
Rule-Based Service Modeling

Michael Gebhart, Sebastian Abeck
Research Group Cooperation & Management

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{gebhart | abeck} @cm-tm.uka.de

Abstract— In the context of service-oriented computing,
services provide the capabilities necessary to support the
business, especially its processes. Within the service modeling
process, the services that constitute a common and stable basis
for all supported processes have to be identified. The
consideration of each business process on its own, without
guidelines, may yield a service inventory that is not adjusted
with all requirements, and for instance contains several
services providing the same capability, having an
inappropriate granularity, or using different taxonomies.
Thus, this paper suggests applying rules on a model capturing
relevant business requirements to systematically derive a
blueprint as a proposal of necessary services. The approach is
exemplified by a scenario at the Karlsruhe Institute of
Technology (KIT), where it is applied in the context of module
catalog management.

Keywords-service modeling, service inventory blueprint,
service candidates, rules

I. INTRODUCTION
In the context of service-oriented computing, services as

building blocks [14] provide the capabilities necessary to
support the business. They exist as physically independent
software programs and have assigned their own distinct
functional contexts.

The establishment of a service-orientation requires the
identification of the necessary services and their capabilities
[3, 15]. Before these services can be implemented, a service
inventory blueprint describing the potential services and their
capabilities in a conceptual manner is required. The services
within this blueprint are called service candidates, and they
group the capabilities related to the context of the service
candidate. The capabilities are called service capability
candidates. The blueprint is created during the service
modeling process as part of the service-oriented analysis
process [1]. It is required to provide a common and stable
basis that is at best adjusted to all supported processes.

To determine service candidates, a typical iterative top-
down approach is to regard every business process that has to
be supported on its own [1]. The business process is
decomposed until service capability candidates for specific
activities can be derived. Existing service candidates are
revised or new service candidates are added to the blueprint.
When applying this approach, the question is: When should
the decomposition be stopped to obtain reusable but also not

too fine-grained services? Additionally, regarding one
business process after the other may inhibit the creation of a
common set of service candidates, for the relationship
between single activities of decomposed business processes
is not formalized. When deriving service candidates from the
decomposed business processes, a common ground between
the processes is not identified and process “silos” of services
are produced [4]. The service capabilities and their design,
such as their granularity, are aligned to a specific business
process. This means that they are designed to exactly fulfill
the requirements necessary for one specific business process.
Maybe existing service candidates are not regarded since
their granularity is inappropriate or the taxonomy differs.
Instead, new services are created. This may result in several
services providing the same capability with different
granularities or names. A continuous revision of the service
inventory blueprint is required to avoid these issues, which
constitutes a complex task. The taxonomy has to be unified
and a compromise to satisfy all requirements has to be found.
This requires all prior design decision to be kept in mind.

The contribution of this paper is a set of rules to
systematically derive a service inventory blueprint from a
customized business model capturing relevant requirements
in one model. The customized business model focuses the
relevant information for service candidate derivation and
primarily describes “what” is done within the organization.
The information regarding “how” things are done is
described by business processes and is not required for
service derivation. Thus, the business model includes the
business performer roles, business activities and affected
business entities. The description of these aspects within one
model enables the unification of taxonomies, levels of
abstraction at one place and the automatic and tool-supported
application of formalized rules. Additionally, it helps to
identify redundant activities that would result in redundant
services later. An iterative or subsequent revision of the
service inventory blueprint, including steps as service
normalization [12] that expect all design decisions to be kept
in mind, is not required.

Our approach is exemplified by a scenario at the
Karlsruhe Institute of Technology (KIT). In the context of
teaching, modules describe the teaching content of degree
courses and are listed within a module catalog that has to be
managed. The entire module catalog management is
expected to be supported by IT, in particular by services. At
the KIT, we describe the module catalog management by

means of the customized business model and use business
processes, standardized documents describing the module
catalog management and interviews as input. Afterwards, our
rules are applied to systematically identify a common and
stable set of service candidates to support the module catalog
management and its business processes.

The paper is organized as follows: Section 2 presents the
related work in the context of service inventory blueprints,
business modeling and derivation of services. In Section 3,
the customized business model including its meta model and
the rules to derive the service inventory blueprint are
described. Additionally, this section shows the integration of
the service inventory blueprint and its derivation into an
entire SOA development process. This illustrates the
importance of the blueprint and its advantages in
combination with various existing approaches that start with
business process models. The approach is exemplified by the
prior described scenario at the Karlsruhe Institute of
Technology (KIT). Section 4 concludes the paper and makes
suggestions for future research work.

II. RELATED WORK
In [1] the concept of a service inventory blueprint is

introduced as a conceptual blueprint of all planned services,
called service candidates. Each service candidate contains
possible capabilities, called service capability candidates.
The availability of this blueprint dramatically reduces the
effort and risk associated with the design of reusable
services. To derive the service inventory blueprint in [1] the
business processes are considered and the blueprint is
continuously revised. We advocate the idea of a blueprint but
see the need for a systematic approach to derive the blueprint
to avoid continuous revision.

An approach to categorize services is introduced in [1,
13]. Here, a distinction of entity services, task services and
utility services is proposed. Entity services focus on one
business entity, while task services have process logic that
does not fit within a functional context of one business
entity. Additionally, entity services are process agnostic,
whereas task services are non-agnostic. This means that task
services are only specific for one business process. Utility
services provide infrastructure functionality. Thus, they do
not affect business entities. A similar categorization can be
found in [2]. Our approach uses this distinction to
encapsulate identified capabilities into service candidates
applied in rule 5 to rule 8.

According to [4] “organizations are structured around
their key functions and the end-to-end process goes between
those functions”. Process-based service discovery tends to
“drill-down” too early and to produce process “silos” of
services. This often fails to identify common ground between
processes. Thus, service discovery should start with the key
functions describing the “what”. We agree with that, but
miss any formalized method to describe the business and to
systematically derive the services.

Another approach using the relation of activities to
business entities is introduced in [3]. The resulting services
correspond to both entity services and task services. They are
not further distinguished. Considering the relation between

activities and business entities is a very promising method,
which is why it is reused in our approach. However, we see
the need to describe the business within one model to first
find redundant activities and second to unify the taxonomy.
Additionally, the method should be applicable directly on the
created business model. The approach in [3] could be further
improved if dependencies between business activities and
potential compositions of business entities were described.
This enables the identification of service relevant business
activities and business entities, for not every activity has to
be supported as a service and other activities should be
explicitly supported to increase the reusability.

Several approaches combined can be found in [11]. Here,
also entity task and utility services are distinguished as
introduced in [1]. The approach could be improved with a
systematic and formalized guideline for how to identify
service relevant business activities and the service candidates
that are currently presumed.

As enhancement of the classic RUP [10], in [6] the
Rational Unified Process (RUP) for Service-Oriented
Modeling and Architecture [9] is introduced. Here, a method
for business modeling which can be applied using the
Unified Modeling Language (UML) or an UML profile [7,
8] is proposed. However, it does not exactly fulfill the
requirements for service modeling. For service modeling, the
activities within an organization, the relation to business
processes, the performing role and the affected business
entities have to be described. Additionally, the relation
between activities and the composition of business entities
has to be modeled. Thus, we decided to create a customized
business model that exactly meets these requirements.
However, our design decisions reuse concepts such as
business use cases and their realization in the form of
business processes as introduced in [6, 7, 8, 9].

III. RULE-BASED SERVICE MODELING
This section introduces the customized business model

specific for service modeling and the rules to derive a service
inventory blueprint. In a first step, the meta model of the
business model is described. Afterwards, the rules are
presented to derive the service inventory blueprint. To
exemplify our approach, a scenario at the KIT in the context
of module catalog management is used. The resulting service
candidates of the service inventory blueprint are presented.
Afterwards, formalizations for two selected derivation rules
are shown, using the Object Constraint Language (OCL)
[18]. This exemplifies the systematic and automatic
application of the presented derivation rules. In a last step,
the service inventory blueprint and its derivation are
embedded into an entire SOA development process to
illustrate the combination with existing approaches.

A. Business Meta Model
In this section, the business model and its meta model are

introduced. The business meta model is customized to the
specific needs for a systematic service candidate derivation.
It uses elements and the taxonomy according to the IBM
business modeling [6, 7, 8], but simplified and focused on
the aspects required to derive service candidates.

<<Business Use Case>>
Module Catalog Management

<<Business Use Case>>
Module Catalog Management

<<Business Use Case>>
Update Module Catalog

<<Business Use Case>>
Update Module Catalog

<<Business Use Case>>
Create Module Catalog

<<Business Use Case>>
Create Module Catalog

refined by

realized by realized by

<<Business Process>>
Update Module Catalog

Process

<<Business Process>>
Update Module Catalog

Process

<<Business Process>>
Create Module Catalog

Process

<<Business Process>>
Create Module Catalog

Process

Module
Catalog
Manager

Module
Catalog
Manager

<<Composed Business Activity>>
Update Module

support: SupportType.Automatic
con: ConstitutionType.ComposedOf

*

Business
Use Case

name: String

refined by

realized by
*

*

interacts with

*

*

*

*

Business
Activity

name: String
support: SupportType

<<Enumeration>>
SupportType

Manual
Semi
Automatic

<<Enumeration>>
SupportType

Manual
Semi
Automatic

performs

*
Business

Entity

name: String

*
Business

Entity

name: String

Business
Performer Role

name: String

Business
Performer Role

name: String

*

*

<<Enumeration>>
ConstitutionType
Includes
ComposedOf

<<Enumeration>>
ConstitutionType
Includes
ComposedOf

*

EntityAggregation

type: AggregationType

EntityAggregation

type: AggregationType

<<Enumeration>>
AggregationType
Shared
Composite

<<Enumeration>>
AggregationType
Shared
Composite

Composed
Business Activity

con: ConstitutionType

Composed
Business Activity

con: ConstitutionType

Business
Process

name: String

Business
Process

name: String

*

*

*

*included by

includes

performed
by

affects

affected by

*aggregates aggregated by

activities

0..1

Figure 1. Business Meta Model.

Additionally, some aspects of the UML superstructure as
shared and composite aggregation [16] and the Business
Process Definition MetaModel (BPDM) 1.0 standard as the
business performer role [17] are included. Figure 1 illustrates
the business meta model.

To derive service candidates, it is necessary to identify
what is done within an organization [4]. This is formalized
by a top-level business use case interacting with several
external business actors [7] represented as business
performer roles. The business use case can be refined into
more detailed business use cases. Recommended are two
levels of business use cases [6]: The first level describes the
goals of the organization. The second level illustrates the
internal business processes from an external view [6, 7].
Each of these business use cases can be realized by a
business process. In contrast to business use cases, the
business processes describe how internal business workers
interact and which information they use to realize the
behavior described in the business use cases. The distinction
of business workers and business actors is not necessary.
Thus, both are represented as a business performer role.
Since business activities describe what is done within an
organization, they are required to identify service capability
candidates. Activities can be part of composed activities or
business processes. A composed activity is either completely
composed of the subordinate activities or it only includes the
subordinate activities and adds some individual functionality.
Additionally, for each activity, the IT support can be set by
the support attribute. It can be automatic, semi or manual.
Manual means that there is no IT support and automatic
means full IT support. Semi represents a partial IT support,
for instance for business activities that are composed of a
manual and an automatic business activity. The composition
mechanism of activities enables the determination of the
reuse of functionality. Each business activity can be invoked
by a business performer role [17]. This covers explicitly
invoked activities only, not implicitly invoked activities. An
explicitly invoked activity is required as service, anyway. To
distinguish between different service categories, such as
entity and task services [1, 2, 13] and to group service
capability candidates to service candidates, the relation to
business entities has to be considered [1]. A business activity

may affect no, one or more than one business entity.
Business entities can be comprised of other entities. Here the
type can be set to “shared” or “composite” as defined in the
UML superstructure for aggregations [16]. When using the
composite aggregation, the subordinate business entity is not
able to exist on its own.

For the module catalog management scenario, the
following business use cases and business processes are
identified. The business use case “Module Catalog
Management” can be refined by the business use cases
“Update Module Catalog” and “Create Module Catalog”.
These use cases are realized by similar named business
processes, as illustrated in Figure 2.

Figure 2. Module Catalog Management Business Use Case.

B. Service Inventory Blueprint Creation
In the following, eight rules are described to

systematically derive the service candidates and their
capabilities. The first four rules are used to identify the
business activities that represent service capability
candidates. These capability candidates have to be grouped
into service candidates. For this purpose, the latter four rules
are used.

A business activity represents a service capability
candidate if one of the following rules applies:

1) The business activity is IT supported (automatic) and

is associated with at least one performer role.

Explanation: The capability is explicitly called and thus
explicitly required as capability.

Figure 3 shows an excerpt of the module catalog
management business model where this rule can be applied.
The business activity “Update Module” is directly called by
the performer role “Module Catalog Manager” and thus
identified as service capability candidate. For the performer
role “Module Catalog Manager” the notation for business
workers as proposed in [8] is used, for this performer role is
internal to the organization.

Figure 3. Exemplified Capability Candidate Identification.

<<Composed Business Activity>>
Update Module

support: SupportType.Automatic
con: ConstitutionType.ComposedOf

<<Business Activity>>
Edit Module

support: SupportType.Automatic

<<Business Process>>
Update Module Catalog

Process

<<Business Process>>
Update Module Catalog

Process

<<Business Process>>
Create Module Catalog

Process

<<Business Process>>
Create Module Catalog

Process

<<Business Entity>>
Module

<<Business Entity>>
Module

<<Business Entity>>
Update History Entry

<<Business Entity>>
Update History Entry *

Module

• Update

Module

• Update

2) The business activity is IT supported (automatic) and
is included by a semi IT-supported activity that is associated
with at least one performer role or recursively included by
an activity that is associated with at least one performer
role.

Explanation: If an activity is semi IT supported only but
performed by one or more performer roles, at least the parts
that are IT supported should be provided by a service.

If it is expected that the capabilities perform

autonomously mostly, i.e., without dependencies to other
capabilities, the derivation of the service capability
candidates is finished. If reusability is more important than
autonomy, the following two rules are applied additionally:

3) The business activity is IT supported (automatic) and
is included by more than one other business activity.

Explanation: This enables the sharing of this capability and
thus increases the reusability.

4) The (composed) business activity is semi IT

supported and is associated with more than one business
performer role and includes at least two IT-supported or
semi IT-supported business activities.

Explanation: The activity constitutes a composition of at
least two IT-supported (automatic) activities. By selecting
this activity as a capability, the automatic parts are provided
as a reusable composition, even it is semi IT supported only.
The provision of this composition increases the reusability.
The subordinate activities are provided as service capability
according to rule number two.

In a next step, the service candidates have to be

determined. To encapsulate the identified capabilities into
service candidates, our approach uses the distinction of entity
services, task services and utility services as proposed in [1,
13]. To derive the service candidates and the encapsulated
service capability candidates systematically, the following
rules are applied. These rules only consider the prior as
service capability candidate-identified business activities.

5) If a business activity is used by more than one

business process and all of its included business activities
are associated with exactly one and the same business entity
or additionally with business entities that are included by
the one using the composite aggregation, an entity service
candidate for this (including) business entity is created. The
service candidate is named after the particular business
entity and the business activity is added as service
capability candidate. The name of the capability equals the
name of the business activity without the name of the
business entity.

Figure 4. Exemplified Entity Service Candidate Identification.

Explanation: An entity service includes capabilities whose
scope is exactly one business entity. Since business entities
that are included using the composite aggregation cannot
exist on their own, a separate service would not be
autonomous, thus cannot be independently deployed,
versioned, and managed [5]. For this reason, these entities
are merged.

Figure 4 shows the exemplified identification of an entity
service candidate. The prior as service capability candidate-
identified business activity “Update Module” is included by
two business processes. “Update Module” and the included
business activity “Edit Module” both affect the business
entities “Update History Entry” and “Module”, and the
business entity “Module” aggregates “Update History Entry”
using a composite aggregation. Thus, an entity service
capability candidate “Module” can be created including one
service capability “Update”. For the service candidate, the
notation according to [1] is used.

6) If a business activity and all its included business

activities are associated with at least two different business
entities that are not included using the composite
aggregation, a task service candidate is created. It is named
after the business activity with the verb as prefix. One
service capability candidate is added named after the verb
of the activity.

Explanation: These capabilities should not be part of the
corresponding entity service candidate, so as not to decrease
the reusability of the entity service candidate. If the business
entities are included using the composite aggregation, rule
five applies.

En
tit

y
Se

rv
ic

e
C

an
di

da
te

s
Ta

sk
 S

er
vi

ce
C

an
di

da
te

s
U

til
ity

 S
er

vi
ce

C
an

di
da

te
s

Module Catalog
Management Utilities

• NotifyModuleManager

Create Module

• Create

Create Module

• Create

Update Module
Catalog Process

• Update

Update Module
Catalog Process

• Update

Module
Catalog

• Publish

Module
Catalog

• Publish

Create Module
Catalog Process

• Create

Create Module
Catalog Process

• Create

Read Module
Catalog

• Read

Read Module
Catalog

• Read

Module

• Read
• CheckStructure
• Edit
• Update

Module

• Read
• CheckStructure
• Edit
• Update

Task services that do not represent business processes
potentially can be merged if they are invoked by the same
business process and affect the same business entities. The
reason is that task services are less process-agnostic than
entity services [1] and are bound to the scope of the parent
business process. Thus, only task services that are invoked
by the same business process and affect the same business
entities should be merged, so as not to decrease the
reusability. The name of the merged task service has to be
individually revised.

7) If a business activity is associated with no business
entity, a utility service candidate is created. All utility
service candidate relevant business activities that are
included by the same business activity constitute the same
utility service candidate and are included as capability
candidates. If a utility service candidate relevant business
activity is included by more than one business activity, the
parent business activity is considered until only one
business activity or even business use case is reached. The
utility service candidate is named after this, including
business activity or business use case with the noun
“Utilities” attached.

Explanation: Utility services do not influence business
entities. To create reusable utility services, the capability
candidates are grouped by their lowest common including
business activities.

Figure 5. Service Candidates for the Module Catalog Management.

8) Each business process is transformed into one task
service candidate representing the process. It is named after
the business process and includes one service capability
candidate named after the prefixed verb of the process.

Figure 5 illustrates the resulting set of service candidates

and their hierarchy for the module catalog management
scenario. This includes the prior identified entity service
candidate “Module” and its service capability candidate
“Update”. The hierarchy of the service candidates is derived
from the business model and the dependencies between the
business activities. Since service capability candidates are
derived from the business activities, their dependencies can
be used to determine the hierarchy.

C. Formalization
Using a business model capturing the necessary business

requirements for service derivation and the existence of a
formalized meta model enable the formalization of the
derivation rules. In the following, Object Constraint
Language (OCL) [18] expressions are used to exemplarily
describe rule 1 and rule 5. Therefore, some boolean attributes
that describe whether a business activity represents a service
capability candidate and whether a business entity represents
an entity service candidate are assumed.

1) Formalization of rule 1:

context BusinessActivity
inv: support = SupportType::Automatic and
 performedBy->notEmpty()
 implies capabilityCandidate = true

2) Formalization of rule 5:

context BusinessActivity
def: allIncludes: Set(BusinessActivitiy) =
 self.includes->union(self.includes->
 collect(p | p.allIncludes())
def: agnostic: Boolean =
 BusinessProcess.allInstances()->exists(p1 |
 p1.activities->allIncludes()->includes(self) and
 BusinessProcess.allInstances()->exists(p2 | p1
 <> p2 and p2.activities->
 allIncludes()->includes(self)))

context BusinessEntity
def: allCompositeAggregates: Set(BusinessEntity) =
 self.entityAggregation[aggregates]->
 select(type = AggregationType::Composite)->
 union(self.entityAggregation[aggregates]->
 select(type = AggregationType::Composite)->
 collect(ea | ea.allCompositeAggregates()))
inv: affectedBy->exists(ba | ba.agnostic() and
 self.allCompositeAggregates()->
 includesAll(ba.allIncludes()->collect(affects)))
 implies entityServiceCandidate = true

The other rules can be formalized in a similar way. The

usage of OCL allows the integration with existing modeling
tools to support an automatic application of the derivation
rules.

D. Embedding into an Entire SOA Development Process
The target of service-orientation is to support business

processes of an organization. The rule-based service
modeling focuses the creation of the service inventory
blueprint and does not describe how it helps to realize
business processes. Thus, this section shows the integration
of the rule-based service modeling applied on the introduced
business model into an entire SOA development process.
This illustrates how a prior created service inventory
blueprint can be combined with other existing approaches to
improve the realization of business processes.

After the creation of the service inventory blueprint, the
following steps are repeated for each business process: First,
the business process is analyzed and modeled resulting in a
business process model. In a next step, the business process
is decomposed. With the existence of a service inventory
blueprint the decomposition of a business process can be
controlled. The business process has to be decomposed until
each automatable activity matches a service capability
candidate provided by a service candidate within the service
inventory blueprint. This may require a transformation of
terms to find an appropriate capability candidate. This step
results in a so-called workflow model that only consists of
activities that can be supported through services and their
capabilities. The existence of the service inventory blueprint
guarantees that all workflow models have a unified
taxonomy and level of abstraction. In a last step, the
necessary services are developed, if they haven’t been
already.

IV. CONCLUSION AND OUTLOOK
In this paper, we presented a rule-based service modeling

approach applied to a customized business model to
systematically derive the service candidates and their
capabilities necessary to support the business. The business
model captures relevant business requirements within one
model and thus enables the unification of taxonomies and the
level of abstraction. Additionally, it helps to identify
redundant activities that would result in several services with
the same capabilities during the service modeling process.
The rules enable the derivation of a common ground for all
business requirements. Combined with the prior defined
meta model, the formalized rules using OCL expressions
allow the integration with modeling tools. This enables the
automatic service derivation from a prior created business
model.

Our approach helps software architects to systematically
identify the required services during the service modeling
process. The embedding into an entire SOA development
shows how our approach can be combined with other
existing approaches to realize business processes. With the
existence of a prior derived service inventory blueprint, the
teams realizing single business processes have a guideline
for how to decompose business processes. This reduces the
risk to develop new services with new names and similar
capabilities. Thus, the inventory blueprint helps to support
the governance of a service-orientation. Additionally, since
the business model focuses on the activities within an

organization, the business processes with the concrete flows
are not required to apply the rules. Thus, this approach can
also be applied in scenarios in which the business processes
are unknown, such as if software vendors want to provide
services, even if they do not know the differing concrete
processes of the customers.

We illustrated the application of our approach for the
module catalog management scenario at the KIT. Instead of
presuming services, the services were systematically derived
and constitute a common ground for the entire module
catalog management.

Our next steps are further work on how the resulting
service inventory blueprint can be measured and evaluated
regarding its design quality using software design metrics.
Additionally, we work on further rules considering prior
definable design goals. The approach itself is planned to be
applied in further projects at the KIT.

REFERENCES
[1] T. Erl, “SOA – Principles of Service Design”, Prentice Hall, 2007.

ISBN 978-0-13-234482-1.
[2] S. Cohen, “Ontology and Taxonomy of Services in a Service-

Oriented Architecture”, Microsoft Architecture Journal, 2007.
[3] P. Jamshidi, M. Sharifi, S. Mansour, “To Establish Enterprise Service

Model from Enterprise Business Model”, 2008.
[4] S. Jones, “Enterprise SOA Adoption Strategies”, InfoQ Enterprise

Software Development Series, 2006.
[5] J. Evdemon, “Principles of Service Design – Service Patterns and

Anti-Patterns”, MSDN Library, 2005.
[6] IBM, “RUP for Service-Oriented Modeling and Architecture, IBM

Developer Works, http://www.ibm.com/developerworks/rational/
downloads/06/rmc_soma/, 2006.

[7] S. Johnston, “Rational UML Profile for business modeling”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
library/5167.html, 2004.

[8] J. Heumann, “Introduction to business modeling using the Unified
Modeling Language (UML)”, IBM Developer Works,
http://www.ibm.com/developerworks/rational/library/360.html, 2003.

[9] A. Arsanjani. “Service-oriented modeling and architecture - How to
identify, specify, and realize services for your SOA”, IBM Developer
Works, http://www.ibm.com/developerworks/library/
ws-soa-design1/, 2004.

[10] P. Kroll, P. Kruchten, “The Rational Unified Process Made Easy”, a
Practitioner’s Guide to the RUP, Addison-Wesley, 2003.

[11] N. Fareghzadeh, “Service Identification Approach to SOA
Development”, Proceedings of World Academy of Science,
Engineering and Technology, Volume 35, 2008.

[12] T. Erl, “SOA – Design Patterns”, Prentice Hall, 2008. ISBN 978-0-
13-613516-6.

[13] T. Erl, “Web Service Contract Design & Versioning for SOA”,
Prentice Hall, 2008. ISBN 978-0-13-613517-3.

[14] D. Krafzig, K. Banke, D. Slama, “Enterprise SOA: Service Oriented
Architecture Best Practices”, Prentice Hall International, 2005. ISBN
978-0-13-146575-6.

[15] M. Perepletchikov, C. Ryan, K. Frampton, H. Schmidt: “Formalising
Service-Oriented Design”, Journal of Software, Volume 3, February
2008.

[16] Object Management Group, “Unified Modeling Language,
Superstructure”, Version 2.2, 2009.

[17] Object Management Group, “Business Process Definition
MetaModel”, Version 1.0, Volume 2, Process Definitions, 2008.

[18] Object Management Group, “Object Constraint Language”, Version
2.0, 2006.

