reaction systems

3.1 Reaction channels, propensities and stoichiometry

Motivated by the previous section we consider reaction systems where the species are di-
vided into two groups S1, . . . ,Sd and Sd+1, . . . ,SD with d,D ∈ N. The particle numbers of
S1, . . . ,Sd and Sd+1, . . . ,SD are denoted by the entries of n ∈ Nd0 and m ∈ ND0 , respectively.
Later, Sd+1, . . . ,SD are supposed to be represented by real, continuous variables whereas the
S1, . . . ,Sd will still be described by integer particle numbers. Let the j-th reaction channel
be given by

Rj :
d∑
k=1

κinjkSk +
D∑
k=1

λinjkSd+k
cj−→

d∑
k=1

κoutjk Sk +
D∑
k=1

λoutjk Sd+k (19)
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j Reaction channel Rj αj(n) β
[M ]
j (m) β̃

[M ]
j (y) νj µj

1 R1 : S1 −→ S1 + S3 c1n1 M M
(
0
0

)
1

2 R2 : S1 + S3 −→ S2 c2n1 m/M y
(−1

1

)
−1

3 R3 : S2 −→ S1 + S3 c3n2 1 1
(

1
−1

)
1

4 R4 : S3 + S3 −→ ∅ c4
m(m− 1)

2M
M
y2

2
(
0
0

)
−2

Table 3: Example II revisited. In this example, we have d = 2, D = 1,
r = 4, J0 = {2, 3}, J1 = {1, 4}.

with κinjk, κ
out
jk , λ

in
jk, λ

out
jk ∈ N0. The stoichiometric vectors are (νj , µj) ∈ Zd+D with

νj =
(
κoutj1 − κinj1, . . . , κoutjd − κinjd

)T
∈ Zd

(20)
µj =

(
λoutj1 − λinj1, . . . , λoutjd − λinjd

)T
∈ ZD.

For every j = 1, . . . , r the propensity of Rj is supposed to have the form αj(n)β(M)
j (m) where

the entries of n ∈ Nd0 and m ∈ ND0 are the particle numbers of S1, . . . ,Sd and Sd+1, . . . ,SD,
respectively. The function αj(n) is defined by (4) as before. In order to define β(M)

j (m), we
distinguish two different groups of reactions with index sets

J0 =
{
j ∈ {1, . . . , r} : νj = (0, . . . , 0)T

}
, J1 = {1, . . . , r} \ J0; (21)

cf. [8]. If j ∈ J0, then the particle numbers of S1, . . . ,Sd are not changed by the j-th rection
channel Rj . Note that this does not mean that Rj is independent of these species, since any
of the S1, . . . ,Sd could act as a catalyst of that reaction; cf. [8]. This is the case, e.g., in the
first reaction channel of Table 3. With the indicator function

γ(j) =
{

0 if j ∈ J0

1 if j ∈ J1
. (22)

we define

β
[M ]
j (x) = M1−γ(j)M−|λ

in
j |1

D∏
k=1

(
xk
λinjk

)
(23)

for any x ∈ RD+ , where |λinj |1 =
∑d
i=1 λ

in
ji .

Example. For the reaction system defined in Table 2 we let d = 2 and D = 1. Thus,
we have r = 4, J0 = {1, 4}, and J1 = {2, 3}. The propensities and the stoichiometric vectors
are listed in Table 3; as before, we write m instead of m1 for convenience.

In most applications, reactions between more than two particles are rather improbable
events, because the probability that more than two particles collide is usually negligible.
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Therefore, in most reaction systems, we have |λinj |1 + |κinj |1 ≤ 2. In the results below,
however, a weaker assumption will be made:

Assumption 1 For every j ∈= {1, . . . , r} we assume that |λinj |1 ≤ 2.

The above definitions guarantee that the particle numbers are nonnegative for all
times, because a jump to a state outside of Nd0×ND0 can never occur, as the following lemma
shows.

Lemma 1 For all j = 1, . . . , r, the functions αj and β[M ]
j have the following property:

1. If n ∈ Nd0 but one or several entries of n+ νj are negative, then αj(n) = 0.

2. If m ∈ ND0 but one or several entries of m + µj are negative, then β
[M ]
j (m) = 0 for

every M ∈ N.

Proof. Suppose that the k-th entry of n + νj is negative. By (20), this means that nk +
κoutjk − κinjk < 0. Since nk, κinjk ∈ N0 it follows that nk ≤ κinjk − 1 and, by definition (4), that
αj(n) = 0. The second assertion follows analogously from the definition (23).

3.2 Spaces and norms

Henceforth, ‖ · ‖ denotes an arbitrary vector norm on RN or the induced matrix norm,
respectively. For K ∈ N let

`1K =
{
u : NK0 −→ RN |

∑
n∈NK

0

‖u(n)‖ <∞
}
, ‖u‖`1K =

∑
n∈NK

0

‖u(n)‖

be the multivariate and vector-valued counterpart of the standard `1-space, which is recov-
ered for K = N = 1. In the analysis below only N = 1 or N = d will appear, and since the
latter case is a generalization of the former, the symbol `1K will be used in both cases. For
i ∈ N0 we define the spaces X i+1

d,D via the recursion

X i+1
d,D =

{
u ∈ X id,D | (n,m) 7→ mku(n,m) ∈ X id,D for all k ∈ {1, . . . , D}

}
with X 0

d,D = `1d+D. If, for example, u is a probability distribution and u = u(n,m) ∈ X 2
d,D,

then the first and second moments of the marginal distribution m 7→
∑
n∈Nd

0
u(n,m) exist.

For later use, we also define the corresponding spaces

Y0
d,D =

{
u : Nd0 × RD+ −→ RN |

∑
n∈Nd

0

∫
RD

+

‖u(n, x)‖ dx <∞
}

Yi+1
d,D =

{
u ∈ Yid,D | (n, x) 7→ xku(n, x) ∈ Yid,D for all k ∈ {1, . . . , D}

}
.

for functions on a mixed discrete-continuous state space. Here and below, RD+ denotes the
set [0,∞)D.
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3.3 Markov process and chemical master equation

The Markov process corresponding to the scaled and partitioned system is given by(
X [M ](t)
Y [M ](t)

)
=

(
n0

Mm0

)
+

r∑
j=1

Pj
(∫ t

0

αj

(
X [M ](s)

)
β

[M ]
j

(
Y [M ](s)

)
ds

)(
νj
µj

)
,(24)

with n0 ∈ Nd0 and m0 ∈ ND0 . The probability distribution

p[M ](t, n,m) = P
(
X [M ](t) = n, Y [M ](t) = m | X [M ](0) = n0, Y

[M ](0) = Mm0

)
is the solution of the CME

∂tp
[M ](t, n,m) =

r∑
j=1

(
αj(n− νj)β[M ]

j (m− µj)p[M ](t, n− νj ,m− µj)
(25)

−αj(n)β[M ]
j (m)p[M ](t, n,m)

)
p[M ](0, n,m) = δn0(n)δMm0(m). (26)

As before in (6), we let p[M ](t, n− νj ,m− µj) = 0 if n− νj 6∈ Nd0 or m− µj 6∈ ND0 . For the
sake of a more compact notation we define the shift operators ∆1

ν and ∆2
µ with ν ∈ Zd and

µ ∈ ZD via

∆1
νu(n,m) =

{
u(n− ν,m) if n− ν ∈ Nd0
0 else , (27)

∆2
µu(n,m) =

{
u(n,m− µ) if m− µ ∈ ND0
0 else . (28)

The two shift operators commute, i.e.

∆1
ν∆2

µu(n,m) = ∆2
µ∆1

νu(n,m) =
{
u(n− ν,m− µ) if n− ν ∈ Nd0,m− µ ∈ ND0
0 else.

We shall make the convention that applying a shift operator to a product u(n,m)v(n,m) is
to be understood as(

∆1
νuv

)
(n,m) =

(
∆1
ν(uv)

)
(n,m) = u(n− ν,m)v(n− ν,m) =

(
∆1
νu
) (

∆1
νv
)

(n,m).

With these operators, the CME (25) can be reformulated as

∂tp
[M ] =

r∑
j=1

(∆1
νj

∆2
µj
− 1)αjβ

[M ]
j p[M ]. (29)

Lemma 2 Let ν ∈ Zd, µ ∈ Zd, and let u ∈ `1d+D be a function with the property that

u(n,m) = 0 if n+ ν 6∈ Nd0 or m+ µ 6∈ ND0 . (30)
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Then, the following assertions hold:

(i)
∑
n∈Nd

0

(
(∆1

ν − 1)u
)

(n,m) = 0

(ii)
∑
m∈ND

0

(
(∆2

µ − 1)u
)

(n,m) = 0

(iii)
∑
n∈Nd

0

∑
m∈ND

0

(
(∆1

ν∆2
µ − 1)u

)
(n,m) = 0

If u is scalar-valued and u ∈ X 1
d,D, then

(iv)
∑
m∈ND

0

m
(
(∆2

µ − 1)u
)

(n,m) = µ
∑
m∈ND

0

u(n,m).

This lemma is not really new; similar considerations can be found, e.g., in [21, 15, 27]. How-
ever, since the lemma will be frequently used later on, we briefly recall the main argument
of the proof.
Sketch of the Proof. For ñ = n− ν it follows from (27) that∑

n∈Nd
0

(
(∆1

ν − 1)u
)

(n,m) =
∑
n∈Nd

0

u(n− ν,m)−
∑
n∈Nd

0

u(n,m)

=
∑

ñ+ν∈Nd
0

u(ñ,m)−
∑
n∈Nd

0

u(n,m) = 0

since according to (30) the two sums are identical. This proves (i), and (ii) follows by similar
arguments. Then, (i) and (ii) imply (iii) via the identity

(∆1
ν∆2

µ − 1)u = ∆1
ν(∆2

µ − 1)u+ (∆1
ν − 1)u.

Finally, (iv) is shown by substituting m̃ = m− µ:∑
m∈ND

0

m
(
(∆2

µ − 1)u
)

(n,m) =
∑
m∈ND

0

mu(n,m− µ)−
∑
m∈ND

0

mu(n,m)

=
∑
m̃∈ND

0

(m̃+ µ)u(n, m̃)−
∑
m∈ND

0

mu(n,m)

= µ
∑
m∈ND

0

u(n,m).

By Lemma (1), the function αjβ
[M ]
j p[M ] satisfies (30). If αjβ

[M ]
j p[M ] ∈ `1d+D we thus obtain

that

∑
n∈Nd

0

∑
m∈ND

0

p[M ](t, n,m) =
∑
n∈Nd

0

∑
m∈ND

0

p[M ](0, n,m) +
∑
n∈Nd

0

∑
m∈ND

0

t∫
0

∂tp
[M ](τ, n,m) dτ

= 1 +

t∫
0

r∑
j=1

∑
n∈Nd

0

∑
m∈ND

0

(
(∆1

νj
∆2
µj
− 1)αjβ

[M ]
j p[M ]

)
(τ, n,m) = 1
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Since it can be shown with standard arguments that p(t, n,m) ≥ 0 (cf., e.g., Section 2.4 in
[28]), this shows that p[M ](t, ·, ·) is a probability distribution at any time t ≥ 0.

3.4 Piecewise deterministic process and Liouville-master equation

In order to formulate the piecewise deterministic process for general reaction systems, we
define

β̃
[M ]
j (x) = M1−γ(j)

D∏
k=1

x
λin

jk

j

λinjk!
. (31)

For γ(j) = 1, β̃[M ]
j (x) is simply the term which appears on the right-hand side of the

traditional reaction-rate equation (10). The following lemma shows that β̃[M ]
j is closely

related to β[M ]
j defined in (23).

Lemma 3 If x ∈ RD+ and xk ≥ 1/M for all k ∈ {1, . . . , D}, then there is a constant C > 0
such that ∣∣∣β[M ]

j (Mx)− β̃[M ]
j (x)

∣∣∣ ≤ CM−γ(j).
If λinjk ∈ {0, 1} for all k = 1, . . . , D, we even have β[M ]

j (Mx) = β̃
[M ]
j (x).

Proof. By Assumption 1 only the cases λinj = 0, 1, 2 must be considered. If λinjk ≤ 1, then∣∣∣∣∣∣M−λin
jk

(
Mxk
λinjk

)
−
x
λin

jk

k

λinjk!

∣∣∣∣∣∣ = 0

for any j ∈ {1, . . . , r} and k ∈ {1, . . . , D}, such that the second assertion follows from (23)
and (31). If λinjk = 2 and Mxk > 1, then∣∣∣∣∣∣M−λin

jk

(
Mxk
λinjk

)
−
x
λin

jk

k

λinjk!

∣∣∣∣∣∣ =
∣∣∣∣Mxk(Mxk − 1)

2M2
− x2

k

2

∣∣∣∣ =
xk
2M

,

whereas for λinjk = 2 and Mxk < [0, 1] we obtain∣∣∣∣∣∣M−λin
jk

(
Mxk
λinjk

)
−
x
λin

jk

k

λinjk!

∣∣∣∣∣∣ =
x2
k

2!
<

1
2M2

.

Hence, for every λinjk ∈ {0, 1, 2} we have∣∣∣∣∣∣
(
M−λ

in
jkxk

λinjk

)
−
x
λin

jk

k

λinjk!

∣∣∣∣∣∣ ≤ C

2M
,
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and the assertion follows from∣∣∣β[M ]
j (Mx)− β̃[M ]

j (x)
∣∣∣ = M1−γ(j) ·

∣∣∣∣∣∣
D∏
k=1

M−λ
in
jk

(
Mxk
λinjk

)
−

D∏
k=1

x
λin

jk

k

λinjk!

∣∣∣∣∣∣
Remark. According to Assumption 1, all β[M ]

j and β̃[M ]
j are polynomials of degree 2 or less.

Hence, the Hessians ∇2β
[M ]
j and ∇2β̃

[M ]
j are both constant matrices, and higher derivatives

vanish.
We are now ready to define the piecewise deterministic process corresponding to (24):

Z [M ](t) = n0 +
r∑
j=1

Pj
(∫ t

0

αj

(
Z [M ](s)

)
β̃

[M ]
j

(
y[M ](s)

)
ds

)
νj (32)

y[M ](t) = m0 +
1
M

r∑
j=1

(∫ t

0

αj

(
Z [M ](s)

)
β̃

[M ]
j

(
y[M ](s)

)
ds

)
µj (33)

Example. For the reaction system defined in Table 3 with n0 = (10, 0) and m0 = 1, the
process (32)-(33) reduces to (15)-(16).

As before, the second equation (33) is piecewise deterministic in the sense that (33)
is locally equivalent to the ODE

ẏ[M ](t) =
1
M

r∑
j=1

αj (z) β̃[M ]
j

(
y[M ](t)

)
µj

on time intervals where Z [M ](s) = z does not jump. The coupled equations (32)-(33) can
be simulated, e.g., by adapting the Strang splitting method from Section 2.3.

The probability distribution associated to the original Markov process (24) evolves
according to the CME (25) defined in the previous subsection. Now the question arises what
the counterpart of the CME in case of the piecewise deterministic process (32)-(33) is. The
answer can be found in [25, 8]: If∫

S

q[M ](t, n, x) dx = P
(
X [M ](t) = n, y[M ](t) ∈ S | X [M ](0) = n0, y

[M ](0) = m0

)
for all measurable sets S ⊂ RD+ , then the density q[M ](t, n, x) is the solution of the Liouville-
master equation (LME)

∂tq
[M ](t, n, x) =

∑
j∈J1

β̃
[M ]
j (x)

(
αj(n− νj)q[M ](t, n− νj , x)− αj(n)q[M ](t, n, x)

)
(34)

− 1
M

r∑
j=1

αj(n)∇
(
β̃

[M ]
j (x)q[M ](t, n, x)

)T
µj

for n ∈ Nd0, x ∈ RD+ , t ≥ 0, where ∇ acts on the x-variables only, i.e.

∇u(t, n, x) =
(
∂u

∂x1
(t, n, x) , . . . ,

∂u

∂xD
(t, n, x)

)T
.
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The LME is provided with the boundary condition

q[M ](t, n, x) = 0 if xi = 0 for one or more i ∈ {1, . . . , D}. (35)

and the initial data

q[M ](0, n, x) = δn0(n)q0(x). (36)

Specifying q0(x) is somewhat delicate: since the process (32)-(33) starts in (n0,m0) with
probability 1, q0(x) must be the corresponding Dirac delta, and then the question arises
if a solution of (34)-(36) actually exists or in which sense the word “solution” has to be
understood. Such analytical difficulties can be avoided if we choose q0 : RD+ → R to be a
smooth nonnegative function with the properties

q0(x) = 0 if ‖x−m0‖∞ > ε,

∫
RD

+

q0(x) = 1,
∫

RD
+

xq0(x) = m0 (37)

for some 0 < ε � 1. If ε is sufficiently small, then the additional error caused by the
modified initial data can be neglected.

With the shift operator defined in (27), the LME (34) can be reformulated as

∂tq
[M ] =

∑
j∈J1

β̃
[M ]
j (∆1

νj
− 1)αjq[M ] − 1

M

r∑
j=1

αj∇
(
β̃

[M ]
j q[M ]

)T
µj . (38)

4 Error bound for the approximation by the piecewise
deterministic process

In this section an error bound for the difference between the original Markov process and the
piecewise deterministic process is presented. Convergence in distribution has recently been
shown in [8]. In our analysis, only the marginal distribution of the discrete species S1, . . . ,Sd
and the conditional moments of the continuous species Sd+1, . . . ,SD are considered, but in
exchange, the rate of convergence will be established.

4.1 Marginal distributions, conditional expectations, and regular-
ity assumptions

Assumption 2 We assume that the CME (29) with initial condition (26) has a unique
classical solution p[M ](t, ·, ·) ∈ X 3

d,D for t ∈ [0, tend] and that

(n,m) 7→ αj(n)p[M ](t, n,m) ∈ X 3
d,D for all j ∈ {1, . . . , r}.

Moreover, we assume that the LME (38) with boundary condition (35) and initial data (36)
has a unique classical solution q[M ](t, ·, ·) ∈ Y3

d,D for t ∈ [0, tend] and that

(n, x) 7→ αj(n)q[M ](t, n, x) ∈ Y3
d,D for all j ∈ {1, . . . , r}.
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The marginal distribution of the discrete species S1, . . . ,Sd is given by

p
[M ]
1 (t, n) =

∑
m∈ND

0

p[M ](t, n,m),

and we define

p
[M ]
2 (t,m|n) =


p[M ](t, n,m)

p
[M ]
1 (t, n)

if p[M ]
1 (t, n) > 0

0 else
.

If p[M ]
1 (t, n) > 0, then p

[M ]
2 (t,m|n) is the conditional probability that Y [M ](t) = m under

the constraint that X [M ](t) = n. Moreover, let

η[M ](t, n) =
∑
m∈ND

0

mp
[M ]
2 (t,m|n)

be the conditional expectation, and let

σ[M ](t, n) =
∑
m∈ND

0

(
m− η[M ](t, n)

)(
m− η[M ](t, n)

)T
p
[M ]
2 (t,m|n)

be the associated covariance matrix. The corresponding quantities for q[M ] are defined as
follows:

q
[M ]
1 (t, n) =

∫
RD

+

q[M ](t, n, x) dx

q
[M ]
2 (t, x|n) =


q[M ](t, n, x)

q
[M ]
1 (t, n)

if q[M ]
1 (t, n) > 0

0 else

θ[M ](t, n) =
∫

RD
+

xq
[M ]
2 (t, x|n) dx

ς(t, n) =
∫

RD
+

(
x− θ[M ](t, n)

)(
x− θ[M ](t, n)

)T
q
[M ]
2 (t, x|n) dx

Assumption 2 guarantees the existence of η[M ](t, n), σ[M ](t, n), θ[M ](t, n), and ς(t, n) for all
n ∈ Nd0 and t ∈ [0, tend]

Assumption 3 There is a constant C > 0 such that

‖η[M ](t, n)‖ ≤ C ·M, ‖θ[M ](t, n)‖ ≤ C for all t ∈ [0, tend], n ∈ Nd0 (39)

and

‖σ[M ](t, n)‖ ≤ C ·M, ‖ς [M ](t, n)‖ ≤ C

M
for all t ∈ [0, tend], n ∈ Nd0. (40)
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Moreover, all third central moments of p[M ]
2 (t, ·|n) are bounded by CM2, and all third central

moments of q[M ]
2 (t, ·|n) are bounded by C/M for all t ∈ [0, tend] and n ∈ Nd0.

It follows from (26), (36), and (37) that η[M ](0|n) = O(M), θ[M ](0, n) = O(1), and
σ[M ](0|n) = 0, and ς [M ](0|n) = O

(
ε2
)
. By a continuity argument, it can be shown that

for every single M there is a t[M ]
end > 0 such that the above bounds hold for all t ∈ [0, t[M ]

end ].
However, Assumption 3 is slightly stronger, because it is assumed that tend does not depend
on M .

At first sight, the assumptions on ς [M ](t, n) and the third moments of q[M ]
2 (t, ·|n) seem

to be somewhat restrictive. A closer inspection reveals, however, that the first term on the
right-hand side of the LME (34) does not change these objects, and due to the factor M−1

of the second term, the above assumptions are reasonable.

Assumption 4 Suppose that there is a constant C > 0 such that for all t ∈ [0, tend] and
j ∈ {1, . . . , r} the bound

‖αj(·)u(t, ·)‖`1d ≤ C ‖u(t, ·)‖`1d (41)

holds for

u(t, n) =
(
β

[M ]
j (η[M ])p[M ]

1 − β̃[M ]
j (θ[M ])q[M ]

1

)
(t, n)

or u(t, n) =
(
M−1β

[M ]
j (η[M ])η[M ]p

[M ]
1 − β̃[M ]

j (θ[M ])θ[M ]q
[M ]
1

)
(t, n).

Remark.

1. In both cases we have αj(·)u(t, ·) ∈ `1n according to Assumption 2.

2. Assumption 4 is true if u(t, ·) decays sufficiently fast as n→∞. In the model problem
discussed in Section 2.3 the assumption is true because there the state space is bounded
in the n-direction.

4.2 A bound for the modeling error

After these preparations, the main result of this article can be formulated.

Theorem 1 Let p(t, n,m) be the solution of the CME (29) with initial condition (26),
and let q(t, n, x) be the solution of the LME (38) with boundary condition (35) and initial
condition (36). Under the assumptions 1, 2, 3, and 4, there is a constant C > 0 such that
the approximation error is bounded by

‖p[M ]
1 (t, ·)− q[M ]

1 (t, ·)‖`1d ≤ C

M
(42)∥∥∥∥ 1

M
η[M ](t, ·)p[M ]

1 (t, ·)− θ[M ](t, ·)q[M ]
1 (t, ·)

∥∥∥∥
`1d

≤ C

M
(43)

for all t ∈ [0, tend].
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Remarks.

1. The choice of the parameter ε in (37) may alter the constants in the error bound and
the value of tend in Assumption 3. The convergence rate, however, is not affected by ε.

2. For the model problem from Section 2.3 the terms on the left-hand side of (42) and
(43) have been estimated by numerical simulations for different values of M . The
result was shown in Figure 2 and confirms that both errors are proportional to M−1.

An immediate consequence of Theorem 1 is the following

Corollary 1 If there is a constant Cmin
n > 0 such that

p
[M ]
1 (t, n) ≥ Cmin

n for all t ∈ [0, tend] and M ∈ N,

then, under the assumptions of Theorem 1, the bound∥∥∥∥ 1
M
η[M ](t, n)− θ[M ](t, n)

∥∥∥∥ ≤ C

Cmin
n M

hold for the error in the conditional expectations.

Proof. Since

1
M
η[M ]p

[M ]
1 − θ[M ]q

[M ]
1 =

(
1
M
η[M ] − θ[M ]

)
p
[M ]
1 + θ[M ]

(
p
[M ]
1 − q[M ]

1

)
,

it follows from (43) that∥∥∥∥ 1
M
η[M ](t, n)− θ[M ](t, n)

∥∥∥∥
=

1

p
[M ]
1 (t, n)

(∥∥∥∥ 1
M
η[M ](t, n)p[M ]

1 (t, n)− θ[M ](t, n)q[M ]
1 (t, n)

∥∥∥∥
+‖θ[M ](t, n)‖ ·

∣∣∣p[M ]
1 (t, n)− q[M ]

1 (t, n)
∣∣∣)

≤ C

Mp
[M ]
1 (t, n)

,

and the assumption that p[M ]
1 (t, n) ≥ Cmin

n yields the assertion.

For those n where p[M ]
1 (t, n) ≈ 0, the constant Cmin

n must be very small, and hence the
difference between 1

M η[M ](t, n) and θ[M ](t, n) can be very large. However, this error is not
relevant because p[M ]

1 (t, n) ≈ 0 means that these states are only visited with a very small
probability.
Proof of Theorem 1. It will be shown in Lemma 5 and Lemma 6 that

E(t) = ‖p[M ]
1 (t, ·)− q[M ]

1 (t, ·)‖`1d +
∥∥∥∥ 1
M
η[M ](t, ·)p[M ]

1 (t, ·)− θ[M ](t, ·)q[M ]
1 (t, ·)

∥∥∥∥
`1d
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satisfies the Gronwall inequality

E(t) ≤ C1

M
+ C2

t∫
0

E(τ) dτ

for some constants C1, C2 > 0. Then, the Gronwall lemma yields

E(t) ≤ C1

M
eC2t

which implies (42) and (43).

Lemma 4 Let y : Nd0 −→ Rd, z : Nd0 −→ Rd with

max
n∈Nd

0

‖y(n)‖ ≤ CM, max
n∈Nd

0

‖z(n)‖ ≤ C, (44)

and let u ∈ `1d and v ∈ `1d. Then for every j ∈ {1, . . . , r}, there is a constant C > 0 such
that∥∥∥β[M ]

j

(
y
)
u− β̃[M ]

j

(
z
)
v
∥∥∥
`1d

≤ CM1−γ(j)
(
‖M−1yu− zv‖`1d + ‖u− v‖`1d

)
+ CM−γ(j)

with γ(j) defined in (22). Products of sequences are to be understood entry-wise, e.g.[
β

[M ]
j (y)u

]
(n) = β

[M ]
j (y(n))u(n),

and so on. Note that the assumption (44) implies that M−1yu− zv ∈ `1d.

Proof. We investigate the propensities corresponding to the reaction scheme (1) and treat
three cases separately:

• If |λinj |1 = 0, then β
[M ]
j (y) = β̃

[M ]
j (y) = M1−γ(j) is constant, and hence∥∥∥β[M ]

j

(
y
)
u− β̃[M ]

j

(
z
)
v
∥∥∥
`1d

= M1−γ(j) ‖u− v‖`1d .

• If |λinj |1 = 1, then there is a k ∈ {1, . . . , d} such that β
[M ]
j (y) = M−γ(j)yk and

β̃
[M ]
j (y) = M1−γ(j)yk, and hence∥∥∥β[M ]

j

(
y
)
u− β̃[M ]

j

(
z
)
v
∥∥∥ = M1−γ(j) ∥∥M−1yku− zkv

∥∥
`1d

≤ M1−γ(j) ∥∥M−1yu− zv
∥∥
`1d

• If |λinj |1 = 2, then the propensity β̃[M ]
j (y) takes the form

β̃
[M ]
j (y) = ĉjM

1−γ(j)ykyl with ĉj =
{
cj if k 6= l
1
2cj if k = l
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for some k, l ∈ {1, . . . , d}. The assumption (44) allows to apply Lemma 3, which gives∥∥∥β[M ]
j (y)u− β̃[M ]

j (y/M)u
∥∥∥
`1d

≤ CM−γ(j)‖u‖`1d . (45)

Thus, we only have to bound the difference

β̃
[M ]
j (y/M)u− β̃[M ]

j (z)v

= ĉjM
1−γ(j) (M−2ykylu− zkzlv

)
= ĉjM

1−γ(j)

(
M−1yk

(
M−1ylu− zlv

)
+ zl

(
M−1yku− zkv

)
−M−1ykzl (u− v)

)
.

Since (44) implies that |yk(n)/M | ≤ C and |zl(n)| ≤ C, it follows that∥∥∥β̃[M ]
j (y/M)u− β̃[M ]

j (z)v
∥∥∥
`1d

≤ CM1−γ(j)
(
‖M−1yu− zv‖`1d + ‖u− v‖`1d

)
which, together with (45), proves the assertion.

Lemma 5 Under the assumptions of Theorem 1 there is a constant C > 0 such that

‖p[M ]
1 (t, ·)− q[M ]

1 (t, ·)‖`1d ≤
C

M
+ C

t∫
0

∥∥∥∥( 1
M
η[M ]p

[M ]
1 − θ[M ]q

[M ]
1

)
(τ, ·)

∥∥∥∥
`1d

dτ

+ C

t∫
0

∥∥∥p[M ]
1 (τ, ·)− q[M ]

1 (τ, ·)
∥∥∥
`1d

dτ.

for all t ∈ [0, tend].

Proof. Step 1: From the definition of the marginal distribution p
[M ]
1 it follows that

∂tp
[M ]
1 =

∑
j∈J0

∑
m∈ND

0

(∆1
νj

∆2
µj
− 1)αjβ

[M ]
j p[M ] +

∑
j∈J1

∑
m∈ND

0

(∆1
νj

∆2
µj
− 1)αjβ

[M ]
j p[M ].

The first sum vanishes, because ∆1
νj

= I for j ∈ J0, and∑
m∈ND

0

(∆2
µj
− 1)αjβ

[M ]
j p[M ] = 0

by Lemma 1 and Lemma 2. Since

∆1
νj

∆2
µj
− 1 = ∆1

νj
(∆2

µj
− 1) + (∆1

νj
− 1)

and, again by Lemma 1 and Lemma 2,∑
j∈J1

∑
m∈ND

0

∆1
νj

(∆2
µj
− 1)αjβ

[M ]
j p[M ] = 0
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we obtain

∂tp
[M ]
1 =

∑
j∈J1

∑
m∈ND

0

(∆1
νj
− 1)αjβ

[M ]
j p[M ]

=
∑
j∈J1

(∆1
νj
− 1)αj

∑
m∈ND

0

β
[M ]
j p

[M ]
2 p

[M ]
1 . (46)

Following the ideas of [14] we represent β[M ]
j by the Taylor expansion

β
[M ]
j (m) = β

[M ]
j (η[M ]) +∇β[M ]

j (η[M ])T (m− η[M ])

+
1
2

(m− η[M ])T
(
∇2β

[M ]
j

)
(m− η[M ]) (47)

where η[M ] = η[M ](t, n). The usual remainder term vanishes because β
[M ]
j is at most

quadratic due to Assumption 1. This yields∑
m∈ND

0

β
[M ]
j (m)p[M ]

2 (t,m|n) = β
[M ]
j (η[M ]) + trace

(
σ[M ](t, n)∇2β

[M ]
j

)
(48)

because
∑
m∈ND

0
p
[M ]
2 (t,m|n) = 1 and

∑
m∈ND

0
(m − η[M ](t, n))p[M ]

2 (t,m|n) = 0. According
to (23) we have

∇2β
[M ]
j =

{
0 if |λinj |1 < 2
M−1−γ(j) if |λinj |1 = 2

. (49)

Since γ(j) = 1 for all j ∈ J1 and σ[M ] = O(M) by assumption (40), it follows that
σ[M ]∇2β

[M ]
j = O

(
M−1

)
and thus (48) becomes∑

m∈ND
0

β
[M ]
j (m)p[M ]

2 (t,m|n) = β
[M ]
j (η[M ]) +O

(
M−1

)
(50)

Substituting (50) into (46) gives

∂tp
[M ]
1 =

∑
j∈J1

(∆1
νj
− 1)αjβ

[M ]
j (η[M ])p[M ]

1 +O
(
M−1

)
. (51)

Step 2: Now the same steps are carried out mutatis mutandis for q[M ]. By definition of the
marginal distribution q

[M ]
1 and (38) we have

∂tq
[M ]
1 =

∑
j∈J1

∫
RD

+

(∆1
νj
− 1)αj β̃

[M ]
j q[M ] dx− 1

M

r∑
j=1

αj

∫
RD

+

∇
(
β̃

[M ]
j q[M ]

)T
µj dx

=
∑
j∈J1

(∆1
νj
− 1)αj

∫
RD

+

β̃
[M ]
j q[M ] dx
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because the second term vanishes due to the boundary condition (36). Substituting the
Taylor expansion

β̃
[M ]
j (x) = β̃

[M ]
j (θ[M ]) + ∇β̃[M ]

j (θ[M ])T (x− θ[M ])

+
1
2

(x− θ[M ])T
(
∇2β̃

[M ]
j

)
(x− θ[M ]) (52)

and proceeding similar as before yields the counterpart of (48), namely∫
RD

+

β̃
[M ]
j (x)q[M ]

2 (t, x|n) dx = β̃
[M ]
j (θ[M ]) + trace

(
ς [M ]∇2β̃

[M ]
j

)
. (53)

Since ς [M ]∇2β̃
[M ]
j = O

(
M−1

)
by Assumption 3, it follows that

∂tq
[M ]
1 =

∑
j∈J1

(∆1
νj
− 1)αj β̃

[M ]
j (θ[M ])q[M ]

1 +O
(
M−1

)
. (54)

Step 3: Finally, we subtract (54) from (51) and integrate from 0 to t. Since p[M ]
1 (0) =

q
[M ]
1 (0) and ‖(∆1

νj
− 1)‖`1d ≤ 2, we obtain

‖p[M ]
1 (t, ·)− q[M ]

1 (t, ·)‖`1d

≤ 2

t∫
0

∑
j∈J1

∥∥∥αj (β[M ]
j (η[M ])p[M ]

1 − β̃[M ]
j (θ[M ])q[M ]

1

)
(τ, ·)

∥∥∥
`1d

dτ +O
(
M−1

)

≤ C

t∫
0

∑
j∈J1

∥∥∥(β[M ]
j (η[M ])p[M ]

1 − β̃[M ]
j (θ[M ])q[M ]

1

)
(τ, ·)

∥∥∥
`1d

dτ +O
(
M−1

)
.

The second inequality follows from Assumption 4. Now Lemma 4 can be applied, and since
M1−γ(j) = 1 for all j ∈ J1, the assertion follows.

Lemma 6 Under the assumptions of Theorem 1 there is a constant C > 0 such that

‖M−1η[M ]p
[M ]
1 − θ[M ]q

[M ]
1 ‖`1d ≤

C

M
+ C

t∫
0

∥∥∥[M−1η[M ]p
[M ]
1 − θ[M ]q

[M ]
1

]
(τ, ·)

∥∥∥
`1d

dτ

+ C

t∫
0

∥∥∥[p[M ]
1 − q[M ]

1

]
(τ, ·)

∥∥∥
`1d

dτ

for all t ∈ [0, tend].

Proof. Step 1: From the definition of η[M ] and p
[M ]
1 and the CME (29) it follows that

∂t

(
η[M ]p

[M ]
1

)
(t, n) =

∑
m∈ND

0

m ∂tp(t, n,m)
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=
r∑
j=1

∑
m∈ND

0

m
(

(∆1
νj

∆2
µj
− 1)αjβ

[M ]
j p[M ]

)
(t, n,m)

=
r∑
j=1

∑
m∈ND

0

m
(

∆1
νj

(∆2
µj
− 1)αjβ

[M ]
j p[M ]

)
(t, n,m)

+
r∑
j=1

∑
m∈ND

0

m
(

(∆1
νj
− 1)αjβ

[M ]
j p[M ]

)
(t, n,m)

=
r∑
j=1

µj
∑
m∈ND

0

(
∆1
νj
αjβ

[M ]
j p[M ]

)
(t, n,m) (55)

+
∑
j∈J1

∑
m∈ND

0

m
(

(∆1
νj
− 1)αjβ

[M ]
j p[M ]

)
(t, n,m) (56)

due to Lemma 2 (iv) and the fact that ∆1
νj
− 1 = 0 for all j ∈ J0. For the first term (55), it

follows from (48) that

r∑
j=1

µj
∑
m∈ND

0

(
∆1
νj
αjβ

[M ]
j p[M ]

)
(t, n,m)

=
r∑
j=1

µj

(
∆1
νj
αj

[
β

[M ]
j (η[M ]) + trace

(
σ[M ]∇2β

[M ]
j

)]
p
[M ]
1

)
(t, n,m)

=
r∑
j=1

µj

(
∆1
νj
αjβ

[M ]
j (η[M ])p[M ]

1

)
(t, n,m) +O(1)

because (49) and Assumption (40) yield that∥∥∥trace
(
σ[M ](t, n)∇2β

[M ]
j

)∥∥∥ ≤ CM−γ(j) ≤ C
for all t ∈ [0, tend] and n ∈ Nd0. We remark that in the proof of Lemma 5, the same trace
term only caused an error of O

(
M−1

)
; cf. (50). This was due to the fact that in (51) we

have j ∈ J1 and hence γ(j) = 1, but this is not the case in (55)
For the second term (56), we use the Taylor expansion (47) to obtain∑

m∈ND
0

mβ
[M ]
j (m)p[M ](t, n,m) =

(
β

[M ]
j (η[M ])η[M ] +R1(t, n)

)
p
[M ]
1 (t, n)

with η[M ] = η[M ](t, n) and the remainder term

R1(t, n) =
∑
m∈ND

0

m

(
∇β[M ]

j (η[M ])T (m− η[M ])

+
1
2

(m− η[M ])T
(
∇2β

[M ]
j

)
(m− η[M ])

)
p
[M ]
2 (t,m|n)
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= σ[M ]∇β[M ]
j (η[M ]) +

1
2
η[M ]trace

(
σ[M ])∇2β

[M ]
j

)
+

1
2

∑
m∈ND

0

(m− η[M ])

(
(m− η[M ])T

(
∇2β

[M ]
j

)
(m− η[M ])

)
p
[M ]
2 (t,m|n)

which depends on the third moment of p[M ]
2 (t, ·|n). Now the crucial observation is that the

sum in (56) is only taken over J1. For all j ∈ J1, it follows from (23) and assumption (39)
that

∇β[M ]
j (η[M ]) = O

(
M−1

)
, ∇2β

[M ]
j = O

(
M−2

)
,

and Assumption 3 yields that ‖R1(t, n)‖ ≤ C for all n ∈ Nd0 and t ∈ [0, tend]. All in all, we
have shown in step 1 that

∂t

(
η[M ]p

[M ]
1

)
(t, n) =

r∑
j=1

µj

(
∆1
νj
αjβ

[M ]
j (η[M ])p[M ]

1

)
(t, n)

(57)
+
∑
j∈J1

(
(∆1

νj
− 1)αjβ

[M ]
j (η[M ])η[M ]p

[M ]
1

)
(t, n) +O(1) .

Later this equation will be multiplied by M−1 such that the rest term O(1) becomes
O
(
M−1

)
.

Step 2: Now an analogous equation is derived for ∂t
(
θ[M ]q

[M ]
1

)
. According to the LME (38)

we have

∂t

(
θ[M ]q

[M ]
1

)
=

∫
RD

+

x∂tq
[M ] dx

=
∑
j∈J1

∫
RD

+

xβ̃
[M ]
j (∆1

νj
− 1)αjq[M ] dx− 1

M

r∑
j=1

∫
RD

+

xαj∇
(
β̃

[M ]
j q[M ]

)T
µj dx

with β̃
[M ]
j = β̃

[M ]
j (x) and q[M ] = q[M ](t, n, x). Integration by parts yields∫

RD
+

x∇
(
β̃

[M ]
j q[M ]

)T
µj dx = −µj

∫
RD

+

β̃
[M ]
j q[M ] dx

because the boundary terms cancel due to the boundary condition (35) and
limx→∞ β̃

[M ]
j (x)q[M ](t, n, x) = 0 (since β̃

[M ]
j (·)q[M ](t, n, ·) ∈ `1d+D due to Assumption 2).

This gives

∂t

(
θ[M ]q

[M ]
1

)
=

∑
j∈J1

(∆1
νj
− 1)αj

∫
RD

+

xβ̃
[M ]
j q[M ] dx (58)

+
1
M

r∑
j=1

µj

∫
RD

+

αj β̃
[M ]
j q[M ] dx. (59)
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Next, we insert the Taylor expansion (52) into (58) and obtain∫
RD

+

xβ̃
[M ]
j q[M ] dx =

(
β̃

[M ]
j (θ[M ])θ[M ] +R2(t, n)

)
q
[M ]
1 (t, n)

with θ[M ] = θ[M ](t, n) and the rest term

R2(t, n) =
∫

RD
+

x

(
∇β̃[M ]

j (θ[M ])T (x− θ[M ])

+
1
2

(x− θ[M ])T
(
∇2β̃

[M ]
j

)
(x− θ[M ])

)
q
[M ]
2 dx

= ς(t, n)∇β̃[M ]
j (θ[M ]) +

1
2
θ[M ]trace

(
ς [M ](t, n)∇2β̃

[M ]
j

)
+

1
2

∫
RD

+

(x− θ[M ])(x− θ[M ])T
(
∇2β̃

[M ]
j

)
(x− θ[M ])q[M ]

2 dx.

Again we note that the sum in (58) is only taken over J1, such that (31) and Assumption
(39) imply that ∇β̃[M ]

j (θ[M ]) and its derivatives are uniformly bounded with respect to M .
Combining this with Assumption 3 implies that ‖R2(t, n)‖ ≤ C/M for all n ∈ Nd0 and
t ∈ [0, tend].

Next, the second term (59) is investigated. The Taylor expansion (52) yields

1
M

r∑
j=1

µj

∫
RD

+

αj β̃
[M ]
j q[M ] dx

=
1
M

r∑
j=1

µjαj

[
β̃

[M ]
j (θ[M ]) + trace

(
ς [M ]∇2β̃

[M ]
j

)]
q
[M ]
1

=
1
M

r∑
j=1

µjαj β̃
[M ]
j (θ[M ])q[M ]

1 +O
(
M−1

)
because due to (31) and (40)∥∥∥trace

(
ς [M ](t, n)∇2β̃

[M ]
j

)∥∥∥ ≤ CM−γ(j) ≤ C
for all t ∈ [0, tend] and n ∈ Nd0. We thus obtain

∂t

(
θ[M ]q

[M ]
1

)
=

∑
j∈J1

(∆1
νj
− 1)αj β̃

[M ]
j (θ[M ])θ[M ]q

[M ]
1

(60)
+

1
M

r∑
j=1

µj

(
αj β̃

[M ]
j (θ[M ])q[M ]

1

)
(t, n, x) +O

(
M−1

)
.
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Step 3: Multiplying (57) with M−1, subtracting (60) and integrating from 0 to t yields,
with ‖(∆1

νj
− 1)‖`1d ≤ 2, that

‖M−1η[M ]p
[M ]
1 − θ[M ]q

[M ]
1 ‖`1d

≤ C

M
+
C

M

t∫
0

r∑
j=1

∥∥∥αj [β[M ]
j (η[M ])p[M ]

1 − β̃[M ]
j (θ[M ])q[M ]

1

]
(τ, ·)

∥∥∥
`1d

dτ

+C

t∫
0

∑
j∈J1

∥∥∥αj [M−1β
[M ]
j (η[M ])η[M ]p

[M ]
1 − β̃[M ]

j (θ[M ])θ[M ]q
[M ]
1

]
(τ, ·)

∥∥∥
`1d

dτ

≤ C

M
+
C

M

t∫
0

r∑
j=1

∥∥∥[β[M ]
j (η[M ])p[M ]

1 − β̃[M ]
j (θ[M ])q[M ]

1

]
(τ, ·)

∥∥∥
`1d

dτ

+C

t∫
0

∑
j∈J1

∥∥∥[M−1β
[M ]
j (η[M ])η[M ]p

[M ]
1 − β̃[M ]

j (θ[M ])θ[M ]q
[M ]
1

]
(τ, ·)

∥∥∥
`1d

dτ.

The second inequality follows from Assumption 4. Applying Lemma 4 yields

1
M

∥∥∥[β[M ]
j (η[M ])p[M ]

1 − β̃[M ]
j (θ[M ])q[M ]

1

]
(τ, ·)

∥∥∥
`1d

≤ C
∥∥∥[M−1η[M ]p

[M ]
1 − θ[M ]q

[M ]
1

]
(τ, ·)

∥∥∥
`1d

+ C
∥∥∥[p[M ]

1 − q[M ]
1

]
(τ, ·)

∥∥∥
`1d

+
C

M
.

Hence, it remains to show that for all j ∈ J1∥∥∥[M−1β
[M ]
j (η[M ])η[M ]p

[M ]
1 − β̃[M ]

j (θ[M ])θ[M ]q
[M ]
1

]
(τ, ·)

∥∥∥
`1d

≤ C

M
+ C

∥∥∥[M−1η[M ]p
[M ]
1 − θ[M ]q

[M ]
1

]
(τ, ·)

∥∥∥
`1d

+ C
∥∥∥p[M ]

1 (τ, ·)− q[M ]
1 (τ, ·)

∥∥∥
`1d

(61)

for all τ ∈ [0, tend]. We decompose

M−1β
[M ]
j (η[M ])η[M ]p

[M ]
1 − β̃[M ]

j (θ[M ])θ[M ]q
[M ]
1

= β
[M ]
j (η[M ]) ·

[
M−1η[M ]p

[M ]
1 − θ[M ]q

[M ]
1

]
+ β

[M ]
j (η[M ])θ[M ]

[
q
[M ]
1 − p[M ]

1

]
+θ[M ]

[
β

[M ]
j (η[M ])p[M ]

1 − β̃[M ]
j (θ[M ])q[M ]

1

]
,

take the `1-norm on both sides, apply the triangle inequality and use that

max
τ∈[0,tend]

max
n∈Nd

0

∣∣∣β[M ]
j

(
η[M ](τ, n)

)∣∣∣ ≤ C for all j ∈ J1,

max
τ∈[0,tend]

max
n∈Nd

0

∣∣∣θ[M ](τ, n)
∣∣∣ ≤ C

due to Assumption (39). The last term can be bounded by applying Lemma 4 (with γ(j) = 1
since j ∈ J1). This proves (61) and completes the proof of Lemma 6.
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