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Abstract—Outlier mining is a major task in data analysis.
Outliers are objects that highly deviate from regular objects in
their local neighborhood. Density-based outlier ranking methods
score each object based on its degree of deviation. In many
applications, these ranking methods degenerate to random list-
ings due to low contrast between outliers and regular objects.
Outliers do not show up in the scattered full space, they are
hidden in multiple high contrast subspace projections of the data.
Measuring the contrast of such subspaces for outlier rankings is
an open research challenge.

In this work, we propose a novel subspace search method that
selects high contrast subspaces for density-based outlier ranking.
It is designed as pre-processing step to outlier ranking algorithms.
It searches for high contrast subspaces with a significant amount
of conditional dependence among the subspace dimensions. With
our approach, we propose a first measure for the contrast of
subspaces. Thus, we enhance the quality of traditional outlier
rankings by computing outlier scores in high contrast projections
only. The evaluation on real and synthetic data shows that
our approach outperforms traditional dimensionality reduction
techniques, naive random projections as well as state-of-the-art
subspace search techniques and provides enhanced quality for
outlier ranking.

I. INTRODUCTION

Outlier mining is an important task in the field of knowl-

edge discovery. In applications such as fraud detection, gene-

expression analysis or environmental surveillance, one is in-

terested in rare, suspicious, and unexpected objects. Outlier

analysis searches for such highly deviating objects in contrast

to regular objects. An outlier has highly deviating attribute

values compared to its local neighborhood. For example, in

environmental surveillance (cf. Fig. 1) a sensor node might be

an outlier as it shows an abnormally high deviation w.r.t. air
pollution index and noise level. For instance, outlier1 shows a

high deviation in this specific subset of attributes only. Another

sensor node (outlier2) shows high deviation w.r.t. humidity
and temperature, independent of its air pollution index and its

noise level. Thus, a sensor node might be an outlier in one of

these attribute combinations and a regular object in all other

attributes. In general, these multiple roles (outlying vs. regular

behavior) of objects can be observed in other domains as well:

Suspicious customers show fraud activity only w.r.t. some

financial transactions, and genes show unexpected expression

only under specific medical conditions.

Traditional outlier mining [26], [16], [5], [13], [7], [25] is

unable to detect such outliers hidden in subsets of all given
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Fig. 1. Environmental surveillance example: suspicious sensor readings

attributes. Most outlier mining techniques search for outliers

w.r.t. all given attributes. Considering object distances in the

full data space, these methods fall prey to randomly distributed

attribute combinations. In our example, humidity and noise
level in combination show no clear outlier objects and hinder

outlier detection. Furthermore, due to the increasing number

of attributes in today’s databases, distances between objects

grow more and more alike [6]. Outlier ranking techniques

score each object based on the degree of deviation, e.g.,

by computing its density in the full data space [7]. Thus,

for high dimensional data, outlier rankings degenerate to

random listings, as outliers do not show up in the full space.

Other common statistical techniques try to detect outliers in

single attributes [26]. However, by ignoring the dependencies

between several attributes, these techniques miss outliers that

appear only due to correlations in multi-dimensional spaces.

We focus on such outliers, which are neither visible in the full

space nor in a single attribute.

Subspace mining has been proposed as a novel data mining

paradigm to tackle this challenge. It detects highly deviating

objects in any possible attribute combination (low dimensional

projection). While dimensionality reduction techniques aim at

such lower dimensional projections, they are not designed as

pre-processing step for outlier ranking. General measures, such

as the variance of the data in PCA [14], are not appropriate

objective functions for outlier ranking. Novel quality criteria

and processing schemes are required for subspace outlier

mining. In particular, we search for high contrast subspaces.

Such subspaces have the defining characteristic that outliers

can be clearly distinguished from regular objects within the

subspace context. Our general aim is a two-step processing:

(1) Subspace search: measuring the contrast of subspaces

(2) Outlier ranking: score objects in high contrast subspaces



We consider the decoupling of these two steps to be an open

research issue. Current subspace outlier mining techniques [1],

[18], [23], [21] focus on interleaved algorithms only, which

select subspaces during outlier mining. We propose to consider

subspace outlier mining as a decoupled process, divided into

“subspace search” and “outlier ranking”. By treating these

two steps as independent problems, one can design and

combine the respective algorithms in a modular fashion. It

also allows both research fields to evolve independently. In

conclusion, any improvement in either of these steps will lead

to an improvement in the overall outlier detection quality.

Thus, future research in outlier mining may benefit from the

proposed decoupling.

In this work, we focus on the first step and propose a novel

subspace search method that selects high contrast subspaces

for density-based outlier ranking. As outlier score for the

ranking we rely on the commonly used local outlier factor

(LOF) [7]. However, any other outlier score could be used as

instantiation of the second step. Our subspace search technique

is based on a novel selection of high contrast subspaces

(HiCS). It provides three main contributions:

• The decoupling of subspace search as generalized pre-

processing step for outlier ranking

• A contrast measure based on the conditional dependence

of dimensions in the selected subspaces

• Two statistical instantiations of our contrast measure

ensuring a robust parametrization of our technique

Our contrast measure is based on statistical tests and enables

a high quality outlier ranking of outliers hidden in arbitrary

subspace projections. Our approach searches for high contrast

subspaces with a significant amount of conditional dependence

among the selected dimensions. Thus, we enhance the quality

of traditional outlier rankings by computing outlier scores in

high contrast projections only. The evaluation on real and

synthetic data shows that our approach outperforms tradi-

tional dimensionality reduction techniques [14], naive random

projections [20] as well as state-of-the-art subspace search

techniques [8], [15] and provides enhanced quality for outlier

rankings.

II. RELATED WORK

In this section, we review existing techniques in the areas

of outlier discovery and subspace mining. In particular, we

explain the differences of existing paradigms compared to our

novel subspace search approach.

a) Traditional Outlier Ranking: There have been dif-

ferent outlier detection paradigms proposed in the literature,

ranging from deviation-based methods [26], distance-based

methods [16], [5], [13] to density-based methods [7], [25]. We

focus on the density-based outlier ranking paradigm, which

computes a score for each object by measuring its degree

of deviation w.r.t. a local neighborhood. Thus, one is able to

detect local density variations between low density outliers and

their high density (clustered) neighborhood. However, all of

those traditional outlier mining approaches have one drawback.

They cannot detect outliers in subspaces, as their degree of

deviation considers only the full data space.

b) Subspace Outlier Ranking: Outlier detection in sub-

spaces has first been proposed by [1]. Recent approaches have

enhanced subspace outlier mining by ranking objects based

on any possible subspace projection [11], [20], [18], [23],

[21]. These techniques differ in their choice of subspaces. The

majority of approaches uses specialized heuristics for subspace

selection that are integrated into the outlier ranking [11], [18],

[23], [21]. In general, all of these techniques use an integrated

processing of subspaces and outliers. This implies that scoring

functions and subspace selection are tightly coupled such that

none of these techniques would benefit from a novel scoring

function or a novel subspace selection technique.

The only approach with a decoupled processing is consid-

ered as a baseline for our technique. It selects several subspace

projections randomly [20]. Obviously, this random selection

does not guarantee high quality results. Selection of arbitrary

projections will result in random rankings just as in the full

data space. With our work we aim at a decoupled processing

with two steps as proposed in [20]. In contrast to a naive

random selection of subspaces, we aim at an enhanced contrast

measure based on sound statistical foundations.

c) Subspace Search: Based on the general idea of sub-

space mining in arbitrary projections of the data, several pre-

processing techniques for the selection of subspaces have

been proposed [8], [15], [24], [4]. All of these techniques

focus on the related domain of subspace clustering. They

try to decouple the detection of clusters and the selection of

individual subspaces for each cluster. However, each of the

four subspace search models depends on a specific cluster

definition.

First, the Enclus approach proposes a selection based on the

entropy measure [8]. Its quality measure for subspaces highly

depends on the subspace clustering algorithm CLIQUE [2]. It

partitions the data space in equally sized grid cells. A subspace

is selected if it has low entropy, i.e., if it shows a large variation

in the densities of the grid cells. With our approach we follow

this basic idea of contrast, however, we do not rely on fixed

grid cells. This is because they induce several drawbacks for

density estimation in high dimensional spaces.

Other techniques, i.e., RIS [15] and SURFING [4], have

been proposed for the detection of density-based subspace

clusters based on the DBSCAN paradigm [10]. For instance,

RIS counts the core objects in a subspace projection and

uses them as a measure for its subspace selection criterion.

Recently, a subspace search method has been proposed for

spectral clustering as well [24].

In general, all of the proposed subspace search methods fo-

cus on specific clustering tasks. Their selection highly depends

on the underlying clustering model. In contrast to this, our

technique is based on a more general analysis of conditional

dependence. Furthermore, we propose an instantiation of our

objective function that aims at high contrast w.r.t. density-

based outlier ranking, and thus, is tailored to detect low density

regions as required for many outlier models.



III. HIGH CONTRAST SUBSPACES (HICS)

The main idea of our HiCS approach is the statistical

selection of high contrast subspaces. We propose a processing

based on a series of statistical tests. Each test compares the

data distribution in a local subspace region to its marginal

distribution. Dependencies between attributes highlight the

high contrast of a subspace. Based on these statistical tests

and the detected dependence between attributes we derive our

contrast measure. It provides the means for high quality outlier

ranking in a selection of high contrast subspaces.

Overall, HiCS establishes a first statistical subspace search

technique for density-based outlier ranking. In the following,

we will introduce the necessary notation in Section III-A, and

define the general objective for our high contrast subspaces in

Section III-B. We will introduce the notion of subspace slices

that specify local subspace regions in Section III-C, and define

the contrast measure in Section III-D. In Section III-E we will

show how different statistical tests can be used to instantiate

our contrast definition.

A. Notation

Let DB be a database containing N objects, each described

by a D-dimensional real-valued data vector �x = (x1, . . . , xD).
The set A = {1, . . . , D} denotes the full data space of all

given attributes. Any attribute subset S = {s1, . . . , sd} ⊆ A
will be called a d-dimensional subspace projection. We denote

the distance between objects �x and �y as distA(�x, �y), which

can be instantiated for instance by the widely used Euclidean

Distance distA(�x, �y) =
√∑

s∈A(xs − ys)2.

As general property of any outlier ranking method we have

to consider the underlying scoring function. It measures the

outlierness of an object. Traditionally, each object is sorted

according to a single outlier score score(�x) measuring the

degree of deviation in all given attributes A. Traditional

density-based outlier scores measure the density p(�x) of an

object and compare it to the density in the local neighborhood

of �x. Local outlier ranking based on density deviation in

local neighborhoods has first been proposed by LOF [7]. In

recent years, this outlier mining paradigm has been extended

by enhanced scoring functions and efficient outlier ranking

algorithms [25], [5], [13], [19], [17], [23], [9].

The problem with all of these full space approaches is intro-

duced by the curse of dimensionality. As pointed out in [6], the

definition of a local neighborhood becomes meaningless for

a large number of attributes. Furthermore distances between

objects grow more and more alike, thus

lim
|A|→∞

max
�z∈DB

distA(�z, �x) − min
�z∈DB

distA(�z, �x) = 0

Since local outlier ranking calculates the density based on the

object distances, we observe the same effect for the minimal

and maximal value of score(�x). As a result, all mentioned

outlier score functions will suffer from a loss of contrast, i.e.:

score(�x) ≈ score(�y) ∀ �x, �y ∈ DB

Any outlier ranking obtained for a sufficiently high dimen-

sional database will degenerate into a random ranking with

very similar scores for all objects.

Subspace outlier rankings address this problem by evalu-

ating the score function in lower dimensional subspace pro-

jections. They simply restrict the distance computation to a

selected subspace S, i.e., compute distS . Thus, any outlier

ranking with score(�x) can be extended to a subspace score

scoreS(�x). The idea is to aggregate these scoreS(�x) values

over several subspaces. Each score provides some insights

about the deviation of �x in a lower dimensional projection

S. The final ranking is derived from the aggregation of these

scores:

Definition 1: Outlier Score

score(�x) =
1

|RS|
∑

S∈RS

scoreS(�x)

In the most basic approach [20], RS is a selection of

random subspaces that contribute to the overall ranking. A

major drawback of this approach is that irrelevant subspaces

in RS might blur the overall order of objects. To tackle this

challenge, we propose a novel method to select high contrast

subspaces only. Our subspace search technique excludes low

contrast subspaces, which inhibit a clear distinction between

outliers and regular objects.

For our experiments, we instantiate scoreS(�x) with the

commonly used local outlier factor [7]. It has been used for

the subspace extension based on random projections [20] as

well. However, our technique is not restricted to LOF only.

Any other density-based scoring function could be used for

scoreS(�x). This flexibility w.r.t. the score function is a main

advantage of our method. We only consider the contrast of

subspaces and their selection as pre-processing step. Any

improvement in the area of outlier scoring can be applied

directly to our approach as well. In recent years several

extensions of LOF have addressed specific challenges for this

local outlier ranking [25], [19], [23], [17]. While each of these

publications proposes an individual score function, they all

have an assumption in common: An outlier has low density
compared to its local neighborhood. Our technique relies

only on this general assumption.

To derive our criterion for subspace contrast, we treat the

attributes in DB as random variables. We use the notion of

probability density functions (pdf) to derive the formal back-

ground of our contrast criterion. We will adapt the notation for

subspaces as follows. For a given subspace S = {s1, . . . , sd},

we refer to the projected data vectors as �xS = (xs1 , . . . , xsd).
Notation 1: The subspace data vector �xS is distributed by

an unknown joint pdf of S:

ps1,...,sd(xs1 , . . . , xsd)

By integration over all attributes s ∈ A \ si we obtain:

Notation 2: The marginal pdf of attribute si:

psi(xsi)



(a) Dataset A – example of an uncorrelated joint pdf (b) Dataset B – example of a correlated joint pdf

Fig. 2. high vs. low contrast and the effects on outlier ranking

Please note that the marginal densities are simply one-

dimensional projections, independent from any subspace. Fur-

thermore, we can require a condition on the attributes s ∈
S \ si, which leads to the following notion.

Notation 3: The conditional pdf of attribute si:

psi | s∈S\si (xsi | {xs : s ∈ S \ si})

Thus, we express the probability density function of si w.r.t.

|S| − 1 conditions on all other attributes in the subspace.

B. High Contrast Improves Outlier Ranking

Given the notion of probability density in any subspace

S, we measure the contrast by comparing conditional prob-

ability densities to the corresponding marginal densities for

all attributes si ∈ S. This idea is based on the following

key hypothesis: the detection of non-trivial outliers is only

possible in a subspace S that shows high dependence between

all attributes si ∈ S. The notion of non-trivial outliers is

a new concept and we will postpone the formal definition

for a moment. Intuitively, a non-trivial outlier is an outlier

in subspace S, but it is not visible as outlier in any one-

dimensional projection of S, i.e., all its one-dimensional

attribute values are located in regions of high density. Based on

the one-dimensional projections, a non-trivial outlier appears

to be a clustered object.

1) Motivation Example:
We illustrate the relationship between correlated subspaces

and non-trivial outliers by a toy example (cf. Figure 2). It

consists of two two-dimensional datasets. Both datasets were

generated from the same marginal distributions. In dataset A,

s1 and s2 are completely uncorrelated. As a result, this two-

dimensional subspace is filled by a random scattering of

objects in consistency with the marginal distribution. Never-

theless the dataset contains an outlier object o1. By considering

the one-dimensional projections of this subspace, the existence

of o1 is not a surprise: o1 could trivially be detected by the

examination of the one-dimensional distribution of attribute

s2. We call such an object a trivial outlier. In summary, the

evaluation of the two-dimensional subspace does not reveal

any new information for this dataset.

The other dataset features marginal distributions identical to

the ones of dataset A. The difference is that dataset B shows a

significant correlation. The correlation allows the data objects

to form regions of varying or unexpected densities over the

total possible area that would be consistent with the marginal

distribution. We observe (a) cluster-like dense agglomerations

of objects and (b) sparse or even empty regions. Besides a

trivial outlier o1, the subspace also features an other outlier

o2. This time the outlier is hidden in all one-dimensional

subspace projections, where it even appears to be a clustered

object. We will call this type of objects non-trivial outliers.

For dataset B the evaluation of the two-dimensional subspace

was worthwhile and reveals significant insight regarding the

data structure. Accordingly, we have found an example for a

high contrast subspace in this case.

Once we have found such a high contrast subspace we

can apply any density-based outlier ranking algorithm: for

instance in dataset B, o1 and o2 both exhibit a much lower

density compared to the local neighborhood. Thus, deter-

mining the outlierness in the two-dimensional subspace of

dataset B would result in a detection of o1 and o2, i.e.,

scoreS(o1/2) � scoreS(oi) for all other objects oi in the

database.

We can also explain the essential idea of our approach

to identify high contrast subspaces using this toy example.

Depicted on top of each plot in Figure 2, we show two different

histograms for the s1 axis of both datasets. The first one

(red) represents the full data sample, i.e., corresponds to the



marginal probability distribution ps1(xs1). The blue one shows

the conditional probability distribution that is generated by the

sample according to the selection range w.r.t. the s2 axis (blue

area). The comparison of the blue vs. the red histograms for

both datasets show a basic property of correlation: Whereas

the histograms for dataset A are in good agreement, we see

a significant discrepancy between the two histograms for the

high contrast subspace B. The proposed HiCS algorithm is

based on the evaluation of this discrepancy.

Please note that we design our contrast measure as a

conservative subspace selection criterion. The set of selected

subspaces is a proper superset of the subspaces containing

non-trivial outliers. We will later show that high contrast is

a necessary condition for non-trivial outliers. Still, the result

may contain subspaces without any outliers.

In the following we will focus on non-trivial outliers only.

The reason is simple: A user might already know about the

existence of one-dimensional outliers; one can detect these

outliers by existing methods [26] without difficulty. Moreover,

our subspace search can detect trivial outliers as a by-product

of the search for non-trivial outliers. For instance in dataset B,

we will always detect o1 as outlier as soon as attribute s2 is

part of any high contrast subspace. In any case, the detection

of non-trivial outliers will provide a much higher information

gain to the user. Therefore, we focus on the detection of

correlated subspaces containing such non-trivial outliers.

2) Contrast based on correlation of dimensions:
In probability theory, two events A and B are called inde-

pendent and uncorrelated, if and only if the probability of

the combined event is given by the product of the individual

probabilities, i.e.:

p(A ∩B) = p(A) · p(B) (1)

By putting the notion of correlation in the context of sub-

spaces, we obtain:

Definition 2: A subspace S is called an uncorrelated
subspace if and only if:

ps1,...,sd(xs1 , . . . , xsd) =

d∏
i=1

psi(xsi) (2)

Please note that the formal distinction between statistical

dependence and correlation is not important for our purpose.

Strictly speaking, the term set of independent attributes would

be the appropriate expression. Instead we prefer to use the

more concise term uncorrelated subspace to express the sta-

tistical independence within a subspace.

To support the observations regarding Figure 2, we want to

examine the characteristics of outlier mining in uncorrelated

subspaces more formally. The observation of a high value of

scoreS(�x) implies that the object �x is located in a region

with a low value of the joint pdf ps1,...,sd(xs1 , . . . , xsd). On

the other hand, we can evaluate the expected density for �x
under the assumption of an uncorrelated subspace:

pexpected(xs1 , . . . , xsd) ≡
d∏

i=1

psi(xsi) (3)

We define the notion of trivial outliers over the comparison of

the expected density with the joint density:

Definition 3: We call an object �xS a non-trivial outlier
w.r.t. subspace S if

ps1,...,sd(xs1 , . . . , xsd) 	 pexpected(xs1 , . . . , xsd) (4)

Comparing the definition of an uncorrelated subspace (Eq. 2)

with the definition of non-trivial outliers leads to:

Theorem 1: An uncorrelated subspace S does not contain
any non-trivial outlier.
For an uncorrelated subspace, the joint probability density

function ps1,...,sd(xs1 , . . . , xsd) is by definition equal to the

product of the marginal pdfs and thus, will never fulfill Eq. 4.

On the other hand, a correlated subspace allows significantly

smaller values of ps1,...,sd(xs1 , . . . , xsd) compared to the

expected density. Thus, we define subspace correlation as

objective function for the subspace contrast.

3) Measuring Correlation:
We propose to quantify the subspace contrast by a comparison

of different probability density functions. To simplify the

notation, we will express all following conditional probability

densities only for s1 without loss of generality. In the case of

an uncorrelated subspace, Eq. 2 simplifies the definition of all

conditional probability densities within the subspace, i.e.:

ps1(xs1 |xs2 , . . . , xsd) =
ps1,...,sd(xs1 , . . . , xsd)

ps2,...,sd(xs2 , . . . , xsd)

= ps1(xs1) (5)

This allows to measure the contrast of a subspace by deter-

mining the degree of violation of Eq. 5. In other words, we

have to compare a conditional pdf of s1 to the corresponding

marginal pdf, and we assign a high contrast to a subspace

if we observe a significant deviation between the two pdfs.

Please note that the correlation analysis within subspaces

goes beyond classical correlation analysis approaches, since

we may be faced with high contrast subspaces with more

than two dimensions. In contrast to, say, the Pearson or

Spearman correlation coefficient [28], the proposed approach

is not limited in the subspace dimensionality. Furthermore,

it is possible to detect any kind of non-linear correlation.

Above all, our approach does not require an evaluation of a

high dimensional joint pdf, but is based on one-dimensional

densities only. Hence, it does not fall prey to the curse of

dimensionality.

In the following sections we will discuss (1) how to empiri-

cally analyze the the conditional pdf by introducing the notion

of subspace slices, (2) how to compare the conditional pdf to

the marginal pdf by means of statistical tests, and (3) how to

instantiate these statistical tests in our contrast measure.

C. Evaluation of conditional densities

The main challenge for the proposed calculation of the

subspace contrast is the empirical analysis of the conditional

probability densities ps1|... ≡ ps1|s2,...,sd(xs1 |xs2 , . . . , xsd).
Since we do not require any knowledge of the underlying



density functions, our goal is to obtain a sample of ps1|...
for a specific set of conditions.

Definition 4: A set of |S| − 1 lower and upper conditions
[li, ri] is called a subspace slice w.r.t. subspace S:

C = {xs2 ∈ [l2, r2], . . . , xsd ∈ [ld, rd]} (6)

The selection of objects that satisfy a subspace slice condi-

tion leads to a subsample of DB with a sample size N ′. The

advantage of these subspace slices over any grid-based density

estimation is that we can construct the subspace slices in a way

that does not suffer from the curse of dimensionality. The goal

is to choose the intervals in the subspace slice C in such a way

that the expectation value for the selection sample size N ′ is

fixed. We derive the construction of the intervals as follows:

Each condition in C can be associated with a certain selection

of objects. Starting with the full sample of |DB| objects, each

selection removes a certain fraction of objects from the current

sample. We denote the fraction of objects that will remain in

the sample by α1 ∈ (0, 1). The suffix emphasizes that α1 is

the selection probability for a single condition. By assuming

an uncorrelated subspace, the selections are independent from

each other. In this case the probability for a single object to be

selected after |C| equally sized selection steps is α
|C|
1 . Thus,

the expectation value of the remaining sample size N ′ after

|C| selections is given by:

E [N ′] = N · α|C|
1 (7)

We can utilize this step-wise selection in the algorithm to

generate subspace slices that automatically adapt the selec-

tion intervals [li, ri] to provide a desired target statistic size

N ′, independent of the dimensionality of the subspace. The

implementation details are given in Section IV-A.

D. Quality criterion for the subspace contrast

As mentioned before, our subspace contrast definition is

based on the degree of violation of Eq. 5. Since we do not

require density functions explicitly given, we introduce the

following notation to emphasize that we refer to estimated

density distributions from a data sample:

• p̂s refers to the marginal density of some attribute s ∈ S
w.r.t. the full dataset.

• p̂s|C refers to the density of xs w.r.t. the remaining dataset

that fulfills a certain condition set C.

We are now looking for a function deviation
(
p̂s, p̂s|C

)
that

compares p̂s to p̂s|C , measures the discrepancy between the

two distributions and outputs a value that is proportional to

the deviation. There are many ways to define such a function.

With HiCS we focus on two different statistical tests, namely

Welch’s t-test and the Kolmogorov-Smirnov test, which will

be described in Section III-E. We will call the two resulting

variants HiCSWT and HiCSKS.

In terms of statistical testing, we define the null hypothesis

as: Both samples originate from the same underlying pdf. In

other words, the null hypothesis states that the differences

between p̂s and p̂s|C are within the limits of statistical

fluctuations. Due to these fluctuations, the significance of a

single statistical test is very limited. In order to achieve a

high statistical precision, the HiCS algorithm performs a large

number M of different tests. Thus, the definition of our quality

criterion of the subspace contrast is given by:

Definition 5: Subspace contrast

contrast(S) ≡ 1

M

M∑
i

deviation
(
p̂si , p̂si|Ci

)
(8)

HiCS computes the subspace contrast with a Monte Carlo

approach. The algorithm performs M iterations. For each

iteration, we randomly pick an attribute si ∈ S and generate a

random subspace slice Ci. The respective samples are passed

to the deviation function, i.e., a function that performs the

statistical test. We calculate the final result of the subspace

contrast by averaging the deviations of all M statistical tests.

E. Statistical tests

Regarding the implementation of the deviation(p̂A, p̂B)
function, we have employed and examined two different

statistical tests.

The first approach uses Welch’s t-test, which is a variation

of a Student’s t-test. The idea of this solution is to first extract

estimations of statistical moments from both samples, and

then perform a comparison based on these characteristics. The

difference between Welch’s t-test over the classical Student’s

t-test is that it utilizes more statistical moments: While the test

statistic for Student’s t-test only requires the sample means,

Welch’s t-test also uses information from the estimated sample

variances. The test variable is defined as:

t =
μ̂si − μ̂′

si√
σ̂2
si

N +
σ̂′2
si

N ′

(9)

Intuitively, the test variable t will have small absolute values

if both samples are taken from the same distribution, i.e. the

sample moments are similar. Strong discrepancies between

both samples will result in large values for |t|. In principle,

we could use this test statistic directly as measurement for

our deviation, but it has turned out to be preferable to convert

the t value into a probability pt as a means of normalization.

This can be achieved by considering the distribution of the t
values for a fulfilled null hypothesis. If the null hypothesis is

true, i.e., if both samples originate from the same probability

density, the test statistic t follows a t-distribution with a degree

of freedom which can be obtained by the Welch-Satterthwaite

equation [27]. Based on the t-distribution, we can calculate

the probability pt by integration of the t-distribution.

Thus, the detailed steps to calculate the value of the

deviation function are:

• First, determine the required statistical moments for both

samples: μ̂A, σ̂
2
A, μ̂B , σ̂

2
B .

• Calculate the test statistic t using Equation 9.

• Determine the degree of freedom of the underlying t-

distribution ft(x). The problem of finding the degree of

freedom is solved by the Welch-Satterthwaite equation.



• Calculate pt by evaluating the area of the two-tail integral

over ft(x) for |x| > t. This means that pt is the

probability to observe a larger absolute value than |t| by

chance if the null hypothesis is fulfilled.

• Finally, we set deviation(μ̂A, σ̂
2
A, μ̂B , σ̂

2
B) = 1− pt.

The second approach uses a two-sample Kolmogorov-

Smirnov test to compare the distributions [29]. This test

operates on the data samples themselves and does not rely on

statistical moments. To calculate the deviation, we first have to

build the empirical cumulated distribution functions for both

samples. The empirical cumulated distribution function of a

sample of xsi consisting of N objects is defined by:

F (xsi) =
1

N

∑
�y∈DB

I[ysi < xsi ] (10)

where I[cond] is the indicator function, equal to 1 if the

condition [cond] is fulfilled and equal to 0 otherwise. In other

words, the value of F at a certain point xsi is the percentage

of objects in the sample that have a value less than xsi . After

the construction of FA and FB for the two samples, we can

calculate the deviation as:

deviation(p̂A, p̂B) = sup
xsi

|FA(xsi)− FB(xsi)| (11)

Thus, the deviation value is defined by the maximal difference

of the two empirical cumulated distribution functions.

Comparing the two approaches for the statistical test, the

Kolmogorov-Smirnov test features two favorable properties

from a theoretical point of view. First, it uses the full infor-

mation of the data samples and does not rely on the indirect

calculation of statistical moments. The other problem with all

types of t-tests is that the formal derivation requires Gaussian

distributed samples. On the other hand, the Kolmogorov-

Smirnov test does not make any assumptions on the sam-

ple distributions. Nevertheless, our evaluation in Section V

shows that both approaches can achieve good results, even for

datasets that differ significantly from a Gaussian distribution.

IV. HICS ALGORITHM

Our algorithm consists of three logically independent parts:

• The calculation of the subspace contrast takes a specific

subspace as input, and the output is its contrast.

• The subspace framework is responsible for the generation

of subspace candidates that should be evaluated. All

results are collected and will be filtered and sorted in

a post-processing.

• The application of an outlier ranking on the list of high

contrast subspaces.

A. Contrast calculation

The algorithm operates according to the sampling formalism

in III-D. Besides the set of attributes that belong to the specific

subspace, the algorithm requires two parameters:

• The number of Monte Carlo iterations M , i.e., the number

of statistical tests to perform.

• The desired average size of the test statistic. In our

implementation we specified the size by a ratio α ∈ (0, 1)
that determines the sample size dynamically in relation

to the total size of the database.

The idea of the adaptive subspace slices is implemented as

follows: instead of defining the condition intervals [li, ri]
directly in the domain of the underlying variables xsi , we

precalculate one-dimensional index structures for all attributes

of the database. This allows to perform the selection over the

sorted indices. Thus, the adaptive selection of the subspace

slice can by implemented by selecting a block of index entries

with a certain size α1 ·N . The value of α1 is determined by

the parameter α and the dimensionality of the subspace |S|:
α1 = |S|√α

The result of multiple selections can be obtained by a conjunc-

tive boolean combination of the selection blocks. The adaptive

random selection process is followed by the comparison be-

tween the marginal and the conditional distributions to obtain

a deviation value.

In summary, the algorithm consists of these two steps:

(1) generate a random subspace slice and (2) determine the

respective deviation value using a statistical test. Finally, all

deviation results will be combined to obtain a single contrast

value for the subspace. The procedure is shown in Alg. 1.

Algorithm 1 calculation of subspace contrast

Input: S, M , α
Output: contrast(S)

for i = 1 → M do
Permute list of subspace attributes s ∈ S
Initialize boolean vector selected objects for all objects: true
for i = 1 → |S| − 1 do

Select random index block of attribute si with a size of
N · |S|√α
Mask index block with selected objects

end for
Compare distributions: deviation

(
p̂si , p̂si|selected objects

)
for the

remaining attribute with i = |S|.
end for
Combine the results of all statistical test (cf. Definition 8).

B. Subspace framework

The subspace generation for HiCS works as follows: in each

step we evaluate the contrast of the current d-dimensional

subspaces. The subspaces that have a contrast above a certain

threshold will be used for the generation of (d+1)-dimensional

subspace candidates. This step-wise generation of higher di-

mensional subspace candidates resembles the principle of the

well-known Apriori algorithm [3]. In contrast to Apriori, the

HiCS starts with two-dimensional instead of one-dimensional

subspaces, since the definition of a one-dimensional subspace

contrast would not be reasonable (no notion of correlation).

Another difference to Apriori is that it is not possible to

formally derive a monotonicity criterion for the correlation

of subspaces. To see this, we can construct a simple coun-

terexample, such as the dataset shown in Figure 3. Each box



corresponds to a cluster and all four clusters have the same

density. In this example, the three-dimensional joint pdf is

not given as the product of the three marginal distributions,

i.e., the space is correlated. On the other hand, all two-

dimensional subspace projections are equally distributed and,

therefore, show no correlation at all. But this example also

demonstrates that the construction of such a case requires an

extremely specific setup. correlation is very likely to be visible

in lower dimensional projections. Thus, one can combine

lower dimensional subspaces to find correlations in higher

dimensional spaces. Based on this heuristic, we can apply the

Apriori-like subspace generation to the search of correlated

subspaces.

Fig. 3. High dimensional correlation

Like with other Apriori algorithms, the threshold for the

candidate generation – in our case a lower bound on the

contrast value – has a considerable impact on the results.

Setting the value too high will result in a very restrictive

subspace search, with only low dimensional subspaces or

possibly even an empty list of subspaces. In contrast, if the

value is much too low, the algorithm will consider almost

all possible attribute combinations, resulting in an exponential

runtime w.r.t. the total number of attributes.
Since our goal has been to design the algorithm in a way

that allows a direct application to unknown datasets, we have

solved this problem by means of an adaptive threshold. In con-

trast to conventional Apriori-like approaches, we postpone the

decision whether to keep a candidate or not to the point when

the contrast of all d-dimensional candidates is available. This

allows to sort all current candidates and to keep only a certain

number. We use the number of maximally retained candidates

as parameter. Setting this candidate cutoff parameter allows a

much more precise prediction of the runtime than specifying a

reasonable minimum contrast threshold for a specific dataset.
The subspace generation process terminates when the Apri-

ori merge step produces an empty list for the (d + 1)-
dimensional subspace candidates. In the HiCS algorithm, the

subspace generation is followed by a pruning step. The idea is

to remove redundant subspaces from the output to ensure that

the final subspace ranking contains only important subspaces

[22]. We remove a redundant d-dimensional subspace T if the

subspace list contains a (d+ 1)-dimensional subspace S that

has a higher contrast score than T .

C. Subspace outlier ranking

As final step, HiCS has to apply an external outlier ranking

algorithm to the list of detected subspaces and aggregate all

results. For our evaluation we use LOF as outlier score [7]. As

aggregation functions we considered maximum and average.

In practice maximum is very sensitive to fluctuations of the

outlierness and will lead to poor results especially if the

number of detected subspaces is large. Therefore we have used

the average of the outlier ranking values throughout our exper-

iments (cf. Definition 1). This also ensures that the outlierness

is cumulative: If an object deviates in several subspaces, its

total outlierness will increase compared to objects that only

appear as outlier in a single subspace.

V. EXPERIMENTS

To evaluate the quality of our HiCS approach we perform

experiments on synthetic and real world datasets. We treat the

problem of outlier ranking independently from the selection

of high contrast subspaces. Thus, we evaluate HiCS against a

series of other subspace search algorithms as pre-processing

to a common outlier ranking algorithm. We focus on LOF

[7] as a widely used reference algorithm for full-space outlier

mining. We abstract from any enhancements by recent or

future techniques [25], [19], [23], [17], which can be used

as instantiations of the outlier ranking as well. We compare

HiCS against the following competitors:

• the full-space LOF outlier ranking [7]

• dimensionality reduction PCA [14] + LOF [7]

• the baseline approach using random subspaces [20]

• state-of-the-art subspace search: Enclus [8] and RIS [15]

For all subspace methods, we adapted LOF to measure

object distances only w.r.t. the given subspace, as proposed

by [20]. To ensure comparability, we applied the same LOF

outlier model with identical parameter settings (i.e., the MinPts
value) for all competitors. We use only the best 100 subspaces

from the results of all subspace search methods, to enforce a

concise subspace selection.

We quantify the quality of the obtained outlier rankings by

calculating the area under curve (AUC) of the ROC curve. To

ensure comparability for runtime evaluation, we implemented

all algorithms in C++ and performed all experiments on an

Intel R© i3-550 Processor with 4 GB RAM. In addition, we

provide all datasets and parameter settings online1, to ensure

repeatability of our experiments.

A. Experiments on synthetic data

For scalability experiments, we have generated synthetic

datasets of different size and dimensionality. We randomly

selected 2-5 dimensional subspaces out of the full data space

and generated high density clusters in these subspaces. In

each subspace we picked 5 objects and modified them to

1http://www.ipd.kit.edu/∼muellere/HiCS/
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Fig. 4. Quality (AUC) of outlier rankings w.r.t. increasing dimensionality

deviate from all clusters in the selected subspace. To ensure

the challenge of non-trivial outlier detection, this deviation

was done in a way that the object will not be visible as

outlier in any lower dimensional projection. Please note that

this generation allows an object to be an outlier in multiple

subspaces independently. This fulfills the real world observa-

tion of outliers hidden in multiple subspace projections (cf.

Section I).

1) Quality evaluation: To evaluate the quality of HiCS

we compare it with the competing algorithms in a series of

experiments based on AUC. We focus on the scalability of

all competitors w.r.t. the dimensionality of the data space. In

Fig. 4 we depict the average AUC and its standard deviation

for each algorithm (derived out of three randomly generated

databases). HiCS outperforms the competing approaches. In

particular, it scales with increasing dimensionality and shows

high quality results even for high dimensional databases. Only

Enclus shows similar scalability but with lower overall quality.

However, a detailed examination of the subspaces selected by

Enclus shows that it mainly found all two and some of the

three-dimensional subspaces. This is expected because the grid

based entropy measure is likely to fail for higher dimensional

subspaces. In contrast, HiCS is able to detect even a high

contrast in most of the five-dimensional subspaces. On the

other hand, full-space runs of LOF show a degradation with

increasing dimensionality, due to the curse of dimensionality.

Traditional dimensionality reduction techniques such as PCA,

should cope with the curse of dimensionality. However, as

shown, PCA fails as pre-processing technique for outlier

ranking. Please note that we have evaluated two strategies for

dimensionality reduction: PCALOF1 (reduction to 50% of the

total dimensionality) and PCALOF2 (constant reduction to 10

PCA-attributes). For the 10-dimensional datasets, the second

strategy does not reduce the dimensionality, hence it shows the

same quality as LOF. For all other cases PCA shows the worst

performance (with AUC values close to 50%). This means that

the resulting outlier ranking is equivalent to random guessing.

We exclude PCA from further consideration, as preliminary

experiments had indicated similar bad results for the following

experiments as well.

2) Runtime evaluation: In addition to the quality evalua-

tion, we depict the runtime w.r.t. increasing dimensionality

in Fig. 5. All experiment runs are identical to the previous

experiment on quality evaluation, but we consider only the

competitors that are based on subspace rankings. We always

specify the total processing time, i.e., the time for both the

subspace search and the outlier detection. Overall, the results

show the scalable processing of HiCS. In particular we observe

almost no increase in runtime for more than 30 dimensions.

This results in a runtime comparable to the simple grid-based

processing of Enclus, which is the fastest algorithm in this

test but with drawbacks in terms of quality. This scalability

effect of HiCS is due to our candidate cutoff parameter in

the subspace generation framework. It is set to 400 in this

experiment. For the experiments with a dimensionality below

30, HiCS never generated more than 400 candidates. Thus,

the runtime increases with more dimensions and more possible

combinations of attributes. When we reach 40 dimensions, the

cutoff is applied for the first time. It ensures both high quality,

by maintaining the top-400 highest contrast subspaces, and low

runtime, by pruning low contrast subspaces.

Fig. 5. Runtime w.r.t. dimensionality D, with fixed DB-size 1000

Besides the scalability w.r.t. data dimensionality, we have

been interested in scalability w.r.t. the database size. The

experimental results are shown in Fig. 6. The minimum

runtime of all competitors is determined by the runtime of LOF

and the number of selected subspaces. The latter one is fixed



for all algorithms to the 100 most promising subspaces. Due to

the quadratic complexity of the LOF algorithm, we expect at

least a quadratic total processing time for all competitors. For

RIS we observe a cubic complexity w.r.t. the database size, and

accordingly this technique does not scale very well. For HiCS

and Enclus, the overhead for the subspaces detection is almost

negligible if the database is sufficiently large. If we compare

these two subspace search algorithms to the naive random

selection, we observe that RANDSUB actually consumes more

time. This is because it generates much larger subspaces on

average. This seems to have a bigger impact on the runtime

than the execution of a subspace search algorithm.

Fig. 6. Runtime w.r.t the DB-size, with fixed dimensionality 25

3) Parameters: In our comprehensive quality experiment

(cf. Fig. 4), we have noticed a high sensitivity w.r.t.

parametrization for our competitors. For RIS and Enclus in

particular, we have observed that finding good parameter set-

tings is difficult. Therefore we had run the whole experiment

with a large number of configurations for these two algorithms.

We have shown only the best values in the previous graphs. To

evaluate the robustness of our parameter settings, we describe

more detailed experiments in the following. We evaluate both

variants of our statistical instantiation HiCSWT and HiCSKS

as defined in Section III-E, and we used HiCSWT as default

setting in all other experiments.

The first parameter is the number of statistical tests M
that are performed for each subspace or, in other words, the

number of iterations of the Monte Carlo algorithm. This trade-

off between runtime and the influence of statistical fluctuations

does not have a critical impact on the results. Fig. 7 shows the

AUC quality measure contingent on the number of statistical

tests. We recommend to use 50 as a default value for this

parameter, as used in all other experiments.

Furthermore, we evaluated the influence of the test statistic

size α as depicted in Fig. 8. The experiment shows that

the resulting quality is fairly robust w.r.t. the parameter α.

For very low values (α < 5%, i.e., less than 50 objects in

this experiment) we noticed a slightly increased fluctuation

of the quality. This effect becomes more important when we

also reduce the number of statistical tests. Thus, having more

statistical tests helps to decrease the influence of α. For larger

α values, the statistical tests are less sensitive, resulting in a

minor quality reduction.

Fig. 7. Dependence on the number of statistical tests (M )

Fig. 8. Dependence on the size of the test statistic (α)

The last parameter candidate cutoff limits the number of

candidates in the bottom-up subspace processing. Thus, it

influences the total runtime and the maximal dimensionality in

the subspace ranking. To avoid any dataset dependence of this

parameter, we have evaluated the qualities on several synthetic

datasets. The following graphs always show average values.

In Fig. 9 we can see a peak in the quality at around 500.

For lower values, the quality is reduced, since the cutoff may

remove some good candidates from the subspace list. The

reason for this quality decrease can be found by analyzing

the resulting subspace ranking: We observed that the selection

starts to contain many redundant subspaces. This redundancy

leads to a slight quality loss in the resulting outlier score.

Please note that the fluctuations introduced by this parameter

still are relatively small if we compare them to the results

in Fig. 4. In addition to the quality evaluation we depict the

influence of the cutoff parameter on the runtime in the lower

part of Fig. 9. We see that the candidate cutoff parameter

allows to control the total runtime precisely. In combination

with the previous quality experiments we conclude that not all

candidates are required and can be pruned without a significant

quality loss.

B. Experiments on real world data

To evaluate HiCS in a real life situation, we chose eight real

world benchmark datasets from the UCI ML Repository [12]:

Thyroid (ANN version), Arrhythmia, Breast Cancer, Breast

Cancer Wisconsin (Diagnostic), Diabetes, Glass, Ionosphere



(a) Ionosphere (b) Pendigits

Fig. 10. ROC plots for two real world experiments

Fig. 9. Quality and Runtime w.r.t. candidate cutoff parameter

and Pendigits. Since outlier mining is conceptually similar to

detecting objects that belong to a rare class, we focused on

datasets where the class definitions featured a clear minority

class. We assume this class to contain the outliers in these

datasets. For the Pendigits dataset, all classes have equal

frequencies. In this case we reduced the number of objects

for one class (corresponding to the digit “0”) by a factor of

10%.

The results of all real world experiments are shown in

Fig. 11. The best AUC values are highlighted in bold, and high

quality results that are within 1% of the best are not grayed

out. The results demonstrate that HiCS achieves a very good

overall performance. It is the best algorithm for three datasets

and is close to the best result in four other experiments. Other

approaches achieve high quality only for a small subset of the

datasets and show a higher quality variation depending on the

dataset used. HiCS is the only algorithm with high quality on

most of the datasets. Considering runtime, HiCS is among the

fastest subspace search algorithms. Only Enclus shows similar

runtimes.

In addition, we show two ROC curves for the Ionosphere

and Pendigits datasets in Fig. 10. It is interesting to note that

the HiCS algorithm shows a tendency to reach the maximal

true positive rate earlier than other methods. Thus, it is perfect

for applications that require a high recall of outliers with best

precision of the outlier ranking. On the other hand, we observe

a minor weakness of HiCS if one is interested in very low

false positive rates: In the Ionosphere dataset for example,

the outlier ranking seems to miss some full space outliers.

This results in a reduced steepness of the ROC curve for low

false positive values. The reason for this might be the focus

on multi-dimensional subspaces. After all, we did not remove

any outliers that are trivially visible in one-dimensional pro-

jections. Therefore it might be possible to improve the quality

of HiCS even further by applying a pre-processing step that

takes care of the detection of trivial outliers. This would result

in even higher quality, while the overall results of all AUC

values show that we already obtain very good quality without

such a pre-processing. Overall, HiCS shows excellent results

on a broad variety of datasets, with robust and easy-to-use

parameters, and a scalable processing w.r.t. the dimensionality

of databases.

VI. CONCLUSION AND FUTURE WORK

In this work, we developed an approach that is able to detect

subspaces for outlier mining in high dimensional databases.

We proposed the first subspace search method that selects high

contrast subspaces for density-based outlier ranking. We focus



Experiment AUC [%] Runtime [sec.]
LOF HiCS Enclus RIS RANDSUB LOF HiCS Enclus RIS RANDSUB

Ann-Thyroid 86.16 95.11 94.32 95.16 93.32 7.1 37.2 68.1 574.0 674.0

Arrhythmia 62.92 62.29 62.11 63.61 63.52 0.5 26.4 7.9 2216.1 48.2

Breast 56.42 59.31 59.55 - 56.98 0.1 2.4 1.5 - 3.5

Breast (diagnostic) 86.94 94.23 94.19 90.77 87.07 0.3 15.8 11.8 14.3 28.2

Diabetes 70.98 72.47 71.15 71.63 71.70 0.3 3.3 5.9 4.0 26.2

Glass 76.86 80.05 79.73 80.65 78.48 0.0 0.2 0.3 0.1 1.7

Ionosphere 77.97 82.34 82.37 80.93 79.02 0.1 6.1 4.2 668.2 11.0

Pendigits 93.54 95.04 94.29 90.74 93.22 34.1 1194.5 2195.6 11282.7 3326.2

Fig. 11. Results on real-world datasets

on the detection of outliers that are neither visible in the full

space nor in a single attribute. These non-trivial outliers show

up in high contrast subspace with a strong correlation in the

selected dimensions. In our two-step approach, we measure the

contrast of subspaces and select the most promising ones for

outlier ranking. In this decoupled processing, we propose a

first contrast measure based on correlation analysis. It uses

the difference between marginal and conditional pdf of a

subspace as a criterion for high contrast. The extensive set

of experiments shows that our HiCS approach outperforms

existing subspace search techniques, both on synthetic and on

real world datasets.

For future work, we aim at further evaluations with other

outlier scores such as ORCA [5] or OUTRES [23]. Both

seem very promising extensions of LOF with enhanced outlier

scoring. ORCA would improve the efficiency from a quadratic

to a linear runtime in the outlier ranking step. OUTRES might

improve the quality of our outlier ranking due to its adaptive

density scoring in subspace projections. Due to the decoupled

processing, our subspace search can be applied directly to

these or other outlier scores.

Furthermore, we would like to extend the research on

subspace selection and enhance our subspace search based

on other outlier ranking paradigms. Although HiCS would

be applicable to these paradigms, transferring some specific

properties out of the underlying definition into the subspace

search might result in further quality improvements. Overall,

the flexible two-step processing opens a wide range of research

challenges in the domain of subspace outlier mining.
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