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On bounded perturbations of linear operators

Haifeng Ma and Peter Volkmann

1. Introduction. Our starting-point is Theorem 1 of Donald H. Hyers [3].
We state it almost as in [3], but we do not require the space X to be a Banach
space (because this is not necessary).

Hyers’ Theorem. Consider f : X — Y, where X is a (real or complex)
vector space and Y is a Banach space. Suppose 3 > 0. Then

) If(@)+fy) = fle+yl < (r,yeX)

implies the following:
IT) There exists an additive function L : X —'Y such that

If@)—Lal <8 (ze€X).

The function L is unique, and it is given by

(1) Le= lim —f(2"z)  (x € X).

n—oo 21

Observe that II) implies

[f(x)+ fly) = flz+y)| <38 (z,y € X).

In the following example conditions I), II) are not equivalent: X =Y = R,
f R — R given by f(x) = sin % (z® + 5x), L = 0 (the zero operator). We
have Range f = [—1,1], and from 2f(£1) — f(£2) = +3 we easily get the
range of the function

f@)+ fly)—flz+y) (v,y € R)

to be the interval [—3,3]. So we have II) with = 1, but I) only can be
satisfied by numbers g > 3.

In the next paragraph we shall use Hyers” Theorem to characterize functions
f =L+ r, where L is a linear and r is a bounded (non-linear) function. In
paragraph 3 the case where the perturbation r has values in a compact set
will be considered; for this we assume f to be continuous (being defined on
a normed space X).



From all the numerous generalizations of Hyers’ Theorem let us only refer to
[7], which also had been used in the paper [1] by Roman Badora, Barbara
Przebieracz, and the second author. Laszlé Székelyhidi [5] uses Hyers’ Theo-
rem, when characterizing linear operators.

2. Bounded perturbations. The following Remark will be used in the se-
quel.

Remark 1. Let a : X — Y be a bounded additive function, where X is a
(real or complex) vector space and Y is a normed space. Then a = 0.

Indeed, if |ja(z)|] < v < oo (x € X), then we get from a(nz) = na(x)
(n € N,z € X) that

1 1
S < =
la@) = = la(ra)] < 7.

and n — oo leads to ||a(z)| =0 (z € X).

Remark 1 also gives the uniqueness of L in Hyers’ Theorem. Suppose || f(z)—
Lz|| < g for additive L = Ly and L = Ly. Then a = L; — Ly is additive and
lla(x)|| <28 (z € X), hence a =0, i.e., L1 = Lo.

Theorem 1. Consider f : X — Y, where X 1s a vector space and Y 1is a
Banach space, both spaces having the same scalar field A of real or complex
numbers. Suppose A CY, A being a bounded and closed set. Then the follow-
ing two statements are equivalent:

(P) f=L+r, where L : X =Y is linear and r(x) € A (z € X).

(Q) There exist bounded sets B,C C'Y such that

f@)+fly)—fle+y) eB  (z,ycX),

AM(x) — f(Ax) e \A+C (Ae Az eX).

Proof. (P) = (Q): From (P) we get f(x) + f(y) — f(x +y) =r(z) +r(y) -
r(x+y) € A+ A— A, hence we can take B=A+ A — A.

Furthermore we get Af(z) — f(Az) = Mr(z) —r(Az) € AMA — A, hence we can
take C' = —A.

(Q) = (P): The set B being bounded, we can apply Hyers’ Theorem to get
from (Q) the existence of an additive L : X — Y such that r = f — L is
bounded. Let us assume

r(x) € D (x € X), D being a bounded subset of Y.
(Q) implies for A =n € IV that

nr(z) —r(nz) € nA+C (x € X),
hence

1 1
r(x) e A+ -C+ =D (x € X),
n n
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and n — oo leads to r(z) € A (z € X).

It remains to show the homogeneity of L: We fix A € A, then (Q) implies
ALz 4+ Ar(x) — L(Ax) —r(Ax) e NMA+C (x € X),

hence
ALz — L(Az) e \A+C — MA+ A =R, (x € X).

R being a bounded set and ALz — L(Ax) being additive with respect to =, we
can apply Remark 1 to get L(Ax) = ALz (z € X). Here A\ € A is arbitrary,
which gives the desired result.

Remark 2. If X in Theorem 1 is a normed space, then f is continuous if
and only if L,r are continuous. Indeed, if f is continuous, then the linear
operator L = f — r is bounded in a neighborhood of the origin of X, hence
L is continuous, and finally also r = f — L is continuous.

Remark 3. For A= Rand A= {z |z €Y, |z| <&} (where € > 0), Theo-
rem 1 is known from the paper [2] by Roman Ger and the second author.

3. Compact perturbations. Under the assumptions of Hyers’ Theorem,
suppose V' C Y.V being bounded, closed, and convex. If

(2) f@)+fly)—flz+y eV (v,y€X),
then
(3) f(x)— Lz eV (x € X)

easily follows (cf., e.g., [6] by Jacek Tabor or [7]). Indeed, for z € X we have

n

@) S - ) =30 f (27 ) - (),

v=1

where 2f(2"7'z) — f(2"z) € V (cf. (2)). Let us take (1) into account, then
n — oo in (4) leads to (3).

Theorem 2. Let f : X — Y be continuous, where X 1is a real normed
space and Y a real Banach space. Then the following two statements are
equivalent:

(R) There is a continuous linear operator L : X — Y and a compact set
C CY such that f(x) — Lz € C (z € X).

(S) There is a compact set V CY such that

f@)+ fly) = fle+y) €V (z,y € X).



Proof. (R) = (S): From (R) we get
f@)+fly) —fla+y) e C+C-C (z,y € X),
and obviously V := C' 4+ C — C' is compact.

(S) = (R): We assume V to be compact and convex (otherwise we replace
this compact set by its closed convex hull, which is compact by a result of
Stanistaw Mazur [4]). Then we get (3), L : X — Y being additive (and
continuous according to Remark 2). Thus L : X — Y is a continuous linear
operator and (R) holds for C' = V.

Observe that the foregoing proof has a simple structure: From (R) we get (S)
by taking V' = C' + C — C, and from (S) we arrive at (R) by choosing C' to
be the closed convex hull of V.

Remark 4. Theorem 2 also holds for complex spaces X, Y, if to (S) we add
the condition

(5) sup lif(x) — f(iz)| < oo.

Indeed, (S) already gives (R), where L : X — Y is a continuous [R-linear
operator. By the boundedness of f — L and by (5) we have

1f(@) — Lall < a, llif(2) - f(iz)]| < 7 (¢ € X)
for some o,y > 0. Then
|iLx — L(ix)|| <
< liLe — if @] + llif (2) - f(i)l| + [ f (i) — L(iz)]| < 20+~

holds for all x € X. Consequently, the additive function a(z) = iLz —
L(iz) (x € X) is bounded, and from Remark 1 we get a = 0. This shows
L(iz) =iLx (x € X), hence the R-linear operator L also is complex-linear.
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