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Abstract  

 

 

Since many decades, selenium is of high environmental concern due to several reasons. It is 

an essential trace element for all vertebrates, but continuously under- and overdosage leads 

to diseases. Another topic is related to the disposal of high-level nuclear waste into deep 

geological formations. The radionuclide 79Se could enter the biosphere, if such a disposal site 

comes into contact with groundwater and 79Se starts to migrate upwards. These repositories 

consist of three different barriers: steel containers inclosing the vitrified radioactive material, 

the backfill material for closing the pits and the host rock itself. The safety of these disposal 

sites should function for a certain geologic lifetime of one million years. Therefore, it is 

necessary to assess the migration behavior of long lived radionuclides under consideration of 

the interaction between the dissolved contaminants and the host rocks for defined 

hydrochemical conditions. According to performance assessment reports for high-level 

radioactive waste repositories, 79Se could be a threat if it is released from such a waste 

disposal site into the biosphere. Selenium is often associated with sulfides such as pyrite 

(FeS2), the quantitatively most important iron sulfide mineral of the Earth´s crust, known for 

its capability to incorporate trace elements in a comparatively high amount. Pyrite is 

constituent of host rocks and bentonite backfills considered for radioactive waste disposal. 

Between 0.4 and 1.9 wt.% of pyrite are contained in Callovo-Oxfordian clay (CO; France), 

1.1 ± 0.5 wt.% in Opalinus clay (OPA; Switzerland), 1 – 5 wt.% in Boom clay (BC; Belgium). 

Mackinawite (FeS) is usually the first precipitating iron sulfide under anoxic and low 
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temperature aqueous conditions due to kinetic reasons. Therefore, knowledge of the 

geochemical behavior of selenium during its transport in aqueous solutions while interacting 

with precipitating iron sulfides is a fundamental part to assess the safety of repository sites.   

This study aimed at investigating the incorporation of Se2- and Se4+ into pyrite and 

mackinawite, to determine the relevance of iron sulfides for the selenium retention, the 

homogeneity of selenium incorporation and the type of structural bonding. Feasible types of 

bonding are the formation of a FeSxSey compound as solid solution phase, or as elemental 

selenium, achavalite (FeSe) or ferroselite (FeSe2). The syntheses of pyrite and mackinawite 

occurred under standard conditions via direct precipitation in batch experiments and also as 

produced coatings on grounded natural pyrite simulating pyrite crystal growth in mixed-flow 

reactor experiments (MFR) under anoxic conditions at aqueous Se concentrations of 10-3 –

 10-6 mol/L, a range of pH from 3.5 – 7 and an Eh from -200 – 100 mV. For the high 

temperature synthesis between 600° and 700° C, the incorporation of Se into single crystal 

pyrite was examined, using solid AlBr3, Fe0, S0 and Se0 by means of the chemical vapor 

transport (CVT) reaction in a 2-zone furnace.  

Results from X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses 

reveal the formation of pure synthesized mackinawite or pyrite, the latter with a Se to S-ratio 

of 1:4 in batch experiments. The average Se2- uptake into pyrite in batch experiments 

amounts to 98.6%. In MFR syntheses, it reaches 99.5%, suggesting a high potential for 

selenium retention. The focused ion beam coupled with energy dispersive X-ray analysis 

shows an inhomogeneous Se distribution with a higher accumulation in the center of the 

pyrite grains, probably due to the progressive depletion of Se from solution with regard to S. 

The high-temperature synthesis by chemical vapor transport enabled the homogenous 

incorporation of 1.1 wt.% Se in pyrite for single-crystals with a size up to 0.5 cm in diameter.  

X-ray absorption fine-structure spectroscopy (XAFS) results indicate a substitution of sulfur 

by selenide only during instantaneous precipitation in highly supersaturated solutions 

accompanied with instantaneous precipitation. In Se doted mackinawite with Se2- initially 

present in the solution, S2- was substituted by Se2-, resulting in a mackinawite-type 
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compound. S- is substituted by Se- in Se doted pyrite using initially dissolved Se2-, yielding a 

FeSxSey compound, comparable to a slightly distorted pyrite structure. Under less 

supersaturated conditions which have been performed in crystal growth experiments, XAFS 

results show a coprecipitation of initial Se2- or Se4+ predominantly as Se0 by changing the 

valence state. XAFS investigations of Se doped pyrite samples via condensation from 

gaseous phase with CVT reveal the incorporation mainly as Se0 into the pyrite structure 

without further lattice bonding. Created Pourbaix diagrams show that the hydrochemical 

conditions of pyrite formation interfere with Se0 as thermodynamically most stable selenium 

phase under these conditions.  

This study demonstrates that pyrite and its most important precursor phase mackinawite, are 

efficient in removing selenium from aqueous solution, and therefore may contribute to reduce 

the mobility of 79Se released from radioactive waste. The results imply that a lattice 

substitution of sulfide by selenide in iron sulfides probable only occurs in highly 

supersaturated solutions with an instantaneous precipitation under acidic and anoxic 

conditions. Under near-equilibrium hydrochemical conditions, Se0 is expected to be the most 

stable species. Though the results suggest that the formation of a FeSxSey compound, 

accompanied with a substitution of sulfur by selenium, plays a minor role in the retention of 

Se, the results are promising because elemental selenium is highly insoluble and therefore 

less bioavailable. 
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Zusammenfassung 

 

 

Selen ist seit etwa einem halben Jahrhundert Gegenstand intensiver wissenschaftlicher 

Untersuchungen, da es aus mehreren Gründen eine hohe ökotoxikologische Bedeutung hat: 

Zum einen ist Selen für den Menschen, aber auch für alle übrigen Wirbeltiere, ein 

essentielles Spurenelement mit einer geringen Spannbreite von notwendiger täglicher 

Aufnahme und gesundheitsschädigender Dosis. Sowohl die kontinuierliche Unter- als auch 

Überversorgung von Selen verursacht physiologische Schäden, die zum Tod führen können. 

Weiterhin ist Selen auch aufgrund seines radioaktiven Isotops 79Se hinsichtlich der 

Verklappung von hochradioaktiv strahlenden Abfällen in tiefen geologischen Formationen 

von hoher Relevanz.  

Ein Endlager besteht aus drei verschiedenen Barrieren, die eine Migration der Schadstoffe in 

die Biosphäre über einen Zeitraum von einer Million Jahre verhindern sollen, falls es in 

diesem Zeitraum in Kontakt mit Grundwasser kommen sollte. Für diesen Fall muss vorab 

das Migrationsverhalten von Radionukliden über eine derart lange geologische Zeitdauer 

bewertet werden. Hierfür müssen die Wechselwirkungen zwischen gelöster, toxischer Phase 

und dem jeweiligen Barrierematerial untersucht werden, angefangen vom Nahfeld des 

Endlagers bis hin zu den Mineralen des Wirtsgesteins. Berechnungen zur Bewertung der 

Langzeitsicherheit von einigen potentiellen Endlagern für radioaktive Abfälle zeigen für 79Se, 

dass es die gesamte Exposition von Radionukliden aus Endlagern in die Biosphäre für einen 

Zeitraum von 104 bis 106 Jahren nach der Einlagerung der Abfälle dominiert.  
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Selen weist generell ein komplexes hydrochemisches Verhalten auf. Unter stark 

reduzierenden Bedingungen ist Selenid (Se2-) dominierend, von mäßig reduzierten bis zu 

redoxneutralen Bedingungen wiederum metallisches Selen (Se0). Diese beiden Speziationen 

sind als mineralische Phasen schwer löslich. Unter oxidierenden Bedingungen bis ~200 mV 

dominieren die leichter löslichen Valenzen Selenit (Se4+) und Selenat (Se6+), wobei das 

letztere unter stark oxidierenden Bedingungen vorherrscht. 

Hohe Konzentrationen von Selen in Mineralen konnten bisher unter anderem für 

verschiedene Sulfide festgestellt werden. Das Eisensulfid mit der höchsten Verbreitung in 

der Erdkruste ist Pyrit (FeS2). Pyrit ist das thermodynamisch stabile Endprodukt der 

Eisensulfide unter den anoxischen, hydrochemischen Verhältnissen in marinen Sedimenten 

und hydrothermalen Prozessen. Weiterhin ist auch bekannt, dass Pyrit viele Spurenelemente 

bis zu Konzentrationen von einigen Mol-% in seine Struktur einbaut. Ebenso ist Pyrit mit 

einigen Gew.% Bestandteil in mehreren geologischen Formationen, die für die HLW-

Endlagerung in Betracht gezogen werden: 0,4 – 1,9 Gew.% in Callovo-Oxfordian 

(Frankreich), 1,1 ± 0,5 Gew.% in Opalinus (Schweiz), 1 – 5 Gew.% in der Boom Clay 

Formation (Belgien). Der metastabile Mackinawit (FeS) ist hinsichtlich des Se-Einbaus von 

Relevanz, da es unter anoxischen Bedingungen bei Temperaturen unter 100° C aus 

kinetischen Gründen in der Regel als erstes Eisensulfid ausfällt. Die bis dato veröffentlichten 

Untersuchungen über die Sorption von Selen an Pyrit zeigten eindrucksvoll, dass Pyrit für die 

Se-Fixierung (>95% Sorption von Se2- und Se4+ unter sauren pH Bedingungen) eine wichtige 

Mineralphase darstellt. Der strukturelle Einbau von Selen in Pyrit wurde bisher in wenigen 

natürlichen Mineralproben untersucht. Die Ergebnisse sind nicht eindeutig, da zum einen 

Pyrit-Dzharkenit Mischmineralphasen (Dzharkenit ist ein seltener FeSe2 Polymorph mit 

kubischer Kristallstruktur) mittels Röntgenabsorptionsanalyse (XAFS) detektiert wurden, 

andererseits aber sequentielle Extraktionen zeigten, dass nur ein sehr geringer Anteil von in 

Pyrit fixiertem Selen strukturell gebunden ist. Laborversuche zur synthetischen Herstellung 

von Selen dotierten Pyriten erfolgten bisher nicht. 
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Die hier dargestellten Untersuchungen beschäftigen sich mit der Fixierung von Selen in Pyrit 

und Mackinawit. Als relevante Valenzen wurden Se2- und Se4+ ausgewählt, da diese neben 

dem beinahe unlöslichen Se0 als einzige im Stabilitätsfeld von präzipitiertem Pyrit liegen. Der 

Fokus in dieser Studie liegt zum einen auf der Betrachtung der quantitativen Menge des 

Seleneinbaus als Feststoff-Lösungsphase und auf der Homogenität der Verteilung des 

eingebauten Selens in den Eisensulfidphasen. Weiterhin ist von Interesse, ob Selen in die 

Mackinawit- oder Pyritstruktur als FeSxSey-Mischmineral mitsamt Substitution von S durch 

Se eingebaut wird oder ohne strukturelle Bindung, bsp. als Achavalit (FeSe), Ferroselit 

(FeSe2) oder als elementares Selen. Durch die definierten, primär anoxischen 

hydrochemischen Bedingungen sollten die Verhältnisse in einem Endlager für radioaktive 

Abfälle nachempfunden werden.  

Für die Herstellung von Selen dotierten Eisensulfiden wurden drei unterschiedliche 

Verfahren ausgewählt. Zum einen wurden in einer Handschuhbox unter Argon-Atmosphäre 

Selen dotierte Pyrite und Mackinawite in Batchverfahren innerhalb von 5 Tagen synthetisiert. 

Diese Eisensulfide wurden bei konstanten Bedingungen aus Lösungen mit Se-

Konzentrationen zwischen 10-3 – 10-6 Mol/l bei pH-Bedingungen zwischen 3,5 – 7 und Eh-

Bedingungen von -200 – 100 mV gefällt. Weiterhin wurde in einem Durchflussreaktor (MFR) 

der Grundwasserfluss für einen Zeitraum von jeweils 5 Tagen simuliert. Hierbei wurden die in 

drei separierten Behältern befindlichen Eisen-, Schwefel- und Selenlösungen bei gleich 

bleibender Geschwindigkeit in den MFR gepumpt. Im Reaktor lagen bereits gemahlene, 

natürliche Pyrite mit sehr geringen Se-Konzentrationen vor, die als Nuklei für weiteres 

Pyritwachstum auf deren Oberflächen eingesetzt wurden. Über einen mittig installierten 

Magnetschwimmer im MFR wurden sowohl Lösung als auch Nuklei miteinander 

kontinuierlich vermischt. Als letztes Syntheseverfahren wurde mittels chemischen 

Dampftransports in einem 2-Zonenofen unter Anwendung eines Temperaturgradienten von 

700° – 600° C, Selen dotierter Pyrit erzeugt. Die I ngredienzen AlBr3 (als Trägersubstanz für 

Eisen), Fe0, S0 und Se0 gehen dabei in die Dampfphase über und kondensieren auf der 

kühleren Seite wieder als Selen dotierter Pyrit. Mittels Röntgendiffraktometrie (XRD) und 
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Rasterelektronenmikroskopie (SEM) wurden die präzipitierten Mineralphasen und 

Kornformen untersucht. Der Se-Gehalt aus der abgefilterten Lösung wurde mit ICP-MS 

bestimmt, der Se-Gehalt innerhalb des eingebauten Pyrits wurde mittels energiedispersiver 

Röntgenfluoreszenz (ED-XRF) gemessen, dessen Verteilung innerhalb des Pyrits über die 

energiedispersive Röntgenanalytik (EDX) des fokussierten Ionenstrahls (FIB) bestimmt. Die 

Se-Bindungsformen wurden mittels Röntgen-Photoelektronenspektroskopie (XPS), der 

Röntgen-Nahkanten-Absorptionsspektroskopie (XANES) und der Röntgenabsorptions-

Feinstrukturanalyse (EXAFS) ermittelt.  

Die Ergebnisse der XRD und SEM-Analyse ergaben, dass in den Batchexperimenten eine 

Synthese von reinem Se-dotiertem Mackinawit sowie Se-dotiertem Pyrit mit spheroidaler 

Morphologie erfolgte. Bei letzterem konnten reine Se-dotierte Pyritphasen erst nach der 

Verringerung des gelösten Eisens von einem Fe/S-Verhältnis von 1:2 zu 1:4 erzielt werden. 

Der Korndurchmesser des ausgefällten Pyrits betrug 1-2 µm, bei Se-Gehalten bis zu 

2 Gew.%. Die EDX-Analyse des FIB zeigte, dass das Selen im Zentrum des Pyrits stärker 

konzentriert war und die Gehalte zum Rand hin zunehmend abnahmen. Der Grund dafür 

liegt wahrscheinlich in der zunehmenden Verarmung des Selens im Verhältnis zum Schwefel 

innerhalb der Lösung während der Pyritsynthese, da sich bei der Mischung der Se-, S-, Fe-

Lösungen direkt S0 bildet, der sich mit zunehmender Zeitdauer des Experiments partiell 

auflöst und somit gelösten Schwefel nachliefert. Die mit ICP-MS ermittelten Se-Gehalte in 

den dekantierten Lösungen zeigen, dass 98% des ursprünglichen Selens in Pyrit eingebaut 

und somit aus der Lösung entfernt wurden. In den MFR-Experimenten wurden sogar 99,5% 

des Selens in Pyrit eingebaut. In der Hochtemperatursynthese von Se-dotiertem Pyrit mittels 

CVT konnte 1,1 Gew.% Selen in Pyrit-Einkristallen mit einer Größe bis zu 0,5 cm eingebaut 

werden. 

Die XPS-Messungen an den Se-dotierten Eisensulfiden weisen auf einen reduzierten 

Valenzzustand (Se(-II,-I,0)) des eingebauten Selens hin. Die XAFS-Analysen zeigen, dass 

eine Substitution von S durch Se nur in den Batchversuchen bei hoch übersättigten 

Lösungen (SI: 11-13) erfolgte, da unter diesen Bedingungen eine direkte Ausfällung des 
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metastabilen Mackinawits erfolgte, der durch Auflösung und Wiederausfällung in Selen 

dotierten Pyrit transformiert wurde. Im Selenid-dotierten Mackinawit der Batchversuche 

wurde S2- durch Se2- substituiert, woraus eine Kristallstruktur resultiert, die der des 

Mackinawits ähnelt. In Selenid-dotiertem Pyrit wurde S- durch Se- substituiert, was wiederum 

zu einer FeSxSey Verbindung geführt hat, die sich als geringfügig gestörte Pyritstruktur 

bezeichnen lässt. Für die Versuche mit weniger gesättigten Lösungen in den MFR-

Experimenten zeigen die XAFS-Messungen, dass Se2- und Se4+ hauptsächlich als Se0 im 

Pyrit eingebaut wurden. Das gleiche gilt für die CVT-Experimente, bei denen ebenso Se0 in 

Pyrit ohne weitere Bindung als Kristalldefekt eingebaut wurde. Die MFR- und CVT-

Ergebnisse stimmen mit erstellten Stabilitätsdiagrammen überein. Diese zeigen, dass unter 

den hydrochemischen Bedingungen für die Pyritausfällung das elementare Selen die 

thermodynamisch stabilste Selenphase darstellt. 

Diese Studie zeigt, wie unter kontrollierten Bedingungen der Einbau von Se in Pyrit und 

Mackinawit erfolgreich durchgeführt und mittels XAFS strukturell nachgewiesen werden 

kann. Generell verfügen Pyrit und Mackinawit über eine große Aufnahmekapazität für 

Selenid und Selenit, was letztlich zu einer Verringerung der Mobilität von 79Se aus einem 

radioaktiven Endlager in die Biosphäre beitragen kann. Letztlich ist aber elementares Selen 

unter den hydrochemischen Bedingungen der Pyritbildung die thermodynamisch stabilste 

Se-Valenz. Auch wenn ein struktureller Einbau von Selen in Pyrit und Mackinawit unter 

anoxischen und sauren Bedingungen eher unwahrscheinlich ist, so sind die Ergebnisse 

trotzdem vielversprechend, da Se0 sehr unlöslich ist und die Se-Mobilität erheblich 

reduzieren würde. Der spektroskopische Nachweis mit XAFS stellt hinsichtlich der Speziation 

und dem Einbau von Radionukliden in stabile Mineralphasen eine Schlüsselanalytik für den 

Nachweis der Langzeitsicherheit von Untertagedeponien dar. 
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Introduction 

 

 
Selenium is a critical element because it is as micronutrient essential to humans and 

animals, it accumulates in the food-chain and the range between toxic dosage and 

necessary uptake is narrow (Ch. 2.1.2; Schrauzer, 2004). In addition, the 79Se isotope is a 

long-lived fission product of 235U and 239Pu which is chemically and radiologically toxic 

(Ch. 2.1.3; Jörg et al., 2010). The deep geological storage of high-level nuclear waste in a 

multi-barrier system is considered to be the safest concept, but this has to be ensured over a 

geological time span of one million years. Radionuclides could possibly migrate from such a 

repository into the biosphere, if a disposal site gets into contact with groundwater. 

Geochemical processes like the coprecipitation of a contaminant with a mineral can lead to 

its retention in an aquifer system (Grambow, 2008). In this regard, the structural 

incorporation of trace elements into host minerals is a common and effective 

decontamination process in natural systems, but it has not yet been studied for the iron-

sulfur-selenium system (Ch. 2.3). The synopsis of spectroscopy, geochemical modeling and 

batch experiments with purified minerals increases the understanding of the whole process. 

Séby et al. (1998) and Grambow (2008) describe the actual lack of knowledge with regard to 

selenium as follows: 
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Séby: “The general behaviour of this element being rather complex, it seems 

essential to identify the predominating equilibria of the different Se species and 

the influence of parameters such as pH, redox potential, microbial activity and the 

presence of complexing and precipitating agents on its release during a long 

period.” 

Grambow: “In conclusion, we do not yet have a fully verified model for Se 

solubility in repository systems which would cover repository conditions from the 

very reducing iron rich conditions close to the waste to the less reducing 

conditions in the host rock at some larger distance.”  

 

In this respect, pyrite is a relevant part of many host rocks which are considered as high-level 

waste (HLW) repositories and it is a common point of view that pyrite plays a major role in 

the fixation of selenium (Ch. 2.2.2 - 2.2.4). The study on hand tries to enlarge the knowledge 

of selenium behavior in the Fe-S-Se system mainly under reducing conditions by using 

advanced spectroscopic techniques to determine the supposedly high affinity of selenium to 

iron sulfides and the type of structural bonding (Ch. 5). As well, these spectroscopic results 

will be compared with thermodynamic results, modeling the behavior of dissolved Fe-S-Se 

species under defined hydrochemical conditions (Ch. 2.3; 5.1). 

 

The task was to synthesize selenide (Se2-) and selenite (Se4+) doted pyrite and mackinawite 

by different techniques (Ch. 4). The methods of choice were:  

 

1.) Classical batch reactions under standard and anoxic conditions by mixing solutions 

and keeping the potential steady using an electrochemical cell. In this regard, highly 

supersaturated solutions allowed a simulation of nucleation with limited crystal growth 

by kinetically rapid formation of selenium doted pyrite in the µm-scale. 

2.) Simulating pyrite crystal growth and groundwater flow under standard and anoxic 

conditions by continuously pumping of separate Se-, S- and Fe- solutions into a 

mixed flow reactor (MFR). Natural Se-poor grounded pyrites served as seeds for a 
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further crystal growth with coatings of selenium doted pyrite from slightly 

supersaturated solutions.  

3.) The high-temperature synthesis by chemical vapor transport is a good option to 

simulate hydrothermal conditions of selenium doted pyrite precipitation. In 

comparison to the previous mentioned synthesis procedures, this method allowed a 

direct precipitation of Se doted pyrite through the gaseous phase by achieving larger 

single crystals in the mm-scale.  

 

In all cases, commercially available selenium compounds were used as analog for testing the 

79Se chemical behavior. Both, Se2- and Se4+ are proposed as most important valence states 

which contribute to the potential thread of 79Se radionuclide under the hydrochemical 

conditions in a high-level waste (HLW) disposal site, commonly supposed as neutral to 

alkaline and anoxic (Ch. 2.1.3). Pyrite is by far the most widely-spread iron sulfide in the 

earth crust and mackinawite itself is, though thermodynamically unstable, usually the first 

precipitated iron sulfide phase under ambient conditions (Ch. 2.2.1; 2.3.4). Due to this 

common knowledge, these selenium valence states and iron sulfides were chosen for 

investigations of dissolved species-mineral reactions. 

 

 

Questions to answer: 

The incorporation of a contaminant into a mineral is, compared to other types like colloidal 

binding and inner- or outer-sphere sorption, presumably the most efficient process of 

removal because the remobilization can only take place through diffusion of the ion out of the 

mineral or by dissolution of the mineral. Objective of this study is to gain knowledge about 

the reactions taking place during the incorporation of Se2- and Se4+ into pyrite and 

mackinawite for certain pH and Eh solution conditions:  

 

• Is the final valence state of structurally fixed Se the same as the initial one? How is 

Se bound in mackinawite and pyrite? Is there a difference in Se speciation and 
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structural incorporation with regard to different hydrochemical conditions? Do the 

experimental results fit to the predicted stability fields which are calculated on the 

basis of thermodynamic data? 

• What is the amount of incorporated selenium under consideration of the progressing 

time of experiments? Does the incorporation vary with regard to the two different 

minerals, the initial Se valence states or changes in the hydrochemical conditions?  

• If incorporation should happen, how is Se distributed? Is it spatially homogeneous or 

does preferential incorporation occur with extraordinary differences in the selenium 

concentrations? 

 

To answer these questions, a suite of powerful analytical techniques were applied: X-ray 

absorption fluorescence spectroscopy (XAFS) was used because it is an effective tool for 

investigations of the structural parameters, e.g. determination of the valence state of an 

element, type and distances of atomic neighbors and the related coordination number 

(Ch. 3.2).  

To determine the initial and final Fe-, S- and Se-concentrations as well as the concentrations 

for certain time steps after starting an experiment, inductively coupled plasma - mass 

spectrometry (ICP-MS) and inductively coupled plasma - optical emission spectroscopy (ICP-

OES) measurements were performed. 

To reveal that only the desired monomineralic phase did precipitate from solution, either 

pyrite or mackinawite, investigations by x-ray diffraction (XRD) and scanning electron 

microscopy (SEM) were carried out. Hence, the distribution of selenium in iron sulfides was 

determined by energy dispersive x-ray systems (EDX), belonging to focused ion beam and 

scanning or transmission electron microscope (Ch. 3.1). 
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Geochemistry of selenium and pyrite 

 

 

The selenium as well as the pyrite system show a rather complex chemical behavior due to 

their high dependence on the hydrochemical conditions as well as on kinetics (Rickard and 

Luther, 2007; Lenz and Lens, 2009). The general perception of selenium changed 

remarkably during the past. In the early decades of the last century, selenium was identified 

solely as poison, threatening to health of humans and cattle. Nowadays, the role of selenium 

is more clearly identified as essential toxin, since it is also a necessary micronutrient for the 

vertebrates (Ch. 2.1; Lenz and Lens, 2009). In the last three decades, another aspect of high 

relevance regarding selenium was identified. Different performance assessment reports of 

high-level waste nuclear repositories evaluated a migration of the radionuclide 79Se from the 

disposal site into the biosphere, if the repository should come into contact with groundwater 

(Ch. 2.1; Mallants et al., 2001). 

The geochemistry of selenium is closely related to sulfides, because the chemical behavior 

of selenium is similar to sulfur (Howard, 1977). Pyrite as most important near-surface iron 

sulfide and part of the host rocks of considered HLW-repositories could play a major role in 

the fixation of selenium (Ch. 2.2). Since the chemical behavior of selenium in the Fe-S-Se 
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system is highly dependent on its valence state, the oxidation states of selenium and sulfur 

are figured out in Eh-pH diagrams as well as the reaction pathways of mackinawite and 

pyrite (Ch. 2.3).  

 

2.1 Selenium in the environment 

Selenium was first discovered in 1818 by the Swedish chemist Berzelius and is named after 

the Greek goddess of the moon, “Selene”. Its atomic number is 34 and the atomic mass 

amounts to 78.96 u. Elemental selenium has a melting point of 217° C and a boiling point of 

685° C. Selenium belongs to the group of chalcogens , is located between sulfur and tellurium 

in the group VIA of the Periodic Table of the Elements, and has 6 stabile isotopes (the 

numbers in brackets show the global distribution): 74Se (0.87%), 76Se (9.02%), 77Se (7.58%), 

78Se (23.52%), 80Se (49.82%), 82Se (9.19%); and 9 radioactive isotopes with half-lives <8 h, 

except 75Se (120 d) and 79Se (295000 – 377000 yrs.) (Schrauzer, 2004; Lenz and Lens, 

2009).  

There are no economically important selenium ore deposits; but selenium is produced as a 

by-product during electrolytic refining of copper, lead and silver, since e.g. copper anodes 

contain 0.5 – 280 g Se in 1 kg of copper (Schrauzer, 2004). The world production of 

selenium amounts to ~2000 t/a. Selenium is used by the glass industry (~25 % of the total 

sum in the year 1996), in inorganic pigments (~25 %) and due to its photoelectric and 

semiconducting properties of Se0, it is often applied in electronics (~15 %). To counteract 

selenium deficiency in soils and human health, selenium is part of fertilizers as well as in 

dietary supplements (~20 %), amongst others for cancer prevention. Furthermore, Table 2.1 

shows some common applications of different Se-compounds (Schrauzer, 2004; Lenz and 

Lens, 2009).  
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Tab. 2.1: Selenium compounds and their applications (Schrauzer, 2004). 

  

Selenium 
Rectifiers, photoelectric cells, blasting caps; xer ography, 
stainless steel; as dehydrogenation-catalyst 

Tellurium -selenium alloys  Erasing optical stores  

Sodium selenite (Na 2SeO4) Insecticide; glass manufacture; veterinary pharmaceuticals  

Selenium diethyldithiocarbamate  Fungicide; vulcanizing agent  

Selenium monosulfide (SeS)  Veterinary medicine; dandruff removal  

Selenium disulfide (SeS 2) Veterinary medicine; dandruff removal  

Selenium dioxide (SeO 2) 
Catalyst for oxidation, hydrogenation or dehydrogen ation of 
organic compounds 

Selenium hexafluoride (SeF 6) Gaseous electric insulator  

Selenium oxychloride (SeOCl 2) 
Solvent for sulfur, selenium, tellurium, rubber, bak elite, 
gums, resins, glue asphalt among others 

Aluminium selenide (Al 2Se3) Preparation of hydrogen selenide for semiconductors  

Ammonium selenite [(NH 4)2SeO3] Manufacture of red glass  

Cadmium selenide (CdSe)  Photoconductors, photoelectric cells, rectifiers  

Cupric selenate (CuSeO 4) In coloring copper and copper alloys  

Tungsten diselenide (WSe 2) In lubricants  

 

2.1.1 Global distribution and cycling of selenium 

Selenium is overall, but very heterogeneously distributed over the earth’s surface with an 

average abundance of 0.05 – 0.09 mg/kg in crustal rocks. The patchy distribution of Se in 

soils on the global scale is highly variable and is primarily controlled by the geological 

background and its weathering, e.g. by Se-rich rocks like cretaceous shales (<1 – 300 mg/kg 

Se), phosphate rocks (1 – 178 mg/kg Se), volcanic rocks (up to 120 mg/kg), sandstones, 

uranium-rich deposits or magmatic sulfides, which show a Se/S ratio of approximately 1:10. 

Selenium is a major part of 22 selenides, 6 sulfosalts, 4 selenites, 1 oxide, 1 selenate and 

minor constituent of 22 sulfides and tellurides (Engberg et al., 1998; Schrauzer, 2004; Ryser 

et al., 2005; Lenz and Lens, 2009). Table 2.2 shows that the mean concentrations of 

selenium in the atmosphere as well as in aquatic environments are comparatively low to soils 

and rocks. 
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Tab. 2.2: Overview of Se concentrations in the environment (Schrauzer, 2004). 

Origin Average Conc. Range 

   
Atmosphere  

Urban 

Rural 

 

3 ng/m 3 

1.3 ng/m 3 

 

0.01-30 ng/m 3 

0.01-3 ng/m 3 

Lithosphere  

Agricultural soils 

 

0.4 mg/kg 

 

0.02-2 mg/kg 

Hydrosphere  

Freshwater 

Ocean 

 

0.2 µg/L 

0.2 µg/L 

 

0.02-450 µg/L 

Biosphere  

Primary accumulator 

Second. accumulator 

Food crops 

 

1000 mg/kg 

100 mg/kg 

0.1 mg/kg 

 

100-5000 mg/kg 

10-500 mg/kg 

<0.05-1 mg/kg 

Mankind  

Tissue 

Blood 

 

0.1 mg/kg 

0.07-0.25 mg/L 

 

<0.05-5 mg/kg 

0.05-1 mg/L 

  

The global natural emission of Se compounds into the atmosphere is estimated as 6000 –

 13000 t/a, with 60% – 80% of marine biogenic origin. The selenium concentrations in ground 

and surface waters is predominantly low with <10 µg/L, but can be sometimes enlarged in 

areas with seleniferous soils (>0.5 mg/kg). In the biosphere, selenium concentrations can be 

extraordinarily high in primary accumulators, which are generally non-food plants. They can 

incorporate up to 5 Se g/kg dry weight by incorporation into cellular proteins (Schrauzer, 

2004).  

Anthropogenic activities have deeply influenced the global selenium cycle, e.g. releasing 

selenium into the environment due to Se-rich coal (up to >1000 mg/kg Se) and oil 

combustion, mining activities, utilization of Se-agricultural products as fertilizer, non-ferrous 

metal melting, wastewater discharge of oil refineries or irrigation drainage into lakes or 

wetlands with continuing Se-accumulation. The rough estimation of the total anthropogenic 

Se-emission into environment is between 3000 and 9600 t/a, with 40% being of volatile and 

60% of particulate emission. The most relevant processes and reservoirs contributing to the 
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selenium cycle are shown in Figure 2.1 (Mayland et al., 1989; Engberg et al., 1998; Terry 

and Zayed, 1998; Schrauzer, 2004; Ryser et al., 2005; Lenz and Lens, 2009).  

 

 

Fig. 2.1: Schematic overview of the reservoirs and most important environmental                   

processes within the global cycle of selenium (modified after Lenz and Lens, 2009). 

 

The potential threat could rise, if the increasing energy demand is covered by fossil fuel 

combustion. The estimated selenium emissions to the atmosphere due to anthropogenic 

activities amount to 37.5 – 40.6 % of the total emission. Atmospheric selenium transport is 

associated with particulate matter (Schrauzer, 2004; Lenz and Lens, 2009). 

 

2.1.2 Health effects due to selenium toxicity  

In the past decades, comprehensive studies about selenium in the environment have been 

performed, since it is both a trace nutrient and a toxin (Shaw and Ashworth, 2010). In its role 

as essential trace element selenium is of high concern for humans as well as for all 

vertebrates worldwide for which the range between deficiency and toxic dose is narrow 

(Mayland et al., 1989). The desirable range of daily Se-uptake for children is 1.7 µg/kg and 

for adults 0.9 µg/kg body weight. With regard to daily dietary intake, by far the most 

denotative contribution of selenium for humans is foodstuff, especially in high-selenium 

areas. Most drinking-water contains much less than the health based WHO-guideline value 
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for drinking water of 40 µg/L (WHO, 2011), while the average global intake of selenium from 

food amounts to 70 µg/d, with a range of 10 – 350 µg/d. Daily intake of selenium due to 

inhalation from the atmosphere in urban environments is usually negligible with 0.07 µg/d 

and a range of 0.0002 – 0.7 µg/d (Schrauzer, 2004). In the body, inorganic selenium is 

largely transformed into selenoproteins which are essential as antioxidants for humans. They 

protect e.g. against cancer and heart disease, although there is a lot of discussion among 

scientists with regard to the actual human-health benefits of e.g. due to supplementary 

intake. The predominant form of selenium supplementation is selenomethione, one of 30 

already detected selenoproteins (Lacour et al., 2004; Tinggi, 2008).  

For animals, the necessary daily selenium intake is higher than 0.05 – 0.1 mg/kg (Mayland et 

al., 1989). One problem in this context is that selenium is known to accumulate in living 

organisms along the food chain predominantly as Se4+ and Se6+ in the food chain, which 

have the highest bioavailability. Therefore, it is possible that toxic levels are achieved within 

the food chain, causing various diseases in humans and livestock (Hamilton, 2004; Wu, 

2004; Agüero et al., 2008; Navarro-Alarcon and Cabrera-Vique, 2008).  

Since the past century, deficiency related diseases of selenium uptake known. The multi-

pathogeny Keshan disease is a heart enlargement affecting especially children, often leading 

to death, while multi-pathogeny Kashin-Beck disease is apparent in deformity of extremities. 

Furthermore, animals with Se-deficiency suffer from potentially mortal white muscle disease 

or skeletal degeneration. Especially the mortality rates of lamps, calves, pigs and poultry as 

most endangered species can reach up to 60% (Kishchak, 1998). Cases of acute selenosis 

were published, resulting in hair and nail loss in most cases, disorder of the nervous system, 

skin lesions and decayed teeth (Li et al., 2011). The common selenosis in cattle results in 

teratogenesis, dystrophic growth of the hoof and hair loss. In birds, the indications are 

emaciation, teratogenesis, nail necrosis or toxic lesions (O´Toole and Raisbeck, 1998). The 

most severe cases of deficiency and toxicity related diseases occurred in areas where 

human population and farm animals highly depended on food supply from local Se-poor or –

enriched crops (Li et al., 2011). 
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2.1.3 The 79Se isotope in high-level waste disposal sites 

The 79Se radioisotope is generated from the decay of 235U and 239Pu mainly by nuclear fission 

of these radionuclides which originate mostly from the reactor core of nuclear power plants. 

The fission yield of formation accounts to 0.0487% for uranium and 0.05504% for plutonium, 

as result from the cumulated fission yields of the respective masses. The isotopes 77Se, 78Se, 

79Se, 80Se and 82Se occur naturally as well as stable end points of isobaric fission beta decay 

chains which differ with regard to their isotopic composition (Fig. 2.2; Jörg et al., 2010). 

 

 

Fig. 2.2: Isotopic composition of natural Se and normalized fission profiles of Se  

from fission of 235U and 239Pu. Numbers above bars are the actual cumulated  

fission yields of the respective masses (modified after Jörg et al., 2010). 

. 

The 79Se decays in a β- process with a relatively low specific activity of 150.9 keV (Jörg et al., 

2010) form the reaction: 

Se���� 				 �	
�				   �
����                                                               (2.1). 

Concerning the retention of high level nuclear waste (HLW) in deep geological formations for 

at least one million years, the 79Se isotope is one of the long-term harmful radionuclides due 

to its high mobility and long lifetime (Bienvenu et al., 2007). The hydrochemical environment 

for these disposal sites is generally assumed as anoxic with neutral to alkaline conditions 
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with only a few exceptions, like Yucca Mountain (Nevada, USA) with oxidizing conditions 

(Geckeis and Rabung, 2008). The assumption that the long-term safety of HLW repositories 

is possible relies especially on the fact that the most radiotoxic radionuclides, the actinides, 

are much less mobile than some less radiotoxic anionic fission and activation products such 

as 129I, 36Cl or 79Se (Geckeis and Rabung, 2008; Grambow, 2008).  

Different performance assessment calculations for such repositories show a predominance 

of the 79Se radionuclide in the total exposure to the biosphere for the period of                 

104 – 106 years after disposal (Fig. 2.3; Takasu et al., 2000; Umeki, 2000; Mallants et al., 

2001; Agüero et al., 2008; Malekifarsani and Skachek, 2009). Latest calculations yield a 79Se 

half-life between (2.95 ± 0.38)·105 and (3.77 ± 0.19)·105 years while the highest accuracy 

calculates a half-life of 3.27·105 ± 8 years (Jiang et al., 2002; Bienvenu et al., 2007; Jörg et 

al., 2010).  

 

 

Fig. 2.3: Reference case dose evaluation of activation and fission products for the well pathway          

in Boom Clay geological formation, Belgium (modified after Mallants et al., 2001). 
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There is yet some controversy regarding the assumed 79Se concentration in high-level 

radioactive waste. Séby et al. (1998) assumed a value of ~10-7 mol/L Se in the near-field 

further declining due to migration to 10-10 mol/L Se in the biosphere, while Grambow (2008) 

reports a substantially lower initial concentration of 10-9 mol/L Se, equal to 4 Bq/L, in the 

near-field. Compared to the WHO (2004) proposed maximum of 47 Bq/L of 79Se in drinking-

water (corresponding to 1.3·10−7 M for total selenium) the author points out that “if solution 

concentrations were lower than drinking-water standards already at the waste product/near 

field interface, no radiological health effect can be expected in hundreds of meters of 

distance at the interface of the geosphere to the biosphere.” 

The fate of released 79Se in the near-field of HLW deposits depends highly on the selenium 

valence state in the vitrified waste, which is part of the technical barrier in the multi-barrier 

concept for HLW disposal (Grambow, 2008). The multi-barrier concept consists of 3 different 

barriers to avoid the migration of radionuclides (Fig. 2.4; Kim et al., 2001; BGR 2007).  

 

 

Fig. 2.4: Scheme of the multi-barrier concept for HLW-disposal sites (modified after: 

http://www.dalton.manchester.ac.uk/facilities/dalton-cumbrian-facility/radioactive-waste-management/). 
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The technical barrier is built up of the HLW vitrified in a matrix of e.g. borosilicate, and this 

glass is filled into cases of e.g. steel. The geotechnical barrier is the backfill material (e.g. 

bentonite, salt grit) to close the open pits, while the geological barrier consists of the local 

host rock. Especially clay stone, granite and salt as geological formations are examined as 

applicable host rocks for the storage of high-level radioactive waste (Kim et al, 2001; BGR, 

2007). 

Of main concern is 79Se in the form of selenate because it does not coprecipitate in 

substantial amounts with minerals. The reduction rate of Se6+ can be very slow in absence of 

microbially induced reduction (Zhang et al., 2003; He and Yao, 2010), because it involves the 

transfer of multiple electrons along with multiple oxygen atoms. In general, the higher the 

oxidation number of Se, the slower is the reduction rate (Séby et al., 1998; De Canniére et 

al., 2010).  

The main species of selenium in the above-mentioned alkali borosilicate glasses is Se4+. 

However, oxidation due to irradiation resulting from the decay of radioactive elements has to 

be considered within these vitrified wastes (Bingham et al., 2011). Existing Se4+ may be 

sorbed largely to metal-(oxy)hydroxides or clays. Under the proposed hydrochemical 

conditions for HLW disposal sites, Se4+ may also be reduced to Se0 or Se2-. This would lead 

to the formation of solids, Se0 or iron selenides, of very low solubility (Séby et al. 1998; De 

Canniére et al., 2010).  

 

2.2 Pyrite and mackinawite and their ability for se lenium retention 

Pyrite (FeS2) and mackinawite (FeS) are both iron sulfides (Tab. 2.3), which play an 

important role in the lower temperature environments of ≤25° C, typical for much of the 

Earth’s surface as well as in many biogeochemical processes (Rickard and Luther, 2007).  

Pyrite itself is the most widespread sulfide mineral in the Earth´s crust as well as the most 

important sulfide reservoir in sediments while mackinawite is usually the precursor 
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precipitating under anoxic and low temperature aqueous conditions (Rickard and Morse, 

2005). For the formation of both minerals, a sulfide-source is a prerequisite. Abiotic sulfate 

reduction at temperatures below ~150° C is kinetica lly extremely slow, but sulfate reduction 

through microbial respiration is relatively fast and therefore the dominating reduction 

mechanism. Due to the higher solubility in water, SO4
2- is an available electron acceptor for 

microbial respiration next to O2. The general importance of this process is well explained by 

Rickard and Luther (2007): “Respiration via microbial sulfate reduction is the most important 

pathway for mineralization of organic matter in marine sediments. Since the mineralization 

and burial of organic matter ultimately determines the oxygen content of the atmosphere, the 

fixation of pyrite sulfur in sediments is largely responsible for the oxygenated surface 

environment of the planet at the present and through much of geological time.”  

 

Tab. 2.3: Structure, properties and deposits of selected iron sulfides (Rickard and Luther, 2007). 

Mineral Formula Structure Properties Natural deposits 

Pyrite FeS2 
Cubic  
Pa3 

stable iron(II) disulfide 
known as “fool’s gold” 

the most abundant mineral 
on the Earth’s surface 

     

Marcasite  FeS2 
Orthorombic 
Pnnm metastable iron(II) disulfide 

locally common mineral in 
hydrothermal systems and 
in sedimentary rocks 

     

Pyrrhotite Fe1-xS variable  nonstoichiometric stable group 
where x > 0.2 

most abundant Fe sulfides 
in the Earth and solar 
system; rare in marine 
systems 

     

Troilite FeS Hexagonal 
P62c 

stoichiometric end member  
of the Fe 1-xS group 

mainly found in  
meteorites 

     

Mackinawite FeS Tetragonal 
P4/nmm 

metastable material, major 
constituent of FeS precipe-
tated from aqueous solutions 

widespread mineral in  
low-temperature 
aqueous environments 

     

Greigite Fe3S4 Cubic   Fd3m  metastable Fe IIFeIII sulfide; 
the thiospinel of iron 

fairly widespread mineral; 
particularly associated with  
fresh water systems 

 

Until today, Fe2+ and S2- rich environments can be found in sedimentary pore waters and in 

deep waters of anoxic basins, where mainly pyrite and the metastable phases mackinawite 
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and greigite have been observed. On a global perspective, about 5 million tons of pyrite is 

formed every year in the oceans (Rickard and Luther, 2007). 

 

2.2.1 Structure, formation and occurrence of mackin awite and pyrite  

Tetragonal mackinawite is named after the Mackinaw Mine in Washington, where it was 

found and characterized as a mineral in 1964. Different names exist for this mineral, which 

has been described as hydrotroilite, kansite, precipitated FeS or amorphous FeS (Rickard 

and Morse, 2005). The crystal structure of mackinawite consists of sheets of edge-sharing 

FeS4 tetrahedra, belonging to space group P4/nmm while the cell parameters consist of 

a = b = 3.6735 Å and c = 5.0329 Å. The iron atoms are linked to four equidistant sulfur atoms 

and the Fe-Fe distance is 2.5967 Å (Fig. 2.5; Makovicky, 2006; Rickard and Luther, 2007). 

The iron sheets are stacked along the c axis. Van der Waals forces between the S atoms are 

holding the sheets together. The stoichiometry of mackinawite is FeS. Deviations from this 

composition, typically reported in older literature where mackinawite is often noted as Fe1+xS, 

derived from the incorporation of other metals into the mackinawite structure, while the Fe/S-

ratio of pure mackinawite is 1:1.  

In natural systems, mackinawite has only rarely been found in marine sediments, supposedly 

due to the low iron aqueous activity (<10-9). The precipitation of mackinawite has been 

reported for inshore marine and freshwater systems with comparatively higher iron 

concentrations. Mackinawite formation occurs due to the reaction between S2- and Fe2+, 

while the necessary iron sources are hexaqua-Fe2+ or dissolved iron(oxy)hydroxides in 

natural environment (Rickard and Morse, 2005; Rickard and Luther, 2007). Since 

mackinawite is a metastable mineral, it is an important temporary sink for many trace metals 

during the diagenesis in anoxic sediments as long as the mackinawite persists (Morse and 

Arakaki, 1993). 
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Fig. 2.5: Display of cubic pyrite (left) and tetragonal mackinawite (right) unit cells,  together with atomic 

distances (mackinawite structure data are obtained from Lennie et al., 1995, and pyrite crystal 

structure from Rieder et al., 2007). 

 

Pyrite, named after the Greek word of fire and well known for his nickname “fool´s gold”, has 

a NaCl-type structure which belongs to space group Pa3 (Fig. 2.5). In the cubic pyrite crystal 

structure, three coordinated octahedral of low-spin divalent iron are bound to the S2 double 

bond without edge-sharing. The S2
2- groups are located at the cube center and at the 

midpoints of cube edges, while the low-spin Fe2+ atoms (d6, t2g
6) are located at the corners 

and face centers. The structure has 3-fold axes along the [111] directions and 2-fold axes 

along the [100] directions. The stoichiometry of pyrite is FeS2 with a very narrow homogeneity 

range of less than 1%. Deviations from this composition are due to analytical uncertainties or 

because of the presence of trace elements in pyrite. The different morphologies of pyrite are 

cubes, octahedrons and spherulites, with single euhedra and framboids being the most 

common forms (Wang and Morse, 1996; Morse and Wang, 1997; Rickard and Morse, 2005; 

Rickard and Luther, 2007). 

Pyrite is distributed in a variety of geological settings extending from igneous rocks to 

sedimentary and hydrothermal deposits, being as well the most abundant phase in sulfide 



18 

 

ore deposits. It is probably only the most widespread iron sulfide on the earth near-surface 

environments but not from the earth as a whole, because pyrrhotite group minerals are very 

common in mantle rocks and meteorites where pyrite is not stable and decomposes (Rickard 

and Luther, 2007; Demoisson et al., 2008). 

Figure 2.6 shows idealized, typical vertical profiles for sedimentary pore waters and the water 

column of enclosed anoxic basins concerning the compounds O2, NO3
-, Mn2+, Fe2+, H2S, and 

SO4
2- but without consideration of physical forces (bioturbation, vertical and lateral mixing of 

water due to e.g. storms). Exact concentrations for local profiles are additionally dependent 

on the deliverance of inorganic and organic matter to the sediment. At the overlap of the 

curves belonging to soluble species, redox and/or solubility reactions take place, potentially 

accompanied with the removing of species from solution (Rickard and Luther, 2007).  

In an idealized profile, the sediment-water interface can be 

partitioned in three zones. The oxic zone persists until O2 is 

depleted. The suboxic region follows below and is characterized 

by high dissolved manganese and iron concentrations. In the 

anoxic zone S2- occurs. Permanently anoxic basins are defined 

as environments with less than 10-6 M O2(aq) which also contain 

sulfide minerals in the scale between micrometer to millimeter. In 

the anoxic zone, the formation of pyrite can take place especially 

close to the interface of Fe2+ and H2S curves. 

 

 

Fig. 2.6: Schematic representation of trends in pore water profiles with 

depth below the sediment-water interface. The concentrations are not 

steady units. Moreover, they represent the typical relative occurrence 

(modified after Rickard and Luther, 2007). 

 

 

The pyrite formation depends on various rate-limiting factors. In non-euxinic, terrigenous 

marine sediments, organic matter which is needed for microbiological growth and as catalyst 
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for microbially induced reduction processes, seems to be the major control on pyrite 

formation, because dissolved sulfate and iron minerals are sufficiently abundant. By contrast, 

pyrite formation in non-marine, freshwater sediments is limited due to low concentrations of 

sulfate. Sufficient H2S is built under marine euxinic conditions. Here, the dominant rate-

controlling factor is the availability of reactive iron minerals of which the most important 

phases seem to be iron(III)oxyhydroxides, probably in the form of nanoparticulate goethite 

(Berner, 1984; Rickard and Luther, 2007). 

 

2.2.2 Pyrite in high-level waste disposal sites 

Pyrite is part of host rocks and bentonite backfills considered for use in HLW repositories. It 

may serve as nuclei for further surface coating and as an important iron and sulfur source via 

dissolution and re-precipitation. Up to 0.4 – 1.9 wt.% pyrite are contained in Callovo-

Oxfordian clay (CO; France), 1.1 ± 0.5 wt.% in Opalinus clay (OPA; Switzerland), 1 – 5 wt.% 

in Boom clay (BC; Belgium), and 0.5 wt.% in bentonite, the most common backfill buffer 

material (De Craen et al., 2004; Gaucher et al., 2004; Bildstein et al., 2006; Corkum and 

Martin, 2007; Joseph et al., 2011).  

But how likely is a further formation of pyrite? This is difficult to answer, but locally high SO4
2- 

concentrations of <6.3·10-3 – 2.5·10-1 mol/L and iron concentrations of up to 1.05·10-2 mol/L 

were measured in BC squeezed pore water (De Craen et al., 2004). OPA host rock leaching 

experiments resulted in a release of 1.4·10-2 mol/L of SO4
2-

 (Joseph et al., 2011) and CO 

leached pore water contained a mean SO4
2- concentration of 8.27·10-2 mol/L. Furthermore, 

CO host rocks contained 0.85 – 5.5 wt.% Fe2O3 and 0.22 – 1.03 wt.% S[tot] on the average 

(Gaucher et al., 2004). An additional iron source in geological periods could be the corrosion 

of steel containers containing vitrified nuclear waste. To sum these results up, iron and sulfur 

are partly relevant fractions of the varying local environment around to HLW disposals and 

may initiate the formation of selenium doted pyrite. 
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2.2.3 Selenium in natural pyrite 

One possibility of removing selenium from the solution on a sustained basis is the 

incorporation into a mineral structure, which is a very efficient type of retardation. Pyrite is the 

most common near-surface iron sulfide, well-known for its capacity to incorporate elements 

up to several mol%. During formation, more than 60% of the nonsiliceous bound fraction of 

potentially toxic elements like As, Cu, Hg in anoxic sediments coprecipitate with pyrite 

(Morse, 1994; Morse and Luther, 1999; Abraitis et al., 2004; Rickard and Luther, 2007).  

In surface sediments, Se is often associated with Fe-Zn-Cu sulfide minerals such as pyrite, 

marcasite, sphalerite, mackinawite, and chalcopyrite; reported concentrations of selenium in 

pyrite are between 8 and 760 ppm (Umeki, 2000). High selenium concentrations are often 

associated with Cu-rich deposits and bituminous coals. The highest ever detected selenium 

concentration in pyrite was found in a sample from Yutangba, China, with a content of 

6.68 wt.%. Further analysis of this sample revealed that selenium was partly incorporated 

into the pyrite lattice due to isomorphic substitution (Zhu et al., 2004). 

Pyrite precipitation at high temperature conditions typically occurs in geological formations of 

hydrothermal deposits (100° – 350° C). In general, the concentration of selenium which is 

coprecipitated with pyrite can cover a wide range: 1.3 – 245 ppm Se at Lucky Strike 

hydrothermal field, Mid-Atlantic ridge; 0 – 300 ppm Se in hydrothermal concretion pipes, 

Mesozoic shales in SE-France; 0 – 116 ppm Se in Queensland epithermal deposit, Australia 

(Gaidon et al., 1988; Griffin et al., 1991; Xiong, 2003; Rouxel et al., 2004). These 

concentrations of coprecipitated selenium in pyrite are relatively low, compared to the 

possibly three to five times higher uptakes of selenium into chalcopyrite and Ni-sulfide 

compounds (Orberger et al., 2003).  

Selective leaching tests of marine and fresh water sediments showed that selenium seems to 

be rarely incorporated into pyrite as ideal solid solution by a ferroselite-pyrite or a FeSSe 

compound, accompanied with an isomorphic substitution of sulfur by selenium (Velinsky and 

Cutter, 1990).  
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From uranium ores in quartz-sandstone formations (Seluchekinskoye deposit, Kazakhstan), 

solid-solutions of pyrite and dzharkenite (cubic FeSe2), a dimorphous of ferroselite with pyrite 

structure, were reported (Yakovleva et al., 2003). Micro-XAS analysis revealed the speciation 

and structure of Se in mine-waste rocks, which show that rarely found dzharkenite persists 

next to Se-substituted pyrite as well as a di-selenide carbon compound (Ryser et al., 2005).  

If selenium doted pyrite is exposed to oxidizing conditions, pyrite acts a source for selenium 

releasing the formerly fixed selenium free into the environment, because oxidative dissolution 

processes take place (Presser and Swain, 1990; Ryser et al., 2005; Grambow, 2008). 

 

2.2.4 Coprecipitation of trace elements in syntheti c pyrite  

Aqueous solid solutions are common phenomena in nature. The precipitation of minerals 

from a multicomponent solution often results in the formation of solids with a certain 

compositional range (Prieto, 2009). Concerning HLW disposal sites, solid solutions are an 

essential part of the repository, starting from the waste source, known as near-field, up to the 

biosphere. A solid solution is defined as “a homogeneous crystalline structure in which one 

or more types of atoms or molecules may be partly substituted for the original atoms or 

molecules without changing the structure, although the lattice parameters may vary” (Bruno 

et al., 2007). The concentrations of the end-members in the solid solution define its 

stoichiometry. Of importance with regard to the retention of potentially hazardous 

radionuclides are the distribution ratios Rd, describing the ratio of concentration in one phase 

to that in another phase. Of concern are especially all those radionuclides with generally low 

Rd values (like e.g. Se6+) because these dissolved species stay in the solution and do not 

react substantially with the minerals (Grambow, 2008). The solid-liquid partitioning variable is 

named as Kd (Ashworth et al., 2008). 

In general, if an ion is not in a dissolved state, several possibilities exist for a more or less 

strong fixation in the soil or rock matrix (Fig. 2.7). The aqueous complexation in form of e.g. 

colloids could lead to clogging in the pore system of host rocks. Due to the transfer and 

partitioning of components from the aqueous phase to the surface of a mineral by sorption, 
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an ion is fixed until the process of desorption takes place. If not, coprecipitation is likely to 

occur after some time, meaning the precipitation of the component and further crystal growth. 

Finally, due to ion-diffusion into the crystal structure und further rebuilding by 

recrystallization, the formation of a solid solution would take place, accompanied with a 

substitution of an element by keeping the regular crystal system (Bruno et al., 2007).  

The precise analysis of the selenium valence state and its distances to atomic neighbors is a 

prerequisite for the determination of the crystalline structure which results from the Se 

coprecipitation with minerals. Examples are the reduction of Se4+ to Se0 by diffusion from 

ponded waters to sediments (Tokunaga et al., 1998) or Se4+ reduction by sorption onto 

montmorillonite (Charlet et al., 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 2.7: Scheme of the different possible states of ion-bonding with a mineral                             

(modified after Manceau et al., 2002). 

 

Scheinost et al. (2008a, 2008b) examined Se4+ reduction at nanoparticulate mackinawite 

(FeS). The results showed that the redox reaction is kinetically fast and takes place within 

one day. The mineral precipitations are pH dependent. At pH 4.4, FeSe precipitates, while at 

pH 6.3 Se0 is dominant. This is probably due to the much higher solubility of mackinawite at 
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decreasing pH. For FeSe precipitations, S2- and Fe2+ surface atoms are oxidized at a ratio of 

1:4. 

A XAS study about the migration behavior of Se6+ in a granite drill core showed that generally 

sulfide bearing minerals and especially FeS were the most efficient minerals to immobilize 

Se6+ accompanied with a partial reduction into more reduced Se forms at the mineral surface 

(Yllera de Llano et al., 1996). It is important to note that the trace element concentration 

incorporated in metastable mackinawite is not necessarily equal to the concentration in 

pyrite, because its trace element load is released back into solution during mackinawite 

dissolution (Rickard and Luther, 2007). 

By introducing a Se4+ solution into reducing Boom clay environment, Bruggeman et al. (2005) 

detected an adsorption of Se4+ at the pyrite surface, which led to its reduction and 

precipitation as Se0 after 60 days. The Se0 had a very low solubility of 3·10-9 M. Breynaert et 

al. (2008) confirmed these results, because they noticed a Se4+ reduction to Se0 after three 

weeks of solution contact with pyrite, and to FeSex with troilite (mainly found in meteorites 

with chemical sum FeS). The authors found out that the type of sulfide mineral dictates the 

final speciation.  

Naveau et al. (2007) investigated the sorption of Se2- and Se4+ on natural and synthetic pyrite 

under ambient conditions after 1 d of stirring. The percentage of sorbed selenium is very 

similar for both valence states. For synthesized pyrite, the sorption efficiency exceeds >95 % 

under acidic pH conditions (<6) and drops rapidly down to less than 5% of the initial sum at 

neutral to alkaline conditions (pH 7 – 10). Though the specific surface area (SSA) of 

synthesized pyrite (0.8 m2/g) was even smaller than of natural pyrite (1.1 m2/g), the sorbed 

fraction for the second one is generally much less, starting with ~60 % at pH ~2 and dropping 

linearly to a sorption of ~20 % at pH 5. The newly formed precipitates contained reduced Se 

species while only pyritic sulfur oxidized but not pyritic iron. 

Liu et al. (2008) observed an oxidation of Se2- to Se0 by adsorption onto synthetic pyrite 

(SSA: 4.8 m2/g) under strongly reduced conditions (-340 mV) within 1 d in an electrochemical 

cell, accompanied by a cleavage of S-S bonding and a reduction to HS-:  
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FeS2 + HSe-   ⇆  FeS + Se0 + HS-                                             (2.2). 

The sorption kinetics was extremely fast, because >97 % of initial Se2- was removed from the 

solution within 5 minutes. The Kd values for 10-4 – 10-6 mol/L Se2- in solution are ranging 

between 7 and 65 L/g. The distribution values were decreasing with higher initial Se2- 

contents due to full site occupation. 

The predictions of equilibrium thermodynamic calculations with regard to selenium 

incorporation into pyrite under reduced conditions are not consistent. Masscheleyn et al. 

(1990) proposed that a mixed solid solution phase would be formed with selenide substituting 

for sulfide and precipitated iron sulfide will contain FeSe. Howard (1977) instead calculated 

that Se0 incorporates into pyrite or that ferroselite (FeSe2) precipitates. In a thermodynamic 

study simulating the hydrological processes in hydrothermal solutions, it is predicted that the 

selenium species Se0 and Se2- are dominating (Xiong, 2003). Commonly accepted is that 

elemental Se has a wide stability field under acid conditions and that formation of achavalite 

is favored for neutral to alkaline conditions (Lenz and Lens, 2009). 

To sum up, the geochemistry of selenium is largely controlled by iron bearing minerals under 

oxidizing and reducing conditions (Zingaro et al, 1997; Séby et al., 1998). Selenium 

adsorption behavior on mineral surfaces depends highly on its oxidation state. Selenate 

sorption is lower than those of selenite and much less than selenide sorption on the different 

iron sulfides. The probable reason for the weaker sorption of Se6+ is the formation of outer 

sphere complexes at the mineral surfaces. Selenite has a comparatively strong affinity to 

metal oxides and metal hydroxides. The sorption mechanism of selenite involves very often a 

ligand exchange reaction with formation of an inner sphere surface complex. The 

precipitation/dissolution reactions govern selenium solubility only in reduced conditions with 

formation of Se0 and Me2+Se2--compounds. Selenide could replace sulfide in the pyrite 

structure because of similar radii and equal charge (Séby et al., 1998; Lenz and Lens, 2009). 

Up to date, only Se2- and Se4+ sorption on pyrite surfaces has been investigated, but there is 

no experimental study about incorporation into the crystal lattice yet. 
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With regard to the incorporation of Se into pyrite, probable types of binding are FeSe2-FeS2 

solid solutions (FeSe2 as ferroselite or dzharkenite), furthermore an isomorphic substitution 

ending in a FeSxSey compound or the fixation of Se0 without any bonding. For mackinawite, 

solid solutions of FeSe-FeS (FeSe as achavalite) could form or Se0 becomes incorporated. 

Assuming an equilibrium system, the formation of both, pyrite and FeSe2 next to each other 

or as solid-solution phase could be possible because of their very similar solubility products. 

Taken the thermodynamic values from WATEQ4F database (which is integrated e.g. in the 

open source software PhreeqC and noted in Ball and Nordstrom, 2001), pyrite has a log10 

KSP = -18.48 and FeSe2 a log10 KSP = -18.58. 

The type of bonding of selenium in pyrite is important because the stability of fixed selenium 

is supposably higher in a real solid solution accompanied with Se bonding with Fe and/or S. 

Now it is interesting to see, if the often proposed formation of FeSxSey-compounds or the 

incorporation of Se0 into pyrite structure takes place under different hydrochemical and 

temperature conditions. Therefore, our investigations focus on Se2- and Se4+ incorporation 

into pyrite and mackinawite as solid solution phase for anoxic conditions; conditions which 

are also predicted for nuclear waste repositories. Hence, the investigations should clarify the 

type of structural bonding as a function of the initial aqueous valence state of incorporated 

selenium. 

 

2.3 The aqueous iron-sulfur-selenium system 

Knowledge about the speciation of dissolved aquatic compounds is important in order to 

understand potential reaction pathways that may lead to precipitation of solid phases. 

Thermodynamic modeling can provide predictions of geochemical processes (e.g. mineral 

solubility, aqueous speciation), if the underlying thermodynamic data are accurate and 

complete with regard to the modeled solution (Faure, 1998; Oelkers et al., 2009).  

In general, there are two different ways to carry out thermodynamic calculations with respect 

to the distribution of aquatic species. One possibility is the determination of the most stable 
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phases by minimization of the enthalpies of formation (e.g. GEMS, CHEMSAGE). The 

second way is to calculate the most stable phases for all equilibrium constants in the system 

(e.g. PhreeqC, EQ3/6). Both methods presuppose the setting of a chemical equilibrium within 

the aqueous solution (Merkel and Planer-Friedrich, 2008). The thermodynamic calculations 

in this study have been performed by the open source software PhreeqC using the 

integrated, comprehensive WATEQ4F database (Parkhurst and Appelo, 1999). The list of all 

integrated equilibrium constants is noted in appendix A while the most relevant species are 

noted in this chapter. Therefore, the predominantly aqueous dissolved Fe-, S-, Se-species 

and the solid phases mackinawite and pyrite conditions are presented for certain pH-Eh 

values in Pourbaix-diagrams as well as their stability constants or solubility products with 

belonging reactions. Pourbaix diagrams display the stability fields for a given solution with 

defined activities of the phases under defined temperature and pressure conditions. Of 

course, it has to be kept in mind that these stability fields are changing if e.g. the solution 

composition is modified, but it gives generally a good impression of the expected species for 

certain pH-Eh conditions. Apart from the most stable phase, further species occur with 

significant activities especially close to the boundaries of a stability field (Merkel and Planer-

Friedrich, 2008). 

 

2.3.1. Sulfur 

The stability diagram for dissolved sulfur species shows that sulfate (SO4
2-) dominates 

completely under oxidized conditions (Fig. 2.8): 

SO4
2- SO4

-2 ⇆ SO4
2- (log10 K = 0.0) 

HSO4
- H+ + SO4

2- ⇆ HSO4
- (log10 K = 1.988) 

 

Only a comparatively small stability field under acidic conditions is covered by rhombic, 

elemental sulfur, of which the composition is normally noted as S0 but in fact it occurs as S8:  

S0 S + 2e- ⇆ S2- (log10 KSP = -15.026) 
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Fig. 2.8: Pourbaix diagram for [Stot] = 10–3 M at standard conditions                                               

(modified after Rickard and Luther, 2007). 

 

Under reduced conditions, H2S dominates up to pH 7 and HS- under reduced alkaline 

conditions (Rickard and Luther, 2007): 

H2S(aq) SO4
2- + 10H+ + 8e- ⇆ H2S + 4H2O (log10 K = 40.644) 

H2S(g) H2S ⇆ H2S (log10 K = -0.997) 

HS- H2S ⇆ HS- + H+ (log10 K = -6.994) 

S2- HS- ⇆ S2- + H+ (log10 K = -12.918) 

HS- and H2S are the most important dissolved species which serve as sulfide-sources for 

iron sulfide formation, indicated by the log10 K (HS-) = 6.99 for an aqueous solution 

containing [Stot] = 10–3 M (Fig. 2.9). The species H2S is dominating under acidic conditions 

but HS- as the minor species has still a significant activity close to slightly acidic up to neutral 

conditions. The activity (maximum at pH 10: ~10-11) of the aqueous ion S2- is negligible 

(Rickard and Morse, 2005; Rickard and Luther, 2007).  
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Fig. 2.9: Distribution of aqueous sulfide species at [S2-
tot] = 10-3 M at                                                     

25° C and 1 bar pressure (modified after Rickard an d Luther, 2007). 

 

Since pyrite is an iron disulfide, it is well possible that a disulfide species could be involved in 

its formation. Disulfides are part of the polysulfides, which consist of chains of sulfur atoms 

and they are noted as Sn
2- with n = 2 – 8. Solutions of polysulfides are mixtures of Sn

2-, S2-, 

and S0 species and their protonated forms:  

S2
2- HS- + HS- ⇆ S2

2- + 2H+ (log10 K = -14.528) 

S3
2- HS-  + S2

2- ⇆ S3
2- + H+ (log10 K = -13.282) 

S4
2- HS- + S3

2- ⇆ S4
2- + H+ (log10 K = -9.829) 

S5
2- HS- + S4

2- ⇆ S5
2- + H+ (log10 K = -9.595) 

S6
2- HS- + S5

2- ⇆ S6
2- + H+ (log10 K = -9.881) 

Excluding stable sulfide species and rhombic sulfur from Pourbaix diagram (Fig. 2.8) reveals 

the underlying metastable polysulfide distribution (Fig. 2.10). Around the SO4
2-/S2- redox 

boundary at pH 2 – 6, where originally S0 is the most stable phase, the dominant polysulfide 

species in this context are the longer chained S8
2- and S6

2-. Remarkable is the relative 

stability of HS2
- above pH 5 which contributes to ~1 % of the total dissolved sulfide 

concentration in much of the system (Rickard and Morse, 2005; Rickard and Luther, 2007).  

.  
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Fig. 2.10: Stability diagram of polysulfide distribution for [Stot] = 10-3 M after excluding                      

stable phases from the calculations (modified after Rickard and Luther, 2007). 

 

Equation 2.3 describes the further formation of polysulfides: 

S0
(s) + Sn-1

2-
(aq)  →  Sn

2-
(aq)                                                    (2.3). 

Under hydrochemical conditions without excess rhombic sulfur present, the total activity of  

polysulfide species is negligible because it approaches activities of 10-12 at pH <7 (equal to 

10 ppm) and 10-15 at pH >7 (equal to 0.1 ppb) of the total sulfide activity. The polysulfide 

activity reaches a maximum close to the sulfate/sulfide boundary zone in low-temperature 

natural systems (Rickard and Morse, 2005; Rickard and Luther, 2007). 

  

2.3.2 Iron 

The formation of iron sulfides in natural aqueous systems involves reactions of a sulfur 

source with iron species. The ferrous ion in aqueous solution is commonly written as Fe2+, 
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which is the short notation form for the stoichiometric composition of the hexaqua species 

Fe(H2O)6
2+:  

 
Fe2+ Fe2+ ⇆ Fe2+ (log10 K = 0.0) 

Fe3+ Fe2+ ⇆ Fe3+ + e- (log10 K = -13.020) 

FeOH2+ Fe3+ + H2O ⇆ FeOH2+ + H+ (log10 K = -2.19) 

FeOH+ Fe2+ + H2O ⇆ FeOH+ + H+ (log10 K = -9.5) 

Fe(OH)3  Fe+3 + 3H2O ⇆ Fe(OH)3 + 3H+ (log10 K = -12.56) 

 

The stability diagram for iron shows Fe2+ as most important stable species for both, reduced 

and moderate oxidizing up to slightly alkaline aqueous conditions (Fig. 2.11), while FeOH+ 

has a significant activity under reduced alkaline conditions. Solid Fe(OH)3 is the most stable 

phase under oxidizing, acidic up to reduced alkaline conditions. 

The stable mineral phases in the Fe-H2O system at 25° C and 1 bar pressure are hematite 

(Fe2O3), magnetite (Fe3O4), wüstite (FeO) and goethite (α-FeOOH) (Rickard and Luther, 

2007): 

Magnetite Fe3O4 + 8H+ ⇆ 2Fe3+ + Fe2+ + 4H2O (log10 KSP = 3.737) 

Hematite Fe2O3 + 6H+ ⇆ 2Fe3+ + 3H2O (log10 KSP = -4.008) 

Maghemite Fe2O3 + 6H+ ⇆ 2Fe3+ + 3H2O (log10 KSP = 6.386) 

Goethite FeOOH + 3H+ ⇆ Fe3+ + 2H2O (log10 KSP = -1.0) 
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Fig. 2.11: Pourbaix diagram for dissolved [Fetot] = 10–3 M at standard conditions,                           

25° C, 1 bar pressure (modified after Rickard and M orse, 2005). 

 

Aqueous FeS clusters 

Presumably FeS clusters (FeSaq) are ubiquitous in sulfidic aqueous environments, which 

transport Fe2+ in S2+-rich systems and both are involved in iron sulfide formation (Rickard and 

Luther, 2007). These clusters may form from dissolved Fe-S species: 

FeSO4 Fe2+ + SO4
2- ⇆  FeSO4 (log10 K = 2.25) 

Fe(SO4)2
- Fe3+ + 2SO4

2- ⇆ Fe(SO4)2
- (log10 K = 5.38) 

Fe(HS)2 Fe2+ + 2HS- ⇆ Fe(HS)2 (log10 K = 8.95) 

Fe(HS)3
-  Fe2+ + 3HS- ⇆ Fe(HS)3

- (log10 K =10.987) 

 
The FeSaq concentration is linearly correlated with pyrite formation in estuarine sediments 

(Rickard and Luther, 2007). Its stoichiometry ranges from Fe2S2 to Fe150S150 which is 

identical with the first condensed phase of mackinawite. The analyzed structure of the 

aqueous cluster Fe2S2 and Fe4S4 is relatively similar to the mackinawite crystal model 

(Wolthers, 2003; Rickard and Morse, 2005; Rickard and Luther, 2006). 
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2.3.3 Selenium  

In aquatic environments, selenium behavior is quite complex because it exists in the 

oxidation states −II, 0, +IV and +VI in nature, in both inorganic and organic forms, in solid, 

liquid and gas phase and in 6 stable isotopes and 9 radionuclides (Schrauzer, 2004; Lenz 

and Lens, 2009). Selenium can interact with mineral phases, can be bound to organic or 

inorganic ligands, can be part of occurring redox processes or may be transformed by 

microorganisms. Under the presumed anoxic and anaerobic hydrochemical conditions in a 

radioactive waste disposal, the most stable forms would be Se2-, Se0, Se4+. But the presence 

of Se6+ is also considered because of the low kinetic of its reduction (Séby et al., 1998; Lenz 

and Lens, 2009). 

Under reducing conditions, selenium appears as Se0 in a wide pH range. Compared to sulfur, 

elemental selenium has a much broader stability field. Under highly reducing conditions, 

selenide (in form of the species: HSe-, H2Se) is stable with HSe- as major Se species in 

solution (Fig. 2.12). Both represent 80 – 100 % of the total selenium content below the 

potential of zero (Séby et al., 1998) and the dissolved species are transformed due to 

following reactions:  

HSe- SeO3
2- + 7H+ + 6e- ⇆ HSe- + 3H2O (log10 K = 42.514) 

H2Se HSe- + H+ ⇆ H2Se (log10 K = 3.8) 

Se0 Se + H+ + 2e- ⇆ HSe- (log10 KSP = -17.322) 

 
Seven different allotropic forms exist for elemental selenium, including hexagonal (grey), 

different monoclinic (red), different cubic, a rhombohedric and an ortho-rhombic form 

(Schrauzer, 2004). In the non-metallic Se-modification, the selenium atoms are structured in 

form of eight-membered rings, like sulfur. In its hexagonal metallic form, Se0 shows the 

properties of a semiconductor, since its electrical conductivity increases with temperature. As 

well, Se6, Se7 and Se8 rings have been detected in organic solvents being in equilibrium with 

each other. Furthermore, Se0 can be mixed with S in any ratio (Schrauzer, 2004; Lenz and 

Lens, 2009). 
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Fig. 2.12: Pourbaix diagram for [Setot] = 10–6 M at standard conditions (modified after Olin et al., 2005). 

 

Selenite (as SeO3
2-, HSeO3

-, H2SeO3) is predominant under moderate redox conditions, e.g. 

~0.6 V at pH 4 and ~0 V at pH 10. Under highly oxidizing conditions, selenate (as SeO4
2-, 

HSeO4
-) is stable mainly as SeO4

2- over a wide pH range. Both species are typical for surface 

waters and oxidized groundwater where they occur mostly in particulate-associated form. 

Furthermore, they have a high bioavailability and bioaccumulation potential (Séby et al., 

1998; Olin et al., 2005): 

SeO4
2- SeO4

2- ⇆ SeO4
2- (log10 K = 0.0) 

SeO3
2- SeO4

2- + 2H+ + 2e- ⇆ SeO3
2- + H2O (log10 K = 30.256) 

H2SeO3 SeO3
2- + 2H+ ⇆ H2SeO3 (log10 K = 11.25) 

HSeO3
- SeO3

2- + H+ ⇆ HSeO3
- (log10 K = 8.5) 

HSeO4
-  SeO4

2- + H+ ⇆ HSeO4
- (log10 K = 1.66) 
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Both, Se2- and Se0 are oxidized to selenite close to neutral conditions and Se4+ is oxidized to 

Se6+ above ~0.6 V at pH 4 and ~0.2 V at pH 10, which happens fast at alkaline pH- and slow 

at acidic pH-values. Under highly oxidizing conditions of 450 mV, selenate species are stable 

with a share of 75 % for pH-values close to 7 and 95 % at pH-values ranging from 8.5 to 9 

(Masscheleyn et al., 1990; Séby et al., 1998). The most stable solid Fe-Se phase under 

reducing conditions is ferroselite: 

Ferroselite FeSe2 + 2H+ + 2e- ⇆ Fe2+ + 2HSe- (log10 KSP = -18.580) 

 
Redox-transformations between these species are often microbially mediated (Séby et al., 

1998). Biotic transformations of selenium species can be categorized as assimilatory and 

dissimilatory reduction, alkylation, dealkylation and oxidation reactions. All types of reduction 

from Se6+ and Se4+ to Se0, from Se0 to Se2- as well as the 3 - 4 times slower oxidation of 

reduced selenium valences under oxidizing conditions can be facilitated by microorganisms. 

Microbes use Se6+ and Se4+ as terminal electron acceptors for growth support reducing these 

species into red and amorphous Se0 with Se4+ as intermediate species. The microbial 

reduction of Se0 into Se-2 was also reported for strongly reducing conditions with toxically, 

gaseous H2Se as final compound (Séby et al., 1998; Séby et al., 2001; Lenz and Lens, 

2009).  

 

2.3.4 Iron sulfide reaction pathways 

A Pourbaix diagram with a Fe/S ratio of 1:2 for the Fe-S-H2O system is shown in Figure 2.13. 

Pyrite has a stability field covering the whole pH range from 0 – 14, with an Eh-gradient from 

slightly oxidizing conditions at highly acidic conditions to reducing conditions under an 

alkaline pH-value. Mackinawite (FeS) is only stable under more reducing conditions than 

pyrite: 

Mackinawite FeS + H+ ⇆ Fe2+ + HS- (log10 KSP = -4.648) 

Greigite Fe3S4 + 4H+ ⇆ 2Fe3+ + Fe2+ + 4HS- (log10 KSP = -45.035) 

Pyrite FeS2 + 2H+ + 2e- ⇆ Fe2+ + 2HS- (log10 KSP = -18.479) 
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Pyrrhotite (Fe1-xS) and troilite (FeS) have no stability fields under these conditions, which is in 

agreement with studies concerning marine sediments where they were merely found. 

Pyrrhotite is the most important iron sulfide in the earth mantle and troilite is often found in 

meteorites (Rickard and Luther, 2007). 

 

 

Fig. 2.13: Pourbaix diagram for the Fe-S-H2O system at 25° C and 1 bar pressure for                              

[Stot] = 0.067 M, [Fetot] = 0.033 M (modified after Wei and Osseo-Asare, 1997).  

 

Mackinawite formation and kinetics at standard conditions 

The HS- and H2S species are the dominant sulfides in aqueous solutions at 25° C and 1 bar 

pressure (Ch. 2.3.1). Due to this fact, two reaction pathways exist for mackinawite 

precipitation, which are pH dependent (Rickard and Morse, 2005). Under acidic conditions, 

the reaction will follow mainly as 

Fe2+
(aq) + H2S(aq)  ⇆  FeS(s) + 2H+                                                                                                        (2.4). 
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It is presumed that the FeSaq cluster Fe(HS)2(aq) is a complex of the intermediate reaction 

steps for mackinawite formation via HS- (Ch. 2.3.3). Under pH-conditions above 7, the 

dominant mackinawite formation pathway mainly is: 

Fe2+
(aq) + HS-

(aq)  ⇆  FeS(s) + H+                                                                                                            (2.5). 

The kinetics of mackinawite formation are extraordinarily fast, because it takes only 1 ms up 

to 1 s to precipitate (Rickard and Morse, 2005; Rickard and Luther, 2007), on the basis of the 

following rate law:  

∆FeS/∆t = k·{Fe2+}·{H2S}                                                   (2.6) 

with ∆FeS being the rate of mackinawite formation in mol/L·s, k as the rate constant 

amounting to log k = 7 ± 1 L/mol·s and {Fe2+} and {H2S} as the iron and H2S activities. Iron 

disulfides dissolve only in the presence of an oxidizing agent while FeS (mackinawite and 

troilite) can dissolve oxidatively as well as non-oxidatively (Rickard and Luther, 2007; 

Breynaert et al., 2008).  

In older literature (e.g. Morse and Cornwell, 1987; Lennie et al., 1995), mackinawite was 

named as an essential precursor phase for pyrite formation at ambient conditions. Because it 

is thermodynamically metastable under near-surface conditions, it transforms as solid-state 

formation to greigite; or it dissolves, enabling pyrite formation during burial diagenesis in 

sediments, since the solubility product of mackinawite is much greater than that of pyrite. But 

mackinawite is just one important Fe-source among other minerals like FeOOH, Fe2O3, 

Fe(OH)3, green rust, or other Fe phases that react with sulfide to form pyrite. Nanoparticulate 

mackinawite (size: ~2 nm) nucleation is extremely quick in low-temperature aqueous 

environments and it is usually the first iron sulfide precipitating. But it only subsists, because 

the formation of pyrite is kinetically hindered (Rickard and Morse, 2005; Rickard and Luther, 

2007).  
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Pyrite formation and kinetics at standard conditions 

The pyrite formation reaction under standard conditions is determined by two alternative 

mechanisms, which are named as H2S and polysulfide pathway (Rickard and Morse, 2005). 

The generation of pyrite (Fig. 2.13) follows a progressive sulfidation, dissolution and 

precipitation pathway by involving changes in aqueous sulfur speciation (Schoonen and 

Barnes, 1991; Wang and Morse, 1996; Morse and Wang, 1997; Benning et al., 2000). 

Furthermore, usually an intermediate mineral is involved, such as mackinawite, greigite, 

magnetite, or goethite, which provides a necessary source of iron (Eq. 2.7). Afterwards, a 

dissolved FeS intermediate is required for pyrite formation (Wei and Osseo-Asare, 1997; 

Benning et al., 2000; Rickard and Luther, 2007). Known as the “Bunsen Reaction” or 

“Polysulfide pathway” (Rickard and Luther, 2007), Equation 2.8 describes the reaction of 

dissolved FeS with polysulfide species (Fig. 2.9): 

Fe2+
(aq) + HS-

(aq)  →  FeS(s) + H+                                (2.7). 

FeS(aq) + Sn
2-

(aq)  →  FeS2(s) + Sn-1
2-

(aq)                             (2.8). 

 
The rate of pyrite formation in the presence of polysulfides is first order and increases with 

increasing polysulfide concentration (Rickard and Luther, 2007). The nucleophilicity for pyrite 

precipitation varies in the sequence S5
2- > S4

2- > HS- > HS2
- > S3

2- > H2S, indicating that the 

polysulfide pathway is especially important near the sulfide/sulfate redox boundary (Rickard 

and Luther, 2007). In this zone, the dominant sulfide species in the stability field of rhombic 

elemental sulfur are polysulfides with n ≥ 5. Hence, their relative abundance is expected to 

raise the rate of pyrite formation (Luther, 1991; Rickard and Luther, 2007).  

Additionally, in all reported laboratory syntheses of pyrite, its formation happened via the 

“H2S-pathway” or “Berzelius Reaction” (Rickard and Morse, 2005): 

FeS(s) + H2S → [Fe–S → SH2] → FeS2(s) + H2(g)                                          (2.9). 

 
The term [Fe–S → SH2] is a dissolved FeS transition intermediate. The reaction involves the 

formation of an inner sphere complex between FeS and H2S followed by an electron transfer 
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between S2- and H+ for S- production. It is important to note that most aqueous environments 

where pyrite precipitation occurs include both, polysulfides and monosulfides, meaning that 

both reaction pathways take place, simultaneously. Highly relevant is the acceleration of both 

pathways by a factor of up to 105 through bacterial sulfur disproportionation (Rickard and 

Luther, 2007).  

The formation of pyrite is divided into two kinetically different processes. The nucleation is 

normally the rate-limiting factor because it is slow and requires relatively high 

supersaturations and/or catalytic effects of active surfaces. The crystal growth itself is 

comparatively rapid and takes place through the reaction between Fe2+ and S2
2-, which is 

present in sufficient concentrations in any experimental or natural S2
2- solution for pyrite 

formation (Rickard and Luther, 2007). 

The processes for the pyrite nucleation on metastable iron sulfides, especially mackinawite 

and greigite, are heterogeneous nucleation as an epitaxial overgrowth of pyrite nuclei at 

defects on their mineral’s surface and the formation of pyrite clusters which are smaller than 

the critical nucleus (Rickard and Luther, 2007). These clusters are concentrated on the 

surface under the influence of the crystal molecular field, forming a transition layer between 

the metastable iron sulfide and the bulk solution where nucleation of pyrite is accelerated. 

Without these metastable iron sulfide minerals, the nucleation of pyrite is kinetically limited, 

resulting in a long formation period. Direct nucleation of pyrite requires an extremely high 

supersaturation indexes, e.g. an SI >1014 at pH 6.5. With the increasing supersaturation of 

pyrite in the aqueous solution, pyrite morphology changes in the following order: cube → 

octahedron → spherulite (Schoonen and Barnes, 1991; Wang and Morse, 1996; Rickard and 

Luther, 2007). 

Increasing total Fe and S concentrations result in a broadening of the pyrite predominance 

field (Fig. 2.14), mainly in a progressively broader pH axis and downwards to more negative 

redox potentials on the Eh axis. The lines of equal supersaturation are compressed close to 

the upper boundary of the pyrite stability field, resulting in an intensive SI-gradient near the 

SO4
2-/S2- redox boundary zone. Figure 2.14 also shows that pyrite formation is possible even 
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in natural systems with submicromolar concentrations of sulfides, since its solubility product 

is so low (log10 KSP = -18.479) (Butler and Rickard, 2000; Rickard and Morse, 2005; Rickard 

and Luther, 2007). 

The full rate equation for pyrite precipitation (Eq. 2.10; Rickard and Luther, 2007) includes 

both parts of polysulfide and H2S reaction pathways: 

∆FeS2p/∆t = kH2S[FeS]·[H2S] + kSn(-II)[FeS]2·[S0]·[S2-
tot]·[H

+]               (2.10) 

where ∆FeS2p is the rate of pyrite formation in mol/L·s, [FeS] represents the molar 

concentration of metastable iron sulfides; [H2S] is the molar concentration of H2S while the 

term [S0]·[S2-
tot] describes the molar rate of formation for the generation of polysulfides 

(Rickard and Morse, 2005). The rate constants kH2S and kSn(-II) are measured for the Berzelius 

and Bunsen reaction and noted in Giggenbach (1972) and Rickard (1975). 

 

 

Fig. 2.14: Stability diagram for the system Fe-S-H20 at 25° C and 1 bar pressure. The contours for the  

pyrite stability field are drawn in terms of the ion activity potential for pyrite where ∑a(Fe2+
(aq)) = ∑a(S2-

(aq)). The diagram is schematic since the solubility of FeOOH with respect to ∑Fe2+
(aq) is variable 

depending on the nature of the FeOOH phase considered (modified after Rickard and Morse, 2005).  
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Pyrite formation under high temperature conditions 

The synthesis of pyrite single crystals at high temperatures depends on the chosen 

temperature and the initial amount of sulfur (Fig. 2.15). With a sulfur concentration >53 wt.% 

and temperatures between 400 and 743° C, pyrite for mation is feasible. At lower sulfur 

concentrations of 40 – 53 wt.%, mixtures of pyrite and pyrrhotite are obtained. Above a 

temperature of 743° C, pyrite (FeS 2) decomposes into pyrrhotite (Fe1-xS) (Fleet, 2006). 

According to this Figure 2.15, the synthesis of pure mackinawite single crystals is not 

possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.15: Phase relations in the Fe-S system above 400° C. All phases and                                  

phase assemblages coexist with vapor (modified after Fleet, 2006). 

 

With regard to the preparation of selenium doted homogeneous mixed crystals of iron 

sulfides or selenides at high temperatures, it is malfunctioning by sublimation with pyrite as 

starting material, because the solids decompose according to the principal reaction (Hotje et 

al., 2005; Binnewies et al., 2011):  

FeX2(s) (X = S, Se) → FeX2-n(s) + X2(g) (n = 0, …, 1)            (2.11). 
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Instead, a chemical vapor phase transport reaction of the solid after addition of a halogen as 

transport agent is a feasible way to increase the activity of iron (Tomm et al., 1995). To 

obtain selenium doted pyrite, the temperature must be hold below the thermal decomposition 

of the reaction product. The decomposition pressure is given by the equation 2.12 

(Binnewies and Mielke, 2002):  

lg(p(S2),K) = –14.93 ⋅ 103⋅T – 1 – 0.39 ⋅ lg(T) + 15.74                              (2.12). 

For the chosen temperature gradient, the following pressures result: p(S2, 600° C) = 3 mbar, 

p(S2, 700° C) = 170 mbar and p(S 2, 752° C) = 1 bar.  

In the first reaction step of the synthesis, the elements react according to equations (2.13) 

and (2.14): 

Fe(s) + S8(aq) → FeS2(aq) + S6(aq)                                                                  (2.13). 

Fe(s) + 2 Se(aq) → FeSe2(aq)                                                           (2.14). 

The second step, which leads to the formation of the selenium doted single pyrite crystals, 

can be explained as partly hydrolysis of the highly reactive solid AlBr3 during the preparation 

process according to the reaction described in equation 2.15 (Binnewies et al., 2011): 

2 AlBr3(g) + 3 H2O(g) ⇆ Al2O3(s) + 6 HBr(g)                                   (2.15). 

The chemical transport reaction of solid Al2O3 with HCl requires a temperature of about 

1300° C (Binnewies et al., 2011). Therefore, it is likely that Al2O3 does not disturb the 

reaction. This finding is in line with the own results of the analysis (Ch. 5.2). The formation of 

gaseous HBr presumably leads to the transport relevant gas phase reaction (Eq. 2.16): 

FeX2 (X = S, Se) (s) + 2 HBr(g)   →   FeBr2 (g) + H2 (g) + X2(g)                        (2.16). 

Bromides of sulfur or selenium (S2Br2, SBr2, etc.) do not exist at the reaction temperature of 

700° – 600° C, therefore sulfur or selenium occurs as elements in the gas phase. At lower 

temperatures, larger sulfur molecules Sx (x = 2, …, 8) might appear (Binnewies et al., 2011). 

Following these reaction steps, doted pyrite single crystals with a size of ~5 mm ± 2 mm in 

diameter are obtained. Examples of successful doting of pyrite by chemical vapor transport 
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are described for As, Co and Ni (Lehner and Savage, 2008), for Au, Co, Cr (Tomm et al., 

1995) and with P (Blenk et al., 1993). 
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Methods and experimental details 

 

 

All samples were stored in a desiccator under anoxic conditions within the glovebox (O2 <3 

ppm), filled with silica gel for an additional prevention of oxidation. For every spectroscopic 

investigation, only a part of a dried solid sample was used and finally discarded because of 

probable surface oxidation. 

 

3.1 Analytical methods 

Eh- and pH-values were routinely measured during the batch experiments, as well as the 

temperature of the solution, using a daily calibrated WTW Multi 340i (John Morris Scientific 

Pty Ltd.) system. The precision of the pH value is ± 0.01; that of the Eh-value is ± 1 mV and 

that of the temperature ± 1° C. 

The potentiostat  (Uniscan PG580) in connection with an electrochemical cell  was used to 

apply constant potentials in the solutions. This assembling allowed reducing Se4+ to Se2- as 

well as the setting of a constant Eh for Se doted iron sulfide synthesis in batch reactions. The 

electrochemical cell consists of a glassy carbon working electrode, a platinum auxiliary 
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electrode, and an Ag/AgCl reference electrode, filled with 3 M KCl. The accuracy of the 

potentiostat  is ± 1 mV and its range of Eh-values is -2 – 2 V. 

X-ray powder diffraction (XRD) served for mineralogical characterization of precipitated 

solids. X-ray diffraction patterns were measured using a Siemens Kristalloflex D500 with 

monochromatic Cu-Kα radiation with 40 kV and 20 mA in a θ – 2θ geometry. The 

measurements were carried out in angles between 10° to 70° with an increment of 0.02°, by 

continuous scanning at 0.5° per minute. The minimum  detectable mineral content is about 

1 wt.%. Crystallographic identification  on the basis of 2θ–peaks was done with QualX, 

version 1.2, using the American Mineralogist Crystal Structure Database for the reference 

peaks. 

Scanning electron microscopy (SEM) was additionally used for the identification of 

minerals using a LEO 1530 SEM at the Laboratory of Electron Microscopy (LEM) at the 

Karlsruhe Institute of Technology (KIT), Germany, working in conjunction with energy-

dispersive X-ray spectroscopy (EDX). The SEM was operated with an acceleration voltage of 

10 keV. A maximum resolution of 1 nm was achieved. The selenium concentration in 

different mineral particles was analyzed by EDX using the excitation energy of 5 keV and a 

penetration depth of 0.25 µm. The detection limit of Se by EDX was 0.1 wt.%. To avoid 

surface charging, the samples were carbon coated before the measurements. 

Focused ion beam (FIB) allowed preparing a 30 nm thick thin section which was carried out 

using a focused ion-beam system (FEI Strata 400 STEM) with a 30 keV gallium ion beam 

mill at the LEM at KIT. The excitation energy of the EDX system was set to 30 keV while 

mapping the Se concentration within the grains. 

Transmission electron microscope (TEM) helped to identify the size and orientation of the 

microcrystals within the synthetically precipitated pyrites. The 30 nm thick thin section was 

analyzed with the FEI Titan 80 and the FEI Titan 300 at the LEM at KIT.   

Brunauer-Emmett-Teller measurements (BET) for the determination of the specific surface 

area (in m2/g) were carried out using a Quantachrome Autosorb 1-MP instrument under 
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nitrogen atmosphere at the Institute of Functional Interfaces (IFG), KIT, Germany. The 

accuracy was ± 0.15 %. 

Energy dispersive X-ray fluorescence (ED-XRF) was applied for measuring the selenium 

concentrations of the solids with a PANalytical Epsilon 5 ED-XRF instrument. The calibration 

standards were specially prepared by mixing elemental selenium with pure quartz powder. 

Four standards were prepared in logarithmic scale to allow a wide range of Se-

measurements: 100 ppm Se, 1000 ppm Se, 10000 ppm Se, 100000 ppm Se. The amount of 

Se doted iron sulfides samples for measurements was 0.1 – 0.2 g, which was not enough for 

ED-XRF investigations. For this reason, the samples were also mixed with quartz powder. 

The average of three measured values was taken. The precision of the solid element 

detector amounts to an uncertainty of ~5 % and a detection limit of ~1 ppm. The accuracy of 

the samples was calculated of the prepared standards. The relative standard deviation was 

3.2 %. 

High-resolution inductively coupled plasma mass spe ctrometry (HR-ICP-MS) was used 

to measure the concentrations of selenium and to some extent iron and sulfur in the solutions 

before and after the synthesis (Axiom, VG Elemental 2, Thermo). The concentrations were 

calculated as the mean of three measurements from 77Se and 82Se isotopic measurements. 

The detection limit for Se, Fe, and S is >10 ng/L. The calibration standard for sulfur was 

CertiPur-sulfur ICP-standard from Merck with a stock solution of 1000 mg/L (± 0.4 %). For 

iron and selenium, the sulfur-free ICP-multi element standard VI CertiPur from Merck was 

applied, with stock solutions of 100 ± 5 mg/L each. The accuracy of the measurements was 

calculated from reference standard Trace Metals - ICP (Promochem, high purity standard), 

which has been measured after calibration and after the samples. The selenium 

concentration of the reference standard was 252 µg/L and the relative standard deviation 

(RSD) amounted to 3.8 %. With regard to the precision of the double-focusing sector field 

SF-ICP-MS (axiom of VG Elemental), the RSD was calculated of the three measurements of 

a sample and was always between 1 and 3 %. 
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Inductively coupled plasma optical emission spectro scopy (ICP-OES) was used initially 

for the analysis of Fe and S by a Varian 715-ES instrument. Due to the observation that the 

concentrations within the samples were partially below the detection limit, only the previous 

one-third of the samples has been measured with ICP-OES. Iron was measured at a 

wavelength of 238.204 nm and sulfur at 181.972 nm. The reference standards CertiPur 

(VWR) contained 1 g/L of Fe and S. The detection limit is 1 µg/L for Fe, 13 µg/L for S, and 16 

µg/L for Se. The calibration standards used for the measurements were the same as for HR-

ICP-MS. The accuracy of the ICP-OES was calculated from the differences of the standards 

and amounted to a RSD of 3.1 %.  

X-ray photoelectron spectroscopy (XPS) analysis was performed to achieve further insight 

into the valence state of selenium doted pyrite. Samples are prepared onto indium-foil within 

an inert-gas glove box and transferred without air-contact into the X-ray photoelectron 

spectrometer located at the Institute for Nuclear Waste Disposal (INE), KIT, Germany. The 

measurements are carried out in ultra-high vacuum on a PHI model 5600ci (Physical 

Electronics Inc.) instrument with monochromatic Al Kα X-ray excitation (1486.6 eV). 

Elemental lines of pure metals (Mg Kα: Cu 2p3/2 at 932.62 eV, Ag 3d5/2 at 368.22 eV, Au 4f7/2 

at 83.95 eV) with well-established binding energies are used to calibrate the binding energy 

scale of the spectrometer (Seah et al., 1998). Narrow scans are measured at 23.5 eV pass 

energy of the hemispherical analyzer which results in a full width at half maximum of 0.74 eV 

for the Ag 3d5/2 elemental line. A shift of elemental lines for charge referencing is not 

necessary, since the samples are well-conductive. 

Error propagations for the concentrations of S, Se and Fe measured with HR-ICP-MS, ICP-

OES and ED-XRF have been performed using the following equation (Hillebrand, 2009): 

∆E = ∑ │ ��
��� 	│���� ∆χi                                                 (3.1). 

∆E represents the error of the concentration E which is defined as a function of n variables. F 

= F(χ1, χ2, … , χn) is related to the errors of the variables ∆χ1, ∆χ2, … , ∆χn. 
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Thermodynamic equilibria  were calculated with PhreeqC, version 2.17, using the 

WATEQ4F database (relevant stability constants are listed in Appendix A as well as in Ball 

and Nordstrom, 2001). The calculations were performed for the same concentrations under 

standard conditions which were chosen for aqueous solutions, prepared for the syntheses of 

Se doted iron sulfides. The results of interest were the ionic strength of the solution, the 

saturation indices of the minerals containing Fe, Se, S or in combination of these elements, 

the amount of the different dissolved Se-, S- and Fe-species present in the solution before 

and as residual after the reaction as well as the type of precipitated minerals. Stability 

diagrams were created to get an overview of the predominant species and phases within the 

stability field of water. This should allow a general overview of the stability fields of pyrite and 

selenium. 

 

3.2   Theory and setup of X-ray absorption fine str ucture (XAFS) 

X-ray absorption fine-structure spectroscopy is an element-selective method which provides 

information about oxidation state, site symmetry, ligand´s identity and coordination number 

as well as interatomic distances of an element at concentrations in the area of several 100 

ppm contents of an element. The basic principle of XAFS is scanning through the 

surrounding energy of an element with synchrotron radiation while measuring the absorption 

of incident X-rays as a function of energy (Newville, 2004).  

X-rays are radiations with energies ranging from ~500 eV up to 500 keV with corresponding 

wavelengths from ~25Å to 0.25Å. When the X-ray energy (E) exceeds the binding energy of 

a core level electron (E0), the electron can be removed from its quantum level. The energy of 

the X-ray in an amount of the electronic binding energy is absorbed and given to a photo-

electron which ejects from the atom. By reordering the Lambert-Beer law, the absorption 

coefficient µ can be calculated after (Newville, 2004): 

µ(E)·t = ln 
��
�                                     (3.2) 
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with t as the thickness of the sample, I is the intensity transmitted through the sample and I0 

as the initial x-ray intensity before a sample. In XAFS investigations, monochromatic X-rays 

from a synchrotron radiation source are directed onto a sample (Fig. 3.1). A synchrotron 

facility itself consists of a ring of magnets which accelerate a beam of electrons in the radial 

direction of a circular orbit. In the direction of the tangent, the electron decelerates and loses 

energy in the form of photons, the so called synchrotron radiation. The most important 

advantage of this synchrotron beam is its high brilliance, meaning the high-energetic, well 

focused beam combined with low noise (Dove, 2003). 

 

 

Fig. 3.1: Scheme of the experimental setup for XAFS investigations (modified after Newville, 2004). 

 

In general, the X–ray energy varies by adjusting the Bragg–angle of a double crystal 

monochromator. In general, if the concentration of the concerning element exceeds low 

percentages within the sample, the energy dependence of the absorption coefficient µ(E) can 

be measured in transmission mode by detecting the intensity of the x–rays before (I0) and 

after (I) the sample (Newville, 2004):  

µ(E) = log 
��
�                                            (3.3). 
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The fluorescence mode of the Auger emission is generally more applicable for lower element 

concentrations. In this case, µ is directly proportional to the quotient If/I0 with If being the 

monitored intensity of the fluorescence (Newville, 2004): 

µ(E) ∝ 
��
��                               (3.4). 

As mentioned above, the absorption process leads to the formation of a photo-electron. This 

travels as a wave which can be calculated as following: 

� ∝ (E-E0)
-0.5                                            (3.5). 

� is the wavenumber of the photo-electron and E0 represents the bound core electron level, 

also called absorption edge or the white-line. In the XAFS spectra, the white-line is usually 

the sharp increasing peak. Hence, the electrons from core or valence level orbitals are 

excited into higher energy vacant orbitals or the continuum. The absorption close to the 

energy value of the white-line is the basis of X-ray Absorption Near-Edge Structure 

spectroscopy (XANES). The XANES spectra provide investigations of the chemical states of 

particular elements in a mineral, solution, gaseous phase or surface species. It is often used 

as fingerprint-method, meaning that the curves of the valence states with belonging E0 value 

of the absorption edge are always equal for an identical electron configuration of an element. 

Therefore, since it is not yet possible to predict these white-lines, reference spectra are 

compared with those of the samples. Close below the edge, there are as well absorption 

peaks due to excitation of core electrons to some bound states (Fig. 3.2, Newville, 2004; 

Wincott and Vaughan, 2006; Oelkers et al., 2009).  

The photoelectron as described before is a wave which becomes scattered back from 

neighboring atoms that can interfere either constructively or destructively with the outgoing 

wave. This interference results in an oscillation of the absorption rate while the amplitude and 

frequency of this modulation depend on the type and bonding of the neighboring atoms and 

their distances from the absorber (Fig. 3.2). This occurs at energies above the absorption 

edge, providing the fine structure spectra used in Extended X-ray Absorption Fine Structure 

spectroscopy (EXAFS). By fitting a theoretical model to this spectrum, the structural 
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information about the radial distances, the type and number of neighbored atoms from a 

selected element can be achieved (Newville, 2004; Wincott and Vaughan, 2006). 

Initially, before fitting, the oscillations above the white-line have to be separated from the raw 

data. Therefore, the EXAFS fine-structure function χ (E) is defined as: 

χ (E) = 
� �!			�� �!

"�� �! 						                                                  (3.6) 

with µ0(E) standing for the smooth background function and ∆µ0(E) as the jump edge, 

calculated from the rising of µ(E) at the absorption edge E0. The most accessible way to 

describe EXAFS is in formalisms of the wave behavior of the photo-electron. Hence, the X-

ray energy (E) has to be transformed into k-space with k (Å-1) as the wave number of the 

photo-electron: 

k = #$% �	��!
ħ'                                           (3.7)  

where m is the electron mass and ħ is the reduced Planck action quantum, written as ħ = 
(
$).  

 

 

Fig. 3.2: XAS-spectra of the LIII edge of uranium in solid CaUO4 (modified from Behrens, 1992; Rothe 

and Léon, 2008). A) Transition to empty bound state (XANES); B) Multiple scattering region (XANES); 

C) Destructive interference (EXAFS); D) Constructive interference (EXAFS). 
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χ(k) (Eq. 3.8) displays the oscillations as a function of the wave number and is often weighted 

by a power of k to enlarge the oscillations. The different frequencies in the oscillations in χ(k) 

belong to different atomic neighbors. The EXAFS formalism finally describes the sum of the 

contributions from each scattering coordination shell: 

χ (k) = ∑ *+,�'-+ .!/0'1+	/3 4!	/0'4'5+' 	
.6+'7 sin;2=>7 ? @7 =!A	                            (3.8). 

The sum ∑7	stands for the scattering paths of the photo-electron, j represents the individual 

coordination shell of identical atoms at the same spatial distance from the central atom and 

k, which is equal to 
$)
B , is the wavenumber of the emitted photoelectron. If the scattering 

properties of the neighboring atoms f(k) and δ(k) are known, both are dependent on the 

atomic number of the neighboring element as well as the mean-free-path λ(k), it is possible to 

determine the distance to the neighboring atoms Rj, the coordination numbers of the 

neighboring atoms Nj and the mean-square disorder of neighbor distances σ
2. Finally, CD	$  

stands for the amplitude reduction factor, describing the effects of multi-electron excitations 

accompanying the photo-effect in the inner shell (Newville, 2004). 

The XAFS investigations described in this study have all been conducted at the synchrotron 

light source Ångströmquelle Karlsruhe (ANKA) at Karlsruhe Institute of Technology (KIT). 

ANKA is composed of an injector where the beam energy is accelerated from 70 keV by an 

electron gun to 53 MeV at the racetrack microtron to 500 MeV in the booster synchrotron. 

ANKA is finally operating with an energy of 2.5 GeV in the storage ring, at a beam current of 

200 mA with an emittance of 50 nm·rad. There are three straight sections equipped with 

insertion devices (wiggler W74, undulator U10, undulator SCU14). The lifetime of the beam 

amounts to ~12 h within the circumference of the storage ring of 110.4 m (ANKA, 2010).  

To determine the atomic environment of Se by XAFS measurements, six to nine line scans of 

iron sulfide samples and references were performed using the INE, XAS and SUL-X 

beamlines of the ANKA synchrotron radiation facility (Fig. 3.1). XAS (possible energy range 

E: 2.4 – 27 keV) and INE beamline (E: 2.1 – 25 keV; spot size: ~1 mm2) use a solid-state 
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five-element Ge detector while their insertion device is a dipole magnet. SUL-X beamline 

(E: 1.5 – 20 keV; µ-focus: ~10 µm2) consists of a 7 element SiLi-detector with a wiggler as 

insertion device.  

For solid sample preparation, manually milled iron sulfides were mounted on samples 

holders of Plexiglas with housings of 1 cm in diameter and 1 mm in depth, covered by 

Kapton foil. Liquid samples of dissolved Se2- and Se4+ species were stored in plastic flasks 

within the glovebox until measured. The samples were analyzed in the fluorescence mode in 

the typical energy range of Se surroundings (12.5 – 13.5 keV). The XANES range was 

scanned from 12600 eV in front of the absorption edge to 12700 eV above the absorption 

edge in steps of 0.42 eV and the EXAFS range until k = 15. While measuring the samples, 

spectra of a metallic Se-foil with a known k-edge value (12658 eV) were recorded as the 

reference for energy calibration.  

The energy of the absorption edge of an element can reveal the oxidation state, while the 

shape of the normalized intensity of the white line is related to the molecular structure and 

can, therefore, be used for the identification of selenium by comparison with known 

standards. Since the XANES spectra of a compound is a unique fingerprint, the valence 

states of the selenium doted iron sulfide samples could be identified by comparison with the 

XANES spectra of some reference compounds ranging in oxidation state from IV to –II. As 

references for a comparison of XAFS spectra, compounds of reagent grade were applied, 

such as dissolved and solid Na2Se (Alfa Aesar), grey, trigonal Se0 (Merck), dissolved and 

solid Na2SeO3 (Merck), achavalite (Alfa Aesar), and ferroselite (Excalibur minerals). This is 

highly important, because the valence state of selenium gives a strong hint about whether 

selenium was structurally fixed or not and which type of neighbors can be expected. 

With regard to XAFS investigations of selenium standards, the own results of the absorption 

edge at the peak of the white line (E0) and/or structural analysis like the coordination number 

(CN) or the atomic distance from the selenium absorber to an atomic neighbor (R), were 

compared with some publications (Ryser et al, 2005; Charlet et al., 2007; Breynaert et al., 
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2008; Scheinost et al., 2008). The XANES spectra of the cited studies are listed in Appendix 

B. 

The curves in the k-space display the EXAFS spectra, while the Radial Structure–Function 

(RSF) shows the Fourier-transformed EXAFS spectra. The q-space are the theoretical fits of 

the EXAFS-spectra, which display the accordance with the EXAFS-spectra and also the 

range of fitting. Since there were no technical problems, the detectable amount of selenium 

was the limiting factor of a good signal to noise-ratio. Next to the XANES spectra, the EXAFS 

spectra also show differences between the selenium valence states, which is related to the 

different nature and radial distribution of the backscattering atoms around the central 

adsorbing selenium atom. 

Energy calibration and averaging of line scans for each sample were performed with the 

software Artemis 0.8.014, while shell fitting was accomplished using Athena 0.8.061 (Ravel, 

2009). Both are part of the IFEFFIT package (Newville, 2001).  

For the interpretation of EXAFS spectra, the amplitude factor (S0
2) was always between 

0.7 and 1.0. The deviation of radial atomic distance (∆R) was allowed to vary during the fit, 

but it was not to exceed ± 0.1 Å. Finally, it was added or substituted, based on initial guess. 

Shift of energy (∆E0) should not exceed 10 eV. It was valid for all shells and was allowed to 

change during the fitting process as was the coordination number (CN). Finally, the Debye-

Waller factor (σ2) of each shell had to range between 0.001 and 0.015 and the residual of fit 

(R-factor) should remain below 0.01. The values of these variables were defined in 

accordance to typical ranges for EXAFS interpretation (e.g. Kelly, 2009). 
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Developed synthesis of selenium doted 

pyrite and mackinawite 

 

 

Three different ways of selenium doted iron sulfides as solid solutions were developed. In 

batch reactions, selenium was incorporated into pyrite and mackinawite by spontaneous 

precipitation. This synthesis of Se doted iron sulfides covers the whole process of pyrite 

formation, starting from its rate-limiting nucleation of pyrite to crystal growth up to an average 

size of 1.5 µm in diameter (Diener and Neumann, 2011). But direct nucleation and formation 

of pyrite under ambient conditions does mostly not occur without a precursor phase. In this 

regard, mackinawite is by far the most important mineral because its formation is kinetically 

extremely rapid with less than 1 s, as it was measured during synthetical pyrite formation. 

This metastable precursor phase dissolves and finally reacts with dissolved sulfur species, 

resulting in precipitation of pyrite (Rickard and Luther, 2007).  

Another way to incorporate selenium into pyrite is by using natural pyrite as nuclei for the 

further crystal growth, as it has been performed in a mixed flow reactor. This type of 

experiment reflects only crystal growth on persisting pyrite (Diener et al., 2012). 
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Finally, a high temperature synthesis of selenium doted pyrite was developed, using solid 

zero-valent Fe, S and Se, as base materials for a two-step chemical vapor transport reaction 

in a 2-zone furnace with a gradient of 700° C to 60 0° C. Under these conditions, sublimation 

of the initial reactants is taking place in a first step followed by condensation of solid matter at 

the cooler side of the reaction vessel. This type of synthesis may be a good option to 

simulate hydrothermal conditions for selenium doted pyrite formation (Diener and Köppe, 

2012). 

Additionally, pyrite crystal synthesis by diffusion through silica gel (Wang and Morse, 1996) 

using mackinawite nuclei was tried for different runs lasting for 3, 6 up to 9 months. Silica gel 

was produced by addition of 100 ml 0.75 M Na2SiO3 to 100 ml 1.5 M CH3COOH, crystallizing 

within 1 hour from this solution after addition of sufficient HCl until a pH of 5 was reached, 

while 0.7 g of synthesized mackinawite nuclei were added to the silica gel under stirring. 

50 ml of this prepared matrix were filled into petri dishes and covered with different solutions 

of 10 – 20 ml each of 0.1 M NaHS and 10-3 M Na2Se. Only once, a further development of 

mackinawite to greigite (Fe3S4) was observed, but in no cases the formation of pyrite. 

 

4.1 Spontaneous precipitation and nucleation of Se doted pyrite and 

mackinawite 

The objective of the batch reaction synthesis for this type of experiments was to produce 

pyrite solid matter by wet chemical precipitation. A few studies have already been carried out 

reporting of pure pyrite aqueous syntheses under standard conditions in the literature 

(Tab. 4.1). These differed with regard to iron (Mohr´s salt, iron chlorides, iron sulfates, iron 

nitrates, iron-oxyhydoxides or iron monosulfides) and sulfur reactants which were used 

(hydrogen sulfide, sodium (hydrogen-) sulfides, long-chained sulfur phases), the pH range for 

the syntheses (3.6 – 8.0) and the duration of the reaction (2 d – 1 a). The experimental 

systems used were of the batch reactor type while the reactant concentrations were in the 

millimolar to molar range. In all cases, the saturation index of mackinawite was exceeded, 
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resulting in the initial formation of this precursor phase. The published pH was the final pH in 

most cases, which was normally reached within a few hours (Rickard and Luther, 2007). 

Concerning the synthesis of pyrite in aqueous media, there are publications apart from those 

mentioned in Table 4.1 (Schoonen and Barnes, 1991; Ohfuji and Rickard, 2005; Rickard and 

Luther, 2007). In the publications which were not listed, iron sulfide phases precipitating 

additionally to pyrite have been detected or higher solution temperatures were chosen for the 

pyrite synthesis were chosen.  

 

Tab. 4.1: Pure pyrite syntheses reported for aqueous solutions at 25° C and 1 bar pressure. 

Fe source S source pH Duration Reference 

FeO(OH) H2S 3.8 - 6.0 26 d Roberts et al., 1969 

FeSO4 H2S 7.0 - 8.0 ~1 a Farrand, 1970  

Fe(II)-salts  Na2Sn 5.5 - 8.0 >4 m Luther, 1991  

FeCl3 NaHS 3.6 - 5.7 5 d Wei and Osseo -Asare,  1996 

FeCl2 NaHS, Na2Sn 3.6, 6.5 2 d, 9 d Wei and Osseo -Asare,  1997 

 

Since most of the experiments take several months up to a year, it was most practical to 

perform pyrite syntheses with a short reaction time. Hence, the reported synthesis from Wei 

and Osseo-Asare (1996) was chosen for the experiments due to the rapid kinetics of pure 

pyrite formation. The starting solutions consist of 0.1 M FeCl3·6H2O in deoxygenated MilliQ 

water containing 0.01 M HCl to prevent oxidation of iron and 0.1 M NaHS·xH2O in 

deoxygenated water, followed by mixing these solutions. The redox reaction between 

Fe3+ and S2- ions leads to the formation of Fe2+, HS- and S° species (Eq. 4.1 and 4.2): 

2 Fe3+ + S2- → Fe2+ + S0          (4.1) 

Fe3+ + S2- + H2O → Fe2+ + HS- + OH-       (4.2) 

With regard to the feasible reaction paths for pyrite formation, the mixed solution contains 

both, hydrogen sulfide as well as polysulfides from the S° intermediate product. Due to this 

composition, it is very likely that the formation of pyrite under these hydrochemical conditions 

(Tab. 4.1) follows both, the H2S as well as the polysulfide pathway (Eq. 2.8 and Eq. 2.9). 
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Pyrite synthesized by this procedure contains also elemental sulfur, which could be removed 

by solvent extraction using CS2 in a Soxhlet apparatus (Roberts et al., 1969; Wei and Osseo-

Asare, 1996). 

Wei and Osseo-Asare (1996) describe their produced precipitations as spheroidal particles 

with a pyrite content of 99.46 %, a mean diameter of ~1.5 µm, formed in the pH range of 

3.6 – 5.7 at Eh values between -0.05 and 0.01 V. The intermediate products of elemental 

sulfur and FeS or Fe(HS)+ were necessary precursors for pyrite formation, which are both 

thermodynamically stable under the described aqueous conditions. Pyrite does not 

precipitate below pH ~3.6. Because of the preferential stability of Fe2+, the solution would be 

undersaturated with regard to the necessary pyrite precursor species FeS or Fe(HS)+
, On the 

other side, the inhibition of pyrite formation above pH ~5.7 is due to hydrochemical conditions 

with FeS being unstable in comparison to FeOOH. Furthermore, the pyrite formation 

experiments were restricted to acidic solutions because the solubility of the important 

mackinawite precursor phase is comparatively low at circumneutral to alkaline conditions 

(Schoonen and Barnes, 1991; Wei and Osseo-Asare, 1996, Wei and Osseo-Asare, 1997).  

 

Synthesis of selenium doted pyrite 

The synthesis of Se doted pyrite were carried out under anaerobic conditions in a glovebox 

with an oxygen content of less than 3 ppm (Fig. 4.1). The dissolved oxygen was purged out 

of all liquids before usage for one hour using a vacuum pump. All chemicals used for iron 

sulfide synthesis were of reagent grade.  
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Fig. 4.1: Jacomex glovebox. 

 

The electrochemical reduction of Se4+ to Se2- occurred in an electrochemical cell controlled 

by electronic hardware, the potentiostat (Fig. 4.2.; Lingane, 1948; Liu et al., 2008). The 

electrochemical cell consists of three electrons and its basic principle is to keep the potential 

of the working electrode (WE) at a constant level in an electric circuit with regard to the 

counter electrode (CE), together forming a half cell. The reference electrode (RE) is placed 

between those two electrodes and measures the difference of the potential between the WE 

and CE. Furthermore, the RE observes the current within a solution containing a necessary 

electrolyte (e.g. NaCl, NH4Cl) (Plieth, 2008).  

The preparation of selenide was carried out at a potential of -1.5 V. To avoid hydrolysis, the 

glassy carbon electrode was dotted with mercury. Therefore, 0.17 g of HgNO3 in a 100 ml 

1 M NH4Cl solution was kept at a potential of -0.8 V (with respect to SHE) for one minute. 

This was carried out two more times with one hour intervals. Then, the desired amount of 

selenium was introduced as Na2SeO3 in a 100 ml 0.1 M NaCl solution and reduced for 3 

hours by applying a potential of -1.5 V. Finally, a Se2- solution of 1·10−3 mol/L could be 

obtained within three hours. To confirm the effect of this preparation, a potential of +50 mV 

was applied to the selenide solution outside of the glovebox. The rapid oxidation of selenide 

resulted in the precipitation of elemental selenium within minutes. Alternatively, commercially 
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available selenide in the form of Na2Se can be used, which simplifies the incorporation 

procedure, but it was not always available. 

 

 
 

Fig. 4.2: Scheme of the electrochemical cell. 

 

Next, the solutions of 0.066 M NaHS, 0.0175 M FeCl3·6H2O and varying Na2Se or Na2SeO3 

concentrations from 1·10-6 M up to 1·10-3 M with the desired valence states Se2- or Se4+, were 

mixed. The range for the solution pH was 3.6 – 5.7 and the solution potential was kept 

constant by the potentiostat and the electrochemical cell at Eh -0.1 – 0.05 V for selenide and 

Eh 0.05 – 0.1 V for selenite. The exothermic reaction of selenium doted iron sulfide 

precipitation took place immediately, leading to the formation of black solid particles and a 

raise in the water temperature of ~1° C for 2  – 3 hours. To adjust the pH, droplets of 

1 M NaOH or 1 M HCl were added to the solution. Buffering with sodium acetate 

(Na(CH3COOH)) in batch systems was proven as unsuitable, since either the buffer itself 

reacted with the Fe and S reactants and inhibited the precipitation or the buffer capability 

was exceeded. This observation was also confirmed by Rickard and Luther (2007). The pH-
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value was checked and adjusted twice daily; the potential of the solution was maintained 

between -200 and 100 mV, using a potentiostat.  

After 100 h, the solution was decanted. To avoid further precipitation in the residual solution, 

100 µl of double distilled 60% HNO3 was added to 10 ml of the decanted solution. Samples 

were stored in plastic flasks in the glovebox until further analyses (ICP-MS analysis for 

selenium concentrations and ICP-OES for iron and sulfur). The precipitated solids were 

washed with MilliQ several times to remove residual NaCl and again with acetone to 

eliminate any iron oxyhydroxide coatings on the particles. The solid samples were dried in a 

desiccator placed in the glovebox. Results obtained via SEM analyses reveal that pure 

dispersed spheroidal pyrite grains with a mean diameter of 1 – 2 µm were synthesized. The 

SEM combined with an EDX-system show precipitated Se2- doted pyrite after the reaction of 

FeCl3, Na2SeO3 or Na2Se and NaHS (Fig. 4.3). 

 

 

 

 

 

 

 

 

 

Fig. 4.3: SEM image of spheroidal selenide doted pyrite particles and its EDX spectra. 

 

Because the precipitated solids consisted of a mixture of elemental sulfur and pyrite, they 

were purified in a Soxhlet apparatus by extracting the elemental sulfur with carbon disulfide 

as solvent. About 0.3 g of solid was purified by 50 ml CS2 within 2 hours at 50° C. This 

procedure was performed under an extractor hood while the Soxhlet apparatus was flooded 
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continuously with nitrogen. After returning the residual solid into the glovebox, the procedure 

of cleaning with MilliQ and acetone was repeated. All samples were dried and stored in a 

desiccator under anoxic conditions within the glove box, filled with silica gel for additional 

prevention of oxidation from air moisture. Before measurements, it is necessary to remove 

possible coatings on the solids with acetone again. For every spectroscopic investigation, 

only a part of a sample was used and finally discarded because of probable mineral surface 

oxidation. The most important aspects for the synthesis of Se doted pyrite by batch reaction 

are shown in Figure 4.4. 

 

 
Fig. 4.4: Scheme of the synthesis of selenium doted pyrite. 

 

Synthesis of selenium doted mackinawite 

The synthesis of selenide and selenite doted mackinawite was carried out in a glovebox with 

less than 3 ppm oxygen under a room temperature of 25° C and 1 bar atmospheric pressure. 

(Tab. 4.2). In all reported studies, Na2S was selected as sulfur reactant. With respect to iron 

sources, elemental iron, iron dichloride or iron ammonium sulfate was used.  

 

 

 



62 

 

 

Tab. 4.2: Pure mackinawite syntheses reported for aqueous                                                      

solutions at 25° C and 1 bar pressure (n.m.: not me ntioned). 

Fe source S source pH Duration Reference 

Fe(NH4)2(SO4)2 Na2S n.m n.m Arakaki and Morse, 1993 

FeCl2 Na2S 7 4d Wang and Morse, 1996  

Fe0 Na2S 6.5 1d Lennie et al., 1997  

FeCl2; FeSO4 Na2S n.m <12 d Bourdoiseau et al., 2008  

 

Compared to other laboratory syntheses of mackinawite, the advantage of the chosen 

method after Drobner et al. (1990) and Wang and Morse (1996) is the higher crystallinity of 

the obtained mackinawite. Following Wang and Morse (1996), the pH-value in the solution 

was adjusted to. At this pH, equal amounts of H2S and HS- are present in the solution 

(Ch. 2.3.4) and both possible reaction paths lead to the precipitation of mackinawite (Eq. 2.4 

and Eq. 2.5).   

The solution for the synthesis of selenium doted mackinawite consisted of 0.16 M Na2S, 

0.137 M FeCl2, and 9.1·10-5 M of Na2Se for Se2--doting or Na2SeO3 as Se4+-source. The 

solution was adjusted to pH 7 and at an Eh-value of -0.2 V for Se2- or at an Eh-value of 

+0.1 V for Se4+ in the deoxygenized solution. The whole solution was set aside for a period of 

four days and decanted. Finally, the precipitated mackinawite was washed with 

deoxygenized MilliQ for several times to remove residual NaCl at the mineral surface and 

also with acetone to eliminate coatings of the mackinawite particles. The samples were dried 

in a desiccator, placed in the glovebox until analysis. The precipitated particles had 

diameters between 20 and 100 µm (Fig. 4.5). 
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Fig. 4.5: SEM image of selenium doted mackinawite. 

 

In some batch experiments it occurred that the synthesis of Se2- doted pyrite was the aim but 

pure Se2- doted mackinawite did precipitate. These initial solutions contained 5.5·10-2 –

 6.6·10-2 M S2-, 1.6·10-2 – 3.3·10-2 M Fe3+, and 9.1·10-7 – 10-3 M of Se2- (experiments with the 

runs 3 – 10; Tab. 5.7). Therefore, mackinawite precipitated where the formation of pyrite was 

kinetically hindered, for example at stronger reduced acidic (pH 3.5 and pH 4.5 with Eh 

between -250 – -300 mV) or slighter reduced acidic conditions (pH 5.1 - 5.8 with Eh between 

-100 – -200 mV). 

 

4.2 Crystal growth of selenium doted pyrite on natu ral pyrite nuclei  

Further coprecipitation experiments were accomplished in a mixed flow reactor (MFR) with a 

slightly supersaturated solution (Fig. 4.6). This type of experiment, to simulate pyrite crystal 

growth with an MFR, has not been reported before. The MFR consists of three solution 

entries, a magnetic stirring bar for the continuous mixing of the pumped solutions while a 

ceramic filter is placed in front of the outgoing solution. To avoid grinding effects, the reactor 

walls are protected by Teflon.  

To synthesize selenium doted pyrite, three solutions of 6·10-3 M NaHS, 3·10-3 M FeCl3·6H2O, 

and 2.5·10-4 M Na2Se for Se2- or Na2SeO3 for Se4+, respectively, were injected into the 90 ml 
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reactor under continuous stirring of ~700 rpm by a magnetic bar. Prior to this, 0.5 g of ground 

natural pyrite (containing 2 ppm Se) were inserted into the MFR as nuclei for further pyrite 

growth. The iron and sulfur solutions were stored in 200 ml test glasses, whereas 100 ml of 

the selenide solution were kept at a constant Eh value of -300 mV by a potentiostat. For 

dissolved selenite, the potential was steady at 50 mV.  

This solution composition was chosen for the MFR-experiments, because mackinawite is 

undersaturated (SI = -0.69), while pyrite should precipitate (SI = 7.80) (Ch. 5.1). Under these 

conditions, enough selenium doted pyrite was expected to grow on persisting natural pyrite 

nuclei for reasonable mineralogical and structural investigations, to obtain a good signal to 

noise-ratio far above the different detection limits of the measuring instruments (e.g. XAFS).  

 

 

Fig. 4.6: Scheme of the mixed flow reactor (modified after Heberling, 2010). 

 

The Ismatec ISM 915 was used as pump drive for the continuous flow of the solutions into 

the MFR. The inner diameter of each tube is 0.76 mm and the resulting flow velocity into the 

reactor was 5.7 ml/h. An exchange of the entire solution in the reactor takes 15.8 h. The 

syntheses performed by MFR experiments lasted for 120 h. The total amount of solution 

running through the MFR is 228 ml each. 
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The precipitated matter was washed with deoxygenized MilliQ for several times to remove 

residual NaCl at the mineral surface. Afterwards, the samples were dried in a desiccator, 

which was placed in the glovebox until analysis. SEM images show coatings on totally 

covered, aggregated, natural pyrite grain and the corresponding EDX spectra exhibit 

significant Se peaks (Fig. 4.7). 

 

 

Fig. 4.7: SEM images of selenide doted pyrite from MFR-experiments showing: upper left: initially 

used, grounded natural pyrite grains; upper right: coatings on totally covered, aggregated natural 

pyrite grains; down left: close-up view of the coatings; and down right: EDX-spectra of down left. 
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4.3 Synthesis of selenium doted pyrite by condensat ion from 

gaseous phase  

The different studies dealing with pyrite formation by chemical vapor transport preferably use 

chlorine or bromine as transport agent to increase the transport rate of iron, which allow an 

average transport rate of pyrite formation of ~6 mg/h (Tab. 4.3; Bouchard, 1968; Fiechter et 

al., 1986; Willeke et al., 1992; Blenk et al., 1993; Tomm et al., 1995). The sulfur source was 

in all cases elemental sulfur, while as iron source mainly elemental iron was taken, but also 

natural pyrite or mackinawite. In former studies, a gradient of 100° C within the reaction 

vessel has proven to be successful (Fiechter et al., 1986). As well, high temperature 

gradients of 750° C (Blenk et al., 1993) or low gra dients of 20° C (Tomm et al., 1995) lead to 

the precipitation of single-crystal pyrite. In general, the lower the temperature gradient and 

the higher the reaction time, the bigger the resulting single-crystals (Tomm et al., 1995). 

 

Tab. 4.3: Pyrite syntheses reported for chemical vapor transport reaction at 1 bar pressure. 

Fe source S source Agent Temp. (°C) Duration Reference 

Pyrite S0 Cl2 715-655 11-16d Bouchard, 1968 

Fe0 S0 I2, Br2, Cl2 647-547 5-10d Fiechter et al., 1986  

Fe0 S0 Br2 1050-300 21d Blenk et al., 1993  

FeS, Fe0 S0 Br2, Cl2 630-580; 
680-700 

10-18d Tomm et al., 1995 

Pyrite  S0 I2, Br2, Cl2 743-623 14d Etzel, 2008 

 

The synthesis of Se doted pyrite took place in two reaction steps. Firstly, 0.419 g Fe0          

(7.5·10-3 Mol), 0.433 g S0 (1.35·10-2 Mol), 0.118 g Se0 (1.5·10-3 Mol) and 0.04 g AlBr3 as 

transporting agent, all of reagent grade, were placed in a dry quartz tube (diameter: 1.6 cm, 

length 10 – 15 cm). After the vessel was evacuated to a pressure of ~10-3 mbar, the tube was 

sealed by welding and placed in a high temperature 2-zone furnace (Fig. 4.8). The range for 

the starting temperature is limited since pyrite decomposes above 743° C into pyrrhotite 

while the boiling point of Se0 is 685° C. Hence, the starting temperature was set  to 700° C.  
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Fig. 4.8: Scheme of the chemical vapor transport in a 2-zone furnace (modified after Etzel, 2008). 

 

The temperature was slowly increased to 600° C with in one day to allow the elements to 

react and to avoid the complete vaporization of sulfur and selenium which might lead to the 

explosion of the sealed tube. Afterwards, as first reaction step, the temperature gradient was 

set from 700° C at the educt side to 600° C at the product side. The condensed matter 

precipitated as a reddish, amorphous solid. In the second reaction step, the temperature 

gradient was reversed, from 700° C at the product s ide of the amorphous precipitation to 

600° C at the formerly educt side. At the low tempe rature side of the quartz tube, selenium 

doted pyrite precipitated within 14 days. The samples were stored in the glovebox until 

analysis. The solid/gas phase reaction itself is described by the following equation 4.3 

(Binnewies et al., 1977): 

FeHal2(g (Hal = Cl, Br) + X2(g)  (X = S, Se) →   FeX2(s) + Hal2(g)             (4.3). 

The gaseous iron-halogene compound reacts with gaseous S2 and Se2, leading to the 

precipitation of selenium doted pyrite. The single crystals of selenium doted pyrite have a 

size of 3 – 5 mm in diameter with well pronounced crystal faces (Fig. 4.9). 
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Fig. 4.9: SEM image of selenium doted pyrite from CVT-experiment. 
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Results and discussion 

 

 

The motivation behind this study was to obtain structural information of selenium doted iron 

sulfides which have been synthesized at defined hydrochemical conditions, reflecting both, 

formation by nucleation and limited crystal growth or further crystal growth on persisting 

pyrite in aqueous solution. The type of Se-bonding in pyrite is important, because the stability 

of fixed selenium is supposably higher in a real solid solution accompanied with a Se 

bonding with Fe and/or S. Consequently, it is important to know, if the often proposed 

formation of FeSxSey-compounds or the incorporation of elemental selenium into pyrite 

structure takes place under defined conditions. Therefore, the stabilities for detected solid 

solutions were compared with calculated stabilities of possibly precipitating phases, 

calculated from thermodynamic data, which allow a general overview about the predicted 

phases for the whole pH-Eh range for a solution. 
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5.1 Thermodynamic predominance of the aqueous speci es and 

phases 

The thermodynamic calculations using PhreeqC were performed for the same concentrations 

under standard conditions which were chosen for the aqueous solutions prepared for the 

syntheses of selenium doted iron sulfides in batch and MFR-experiments.  

A simple FeSSe solid solution mineral with a stoichiometry of 1:1:1, consisting of an equal 

mixture of pyrite and ferroselite, was added to the WATEQ4F-database to determine its 

saturation index and possible precipitation. The equation for its formation is: 

FeSSe + 2H+ + 2e- ⇆ Fe2+ + HSe- + HS-                 (5.1) 

The FeSSe-solubility product (log10 KSP = -18.5295) was calculated by addition of pyrite (log10 

KSP = -18.479) and ferroselite (log10 KSP = -18.580) solubility products, divided by two. Due to 

the lack of thermodynamic data of achavalite in the database, the log10 KSP = -26.0 was 

added, taken from literature (Masscheleyn et al., 1990). The reaction pathway is described 

as selenium analog to mackinawite (Eq. 5.2): 

FeSe + H+ ⇆ Fe2+ + HSe-                                        (5.2) 

The description of the saturation indices of the phases and the molar concentrations of the 

species initially and after equilibrium for defined aqueous solutions is presented in this 

chapter, but will be furthermore discussed in combination with the analytical results of the 

laboratory syntheses of selenium doted iron sulfides (Ch. 5.3 and 5.5). These calculations 

are of high importance, because the comparison between analytical and modeled results 

allow a quality check of the own data with respect to consistency. Are the types of the 

precipitated phases in both systems, theoretically by thermodynamical calculations and 

analytically, identical? Which oxidation state of selenium occurs during precipitation? 

Furthermore, the thermodynamic results of the dissolved species in solution are helpful to 

describe the reaction pathways that occurred in the different types of syntheses. To perform 

the thermodynamic calculations, typical solution compositions for each doting experiment 

were chosen. 
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Species and equilibrium phases of the Se doted mackinawite experiments 

The modeled solution to describe the synthesis of Se doted mackinawite with Se2- initially 

present in solution consists of S2- = 0.16 M , Fe2+ = 0.137 M, Se2- = 9.1·10-5 M , Na+ = 0.32 M, 

Cl- = 0.274 M. The pH-value was inserted as 7, the pe-value was -3.4 (Eh = -0.2 V) and the 

O2-content amounted to 3 ppm. The ionic strength before reaction of the solution was 

0.41 M. The dissolved iron was mainly present in form of Fe2+ (5.4·10-2 M) and Fe(HS)2 

(8.08·10-2 M), while apart from the aqueous Fe(HS)2 cluster, further dissolved sulfur species 

were in low amounts present as HS- (1.1·10-4 M) and H2S (6.39·10-5 M). The predominant 

selenium species in solution was HSe-, with a concentration of 9.1·10-5 M (Tab. 5.1). 

 

Tab. 5.1: Dissolved species of Se doted mackinawite with Se2- initially present in the  

solution before (upper line) and in (lower line) equilibrium (concentrations in M). 

H2S Fe(HS)2 HS- S5
2- S6

2- S4
2- S3

2- S2
2- 

6.39E-05 8.08E-02 1.10E-04 4.80E-07 2.27E-07 3.15E-07 1.29E-10 8.51E-12 

1.50E-05 3.45E-08 7.22E-08 8.80E-13 4.16E-13 5.76E-13 2.37E-16 1.56E-17 

        S2- Fe2+ Fe(HS)3
- FeOH+ Fe(OH)2 Fe(OH)3

- HSe- H2Se 

3.40E-10 5.40E-02 1.07E-03 6.58E-05 3.68E-09 2.03E-12 9.38E-05 3.93E-08 

6.24E-16 5.34E-02 2.98E-13 1.82E-07 2.84E-14 4.38E-20 2.33E-11 3.50E-12 

 

This solution was oversaturated with respect to mackinawite (SI = 5.7), pyrite (SI = 15.7), 

achavalite (SI = 27.0), ferroselite (SI = 15.6), FeSSe (SI = 15.7) and Se0 (SI = 13.4). 

Although the solution was oversaturated of many phases, the calculated precipitating phases 

with the solution being in equilibrium were limited to mackinawite (maximum of precipitating 

amount (max) = 1.54·10-4 M), pyrite (max = 8.24·10-2 M) and Se0 (max = 9.1·10-5 M). After the 

reaction within the solution, the saturation indices of mackinawite, pyrite and Se0 were zero, 

because these phases are in equilibrium with the solution. This means that in total the 

dissolution and precipitation of these phases was zero. 

The solution composition of the Se doted mackinawite with Se4+ initially present in the 

solution differed only with regard to the selenium source (Na2SeO3) and the initial pe-value of 

1.7 (Eh = 0.1 V). The dissolved sulfur was present as HS- (1.1·10-4 M) and H2S (6.39·10-5 M) 
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and iron was predominantly occurring in form of Fe2+ (5.4·10-2 M). Apart from these species, 

the aqueous Fe(HS)2 cluster was present with a concentration 8.08·10-2 M, while selenium 

occurred as HSeO3
- (8.68·10-5 M) and SeO3

2- (7.03·10-6 M) (Tab. 5.2). 

.   

Tab. 5.2: Dissolved species in batch-experiments of Se doted mackinawite with Se4+ initially  

present in the solution before (upper line) and in (lower line) equilibrium (concentrations in M). 

H2S Fe(HS)2 HS- S5
2- S6

2- S4
2- S3

2- S2
2- 

6.39E-05 8.08E-02 1.10E-04 4.80E-07 2.27E-07 3.15E-07 1.29E-10 8.51E-12 

1.50E-05 3.43E-08 7.21E-08 8.80E-13 4.16E-13 5.76E-13 2.37E-16 1.56E-17 

        S2- Fe2+ Fe(HS)3
- FeOH+ Fe(OH)2 SeO3

2- H2SeO3 HSeO3
- 

3.40E-10 5.40E-02 1.07E-03 6.58E-05 3.68E-09 7.03E-06 3.24E-09 8.68E-05 

6.24E-16 5.34E-02 2.97E-13 1.82E-07 2.85E-14 0.00E+00 0.00E+00 0.00E+00 

 

The solution was oversaturated with regard to the minerals mackinawite (SI = 5.7), pyrite 

(SI = 25.9), Se0 (SI = 13.4) and S0 (SI = 8.4). The precipitating phases with the solution being 

in equilibrium were identical compared to the simulation of Se doted mackinawite by using  

Se2-. These phases were mackinawite (max = 1.61·10-4 M), pyrite (max = 8.24·10-2 M) and 

Se0 (max = 9.38·10-5 M).  

These results show that, independent of the initial Se valence state (Se2-, Se4+), the 

calculations predict the precipitation of selenium as Se0 (without any iron-selenium 

compounds) next to the formation of mackinawite and pyrite. 

 

Species and equilibrium phases of the instantaneous precipitation in batch-

experiments 

The modeled aqueous solution inserted into PhreeqC to calculate the reactions for the Se 

incorporation into pyrite with Se2- initially present, contained S2- = 6.6·10-2 M,      

Fe2+ = 1.75·10-2 M, Se2- = 1·10-3 M, Na+ = 6.8·10-2 M, Cl- = 5.25·10-2 M. The oxygen 

concentration was 3 ppm, pH had a value of 4, and the pe was set to -1.7 (Eh = -0.1 V). The 

ionic strength of the solution was 0.077 M. As sulfur species, mainly H2S (4.8·10-2 M) was 

initially present in the solution. Iron was predominantly dissolved in form of Fe(HS)2 (9.07·10-
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3 M) and Fe2+ (8.24·10-3 M), while the selenium species were HSe- (6.74·10-4 M) and H2Se 

(6.74·10-4 M) (Tab. 5.3). The solution was oversaturated with respect to the phases pyrite 

(SI = 12.1), mackinawite (SI = 1.9), Se0 (SI = 14.7), ferroselite (SI = 14.2), achavalite 

(SI = 24.3) and the solid solution phase FeSSe (SI = 13.1). With the solution being in 

equilibrium, the thermodynamic calculations predict that just the phases pyrite (max = 

1.73·10-2 M) and Se0 (max = 1·10-3 M) precipitate from solution.  

 

Tab. 5.3: Dissolved species in batch-experiments of Se doted pyrite with Se2- initially present 

 in the solution before (upper line) and in (lower line) equilibrium (concentrations in M). 

H2S Fe(HS)2 HS- S5
2- S6

2- S4
2- S3

2- S2
2- 

4.80E-02 9.07E-03 7.01E-05 2.64E-10 1.30E-10 1.64E-10 6.19E-14 3.75E-15 

3.18E-02 7.66E-09 3.48E-07 9.83E-15 4.85E-15 6.06E-15 2.28E-18 1.38E-19 

        S2- Fe2+ Fe(HS)3
- FeOH+ Fe(OH)2 Fe(OH)3

- HSe- H2Se 

1.68E-13 8.23E-03 7.05E-05 1.31E-08 8.72E-16 4.13E-22 6.74E-04 3.33E-04 

6.13E-18 2.68E-04 2.95E-13 3.32E-12 1.69E-21 5.99E-30 1.18E-14 7.79E-13 

 

With regard to the selenite incorporation into pyrite by batch experiments, the only difference 

in the hydrochemical composition was that selenite instead of selenide was taken as 

selenium source and the pe was 1.7 (Eh = 0.1 V). The most important species in solution 

were for iron Fe(HS)2 (9.07·10-3 M) and Fe2+ (8.24·10-3 M), for sulfur H2S (4.8·10-2 M) and for 

selenium HSeO3- (9.64·10-4 M) and H2SeO3. (4.24·10-5 M) (Tab. 5.4).  

 

Tab. 5.4: Dissolved species in batch-experiments of Se doted pyrite with Se4+ initially present 

 in the solution before (upper line) and in (lower line) equilibrium (concentrations in M). 

H2S Fe(HS)2 Fe(HS)3
- HS- S5

2- S6
2- S4

2- S3
2- S2

2- 

4.80E-02 9.07E-03 7.05E-05 7.02E-05 2.64E-10 1.30E-10 1.64E-10 6.19E-14 3.75E-15 

3.17E-02 6.42E-09 2.49E-13 3.51E-07 1.00E-14 4.95E-15 6.19E-15 2.33E-18 1.40E-19 

         S2- Fe2+ FeOH+ Fe(OH)2 HSe- H2Se SeO3
2- H2SeO3 HSeO3

- 

1.68E-13 8.24E-03 1.31E-08 8.72E-16 0.00E+00 0.00E+00 6.03E-08 4.24E-05 9.64E-04 

6.25E-18 2.21E-04 2.77E-12 1.43E-21 1.00E-14 6.53E-13 0.00E+00 0.00E+00 0.00E+00 
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The solution is oversaturated of pyrite (SI = 18.9), mackinawite (SI = 1.9), S0 (SI = 5.3), Se0 

(SI = 14.7), ferroselite (SI = 14.1), achavalite (SI = 24.0) and FeSSe (SI = 13.2). Finally, after 

equilibrium was attained, the calculations predict the precipitation of the phases pyrite (max = 

1.74·10-2 M) and Se0 (max = 1·10-3 M).  

 

Species and equilibrium phases of the crystal growth synthesis in MFR-experiments 

The modeled aqueous solution which was inserted into PhreeqC to simulate the MFR 

coprecipitation-experiments of Se incorporation into pyrite with Se2- initially present in the 

solution, contained S2- = 10-3 M, Fe2+ = 5·10-4 M, Se2- = 2.5·10-4 M, Na+ = 10-3 M, and Cl-

 = 1.5·10-3 M (Tab. 5.5). The pH was set steady at a value of 4, while the pe was set to -1.7, 

which is equal to an Eh-value of -0.1 V. The calculated value for the ionic strength of the 

solution was 0.0024 M. 

 

Tab. 5.5: Dissolved species in MFR-coprecipitation experiments of Se doted pyrite with Se2- initially 

present in the solution before (upper line) and in (lower line) equilibrium (concentrations in M). 

H2S Fe(HS)2 HS- S5
2- S6

2- S4
2- S3

2- S2
2- 

9.98E-04 4.67E-07 1.21E-06 3.52E-12 1.81E-12 2.06E-12 7.31E-16 4.17E-17 

2.78E-04 2.54E-10 5.23E-08 2.36E-14 1.21E-14 1.38E-14 4.89E-18 2.78E-19 

        S2- Fe2+ Fe(HS)3
- FeOH+ Fe(OH)2 Fe(OH)3

- HSe- H2Se 

1.71E-15 4.99E-04 6.14E-11 1.34E-09 1.08E-16 4.24E-23 1.57E-04 9.35E-05 

1.14E-17 1.39E-04 1.45E-15 5.96E-11 7.56E-19 4.61E-26 6.72E-15 2.58E-14 

 

The calculated supersaturated phases were elemental selenium (SI = 14.09), pyrite 

(SI = 7.8), ferroselite (SI = 12.13) and the FeSSe solid solution (SI = 9.96). No other iron 

hydroxide or iron sulfide phase (like e.g. mackinawite, marcasite or greigite), no sulfur phase 

(e.g. S0) or selenium phase (e.g. FeSe) was oversaturated in the solution. 

Calculating the equilibrium of the solution, the results show that only pyrite, with a maximum 

amount of 3.61·10-4 M and elemental selenium (max = 2.5·10-4 M) precipitate from the 

solution. This shows that the whole initial amount of dissolved Se2- precipitates as Se0 and 

not as iron selenide compound (e.g. ferroselite, FeSSe).  
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The only difference in the hydrochemical composition of selenite coprecipitation experiments 

with respect to selenide is that Na2SeO3 as selenium source was taken and the 

electrochemical cell was adjusted to a pe of 1.7 (Eh = 0.1 V). The most important dissolved 

species present in the solution were H2S (9.87·10-4 M), Fe2+ (4.95·10-4 M), and HSeO3
- 

(2.46·10-4 M) (Tab. 5.6). Following the calculations, the precipitates are pyrite (5·10-4 M) and 

Se0 (2.5·10-4 M) and no other phase.  

 

Tab. 5.6: Dissolved species in MFR-coprecipitation experiments of Se doted pyrite with Se4+ initially 

present in the solution before (upper line) and in (lower line) equilibrium (concentrations in M). 

H2S Fe(HS)2 HS- S5
2- S6

2- S4
2- S3

2- S2
2- 

9.98E-04 4.67E-07 1.21E-06 3.52E-12 1.81E-12 2.07E-12 7.32E-16 4.17E-17 

2.61E-07 5.55E-19 3.77E-11 1.30E-17 6.71E-18 7.62E-18 2.70E-21 1.54E-22 

       S2- Fe2+ Fe(HS)3
- FeOH+ Fe(OH)2 SeO3

2- H2SeO3 HSeO3
- 

1.71E-15 4.99E-04 6.13E-11 1.34E-09 1.08E-16 8.83E-09 1.26E-05 2.37E-04 

6.29E-21 5.77E-07 2.28E-27 1.92E-13 1.88E-21 7.22E-37 7.37E-32 1.65E-31 

 

Although the initial Se valence states vary (Se2-, Se4+) as well as the solutions (instantaneous 

precipitation and nucleation of Se doted pyrite in batch-experiments and crystal growth of Se 

incorporation into pyrite in MFR experiments) differ with regard to the initial concentrations 

and the hydrochemical conditions of the reactants, the predicted precipitations of the 

thermodynamical calculations are equal. For the solutions presented in Table 5.2 – 5.6, the 

equilibrium phases solely are pyrite and elemental selenium. 

 

Pourbaix diagrams 

Stability diagrams have been generated using PhreeqC for modeling the expected 

thermodynamically stable phases with regard to selenium and iron sulfides for a solution 

containing S = 10-3 M, Fe = 5·10-4 M, and Se = 2.5·10-4 M (Figs. 5.1 – 5.3) identical to the 

aqueous solution from MFR experiments, or with the same concentrations of sulfur and iron 

but with less [Setot] = 10-10 M (Fig. 5.3) at 25° C and 1 bar.  
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Fig. 5.1: Pourbaix diagrams for a solution containing [Stot] = 10-3 M, [Fetot] = 5·10-4 M, [Setot] = 2.5·10-4 

M at standard conditions and an ionic strength of ~0.1 mol/kg; Left: predominating dissolved selenium 

with stable phases removed; Right: predominating dissolved iron with stable phases removed. 

 

Under acidic to circumneutral conditions (pH 0 – 8.5), iron is mainly stable as Fe2+ (Fig. 5.1), 

while under alkaline conditions above pH 8.5 FeOH+ and Fe(OH)2 are predominating under 

reducing conditions. The Pourbaix diagram only of the dissolved selenium species (Fig. 5.1) 

shows that the selenides H2Se at pH <3.7 and HSe- coincide with the pyrite stability field 

(Fig. 5.2), which is ranging from Eh -0.2 – 0.1 V at pH 2 until -0.3 V at pH 7.5.  

 

 

 

 

 
  
 
 
          
 
 
 

 

Fig. 5.2: Pourbaix diagrams for a solution containing [Stot] = 10-3 M, [Fetot] = 5·10-4 M, [Setot] = 2.5·10-4 

M at standard conditions and an ionic strength of ~0.1 mol/kg showing most stable phases in the Fe-S 

system. 
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This suggests that under anoxic and acidic conditions, a substitution of reduced sulfur by 

selenium could occur. But in fact, the most stable phase of Se under formation conditions of 

pyrite is Se0 (Fig. 5.3), indicating that Se may precipitate and be incorporated into pyrite as a 

crystal defect without any further atomic bonding and not as a “true” solid solution.  

This is also valid for much lower Se concentrations (Fig. 5.3) of about [Setot] = 10-10 M which 

is assumed to be a likely amount reaching the biosphere from HLW disposal sites if getting 

into contact with groundwater (Séby et al., 1998).  

 

 

Fig. 5.3: Left: stability diagram for most stable Se mineral phases for a solution containing [Stot] = 10-3 

M, [Fetot] = 5·10-4 M, [Setot] = 2.5·10-4 M; Right: stability diagram for [Stot] = 10-3 M, [Fetot] = 5·10-4 M, 

[Setot] = 10-10 M. Both solutions were at standard conditions. 

 

5.2 Mineralogical characterization of selenium dote d mackinawite 

and pyrite  

Mackinawite 

For selenium doted mackinawite synthesized by instantaneous precipitation and nucleation 

in batch experiments (Ch. 4.1, Tab. 5.1 and 5.2), neither Se0 nor achavalite (FeSe) or 

ferroselite (FeSe2) was detected by SEM or XRD (Fig. 5.4). The X-ray diffractogram from 

batch runs 1 and 2 show the strongest diffraction peaks, which all belong to mackinawite. In 

the runs 3 – 10 where pure Se doted mackinawite precipitated instead of Se doted pyrite, 

only the characteristic broad peak at around 5 nm was observed in XRD analyses, which 
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derives from the c-spacing of the mackinawite layers (Ch. 2.2.1; Rickard and Morse, 2005) or 

comparably broad peaks with a low intensity. These peaks were located at the 2-Theta-

values 17°, 30°, 39°, 50°, 59°, where the intensity  of the mackinawite diffraction signal is 

highest.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.4: XRD pattern of synthetic selenium doted mackinawite particles  

with (vertical) natural mackinawite reference peaks. 

 

The BET-investigations measured a specific surface area of mackinawite of 3.2 m2/g. The 

ED-XRF results indicated a reasonable stoichiometric Fe-S ratio of 0.95 : 1.05 for 

synthesized Se2- doted mackinawite (Fe = 48.7 mol%; S = 51.1 mol%; Se = 0.09 mol%). 

 

Synthesized mixtures of iron sulfides by instantaneous precipitation experiments   

The synthesis of pure selenium doted pyrite by starting with a solution containing 0.067 M 

NaHS, 0.033 M FeCl3·6H2O and up to 1·10-3 M Na2SeO3 at pH-values of 3.5 to 5.0 and Eh-

values between -200 and -50 mV was unsuccessful. Next to pyrite, other iron sulfides 

occurred. In such systems, mixtures of pyrite, and/or greigite, and/or marcasite and/or 

mackinawite precipitated, all containing selenium, which has been detected by the EDX 

coupled to the SEM. A typical XRD-spectrum of such mixtures shows Figure 5.5. The failure 
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to synthesize selenium doted pyrite with an initial Fe-S ratio of 1:2 was attributed to kinetic 

reasons, because pyrite is the most stable species (Fig. 2.13).  

 

 

Fig. 5.5: Typical XRD spectra for selenium doted pyrite synthesis with an Fe-S ratio of 1:2. The vertical 

lines below the XRD-spectra show the intensities relative to the highest intensity of each mineral. The 

blue line stands for elemental sulfur, the green line for pyrite and the red line represents marcasite. 

The broad peak with low intensity around 20° of 2-T heta was identified as poorly crystalline 

mackinawite. 

 

Incorporated selenium in pyrite by instantaneous precipitation experiments   

In the initial solutions of the instantaneous precipitation experiments (Ch. 4.1; Tab. 5.3 and 

5.4), mackinawite and greigite were supersaturated (with saturation indices of 2 – 7) as well 

as pyrite (saturation index of >12). Immediately after mixing the initial ingredients for iron 

sulfide synthesis, a rapid precipitation of black solid material occurred. This initial precursor 

phase of pyrite was mackinawite. Progressively, mackinawite recrystallized into the more 

thermodynamically stable pyrite starting after ~1 day.  

The precipitated phases of the solutions show in the XRD spectra only pyrite phases which 

can be identified which are very similar to the XRD spectra of natural pure pyrite samples 

(Fig. 5.6). Neither achavalite (FeSe), ferroselite (FeSe2) nor elemental selenium (Se0) was 

detected by SEM or XRD. The detection limit of the XRD is 1 wt.%. Since no other phase 
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than pyrite could be observed, a high purity of the synthesis product is assumed. According 

to previous authors, the purity of pyrite synthesized by the method after Wei and Osseo-

Asare (1996) is higher than 99.5 wt.% (Wei and Osseo-Asare, 1997; Liu et al., 2008). The 

specific surface area, as determined by BET-measurements of these pyrites is 12.1 m2/g.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.6: XRD pattern of selenium doted pyrite particles, synthesized in instantaneous  

precipitation experiments with (vertical) natural pyrite peaks, as reference. 

 

A thin section analysis by SEM shows that pyrite particles have a massive structure inside 

(Fig. 5.7). A grain to grain comparison of the Se-contents has been measured by the 

combined EDX-system. The result indicates a homogenous distribution of selenium between 

the grains. The average selenium content of 1.7 wt.% varied in 21 different grains by ±3.8 %.  

A TEM picture shows a thin section of Se doted pyrite particles with Se2- initially present in the 

solution. This thin section has a thickness of 30 nm (Fig. 5.7), revealing that individual pyrite 

grains are polycrystalline. These crystallites differ in size and orientation, as indicated by the 

varying brightness of the reflected light.  
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Fig. 5.7: Left: SEM-image of pyrites thin section; Right: TEM images of pyrite grain thin sections with a 

thickness of 30 nm. The dark filtered TEM image shows the internal structure of the grain. The 

different grey scales are due to the difference in orientation of the microcrystals.  

 

Additionally, elemental mappings of the selenium concentration in grains by EDX system 

coupled to FIB were done in order to find out if a solid solution is present or not. A solid 

solution is defined by its homogeneous crystalline structure. The mapping illustrates that the 

selenium concentration increases towards the center of the grain (Fig. 5.8).  

 

 

Fig. 5.8: Mapping of the selenium content within a pyrite grain (30 nm thin section). The red dots in the 

left picture represent a high selenium concentration, which is higher in the middle of the grain. The 

map on the right side shows the element distribution of iron (green), sulfur (blue), and selenium (red). 
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This zoning resulted from a decrease of the selenium-to-sulfur ratio in the residual solution 

after the initial formation of black colored pyrite precursor phases. A release of selenium 

during recrystallization of mackinawite to pyrite could not be substantiated by SEM or by 

XRD. 

The ED-XRF results (Fig. 5.9) for synthesized selenide doted pyrite indicated a reasonable 

stoichiometry with a Fe-S ratio of 1:2.02 (Fe: 32.7 mol%; S: 66.1 mol%; Se: 1.2 mol%). 

Furthermore, the molar concentrations of selenium in pyrite, calculated by the difference 

between the initial and the residual concentrations, have been compared with the molar 

concentrations of selenium measured by ED-XRF (Fig. 5.9), with very similar results 

(Correlation: r = 0.98). 

 

 

 

Fig. 5.9: Left: Comparison of ICP-MS and ED-XRF results with regard to selenium contents (log mol%) 

in precipitated iron sulfides in batch runs. Right: Concentrations of Se, S, Fe in natural pyrite and 

synthesized Se doted pyrite and mackinawite. 

 

Incorporated selenium in pyrite by crystal growth experiments 

Mineralogical identification by XRD of selenium doted pyrite obtained from crystal growth on 

persisting nuclei in MFR experiments reveals the formation of mainly pyrite coatings on 

natural, grounded grains (Fig. 5.10; Ch. 4.2; Tab. 5.5 and 5.6) by mixing a solution of   
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S = 10-3 M, Fe = 5·10-4 M, and Se = 2.5·10-4 M at pH 4 for Se2- and for Se4+, respectively. The 

specific surface area of the precipitates is 0.46 m2/g. 

During the period of an experiment, the average precipitated solid amounts were 0.0385 g (of 

initial 0.044 g) for sulfur, 0.027 g (of initial 0.038 g) for iron and 0.00446 g (of initial 0.0045 g) 

for selenium. The precipitated iron and sulfur was 0.0655 g in total, without considering Se. 

Conversion of this value to the whole solid, which includes natural pyrite nuclei and 

coprecipitated iron sulfide, the precipitated amount of 0.0655 g is equal to 11.6 % of the total. 

Since the detection limit is ~1 wt.% for XRD and no other phase than pyrite could be 

detected, it is assumed that mainly pyrite precipitated. If more or less crystallized 

mackinawite or any other iron sulfide in an amount of more than 10 % would have been part 

of the MFR-samples, notably peaks of these phases in the XRD spectra would have 

occurred. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.10: XRD-spectra of Se doted pyrite from crystal growth-experiments. 

Peaks of diffraction are consistent with pure pyrite (grey vertical lines). 

 

Due to the low selenium concentrations, it is impossible to detect feasible precipitations of 

Se0, achavalite or ferroselite by XRD. Thin sections could not be made successfully out of 

these Se doted pyrite particles, because the solid was too fragile. 
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To sum up the mineralogical constraints of the selenium doted samples which precipitated 

from aqueous solutions, no phase next to pyrite could be detected by SEM or XRD. The 

continuous addition of the solution into the MFR under permanently stirring in crystal growth 

experiments lead to a coagulation of the initial nuclei into comparatively large particles, as 

indicated by the low specific surface area. The Se doted pyrites of the instantaneous 

precipitation experiments have a limited crystal growth and, therefore, a specific surface area 

which is ~26 times higher than the pyrite particles synthesized in crystal growth experiments. 

Selenium is inhomogeneously distributed in the pyrite particles, indicating that no real solid 

solution was synthesized in the nucleation and instantaneous precipitation experiments. 

 

Incorporation of Se doted pyrite by condensation from gaseous species 

The synthesis of pure phases of selenium doted pyrite was successful for the described 

setup, following the principal reaction path (Ch. 4.3; Eq. 4.3). Further experiments with higher 

Se contents up to a molar mixture of Fe:S:Se amounting 1:1:1 as well as all syntheses with a 

temperature gradient of 700° – 600° C only in one d irection for up to 14 days resulted in 

mixtures of pyrite and pyrrhotite (FeS2-x) or in precipitation of amorphous solids. The XRD 

pattern shows no additional minerals apart from pyrite (Fig. 5.11). As well, the intensity of the 

reference spectra (grey lines) is in good agreement with the XRD-spectra of the sample 

(black line).  

A thin section of the single crystal was prepared to measure the homogeneity of the Se 

content by EDX within a grain (Fig. 5.12). This SEM image shows two selenium doted pyrite 

grains, connected with each other by a Se-S-compound. This Se-S-compound has 

precipitated after no Fe was anymore available for further pyrite growing.  
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Fig. 5.11: XRD-spectra of selenium doted pyrite from condensation after sublimation  

experiments. Peaks of diffraction are consistent with the pyrite reference (grey vertical lines). 

 

The selenium concentration within the pyrite solid is very homogeneous, as shown by the 

measured linescans. The average of all 668 points is 4.42 counts per second with a standard 

deviation of 0.21. High variations of Se content occurred only at breaks or cracks, which 

were results of the thin-section production (Fig. 5.12). 

 

Fig. 5.12: Left: SEM-image showing a selenium doted pyrite thin section and the respective pathways 

of the linescans (white lines); Right: Analyses of selenium doted pyrite thin section showing the 

measured Se-intensity (in counts per second) of a part of a thin-section and the respective SEM 

image. The white line in the image is identical to the measurement route. 
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The selenium concentration of Se doted pyrites synthesized by condensation from 

sublimation was 1.1 wt.%, which has been measured by ED-XRF. The initial stoichiometry of 

the S-Fe-Se-reactants was 0.9 : 0.5 : 0.1. If all elements would have been incorporated in the 

same ratio as they have been initially added for reaction, the selenium content in pyrite would 

have been 6.67 mol%. But in fact, the determined molar concentration is about ten times 

lower with a distribution ratio of 0.09 compared to the initial ratio of the reactants. A possible 

explanation of the low incorporation could be that selenium did not react with iron. Although 

selenium is homogeneously distributed, which could be an indicator of a real Fe-S-Se solid 

solution, accompanied with a substitution of S by Se, the low Se concentrations within the 

solid is surprising. Hence, XAFS results should clarify the type of structural Se-bonding within 

pyrite (Ch. 5.5). 

 

5.3 Retention of selenium by incorporation into mac kinawite and 

pyrite  

Mackinawite 

ICP-MS analyses of the residual selenium contents in solution reveal a high efficiency of 

selenium incorporation under acidic to circumneutral pH and mainly reduced Eh-conditions, 

the average selenium removal being 98.3 % ranging between 94.1 and 99.6 % by selenium 

doted mackinawite (Tab. 5.7). This is close to the calculated precipitation maximum of 

selenium on the basis of the thermodynamic data. The calculated incorporation of selenium 

does not show significant differences due to the initial solution composition nor to the 

hydrochemical conditions. The amount of selenium in mackinawite for the runs 1 and 2 is 

0.07 g/L. The total precipitated amount of Se doted mackinawite is 29.7 g/L.  
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Tab. 5.7: Hydrochemical conditions, initial and residual (res.) concentrations                                         

of S, Fe and Se, the resulting removal of Se (in %) for synthesized mackinawite. 

Run pH Eh S_initial S_res. Fe_initial  Fe_res. Se_initial  Se_res. Se_rem. 

    [mV] [mol/L] [mol/L] [mol/L] [mol/L] [mol/L] [mol/L] % 

1 7 -200 3.5E-01 1.7E-03 3.4E-01 1.0E-02 9.1E-04 4.1E-06 99.5 

2 7 +100 3.5E-01 1.6E-03 3.4E-01 1.3E-02 9.1E-04 3.6E-06 99.6 

3 4.5 -300 5.5E-02 5.6E-04 2.7E-02 1.5E-02 9.1E-04 5.7E-06 99.4 

4 3.5 -250 6.6E-02 1.0E-03 1.6E-02 2.4E-03 1.0E-03 4.4E-06 99.6 

5 6 -200 6.6E-02 1.2E-04 1.7E-02 2.0E-05 1.0E-03 1.4E-05 98.6 

6 5.5 -200 5.5E-02 4.1E-04 2.7E-02 9.1E-03 9.1E-05 6.0E-07 99.3 

7 5.5 -200 5.5E-02 5.5E-04 2.7E-02 1.5E-02 9.1E-06 3.9E-07 95.7 

8 5.5 -200 5.5E-02 4.2E-04 2.7E-02 9.8E-03 9.1E-06 1.4E-07 98.5 

9 5.1 -100 6.0E-02 7.1E-04 3.3E-02 1.1E-02 2.7E-05 1.6E-06 94.1 

10 5.8 -100 6.6E-02 1.6E-04 3.3E-02 1.4E-03 1.0E-03 1.6E-05 98.4 

 

The removal efficiency of sulfur by precipitation from the solution is very similar to that of 

selenium with an average of 99.2 %, ranging between 98.8 and 99.8 %. The removal 

efficiency of iron is highly variable with 76 % on average, ranging between 44.4 – 99.9 %. A 

possible reason for the high variance of residual iron in solution could be attributed to the 

lack of sufficient dissolved sulfide species, which may be bonded as S0. In the solutions 

prepared for the synthesis of mackinawite with Fe2+ as iron source (Run 1 and 2), the iron 

removal is relatively high with >96 %.  

 

Mixed iron sulfides 

Results of ICP-MS measurements of the residual selenium concentration reveal an average 

selenium removal of 97 % in all selenium doted mixed iron sulfide phases in the runs 11 – 22 

(Tab. 5.8). The batch-runs with the numbers 15 and 19 have significantly lower incorporation 

efficiencies, lowering the average Se-removal for this group. There is no obvious reason (e.g. 

the mineral composition or the hydrochemical conditions) for this observation and remains 

therefore unclear. In total, it can be assumed that marcasite as well as greigite could have a 

remarkable potential for uptaking selenium, similar to mackinawite and pyrite. Greigite and 

marcasite have not been synthesized due to the lack of necessary instruments (e.g. 

autoclave).  
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Tab. 5.8: Hydrochemical conditions, initial and residual (res.) concentrations of S, Fe and Se, the 

resulting removal of Se (in %) for mixtures of mackinawite, greigite, marcasite and pyrite. 

Run pH Eh S_initial S_res. Fe_initial Fe_res. Se_initial Se_res. Se_remov.  

    [mV] [mol/L] [mol/L] [mol/L] [mol/L] [mol/L] [mol/L] % 

11 4.5 -200 5.5E-02 5.6E-04 2.7E-02 7.2E-03 9.1E-04 4.2E-06 99.5 

12 4.5 -200 5.5E-02 5.1E-04 2.7E-02 7.3E-03 9.1E-05 4.8E-07 99.5 

13 4.5 -200 5.5E-02 3.6E-04 2.7E-02 1.0E-02 9.1E-06 1.5E-07 98.4 

14 4 -200 5.5E-02 3.4E-04 2.7E-02 1.4E-02 9.1E-06 8.4E-08 99.1 

15 5 -150 6.6E-02 1.0E-03 3.3E-02 1.5E-02 5.0E-05 5.6E-06 88.8 

16 3.5 -200 6.6E-02 6.7E-03 3.3E-02 1.0E-02 5.0E-05 2.3E-07 99.5 

17 5.1 -50 6.6E-02 9.9E-04 3.3E-02 1.1E-02 5.0E-05 3.5E-07 99.3 

18 4.7 -100 6.6E-02 7.9E-04 3.3E-02 1.9E-03 5.0E-05 2.0E-07 99.6 

19 4 -100 6.6E-02 1.2E-03 3.3E-02 1.8E-02 5.0E-05 4.0E-06 92.0 

20 5 -50 6.6E-02 5.8E-03 3.3E-02 8.8E-03 5.0E-05 4.8E-07 99.0 

21 4.5 -100 6.6E-02 2.3E-03 3.3E-02 1.4E-02 5.0E-05 3.1E-07 99.4 

22 5 -100 6.6E-02 3.3E-03 3.3E-02 1.0E-02 5.0E-05 3.3E-07 99.3 

 

Selenite in pyrite 

The different solutions prepared for Se doted pyrite with Se4+ initially present (runs 23 – 27 

and Q1; Tab. 5.4 and 5.6) precipitated at hydrochemical conditions with pH 4 – 5 and Eh-

values at 50 – 100 mV (Tab. 5.9). The average Se-removal in the batch-experiments was 

98.6 % with a range of 97.5 – 99.2 %. The average removal efficiency of sulfur was 98.8 % 

(range: 97.4 – 99.9 %), which is comparable to the selenium removal, while iron is bound in 

solids with an amount of 93.7 % (range: 87.6 – 99.8 %). 

 

Tab. 5.9: Hydrochemical conditions, initial and residual (res.) concentrations of S, Fe and Se, the 

resulting removal of selenium (in %) and the type of synthesized pyrite with selenite initially present in 

solution. Numbers stand for the batch-runs and Q stands for MFR-experiments. 

Run pH Eh S_initial S_res. Fe_initial Fe_res. Se_initial Se_res. Se_remov.  

    [mV] [mol/L] [mol/L] [mol/L] [mol/L] [mol/L] [mol/L] % 

23 4 100 6.6E-02 1.0E-03 1.7E-02 2.1E-03 5.0E-05 8.6E-07 98.4 

24 5 100 6.6E-02 1.7E-03 1.7E-02 3.6E-05 5.0E-05 1.2E-06 97.5 

25 4 50 6.6E-02 9.3E-05 1.7E-02 2.1E-03 5.1E-06 4.7E-08 99.1 

26 4.5 50 6.6E-02 2.7E-04 1.7E-02 7.8E-04 5.1E-06 5.0E-08 99.0 

27 5 50 6.6E-02 7.2E-04 1.7E-02 3.4E-04 5.1E-06 4.2E-08 99.2 

Q1 4 100 6.0E-03 3.1E-04 3.0E-03 2.1E-04 2.5E-04 5.1E-06 99.5 
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Selenide in pyrite 

The aqueous solutions prepared for Se doted pyrite with Se2- initially present (runs 28 – 35 

and Q2; Tab. 5.3 and 5.5) were fixed at hydrochemical conditions with a pH 3.7 – 5 and at an 

Eh-value of -100 mV (Tab. 5.10). ICP-MS results of the residual selenium concentration 

reveal an average selenium removal of 98.4 % with a range of 98.4 – 99.9 % (Tab. 5.10). 

99.4% of sulfur precipitated on average (range: 98.7 – 99.9 %) whereas iron was removed 

from solution with 93.4 % (87.6 – 99.9 %). 

 

Tab. 5.10: Hydrochemical conditions, initial and residual (res.) concentrations of S, Fe and Se, the 

resulting removal of Se (in %) and the type of synthesized pyrite with selenide initially present in 

solution. Numbers stand for batch-runs and Q stands for MFR-experiments. 

Run pH Eh S_initial S_res. Fe_initial Fe_res. Se_initial Se_res. S_remov. 

    [mV] [mol/L] [mol/L] [mol/L] [mol/L] [mol/L] [mol/L] % 

28 3.9 -100 6.6E-02 8.5E-04 1.6E-02 9.1E-04 5.0E-05 5.9E-07 98.7 

29 3.7 -100 6.6E-02 6.1E-04 1.7E-02 2.1E-03 5.0E-05 3.9E-07 99.1 

30 3.9 -100 6.6E-02 4.0E-04 1.7E-02 2.1E-03 5.0E-05 2.9E-07 99.4 

31 4.3 -100 6.6E-02 7.2E-04 1.6E-02 1.8E-04 5.0E-05 6.1E-07 98.9 

32 5 -100 6.6E-02 5.3E-05 1.6E-02 3.2E-03 5.0E-05 2.6E-07 99.9 

33 4 -100 6.6E-02 5.4E-05 1.7E-02 7.8E-05 1.0E-03 8.3E-06 99.2 

34 4 -100 6.6E-02 1.1E-04 1.7E-02 1.1E-04 5.1E-06 1.9E-08 99.6 

35 5 -100 6.6E-02 1.1E-04 1.7E-02 1.8E-05 5.1E-06 8.0E-08 98.4 

Q2 4 -200 6.0E-03 2.7E-04 3.0E-03 1.9E-04 2.5E-04 3.3E-06 99.7 

 

The amount of precipitated pyrite was between 1.7 and 1.9 g/L while the average amount of 

precipitated selenium in pyrite was 99 %. The weighted amounts are even slightly higher due 

to the losses of solids at the glass wall of the vials used for synthesis and decantation. The 

measured amount of precipitates is close to the thermodynamic calculations, thus calculating 

a maximum of 2.1 g/L precipitated pyrite and nearly 100 % removal of precipitated selenium 

(Ch. 5.1).  

The uptake of Se2- and Se4+ of Se doted pyrite in crystal growth experiments (Q 1 and 2) is 

higher than 99.5% and demonstrates again the affinity of Se to iron sulfides. The higher 

efficiency of selenium incorporation in the crystal growth experiments compared to the 
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instantaneous precipitation experiments is partially due to the experimental setup. 

Precipitation of selenium doted pyrite precursor phases in batch experiments occurs 

instantaneously. The particles accumulate at the bottom of the vial without any further 

contact with the supernatant solution because of the lack of solution circulation.  

The average Se-uptake in the 35 batch runs in all experiments was 98 %. Finally, there was 

no significant difference in the uptake of selenium in relation to the type of precipitated iron 

sulfide phase, the initial amount of selenium, nor the hydrochemical conditions.  

The high efficiency of selenium incorporation presented here is in agreement with the results 

of Liu et al. (2008), who reported from a sorption study of selenide immobilization by pyrite 

that more than 97 % of the initial selenide in solution precipitated on the pyrite surface after 

only five minutes of reaction. Similarly, Naveau et al. (2007) found a significant sorption of 

Se2- and Se4+ on synthetic pyrite especially under acidic conditions, with adsorption 

efficiencies of more than 95 % for a pH of less than 5. 

 

Kinetics of selenium uptake by pyrite in instantaneous precipitation experiments 

Concerning the kinetics in instantaneous precipitation experiments (Ch. 4.1; Tab. 5.3), the 

results show that >98 % of S, Fe and Se2- were removed from the solution within 1 h 

(Fig. 5.13). The concentrations of S, Se, and Fe were measured 1, 5, 10, 20, 50 and 100 

hours after the start of mixing.  

After 1 h, the concentration of iron was almost constant, while the selenium content 

decreased slowly and was finally in equilibrium after 20 h. The dissolved sulfur shows a 

minimum concentration shortly after a mixing, followed by an increase in solution. At the 

minimum of the sulfur concentration, the initially dissolved sulfide is bound in mackinawite 

and partially precipitated as S0 due to the oxidation of sulfide accompanied with the reduction 

of Fe3+ to Fe2+ (Wei and Osseo-Asare, 1996). The following increase of sulfur after 10 h is 

most probably due to dissolution of S0, because the solution is undersaturated with regard to 

sulfide. The further decrease in the dissolved sulfur concentration is caused by the reaction 

of sulfide with dissolved iron, coprecipitating on persisting pyrite particles. These results are 
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consistent with the interpretation of the element mapping by FIB (Ch. 5.2), showing a higher 

selenium concentration in the center of the pyrite grain due to the deliverance of dissolved 

sulfur species by dissolution of S0.  

 

 

Fig. 5.13: Time-dependent concentration of S, Fe and Se in solution (y-axis in log-scale) at standard 

conditions and pH 4.5 for the instantaneous precipitation experiments. Initial concentrations: [S] = 

0.066 M; [Fe] = 0.0175 M; [Se2-] = 10-4 M. 

  

Kinetics of selenium uptake by pyrite in crystal growth experiments 

The concentrations of dissolved Fe, S, Se were measured 1, 5, 10, 20, 50 and 120 hours 

after the start of the crystal growth experiments, containing once Se2- and once Se4+. The 

time-dependent development of the concentration of each element was very similar for both 

selenium coprecipitation experiments. The decrease of Se2- concentration is only marginally 

higher than for Se4+. Equilibrium of Se, S, and Fe in the solution was reached within a mean 

residence time of 15.8 h in the reactor (Fig. 5.14). The calculated growth of selenium doted 

pyrite was 1.7·10-5 mol/L·h. 

The results of the (rapid) decrease of the selenium concentration within the solution are 

similar for both, the instantaneous precipitation as described before, and the crystal growth 

experiment. The only significant difference is the time-dependent concentration of sulfur. This 
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is due to the lack of precipitated elemental sulfur in the crystal growth experiments, because 

the solution is undersaturated of S0. 

 

 

Fig. 5.14: Time-dependent concentration of S, Fe and Se2- or Se4+ in solution during crystal growth 

experiments at standard conditions and pH 4. The continuous line represents Se2- and the dashed line 

Se4+ residual contents. Initial concentrations: [S] = 10-3 M, [Fe] = 5·10-4 M, [Se] = 2.5·10-4 M. 

 

5.4 Reference spectra of selenium oxidation states  

The XAFS analyses were used to determine the solid-phase species of the selenium doted 

iron sulfide samples. The shape of the absorption edges of the Se doted samples were 

compared with known standards to reveal the oxidation state. To check the structural 

parameters of the selenium standards, the results were compared with publications 

(Tab. 5.11: Ryser et al, 2005; Charlet et al., 2007; Breynaert et al., 2008; Scheinost et al., 

2008).  
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Tab. 5.11: Selected selenium standards of published XAS investigations (E0 = absorption edge; 

CN = coordination number; R = atomic distance to the absorber; n.m.: not mentioned). 

Standard E0 Shells Literature 

  [eV] CN R [Å] CN R [Å]  

Monoclinic Se 0 12658 2.2 Se 2.35   Ryser et al., 2005 

FeSe2 12657 3 Fe 2.38 1 Se 2.57  

  1 Se 3.05 10 Se 3.29  

Trigonal Se 0 n.m. 2.0 Se 2.39 4.8 Se 3.39 Charlet et al, 2007 

  1.0 Se 3.74    

Tetragonal FeSe   3.8 Se 2.38 8.9 Se 3.70  

  2.1 Se 3.96 7.7 Fe 4.43  

Trigonal Se 0 n.m. 2.03 Se 2.37 4.05 Se 3.41 Breynaert et al., 2008 

  2.02 Se 3.66 2.12 Se 4.14  

  3.88 Se 4.30 4.05 Se 4.47  

Trigonal Se 0 12656.1 2.2 Se 2.38 4.0 Se 3.39 Scheinost et al., 2008 

  2.5 Se 3.73    

Ferroselite 12656.0 2.7 Fe 2.37 3.3 Se 3.30  

  0.6 Se 2.57 2.1 Se 3.55  

 

The XAFS-spectra of the standard compounds are shown in Figure 5.15. The differences in 

the intensity of the white line as well as in the overall shape of the normalized XANES 

spectrum between solid Na2Se, gray elemental selenium, Na2SeO3, achavalite and 

ferroselite are clearly distinguishable. The k-edge of the Se2- compounds is comparably flat 

to that of Se4+. The XANES spectra of solid and dissolved Na2Se and Na2SeO3 also show 

that the white line of the same oxidation state is highly similar, but at about 10 eV after the 

peak maximum, the curve shape varies because of the different backscattering atoms 

around the central absorbing selenium atom.  

Because of the high amount of noise and low part of signal, the EXAFS spectrum of 

dissolved Na2Se was only fitted until a q of 7.5 Å-1. Unfortunately, ferroselite oxidized during 

the EXAFS measurements, making it impossible to distinguish its structure. The differences 

in the radial structure function (RSF) are due to their neighbors. For example, the first 

coordination shell in the RSF of Na2SeO3 is occupied by the tightly bonded oxygen atom. 

With respect to elemental selenium, the first atomic neighbor is selenium at a more far 

atomic distance.  
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Fig. 5.15: XAFS-spectra of reference compounds containing XANES-spectra (left), kq-space (middle, 

k: colored line, q: black dots) and EXAFS-spectra (right). The reference compounds are: Na2Se 

(yellow), Se2- in solution (red), Se0 (pale green), Na2SeO3 (dark green), Se4+ in solution (pale blue), 

achavalite (dark blue), ferroselite (violet). 

 

The k-edge value of Se0 is 12658.0 eV. This is ~1 eV higher than the E0-value of the reduced 

valence states of selenium. Due to the selenium double-bonding in ferroselite, its oxidation 

state is –I and the E0-value is 12656.7 eV. The peak of the white line of Se2- in the form of 

Na2Se is at 12656.8 eV, while the E0-value of achavalite is 12656.5. The k-edge of Se4+ in 

Na2SeO3 (E0: 12663 eV) is ~5 eV higher than that of Se0. These analytical results are very 

similar to results cited in literature. Ryser et al. (2005) report an E0 of 12664 eV for Se6+ 

(Na2SeO4). The E0 of Se4+ (Na2SeO3) is 12662 eV, the k-edge of elemental selenium is at 

12658 eV and for Se- (FeSe2) at 12657 eV. The selenium absorption edges reported by 

Scheinost et al. (2008) are generally lower with a value of about -2 eV. Referring to this 

study, the E0-value of Se4+ (Na2SeO3) is 12660.7 eV, elemental selenium has an E0-value of 

12656.1 eV, Se- (ferroselite) an E0-value of 12656.0 eV and Se2- (FeSe) an E0-value of 
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12655.5 eV. All these values show that there is a clear difference in the k-edge values 

between the oxidized selenium valence states (Se6+, Se4+) and the reduced species (Se0, 

Se2-). A further determination of the exact reduced valence state of Se2-, Se- and Se0 only on 

the basis of the absorption edge value has to be done with care, because the difference in E0 

is only between 0 and 1 eV. Hence, the identification of the Se oxidation state is more 

reliable by a comparison of the sample with the well distinguishable curve shapes of the 

selenium standards. The XANES-spectra of Figure 5.15 are in accordance with the published 

data from literature in Appendix B (Ryser et al, 2005; Charlet et al., 2007; Breynaert et al., 

2008; Scheinost et al., 2008). 

The fitted structural parameters from XAFS analysis for trigonal Se0 and achavalite are 

presented in Table 5.12. The coordination shell of Se0 is selenium, located at 2.36 Å and 

containing a coordination number of 1.96. This is in high agreement with the reported results 

(Tab. 5.11). In three publications (Charlet et al., 2007; Breynaert et al., 2008; Scheinost et 

al., 2008), the Se coordination shell obtained a coordination number between 2.0 and 2.2 at 

an atomic distance of 2.37 – 2.39 Å. The own detected selenium backscatterers are at an 

atomic distance of 3.32 Å and 3.72 Å, similar to the reported data of 3.39 – 3.41 Å for the 

second and 3.66 – 3.74 Å for the third atomic selenium neighbor.  

 

Tab. 5.12: Fitted structural parameters from XAFS analysis for references. Accuracies of fitted 

structural parameters are noted in the brackets as uncertainties of the last digit (E0 = absorption edge; 

CN = coordination number; R = atomic distance to the absorber; σ2 = Debye-Waller factor; ∆E0 = 

energy shift).   

Reference Coordination shell  Further shells 
 

 
E0 [eV] CN R [Å] σ

2 [Å²] CN R [Å] σ
2 [Å²] ∆E0 [eV] R-factor  

Se0 - trigonal 12658 1.96 Se (4) 2.36 (0) 0.0036 (1) 0.95 Se (28) 3.32 (2) 0.0135 (3) 9.8 (3) 0.008 

     0.32 Se (6) 3.72 (1) 0.0016 (1)   

Achavalite 12656.5 2.68 Fe (6) 2.55 (0) 0.0027 (2) 1.90 Se (16) 3.66 (0) 0.0033 (5) 5.5 (3) 0.005 

     5.56 Fe (64) 4.45 (1) 0.0148 (1)   

 

The determined structure of achavalite shows an iron neighbor at 2.55 Å with a coordination 

number of 2.68. Further backscatters of the selenium absorber are located at 3.66 Å (Se) 
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and 4.45 Å (Fe). Due to the lack of comparable XAFS-analysis, the structural data for 

comparison of achavalite were taken from Wyckhoff (1963). There are two iron 

backscatterers at 2.574 Å and 4.456 Å noted and one selenium neighbor at 3.645. This is in 

good agreement with the data presented here. 

The quality of the fit parameters is good, because the R-factor is below 0.01 and the shift of 

energy below 10 eV, the Debye-Waller factors are in the desired range of 0.001 – 0.015. 

Typical for the XAFS parameter (CN, R, σ2) is the often rising uncertainty with rising distance 

from the absorber, which can be seen in Table 5.12 especially for the coordination numbers.  

 

5.5 Structure of selenium doted mackinawite and pyr ite 

Determination of the surface structure of Se doted pyrite and mackinawite 

The XP spectra (Fig. 5.16) show a comparison of Se2- doted pyrite with Se0. The 

photoelectron elemental lines of Se are superimposed by intense photoelectron elemental 

lines of the main constituents S and Fe, making it impossible to distinguish their binding 

energies. Solely, X-ray excited Auger transitions of selenium are detectable with low 

intensity, which can be used for interpretation.  

 

 

Fig. 5.16: XP spectra of Selenium doted iron sulfides showing the low binding energy range of survey 

spectra of pure selenium for comparison. In case of Se2- doted pyrite, the photoelectron elemental 

lines of Se are superposed by the intense photoelectron elemental lines of either S or Fe. 
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The narrow scans of Se L3M45M45 Auger lines (Fig. 5.17) are superposed by the plasmon 

loss lines of S 2p with maxima at a binding energy of 183 eV. The kinetic energies of the Se 

L3M45M45 Auger electrons, between 1305 and 1307 eV, are characteristic for reduced 

valence states of selenium (Moulder et al., 1992). Finally, XP spectra indicate that the 

selenium valence states of all experiments were reduced, lying between Se0 and Se2-. 

However, the Se2- binding partner could not be identified, but is presumably Fe2+. 

 

 

Fig. 5.17: XP-spectra of selenium doted iron sulfides. The narrow scans of Se LMM are normalized 

with respect to the nearby S 2p spectrum at the lower binding energy side. Between the two, black 

vertical lines are the reduced valence states of selenium (0,-I,-II). The abbreviation of the index within 

the figure names the initial valence state of selenium in solution and not the actually oxidation state of 

Se in the sample. 

 

Mackinawite 

The XAFS results of the instantaneous precipitation experiments (Ch. 4.1; Tab. 5.1 and 5.2) 

with regard to Se incorporation into mackinawite with Se4+ initially present in the solution, 

indicate a complete reduction of Se4+ to Se0 (Fig. 5.18). The XANES spectrum is very similar 

to the trigonal Se0 spectrum. For fitting the experimental EXAFS spectrum, several selenium 

shells were considered. This suggests the incorporation of selenium in an amorphous Se0-

type environment with approximately six selenium neighbors in the coordination shell at a 



98 

 

distance of 2.31 Å (Tab. 5.13). The limited number of detected selenium atomic neighbors 

indicates a small cluster size.  

 

Fig. 5.18: XAFS-spectra of selenium doted mackinawite containing XANES-spectra (left), kq-space 

(middle, k: colored lines, q: black symbol) and R-space (right). Achavalite (yellow); Se incorporation in 

mackinawite with initial dissolved Se2- (red); elemental selenium (green); Se incorporation in 

mackinawite with initial dissolved Se4+ (blue).  

 

The XANES spectrum of Se doted mackinawite using dissolved Se2- (E0: 12656.8 eV) is very 

similar to that of achavalite (E0: 12656.5 eV; for comparison of achavalite XANES-spectra: 

Charlet et al., 2007; Scheinost et al. 2008; both in Appendix B), implying a valence state of    

-II (Fig 5.18). The first Fe shell is located at a distance of 2.37 Å, followed by two sulfur 

neighbors at 3.5 Å and 3.68 Å and one iron neighbor at 4.25 Å, suggesting a replacement of 
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sulfur by selenium in a mackinawite-like environment (Fig. 5.19) while the changes in crystal 

structure can be compared with mackinawite structure (Fig. 2.5). 

 

Tab. 5.13: Fitted structural parameters from XAFS coprecipitation experiments with selenium doted 

mackinawite showing the initially used dissolved Se species. Accuracies of fitted structural parameters 

are noted in the brackets as uncertainties of the last digit (E0 = absorption edge; CN = coordination 

number; R = atomic distance to the absorber; σ2 = Debye-Waller factor; ∆E0 = energy shift).   

Sample Coordination shell  Further shells 
 

  E0 [eV]  CN R [Å] σ
2 [Å²] CN R [Å] σ

2 [Å²] ∆E0 [eV]  R-factor  

Se2- - Mack.  12656.8 1.26 Fe (13) 2.37 (0) 0.0017 (4) 1.68 S (51) 3.50 (7) 0.0045 (11) -2.1 (12) 0.016 

          1.17 S (73) 3.68 (6) 0.0129 (10)     

          0.90 Fe (61) 4.25 (5) 0.0094 (50)     

Se4+ - Mack. 12657.5 6.08 Se (16) 2.31 (0) 0.0098 (2) 0.90 Se (21) 2.57 (2) 0.0102 (18) 13.7 (0) 0.004 

 

The values and uncertainties of the structural parameters R and σ2 for fitting the Se doted 

mackinawite using dissolved Se2- are appropriate (Tab. 5.13). The uncertainties of the 

coordination number after the coordination shell are relatively high, which may be due to the 

relative low amount of incorporated selenium (0.09 mol%). The fitting parameters of Se doted 

mackinawite with initially Se4+ present in solution are generally good, as it is expressed by the 

very low value of 0.004 for the residual of fit. Only the shift of energy parameter ∆E0 is 

slightly high. This value is used to align the theoretical calculated spectrum to the energy grid 

of the measured spectrum. 
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Fig. 5.19: The crystal model illustrates the EXAFS-results, showing selenium doted mackinawite with 

initially dissolved Se2- in solution. Se2- is substituting S2- in the crystal lattice, resulting in small shifts 

towards xyz-axis, Distances are given in Å. 

 

Reaction pathway of selenium incorporation in mackinawite 

The conclusion of the XAFS results with the proposed phases and species of the 

thermodynamical calculations may indicate the probable reaction pathway leading to the 

incorporation of selenium in a certain oxidation state. With regard to the incorporation of Se 

into mackinawite using dissolved Se2-, the species Fe2+, Fe(HS)2, HS-, H2S, HSe- are 

predominantly present in solution (Tab. 5.1). Dissolved Fe(HS)2 is a complex which is built 

during the intermediate reaction steps for mackinawite formation via HS- (Ch. 2.3.4). Hence, 

it is likely that Fe2+ reacts with HS- and H2S to form mackinawite (Eq. 2.4 and 2.5). The XAFS 

investigations lead to the conclusion that a substitution of S2- by Se2- occurred. Therefore, 

since HSe- is the dominant selenide species in solution, the proposed reaction leading to the 

incorporation of Se2- is (Eq. 5.3): 

Fe2+
(aq) + HSe-

(aq)  ⇆  FeSe(s) + H+                                                                                                     (5.3). 
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The precipitated phases of the thermodynamical calculations are different to the analytical 

results. The calculations predict that mainly pyrite, Se0 and to a lower amount mackinawite 

precipitate from the solution in equilibrium, though the solution was also oversaturated with 

respect to all considered iron-selenium phases. The question is, why are the results between 

thermodynamical calculations and XAFS analysis not equal? 

The reason why mackinawite instead of pyrite does precipitate from the solution is related to 

kinetics (Rickard and Luther, 2007). Mackinawite is metastable under standard conditions 

and would dissolve and re-precipitate as pyrite after a certain time-period which could take 

months to years (Ch. 2.3.4). The detected substitution of S2- by Se2- instead of the 

precipitation of Se0 is probably also due to kinetic reasons. In the laboratory experiments, the 

precipitation of mackinawite occurs instantaneously after mixing. In fact, the most stable 

species of selenium under these hydrochemical conditions is Se0. Only the rapid formation of 

mackinawite of these highly supersaturated solution leads to the incorporation of selenide, 

accompanied with the structural substitution of sulfur by selenium. 

With respect to the Se doted mackinawite with initially dissolved Se4+ in the solution, the 

calculated dominating dissolved initial species were HS-, H2S, Fe2+, Fe(HS)2, HSeO3
- and 

SeO3
2- (Tab. 5.2). The predicted phases with the solution being in equilibrium are 

mackinawite, pyrite and Se0. As mentioned in the paragraph before, the lack of pyrite is 

probably due to kinetic reasons. The difference to the batch experiment with selenide is the 

direct reduction of selenite in the solution, which occurs probably concomitantly with the 

oxidation of sulfide. The reaction can be described by the equation 5.4: 

HSeO3
-
(aq) + H2S(aq) + 2e-

 ⇆  Se(s) + S(s) + H3O
+  + O2

4-                                                     (5.4). 

This observation is in agreement with Bruggeman et al. (2005) and Breynaert et al. (2009), 

who detected a Se4+ reduction to Se0 on the pyrite surface. 
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Structure of Se doted pyrite with initially dissolved Se4+ 

Both, instantaneous precipitation experiments with regard to Se incorporation into pyrite 

using initially dissolved Se4+ (Ch. 4.1; Tab. 5.4) as well as crystal growth experiments with 

respect to the examination of Se coprecipitation into pyrite with dissolved Se4+ (Ch. 4.2; 

Tab. 5.6)  indicate a complete reduction of Se4+ to Se0 (Fig. 5.20). Their XANES spectra are 

very similar to the trigonal Se0 spectra and to those of Se0 published in the literature 

(Appendix B). For fitting the experimental EXAFS spectra, several selenium shells were 

considered. This suggests the incorporation of selenium in an amorphous Se0-type 

environment with a first neighbor in the coordination shell at ~2.3 Å with a coordination 

number between 2 and 3 (Tab. 5.14). A further Se neighbor was distinguished at a distance 

~3.55 Å. The limited number of detected Se atomic neighbors indicates a small cluster size. 

The structural parameters shown in Table 5.16 are overall reasonable. 

 

Tab. 5.14: Fitted structural parameters from XAFS incorporation experiments of Se doted pyrite with 

Se4+ initially present in solution. Accuracies of fitted structural parameters are noted in the brackets as 

uncertainties of the last digit (E0 = absorption edge; CN = coordination number; R = atomic distance to 

the absorber; σ2 = Debye-Waller factor; ∆E0 = energy shift).   

Sample Coordination shell  Further shells  
  E0 [eV] CN R [Å] σ

2 [Å²] CN R [Å] σ
2 [Å²] ∆E0 [eV] R-factor  

Initial Precipitat. 12658.2 3.00 Se (28) 2.29 (1) 0.0073 (6) 1.83 Se (3) 3.63 (9) 0.0067 (19) -7.2 (7) 0.010 

Crystal growth 12658.4 2.16 Se (19) 2.32 (1) 0.0057 (5) 1.50 Se (30) 3.50 (4) 0.0128 (7) 4.5 (14) 0.018 
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Fig. 5.20: XAFS-spectra of selenium doted pyrite with initial dissolved Se4+ containing XANES-spectra 

(left), kq-space (up right, k: colored lines, q: black symbol) and R-space (down right). Elemental 

selenium reference spectra (red); Se incorporation in pyrite with initially dissolved Se4+ by 

instantaneous precipitation experiments (green); Se incorporation in pyrite of initially dissolved Se4+ by 

crystal growth experiments (blue).  

 

Reaction pathway of Se incorporation into pyrite with initially dissolved selenite 

The synopsis of spectroscopic investigations and the thermodynamical calculations 

concerning the reaction pathway of Se doted pyrite using Se4+ shows coinciding results. The 

XAFS investigations of the precipitates of batch and MFR-experiments have in common that 

a reduction of Se4+ to Se0 occurred during the incorporation. The calculated most important 

species occurring in solution in the batch-doting experiments are Fe(HS)2, Fe2+, H2S, HSeO3-

and H2SeO3 (Tab. 5.4). Since the polysulfides are much less concentrated than H2S, it is 
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assumed that the pyrite precipitation follows mainly the Berzelius pathway (Ch. 2.3.4). 

Although the solution is oversaturated with respect to pyrite, mackinawite, S0, Se0, ferroselite, 

achavalite and FeSSe, only pyrite and Se0 precipitate. The predominant dissolved species in 

the solution for crystal growth-doting experiments are H2S, Fe2+ and HSeO3
- (Tab. 5.6). 

Again, the predicted precipitations of the minerals are pyrite and Se0. To sum up, the XAFS-

results are consistent with those achieved from thermodynamic calculations. In accordance 

to equation 5.3, a reduction of Se4+ to Se0 is likely to take place concurrent with the oxidation 

of dissolved sulfide species.  

 

Structure of Se doted pyrite with initially dissolved Se2- 

The Se doted pyrite using dissolved Se2- (E0: 12657.1 eV) XANES curve progression in the 

instantaneous precipitation experiment (Ch. 4.1; Tab. 5.3) is similar to those of ferroselite 

(E0: 12656.8 eV; for comparison: Scheinost et al., 2008 in Appendix B), showing a valence 

state of –I (Fig. 5.21). The distance of 2.21 Å between selenium and sulfur (CN ~1) in the first 

shell corresponds to the short S-S distance (2.16 Å) in pyrite. The iron neighbor at 2.35 Å as 

well as following iron and sulfur shells indicate a substitution of S by Se in selenide doted 

pyrite, yielding in a FeSxSey compound which may be described best by a slightly distorted 

pyrite structure (Fig. 5.22). The structural parameters as well as their uncertainties suggest a 

good fit of the EXAFS spectrum. 



105 

 

 

 

Fig. 5.21: XAFS-spectra of samples of Se incorporation in pyrite with initially dissolved Se2- containing 

XANES-spectra (left), kq-space (up right, k: colored lines, q: black symbols) and R-space (down right). 

Se2- reference spectra (yellow); Se incorporation in pyrite with initially dissolved Se2- by instantaneous 

precipitation experiments (red); Se0 reference (green); Se incorporation in pyrite with initially dissolved 

Se2- by crystal growth experiments (blue).  

 

The differences in the crystal structure of the selenium doted pyrite compared to natural 

pyrite can be compared (Fig. 2.5). As discussed earlier, the formation of pyrite under 

standard conditions follows a dissolution-precipitation pathway, with mackinawite as mainly 

participating precursor phase (Ch. 2.3.4). In this regard, it is important to note that the initially 

dissolved selenide is first of all incorporated as Se2- into mackinawite, followed by the 

dissolution of mackinawite and the release of Se. Finally, selenium was incorporated as Se- 

into pyrite. If mackinawite dissolves, the FeS transition intermediate Fe(HS)2 forms as 
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necessary precursor for the pyrite formation in the Berzelius reaction. Hence, it is likely that 

selenide does not oxidize as predicted in the thermodynamic calculations (Ch. 5.1), because 

it is bound as Fe(HSe)2 cluster, preventing selenide from oxidation. 

XANES spectra of Se incorporated into pyrite using dissolved Se2- in crystal growth 

experiments (Ch. 4.2; Tab. 5.5) show a predominant oxidation of Se2- to Se0, and the k-edge 

of 12658.3 eV as well as the curve progression corresponds to Se0 reference. Different Se 

shells with Se in the first shell at a distance of 2.29 Å (CN ~2) imply the presence of Se0. A 

sulfur neighbor at the short distance of ~2.2 Å was not identified. The small number of 

detected atomic selenium neighbors suggests a small cluster size (Tab. 5.15).  

 

 

Fig. 5.22: The crystal model illustrates the EXAFS-results of the instantaneous precipitation 

experiments, showing Se doted pyrite with initially dissolved Se2- in solution. Se- is substituting S- in 

the crystal lattice, resulting in small shifts towards xyz-axis, Distances are given in Å. 
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The changing valence states of Se2- to Se0 in crystal growth experiments are in good 

agreement with sorption studies showing that Se2- is oxidized to Se0 under acidic conditions 

(Liu et al., 2008). XAFS results are also consistent with the modeled predominant field 

valence state of incorporated selenium into pyrite.  

 

Tab. 5.15: Fitted structural parameters from XAFS incorporation experiments of Se doted pyrite with 

Se2- initially present in solution. Accuracies of fitted structural parameters are noted in the brackets as 

uncertainties of the last digit (E0 = absorption edge; CN = coordination number; R = atomic distance to 

the absorber; σ2 = Debye-Waller factor; ∆E0 = energy shift).   

Sample Coordination shell  Further shells  
  E0 [eV] CN R [Å] σ

2 [Å²] CN R [Å] σ
2 [Å²] ∆E0 [eV] R-factor  

Initial Precipitat. 12657.1 0.97 S (14) 2.21 (1) 0.0080 (20) 1.25 Fe (6) 2.35 (0) 0.0016 (3) 2.8 (8) 0.010 

     0.36 S (15) 2.98 (2) 0.0099 (61)   

      0.66 Fe (26) 3.44 (3) 0.0054 (34)   

      0.90 S (50) 3.87 (5) 0.0118 (45)   

Crystal growth 12658.3 1.99 Se (13) 2.29 (1) 0.0015 (2) 1.19 Se (32) 3.55 (3) 0.0070 (16) 6.6 (12) 0.015 

 

Reaction pathway of Se incorporation into pyrite with initially dissolved selenide 

The XAFS results of the Se doted pyrite experiments using aqueous Se2- are inconsistent. In 

the highly supersaturated solutions accompanied with an instantaneous precipitation, the 

incorporated selenium does substitute sulfur and forms a FeSxSey-compound. The reaction 

leading to the precipitation of such a solid solution could be described as in equation 5.5: 

Fe2+
(aq) + HS-

(aq) + HSe-
(aq)   →  FeSSe(s) + H2(g)                                           (5.5). 

The thermodynamic calculations show that the dissolved species initially present in the 

solution before the reaction are H2S, Fe(HS)2, Fe2+, HSe-, and H2Se (Tab. 5.3). Again, mainly 

monosulfidic species apart from the Fe(HS)2 cluster are present in the solution. Hence, it is 

probable that the Berzelius pathway is dominating for the formation of pyrite. The solution is 

oversaturated with regard to pyrite, mackinawite, Se0, ferroselite, achavalite and the solid 

solution phase FeSSe. The calculated phases precipitating from solution are pyrite     

(1.73·10-2 M) and Se0 (1·10-3 M).  
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On the contrary, the spectroscopic investigations of the Se doted pyrite with initially Se2-

present in the solution in crystal growth experiments point out, that Se0 becomes 

incorporated into the pyrite structure. This is in agreement with the thermodynamic results for 

both, the instantaneous precipitation as well as for the crystal growth experiments. 

Calculating the equilibrium of the solution, the results show that only pyrite and elemental 

selenium precipitate (Tab. 5.5). Though the solution is oversaturated with regard to elemental 

selenium, ferroselite and the FeSSe solid solution, the calculations predict that the whole 

initial amount of dissolved Se2- precipitates as Se0 and not as iron selenide compound (e.g. 

ferroselite, FeSSe).  

The XAFS results show that both types of the structural incorporation of Se2- into pyrite are 

generally possible. It is likely that the kinetic of pyrite precipitation is the controlling factor if 

Se2- is incorporated as Se- or as Se0, because the precipitation of mackinawite as pyrite 

precursor phase takes place instantaneously after mixing of the separated S, Se, Fe 

solutions. The kinetic itself is controlled by the concentrations of the initial reactants and the 

extent of supersaturation with regard to the respective mineral phases. A summary of the 

aqueous selenium dotation experiments together with the results of the thermodynamic 

calculations is shown in Tab. 5.16. 

 

Tab. 5.16: Summary of the aqueous Se doted iron sulfide experiments and the thermodynamical 

calculations showing the initial Se valence state in solution, the type of experiment and the determined 

incorporated Se valence state. 

Synthesized mineral 
and initial valence state 
in solution 

Instantaneous 
precipitation Crystal growth Thermodynamical 

calculations 

Mackinawite and Se 2- Incorporation of Se 2-  
Substitution of S by Se Not determined Precipitation of 

Se0, Pyrite, Mackinawite 

Mackinawite and Se 4+ Incorporation of Se 0 

Reduction of Se 4+ Not determined Precipitation of 
Se0, Pyrite, Mackinawite 

Pyrite and Se 2- Incorporation of Se 2-  
Substitution of S by Se 

Incorporation of Se 0 

Oxidation of Se 2- 
Precipitation of 

Se0, Pyrite 

Pyrite and Se 4+ Incorporation of Se 0 

Reduction of Se 4+ 
Incorporation of Se 0 

Reduction of Se 4+ 
Precipitation of 

Se0, Pyrite 
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On the basis of the results, the conceptual model of initially dissolved Se4+ present in the 

solution under standard anoxic and acidic conditions expects Se0 to become predominantly 

incorporated into pyrite and mackinawite. With regard to the incorporation by using Se2- in 

solution, generally both, the substitution of S by Se in pyrite and mackinawite as well as the 

oxidation of Se2- to Se0 are possible. The type of Se oxidation state depends on the kinetics. 

Finally, the structural fixture of Se into iron sulfides by substitution of S and the precipitation 

of highly insoluble Se0 (~10-9 M) fixed in iron sulfides within multi-barriers of a HLW repository 

are promising, because this would significantly decrease the Se mobility. 

 

Selenium doted pyrite condensed from gaseous phase 

The XANES reference spectra (trigonal Se0, Na2Se) as fingerprint were compared with the 

XANES spectra of the sample (Ch. 4.3) to determine its 

selenium valence state (Fig. 5.23). The k-edge value of 

Se0 as a reference for energy calibration (E0: 

~12658 eV) is ~1 eV higher than the reduced valence 

state Se2- in the form of Na2Se (E0: 12656.8 eV). The 

XANES spectra of selenium incorporated into pyrite is 

similar to the valence state of elemental Se0. The curve 

shape is very similar to the Se0-XANES spectra and the 

k-edge is 12657.6 eV (Tab. 5.17), indicating that 

incorporated selenium is zero-valent. 

 

Fig. 5.23: XANES spectra of 1.) Na2Se (blue), 2.) Se doted 

pyrite, synthesized by CVT (green), 3.) Se0 (red). 
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Tab. 5.17: Fitted structural parameters of the condensation from gaseous phase experiment of 

selenium doted pyrite. Accuracies of fitted structural parameters are noted in the brackets as 

uncertainties of the last digit (E0 = absorption edge; CN = coordination number; R = atomic distance to 

the absorber; σ2 = Debye-Waller factor; ∆E0 = energy shift).   

     
Sample  Coordination shell Further shells  

 E0 [eV] CN R [Å] σ
2 [Å²] CN R [Å] σ

2 [Å²] ∆E0 [eV] R-factor 

          

Se0 pyrite 12657.6 2.1 Se (2) 2.38 (0) 0.0085 (3) 3.0 S (2) 2.96 (0) 0.0038 (6) -1.8 (3) 0.011 

     1.8 Se (1) 3.42 (0) 0.0078 (3)   

 

The Se0 incorporation into pyrite by condensation from gaseous phase is also shown by 

EXAFS investigations (Fig. 5.24). Several selenium shells were considered for fitting 

experimental data and this result suggests the incorporation of Se in a crystalline Se0-type 

environment with selenium neighbor in coordination shells at 2.38 Å and 3.42 Å (Tab. 5.17).  

 

 

Fig. 5.24: EXAFS spectra of selenium doted pyrite showing the noted atomic neighbors of selenium 

together with the coordination number and atomic distance in Å. The figure shows four spectra (two for 

[Chi(R)] and two for Re[Chi(R)]), whereas the lines are representative for the sample, the dots for the 

fit. Accuracy of fitted structural parameters: Coordination number ± 25%, radial distance ± 0.01 Å, 

Debye-Waller-factor ± 0.00005 Å2. 
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The detected sulfur neighbor at 2.96 Å belongs to the small amount of the SeS-compound, 

which forms after pyrite single crystal formation is finished due to the lack of further iron 

supply (Ch. 5.2). Neither Fe neighbors could be detected, nor the first S neighbor at 2.14 Å, 

which is the spatial distance for the double bonding of sulfur in pyrite. The structural 

parameters of the sample are good. The shift of energy is very low, as well as the 

uncertainties.   

Altogether, XAFS analysis indicates that no remarkable substitution of S by Se in pyrite 

occurs during synthesis. Therefore, it is proposed that following reaction (Eq. 5.6) takes 

place, leading to the condensation of Se0 in pyrite: 

FeBr2(g) + H2(g) + X2 (X = S, Se)(g) → FeS2(s) + Se0
(s) + 2 HBr(g)                    (5.6). 

The reason for Se0 being incorporated instead of Se- or Se2- may be the high boiling point of 

Se0 at 685° C. It is well possible that gaseous seleni um does condensate before it reacts with 

iron at the cooler side of the quartz vessel. Hence, it may be difficult to synthesize selenium 

doted pyrites with selenium substituting sulfur in the crystal lattice, because pyrite 

decomposes above 743° C. Alternatively, further res earch regarding this topic would be of 

interest if a lower gradient is chosen, maybe at 740° – 690° C. Due to the formation kinetics 

(Ch. 4.3) of pyrite synthesis by condensation after sublimation, this should take much longer. 
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Summary and Conclusion 

 

 

The removal of the highly radio-toxicologically relevant element selenium by incorporation 

into mackinawite as important precursor and pyrite as most common near-surface iron 

sulfide was examined in this study. Two different experimental setups in total were 

developed to point out how and in which oxidation state Se4+ and Se2- become incorporated 

into pyrite and mackinawite under defined anoxic and acidic conditions at 25° C and 1 bar 

pressure in a glovebox (1) from aqueous solution in batch-experiments by spontaneous 

precipitation, simulating mineral nucleation, (2) in a mixed-flow reactor simulating 

groundwater flow and crystal growth. Thermodynamic calculations were carried out to 

support the experimental results and offer a comprehensive insight into the initially dissolved 

species present in solution and show the predominant phases of the Fe-S-Se system over 

the considered pH-Eh-range. Additionally, (3) a high-temperature synthesis of selenium 

doted pyrite by condensation from the gaseous phase was achieved by chemical vapor 

transport.  

In conclusion, the spontaneous precipitation and crystal growth experiments have in common 

that no measurable other phase precipitated during the syntheses of pure Se doted pyrite or 
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mackinawite. The selenium within these grains is heterogeneously distributed with a higher 

concentration in the center of the solid. The probable reason for this is the decreasing 

selenium to sulfur ratio with time. The reason for this observation is the continuous 

dissolution of S0 which precipitated initially shortly after mixing due to the oxidation of S2- by 

the reaction with (and reduction of) Fe3+. 

Thus, selenium is effectively immobilized in an anoxic environment as long as iron sulfides 

are present. The uptake of selenium by pyrite and mackinawite is remarkably high with an 

average of 98% of the initial Se concentration of 10-3 to 10-6 mol/L. This demonstrates the 

high affinity of selenium with different valence states to iron sulfides. There was no significant 

difference in the uptake of selenium with respect to the initial solution composition nor to the 

hydrochemical composition, which was adjusted to acidic conditions up to neutral conditions 

at pH-values of 3.5 – 7 and Eh-values between -200 – 100 mV.  

The structural investigations of incorporated selenium in mackinawite and pyrite with selenite 

initially present in the solution showed the same results in form of a reduction of Se4+ to Se0 

for the instantaneous precipitation and crystal growth-experiments. This is in accordance with 

the thermodynamical calculations which predicted the precipitation of pyrite and elemental 

selenium. The most likely reason for the Se4+-reduction is their reaction with oxidizing 

dissolved sulfur species, mainly H2S and HS-. 

The identification of the crystal structure of Se doted mackinawite using dissolved Se2- for the 

instantaneous precipitation experiment shows a substitution of S2- by Se2- in a mackinawite-

like environment. On the contrary, the thermodynamic calculations predict the precipitation of 

elemental selenium under these conditions. Since Se0 is the most stable phase, kinetically 

reasons are assumed to lead the observed structural substitution.     

There are clear differences between the instantaneous precipitation and crystal growth 

experiments which were carried out in aqueous solution with regard to the crystal structure of 

incorporated selenide. After an instantaneous precipitation of mackinawite as pyrite 

precursor phase in instantaneous precipitation experiments, a substitution of S- by Se- in 

selenide doted pyrite was detected, leading to a slightly disturbed pyrite crystal structure. On 
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the contrary, for lower Fe-S-Se-concentrations and in case of a slower precipitation of 

selenium doted pyrite in mixed-flow reactor experiments, Se2- retention by incorporation is 

mainly coupled with a change in the oxidation state and selenium is incorporated as Se0 into 

pyrite without structural bonding. Thermodynamic calculations show that Se0 is expected to 

be the most stable selenium phase. The results indicate that the substitution of sulfur by 

selenium in pyrite is kinetically controlled. For acidic and anoxic conditions, this is only 

possible for highly supersaturated solutions, accompanied with a direct precipitation of the 

initial metastable mackinawite phase directly after mixing of the separated Fe, S, and Se 

solutions. It is noteworthy that selenium does not oxidize to Se0 during the dissolution of 

mackinawite and the re-precipitation to pyrite, because, in analogy to the natural pyrite 

formation, it is likely that selenide is bound as aqueous Fe(HSe)2 cluster during the 

recrystallization process. 

The overall predominant species and phases have been determined by calculated stability 

diagrams for the solution which has been used in crystal growth experiments, showing the 

total overlap of pyrite and Se0 stability fields. But even if elemental selenium is incorporated 

into pyrite, it is promising with respect to the retention of selenium since Se0 is highly stable 

because of its low solubility product. 

Finally, the synthesis by condensation from the gaseous phase led to pure selenium doted 

pyrite single crystals. Selenium is homogeneously distributed within the grains which have a 

mean diameter of 5 mm. With respect to the valence state of incorporated selenium, just 

zero-valent selenium could be detected without further structural bonding to the pyrite crystal 

structure. This may be the reason for the low amount of incorporated selenium with a 

distribution ratio of 0.09 compared to the initial ratio of the reactants. Obviously, only 

gaseous sulfur and not gaseous selenium reacts with iron. It is likely that the high boiling 

point of Se0 (685° C) leads to a condensation of selenium befor e a reaction with iron can 

occur.  

The conclusion of this study is that pyrite, which is widespread in anoxic aquatic sediments 

and part of the host rocks of some high-level waste repositories and its precursor 
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mackinawite, are probably important minerals regarding the decontamination of selenium. 

The capacity for the incorporation of selenium is extraordinarily high. As well, selenium in its 

different oxidation states shows a high affinity to iron sulfides. Finally, this can lead to the 

reduction of the Se-mobility of 79Se from a HLW-disposal site into the biosphere.  

The 79Se radioisotope is predominantly available as Se4+ within the vitrified glasses which 

capture the HLW. The structural analyses point out that during the precipitation of pyrite and 

mackinawite selenite reacts with sulfide which leads to the reduction into the highly insoluble 

Se0. Additionally, this lowers the Se-mobility drastically. 

The determination of the crystal structure has shown that Se2- can be bound as Se0 or as a 

FeSxSey-compound, and that a substitution of S by Se is generally possible, depending on 

kinetics. In either case, the dissolved selenide does precipitate, which lowers the Se-mobility 

too. Further investigations should be done to analyze, if there are differences regarding the 

stabilities of Se0 being incorporated into pyrite as crystal defect or as FeSxSey accompanied 

with a structural bonding of Se into the pyrite-like structure. 

With respect to the hydrochemical conditions of pyrite formation, elemental selenium is the 

thermodynamical most stable species. This shows that the scientific common point of view 

with respect to the similarity of the chemical behavior of sulfur and selenium is an 

oversimplification, because it depends highly on the oxidation state. There are differences, 

for example of the stability fields of S0 and Se0. The stability of elemental sulfur is restricted 

to a comparatively small field under acidic and oxic conditions, while the stability field of 

elemental selenium is much broader and does cover acidic up to alkaline as well as oxic and 

anoxic conditions. 
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Appendix 

A) Thermodynamic equilibrium constants 

 

Tab.: Dissolved sulfur phases. 

SO4
-2 SO4

-2 ⇆ SO4
-2 (log10 K = 0.0) 

HSO4
- H+ + SO4

2- ⇆ HSO4
- (log10 K = 1.988) 

H2S(aq) SO4
2- + 10H+ + 8e- ⇆ H2S + 4H2O (log10 K = 40.644) 

H2S(g) H2S ⇆ H2S (log10 K = -0.997) 

HS- H2S ⇆ HS- + H+ (log10 K = -6.994) 

S2- HS- ⇆ S2- + H+ (log10 K = -12.918) 

S2
2- HS- ⇆ S2

2- + H+ (log10 K = -14.528) 

S3
2- HS- ⇆ S3

2- + H+ (log10 K = -13.282) 

S4
2- HS- ⇆ S4

2- + H+ (log10 K = -9.829) 

S5
2- HS- ⇆ S5

2- + H+ (log10 K = -9.595) 

S6
2- HS- ⇆ S6

2- + H+ (log10 K = -9.881) 

 

Tab.: Dissolved iron phases. 

Fe2+ Fe2+ ⇆ Fe2+ (log10 K = 0.0) 

Fe3+ Fe2+ ⇆ Fe3+ + e- (log10 K = -13.020) 

FeOH2+ Fe+3 + H2O ⇆ FeOH2+ + H+ (log10 K = -2.19) 

FeOH+ Fe+2 + H2O ⇆ FeOH+ + H+ (log10 K = -9.5) 

Fe(OH)3
- Fe+2 + 3H2O ⇆ Fe(OH)3

- + 3H+ (log10 K = -31.0) 

Fe(OH)2
+ Fe+3 + 2H2O ⇆ Fe(OH)2

+ + 2H+ (log10 K = -5.67) 

Fe(OH)3  Fe+3 + 3H2O ⇆ Fe(OH)3 + 3H+ (log10 K = -12.56) 

Fe(OH)4- Fe+3 + 4H2O ⇆ Fe(OH)4
- + 4H+ (log10 K = -21.6) 

Fe2(OH)2
4+ 2Fe+3 + 2H2O ⇆ Fe2(OH)2

4+ + 2H+ (log10 K = -2.95) 

Fe3(OH)4
5+ 3Fe+3 + 4H2O ⇆ Fe3(OH)4

5+ + 4H+ (log10 K = -6.3) 

  

Tab.: Dissolved iron-sulfur phases. 

FeSO4 Fe2+ + SO4
2- ⇆  FeSO4 (log10 K = 2.25) 
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Fe(SO4)2
- Fe3+ + 2SO4

2- ⇆ Fe(SO4)2
- (log10 K = 5.38) 

Fe(HS)2 Fe2+ + 2HS- ⇆ Fe(HS)2 (log10 K = 8.95) 

Fe(HS)3
-  Fe2+ + 3HS- ⇆ Fe(HS)3

- (log10 K =10.987) 

 

Tab.: Dissolved selenium phases. 

HSe- SeO3
2- + 7H+ + 6e- ⇆ HSe- + 3H2O (log10 K = 42.514) 

H2Se HSe- + H+ ⇆ H2Se (log10 K = 3.8) 

SeO4
2- SeO4

2- ⇆ SeO4
2- (log10 K = 0.0) 

SeO3
2- SeO4

2- + 2H+ + 2e- ⇆ SeO3
2- + H2O (log10 K = 30.256) 

H2SeO3 SeO3
2- + 2H+ ⇆ H2SeO3 (log10 K = 11.25) 

HSeO3
- SeO3

2- + H+ ⇆ HSeO3
- (log10 K = 8.5) 

HSeO4
-  SeO4

2- + H+ ⇆ HSeO4
- (log10 K = 1.66) 

 

Tab.: Stable phases. 

Magnetite Fe3O4 + 8H+ ⇆ 2Fe3+ + Fe2+ + 4H2O (log10 KSP = 3.737) 

Hematite Fe2O3 + 6H+ ⇆ 2Fe3+ + 3H2O (log10 KSP = -4.008) 

Maghemite Fe2O3 + 6H+ ⇆ 2Fe3+ + 3H2O (log10 KSP = 6.386) 

Goethite FeOOH + 3H+ ⇆ Fe3+ + 2H2O (log10 KSP = -1.0) 

Fe(OH)3(a) Fe(OH)3 + 3H+ ⇆ Fe+3 + 3H2O (log10 KSP = 4.891) 

Fe3(OH)8 Fe3(OH)8 + 8H+ ⇆ 2Fe3+ + Fe2+ + 8H2O (log10 KSP = 20.222) 

Sulfur S + 2e- ⇆ S2- (log10 KSP = -15.026) 

Selenium Se + H+ + 2e- ⇆ HSe- (log10 KSP = -17.322) 

FeS(ppt) FeS + H+ ⇆ Fe2+ + HS- (log10 KSP = -3.915) 

Mackinawite FeS + H+ ⇆ Fe2+ + HS- (log10 KSP = -4.648) 

Greigite Fe3S4 + 4H+ ⇆ 2Fe3+ + Fe2+ + 4HS- (log10 KSP = -45.035) 

Pyrite FeS2 + 2H+ + 2e- ⇆ Fe2+ + 2HS- (log10 KSP = -18.479) 

SeO2 SeO2 + H2O ⇆ SeO3
2- + 2H+ (log10 KSP = -8.380) 

Ferroselite FeSe2 + 2H+ + 2e- ⇆ Fe2+ + 2HSe- (log10 KSP = -18.580) 

Fe2(SeO3)3 Fe2(SeO3)3 ⇆ 2Fe3+ + 3SeO3
2- (log10 KSP = -35.430) 
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B) Selected published XAFS data for comparison 

 

 

Selenium XANES spectra for reference standards (Ryser et al., 2005). 
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Selenium K-edge XAS spectra of Se(IV) sorbed to synthetic montmorillonite at pH 6.0 in the absence 

of Fe2+, in comparison to selected references with Se oxidation states of IV, 0, -I and -II (left, XANES; 

middle, EXAFS; right, Fourier transform of EXAFS) (Charlet et al., 2007). 

 

 

 

 

Normalized XANES spectra of different Se standards (HSeO3
-, green; Se0 amorphous, red; Se0 

crystalline, black; FeSe, blue) (Breynaert et al., 2008).  
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Se K-edge XAFS spectra of references. XANES (left), EXAFS (center) and Fourier transform (right) 

(Scheinost et al. 2008). 


