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Notations

General Conventions

Z,Z+ Set of integer/non-negative integer numbers
R,R+ Set of real/non-negative real numbers
x, x Scalar/vector
xk, xk Scalar/vector at time step tk
x1:k Time sequence of vectors {x1, x2 . . . , xk}
x,x Random variable/vector
x̂ Known value of random vector

xr, yr, zr Components of the vector r = [xr, yr, zr]
T

nx Dimension of the vector x
A Matrices are denoted by bold upper case letters
I Identity matrix
0 Zero matrix
P Sets are denoted by calligraphic upper case letters
PPP Random sets are denoted by bold calligraphic upper

case letters
Pk Set at time step tk
P1:k Time sequence of sets {P1,P2, . . . ,Pk}
NP Number of elements in the set P
W Functionals are denoted by mathematical double-struck

upper case letters
‖ · ‖ Norm in a vector space
∼ Distribution operator, e.g., x ∼ f(x) denotes that a random

vector x is distributed according to the probability density
function f

≈ Approximation operator, e.g., x ≈ y denotes that x is
approximated by y

�→ Functional mapping of vectors, e.g., x �→ y means that
the vector x maps to the vector y

→ Mapping of sets, e.g., P1 → P2 means that P1 maps to P2
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Function Symbols

A+ Pseudo-inverse of the matrix A

(A)
−1

Inverse of the matrix A
xT, AT Vector x/matrix A transpose
x̌, Ǎ, P̌ Vector x, matrix A, and set P enlarged by

additional elements
trace (A) Trace of the matrix A
divA Divergence of the matrix A
diag {x} Diagonal matrix with elements of the vector x on

main diagonal
A : B Frobenius inner product of matrices A and B
ẋ, ẍ First/second time derivative of the vector

function x
∂y
∂x Partial derivative of function y with respect to

the variable x
min f (x), max f (x) Minimum/maximum of the function f
argmin

x
f(x) Argument x that minimizes the function f

O Big-O in Landau notation, e.g., f (x) ∈ O (g (x))
means that the function f has the order of g (x)

Symbols for Probability Densities

f(x) General probability density of x
f(x, y) Joint probability density of x and y
f(x | y) Conditional probability density, e.g., conditioning the

random vector x on the vector y
fpk (xk) A priori density at time step tk
f ek (xk) A posteriori density after measurement update at

time step tk
fTk (xk | xk−1) Transition density at time step tk
fLk (ŷk | xk) Likelihood at time step tk

N
(
xk, μ

x
k
,Σx

k

)
Gaussian density of vector xk with mean vector μ

x
k

and covariance matrix Σx
k

δ (x) Dirac delta distribution
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Symbols for Continuous and Semi-Discrete Models

d Displacement field in vector form
c, m, r Vector of nodal values/model nodes/collocation points
E , ε Cauchy’s strain tensor in matrix/vector form
Σ , σ Stress tensor in matrix/vector form
fu
N
, fn

N
Vectors of uniform and non-uniform pressure forces

dh, εh, σh Approximated displacement, strain, and stress fields
ψ, ψ Shape function and vector of shape functions
Ω Bounded domain of model in mechanical equilibrium
Ωψ Bounded domain of model out of mechanical equilibrium

Ω , Ω
ψ

Closures of the domain Ω/Ωψ

∂Ω , ∂Ωψ Boundaries of the domain Ω/Ωψ

ΓN , ΓR Neumann/Robin boundaries
M, Š Set of model nodes mj/additional model nodes šj

C Material matrix
M, Mij Mass matrix and its individual entries
V, Vij Damping matrix and its individual entries
K, Kij Stiffness matrix and its individual entries
Φ, Φij Shape matrix and its individual entries
A,B System and input matrices of a time-continuous system

Symbols for Discrete Models

ak, hk System/measurement function of a discrete time system
zk System state at time step tk
ξ
k

Augmented state vector at time step tk
ûk, uk Known and unknown input vector
sk, ek Systematic errors of the system and measurement model
wz
k Noise of the random vector zk at time step tk

vk Measurement noise vector
θk Parameter vector
Ak,Bk System and input matrices of a discrete time system
Hk Measurement matrix of a discrete time system
xlk, x

n
k Linear/nonlinear sub-vector of the augmented state vector ξ

k
spk, s

e
k A priori/a posteriori estimate of the vector sk at time step tk
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Symbols for Image Processing

lik, Vector denoting position of ith landmark at
time step tk

sik Positions of ith surface point at time step tk
f j,i
k

Positions of ith image feature on the image of

jth camera
pj,i
k

Position of ith pixel on the image of jth camera

ŷj,i
k

Measurement of ith point provided by jth camera
∗
lik Triangulated position of the landmark li
∗
f j,i
k

Approximated position of the image feature f j,i
k
defined

by an intersection of epipolar lines
ϕl, ϕf Function that maps a vector in R3/R2 from Cartesian

into homogeneous coordinate system

φl, φf Functions that map a vector in R3/R2 from
homogeneous into Cartesian coordinate system

Ik Color function

T jk Transformation function of jth camera
IE , IT , IC Indicator functions of epipolar, triangulation, and

consistency criteria
CP Function defining the physics-based criterion
Dk Assignment matrix at time step tk
Pj Projection matrix of jth camera
Rj Matrix of extrinsic parameters of jth camera
Kj Matrix of intrinsic parameters of jth camera
tj Translation vector of jth camera
Fij Fundamental matrix of transformation from jth image

to ith image

Pjk, Rj
k Sequences of pixels in the original/stabilized image

of jth camera

Fj
k , Yjk Sequences of image features/measurements on the image

of jth camera
Lk, Sk Sequences of landmarks/surface points

Pj1:k, Rj
1:k Time sequences of sets denoting original/stabilized images

of jth camera

P1:k, R1:k Unions of the sequences Pj1:k/Rj
1:k of all cameras

at
j

k , a
sj,i

k Average transformation/stabilization errors
ack Average motion compensation error
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Constants and Units

ρ in kg/m3 Material density
E in N/m2 Modulus of elasticity
ν - Poisson ratio
λ - First Lamé constant
μ in N/m2 Second Lamé constant
β in N/m Stiffness of material on the Robin boundary
γ in s Rayleigh coefficient of damping proportio-

nal to the material stiffness
κ in s−1 Rayleigh coefficient of damping

proportional to the mass
γE in pixel Gating parameter of epipolar criterion
γP in units of standard Gating parameter of physics-based criterion

deviation
k in pixel Gating parameter for system refinement

Glossary

SPDE Stochastic partial differential equations
SODE Stochastic ordinary differential equations
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Zusammenfassung

Die Bewegungskompensation elastisch deformierbarer Objekte ist in vie-
len industriellen und medizinischen Anwendungen von hoher Relevanz.
Das betrifft beispielsweise die robotergestützten chirurgischen Eingriffe bei
einer Operation am schlagenden Herz. Hier wird die Herzoberfläche mit
einem Multikamerasystem verfolgt, um den Roboter mit der Herzbewe-
gung zu synchronisieren. Gleichzeitig wird eine visuelle Bewegungskom-
pensation für den Chirurgen durchgeführt, bei der die zeitlich und räumlich
veränderliche Herzoberfläche für ihn als stillstehend dargestellt wird.

Im Gegensatz zu den gängigen Methoden, welche die Bewegung elastis-
cher Objekte nur an ausgewählten Punkten kompensieren, liegt der Fokus
dieser Arbeit in der Betrachtung der Deformation des gesamten Objekts.
Aufgrund verrauschter Messdaten und ständiger Änderung des Bildinhalts
stellt allein schon die Bewegungskompensation an den Messpunkten eine
Herausforderung dar. Hinzu kommt, dass auch die Bewegung zwischen
den Messpunkten kompensiert werden muss. Die Problematik verschärft
sich, wenn das Objekt für einen langen Zeitraum verdeckt ist, so dass keine
Messinformation über seine Verformung verfügbar ist.

Die zwei zentralen Beiträge dieser Arbeit sind das prädiktive Trackingver-
fahren und eine neue Methode für die visuelle Bewegungskompensation.
Im Kontrast zu nicht modellbasierten Verfahren, die beispielsweise auf
der reinen Interpolation zwischen Messpunkten beruhen, wird hier ein
physikalisches Modell der Herzwand eingeführt, das die physikalischen
Eigenschaften des realen Objekts in das Tracking und die Bewegungskom-
pensation einbezieht. Dieses Modell dient als Grundlage für die mathe-
matischen Modelle beider Verfahren. Ein wichtiger Aspekt der Model-
lierung ist die Balance zwischen Einfachheit und Genauigkeit. Zu diesem
Zweck werden die vereinfachten Modelle mit einer detaillierten Beschrei-
bung ihrer stochastischen und systematischen Fehler kombiniert. Ihre hohe
Genauigkeit wird vor allem durch eine adaptive Anpassung bestimmt. Dies
ermöglicht, die Raumdiskretisierung und die physikalischen Eigenschaften
der Modelle nur da zu detaillieren, wo es notwendig ist.



XIV Zusammenfassung

Um eine hinreichend gute Näherung der Herzbewegung zu erreichen, wird
die Herzwand mit einem linear viskoelastisch deformierbaren Volumenkör-
per modelliert, der die Bewegung auch im Inneren der Herzwand abbildet.
Mathematisch wird das Modell durch ein System stochastischer partieller
Differentialgleichungen mit unsicheren Eingangsdaten, sowie unsicheren
Anfangs- und Randbedingungen beschrieben. Zur Schätzung der Herzbe-
wegung muss dieses System in ein entsprechendes Zustandsmodell kon-
vertiert werden. Da es nicht analytisch lösbar ist, wird dazu die Linien-
methode verwendet, die das System zuerst im Raum und anschließend in
der Zeit diskretisiert. Für die Raumdiskretisierung wird die elementfreie
Methode benutzt, die die Kollokationsmethode mit dem Petrov-Galerkin-
Verfahren vereint. Diese Methode zeichnet sich durch eine punktbasierte
Diskretisierung des Modells aus, wobei keine vorab definierte Verbindung
zwischen den Diskretisierungspunkten notwendig ist. Im Vergleich zu
klassischen gitterbasierten Methoden, wie beispielsweise die Methode der
finiten Elemente, die das Modell mit Elementen diskretisiert, ist die ele-
mentfreie Methode effizienter und flexibler. Dies kommt besonders zum
Tragen bei der Verfeinerung der Raumdiskretisierung, da zusätzliche Dis-
kretisierungspunkte leicht eingefügt oder entfernt werden können.

Das prädiktive Trackingverfahren bestimmt die wahrscheinlichen Positio-
nen der Messpunkte auf physikalisch korrekte Weise. Da die physikalischen
Eigenschaften der Herzwand unbekannt sind, wird zu diesem Zweck eine
simultane Zustands- und Parameterschätzung durchgeführt. Als Folge der
Verfeinerung der Modelle verändern sich die Dimensionen des Zustands
und des Zustandsmodells. Zur Extraktion der Messinformation werden
die wahrscheinlichen Positionen der Messpunkte einbezogen. Dies erlaubt
die Messausreißer herauszufiltern. Zudem kann die dreidimensionale Be-
wegung des elastischen Objekts im Gegensatz zu nicht modellbasierten
Trackingverfahren über längere Zeit auch bei vollständigem Verlust der
Messinformation verfolgt werden.

Die visuelle Bewegungskompensation erstellt für die Bildsequenzen des
Kamerasystems dazugehörige bewegungskompensierte Bildsequenzen. Die
Bildtransformation wird mittels einer physikalisch-basierten Transforma-
tionsfunktion durchgeführt. Hergeleitet durch die Projektion der geschätz-
ten Position des elastischen Objekts in die Kamerabilder, stellt diese Funk-
tion die Korrespondenzen zwischen den Pixeln der Kamerabilder über die
Zeit auf. Infolgedessen lassen sich die Bildänderungen durch Farbtransfer
zwischen den zugeordneten Pixeln ausgleichen. Darüber hinaus ermöglicht



Zusammenfassung XV

die Rückkopplung der Kompensationsfehler die Qualität aller Modelle und
somit des Trackings und der Bewegungskompensation kontinuierlich zu
verbessern.

In Bezug auf die Anwendung für robotergestützte chirurgische Operationen
am schlagenden Herz werden die Verfahren durch zahlreiche Experimente
an einem künstlichen schlagenden Herz umfassend validiert. Der Fehler
der Bewegungskompensation reduziert sich um 57% im Vergleich zur deter-
ministischen und rein geometrischen Bildtransformation. Die vorgestellten
Methoden gehen jedoch über diese Anwendung hinaus und können auch
in anderen Bereichen, beispielsweise bei der robotergestützten Montage
elastischer Objekte oder in der Videoverarbeitung, eingesetzt werden.
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Abstract

Motion compensation of elastically deformable objects is of high impor-
tance for many industrial and medical applications. For example, it con-
cerns the computer-assisted surgery system for operations on a beating
heart, during which it is observed by a multi-camera system in order to
enable the synchronization of the surgical robot with the heart surface.
The spatially and temporally varying beating heart is represented to the
surgeon as being motionless by means of visual motion compensation.

In contrast to standard methods that compensate the motion of elastic
objects only at selected points, the focus of this work is in considering the
deformation of the entire object. Motion compensation on measurement
points alone is already challenging because of the continuous motion of
the heart and noisy measurements. Compensating the motion between
the measurement points further complicates the problem. This issue is
aggravated when the object is hidden by obstacles over a long time horizon,
during which no measurement information about its motion is available.

The two main contributions of this work are a predictive tracking ap-
proach and a novel method for visual motion compensation. In contrast
to non-model-based methods exploiting, for example, a pure interpolation
between the measurement points, a novel physical model of the heart wall
builds the core of the proposed approaches. This enables the incorpora-
tion of the physical properties of this object into the motion tracking and
compensation system. All mathematical models used by this system are
derived from the physical model. An important aspect of modeling is the
balance between its complexity and its accuracy. For this purpose, simpli-
fied models are combined with the detailed description of their stochastic
and systematic errors. An adaptive refinement of the spatial discretiza-
tion and the physical properties allows to add details where necessary, thus
efficiently yielding a high accuracy of the models.

The heart wall is modeled as a linear deformable object with viscoelastic
properties, in order to achieve a good approximation of the heart behav-
ior. Due to its volumetric nature, it is able to reproduce the motion also
in the interior of the heart wall. Mathematically formulated by a system
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of stochastic partial differential equations with an uncertain input and un-
certain initial and boundary conditions, this system should be converted
into an appropriate state-space model for the task of estimating the heart
motion. Not analytically solvable, this system is discretized according
to method of lines, first in space and then in time. For spatial discretiza-
tion, the element-free method, specially the meshless local Petrov-Galerkin
mixed collocation method, is applied. This method is characterized by a
point-based discretization of the spatial domain, where no predefined con-
nection between the discretization points is needed. It is more efficient and
flexible than classical grid-based methods, such as finite element method
that discretizes the spatial domain by elements. In addition, the refine-
ment of the spatial discretization is particularly advantageous thanks to
ease in adding or removing of discretization points.

The predictive tracking approach estimates the most probable positions of
measurement points. As the physical properties of the heart are unknown,
the simultaneous state and parameter estimation is employed for this task.
As a result of the models refinement, the dimensions of the state and of
the state-space model are continuously changing. The predicted positions
of the measurement points determined in a physically correct way are
involved for extracting measurement information. This enables filtering
out measurement outliers. Furthermore, the three-dimensional motion of
the object under observation can be tracked over a long time horizon even
for total loss of measurement information, which is in contrast to non-
model-based tracking methods.

The visual motion compensation transforms the image sequences provided
by a camera system into stabilized image sequences. This transformation
is based upon a physics-based transformation function. Derived by pro-
jecting the estimated position of the object onto the camera images, this
function establishes the correspondences between the pixels of the cam-
era images over time. Then, the changes in the images are compensated
by color transfer between the corresponding pixels. Ultimately, the error
feedback enables the continuous improvement of the quality of all models
and therefore, of the tracking and visual motion compensation.

With respect to application in a computer-assisted surgery system, the
approaches are evaluated by various experiments on the artificial beating
heart. As a result, the error of the motion compensation is decreased by
57% compared to the deterministic and pure geometric image transfor-
mation. The methods developed here are not limited to the considered
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application and can also be employed in other areas, such as, for example,
the robot-based assembly of elastic objects or video processing.





1

1 Introduction

Motion compensation of elastically deformable objects is highly relevant
to a wide range of applications. For instance, it is essential in industrial
tasks associated with control of flexible manipulators [208, 211, 233], au-
tomated handling or assembly of elastic objects, such as an insertion of
a flexible wire into a hole [149] and utilization in presence of non-rigid
motion [111,228]. With respect to medical applications, e.g., in radiother-
apy [172] and beating heart surgery [150], the motion compensation is of
particular importance for computer-assisted systems that encompass tasks
of synchronization of surgical instruments with the moving tissues [229],
virtual representation of the continuously deforming organs as being mo-
tionless, and image-guided navigation [97, 213]. When applied to video
processing, the motion compensation handles image frames for video com-
pression and stabilization [112], registration of dynamic textures [85,227],
facial animation [22], and tracking of the objects [129].

Within these applications, the objective of the motion compensation is
twofold. On one side, it predicts how the moving object, such as a vibrating
flexible manipulator, wire, or beating heart, should be deformed to remain
motionless, and with respect to video processing, how the images of the
moving scene should be modified to stay stationary. On the other side, it
uses the predicted deformation of the moving object for synchronization.
For example, this is the case in beating heart surgery, where the surgical
instruments move synchronously with the beating heart so that the relative
motion between them and the heart is compensated.

Since the motion compensation is only as accurate as the motion estimates,
accurate methods for tracking and reconstruction of elastically deformable
objects are necessary. Besides solving the problem of extracting the de-
sired information from unreliable and noise-contaminated measurements,
these methods should estimate the motion of the entire object, even be-
tween sparse spatially distributed measurement points. In this context,
with an increasing number of measurement points the accuracy of the es-
timation can be significantly improved. Unfortunately, this is accompanied
by a rising computational complexity and is limited by the performance
of the measurement systems. Furthermore, the problem is exacerbated
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when measurements fail, e.g., as a result of occlusion of the elastic object
observed by the camera.

Ultimately, if the measurement uncertainties are high and a complete loss
of measurement information may occur over a long-time horizon, the un-
derlying physical information should be incorporated in the reconstruction
of the object’s motion. In this case, the methods – whether without ex-
plicit models or involving geometric or statistical models – bear inherent
drawbacks such as sensitivity to measurement outliers or physically incor-
rect motion reconstruction resulting from not taking this information into
consideration.

To meet these challenges within the scope of this thesis, the central focus is
concentrated upon the physics-based motion compensation, which is based
on the physical model operating directly in the physical space.

1.1 Application

The methods for motion compensation proposed in this thesis are mainly
intended to be applied in a computer-assisted beating heart surgery system
first proposed in [150]. Nevertheless, it is worth mentioning that they are
not limited to this system and are expected to apply also to the other
afore-mentioned industrial and medical applications as well as to video
processing.

Beating Heart Surgery In comparison to traditional surgery, using a
heart-lung machine for temporal stopping of the heart, the beating heart
surgery offers many advantages for the patients, including lower mortality
rate in hospitalization, significantly less pronounced inflammatory reac-
tions and shorter postoperative treatment [52]. Furthermore, the patient
clearly loses less blood during the operation and the need for blood trans-
fusion and anti-fibrillation is extremely reduced [48]. Moreover, the side
effects or post-operative complications, in particular, atrial fibrillation,
kidney failure, severe gastrointestinal complications, or neurocognitive dys-
function, occur rarely. As a result, the hospital benefits from significantly
lower costs on surgical equipment and post-operative treatment. However,
the operation on the beating heart is complicated for a surgeon, technically
challenging, and time consuming.

The reason is that without immobilization, the local myocardial stabiliza-
tion by current vacuum-assisted stabilizers cannot completely eliminate
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the heart motion [180]. According to the medical study [95], they may
reduce the motion amplitude by only about 50 %. Since the remaining
complex motion of the beating heart exceeds the human tracking band-
width of about 1 Hz, the manual synchronization of surgical instruments
with the heart motion is very challenging for a surgeon [66]. Furtheremore,
the high accuracy is necessary for ensuring safe surgical interventions. As
reported in [66], similarly to the surgical operations on a rested heart,
the tracking precision must achieve from 0.1 mm up to 0.2 mm depending
on the diameter of coronary arteries ranging from smaller than 1 mm up
to 2 mm. Moreover, the performance of the beating heart operation is
additionally impeded by a tremendous amount of hand-eye coordination
accompanied by short reaction time to rapid changes in heart behavior,
e.g., by extrasystoles.

Introduced in beating heart operations, the computer-assisted surgery
system aims at enabling surgeons to overcome these limitations. It al-
lows for an increase tracking accuracy, improve dexterity, and hand-eye
coordination.

Computer-Assisted Surgery System This system, which implements the
task of the beating heart motion compensation, is of particular importance
for beating heart surgery. As schematically illustrated in Fig. 1.1, it ad-
dresses the problem of synchronizing surgical instruments with the beating
heart so that the relative motion between the instruments and the heart
is minimized. For this purpose, the heart is observed by cameras installed
above an operation table for open thorax surgery [19, 178] or integrated
in an endoscope for minimally invasive surgery [150, 181, 197]. Addition-
ally or even alternatively, the measurement information can be provided
by medical imaging modalities, e.g., ultrasound [84, 229, 230], electrocar-
diogram [23, 160], a respiration pressure signal [159, 160], or other sensor
systems like acceleration sensors [82,144], sonomicrometry [23,45,46], force
sensors [29,40,230], or whisker sensors [24]. By utilizing the estimated po-
sition of the heart, a robot synchronizes surgical instruments with the
heart. At the same time, it moves the surgical instruments to the position
predetermined by a surgeon.

Another important aspect of this system is that the surgeon gets an impres-
sion of operating on a non-beating heart and can therefore precisely define
surgical interventions. The surgeon navigates the robot for performing
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Manipulation Synchronization

Visual motion
compensation

Navigation

Presentation of
stabilized view

Beating heartStabilized view

Figure 1.1: A computer-assisted surgery system assists a surgeon at ope-
rations on a beating heart by synchronizing the surgical instruments with
the heart surface motion. The beating heart is represented to the surgeon as
virtually stabilized for precise definition of the surgical interventions (source
of upper images: http://www.intuitivesurgical.com/).

surgical manipulations, such as cutting or burning of heart tissues, based
on a virtually stabilized view provided by a visual motion compensation.

Taken as a whole, the beating heart surgery system is utterly dependent
on the heart motion tracking and reconstruction quality. Significant for
synchronization of surgical instruments, robotic navigation, and manipu-
lation, as well as visual motion compensation, motion tracking is one of
the essential components of the surgery system.

1.2 Problems under Consideration

The main challenges for this work are:

• Prediction and tracking of the three-dimensional position of the en-
tire elastically deformable object.
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• Visual motion compensation by stabilizing a view of the object,
wherein the goal is to represent this object as non-moving.

Both problems cover four important aspects associated with recon-
structing the three-dimensional motion of the spatially and temporally
varying elastic object from noisy space- and time-discrete measurement
data.

1) Noisy measurements The elastically deformable object such as, e.g.,
the beating heart, is supposed to be observed by a stationary camera sys-
tem. Commonly, the acquired measurement information is not reliable
enough with regard to the specification of the exact position of the ob-
ject under observation even on measurement points. The reason for this
is the fact that the measurements extracted from camera images are con-
taminated by noise caused by the inaccuracies of the image formation and
processing.

2) Reconstruction of entire object The measurement information about
the object’s deformation is limited to some discrete points at the object’s
surface. The reason for this lies in the fact that the camera images are
represented by a discrete set of pixels with assigned colors. Therefore, the
second aspect throws up the challenge of reconstructing the motion of the
entire object, i.e., also between measurements points. It should be pointed
out that the motion of the object can significantly differ from one point to
the other because of elastic deformation.

3) Loss of measurements The accuracy of the motion compensation
strongly depends on the amount of measurement points. Unfortunately,
most practical applications that use cameras suffer from loss of measure-
ments due to the sensitivity of a camera to illuminations, dust, dirt, and
occlusions. For instance, a beating heart operation is unimaginable with-
out concealing any part of the heart, e.g., by surgical instruments or es-
caping blood in the field of camera view. All of the foregoing can lead to
the partial and even total loss of measurements over a long time horizon.

4) Unknown physical properties of object Finally, the problem of track-
ing and motion compensation is exacerbated by unknown physical prop-
erties of the object under observation, such as elasticity or density. These
properties are of particular importance when no measurement information
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is available and therefore, only a priori knowledge can be used for esti-
mating and predicting the position of this object. Moreover, the object’s
behavior due to changing environmental conditions like external excitation
is also unknown.

1.3 State of the Art

This section provides a survey of methods relating to the motion compen-
sation of elastically deformable objects. Since the motion compensation is
as accurate as the reconstruction of the entire object’s motion, the meth-
ods for tracking and visual motion compensation are classified according
to two aspects that contribute to the accuracy of the motion reconstruc-
tion. The first aspect concerns the models embedded in the processing
scheme. The second aspect relates to the types of uncertainties considered
by motion reconstruction.

1.3.1 Model- and Non-Model-Based Methods

According to embedded models, the method for tracking and visual motion
compensation are primarily divided into two groups: model-based and non-
model-based. The aim of this section is to give an overview of the models
on which these methods are based. In contrast to recent surveys [83,132],
the analysis of the existing models is mainly focused on the beating heart
surgery application, while providing an insight in the methods applied in
other fields where necessary.

Non-Model-Based Methods

The non-model-based methods process measurement data without explicit
models of the object under consideration and measurement process, and
therefore incorporate little or even no a priori information in the motion
reconstruction.

On the one hand, these methods are very sensitive to the measurement
noise and outliers since they reconstruct the object’s motion based only on
the measurement information. Furthermore, they fail in case of complete
loss of measurement information. On the other hand, without consider-
ing a priori information, the non-model-based methods are independent
from the object under observation and therefore are of low computational
complexity, as illustrated in Fig. 1.2.
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No explicit models
• Template matching [156]
• Transformation [198]

Statistical models
• Takens’ theorem [160]
• Autoregressive model [232]

Geometric models
• Linear interpolation [78]
• Warping [73]

Physical models
• Membrane model [19]
• Thin plate model [241]

Complexity
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Figure 1.2: Overview of possible methods for motion compensation ac-
cording to the models used for processing measurement data. The incorpo-
ration of a priori information in processing of measurement data increases
the accuracy of the motion compensation but simultaneously leads to higher
computational complexity.

Generally, the non-model-based tracking methods are widespread. For the
purpose of providing some examples, the tracking methods based on find-
ing similarities between patterns in consequent image frames [92, 100] or
optical flow [204] refer to this group. In the context of the motion tracking
for beating heart operations, the methods proposed in [23,156,170,181,197]
can be assigned to this category. For instance, in [181], the motion of the
heart is reconstructed on some points using pattern-based tracking, which
involves an efficient second order method proposed by [28]. The idea of
this method is to determine the homography, which minimizes the sum of
square differences between the reference and current patterns. In [156],
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the template matching and texture analysis build a basis of the compos-
ite tracking algorithm. Moreover, the proximity and similarity measures
introduced in [164] and image warping based on the Lucas-Kanade regis-
tration algorithm [133] extended for incorporating stereo constraints are
used in [197] for reconstructing the motion of the heart surface from image
sequences provided by a stereoscopic laparoscope.

The non-model-based methods for visual motion compensation are pri-
marily hardware-specific. For example, in [71] an electrocardiogram trig-
gered strobe light is applied for the purpose of making the heart appear still
to a surgeon. Instead of improving the quality of the beating heart opera-
tion, the authors report increasing demands on a surgeon’s concentration
and fatigue due to deliberate tampering of the image sequence. Accord-
ing to [150], the stabilized view is created by synchronizing the camera
with the heart surface motion. Another kind of camera synchronization is
proposed in [198], wherein the current camera image is transformed in a
stabilized image by changing the extrinsic camera parameters. It should
be noted that all these methods expect that a very small and smooth area
of the heart surface is observed. They compensate only the global motion
of the heart surface, whereas local motion distortions, which are defined by
a difference in the motion of the neighboring points, cannot be eliminated.

Model-Based Methods

The model-based methods distinguish themselves by exploiting different
models for processing the measurement data. In contrast to non-model-
based methods, the model-based methods enable a priori information to
be involved into the problem of extracting the desired information from
noisy measurements. Furthermore, they allow for bridging the loss of
measurements by means of reconstructing the object’s behavior based on
a priori information. This certainly is beneficial for increasing accuracy
and robustness of the motion compensation.

The essential problem of model-based methods lies here in the depen-
dence of the computational complexity of these methods upon the relia-
bility of the models used. For example, a high accuracy of the methods
for tracking and visual motion compensation is accompanied by a high
burden of computational complexity, as illustrated in Fig. 1.2. Contin-
uing this line of thought, a highly accurate motion reconstruction can
be achieved by physics-based methods incorporating a high amount of a
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priori information about the physics of the object under observation. Un-
fortunately, these methods governed by partial differential equations are
most computationally expensive, hindering their application in real-time
systems.

With the intention to give an overview of existing model-based methods,
the methods for tracking and visual motion compensation are classified
according to the models used.

Statistical Models The methods that are based on statistics for ana-
lyzing time series data [42], i.e., Fourier series, or autoregressive models,
refer to the statistical category. By considering only limited physical in-
formation characterizing the system response, e.g., resonance frequency in
Fourier series models, these methods can lead to incorrect motion predic-
tion and reconstruction, especially in case of strong measurement artifacts
or rapidly changing behavior of the object.

When tracking methods for beating heart surgery are considered, the
method proposed in [160] is associated with this group. Here, in case of
occlusions, the beating heart motion is reconstructed using the correlation
with the measurements lying in the past and Takens’ theorem. Further-
more, in [231], a Fourier series model is used for reconstructing the motion
of the mitral valve by processing ultrasound measurements. In further
publication of this author [232], an autoregressive model is proposed.

Commonly, the methods using time series models consider only some
points on the surface of the object under consideration. In particular, the
spatial dependencies, such as motion between these points, are ignored.
Hence, reconstructing the motion of the entire object will overwhelm the
model dimensions as every point of the object must be included in the
model. Perhaps, this is the main reason that these models are not applied
for visual motion compensation.

Geometric Models The methods that incorporate models of an object ge-
ometry, such as approximation of the object surface by B-splines or radial
basic functions [235], geometric warping [73], or morphing [226], refer to
the geometric category. In this context, the spatial dependencies between
the object points are incorporated in the motion reconstruction and deter-
mine the predicted behavior of the object. However, the approximation of
complex object’s behavior may be incorrect, as no physical properties of
the object are incorporated.
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However, geometric models are widely used for tracking of elastic ob-
jects [21, 114, 161, 175] because of their simplicity and computational effi-
ciency. In case of high camera frame rate and reliable measurement infor-
mation, they may provide satisfactory results. Further advantage of these
models is a small number of parameters needed to describe an object. For
example, in [21] a parametric deformable model is proposed for tracking of
the deformation of the left ventricle in a single-photon emission computed
tomography. This model is represented by a free-form shape that is build
upon a superquadric fit. In order to track some points on myocardium
in magnetic resonance imaging, [161] exploits parameterized volumetric
primitives, which deformation is defined by few locally varying parameter
functions. In [49], the left ventricle is modeled as a tapered ellipsoid with
parameters determined by an optimization schema that fits the ellipsoid’s
shape to available data. The tracking method proposed in [175] aims an
application in beating heart surgery system. Here, the heart surface mo-
tion is determined by constructing the minimization problem involving
thin plate spline functions. In [114], the authors reconstruct the heart
surface by optimizing a parametric B-spline function.

As for visual motion compensation, the image of the beating heart is
stabilized in [78] by a linear interpolation. This method is based on the
transformation of the images acquired at different time steps to the cho-
sen reference image by exploiting a triangulation of the object geometry.
Unfortunately, this method requires a fine discretization of the object ge-
ometry for achieving a high quality of the stabilization. Furthermore, the
stabilization may become rough [73]. Another example of geometric meth-
ods are region-based deformable appearance models presented in [186].
They incorporate a combined parametrization provided by modal anal-
ysis and principal component analysis. Although the modal analysis is
originally physics-based, their non-physical parametrization destroys the
physical meaning. A further classical example of visual motion compen-
sation consists of exploiting geometric primitives, e.g., ellipsoids, as pro-
posed in [5], where the stabilized image sequence is created for frontal face
recognition.

Physical Models In contrast to the above-mentioned methods, the physics-
based methods for motion compensation incorporate physical models that
operate directly in the physical space. These methods involve not only
geometrical but also physical a priori information, which is defined by the
material structure of the object under consideration. When the embedded
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physical model is appropriate, the physics-based methods provide a physi-
cally correct and therefore, in comparison to other methods, more accurate
reconstruction of the object’s motion by processing the noisy measurement
data. The major problem of the physics-based methods lies particularly
in the fact that these methods are most complex and demand much com-
putational power. The main reason for this is that highly detailed models
of complex geometry and material structure are required for accurate ap-
proximation of the complex behavior of the real object. There are different
types of physical models that can be found in the related work.

Mass-Spring-Damper Models To the best of our knowledge, a mass-
spring-damper modeling technique is introduced in [165] for a facial ani-
mation and is first applied for surgical simulations in [56]. In the latter
work, a simple surface mass-spring model for simulating deformations of a
gall bladder is proposed. The key idea is to represent the object by a set
of mass points connected by springs and dampers. The motion of every
mass point is defined by an equilibrium of the inertial force determined by
Newton’s second law and forces acting on each point from the springs and
dampers.

One of the difficulties of the mass-spring-damper models is to identify
the stiffness of various springs reflecting the physical properties of the ob-
ject under observation. With respect to this problem, it is evident in [70]
that the modeling of homogeneous materials is generally not possible. The
other problem is the large number of model parameters needed for realistic
representation of material behavior. The reason for this is a large number
of springs, which usually connect each mass point not only with neighbor-
ing points but also with many other mass points. These connections are
necessary for the efficient transfer of forces. Furthermore, the modeling
of incompressibility or transverse contraction is problematic without addi-
tional penalty forces [81]. However, in spite of poor precision and stability
problems [34], these models are favorable in computer graphics and sur-
gical simulations because of their simplicity, ease of implementation, and
reasonable execution time.

Particle Models The concept of particle models, pioneered by [145] for
handling problems in compressible gas flow, is more general than that of
mass-spring-damper models. These models preserve an idea of discretiz-
ing an elastic object by a set of mass points. However, these points are
called particles because they possess individual material properties, such
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as, for example, density or stiffness. The propagation of particles through
space and time is defined by partial differential equations, derived from the
physical principles underlying the motion of the object under observation.
It should be noted that in contrast to mass-spring-damper models, the
interactions between the particles are not restricted to damping and stiff-
ness forces but can be defined by arbitrarily shaped forces. The advantage
is that these models do not use a fixed topology as mass-spring-damper
models do. This is why they are commonly applied for modeling physical
phenomena without a fixed neighborhood, such as water or fire [3,54]. Fur-
thermore, since the connectivity between the nodes is computed at every
time step and therefore, can easily be changed with time, these models are
especially suitable for handling large deformations of objects [60, 124].

However, with respect to modeling of elastically deformable objects, one of
the important disadvantages of such models is the difficulty to represent a
smooth surface with particles. This is due to the fact that particle models
do not handle the surface itself, and thus demand a robust computation
of its curvature that can be cumbersome [54]. This is also the reason that
handling of boundary conditions is recognized as a difficult task has been
tackled by ghost particle method [128], distance functions [79], and direct
forcing method [26].

Continuum Models In contrast to particle models, these models are
based on solid mathematical and physical foundation, e.g., introduced
in [33]. By representing an object as a continuum, they describe its de-
formation at every point of space at every time. This implies that the
changes of the object are assumed to be continuous, so that there are no
changes in the small neighborhood of a point in the undeformed and de-
formed state [11]. The motion of the continuum is governed by partial
differential equations constructed based on physical principles, such as the
principle of energy conservation or the principle of virtual work.

The drawback of these methods is their high computational cost leading
to trade off accuracy for real-time functionality. Often, the partial differ-
ential equations are not analytically solvable. Therefore, computationally
expensive numerical methods are needed for approximating their solution,
e.g., finite element method or finite difference method. Moreover, solv-
ing these equations numerically leads to handling of high-dimensional and
often nonlinear systems.
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However, the continuum models are well-established in different applica-
tions, e.g., in computer graphics modeling [96,193,209], facial image anal-
ysis [119,210], medical imaging [58,139,140], or preoperative planning and
diagnostics [188]. Commonly, in these fields, real-time functionality is not
the most important aspect and approximation of the object’s behavior in
a most realistic manner stands in the foreground. For example, the heart
behavior is described in [188] by a highly detailed finite element model
with complex geometry and material characteristics.

Survey of Physics-Based Methods for Motion Compensation Unfortu-
nately, due to stringent requirements for real-time functionality, the ap-
plication of physical models for a beating heart robotic surgery system is
hardly possible.

With the intent to meet these requirements, some tracking methods were
proposed. For example, the more efficient but less accurate finite ele-
ment model is introduced in [177] for tracking of the landmarks on the
heart surface. However, although material characteristics of the heart are
strongly simplified, this model suffers from an unnecessarily complicated
description of the heart geometry. Even stronger assumptions are intro-
duced in [19] in order to enable real-time motion tracking. This method
approximates the heart surface with a membrane model, which is utilized
by a Kalman filter estimation. It should be noted that the motion of
the landmarks is reconstructed here in only one direction. Furthermore,
the initial configuration of the model is assumed to be known and very
simple constant boundary conditions of Dirichlet type are defined. An-
other physics-based method for tracking the heart motion is proposed in
our paper [241], wherein the heart wall is modeled as a thin plate. Here,
it is assumed that the out-of-plane deflections of the heart surface are
small and that the thickness of the heart wall remains constant during
the heart deformation. This allows drastically decreased computational
complexity by reducing the three-dimensional model of the heart wall to
a two-dimensional one.

However, all these methods share the same limitation: The physical mod-
els are restricted to objects with known and constant physical parame-
ters. Without adjusting the model parameters to changing behavior of
the objects under observation, these methods cannot compensate for the
differences between the individual objects. Another disadvantage is that
the most of them apply a predefined mesh, e.g., finite elements in [19,177],
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for discretizing the physical model. On one hand, this can lead to high
numerical errors if the mesh is too coarse for reconstructing the large de-
formations of the object. On the other hand, models can be uselessly
complex if the mesh is unnecessarily fine.

In respect to the methods for visual motion compensation, it should
be noted that early attempts at introducing the physics-based deformable
models for processing of image sequences are made in [162] with the aim of
animating realistic facial expressions from images. Furthermore, in [210],
deformable contour models, also called snakes [105], are combined with the
three-dimensional physical model for estimating the face muscle contrac-
tions from the image sequence. Although the physical models are further
explored for facial animations [64,120,234] and have been already proposed
for video coding [86], they are still rare in image processing due to their
enormous computational complexity caused by the demand for a realistic
representation of the physical objects with complex dynamics. Accord-
ingly, to the best of our knowledge, there are no physics-based methods
for visual motion compensation.

1.3.2 Deterministic and Probabilistic Methods

One of the reasons for the deterioration in accuracy of the motion com-
pensation is that the measurements are corrupted by disturbances. As
illustrated in the previous section, the models involving a priori knowl-
edge may be utilized for precisely extracting the desired information from
measurement data, which are susceptible to errors. Unfortunately, these
models are only inaccurate representations of the real objects and also in-
troduce errors in the motion compensation. Before reviewing the existing
methods according to their handling of uncertainties, this section classifies
the uncertainties.

Types of Uncertainties Generally, there are two different types of uncer-
tainties: stochastic and systematic. The stochastic uncertainties character-
ize random errors. These errors can be described statistically and reduced
by averaging the repetitive measurements. For example, the stochastic un-
certainties of the camera measurements stem from instrumental random
errors, such as electronic noise, flickering, imprecisions of feature extraction
or shape distortion [51]. In the motion models used for measurement data
processing, these uncertainties can be inherited from input noise, as well as
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from uncertainties of parameters. In contrast to stochastic errors, the sys-
tematic uncertainties are difficult to detect, especially if they change over
time. Commonly, these errors are associated with calibration inaccura-
cies of the measurement systems and limitations of the underlying models.
For example, the systematic uncertainties of camera measurements can be
caused by instrumental systematic error [51], which is associated with the
restricted validity of the calibration model, e.g., due to incorrect estima-
tion of model parameters or nonlinearities that this model cannot take
care of.

With respect to handling of uncertainties, all methods can be divided in
three groups, as illustrated in the Fig. 1.3.

Without uncertainty quantification
• Unmodeled uncertainties
• Realization of the system state

Systematic
• Modeled systematic errors,
such as bias, drift

Stochastic
• Modeled random errors
• Statistical information
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Figure 1.3: Overview of the possible methods for motion compensation
according to types of uncertainties considered. Consideration of stochas-
tic and systematic uncertainties incorporates more a priori information
in motion compensation. The main challenge of motion compensation
is to combine high accuracy of the object’s motion estimation with low
computational complexity.

Methods without Uncertainty Quantification The methods that do not
consider the uncertainties at all [57,160,182] refer to this group. By assum-
ing that the measurements are deterministic, i.e., without random varia-
tions, these methods provide one possible realization of the random object
deformation. This assumption can only be maintained if measurement
disturbances are negligible. When the measurements as well as the mod-
els utilized are affected by high errors, incorrect results can be obtained.
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This is especially dangerous for the safety of the beating heart operations,
where wrong behavior of the surgical robot can lead to perilous injuries.

Methods Considering Stochastic Errors An increasing number of meth-
ods for estimating heart surface motion cope with stochastic uncertain-
ties [19, 174, 177, 231, 232]. By applying Bayesian inference scheme, these
methods commonly provide statistical information about how accurate the
motion estimate is. In addition to to the system model, the measurement
model, as well as models of accompanied noise, are incorporated in the
motion estimation. For linear systems contaminated by Gaussian noise, a
Kalman filter [101] is employed for obtaining an optimal estimate. For non-
linear systems, nonlinear estimation procedures, such as extended Kalman
filter [222], are used. However, due to the assumption that the system
state is characterized by a unique probability density, a Bayesian infer-
ence scheme provides correct estimates only when the models underlying
the estimation procedures are accurate. In case of incorrect modeling,
high estimation errors can occur [90]. In spite of this, these methods lack
a continuous evaluation of the quality of the models and precise analy-
sis of the modeling and measurement uncertainties. However, neglecting
these errors leads to a lack of precision that increases greatly the risk of
complications during beating heart robotic surgery.

Methods Considering Stochastic and Systematic Errors Consideration
of both stochastic and systematic errors is computationally more expensive
but at the same time more accurate than accounting for only stochastic
errors. Naturally, the reason for a better accuracy is a higher amount
of a priori information incorporated in the motion estimation. Although
accurate motion estimation is crucial for the safety of beating heart surgery,
to the best of our knowledge, these errors are still neglected in existing
methods for heart motion compensation.

1.4 Novelties and Contributions

This thesis proposes an efficient and accurate framework for motion com-
pensation of elastically deformable three-dimensional objects. The core of
this framework is a physical model, which serves as a starting point for
the derivation of all other mathematical models. As the physical mod-
els are object-specific, the motion of the beating heart with regard to the
application in a beating heart surgery is in the focus of this work.
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In this thesis, to our best knowledge, the first volumetric physical
model of the heart wall suitable for this application [240] is proposed.
Describing surface and interior of the heart wall, this model reflects the
volumetric behavior of the heart, i.e., motion of the heart surface is in-
fluenced not only by surface points but also by the points inside of the
organ. In this way, a foundation for modeling surgical procedures during
the beating heart operations is built.

The main advantage of the proposed model is the combination of high
precision with reconcilable complexity. This is achieved, first of all,
by focusing on the part of the heart ventricle that is essential for beating
heart operations. Due to small displacements of this part, its behavior is
mathematically formulated by a system of linear stochastic partial diffe-
rential equations1 with random input and uncertain initial and boundary
conditions. Instead of numerical solution of this system using classical
finite element method, an efficient element-free method is employed that
discretizes the spatial domain of the model by a set of points, without
introducing a predefined connection between them.

One of the major characteristics of the framework is in a simplified math-
ematical description of the heart behavior combined with a detailed de-
scription of modeling and measurement errors. An efficient handling of
stochastic and systematic errors in the context of beating heart op-
erations was first introduced in our works [238] and [237], to the best of
our knowledge. The consideration of these errors is crucial not only for
reduction of the computational complexity but also for achieving high ac-
curacy of the reconstruction. Therefore, the physics-based models, such as
system model and measurement model derived from the system of stochas-
tic partial differential equations, incorporate terms that model stochastic
and systematic errors. In this thesis, the framework copes with system-
atic errors by their augmentation with the system state and simultaneous
state and parameter estimation. The quantification of stochastic errors is
incorporated in this estimation.

As far as we know, existing methods for visual motion compensation do
not consider physical properties of the object under observation. Here, a

1The system of stochastic partial differential equations results from a system of
partial differential equations, where the coefficients, input, initial, and boundary condi-
tions are considered as random variables. The solution of this system is a random field
consisting of the infinite set of space- and time-dependent random variables.
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novel physics-based method for visual motion compensation is in-
troduced. It exploits the image transformation function with physically
justified parameters [237]. Additionally, an adaptation method for con-
tinuous monitoring and improvement of the motion compensation qual-
ity [236] using a feedback mechanism is proposed. This method allows to
reduce discretization errors in areas where motion compensation is inac-
curate: The model discretization is refined by inserting additional points
with assigned physical parameters. Furthermore, the physical properties
of the model are flexibly adapted with the aim to adjust the model to
the behavior of the object. This is achieved by the consequent adjust-
ment of all model parameters using a simultaneous state and parameter
estimation [239].

With respect to the beating heart motion compensation, the proposed
methods offer a broad range of benefits including physically correct mo-
tion prediction and estimation of the entire interventional area of the heart.
The reason is that due to incorporating the physical model of the heart
wall, a high amount of a priori knowledge about the geometrical and phys-
ical characteristics of the heart is involved in the motion reconstruction.
This greatly enhances the resolution of motion compensation. Further-
more, it is the main reason that the framework is robust to partial and
total loss of measurement information, e.g., caused by occlusion of camera
views. A reconstruction of the occluded part of the heart is especially
essential when the beating heart is concealed by surgical instruments or
robotic arm during the operation. Moreover, the methods are expected to
be flexibly adjustable to different patients due to continuous evaluation of
the motion compensation quality and its online adaptation.

1.5 Outline

The thesis outline is illustrated in Fig. 1.4, where the direction of infor-
mation flow from one chapter to the other is indicated by arrows. In the
following, the content of every chapter is briefly introduced.

Chapter 2 points out main ideas of tracking and visual motion compen-
sation methods. This includes a physics-based interpretation of the entire
framework, a systematic derivation of all mathematical models from an un-
derlying physical model of the object under observation and, finally, a flex-
ible adjustment of accuracy and complexity of the models using stochastic
estimation and feedback mechanism.
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Chapter 3: Probabilistic Models for Distributed Parameter Systems

Chapter 4: Physics-Based
Tracking of Deformable Object

Chapter 5: Physics-Based
Visual Motion Compensation

Chapter 6: Adaptation of Physics-Based Methods

Methods

Chapter 2: Main Ideas

Chapter 7: Evaluation

Figure 1.4: Thesis outline with interconnections between the chapters.
The probabilistic models build a basis for predictive tracking and visual
motion compensation methods. By the adaptation of all mathematical
models, the quality of the entire system is improved.

Chapter 3 is concerned with the derivation of the models for estimation
of the heart wall motion. For this purpose, first of all, a novel physical
model approximating the heart wall behavior is established. It builds the
basis of all proposed methods. First, the mathematical formulation of
this model, in form of a system of stochastic partial differential equations,
is deduced from physical principles underlying the behavior of the heart
wall. Then, in order to enable the stochastic estimation of the object’s
position at every time step, the physical model is converted in a discrete
state-space form, consisting of the system model, given in Section 3.3,
and the measurement model, proposed in Section 3.4. Here again the
modeling and measurement errors are described and their evaluation is
modeled. For conversion of the model into the space-discrete form, an
efficient element-free numerical method is applied. In this context, an
overview of numerical methods for spatial discretization of the stochastic
partial differential equations is given in Section 3.3.1.
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Chapter 4 presents the predictive tracking approach. The main charac-
teristic of this method lies in the fact that the physical properties of the
object under observation are involved in the motion prediction and esti-
mation. The probabilistic problem that this method solves, as well as its
challenges, are introduced in Section 4.1. Here, the tracking is formulated
as an estimation of the most probable positions of the heart landmarks at
every time step. The estimation of these positions by means of physics-
based approximation, which use the predicted and estimated system state
provided by the Gaussian filter, is described in Section 4.4. In Section 4.3,
the predicted positions of the landmarks are exploited for extraction of
the measurement information from the camera images. For this purpose,
the correspondence function is defined, which, in addition to the standard
criteria, incorporates the physics-based criterion for establishing unique
correspondences between the landmarks and measurements.

Chapter 5 deals with a novel method for visual motion compensation.
First, the problem of visual motion compensation is formulated as a trans-
formation of image sequences in Section 5.1. Then, the key idea of the
proposed method, i.e., the three-dimensional physics-based image trans-
formation, is presented in Section 5.2. Thereafter, the physics-based image
transformation function is established in Section 5.3 by projecting the cur-
rent position of the object under observation onto the image plane of the
camera. Finally, a stabilized image sequence is obtained in Section 5.4 by
transforming every image of the image sequence provided by a camera to
the reference image.

Chapter 6 introduces an adaption of the underlying physical model to
the behavior of the object. All required models for tracking and visual sta-
bilization are refined with respect to their spatial resolution. Furthermore,
they are extended for considering the inhomogeneity of the material of the
object. The adaptation strategy is introduced in Section 6.1. The specialty
of this strategy is to use a feedback from the visual motion compensation
for adaptive improvement of the quality of the system only where necessary
to increase the resolution of the models. The extraction of the feedback
information from stabilized image sequence provided by the visual motion
compensation is described in Section 6.2. Consequently, in Section 6.3,
the discretization of the physical model, and all derived from it physics-
based models, is refined with the aim to increase their spatial resolution
and reduce parameter errors.
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Chapter 7 presents the evaluation of the proposed methods in respect
to their application in a beating heart surgery system. The quality of the
methods is verified in the experiments on the pressure regulated artificial
beating heart, which simulates the motion of the mechanically stabilized
real heart. After introduction of the experimental environment and error
measures used for quantification of the quality of the system in Section 7.1,
the experimental results are presented in Section 7.2. Here, the system
for motion compensation is tested regarding its sensitivity to the loss of
measurement information and its capability to compensate the changes of
the heart motion frequency.

Chapter 8 closes the thesis with the discussion of the main points of the
proposed methods, the remaining challenges and future work.

1.6 Summary

In this thesis, physics-based framework for motion compensation is pro-
posed. It is mainly dedicated to beating heart surgery. For this appli-
cation, the tracking of the three-dimensional heart motion is essential for
synchronizing surgical instruments, robotic manipulation and navigation.
The visual motion compensation aims at giving a surgeon an impression of
operating on a non-beating heart by presenting him a virtually stabilized
heart view.

To the best of our knowledge, this thesis is the first to propose volumet-
ric physical model of the heart wall for the application in beating heart
robotic surgery system as well as physics-based method for visual motion
compensation. As all mathematical models incorporated in the framework
are derived from the heart wall model, the physical principles describing
the motion of the heart wall are directly incorporated in the motion com-
pensation. This ensures a physically correct motion reconstruction that is
especially crucial when the measurement information is lost.

Another important characteristic of the framework consists in the combina-
tion of the simplified mathematical description of the heart behavior with
a detailed description of the modeling and measurement errors. In this
way, in contrast to existing physics-based methods, one of the main chal-
lenges of the physics-based formulation has been met, i.e., achieving high
accuracy and computationally tractable complexity. Furthermore, a conse-
quent monitoring and improvement of the tracking and visual motion com-
pensation quality is ensured by a feedback mechanism. This enhances the
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spatial resolution of the physical model and therefore, the spatial resolution
of all mathematical models incorporated in the framework.
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2 Main Ideas

This chapter describes the key ideas of the proposed methods for motion
compensation:

1. Physics-based formulation of the tracking and visual motion compen-
sation that allows to introduce physical knowledge into the motion
reconstruction of the object under observation.

2. Systematic derivation of all mathematical models, exploited by both
methods, from one physical model of the object under observation.

3. Flexible adjustment of accuracy and complexity of both methods
using a stochastic estimation and a feedback mechanism.

2.1 Physics-Based Formulation of the Methods

In contrast to standard methods that are non-physics-based, the methods
proposed in this thesis are based on the fact that the measurement data
provide information about the motion of the physical object under obser-
vation. Therefore, these data are influenced by physical characteristics of
the object.

Within this context, the tracking method aims at determining the three-
dimensional positions of a number of surface points at every time step,
based on images provided by a stationary camera system, as shown in
Fig. 2.1. It is straightforward that the displacements of these points are
influenced by physical characteristics of the object, e.g., material density
or elasticity.

As for the visual motion compensation, its aim is to represent the dynamic
scene under observation as stationary. This is accomplished by an image
transformation, which transfers the colors2 of the current image acquired
by a camera at time step tk to the appropriate positions in the reference
image, e.g., acquired at time step tk−n.

2For describing the colors, different color models may be applied. For example,
according to RGB color model, which stands for red, green, and blue, the colors can
be obtained by combining these three lights, also called color components, in varying
intensities.
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Figure 2.1: Key idea of physics-based formulation of the tracking and
visual motion compensation. Each image can be interpreted as a projection
of the object under observation onto the image plane of the camera. This
allows the introduction of the physical knowledge about the object into the
reconstruction of the object’s motion and each camera image.

The physical information incorporated in the camera image is established
by the fact that the image may be interpreted as a projection of the phys-
ical object under observation onto the image plane. This means that the
current position of the physical object determines the positions of the pix-
els in the current image. Therefore, when the position of the object at
two different time steps, e.g., tk−n and tk, is known, the correspondences
between the pixels, as well as their positions in the appropriate images, are
determined. As the position of the object under observation is bounded
by physical characteristics of the object, the pixel positions are bounded
as well.

It should be noted that the physical interpretation builds the basis of both
methods. This ensures the physically correct image reconstruction along
with the reconstruction of the object’s position.
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2.2 Systematic Derivation of Mathematical Models

All mathematical models are derived from a physical model, which approx-
imates the behavior of the physical object under observation, as shown in
Fig. 2.2.

Beating heart

Physical model

Discrete physical model

Correspondence
function

Measurement
models

System
models

Models of
uncertainties

Image
transformation
function

Error feedback
function

Visual motion
compensation

Tracking

Figure 2.2: All models exploited by the tracking and visual motion com-
pensation are derived from one physical model, which approximates the
behavior of the object under observation.

Such a systematic derivation differentiates the proposed methods from
many others that are based on diverse heuristics.

The key idea of this approximation is to get insight into the complex be-
havior of the real object. By approximating the object directly in the
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physical space, the model incorporates physical characteristics of the ob-
ject, such as, e.g., elasticity or damping. The reason for this approxima-
tion is the unknown behavior of the real object, so that exact positions of
the points on the surface of the object are unknown. Although the posi-
tions of some points can be measured, the measurement data obtained are
corrupted by uncertainties due to, e.g., inaccurate camera calibration or
illuminations. By simplifying the object’s behavior, the model allows for
reconstructing the positions of all surface points at every time step based
upon measurement information extracted from camera images.

However, the main problem here is that the motion state of the physical
model cannot be obtained analytically from a system of stochastic partial
differential equations, which describes the motion of the physical model. In
order to make the numerical computations tractable, the spatial domain of
the physical model is discretized by a set of points. It should be noted that
this discretization is called element-free since no predefined information
about the connection between the discretization points is necessary.

All mathematical models incorporated in tracking and visual motion com-
pensation methods are derived from the discrete physical model. As il-
lustrated in Fig. 2.2, a correspondence function, a measurement model,
and a system model, as well as an augmented state-space model, an image
transformation function, and an error feedback function originate from the
discrete physical model. Thus, they inherit the physical characteristics of
the object under observation and obtain a physical interpretation that al-
lows them to be called physics-based. Furthermore, such a derivation of
mathematical models ensures a clear system structure and has the advan-
tage of simultaneously improving all models by increasing the quality of
the physical model.

2.3 Flexible Adaptation

One of the main characteristics of the proposed methods is the flexible
adjustment of their accuracy and complexity. It is achieved by systematical
improvement of the models involved in the methods. This is based on the
feedback from visual motion compensation as well as simultaneous state
and parameter estimation, as schematically illustrated in Fig. 2.3.

Naturally, the quality of the model-based methods strongly depends upon
the quality of the models. Although the model is only an inaccurate ap-
proximation of the object’s behavior, most existing methods [64, 120, 186,
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Figure 2.3: Adaptation of the discrete physical model leads to the im-
provement of the entire system. The predictive tracking approach deter-
mines the parameters of the model by processing the incoming camera mea-
surements. The feedback from visual motion stabilization is used for adap-
tive refinement of the discrete physical model, whereby the spatial resolution
of this model is improved only where necessary according to the feedback
information.

234] assume that the model describes this behavior exactly. They neglect
to take into account stochastic and systematic errors, such as, e.g., noise
of the model input, incorrect model parameters, bias, or numerical er-
rors, which lead to a deviation of the model behavior from the behavior of
the object under observation. However, the model-based methods provide
a superior accuracy only when the incorporated models approximate the
object’s behavior accurately.

In this thesis, the divergence between the physical model and the object
under observation is sustainably reduced by an adaptation according to
the scheme illustrated in Fig. 2.3.
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Accordingly, the material properties of the model as well as its discretiza-
tion are refined. It should be noted that the material properties of the
model are initially defined by a minimal number of parameters, which
describe the heart wall as a homogeneous viscoelastic body. Therefore,
when the material of the object is inhomogeneous, high errors may arise
in motion compensation. Furthermore, the model is discretized by a set
of points, also called model nodes, depicted in Fig. 2.3 by blue points.
When the spatial discretization of the model is coarse, errors may arise
due to low spatial resolution. For example, when the motion of the object
varies strongly from point to point, a fine discretization is necessary for
reconstructing the object’s displacement precisely.

For purpose of reduction of these errors, a feedback from the visual motion
compensation is used. Represented by the difference between the refer-
ence and stabilized images, it indicates regions where the discrete physical
model is inaccurate. For increasing the spatial resolution of this model,
additional model nodes are inserted in these regions. For illustrative pur-
poses, these nodes are denoted in Fig. 2.3 by green points. Furthermore,
the material properties of the model are refined in these regions by assigned
additional model parameters to the inserted nodes.

For purpose of adapting the model parameters, a simultaneous state and
parameter estimation involved in a tracking method is employed. It pro-
vides the estimates of the model parameters along with the system state by
processing camera measurements extracted from incoming camera images.
In addition to, the model parameters assigned to the inserted model nodes
are corrected in this way. As a result, the discretization as well as material
properties of the discrete physical model are continuously adapted only
where necessary according to the feedback provided by the visual motion
compensation. In this way, the material properties of the model become
inhomogeneous.

As refinement of the discretization not only improves the accuracy but also
increases the degrees of freedom of the discrete model, this adaptation
strategy allows us to achieve high accuracy of the model by a tractable
computational complexity. The unique part of the adaptation, is that not
only the discrete physical model is permanently adjusted to the object’s
behavior, but also all physics-based models that are derived from it.

On the whole, a continuous monitoring of the quality of the system based
on feedback from a visual motion compensation and runtime improvement
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of the models has the advantages of having lower times for system initial-
ization. Furthermore, the models are flexibly adapted to different objects
and changing conditions.

2.4 Summary

In this chapter, three main ideas for tracking and visual motion compensa-
tion are proposed. The first idea is based upon the physical interpretation
of both methods. The second idea is motivated by the aim to get insight
into the complex behavior of the object under observation. For this pur-
pose, the object’s behavior is approximated by a physical model, which
approximates the object’s motion directly in a physical space. In this way,
a physically correct estimation of the object’s position as well as a physi-
cally correct reconstruction of the camera images showing this object are
ensured. The third idea consists of a runtime adaptation of all mathemat-
ical models based upon a feedback from the visual motion compensation
and simultaneous state and parameter estimation. As a result, the quality
of the entire system is continuously evaluated and improved.
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3 Probabilistic Models for
Distributed Parameter Systems

With the aim of providing appropriate tools for heart motion reconstruc-
tion, a discrete state-space model is established in this section. For this
purpose, at first, the physical model of the heart wall is deduced based
upon physical principles capturing the motion of the heart. This model
describes the space-time continuous behavior of the heart by a distributed
parameter system, which state depends not only on time but also on spatial
coordinates. The mathematical formulation of this system yields a system
of stochastic partial differential equations2. As schematically illustrated in
Fig. 3.1, this system of equations serves as a starting point for derivation of
the state-space model consisting of the system and measurement models.

Physical model as a system of stochastic partial differential equations

Physics-based system model Physics-based approximation

Projection onto image plane

Physics-based measurement model

State-space model

Figure 3.1: In this chapter, the physics-based system and measure-
ment models are derived from the physical model that is mathemati-
cally formulated in the form of a system of stochastic partial differential
equations.

2In this thesis, the distributed parameter system is described by the system of
stochastic partial differential equations with uncertain input, random initial and bound-
ary conditions. The randomness of the coefficients of this equation is considered after
the conversion of the system into a discrete form.
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The physics-based system model describes the temporal propagation of
the system state. In order to obtain this model, the system of stochastic
partial differential equations is discretized in space using efficient element-
free method [12–14], yielding the system of stochastic ordinary differential
equations, which is solved by a suitable time integration method.

The physics-based measurement model establishes the relationship be-
tween the system state and measurements extracted from incoming camera
images. It is obtained by projecting the numerical solution of the system
of stochastic partial differential equations, which approximates current po-
sition of the heart wall, in the camera view. This solution is provided
by a physics-based approximation, the parameters of which encompass
the physical information incorporated in a system of stochastic partial
differential equations.

Partly, the physical model of the heart wall as well as the derivation of the
state-space model have been presented in our papers [238, 240, 241]. This
chapter extends these publications in particular by the theoretical aspects
concerning the derivation of the physical model from physical principles un-
derlying the motion of the object. Furthermore, the extension of the model
with respect to Kelvin-Voigt viscoelastic material represents unpublished
material.

3.1 Problem Formulation

The main problem of the model-based processing of measurement data is
to achieve a high accuracy with low computational complexity. Thus, with
respect to the application in beating heart surgery, the heart model must
be computationally efficient to enable runtime tracking and visual motion
compensation. Furthermore, it must be sophisticated to reconstruct the
motion of the heart accurately enough.

Among all categories of the methods presented in Section 1.3, the physics-
based methods are superior in accuracy [42]. Based upon an appropriate
physical model, such methods guarantee physical correctness of the re-
construction due to an incorporation of a large amount of a priori knowl-
edge. This is especially advantageous when no measurement information is
available or when this information is sparse or even corrupted by outliers.
Therefore, for accurate reconstruction of the heart motion, the complex
behavior of the heart must be approximated by a physical model. Unfortu-
nately, such models are quite complex. That hinders their application in a
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beating heart surgery system, where the capability of real-time operability
is essential.

As a matter of fact, the physical model, even when it is highly realistic,
cannot exactly represent the object under observation due to unknown
object’s behavior, noisy excitation or numerical errors. Therefore, the
description of accompanied systematic and stochastic uncertainties should
be incorporated in the model. An appropriate mathematical description
of such a probabilistic model is a system of stochastic partial differential
equations that defines the object displacement as a random field consisting
of a set of spatially and temporally distributed random variables.

As the physical model and the camera measurements are corrupted by un-
certainties, the position of the object should be estimated using stochastic
filters. For this purpose, the system of stochastic partial differential equa-
tions describing the physical model must be converted in a state-space
form. Because of the intractability of this problem [116], the numerical
methods should be applied for converting the system in a discrete state-
space model. This model consists of a discrete system model and a discrete
measurement model given by equations

zk+1 =ak (zk, ûk, sk,w
z
k) ,

ŷ
k
=hk (zk, ek,vk) .

(3.1)

Here, system function ak : Rnz × Rnu × Rns × Rnwz → Rnz , k ∈ N

propagates the system state zk ∈ Rnz from time step tk to time step
tk+1 by processing the known excitation ûk ∈ Rnû . The systematic and
stochastic errors of the system model are denoted by sk ∈ Rns and wz

k ∈
Rnwz respectively. The random vector wz

k characterizes the system noise
that is assumed to be zero-mean white. The measurement function hk :
Rnz×Rne×Rnv → Rny relates measurements ŷ

k
∈ Rny to the system state

zk at the current time step. The systematic and stochastic errors of the
measurement model are denoted by ek ∈ Rne and vk ∈ Rnv . The random
vector vk describing the measurement noise is assumed to be zero-mean
white and independent of the system noise term wz

k.

Frequently, for conversion of a system of stochastic partial differential equa-
tions into a discrete state-space form, numerical methods for spatial and
temporal discretization are employed. The main point here is to choose
a proper numerical method that is most suitable for the solution of this
problem, i.e., a method that is computationally efficient and sufficiently
accurate.
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3.2 Physical Model of Deformable Object

A novel physical model of the heart wall, suitable for beating heart surgery
system, is presented in this section. It is formulated in form of a system
of stochastic partial differential equations. The first step consists in a
description of the heart motion by a system of deterministic equations,
which is derived from an energy conservation principle. This principle sets
the requirement on the stationarity of the total energy of a closed dynamic
system [53], where no energy can be added or lost. Thereafter, these
equations are extended by damping forces, which account for the occurred
energy dissipation. Finally, the uncertainties arising due to unknown input
forces and initial conditions are incorporated in the motion equations. For
further details to the elasticity theory used for derivation of the model, we
refer to the textbooks [11,53,91].

Physical Description of Deformable Objects

This section deals with the approximation of the heart wall by a physical
deformable body subjected to external forces. Before describing in detail
the geometry and material characteristics of this body, firstly, the function-
ality of the heart is briefly presented, following which the simplifications
and assumptions that are made on the heart behavior are introduced.

Objects under Consideration In this paragraph, we will briefly look into
the structure and functionality of the heart with the aim to discuss the
properties of the heart that are essential for the modeling of the heart wall.
A detailed description of the heart can be found in textbooks [93,108,201,
225].

The human heart consisting of four chambers – two atria and two ventricles
– is responsible for pumping blood to the entire body. This is a hollow
muscular organ enclosed in the membranous sac called a pericardium. This
sac can be exposed by a surgeon during beating heart operations for gaining
direct access to the heart.

The heart itself is supplied by oxygenated blood delivered by coronary ar-
teries. Any narrowing, or blockage, of these arteries, e.g., due to atheroscle-
rosis, results in a coronary artery disease [201] that impairs the blood
supply to the heart, causes an abnormality of cardiac function, and in
end-stage, the heart failure. The most common surgical treatment of this
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disease is the restoration of the blood supply by the coronary artery bypass
grafting, which is often performed on a beating heart.

We will focus on beating heart surgical interventions carried out on the
left ventricle, because this chamber is mostly affected by the coronary
artery disease. The reason for this relates to the harder work of the left
ventricle than that of all other chambers. Its work consists in ejecting
blood from the heart into the major circulatory network.

The size as well as physical properties of the left ventricle differ from
person to person and strongly depend on whether the person suffers from
atherosclerosis or not. The wall of the ventricle is of a special kind of
muscle, called myocardium, that is composed of several spirally wrapped
layers. According to medical statistical studies [62, 187], the thickness of
the ventricular wall can vary from 6 mm up to 20 mm depending on the
person.

Electrical activity, known as a cardiac cycle, regulates the rhythmic
motion of the heart consisting of two phases, called systole and diastole.
During diastole, two atria excited by an electrical impulse are forced to
contract. This leads to the lower pressure in the ventricle than that in
the atria. As a result, the antrioventricular valves open and blood from
the atria refills the relaxed ventricles. During systole, the myocardium
contracts due to stimulation by electrical currents. The tension of the
myocardium leads to the increase of the pressure inside the ventricle, so
that tricuspid and mitral valves, separating the ventricles from atria, close.
Then, when pulmonary and aortic valves open due to sufficient pressure
inside of the ventricles, blood is forced into the pulmonary artery and the
aorta.

It should be noted that electrical currents generated in cells of the
myocardium [201] are distributed over the heart muscle through muscle
fibers.

Simplifications and Assumptions For purpose of achieving a high effi-
ciency of the model, only the part of the heart wall of the left ventricle
is considered that is important for beating heart operations on coronary
arteries. This is the area on which the surgeon is working, as schematically
illustrated in Fig. 3.2.

Normally, the area under consideration is stabilized during beating heart
operations. For this purpose, for example, a vacuum-based mechanical
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Beating heart Model of the heart wall

Approximation

Figure 3.2: Approximation of the heart wall of the left ventricle by a heart
model. The model considers the heart wall inside the operation area. This
area is subjected to the external forces, such as pressure forces inside of the
cardiac chamber (blue) and muscle forces (green).

stabilizer, such as Octopus [43,61,122] can be employed. As stated in [43],
the amplitude of the remaining cardiac motion after stabilization, can
achieve at some points about 0.3 ±0.33 mm in x and y directions and
about 2 ±2.6 mm in the z direction.

For modeling the complex behavior of this area, some assumptions are
made on the physical properties of the heart wall and cardiac cycle. First
of all, the complex layered structure of the myocardium is simplified. Be-
cause of the small size of the considered area, primarily, it is supposed
that the heart tissues inside of this area consist of isotropic and homo-
geneous material. This means that the properties of the material are
independent of direction and position. However, since the myocardium
is heterogeneous by nature, the material properties of the model are fur-
ther adapted after the discretization of the model with regard tomaterial
inhomogeneity. It should be noted that the subsequent adaptation of
the material properties allows to avoid the substantial complication of the
model. The material of the heart wall is assumed to be sufficiently smooth,
with damping properties, caused, e.g., by an energy conversion to the
heat or inner damping. Furthermore, the heart wall is supposed to have
constant thickness within the stabilized area.

The behavior of the heart tissues is assumed to be linear viscoelastic.
This means that the stress-strain response is reversible and the heart wall
returns in an undeformed configuration in the absence of loads. In this
configuration, its material is unstressed. Conversely, applied loads cause
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non-zero stresses, as well as strains in the material and hence, force the
object to occupy a deformed configuration. This linear assumption is justi-
fied by the fact that the displacements of the mechanically stabilized heart
are small.

The viscoelastic description of the heart muscle allows for the reproduction
of such tissue properties where an elastic model would fail. For example,
when the tissue is deformed and its deformation is maintained, the inner
forces of material or stress will diminish with time. This property is called
stress relaxation [9]. Furthermore, when the tissue is subjected to constant
external force, its deformation will still continue to increase with time.
This phenomenon is characterized by strain retardation [9]. Moreover,
the strain-stress response of the object, subjected to the repeated load
and relaxation, will be deemed to be as a hysteresis, due to dissipation of
mechanical energy.

With regard to the cardiac cycle, it should be noted that, although the
heart motion is initiated by forces generated in a distributed fashion within
the heart muscles that are stimulated by electrical currents, it is assumed
that the motion of the stabilized area is caused by a pressure inside
the myocardium. This assumption is justified by the medical experi-
mental studies [191, 192], which state that the active force generated by
the myocardium can be reproduced by ventricular pressure. The pres-
sure inside the left ventricle can be measured by a heart catheter or
echocardiography [158].

Model Geometry For the definition of the model geometry, a fixed time-
independent Cartesian coordinate system in R3 with origin in O and x, y,
z axes is introduced, as depicted in Fig. 3.3, where the model of the heart
wall within the stabilized area is schematically illustrated. The mechanical
equilibrium of the heart wall (also called undeformed configuration) is de-
scribed by the bounded domain Ω ⊆ R3. This domain Ω = Ω∪∂Ω contains
the interior Ω and smooth boundary ∂Ω. The boundary ∂Ω = ΓN ∪ ΓR is
decomposed in two parts: Neumann boundary ΓN , where pressure forces
act, and Robin boundary ΓR that models the connection of the consid-
ered heart wall with the surrounding heart tissues. One can imagine this
connection as damped springs of stiffness β, as shown in Fig. 3.3. The
wall of the heart is assumed to be affected not only by pressure forces
f
N
: ΓN × R+ → R3 but also by muscle strengths f

R
: ΓR × I → R3,

and body forces per unit volume f
I
: Ω × I → R3, which are defined by
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Figure 3.3: Geometry of the heart model, whereby the connection with the
surrounding heart tissues is described by the Robin boundary ΓR. Pressure
forces f

N
act on Neumann boundary ΓN .

continuous vector functions depending on the spatial coordinates r ∈ Ω
and time t ∈ I ⊆ R+ in the interval I = [0, tk] up to time step tk. The
body forces are not indicated in Fig. 3.3, because they act on the entire
object. One example of such force is the gravitational force.

Physics-Based Motion Description

For the derivation of the mathematical model of the heart wall behavior
based upon the energy conservation principle, in this section, the kinetic
and the potential energies of the heart wall are determined by presuming
the linear elastic behavior of the heart. The elastic assumption on the
heart muscle will be later replaced with viscoelastic.

At first, the motion of the heart wall is linearized around the undeformed
configuration of the object defined by the domain Ω ⊆ R3, as shown in
Fig. 3.4. The space-time continuous deformation of the object is then

mathematically described by a continuous mapping ψ : Ω×I → Ω
ψ
of the

domain Ω to its deformed configuration Ω
ψ
= ψ

(
Ω, t
)
with interior Ωψ

and smooth boundary ∂Ωψ at time t ∈ I ⊆ R+ from the interval I. The
points r = [xr, yr, zr]

T ∈ Ω in the domain Ω are assumed to be uniquely

assigned to the points rψ = [xr
ψ

, yr
ψ

, zr
ψ

]T ∈ Ω
ψ
in the domain Ω

ψ ⊆ R3

at every time t ∈ I by

rψ = ψ (r, t) = r + d (r, t) , (3.2)
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ψ

Mechanical equilibrium Deformed configuration

Time step tk−n Time step tk

Figure 3.4: Mathematical description of the heart motion by the contin-
uous function ψ, which maps the undeformed configuration of the model

Ω to its deformed configuration Ω
ψ

= ψ
(
Ω, t

)
. The model is affected by

muscle strengths f
R

and pressure forces f
N
.

where the continuous vector function d : Ω × I → D is assumed to be
twice differentiable with respect to time and sufficiently smooth in space
and time. Its values denote the displacement field in space D ⊆ R3.

Strain as a Measure of Deformation For description of the object’s
deformation, the strain of the heart tissues E , which describes the changes
in length elements compared to their original length, is defined by a second
order tensor in matrix representation

E = {εij} , 1 ≤ i ≤ 3, 1 ≤ j ≤ 3. (3.3)

In geometrical interpretation, the diagonal elements of the strain tensor
are relative elongations of the line elements along coordinate axes, whereby
the off-diagonal elements are related to the shear angles [11].

As the assumption on the linear elastic behavior of the object under con-
sideration implies small deformations of the heart wall, the strain can be
approximated by Cauchy’s strain tensor

E (d (r, t)) = 1

2

(
∂d (r, t)

∂r
+

(
∂d (r, t)

∂r

)T
)
, (3.4)
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where the deformation gradient defined by the derivative of the function
providing the displacement field d = [xd, yd, zd]T ∈ D is described by the
Jacobian matrix

∂d (r, t)

∂r
=

⎡
⎢⎣
∂xd

∂xr
∂xd

∂yr
∂xd

∂zr

∂yd

∂xr
∂yd

∂yr
∂yd

∂zr

∂zd

∂xr
∂zd

∂yr
∂zd

∂zr

⎤
⎥⎦ .

This tensor is the linearization of the nonlinear Green and St. Venant
strain tensor [53], so that both of the tensors coincide in the presence of
small deformations. The evaluation of Cauchy’s strain tensor is cheaper,
because it is described by a linear function of displacements. However, the
drawback of this tensor is that it is not rotationally invariant. In order
to avoid poor results in presence of rotations, a corotational formulation
of the Cauchy’s strain tensor [25, 148] can be used. The key idea of this
formulation is to determine the rotation of each point of the object by
exploiting the decomposition of the deformation gradient into a rotational
part and a stretching part. In this thesis, it is assumed that the heart
wall within the stabilized area is not subjected to rotations because of
its immobilization by means of a mechanical stabilizer. This permits the
use of the Cauchy’s strain tensor in its original form. However, it should
be noted that for the beating heart without mechanical stabilization, this
assumption may be inadequate, because the non-stabilized heart undergoes
large rotations [189].

Stress as a Description of Inner Forces The inner forces of the de-
formable object hold the object in its shape [11] and act against the ap-
plied loads. These forces are described by the stress that is defined as an
inner force taken in a unit area. The stress of the heart tissues is here
approximated according to Hooke’s law [53] in the form

Σ (d (r, t)) = λ trace (E (d (r, t)))I+ 2μE (d (r, t)) , (3.5)

where I ∈ R3×3 is the identity matrix. As follows from this equation, the
stress tensor Σ denoted by the matrix

Σ = {σij} , 1 ≤ i ≤ 3, 1 ≤ j ≤ 3 (3.6)

reflects the physical properties of the object defined by Lamé constants

λ =
Eν

(1 + ν) (1− 2ν)
, μ =

E

2 (1 + ν)
, (3.7)
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material density ρ, modulus of elasticity also called Young modulus E, and
Poisson ratio ν, which is defined as ratio of lateral strain to axial strain.

Naturally, Hooke’s law describes the stress as a linear function of the strain.
This is only valid for small displacements of the object. Furthermore, due
to assumption on the isotropy of the heart wall material, the material
properties, specially Poisson ratio ν, Young modulus E, and second Lamé
constant μ known as shear modulus, are not independent. If two of them
are known, the third one can be obtained according to (3.7). Although the
anisotropic description of the heart tissues reproduces better the layered
structure of the myocardium, it would significantly increase the number
of the material parameters. While an isotropic material is described by
only two constants ν and E, we need 21 constants for an anisotropic mate-
rial. For a material with orthogonal directions of anisotropy, so called or-
thotropic material, the number of these constants reduces to 6. Therefore,
an isotropic material is chosen with the aim of minimal parametrization
of the heart model.

Energy of the Heart Wall In the following, the total energy of the heart
wall is deduced according to the principle of energy conservation, which
states that the total energy of a closed mechanical system remains constant
over time. It should be noted that the mechanical system is closed when
no energy may be added or lost. In this case, the energy can be only
transformed from one form to another.

Here, we assume that there is no changes in the total energy of the heart
wall, in order to allow for the variational formulation, which is based on the
principle of energy conservation. Later, this assumption will be abolished
by the generalization of the Hooke’s law for energy dissipation.

Accordingly, since the energy of the heart wall is supposed to change
from kinetic to potential, the total energy is determined by the difference
between these two types of energies

W [d (r, t)] = K [d (r, t)]−U [d (r, t)] , (3.8)

where the kinetic energy of the heart wall is described by the functional

K [d (r, t)] =
1

2

∫
Ω

ρ
(
ḋ (r, t)

)T
ḋ (r, t) dr .

A superimposed dot denotes here differentiation with respect to time t.
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For deducing the potential energy, the Frobenius inner product of the stress
and strain tensors is further defined by the trace of their inner product

Σ (d (r, t)) : E (d (r, t)) := trace
(
(Σ (d (r, t)))

T E (d (r, t))
)
,

where the symbol := has the meaning ”is defined by”. Then, the potential
energy involving the internal energy, which is influenced by the work of
the stiffness and surface forces, as well as by the work of muscle strengths
and body forces is determined by

U [d (r, t)] =
1

2

∫
Ω

Σ (d (r, t)) : E (d (r, t)) dr
︸ ︷︷ ︸

internal energy

+
1

2

∫
ΓR

β (d (r, t))
T
d (r, t) dr

︸ ︷︷ ︸
work of stiffness forces

−
∫
Ω

(d (r, t))
T
f
I
(r, t) dr

︸ ︷︷ ︸
work of body forces

−
∫
ΓN

(d (r, t))
T
f
N
(r, t) dr

︸ ︷︷ ︸
work of pressure forces

−
∫
ΓR

(d (r, t))
T
f
R
(r, t) dr

︸ ︷︷ ︸
work of muscle strengths

,

where the parameter β stands for the stiffness of the heart tissues on the
Robin boundary.

As a result, the total energy obtained by plugging the kinetic and potential
energy in (3.8), reveals the fact that the work done by external forces is
equal to the change of the internal energy.

Variational Formulation

The total energy of the heart wall is used in this section for the derivation
of the mathematical model of the heart wall behavior. This model will be
expressed by the variational formulation obtained by applying the calculus
of variations [200].

According to the principle of stationary action [115], the displacement field
d, introduced in (3.2), is characterized by the requirement, which states
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that the total energy
tk∫

tk−1

W [d (r, t)] dt (3.9)

stored between two arbitrary time steps tk−1 and tk must have a stationary
value, not necessarily a minimum. In accordance with the calculus of
variations [200], this means that the first variation of the integral (3.9)
must vanish.

In order to compute the first variation, it is supposed that the displacement
d ∈ D of the point r ∈ Ω in the domain Ω is perturbed between the time
steps tk−1 and tk. These perturbations can be described by all admissible
functions υ : Ω × R+ → Rnυ . The functions are admissible when their
values υ ( · , tk−1) = υ ( · , tk) = 0 are zero at the time steps tk−1 and tk and
small at other time steps. Then, the displacement d ∈ D is the stationary
solution of the functional

V [d (r, t) + θυ (r, t)] =

tk∫
tk−1

W [d (r, t) + θυ (r, t)] dt, (3.10)

where θ ∈ R is the real number. Consequently, the stationary solution
is defined by a directional, also called Gâteaux [200] derivative, of the
functional V at d in the direction υ according to

d

dθ
V [d (r, t) + θυ (r, t)]

∣∣∣∣
θ=0

= 0 . (3.11)

The substitution of (3.8) in (3.10) with the subsequent calculation of the
Gâteaux derivative according to (3.11) leads to

tk∫
tk−1

⎛
⎝∫

Ω

ρ (υ̇ (r, t))
T
ḋ (r, t) dr −

∫
Ω

Σ (d (r, t)) : E (υ (r, t)) dr

−
∫
ΓR

β (υ (r, t))
T
d (r, t) dr +

∫
Ω

(υ (r, t))
T
f
I
(r, t) dr

+

∫
ΓN

(υ (r, t))
T
f
N
(r, t) dr +

∫
ΓR

(υ (r, t))
T
f
R
(r, t) dr

⎞
⎠ dt = 0 .

(3.12)
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In the following, (3.12) is decomposed in order to obtain the variational
equation. Hence, the partial integration of the first integral with the
respect to time results in

tk∫
tk−1

∫
Ω

ρ (υ̇ (r, t))
T
ḋ (r, t) dr dt =

∫
Ω

ρ (υ (r, t))
T
ḋ (r, t) dr

∣∣∣∣tk
tk−1

−
tk∫

tk−1

∫
Ω

(υ (r, t))
T
ρd̈ (r, t) dr dt ,

where the first term vanishes because the function values υ ( · , tk−1) =
υ ( · , tk) coincide at both time steps. Furthermore, the second integral,
which defines the variation of the strain energy, is decomposed by exploit-
ing Green’s formula [33] according to∫

Ω

Σ (d (r, t)) : E (υ (r, t)) dr =
∫
ΓN

(υ (r, t))
T
Σ (d (r, t))n dr

+

∫
ΓR

(υ (r, t))
T
Σ (d (r, t))n dr −

∫
Ω

(υ (r, t))
T
divΣ (d (r, t)) dr ,

where the divergence of the tensor Σ ∈ R3×3 is defined as the vector with
components that are the divergences of the rows of the tensor

divΣ (d (r, t)) =

⎡
⎢⎣
∂σ11

∂xr + ∂σ12

∂yr + ∂σ13

∂zr
∂σ21

∂xr + ∂σ22

∂yr + ∂σ23

∂zr
∂σ31

∂xr + ∂σ32

∂yr + ∂σ33

∂zr

⎤
⎥⎦ . (3.13)

As a result, (3.12) is converted into the variational equation

tk∫
tk−1

⎛
⎝∫

Ω

(υ (r, t))
T
(
ρd̈ (r, t)− divΣ (d (r, t))− f

I
(r, t)

)
dr

+

∫
ΓN

(υ (r, t))
T
(
Σ (d (r, t))n− f

N
(r, t)

)
dr

+

∫
ΓR

(υ (r, t))
T
(
Σ (d (r, t))n+ βd (r, t)− f

R
(r, t)

)
dr

⎞
⎠ dt = 0 .

(3.14)
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It should be noted that this equation must hold for all admissible functions
υ (set, e.g., υ=const.). Hence, the integrals in the parenthesis must be
equal to zero. This is fulfilled when the object is in equilibrium, i.e., the
inner forces of the object are canceled by the imposed external forces, like,
e.g., body forces f

I
, pressure forces f

N
, and muscle strengths f

R
, at every

point r ∈ Ω and time step t ∈ I ⊆ R3.

Energy Dissipation

Since the variational formulation is deduced based on the energy conserva-
tion principle, it cannot cover the energy dissipation, e.g., due to conver-
sion of energy to the heat or inner damping of the material. However, due
to energy dissipation, the heart wall, subjected to an impulse force, will
occupy its undeformed configuration after a while, instead of performing
periodic motion. Hence, in this section, the variational equation (3.14) is
extended for the damping forces. This results in a viscoelastic represen-
tation of the heart tissues material, for which the stress-strain response
depends on the strain rate.

The damping properties of the material are modeled by a Rayleigh damp-
ing introduced in [171]. By assuming that the energy dissipation is propor-
tional to the material stiffness and density, this model has the advantage
that for just two modes the damping ratios need to be specified. These
ratios are defined by the coefficient γ describing the damping proportional
to stiffness and the coefficient κ denoting the damping proportional to the
density.

To take into account the Rayleigh damping, the variational equation (3.14)
is modified according to the theoretical framework proposed in [91]. In this
context, the damping effect proportional to the stiffness is introduced by
a generalized Hooke’s law

Σ
(
d (r, t) , ḋ (r, t)

)
= λ trace

(
E
(
d (r, t) + γḋ (r, t)

))
I

+ 2μ
(
E
(
d (r, t) + γḋ (r, t)

))
,

(3.15)

which now defines the stress tensor from (3.5). In this way, it is presumed
that the heart tissue is sufficiently accurate represented by Kelvin-Voigt
viscoelastic material [9], which is modeled by a parallel connection of a
spring and a dashpot.
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In the next step, the damping force proportional to the material density
is introduced in the variational equation (3.14). This results in∫
Ω

(υ (r, t))
T
(
ρd̈ (r, t) + ρκḋ (r, t)− divΣ

(
d (r, t) , ḋ (r, t)

)
− f

I
(r, t)

)
dr

+

∫
ΓN

(υ (r, t))
T
(
Σ
(
d (r, t) , ḋ (r, t)

)
n− f

N
(r, t)

)
dr

+

∫
ΓR

(υ (r, t))
T
(
Σ
(
d (r, t) , ḋ (r, t)

)
n+ βd (r, t)− f

R
(r, t)

)
dr = 0 .

(3.16)

As this equation must hold for all admissible functions υ, the individual
integrals must be equal to zero. Similar to (3.14), this is fulfilled when the
object is in equilibrium, which now also depends from the damping forces.

Modeling Uncertainties

As is commonly known, a model can reproduce the behavior of the ob-
ject only with a limited reliability, since it approximates the motion of the
real object by using available noisy data and not exactly known physical
information. As a result, the response of the model is corrupted by inac-
curacies due to limited precision of the model. The main sources of these
inaccuracies, as well as their models, are introduced in this section.

Main Sources of Uncertainties Generally, the main source of the model
inaccuracy is lack of knowledge. For example, the object’s structure and
behavior are very complex and cannot be resolved at all scales. The main
reasons for that is imperfect knowledge of the object’s behavior, e.g., un-
predictable object’s motion, such as extrasystole during beating heart op-
eration, or incomplete data availability. Furthermore, the randomness of
the model raises from the input forces corrupted by inaccuracies, as well
as from initial conditions corrupted by stochastic perturbations.

Models of Uncertainties and Their Assumptions As introduced in Sec-
tion 1.3.2, there are two types of inaccuracies: systematic and stochas-
tic. The systematic inaccuracies represent deterministic errors of model.
The stochastic inaccuracies stand for random perturbations. By assuming
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that the latter are reasonably characterized by additive zero-mean Gaus-
sian random noise, the quantities corrupted by these uncertainties can be
sufficiently accurately described by Gaussian random fields, introduced
in [216]. The modeling of random quantity by Gaussian field has the ad-
vantage of its unique specification by the first two statistical moments,
i.e., expectation and covariance. This field is represented by an infinite se-
quence of continuous Gaussian random variables indexed over the spatial
coordinates r ∈ Ω and time t ∈ I ⊆ R+.

It should be noted that the following model inaccuracies, caused by im-
perfect knowledge of the object’s behavior, are assumed to be negligible:

• Unappreciated influences from external environment, e.g., due to
simplified embedding of the considered heart area in the surrounding
tissues.

• Unpredictable behavior of the object, e.g., the extrasystole.

• Nonlinearities of the heart material.

• Initial stresses and strains of the heart surface.

These uncertainties are difficult to describe mathematically. Their influ-
ence can be estimated experimentally by using a highly complex model,
intentionally neglecting its levels of sophistication.

Uncertainties of Displacement and Position Fields The displacement
field d ∈ D that satisfies the variational equation (3.16), becomes random
due to stochastic uncertainties incorporated in the model. Hence, this field
consists of an infinite sequence of random variables

d (r, t) ∼ N (μd (r, t) ,Σd (r, t)
)
, r ∈ Ω , t ∈ I ⊆ R+ (3.17)

described by a Gaussian density function N that is defined by a space-time
dependent mean function μd and a covariance function Σd. The symbol ∼
indicates here the distribution operator. Furthermore, according to (3.2),

the position field rψ ∈ Ω
ψ
, approximating the position of the real object,

is also random Gaussian. It consists of the sequence of random variables

rψ (r, t) = r + d (r, t) , rψ (r, t) ∼ N
(
μr

ψ

(r, t) ,Σrψ (r, t)
)

(3.18)
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with respective mean and covariance functions indexed over the spatial
coordinates r ∈ Ω and time t ∈ I ⊆ R+. It should be noted that, as
obvious from (3.18), the randomness of the position field is inherited from
the randomness of the displacement field.

In this context, it is worth mentioning that the undeformed configura-
tion of the model is assumed to be exactly known. The reason for such
an assumption is that the stochastic errors of this configuration will be
eliminated in Chapter 4 by averaging the position of the object over an
initialization time period. However, the systematic errors of this config-
uration, such as offset, are difficult to detect. One of the possibilities to
solve this problem is to use the set-valued representations [113,185] of these
errors. For this purpose, the information about the nearest neighborhood
of every point in the undeformed configuration of the model can be used
for constructing the bounded set that describes the possible positions of
this point. As a result, according to (3.18), the deformed configuration of

the model rψ ∈ Ω
ψ
will be defined by sets of densities [147], which can

be estimated by set-based filtering approaches [154, 155]. The challenge
lies in the mathematical description of the deformed configuration of the
model because of the nonlinear dependence of the displacement field on
the undeformed configuration of the model.

Uncertainties of Input Forces and Boundary Conditions There are two
reasons for inaccuracies introduced in the model by input forces. First
of all, there are systematic errors primarily defined by unknown forces
acting on the heart wall. For example, the space-time dependent muscle
strengths f

R
subjecting the Robin boundary ΓR and body forces f

I
are

unknown. Furthermore, the excitation on the Neumann boundary f
N

is not exactly known. Although the pressure at all points on Neumann
boundary ΓN is nonuniform due to the fact that the cardiac contractility
is caused by inhomogeneous muscle strengths, only uniform pressure can
be measured inside the cardiac chamber. With the aim of considering
also the nonuniform excitation, the pressure force acting on the Neumann
boundary is decomposed on measured uniform and unknown nonuniform
parts according to

f
N
(r, t) = fu

N
(r, t) + fn

N
(r, t) . (3.19)
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The nonuniform part fn
N
is defined not only by unknown nonuniform pres-

sure inside the heart chamber, but also by unknown systematic uncertain-
ties of the measured uniform pressure signal, such as, e.g., drift and offset
occurring due to inaccurate calibration of the heart catheter.

The second reason for modeling inaccuracies caused by input forces, are
stochastic uncertainties, which introduce the random errors. Hence, the
uncertainties of the uniform part of the pressure measured by a heart
catheter, are caused by the measurement noise, which is assumed to be ad-
ditive zero-mean Gaussian. Therefore, similarly to the displacement field,
the uniform part of the pressure force is defined by the Gaussian random
field consisting of the infinite sequence of Gaussian random variables

fu
N
(r, t) ∼ N

(
μf

u
N (r, t) ,Σfu

N (r, t)
)
, r ∈ Ω , t ∈ I ⊆ R+ (3.20)

with mean and covariance defined by respective functions.

Uncertainties of Initial Conditions In addition, the initial conditions
introduce inaccuracies in the physical model. Since the heart is continu-
ously moving, information about the position of the heart wall at initial
time step must be extracted from measurements provided by a camera
system. However, these measurements are corrupted by stochastic pertur-
bations caused, e.g., by noise of the feature extraction or changing light
conditions, and assumed to be additive Gaussian and zero-mean. As a re-
sult, the uncertainties of the initial conditions are inherited from the noise
of the camera system measurements. This allows us to characterize the
initial values of the displacement and velocity fields by Gaussian random
fields represented by infinite sequences of Gaussian random variables

d0 (r) ∼ N
(
μd
0
(r) ,Σd

0 (r)
)
, r ∈ Ω ,

v0 (r) ∼ N
(
μv
0
(r) ,Σv

0 (r)
)
, r ∈ Ω ,

(3.21)

which mean and covariance are defined by respective space-dependent
functions.

Physical Model in Continuous Form

As a result, by extending (3.16) by the models of inaccuracies mathemati-
cally described by (3.17), (3.19), (3.20), and (3.21), the probabilistic model
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approximating the heart wall behavior is formulated. It is represented by
the boundary and initial value problem in form of the system of hyperbolic
stochastic partial differential equations

A [d (r, t)] :=ρd̈ (r, t)+ρκḋ (r, t)−divΣ
(
d (r, t), ḋ (r, t)

)
=f

I
(r, t) , r ∈ Ω ,

BN [d (r, t)] := Σ
(
d (r, t) , ḋ (r, t)

)
n = fu

N
(r, t) + fn

N
(r, t) , r ∈ ΓN ,

BR [d (r, t)] := βd (r, t) +Σ
(
d (r, t) , ḋ (r, t)

)
n = f

R
(r, t) , r ∈ ΓR ,

SD [d (r, t0)] := d (r, t0) = d0 (r) , r ∈ Ω ,

SV [d (r, t0)] := ḋ (r, t0) = v0 (r) , r ∈ Ω ,

(3.22)

which are linear. By way of introduction of the concise notation, the left
parts of the equations are denoted by functionals, e.g., the displacement
field on the Robin boundary ΓR is described by the functional BR. On the
Neumann boundary ΓN , this field must satisfy the functional BN , while
the displacement field in the interior Ω is determined by the functional A.
The initial conditions of the displacement and velocity fields are introduced
by the functionals SD and SV .

In order to solve this problem, a complete description of the random dis-
placement field d consisting of the infinite sequence of random variables
has to be found. Due to the Gaussian assumption, this field is uniquely
characterized by the first two statistical moments of all random variables
of this field.

3.3 Physics-Based System Model

The main point of this section is to establish the physics-based system
model, which represents the part of the state-space model introduced in
its general form in (3.1). The system model describes the propagation
of the system state and is aimed at estimating the heart wall motion by
means of stochastic filters.

The first important characteristic of the proposed model is the fact that
it incorporates the information about the physical properties of the object
under consideration. This information is inherited from the system of
stochastic partial differential equations, which serves as a starting point for
derivation of the model. Another particularity of this physics-based system
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Physical model in form of a system of SPDE

Spatial discretization using an element-free method

System of SODE of 2. order Spatial discretization errors

System conversion

System of SODEs of 1. order

Temporal discretization using implicit Euler method

Physics-based system model Time discretization errors

Figure 3.5: Derivation of the state-space model from the physical model
using the methods for solution of the system of stochastic partial differential
equations (SPDEs). This system is converted in the system of stochastic or-
dinary differential equations (SODEs) using meshless local Petrov-Galerkin
mixed collocation method [14]. For the temporal discretization, the implicit
Euler method, e.g., introduced in [38], is applied. The numerical solution
of the system of SPDEs introduces additional errors in the system model.

model is that stochastic and systematic modeling errors are considered
over all stages of the system model derivation, as depicted in Fig. 3.5.
These errors are inherited from the inaccuracies of the physical model
introduced in Section 3.2. Furthermore, additional numerical errors arise
due to application of numerical methods for derivation of the system model.

For conversion of the system of hyperbolic stochastic partial differential
equations (3.22) into a discrete state-space form (3.1), the random fields
must be discretized not only in the spatial and temporal domains, as it
is usual for deterministic partial differential equations, but also in the
probability domain. The key idea of the discretization is inherited from
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the method of lines [184], which entails considering the dependences from
spatial and temporal variables as not equal but as the mapping of spa-
tial variables at every time step. As illustrated in Fig. 3.5, this enables
foremost the discretization of the spatial variables, where the temporal
variable remains continuous. Through the spatial discretization, the sys-
tem of stochastic partial differential equations is converted into a system
of stochastic ordinary differential equations. For this purpose, an element-
free method is applied, as proposed in Section 3.3.1. The discretization of
the probability is involved in the spatial discretization and leads to the rep-
resentation of the random fields by a finite sequence [123] of random vari-
ables at every time step. This sequence is finite because it involves a finite
number of the variables. Consequently, the implicit Euler method, e.g.,
introduced in [38], is applied for the temporal discretization, as described
in Section 3.3.2.

As a result, due to approximation of the heart wall by the physical body
with the linear viscoelastic behavior that is mathematically described by
the system of linear stochastic partial differential equations (3.22), the
physics-based system model (3.1) is also linear

zk+1 = Akzk +Bkûk + sk +wz
k . (3.23)

It should be noted that physical knowledge about the object under obser-
vation is incorporated in the real-valued system Ak ∈ Rnz×nz and input
Bk ∈ Rnz×nû matrices, which depend on the model parameters with the
physical meaning, such as, e.g., material density ρ, or Young modulus E.
As a consequence of recursive processing of the system model, these pa-
rameters influence the system state at every time step. Hence, the system
state zk+1 ∈ Rnz at time step tk+1 depends implicitly on the physical
properties. Here, the systematic modeling errors are denoted by the vec-
tor sk ∈ Rns , the stochastic modeling errors are described by the random
vector wz

k ∈ Rnwz . The known input of the system model is represented
by vector ûk ∈ Rnû .

3.3.1 Element-Free Spatial Discretization

This section deals with the first stage of the conversion of the physical
model formulated by the system of stochastic partial differential equa-
tions (3.22) into a physics-based system model (3.23). Since this conver-
sion is based on the methods for a solution of stochastic partial differential
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equations, first, an overview of these methods is given. Then, the sys-
tem of stochastic partial differential equations is converted in the system
of stochastic ordinary differential equations by exploiting the appropriate
element-free method and straightforward discretization of random fields
by the finite sequence of random variables.

Overview of Numerical Methods for Stochastic Partial Differential
Equations

In this section, an overview of numerical methods for a solution of stochas-
tic partial differential equations is set forth. Since these methods combine
probability theory with standard methods for the solution of determinis-
tic partial differential equations, the numerical methods applied only for
solution of deterministic problems are also analyzed with respect to their
efficiency and accuracy.

Techniques for Solving Stochastic Partial Differential Equations In
contrast to deterministic partial differential equations, whose solution is
usually represented by the field describing one realization of the system
state, stochastic partial differential equations account for randomness of
the underlying probabilistic model. Their solution is a random field char-
acterized by statistical moments, i.e., mean, variance, etc., which are
described by space and time-continuous random functions.

One possible way to solve the stochastic partial differential equations nu-
merically is to apply a direct method, like a Monte Carlo method [68,212]
or one of its derivatives [98, 153], which implies the solution of one deter-
ministic differential equation, e.g., by classical finite element method, for
each realization of the random parameter. The desired expectation of the
random field is then approximated by a sample average of independent
identically distributed realizations. Although the convergence rate of this
method is typically very low, its main advantage is that no assumptions
on the small amount of the noise are made.

Another way for solving stochastic partial differential equations is to use
the methods that convert the original stochastic problem into the deter-
ministic one by using different methods for discretization of the random
fields. These methods, e.g., stochastic finite element methods [6, 7, 17,
18, 221], usually employ a standard finite element approximation in the
space domain and, e.g., polynomial or point-based approximation in the
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probability domain. The main advantage of these methods is a faster
convergence rate.

Methods for Discretization of Random Fields A comprehensive overview
of the methods for discretization of the random fields is given in [202,
218]. Generally, these methods can be divided in three groups. The
first group consists of point discretization methods, such as, e.g., mid-
point method [107], shape function method [130,131], or integration point
method [138], which discretize the random field by the set of random vari-
ables that represent the values of the random field at some selected points.
The second group includes methods that discretize the random field by the
random variables averaged over local domains, such as, e.g., the weighted
integral method [59,207] or the spatial average method [217]. Finally, the
third group consists of series expansion methods, e.g., Karhunen-Loéve ex-
pansion or polynomial chaos expansion [196], which approximate the ran-
dom field by truncated series involving random variables and deterministic
functions.

Usually combined with classical methods for spatial discretization, like fi-
nite element methods, the methods for discretization of the random fields
approximate the random field based on elements. For example, in the
midpoint method, the value of random field over an element is represented
by its value at the central point of the element. A recent numerical tech-
nique, which is still under development, is the use of element-free numerical
methods, e.g., an element-free Galerkin method [10,168,169], instead of a
classical finite element method. In this technique, the approximation of
the random fields may be based upon arbitrary points distributed in the
spatial domain.

Classification of Numerical Methods for Partial Differential Equations
Commonly, the numerical methods for the solution of the stochastic, as
well as deterministic partial differential equations, can be divided on ele-
ment-based and element-free methods, as illustrated in Fig. 3.6. In the
following section, these groups of methods will be briefly presented. A com-
prehensive overview of the element-free methods in respect to the solution
of the deterministic problems can be found in [13,16,69,126].

1) Element-Based and Element-Free Methods The group of element-
based methods involves, for example, finite element [33], finite differ-
ence [44], as well as finite volume [65] methods. The element-free methods
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Numerical methods for solving partial differential equations

Element-based methods
• Finite element method
• Finite difference method
• Finite volume method

Element-free methods

With background grid
• Element-free Galerkin
• Smoothed particle
hydrodynamics

Without background grid
• Collocation
• Meshless local Petrov-
Galerkin collocation

Figure 3.6: Classification of the numerical methods for solving partial
differential equations. The element-based methods discretize the spatial
domain by elements and approximate the solution of partial differential
equations using piecewise polynomial functions defined over these elements.
The element-free methods represent the spatial domain by a set of points
and make use of the point-based approximation of the solution of the partial
differential equation. Some of these methods introduce a background grid
to enable a numerical integration.

include such methods as meshless local Petrov-Galerkin mixed colloca-
tion [14] or collocation [102].

The main differences between the classical element-based methods and
element-free methods are in the discretization of the spatial domain of the
partial differential equation and in the approximation of the solution of
this equation. The element-based methods discretize the spatial domain
by elements and use, e.g., piecewise polynomial functions defined over these
elements, such as Legendre or Chebyshev polynomials [103], for approxi-
mating the solution of the partial differential equation. It should be noted
that vertices of the elements are defined by the discretization points dis-
tributed in the spatial domain. Therefore, the connection between these
points must be specified for constructing the elements. This information is
superfluous for element-free methods. By representing the spatial domain
by a set of points, also called model nodes, they make use of point-based



56 Chapter 3. Probabilistic Models for Distributed Parameter Systems

approximation of the solution of the partial differential equation, e.g., by
radial basic functions [36] or moving least squares functions [126].

In comparison to element-based methods, element-free methods have sig-
nificant benefits arising from the lack of elements. First of all, the prepro-
cessing is less time-consuming since the conform element mesh, which is
crucial for element-based methods, is obsolete. Furthermore, element-free
methods are very flexible with respect to the adaptivity of the discretiza-
tion. It is commonly known [116,127] that due to change of the predefined
connection between nodes, the refinement of the discretization by insertion
or removing the nodes can cause severe numerical errors in element-based
methods. The element-free methods do not require the connection be-
tween the nodes. This makes the changing of their nodes distribution
easier. Moreover, the element-free methods are more suitable for handling
strong deformations in comparison to element-based methods. The main
reason for that is the fact that in case of strong deformations, the element-
based methods must cope with a distortion of the elements, which decrease
the accuracy of the solution of a partial differential equation.

2) Element-Free Methods with and without Background Grid It is im-
portant to note that the relationship of some methods to the element-free
group is too vague. These methods introduce the background grid that is
nothing more than a net of elements known from element-based methods.
For example, the smoothed particle hydrodynamics method [72, 134, 145,
146] exploiting integral representation of the solution of the partial differ-
ential equation, requires a grid for the discretization of the integrals. In
addition, the diffuse element method [151] and the element-free Galerkin
method [27] make use of a grid-based representation of the solution domain
to enable a numerical integration over the spatial domain. Furthermore,
the meshless local Petrov-Galerkin method [12] divides the solution domain
on subdomains, which are discretized by a grid. The latter three methods
are weak form methods. They minimize an average error over the solu-
tion domain or, as it is in case of meshless local Petrov-Galerkin method,
its subdomains. For this purpose, an integration is required. In con-
trast, strong form methods, such as collocation methods, e.g., the global
collocation [102], the hermite-based symmetric collocation method [67],
the Trefftz collocation method [121] or the meshless local Petrov-Galerkin
mixed collocation method [14], minimize the approximation errors only on
model nodes. It is for this reason that they do not need any elements, not
even in form of a background grid.
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shape function ψ : R3 → R

model nodes mj ∈ M

Figure 3.7: Discretization of the spatial domain by a finite set of points
mj ∈ M and point-based approximation of the displacement field at point
r by a series of shape functions ψ centered at model nodes mj ∈ V in the
neighborhood of this point.

The element-free methods without background grid have inherent advan-
tages over the methods with background grid, due to complete elimina-
tion of the element mesh and absence of integration over the spatial do-
main. They are easy to implement, highly flexible in the adaptation of the
discretization, and they achieve more efficiency.

Spatial Discretization

This section considers the spatial discretization of the system of stochastic
partial differential equations. For this purpose, firstly, the spatial domain
of the model is discretized by a set of the model nodes. Then, these nodes
are used for approximating the displacement field and its derivatives at
arbitrary discrete points in the spatial domain. In the next step, for min-
imizing the approximation errors, an appropriate element-free method is
applied. As a result, the system of stochastic partial differential equations
is converted in a system of the stochastic ordinary differential equations.

Discretization of the Spatial Domain For spatial discretization, first of
all, the spatial domain Ω ⊆ R3 of the physical model proposed in Sec-

tion 3.2 is discretized by a finite set M :=
{
mj
}NM

j=1
of points in R3 with

coordinates mj ∈ M ⊆ Ω, as shown in Fig. 3.7. These points are referred
to as model nodes.
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It should be emphasized that, in contrast to classical discretization of the
spatial domain by elements [33], here, the connectivity between the model
nodes is not determined. The reason for this is that the element-free
method without background grid will be applied for spatial discretization
of the model. Therefore, a priori information about the relationship be-
tween the nodes is superfluous, because no elements are needed for the
discretization of the system of stochastic partial differential equations.

Approximation of the Displacement Field As a further step towards the
spatially discrete system, the random displacement field representing the
solution of the system of stochastic partial differential equations (3.22), as
well as the derivatives of this field are approximated by a series of space-
dependent shape functions, e.g., moving least squares functions [126] or
radial basic functions [36], weighted by random nodal values. With the
aim of achieving the local character of this approximation, only the model
nodes in the neighborhood of the arbitrary point r = [xr, yr, zr]

T
are used

for approximating the value of the fields at this point, as schematically
illustrated in Fig. 3.7. Here, the displacement of the point in red is ap-
proximated based on the neighboring points in green. Therefore, when
the neighboring model nodes are collected in the set V ⊆ M, the random
displacement field d ∈ D at every point r ∈ Ω can be approximated by the
function dh : Ω× V ×R+ → Dh according to

dh(r,m, t) =
∑
j∈NV

Φj(r,mj)cj(t) , (3.24)

where NV denotes the number of model nodes mj in the set V. The
coordinates of these nodes are collected in the vector m ∈ R3NV . Elements
on the main diagonal of the matrix function

Φj(r,mj) = diag
{
ψ(r,mj)

} ∈ R3×3 (3.25)

are defined by space-dependent shape functions ψ, e.g., moving least squares
shape functions [67], collected in the vector ψ ∈ R3. These functions are

centered at every model node mj ∈ V and evaluated at every point r ∈ Ω.
Every jth nodal value is represented by a random vector cj ∈ R3, which
is time-dependent.

It should be noted that according to (3.24), the spatial and temporal de-
pendences of the random displacement field are separated. This enables
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the approximation of the space and time derivatives independently from
each other. For example, the first and the second time derivatives of the
random displacement field approximated by

ḋ
h
(r,m, t) =

∑
j∈NV

Φj(r,mj)ċj(t) , d̈
h
(r,m, t) =

∑
j∈NV

Φj(r,mj)c̈j(t)

(3.26)
are determined only by the time derivatives of the nodal values. The fur-
ther meaning of the approximation of the displacement field (3.24) is the
projection of the infinite dimensional solution of the system of stochastic
partial differential equations (3.22) into a finite dimensional subspace, de-
fined by model nodes and shape functions. This projection is necessary
for the minimization of the approximation error that is evaluated in this
subspace.

For computation of the matrix of shape functions (3.25), the model nodes
within the neighborhood of a point r are determined by selecting the nodes
near to this point. In elastically deformable objects, the neighborhood
remains constant, so that the same shape matrices Φj are used for the
computation of the displacement field (3.26), at every time step. This is in
contrast to models of the physical phenomena with changing neighborhood,
like gas, fire or water. It is worth mentioning that in this thesis, the
neighborhood may change, due to refinement of the spatial discretization
by inserting model nodes, as introduced in Chapter 6.

Approximation of Strain and Stress Tensors The strain and stress ten-
sors involve spatial derivatives of the random displacement field. For ap-
proximating these derivatives, first, the strain E ∈ R3×3 and the stress
Σ ∈ R3×3 tensors given in (3.6) and (3.3) are converted in the random
strain and stress fields represented by the vectors

ε = [ε11, ε22, ε33, 2ε23, 2ε13, 2ε12]
T
, σ = [σ11,σ22,σ33, 2σ23, 2σ13, 2σ12]

T
.

This compact representation of these tensors is evidenced by the fact that
the tensors are symmetric, i.e., shear strains ε12 = ε21, ε13 = ε31, ε23 =
ε32, as well as corresponding stresses are equal to each other.

Then, by rewriting (3.4) in the vector form

ε (d (r, t)) := Dd (r, t) ,
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the strain tensor E represented by a random strain field ε is approximated
by

εh
(
dh (r,m, t)

)
=
∑
j∈NV

DΦj(r,mj)︸ ︷︷ ︸
Bj(r,mj)

cj(t) , (3.27)

where the differential operator D and the matrix Bj are defined by

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂xr 0 0
0 ∂

∂yr 0

0 0 ∂
∂zr

∂
∂yr

∂
∂xr 0

0 ∂
∂zr

∂
∂yr

∂
∂zr 0 ∂

∂xr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, Bj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ψ(r,mj)
∂xr 0 0

0
∂ψ(r,mj)

∂yr 0

0 0
∂ψ(r,mj)

∂zr

∂ψ(r,mj)
∂yr

∂ψ(r,mj)
∂xr 0

0
∂ψ(r,mj)

∂zr
∂ψ(r,mj)

∂yr

∂ψ(r,mj)
∂zr 0

∂ψ(r,mj)
∂xr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix Bj contains the spatial derivatives of the shape function ψ.

Consequently, for approximating the modified Cauchy’s stress tensor Σ ,
this tensor (3.15) is rewritten in the vector form

σ
(
d (r, t) , ḋ (r, t)

)
= Cε (d (r, t)) + γCε̇ (d (r, t)) , (3.28)

where the time derivative of the strain field is equal to

ε̇ (d (r, t)) = Dḋ (r, t)

and the material matrix

C =
λ

ν

⎡
⎢⎢⎢⎢⎢⎢⎣

1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 (1− 2ν) /2 0 0
0 0 0 0 (1− 2ν) /2 0
0 0 0 0 0 (1− 2ν) /2

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.29)
incorporates the physical properties of the object under observation defined
by the Poisson ratio ν and the first Lamé constant λ. Then, by substituting
the approximation of the strain field (3.27) in (3.28), the modified Cauchy’s
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stress tensor represented by a random stress field is approximated by

σh
(
dh (r,m, t) , ḋ

h
(r,m, t)

)
=
∑
j∈NV

CBj
(
r,mj

)
cj (t)

+
∑
j∈NV

γCBj

(
r,mj

)
ċj (t) .

(3.30)

It should be noted that for approximating the divergence of the stress
tensor (3.13), which is rewritten in a vector form

divΣ
(
d (r, t) , ḋ (r, t)

)
:= DTσ

(
d (r, t) , ḋ (r, t)

)
, (3.31)

the second spatial derivative of the shape function ψ should be computed.
To overcome this, the methodology proposed in [14] is used. For this pur-
pose, the stress field σ ∈ R6 is approximated by a series of weighted shape
functions, similarly to the displacement field (3.24). Then, by substituting
this approximation in (3.30) and (3.31), the divergence of the stress field
results in

DTσh
(
d (r,m, t) , ḋ (r,m, t)

)
=

=
∑
j∈NV

(
Bj
(
r,mj

))T (
Sj
(
r,mj

))−1
CBj

(
r,mj

)
cj (t)

+
∑
j∈NV

γ
(
Bj
(
r,mj

))T (
Sj
(
r,mj

))−1
CBj

(
r,mj

)
ċj (t) .

The elements on the main diagonal of the matrix

Sj(r,mj) = diag
{
ψ(r,mj)

} ∈ R6×6

are the shape functions used for approximation of the random stress field
σ.

Approximation of the Continuous Model By substituting the approxi-
mations of the random displacement field (3.24), its time derivatives (3.26),
as well as strain (3.27) and stress (3.30) fields into the system of stochastic
partial differential equations (3.22), the problem of finding the displace-
ment of the object under observation given in (3.16) can be reformulated.
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Now, the aim is to find the NV nodal values cj that satisfy the equation∫
Ω

υTΩ

(
A
[
dh (r,m, t)

]
− f

I
(r, t)

)
dr

+

∫
ΓN

υTΓN

(
BN

[
dh (r,m, t)

]
− fu

N
(r, t)− fn

N
(r, t)

)
dr

+

∫
ΓR

υTΓR

(
BR[d

h (r,m, t)]− f
R
(r, t)

)
dr = 0

(3.32)

for initial conditions

SD

[
dh (r,m, t0)

]
= d0 (r) , r ∈ Ω ,

SV

[
dh (r,m, t0)

]
= v0 (r) , r ∈ Ω

and all arbitrary test functions υΩ, υΓN
and υΓR

at every time step. The
functionals A, BN and BR, as well as SD and SD are defined in (3.22).

Minimization of Approximation Errors Similarly to (3.16), the approx-
imated model (3.32) is justified within given initial conditions and all de-
fined test functions when the terms in parenthesis are equal to zero. How-
ever, this is not the case, due to errors involved by the approximation of the
displacement field as well as its space and time derivatives. Therefore, for
obtaining the numerical solution of a system of stochastic partial differen-
tial equations (3.22), these errors should be minimized. For this purpose,
numerical methods presented in the previous section, can be applied.

Meshless Local Petrov-Galerkin Mixed Collocation Method For mini-
mization of approximation errors involved in the model (3.32), the meshless
local Petrov-Galerkin mixed collocation method [14] is chosen.

As shown in Fig. 3.5, this method refers to the group of element-free meth-
ods without background grid that do not use elements. It minimizes ap-
proximation errors on selected collocation points ri ∈ Ω distributed in the
undeformed configuration of the physical model. In this way, the integra-
tion over the solution domain Ω or its subdomains, which is common for
weak form methods, such as the element-free Galerkin method [27] or the
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meshless local Petrov-Galerkin methods [12], is avoided. This contributes
to the efficiency of numerical calculations.

The next advantage of this method is that the spatial variations of the
motion are flexibly handled due to local approximation of the solution.

Notwithstanding the above, there is still a problem that the obtained nu-
merical solution may be inaccurate and instabilities may occur in the case
of strong spatial variations of the displacement field. The main reason for
this is that the information about the motion of the object between the
collocation points is not taken into consideration. However, as it is stated
in various works [14,102], this method, as well as other strong form meth-
ods [67,121], provide highly accurate results for smooth functions even for
a small number of collocation points.

Therefore, by approximating the smooth displacement field of the heart
wall, which has no strong spatial irregularities, this method can pro-
vide a sufficient accuracy of the numerical solution and low complexity
of numerical computations.

Spatial Discretization of the Continuous Model According to the mesh-
less local Petrov-Galerkin mixed collocation method, the test functions are
assumed to be time-independent. Furthermore, they are represented by
Dirac delta series

υΩ=

NI∑
i=1

ζiδ
(
r − ri

)
, υΓN

=

NN∑
i=NI+1

ζiδ
(
r − ri

)
, υΓR

=

NR∑
i=NN+1

ζiδ
(
r − ri

)
(3.33)

centered at the collocation points ri ∈ Ω. It should be noted that the
coefficients ζi ∈ R3 are arbitrary.

Plugging the functions (3.33) into (3.32) yields

NI∑
i=1

(
ζi
)T (

A
[
dh
(
ri,m, t

)]− f
I

(
ri, t
))

+

NN∑
i=NI+1

(
ζi
)T (

BN

[
dh
(
ri,m, t

)]− fu
N

(
ri, t
)− fn

N

(
ri, t
))

+

NR∑
i=NN+1

(
ζi
)T (

BR

[
dh
(
ri,m, t

)]− f
R

(
ri, t
))

= 0 .

(3.34)
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Since the coefficients ζi are arbitrary, (3.34) leads to a system of space-
discrete algebraic equations of the form

NV∑
j=1

Mij c̈j (t) +

NV∑
j=1

Vij ċj (t) +

NV∑
j=1

Kijcj (t) = f i (t) (3.35)

for every collocation point ri ∈ Ω. The mass Mij , damping Vij and
stiffness Kij matrices are defined by

Mij =

⎧⎪⎨
⎪⎩
ρΦj

(
ri,mj

)
if 1 ≤ i ≤ NI ,

0 if I + 1 ≤ i ≤ NN ,

0 if NN + 1 ≤ i ≤ NR ,

Kij =

⎧⎪⎨
⎪⎩
(
Bj
(
ri,mj

))
T
(
Sj
(
ri,mj

))−1
CBj

(
ri,mj

)
if 1 ≤ i ≤ NI ,

CBj
(
ri,mj

)
Ni if NI + 1 ≤ i ≤ NN ,

βΦj
(
ri,mj

)
+CBj

(
ri,mj

)
Ni if NN + 1 ≤ i ≤ NR ,

Vij =

⎧⎪⎨
⎪⎩
Uij
(
ri,mj

)
if 1 ≤ i ≤ NI ,

γCBj
(
ri,mj

)
Ni ifNI + 1 ≤ i ≤ NN ,

γCBj
(
ri,mj

)
Ni ifNN + 1 ≤ i ≤ NR ,

(3.36)

where the matrix Uij is achieved as follows

Uij
(
ri,mj

)
=ρκΦj

(
ri,mj

)
+γ
(
Bj
(
ri,mj

))
T
(
Sj
(
ri,mj

))−1
CBj

(
ri,mj

)
.

The matrix

Ni =

⎡
⎢⎣x

ni

0 0 0 zn
i

yn
i

0 yn
i

0 zn
i

0 xn
i

0 0 zn
i

yn
i

xn
i

0

⎤
⎥⎦

consists of the elements of the normal vector ni =
[
xn

i

, yn
i

, zn
i
]T

at the

surface at point ri. It should be noted that the boundary ∂Ω of the surface
is assumed to be sufficiently smooth for the existence of the normal. The
random vector f i denoting the model input is determined by the function

f i (t) =

⎧⎪⎨
⎪⎩
f
I

(
ri, t
)
, if 1 ≤ i ≤ NI ,

fu
N

(
ri, t
)
+ fn

N

(
ri, t
)
, if NI + 1 ≤ i ≤ NN ,

f
R

(
ri, t
)
, if NN + 1 ≤ i ≤ NR ,

(3.37)
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whereby the random field of the uniform pressure force described by a
space-discrete and time-continuous function fu

N
is now discretized by a

finite sequence of time-dependent random variables assigned to the collo-
cation points ri.

Uncertainties of the Space-Discrete Model

The uncertainties of the space-discrete and time-continuous model (3.35)
are primarily inherited from the uncertainties of the system of stochastic
partial differential equations (3.22), which is introduced in Section 3.2.
Additionally, systematic errors arise from the spatial discretization of the
stochastic partial differential equations.

Uncertainties of Input Forces and Boundary Conditions By rewriting
the random input (3.37) of space-discrete model as

f i (t) = ûi (t) + ui (t) +wui

(t) , (3.38)

it should be noted that the value of the random field f i at point ri ∈ Ω is

determined by known pressure force ûi corrupted by additional stochastic
perturbations wui

and unknown systematic errors ui. The information
about the known pressure force ûi is provided by a heart catheter, whereby
the unknown part of the model input ui is determined by the muscle
strengths f

R
, density of volume forces f

I
, as well as a nonuniform pressure

force fn
N
acting on the point ri ∈ Ω. Therefore, the known and unknown

parts of the model input are defined by

ûi (t) =

⎧⎪⎨
⎪⎩
0 if 1 ≤ i ≤ NI ,

μf
u
N

(
ri, t
)

if NI + 1 ≤ i ≤ NN ,

0 if NN + 1 ≤ i ≤ NR ,

ui (t) =

⎧⎪⎨
⎪⎩
f
I

(
ri, t
)

if 1 ≤ i ≤ NI ,

fn
N

(
ri, t
)

if NI + 1 ≤ i ≤ NN ,

f
R

(
ri, t
)

if NN + 1 ≤ i ≤ NR ,

(3.39)

where the vector function μf
u
N denotes the mean value of the uniform

pressure force extracted from the data provided by the heart catheter.
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The stochastic uncertainties

wui

(t) =

⎧⎪⎨
⎪⎩
0 if 1 ≤ i ≤ NI ,

wfu
N

(
ri, t
)

if NI + 1 ≤ i ≤ NN ,

0 if NN + 1 ≤ i ≤ NR ,

(3.40)

whose randomness stems from the measurements of the uniform pressure,
are inherited from the random input of the continuous model set forth
in (3.35). The measurement noisewfu

N is assumed to be zero-mean tempor-
ally-white Gaussian, as introduced in Section 3.2. Since the uniform pres-
sure force affects the points lying at the Neumann boundary ΓN equally,
this excitation is spatially invariant, i.e., isotropic.

Uncertainties of Initial Conditions For modeling the uncertain initial
conditions, it should be remembered that for derivation of the space-
discrete model, the problem (3.16) of finding the displacement field d ∈ D
of the object is converted into the problem (3.32) of determining the nodal
values cj ∈ R3 representing the approximation coefficients. Therefore, the
initial conditions of the space-discrete model must be formulated in terms
of these coefficients.

Their probability distribution is derived based upon the approximation
(3.24) of the displacement by a series of weighted space-dependent shape
functions. It should be stressed that the motion of the heart wall can be ob-
served by a camera system only at measurement points L =

{
li
}NL

i=1
, L ⊂

Ω distributed in the spatial domain Ω. Hence, according to (3.21), the
initial values of the displacement and velocity fields at these points are
denoted by independent Gaussian random variables

di0 ∼ N
(
μd

i

0
,Σdi

0

)
, i ∈ {1, . . . , NL} ,

vi0 ∼ N
(
μv

i

0
,Σvi

0

)
, i ∈ {1, . . . , NL} .

(3.41)

The covariance matrices Σdi

0 ∈ R3×3 and Σvi

0 ∈ R3×3 characterize the un-
certainties of these variables. These uncertainties are represented by cam-
era noise, which is assumed to be spatially and temporally white. Then,
from (3.24) it follows that the initial values of the approximation coeffi-
cients cj ∈ R3 collected in the vector c0 ∈ R3NL are defined by Gaussian
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random vectors

c0 = μc
0
+wc

0 , c0 ∼ N
(
μc
0
,Σc

0

)
,

ċ0 = μċ
0
+wċ

0 , ċ0 ∼ N
(
μċ
0
,Σċ

0

)
,

(3.42)

which are characterized by the mean vectors and covariance matrices com-
puted according to

μc
0
= (Φ)

−1
μd
0
, Σc

0 =
(
(Φ)

−1
)T

Σd
0 (Φ)

−1
,

μċ
0
= (Φ)

−1
μv
0
, Σċ

0 =
(
(Φ)

−1
)T

Σv
0 (Φ)

−1
.

In order to ensure the invertibility (Φ)
−1

of the matrixΦ, the same number
of the model nodes NM is chosen as the number of the measurement points
NL. The matrix

Φ =

⎡
⎢⎣ Φ11 Φ12 · · · Φ1NM

...
...

. . .
...

ΦNL1 ΦNL2 · · · ΦNLNM

⎤
⎥⎦ (3.43)

is assembled from the matrices

Φij = Φj
(
li,mj

)
= diag

{
ψ
(
li,mj

)} ∈ R3×3 (3.44)

determined by the matrix function Φj , which is defined in (3.25). The
elements of the vector ψ ∈ R3 are values of the space-dependent shape

function ψ centered at model node mj ∈ M and evaluated at the point
li ∈ L. Furthermore, the vectors μd

0
and μv

0
collect the mean values

μd
0
=

⎡
⎢⎢⎢⎢⎣
μd

1

0

μd
2

0
...

μd
NL

0

⎤
⎥⎥⎥⎥⎦ , μv0 =

⎡
⎢⎢⎢⎢⎣
μv

1

0

μv
2

0
...

μv
NL

0

⎤
⎥⎥⎥⎥⎦

of the NL random variables introduced in (3.41). The block-diagonal ma-
trices Σd

0 and Σv
0 are assembled from covariance matrices of these variables

according to

Σd
0 = diag

{
Σd1

0 ,Σ
d2

0 , . . . ,Σ
dNL

0

}
,

Σv
0 = diag

{
Σv1

0 ,Σ
v2

0 , . . . ,Σ
vNL

0

}
.
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Spatial Discretization Errors In addition to the uncertainties of the
model input and initial conditions inherited from the continuous model,
the space-discrete model involves discretization, also known as approxima-
tion errors, which arise from the spatial discretization. These errors are
systematic. They are defined as the difference between the exact solution
of the stochastic partial differential equations system (3.22) and its nu-
merical approximation (3.24) at every time step. Unfortunately, the exact
solution of the system of stochastic partial differential equations (3.22) is
unavailable. This is the reason that the errors of the spatial discretization
can only be estimated. The second important point is that, to our knowl-
edge, there is still no mathematical analysis on the a priori error estimation
of the meshless local Petrov-Galerkin mixed collocation method. The main
reason for this is that this method does not possess the property of orthog-
onality between the solution space and error space that builds a basis for
the error analysis of the standard finite element method. Therefore, the
theory of the finite element method cannot be used for this purpose. In
this thesis, the approximation errors are continuously reduced based on
the a posteriori error evaluation provided in Chapter 6 that renders the a
priori estimation of these errors superfluous.

Resulting Space-Discrete Time-Continuous Model

As a result of spatial discretization, the system of stochastic partial dif-
ferential equations (3.22) is converted in the system of stochastic ordinary
differential equations written in a concise vector-matrix form

Mc̈ (t) +Vċ (t) +Kc (t) = û (t) + u (t) +wu (t)

c (t0) = μc
0
+wc

0 ,

ċ (t0) = μċ
0
+wċ

0 .

(3.45)

Here, the vectors of the known û ∈ R3NR and unknown u ∈ R3NR model
input, as well as the vector of the stochastic perturbations wu ∈ R3NR

collect values of the respective functions shown in (3.39) and (3.40), which
are evaluated at collocation points ri ∈ Ω. The global mass matrix M ∈
R3NR×3NM , damping matrix V ∈ R3NR×3NM and stiffness matrix K ∈
R3NR×3NM are assembled from local matrices (3.36) in the same way as
the matrix Φ ∈ R3NR×3NM , which is defined in (3.43).
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3.3.2 Temporal Discretization

In this section, the space-discrete physical model, formulated by a sys-
tem of stochastic ordinary differential equations (3.45), is converted in the
space- and time-discrete system model by means of time-discretization. As
illustrated in Fig. 3.5, for this purpose, the system of stochastic ordinary
differential equations, which is of second order, is first converted into the
first order system. Then, the integral equation defining the solution of the
latter system is approximated by an implicit Euler method under the as-
sumption of the piecewise constant behavior of system input. As a result,
this section concludes with the formulation of the discrete physics-based
system model and its uncertainties.

Conversion to a First Order System The system of stochastic ordinary
differential equations (3.45), which is of second order, can be rewritten as
a first order time-continuous system

ż(t) = Az(t) +B (û (t) + u (t)) +wu (t) (3.46)

characterized by the system state

z(t) =

[
c(t)
ċ(t)

]
(3.47)

collecting the nodal values and their time-derivatives. The system A ∈
R6NR×6NM and input B ∈ R6NR×3NR matrices are defined by

A =

([
V M
I O

])−1 [ −K O
O I

]
,

B =

([
V M
I O

])−1 [
I
O

]
,

where the matricesM ∈ R3NR×3NM , V ∈ R3NR×3NM andK ∈ R3NR×3NM

stem from (3.45). The matrix I ∈ R3NR×3NM denotes the identity matrix
and the matrix O ∈ R3NR×3NM stands for zero matrix.

It should be noted that in (3.46), the first time derivatives of nodal values
are considered as separate variables.

Numerical Time Integration An implicit Euler time integration me-
thod [75] is applied for temporal discretization of (3.46). In contrast to the
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explicit methods, such as, e.g., explicit Euler method [75], which are only
stable when the step size is small enough, this method has no restrictions
on the step size. Of course, the accuracy is lost when the step size becomes
large, however, this method will never lose stability [75]. In comparison
to the higher order approximation methods, such as implicit Runge-Kutta
method, the implicit Euler method is computationally less expensive, but
provides less accuracy when the step size is large.

The time-continuous solution of the system (3.46)

z(t) =eA(t−t0)z(t0) +
∫ t

t0

eA(t−τ)B(τ)û(τ) dτ

+

∫ t

t0

eA(t−τ)B(τ) (u(τ) +wu(τ)) dτ

is approximated between two time steps t = tk and t0 = tk+1 by a
rectangular integration

z(tk+1)≈z(tk)+

∫ tk+1

tk

(A(τ)z(tk+1)+B(τ)(û(τ) + u(τ)) +B(τ)wu(τ)) dτ,

(3.48)
where it is assumed that the step size Δt = tk−tk+1 is sufficiently small for
achieving a high accuracy. In this case, the functions defining the known
and unknown model input û ∈ R3NR , u ∈ R3NR can be assumed to be
piecewise constant between the time steps. Furthermore, the matrices A
and B, which involve physical properties of the object that may vary over
time, are supposed to remain constant between the time steps.

From (3.48) it follows that the approximation of the system state at time
step t = tk+1 is defined by the time-discrete equation

zk+1 = Akzk +Bk (ûk + uk) +wz
k , (3.49)

where the time-discrete system and input matrices denoted by Ak ∈
R6NR×6NM and Bk ∈ R6NR×3NR respectively so as the process noise
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wz
k ∈ R6NR are approximated by

Ak = I

(
I−
∫ tk+1

tk

A(τ) dτ

)−1

≈ I (I−AΔt)
−1

,

Bk =

∫ tk+1

tk

B(τ)

(
I−
∫ tk+1

tk

A(τ)dτ

)−1

dτ≈BΔt (I−AΔt)
−1
,

wz
k =

∫ tk+1

tk

B(τ)

(
I−
∫ tk+1

tk

A(τ) dτ

)−1

wu(τ) dτ .

(3.50)

As a result of the first two equations (3.50), the system and input matrices
of the space- and time-discrete system (3.49) can be written in the concise
form

Ak =

([
V +ΔtK M

I −IΔt

])−1 [
V M
I O

]
,

Bk =

([
V +ΔtK M

I −IΔt

])−1 [
ΔtI
O

]
.

(3.51)

It is worth noting that when the number of the model nodes mj ∈ M is
equal to the number of the collocation points ri ∈ Ω, the inverses of the
matrices exist.

Uncertainties of Space- and Time-Discrete Model

The uncertainties of the space- and time-discrete model (3.49) representing
the physics-based system model are inherited, first of all, from the space-
discrete and time-continuous model (3.45), which is used as a starting
point for temporal discretization. Furthermore, since the approximation of
the system state (3.49) obtained using implicit Euler method satisfies the
continuous equations (3.46) only approximatively, additional systematic
errors arise from the time-discretization.

Uncertainties of Model Input According to (3.50), the stochastic uncer-
tainties of the system model wz

k are determined by the uncertainties w
u

of the input of space-discrete and time-continuous model (3.45). By as-
suming that the noise process is stationary, i.e., its probability distribution
does not change when shifted in time, the covariance of the process noise
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can be approximated similarly to [195] by

Σwz

k =

∫ tk+1

tk

(
I−
∫ tk+1

tk

A(τ) dτ

)−1

B(τ)Σu(τ)BT(τ)

·
((

I−
∫ tk+1

tk

A(τ) dτ

)−1
)T

dτ ≈ BkΣ
u
kB

T
k ,

where the covariance matrix of the time-discrete input noise is equal to
Σu
k =

Σu

Δt .

Uncertainties of Initial Conditions The uncertainties of the initial con-
ditions come directly from the space-discrete model (3.45). In order to rep-
resent the initial conditions of the system model in a concise vector-matrix
form, the mean values of the approximation coefficients at initial time step

t0 and its derivatives are collected in the vector μ
z
0
=

[(
μc
0

)T
,
(
μċ
0

)T]T
.

Then, the initial conditions can be written in the form

z0 = μz
0
+wz

0 ,

where the vector wz
0 =

[
(wc

0)
T
,
(
wċ

0

)T]T
contains the stochastic errors.

Time Discretization Errors Before estimating the systematic errors cau-
sed by time-discretization, it should be noted that the system
state z (tk+1) ∼ N (μz (tk+1) ,Σ

z (tk+1)
)
that represents the exact so-

lution of the system of stochastic partial differential equations (3.46) at

time step tk+1 and its approximation zk+1 ∼ N
(
μz
k+1

,Σz
k+1

)
are Gaus-

sian distributed with respective mean and covariance functions. Then, the
error caused by time-discretization τk+1 = μz (tk+1) − μz

k+1
is defined as

the difference between the mean values of the exact and approximated so-
lutions. According to (3.48), it arises from approximating the derivative
of the system state by a rectangular integration

μ̇z(tk+1) ≈ lim
Δt→0

1

Δt

(
μz(tk+1)− μz(tk)

)
. (3.52)

Therefore, the error τk+1 is equal to a local truncation error of the implicit
Euler method, which can be obtained by expanding both parts of (3.52)
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by the Taylor series around the time step tk according to

τk+1 =
1

Δt

(
μz (tk+1)− μz (tk)

)− μ̇z (tk+1)

= μ̇z (tk) +
Δt

2
μ̈z (tk)− μ̇z (tk+1)︸ ︷︷ ︸

μ̇z(tk)+Δtμ̈z(tk)

=− 1

2
Δtμ̈z (tk) +O (Δt2) .

(3.53)

It should be noted that the function μz is twice differentiable with respect
to time that follows from the assumption on twice differentiability of the
displacement field in respect to time.

As a result, the systematic error caused by the time-discretization is pro-
portional to the size of the time step.

Discrete Physics-Based System Model

To summarize the results, the discrete system model, given in its general
form in (3.1), is defined by the discrete function

zk+1 = Akzk +Bkûk + sk +wz
k , (3.54)

where the systematic errors sk and initial conditions for system state z0

are equal to
sk = Bkuk + τk , z0 = μz

0
+wz

0 .

The system noise wz
k is stationary, zero-mean and Gaussian

wz
k ∼ N (0,Σwz

k

)
with covariance Σwz

k .

Derived from the system of stochastic partial differential
equations (3.22) by means of space- and time-discretization, the system
model (3.54) is physics-based, since its mathematical formulation involves
the physical properties of the object under observation. Accordingly, the
parameter of the physical model, such as the Young modulus or the Pois-
son ratio, which define the material properties of the object, determine the
system matrices Ak and Bk and therefore, also the system state zk+1 at
the next time step.

3.4 Physics-Based Measurement Model

The measurement model, which is introduced in its general form by the
measurement equation (3.1), defines the relationship between the system
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Physical model in form of a system of SPDEs

Physics-based approximation χ
k
(zk)

Solution of a system of SPDEs Spatial discretization errors

Projection onto image plane ζ(χ
k
(zk))

Physics-based measurement model Calibration errors

Figure 3.8: Physics-based measurement model is derived from the physical
model formulated by a system of stochastic partial differential equations
(SPDE). It implicates the numerical solution of this system.

state zk ∈ Rnz and measurements ŷ
k
∈ Rny provided by a trinocular

camera system at the current time step tk. The aim of this section is to
derive the measurement model from the underlying physical model that
was mathematically formulated in Section 3.2 by a system of stochastic
partial differential equations (3.22).

The measurement model is based on the fact that the camera image repre-
sents the projection of the object under observation onto the image plane
of the camera. Therefore, as illustrated in Fig. 3.8, the deduction of this
model can be divided into two steps, leading to the implication of the phys-
ical characteristics of the object in the measurement equation. In order to
clarify this context, it should be noted that the system state, provided by
a physics-based system model, depends on the physical properties of the
object, such as, e.g., Poisson ratio. In the first step, this state is used for
approximating the current position of the object under observation, which
is described by a solution of the system of stochastic partial differential
equations. This solution is obtained by a physics-based approximation,
defined by the time-dependent function

χ
k
: Rnz → R3 (3.55)

that maps the current system state zk ∈ Rnz to the current position of
the object in R3. In the next step, this object is projected onto the image
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plane of the camera. This is described by the function

ζ : R3 → R2 (3.56)

that maps the current position of the object in R3 to its image projection
in R2.

With the aim of providing an accurate description of the relationship be-
tween the system state and measurements, systematic and stochastic errors
are considered at every step of the measurement model deduction. Thus,
approximation errors are introduced in the measurement model because
of the numerical approximation of the solution of the system of stochastic
partial differential equations, which is not analytically solvable. Further-
more, calibration inaccuracies contaminate the projection of the approx-
imated position of the object under observation onto the image plane of
the camera.

3.4.1 Model of Camera System Measurements

Against the background that the measurement model defines the relation-
ship between the system state and the camera measurements, this section
starts with the mathematical description of the measurements. Then, the
physics-based measurement model is derived in two steps: physics-based
approximation of the object’s position and its projection onto the image
plane of the camera.

Mathematical Description of Camera Measurements

The motion of the heart surface is observed by a stationary trinocular
camera system, which provides at every discrete time step three camera
images, as depicted in Fig. 3.9. These images illustrate the position of the
heart surface projected onto the image planes of the cameras at respective
time steps.

Assumptions With the aim of providing a mathematical description of
this projection, the functionality of every camera enumerated by index
j = 1, . . . , 3 is approximated by a camera model, which is used by a cal-
ibration algorithm for estimating the extrinsic Rj and intrinsic Kj cam-
era parameters, as well as translation vector tj . Each of the cameras is
supposed to be modeled well by a pinhole camera model. The detailed
description of this model can be found in [109]. The pinhole camera model
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Figure 3.9: Measurement information provided by camera images.

assumes that the three-dimensional points on the visible surface of the ob-
ject are projected onto the images of every camera according to the central
projection. Another assumption made is that the image distortion is neg-
ligible. This is the case when the finest professional photographic lenses
are used and the cameras are located sufficiently far away from the object
under observation. The camera system can be installed for surgical oper-
ations on the open beating heart in this way. In case of minimal-invasive
operations employing endoscopes, the image distortion may be strong and
therefore, must be removed, e.g., by the algorithm proposed in [15].

Image as Set of Pixels The images provided by a trinocular camera
system arrive continuously in real time. Each image is represented by a
set of pixels with assigned color information. For example, as illustrated
in Fig. 3.9, the image provided by camera j at the current time step

tk is defined by a set Pjk =
{
pj,i
k

}N
P

j
k

i=1
of pixels pj,i

k
:=
[
xp

j,i

k , yp
j,i

k

]T
∈

Pjk identified by row xp
j,i

k and column yp
j,i

k indices that are bounded by
constant limits of the image resolution.

The image sequence collecting all images provided by camera j over an
open time interval I := [t1, t1+T ), where T > 0 and t1 is initial time step, is

described by an unbounded sequence of sets Pj1:k =
{
Pj1 ,Pj2 , . . . ,Pjk−1,Pjk

}
enumerated by index k ∈ I. Finally, all three image sequences of the
trinocular camera system are denoted by a union of unbounded sequences

P1:k =
n⋃
j=1

Pj1:k, n ∈ {1, 2, 3}.



3.4. Physics-Based Measurement Model 77

Camera Measurements The common way to reconstruct the position of
the object under observation from camera images is to employ a triangula-
tion method introduced in [80]. Unfortunately, in this way, the entire heart
surface cannot be reconstructed without further effort. The main reason
is that images are represented by discrete sets of pixels. Therefore, when
the correspondences between all pixels of the images acquired at the same
time step are exactly known, the position of the heart surface can still
be obtained only at discrete points. Since the exact correspondences be-
tween the pixels are hardly determinable, it is more practicable to look for
correspondences between only some image features that can be extracted
by proper feature detection algorithms, an overview of which is illustrated
in [206].

The positions of all image features extracted from the image of camera j

at time step tk are collected in the set Fj
k =

{
f j,i
k

}N
F

j
k

i=1
⊆ Pjk. Similarly

to the pixels, each image feature f j,i
k

:=
[
xf

j,i

k , yf
j,i

k

]T
is identified by

row xf
j,i

k and column yf
j,i

k indices. Only image features that have unique
correspondences in all three camera images acquired at the same time step
represent the camera measurements ŷj,i

k
∈ Yjk ⊆ Fj

k . The image features
extracted from all images of the image sequence gained by camera j over
an open time interval I are ordered in the sequence of image feature sets

Fj
1:k =

{
Fj

1 ,Fj
2 , . . . ,F j

k−1,Fj
k

}
. Finally, the image features extracted from

all three image sequences are assembled in a union of sequences F1:k =
n⋃
j=1

Fj
1:k , n ∈ {1, 2, 3}.

Physics-Based Approximation

For reconstructing the three-dimensional position of the heart surface
under observation, a physics-based approximation defined in its general
form (3.55) by the function χ

k
, is employed. This function is derived

here in a straightforward manner from the numerical solution (3.24) of the
system of stochastic partial differential equations (3.22).

In order to define the relationship between the system state zk ∈ Rnz and
measurements collected in the vector ŷ

k
∈ Rny , it should be noted that

image features represent the projections of the measurement points, i.e.,
landmarks distributed on the heart surface, onto the image plane of the
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camera. Since the problem of establishing the correspondences between
the image features and landmarks is a subject of the next chapter, these
correspondences are assumed to be exactly known in this section.

The positions of all landmarks at time step tk are collected in the set

Lk =
{
lik
}NLk

i=1
⊆ Ω

ψ

k , where the position of every landmark is described

by three-dimensional coordinates lik :=
[
xl

i

k , y
li

k , z
li

k

]T
∈ Lk. It should be

emphasized that the set of the landmarks Lk is a subset of the bounded
domain Ω

ψ

k introduced in Section 3.2.

The current position of the landmark lik on the heart surface is not exactly
known, since the underlying physical model approximating the behavior of
the object under observation is corrupted by uncertainties. The displace-
ment at this point is determined by the numerical solution of the system
of stochastic partial differential equations (3.24) evaluated on point li ∈ Ω.
The point li represents the position of the landmark lik in the undeformed
configuration of the model introduced in Section 3.2. Since the heart is con-
tinuously moving, it is difficult to determine its undeformed configuration.
Therefore, the point li is obtained by averaging the measured positions of
the landmark lik over a certain time interval I := [t1, t1 + T ], where t1 is
the initial time step and T > 0 is the initialization time. These positions
are reconstructed from the corresponding image features detected in all
three cameras by a triangulation method introduced in [80] and shortly
presented in Appendix A. It should be noted that all positions of the land-
marks in the undeformed configuration of the model are collected in the

set L =
{
li
}NL

i=1
⊆ Ω that is a subset of the domain Ω.

As illustrated in Fig. 3.10, the uncertain position of every landmark lik on
the heart surface is determined by a physics-based approximation at every
time step tk. This approximation is defined by the function

lik (zk) = χ
k
(zk) = li + dk (zk) = li +

∑
j∈NV

Hijzjk , (3.57)

which takes into account that the displacement of the object (3.24) rep-
resents the solution of the system of stochastic partial differential equa-
tions (3.22). The matrix

Hij =
[
Φij , 0

] ∈ R3×6 (3.58)



3.4. Physics-Based Measurement Model 79

Discrete physical model
in mechanical equilibrium

Image feature ŷj,i
k

= f j,i
k

Projection onto image plane

Physics-based approximation

Landmark lik

Model node mi

Landmark li

Figure 3.10: Derivation of the measurement model. The extracted
positions of image features are considered as camera measurements.

is obtained by the concatenation of the matrixΦij ∈ R3×3 defined in (3.44)
with zero matrix 0 ∈ R3×3.

The physics-based approximation has a local character because only the
model nodes in the neighborhood of the point under consideration are
used for approximating the displacement of this point. It should be noted
that the function χ

k
describing this approximation, is time-dependent.

The reason for this is in the refinement of the spatial discretization of
the model by inserting additional model nodes. This refinement will be
introduced in Chapter 6. As a result, different model nodes can be located
near the landmark li at different time steps.
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Projection onto Image Plane of the Camera

Before presenting the second step of the derivation of the measurement
model, the well-known homogeneous coordinates [80] are introduced for
describing the central projection of the landmarks onto the image plane of
the camera.

Transformation into Homogeneous Coordinates The transformation of
the Euclidean coordinates into homogeneous coordinates is done by adding
the additional last coordinate. For example, mapping of the landmark
position lik into homogeneous coordinates is described by function

ϕl : lik �→ wi
[(
lik
)T

, 1
]T

, (3.59)

where wi is arbitrary scalar. For the image feature f j,i
k
, this mapping looks

similarly

ϕf : f j,i
k

�→ υj,i
[(

f j,i
k

)T
, 1

]T
, (3.60)

where υj,i is arbitrary scalar. For the back-transformation, the last co-
ordinate of the vector in homogeneous coordinates should be removed.
Accordingly, for the landmark lik this transformation is defined by the
function φl : R4 → R3, which maps the four-dimensional vector in ho-
mogeneous coordinates in the three-dimensional one, whereby after elim-
inating the arbitrary scalar wi, only the first three components of the
homogeneous vector are considered. In the same way, when the position
of the image feature f j,i

k
is of interest, the function φf : R3 → R2 maps

the three-dimensional vector in the two-dimensional one.

Mathematical Description of the Projection The next step of the mea-
surement model deduction is based on projecting the current position of
the landmarks onto the images of every camera. This projection in its
general form (3.56) is described by the function ζ. It should be noted
that the measurement equation becomes nonlinear due to nonlinear math-
ematical formulation of the projection onto the image plane of the cam-
era. The advantage of this is the omission of the computationally ex-
pensive three-dimensional reconstruction from camera images that occurs
implicitly. Customarily, since the depth information is not explicitly re-
constructed from the camera measurements, lower accuracy is expected
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along the camera axis. However, these inaccuracies are compensated by
suitable non-parallel positioning of the cameras.

The relationship between the uncertain position of the landmark lik and
the uncertain position of image feature f j,i

k
is formulated by projecting the

landmark onto the image plane of the camera

ϕf
(
f j,i
k

)
= Pj,iϕl

(
lik
)
, (3.61)

where the projection matrix Pj,i = Kj
[
Rj tj

]
consists of the matrices of

intrinsic Kj and extrinsic Rj camera parameters, provided by the calibra-
tion of the camera system, as well as of the translation vector tj . Then,
as illustrated in Fig. 3.10, the measurement equation is obtained for every
landmark

ŷj,i
k
:= f j,i

k
= ζ
(
χ
k
(zk)

)
= φf

(
Pj,iϕl

(
lik
))

(3.62)

by back-transformation of the image feature from the homogeneous coor-
dinate system into the Cartesian one.

3.4.2 Measurement Uncertainties

Generally, there are two types of uncertainties in the measurement model:
Systematic uncertainties, consisting of approximation and reprojection er-
rors, and stochastic uncertainties incorporating the measurement noise
that is caused, e.g., by uncertainties of the feature detection algorithm,
electronic noise, changing light conditions, or flickering.

Systematic Uncertainties

The sources of the systematic uncertainties are twofold, as illustrated in
Fig. 3.9. On one hand, they are introduced in the measurement model by
a physics-based approximation, on the other hand, by projection of the
landmarks positions onto the image plane of the camera.

Spatial Discretization Errors The physics-based approximation (3.57)
exploits the numerical solution of the system of stochastic partial differ-
ential equations (3.24), which is corrupted by approximation errors in-
troduced in Section 3.3.1. Therefore, the relationship (3.61) between the
landmarks positions and image features is also afflicted with these errors.
It should be noted that the a priori estimation of these errors is not nec-
essary here because, similarly to the approximation errors of the system
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model, the approximation errors of the measurement model will be reduced
in Chapter 6 based on the feedback from the visual motion compensation,
which incorporates the a posteriori estimation of these errors.

Calibration Errors Inaccuracies of calibration, such as incompletely elim-
inated distortion, uncertainties of the camera parameters or an inappro-
priate camera model, lead to reprojection errors ej,ik := [xe

j,i

k , ye
j,i

k ]T. De-
fined in pixel coordinates, these errors are represented by the distance
between the true position of the image feature and the projection of the
corresponding unknown true position of the landmark.

Stochastic Uncertainties

The stochastic uncertainties of the measurement model are caused by the
measurement noise arising due to uncertainties of the feature detection
algorithm, electronic noise, changing light conditions, or flickering. They

are described by a random vector vj,ik =
[
xv

j,i

k ,yv
j,i

k

]T
, which probability

density is assumed to be spatially and temporally white zero-mean Gaus-
sian vj,ik ∼ N (0,Σvj,i

k ) with covariance Σvj,i

k . The stochastic uncertainties
are supposed to be independent and identically distributed.

Resulting Measurement Model

To summarize the results, the measurement model (3.1) is formulated for
every camera j according to (3.57) and (3.62) in the form⎡
⎢⎢⎢⎢⎣
ŷj,1
k

ŷj,2
k
...

ŷj,N
k

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

φf
(
Pj,1ϕl

(
l1 +H1zk

))
φf
(
Pj,2ϕl

(
l2 +H2zk

))
...

φf
(
Pj,Nϕl

(
lN +HNzk

))

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
ej,1k
ej,2k
...

ej,Nk

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
vj,1k
vj,2k
...

vj,Nk

⎤
⎥⎥⎥⎦ , (3.63)

where the vector zk ∈ R6NM denotes the system state. The size of the
system state is determined by the number of the model nodes NM and
their six degrees of freedom. N is specified by the amount of image features
ŷj,i
k

∈ Yjk that are extracted from the image acquired by camera j at time
step k and have unique correspondences in the images of the other two
cameras. The elements of the matrix

Hi =
[
Hi1,Hi2, . . . ,HiNM

]
(3.64)
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are matrices Hij ∈ R3×6 defined in (3.58). The reprojection errors ej,ik
ordered in the vector ejk represent the systematic errors of the measure-

ment model. The stochastic errors vj,ik collected in the vector vjk are
characterized by the measurement noise.

3.5 Summary

The aim of this chapter, which is fundamental for estimating the heart mo-
tion, is twofold. First of all, it proposes the methodology for constructing
an appropriate physical model of the beating heart in order to understand
its complex behavior. Then, it deals with the derivation of the discrete
state-space model, consisting of the system and measurement models, from
this model.

Contributions The novelty of the proposed physical model is in the vol-
umetric representation of the heart wall. Although volumetric models of
the heart are widespread in other applications, like preoperative planing
or diagnostics, to the best of our knowledge, no such models have been
proposed for beating heart surgery. The major braking factor here is the
high computational burden of these models. However, compared to surface
models, they allow to reproduce the volumetric behavior of the heart. Ba-
sically this means that the motion of every point of the heart is influenced
by surrounding points on the surface of the heart and in its interior.

The main challenge here is to balance the computational complexity of the
model and its accuracy. To face this problem, the physical model considers
only the heart wall within the area of the beating heart, where surgical
interventions are performed. This gives rise to mathematically challenging
definitions of boundary conditions, which have to represent accurately the
connection of this part of the heart with remaining heart tissues. The
motion of the heart wall is described by a distributed-parameter system
that is derived based on physical principles underlying the motion of the
heart. This yields the system of hyperbolic stochastic partial differential
equations. Due to the combination of the Hooke’s law with linear strain
tensor for the description of the heart wall deformation, this system is
linear.

With respect to the state-space model, the contribution of this chapter
concerns the exploitation of the known physical properties of the object.
Another important aspect of this model is the combination of a simplified
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description of the underlying physical object with the consideration of
stochastic and systematic errors of model at each stage of the state-space
model deduction.

The general procedure for deriving the physics-based system model is sim-
ilar and typical for the numerical solution of partial differential equations.
The application of the method of lines allows for separate discretization of
this system in space and time. For spatial discretization, the meshless local
Petrov-Galerkin mixed collocation method is chosen. This method refers
to the group of the element-free methods, which are still not so common
in modeling of deformable objects. Compared to classical element-based
methods, this method discretizes the spatial domain of the model by a
set of nodes without defining their connectivity. Such an element-free
discretization yields better accuracy of solution [126], requires less com-
putational resources and proposes higher flexibility in model refinement.
As a result of the spatial discretization, the random fields of the system
are represented by a finite number of time-continuous random variables.
Subsequently, the implicit Euler method, which is unconditionally stable,
is applied for temporal discretization.

The measurement model, involving the numerical solution of the system
of stochastic partial differential equations, is deduced in two steps. At
first, the current position of the heart surface is obtained by a physics-
based approximation, so named thanks to its parameters determined in
a physically correct fashion. Then, this position is projected onto the
image plane of the camera, yielding the corresponding image feature in
the camera image.

Further Developments Certain open issues still remain. First of all, the
proposed physical model is object-specific. This gives rise to the problem
of identifying the physical properties of the heart wall in order to perform
an accurate estimation of its motion. This problem can be addressed by
various methods that attempt to directly measure tissue parameters [35,
135,219], or determine them by fitting the model to available measurement
data [106, 166, 188]. The drawback of these methods is the neglect of
measurement uncertainties. This is the reason that in this thesis, the model
parameter will be estimated by a nonlinear filtering approach introduced
in Chapter 4. For efficiency of estimation, this estimator splits the system
state into linear and nonlinear substructures. However, in this way, the
problem of high dimensionality of the state will not be alleviated. For
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solution of this problem, model order reduction techniques, such as high-
order Guyan dynamic condensation or modal-type condensation proposed
in [167], can serve as a starting point. Furthermore, it should be noted
that a prerequisite for the measurement model is that the correspondences
between the image features are known. In practice, the extraction of this
information is a challenging task that will be tackled in the next chapter.

With regard to further development of the models, it should be noted
that the proposed physical model builds a foundation for modeling of sur-
gical interventions. During beating heart surgical procedures, the heart
undergoes extensive surgical manipulations, such as heart rotation for cir-
cumflex artery anastomosis, or delicate maneuvers, such as sewing and
cutting. However, to the best of our knowledge, no models handling the
surgical interventions, have been proposed for beating heart surgery. Gen-
erally, the consideration of these manipulations will lead to treating the
model discontinuities wherefby such methods as visibility method, diffrac-
tion method, or transparency method [152] can be applied. In contrast
to existing surface models, the proposed volumetric model permits the
modeling of penetrations in interior of the organ, because it is not empty
inside.

Another point of the future work is the extension of the model with respect
to a more sophisticated representation of the myocardium’s structure. This
may become essential for realistic modeling of surgical interventions. One
of the possible representations of the laminar and fiber-filled organization
of cardiac muscle is a composite material [47, 55], consisting of material
layers with different physical properties. One of the main challenges here
is an accurate identification of the physical properties of individual layers,
e.g., by using medical imaging modalities, like computer tomography or
ultrasound. For dropping severe restrictions on small deformations that
can lead to more realistic representation of the heart tissues, nonlinear
strain tensors, like Green and St. Venant strain tensor [53], can be used.
Here, special care must be taken of the fact that the model will be de-
scribed by a system of nonlinear partial differential equations. This will
lead to substantial complication of numerical calculations and therefore,
increasing computational complexity.

Employing models of heart excitation promises a more rapid and perspec-
tive reaction of the models on the changes of the heart motion. First of
all, motivated by known pressure and volume of the left ventricle, which



86 Chapter 3. Probabilistic Models for Distributed Parameter Systems

can be accessed by a heart catheter, mathematical models of pressure-
volume relation, e.g., time varying elastance model [203], can provide the
input information for the physical model of the heart wall. A more ele-
gant solution is to take into account an electrical activity of the heart. The
common models of this activity are FitzHugh-Nagumo equations [163] and
models based on myofibre active constitutive law [30,179,188]. As electro-
cardiogram signal, measuring electrical activity and muscular functions of
the heart, allows to detect an abnormal motion of the heart about 90 ms
ahead, as stated in [57], its incorporation in the physical model would sig-
nificantly improve the model’s abilities. With respect to the motion com-
pensation in a robotic system for beating heart surgery, it should be noted
that this signal has been used in [57, 159] for robust motion prediction,
also in combination with other measurement modalities.
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4 Physics-Based Tracking of
Deformable Object

This chapter is concerned with the visual tracking of an elastically de-
formable object as observed by a trinocular camera system. Formulated
as a probabilistic problem, this tracking provides statistical information
about the most probable three-dimensional positions of some points on
the surface of the object.

With regard to the beating heart robotic surgery system introduced in Sec-
tion 1.1, the visual tracking of a deformable object, such as a beating heart,
is essential for the main tasks of the system: synchronization, navigation,
manipulation, and visual motion compensation. Accordingly, for synchro-
nizing the surgical instruments with the beating heart, the predicted posi-
tions of the heart landmarks are adopted for control of the surgical robot.
Furthermore, for planning and fulfillment of robotic manipulations, such
as the cutting of heart tissues, or sewing, the most accurate estimation
of the current position of the heart tissues is important for the safety of
the surgical operations. In addition, for visual motion compensation, the
heart position is necessary for compensating the changes arising in camera
images due to deformation of the heart.

Commonly, the methods for visual tracking reconstruct only the surface
of the deformable object [173,174]. The motion inside the object remains
inaccessible. However, this valuable information would sufficiently extend
the capabilities of a surgeon in an intraoperative planing of robotic ma-
nipulations and navigation. While existing works focus on a registration
of preoperative models with intraoperative data [87,104,166], in attempt-
ing to perform the registration very rapidly, the methods proposed in this
chapter, enable a runtime estimation of the entire heart wall deforma-
tion from camera images. This will be demonstrated in evaluation results
presented in Chapter 7.

There are three further points that differentiate the proposed physics-based
tracking from most of the existing methods for tracking of the heart mo-
tion that are introduced in Section 1.3. First of all, the tracking operates
directly in a physical space. Based on the physics-based state-space model
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presented in Chapter 3, it predicts and estimates the heart position in
a physically correct way. The second point is that the proposed track-
ing is probabilistic. Targeted at extracting the related information from
noisy measurement data, it considers systematic and stochastic errors of
the model and measurements by means of nonlinear stochastic estimation.
The third point lies in exploiting the physically correct prediction of the
heart position for extraction of the measurements from camera images.
In particular, beyond multiple gating criteria for establishing the corre-
spondences between the image features and landmarks, the physics-based
criterion is introduced, which filters out the measurement outliers.

Before illustrating the key idea in Section 4.2, firstly, in Section 4.1, the
tracking is formulated as a probabilistic problem of estimating the most
probable positions of the heart landmarks at every time step. Then, Sec-
tion 4.3 deals with adopting the physically justified prediction of the land-
mark positions for extraction of measurement information from the camera
images. In Section 4.4, after an initialization of the models, these positions
are reconstructed by the physics-based approximation, which is combined
with the nonlinear stochastic estimation of the system state, parameters,
and systematic errors. Finally, this chapter concludes with the discussion
of the main points of the proposed tracking method.

The tracking approach introduced in this chapter was primarily published
in [240] and further extended to the estimation of the model parameters
in [239]. This chapter expands the results of the papers to the handling of
the modeling and measurement errors that are systematic.

4.1 Problem Formulation

The visual tracking deals with detecting the three-dimensional positions
of the heart landmarks by extracting the related information from camera
images acquired at consecutive time steps. In contrast to the variety of the
deterministic methods for tracking the heart surface motion [57, 160, 182]
that do not consider the uncertainties at all, in this section, the tracking
is formulated as a probabilistic problem. The main advantage of such
formulation lies in rejecting the measurement disturbances by utilizing a
priori information about the behavior of the object. The two main issues of
this problem consist in gaining measurement information and estimation
of landmark positions.
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Extraction of Measurement Information One of the main problems of
the heart motion tracking is that the camera measurements are not directly
available. Therefore, they should be extracted from the camera images
provided by a camera system consisting of n cameras. It must be high-

lighted that the set of measurements Yk =
n⋃
j=1

Yjk incorporates only image

features Yk ⊆ Fk from set Fk =
n⋃
j=1

Fj
k that can be identically related to

the landmarks under observation at the same time step. Here, the order
of elements in the sets Lk and Fk is fixed. Although due to overlapping
coverage of the n cameras the same landmarks Lk are observed, every set
F j
k originated from camera j may include a different amount of features.

The reason is that features can be lost in every camera image, e.g., due to
occlusions, and also false detections, e.g., due to illumination artifacts, are
possible. Therefore, the one of the important aims of the tracking is to find
the correspondences between the image features f j,i

k
∈ Fj

k and landmarks

lik ∈ Lk at every time step.

Estimation of Landmark Positions While the camera measurements are
noisy, the tracking of the landmark positions can be formulated as a prob-
abilistic problem related to a Bayesian estimation. According to Bayes’
theorem, e.g., introduced in [125], the current positions of the landmarks
are characterized by a conditional density

f
(
lik | Y1:k

)
= αkf

L
(Yk | lik) f (lik | Y1:k−1

)
,

which depends on likelihood fL
(Yk | lik) processing the current observa-

tions Yk and a normalization factor αk. It should be noted that one of the
conditional densities

fpk
(
lik
)
:= f

(
lik | Y1:k−1

)
, fek

(
lik
)
:= f

(
lik | Y1:k

)
denotes the a priori fpk

(
lik
)
density of the landmark position characterized

by an estimate from the previous time steps. The other conditional density
fek
(
lik
)
represents the a posteriori density characterizing an estimate up-

dated by a measurement information at the current time step. Evidently,
both densities depend on the union of sequences of camera system mea-
surements. Accordingly, the a posteriori density depends on the sequence
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Y1:k =
n⋃
j=1

Yj1:k, which assembles the measurements Yj1:k =
{
Yj1 , . . . ,Yjk

}
of each camera j acquired up to respective time step.

If the Markov property of the system is to be presumed, the densities of
the estimates

fek
(
lik
)
= f

(
lik | Yk

)
, fpk

(
lik
)
= f

(
lik | Yk−1

)
depend only on the last available observations. Consequently, the a poste-
riori density of the landmark position can be obtained at every time step
by the Chapman-Kolmogorov equation, e.g., introduced in [110]

fek
(
lik
)
=αkf

L
(Yk | lik) fpk (lik)

=αkf
L
(Yk | lik) ∫

R3

fT
(
lik | lik−1

)
fek−1

(
lik−1

)
dlik−1 ,

(4.1)

where fT
(
lik | lik−1

)
is the transition density derived from the system model.

There are some challenges in the computation of the a posteriori density.
First of all, the Chapman-Kolmogorov equation (4.1) is not analytically
solvable because of the nonlinearity of the state-space model derived in
Chapter 3. Furthermore, the system and measurement models, which are
used for derivation of the transition density fT

(
lik | lik−1

)
and likelihood

fL
(Yk | lik), are not exactly known. They incorporate unknown physical

parameters and modeling errors. Moreover, the problem intensifies if the
landmark positions have to be accurately determined when none or only
some of the measurements are available, e.g., in case of occlusions.

4.2 Tracking Overview

The proposed tracking schematically illustrated in Fig. 4.1 incorporates
two key ideas. The first idea consists in physically reasonable approxima-
tion of the densities fek

(
lik
)
and fek

(
lik
)
, which describe the a priori and a

posteriori estimates of the landmark position. The second idea behind the
tracking is to exploit the a priori known physical information for gaining
measurement information from camera images.

Preliminaries For the explanation of the physically reasonable approxi-
mation of the landmark positions, it should be recalled that the elements
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Time ttk tk+1

Predicted
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Figure 4.1: Key ideas of the tracking approach. The system state is prop-
agated over time by a nonlinear stochastic estimation based upon physics-
based state-space model. This model incorporates the physical knowledge
about object under observation in the tracking. For extracting the mea-
surement data Yk from camera images the physically reasonable a priori
state estimate zpk is used.

of the system state zik ∈ R6 collected in the vector zk ∈ Rnzk are assigned
to the set of model nodes in the undeformed configuration of the physical

model M =
{
mi
}NM

i=1
. Therefore, the size of the state vector nz = 6NM is

determined by the number of model nodes NM and 6 degrees of freedom
of the vector zik.

It is worth mentioning that the relationship between the system state and
the landmarks is established by a physics-based approximation defined by
the time-dependent function χ

k
in (3.55) and (3.57).

Furthermore, the projection of the landmark positions lik ∈ L onto an
image plane of a camera is described by the function ζ introduced in (3.56)
and (3.62).

Physically Reasonable Estimates According to physics-based approxi-
mation (3.57), the a priori fpk

(
lik
)
and a posteriori fek

(
lik
)
densities of the
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landmark position are determined by

fpk
(
lik
)
=

∫
R

nzk

fR
(
lik | zk

)
fpk (zk) dzk , f

e
k

(
lik
)
=

∫
R

nzk

fR
(
lik | zk

)
fek (zk) dzk ,

(4.2)
where the conditional density fR

(
lik | zk

)
is the transition density of the

relationship between the system state and the landmark. It is deduced
from the physics-based approximation function χ

k
. The a priori fpk (zk)

and a posteriori fek (zk) densities of the system state are determined by
using the system state in Chapman-Kolmogorov equation (4.1) that leads
to

fek (zk) =αkf
L (Yk | zk) fpk (zk)

=αkf
L (Yk | zk)

∫
R

nzk

fT
(
zk | zk−1

)
fek−1

(
zk−1

)
dzk−1.

(4.3)

It should be noted that from (4.2) and (4.3) follows the dependence of
the a priori li,pk ∼ fpk

(
lik
)
and a posteriori li,ek ∼ fek

(
lik
)
positions of every

landmark lik ∈ Lk from the physics-based state-space model introduced in
Chapter 3. In particular, the transition density fT (zk | zk−1) is derived
from the system model presented in Section 3.3, which is parameterized
by the physical properties of the object under observation, such as, e.g.,
the Young modulus E and the Poisson ratio ν. Furthermore, the like-
lihood fL(Yk | zk) is deduced from the measurement model proposed in
Section 3.4. Therefore, it also incorporates the physical information inher-
ited from the physics-based approximation of the current position of the
object.

Due to nonlinearity of the state-space model, the densities of the system
state are not analytically determinable. For its numerical approximation,
diverse nonlinear stochastic estimators, e.g., overviewed in [194, 195, 223]
can be applied. They approximates the densities of the system state in
two steps: prediction step and filter step. The prediction step provides the
a priori state zpk ∼ fpk (zk) based on the past data. In the filter step, the a
posteriori state zek ∼ fek (zk) is obtained by updating the a priori state by
current camera measurements Yk.
Physics-Based Gating The second idea of the tracking is to link the
image features extracted from camera images with the heart landmarks
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by exploiting physically reasonable a priori state estimate zpk. For con-
structing the measurement vector Yk, it must be determined which image
features result from which landmarks.

In order to obtain this information, multiple gating criteria are applied.
One of the gating functions is determined by Mahalanobis distance [136],
which defines the regions where image features associated with the certain
landmarks can be found with high probability. For this purpose, the a
priori positions of landmarks li,pk ∈ LLLpk, the densities (4.2) of which depend
on physics-based approximation function χ

k
, are projected onto the image

planes.

Interestingly, the gating implies physical information although the applied
multiple gating criteria are typical for visual tracking. This is thanks to
physical model incorporated in the tracking. The a priori positions of
the landmarks li,pk are a priori estimates of the solution of the system of
stochastic partial differential equations (3.22) that describes this physical
model.

4.3 Physics-Based Extraction of Measurement
Information

This section is concerned with the extraction of the measurement infor-
mation from camera images by exploiting the a priori known physical in-
formation. The focus is on establishing the correspondences between the
image features and landmarks in order to enable the processing of the mea-
surements by an estimator. After formulating the correspondence problem
for physics-based tracking, a correspondence function for linking the im-
age features with the landmarks is constructed. Subsequently, the four
multiple gating criteria incorporated in this function are introduced.

4.3.1 Formulation of Correspondence Problem

The central task of the correspondence problem is to figure out the cor-
rect mapping between the landmarks Lk and measurements Yk that are
extracted from images acquired by n different cameras at the same time
step. These measurements are selected from the sets of the image features

Fk =
n⋃
j=1

Fj
k , each of these F j

k can involve measurement outliers and arti-

facts. Moreover, some of the features can be lost or may not be detected.
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Therefore, the correspondence problem consists in assignment of each im-
age feature from the set Fj

k to at most one of the landmarks from the set
Lk. Furthermore, it must be assured that each landmark gets no more
than one measurement in every set F j

k .

The a posteriori density of the landmark position is obtained by plug-
ging (4.2) in (4.3) that yields

fek
(
lik
)
=

∫
Rnz

αkf
L
(Yk, lik | zk) fpk (zk) dzk . (4.4)

In this equation, the joint likelihood function fL
(Yk, lik | zk) determines

the hypothetical probability that the system state zk would yield the po-
sition of the landmark lik ∈ Lk and measurements Yk. In doing so, the
measurements Yk and landmark position lik are assumed to be conditionally
independent. It should be noted that in order to determine the densities
of the system state zk by means of stochastic estimation, the correspon-
dences between the acquired measurements Yk and landmarks Lk must be
known.

Since the state and, therefore, the landmark positions, as well as posi-
tions of the image features, are noisy, there can be a large amount H
of possible hypotheses of which image features correspond to which land-
marks. In order to consider this, according to [20,137], the joint likelihood
function should be marginalized across all possible hypotheses. Therefore,
from (4.4) follows

fL
(Yk, lik | zk) = κ

H∑
h=1

f
(Fk , lik, | zk,Dh

k

) ≈ κf
(Fk , lik, | zk,Dk

)
, (4.5)

where κ is the normalization constant and matrix Dh
k defines which mea-

surements originate from which landmarks.

As the handling of a large amount of hypotheses will strongly affect the
real-time operability of the system, especially while the physics-based
state-space model is high-dimensional and nonlinear, such tracking can
hardly be applied in a beating heart surgery system. Therefore, as pro-
posed in [20, 199], all hypotheses are approximated in (4.5) by one best
hypothesis, described by the matrix Dk. The elements of the matrix

Dk =
[
d1, . . . , dNL

]
are assignment vectors dik containing n indices of
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Algorithm 1 Physics-based gating of image features F1
k , . . . ,Fn

k at time
step tk

Require: A priori position of the landmark li,pk ∈ LLLk
1: Evaluate IE // Epipolar criterion
2: Evaluate IP for li,pk ∈ LLLk // Physics-based criterion
3: if IC �→ 0 then
4: Evaluate IT // Triangulation criterion
5: Evaluate IC // Consistency criterion
6: end if
7: Compute assignment vector dik

the image features. These features, uniquely corresponding to the ith of
NL landmarks, are selected from sets Fj

k of every jth of n cameras.

4.3.2 Physics-Based Correspondence Function

This section aims at establishing the best hypothesis that determines which
measurements originate from which landmarks. This hypothesis will be de-
termined by the correspondence function that incorporates four gating cri-
teria. Beyond the well-known epipolar, triangulation, and consistency cri-
teria, a physics-based criterion using Mahalanobis distance is introduced.

The assignment vectors assembling the matrix Dk are defined by a maxi-
mum a priori estimate

dik = argmax
i∈Z+

(
f
(F1

k , . . . ,Fn
k | lik

))
(4.6)

that maximizes probability that some of the image features F j
k extracted

from the jth image of the camera are true correspondences of the landmark
lik ∈ Lk. For gating the image features, the probability f

(F1
k , . . . ,Fn

k | Lk
)

is determined by correspondence function that incorporates a series of
conditions

f
(F1

k , . . . ,Fn
k | lik

)
= IE (γE) · IP (γP ) · IC · IT · IC . (4.7)

The computation of this function is listed in Algorithm 1. The first con-
dition for gating the image features is represented by an epipolar criterion
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Epipolar line
p13
k

Epipolar line
p12
k

Image feature

f j,i
k

Intersection∗
f j,i
k

(a) Epipolar criterion. The projection
of the certain landmark in one of the
camera images is determined by the in-
tersection of epipolar lines originated
from projections of the same landmark
in other two views. Due to calibra-
tion inaccuracies, the image features
within a limited radius from the cross of
epipolar lines are considered as possible
correspondences.

Predicted

measurement yj,i
k

Landmark

lik

Physical model

Image feature

f j,i
k

(b) Physics-based criterion considers
only those image features as being cor-
responding to the landmarks which are
near their expected physically reason-
able location determined by the pre-
dicted measurements. As the predicted
measurements and image features are
uncertain, their variances are illustrated
by ellipsoids.

Figure 4.2: Epipolar and physics-based criteria for reducing the number
of the image features, which may be originated from a certain landmark on
the heart surface.

(line 1) defined by an indicator function IE depending upon the gating pa-
rameter γE . Furthermore, the physics-based criterion (line 2), defined by
a function IP depending on gating parameter γP is introduced. It should
be noted that when the consistency criterion IC (line 3) evaluated before
the triangulation criterion IT (line 4) is satisfied, the calculation of the
triangulation criterion, is not necessary. The consistency criterion ensures
the uniqueness of correspondences.

Epipolar Criterion

The epipolar criterion aims at reducing the number of image features f j,i
k

∈
Fj
k extracted from images of every jth camera, which may be originated

from a certain landmark lik ∈ Lk. This criterion is based on the fact [80]
that the projection of the landmark lik onto the image plane of one of the
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cameras f j,i
k
, j = 1, . . . , n is determined by the intersection of epipolar

lines, originated from projections of the same landmark onto the image
planes of other two cameras. This means, for example, that the image
feature f1,i

k
∈ F1

k in the image of the first camera should be placed at
position

∗
f1,i
k
:= φf

(
p12 × p13

)
= φf

((
F12 ϕ

f
(
f2,i
k

))
×
(
F13 ϕ

f
(
f3,i
k

)))
(4.8)

denoted by the intersection of epipolar lines p12 and p13, as illustrated
in Fig. 4.2(a). These lines are obtained by projecting the epipolar lines,
passing through the image features f2,i

k
∈ F2

k and f
3,i

k
∈ F3

k on the images
of the second and third cameras, onto the image plane of the first camera.
In the equation (4.8), the function ϕf converts the position of the image
feature into homogeneous coordinates, as introduced in (3.60), whereby
the function φf makes the inverse mapping. The fundamental matrices
F1j are determined according to [80] by the equation

F1j = [e]× PjP+ .

Here, the matrix Pj is the projection matrix of the jth camera, P+ is a
pseudo-inverse of the projection matrix of the first camera, and the skew
symmetric matrix

[
ej
]
× =

⎡
⎢⎣ 0 −zej ye

j

ze
j

0 −xej
−yej −xej 0

⎤
⎥⎦

is formed from the components of the epipole vector ej =
[
xe

j

, ye
j

, ze
j
]T
.

This vector is defined by the intersection of the baseline with the image
plane of the camera.

However, as the camera measurements are corrupted by uncertainties and
the projection matrices are inaccurate due to calibration errors, the image
features extracted from camera images do not really coincide with their
approximated position. Therefore, the image features within a very limited
radius γE from the intersection of epipolar lines passing through two image
features in the other two camera views, are considered as possible matches
of these features. This is defined by the indicator function

IE (γE) :=

⎧⎨
⎩1 if

n∑
j=1

∥∥∥ ∗
f j,i
k

− f j,i
k

∥∥∥ ≤ γE ,

0 otherwise ,
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where the notation ‖ · ‖ denotes the Euclidean norm on R2.

It should be noted that the well-known deficiency of this criterion is that
the two epipolar lines on the first image may coincide by improper con-
figurations of the camera system. In this case, the position of the image
feature cannot be approximated by (4.8). In order to avoid this, criteria
using a trifocal tensor can be applied [80]. However, as in this thesis the
cameras are placed in such way that maximum accuracy can be achieved
and no degenerated configurations occur, the position of the image fea-
tures is completely determined by (4.8). In addition, the evaluation of this
criterion has lower computational complexity than using criteria based on
trifocal tensor.

It can happen that more than one image features are near the intersection
of the epipolar lines, as shown in Fig. 4.2(a). This is especially often the
case when the camera calibration has low accuracy, so that fundamen-
tal matrices are significantly affected by errors. In order to resolve this
problem, other criteria will be applied in the following section.

Physics-Based Criterion

In the further step, from the image features satisfying the epipolar criteria
only those are selected that pass through physics-based criterion. Based
on generic gating procedure for multi-target tracking [20, 125], this cri-
terion considers only those image features as being corresponding to the
landmarks that are near their expected physically reasonable location.

The key idea behind this criterion is depicted in Fig. 4.2. First of all,
the stochastic filter that will be presented in Section 4.4.3, predicts the
positions of the image features f j,i

k
∈ F j

k corresponding to the landmarks

lik ∈ Lk. For this purpose, it evaluates the measurement equation (3.63).
Hence, the a priori positions of the landmarks li,pk ∈ LLLpk approximated in
a physically correct way are projected onto the image plane of a camera,
as schematically illustrated in Fig. 4.1. This yields the expected positions
of the image features, also called predicted measurements yj,i

k
∈ YYYpk, those

correspondences to the landmarks are known. Here, these positions as well
as the positions of the image features f j,i

k
∈ FFF j

k extracted from the camera
image, denoted by

yj,i
k

∼ fk

(
yj,i
k

)
≈ N

(
μy

j,i

k
,Σyj,i

k

)
, f j,i

k
∼ fk

(
f j,i
k

)
≈ N

(
μf

j,i

k
,Σfj,i

k

)
,
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are assumed to be statistically independent and Gaussian with respective
mean and covariance functions.

Subsequently, a region R is defined in the camera image, where the im-
age features corresponding to the certain landmark are located with high
probability

R (γP ) :=
{
f j,i
k
: dj,iM ≤ γP

}
.

This region is determined by a squared Mahalanobis distance [136] accor-
ding to

dj,iM :=
(
μf

j,i

k
− μy

j,i

k

)T (
Σj,i
k

)−1 (
μf

j,i

k
− μy

j,i

k

)
,

where the inverse of the positive-definite matrix is given by(
Σj,i
k

)−1

=
(
Σyj,i

k +Σfj,i

k

)−1

.

The gating parameter γP is chi-square distributed. It is determined by
a table of the chi-square distribution [20] with the number of degrees of
freedom d = 2, which is equal to the dimension of the image feature. This
table gives the probability

f
(
f j,i
k

| lik
)
= f

(
f j,i
k

∈ R (γP )
)

that the image feature f j,i
k
is in the region R, which is equal to the prob-

ability that this image feature corresponds to the landmark lik. Therefore,
for selecting only the image features that most probably correspond to the
landmark the gating function is defined by this probability

IP (γP ) :=

{
f
(
f j,i
k

| lik
)

if dj,iM ≤ γP

0 otherwise .
(4.9)

In this way, the image features located in the region R are valid, the other
features are discarded. As a result, the image features with low probability
of being projection of the landmark are filtered out as physically incorrect.

The shortcoming of this criterion is that more than one image features
may fall in the region due to high measurement noise, a lot of measure-
ment artifacts, modeling inaccuracies, or when some image features are
in vicinity from each other. The classical approach to this problem is to
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apply a multiple-hypothesis tracking [125], which forms hypotheses that
the image features inside of this region correspond to the landmark and
computes probability that these hypotheses are correct. Being in com-
mon use for tracking of low-dimensional systems, this approach is hardly
applicable to this high-dimensional nonlinear system. The reason is a sig-
nificant increase of the computational complexity because of simultaneous
tracking of all possible hypothesis. This is why we restrict ourselves only
to hypotheses that pass the consistency and triangulation criteria.

Consistency Criterion

In the next step, the correspondence function (4.7), which defines the as-
signment vectors (4.6), is calculated. In this function, among multiple gat-
ing criteria the computationally complex triangulation criterion is omitted.
Afterwards, it is tested whether the consistency criterion is satisfied.

This criterion, denoted by an indicator function IC , ensures that no con-
flicting solutions are returned after the gating. It should be noted that
for achieving high accuracy of reconstruction, only the image features that
have correspondences in all camera views and that are uniquely assigned
to one of the landmarks are considered as measurements.

Triangulation Criterion

When the image features do not uniquely correspond to the landmarks, a
triangulation criterion is applied for resolving this conflict. Because of the
computational complexity of this criterion, it is checked only on the small
set of image features that have not passed the other criteria.

The triangulation criterion selects from all image features, which may be
projections of the landmark lik, only one. Defined by the indicator function

IT :=

⎧⎨
⎩1 ifmin

n∑
i,j=1

∥∥∥∗lik − ∗
ljk

∥∥∥ , i > j ,

0 otherwise ,

this criterion minimizes the Euclidean distance ‖ · ‖ between the land-
marks reconstructed from the image features in each two camera images,
as depicted in Fig. 4.3.

The three-dimensional points
∗
lik and

∗
ljk are triangulated by a linear trian-

gulation method proposed in [80] and shortly introduced in Appendix A.
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Image of 1st camera

Image of 2nd camera

Image of 3rd camera

Triangulated landmarks

∗
l1k

∗
l2k

∗
l3k

Figure 4.3: Triangulation criterion for detecting the image feature corre-
sponding to a certain landmark. The key idea is to minimize the distance
between the landmarks reconstructed based on the image features in each
two cameras.

These points are obtained from the pairs of image features f j,i
k
, j =

1, . . . , n that are considered to be corresponding in each two camera views.

Finally, when the consistency criterion is satisfied, the image features
f j,i
k
, j = 1, . . . , n are assumed to be corresponding to the landmark

lik. Therefore, they are further considered as the projections of the same
landmark onto image planes of all cameras.

4.4 Motion Reconstruction

In this section, the heart motion is reconstructed at every time step us-
ing nonlinear stochastic estimation that is based upon the physics-based
state-space model derived in Chapter 3. By processing the measurement
information, the estimates of the current positions of the heart landmarks
are obtained, as shown in Fig. 4.4.

The specialty of the estimation is that the stochastic and systematic model
and measurement errors are considered. Generally, there are two possibil-
ities for handling these types of errors.
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Input

Measu-
rements

Initialization Prediction Delay Filtering Physics-based
approximation

Input Measurements

Parameters and
systematic errors
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A posteriori system state

Model
adaptation

li,pk

li,ek

Figure 4.4: Estimation of the a priori li,pk and a posteriori li,ek landmark
positions.

The common way consists in modeling of stochastic and systematic un-
certainties by random quantities with an imposed probability distribution.
The downside is that the estimation of the systematic uncertainties can
lead to complicated models. Accordingly, due to augmentation of the
system state with uncertain quantities, the linear models may become
high-dimensional and nonlinear [183].

Another way is to employ imprecise probabilities [220] instead of unique
probabilities for characterizing the uncertainties. As it is described in [147,
154, 155], for this purpose sets of densities are used. Here, the systematic
errors are characterized by set-valued representations [113,185], where the
stochastic errors are still described by assigned probability distribution.
It should be noted that there are no probabilistic relations between the
elements inside of the set-valued representations. With respect to the
beating heart surgery, consideration of systematic and stochastic errors
by means of imprecise probabilities is proposed in our work [241]. In this
context, the major benefit of such handling of uncertainties lies in achieving
accurate uncertainty bounds. However, there are no probable estimates of
the systematic errors that can be employed for improving the quality of
the underlying models.

In this thesis, the systematic errors and other unknown quantities, e.g.,
model parameters, are augmented with the system state. This leads to a
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conditionally linear system introduced in Section 4.4.1. In order to reduce
the curse of dimensionality, the augmented system is decomposed into
linear and nonlinear substructures by means of Rao-Blackwellization [176],
similarly to [32, 183]. After introducing the initialization of this model in
Section 4.4.2, the Section 4.4.3 describes the recursive estimation of the
system state in two steps, i.e., the prediction step and the filter step, as
illustrated in Fig. 4.4. The positions of the landmarks are obtained at every
time step by means of physics-based approximation using the estimated
system state. The estimated parameters and systematic errors are used
for improving the state-space model at every time step.

4.4.1 Augmented State-Space Model

The augmented state-space model proposed in this section combines the
physics-based state-space model introduced in Chapter 3 with the models
of the parameters and systematic errors. In order to enable the estimation
of the systematic errors of the system and measurement models, as well as
unknown model parameters, all these quantities are modeled by random
variables.

The parameters of the physical model that vary over time, e.g., Poisson
ratio νk, Young modulus Ek, stiffness of Robin boundary βk and material
density ρk, are assembled in the vector

θk = [Ek, νk, βk, ρk]
T ∈ Rnθ . (4.10)

The systematic errors τk caused by time-discretization, are supposed to be
negligible. This assumption is justified due to small time step and small
temporal changes in the heart motion between the time steps. In this case,
as follows from (3.53), the errors of temporal discretization are very small.

Conscious of the importance of considering the errors of spatial discretiza-
tion, the methodology of their a priori estimation published in [241] can be
applied. However, in this thesis, the a posteriori estimation of these errors
is preferable for continuous improvement of the models. These errors will
be adaptively reduced, based upon the feedback from the visual motion
compensation, as it is proposed in Chapter 6. The reprojection errors ek
can be assumed to be constant over time due to small pixel displacements
caused by the heart motion. These errors are determined by the distance
between the projections of landmark positions reconstructed by the tri-
angulation method and corresponding to these landmarks image features
extracted from the image.
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State Augmentation

For estimating the unknown model input uk and time-varying physical
parameters θk simultaneously with the system state zk, these quantities
are modeled by random variables, which are augmented in the vector

ξ
k
=

⎡
⎣zkθk
uk

⎤
⎦ = [xlk

xnk

]
∼ N

(
μξ
k
,Σξ

k

)
. (4.11)

It should be noted that the augmented state ξ
k
is decomposed into linear

and nonlinear substructures using Rao-Blackwellization [176]. In this way,
the efficiency of the stochastic filter used for estimating the augmented
system state is improved. The reason for this is that some of the equations
evaluated by this filter can be determined analytically instead of computing
everything with deterministic sampling. Therefore, as proposed in [32], the
augmented state is assumed jointly Gaussian

μξ
k
=

[
μl
k
μn
k

]
, Σξ

k =

[
Σl,l
k Σl,n

k

Σn,l
k Σn,n

k

]
with mean μξ

k
and covariance Σξ

k.

In the next sections, the state-space model proposed in Chapter 3 is ex-
tended by the models of the parameters and systematic errors, which are
augmented in a system state. As a result, the augmented state-space model
is obtained.

Augmented System Model

For derivation of the augmented system model, first of all, the augmented
state is divided into linear and nonlinear substructures

xlk =

[
zk
uk

]
, xnk = θk . (4.12)

Whereby the nonlinear substructure incorporates the model parameters
that act nonlinearly on the augmented system model, the elements of the
linear substructure have linear effect on this model. Furthermore, it is
supposed that the temporal variations of the physical parameters, so sys-
tematic errors are accurately described by a random walk model with
additive Gaussian noise according to

uk+1 = uk +wu
k , θk+1 = θk +wθ

k . (4.13)
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Then, similarly to [32], the augmented system model with separate linear
and nonlinear dependencies

ξ
k+1

=

⎛
⎝Bk(x

n
k )ûk
0
xnk

⎞
⎠

︸ ︷︷ ︸
g
k
(xn

k )

+

⎛
⎝Ak(x

n
k ) Bk(x

n
k ) 0

0 I 0
0 0 0

⎞
⎠

︸ ︷︷ ︸
Gk(xn

k )

[
zk
uk

]
︸ ︷︷ ︸

xl
k

+

⎡
⎣wz

k

wu
k

wθ
k

⎤
⎦

︸ ︷︷ ︸
wξ

k

.

(4.14)
is derived from (3.54), (4.12) and (4.13). Here, the zero-mean additive

system noise is assumed to be white and Gaussian wξ
k ∼ N

(
0,Σξ

k

)
with

covariance Σξ
k = diag

{
Σw,l
k ,Σw,n

k

}
assembling the covariance matrices of

the linear and nonlinear substructures of the system state.

Augmented Measurement Model

For derivation of the augmented measurement model, the augmented state
vector is divided in linear and nonlinear subsections

xlk =

[
uk
θk

]
, xnk =

[
zk
]
. (4.15)

Similar to (4.12), the linear substructure of the augmented state incor-
porates the quantities linear influencing on the augmented measurement
model. As a result, this model derived from (3.63), (4.13)
and (4.15) can be written for every ith measurement extracted from the
image of jth camera in the form

ŷj,i
k
= φf

(
Pj,iϕl

(
li +Hizk

))︸ ︷︷ ︸
g
k
(xn

k )

+Gk(x
n
k )x

l
k + ej,ik + vj,ik , (4.16)

wherein linear and nonlinear dependencies are separated. The matrix
Gk(x

n
k ) = 0 denotes in this equation the zero matrix.

4.4.2 Tracking Initialization

One of the advantages of the physics-based tracking is that a priori knowl-
edge about the motion of the object is incorporated in the estimation
process. On the one hand, as will be shown in Chapter 7, this enables
bridging of long-term partial and even total occlusions, which is hardly
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possible with methods that do not exploit any a priori information. On
the other hand, the extraction of this information from available data poses
a significant challenge of extracting a priori data based solely upon avail-
able camera measurements. This section deals with generating a priori
knowledge for a proper initialization of the tracking.

It should be noted that, with respect to beating heart surgery, the a pri-
ori knowledge, e.g., physical parameters of the heart and configuration of
the intervention area, can be obtained from preoperative planning of the
beating heart operation. However, the problem arising here is that the
heart geometry, as well as the parameters, can change by intraoperative
interventions due to the changing environment. Furthermore, sometimes,
e.g., in cases of emergency, the preoperative data are not available. In
order to cope with this, before tracking of the heart motion, the model
parameters and the model configuration are automatically determined by
an initialization, as illustrated in Fig. 4.4. Subsequently, the model pa-
rameters and systematic errors are continuously estimated by a stochastic
filter during the functionality of the system.

Geometry of Physical Model

In order to define the model geometry, it should be remembered that the
physical model introduced in Chapter 3 approximates the behavior of the
heart wall inside intervention area that is bounded by a mechanical sta-
bilizer. This model with initial configuration representing the heart wall
in the mechanical equilibrium, so called undeformed state, is volumetric
and takes into account the thickness of the heart wall. Furthermore, it
is worth mentioning that for deducing the state-space model, the physical
model is discretized by a set of model nodes M ⊂ Ω in the spatial domain
Ω = Ω

⋃
ΓN
⋃
ΓR, which consists of the open interior Ω, Neumann ΓN

and Robin ΓR boundaries.

For representing the thickness of the heart wall, the discrete physical model
must consist of at least two layers of model nodes. The nodes on the
lower surface of the model belong to the Neumann boundary ΓN , which is
subjected to the pressure forces inside of the cardiac chamber. The nodes
on the upper surface of the model are visible in all camera views and belong
to the interior Ω. Since the continuous motion of the heart hinders the
detection of the mechanical equilibrium of the heart wall, the positions
of the upper model nodes in the undeformed configuration of the model
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are defined by positions of the landmarks averaged over a certain time
interval, e.g., heart period. Then, the nodes on the Neumann boundary
are positioned under the upper model nodes in the direction of the surface
normals.

The form of the discrete physical model is defined by a convex hull of a
set of image features that has correspondences in all camera views over
the whole time interval. This convex hull is a polygon with the smallest
possible area that encloses the projections of visible model nodes in every
camera view.

Model Parameters

In order to determine the initial values of the model parameters, the re-
sponse of the physics-based state-space model is adjusted to the displace-
ment of the heart landmarks reconstructed by a triangulation. For this
purpose, the constrained nonlinear optimization problem is formulated

θ = argmin
θ∈Rnθ

(
K∑
k=1

(
μl

p

k
(θ)− ∗

lk

)2)
such that bu ≤ θ ≤ bl ,

where the vector μl
p

k
collects the mean values of the predicted positions of

the landmarks at every time step and the vector
∗
lk assembles the positions

of the landmarks found by a linear triangulation method proposed in [80].
It should be noted that only those image features that are detected in all
three cameras are used by a triangulation. The vectors bu and bl incorpo-
rate the upper and lower bounds of the model parameters. The vector μl

p
k

is determined by substituting in (3.57) the mean value of the system state

μz
p

k
(θ) = Ak (θ)μ

zp

k−1
+Bk (θ) ûk

that is predicted based upon system model (3.54). This results in

μl
p

k
= l +Hμz

p

k
(θ) ,

where the matrix

H =

⎡
⎢⎢⎢⎣
H1

H2

...
HN

⎤
⎥⎥⎥⎦
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is assembled from individual matrices Hi defined in (3.64). The system
matrix Ak and the input matrix Bk are given in (3.51). The mean value of
the initial state is computed according to (3.42), wherein the initial values
of the displacement and velocity fields are determined by the displacements

and velocities of the landmarks
∗
lk at the initial time step.

To determine the minimum of the optimization problem, a global search it-
erative algorithm proposed in [215] is used. After a random selection of the
initial values of the parameters that do not violate the constraints in the
best case, this algorithm consequently examines all trial values. These val-
ues are generated by the scatter search algorithm [74]. It should be noted
that in order to find the minimum at every iteration, an interior-point
algorithm [39], which is most suitable for large and sparse minimization
problems, is used. Furthermore, because of the high complex dependen-
cies between the system parameters, the Hessian matrix is approximated
by finite differences.

Collection of Measurement Data

Naturally, for initialization of the model, measurement data should be
collected over a certain time horizon in order to enable the triangulation

of the landmarks, the positions of which are collected in the vector
∗
lk. For

this purpose, the motion of the landmarks must be traced using standard
approaches that do not incorporate any a priori knowledge about the object
behavior.

In this thesis, the positions of the landmarks are reconstructed at every
time step using the triangulation method proposed in [80] for initialization
of the physics-based tracking. To enable this triangulation, the correspon-
dences between image features in the images acquired at the same time
step are established using epipolar, triangulation and consistency criteria,
introduced in Section 4.3.2. Instead of the physics-based criterion, the
image features that are in the closest neighborhood of the image feature
detected at the previous time step, are considered as potential correspon-
dences of this feature. As the applied criteria are sensitive to calibration
errors and illumination, false correspondences between image features can
occur. For filtering out these artifacts, we exploit the fact that landmarks
move continuously. Therefore, the tracks of landmarks with jumps in the
trajectory are excluded from the initialization. As a result, the number of
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the model nodes used for the initialization of the model can be lower than
the number of the landmarks.

For initialization of the lost landmarks during the operation of the system,
the above-mentioned tracking runs in parallel to the physics-based track-
ing. It attempts to track the landmarks that are not integrated in the
physics-based tracking over a certain time horizon. Once the positions of
these landmarks in the undeformed configuration of the physical model are
obtained, the landmarks are integrated in the physics-based tracking and
their measurements are used by the estimation. In this way, landmarks
lost during initialization, as well as landmarks added by a surgeon during
functionality of the system, can easily be incorporated in the physics-based
tracking at any time.

Initial System State

The initial values of the system state are provided by (3.42), which exploits
the displacements and velocities of the landmarks triangulated from the
images acquired at the first two time steps after the initialization.

4.4.3 Motion Prediction and Estimation

This section deals with the estimation of the landmark positions. For this
purpose, as illustrated in Fig. 4.4, the nonlinear stochastic estimation is
used for estimating the augmented state at every time step. Consequently,
for estimating the current positions of the landmarks, the state is processed
by a physics-based approximation, as illustrated in Fig. 4.4.

Generally, for estimation of the augmented state an arbitrary nonlinear
estimator, such as, e.g., unscented Kalman filter [99] or extended Kalman
filter [195], can be applied. The sample-based filters are preferred in this
thesis, while the extended Kalman filter may introduce large errors in the
estimation of the state densities. The reason for this is the first-order
linearization of the nonlinear system, which is used for propagating ana-
lytically the system state approximated by the Gaussian random variable.
The sample-based filters, such as the unscented Kalman filter [99] or the
Gaussian filter [89], also approximate the system state by a Gaussian ran-
dom variable, however, they capture the distribution of this state by a set
of sampling points. These points are then propagated through the non-
linear system. In contrast to the extended Kalman filter, which achieves
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only first-order accuracy, these filters capture the moments of the system
state with higher-order accuracy.

In this thesis, a Gaussian filter [89] that exploits the state decomposition
on linear and nonlinear substructures as proposed in [32] is applied. In
contrast to unscented Kalman filter [99], the Gaussian filter makes use of
systematic deterministic sampling that, according to authors [89], leads to
a higher accuracy of the moment’s approximation.

Predicted Positions of Landmarks

The predicted position of each landmark li,pk is described according to
physics-based approximation (4.2) by the density

li,pk ∼ fpk
(
lik
) ≈ N

(
μl

i,p

k+1
,Σli,p

k+1

)
, (4.17)

with the mean and covariance

μl
i,p

k
= li +Φi

(
li,m

)
μc

p

k
, Σli,p

k = Φi
(
li,m

)
Σcp

k

(
Φi
(
li,m

))T
.

Here, the value of the matrix function Φi is the matrix of shape functions

Φi =
[
Φi1 Φi2 . . .ΦiNM

]
, (4.18)

the components Φij of which are defined in (3.44). Futhermore, the vector
μc

p

k
denoting the mean of the predicted nodal coefficients is the part of

the vector μξ
p

k
, which represents the mean of the predicted augmented

system state. The matrix Σcp

k stands for the covariance of the predicted

nodal values. This matrix is the part of the covariance matrix Σξp

k of the
augmented system state.

The a priori density of this state

ξp
k
∼ fpk (ξk) ≈ N

(
μξ

p

k
,Σξp

k

)
,

characterized by mean μξ
p

k
and covariance Σξp

k is provided by a prediction
step of the Gaussian filter introduced in Appendix B. It is approximated
according to (B.5) by processing the previous augmented system state.
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Estimated Positions of Landmarks

The estimated position of each landmark is described according to physics-
based approximation (4.2) by the a posteriori density

li,ek ∼ fek
(
lik
) ≈ N

(
μl

i,e

k
,Σli,e

k

)
,

with mean and covariance

μl
i,e

k
= li +Φi

(
li,m

)
μc

e

k
, Σli,e

k = Φi
(
li,m

)
Σce

k

(
Φi
(
li,m

))T
,

however, in this case, the a posteriori density of the augmented state

ξe
k
∼ fek

(
ξ
k

)
≈ N

(
μξ

e

k
,Σξe

k

)
is processed. Accordingly, the vector μc

e

k
collecting the mean values of the

estimated nodal values is the part of the vector μξ
e

k
, which denotes the

mean of this density. The matrix Σce

k stands for the covariance of the

estimated nodal values and is a part of the covariance matrix Σξe

k of the
augmented system state.

The a posteriori density of the augmented system state is estimated by
processing the incoming camera measurements, ordered in the vector ŷ

k
,

in the filter step of the Gaussian filter. It is characterized by the first two
statistical moments defined according to [32] by

μξ
e

k
=μξ

p

k
+Σξp,y

k (Σy,y
k )

−1
(
ŷ
k
− μy

k

)
,

Σξe

k =Σξp

k −Σξp,y
k (Σy,y

k )
−1
(
Σξp,y
k

)T
.

Here, the vector y
k
collects all predicted measurements, those mean μy

k
and

covariance Σy,y
k are calculated according to (B.5). The cross covariance

matrix Σξ,y
k is provided by (B.6).

The estimated model parameters θek and systematic errors u
e
k, which are

incorporated in the augmented system state ξe
k
according to (4.11), are

used for adapting the model to the behavior of the object under observation
at every time step.

It should be noted that when no measurements are available, e.g., in case
of total occlusions, the a priori positions of the landmarks provide infor-
mation for where the landmarks most probably are situated. In case of



112 Chapter 4. Physics-Based Tracking of Deformable Object

partial occlusions, when only some of the image features can be detected,
the positions of these features satisfying the correspondence function intro-
duced in Section 4.3.2 are processed by a Gaussian filter as measurements
in the filter step. There, in spite of the fact that not all landmarks are mea-
sured, the states of all model nodes are updated because of the correlations
between the model nodes.

4.5 Summary

The proposed approach for three-dimensional tracking of the landmarks
on the heart surface is of physics-based and probabilistic nature.

Contributions Instead of direct processing the images, this approach
takes into account that the images contain the information about the mo-
tion of the deformable object. Although tracking of the landmarks is the
main issue of this chapter, thanks to the volumetric physical model, which
is incorporated in the tracking approach, the state of the entire object can
be estimated by using the proposed techniques. In contrast to existing
methods for tracking the heart motion, this allows us to get inside the mo-
tion of the heart interior by solely processing the camera data. This ability
of the tracking approach will be illustrated in Chapter 7, which presents
the validation results. The benefit of this is the extension of surgeon’s
capabilities in performing surgical manipulations during an operation on
a beating heart.

A further special feature of the proposed method is the derivation of all
equations, such as the correspondence function and the augmented system
model used by a stochastic estimation, from the physical model. In this
way, a physically reasonable estimation of the object’s position is assured.
This is especially essential in the case of complete loss of measurement
information or highly inaccurate measurements. Furthermore, the generic
gating procedure for extracting the measurement information from camera
data becomes physics-based due to processing physically reasonable esti-
mates. Formulated by a squared Mahalanobis distance, this physics-based
criterion exploits the a priori density of the landmark positions for defining
the area of high probability for which the noisy camera measurements are
projections for a certain landmark.
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In contrast to the broadly used deterministic tracking approaches, the
tracking problem is formulated as the estimation of the landmark posi-
tions at every time step based upon the previous system state and incom-
ing noisy camera measurements. Such a probabilistic formulation allows
consideration of measurement and model uncertainties. This makes the
tracking robust to measurement inaccuracies. The information about the
uncertainties of the estimated landmark positions, granted by the estima-
tion, is especially important for the safety of the beating heart operation.
For example, it can be exploited for definition of virtual features in robotic
control, which may prevent the manipulator from entering into hazardous
regions of the heart or assist the surgeon in moving the manipulator along
desired paths or the heart surface [1, 2, 190].

It is important to note that beyond the stochastic errors, also the sys-
tematic errors, such as unknown heart excitation, are determined by the
stochastic estimation. For estimating the systematic errors and unknown
model parameters simultaneously with the system state, an augmented
state-space model is derived, which combines the physics-based state-
space model with the random walk models of the parameters. Since this
model is conditionally linear, the augmented state is decomposed into lin-
ear and nonlinear substructures by means of Rao-Blackwellization in order
to achieve a high computational efficiency. The density of the augmented
system state is estimated using nonlinear stochastic filter.

Further Developments Future work is devoted to generalize the ap-
proach for tracking of the image features that correspond to more than
one landmarks. Currently, these image features are discarded, reducing
the number of measurements used for estimating the object’s motion. In
case of large number of measurement artifacts or when image features are
located very close to each other, this may lead to total loss of measure-
ment information. A basic approach towards the solution of this problem
is to use multiple-hypotheses tracking [20,125]. By forming association hy-
potheses, which assign the image feature to the landmark, this approach
determines the probability that these hypotheses are correct. Here, spe-
cial care must be taken of increasing computational complexity due to
simultaneous tracking of several hypothesis. An efficient implementation
of the algorithms and using simultaneously multiple processing modalities
for computation of the hypotheses seem to be unavoidable.
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Another issue is the extension of the observability of the system by using
additional sensors. A spectral analysis of the beating heart motion shows
frequencies up to 20 Hz, as introduced in [45]. Since the heart motion is
not perfectly periodic, a high acquisition speed is necessary for sufficiently
capturing all frequency components of the heart motion. However, due to
the fact that frame rate of the camera achieves usually up to 30 Hz, the
motion of the heart cannot be resolved at this scale. Therefore, the manip-
ulator will not be able to cancel the high frequent components of motion
by exploiting the predicted data. To deal with this problem, high speed
cameras can be used [173], the frame rate of which may achieve 125 Hz.
Another possibility is the information fusion of camera data with other
sensors. For example, acceleration sensors would significantly improve the
ability of the proposed tracking to reproduce the high-frequent motion of
the heart. As illustrated in [82], they can resolve the heart motion up to
50 Hz. Furthermore, they are insensitive to contaminations and occlusions,
in contrast to cameras.
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5 Physics-Based Visual Motion
Compensation

This chapter proposes a novel method for visual motion compensation. Its
objective is to compensate the changes in the scene caused by the motion
of an elastically deformable object observed by a camera system. While
this object will be represented as motionless, the changes in the scene that
do not originate from the object, e.g., through different coloring, remain
visible.

Although the visual motion compensation is essential for different applica-
tions, such as, e.g., automated handling of elastic objects like an insertion
of a flexible beam into a hole [149] or serving in presence of non-rigid
motion [111, 228], this chapter concentrates on computer-assisted surgical
operations on a beating heart [150]. As introduced in Section 1.1, here,
the visual motion compensation is applied for representing the area of the
heart as motionless in order to give a surgeon an impression of operating
on a non-moving heart.

The main specialty of the proposed method is that it is physics-based. In
contrast to common non-model-based [198] as well as geometric methods
for visual motion compensation that directly process the camera images,
e.g., geometric warping [73] or morphing [226], this method operates in
the physical space. By taking into account that the deformable object
underlies the camera images, it preserves the depth information, which is
normally lost by other methods due to processing of object’s projection on
camera images.

The core of this method builds the physics-based image transformation
function, which determines the shift of the pixels between two time steps
by the displacement of the object. For this purpose, the complete surface
of the object is reconstructed at every time step in a physically reason-
able fashion by exploiting techniques proposed in the previous chapter. In
contrast to approaches [8, 73, 226, 235] commonly used in image process-
ing, this method copes with the measurement and modeling uncertainties,
yielding a high accuracy of motion compensation. Thanks to the physical
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Figure 5.1: Visual motion compensation is formulated as a transformation
of the image sequences. This transformation is described by the image
transformation function T jk , which defines the shift of the pixels in the
reference image to the pixels in the current image based upon the known
positions of the image features.

model, incorporated in this method, also image regions where color infor-
mation is lost, e.g., due to occlusions, can be restored. These qualities of
the method will be demonstrated in Chapter 7 by evaluation results.

The emphasis of this chapter is on the description of the theoretical foun-
dation of the proposed method. Hence, it starts with Section 5.1, where the
visual motion compensation is formulated as a problem of transformation
of the image sequences. Then, Section 5.2 gives an overview of the pro-
posed method by introducing the main components of this method. Sub-
sequently, the image transformation function is presented in Section 5.3
and its physical foundation is explained. Consequently, in Section 5.4, the
main parts of the visual motion compensation are described in detail. In
providing a summary of the most important aspects and an outlook on
future work, Section 5.5 concludes this chapter.

The fundamentals of the proposed method were published in [237] in the
context of its application in a beating heart surgery.

5.1 Problem Formulation

This section formulates the visual motion compensation as a transforma-
tion of the image sequences provided by a camera into the stabilized image
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sequences. After introducing the definitions that are necessary for under-
standing the proposed method, it deals with the problem of formation of
the stabilized image sequence and its challenges.

Preliminaries Regarding the definitions of the image sequences, it should
be mentioned that the stabilized image sequence represents the contin-
uously deformable object under observation as non-moving, where such
changes of the object such as different coloring or occlusions by an arbitrary
object are shown.

Since the object is observed by a trinocular camera system, there are three
stabilized image sequences, which are described by the set of unbounded

sequences R1:k =
{
Rj

1:k

}n
j=1

. Each image sequence Rj
1:k =

{
Rj

1, . . . ,Rj
k

}
incorporates the stabilized images gathered up to time step k. It should
be noted that the stabilized images are represented by a sequence of pixels

Rj
k =

{
rj,ik

}N
R

j
k

i=1
with assigned colors I(rj,ik ).

The image sequences provided by a camera system capture the moving
object. It is assumed that the changes in the images are caused only by
the motion of this object.

For the purposes of clarity, it should be recalled that all image sequences of

the camera system are collected in the set of sequences P1:k =
{
Pj1:k

}n
j=1

.

Furthermore, the image sequence of the individual camera is described

by an unbounded sequence Pj1:k =
{
Pj1 , . . . ,Pjk

}
, wherein every image is

represented by a sequence of pixels Pjk =
{
pj,i
k

}N
P

j
k

i=1
with assigned colors

I(pj,i
k
). The individual pixels are identified by row and column indices

assembled in the vector pj,i
k
=
[
xp

j,i

k , yp
j,i

k

]T
.

It should be noted that in the following, for sake of simplicity, only the im-
age sequence of one camera is considered because the proposed method for
visual motion compensation handles the images sequences of all cameras
in the same way.

Formation of the Stabilized Image Sequence The visual motion com-
pensation represents a surgeon the stabilized view of the beating heart. For
this purpose, the image sequence provided by a camera should be trans-
formed into the stabilized image sequence. This means that each image
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Pjk of the image sequence Pj1:k obtained from the camera should be trans-
formed into a reference image, yielding the stabilized image. One of the
previous images of the sequence or an arbitrary virtual image can serve as
the reference image. In the following, the image acquired by the camera
at time step tk−n is chosen as the reference image Pjk−n ∈ Pj1:k. This im-
age, represented by a sequence of pixels Pjk−n =

{
pj,i
k−n

}N
P

j
k−n

i=1
shows the

object under observation in its mechanical equilibrium, i.e., undeformed
state.

For obtaining the stabilized image at time step tk, the current camera im-
age has to be transformed into the reference image as shown in Fig. 5.1.
This transformation occurs by assigning the color of each pixel in the cur-

rent camera image I
(
pj,i
k

)
to a corresponding pixel in the reference image

pj,i
k−n. In this way, the color of the pixels in the stabilized image I(r

j,i
k ) are

determined by the color of the pixels in the current camera image I(pj,i
k
).

It should be noted that for this color transfer, the correspondences be-
tween the pixels of the reference and current images should be established.
The pixels are defined as corresponding when they are images of the same
point on the surface of the object at appropriate time steps.

One of the ways to define the correspondences between the pixels is to
define the image transformation function

T jk : Pjk ×F j
k−n ×F j

k → Pjk−n .

This function describes the shift of pixels pj,i
k

∈ Pjk in the current image
to the pixels pj,i

k−n ∈ Pjk−n in the reference image based on the known

positions of the corresponding image features f j,i
k

∈ Fj
k ⊆ Pjk and f j,ik−n ∈

Fj
k−n ⊆ Pjk−n in these images. This is schematically illustrated in Fig. 5.1.

The positions of the image features are usually obtained by tracking meth-
ods or triangulation [80]. As a result, the positions of the pixels in the
stabilized image coincide with their positions in the reference image Rj

k =

Pjk−n when no transformation errors exist.
Challenges of Image Transformation Commonly, the corresponding im-
age features f j,i

k−n ∈ Fj
k−n and f j,i

k
∈ Fj

k determine unknown parameters

of the image transformation function T jk , as introduced in [8,73,226,235].
For example, in the above-mentioned methods, the parameters involve
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only geometric information about the shift of the image features between
the reference tk−n and the current tk time steps. However, the more a
priori information introduced in the processing, the higher accuracy can
be achieved [42]. Therefore, the incorporation of the physical characteris-
tics of the object under observation in the image transformation function
should lead to an increase in the quality of the visual motion compensa-
tion. Furthermore, it should be taken into account that the positions of
the image features and consequently, the parameters of the image trans-
formation function are not exactly known. The reason for this is that the
positions of the image features extracted from camera images are corrupted
by stochastic perturbations caused by measurement inaccuracies.

5.2 Method Overview

The key idea of the visual motion compensation, which is presented in
this section, is the transformation of the camera images using the infor-
mation about the position of the object under observation. This is in
contrast to standard methods overviewed in Section 1.3, where the image
transformation is provided by direct processing of the images.

Physical Foundation of the Image Transformation Function For for-
mulation of the image transformation function, it is considered that the
current and reference images represent projections of the object at two
different time steps. Therefore, as illustrated in Fig. 5.2, the shift of pixels
pj,i
k−n �→ pj,i

k
that are projections of the same visible point on the sur-

face of the object is determined by the displacement of this point from
the position sik−n ∈ Sk−n to the position sik ∈ Sk. Since the physical
characteristics of the object, such as, e.g., material density and elasticity,
influence the displacement of the object, the shift of the pixels is physi-
cally founded. This is the reason that the proposed image transformation
is called physics-based.

The first challenge of this transformation lies in the fact that the positions
of all surface points sik ∈ Sk are unknown. This is because the information
about the motion of the object surface is extracted from camera images
consisting of the finite set of pixels. Accordingly, the surface of the ob-
ject can be reconstructed only on some discrete points. As it is hardly
possible to track all pixels in the image sequence, some image features
f j,i
k

∈ Fj
k ⊆ Pjk detected in the images are usually tracked [160, 181]. By
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Figure 5.2: An overview of the physics-based visual motion compensation.
The shift of the pixels in the reference image to the pixels in the current
image is determined by the displacement of the object under observation.
This relationship is described by the image transformation function T jk .

exploiting the correspondences between these image features, only posi-
tions of the landmarks lik ∈ Lk ⊆ Sk on the surface of the object can
be reconstructed by standard triangulation methods [80]. The problem
is further exacerbated by the inaccuracies of the reconstruction arising
from camera noise, calibration errors, as well as uncertainties of the image
feature extraction.

Three Parts of Physics-Based Visual Motion Compensation In order to
cope with these challenges, the physics-based visual motion compensation
incorporates three main parts. As schematically illustrated in Fig. 5.2,
it includes tracking of the landmarks on the surface of the object, recon-
struction of the current camera image that involves the estimation of the
current position of the entire object, and surface reconstruction of the ob-
ject in the undeformed state. The interaction between these parts is listed
in Algorithm 2.
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Algorithm 2 Visual motion compensation

1: (Lk−n)←Triangulation
(
F j
k−n
)

2: (Sk−n)←SplineInterpolation(Lk−n) // Reference surface
3: for t = 1, . . . , tk do
4: (LLLk)← Tracking(Lk−n)
5: (SSSk)← PhysicsBasedApproximation(Sk−n,LLLk) // Current surface
6:

(
Pjk
)
← Projection(SSSk) // Current image

7:

(
Rj
k

)
← ColorTransfer

(
Pjk−n,Pjk

)
// Stabilized image

8: end for

Generally, mapping between the pixels of the reference and current images
is obtained by projecting the estimated positions of the physical object
onto the image planes of the cameras at respective time steps. Once this
mapping is determined, the stabilized images are obtained by color transfer
from the pixels in the current images to the pixels in the reference image
(line 7).

1) Tracking For tracking of the heart landmarks, the physics-based track-
ing method proposed in Chapter 4 is used. Based on the physical model,
which approximates the behavior of the object, this method estimates the
state and parameters of the model, using nonlinear stochastic estimation
that processes the image features extracted from incoming camera images.
The estimated state provides the information about the positions of the
same landmark lik−n ∈ Lk−n at different time steps (line 4). It is advan-
tageous that the model and measurement uncertainties are considered by
estimation. This is why the estimated current position of the landmark
lik ∈ LLLk is uncertain.

2) Image Reconstruction The image reconstruction yields the estimated
positions of all pixels in the current camera images. It should be noted
that the positions of these pixels are determined by the current position
of the object. Therefore, first of all, the current positions of the surface
points sik ∈ SSSk are estimated (line 5) by the physics-based approximation
introduced in Section 3.4.1. Then, the mean values of these positions are
projected in the camera images (line 6), in order to determine the pixels
in the current image that originate from these surface points.
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2) Reference Surface Reconstruction The reconstruction of the unde-
formed state of the object is necessary for estimating the current position
of this object. It should be noted that, as introduced in Section 3.3.1,
the spatial domain of the physical model that approximates the behavior
of the object is discretized by a set of model nodes M ∈ Ω in order to
enable the numerical calculations. The disadvantage in this is certainly
the loss of information about the motion of the object between the model
nodes. In order to reconstruct this information, the surface of the unde-
formed model is interpolated (line 2). This interpolation is described in
Fig. 5.2 by the mapping lik−n �→ sik−n, where the model nodes are repre-
sented by the landmarks M = Lk−n. The positions of the landmarks in
the undeformed configuration of the model are determined by the trian-
gulation of the corresponding image features f j,i

k−n �→ lik−n extracted from
the reference images of the camera system (line 1).

5.3 Physics-Based Image Transformation Function

In this section, the mapping between the pixels of the reference and cur-
rent images is mathematically formulated by the image transformation
function. This function is derived by projecting the reference and current
positions of the object onto the image plane of the camera.

The image transformation function determines the relationship between
the pixels in the current camera image pj,i

k
∈ Pj,ik and in the reference

image pj,i
k−n ∈ Pj,ik−n by the positions of the corresponding surface points

at appropriate time steps. For example, when one surface point changes its
position from sik−n ∈ Sk−n to sik ∈ Sk between the reference and current
time steps, then the relationship between the pixels originated from this
point is defined by

pj,i
k−n = φf

(
ϕf
(
pj,i
k

)
−Pj,i

(
ϕl
(
sik
)− ϕl

(
sik−n

)))
. (5.1)

In this equation, the vector-valued functions ϕf and ϕl introduced in (3.59)
and (3.60) describe respective transformations of the image feature or the
landmark in homogeneous coordinates. In this context, the function φf

produces inverse mapping, i.e., maps the image feature from the homoge-
neous coordinates into Cartesian. The projection matrix Pj,i is provided
by the camera calibration.
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5.4 Transformation of Image Sequences

This section sets forth a detailed description of how the stabilized image is
obtained at each time step. For this purpose, the main parts of the physics-
based visual motion compensation, such as the tracking of landmarks,
the reconstruction of the current image including the estimation of the
current position of the object and the reconstruction of the surface of the
undeformed object are extensively presented.

Tracking

First of all, it should be noted, that in order to cope with the complex
motion of the object, the behavior of the object is described by a physical
model introduced in Chapter 3. Then, for tracking of the landmarks on
the surface of the object, the physics-based tracking approach introduced
in Section 4 is used. It should be recalled that this method propagates the
augmented system state ξ

k
given in (4.11) over time, using the nonlinear

estimator proposed in [32, 89]. This state incorporates the system state
zk, model parameters θk and systematic errors uk described by Gaussian
random variables. Consequently, the current positions of the landmarks
lik ∈ LLLk are estimated by means physics-based approximation (3.57) using
the system state zk.

Image Reconstruction

Thanks to physical model incorporated in the tracking approach, the cur-
rent position of the entire object including its surface can be estimated.
Therefore, the current camera image can be completely reconstructed by
projecting this surface to the image plane of the camera. As a result, the
image reconstruction can retrieve the image information that has been lost
in the current image, e.g., due to occlusions of the object under observation
by other objects. Furthermore, it provides information about which pixels
in the current image correspond to which pixels in the reference image.

Current Surface Reconstruction by the Physics-Based Approximation
First of all, the current positions of all surface points sik ∈ SSSk are esti-
mated in the same way as the positions of the landmarks, i.e., by means
the physics-based approximation (3.57). It should be noted that these po-
sitions are uncertain because of the inaccuracies of the physical model and
camera measurements. Their density is determined by plugging into (4.2)
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the surface point sik instead of the landmark l
i
k. In this way, the a posteriori

position of every surface point is described by Gaussian density

si,ek ∼ fek(s
i
k) ≈ N

(
μs

i,e

k
,Σsi,e

k

)
(5.2)

with the mean and the covariance

μs
i,e

k
= sik−n +Φi

(
sik−n, lk−n

)
μc

e

k
,

Σsi,e

k =Φi
(
sik−n, lk−n

)
Σce

k

(
Φi
(
sik−n, lk−n

))T
,

(5.3)

which depend on the a posteriori system state zek incorporating the nodal
values cek and their time-derivatives. The mean and the covariance of
the a posteriori density of the nodal values are denoted by the vector μc

e

k

and matrix Σce

k respectively. This density is provided by the filter step
of the Gaussian filter introduced in Appendix B. The vector lk−n collect
the positions of all landmarks of the object in the undeformed state that
represent the model nodes. The vector sik−n ∈ Sk−n denotes the position
of the surface point sik of the object in the undeformed state. The matrix
Φi is determined by (4.18) and (3.44).

When no measurement information is available, the estimated position of
the surface point si,pk depend on the a priori system state. Described by
the Gaussian density

si,pk ∼ fpk (s
i
k) ≈ N

(
μs

i,p

k
,Σsi,p

k

)
, (5.4)

they are characterized by the mean and covariance

μs
i,p

k
= sik−n +Φi

(
sik−n, lk−n

)
μc

p

k
,

Σsi,p

k =Φi
(
sik−n, lk−n

)
Σcp

k

(
Φi
(
sik−n, lk−n

))T
.

(5.5)

In this case, the mean vector μc
p

k
and the covariance matrix Σcp

k describe

the a priori density of the nodal values cpk. This density is provided by the
prediction step of the Gaussian filter introduced in Appendix B.

As a result, the current position of the entire surface of the object under
observation is estimated when no measurement information is available.
This is substantial in the context of the beating heart robotic surgery
system when the operation area of the heart can be occluded by surgical
instruments or blood.
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Current Image Formation by the Projection In the next step towards
the reconstruction of the current image, the estimated position of the ob-
ject is projected onto the image plane. For example, when camera mea-
surements are available, the position of the pixel pj,i

k
∈ Pjk originated from

the surface point sik ∈ Sk is determined by

pj,i
k
= φf

(
Pj,iϕl

(
μs

i,e

k

))
,

where the vector μs
i,e

k
represents the mean value of the estimated position

of this point. Here, the function φf introduced in (3.59) and the function

ϕl transform the vectors from homogeneous coordinates into Cartesian and
vice versa. The projection matrix Pj,i is provided by the calibration of
the jth camera.

It should be noted that since the motion of the surface points sik ∈ Sk is
continuous, their projections pj,i

k
∈ Pjk do not necessarily meet the centers

of the pixels that are identified by integer indices. Therefore, in order to
obtain the color assigned to the surface point in the current image, the
bilinear interpolation, e.g., introduced in [76], is used. It determines the
color of the pixel, based on the weighted average of the four neighboring
pixels. Advantageously, this averaging provides an anti-aliasing effect by
producing relatively smooth edges.

Stabilized Image Formation by the Color Transfer For formation of the

stabilized image, the color I
(
pj,i
k

)
of every pixel in the current image

pj,i
k

∈ Pjk is assigned to the corresponding surface point sik ∈ Sk. In the
next step, these colors are assigned to the pixels in the reference image
pj,i
k−n ∈ Pjk−n that correspond to the surface points. In a similar way, the
current image can be reconstructed, e.g., in case of occlusions or long time
delays between the camera frames. For this purpose, the colors that were

assigned to the surface points at a previous time step I
(
pj,i
k−1

)
are written

to the corresponding pixels pj,i
k

∈ Pjk in the current image.

Reference Surface Reconstruction

In order to enable the image reconstruction, the undeformed state of
the object under observation should be known. This follows from (5.3)
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and (5.5), where the surface points sik−n ∈ Sk−n of the object in the unde-
formed state are exploited for approximating the current positions of these
points.

As the behavior of the object under observation is approximated by the
physical model, it should be recalled that, as described in Section 3.3, the
undeformed configuration of this model is discretized in space and time
to enable the numerical calculations. The downside of this is that the
information about the model behavior between the discretization points
is lost. Naturally, this information can be reconstructed by the physics-
based approximation, according to (5.3) and (5.5), when the positions of
the surface points sik−n ∈ Sk−n in the undeformed configuration of the
model are known.

Since the undeformed configuration of the model is discretized by the set of
the landmarks that represent the model nodes, the positions of the surface
points are obtained by interpolating between the landmarks lik−n ∈ Lk−n.
For this purpose, the multilevel B-spline interpolation proposed in [117]
is used. As stated in [117], the main advantage of this interpolation is
that the interpolated surface not only achieves a smooth shape but also
closely approximates the scattered points. Performed only once by model
initialization, this algorithm generates a bicubic B-spline surface sampled

on the grid G =
{
[k, l]

T | 0 ≤ k ≤ m, 0 ≤ l ≤ m
}
of data points overlaid

on the points
[
xl

i

, yl
i
]T

∈ G defined by the first two coordinates of the

landmarks lik ∈ Lk. The value gk,l of every data point is then computed
by uniform bicubic B-spline function. As a result, this interpolation yields

the set Gk−n =
{
gi
k−n

}NG

i=1
of data points gi

k−n = [k, l, gkl]
T
distributed in

the spatial domain Gk−n ⊆ Ω of the undeformed model.

In the next step, in order to determine the correspondences between the
surface points of this model and the pixels in the reference image, the
points gi

k−n ∈ Gk−n can be projected in the reference image. However, in
order to limit the computational complexity, it is suggested to reduce the
number of data points Sk−n ⊆ Gk−n by choosing only those points with
projections closest to the centers of the pixels in the reference image. The
positions of these data points are defined by the minimization function

sik−n = argmin
gi
k−n

(∥∥∥φf (Pj,iϕl
(
gi
k−n

))
− pj,i

k−n

∥∥∥) , i = 1, . . . , NG ,
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where the Euclidean norm on R2 is denoted by ‖ · ‖ . In this way, not
only the number of the points representing the surface of the object is
reduced, but also the correspondences between the pixels pj,i

k−n ∈ Pj,ik−n in
the reference image and these points are established. The surface points
sik−n ∈ Sk−n can be now processed by physics-based approximation (5.3)
and (5.5) for reconstruction of the current images and formation of the
stabilized image.

5.5 Summary

The visual motion compensation proposed in this chapter is formulated as
the transformation of the image sequences provided by a camera system
into the stabilized image sequences. This transformation is defined by the
image transformation function. Overall, it consists of the three main parts:
reconstruction of the surface of the object in its mechanical equilibrium,
tracking of the landmarks over time, and reconstruction of the current
image based upon the current positions of the landmarks. In this way, the
correspondences between the pixels of the current and reference images
are established. Then, by assigning the colors of the pixels in the current
images to the appropriate pixels in reference images, the stabilized images
are obtained at the current time step.

Contributions In contrast to other image transformation methods that
are based on the direct processing of the camera images, the proposed im-
age transformation function incorporates physical information about the
motion of the object under observation. By considering the relationship
between the camera images and the position of the object under observa-
tion, this function determines the shifts of the pixels in the camera images
by the displacement of the object. In doing so, it maintains the information
about the three-dimensional position of the object, which would be lost
in case of direct processing of images. In addition, thanks to the physical
model incorporated in the processing of images, which reflects the physical
properties of the object, the information lost in the current images, e.g.,
due to occlusions, can be restored. This will be demonstrated by experi-
mental results in Chapter 7. Furthermore, it will be shown that the pro-
posed method yields higher accuracy than the methods commonly used for
image transformation, not least because of the coping with measurement
and modeling uncertainties by means of the nonlinear estimation.
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Further Developments The drawback of this method is that the quality
of the motion compensation is not evaluated after the image transforma-
tion. Therefore, its deterioration in case of inconsistent estimation of the
object’s position due to, e.g., inappropriate models or their parameters
will not be detected and corrected. This makes the feedback from the
stabilized image sequence necessary, in order to monitor and improve the
quality of the system. For that reason, an adaptation mechanism dealing
with the refinement of the incorporated models is introduced in the next
chapter.

Furthermore, it is currently assumed that the changes in the images are
caused only by the motion of the one object under observation. When
these changes are result of the motion of the multiple objects, this de-
mands the detection of all objects and its individual processing. Hence,
surgical instruments should be tracked separately from the heart motion.
For this purpose basic approaches for tracking of rigid objects [77], such
as color-based strategies or methods relying on a geometric model of the
instrument, can be applied.
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6 Adaptation of Physics-Based
Models

In this chapter, a novel method for continuous monitoring and consistent
improvement of the quality of the entire system is proposed. It is motivated
by the fact that the quality of the tracking and visual stabilization methods
strongly depends on the quality of the models used. The reason is that ev-
ery model approximating the object’s behavior is inaccurate. For example,
it may simplify the object geometry, material properties or interaction of
the object with the environment in order to make the objects behavior to
be describable by the mathematical equations. In spite of this, the models
used for image transformation are assumed to be exact in existing methods
for tracking and visual motion compensation [5, 19, 78, 114, 175, 186, 198],
just to mention a few. Since the quality of the models, as well as of tracking
and visual stabilization is not monitored in these works, the deterioration
of the motion compensation, for example, due to an inaccurate extraction
of the image features or inappropriate models, will not be detected and
corrected.

The purpose of the proposed method is twofold. First of all, it strives
to refine the physical model for achieving a required level of accuracy via
consequent adaptivity. The special challenge lies in monitoring the quality
of the model. This is impaired by the fact that camera measurements are
available only on some measurement points and, therefore, the accuracy
of the model among these points is unknown. Secondly, it is intended
to constrain the noticeable increase of computational effort due to refine-
ment of the model. This is a reminder of the fact that the conversion
of the physical heart wall model to a discrete state-space model leads to
a high-dimensional system, which additionally becomes nonlinear when
the unknown model parameters are continuously adapted by estimation
methods. In this context, the refinement of the model increases the di-
mensionality of the system and may enforce its nonlinearity. In summary,
the purpose of the proposed method is to achieve a sufficient accuracy
by a tolerable complexity of the model also in the areas where no any
measurement information is available.
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In order to meet these challenges, two main ideas build the core of the
proposed method for monitoring and improvement of the quality of the
entire system:

• Using error feedback from the stabilized image sequence for quanti-
fying the system accuracy also in the areas where no measurement
information is available.

• Consequent reduction of the errors of the model in the areas of high
inaccuracies regarding two aspects: mesh refinement of the physi-
cal model for reducing discretization errors, and refinement of the
physical characteristics of the model for reducing the errors of model
parameters.

Furthermore, an important aspect in the context of adaptation is that the
refinement of the underlying physical model leads directly to the improve-
ment of the quality of the entire system. The main reason for this lies
in the fact that all mathematical models used for motion compensation
are derived from the physical model, as illustrated in Fig. 2.2. Therefore,
by the refinement of the physical model, the discrete state-space model,
physics-based correspondence function, error feedback function, and image
transformation function are improved.

This chapter introduces in the next section an adaptation strategy for
improving the quality of the tracking and visual motion compensation
only where necessary, following which, in Section 6.2, the monitoring and
quantification of the quality of the system is discussed. Consequently, Sec-
tion 6.3 deals with the adaptivity of all mathematical models incorporated
in the system. Finally, Section 6.4 summarizes the main points of this
chapter. It should be noted that the high quality of the proposed method
will be demonstrated in the experimental evaluation in Chapter 7.

The method for monitoring and adaptation of the physics-based system
proposed in this chapter was published in [236]. However, the detection
and quantification of the errors in the stabilized image sequence and expla-
nation of sources of modeling errors are introduced here in a considerably
extended way.
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6.1 Adaptation Strategy

The key idea of the adaptation strategy is to use the feedback from the
stabilized image sequence, which is provided by the visual motion compen-
sation. As schematically illustrated in Fig. 6.1, this feedback is exploited
for improving the quality of the system only where necessary.

Tracking by state and
parameter estimation

Undeformed
model

Deformed
model

Surface recon-
struction and pro-
jection in image

Image re-
construction

Color transfer

Reference
image

Current
image

Stabilized image

Tracking

Visual motion compensation

Refinement of model

• Mesh refinement

• Model parameters

Feedback computation

• Transformation error at
j

k

• Stabilization error as
i,j

k

at
j

k < thres. at
j

k > thres.

Figure 6.1: Adaptation of the methods based on the feedback from the
visual motion compensation. During diagnosis of the system or by the
initialization, some of the measurements (small green markers) can be left
out from the processing by the estimation and used only for monitoring the
quality of the system. The refinement of the spatial discretization of the
discrete physical model and its physical characteristics introduces additional
degrees of freedom in the state and parameter estimation.

Monitoring of System Quality through the Feedback There are two
types of errors that can be extracted from the stabilized image sequence
and then used in feedback mechanism: transformation error and stabiliza-
tion error. Both types of errors are used for evaluating the quality of the
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entire system. The transformation error is measured in pixels and rep-
resents the distance between the stabilized and reference positions of the
image features (small green markers). The measured positions of these fea-
tures are used only for monitoring of the quality of the system. It should
be noted that the adaptation is supposed to run during the initialization
of the system or as a diagnosis process running parallel to the system.
During diagnosis, some of the measurements can be left out from the pro-
cessing by the estimation and used only for monitoring the quality of the
system. Consequently, the transformation error is used as an indicator for
the required refinement of the physical model. If this error, averaged over
a certain time horizon, is under a predefined threshold, the augmented
system state is further propagated by the state and parameter estimation
introduced in Section 4.4. In this case, only the model parameters are
continuously adapted. However, if the transformation error is above this
threshold, the refinement of the physical model is necessary for achieving
higher quality of the system. For identifying the low quality regions of the
physical model, the stabilization error is used, which represents the differ-
ence between the colors of the stabilized and reference images. The main
advantage here is that this error provides information about the quality of
the system also in the regions where no measurements are available.

Quality Improvement of the System by Models Adaptation For im-
proving the quality of the system in the identified regions, the underlying
physical model is refined in two ways. On one hand, the mesh is refined
by introducing the additional model nodes (in green) in the initial config-
uration of the discrete physical model. On the other hand, the physical
characteristics of the discrete physical model are improved by assigning
model parameters to these nodes. As a result of this refinement, not only
the spatial resolution of the discrete physical model is increased, but also
the physical characteristics of the model are enhanced with respect to the
inhomogeneity of the object’s material.

As everything in the proposed system is systematically derived from the
physical model, the refinement of the physical model leads to the refine-
ment of all models, e.g., the augmented state-space model used for track-
ing, or the image transformation function incorporating the estimation
of the current position of the entire object and image reconstruction. In
this context, the augmented system state is extended by additional state
variables and parameters, which describe additional degrees of freedom
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Current imageReference image

Image transformation

Transformation error

Figure 6.2: Transformation error defined as a Euclidean distance between
the reference and stabilized positions of the image features used for monitor-
ing of the quality of the system. This error, measured in pixels, is exploited
as an indicator for the required improvement of the quality of the system.

of the state-space model. Consequently, the extended augmented state is
determined by the simultaneous state and parameter estimation.

6.2 Feedback from Visual Motion Compensation

This section deals with the quantifying of the quality of the system based
upon the stabilized image sequence provided by visual motion compensa-
tion. This sequence aims at representing the moving object as motionless.
Therefore, the remaining motion in the sequence points out that the de-
formation of the elastic object under observation could not be completely
compensated. For detection and quantification of this motion two types
of errors are defined: transformation error and stabilization error. Both
errors, used as error feedback for the quality monitoring and improvement,
will be presented in this section.

6.2.1 Transformation Error

The transformation error is defined as an Euclidean distance between the
reference and stabilized positions of the image features, as presented in
Fig. 6.2. Measured in pixels, it is used as an indicator for the required
improvement of the quality of the system. When this error, averaged over
a certain time horizon, e.g., a period of the heart motion, is over the
predefined threshold, the accuracy of the system will be improved by the
refinement of the physical model.
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Evaluation Points for Quality Monitoring of the System For monitoring
of the quality of the system, all heart landmarks are divided on the evalu-
ation points and measurement points. The current positions of the evalua-

tion points are collected in the set Vk =
{
vik
}NV

i=1
. The image features that

stem from these points, are assembled in the set Qj
k =

{
qj,i
k

}N
Q

j
k

i=1
. These

features, represented in Fig. 6.2 by small green markers, are only used for
monitoring of the quality of the system. They are intentionally omitted
from the model initialization and stochastic estimation. In contrast, the
image features originating from the measurement points form the measure-
ments ŷj,i

k
∈ Yjk, which are processed by the Gaussian filter in the filter

step. These features are presented in Fig. 6.2 by the large green markers.
The current positions of the measurement points are assembled in the set

of landmarks Lk =
{
lik
}NL

i=1
. It should be emphasized that these positions,

averaged over a predefined time horizon, identify the set of model nodes
that discretize the physical model.

Although the reference and stabilized positions of the image features orig-
inated from measurement points commonly almost coincide with each
other, as schematically illustrated in Fig. 6.2, it should be noted that high
transformation errors may occur on the image features stemming from
evaluation points. One of the main reasons for this is that no a priori as
well as measurement information about the motion of the object at points
corresponding to these features is available in the system.

Definition of the Transformation Error For a precise definition of the
transformation error, it should be recalled that the stabilized image ob-

tained at time step tk is described by the set of pixels Rj
k =

{
rj,ik

}N
R

j
k

i=1

with assigned color I
(
rj,ik

)
. The stabilized positions q̃j,i

k
∈ Q̃j

k ⊆ Rj
k of

the image features qj,i
k

∈ Qj
k that originate from the evaluation points

vik ∈ Vk, are collected in the set Q̃j
k =

{
q̃j,i
k

}N
Q̃

j
k

i=1
. Furthermore, it is

important to remember that the reference image is described by the set

Pjk−n =
{
pj,i
k−n

}N
P

j
k−n

i=1
and the color of every pixel in this image is denoted

by I
(
pj,i
k−n

)
.

Hence, the transformation error is defined as a Euclidean distance between
the reference qj,i

k−n ∈ Qj
k−n and stabilized positions q̃j,i

k−n ∈ Q̃j
k−n of the
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image features corresponding to the evaluation points. In order to deter-
mine the quality of the stabilized image at every time step, this error is
averaged over the number of the image features NQj

k
that results in

at
j

k =

N
Q̃

j
k∑

i=1

∥∥∥qj,i
k−n − q̃j,i

k

∥∥∥
NQ̃j

k

, (6.1)

where the notation ‖ · ‖ defines the Euclidean norm on R2.

One of the key advantages of quality monitoring of the system by exploit-
ing the transformation error is robustness to light changes. The major
disadvantage is that the transformation error strongly depends upon the
distribution of the image features used for its computation. Therefore, to
enable the monitoring of the motion compensation quality in all areas of
the heart, the evaluation points must be widely distributed over the heart
surface.

6.2.2 Stabilization Error

When the transformation error indicates the required refinement of the
model, the stabilization error is computed for getting a deeper insight into
the accuracy of the model. This error, measured in colors, is defined as
a difference between the stabilized and reference images, as presented in
Fig. 6.3. The color of high intensity identify the regions where the model
is inaccurate. This information is used for selecting the proper position of
the additional model nodes by model refinement.

In order to clarify the reasons for the stabilization errors, it should be
recalled that the stabilized image of the scene is obtained by the transfer
of the colors of the pixels in the current image to the appropriate positions
in the reference image. Therefore, when the positions of the pixels in the
current image are accurately estimated, the stabilized image must have
exactly the same colors as the reference image. If this is not the case, the
models incorporated in the system are inaccurate when it is presumed that
no occlusions, e.g., by surgical instruments and changes of light conditions
occur.

The stabilization error is defined as a difference between the colors I
(
rj,ik

)
of the pixels in the stabilized image and the colors I

(
pj,i
k−n

)
of the pixels
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Reference image Stabilized image Stabilization error

Figure 6.3: Stabilization error as a feedback from visual motion compen-
sation. The sum of these errors over a certain time interval is used for
evaluation of the quality of the model in the areas where no measurement
information is available.

in the reference image. Then, the quality of the stabilized image sequence
involving NI images collected by the system over a certain time interval
is determined by the sum of the stabilization errors computed over all
images. For every pixel of the stabilized image, this sum is defined by

as
j,i

k =

NI∑
i=1

(
I
(
pj,i
k−n

)
− I
(
rj,ik

))
. (6.2)

It should be noted that this error characterizes the accuracy of the motion
compensation in the image plane. In three-dimensional space, it gives the
same results, because the surface points have the same colors as the pixels
corresponding to them.

Naturally, the stabilization error is strongly sensitive to light changes and
illuminations. This makes it difficult to use it as a robust indicator of the
quality of the system. Therefore, the changes in the current images that
are not caused by the motion of the object under observation, should be
filtered out. As a result, this necessitates the detection of occlusions and
changes of the object geometry, e.g., due to cutting of heart tissues.

6.3 Adaptation of Models

In this section, the feedback from the visual motion compensation is used
for adaptation of the physical model and, therefore, all models incorpo-
rated in tracking and visual motion compensation.
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Although the modeling uncertainties have been already estimated in Chap-
ter 3, not all modeling errors could be considered. For example, the un-
known behavior of the object under observation, or uncertainties of the
model geometry, as well as errors of spatial and temporal discretization,
cannot be estimated without knowledge of the exact position of the object
under observation.

The basic idea of this chapter is to reduce the remaining modeling errors
by improving the models in two aspects:

1. Adaptive refinement of the model nodes distribution for tailoring the
model mesh to the geometry of the object.

2. Adaptation of the model parameters for adjusting the physical char-
acteristics of the model to the characteristics of the object.

The purpose is to achieve an accurate approximation of the object’s be-
havior by tolerable complexity of the models.

6.3.1 Error Sources of Models

This section deals with an analysis of the main sources of stabilization and
transformation errors. The basic idea behind this analysis is to find the
connection between these errors and quality of the physical model.

As introduced in Section 6.2, both types of errors occur when the esti-
mated positions of the pixels in the current image are inaccurate. Since
these positions are determined by the current position of the object, the
above-mentioned errors arise due to divergence between the approximated
position of the object and its true position.

It should be recalled that the current position of the object is estimated
based upon the physical model, which approximates the object’s behavior.
Furthermore, this model is converted in a discrete form using discretization
methods, i.e., meshless local Petrov-Galerkin mixed collocation method
and implicit Euler method, in order to enable the numerical calculations.
Consequently, the approximation quality depends on the ability of the dis-
crete model to reproduce the object’s motion. For its part, the quality
of the discrete model depends on the chosen approximation or discretiza-
tion parameters, such as polynomial reproduction of the shape functions,
size of support domains, the distribution of the model nodes and the ap-
proximation of the material characteristics of the object. As the first two
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(a) Discretization errors. The local
differences in the motion of the sur-
face points (red) among the model
nodes (blue) may not be sufficiently
resolved when these nodes are at a
wide distance from each other.

(b) Errors due to incorrect physical
parameters. For considering inhomo-
geneity of the object material, the
additional model parameters are as-
signed to every inserted model node
(green).

Figure 6.4: Main sources of the stabilization and transformation errors.
The main reasons for these errors lie in the inaccuracies of the physical
model.

parameters are systematically chosen, the latter two are analyzed in the
following sections.

Discretization Errors

The coarse distribution of the model nodes can lead to the insufficient spa-
tial resolution of the model. This may result in inaccurate approximation
of the motion among the model nodes due to discretization errors.

Sources In order to identify the source of the discretization errors, it
should be noted that the spatial resolution of the physical model is de-
termined by its spatial discretization. As a result of element-free spatial
discretization, the model is represented by a set of nodes distributed in
the spatial domain of the model, as shown in Fig. 6.4(a). Then, the mo-
tion of every surface point (red) is approximated, based on a sufficient
amount of adjusting model nodes (blue) inside of the support domain of
the point (connected with red lines). Therefore, when the model nodes are
far from each other, the local differences in the motion of the surface points
among these nodes may not be sufficiently resolved. This is especially the
case when the large displacements occur or differences in the motion of
adjusting surface points are high.
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Error Reduction Strategy For increasing the spatial resolution of the
model, the model mesh is refined. This is achieved by inserting additional
model nodes (green). In this way, the distance between the model nodes
and therefore, the errors of spatial discretization are reduced and as a
result, an accurate approximation of the motion also among these nodes
can be achieved. However, the insertion of the additional nodes not only
contributes to higher spatial resolution of the physical model but also in
this way, increases the dimensionality of the system state and therefore,
the computational complexity of the estimation of the motion.

Errors of Material Characteristics

The material characteristics of the object are approximated by model pa-
rameters with physical meaning, e.g., elasticity modulus or Poisson ratio.
Therefore, the accuracy of the physical model and consequently, of the
motion estimation, strongly depends upon these parameters.

Sources Generally, there are two reasons for errors of material character-
istics. On one hand, the spatial resolution of material characteristics may
be coarse. This is especially the case when the material of the object is
strongly inhomogeneous. On the other hand, the model parameters may
be incorrect. For example, if the model is stiffer than the object, then, the
displacement approximated by this model is smaller then the displacement
of the object presuming the same excitation force.

Error Reduction Strategy For considering the inhomogeneity of the ma-
terial of the object, the additional model parameters are assigned to every
inserted model node (green), as schematically illustrated in Fig. 6.4(b).
In this way, the material inhomogeneity among the model nodes is better
resolved. The reason for this is that the physical characteristics in the
area of every surface points (red) are influenced by model parameters of
adjusting model nodes (shaded areas). Therefore, when the model nodes
are not widely distanced from each other, the local differences in the ma-
terial characteristics can be represented more accurately. In the next step,
the model parameters are adapted by a state and parameter estimation
that processes the incoming camera measurements.

As a result, by introducing additional physical parameters and their adap-
tation, the errors of material characteristics are reduced. Unfortunately,
this occurs at the cost of increasing dimensionality of the system.
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Algorithm 3 Adaptive refinement of physics-based models at every time
step tk

1: (LLLk)← Tracking(Lk−n)
2: Rj

k ← VisualMotionCompensation
(
Pjk−n,Pjk

)
3: if at

j

k >threshold then

4: Š ← APosterioriErrorEstimation
(
Pjk−n,Rj

k

)
5: M̌ ← RefineMesh

(M, Š)
6:

(
m̌, č, ř, M̌, V̌,Ǩ,Φ̌

)← AdaptPhysicalModel(m, c, r,M,V,K,Φ)

7: θ̌k ← RefineParameters
(
E š

i

k ,θk

)
8:

(
žk,

ˇ̂uk, šk, w̌
z
k, Ǎk, B̌k, Ȟk

)←AdaptStateSpaceModel(zk, ûk,
sk,wk,Ak,Bk,Hk)

9:

(
ξ̌
k
, ǧ
k
, Ǧk, w̌

ξ
k

)
←AdaptAugmentedModel

(
ξ
k
, g
k
,Gk,w

ξ
k

)
10: end if

6.3.2 Adaptive Refinement of Physics-Based Models

This section deals with the adaptive refinement of all physics-based models
incorporated in the methods for tracking and visual motion compensation.

Algorithm 3 summarizes the refinement strategy. As the physical model
is the basis of all models, the physical model is refined (lines 5-6) at first.
This leads, in turn, to the improvement of all models derived from it and
used by the tracking and visual motion compensation methods (lines 1-2)
and (lines 8-9). The aim of the adaptive refinement is ambivalent: High
resolution of the models by tractable dimensionality of the system. In
order to achieve this, the models are refined only in the regions where high
inaccuracies exist and remain coarse in other regions. The regions of high
inaccuracies are provided by the a posteriori error estimation (line 4). This
error is described in detail in the following section.

A Posteriori Error Estimation

The error estimation proposed in this section evaluates the difference be-
tween the behavior of the physical model and the object under observation
with the purpose of finding out the proper positions of additional nodes.
In the course of this estimation, the stabilization error, provided by the
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feedback from visual motion compensation, limits the evaluation to the
areas where the visual motion compensation is inaccurate.

The idea of mesh refinement by nodes insertion is inspired by a classical
h-refinement strategy in the finite element analysis [33, 103, 116], which
is based on a posteriori error estimation. However, a classical a posteri-
ori error estimate considers only numerical errors arising due to spatial
discretization, presuming that the available data and models are exactly
known. It does not evaluate how sophisticated or how appropriate a dis-
crete mathematical model is for characterizing the behavior of the object
under consideration.

In this thesis, the mathematical model formulated by a system of stochas-
tic partial differential equations is not exact and the estimated position of
the object is uncertain. With the aim at taking into account these uncer-
tainties, the a posteriori error εik is estimated by the squared Mahalonobis
distance [136]. Hence, the divergence between the behavior of the physical
model and the object under observation at every surface point sik ∈ Sk is
described by the error feedback function, which is defined by

εik =
(
μs

p,i

k
− μs

e,i

k

)T (
Σsp,i

k +Σse,i

k

)−1 (
μs

p,i

k
− μs

e,i

k

)
< k (6.3)

between the predicted sp,ik ∼ fpk
(
sik
) ≈ N

(
μs

p,i

k+1
, Σsp,i

k

)
and estimated

se,ik ∼ fek
(
sik
) ≈ N

(
μs

e,i

k
, Σse,i

k

)
positions of this point, approximated

by the Gaussian densities, with respective means and covariances. These
densities are determined by (5.2) and (5.4). Here, the parameter k en-
sures, with the certain selected probability Pk := P (εik < k), sufficient
quality of the model for characterization of the object. This parameter is
a chi-square distributed random variable with three degrees of freedom. It
is determined according to the statistical table of chi-square distribution
given, e.g., in [20], by the familiar confidence region and three degrees of
freedom.

It should be noted that the evaluation of the error feedback function (6.3)
for all surface points will lead to a high computational effort. Therefore,
in order to harness the computational complexity, the error is estimated
only on the surface points, where the stabilization error is above some
preset tolerance. For this purpose, the stabilization error is first converted
in gray scale, as illustrated in Fig. 6.5. Then, the obtained image is bi-
narized. In this way, only the pixels, the gray intensity levels of which
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Figure 6.5: Selection of the surface points for refinement of the model
discretization. The estimation error is evaluated only on those points, where
the stabilization error is above some arbitrarily preset tolerance.

exceed a certain preset tolerance, become white. Finally, from the surface
points corresponding to these pixels, only those are selected that violate
the requirement εik > k. The violation of this requirement highlights that
the quality of the model is insufficient at these points with the relatively
high probability of 1− Pk.

Refinement of the Physical Model

In this section, the space-discrete physical model set forth in (3.45) is
improved regarding two aspects: refinement of the spatial discretization
and adaptation of model parameters for finer resolution of the material
inhomogeneity.

1) Spatial Discretization First of all, in order to reduce the errors of
the spatial discretization, additional model nodes ši ∈ Š are inserted in
the undeformed configuration of the discrete physical model (lines 4-5 of
Algorithm 3). These nodes collect the surface points as well as the points
placed under the surface points in the direction of the surface normals. In
this way, not only the surface but also the interior of the model is refined.
As a result, the number of the model nodes increases to M̌ = Š ∪M so
that additional degrees of freedom are introduced in the physical model.
Hence, additional nodal values cš

i ∈ R3 and their derivatives are assigned
to the inserted model nodes ši ∈ M̌.

Consequently, the displacement of the points near the inserted model nodes
is still approximated according to (3.24). However, the model nodes in the
set of neighboring nodes V are changed. Now, the widely distanced node
is excluded from this set, whereby the newly inserted and less distant
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model node is included. As a result, the set of neighboring nodes, after
insertion of the additional one V̌ = V, consists of the model nodes in the
nearest neighborhood of this point. The number of the neighboring nodes
NV = NV̌ remains constant. In this way, the approximation of the points’
displacement becomes more local. This means that the widely distant
points that move in a different way have little influence on each other.
The spatial resolution of the model is increased.

The price for this is the enhancement of the dimensions of the space-
discrete physical model (3.45), as illustrated in Algorithm 3 (line 6). Hence,
the vector m ∈ R3NM collecting the positions of the NM model nodes is
enhanced by the positions of the additional model nodes ši ∈ Š collected in
the vector š ∈ R3NŠ . Furthermore, the vector of nodal values c ∈ R3NM

is extended by the coefficients cš
i ∈ R3 assigned to the inserted model

nodes ši ∈ Š. Therefore, the refined space-discrete physical model is de-
termined by plugging in (3.45) the enhanced vectors of model nodes, nodal
coefficients, and collocation points

m̌ =

[
m
š

]
, č =

[
c
cš

]
, ř =

[
r
š

]
. (6.4)

Here, the vector cš ∈ R3NŠ collects the nodal values cš
i ∈ R3 of the

inserted model nodes ši ∈ R3NŠ . From this it follows that the global mass
matrixM ∈ R3NR×3NM , the damping matrixV ∈ R3NR×3NM , the stiffness
matrixK ∈ R3NR×3NM , and the matrix of shape functionsΦ ∈ R3NR×3NM

assembled from local matrices (3.36) similarly to (3.43) should be also
extended for considering additional model nodes. Here, NR denotes the
number of collocation points in original model. The matrices of the refined
physical model are determined by the horizontal concatenation

M̌ =
[
M ,MŠ

]
, V̌ =

[
V ,VŠ

]
, Ǩ =

[
K ,KŠ

]
, Φ̌ =

[
Φ ,ΦŠ

]
, (6.5)

where in each case the global matrix is combined with the matrix deter-
mined by the inserted model nodes ši ∈ Š. The elements of this matrix
are local matrices computed according to (3.36) for every collocation point
ři ∈ Ω and inserted model nodes ši ∈ Š substituted in the vector mi ∈ M.

2) Model Parameters Furthermore, the space-discrete physical model
given in (3.45) is adapted to the inhomogeneity of the physical character-
istics of the object under observation. This is achieved by describing the
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elasticity of the heart tissues at inserted model nodes ši ∈ Š by additional

parameters E š
i

k denoting the elastic modulus of the heart in the area where
additional nodes are inserted. This leads to the enhancement of the param-
eter vector θk given in (4.10) (line 7 of Algorithm 3). It should be noted
that these parameters are time-dependent because they will be estimated
by the stochastic filter at each time step. The material characteristics are
now defined at these nodes by the material matrices Cj computed accord-
ing to (3.29), where the Lamé constant introduced in (3.7) is determined

by the parameters E š
i

k . As a result, the extended damping matrix V̌ and
the stiffness matrix Ǩ, which depend on the material matrix Cj according
to (3.36), are also determined by the additional parameters assigned to
the inserted model nodes. In this way, the physical characteristics of the
model are locally refined.

Finally, it should be noted that, in order to be aware of the non-singularities
of the matrices, the same number of collocation points NR as the number
of model nodes NM̌ is chosen. The further advantage of this is the finer dis-
cretization of the random fields describing the random model input (3.38)
and uncertain initial conditions (3.41). These fields are now represented
by a higher amount of random variables.

As a result, the discrete physical model becomes a higher spatial resolution
due to the insertion of the additional model nodes. Furthermore, the
material inhomogeneity of the heart tissues is taken into account. In order
to bound the dimensionality of the system, the model is improved only
in the local areas where the modeling inaccuracies are detected by the
feedback mechanism.

Adaptation of Physics-Based Models

As the physics-based model (3.45) builds the core of the tracking and
visual motion compensation, the refinement of this model leads to the
improvement of the spatial resolution of all models derived from it.

1) State-Space Model Hence, the state-space model consisting of the
physics-based system model (3.54) and the measurement model (3.63) is
adjusted for reducing the errors of motion compensation (line 8 of Algo-
rithm 3). After refinement of the physical model, this model is determined
by the extended system Ǎk ∈ R6NM̌×6NM̌ , input B̌k ∈ R6NM̌×6NM̌ , and
measurement Ȟk ∈ R6NL×6NM̌ matrices that are obtained by plugging the
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matrices (6.5) into (3.51), (3.64), and (3.58). The extended system state
žk ∈ R6NM̌ is computed according to (3.47), where the extended vector
of nodal values defined in (6.4) is exploited. In addition, the vectors de-
scribing the modeling systematic errors šk ∈ R6NŘ and stochastic errors
w̌z
k ∈ R6NŘ are enhanced.

2) Augmented State-Space Model In a similar way, the augmented
state-space model, consisting of the augmented system model (4.14) and
the augmented measurement model (4.16), is refined (line 9 of Algorithm 3).
It should be noted that in the course of the model refinement, the dimen-
sions of the augmented state ξ̌

k
given in (4.11) are increased. The reasons

for this is the higher dimensions of the extended system state žk ∈ R6NM̌ .
Furthermore, the unknown model input ǔk ∈ R6NM̌ is enhanced by the

random variables uš
i

assigned to the inserted model nodes ši ∈ Š. Fi-
nally, the vector of model parameters (4.10) is extended by the additional

parameters E š
i

k .

3) Physics-Based Approximation Consequently, the predicted and esti-
mated positions of the landmarks, as well as the positions of all surface
points, are corrected (line 1 of Algorithm 3). The main reason for this
lies in the fact that the moments of the Gaussian densities (4.17), (4.17),
(5.2), and (5.4) that describe these positions, are derived from physics-
based approximation (3.24) with finer discretization. Furthermore, the
nodal values of this approximation are determined based on the augmented
state-space model with finer discretization. Moreover, this model considers
the inhomogeneity of the object’s material.

4) Correspondence Function The adaptation of the predicted positions
of the landmarks causes the adjustment of the correspondence function
(4.7), which is included in the tracking method (line 1 of Algorithm 3).
This function incorporates the physics-based criterion (4.9), which is deter-
mined by the predicted measurements. These measurements are estimated
by projecting the already correct predicted positions of the landmarks onto
the image plane of the camera.

5) Image Transformation Function Moreover, the physics-based image
transformation function (5.1), determined by the estimated positions of
the surface points (5.2), is also modified (line 2 of Algorithm 3). This
is due to the improvement of the augmented state-space model used by
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the stochastic estimation and the finer discretization of the physics-based
approximation (3.24).

6) Error Feedback Function Finally, the error feedback function (6.3)
defined by the squared Mahalanobis distance [136] between the estimated
and predicted positions of the surface points is adjusted at the next time
step (line 4 of Algorithm 3).

6.4 Summary

This section proposes a novel methodology for continuous monitoring and
improvement of the quality of the entire system for tracking and visual
motion compensation.

Contributions One of the special things about this adaptation method
is that the feedback from the stabilized image sequence is used for the
refinement of the models only when and where it is necessary. The trans-
formation error denoting the distance between the stabilized and reference
positions of the evaluation points indicates if the quality of the system
must be improved.

The further contribution of this chapter is the quality quantification of
the system. The stabilization error, which is defined by the color differ-
ence between the stabilized and reference images, allows for evaluation
and improvement of the quality of the system even in the areas where no
measurements are available. This error is used for selecting the proper
positions of the additional nodes, aiming at refinement of the model. For
this purpose, from all points with high stabilization error are considered
only those that have high probabilities of modeling inaccuracies are consid-
ered. These points are determined by the error feedback function, which
evaluates the squared Mahalanobis distance between the predicted and
estimated positions of the object.

One of the sophisticated features of the proposed adaptation strategy is
that it makes use of the fact that all physics-based models of the system
are derived from one physical model. Therefore, the adjustment of the
physical model to the motion of the object under observation causes the
improvement of all other models. These models are improved regarding
two aspects. On one hand, the spatial resolution is increased by finer dis-
cretization in the areas where the modeling inaccuracies are detected. On
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the other hand, the physical characteristics of the object becomes more dif-
ferentiated in these areas, yielding a better resolution of the inhomogeneity
of the object’s material.

Further Developments Considering the fact that the stabilized error is
sensitive to the changing light conditions, it may be misinterpreted when
the deformable object is occluded by other objects. Therefore, the robust
detection of changing light conditions, illuminations, and instruments in
the field view of the camera is of paramount importance for ensuring the
proper adaptation of the models.

Even if the proposed adaptation method provides high accuracy, as will
be shown in Chapter 7, it can be further elaborated. In addition to the
errors of spatial discretization and model parameters, the discrepancy of
the physical model arising due to its insufficient order can be analyzed
and adaptively selected. This could further improve the convergence of
the adaptation and lead to higher quality of the motion compensation.
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7 Evaluation

This chapter presents the evaluation of the methods for motion compensa-
tion. The accuracy of the tracking and of the visual motion compensation
is determined by the processing of the stabilized image sequence due to
the fact that the motion compensation is as accurate as the motion es-
timation. Hence, in case of highly accurate motion compensation, the
stabilized image representing the moving object as motionless should re-
main constant over time. The remaining motion in the stabilized image
shows inaccuracies in estimation.

With regard to the use of motion compensation in beating heart surgery,
both methods are evaluated by experiments on a pressure regulated ar-
tificial beating heart that simulates the motion of a mechanically stabi-
lized real heart. One of the points verified by the evaluation is the three-
dimensional reconstruction of the heart position in case of partial and total
loss of measurement information. The other point to be verified is the ca-
pability of the system to compensate the motion of the moving object
under observation. In this context, the validity of the image stabilization,
as well as of the three-dimensional motion compensation is checked. Fur-
thermore, the system is tested in respect to its sensitivity to the changes
of the heart rhythm and varying amount of available measurements.

The reliability of the physics-based motion compensation is compared with
the standard method for image warping [8] that exploits the geometric
image transformation. The maximum error of the three-dimensional mo-
tion compensation provided by this method achieves 0.648 mm. This is
in contrast to the maximum error of 0.357 mm, provided by the physics-
based motion compensation. Furthermore, the adaptation of the entire
system based on the feedback from the stabilized image sequence reduces
the maximum error to 0.281 mm. Another special characteristic of the
physics-based motion compensation is its ability to restore the current
and stabilized images when the image acquisition fails, e.g., due to occlu-
sions. This is of paramount importance for application in a beating heart
surgery system where surgical instruments operate in the field of camera
view. Additionally, the three-dimensional position of the entire heart wall
including its surface and interior is reconstructed – which differentiates
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the proposed method from approaches commonly used for tracking and
motion compensation of the beating heart motion. This reconstruction is
possible even when no measurement information is available.

This chapter is structured as follows. Section 7.1 gives an overview of the
experimental setup and introduces error measures used for the quantifi-
cation of the accuracy of the methods. In Section 7.2, the experimental
results provided by the tracking approach and physics-based method for
visual motion compensation are illustrated and discussed. Finally, this
chapter concludes with Section 7.3, where the main points of the evalu-
ation are summarized and intended evaluation of the system in in-vivo
experiments is discussed.

In addition to some experimental results published in [236], additional
experiments are introduced in order to clarify the capabilities and superior
properties of the proposed methods for tracking and visual compensation.

7.1 Experimental Environment

This section describes the experimental environment for testing and ver-
ification of the system for motion compensation. After introducing the
setup of experiments in Section 7.1.1, Section 7.1.2 presents the evaluation
criteria used for error analysis.

7.1.1 Setup

The system settings presented in this section are used in all experiments
when others are not mentioned. Although the working environment de-
scribed here does not directly correspond to one of the beating heart oper-
ation, the proposed methods for tracking and visual motion compensation
are verified by real experiments on a physical deformable object. At the
first step towards the application of these methods in a computer-assisted
beating heart surgery, this allows us to testify their quality and show their
diverse capabilities before validation of the system in in-vivo experiments.

Artificial Beating Heart as Simulator of Beating Heart Motion The
proposed methods for tracking and visual motion compensation are ver-
ified by the experiments on a pressure regulated artificial beating heart
presented in Fig. 7.1(a). This heart is continuously subjected to the
time-varying pressure determined by the predefined pressure signal. In
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this way, the motion of the mechanically stabilized beating heart is sim-
ulated. According to the medical study performed in [43], the remain-
ing motion of the beating heart after mechanical stabilization using the
Octopus stabilizer [61] is quantified by an average maximum excursion
of 0.596 ±0.200 mm in x direction, 0.811 ±0.235 mm in y direction, and
2.6 mm in z direction for the case when the animal has a weight of 65 kg.
The measured maximum excursion of the artificial heart achieves 2.6 mm
and 4 mm in x- and y-direction, respectively, and 5 mm in z-direction.
This motion is caused by the pressure signal with the amplitude of 100 hPa
and the frequency of 1.2 Hz. For comparison, according to [43], the motion
of the destabilized heart can reach the maximum excursion of 7.2 ±0.3 mm.

Trinocular Camera System The motion of the artificial heart is captured
by a trinocular camera system installed at a distance of 50 cm above the
heart, as depicted in Fig 7.1(b). The three cameras PIKE F-210C [4]
with image resolution of 1920 pixel × 1080 pixel achieve an accuracy of
0.2 mm/pixel in y-direction and 0.11 mm/pixel in x-direction of the im-
age coordinate system. The camera baselines are about 57 cm, their focal
length is about 35 mm, and the field of view is 12.8 cm × 17.02 cm. The
image size of each camera is reduced by cutting out the defined regions of
interest. For calibration of the cameras the multi-camera calibration algo-
rithm proposed in [205] is used. The achieved accuracy of the calibration
defined by the maximum reprojection error is 1.2 pixel. The measurement
information is transferred via the communication protocol FireWire IEEE
1394b with a frame rate of about 23 Hz.

Camera Measurements It should be noted that for evaluation of the
methods, the artificial landmarks are attached to the surface of the heart,
as shown in Fig. 7.1(a). The advantage of using these landmarks is the
robust and accurate extraction of the measurement information during
the beating heart operation. Another advantage is the independence of
the system from the object texture. Nevertheless, the attachment of the
artificial landmarks can decelerate the begin of the surgical activity. In
this context, it is important to note that the proposed methods can be also
applicable to the tracking of natural landmarks, since the image features
originating from the landmarks represent the input information in the
physics-based system.

The camera measurements are determined by the centers of the green
circular markers, which denote the projections of the artificial landmarks
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(a) Pressure regulated artificial
heart.

(b) The artificial beating heart
is observed by a camera system.

Figure 7.1: Experimental setup for evaluation of the methods.

onto the image plane of the camera. These markers are detected in the
camera image by a simple color segmentation algorithm, which introduces
some criteria in order to ensure that the image features extracted from the
image originate from the markers.

The segmentation algorithm assumes that the markers can be represented
only by the image features that lie inside of the hull that includes the shape
of the object under observation. Furthermore, when RGB color system is
used, the intensity of the color components of these features must be inside
of the thresholds of the color channels, i.e., minimal color intensity of the
green channel and maximal color intensity of the blue and red channel.
Moreover, the image features must be determined by a sufficient amount
of pixels.

In order to obtain these features, first, the image is binarized so that
only pixels inside the defined color thresholds are converted to white pix-
els. Consequently, the morphological operation of opening [206] that is
obtained by an erosion followed by a dilation of the resulting image is
applied. Then, if the obtained convex white zones have enough pixels,
a rectangle surrounding every zone is built. The center of this rectangle
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defines the center of the marker that is supposed to be an image of the
artificial landmark.

Real and Simulated Loss of Measurements The sensitivity of the sys-
tem to the number of available measurements is evaluated in two ways. On
one hand, the loss of measurements is simulated. In this case, although
the measured positions of the image features are available, they are not
processed by the Gaussian filter in Section 4.4.3. As a result, less mea-
surements are involved in the system than actually present. In this way,
the predicted position of the landmark can be compared with its measured
position that was assumed to be unknown for the entire system. On the
other hand, the capability of the system is also tested by real experiments,
whereby the object under observation is occluded by other objects. In this
case, no measurement information can be extracted from the occluded
regions.

7.1.2 Error Measures

Overall, there are three error measures used for analysis of the motion
compensation quality: average transformation error, sum of stabilization
errors, and average motion compensation error. The first two errors de-
termine the quality of the visual motion compensation in the image plane.
The third error verifies the accuracy of the system in the three-dimensional
space.

Similarly to the setup for quality monitoring of the system described in
Section 6, all artificial landmarks attached to the heart surface are divided
on the evaluation points and measurement points. The image features, rep-
resented in Fig. 7.2 by small green markers enumerated by indices in blue,
stem from evaluation points. The features originated from measurement
points are presented in Fig. 7.2 by the large green markers enumerated by
indices in black.

For evaluating the accuracy of the system in the image plane, average
transformation error introduced in (6.1) and sum of stabilization errors
defined in (6.2) are used.

For verifying the accuracy of the system in three-dimensional space, the
motion compensation error is defined. This error represents an Euclidean
distance between the reference vik−n ∈ Vk−n and stabilized positions ṽik ∈
Ṽk of the evaluation points in R3. Averaged over the number of the
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(a) Image of the first camera.
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(b) Image of the second camera.
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(c) Image of the third
camera.

Figure 7.2: Images provided by a trinocular camera system. The mark-
ers used for the evaluation of the system are denoted by indices in blue.
The markers, the measurements of which are processed by the system, are
enumerated by indices in yellow.

evaluation points NVk−n
at every time step, it is computed according to

ack =

NVk−n∑
i=1

∥∥vik−n − ṽik
∥∥

NVk−n

, (7.1)

where the notation ‖ · ‖ indicates the Euclidean norm on R3. It should be
noted that the reference positions of the evaluation points vik−n ∈ Vk−n
are determined by the surface reconstruction described in Section 5.4. The
stabilized positions ṽik ∈ Ṽk are obtained by the triangulation of those
image features in the stabilized image that correspond to the evaluation
points. For completeness of the description, the applied method of linear
triangulation [80] is introduced in Appendix A.

7.2 Experimental Results

This section presents and discusses the experimental results of the system
evaluation. It starts with the Section 7.2.1, where the three-dimensional
reconstruction of the heart surface motion is testified. Then, Section 7.2.2
presents the experimental analysis of the accuracy and robustness of visual
motion compensation.
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7.2.1 Evaluation of Physics-Based Tracking

The aim of this section is to evaluate the capability of the system to predict
and reconstruct the position of the object under observation in case of
unexpected changes of object motion and loss of measurement information.

The sensitivity of the system to unexpected behavior of the object is eval-
uated in respect to the application in beating heart operations. For this
purpose, the changes of cardiac rhythm, also called heart arrhythmia, are
simulated in the experiments on the artificial heart. It should be mentioned
that only the relative slow changes in the motion can be handled by the sys-
tem. The system does not cope with extrasystoles leading to unexpected
contractions of the heart, because the unpredictable and rash appearance
of extrasystoles makes its simulation and handling very challenging.

For simulating heart arrhythmia, two experiments were carried out.
For this purpose, the frequency of the pressure signal that determines the
pressure inside of the heart is changed from 0.7 Hz to 1.2 Hz. Then, in
order to verify the response of the system when the entire measurement
information is lost, in the first experiment, total occlusions are simulated
by neglecting all available measurements. In the second experiment, the
heart surface is really occluded by the surgical instruments that leads to
the loss of the measurement information.

1) Motion Reconstruction with Simulated Loss of Measurements The
results of estimating and predicting the heart motion at one of the eval-
uation points in case of simulated occlusions are illustrated in Fig. 7.3.
The evaluation point under consideration is identified by the index 102
in Fig. 7.2. The gray shaded areas denote the time intervals where the
entire measurement information is neglected by the system. In this case,
the estimated position (in blue) of the evaluation point is equal to its pre-
dicted position (in red). The reason for this is that no measurements can
be processed by the stochastic filter in the filter step, where the predicted
state estimate should be corrected by incorporating the measurement in-
formation in the state estimation. Since the loss of the measurement in-
formation is simulated, the acquired measurements (in green) can be used
for verification of the motion prediction.

As illustrated in Fig. 7.3, during the total occlusions, the predicted po-
sition of the evaluation point is similar to its measured position. This
points out the consistency of the motion prediction with the measurement
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Figure 7.3: Motion reconstruction at the evaluation point during sim-
ulated heart arrhythmia. The predicted and estimated positions of the
evaluation points are presented with 3σ bounds, which define that the true
position of the evaluation point lies with 99, 73% probability inside these
bounds. The areas shaded in gray denote the time intervals with simulated
loss of the measurement information.

data. It should be noted that the predicted and estimated positions of the
evaluation point are presented in Fig. 7.3 with 3σ bounds. These bounds
define the region where the true position of the evaluation point can be
found with 99, 73% probability.

2) Motion Reconstruction with Real Loss of Measurements Fig. 7.4
presents the results of the experiment with real occlusions. Here, the
artificial heart also changes its cardiac rhythm. The shaded in gray regions
denote the time intervals where the heart surface is partially occluded by
different objects, such as surgical instruments.
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Figure 7.4: Motion reconstruction at the evaluation point by simulated
changes of the cardiac rhythm. The time interval with partial loss of mea-
surement information is denoted by the area shaded in gray. When the
position of the point cannot be measured, its predicted position is still
corrected by processing the remaining measurements. The predicted and
estimated positions are presented with 3σ bounds giving 99, 73% probability
that the true position of the point is inside these bounds.

As a result, only some of the image features corresponding to the land-
marks could be measured. Therefore, only few measurement information
is processed by the Gaussian filter in the filter step.

It is of advantage that when the position of the evaluation point cannot
be measured, its predicted position is still improved by processing the
available measurements. This occurs due to coupling between all points of
the physical model, which is ensured by the physics-based approximation.
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Discussion In summary, the experimental results reveal that there is no
assumption on the periodic motion of the heart. The system reacts rapidly
on the changing pressure. The main reason for that is in the consideration
of the energy dissipation occurring in the real system due to, e.g., material
damping. As discussed in Section 3.2, this effect is introduced in the model
by the viscous material characteristics of the object and Rayleigh damping.
The reaction of the system on the changes of pressure is rapid because of
the assumption on the excitation of the heart that is primarily caused by
the pressure inside of the heart chamber. This is appropriate for pressure
regulated artificial heart.

Although certain research works state that heart excitation can be ade-
quately represented by the pressure inside the cardiac chambers [191,192],
it is important to note that this assumption may lead to a slower reaction
of the system on the changes of the real heart motion. Since the heart
contraction and relaxation are caused by the muscle forces acting in a dis-
tributed fashion, the reaction time of the system will depend on the time
delay between the changes of the pressure inside the heart chamber and
the action of these forces. This problem can be tackled by the extending
the system to the processing of the electrocardiogram signal, as introduced
in the summary of Chapter 3.2.

A further advantage of the system is that it successfully bridges partial
and even total occlusions. This is due to the fact that the system incorpo-
rates the a priori knowledge about the object’s motion. This knowledge is
continuously collected by the physical model and is essential for estimating
the position of the heart by the loss of measurement information.

7.2.2 Evaluation of Visual Motion Compensation

This section illustrates the capability of the system to reconstruct and
compensate the motion of the entire object under observation. Further-
more, the sensitivity of the motion compensation to the amount of the
available measurement information is analyzed. Finally, the quantitative
analysis of the accuracy of the system are given.

Functionalities of the System

In order to give an impression about the functionalities of the system,
certain system results are presented in Fig. 7.5, Fig 7.6, and Fig. 7.7.
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(a) Time step tk = 0 s

(b) Time step tk = 7.95 s

(c) Time step tk = 9.81 s

(d) Time step tk = 30.248 s

(e) Time step tk = 33.74 s

(f) Time step tk = 39.27 s

Figure 7.5: Current camera images (left), reconstructed (middle) and
stabilized (right) images at selected time steps.
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(a) Time steps tk = 0 s and tk = 7.95 s
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(b) Time steps tk = 9.81 s and tk = 30.28 s
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(c) Time steps tk = 33.74 s and tk = 39.27 s

Figure 7.6: Reconstructed surface of the artificial heart at selected time
steps.
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(a) Time steps tk = 0 s and tk = 7.95 s
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(b) Time steps tk = 9.81 s and tk = 30.28 s
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(c) Time steps tk = 33.74 s and tk = 39.27 s

Figure 7.7: Reconstructed heart wall at selected time steps. Two layers
of the blue points represent the nodes of the discrete physical model.
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The images presented in the fist column of Fig. 7.5 are selected from the
image sequence provided by the first camera. In these images, the infor-
mation about the appearance of the heart surface is partially lost due to
the occlusion of the heart by other objects. The reconstruction of this in-
formation provided by the physics-based image transformation described
in Section 5.4 is shown in the second column of Fig. 7.5. Furthermore, the
stabilized images formed by the visual motion compensation introduced
in Chapter 5 are illustrated in the third column of Fig. 7.5. These images
present the current view of the moving heart surface as motionless. The
objects occluding the heart surface, as well as changes of the heart color,
remain visible in the stabilized image.

The position of the entire surface of the object estimated at every time
step is depicted in Fig. 7.6, which clarifies the specialty of the system in
reconstructing even the areas of the heart occluded by the other objects.
For this purpose, the method introduced in Section 5.4 is applied.

Furthermore, as illustrated in Fig. 7.7, the volumetric physical model al-
lows for reconstructing the current position of the entire heart wall, the
surface of which is observed. Here, two layers of the blue points repre-
sent the nodes of the discrete physical model. All points between these
nodes can be obtained by physics-based approximation according to (5.2)
and (5.4). Therefore, in contrast to existing methods for motion compen-
sation of the beating heart, this proposed system is able to reconstruct
the motion of the object not only on its surface but also in the interior.
This will significantly extend the surgeon’s capabilities in manipulating
the heart and navigating a surgical robot during beating heart operations.

Sensitivity to Loss of Measurements

The sensitivity of the system to the loss of the measurements is determined
by a sequence of experiments, the results of which are gathered in Table 7.1
and Fig. 7.8, where the maximum of the average motion compensation is
depicted in dependence on the number of available measurements.

The motion of the artificial heart is visually compensated by processing
the same image sequences of the camera system, whereby the number of
measurements extracted from these sequences is stepwise reduced. Hence,
16, 11, 7, 4, and finally, no measurements are processed by the stochastic
filter. The accuracy of the motion compensation is determined at every
time step by the motion compensation error (7.1) that is averaged over 7
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Motion compensation error in mm
Measurements Physics-based Geometric

16 0.432 0.717
11 0.598 0.721
7 0.743 0.903
4 0.895 1.965
0 1.036 -

Table 7.1: Sensitivity of the physics-based and geometric motion compen-
sation to the loss of the measurement information measured by the maxi-
mum of the motion compensation error that is averaged over 7 evaluation
points at every time step. The maximum of this error is computed over the
time period of 9 s.

evaluation points. For assessing the quality of the motion compensation
over the time interval of 9 s, the maximum of this error is determined in
the interval. This is motivated by the importance of high system accuracy
at each time step.

The performance of the physics-based system is compared with the stan-
dard image warping method proposed in [8]. This method refers to the
group of methods introduced in Section 1.3.1 that are based on the geo-
metric image transformation. The current camera image is transformed to
the stabilized image by means of a two-dimensional image transformation
function that combines the affine transformation with the radial transfor-
mation. The latter transformation is determined by Gaussian radial basic
functions with local support, including only the neighboring features of
each extracted image feature.

To allow a fair and transparent comparison of the methods, the physics-
based method for visual compensation is applied without the adaptation
of the spatial resolution of the physical model by refinement of the dis-
cretization. Therefore, the standard method as well as the physics-based
method perform on the same number of points.
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Figure 7.8: The physics-based motion compensation (red) has an advan-
tage of lower dependence upon the amount of measurement information in
comparison to the standard image warping method (blue). The levels of
bars are determined by the maximum of average motion compensation error
ack in the time period of 9 s. The motion compensation error is averaged
over the 7 evaluation points at every time step.

According to Table 7.1 and Fig. 7.8, the physics-based method has the
advantage of lower dependence upon the loss of measurement information
than the standard image warping method. The main reason for this is that
more a priori information is incorporated in the physics-based method.
This allows achieving a higher accuracy of the motion compensation even
when less measurement information is available. Furthermore, this enables
the reconstruction of the heart surface motion even in the case of complete
loss of measurements that is not possible by the standard method.

Accuracy of Motion Compensation

The accuracy of the methods for motion compensation is testified by pro-
cessing the data collected in three system runs. Each run consists of three
image sequences, every of which contains 400 images provided by the
trinocular camera system. The stabilized image sequences are obtained
by processing these images in three ways: using standard image warping
method [8] based on geometric image transformation, physics-based image
transformation without and with feedback mechanism.
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(b) Average motion compensation error at every time step.

Figure 7.9: Accuracy of geometric, physics-based, and adaptive physics-
based methods measured by the transformation and motion compensation
errors averaged over the 7 evaluation points at every time step. The adap-
tive physics-based method allows more accurate compensation of the large
displacements of the object due to refined spatial resolution.

All methods are initialized on the same amount of points. However, the
physics-based image transformation with feedback mechanism refines the
spatial resolution of the motion compensation during the functionality
of the system. For the purpose of the feedback, the stabilization error
is computed over 23 frames, whereby the color values between 8 and 12
gray levels are binarized. This is why the adaptation of the physics-based
motion compensation does not start until the first second. Commonly,
there are 16 measurements available at every time step.

The accuracy of the considered methods is presented in Fig. 7.9, where
the transformation error at

j

k in the image sequence of the first camera of
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Transformation error in pixel
Methods Maximum Mean
Geometric 2.568 1.734

Physics-based 2.031 1.270
Adaptive physics-based 1.576 1.036

Table 7.2: The accuracy of the stabilized image sequence is measured by
the maximum and mean of the transformation error that is averaged over 7
evaluation points at every time step. Its maximum and mean are computed
over the time period of 16 s.

the trinocular camera system as well as the motion compensation error
ack are depicted. These errors, computed according to (7.1) and (6.1) are
averaged over 7 evaluation points and 3 runs at every time step.

Image Transformation Error Obviously, the adaptive physics-based mo-
tion compensation is of superior quality – according to Table 7.2, a maxi-
mum average transformation error in the considered time period of 16 s is
1.576 pixel. In comparison, the physics-based motion compensation with-
out feedback mechanism provides the error of 2.031 pixel. The geometric
approach achieves the error of 2.568 pixel.

Therefore, the maximum error of the adaptive physics-based motion com-
pensation is 39% lower than the error of the geometric approach. The
mean values of the average transformation error computed over the con-
sidered time period follow the similar trend as the maximum values of this
error.

Motion Compensation Error Before comparing the accuracy of the dif-
ferent methods, it should be noted that the transformation error strongly
depends on the position of the camera. If the heart moves primarily along
the optical axis of the camera, all methods may provide comparable re-
sults. The reason for this is the loss of information about the motion of
the object due to its projection on the image plane.

Fig. 7.9(b) illustrates the accuracy of the motion compensation in three-
dimensional space. Here, the motion compensation error of the adaptive
physics-based motion compensation averaged over 7 evaluation points is
significantly smaller than that of the geometric approach. The maximum
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of this error in the considered time period is 0.281 mm, as introduced in
Table 7.3.

Motion compensation error in mm
Methods Maximum Mean
Geometric 0.648 0.478

Physics-based 0.357 0.224
Adaptive physics-based 0.281 0.180

Table 7.3: The accuracy of the system is measured by the maximum and
mean of the motion compensation error that is averaged over 7 evaluation
points and is computed over the time period of 16 s.

The error is an impressive 57% lower than the error of the geometric ap-
proach, which is 0.648 mm. The main reasons for the high performance
of the physics-based method are the incorporated physical knowledge and
consideration of the model and measurement uncertainties. Furthermore,
the 0.357 mm maximum error of the physics-based motion compensation
without feedback mechanism is improved substantially by 12%, due to
adaptation of the model’s discretization and parameters.

It should be noted that errors are highest when the artificial heart is sub-
jected to the largest displacements. The adaptive physics-based motion
compensation allows for better compensation of these displacements due
to higher spatial resolution of the physical model. According to Table 7.3,
the mean values of the motion compensation error show a similar trend as
the maximum values of this error.

Sum of Stabilization Errors When the transformation error and motion
compensation error evaluate the quality of the system only on the se-
lected evaluation points, the sum of stabilization errors as

j,i

k given in Equa-
tion (6.2) provides an insight in the accuracy of the system also between
these points.

Fig. 7.10 presents the sum of stabilization errors computed for one of the
stabilized image sequences consisting of 400 images. With the aim of giving
an impression about the changes that must be compensated, Fig. 7.10(a)
depicts the sum of the stabilization errors between the reference image and
the current image provided by a camera. The stabilization error of the
geometric, physics-based, and physics-based motion compensation with
feedback mechanism is determined by the color differences between the
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reference image and stabilized images. This error points out the remaining
motion in the stabilized image sequence.

After the comparison between Fig. 7.10(b) and Fig. 7.10(c), it is evident
that the stabilized image sequence provided by the physics-based visual
motion compensation is of higher accuracy than the geometric approach.
Furthermore, as depicted in Fig. 7.10(d), its accuracy is additionally im-
proved by the feedback mechanism in the highlighted regions.

�

�

(a) Sum of color differences
between camera images and
the reference image.

(b) Geometric image trans-
formation.

(c) Model-based image trans-
formation without feedback.

(d) Adaptive model-based
image transformation with
feedback mechanism.

32 63 94 125 156 187 218

(e) Levels of inaccuracies in green
color of different intensities.

Figure 7.10: Sum of the stabilization error of the geometric, physics-
based, and adaptive physics-based image stabilization in form of contour
plots. This error is computed for one stabilized image sequence containing
400 images.
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7.3 Summary

With respect to the computer-assisted beating heart surgery system, the
performance of the proposed system for tracking and visual motion com-
pensation is evaluated in experiments on the pressure regulated artificial
beating heart, which simulates the motion of the mechanically stabilized
real heart.

The functionality of the system is demonstrated in extensive experimental
investigations testing the following system capabilities: (1) Handling of
the relatively slow but unexpected changes of the object motion, (2) Re-
construction of the current camera image and formation of the stabilized
image, as well as the estimation of the heart wall motion, (3) Sensitivity to
the loss of measurement information, (4) Accuracy of motion compensation
in the image plane and in three-dimensional space.

Contributions The physics-based motion compensation is compared to
the motion compensation obtained by the standard method for image
warping that describes the relationship between the current image and
the reference image by the affine and radial transformation. As a result,
the error of the adaptive physics-based motion compensation is 57% lower
than the error of the geometric approach. There are two main reasons
for the significantly better performance of the physics-base method: (1)
Consideration of the measurement uncertainties and model imprecisions,
(2) Incorporation of more a priori knowledge. The importance of the con-
tinuous monitoring of stabilization quality is emphasized by the fact that
the error of the physics-based motion compensation is reduced by a signif-
icant 12% due to feedback mechanism. In the context of the beating heart
surgery, the high accuracy of the system is of paramount importance for
ensuring the safety of robotic operations.

As the acquisition of the camera measurements fails when the object is
occluded, beating heart operations are unimaginable without loss of mea-
surement information. For example, surgical instruments may often be in
the field of the camera view. They manipulate the heart, which is observed
by the camera. With this in mind, it is demonstrated that the proposed
system is less sensitive to the loss of the measurement information than
the standard method. Moreover, while the standard method fails when no
measurements are available, the entire surface of the object as well as the
current camera images can be reconstructed by the proposed system. The
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main reason for this consists in incorporating physical knowledge about
the motion of the object under observation.

In addition, the unique property of the system to reconstruct the motion
of the entire object by solely processing of camera data is presented. In
this way, information about the motion in the interior of the heart wall,
which is unaccessible to the methods commonly used for beating heart mo-
tion compensation, can be provided to a surgeon. This would significantly
extend his capabilities in manipulating heart tissues and navigating a sur-
gical robot. Furthermore, the reconstruction of the motion in the interior
of the heart builds a foundation for modeling of surgical interventions.

Further Developments The next step towards the application of the pro-
posed system in a computer-assisted beating heart surgery is its evaluation
in in-vivo experiments. Here, one of the main challenges may be the ex-
traction of measurement information, which is carried out by the proposed
system in a simple way. Compared to the artificial heart, the heart surface
is more textured and therefore, is more suitable for robust extraction of
natural heart landmarks. However, this surface is of higher reflectance be-
cause it is smeared with blood, yielding a wet-like effect. This demands the
preprocessing of the acquired images with the aim of compensating illumi-
nations. Diverse approaches promise to tackle this problem [50, 118, 174].
Another issue that may cause difficulties is that the proposed system is
object-specific due to its physics-based nature. Since the artificial beating
heart is a poor imitation of the beating heart, it cannot be excluded that
some corrections of the models, e.g., concerning the model excitation, are
necessary for accurate estimation of the beating heart motion.
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8 Conclusions and Future Work

In this research thesis, the physics-based framework for motion compensa-
tion of elastically deformable objects is developed. It can be applied in a
wide range of applications of service and industrial robotics, as well as in
video processing. In this thesis, the scope is concentrated mainly on the
application to a beating heart robotic surgery system.

This system aims to facilitate a surgeon by operating on a beating heart.
Apart from robotic navigation and manipulation, it performs the motion
compensation of the beating heart. During an operation, it synchronizes
the surgical instruments with the motion of the beating heart by exploiting
the predicted position of the heart. At the same time, it represents the
moving heart to a surgeon as motionless in order to improve the hand-eye
coordination. This robotic system promises higher dexterity, lower error
rate, and no fatigue. Furthermore, it makes long-distance teleoperations
possible.

In order to enable the motion compensation, the accurate reconstruction
and prediction of the position of the continuously changing entire elastic
object is essential. This is complicated by the fact that the noisy camera
measurements are available only at some discrete points. Furthermore, the
cameras are very sensitive to occlusions and contaminations that lead to
the loss of measurement information. The main challenge is the achieve-
ment of high accuracy substantial for safety relevant applications, with the
efficiency necessary for the real-time operability of the system.

Contributions

The main theoretical contributions of the proposed methods for tracking
and visual motion compensation include:

• Physical interpretation of the measurement data as a basis for both
methods, which allows for the introduction of the physical knowledge
in the reconstruction of the entire object deformation from the avail-
able measurements. This is of paramount importance for physically
correct and highly accurate motion prediction as well as in case of
highly inaccurate measurements or loss of measurement information.
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• A sophisticated and computationally cheap novel physical model of
the heart wall motion within the operation area, described by a dis-
tributed parameter system in the form of the system of stochas-
tic partial differential equations. This raises the challenge of the
mathematically complex formulation of boundary conditions.

• Balance between accuracy and computational complexity of the mo-
tion compensation by the combination of the simplified models of
the physical object and the measurement system with the detailed
analysis of the model imprecisions. The systematic and stochastic
errors are systematically considered throughout the entire process of
motion reconstruction.

• Mathematical derivation of all models involved in the system from
the physical model, wherein the numerical solution of the system
of stochastic partial differential equations is exploited. The physical
model is spatially discretized by using the element-free method. This
method represents the spatial domain of the model by a set of points
without establishing the predefined connection between them. This
significantly contributes to the efficiency of the system.

• Reconstruction of the entire elastic object by solely processing the
camera data. Although the camera measurements about the motion
of the object are available only at some surface points, even the
interior of the deformable object can be reconstructed thanks to the
volumetric model of the heart wall incorporated in the proposed
methods. This allows for access to the motion of the object in areas
that cannot be measured.

• Continuous monitoring of the quality of the system and its adaptive
improvement by the feedback mechanism that incorporates the a
posteriori estimation of the modeling errors. By these methods, the
spatial resolution of all models involved in the system as well as
the material properties of the model are refined in the areas where
modeling inaccuracies are detected.

The performance of the system incorporating both methods is demon-
strated by experimental studies on a pressure regulated artificial heart.
The reconstruction of the entire deformable object as well as motion com-
pensation has higher accuracy compared to the standard method based
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on the geometric image transformation. Furthermore, it copes success-
fully with partial and even total occlusions. In contrast to the geometric
approach, a lower number of measurements is required for achieving high
motion compensation accuracy.

With respect to the application to the beating heart robotic surgery sys-
tem, the system has the advantage of flexible adaptation to changing en-
vironmental conditions. The uncertainty bounds of the estimated heart
surface position provide safety relevant information for control of the sur-
gical robot. Thanks to the reconstruction of the motion of the entire
object, the surgeon acquires information about the motion of the heart
wall even in its interior. This will extend its capabilities in planning of
intraoperative surgical interventions and navigation of the surgical robot.

Future Work

Since the enhancements of the individual components of the proposed
framework have been discussed in the summary sections at the end of
each chapter, long term research directions will be noted in this section.
Further developments concern the application of the proposed methods in
the beating heart robotic surgery system, as well as the generalization of
the system for other applications.

Towards Computer-Assisted Beating Heart Surgery System

As regards the robotic surgery system, the proposed methods are intended
to be evaluated in scenarios of real beating heart operations. Then, they
are supposed to be integrated into the robotic surgery system aimed at
navigation and control of surgical manipulators for performing surgical
interventions.

Validation in Beating Heart Operations By concentrating on the reduc-
tion of the computational complexity of the motion compensation system,
this work has not dealt with the sophisticated implementation of the pro-
posed methods. Generally, the lower the frame rate of a data acquisition
and processing is, the better the model for accurately reconstructing the
heart motion must be. The reason for this is the insufficient amount of
measurement data for compensating strong changes between acquired im-
ages. Therefore, the first steps towards the validation of the system in
beating heart operations are an optimization of the real-time functionality
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of the system by efficient implementation of the algorithms, including their
parallelization, as well as running of some calculations on the graphics pro-
cessing unit. Some ideas with respect to the parallelization techniques can
be found in [37,94].

In the context of beating heart operations, the extension of the methods to
handling surgical interventions is unavoidable. For example, the surgical
instruments permanently interact with the heart wall by grasping the heart
tissues, cutting, or suturating. The latter manipulations can be modeled
by introducing the discontinuities in the heart model. To the best of our
knowledge, although the discontinuous models are broadly investigated [3,
157], there are still no approaches for handling surgical intervention during
beating heart surgery. The proposed volumetric model of the heart wall
builds a good foundation for this, thanks to the fact that it approximates
the motion of the heart wall also in the interior. The other challenge of
modeling the surgical interventions is in the detection of the interactions
between the heart tissues and surgical instruments. A basic approach to
tackle this problem is to integrate the force sensors in surgical instruments,
as proposed in [29,40].

Another point that is identified as worthy for further investigations is the
extension of the system for beating heart operations on a non-stabilized
beating heart. This would significantly reduce the cost and time of beat-
ing heart operations due to lack of requirement for a mechanical stabilizer.
The challenge here is that the non-stabilized heart has large deformations
and more complex behavior. This demands that the physical model copes
with these deformations. Currently, the model is restricted to small de-
formations and it is not rotation-invariant. This means that the large
rotational deformations lead to the distortion of the model and to the un-
realistic growth in its volume. The one way of solving this problem is to
exploit Saint-Venant strain tensor [53] instead of Cauchy’s strain tensor.
However, this will lead to the high dimensional nonlinear system, which is
not computationally feasible. The other way to guarantee the preservation
of the volume by large deformations is corotational formulation [142,143],
which keeps the model linear and therefore, seems to be more suitable for
this application.

Model-Predictive Control Once the motion of the heart is predicted by
the proposed method, the high quality control of the surgical manipulator
becomes of high importance.
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The model-predictive control methods [41] that, in contrast to classical
methods, consider not only the current state of the surgical manipula-
tor, but also its evaluation over the prediction horizon can meet these
needs. These methods are especially advantageous due to the intrinsic
compensation of the dead times [41] in real-time applications.

Furthermore, the constraints on the position of the manipulator defined
by virtual features derived from the predicted position of the heart sur-
face [238] can be included in the design of control in order to ensure the
safety of the robotic operation. These features may also represent the
software-generated forces influencing the motion of the robot, in order
to improve the accuracy, the safety and the speed of the robot-assisted
manipulations.

There are diverse concepts for incorporating the virtual features in the
control of manipulator [1, 2, 31] that concern itself with guidance virtual
fixtures and forbidden-region virtual fixtures. The first category may assist
a surgeon in the navigation of the manipulator by moving the surgical
instruments along desired path or heart surfaces. The forbidden-region
virtual fixtures may prevent the manipulator from entering into critical
regions of the heart.

Information Fusion and Sensor Management Considering that the a
priori information leads to more accurate reconstruction of the heart wall,
it is intended to enhance the proposed system with respect to a combina-
tion with additional information. One of the possibilities is to introduce
the data from preoperative planning in the initialization of the physical
model. The main challenge here, i.e., the registration of these data with
the physical model, may be faced with methods [83,224] for non-rigid body
registration.

In addition, the combination with data provided by a medical imaging,
like ultrasound, as well as by an electrocardiogram, or by other sensors in
runtime, can further improve the quality of the motion compensation. For
example, the information fusion with measurements provided by accelera-
tion sensors [82,144] would extend the capability of the system to capture
the high frequent motion of the heart. The processing of the electrocar-
diogram signal would enable the prediction of the abnormal motion of the
heart about 90 ms ahead, as stated in [45].
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Furthermore, it is worth investigating the optimal locating of the artificial
landmarks on the surface of the heart, to estimate the heart surface posi-
tion as accurately as possible. Sensor management techniques [88,214] may
deal with this problem. Such techniques aim at maximizing the informa-
tional content of the system by feasible configuration of the sensing modal-
ities. The main challenge here is the consideration of the regions where
the landmarks would disturb the surgical manipulations as constraints in
sensor management.

Generalization for Other Applications

With respect to application of the proposed physics-based technique in
video processing as well as in industrial or service robotics, the require-
ment on the available excitation of the physical model is disruptive. For
compensating the motion of objects subjected to unknown excitation, the
forces causing the deformation of the object under observation can be ex-
tracted from images, similarly to [141]. Furthermore, while in the above-
mentioned applications multiple diverse objects can move in the scene
under observation, the motion of every object should be compensated indi-
vidually. Therefore, the accurate detection and classification of the objects
in camera images is of high importance here.
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A Linear Triangulation

The method of linear triangulation, e.g., introduced in [80] reconstructs
the position of the point in R3 from its projections on the multiple camera
images. Since the handling of two and more camera images by the linear
triangulation is analogous, in this section, the measurement point is recon-
structed by processing two camera images achieved by a camera system at
the same time step.

Hence, the problem that the method of linear triangulation solves is finding

the unknown position of the measurement point li =
[
xl

i

, yl
i

, zl
i
]T

∈ R3

by processing these images. It is supposed that the positions of the image

features f i =
[
xf

i

, yf
i
]T

∈ R2 and f j =
[
xf

j

, yf
j
]T

∈ R2 originated from

the measurement point are known.

Therefore, the projection of the measurement point onto the image plane
of the first and second cameras is described by equations

f i
k
= Pili , f j

k
= Pj li ,

where the projection matrices Pi and Pj are determined by the cam-
eras’ calibration. The combination of the above equations, subject to
constraints

f i ×Pili = 0 , f j ×Pj li = 0 ,

results in the system of algebraic equations that is linear in li in terms of
homogeneous coordinates

Ali = 0 . (A.1)

The matrix A is defined by

A =

⎛
⎜⎜⎜⎜⎝
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i
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⎦
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The system (A.1) is then solved by a singular values decomposition A =
UDVT, where U and V are orthogonal matrices. The matrix D is di-
agonal with non-negative elements. The last column of V, which is the
eigenvector of AAT corresponding to the smallest eigenvalue, represents
the solution li of the system.
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B Gaussian Filter

The aim of this section is to introduce the Gaussian filter [89] used in this
thesis for simultaneous state and parameter estimation.

The Gaussian filter has been developed in [89]. Additionally, it is extended
in [32] for state estimation of the conditionally linear models, whereby the
state of the system is decomposed on linear and nonlinear substructures.
In this section, the main equations of the Gaussian filter are introduced.
It should be noted that this description is based on the above-mentioned
works [32,89]. The equations taken from these works are slightly modified
for the system with additional noise.

It is assumed that the system model is a conditionally linear model of the
form

y
k
= g

k
(xnk ) +Gk (x

n
k ) ·xlk +wk , (B.1)

where the system state

xk =

[
xlk
xnk

]
is decomposed on linear xlk and nonlinear x

n
k substructures by using Rao-

Blackwellization [63]. This decomposition allows to apply the Kalman
filter equations for the computation of the linear substructure and Gaus-
sian filter equations for the computation of the nonlinear substructure. It
should be further noted that the vector function g

k
and matrix function

Gk depend on the nonlinear substructure. The stochastic perturbations
collected in the vector wk are additive zero-mean Gaussian.

The joint density of the vector y
k
and of the system state xk is equal to

fk(yk, xk) = δ
(
vk − g

k
(xnk )−Gk(x

n
k )−wk

)
fk(x

l
k, x

n
k ) , (B.2)

where the Dirac delta distribution is denoted by δ. The Gaussian filter ap-
proximates the joint density by a multivariate Gaussian density according
to

fk(yk, xk) ≈ N
([
μx
k
μy
k

]
,

[
Cx,x
k Cx,y

Cy,x
k Cy,y ,

])
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where the first argument of the Gaussian function N denotes the mean of
the density. The second argument expresses the covariance.

For computation of this density, the joint density of the linear and nonlin-
ear substructures fk(x

l
k, x

n
k ) involved in (B.2) can be separated according

to Bayes law
fk(x

l
k , x

n
k ) = fk(x

n
k )fk(x

l
k | xnk ) , (B.3)

where the conditional density is assumed to be Gaussian

fk(x
l
k |xnk ) ∼ N (μ

k
(xnk ),C

l|n
k )

with mean and covariance

μ
k
(xnk ) = μl

k
+Cl,n

k · (Cn,n
k )

−1 · (xnk − μn
k
) ,

C
l|n
k = Cl,l

k −Cl,n
k (Cn,n

k )
−1 ·Cn,l

k .

The Gaussian filter systematically approximates the density of the N
dimensional nonlinear substructure by the Dirac-mixtures

fk(x
n
k ) ≈

L∑
i=1

wk · δ(xnk − μn
i,k
) , (B.4)

with L Diracs weighted by wk = 1/L. The total number of the sample
points L is determined by N sets of D sample points placed along the
N coordinate axes. For this approximation, the deterministic sampling
schema presented in [89] is used. Consequently, the approximated density
is computed by plugging (B.2), (B.3) and (B.4) in equation

fk(yk) =

∫
R

∫
R

fk(yk, xk) dx
l
k dx

n
k .

This results in the representation of this density by the Gaussian mixture

fk(yk) =

L∑
i=1

wk+1 · N (μy
i,k
,Cy,y

i,k )

with mean and covariance

μy
i,k

= g
k
(μn
i,k
) +Gk(μ
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i,k
) ·μ

k
(μni,k) ,

Cy,y
i,k = Gk(μ

n
i,k
) ·Cl|n

k · (Gk(μ
n
i,k
))T.
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The first and second moments of the approximated density fk(yk) are
determined by mean and covariance

μy
k
= wk ·

L∑
i=1

μy
i,k

,

Cy,y
k =

L∑
i=1

(
wk ·Cy,y

i,k + wsk ·
(
μy
i,k

− μy
k

)(
μy
i,k

− μy
k

)T)
+Cw

k ,

(B.5)

where the weights wsk = 1/D are used. Furthermore, the cross-covariance
matrix is approximated by

Cx,y
k =

L∑
i=1

(
wk·
[

0

Cl|nH
(
μn
i

)T]+wsk·
([

μn
i

μ
(
μn
i

)]− μx

)
·
(
μy
i
−μy

i

)
T

)
.

(B.6)

It should be noted that the introduced equations can be applied in the
prediction step as well as in the filter step of the Gaussian filter. A pre-
requisite for this is that the system model or measurement models can be
converted in a conditionally linear form given in (B.1).
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