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Abstract

This paper investigates an adaptive wavelet collocation time domain method for the numerical solu-
tion of Maxwell’s equations. In this method a computational grid is dynamically adapted at each time
step by using the wavelet decomposition of the field at that time instant. In the regions where the fields
are highly localized, the method assigns more grid points; and in the regions where the fields are sparse,
there will be less grid points. On the adapted grid, update schemes with high spatial order and explicit
time stepping are formulated. The method has high compression rate, which substantially reduces the
computational cost allowing efficient use of computational resources. This adaptive wavelet collocation
method is especially suitable for simulation of guided-wave optical devices.

keyword: Maxwell’s equations, time domain methods, wavelets, wavelet collocation method, adaptivity

1 Introduction

The numerical solution of Maxwell’s equations is an active area of computational research. Typically,
Maxwell’s equations are solved either in the frequency domain or in the time domain, where each of these
approaches has its own relative merits. We are specifically interested in efficient algorithms for light propa-
gation problems in guided wave photonic applications [1], and work in the time domain. The most popular
class of methods in this area is the finite difference time domain (FDTD) method [2]. Due to the structured
grid requirement of these methods, they become cumbersome while dealing with optical devices having
curved interfaces and different length scales. To overcome these difficulties, a discontinuous Galerkin time
domain (DGTD) method has been investigated [3]. For a time dependent wave propagation problem, all
these methods use a fixed grid/mesh for discretization. In general, such a grid can under-sample the tem-
poral dynamics, or over-sample the field propagation causing high computational costs. If the spatial grid
adapts itself according to the temporal evolution of the field, then the computational resources will be used
much more efficiently.

We propose an adaptive-grid method which represents propagating fields at each time step by a com-
pressed wavelet decomposition, and which automatically adapts the computational mesh to the changing
shape of the signal. In the initial studies of the wavelet formulation, the interpolating scaling functions
were used for frequency domain waveguide analysis [4]. To the best of our knowledge, the suitability of
the wavelet decompositions for time dependent Maxwell problems has not yet been investigated. Vasilyev
and his co-authors developed the adaptive wavelet collocation time domain (AWC-TD) method as a general
scheme to solve evolution equations, and they successfully verified the scheme’s effectiveness in the area
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of computational fluid dynamics [5, 6]. Based on these studies, we present in this work a proof-of-concept
for an AWC-TD for the time dependent Maxwell’s equations.

The paper is organized as follows. In Sec. 2, we provide a brief account on Maxwell’s equations and
some of the related concepts for their numerical solutions. We start Sec. 3 with an introduction to (interpo-
lating) wavelets, and how they can be used to discretize partial differential equations. Also in this section
we explain the structure of AWC-TD method in the context of Maxwell’s equations. Sec. 4 gives algorith-
mic details of the method. Numerical results of the AWC-TD method are given in Sec. 5 which contains
our numerical experiments of propagating a 2D Gaussian peak in homogeneous environment. Finally we
close the paper with concluding remarks in Sec. 6.

2 Time domain Maxwell’s equations

Propagation of optical waves in a linear, non-magnetic dielectric medium with no charges and currents is
governed by the following time dependent Maxwell’s equations

− ∂

∂t
~B(~r, t) = ∇× ~E(~r, t), ∂

∂t
~D(~r, t) = ∇× ~H(~r, t), ∇ · ~D(~r, t) = 0, and ∇ · ~B(~r, t) = 0, (1)

where the electric field ~E and the electric flux density ~D, as well as the magnetic field ~H and the magnetic
flux density ~B, are related by the constitutive relations

~D(~r, t) = ε0εr(~r)~E(~r, t) and ~B(~r, t) = µ0
~H(~r, t).

Here ε0 is the free space permittivity, εr is the relative permittivity and µ0 is free space permeability.
For illustration purpose, we restrict ourselves to a 2D setting where the fields and the material properties

are assumed to be invariant in the y-direction, i. e. ~r = (x, z) and the partial derivatives of all fields with
respect to y vanish identically. We suppress the explicit function dependence on ~r and t. Then Maxwell’s
equations (1) decouple into a pair of independent sets of equations,

∂Ex
∂t

= − 1

ε0εr

∂Hy

∂z
,
∂Ez
∂t

=
1

ε0εr

∂Hy

∂x
,
∂Hy

∂t
=

1

µ0

(
∂Ex
∂z
− ∂Ez

∂x

)
, (2)

identified as transverse electric (TE)y setting, and

∂Hx

∂t
=

1

µ0

∂Ey
∂z

,
∂Hz

∂t
= − 1

µ0

∂Ey
∂x

,
∂Ey
∂t

=
1

ε0εr

(
∂Hx

∂z
− ∂Hz

∂x

)
, (3)

identified as transverse magnetic (TM)y setting. Here Ex, Ez, · · · etc. denote the respective field compo-
nents.

Originally, Maxwell’s equations are formulated for a whole space. For numerical computations we need
to restrict them to a bounded computational domain Ω as shown in Fig. 1. This is done with a transparent
boundary condition, which is realized in our case with perfectly matched layer (PML) [7, 8]. The principle
of PML is that (outgoing) waves scattered from the scatterer Ωs pass through the interface between Ω and
PML without reflections, and attenuate significantly inside the PML. The waves virtually vanish before
reaching the outermost boundary of the PML, where the perfectly electric boundary (PEB) condition is
employed. Implementation details about the PML technique specific for the method discussed in this paper
can be found in Ref. [9]. For the sake of clarity, we work with the general formulation given by Eq. (2)-(3).

As in the case of the standard FDTD method [2], in our approach we use the central difference scheme
for the time derivatives in Eq. (2)-(3), but we will construct a different discretization scheme of the spatial
derivatives. This is done with interpolating scaling functions and lifted interpolating wavelets (explained
in Sec. 3). The induced multiresolution approximation [10, 11] enables us to decompose fields into various
resolution levels, and thus allows to discard unimportant features. As a result, we will obtain a variant of the
FDTD method, which is constructed with respect to a locally refined grid. In the next section we describe
this numerical scheme in detail.
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Figure 1: Typical simulation setting with a computational domain Ω surrounded by the perfectly matched
layer. Here just for the sake of illustration, we show the scatterer Ωs completely enclosed inside Ω. Other
configurations like incoming-outgoing waveguides are also possible [9].

3 Adaptive wavelet collocation method

The adaptive wavelet collocation (AWC) method was proposed by Vasilyev and co-authors in a series of
papers [12, 13, 5, 6] as a general scheme to solve evolution equations. In the present section, we tailor the
AWC method to tackle Eq.(2)-(3). In contrast to the originally formulated AWC method, we do not need to
utilize second generation wavelets, which have been mainly invented to implement boundary constraints,
and to find wavelet decompositions on irregular domains. Since we use the PML method, we can identify
field values outside the PML region with zero, and therefore we are not forced to adapt our wavelets to
the boundary restrictions. Hence, we consider only the first generation wavelets, which are generated by
the shifts and the dilations of a single function. Now we outline the essential steps for computing spatial
derivatives of functions in wavelet representations.

3.1 Preliminaries

A starting point of the AWC method is a wavelet decomposition of a function f ∈ L2(R):

f =
∑

k∈Z

αj0,kφj0,k +

+∞∑

j=j0

∑

m∈Z

βj,mψj,m (4)

where j0 ∈ Z, φ is the scaling function and ψ is the wavelet function [14, 15]. For all j, n ∈ Z, by φj,n

and ψj,n we abbreviate the dilated and translated versions of φ and ψ, i.e. φj,n(·) = 2j/2φ(2j · −n),
ψj,n(·) = 2j/2ψ(2j · −n).

The first (single) sum in (4) represents rough or low frequency information of f , while the second
(double) sum contains the detail information at various resolution levels starting from the level j0 to +∞.
The absolute magnitude of the coefficients αj0,k and βj,m measure the contributions of φj0,k and ψj,m

to f . By discarding terms in the double sum for which the wavelet coefficients βj,m are absolutely less
than a given threshold, one can efficiently compress the representation of f . This wavelet decomposition
compression principle is exploited in the AWC method to enhance the computational efficiency.

There are various families of the scaling functions φ and wavelet functions ψ allowing representations
like (4). As in [5, 6], we work with the interpolating scaling functions [16] and the corresponding lifted
interpolating wavelets [17, 18]. Due to their interpolation property, we have

φ(k) = δ0,k =

{
1 : k = 0,

0 : k ∈ Z \ {0},

and as a result, there exits a unique grid associated with the family {φj,k}. The resulting numerical scheme
can be seen as a variant of the well known finite difference method. We exploit this interpolating property
in Sec. 3.2 and Sec. 3.5.
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In particular, we use the interpolating scaling function (ISF) family developed by Deslauriers and
Dubuc [19, 16]. They constructed the interpolating functions by the iterative interpolation method, which
does not require the concept of wavelets. Later Sweldens [17, 18] constructed the corresponding wavelet
by lifting the Donoho wavelet [20]. We use DDN to denote ISF of order N , and Dl eN to denote the lifted

interpolating wavelet of order Ñ . Here the order N means that any polynomial p of degree k ≤ 2N − 1
can be expressed as

p(·) =
∑

m

cmDDN (· −m)

with suitable coefficients {cm}. The order Ñ is half the number of the vanishing moments of the lifted
interpolating wavelet, i.e.,

∫
xkDl eN (x)dx = 0, k = 0, 1, . . . , 2Ñ − 1.

Further details can be found in [17, 18, 9]. We normally choose same orders for the ISF and the lifted
interpolating wavelet, i.e., N = Ñ . It is easy to see that DDN and Dl eN

have compact supports, which
increase with the order N .

For the TMy setting in Eq. (3), the electric and magnetic fields depend on the spatial variables (x, z).
As usual, see, e.g., [11, 15], we represent 2D fields by expansions of 2D scaling functions and wavelets
which are defined by

φN (x, z) := DDN (x)DDN (z),

ψν
N (x, z) :=





DlN (x)DDN (z) : ν = 1,

DDN (x)DlN (z) : ν = 2,

DlN (x)DlN (z) : ν = 3,

and use the following abbreviations

(φN )j,m,n(x, z) := (DDN )j,m(x)(DDN )j,n(z),

(ψν
N )j,m,n(x, z) :=





(DlN )j,m(x)(DDN )j+1,2n(z) : ν = 1,

(DDN )j+1,2m(x)(DlN )j,n(z) : ν = 2,

(DlN )j,m(x)(DlN )j,n(z) : ν = 3.

Let jmin and jmax (with jmin < jmax) be the coarsest and the finest spatial resolution levels. Let us consider
f ∈ L2(R2) with exact resolution level jmax, that is,

f =
∑

m,n

αjmax,m,n(φN )jmax,m,n. (5)

Then the wavelet representation of f with coarsest resolution level jmin is given by

f =
∑

m,n

αjmin,m,n(φN )jmin,m,n +

3∑

ν=1

jmax−1∑

j=jmin

∑

m,n

βν
j,m,n(ψν

N )j,m,n (6)

where the scaling coefficients {αjmin,m,n} and the wavelet coefficients {βν
j,m,n} can be calculated from the
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level jmax scaling coefficients {αjmax,m,n} by the normalized 2D forward wavelet transform (FWT):

d1
j,m,n =

1

2

(
cj+1,2m+1,2n −

∑

l

2s̃−lcj+1,2m+2l,2n

)
, (7a)

d2
j,m,n =

1

2

(
cj+1,2m,2n+1 −

∑

l

2s̃−lcj+1,2m,2n+2l

)
, (7b)

d3
j,m,n =

1

4

(
cj+1,2m+1,2n+1 −

∑

l

2s̃−lcj+1,2m+2l,2n+1 −
∑

l′

2s̃−l′cj+1,2m+1,2n+2l′

+
∑

l

∑

l′

(2s̃−l)(2s̃−l′)cj+1,2m+2l,2n+2l′

)
, (7c)

cj,m,n = cj+1,2m,2n +
∑

l

s−ld
1
j,m+l,n +

∑

l′

s−l′d
2
j,m,n+l′ +

∑

l

∑

l′

s−ls−l′d
3
j,m+l,n+l′, (7d)

with the following normalization conventions

cj,m,n = 2jαj,m,n, d1
j,m,n = 2j+1/2β1

j,m,n, d2
j,m,n = 2j+1/2β2

j,m,n and d3
j,m,n = 2jβ3

j,m,n.

The coefficients 2s̃l and sl are Lagrangian interpolation weights. For example, when N = 2, these weights
are

s−2 = −1/16, s−1 = 9/16, s0 = 9/16, s1 = −1/16, 2s̃−1 = −1/16,

and
2s̃0 = 9/16, 2s̃1 = 9/16, 2s̃2 = −1/16.

Readers may consult [16, 21] and [17, Theorem 12] for an explanation of how and why Lagrangian weights
enter the iterative interpolation process.

We also can compute back from the wavelet representation (6) to the scaling function representation (5)
by the inverse wavelet transform (IWT):

cj+1,2m,2n = cj,m,n −
∑

l

s−ld
1
j,m+l,n +

∑

l′

s−l′d
2
j,m,n+l′ +

∑

l

∑

l′

s−ls−l′d
3
j,m+l,n+l′, (8a)

cj+1,2m+1,2n = 2d1
j,m,n +

∑

l

2s̃−lcj+1,2m+2l,2n, (8b)

cj+1,2m,2n+1 = 2d2
j,m,n +

∑

l

2s̃−lcj+1,2m,2n+2l, (8c)

cj+1,2m+1,2n+1 = 4d3
j,m,n +

∑

l

2s̃−lcj+1,2m+2l,2n+1 +
∑

l′

2s̃−l′cj+1,2m+1,2n+2l′

−
∑

l

∑

l′

(2s̃−l)(2s̃−l′)cj+1,2m+2l,2n+2l′ . (8d)

3.2 Adaptive grid refinement wavelet compression

We thin out the triple sum in (6) by discarding small wavelet coefficients, which corresponds to small scale
details. For a given threshold ζ > 0, let

fζ :=
∑

m,n

αjmin,m,n(φN )jmin,m,n +

3∑

ν=1

jmax−1∑

j=jmin

∑

m,n

T ν
ζ (βν

j,m,n)(ψν
N )j,m,n,

where the threshold function T ν
ζ : R→ R is defined by

T ν
ζ (x) =





x : for ν ∈ {1, 2} and |x| ≥ 2−j−1/2ζ,
x : for ν = 3 and |x| ≥ 2−jζ,
0 : otherwise.
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Note that we have defined the uniform threshold ζ in terms of the normalized wavelet coefficients dν
j,m,n

defined in Eq. (7) i.e., if |dν
j,m,n| < ζ then dν

j,m,n = 0 in fζ in Eq. (6). Then the compression error is
proportional to ζ [5]:

‖f − fζ‖∞ ≤ Cζ.
Our basis functions in (6), which are translates and dilates of φN and ψν

N , are interpolating at the corre-
sponding grid points. Let

xj,m :=
m

2j
and zj,n :=

n

2j
for m,n ∈ Z,

then we have the following one-to-one correspondence between the basis functions and the grid points:

(φN )j,m,n ←→ (xj,m, zj,n), (ψ1
N )j,m,n ←→ (xj+1,2m+1, zj+1,2n),

(ψ2
N )j,m,n ←→ (xj+1,2m, zj+1,2n+1), (ψ3

N )j,m,n ←→ (xj+1,2m+1, zj+1,2n+1).

Here this correspondence means the validity of the interpolation property. For instance, we have that

(φN )j,m,n(xj,m′ , zj,n′) = δm,m′δn,n′ .

With this explanations, we justified the synonymous usage of compression of the wavelet representation
and compression/adaption of the grid points.

3.3 Adjacent zone

With the above described wavelet compression, the grid gets suitably sampled only for the current state
of the fields. For a meaningful (i.e. physical) field evolution in the next time-step, the grid need to be
supplemented by additional grid points, on which the fields may become significant in the next time step.
This allows the grid to capture correctly the propagation of a wave. To this end Vasilyev [5, 6] has introduced
a concept of an adjacent zone.

To each point P = (xj,m, zj,n) in the current grid, we attach an adjacent zone which is defined as the
set of points (xj′,m′ , zj′,n′) which satisfy

|j′ − j| ≤ L, |2j′−jm−m′| ≤M, |2j′−jn− n′| ≤M,

where L is the width of the adjacent levels and M is the width of the physical space. As in [5], we verified
that L = M = 1 is a computationally sufficient choice. Then the adjacent zone for a point P can be
depicted as in Fig. 2.
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Figure 2: Description of the adjacent zone of a grid point P .

Note that the concept of adjacent zone is reasonable only for continuously propagating waves, as in case
of our guided-wave applications, where in each time step the propagating waves do not travel far from the
current position due to their finite propagation speed.

3.4 Reconstruction check

In this work we use the wavelet decompositions of the fields only to determine the adaptive grid. We do
not propagate fields in their wavelet representations (cf. the statement in the first paragraph of Sec. 4). Thus
at each time step, after adapting the grid using the FWT, and adding the adjacent zone, we need to restore
the fields in the physical space by performing the inverse wavelet transformation (IWT). To this end, we
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may need to augment the adaptive grid with additional neighboring points (e.g. see Fig 3). This process
of adding neighboring points needed to calculate the wavelet coefficients in the next time step is called
reconstruction check. Fig 3 shows various possible scenarios, and the corresponding minimal set of the grid
points required for calculation of the wavelet coefficients. The values of the wavelet coefficients at these
newly added points are set to zero.
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(a) ×: The point correspond-
ing to d

1
j,m,n; •: The neigh-

boring points needed to calculate
d
1
j,m,n.
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(b) ×: The point correspond-
ing to d

2
j,m,n; •: The neigh-

boring points needed to calculate
d
2
j,m,n.
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(c) ×: The point corresponding
to d

3
j,m,n; •, ◦: The neigh-

boring points needed to calculate
d
3
j,m,n.

Figure 3: Descriptions of the neighboring points needed to calculate the wavelet coefficients dν
j,m,n with the

orders N = Ñ = 2.

The efficiency of the wavelet transform depends on the number of the finest grid points only at the
beginning; however, after the first compression, it depends solely on the cardinality (= number of grid
points) of the adaptive grid.

3.5 Calculation of the spatial derivatives on the adaptive grid

After the adjacent zone correction and the reconstruction check, we are in a position to calculate the deriva-
tive of fζ at a grid point in the adaptive grid. For this we need to know the density level of this point, which
is defined as the maximum of the x-level and the z-level of that point.

We illustrate this concept explicitly only for the x-level, the z-level can be determined analogously. For
a point Q = (x0, z0) in the adaptive grid G, let Q′ = (x1, z0) ∈ G be the nearest point to Q. Then the
x-level Levelx of Q relative to G is

Levelx := jmax − log2(dist(Q,Q′)/∆x) (9)

where ∆x is the smallest computational mesh size along the x axis, and dist(Q,Q′) = |x1 − x0|. For
dist(Q,Q′) = ∆x, the level Levelx of Q attains its maximum jmax. For dist(Q,Q′) = 2∆x, we have
Levelx = jmax − 1, etc. See Fig. 4 for an example of describing the density level of a grid point.

∆z ∆x2
QQ

Figure 4: Description of the density level of a point Q in an adaptive grid: the x-level of Q is jmax − 1 and
the z-level of Q is jmax, thus, the density level of Q is jmax.

Now we continue to discuss the derivative calculations. Suppose j0 to be the density level of Q in G.
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Then, we can represent fζ by a finite sum Pj0f locally in some neighborhood Ω0 of Q.

Pj0f(x, z) =
∑

m,n

αj0,m,n(φN )j0,m,n(x, z), (x, z) ∈ Ω0 (10)

We differentiate Pj0f with respect to x to approximate the x-derivative of f at Q. If any points in the sum
(10) are not present in G, then we interpolate the values at these points by the IWT using the values of the
coarser levels. From the interpolation property of (φN )j0,m,n we know that

αj0,m,n = 2−j0(Pj0f)
( m

2j0
,
n

2j0

)
, for m,n ∈ Z.

Thus, we have

(Pj0f)(x, z) =
∑

m,n

(Pj0f)
( m

2j0
,
n

2j0

)
DDN

(
2j0x−m

)
DDN

(
2j0z − n

)
, (x, z) ∈ Ω0. (11)

Differentiate both sides of (11) with respect to x gives

∂(Pj0f)

∂x
(x, z) =

∑

m,n

(Pj0f)
( m

2j0
,
n

2j0

)dDDN

(
2j0x−m

)

dx
DDN

(
2j0z − n

)
, (x, z) ∈ Ω0. (12)

The derivatives ofDD′
N can be calculated exactly at the integers using the difference filters shown in Table 1

(see Ref. [16] for details of the derivation).

i N = 2 N = 3 N = 4

1 2/3 272/365 39296/49553
2 −1/12 −53/365 −76113/396424
3 16/1095 1664/49553
4 1/2920 −2645/1189272
5 −128/743295
6 1/1189272

Table 1: Difference filters {DD′
N (i)}i∈Z with consistency order 2N . Note that DD′

N (i) = −DD′
N (−i).

Since the density level of Q is j0, there exist m′, n′ ∈ Z such that Q =
(

m′

2j0
, n′

2j0

)
and it is easy to see

that

∂(Pj0f)

∂x

(m′

2j0
,
n′

2j0

)
=

∑

m,n

(Pj0f)
( m

2j0
,
n

2j0

)dDDN

(
m′ −m

)

dx
DDN

(
n′ − n

)

= 2j0
∑

m

(Pj0f)
( m

2j0
,
n′

2j0

)
DD′

N

(
m′ −m

)
. (13)

Similarly,
∂(Pj0f)

∂z

(m′

2j0
,
n′

2j0

)
= 2j0

∑

n

(Pj0f)
(m′

2j0
,
n

2j0

)
DD′

N

(
n′ − n

)
. (14)

This finishes the general discussion about the adaptive wavelet collocation method; in the next section, we
apply it to Maxwell’s equations.

4 AWC-TD method for Maxwell’s equations

In this section we formulate the update scheme for Maxwell’s equations, and then elaborate on algorithmic
issues related with the AWC-TD method. In the present formulation we represent the electric and magnetic
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fields in the physical space, and not in the wavelet space. To unleash the full power of adaptivity, however,
the field representation and the update in wavelet space are advantageous.

We illustrate the method for the transverse magnetic (TM)y setting given by (3). Similar procedure
can also be formulated for TEy setting in (2). Unlike the standard FDTD method, here the electric field
and the magnetic field components are evaluated on same spatial grid, and their spatial derivatives are
approximated at the same grid point. But the electric field components are sampled at integer time-steps,
whereas the magnetic field components are sampled at half-integer time-steps.

4.1 Update scheme for the spatial derivative

For a point Q in the adapted grid G, let Hx|k+1/2
Q , Hz|k+1/2

Q and Ey|kQ denote the discretized value of Hx,
Hz and Ey at the point Q, and at a time (k + 1/2)∆t for the magnetic field components and at a time k∆t
for the electric field component where ∆t > 0 is the time step size (Note that, the electric field components
are sampled at integer time-steps, whereas the magnetic field components are sampled at half-integer time-
steps.). Assume j(Q) to be the density level of Q relative to G. Then we can represent the point Q as
(xj(Q),m′ , zj(Q),n′) for some m′, n′ ∈ Z.

Let L be the length of the computational domain Ω. We rescale the wavelet decomposition (11) with
the factor L. Then using the central difference scheme for the time derivatives and using (13)-(14) for the
spatial derivatives, we get the following difference equations

Hx|
k+ 1

2
Q = Hx|

k− 1
2

Q +
∆t

µ0

2j(Q)

L

∑

n

Ey|k(xj(Q),m′ ,zj(Q),n)DD
′
N (n′ − n), (15a)

Hz|
k+ 1

2
Q = Hz|

k− 1
2

Q +
∆t

µ0

2j(Q)

L

∑

m

Ey|k(xj(Q),m,zj(Q),n′)DD
′
N (m′ −m), (15b)

Ey|k+1
Q = Ey|k−1

Q +
∆t

ε0

1

εr|Q
2j(Q)

L

( ∑

n

Hx|
k+ 1

2

(xj(Q),m′ ,zj(Q),n)DD
′
N (n′ − n)

−
∑

m

Hz|
k+ 1

2

(xj(Q),m,zj(Q),n′ )
DD′

N (m′ −m)
)
, (15c)

The first time step (k = 0) is an explicit Euler step with step size ∆t/2 using initial conditions for the fields
at the time t = 0. If not explicitly mentioned, otherwise the fields are set zero at the beginning for all our
numerical experiments in Sec. 5. The update equations for the PML assisted Maxwell’s equations can be
found in Ref. [9].

From the form of these update equations, it is clear that the AWC-TD method can be thought as an
variant of high order FDTD method. The AWC-TD method is defined with respect to a locally adapted
mesh, and unlike the FDTD method, it does not require a static (fixed), structured mesh. This will lead to
efficient use of the computational resources. In the next section, we elaborate on algorithmic aspects of the
method.

4.2 Update scheme for the time derivative

Several choices are available for time stepping. As in case of the standard FDTD method, we use in (15)
the central difference scheme for the discretization of the time derivatives. For this explicit scheme, the
smallest spatial step-size restricts the maximal time-step according to the Courant–Friedrichs–Lewy (CFL)
stability condition. Using a uniform spatial mesh in the update equations (15) with a mesh size ∆ in both
coordinate directions the CFL condition reads

∆t ≤ ∆√
2c

∑l0−1
l=0 |DD′

N (l)|
, (16)

see [9, Sec. 3.5] and [22], where c is the speed of light in vacuum and {DD′
N (l)} is the known derivative

filter of the ISF as in Table 1. Due to the local adaptive grid strategy of the AWC-TD method, we cannot
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define a global stability criteria as above. But choosing ∆ to be the smallest step size in the adaptive grid,
we get a conservative bound for ∆t via (16) for the AWC-TD method. In the simulation tests (in this paper,
and in [9]) we did not experience any stability related issues with this modus operandi.

4.3 Implementation aspects

4.3.1 Grid management

In AWC method the computational grid is changed with the state (spatial localization) of the propagating
field. Thus the grid management is one of the important steps in the implementation of this method. This
is done as following: We store the information of the adaptive grid into a 2D Boolean array called a grid
mask or simply a mask, whose size is square the number of the finest grid points along one direction. We
use 2D arrays of real numbers with the size of the grid mask to store the fields such as Ey, Hx, and Hz etc.
Note that the computational effort for updating the fields at each time step is proportional to the cardinality
(i.e. the number of entries in the mask with value 1) of the adaptive grid.

If the value of an entry of a mask is true or 1, then the corresponding grid point is included in the
adaptive grid; otherwise, it is not included in the grid. Thus by forcing the value of an entry of a mask
to 1, we can include the corresponding point to the grid, or by forcing the entry to 0, we can exclude the
corresponding point from the grid.

4.3.2 Algorithmic procedures

Algorithm 1 outlines the main function awcm main() of AWC-TD method for TMy setting. It mainly
consists of two blocks of operations: The first block is initialization, and the second block is time stepping.
In the time stepping block, at each time step the routines awcm adaptive() and awcm update() are called.
The former routine optimally adapts the computational grid for the field updates at the next time step,
whereas the latter routine calculates the spatial derivatives on the non-equidistant, adaptive grid, and updates
the field values.

Algorithm 1: awcm main() for TMy settings

# Initialization
awcm initialize()
# ———————————————————————————————————–
# Time stepping of Ey, Hx and Hz

for t ≤ T do
# Adapt the grid for t+ ∆t according to E t

y, see Algorithm 2.
awcm adaptive()
# ——————————————————————————————————
# Update Ht+∆t/2

x , Ht+∆t/2
z and E t+∆t

y , see Algorithm 3.
awcm update()
# ——————————————————————————————————
# Go to the next time step.
t = t+ ∆t

The initialization subroutine awcm initialize() ensures that various required inputs for the AWC method
are systematically prepared. It consists of checking the given initial data (i.e. for time step k = 0) Hx

−
1
2 ,

Hz
−

1
2 and Ey0 at the finest resolution level jmax, the threshold ζ , the maximum and the minimum spatial

resolution levels jmax and jmin respectively, and the number of time steps kmax. The time step ∆t is chosen
such that it satisfies the CFL condition given by (16).

The adaptivity procedure in Algorithm 1 handled by a subroutine awcm adaptive() is outlined in Algo-
rithm 2. It is done by means of a 2D array Ey with a mask Mask0. For later use, we store a copy of Mask0
in pMask0, since Mask0 will be modified by the subsequent subroutines. The duplicate pMask0 serves
as a reference for finding those points which need to be interpolated before we can update the fields. We
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perform the fast wavelet transform of Ey on Mask0. Note that Mask0 is either fully 1 (as at the beginning)
or a reconstruction check has been performed in the previous time step. In any case, FWTs on Mask0 are
always possible. By the FWT applied to Ey we obtain the scaling coefficients on the coarsest level jmin,
and the wavelet coefficients on levels from jmin to jmax − 1.

For each wavelet coefficient, we compare its absolute value with the given tolerance ζ . If it is less than
ζ , we remove the corresponding point from Mask0. Next, we determine the adjacent zone for each point
in Mask0, and then modify Mask0 to include all points in these adjacent zones. Finally, a reconstruction
check is applied to Mask0 so that the FWT in the next time step is well defined. The latter two processes
are done in the subroutine Maskext(Mask0) as shown in Algorithm 2.

Algorithm 2: awcm adaptive() for TMy settings

# Store Mask0 into pMask0.
# pMask0: The adaptive grid for Ey at current time step.
pMask0 = Mask0
# ————————————————————————————————————
# Fast wavelet transform of Ey on Mask0 with ζ .
# Ey is converted into coefficients of wavelet domain, Mask0 is thinned.
FWT(Ey, Mask0, ζ)
# ————————————————————————————————————
# Add adjacent zone and perform a reconstruction check to Mask0.
Maskext(Mask0)
# ————————————————————————————————————
# Add points needed to calculate ∂Ey

∂x and ∂Ey

∂z on Mask0.
# 1. Determine the density level of each point in Mask0.
Level0 = Level(Mask0)
# 2. Initialize Mask1 with Mask0.
Mask1 = Mask0
# 3. Update Mask1.
gMaskext(Mask1, Level0)
# ————————————————————————————————————
# Add points needed to calculate ∂Hx

∂z and ∂Hz

∂x on Mask1.
# 1. Determine the density level of each point in Mask1.
Level1 = Level(Mask1)
# 2. Initialize Mask2 with Mask1.
Mask2 = Mask1
# 3. Update Mask2.
gMaskext(Mask2, Level1)
# ————————————————————————————————————
# Inverse wavelet transform of the values Ey in the wavelet domain on Mask2.
# Ey is reconstructed from the values in the wavelet domain on Mask2.
IWT(Ey, Mask2)

After the above adaptation of the grid is done, we still need to make further reconstructions on this grid,
so that it will allow computation of the field derivatives required for the field update. For updating Hx and
Hz , we need ∂Ey

∂z and ∂Ey

∂x (see (3) or (15)). To calculate these spatial derivatives of the electric field, we
interpolate values of Ey at those neighbors of points in Mask0 which are not already in Mask0. We store
the information of Mask0 into Mask1. Further, we add all points to Mask1 needed in the calculations
of spatial derivatives according to the density levels of the points in Mask1. These density levels are
computed in subroutine Level(Mask1) and stored in the 2D array Level0. Again a reconstruction check of
Mask1 is required to enable IWTs. This is done by the subroutine gMaskext(Mask1, Level0).

Then we need to follow the same procedure as above for updating Ey using the spatial derivatives ∂Hx

∂z

and ∂Hz

∂x . Again we add the neighboring points needed for calculations of the spatial derivatives of the
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Algorithm 3: awcm update() for TMy settings

# To update Hx:
# Interpolate Hx on points in Mask1 which are not in pMask0 using inverse wavelet transform.
interpolate(Hx , pMask0, Mask1)
# Calculate ∂Ey

∂z on Mask1 using Algorithm 4.
dAz = diffz(Ey , Mask1, Level1, dfilter, dz)
Update Hx on Mask1 using dAz as per formulation in (15a).
# ————————————————————————————————————
# To update Hz:
# Interpolate Hz on points in Mask1 which are not in pMask0 using inverse wavelet transform.
interpolate(Hz , pMask0, Mask1)
# Calculate ∂Ey

∂x on Mask1 using Algorithm 4.
dAx = diffx(Ey , Mask1, Level1, dfilter, dx)
Update Hz on Mask1 using dAx as per formulation in (15b).
# ————————————————————————————————————
# To update Ey:
# Interpolate Ey on points in Mask0 which are not in pMask0 using inverse wavelet transform.
interpolate(Ey , pMask0, Mask0)
# Calculate ∂Hx

∂z and ∂Hz

∂x on Mask0, see the Algorithm 4.
# diffx() is defined in Algorithm 4. diffz() is similarly defined.
dAz = diffz(Hx, Mask0, Level0, dfilter, dz)
dAx = diffx(Hz , Mask0, Level0, dfilter, dx)
Update Ey on Mask0 using dAz and dAx as per formulation in (15c).

magnetic field. We copy Mask1 to Mask2, and calculate the density level array Level1 of Mask2. The
necessary reconstruction check is then done by calling gMaskext(Mask2,Level1). The call of IWT(Ey,
Mask2) to reconstruct Ey in the physical domain finishes the routine awcm adaptive() in Algorithm 2.

Next, we update the field values on the adaptive grid, which is described by Algorithms 3. Since the
adaptive grid may change with time, we need to interpolate the field values at points in the adaptive grid of
the current time step, which are not included in the adaptive grid of the previous time step. For example,
consider the update of Hx about a grid point Q at a time (k + 1/2)∆t in (15a). Since Q is not necessarily

in the adaptive grid of previous time (k − 1/2)∆t, the value Hx|k−1/2
Q in (15a) must be interpolated. Once

this is done, Algorithm 4 calculates the spatial derivatives of each field components on the adaptive grid,
and then the fields are updated.

5 Numerical results: Gaussian pulse propagation

In this section we demonstrate the applicability of the AWC-TD method. The method has been implemented
in C++, and the computations have been performed on 32 GB RAM, Linux system with AMD Opteron
processors.

As an example, we consider propagation of a spatial Gaussian pulse in free space (εr = 1). We solve a
system of TMy equations within a square domain Ω = [−L/2, L/2] × [−L/2, L/2] in the XZ plane. We
set the domain length L = 6.0 µm, the PML width d = L/4, and the initial spatial Gaussian excitation
Ey(x, z, 0) = exp(−(x2 + z2)/(2σ2)) with the Gaussian pulse width σ = 1/(4

√
2) µm. Implementation

details about the PML can be found in Ref. [9].
Our minimum and maximum resolution levels are jmin = 3 and jmax = 9 inducing the smallest mesh

size ∆ = ∆x = ∆z = L/2jmax = 11.71875 nm. The temporal error of the AWC-TD method is controlled
by O(∆t2) if we do not consider the compression, which is the consistency order of the central difference
discretization of the time derivatives. Accordingly, a reasonable choice for the threshold ζ is a value slightly
larger than the discretization error. As the orders of the underlying interpolating scaling function/wavelet
pair is N = Ñ = 4, we set ∆t = ∆/c/1.6, which is just below the maximal step size from the CFL
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Algorithm 4: diffx(A, Mask, Level, dfilter, dx)
Input : A = 2D array of field values

Mask = grid mask,
Level = x-level of each point in Mask,
dfilter difference filters as given in Table 1,
dx = the smallest mesh size in x direction at the highest resolution level

Return: a 2D array of ∂A
∂x on Mask

# Initialize a 2D array dA for the storage of ∂A
∂x .

dA = 0

Kj = {(xj,m, yj,n) |m,n = 0, 1, . . . , 2j}, where xj,m =
mL

2j
, yj,n =

nL

2j
, for jmin ≤ j ≤ jmax.

forall Q = (xjmax,m, yjmax,n) ∈ Kjmax do
if Q ∈Mask then

# Read the density level of Q from Level.
j(Q) = Level[n][m]
Calculate dA at point Q using dfilter and values of A at neighbor points in the level j(Q)
as described in (13).

condition (16). For this setting, a choice of wavelet threshold ζ = 5.0 × 10−4 experimentally turned out
to be sufficient concerning both adaptivity and accuracy. The Gaussian pulse, launched in the center of the

Figure 5: Evolution of the initial excitation Ey(x, z, 0) = exp(−(x2 + z2)/(2σ2)) in the XZ plane with
σ = 1/(4

√
2) µm,N = Ñ = 4 and ζ = 5.0×10−4. On top of each time frame, time and grid compression

rate cp are given (cp is the ratio of the cardinality of the adaptive grid and the cardinality of the full grid
with a uniform step size ∆ (= the smallest mesh size) in the both coordinate directions). The adaptive
grid systematically follows and resolves the wavefront. In regions where the field is small or not present
only grid points of the coarsest level are assigned. For an animation movie, see the YouTube channel:
www.youtube.com/user/HaojunLi#p/u/1/2Yzpjf7Xnp4.

computational domain, spreads away from the center as time evolves. Fig. 5 illustrates how the adaptive grid
systematically follows and resolves the wavefront. Since the electromagnetic field energy is spreading in all
directions, the field’s amplitude is decreasing (unlike as in 1D, where during the propagation the amplitude
stays at half of the initial value, see [9, Sec. 4.4.1]). The AWC method generates a detailed mesh only in the
regions where the field is localized, the mesh gets coarse in other parts of the computational domain. As
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seen in the snapshots for t = 200∆t or t = 920∆t, it is evident that depending on the extend of the field
localization, the density of the grid points varies accordingly.

A figure of merit for the performance of the AWC-TD method is the compression rate cp, which is
defined as a ratio of the cardinality of the adaptive grid and the cardinality of the full grid with a uniform
step size ∆ (= the smallest mesh size) in the both coordinate directions. The percentage cp on the top of
each time frame in Fig. 5 shows the grid compression rate. Since the extent of a spatial localization of a
pulse depends on its frequency contents, the compression rate cp for the test case in Fig. 5 varies (also seen
in Fig. 7). Nevertheless, for all time steps the number of grid points in the adapted grid is substantially less
than that of in the full grid; but still the AWC method resolves the pulse very well with an optimal (with
respect to the given threshold ζ) allocation of the grid points.
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Figure 6: Relative Error in Ey between the adaptive wavelet collocation method and the full grid wavelet
method.

The relative maximal error of Ey field values over Ω between the adaptive and the full grid methods as
the time evolves is shown in Fig. 6. Despite of grid compression (which can be quite significant at some
time instants, as seen in Fig. 5), the solution by the AWC method is quite close to that of by the full grid
method. As mentioned earlier, as the pulse spreads in all the direction, the field becomes weak, and the real
performance gain by the adaptivity effectively reduces. It is reflected in the apparent increase in the relative
maximal error (with respect to the full grid method) in Fig. 6. Note that when the field has completely left
the computational domain Ω roughly after 800 time steps, the error over Ω is not defined meaningfully any
more.

Fig. 7 demonstrates that (the major part of) the computational effort of the AWC-TD method per time
step is indeed proportional to the cardinality of the adapted grid at that time instant. To this end, we recorded
the CPU time for every ten time steps (Fig. 7 top). For comparison, we also plotted the grid compression
rate as a function of the time step (Fig. 7 bottom). Both functions progress in parallel, thus validating the
above assertion about the numerical effort of the AWC-TD method.

6 Conclusions

In this paper we investigated an adaptive wavelet collocation time domain method for the numerical solution
of Maxwell’s equations. In this method a computational grid is dynamically adapted at each time step by
using the wavelet decomposition of the field at that time instant. With additional amendments (e.g. adjacent
zone corrections, reconstruction check, etc.) to the adapted grid, we formulated explicit time stepping
update scheme for the field evolution, which is a variant of high order FDTD method, and is defined with
respect to the locally adapted mesh. We illustrated that the AWC-TD method has high compression rate.
Since (the major part of) the computational cost of the method per time step is proportional to the cardinality
of the adapted grid at that time instant, it allows efficient use of computational resources.

This method is especially suitable for simulation of guided-wave phenomena as in the case of integrated
optics devices. Initial studies for simulation of integrated optics microring resonators can be found in [9].
In the present feasibility study we represented the electric and magnetic fields in the physical space, and
not in the wavelet space. To unleash the full power of adaptivity, however, the field representation and the
update in wavelet space are mandatory.
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