
10-582086796 1

Abstract — To meet fast changing demands on modern
software architectures the ambition to shorten and improve
software development processes has increased. The approach of
model-driven software development focuses models as
specification of software and on transformations of those models
to finally get source code. The advantage of the model-driven
approach still has to be proven because a continuous tool-
supported transformation process from model to source code
with regard to all aspects of a software system is not yet possible.
This paper concentrates on the aspect of user interaction by
presenting an easy to apply approach allowing for a tool-
supported, model-driven software development of graphical user
interfaces for any kind of platform. A case study demonstrates
the usage and benefit of our model-driven approach applied to a
common software development process.

Keywords — Graphical User Interfaces (GUI), Model-Driven
Architecture (MDA), Model-Driven Software Development
(MDSD), Software Engineering

I. INTRODUCTION

A. Background
Facing fast changing markets, enterprises have to adapt

their business processes in decreasing intervals to keep up
with their competitors. Supporting such business processes,
Information Technology (IT) has to follow the changes, hence
the need for a more flexible, interoperable and adjustable IT
arises [1]. Due to these requirements, existing process models
in software engineering have to be improved to strive for
shorter development cycles and to be able to handle more
complex software systems.

The approach of model-driven software development
(MDSD) aims to achieve these improvements by centering the
modeling of a software system in any software development
process [2]. Thus MDSD is not a new process model itself but
can be applied to the better part of known process models in
software engineering [3]. With MDSD a software system is
specified through models on a very abstract level. Following
the phases of a software development process, models are
transformed stepwise to more specialized models with a lower
level of abstraction by model-to-model transformations. In a
final model-to-text transformation the detailed models are
transformed to source code of the desired platform [4].

B. Motivation
The Model Driven Architecture (MDA) published by the

Object Management Group (OMG) [5] is one instance of
MDSD. One of several current questions of MDA comes with
the applicability of the approach itself and the expressiveness
of Unified Modeling Language (UML) [6], [7], the modeling
language recommended for MDA [8]. With UML it is
possible to express different aspects of a software system
through different types of diagrams. Having captured the
requirements these diagrams are a starting point for a software
development process and support a common basis for
communication and documentation [9], [10]. These models
are then transformed to models with lower abstraction levels
since different levels of abstraction ease the collaboration of
all roles involved in the software development process [2].
Abstract models specifying, e.g. use cases, are suitable for a
business or systems analyst. Later on, more detailed models
are used for specification. These contain information not
relevant for a business analyst but crucial for a developer or
tester [9].

Yet many details cannot be specified through models as the
existing model elements of UML are not accurate enough to
properly capture all details [8], [11]. Therefore
transformations need to be executed by error-prone manual
steps which result in a conflict with the MDSD approach.
Misunderstandings in the interpretation of models at least
protract the underlying software development process or may
even lead to unusable software. Especially in the area of user
interaction this problem is significant. Early in a software
development process many details concerning user interaction
are available.

Addressing this problem we present an approach for model-
driven development of graphical user interfaces (GUIs),
carrying on with our first draft in [12]. This attempt will cover
an accurate specification of GUIs through models and further
demonstrate how these models can be transformed through an
automated multi-stage transformation process down to source
code of any platform. We therefore introduce two lightweight
extensions of UML terms of two UML profiles. Furthermore
we make use of Queries Views Transformations (QVT) as the
language to define transformation rules as also recommended

Focusing Graphical User Interfaces in
Model-Driven Software Development

Stefan Link1, Thomas Schuster2, Philip Hoyer1, Sebastian Abeck1

1Research Group Cooperation & Management, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany
2FZI Forschungszentrum Informatik, Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany

{ link | hoyer | abeck } @ cm-tm.uka.de, schuster@fzi.de

10-582086796 2

for MDA [13].
In contrast to other related work (cf. section 2) we

concentrate on the flexibility, general applicability and
portability of our approach also taking different roles involved
in a software development process into consideration.

Accordingly, the remainder of this paper is organized as
follows: section 2 introduces the state of the art in the context
of MDA focusing user interaction and user interfaces. In
section 3 our extensions to UML are presented to prepare a
case study demonstrating the feasibility of our approach given
in section 4. A conclusion and outlook on future work in this
area closes the body of this paper.

II. STATE OF THE ART
Model-driven development and especially MDA is the

subject of several other research ambitions and current
discussions [4], [8], [5]. While strengths and weaknesses of
MDA are still being investigated [11], there is a rising demand
for the construction of flexible and well-structured user
interfaces [14], [15]. One way to create those user interfaces
may be achieved by usage of declarative languages. Recent
projects like XML User Interface Language (XUL) [16],
eXtensible Application Markup Language (XAML) [17] or
Views [18] take an XML-based approach to a declarative GUI
description. These languages may therefore be used as target
platforms for model-driven GUI development.

A similar approach to describe user interfaces is taken by
UsiXML [19]. Based on work of the Cameleon reference
model [20] this approach additionally focuses on model-
driven development of user interfaces. “Concur Task Tree”
(CTT) diagrams mark an initial linchpin of this approach with
focus on tasks that are the object to user interaction. These
tasks are then transferred to an abstract, concrete and final
user interface [19] through a series of XSL Transformations.
The need for different levels of abstraction in GUI modeling is
essential and is therefore also pursued in this paper.

Since UML is sometimes considered as the lingua franca of
system modelling [10], notably in object oriented designs,
some other approaches like Pinheiro da Silva et al. extend in
[21], [22] the UML metamodel with new types of diagrams or
new notational symbols. In [22] a language called “UML for
interactive applications” (UMLi) is introduced to reflect
missing capabilities for designing user interfaces with UML.
In contrast to extending UML with new notational symbols,
Almendros-Jimenez and Iribarne explore in [23], [24] the
possibilities of UML use case and activity diagrams. They use
specific action elements to reflect units that are typical for
Java applets. Hence models based on their work may be used
to generate GUIs within Java applets only.

Unlike focusing on Java applets, Lorenz introduces in his
proposal [25] an approach to model GUIs within activity
diagrams. He uses semi-formal text building blocks named
“scenes” similar to UML annotations that specify details of a
GUI. Additionally he introduces, similar to Petrasch [8], two
different types of actions, called user respectively system

action to model user and system behavior likewise. While this
approach covers a clear and desirable classification of user
and system actions, the “scenes” contain non-formal
information such as attributes or buttons that shall be
displayed. Due to its non-formal specification, this
information cannot be transformed in a model-driven manner.

 While Almendros-Jimenez and Iribarne suggest
specializing the model notation to reflect details of their target
platform (Java applets) [24], Lorenz [25] and Petrasch [8]
propose more abstract notations to cover a more general
approach. Yet both use one direct transformation to their
target platform J2EE/Struts and do not consider the diversity
of today’s platforms.

Subsuming the current state of the art there is a need for a
more general and straightforward approach to model-driven
development of GUIs which on the one hand allows for a tool-
supported development of GUIs for any kind of target
platform and on the other hand is easy to apply as based on
established modeling languages also used within current
software development processes. Taking [25] and [8] into
account, a generalization and further adaptation of these
approaches promises to be successful in leveraging the current
level of software development to higher stages in automation.

In the next section we present an approach of model-driven
development of GUIs based on the discussed state of the art.
We aim at overcoming the main drawbacks of current
approaches stated above by presenting a more general
approach which is applicable to common software
development processes.

III. MODEL-DRIVEN DEVELOPMENT
 OF GRAPHICAL USER INTERFACES

Common software development processes share the use of
graphical modeling languages utilizing models for
communication and documentation purposes [10]. With the
approach of model-driven software development, a new value
is added to these models as they are used in a transformation
process that can step down to source code. As mentioned
above, due to inappropriate model elements several aspects
can still only be captured in a non-formal way. With our
approach we aim to specify GUI-relevant aspects through
modeling. One central goal is to transform these GUI-relevant
aspects to source code. This way we strive for an improved
propagation of requirements from models to source code by a
higher degree of automation in software development, in this
case especially concerning GUI development. Hence we first
introduce a mechanism to cover GUI aspects in process
models like UML activity diagrams. In a development project
these extended UML activity diagrams serve as our first
source model. As a next step we present a GUI metamodel as
a template that is usable to specify any kind of GUI. On one
hand the latter is capable of taking on these GUI related
aspects and on the other hand serves as target model of our
first model-to-model transformation. Following MDA
principles we apply a second model-to-model transformation
to achieve a platform-specific GUI model. Finally we end

10-582086796 3

with a model-to-text transformation resulting in source code.
The transformation mechanism used is introduced and
described at the end of this section.

A. Process Model Extension for Graphical User Interfaces
While necessary requirements are assumed to be already

captured, use cases refined by UML activity diagrams are the
starting point of our approach. Activity diagrams may be used
to serve as platform independent model (PIM) in terms of
MDA. According to MDA this means to move on from a
computation independent model (CIM) to a PIM [26]. In order
to enrich activity diagrams with GUI-related aspects, it is
necessary to enhance standard activity diagrams by
specialized model elements. Following [25] (cf. section 2), our
first extension introduces two new types of actions, which
allow us to distinguish between System- and UserActions.
This differentiation determines in a formal manner if an action
has to be performed by the user, e.g. entering some data, or if
the system itself is required to be active. The extension is
attained by a UML profile, a lightweight extension mechanism
of UML [6]. As UML profiles do not change the metamodel
of UML itself but extend existing meta-classes the benefit of
using an UML profile comes with its reusability and the
availability of more precise stereotypes which may be used by
any tool supporting UML profiles. Yet associations specified
in a UML profile are not handed down to its instances, so one
has to make use of another approach to apply constraints. This
paper uses the Object Constraint Language (OCL) as an
integral part of UML [6]. Since OCL expressions usually
become quite lengthy, only one OCL expression is
exemplified in figure 1 and explained below.

To provide further details needed to handle user actions, we
specify another stereotype named GUIInputPin. As a
specialization of a regular UML input pin, a GUIInputPin
allocates an additional tagged value guiType. A tagged value
is a key-value pair which attaches supplementary information
to a model element [5]. In this case every instance of the
GUIInputPin has to have a GUIType. All available GUITypes
themselves are given by an enumeration also included in the
UML profile. Through this enumeration modelling is
restricted to known elements reasonable for usage in a GUI,
secondly the application of transformation rules is guaranteed.
With GUIInputPins all attributes that need to be provided by
the user and the type of these attributes can be modelled by
choosing the corresponding GUIType. To ensure that a
GUIInputPin may not be applied to a SystemAction, there is
an OCL expression in the UML profile prohibiting that.
Figure 1 depicts a partial view on our UML profile named
GUIActivityProfile. With the GUIActivityProfile in place it is
possible to add GUI-relevant information to an activity
diagram in a formal manner allowing for a tool-supported
transformation.

While GUITypes describe what is needed, they do not

Fig. 1. Partial view on GUIActivityProfile

comprise an assertion about concrete GUI elements. If e.g. a
GUIInputPin is of GUIType Text, the corresponding GUI
element could be an input field or a text area. So GUITypes
are given as a declarative description for displayable elements.
The advantage of this declarative description is twofold. First
the GUIType does not make any restrictions on special GUI
elements allowing for a variety of different GUI libraries. The
precise mapping of GUIType to a GUI element is specified
through transformation rules which we will address later. A
second advantage is found in the modelling itself. If a
GUIType is not a simple type as Text or Boolean but complex,
the refinement of this data type can be moved to the next
phase in the software development process using e.g. XML
Schema [27] as GUIType. This avoids mixing up different
architect roles which would lead to dismantle the separation of
concerns principle, which is especially not desirable for larger
projects [9].

Having provided the extended activity diagrams, the next
phase in the software development process can be addressed
by a transformation to another PIM, the GUI model as
presented in subsection B.

B. A Metamodel for GUIs
Basically GUIs are built up from a number of dialogue

modules that are linked to each other in a specific way [15].
As a result, a GUI contains static and dynamic aspects. All
displayable elements including their container element (e.g. a
Web browser window) are part of these static aspects. The
link structure and the way this structure is built can be
regarded as the dynamic part of a GUI. Dynamic aspects can
be described in additional navigational models [28] which we
do not investigate further.

Since many different displayable elements build up a
dialogue module [29], [15] it is necessary to provide the
means to model the build-up of a single dialogue module and
the complete GUI itself. We therefore introduce a second
UML profile named GUIProfile based on a UML class
diagram which supports the modeling of GUI-related
development decisions. It can be used to model GUIs in a
more detailed and formal way compared to standard UML. To
assure independence of any GUI toolkits or libraries, the
GUIProfile can be considered as a crosscut of many of the

10-582086796 4

most common elements contained in currently available
libraries like [25]. As mentioned in [12], the GUIProfile is
constructed to be extendable to support further elements and
types that might be useful in future versions of that model, for
example by adding new elements to the corresponding
enumeration.

We use the GUIProfile as the target model for a first
model-to-model transformation within which our extended
activity diagram presented in subsection A is the source
model. Each GUIInputPin of a UserAction is transformed to
an instance of one stereotype of the GUIProfile. For example
a GUIInputPin of GUIType Text is transformed to an
InputElement of InputType TextField or TextArea whereas a
GUIInputPin of GUIType Boolean would be transformed to a
ChoiceElement and so on. Some of our transformation rules
that do a mapping between GUIActivityProfile and GUIProfile
are depicted in Figure 3. The shown QVT rules describe
partially how a UserAction is mapped to a dialogue module.
The UserAction is mapped to a package which symbolizes a
dialogue module. The when-clause of the according mapping
rule (action2Package) restricts the transformation to
UserActions only. In order to map all inputs to GUI elements

as needed another mapping (guiPin2Class), not displayed, is
called to choose the relevant model members (e.g. an
OutputElement).

The result of the first transformation is one GUI model for
each UserAction as an instance of GUIProfile. In a second
iteration during a design phase of the software development
process the GUI model can be manually enriched with further
information that is not forthcoming by the extended activity
diagram. For example the correct order of each GUI element,
their sizes, colours etc. have to be specified as this information
is of no concern during the preceding analysis phase. After the
refinement of the GUI model, a second transformation is
applied. It transfers the GUI model either to a platform
specific model (PSM) like a Java Swing [28] or XUL model
[16] and finally source code. The whole transformation
process will be exemplified in section 4.

In conclusion our approach combines several steps in a
MDA process. Extended UML activity diagrams serve as
linchpin, while our GUI models which are instances of the
GUIProfile are derived automatically from these extended
activity diagrams. In next iterations the GUI model is
manually enriched, transformed to a platform specific GUI
model and finally to its underlying source code.
Distinguishing between our platform independent and a
platform specific GUI model is crucial in order to keep device
and platform independent as long as possible. Through this
indirection we obtain reusable transformations [5] and are able
to increase the degree of automation in a software
development process. Changing the GUI’s target platform will
only result in a swap of the last set of transformation rules
with another appropriate set instead of writing the source code
again from scratch.

Fig. 2. GUI metamodel GUIProfile used for modeling the assembly of a GUI (note that not all needed OCL expressions are displayed)

mapping main(in model: uml20::activities::Activity):
uml::together::Model {
 object {
 nestedPackages :=
 model.nodes.oclAsType(uml20::activities::Action)
 ->collect(act | act.action2Package())
 ->asOrderedSet();
 }
}

mapping uml20::activities::Action::action2Package():
uml::kernel::packages::Package
 when {
 self.getStereotypeInstances().
 oclIsTypeOf(GUIActivityProfile::UserAction)-> any(true)
 }
 ...
 ownedMembers += inputs->collect(pin |
 pin.guiPin2Class());
 }
}
Fig. 3. Used transformation rules in QVT

10-582086796 5

IV. MODEL-DRIVEN DEVELOPMENT OF GRAPHICAL USER
INTERFACES – IMPLEMENTATION EXPERIENCE

In this section we present how to put our approach into
practice based on a case study following a common software
development process [9]. As a toolkit for our approach we
chose the latest version of Borland’s Together Architect [30].
We commenced by implementing the GUIActivityProfile and
the GUIProfile (cf. section 3) with Together and contributed
the new stereotypes to Together’s palette of stereotypes. Then
we implemented all necessary QVT expressions. Note that this
setup has to be done only once. After this setup all new
stereotypes like GUIInputPin are available for modeling.

A. Case Study
Booking a professional training course will serve as our

case study. The pattern of booking is usually very similar,
either using a telephone or the Web: a participant picks a
desired course, checks if the course has free places, books
some extras like meals and so on. In this small business
process the training participant has to provide some
information during the booking process. Progressive training
companies allow for booking training courses via a Web
front-end, some others have the training participant make a
phone call and an employee enters the provided information
via a local client of their training management system. In both
cases a GUI is needed. We use this scenario to demonstrate
how our approach easily allows for developing a GUI on the
one hand for a Web front-end and on the other for a traditional
client application.

B. Specifying Use Cases with Activity Diagrams
Because necessary requirements are again assumed to be

already captured, we skip this phase and start with a use case
named Booking Training Course for further investigation.
With the help of the GUIActivityProfile, a system analyst
specifies this use case by providing an activity diagram
consisting of several User- and SystemActions. During the
UserAction Provide Participant Information (cf. figure 4) the
participant enters the information needed like his name, his
desired course or if he wishes to have meals etc. The GUI has
to provide the corresponding GUI elements so the role system
analyst simply adds GUIInputPins to the UserAction and
assigns them with an adequate GUIType. In the upper part of
figure 4 we display only a small extract of the activity diagram
with two GUIInputPins. The first is of GUIType Text for the
participant’s name and the second of GUIType Boolean for
choosing whether he wants to have meals included or not.

C. Activity Diagram to GUI Model Transformation
Although the system analyst does provide information

about the attributes the user enters, he neither cares about the
design nor the layout of the corresponding GUI elements. This
design task is performed by e.g. the role GUI expert during a
design phase. For this purpose the activity diagram is
transformed by a model-to-model transformation to the
corresponding platform-independent GUI model. The role
GUI expert improves this GUI model by adding information

e.g. about the size of the input field Participant Name (c.f.
figure 4) or the display order of the different input elements
and so on. At this stage our GUI model is still independent of
any platform or technology. Starting from the same refined
and platform-independent GUI model, it is now possible to
apply different sets of model-to-model transformation rules to
achieve platform-specific models for Java Swing, XUL or any
desired platform. Finally the platform-specific model is
transformed to source code by a model-to-text transformation.
Figure 4 depicts the whole approach exemplified for Java

M2M

M2M

M2C

public class ProvideParticipantInformation extends javax.swing.JFrame
implements Singelton {

private static final java.awt.Component[] components = {
ParticipantNameLabel.getInstance(),
ParticipantName.getInstance(),
MealIncludedLabel.getInstance(),
MealIncluded.getInstance()};

private static ProvideParticipantInformation inst;
public static ProvideParticipantInformation getInstance() {

if(inst == null) inst = new ProvideParticipantInformation();
return inst;

}

private ProvideParticipantInformation() throws HeadlessException {
// add components to content pane

 ...

GUI DesignerPlatform Independet Model
Class Diagram with GUIProfile

Java Swing ExpertPlatform Specific Model
Java Swing Class Diagramm

Platform Specific Code
Java Swing Classes

System AnalystPlatform Independet Model
Activity Diagram with GUIActivityProfile

javax.swing.JCheckBox
MealIncluded

«interface»
Singelton

javax.swing.JTextField
ParticipantName

javax.swing.JFrame
ProvideParticipantInformation

javax.swing.JLabel
ParticipantNameLabel

-text:java.lang.String

javax.swing.JLabel
MealIncludedLabel

-text:java.lang.String

+container

1

1
+component

1

1

+container

1
1

+component 1
1

labelFor

1 11 1

labelFor

1 11 1

1 +container
1

1

+component

+container 1+component

«ChoiceElement»
Meal Included

«OutputElement»
Participant Name

Label

outputType = Label
outputText = "Meal"

choiceType = CheckBoxList
choiceElement = ("Meal Included")
selectOne = false

«OutputElement»
Meal Included Label

inputType = TextField
regularExpression = .+

«InputElement»
Participant Name

outputType = Label
outputText = "Name"

«ContainerElement»
Provide Participant

Information

1 1

11

111

1

1

1
11

1 1

Booking Training Course

«UserAction»
Provide Participant

Information

«GUIInputPin»
Participant Name

«GUIInputPin»
Meal Included

guiType = Text

guiType = Selection

Fig. 4. Case study Booking Training Course

10-582086796 6

Swing [29] as the target platform. To achieve the same GUI in
XUL [16] source code we use the platform-independent GUI
model, implement the transformation rules and again execute
the transformation process. Finally we created two GUIs for
two different platforms derived from one extended activity
diagram. Although the initial effort to implement the needed
UML profiles and the sets of transformation rules is not
negligible the benefit of the initial complexity quickly pays off
while reusing the set of transformation rules.

V. CONCLUSION AND FUTURE WORK
In this paper we were able to demonstrate that a model-

driven development of graphical user interfaces is feasible and
applicable to common software development processes. The
focus of this work has, in particular, been on two UML
profiles enabling a tool-supported modeling of GUI-related
aspects and on a multi-level approach to transform these
aspects stepwise down to source code following a common
software development process. Using a case study we were
able to demonstrate that transformations to several target
platforms are possible.

The benefit of this work comes with an added value to the
modeling of graphical user interfaces. Following our approach
the modeling of GUIs does not only serve the purpose of
communication with the customer or for documentation
during a software development process; the developed models
are also used to generate source code. The usage of several
models with different levels of abstraction as suggested by
MDA has two major advantages. First it makes our approach
applicable to any common software development process and
second it gives consideration to the diversity of platforms and
devices available today. Whether the GUI has to be developed
for a handheld with a Java client or for a common computer
with a Web browser, both GUIs can be developed using the
same approach.

Our approach focuses on modeling one GUI to one user
interaction. Yet another aspect to be addressed comes with the
number of involved users in a business process. There are
business processes involving many different users. As a next
step we will pursue extending our approach of modeling user
interactions to involve two or more different roles.

Furthermore there are user interactions spanning over
several GUIs (like for example installation wizards) with
dependencies in-between the individual GUIs. So the
platform-independent modeling of navigational aspects
between GUIs is a next step we want to investigate. First
promising results which also already influenced our approach
can be found in [28].

REFERENCES
[1] P. Chowdhary, K. Bhaskaran, N. S. Caswell, H. Chang, T. Chao, S.-K.

Chen et al., “Model Driven Development for Business Performance
Management,” IBM Systems Journal, vol. 45, no. 3, 2006.
http://www.research.ibm.com/journal/sj/453/chowdhary.html

[2] G. Cernosek and E. Naiburg, “The Value of Modeling,” IBM
developerWorks, June 2004. http://www-
128.ibm.com/developerworks/rational/library/6007.html

[3] I. Sommerville, „Software processes“ in Software Engineering, 7th ed.
Harlow, UK: Pearson Education, 2004, pt. 1, ch. 4.

[4] A. Kleppe, J. Warmer and W. Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise, Amsterdam, Netherlands: Addison-
Wesley Longman, 2003.

[5] J. Mukerji and J. Miller, “MDA Guide Version 1.0.1,” OMG, 2003.
http://www.omg.org/cgi-bin/doc?omg/03-06-01.

[6] Unified Modeling Language (UML), Version 2.1.1: Superstructure,
OMG Standard, 2007. http://www.omg.org/cgi-bin/doc?formal/07-02-03

[7] J. Rumbaugh, I. Jacobson and G. Booch, “The Unified Modeling
Language Reference Manual,” 2nd Ed., Addison-Wesley, 2004.

[8] R. Petrasch and O. Meimberg, Model Driven Architecture – Eine
praxisorientierte Einführung in die MDA, Heidelberg, Germany: dpunkt,
2006.

[9] P. Kruchten, The Rational Unified Process, An Introduction, 2nd ed.,
Addison-Wesley, 2000.

[10] B. Hailpern and P. Tarr, “Model-driven development: The good, the bad,
and the ugly,” IBM Systems Journal, vol. 45, no. 3, 2006.
http://www.research.ibm.com/journal/sj/453/hailpern.html

[11] R. France and B. Rumpe, “Model-driven Development of Complex
Software: A Research Roadmap,” 2007 Future of Software Engineering,
pp. 37–54.

[12] S. Link, T. Schuster, P. Hoyer and S. Abeck, “Modellgetriebene
Entwicklung von Benutzerschnittstellen,” Jahrestagung der Gesellschaft
für Informatik, Bremen, Germany, 2007.

[13] Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT)
Specification, Final Adopted Specification, OMG Standard, 2005.
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01

[14] A. Arsanjani, “Service-oriented modeling and architecture,” IBM
developerWorks, 2004. http://www.ibm.com/developerworks/
library/ws-soa-design1/

[15] J. Bishop, “Multi-platform User Interface Construction – a Challenge for
Software Engineering-in-the-Small,” Proc. 28th Int. Conf. on Software
engineering, Shanghai, China, 2006.

[16] XML User Interface Language (XUL) 1.0, Mozilla.org Specification.
http://www.mozilla.org/projects/xul/

[17] Extensible Application Markup Language (XAML), Microsoft
Specification. http://msdn2.microsoft.com/en-us/library/ms747122.aspx

[18] J. Bishop and N. Horspool, “Developing principles of GUI programming
using views,” SIGCSE Bulletin, ACM Press, 2004

[19] F. J. Martinez-Ruiz, J. M. Arteaga, J. Vanderdonckt, J. M. Gonzalez-
Calleros, R. Mendoza, “A First Draft of a Model-driven Method for
Designing Graphical User Interfaces of Rich Internet Applications,”
Proc. 4th Latin American Web Congr., 2006, pp. 32–38.

[20] G. Calvary, J. Coutaz, L. Bouillon, M. Florins, Q. Limbourg, L. Marucci
et al., “The CAMELEON Reference Framework,” 2003.
http://giove.cnuce.cnr.it/cameleon/deliverable1_1.html

[21] P. Pinheiro da Silva, N. W. Paton, “User Interface Modelling with
UML,” Proc. 10th European-Japanese Conf. on Information Modelling
and Knowledge Bases, Saariselk, Finnland, 2000.

[22] P. Pinheiro da Silva, N. W. Paton, “Improving UML Support for User
Interface Design: A Metric Assessment of UMLi,” Proc. 2003 Int. Conf.
on Software Engineering.

[23] J. Almendros-Jimenez, L. Iribarne, “Describing use cases with activity
charts,” Proc. 2004 Metainformatics Symposium, pp. 141–159.

[24] J. Almendros-Jimenez, L. Iribarne, “Designing GUI components from
UML Use Cases,” Proc. 12th Int. Conf. and Workshop on the
Engineering of Computer Based Systems, 2005, pp. 210–217.

[25] A. Lorenz, “Anpassung von UML-Aktivitäten an den Prozess der
Webapplikationsentwicklung,” Proc. 36. Jahrestagung der Gesellschaft
für Informatik, Bremen, Germany, 2006, pp. 178–184.

[26] P. Forbrig, Objektorientierte Softwareentwicklung mit UML, Munich,
Germany: Hanser Fachbuchverlag, 2006.

[27] XML Schema 1.0, W3C Recommendation, 2002.
http://www.w3.org/XML/Schema

[28] N. Koch, “Transformation Techniques in the Model-Driven
Development Process of UWE,” Proc. 6th Int. Conf. on Web
Engineering, Palo Alto, USA, 2006.

[29] M. Loy, R. Eckstein, D. Wood, J. Elliott and B. Cole, Java Swing, 2nd
ed., O’Reilly, 2002.

[30] Borland Together 2006 Release 2. http://www.borland.com/us/products/
together/index.html

All web references were verified on September 5th, 2007.

