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Abstract

More than 10% of all women in the western world get breast cancer. Mammography
as a screening system is able to detect breast cancer at a diameter of 1cm with a
probability of 68 % (1σ). Higher sensitivity at the order of 5 mm and the use of
non ionising radiation is highly desirable to avoid the development of metastases.
Ultrasound Computer Tomography (USCT) currently developed at KIT promises to
be such a device.

The USCT project requires precise simulation data of realistic breast models for
the optimisation and further development of its reconstruction algorithms. Up to
now it was not possible to get such simulations within the alotted time frame of one
or a few days of computing time.

For the solution of the ultrasound wave equation the integral equations were
numerically solved. The main approximation which is made in this numerical
solution is the assumption that density changes are negligible in human tissue. The
errors introduced by this assumption were analysed and found to introduce no
change in time of arrival. The error of the spatial energy distribution differs by up
to 10 %. Furthermore, the absorption is not included in the model.

An existing analytical solution for a plane wave scattered at a sphere was used
to verify the results of the developed numerical solution. The resulting differences
of the energy distribution remain below 3 % and were 0.06 % in average. In addition,
the numerical solution was used to simulate the directivity characteristics of a
surface source, yielding results of less than 6 % difference when compared to a
solution in Fraunhofer approximation.

The presented simulations were accelerated by distributed processing. The
required development environment was implemented in this thesis, and enables
Matlab users to distribute arbitrary tasks to a cluster or to cloud computing resources.
The overhead of the implemented solution is measured to be 70 ms per remote call
using a local cloud. This enables efficient speed-ups even for short tasks, e.g. 192
tasks of 60 s, the solution is 160 times faster than sequential processing.

Using the available infrastructure of 720 cores it was for the first time possible
to conduct several full simulations for the full USCT system at a resolution of 1283

voxels and fmax = 140 kHz for all 628 emitters in less than one day, corresponding
to a speed-up of 650.

This infrastructure was used to create several test-cases using a realistic breast
model. The test cases were used for challenging the reconstruction using the Syn-
thetic Aperture Focussing Technique (SAFT) and to explore the imaging limits of the
USCT system. Since SAFT is based on the Born approximation, multiple scattering
is not included in the reconstruction. Our simulations show that only 1 % of the
scattered energy goes into multiple scattering.

The computational limits allowed only frequencies of up to 140 kHz to be sim-
ulated. Scaled to the 3.5 MHz of USCT the sidelength of one voxel (dr = 2.1 mm)
corresponds to dr = 60 µm. This was used to simulate microcalcifications with
60 µm and 120 µm, the larger of which can be clearly seen.

This thesis provides the first precise simulation system of the full USCT and
creates artificial measurement data (890 000 A-scans) in less than one day. The
simulations were used to evaluate the image quality achievable with SAFT and
influence the future development for breast cancer imaging with USCT.
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CHAPTER

ONE

INTRODUCTION

This thesis concerns the simulation of the 3D Ultrasound Computer Tomography
(USCT) system, a novel device for medical breast cancer detection.

The early detection of breast cancer is very important because the earlier it can
be detected the lower is the probability that the cancer has spread and created
metastases. Once metastases are created the patient’s survival rate drops signifi-
cantly. Today the average size at which cancer is found using mammography is at
10 mm with a probability of 68 % (1σ) [MSM+03], however mammography can not
frequently be applied because of its ionising radiation [GN11, OG01] and therefore
misses fastly growing and therefore aggressive cancers [VSHS11]. Palpation, which
can be made more frequently finds tumours at a size of 20 mm in average, a size
at which the average probability for metastases is at 60 % [FAB93]. The goal of the
USCT project is to develop a new medical device that does not make use of ionising
radiation and which is capable to detect breast cancer tumors reliably at a size of
5 mm, where the average probability of spreading is low.

When building novel devices it is desirable to simulate the device before it is
built, so that its design can be evaluated and optimised. Additionally, simulated
data for which the ground truth is known provides valuable knowledge for the
implementation of algorithms that reconstruct the measured data into images.

The goal of this thesis is the simulation of measurement data for ultrasound
applications with a special focus on USCT. The scientific contribution is two fold.
One part is the implementation of a scalable simulation for the scattering of pressure
waves in human tissue which guarantees to deliver correct results within the chosen
approximation. In addition, the second part is the design and implementation
of a computational architecture capable to support the development and USCT
simulations at medium scale of 643 to 2563 voxels which correspond to frequencies in
the range of 70 kHz to 280 kHz. The combination of both parts allows the evaluation
of the imaging capabilities of USCT with respect to the approximations specific to
reflection tomography.

Such simulations were earlier not possible. Finite elements methods (FEM) are
frequently used to compute solutions to similar problems [LBPT05], i.e. solutions to
the Helmholtz equation. However, FEM fail to obtain results of engineering accuracy
unless 10 nodes per wavelength or more are used [LBPT05,IB95]. This is due to both,
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memory problems which occur even when the simulated volume or the frequency
range are reduced and also to computing problems, because the computing time
required scales with the number of voxels. Finite differences are less precise than
finite element methods but offer shorter computing times [Mar84]. Therefore, an
attempt of using finite differences with wave3000 [Inc12] was conducted within the
USCT project. For successful runs, the USCT had to be scaled down from from a
volume of 26× 26× 16 cm3 to 2.6× 2.6× 1.6 cm3 for simulations with pulses using
frequencies of up to 3 MHz [WRS+06].

Several software products implement the spatial impulse response (SIR) method
developed by Stephanishen [Ste73]. It computes the convolution of the incident
field with the object function. Several simulation tools implement this method, such
as Ultrasim [Hol01] which is a Matlab software or Field and FieldII [Jen96, JN00]
with interfaces to Matlab. The latter two apply the far field approach when taking
surface sources into account. The SIR methods, however, are not comparable to the
simulations conducted within this thesis, since they do not provide exact results
because they work within the assumptions of the Born approximation [AD09].
Many other software produces exist whit h claim to provide “real-time” ultrasound
imaging. It can be said in general that they can only provide results with limited
accuracy due to approximations necessary to deliver real-time results.

Simulations of pressure waves in media can also be done by solving the Helmholtz
equation of the problem using conjugate gradient methods. Much work in this field
is published by the Acoustical Imaging faculty of TU Delft [FB93, BZ92, KB91a,
KB91b, AD09]. These formulations form the basis upon which the scalable simula-
tions within this work are developed.

Chapter 2 gives an introduction into the medical background of breast cancer
detection. A short summary about currently practices in breast cancer detection
methodologies leads to the motivations of the design of the USCT system. This
device and the algorithm used for reconstruction are described in detail.

The simulation is created in collaboration with TU Delft and is based on solving
the wave equations for pressure waves in liquids and is shown in chapter 3. The
wave equations are expressed in temporal Fourier domain, because each stationary
case can be solved independently. The corresponding Helmholtz equation [MF53]
of the problem leads to a differential equation in integral form for the pressure
field. To solve this equation we firstly neglect absorption. Secondly, we make the
assumption that scattering on density changes can be neglected. But to keep the
right speed of sound in the different media we adapt the compressibility accordingly.
Thirdly, the Born approximation can optionally be introduced at this point. This
approximation is the first step of the exact solution which is used within this thesis.
The Born approximation is only used in specific cases, that are explicitly mentioned.
In addition, an analytical solution for the case of a plane wave scattered on a sphere
is derived for verification of the numerical results.

The remaining Fredholm integral of the second kind, is solved using a conjugate
gradient method which is derived in chapter 4. This method was originally devel-
oped by Hestenes and Stiefel in 1952 [HS52]. The approach we use in this thesis
is based on the formulations of Kleinman and van den Berg [KB91a, KB91b]. To
obtain an efficient implementation all convolutions are computed as multiplications
in Fourier domain, without which simulations of USCT would not be possible at all.
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Still, a lot of computing power is required. This is why in chapter 5 access to
powerful computing resources is investigated and implemented. We start with
a short survey of the existing architectures normally used for accelerating and
distributing computational problems. This includes traditional High Performance
Computers (HPC), grid, clusters and cloud computing but also the feasibility of
using graphics processors (GPUs) which became popular more recently. The final
solution called PAIN (PArallel INfrastructure), which was implemented provides a
simple but very comfortable access to cluster and cloud computing resources directly
from Matlab. It enables straightforward parallelisation of existing Matlab programs,
with minimal changes to existing source code. Additionally, no licenses need to be
installed on the distributed infrastructure. Only the Matlab compiler is required on
the developers computer. It is included in the campus license. The implementation
of PAIN was targeted at the integration of clusters and cloud computing, but it was
already extended within the SLA for D-Grid project [DGT11, THH12], to also use
grid resources via the gLite middleware. The chapter concludes with benchmarks
that characterise the scalability of PAIN.

In chapter 6 we use the distributed computing infrastructure and the imple-
mented numerical algorithm. Firstly we verify our results with those of the numeri-
cal solution. Subsequently, the approximation in the numerical solution of constant
density is quantified. This is done using the analytical solution for the two possible
cases of reflecting the missing density changes either in the compressibility or in
the speed of sound. Thereafter, the numerical solution is used to simulate several
cases of different objects inside the USCT to evaluate its quality as an imaging sys-
tem. Since the USCT reconstruction algorithm SAFT (Synthetic Aperture Focussing
Technique) is based on the Born approximation artefacts have to be expected when
reconstructing data simulated without making that approximation.

To analyse the effects of the Born approximation in SAFT, we create simulated
data using the same approximation. When reconstructing this data with SAFT we
commit the so called “inverse crime” [Wir04] which refers to the fact of obtaining
better results than possible because the errors in simulation are compensated by
the same errors in reconstruction. In our case this is intended so that we can use
a reconstruction with ideal results for comparison with reconstructions of exact
simulations. The USCT implementation of SAFT has one improvement over the
Born approximation which is to take the spatial distribution of the speed of sound
into account. This “sound speed map” option requires knowledge of the real speed
of sound distribution of the object which is to be imaged. In case of simulations
this is the known ground truth, in case of measurements it can be obtained by
time of flight tomography [DGR12]. We compare the errors introduced by the
Born approximation in SAFT to the corrections introduced by the sound speed map
option.

The correct modelling of the emitter geometry is verified by comparing their
directivity pattern with a tool developed specifically for the simulation of the ultra-
sound emitters of USCT. We furthermore investigate the feasibility of visualising
microcalcifications, which pose the highest challenge in respect to imaging for USCT
and appear in 30 % of the malign tumors in the breast.

Chapter 7 finishes with a discussion of the approximation made, their impact on
simulations and imaging as well as a discussion of the discretisation limits within
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which the simulations were made. Recommendations for future developments are
discussed.



CHAPTER

TWO

ULTRASOUND COMPUTER
TOMOGRAPHY

This chapter gives an introduction into breast cancer, the conventional methods
used today for breast cancer detection and introduces the device and the goals of the
Ultrasound Computer Tomography (USCT) device. The reconstruction algorithm
Synthetic Aperture Focussing Technique (SAFT), used to create images from mea-
sured data, is introduced. For in-depth information and wherever appropriate the
reader is provided with links to external documentation.

2.1 Breast Cancer Detection

The mamma carcinoma, is the most likely cancer in women. In 2008 the world-
wide yearly incident rate reached 1 384 155 (0.2h of total population), and 458 503
died [WHO08] [Cam08]. Figures for Germany from 2008 report 71 660 incidents
(0.9,h of total population) and 17 209 breast cancer caused deaths. This indicates
a much higher percentages of affected women [RKI08]. This can be understood,
since many other death causes have already been eliminated in the western world.
Therefore, for women, breast cancer remains both, the most probable cancer to be
obtained and the most likely cancer to die from [KB06].

To reach the goal of reducing deaths due to breast cancer it is essential to detect
the primary tumour before it spreads and creates metastases, for example in the
lymph system. The probability of a primary tumour to spread is correlated to its
size. It was shown [FAB93] that breast cancer tumours with a diameter of 20 mm
have an average spreading probability of 60 %, while a tumour with 5 mm diameter
only spreads with an average likelihood of 5 %. This suggests that the tumour size
has to be small when it is found.
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2.1.1 Standard imaging methods for breast cancer

Palpation

For palpation a physician or the woman herself senses the breast for lumps included
inside the breast. Palpation by a physician is the standard breast cancer screening
method in Germany [RKI07].

Palpation often leads to first indications of a breast cancer (80− 90 % of the cases).
Using palpation cancer is found in average at sizes of 20 mm or more. At this size
the average probability for spreading is already at 60 % [FAB93]. Only 10 % of these
lumps are actual cancer tumours [MKAF07]

Mammography

In mammography the breast is deformed, by two plates so that a 2D X-ray projection
image (such as shown in figure 2.1(A)) is taken of the deformed breast. The images
are visually analysed by radiologists for signs of breast cancer.

In Mammography the detection rate for breast cancer tumours decreases signifi-
cantly for dense breast tissue. Dense breasts contain a large amount of glandular
tissue. The amount of glandular tissue decreases with age. Therefore, women
younger than 50 are often not suitable for mammography. Unfortunately, the most
aggressive breast cancers are found in dense breast tissue.

Mammography is widely used in breast cancer screening programs which have
helped to reduce the mortality rate by 15 % [GN09]. The aim is detection of the cancer
at an early stage, at which it is more likely that it can be cured by an appropriate
treatment. However, the effectivity of mammography screening programmes has
been questioned by recent reviews, because significance of mammography screening
appears to be questionable [GN11, GO00, OG01, GD05, McP10]. This is also because
mammography is not specific enough to distinguish between cancer and harmless
cysts, which results in often unnecessary surgery.

Even though today the average size of the primary tumour detected by mam-
mography screening is as small as 10 mm with a probability of 68 % (1σ) [MSM+03],
the analysis of tumour doubling times [VSHS11] finds that “regular interval mammo-
graphies may be missing a high proportion of fast growing tumours”. This suggests
that screenings should be conducted at higher frequencies. However, theories exist
that exposure to ionizing radiation by screening includes a small but significant
increase in breast cancer induced by the ionising radiation [Fri00].

Finally, mammography has the difficulty to gain sufficient knowledge about
the position of the cancer, because the breast is deformed and imaging is only
2D. Extensions such as breast CT [BNLS01] and tomosynthesis [NCN+97] aim to
overcome this problem but are not widely available and either expose the patient to
higher radiation doses or provide less image contrast.

Medical sonography

Medical sonography is widely used in medical practice, covering use in diagnosis,
therapy and to guide interventional surgery [Der02].

Imaging devices for sonography are hand scanners which contain arrays of
ultrasound transducers. These are piezo ceramic elements which can emit and
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Figure 2.1: A 53-year-old woman with palpable left axillary lymph node metastasis. The mammo-
gram (A) and US showed no abnormal findings in the breast. The contrast-enhanced MR image
(B) showed 5 mm nodular enhancement without a washout pattern (arrow) in the left lower outer
breast. On the MR-guided second-look US examination
(C), a well-defined flat nodular lesion (arrow) was identified, and invasive ductal carcinoma was
diagnosed by US-guided localization and excision. [KHSK07]

receive ultrasound wave pulses. The array emits directed wave pulses. The travel
time and amplitude of the pulses is used to create the images such as shown in
figure 2.1(C). Images are available in real time. Sonography is used to differentiate
between various tissue types based on their reflectivity properties, which result in
either sharp contrasts or in absorption which is detected by reduced speckle noise.
Sonography has a high specificity for the detection of cancer and can distinguish
well between cancer lesions and cysts.

In medical sonography the images contain speckle noise, shadowing artefacts
and are of low spatial resolutions when compared to other methods. This is why
sonography images are difficult to interpret and why the quality of a diagnosis
depends largely on the skills of the operator. The low cost of devices makes them
available to nearly every medical office, thereby leading to a high number of opera-
tors with varying experience.

Sonography can be applied to patients regardless of their age, therefore also
younger women with dense breast tissue can be diagnosed.

Magnetic Resonance Imaging (MRI)

MRI is an imaging method based on the atomic nuclear spin. In a strong external
magnetic field of 0.5− 4 T, the energetical niveaus of the nucleus with spin I splits
into 2I + 1 energy levels (Zeeman effect [Zee97]). State changes can be induced
by an external electromagnetic field with a resonance frequency that corresponds
to a specific nucleus and the external magnetic field (Larmor frequency [Lar97]).
Using inhomogeneous external fields, the resonance frequency not only depends
on the nucleus but also on its spatial position. This is used to create MRI images
(see figure 2.1(B)) where the density distributions of atoms with different nuclear
spin I and different magnetic field at the nucleus are depicted. Often the spatial
concentration of hydrogen atoms is shown. Therefore, MRI provides a good contrast
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between different soft tissues and is often applied to image brain, heart or breast.
Contrast agents are used to improve the images.

In some countries MRI is used for screening of genetically predisposed patients
or those with dense breast tissue. However, MRI is much more expensive than mam-
mography and very much more expensive than sonography. It is therefore not used
widely for screening but when an indication of cancer is given by mammography.

Breast MRI should not substitute mammography or ultrasound as some lobular
cancers and ductal carcinoma in situ may not be seen with MRI [Ima12].

2.2 Advantages and aims of USCT

USCT aims to combine the advantages of conventional sonography with the advan-
tages of a fixed setup. The 3D transducer aperture for USCT is shown in figure 2.2
(left). It consists of a half-ellipsoid on which 157 transducer array systems (TAS)
are mounted. Each TAS holds four ultrasound emitters and nine receivers. The
USCT transducers were designed to have a centre frequency of 2.5 MHz at 1.5 MHz
bandwidth. All receivers record an amplitude scan (A-scan) for each emitter sending
an ultrasound pulse into the device. The USCT ellipsoid can be rotated an lifted
relative to the patient to obtain a large amount of measurements. With four different
positions this results in total of more than 3.5 million A-scans.

This setup introduces the possibility to obtain 3D images by using emitter re-
ceiver combinations from many different directions. Additionally, the fixed setup
surrounds the breast and thus enables to measure ultrasound waves which traverse
the breast, not only the reflected ones as in classical sonography. This allows to
determine additional tissue parameters such as speed of sound and attenuation.
These additional modes of measurement can further improve the specificity for
the detection of cancer. Furthermore, a fixed setup ensures constant image quality,
independent of an operator. This allows to take several images over longer time
periods and to compare them to each other.

This device does not use ionising radiation, is cheap in comparison to MRI and
can record reproducible 3D images. These facts make USCT a strong candidate for
breast cancer screening. Furthermore, the use of ultrasound allows the examination
of women which cannot participate in mammography screening, like young or
pregnant women or women with implants.

The goal of the USCT project is to detect cancer with an average size of 5 mm,
to decrease the probability of metastases significantly. Therefore, a high image
resolution and a good image quality are required. Good images in this sense are
characterised by correctness and few artefacts.

2.2.1 Synthetic Aperture Focussing Technique

Several methods exist to reconstruct the 3.5 million measured A-scans (see figure 2.3)
into a 3D image. The algorithm used in the USCT project is based on Synthetic
Aperture Focussing Technique (SAFT). It uses the reflected signals for image creation.
From the time at which a pulse is registered by a receiver the distance which the
pulse has travelled is computed using an average speed of sound c. With the
positions of emitter and receiver as focal points, the reflection has occurred on the
surface of a 3D ellipsoid with the travel distance as sum of distances from the focal
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Figure 2.2: The USCT transducer aperture (left) and the overall device built (right) which holds all
necessary components required for the measurement. The patient lies down on a couch on top of it
(not mounted, therefore not shown) to place the breast into the USCT.

A-scan
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Figure 2.3: A-scan, measured in the USCT. The y−axis corresponds to the pressure amplitude (in
relative units)

points to the ellipsoid. This ellipsoid is added to the resulting 3D image. Ellipsoids
are created and added for all peaks of an A-scan and for selected A-scans from the



18 CHAPTER 2. ULTRASOUND COMPUTER TOMOGRAPHY
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Figure 2.4: The optimal pulse preprocessing option replaces the original A-scan (top) with a sharper
pulse (bottom) [RSZG08b, NL79]. The shown example was simulated with the same parameters used
to create and reconstruct the datasets of this chapter.

3.5 million emitter-receiver combinations. The selection of A-scans is an option of
SAFT which is based on geometrical considerations [RSZG08a]. In the resulting 3D
image all sources of reflection will add up. This results in an image which shows
the sources of reflection.

In practice the signals need to be processed for this algorithm to work. For
this the USCT implementation of SAFT offers a lot of preprocessing options. Most
notable of these are the matched filter and the optimal pulse filter [RSZG08b, NL79].
The matched filter is a convolution of the measured signal with the emitted signal.
This translates the A-scan in time so that the maximum of the matched-filtered
transmission pulse is at the time which is required to travel from emitter to receiver.
The resulting signal is convoluted with a pulse with the optimal pulse popt for
reflectivity imaging as introduced by Norton and Linzer [NL79]:

popt = 2sinc(2 fbwt)− sinc2( fbwt) , (2.1)

where bbw is the bandwidth of the optimal pulse. The effect of the optimal pulse
filter on a simulated pulse is shown in figure 2.4.

The geometrically motivated procedure of SAFT is described by the USCT equa-
tion:

f (x) = ∑
e,r

T
[

Ae,r

( |xe − x|+ |x− xr|
c

)]
, (2.2)

with the reflectivity map f (x), preprocessing filters T, emitters and receivers e, r,
their positions xe, xr, the A-scans Ae,r(t), the speed of sound c and bold letters
indicating vectors. Equation 2.2 shows that for every voxel all A-scans have to be
processed for the time value to which this voxel corresponds.
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2.2.2 Limitations of SAFT

According to Norton and Linzer [NL79] image creation using SAFT is done within
four assumptions, which are repeated here in short for reference. The object is weakly
reflecting, the medium is uniformly absorbing, the velocity of sound is constant
and the object may be modelled as a collection of isotropic point scatterers. With
exception of the absorption assumption, this corresponds to the Born approximation
for imaging.

This introduces two types of visible artefacts. One is that multiple scattered
signals will lead to ellipses which are added to wrong locations in the result image.
The second one is the assumption of constant speed of sound, which leads to a
wrong position of the ellipses in the resulting image. This error is larger than the
one due to multiple scattering, because it affects the primary scattered signals which
are much stronger (two orders of magnitude). For simulated signals this is shown in
several A-scans of various objects in appendix A.2.

If the spatial distribution of the speed of sound is known, this information can
be used in the reconstruction of images:

f (x) = ∑
e,r

T
[

Ae,r

( |xe − x|+ |x− xr|∫
c(x′)dS(xe, xr, x′)

)]
, (2.3)

where S(xe, xr, x′) represents the path along which the wave pulse travels from
emitter to receiver. This equation illustrates, that it is much more compute intensive
to compute f (x) with speed of sound correction than without. This is also because
the ellipsoids are now deformed by the spatial variations in speed of sound.

In USCT the spatial speed of sound distribution c(x) can be found using the
time of arrival of signals which have travelled through the breast. An early im-
plementation for such a transmission tomography algorithm exists in the USCT
group [DGR12].

The effect of the missing speed of sound correction is shown for simulated data
in figure 2.5. It can be seen that a small error in the speed of sound results in large
degradation of the contrast and resolution of the resulting images.
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Figure 2.5: Reconstruction of reflection images of a gelatine phantom with an embedded nylon thread
using (left) constant speed of sound and (right) the speed of sound correction. The small images show
a nylon thread without (left) and with (right) correction. The centre diagram shows a profile through
the nylon thread without (red) and with (blue) correction [RSZG07].
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In this chapter the required equations for scattering of acoustic waves in inhomoge-
neous media will be derived. The formulations used are based on the Book of J.T.
Fokkema and P.M. van den Berg [FB93] of Delft.

Figure 3.1: The region of scattering is embedded in a homogeneous background. The physical
material parameters are denoted by volume density of mass ρ(x) and compressibility κ(x). The
background parameters are subscripted with “0”, while for the inhomogeneities I use “s”. The
inhomogeneous region is limited to Dsct. The acoustic pressure wave fields are characterised by
particle velocity v(x, t) and pressure p(x, t) or their temporal Fourier transforms v̂(x) and p̂(x).
The incoming waves are superscripted by “inc”, while the scattered field is denoted by “sct”. The
sum of both fields, the total field is denoted by “tot”.
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3.1 Helmholtz equation for inhomogeneous media

3.1.1 The fundamental equations of acoustics

The fundamental equations for acoustic waves in liquids can be derived from
Newton’s [New86] and Hooke’s [Hoo78] laws in continuous form, when assuming
certain properties of fluids. The properties in terms of this thesis are those that
can be observed in most fluids. I.e. fluids behave linear, time invariant, react
instantaneously, react locally and are isotropic in their acoustic behaviour. This leads
to the following fundamental acoustic equations [FB93]:

∇p(x, t) + ρ(x)∂tv(x, t) = f(x, t)
∇v(x, t) + κ(x)∂t p(x, t) = q(x, t) ,

(3.1)

with: ρ(x) the volume density of mass ([ kg
m3 ]), κ(x) the compressibility ([Pa−1]), f(x)

the volume source density of volume force ([ N
m3 ]), q(x) the volume source density

of injection rate ([s−1]), ∂t the partial derivative with respect to time, ∇ the spatial
differential operator and bold font identifying vectors.

For further calculations, we consider these equations in Laplace domain, because
there, the partial derivative with respect to time can be expressed by the Laplace
Parameter s. In steady state s becomes s = iω, leading to

∇ p̂(x) + iωρ(x)v̂(x) = f̂(x) (3.2)
∇v̂(x) + iωκ(x) p̂(x) = q̂(x) , (3.3)

where ^ indicates the temporal Fourier transform and the inherent dependence on
the angular frequency ω = 2π f .

3.1.2 Boundary conditions

Here, we consider only static liquids, i.e. situations in which no motion inside the
liquids takes place.

If looking closely at the interface S between two static liquids with different
acoustic properties, we can derive boundary conditions for both the pressure and
for the particle velocity across the interface.

Suppose two different pressures on both sides of S. This would require a force
density on the interface to compensate the differences in pressure. Since the interface
is of zero width, this force density would furthermore be infinitely large. We
therefore know, that the pressure is continuous across boundaries between static
liquids:

p̂(x) is continuous across S . (3.4)

Regarding the particle velocity we can also derive a boundary condition. Let’s
consider its component normal to S, i.e. νn · v̂(x), where νn is the vector normal to
the surface of S. If the normal components of the velocities of the particles on both
sides were different, the liquids would mix. This does not happen in the static case,
hence

νn · v̂(x) is continuous across S . (3.5)
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3.1.3 Derivation of the Helmholtz equation for homogeneous media

First we derive the Helmholtz equation in the absence of scatterers, i.e. in a homoge-
neous medium, where ρ(x) = ρ0 independent of x, which only contains the sources.
Therefore, we separate p̂(x) and v̂(x) in equations (3.2) and (3.3) by multiplying
(3.2) with ∇ and (3.3) with iωρ0:

∇2 p̂(x) + iωρ0∇v̂(x) = ∇f̂(x)

iωρ0∇v̂(x)−ω2κ0ρ0 p̂(x) = iωρ0q̂(x) ,
(3.6)

which can then be combined to
(
∇2 + k̂2

0

)
p̂(x) =: −Ŝ(x) , (3.7)

with the source term Ŝ(x) = iωρ0q̂(x)−∇f̂(x), c2
0 = 1

κ0ρ0
and the wave number k̂.

Here, the wavenumber of the background medium k̂0 = ω
c0

is used. Equation (3.7) is
the inhomogeneous Helmholtz Equation for p̂(x) in absence of scatterers, which are
also called contrasts.

3.1.4 Derivation of the Helmholtz equation for inhomogeneous media

To obtain a Helmholtz equation in presence of scatterers, we proceed as before, but
this time with spatial dependence of density ρs(x) and compressibility κs(x):

∇2 p̂(x) +∇ {iωρs(x)v̂(x)} = ∇f̂(x)

iωρs(x)∇v̂(x)−ω2κs(x)ρs(x) p̂(x) = iωρs(x)q̂(x) ,
(3.8)

which can be combined to

∇2 p̂(x) + iω∇{ρs(x)}v̂(x) + ω2ρs(x)κs(x) p̂(x) + iωρs(x)q̂(x) = ∇f̂(x)

∇2 p̂(x) +
ω2

c2
0

p̂(x) = −iωρs(x)q̂(x) +∇f̂(x)− iω∇{ρs(x)} v̂(x)

−ω2

c2
0

(
c2

0
c2

s (x)
− 1
)

p̂(x) ,

(3.9)

using the relation between the speed of sound and the material parameters

cs(x) =
1

κs(x)ρs(x)
. (3.10)

We want to derive an expression for the pressure field when scattered at a
contrast. If the sources of this pressure field are located outside the domain of
scatteringDsct, we can then use equation (3.2) with f̂(x) = 0, to eliminate the particle
velocity in equation (3.9). Furthermore using the identity ∇ { f } 1

f = ∇ {ln f } we
obtain:
(
∇2 + k̂2

0

)
p̂(x) = −

[
iωρs(x)q̂(x)−∇f̂(x)

]
+∇ {ln [ρs(x)]} p̂(x)

−k2
0

(
c2

0
c2

s (x)
− 1
)

p̂(x) ,
(3.11)
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Equation (3.11) is the desired Helmholtz equation with the source terms Ŝ(x) =
Ŝpr(x) + Ŝcs [ p̂(x)], with the primary sources (pr) and the contrast sources (cs).

Ŝpr(x) = iωρs(x)q̂(x)−∇f̂(x)

Ŝcs [ p̂(x)] = k2
0

(
c2

0
c2

s (x)
− 1
)

p̂(x)−∇ {ln[ρs(x)]} ∇ p̂(x) .
(3.12)

It should be noted that the gradient in second term of equation (3.12) can become
large at locations where abrupt changes in the volume density of mass occur.

Characteristic for medical imaging are abrupt changes in material parameters,
which can be either attributed to changes in the speed of sound c(x) or to changes
in the volume density of mass ρ(x).

3.2 Solution of the Helmholtz equation

To solve the Helmholtz equation we can use the two equations (3.11) and (3.12). For
this additional definitions are required, which are derived as follows.

3.2.1 The Sommerfeld radiation condition

If a field has the property that it vanishes for infinite distance to its source, i.e.

lim
|x|→∞

|x|
(

∂

∂|x| − ik
)

p(x, t) = 0, (3.13)

the Sommerfeld radiation condition is fulfilled. This is the case for acoustic waves,
because the energy radiated through any surface around their sources is constant.
According to Abramowitz [AS65] this is sufficient for the Helmholtz equation to
have a solution, which is given by the convolution (∗) of the source term with the
Green’s function:

p̂(x, ω) =Ĝ(x) ∗ Ŝ(x)

=
∫

R3
Ĝ(x− x′)Ŝ(x′)dV(x′) ,

(3.14)

where Ĝ(x) is the Green’s function.

3.2.2 The Green’s function

The Green’s function is defined as the impulse response of a medium. Written in the
context of the Helmholtz equation for a point source we have:

(
∇2 +

ω2

c2
0

)
Ĝ(x− x′, ω) = −δ(x− x′) , (3.15)

with δ(x) the Dirac delta. The Green’s function for x− x′ → x is:

Ĝ(x, ω) =
e
−iω

c |x|

4π|x| . (3.16)
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3.2.3 The spatially averaged Green’s function

The Green’s function as given in equation (3.16) has a singularity for x = 0. This will
lead to problems in simulations, whenever this position needs to be computed. We
therefore compute the average of the Green’s function inside a volume of a sphere
with radius R, equivalent to the volume of a voxel [BZ92]. This value can be used
instead of the singularity because the energy radiated out of the volume is the same:

[
Ĝ(x)

]
=

∫

||x′||≤R
Ĝ(x + x′)dV(x′)

4
3 πR3

=
3

4πR3

∫ 2π

ϕ′=0

∫ π

ϑ′=0

∫ R

r′=0

e−ik|x + x′|
4π|x + x′| r′2 sin ϑ′dr′dϑ′dϕ′ .

(3.17)

Integration needs to be done for the two cases of r = 0 and r 6= 0. As shown in
Appendix B.1 this yields:

[
Ĝ(x)

]
=





3 e−ikr
4k3πR3r

[sin(kR)− kR cos(kR)] ∀ r 6= 0

3
4k2πR3

[
(1 + ikR)e−ikR − 1

]
∀ r = 0 .

(3.18)

This procedure is valid, because, according to the Sommerfeld theorem, the
energy radiated through a surface of a sphere in which all sources are contained is
constant – independent of size and shape of the surface.

3.2.4 Integral representation of the solution to the Helmholtz equation

Using equation (3.12) and (3.14), we can now express the pressure field using the
primary and the contrast sources:

p̂tot(x) =
∫

Dsct

Ĝ(x− x′)
[
Ŝpr(x′) + Ŝcs(x′)

]
dV(x′)

= p̂inc(x) + k2
0

∫

Dsct

Ĝ(x− x′)
[

c2
0

c2
s (x′)

− 1
]

p̂(x′)dV(x′)

−
∫

Dsct

Ĝ(x− x′)∇
{

ln[ρs(x′)]
}
∇ p̂(x′)dV(x′)

(3.19)

We have used the fact that the primary sources Ŝpr(x) convolved with the Green’s
function yield the incident field p̂inc(x). With this we can define the scattered field
as difference between the total field p̂tot(x) and the incident field p̂inc(x):

p̂sct(x) = p̂tot(x)− p̂inc(x) (3.20)

3.2.5 Constant density approximation

If we can assume constant density for our medium, we can neglect the last term
in equation (3.19). In this case all changes in speed of sound c(x) = 1√

ρκ(x)
, i.e. all

sources for scattering, would be attributed to changes in the compressibility κs(x).
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Tissue c[m
s ] ρ[ kg

m3 ] κ[10−10Pa−1]

Water 1524 993 4.34
Tissue 1550 1060 3.93
Fat 1470 950 4.87
Cancer 1580 1100 3.64

σ[%] 3.0 6.4 12.7

Table 3.1: Material parameters of human tissue [Duc90, HS11], also indicating σ the relative
standard deviation. (The compressibility was computed from given values for speed of sound and
density.)

As can be seen in table 3.1, for various tissue types inside the breast, the changes in
ρs(x) are smaller than those in κs(x).

However, for this approximation, we require in fact that the gradient of the
logarithm of the density is small in comparison to the changes in speed of sound.
This is not the case for all parts of the human body, especially for bones. In this thesis
we formulate the equations for ultrasound scattering in the breast and therefore

assume that the ∇ {ln[ρs(x)]} remains small in comparison to k2
0

(
c2

0
c2

s (x)

)
in the

female breast. Thus, we can rewrite equation (3.19) as

p̂tot(x) = p̂inc(x) + p̂sct(x)

p̂tot(x) = p̂inc(x) + k2
0

∫
Ĝ(x− x′)

(
c2

0
c2

s (x′)
− 1
)

p̂tot(x′)dV(x′) , (3.21)

with χc(x) :=
(

c2
0

c2
s (x′)

− 1
)

, (3.22)

the contrasts based on changes in the speed of sound. Equation (3.21) will be the
main equation used for computing pressure fields in this thesis.

3.2.6 Born-Approximation

There are cases, in which we do not want to solve the differential equation in
integral form (3.21). This can be due to computational constraints or if we want the
simulation to ignore certain aspects, or when it is required to express the scattered
field directly.

In these cases, the total field p̂tot(x) has to be replaced on the right hand side
of equation (3.21) under the integral by the Born approximation, which consists
of replacing the unknown total field under the integral of equation (3.21) with the
known incident field p̂inc(x). That means that we neglect multiple scattering:

p̂tot
Born(x) = p̂inc(x) + k2

0

∫
Ĝ(x− x′)χc(x′) p̂inc(x′)dV(x′) . (3.23)
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Figure 3.2: Geometrical setup for the analytical solution. The incident plane pressure wave p̂inc(x)
travels along the positive z-axis and is scattered on the sphere with radius R. The scattered or
refracted field inside the sphere is denoted p̂r f r(x), outside the sphere it is p̂sct(x)

Figure 3.3: Illustration of the axes in the spherical coordinate system.
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3.3 Analytical solution for plane wave scattering

To verify the numerical solution which will be applied to equation (3.21), an analyti-
cal solution is also computed. Only for a few geometries it is possible to derive an
analytical solution. We choose a plane wave which is scattered on a sphere, which is
located in the centre of a spherical coordinate system (see figure 3.2).

According to the geometry of the problem, the following formulations are done
in a spherical coordinate system (see figure 3.3):

x = r sin ϑ cos ϕ

y = r sin ϑ sin ϕ

z = r cos ϑ .
(3.24)

The sphere with radius R is located at the origin. The incident pressure field p̂inc(x)
is a plane wave, travelling along the positive z-axis:

p̂inc(x) = p̂0 exp
(
−ik̂0[z− d]

)

= p̂0 exp(−ik̂0[r cosϑ− d]) (in spherical coordinates) .
(3.25)

3.3.1 Solution of the Helmholtz Equation

The generic homogeneous Helmholtz equation serves as our starting point:

(
∇2 + k̂2

)
p̂tot(x) = 0 , (3.26)

Because of the symmetry of the problem the pressure can be separated into a radial
and an angular part:

p̂(x) = p̂(r, ϑ, ϕ)

=: Γ(r)Ψ(ϑ, ϕ) . (3.27)

The Helmholtz equation can be rewritten, using the definition of the Laplace operator
in spherical coordinates:

0 =
1
r2 ∂r

[
r2∂rΓ(r)Ψ(ϑ, ϕ)

]
+

1
r2 sin ϑ

∂ϑ {sin ϑ ∂ϑ [Γ(r)Ψ(ϑ, ϕ)]}

+
1

r2 sin2 ϑ
∂2

ϕ [Γ(r)Ψ(ϑ, ϕ)] + k̂2Γ(r)Ψ(ϑ, ϕ)

=
1

Γ(r)
∂r
[
r2∂rΓ(r)

]
+

1
Ψ(ϑ, ϕ) sin ϑ

∂ϑ [sin ϑ∂ϑΨ(ϑ, ϕ)]

+
1

Ψ(ϑ, ϕ) sin2 ϑ
∂2

ϕΨ(ϑ, ϕ) + r2k̂2 , (3.28)

with ∂a the derivative with respect to variable a. Equation (3.28) can be split into two
separate differential equations, one only depending on r and one only depending on
ϑ and ϕ. Both equations are determined up to an arbitrary constant which is chosen
to be n(n + 1).
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The radial part of the Helmholtz equation

For the r dependent equation we obtain:

1
Γ(r)

∂r
[
r2∂rΓ(r)

]
+ r2k̂2 = n(n + 1) with: n ∈ N

⇔ 2r∂rΓ(r) + r2∂2
r Γ(r) +

[
r2k̂2 − n(n + 1)

]
Γ(r) = 0 .

(3.29)

This differential equation looks very similar to Bessel’s differential equation for
fractional numbers n. The definition below is from [AS65] (Abramowitz of 1966,
p.437):

2r∂rΓ(r) + r2∂2
r Γ(r) +

[
r2 − n(n + 1)

]
Γ(r) = 0 (3.30)

The similarity between equations (3.29) and (3.30) means we can solve the
radial part of the Helmholtz equation with Bessel functions. The full solution to
equation (3.30) are the spherical Bessel functions of the first and the second kind,
also known as Bessel and Neumann functions. They form an orthogonal basis on
the surface of the sphere for each index n:

jn(kr) =
√

π

2kr
Jn+ 1

2
(kr)

yn(kr) =
√

π

2kr
Yn+ 1

2
(kr) .

(3.31)

Jn and Yn are the cylindrical Bessel functions of the first and second kind while jn
and yn are their spherical counterparts.

A different basis are the spherical Hankel functions of the first and the second
kind:

h(1)n = jn + iyn

h(2)n = jn − iyn .
(3.32)

The useful property of the Hankel functions the existence of a comparatively simple
formula to compute them:

h(1)n (x) = (−i)n+1 eix

x

n

∑
m=0

im

m!(2x)m
(n + m)!
(n−m)!

. (3.33)

Summing up, we can solve the radial part of the Helmholtz equation with:

Γ(r) =
∞

∑
n=0

αn jn(kr) + βnyn(kr) , (3.34)

with α and β complex constants.

The angular parts of the Helmholtz equation

Starting with the remaining part of equation (3.28) and the Ansatz

Ψ(ϑ, ϕ) = Θ(ϑ)Φ(ϕ) , (3.35)
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we obtain:

1
Θ(ϑ) sin ϑ

∂ϑ [sin ϑ∂ϑΘ(ϑ)] +
1

Φ(ϕ) sin2 ϑ
∂2

ϕΦ(ϕ) = −n(n + 1)

⇔ sin ϑ

Θ(ϑ)
∂ϑ [sin ϑ∂ϑΘ(ϑ)] +

1
Φ(ϕ)

∂2
ϕΦ(ϕ) = −n(n + 1) sin2 ϑ .

(3.36)

This equation is separable in the variables ϑ and ϕ. Again, both equations are
determined by an arbitrary constant which we choose to be m:

1
Φ(ϕ)

∂2
ϕΦ(ϕ) = −m2 , (3.37)

which is solved by

Φ(ϕ) = e±imϕ (3.38)

With the plane wave travelling along the z-axis the problem is symmetric against
rotation around ϕ (see figure 3.2). Therefore, we choose m = 0 and Φ(ϕ) = 1
to simplify the further calculation. The fact that the problem is independent of ϕ
requires Φ(ϕ) = 1 from which follows that m equals zero.

The ϑ dependent solution

The solution for Φ(ϕ) leaves from equation (3.36):

sin ϑ

Θ(ϑ)
∂ϑ [sin ϑ∂ϑΘ(ϑ)] + n(n + 1) sin2 ϑ = m2

1
sin ϑ

∂ϑ [sin ϑ∂ϑΘ(ϑ)] + n(n + 1)Θ(ϑ) = 0

1
sin ϑ

(
cos ϑ∂ϑΘ(ϑ) + sin ϑ∂2

ϑϑ
)
+ n(n + 1)Θ(ϑ) = 0

cos ϑ

sin ϑ
∂ϑΘ(ϑ) + ∂2

ϑΘ(ϑ) + n(n + 1)Θ(ϑ) = 0 .

(3.39)

The final expression in equation (3.39) looks similar to the associated Legendre
polynomials [AS65](Abramowitz, p.332, equation (8.1.1)). Using this equation (8.1.1)
for µ = 0: and identifying w with f and z with cos ϑ, we obtain:

∂2
ϑΘ(ϑ) +

cos ϑ

sin ϑ
∂ϑΘ(ϑ) +

[
ν(ν + 1)− µ2

sin2 ϑ

]
Θ(ϑ) = 0 . (3.40)

Thus our solution for the ϑ dependent part of the Helmholtz equation is:

Θ(ϑ) = Pµ=0
n (cos ϑ) , (3.41)

where Pn(cos ϑ) are the Legendre Polynoms.
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Figure 3.4: Spherical Bessel functions of the first and the second kind for n = 0, . . . , 4

Joining the partial solutions

According to the definitions of equations (3.27) and (3.35), we can write the full
solution as:

p̂tot(r, ϑ, ϕ) =
∞

∑
n=0

p̂n(r, ϑ, ϕ)

=
∞

∑
n=0

[jn(kr) + yn(kr)] Pn(cos ϑ)

(3.42)

3.3.2 Boundary conditions for r → 0

The boundary conditions for r → 0 and r → R define the coefficients of the Bessel
and Hankel functions. The total pressure field can be decomposed into the field
inside and outside the sphere:

p̂tot(x) =

{
p̂inc(x) + p̂sct(x) |x| > R
p̂r f r(x) |x| < R .

(3.43)

Any pressure field can be expressed as a linear combination of the solutions pn
to the Helmholtz equation (3.42), because they form the linear independent basis
of solutions. However, some solutions cannot be applied, because they do not
match the physical boundary conditions. As can be seen in figure 3.4, the Bessel
functions of the second kind diverge for kr → 0. We can therefore deduce that
those parts of the pressure fields which exist at kr = 0 can only be expressed by
linear combinations of Bessel functions of the first kind. In equation (3.44) this is
the case for p̂inc(x) and p̂r f r(x) with known complex constants an and unknown cn.
The scattered field outside the sphere p̂sct(x) can be expressed by both, the Bessel
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functions of the first and the second kind. Therefore the Hankel functions of the
second kind (see equation 3.32)) are chosen, with complex coefficients bn:

p̂inc(x) = A e−ik̂0r cos ϑ

=
∞

∑
n=0

an jn(k̂0r)Pn(cos ϑ)

p̂sct(x) =
∞

∑
n=0

bnh(2)n (k̂0r)Pn(cos ϑ)

p̂r f r(x) =
∞

∑
n=0

cn jn(k̂sr)Pn(cos ϑ) .

(3.44)

3.3.3 Boundary conditions at the sphere (r = R)

Using the boundary conditions as derived in (3.4) and (3.5) for our sphere of radius
R it is possible to obtain explicit expressions for the pressure fields.

p(R<) = p(R>)

νn · v(R<) = νn · v(R>) ,
(3.45)

with

R> = lim
δ↓0

R + δ

R< = lim
δ↑0

R + δ .
(3.46)

This definition of the total field (3.43) can be used within the boundary conditions.
The boundary conditions have to be fulfilled for every individual order of n, because
the Bessel functions jn, the Hankel functions of the second kind h(2)n and the Legendre
Polynomials Pn(cos ϑ) each are orthogonal for each n. I.e. < jn|jm >∼ δn,m. This
leads to a set of 2n equations:

an jn(k̂0R) + bnh(2)n (k̂0R) = cn jn(k̂sR)

an
1
ρ0

∂r jn(k̂0R) + bn
1
ρ0

∂rh(2)n (k̂0R) = cn
1
ρs

∂r jn(k̂sR) ,
(3.47)

Which can be solved for cn and bn for each n. The an are known coefficients
given by the properties of the incident plane wave.

bn = an

1
ρ0

jn(k̂sR)∂r jn(k̂0R)− 1
ρs

jn(k̂0R)∂r jn(k̂sR)
1
ρs

h(2)n (k̂0R)∂r jn(k̂sR)− 1
ρ0

jn(k̂sR)∂rh(2)n (k̂0R)

cn = an

1
ρ0

h(2)n (k̂0R)∂r jn(k̂0R)− 1
ρ0

jn(k̂0R)∂rh(2)n (k̂0R)
1
ρs

h(2)n (k̂0R)∂r jn(k̂sR)− 1
ρ0

jn(k̂sR)∂rh(2)n (k̂0R)
,

(3.48)

where the partial derivative of a function at radius R is to be understood as the
derivative of a function in evaluated at r = R in the sense of ∂r jn(kR) = ∂r jn(kr)|r=R.

Equation (3.48) can be used in equation (3.43) to compute the solution to the
analytical problem. The implementation of this analytical case is presented in
detail, including Matlab sourcecode in [Don10]. Results of this implementation are
included in this thesis to verify the numerical results.



CHAPTER

FOUR

NUMERICAL METHOD

The goal is to solve the integral equation (3.21) using established methods. This
chapter will show how this integral equation can be formulated in a way so that it
can be solved like any equation system. The numerical methods used for solving
equation systems will be introduced and applied to the problem.

4.1 Reformulation of the problem

For reference equation (3.21) is shown again:

p̂tot(x) = p̂inc(x) + k2
0

∫
Ĝ(x− x′)χc(x′) p̂tot(x′)dV(x′) . (3.21)

Equation (3.21) is a Fredholm integral equation of the second kind [Bak83], which
are often solved using Neumann iterations [AWH05]. However, Neumann iterations
are not always converging [KB91b]. The approach taken in this work is therefore to
solve the integral equation (3.21) like an equation system. For this equation (3.21)
needs to be brought into the form of an equation system. Well known methods for
solving equation systems exist. They solve systems of the form

Lu = f , (4.1)

where f is the known solution, the integral operator L is the kernel of the integral
equation and u is the unknown. If equation (3.21) can be rewritten in terms of
equation (4.1) existing methods can be used to solve it efficiently.

In discretised space with N voxels (N = Nx · Ny · Nz) we can rewrite it as a sum
over all equally sized voxels:

p̂tot(xg)− k2
0

N

∑
j=1

Ĝ(xg − xj)χ
c(xj) p̂tot(xj)∆V = p̂inc(xg) , (4.2)

where xg and xj correspond to a vector pointing to the g-th and j-th voxel. Accord-
ingly, a shorter notation is introduced:

p̂tot
g − k2

0 ∑
j

Ĝg,jχ
c
j p̂tot

j ∆V = p̂inc
g . (4.3)
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Using the definition of matrix-vector multiplication, the g-th element of (4.1) can be
rewritten as

(Lu)g = fg

∑
j

Lg,juj = fg . (4.4)

Using the same definition, the g-th element of equation (4.3) can be rewritten as

∑
j

(
δg,j − k2

0Ĝg,jχ
c
j ∆V

)
p̂tot

j = p̂inc
g . (4.5)

Therefore equation (3.21) can be expressed like equation (4.1), with the following
identifications:

fg := p̂inc
g (4.6)

uj := p̂tot
j (4.7)

Lg,j := δg,j −
ω2

c2
0

Ĝg,jχ
c
j ∆V . (4.8)

It should be noted that in matrix notation the size of Ĝg,j is N × N, i.e. the
number of all voxels squared. Already for coarse grained discretisations of 643,
the RAM required to store Ĝg,j is 512 GB. The computational effort required to fill
this matrix will exceed the time required to solve it. Therefore, we can only use
methods that use matrix-vector products and hence do not require the full matrix to
be known.

4.1.1 The Adjoint of L

For solving equation (4.1) using a conjugate gradient method L needs to be selfad-
joint. This is not necessarily the case. However, it can be accomplished, by using
L†L instead of L, where † denotes the adjoint and L†L is selfadjoint.

To find the adjoint operator of L we use the definition of the scalar product:

< a|b > = ∑
n

anb†
n (4.9)

and the definition of the adjoint operator

< f|Lu >=< L†f|u > . (4.10)
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Together with equation (4.3) and (4.8) the adjoint operator can be derived:

< f|Lu > = ∑
g

fg (Lu)†
g (4.11)

= ∑
g

fg

(
u†

g − k2
0 ∑

j
Ĝ†

g,jχ
†
j u†

j ∆V

)

= ∑
g

fgu†
g − k2

0 ∑
g

∑
j

fgĜ†
g,jχ

†
j u†

j ∆V

= ∑
j

f ju†
j − k2

0 ∑
g

∑
j

fgĜ†
g,jχ

†
j u†

j ∆V

= ∑
j

(
f j − k2

0 ∑
g

fgĜ†
g,jχ

†
j ∆V

)
u†

j

= ∑
j

(
L†f
)

j
u†

j

=< L†f|u >

with:
(

L†f
)

j
= f j − k2

0χ†
j ∑

g
fgĜ†(xg − xj)∆V

and therefore: L†f = f(x)− k2
0χ†(x)

∫
f(x′)Ĝ†(x− x′)dV(x′) . (4.12)

Most notably is that χ†(x) is not part of the integral in equation (4.12).

4.2 Conjugate Gradient Method

Many methods exist for solving equation systems. In this work a conjugate gradient
(CG) scheme will be used. The conjugate gradient method is an algorithm for finding
an optimal solution of equations like equation (4.1). Instead of the steepest descent
here conjugate directions for updating the initial estimate are used. Furthermore, the
search directions are each L-orthogonal (i.e. orthogonal with respect to L) to each
other, which guarantees convergence after N steps, with N the size of the problem,
the number of voxels in our case. Often much less steps are required. It depends
on the properties of the kernel matrix L, how efficiently it can be solved and which
CG schemes can be applied. [KB91a] and [KB91b] describe and compare various
iterative solutions to the problem in equation (4.1).

Requirements made on L are that it is selfadjoint and positive definite. These
criteria are problem specific and not fulfilled in general. However, the problem can
be turned into a self-adjoint problem. This can be done by left multiplication of both
sides of equation (4.1) with L† and therefore solving

L†Lu = L†f (4.13)

This equation is also known as the normal equation. It can be solved because L and
L† are both known.

To derive the iterative scheme, the desired solution u is thought to be composed
of a previous solution which is updated with each step of the iteration:

un = un−1 + αndn , (4.14)
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where n = 1..N is the iteration step, u0 arbitrary, dn the update directions and αn
the size of each step into direction dn. The difference between the correct solution f
and the current estimate un is called residual:

rn = f− Lun

= rn−1 − αnLdn .
(4.15)

The normalised residual error made at each iterative step is defined as

Fn =
||f− Lun||2
||f||2 . (4.16)

Equation (4.16) is also called energy norm, because the quadratic forms of f and r
relate to expressions for the energy.

4.2.1 The update directions

To express the update step in terms of our problem, we use the Fréchet derivative
on Fn for an arbitrary directional vector vn and use equations (4.15) and (4.16):

∂Fn−1 = lim
ε→0

Fn−1(un−1 + εvn)− Fn−1(un−1)

ε

= lim
ε→0

||f− Lun−1 − εLvn||2 − ||f− Lun−1||2
ε||f||2

= lim
ε→0

−2εRe < f− Lun−1|Lvn >

ε||f||2 +
ε2||Lvn||2

ε||f||2

= −2Re < L† {f− Lun−1} |vn >

||f||2

= −2Re < L†rn−1|vn >

||f||2

(4.17)

This equation is fulfilled for a vector vn parallel to the expression on the other hand
of the scalar product.

vn = − 2
||f||2 L†rn−1 . (4.18)

Re is the real-value operator, returning the real part of the expression it acts on.
A vector parallel to vn is chosen as update direction. The length of the vector is
not relevant yet, because we still need to define the length of the step to be taken.
This liberty is used to drop the constant factor − 2

||f||2 , thereby arriving at the update
directions for each step n:

dn = L†rn−1 . (4.19)
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4.2.2 The step length

To determine the length of the step along dn we need to know two things. Firstly
Fn needs to be minimized along dn. Basic calculus requires ∂αFn = 0. Due to the
requirement of positive definiteness of our problem, we already know that the point
at which ∂αFn = 0 is a minimum. Combined with equation (4.15) this gives:

0 = ∂αFn

= ∂α < f− Lun|f− Lun >

= ∂α < rn−1 − αnLdn|rn−1 − αnLdn >

= ∂α

{
||rn−1||2 + α2

n||Ldn||2 − 2αnRe < rn−1|Ldn >
}

= 2αn||Ldn||2 − 2Re < rn−1|Ldn >

⇔ αn =
Re < rn−1|Ldn >

||Ldn||2
.

(4.20)

4.2.3 The resulting CG scheme

Writing the previous results together in one place, we arrive at the following scheme

u0 = 0
r0 = f

for each n ≥ 1

dn = L†rn−1

αn =
< rn−1|Ldn >

||Ldn||2
un = un−1 + αndn

rn = rn−1 − αLdn

= f− Lun .

(4.21)

The residual rn can be determined in two ways and represents a trade-off between
computational speed and accuracy. While the first form requires only one Matrix-
Vector product (Ldn) to be computed per iteration, the second form requires two
(because also Lun is required). The advantage of the second form, however, is
that the direct computation of the residual from the current solution is more pre-
cise. Therefore this form will be used. An alternative method is suggested by
Shewchuk [She94] which uses the first definition most of the time, but updates rn
from time to time, using the second expression.

Other methods exist to overcome problems with numerical accuracy. Fletcher
and Reeves (“FR”) as well as Polak and Ribière (“PR”) suggest the following modifi-
cations to the update direction dn:

dn = L†rn−1 + βndn−1 (4.22)
where β is defined as follows by the respective authors:

βn,FR =
||dn−1||2
||dn||2

(4.23)

βn,PR =
< dn|dn − dn−1 >

||dn−1||2
. (4.24)
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4.3 Implementation

In principle a solution to equation (3.21) can be implemented straight forward
using the formulas derived up to here. However, a few areas mainly related to
implementational aspects, have not been addressed so far.

4.3.1 Numerical precision

One important aspect is the precision of the computations, which is finite on com-
puters. Throughout this work floating point variables with 64 bit precision are used.
The IEEE standard IEEE-754 (see [Gol91]) standardises compatible implementation
of floating point numbers.

Numerical rounding errors occur whenever a value is stored in a floating point
variable. Additionally, adding variables, especially with largely different values,
causes rounding errors (see [Gol91]). This is due to the nature of floating point
values which are described by their significand multiplied with an exponent. When
adding values with largely different exponents, the value of the smaller one has to
be stored within the significand of the resulting value. It is therefore likely to loose
the information of the smaller value.

To not increase the errors made two precautions are taken in this thesis. As
discussed in (4.2.3), values will be computed from original sources rather than from
derived values.

The other attempt to reduce errors is to define the physical values so that their
order of magnitude is close to one. This is done to reduce errors introduced by
adding or multiplying values of different magnitude. A concrete example for this is
the definition (3.22), which is often defined like

χbad(x) =
(

1
c2

s (x)
− 1

c2
0

)
. (4.25)

However, the following definition expresses the same physics:

χgood(x) =
(

c2
0

c2
s (x)

− 1
)

=
1
c2

0
χbad(x) , (4.26)

but, the factor 1
c2

0
introduces a difference of more than 6 orders of magnitude.

Sorted additions, finally, where smaller values are added before larger ones are
not utilised in this thesis.

4.3.2 Memory considerations

The Matrix L when generated for all g and j, where g, j ∈ 1..N and N is the total
number of voxels. The memory required for keeping this matrix in Memory grows
very fast. Already for N = 643 voxels 512 MB RAM are required, while for realis-
tic resolutions of 10242, 8 Zetabyte RAM would need to be allocated. Of course,
computing all entries for the non-sparse Matrix L would not be possible.

Fortunately, L never appears alone anywhere in the derived formulae. Therefore
we can always use equation (4.4) to compute the g-th entry of any desired operator.
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4.3.3 Convolutions

The Green’s function (see equation (3.16)) is used, always as a function of the
distance between two points (see equation (3.21) and equation (4.3)). The resulting
integral to compute the pressure therefore has the form of a convolution. It can be
shown [Wei, Wik, Bra00, AW05] that the convolution of two functions is equivalent
to the multiplication of their Fourier representations, followed by an inverse Fourier
transform.

u(xg) =
∫

Ĝ(xg − x′) f (x′)dV(x′) (4.27)

= F−1 {F [Ĝ(x)]F [ f (x)]
}
|x=xg . (4.28)

Equation (4.27) introduced a computational advantage. We no longer need to
compute the Green’s function on all possible combinations of x and x′, which in
practice comes close to filling the whole N × N matrix as mentioned in 4.3.2. Only
Ĝ(x) needs to be computed for all voxels x. I.e. instead of our problem growing
with N2 it only grows with N.

This advantage comes at the cost of computing the Fourier transformation three
times. But as is shown in figure 4.1(left), the Fourier transform (fftw [FJ05], Matlab
implementation) scales with N1.2. Therefore, and for memory consumption reasons
it will always be faster to use the convolution theorem.

It should be noted that the fftw algorithm is supposed to scale with N log N.
However, it was not possible to reproduce this in the measurements made.

The convolution theorem furthermore requires the range of x in equation (4.27)
to be larger than the range xg which is required to be computed. This is due to the
periodicity of the Fourier transform. If the range of x is not extended accordingly,
a wave leaving the region on one side would enter the region from the other side.
This results in a factor of two for each spatial dimension, which has to be computed
and to be kept in memory.

Furthermore, for the discretisation in each direction x, y and z we use numbers
that are powers of two, because the fast Fourier transform [BR76] performs best for
these sizes.

4.3.4 Testing correctness

One simple but reliable way to test the correctness of the implementation and the
achievable numerical precision simultaneously is to make use of the definition of the
adjoint operator L†, equation (4.10). By computing both sides of (4.10) it is possible
to see if both sides yield the same values within the error margin. This verifies the
correct implementation of the adjoint operator. Both values will not be identical
due to the finite precision of computers. The amount of equal digits on both sides
serves as a relative metric for the numerical errors which have to be expected in the
later result. The implementations in this thesis are made in Matlab, using double
precision according to the IEEE-754 standard. According to [Kah96], two values are
equal within this double specification, if their first 15 digits are equal.
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Figure 4.1: Performance of the fast Fourier transform Matlab. N was chosen as powers of two, where
the fftw algorithm performs best. It can be clearly seen that the fft performance in Matlab scales with
N1.2, rather than the expected N log N.

4.4 Discretisation and signal processing boundaries

Simulations have to work on a discretised copy of the problem and to be imple-
mentable on a computer. This section documents which boundary conditions have
to be respected and why they are necessary.

The ultrasound waves simulated are discrete in space and time. When discretis-
ing waves it must be ensured that its shortest wavelength can still be properly
sampled. This was quantified by Nyquist and Shannon in their Nyquist-Shannon
sampling theorem [NS28]. The requirement is that any sampled signal can be re-
constructed from a minimum of discrete steps. The sampling theorem states that at
least two discrete points per wavelength are required to properly sample a signal.

Since several frequencies have to be taken into account in the simulations, it
should be clarified that a wave pulse consists of a whole spectrum of frequencies.
Two points are used for the shortest wavelength, i.e. for fmax). Typically, the
shortest wavelength has an amplitude of less than a factor 105 less than the central
wavelength.

This has several consequences on temporal and spatial discretisation that shall
be discussed in this subsection.

4.4.1 Spatial discretisation

The spatial discretisation step is described by the length of a step ∆x taken along
spatial direction. In the cartesian coordinate-system used, the steps taken into each
direction are equal, unless otherwise mentioned. The step length is determined by
the amount of steps and the size of the Region Of Interest (ROI) which we want
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to simulate. For a cube with side length LROI divided into N = Nx NyNz discrete
points, the side length ∆x of each Voxel is

∆x =
LROI

3
√

N

=
LROI

Nx
, (4.29)

if Nx = Ny = Nz.
According to the sampling theorem, the shortest wavelength λmin which can be

modelled within a given spatial discretisation ∆x, taking into account that the wave
might travel diagonally across the pixels, is:

λ ≥ λmin

≥ 2
√

3 ∆x .

Furthermore, to avoid any errors to be caused by insufficient sampling, in this work
four or more points per wavelength will be used, leading to:

λ ≥ λmin

≥ 4
√

3 ∆x .

4.4.2 Temporal discretisation

Also for temporal sampling the Nyquist-Shannon theorem is valid. It requires that
the sampling frequency has to be twice as high as the highest frequency modelled.
Often sample frequencies rather than timing values are used. They are related via

fSample =
1

∆t
. (4.30)

For a wave of the minimal wavelength λmin in a medium with speed of sound c the
frequency is

fmax =
c

λmin
.

This leads to a relation between the sample rate and the spatial discretisation:

fSample ≥ 2 fmax (4.31)

≥ c
2
√

3 ∆x

≥ cNx

2
√

3 LROI
. (4.32)

To derive an expression for the amount of time samples which are needed we
stipulate that we want to simulate the wave this long that it can cross the ROI twice,
diagonally. For this we need to simulate a timespan T = Nt∆t:

Nt∆t = 2 ·
√

3 LROI ·
1
c

. (4.33)
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With the expressions for ∆t in equation (4.30) and the sample frequency in equa-
tion (4.32) an astonishingly simple expression for the number of temporal sampling
points can be derived:

Nt = T fSample

= 2
√

3 LROI
1
c
· cNx

2
√

3 LROI
(4.34)

= Nx . (4.35)

To be able to exploit fast implementations of the Fourier transform Nx and therefore
also Nt will be chosen as powers of 2.

4.4.3 Simulations in temporal Fourier domain

We know that the Fourier transform of real valued signals is symmetric in the real
part and antisymmetric in the imaginary part. Since all simulations take place in
temporal Fourier domain, we can take advantage of this by only simulating the first
half and constructing the rest of it. For a signal of length 2N, we have to compute
N + 1 values and can interpolate the N− 1 remaining values. In cases where Matlab
is used, this can be accomplished by using the “symmetric” option of the “ifft”
command.

4.4.4 Incident Pulse

Up to now we have only taken monochromatic waves into account. Wave pulses
can be described by a superposition of many monochromatic waves each with a
different frequency and amplitude. In fact the Fourier transform (see B.2) is the
relation between the wave pulses and the amplitude spectrum of monochromatic
waves.

In terms of this section, care must be taken to properly choose the frequencies, es-
pecially towards fmax. We therefore choose a Gaussian distribution of the frequency
spectrum around the centre frequency fcentre.

The bandwidth definition used is FWHM (full width half max), i.e. the width of
the power spectrum at the half maximum.

To avoid unwanted effects, we take care that the amplitude of the frequency
spectrum towards the boundaries f = 0 and f = 1

2 fsample is lower than -40 dB.

4.4.5 Parameters summarised

The spatial discretisation or resolution is the only parameter which is modified. All
other values are either given by the dimensions of the system or can be derived.

Table 4.1 shows the values and formulas used to determine all simulation pa-
rameters.
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Parameter name Value / Formula Reference Comment

Nx 32-1024

LROI 0.2 m

∆x LROI
Nx

(4.29)

c0 1570 m
s Table 3.1

cs 1460-1590 m
s Table 3.1

Nt Nx (4.35) Rounded to the next

power of 2

fsample
cNx

2
√

3 LROI
(4.32)

fmax
1
2 fsample (4.32)

fcentre
1
2 fmax (4.31)

Bandwidth 16 % of fcentre

Table 4.1: List of all simulation parameters including their values or formulas and reference.
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This chapter focuses on utilising distributed computing infrastructures (DCI) with
emphasis on the interactive use of infrastructures from within problem solving
environments such as Matlab. Several solutions will be analysed with respect to
problems which users often experience when using parallel facilities. For this a list of
requirements will be compiled in 5.1 and serve as guideline for the work described
later in this chapter. The used DCIs will be introduced in section 5.2. Section 5.3
describes a pilot-implementation which served to understand the important aspects
which lead to the final implementation shown in 5.4.

5.1 Requirements

Many scientific and engineering problems today are too large to be solved on a
single computer. Despite the fact that workstations provide multiple cores on several
CPUs, still the development of demanding scientific and engineering applications
reaches the point at which results cannot be obtained in time on a single computer.
A cluster of workstations may be required already at an early development stage of
the code. In many situations such clusters are fully booked in advance and require
computing bundled into jobs. Similar jobs of other users wait in queues before they
can finally be processed. In many cases the time spent in the queue is longer than
the jobs runtime on the cluster – but often this is the fastest option for users.

However, for software development, frequent runs and tests are essential. Long
turnaround times between implementation and obtaining results have therefore
a strong impact on software development efficiency. This often underestimated
use-case provides the motivation for this chapter.

The demanding software algorithm, on whose implementation I will show the
usefulness of the developed approach, is the 3D simulation of ultrasound waves as
described in the previous chapters. These simulations are required for two scenarios
important to the USCT project. One is the simulation of ultrasound measurement
data for which by principle the ground truth is known. This data can be used for the
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evaluation and further development of reconstruction algorithms, which are not part
of this work. The other is a future reconstruction reconstruction algorithm, which
requires the simulated wave-field based on a first estimate of the object function to
take into account multiple scattering and to reduce artefacts otherwise created.

The results of the 3D wave simulation algorithm have to be verified by comparing
them to those obtained with alternative methods. In our case an analytical solution
implemented by Koen van Dongen of the University of Delft was available.

The results of both simulations can only be compared when their spatial and
temporal discretisations are fine-grained enough, because otherwise differences in
between both approaches can not be visualised. This is the case for spatial and
temporal coordinates. Since the time discretisation directly corresponds to the
spatial discretisation (see section 4.4.2), few discrete steps dictate a low bandwidth
for the pulse being used. The problem with low bandwidths is that the pulse length
increases. Therefore, coarse grained discretisations lead to aliasing effects. The
errors thereby introduced prevent the comparison with the results of the analytical
solution. Furthermore, the algorithm developed in this thesis requires to be run in
full 3D to provide correct results.

These considerations lead to minimal discretisation boundaries of 643 Voxels
and 32 frequencies. Even when efficiently implemented this requires roughly 10 min
computing time on a dual-core (Intel T9400 @ 2.53GHz) CPU. The development of a
correct sound wave simulation is a difficult task. Therefore, the development cycle
requires frequent tests, code changes and the results need to be returned while the
programmer is still aware of the changes made to the code. If the same result can be
obtained in only one minute, ten times more test cycles can be run in the same time.
This results in a profound increase in developer performance.

The work within this thesis provides a solution to the aforementioned problems
insofar as it offers a simple to use and comfortable interface to make use of remote
resources and to offload computations to them.

The experience gathered in past grid projects and throughout this thesis have
led to a list of eight requirements. These requirements are imposed on the interface
for using distributed computing infrastructures from the users’ point of view, but
with the technological capabilities in mind.

Nr. Requirement

1 Access distributed resources with neglectable queueing time
2 Synchronise the latest version of the users software to all distributed resources
3 Optionally compile the software
4 Provide interfaces to run the software remotely
5 Transport input data to the remote resources
6 Run and monitor the remote execution
7 Return the remotely obtained simulation results
8 Integrate as smoothly and user-friendly as possible

Table 5.1: Requirements to be fulfilled by the ideal interface to distributed resources
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To address the points of this list, the existing Distributed Computing Infrastruc-
tures (DCIs) are introduced and tools for the respective DCIs are evaluated with
respect to this list.

5.2 Distributed Computing Infrastructures

This section introduces the three different types of DCIs used in this thesis. The
grid is the largest infrastructure available to scientists today. However, a strong
trend towards using cloud resources can be observed also in the scientific commu-
nity [SBB+10]. Cluster computing is still available because this is just another way
to access cloud or grid resources. It can be provided without additional effort. It is
important to note that the tools I developed in this thesis were tested to work on all
three types of resources: local clusters, grid and also cloud resources.

5.2.1 Grid Computing

The idea of grid computing emerged in the end of the 1990s, most notably pursued
by Ian Foster and Carl Kesselman [FK98, FK04]. Their leading paradigm was to
decouple users from resources. The goal was, that computer centres would join
their resources into one big grid of resources. In return, any user who was allowed
to use computational resources at one computer centre would be allowed to also
use resources at the other computer centres, as well. Two problems were addressed
in this way. One was that computations which require more resources than one
single computer centre can provide could be run by allocating several computer
centres. The other was the increase of resource efficiency, because more users can
be scheduled more efficiently if more resources are available. Maintenance work
would affect less users. The likelihood of running jobs without queue time increases.

Enabled by a sophisticated authentication and authorisation infrastructure based
on X.509 [Mol89] certificates, the paradigm of “acting on behalf of the user” was
established. This is required for example, when a job needs to authenticate at a
remote storage system for writing results.

Kesselman and Foster created the de facto standard for grid computing by
bundling the developed tools into the Globus toolkit [FK97].

Building on top of this toolkit and substantially extending it, the LHC computing
grid project (LCG) [ABB+02] has established its grid middleware gLite [Lau04] and
runs the largest grid infrastructure available to scientists today. At time of writing,
140 computer centres offered (317 139 CPU cores, 186.4 PB disk space and 178 PB
tape space1). Most important improvements of gLite over globus were logical file
catalogues and automated resource brokering. A file catalogue stores all physical
replicas of a file. This information is used for resource brokerage for scheduling jobs
to a specific site which already holds a file.

The grid middleware Unicore [ES01] focuses on HPC, where resource are typi-
cally reserved well in advance based on tendering procedures. Additionally, ded-
icated hardware requires to adapt the codes for optimal performance. Therefore,
Unicore is not in the focus of this work. However, it should be noted that consid-

1http://wlcg-rebus.cern.ch/apps/capacities/sites/

http://wlcg-rebus.cern.ch/apps/capacities/sites/
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erable effort [Kra09, NKG07, Hof11] was taken to make Unicore, gLite and other
flavours of globus (e.g. ARC [SBa11]) compatible to each other.

Extension to the LHC-Grid

The infrastructure offered by computational grids provides a rich set of services on
resources distributed across the world.

With respect to the requirements, defined in the beginning of this chapter, the
grid offers access to remote resources without queueing-time, i.e. requirement 1 is
fulfilled, but all other points are not addressed so far.

To overcome these limitations, this work was launched with partial funding of
the Interactive European Grid Project [MCC+08] (int.eu.grid). This project focussed
on interactive extensions and also MPI support on the grid. The developments for
interactive grid access in this thesis were developed within the Interactive European
Grid Project (int.eu.grid).

5.2.2 Cloud Computing

Conceptually newer is Cloud Computing. The name and concept are based on the
infrastructure built up at Amazon.com, which was frequently depicted using a cloud
symbol. The conceptual novelties were the use of virtualisation and the introduction
of a business model. From a technological point of view there were – besides the use
of virtual machines – no improvements when compared to grid computing.a Instead
of introducing new interfaces, protocols, tools and authentication mechanisms, cloud
computing uses available tools that were well known by users already before cloud
computing. This lack of novel developments made the use of cloud infrastructure a
lot easier. Little new knowledge is required to obtain first results.

The existence of a working business model led to several companies offering
cloud computing infrastructures as a service (IaaS). Market competition led to
attractive prices for using cloud computing.

Virtualisation enables users to gain administrative rights on the rented virtual
machines. Users can provide their own virtual disk image, which is then run at the
providers computer centre. Compared to the grid infrastructure, users are now free
to decide which software to use without the need of requesting grid administrators
to install it grid-wide. Even commercial software and alternative operating systems
(such as Windows) can be used within the cloud scenario. These are the advantages
that make cloud computing attractive for scientific users.

To allocate cloud resources, a virtual machine image needs to be created. The
image contains all required software and user customisations.

Cloud Infrastructure Service at KIT

The cloud resources used for tasks within this thesis are those provided by the KIT
computer centre SCC (Steinbuch Centre for Computing). Using the cloud middle-
ware OpenNEbula [SMLF09] users can request virtual machines. The underlying
virtual disk image is provided for own customisation. To create a virtual cluster
many virtual machines based on the same disk image are started.

The hardware to provide cloud services consists of 55 machines, each equipped
with 2 Intel Xeon 2.27GHz CPUs and 36 GB RAM. Use of hyperthreading offers
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Figure 5.1: Integration of the grid and the GridSolve middlewares using software developed within
this thesis.

16 CPU cores to be used. The cluster is shared with a Hadoop batch-system, but
for benchmarks and larger runs for this thesis exclusive access was granted on the
cluster.

5.2.3 Cluster Computing

Cluster Computing is the most traditional way to scale from a workstation to a
larger setup. Computing clusters are the foundation of scientific grid sites and cloud
providers. The difference is the way in which access is provided. In this work the
cluster model is used to compare performance metrics with the cloud resources. For
ideal comparison direct access to the same hardware as used in the cloud setup is
necessary

5.3 Testing the Integration of Matlab into the grid

To test the available tools and make use of the resources provided by int.eu.grid
interactively from within Matlab, an integrative architecture was designed and
implemented as part of this thesis. It was decided to conduct a pilot implementation
first which only targets basic requirements to study the feasibility of the approach
taken. Therefore it was imperative to use available software components where
possible so that feasibility can be determined quickly. The integration architecture
and the steps it defines are displayed in fig. 5.1.
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GridSolve

The tool GridSolve [YDS07] is a development of the Innovative Computing Labo-
ratory (ICL) at University of Tennessee at Knoxville (UTK). It was chosen for the
prototypical implementation, because it provides grid-RPC based remote procedure
calls with an easy to use interface. It implements a “client + agent + server” archi-
tecture. On the client side many interfaces exist to support Matlab, C, Fortran and
more. To run a remote procedure, the client requests a resource which can solve a
given problem (i.e. execute a previously compiled and deployed remote procedure).
Resources are requested via an agent to which GridSolve Servers are connected.
The servers allocate resources and execute the remote calls. They correspond to the
workernodes in a grid or cluster architecture.

The (hidden) semantics of a GridSolve request are:

1. Client contacts the agent for a list of capable servers.

2. Client contacts server and sends input parameters.

3. Server runs appropriate service.

4. Server returns output parameters or error status to client.

From the user’s perspective, the call to GridSolve acts just like the call to the original
function. [AAB+02]

The interface to the developer very easy to use as shown in this example:

1 foo = bar ( x , y , z ) % o r i g i n a l c a l l ( l o c a l l y )
2 foo = g s _ c a l l ( ’ bar ’ , x , y , z ) % re mo t e c a l l us ing G r i d S o l v e

Listing 5.1: Matlab code for calling a local function foo (line 1) compared to calling the same
functionen remotely, using GridSolve (line 2)

However, the creation of a remote procedure requires several additional steps. It is
required to define an interface of the procedure and to deploy a compiled version
of it. Furthermore, only C and Fortran are supported for creating remote services.
Existing Matlab code cannot be used for this, which makes distribution of existing
code a major obstacle.

GridSolve was developed independently of gLite, and was therefore not meant to
be compatible. Therefore, the integrative architecture has to implement components
which allow to allocate LCG workernodes to GridSolve using gLite job-submission.

To allocate resources on the grid, an LCG pilot job is sent via the grid’s Resource
Broker to an appropriate server in a previously not determined computer centre.
The job contains a minimal piece of software called “start”, developed within
this work. start ensures the smooth integration of both otherwise not compatible
tools. This involves the following tasks, which have been published more detailed
in [HZR08, HHH10, Har08]:

1. Download and install GridSolve on the selected grid computing nodes (Work-
ernodes).

2. Fetch the up-to-date functions that the scientific developer needs to run.

3. Start the GridSolve server and connect via a proxy to the GridSolve agent.
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One technical problem that typically inhibits the use of such techniques on
grid is that Workernodes typically have private IP addresses. Thus it is not easily
possible to connect to the Workernode from outside. The GridSolve proxy provides
a solution to this. By forwarding the servers connections of the servers to the agent
and keeping it open, it allows users to connect back from the outside.

5.3.1 First results

Extensive performance benchmarks of the tested integration were conducted within
the Master thesis of Torsten Hopp [Hop09]. The results cover the analysis of the
speedup if running codes on the grid. The work utilised advanced interactive grid
features, so that even differences of using the Message Passing Interface (MPI) or
Symmetric Multi Processing (SMP) remotely are analysed.

In terms of the initially defined eight requirements, GridSolve on top of gLite,
allows to fulfil nicely the additional Requirements 4 (interface to remote resources),
5 (transport input), 6 (run and monitor execution) and 7 (return results).

Before integrating higher level requirements 2 (synchronisation of software to
remote resources), 3 (compile software) and 8 (user-friendliness), I decided to test
the components available at this stage. The higher level requirements can easily be
integrated, if it is ensured that the low-level components will not need to be changed
anymore.

Requirement Fulfilled

1 Access without queue time 2�
2 Synchronise software 2
3 Compile software 2
4 Interface to remote resources 2�
5 Transport input 2�
6 Run and monitor execution 2�
7 Return results 2�
8 User-friendliness 2

Table 5.2: Requirements fulfilled by the pilot implementation

With regard to the eight requirements defined in table 5.1, the pilot implemen-
tation performs as targeted. The higher level requirements 2 (synchronisation of
software to remote resources), 3 (compile software) and 8 (user-friendliness) can
now be addressed.

5.4 Final integration of DCI and Matlab

During the hardware shift from 32-bit to 64-bit the development and support for
the used middleware GridSolve was discontinued. A working middleware solution
had therefore to be implemented as part of this thesis. This middleware utilised the
same architecture as GridSolve. As part of the new implementation the previously
missing higher level requirements were also addressed:

2: Synchronise correct version
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3: Compile the software

4: Interface to resources, but instead of the requirement of implementing in C
or Fortran, allow the use of existing Matlab code.

8: Smoothly and user-friendly

Furthermore the chance was taken to adapt the already developed tools to use cloud
computing resources. This section will describe the implemented solution in detail
and characterise its performance.

5.4.1 PArallel INfrastructure – PAIN

PAIN is written in Python. The interface from Matlab to Python is implemented
by using system calls from within Matlab. This was done to reduce the complexity
introduced by using the additional programming language C and to loosen the
dependency on the specific Python version.

PAIN only requires two external libraries to work. One is the network communi-
cation which is handled via Python Remote Objects (Pyro) [Jon12]. Pyro is a widely
used library, so that longer term support is very likely.

The second external library is python-psutil, which is used to collect monitoring
information on the servers.

PAIN is based on the client + agent + server architecture, which is shown in
fig. 5.2.

PAIN Server

The PAIN Server is the component which allocates the computing resources. One
PAIN server is run on each cluster node in case of a cluster, on each worker node in
case of grid, and in each virtual machine (VM) in case of cloud. For deployment,
the same component as for the grid can be used: “start”. To prove the general
applicability of the approach, and because resources were available, cloud resources
are used in case of PAIN rather than grid resources. For this a VM image is prepared.

To start a server, the only mandatory parameter is the agent to which the server
will connect. Optional parameters include specification of scratch space, which
is used to store temporary files. In many cases this is required to avoid storing
temporary files on a shared filesystem, which would impair system performance.

After startup, the PAIN server continuously collects monitoring information
about the hardware on which it is running. These include the amount of available
CPU cores, available memory, CPU utilisation and the result of a short benchmark.
The latter is required, because on the cloud infrastructure the performance available
to the running virtual machine can vary over time. Collecting benchmark informa-
tion can help to avoid sending computing tasks to resources slowed down by other
virtual machines on the same physical hardware.

An advantage introduced by using virtual machines on the cloud is additional
services can be easily added. The virtual machines used in this thesis had a web-
server activated which gave access to detailed monitoring information as well as to
the progress of the computational tasks. All monitoring information is frequently
sent to the PAIN Agent.
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Figure 5.2: The “client + agent + server” architecture of PAIN. The servers may be deployed using
cloud, cluster or grid based resources and start a private communication topology.

PAIN Agent

At the core of the system is the PAIN Agent. It stores the list of servers that are
connected, their monitoring information and IDs of the tasks currently running on
each server. Whenever a client wants to run a new task on one of the servers, it
requests the optimal server from the agent. The agent returns the fastest free server
for the client to be used. Servers are free when the amount of concurrently running
tasks is lower than a configurable maximum. The fastest server is determined by
the benchmark result, provided periodically by the servers.

The agent stores copies of the status information of the jobs in the system. This
information can be used by the client to display and to manage the system. The
authoritative source, however, is the server who periodically updates job status
information.

Because of its central role, only one agent instance was allowed for a group
of servers. It is possible to allow multiple agent instances. This would increase
the complexity of the implementation to a degree not adequate for the size of the
problem and therefore beyond the scope of this thesis.

PAIN Clients

Two clients were implemented within this thesis. A commandline client and a Matlab
client. The commandline client is designed to display monitoring information, stored
in the agent and to send administrative commands to the agent. Most notably, the
client can request the agent to restart the agent and all servers. When used in
combination with start (see 5.3) this can be used to restart the whole infrastructure
with the latest software release within the order of 20 seconds. This is very fast
compared to restarting via the infrastructure layer (i.e. grid, cloud) which requires
several minutes.
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Job submission is also supported by the commandline client. All Unix-shell
commands can be used. For this it requests the best server from the agent. Then it
directly connects to the server and transfers the input data. This is implemented this
way to avoid a bottleneck by the agent when transmitting large amounts of data or
when submitting many jobs.

The Matlab client (mpain) fulfils two functionalities. One focuses on the com-
munication with the agent and the servers and is very similar to the commandline
client. The notable enhancement is that the Matlab client can compile and transfer
the executable together with required libraries to the server prior to running this
executable. This is one of the two key advantages over the GridSolve solution
presented in the previous section. The second advantage is that existing Matlab
code can be used for remote and parallel runs.

Mpain was designed for a user who would like to run his locally developed
function bar on one or more remote servers. Minimal modifications to the code are
required on the calling side (see listing 5.2).

1 foo = bar ( a , b , c ) ; % c a l l f u n c t i o n b a r in mat l ab
2 foo = mpain ( @bar , a , b , c ) ; % re mo t e c a l l t o f u n c t i o n b a r
3 id = mpain_async ( @bar , a , b , c ) ; % asynchronous r e mo t e c a l l
4 foo = mpain_wait ( id ) ; % g e t ou tp ut o f a synchronou s c a l l

Listing 5.2: Changes on the calling side, when using mpain. For simple remote calls only 8 characters
need to be changed.

The “@”-sign before bar passes a function handle to mpain. This handle is used
to parse the source code of bar so that the names for the passed parameters are
known. Then mpain assigns the passed values to the parameter names and saves
them into a .mat file. In this way it can be guaranteed that complex variable types
such as “cell” or future variable types will be handled properly. The function
handle is furthermore used to run the Matlab compiler mcc, which is included in
our Matlab Campus license, to create a binary executable of the remote function –
bar in this example. The output of mcc is packaged into a tar file. Together with the
saved parameters the tar file is transferred to the server. On the server both files
are extracted, installed into the proper directories and the binary version of bar is
executed.

At this point the deployed Matlab function needs to support PAIN. The required
modifications are minimal (see listing 5.3). All that is required is loading the parame-
ters previously saved before the actual code starts as well as saving the return values
to a file after the original code finished. The saved file is returned via the network,
loaded from the mpain client as return values (i.e. to assign foo in listing 5.2).

To run many remote functions at the same time, mpain_async is provided. After
calling it immediately returns an ID. The ID can be used to retrieve the output
variables after all tasks have been distributed (lines 3 and 4 in listing 5.2).

Appendix C.1 shows an example in listing C.1 on how mpain_async can be used
to parallelise existing Matlab code.

1 funct ion [ foo_1 , foo_2 ] = bar ( param1 , param2 , param3 , . . . )
2 i f isdeployed
3 % The f i r s t two p a r a m e t e r s c o n t a i n t h e names o f t h e f i l e s v i a
4 % which i n p u t and ou tp ut a r e h a n d l e d .
5 input_f i lename = param1 ;
6 output_fi lename = param2 ;
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7 c l e a r param1 param2 ;
8 load ( input_f i lename )
9 end

10 %
11 % O r i g i n a l c o d e g o e s h e r e
12 %
13 i f isdeployed
14 my_save ( output_fi lename , ’ foo_1 ’ , ’ foo_2 ’ ) ; % g e t t h e o r d e r r i g h t
15 e x i t % This e x t r a e x i t i s r e q u i r e d f o r Matlab newer than 2008 a
16 end

Listing 5.3: Changes required in the remote function, when using mpain. The first two parameters
contain the input and the output filenames. The two “isdeployed” blocks ensure proper handling of
i/o data. The code between these two blocks remains unchanged.

Step Action

1. Parse function handle to get parameter names
2. Save parameters to .mat file
3. Compile the function using the Matlab compiler mcc
4. Package and transfer the output to the best server
5. On the server: run the binary created by the Matlab compiler
7. Load parameters before running the main code
8. Save return values into a specified filename
9. Transfer return value file back to client
10. Load file and return values as if it was called locally

Table 5.3: Mpain actions for running existing Matlab code remotely

It is important to note, that due to the usage of the Matlab compiler, no Matlab
licenses are required on any of the servers. In contrast to the distributed comput-
ing toolbox (which costs around 4000 EUR) only the compiler toolbox (which is
included in the Matlab campus license) is required. The Matlab Compiler Runtime
environment (MCR) is required to be installed on the servers for each supported
Matlab version. Currently three versions are supported: Matlab 2011a, Matlab 2009b
and Matlab 2008a

5.4.2 Concluding remarks

Coming back to the eight requirements defined in table 5.1, here is an analyse
whether the presented solution fulfils the requirements. These points are sum-
marised in table 5.4.

1. “Allocate distributed resources without queueing time”: The VM image has to
be prepared in advance. Once the virtual machine is started (or the grid or
cluster job running) it can instantly be used. Queueing only occurs when not
enough resources are available. Using start, allocation is easily possible on
grid, cloud and cluster resources.
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2. “Synchronise the correct version of the users software to all distributed resources”:
Mpain uploads the most recent version of the software right before the dis-
tributed resources are utilised.

3. “Optionally compile the software”: The integrated compilation in the Matlab
client ensures that the most recent version of the software is compiled when it
is needed. Furthermore, mpain only compiles the software, if the sourcecode
was modified.

4. “Provide interfaces to run the software remotely”: The mpain interface works in
the same way as GridSolve. Both are easy to understand and to use.

5. “Transport input data to the remote resources”: Mpain supports direct transfers
from client to the servers, bypassing the agent for optimal scalability.

6. “Run and monitor the remote execution”: The agent collect monitoring informa-
tion which can be visualised in several ways using the pain commandline
client.

7. “Return the results remotely obtained”: In asynchronous mode stored output
data remains at the servers until the mpain client retrieves it. In synchronous
mode, the output is immediately returned.

8. “All of this should work as smoothly and user-friendly as possible”: This is what
pain was designed for.

Requirement Fulfilled

1 Allocate distributed resources 2�
2 Synchronise software 2�
3 Compile software 2�
4 Interface to remote resources 2�
5 Transport input 2�
6 Run and monitor execution 2�
7 Return results 2�
8 User-friendliness 2�

Table 5.4: Requirements table for PAIN: All requirements are fulfilled

5.4.3 Additional Tools

In the context of pain, several additional tools were developed, the two most useful
are introduced below.

Test suite

To ensure proper functioning of an PAIN installation, a test suite is provided. Since
testing is never easy, this testsuite is named “painful”. It performs tests of all
required systems, including compilation, synchronous and parallel submission and
visualises the created results.
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Memory Profiler

The memory profiler for Matlab is very useful to find the places in the code where
most memory is allocated. This often limits the size of the problem that can still be
computed. The memory profiler “mem_stats” requires the user to instrument his
code with calls to mem_stats. The profiler then logs the variable names together
with their memory usage to a file. The logfile can be visualised to plot the memory
usage throughout the runtime of the program. Fig 5.3 shows a typical plot created
using mem_stats.

Figure 5.3: Memory plot generated using mem_stats. The largest nine variables are plotted over
source file name and code line. Some variables are not defined in all parts of the monitored code and
therefore cause the interrupted lines.

5.4.4 PAIN usage within this thesis

Within this thesis PAIN was used to speed up certain parts of the simulation:

• Distribute large simulations by emitter

• Distribute smaller simulations (less than 20 emitters) by frequency

• Distribute the point sources used to simulate the surface source

• Distribute the analytical solution by frequency

• Distributed parameter search for the best fit of the interpolation from spheric
to cartesian coordinate system

• For running the benchmarks of the distributed infrastructure

5.5 Performance measurement

Understanding the performance of the system is required to characterize the effi-
ciency of the implemented parallel infrastructure (PAIN). For the chosen setup cloud
resources gives an additional degree of flexibility, because the physical nodes in the
cluster are partitioned when using virtual machines.
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Number of partitions [nVM] Partition size [nCPU] Total number of CPUs

1 16 16
2 8 16
4 4 16
8 2 16

Table 5.5: The used partition sizes.

In this section two performance measurements are conducted. One is aimed at
finding the optimal performance of the possible partitions. The other will be used to
evaluate the performance improvement which can be obtained when using PAIN.

5.5.1 Cluster partitioning

The use of cloud computing allows to request virtual machines with an arbitrary
number of virtual CPUs and RAM. Of course this has to be possible within the
physical limits of the underlying physical hardware. On the available cloud cluster
this means that the 16 cores of a cluster node can either be used by one VM with 16
virtual cores or by 16 VMs with one core each. Thus the question is, which partition
size is optimal. To find this optimal partition size, a benchmark was run on several
partition sizes . In all partition configurations one physical computer was filled with
VMs of the same size and every physical CPU was assigned to exactly one virtual
CPU so that no idle CPUs and no duplicate allocations have occurred (see table 5.5).

Each partition configuration was setup twice to obtain the results faster and to
average over short lived local jobs on the physical hardware.

Synthetic Benchmark

The target algorithm is described in chapters 3 and 4. Profiling [Fit77] indicates that
77% of the computing time is spent running the routine “fftn”. This is based on
the highly optimised “fasted Fourier transform in the west” [FJ05], which automati-
cally allocates all available CPU cores and exploits hardware acceleration wherever
possible.

To obtain clearer results, a synthetic benchmark is used. To mimic the perfor-
mance of the target algorithm, the benchmark consists of creating a 1000× 10 000, or
152.6 MB random number matrix which is Fourier transformed using “fftn” Nloops
times. Caching effects are avoided by using the output of one Fourier transform as
input for the next.

The measurement was repeated 50 times to obtain a statistical mean value. To
judge which configuration performs best, the normalised time (i.e. tmeasurement ·
Ncores/N f f t is plotted over the number of CPU cores in fig 5.4.

It can be observed that the non virtualised configuration outperforms the other
setups. This behaviour is to be expected, because virtualisation is known to intro-
duce a small overhead [Har06]. Unexpected was the fact that the virtual machines
(VMs) with eight cores are performing better than the 16 core VMs. This can be
attributed to the use of hyperthreading [SD96]. This technology was introduced
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Figure 5.4: Time per Fourier transform of 152.6 MB per core over number of cores. The Fourier
transform was run 5000 consecutive times to keep the overhead of distribution to a minimum. “16
native” indicates the benchmark run on the physical hardware rather than inside virtual machines.
The error bars represent the statistical error of 50 measurements.

by Intel to improve the utilisation of CPU cores. In most cases a performance
improvement can be observed.

I assume that the highly optimised fftw code tries to use optimisations on virtu-
alised hardware it would not apply on physical hardware, because virtualisation
hides the information about hyperthreading. When trying in this setup to optimise
for 16 cores on 8 native cores performance can be worse than when optimising for 8
cores on 8 native cores – even when two concurrent machines are active on the same
hardware. While deeper analysis of this effect is beyond the scope of this thesis,
the knowledge that eight core VMs are slightly faster was exploited for the large
simulations. The performance of the dual core machines is the worst because the
overhead of virtualisation is larger when more VMs are run on one host.

Performance degradations were observed when sharing a physical node with
other non virtual machine users, who only allocated one CPU. The degraded per-
formance was about 10% of the original. In contrast to the previous situation in
which the virtualisation layer separated physical CPUs between individual virtual
machines, the non virtual machine user is scheduled by the Linux kernel. This
will schedule tasks of both, the benchmark inside and the user outside the virtual
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machine to the same CPU core and thereby alter the content of the cores caches. This
is the possible reason for the large performance decrease of the fftw code. Measure-
ments were taken to avoid hosts allocated with virtual machines and non-virtual
jobs.

5.5.2 Scalability of PAIN

The scalability measurement of PAIN is conducted to understand its scalability
limits. For the benchmark to be used a constant remote runtime is more important
than the actual CPU performance. This is why the benchmark used in this case is
the “pause” function, because its runtime is independent of how heavily the system
is loaded. This allows to measure scalability on larger configurations than the 56
nodes available in the cluster. Cluster sizes of up to 192 VMs were deployed.

The problem to be distributed was modelled to be similar to the target algorithm
in the way that a fixed number of tasks had to be computed on a variable amount of
remote machines. In this setup the amount of data transferred via the network is
constant.

To demonstrate the influence of data transfers the amount of input and output
data was varied between 1 kB and 16 MB for each cluster size.

Statistic fluctuations where mitigated by running the benchmark five times per
cluster size, removing up to one obviously incorrect measurements and taking the
average of the remaining values.

The remote runtime per remote function Tp was chosen to be Tp = 60 s. This
value is lower than the runtime of the target algorithm, which is in the order of
800 min. The low value was chosen for two reasons. Firstly, the total time of the
measurement become significantly high. Secondly, the low value of Tp will result in
the earlier saturation of the speedup graphs. The results shown in fig 5.5 therefore
represent the worst case scenario.

To be able to obtain results in a timely manner, all measurements submitted
Njobs = 3 · Nhosts jobs. The result was extrapolated to Njobs = 256. This is why
the statistical error of small cluster sizes is so big. The VMs used were dual-core
machines with 2 GB RAM.

Amdahl’s law

Amdahl’s law [Amd67] is well known to calculate the maximal speedup which can
be obtained, when knowing the relation between the parallelisable and the serial
parts of a program. Unfortunately, the computer architect Amdahl did not take into
account timing penalties to be paid when data transfers are involved. To be useful
in our context, we have generalised Amdahl’s law to incorporate the time required
for output and input data transfer:

1
T

=
1

Ts +
Tp
N hosts + Td + Tpain

(5.1)

with T the total runtime of the program, Ts and Tp the time required for the se-
quential and the parallel part, Nhosts the amount of resources to which tasks can
be sent, Td = Dr · Ndata the time required for transfer of input and output data,
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computed, using the data rate Dr. Tpain is the time overhead introduced by the
parallel infrastructure.

5.5.3 Result

For obtaining Tpain an assumption for Ts had to be made, because only the sum of
both can be discovered. For a worst case estimate of Tpain Ts was set to 1 ms. Tp is
known to be 60 s.

Tpain and Dr were found by a 2D least square fit to the measurements. I found
an average data rate of Dr = 18 MB/s and Tpain = 70 ms. These values are used in
equation 5.1 to plot the dotted lines together with the measurements in figure 5.5.
It can be seen that the general trend of both can be modelled. The simulated
data is outside the error bars. This means, that additional to the statistic error, a
systematic error is present. This can be understood, because the cluster on which
the measurements took place was used by other users at the time of measurement.

For the measured case the 192 tasks ran 160 times faster than sequential execution,
which corresponds to 83 % efficiency. The short time of 60 s represents the worst
case scenario.

Figure 5.5: Speedup over cluster size and data transfer The amount of input and output data is
equal. The 0 MB measurement contains upload of the executable and the minimal amount of data
to steer the remote function of 1380 bytes. The fitted curves use the generalised Amdahl’s law with
Ts = 1 ms, Tp = 60 s a data rate of 18 MB/s and Tpain = 70 ms
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CHAPTER

SIX

RESULTS

In this chapter the derived theory for the propagation of sound waves in matter
(chapter 3), the required numerical methods (chapter 4) and the computing infras-
tructure (chapter 5) will be utilised to answer the scientific questions of this thesis
and to discuss the obtained results.

Section 6.1 will verify the implemented numeric solution against an analytical
solution derived in section 3.3. Henceforth, the analytical solution will be used in
section 6.2 to evaluate which influence the constant density approximation has on
the specific example of cancer embedded in fat.

Once the validity of the numeric solution is proved, it will be used in section 6.3
to analyse the impact of the Born approximation on the forward simulation of signals
and also on the inverse problem of reconstructing images from data. The simulation
will be adapted to account for the spatial dimensions of real existing ultrasound
transducers in section 6.4.

Finally, we will investigate the possibility of visualising microcalcifications with
the USCT system in section 6.5.

6.1 Verification of the numerical solution

The central question to be answered is whether the numerical algorithm developed
in chapter 3 provides correct results. The results generated are therefore compared
with those of the analytical calculation also derived in chapter 3. While it is possible
that the same error is made in both algorithms, the likelihood is low for two reasons.
Firstly, both algorithms are based on completely different derivations in different
coordinate systems. Therefore it is unlikely, that both contain errors which result
in the same erroneous result. Secondly, the analytical algorithm was developed
by a different person, thereby reducing the probability of systematic errors to be
introduced in both algorithms. if in doubt – the analytical solution was the correct
one. Access to the analytical algorithm is provided with friendly permission of
Koen van Dongen at the TU Delft, who implemented the theory and developed the
algorithm as part of his research work.
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To obtain comparable results, identical input into both algorithms is required.
Due do the approximation that scattering on density changes can be neglected under
which the numerical solution is currently implemented, constant density is used
to model the object function χc(x). In that case the approximation cannot lead to
different results in the comparison of both algorithms.

The geometrical setup chosen is a plane wave scattered by a sphere in the centre
of the coordinate system. This scenario is shown in figure 3.2. It is one of the few
setups that can be solved analytically. All dimensions are chosen to be in the order
of the size of the USCT setup. The sphere has a diameter of 8 cm and has the speed
of sound of fat but the density of the background medium. It is immersed in water
at body temperature. The corresponding tissue parameters are shown in table 6.3
on page 81.

The sphere used in cartesian coordinates was therefore created in spherical coor-
dinates and interpolated to cartesian coordinates. Experiments with an equivalent
sphere in cartesian coordinates showed that a systematic error between both defini-
tions exists. This was due to the discrete definition of the sphere. Rounding errors
led to a different value for single voxels on the boundary of the sphere, resulting in
a slightly smaller sphere.

The simulated regions of interest (ROI) were different in both cases. While the
analytical solution is exact and every point can be computed independently, this
is not possible in the numerical case because the results from neighbouring voxels
influence each other. The consequence is that the analytical solution needs to be
computed only for those points that need to be analysed. This is the x− z−plane at
y = 0 corresponding to the ϑ− r−plane in spherical coordinates (see figure 3.3 for
both coordinate systems). The numerical solution had to be computed for all voxels
(in all three dimensions). From its result the x-z plane was extracted. The ROI for
the analytical case had a diameter of 20 cm. The radial unit vector r was discretised
into 64 steps of 1.6 mm and ϑ into 203 angular steps of 1.8o.

The cartesian ROI for the numerical solution was created so that the voxels along
the z−axis are identical in both coordinate systems. This required 128 discrete steps
of 1.6 mm along all three axes.

Temporal sampling was done for 128 time steps at a sample rate of 285.7 kHz for a
period of 0.45 ms. The pulse used for pinc had a centre frequency of fcentre = 71.4 kHz
as shown in figure 6.1. To avoid aliasing effects, a short bandwidth of 16 % of fmax
was chosen for the pulse so that the highest frequencies, at which aliasing could
occur, are attenuated with −150 dB in comparison to the centre frequency.

In the iterative scheme the normalised residual error Fn (see equation 4.16) is
the value which indicates the difference between the exact solution and the current
iteration. Fmin is the value below iterations are stopped and the current solution is
considered final. This value was set to Fmin = 10−3.

6.1.1 Result of the comparison

The results of the Fourier domain are compared for the centre frequency fcentre in
(figure 6.2). The time domain results (figure 6.3) are compared at several time steps.
It can be seen that in the Fourier domain the error stays below 3 % and in the time
domain below 1 %. While these values indicate the errors at the given snapshots, a
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Domain Norm (relative units) Average percental change

Fourier Numeric 575210 –
Fourier Analytic (spherical) 574978 0.04 %

Time Numeric 69549 –
Time Analytic (spherical) 69514 0.06 %

Table 6.1: Differences of energy norms for Fourier- and time-domain for interpolated and non-
interpolated total field in relative units. The time domain energy norm covers all time steps, while the
Fourier domain energy norm only used the centre frequency.
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Figure 6.1: Incident pulse used for the verification of the numerical solution. Centre frequency:
fcentre = 71.4 kHz, sample rate: fsample = 285.7 kHz.

more quantitative metric for the errors is given by comparing the energy norms in
Fourier domain (FD) and time domain (TD)

EFD
norm = ∑

x

∣∣ p̂tot(x, fcentre)
∣∣2 ETD

norm = ∑
x

∑
t

∣∣ptot(x, t)
∣∣2 (6.1)

The sum is taken over all spatial coordinates to compare the Fourier-domain results
and over all spatial and temporal coordinates to compare time domain results.

Since the analytical result was interpolated to cartesian coordinates it is possible
to compute its energy norm before and after interpolation, thereby obtaining a value
for the quality of the interpolation. Table 6.1 shows the results. The differences
between both solutions are well below 0.1 %. It can therefore be deducted that that
the chosen normalised residual of Fmin = 10−3 is sufficient for the verification of the
numerical solution and that a higher precision would not improve accuracy.
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Figure 6.2: Total pressure fields in temporal Fourier domain (see appendix B.2) at f = fcentre. The
top part shows the analytical solution in spherical coordinates, in the middle is the numerical solution
in cartesian coordinates, the bottom part show their difference in percent. The cross sections on
the right show the positive z−axis, starting in the centre of the sphere. The cross sections show
real, imaginary and absolute values of the total pressure field. All of them are continuous across the
boundary of the sphere.

Figure 6.3: (Next page) Total pressure fields are shown for several time steps (one per row). The
columns show from left to right the total pressure field of the analytical solution, the total field of the
numerical solution, and their difference. The plot on the right part shows the cross-sections along
the z−axis (from top-to bottom: analytical, numerical, percental difference). The sphere at which
scattering takes place is highlighted in the leftmost plots.





68 CHAPTER 6. RESULTS

It should be noted that the percentages shown in the third line of figure 6.2 and
in the fourth column of figure 6.3 compare both solutions in cartesian coordinates.
For this the results of the analytical solution had to be transformed into cartesian
coordinates, using the Matlab function “griddata” with linear interpolation.

The observed maximal differences of up to 2.5 % in the plots on the right side of
figure 6.3 originate from the fact that these values are shown for the focal plane of
the sphere. In this plane errors are larger than at more peripheral positions, which
are included in the energy norm.

The numerical solution with residual Fmin = 10−3 can be used to simulate waves
travelling through matter within the given approximations. The average error made
in this case stays below 0.1 %, the maximal error remains below 2.5 %.

We have therefore shown that the numerical Ansatz is capable of precise simula-
tion for the scattering of pressure waves in matter at spatial variations in speed of
sound c(x).

6.2 Impact of neglecting density changes

The numerical solution in equation 3.21 neglects changes in the density. In this
section the analytical solution is used to evaluate the error made by using this
approximation The reason to investigate this effect is that cancer has a higher density
than the surrounding tissues. Hence, we will use a sphere of cancer immersed in fat
in the otherwise unmodified setup of the previous section.

The analysis of the effect of neglected density changes is investigated with
respect to the USCT device, which operates at a centre frequency of 2.5 MHz, while
the simulations in this section are conducted with a centre frequency of 71.43 kHz.
The cancer model is therefore scaled to have the same size in wavelengths. The
used size of the sphere has a diameter of 10 cm. This corresponds to a diameter of
2.9 mm when insonified with 2.5 MHz. This is the size at which cancer already may
be found with USCT. Another reason to choose such a small inclusion is that we
want to see if the neglection of density changes can be neglected. If it is found to be
too large for this size, it cannot be neglected at all. The wave pulse used is shown in
figure 6.1.

To analyse the effect of the approximation we compare three cases. The reference
case is the sphere with changes in density ρ and in compressibility κ. This is
compared with two spheres in which density is kept constant. Since density, speed
of sound and compressibility depend on each other as described by equation 3.10,
we can either keep c unchanged and account for the constant density by modifying
κ or the other way around. Both cases will be compared to the original sphere,
table 6.2 shows the values used.

The wave field scattered on the unmodified cancer sphere is shown in figure 6.4
at several time steps. The cases of the simulations with constant ρ and unmodified c
and with constant ρ and unmodified κ are shown in figure 6.6 (b) and (c) as temporal
integral of the spatial energy distribution and are compared with the reference
case 6.6 (a). Figure 6.6 (d) shows the comparison for unmodified c and figure 6.6 (e)
those for unmodified κ. The colour maps are set to scale to the maximum value
outside the sphere, because the region inside the sphere is not relevant for imaging.
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Case Tissue c[m
s ] ρ[ kg

m3 ] κ[10−10Pa−1]

Cancer-like sphere Fat 1470 950 4.87
Figure 6.6(a) Cancer 1580 1100 3.64

Constant ρ unmodified c Fat 1470 950 4.87
Figure 6.6(b) Cancer 1580 950 4.21

Constant ρ unmodified κ Fat 1470 950 4.87
Figure 6.6(c) Cancer 1700 950 3.64

Table 6.2: Tissue parameters

The changes in energy outside the sphere with unmodified speed of sound
remain below 10 %, while those with unmodified compressibility reach 50 %.

6.2.1 Impact on the travel time

Imaging methods which use the arrival times of pulses such as SAFT rely on correct
timing values. If the constant density approximation affects the speed of sound,
the attainable resolution decreases. Figure 6.5 shows the A-scans recorded on the
leftmost (upper half) and rightmost (lower half) points of the z−axis in the previous
images. These points correspond to unscattered and scattered fields. This is not
exactly the case, because the backscattered signals can be seen in the upper plot
starting at 0.17 ms .

It can also be seen in the upper plot that the incoming pulses are identical in
all three cases, while the scattered pulse in the lower plot for unmodified κ arrives
40 µs earlier. This is because in that case the speed of sound was increased to cope
for the unmodified compressibility (see table 6.2).

The pulse of the unmodified speed of sound is difficult to distinguish from the
exact simulation, it is therefore evident that no reasonable error in arrival time occurs
in that case.

6.2.2 Result

When simulating objects using a simulation in which changes of the density cannot
be modelled, two options exist. Either the speed of sound c or the compressibility κ
have to be modified to reflect the omitted density change. The least errors are made
when using a known value for speed of sound, thereby accepting a modification
of the effective value of the compressibility. In case of the simulated example with
values shown in table 6.2 the error of the spatial error distribution of the energy
remains below 10 %, while in the other case this error reaches 50 %.

The same choice is best when the arrival time of the pulses is concerned. In
the case of unmodified c the arrival time does not change, while in the case of
unmodified κ an error of 40 µs is observed in the discussed example.
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Figure 6.4: Analytical solution of scattering on a spherical cancer region with a diameter of 10 cm
embedded in fat. The images show the pressure wave pulse at different points in time. The sphere is
marked in white.

With respect to imaging data simulated under this approximation using SAFT,
the energy errors might alter the amplitudes of A-scans, and thereby lead to wrong
weight of A-scans by up to 10 %.

Much more relevant is the impact of the arrival time. The effect of a wave pulse
which arrives 4 µs too early may not appear to be large at the frequency for which
this effect was visualised in figure 6.5. The real USCT operates at 35 times shorter
wave and pulse lengths. In the case 4 µs correspond to twice the pulse length. The
error thereby introduced in USCT imaging is illustrated in figure 2.5.

These errors can be avoided when measures speed of sound values are used, not
measured values of the compressibility.

Finally it should be noted, that a sphere does not model all aspects of cancer
because cancer does not have a smooth surface. It is is more spotty. Nonetheless,
when using the analytical solution this is the only model that can be used.

Figure 6.6: (Next page) Comparison of the time integral of the spatial total energy equivalent for
scattering on the spherical cancer region with a diameter of 10 cm embedded in fat. The sphere is
marked in white. All three cases. (a) shows the reference case, (b) and (c) the possible alternatives, (d)
and (e) show the percental differences to the reference case.

6.3 Impact of the Born approximation

The implemented numerical algorithm allows the simulation of scattered wave
pulses. As proven in section 6.1 this simulation is exact as long as variations in the
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Figure 6.5: A-scans before and after scattering i.e. at the left and right end of the circular region of
the previous figures (marked by the rings in the embedded image).

speed of sound are of interest. It is possible to apply the Born approximation (see
equation 3.23) to the numerical solution and to create approximated results which
provides the opportunity to analyse the effects caused by this approximation. This
is of special interest, because the reconstruction algorithm SAFT (Synthetic Aperture
Focussing Technique) works within this approximation, too.

The goal of this section is to analyse the differences between the Born approxima-
tion and the exact solution. This will be evaluated with respect to the reconstruction
of images. We will also analyse, how well shortcomings in the reconstruction (which
are due to the Born approximation) can be overcome when introducing speed of
sound corrections.

The SAFT algorithm is introduced in section 2.2.1. It is used for reconstructing
images from data measured in the USCT and uses reflections of ultrasound waves to
depict sources of scattering. This is equivalent to applying the Born approximation
within the reconstruction, because multiple reflections and variations in the speed
of sound cannot be correctly handled and cause artefacts in the resulting images.
Extensions beyond this simplification exist by taking the spatial distribution of
speed of sound variations into account (see section 2.2.2).

In this section the impact of the Born approximation is analysed with three
approaches. This includes an analysis of the simulated data regarding travel time
and energy but also the reconstructed images of signals simulated exactly and within
the Born approximation.
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For these analyses so called A-scans and B-scans will be used. The term a-scan
refers to a plot of the pressure amplitude measured at a receiver over time. B-scans
are composed of several A-scans plotted next to each other along their time axis for
many receivers using colour values which correspond to amplitude. Most of the
B-scans in this thesis show the normalised energy equivalent on the dB scale instead
of the pressure amplitude. The energy of a wave is proportional to the square of the
pressure amplitude (see appendix B.3). The energy decreases with 1

r2 . To remove
this dependency the normalised energy equivalent is introduced as

N = p2(x, t) , (6.2)

with the pressure p and the distance between emitter and receiver r. In this norma-
tion the B-scans show the same value, regardless of how far away a receiver is from
an emitter. The dB scale is used because of better visualisation of the wide range of
relevant energies on the logarithmic scale.

The object with which these effects will be investigated is the same sphere
as in section 6.1: a sphere of fat immersed in water at body temperature. The
model uses changes in speed of sound while density changes are not modelled. A
constant density of 1000 kg

m3 is used. The sphere is placed centrally into the USCT (see
figure 6.7) which requires a ROI with an edge length of 26 cm in all three dimensions.
This is slightly larger than the previously used ROI. The ROI is discretised into 128
steps of dr = 2.1 mm. Temporal sampling uses 128 frequencies for the pulse shown
in figure 6.8. The larger bandwidth of 39 % of fmax was used to obtain shorter pulses
and better images. The maximal frequency is now suppressed with −40 dB, which
equal to two orders of magnitude.
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Figure 6.7: Centrally placed sphere of fat in water. The white points represent emitter positions of
the USCT.

An initial comparison between a full simulation and one within the Born approx-
imated simulation is shown in figure 6.9. It shows the normalised energy equivalent
in a B-scan using the first emitter and all receivers of the USCT.

Several points can be observed in this B-scans. Firstly the ring-like geometry of
the USCT can be seen. For reference a technical drawing of the USCT is provided in
figure A.18 in appendix A.5. Differences between both simulations can be observed
in the last graph. Large visible differences could originate from shift of only half
a wavelength between two waves, while the larger error of a full wavelength in
runtime could hardly be noticed. Therefore figure 6.9 is merely useful to indicate
that further analysis is necessary.
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Figure 6.8: The incident field used for the subsequent simulations. It has a centre frequency of
70.4 kHz a bandwidth of 39 %. The highest frequency (140.8 kHz) is sampled with five spatial points
per wavelength and is -40 dB lower than fcentre. The sample rate is fsample = 281.6 kHz.

The strongest signal with −60 dB originates from the transmission of the emitted
pulse in a straight line from emitter to receiver. This transmission signal is of similar
amplitude and phase in both simulations, because it can not be observed in the
difference image.

In imaging applications this pulse has a special role because of its magnitude.
figure 6.9 shows that this pulse is at least 60 dB larger than other signals. If the
transmission signal is used the imaging procedure is called transmission tomography
if it is removed it is reflection tomography, such as SAFT.

6.3.1 Travel time analysis

A better understanding of the differences between both simulations can be obtained
when analysing A-scans.

For visualisation a movie of the wave travelling through the volume with the
sphere is available in form of a flip-book on the bottom left of all even pages. It
shows the energy equivalent of the pressure waves on the dB scale with the sphere
superimposed into the images. The left movie shows the exact solution while the
right one corresponds to the simulation within the Born approximation.

Figure 6.10 shows four A-scans, one for transmission and one for reflection and
both with and without transmission signal. The receiver numbers correspond to
those in the technical drawing in figure 6.9.

In figure 6.10 the plots start at t0 = 0.1 ms, because this is the time at which
the incident pulse starts. All four plots are scaled differently. The largest signal
is the so called transmission signal in the first and third plot. With the speed of
sound of 1524 m

s it can be verified that the transmission pulse in plot one at 0.27 ms
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Figure 6.9: B-scans of the first emitter compared. Shown are the normalised energy equivalents
in dB. From top to bottom shown are the full simulation, the Born approximated simulation and
their difference. To localise the receiver positions, a technical drawing of the USCT is provided in
figure A.18. The vertical white lines mark the rings of the USCT.
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corresponds to 26 cm, the diameter of USCT. The transmission pulse in plot three at
0.17 ms corresponds to the 10 cm of the straight line from emitter one to receiver 225.
The pulse which traversed the sphere shows a difference in time of arrival of 4 µs
which is caused by the Born approximation which does not correctly model speed
of sound variations. The reflected pulse in plot three only travelled in water and is
therefore identical in both ways of computation.

p̂tot
Born(x) = p̂inc(x) + k2

0

∫
Ĝ(x− x′)χc(x′) p̂inc(x′)dV(x′) . (3.23)

The transmission pulse of the first A-scan shows a very important property of the
Born approximation: The speed of sound is not correctly modelled. The exact pulse
arrives later than the Born-approximated one. This is due the lower speed of sound
inside the sphere when compared to water. From the structure of equation 3.23 this
can be directly understood, because in this equation the convolution of the incident
pressure p̂inc(x), the object function χc(x) and the Greens function Ĝ(x) are added to
the incident pressure. To model a time delay, the convolution integral would need to
yield a result that when added to p̂inc(x) extincts it and adds the signal at a different
point in time. However, the integral in equation 3.23 is a convolution integral, which
models point sources at locations of the object function insonified by p̂inc(x). An
extinction of p̂inc(x) can therefore not be modelled. The fact that the equation is
notated in Fourier domain does not make a difference, because the structure of
equation 3.23 does not change under the temporal Fourier transformation.

To visualise the scattered signals, the transmission signal is removed. This is also
one of the preprocessing steps in SAFT. The plots without the transmission signal for
the transmitted wave is shown in plot two. This names correspond to the geometric
location of the receiver 109 used in this plot, because to reach the receiver, the wave
has to traverse the USCT. We can see one pulse at t = 0.32 ms, which corresponds to
33.5 cm. It is caused by a reflection at the bottom of the sphere. The signal starting at
0.36 ms is multiple scattering with an amplitude of 10 % of the primarily scattered
pulse. It is not present in the Born approximation. Additionally a phase shift of π is
missing in the approximation simulation.

The fourth plot shows the reflected situation without transmission pulse. The
first pulse corresponds to the reflection on the front of the shere (18.3 cm) and at the
back of the sphere (32 cm).

In reflection tomography such as SAFT the multiple reflections in comparison to
the primary reflections are of interest. Multiple scattering can be quantified as 10 %
of the pressure and 1 % of the energy of the first order reflection.

The conclusion from the analysis of the A-scans is that three different effects
have to be attributed to the Born approximation:

1. Wrong arrival time of pulses which travel through tissue with different speeds
of sound.

2. Missing phase shift of π in reflected signals.

3. Multiple scattering can not be simulated at all.
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Figure 6.10: Two A-scans of the same emitter but at different receiver positions, each with and
without transmission pulse. The plots start at t = 0.1 ms because the incident pulse starts at this
time. All four plots use different scaling on the y-axis.



78 CHAPTER 6. RESULTS

Born approximation
Full simulation

Receiver Number

Normalised energy equivalent in dB

200 400 600 800 1000 1200 1400

−40

−38

−36

−34

Figure 6.11: Normalised, summarised energy plots for the centrally placed sphere of fat. The vertical
black lines mark the rings of the USCT.

Figure 6.12: Sphere placed inside the USCT

6.3.2 Energy analysis

A different aspect to look at is the amount of energy received by each receiver. To
remove the dependence on the distance between emitter and receiver, the normalised
energy equivalent is used and integrated over time. This is done for both simulations
(full simulation and Born approximation) and plotted on the dB scale in figure 6.11.

It can be seen that the energy is distributed differently within the Born approxi-
mation. The total normalised energy (obtained by an additional integration along
the receivers) is the same in both cases (less than 0.1 % difference). A characteristic
difference can be observed: the energy distribution of the full simulation shows
focussing and shadowing caused by the sphere while the energy distribution of
the approximated simulation shows a diffraction pattern similar the scattering at
a sphere with ka > 1. That means this effect can not be treated within the Born
approximation. A comparison of a plane wave scattered on a sphere

The energy collected by all receivers is equal in both simulations when the wave
reaches the receiver without traversing the sphere.

B-scans and energy plots of additional objects are shown in Appendix A.1.
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6.3.3 Impact on imaging

The difference between the full simulation and the simulation within the Born
approximation is relevant for imaging. Especially for imaging using the SAFT
algorithm, because it is based on the Born approximation.

Up to now we have analysed the impact of the Born approximation in the
simulation. From this we deducted possible problems in imaging. However, for
image reconstruction, the inverse situation is found: The Born approximation is
made in imaging while exact data are used as input.

Therefore, in order to quantify the impact of this approximation in imaging, we
firstly create a reference case. This is done by feeding data which was simulated
under the Born approximation into SAFT which works within the same approxi-
mation. Using the same approximation in both, simulation and imaging is called
“committing an inverse crime” [Wir04], because it leads to better images than can be
generated under realistic circumstances. The thereby created reference case is used
to quantify the impact of this approximation.

To investigate the differences between the full simulation and the Born ap-
proximation in imaging additional objects were simulated, each within the exact
simulation and the Born approximation. A full simulation of the full USCT setup
consisted of 628 individual simulations – one for each emitter. The workload was
distributed for each emitter using PAIN on 94 virtual machines with 726 cores. The
computations took roughly one day per object. An exception was the simulation
with a doubled centre frequency, doubled number of time steps and larger object.
This simulation was conducted to enlarge the object in terms of wavelengths. It
required one week to complete.

The simulation is implemented so that its output data can be used as input for
the reconstruction algorithm SAFT. It offers several options for signal preprocessing
and one for improving imaging beyond the principal limitation of the Born approxi-
mation. For reconstructing images the optimal pulse option (see figure 2.4 on page
18) was used. One of the effects of this filter is that it uses the absolute value of the
signal. Therefore, the phase shift which is missing within the Born approximation is
not noticeable.

Three reasonable cases of reconstructions are compared with each other. The
“Born reconstruction” reconstructs data simulated under the Born approximation
with the standard set of parameters of SAFT. The “full reconstruction” reconstructs
data from the full (exact) simulation with the same set of parameters of SAFT as the
“Born reconstruction”. The “enhanced reconstruction” reconstructs data from the
full simulation with the speed of sound correction option of SAFT. This option uses
the ground truth of the simulation to take the spatial speed of sound distribution
correctly into account.

The best images are to be expected for the reconstruction of data simulated under
the Born approximation, because in this case the same approximation is made in the
simulation and in the reconstruction.

Three cases of objects – all immersed in water at body temperature – are sim-
ulated. Their tissue parameters are listed in table 6.3. The first case is a sphere of
fat with two inclusions that have the speed of sound of cancer with a diameter of
10 mm. The sphere has the same dimensions as the one used in previous simulations
(diameter of 8 cm) but is not placed in the centre of the USCT. The decentral position
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Figure 6.13: High frequency pulse used for the enlarged breast model. The spectrum and the
pulse form are the same as for the normal pulse (figure 6.8), because the bandwidth is defined as
a percentage of fmax. The centre frequency is therefore fcentre = 140.8 kHz and the sample rate
fsample = 563.1 kHz.

was chosen to ensure rotationally symmetric artefacts do not overlap with the object.
This object is called “decentral sphere with inclusions”. It is shown in figure 6.14.

The second object is a breast phantom. It was hand segmented from an MRI
volume image. The size of the breast phantom was scaled so that it fills the USCT
like a patient with cup size “C” would. The phantom contains a cancerous region
of 1.8 cm diameter as well as an inner structure which consists of fat and glandular
tissue. This breast model is shown in figure 6.15. The tissue parameters are also
listed in table 6.3. Scattering on this object is shown in the flip-book on the bottom
right of all odd pages. Left is the exact solution, right the one under the Born
approximation.

The third object is the same breast but enlarged to almost fill the USCT. This
object was insonified with the double centre frequency. This was done to enlarge the
object in terms of wavelengths. While the normal breast phantom has a diameter of
4 λ in the x− y−plane at the position of the cancer (which has a diameter of 1 λ) the
enlarged high-frequency object has a diameter of 15 λ at the position of the cancer
which measures 3 λ in diameter. In comparison to the wavelength of the USCT the
normal breast phantom had a diameter of 143 λ at the position of the cancer, which
had a diameter of 36 λ in that case. This object is shown in figure 6.16.

The shift to higher frequencies is done keeping in mind that aliasing artefacts
have to be expected, because the shortest wavelength with 5.44 mm is now only
sampled with 2.6 points, while 4 are required [VH09].

The results for the decentral sphere with inclusions are shown in figure 6.14.
Most clearly can be seen that all reconstruction types do not properly reconstruct that
part of the sphere which is close to the emitters. This is because in the reconstruction
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Tissue c[m
s ] ρ[ kg

m3 ] κ[10−10Pa−1]

Water (37oC) 1524 993 4.34
Tissue 1550 1060 3.93
Fat 1470 950 4.87
Cancer 1580 1100 3.64
Breast phantom fat 1478 – –
Breast phantom glandular tissue 1485 – –
Breast phantom skin 1610 – –
Hydroxyl apatite 6790 – –

Table 6.3: Material parameters of human tissue [Duc90, HS11]

using SAFT each peak in an A-scan corresponds to a possible source of reflection.
These reflections create a 3D ellipsoid with emitter and receiver as focal points and
the time value of the peak as radius in the result-image. These ellipsoids are added
into the image for all emitter-receiver combinations selected in the reconstruction.
The part of the sphere which closer to the transducer array systems (TAS) is under-
represented in this form of reconstruction. Therefore it does not appear. This effect
is known and visible only for placements of the sphere too close to the USCT wall.
The effect is the same in all reconstructions of this object.

Regarding the differences between the reconstructions, it can be seen that the
Born-reconstruction (b) yields the best images with respect to two metrics. Firstly
the total amplitude of the result image is highest. This means that effects as shown
in figure 2.5 on page 20 occur to a lesser extent than in the reconstruction of data
from the exact solution. This behaviour is to be expected, because of the Born
approximation in simulation and reconstruction. Due to the same effect the surface
of the sphere is imaged sharper in the Born reconstruction.

Secondly, it can be seen that the reconstructions of the exact simulation (c)
and (d) contain more artefacts in the whole image. These are also visible in the
comparison between the Born reconstruction and the reconstruction of the exact
simulation (e) and the reconstruction of the exact simulation and speed of sound
correction (f), which show the percental differences. There are two possible causes
for these artefacts. One is the multiple scattering which is modelled by the exact
simulation, but not within the Born approximation. The second are so called “grating
lobes” [RDZG10] and originate from the sparse aperture of the USCT [RSZG08a].
Furthermore, the artefacts are better visible due to the lower amplitude of the result
image.

Figure 6.14: (Next page) Decentrally placed sphere of fat with two inclusions of cancer embedded in
water. The sphere is simulated and reconstructed in several ways. From top to bottom shown are:
Ground truth (a), reconstruction of Born simulation (b), reconstruction of full simulation (c), recon-
struction of full simulation using the known ground truth in speed of sound correction (d), percental
difference between Born and full reconstruction (e), percental difference between Born and speed of
sound reconstruction (f), percental difference between full and speed of sound reconstruction (g). The
black lines mark the positions at which the other visualised planes are placed.
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Figure 6.15: (Previous page) Breast model simulated and reconstructed in several ways. From
top to bottom shown are: Ground truth (a), reconstruction of Born simulation(b), reconstruction
of full simulation(c), reconstruction of full simulation using the known ground truth in speed of
sound correction(d), percental difference between Born and full reconstruction(e), percental difference
between Born and speed of sound reconstruction(f), percental difference between full and speed of
sound reconstruction(g). The black lines mark the positions at which the other visualised planes are
placed.

The differences between both reconstructions of exact data and the Born recon-
struction are up to 60 % as can be seen in figure 6.14 (e) and (f).

The comparison between the full simulation reconstructed with and without
speed of sound correction (g) shows the effect of this correction. The highest values
correspond to larger corrections. These are locations at which the sphere was at least
partially reconstructed from signals which have traversed the sphere. The parts of
the sphere which are close to the USCT centre, for example, were reconstructing
using many pulses which first traversed the sphere and were then scattered.

The comparison between difference images (e) and (g) shows that changes
introduced by the speed of sound correction are not the same as those introduced by
using the exact solution. This means that improvements beyond the speed of sound
correction are still required to obtain the reference images (b).

The reconstructions of the breast model are shown in figure 6.15. The breast was
immersed into the USCT as foreseen by the medical measurement plan. Therefore
the problems as seen in figure 6.14) do not occur. In all three types of reconstruction
(b), (c) and (d) the skin of the breast can be seen. Also the cancerous region inside
the breast can be seen in all three. This is due to additional sources of scattering
inside the breast. Again, the Born approximated reconstruction (b) shows a higher
total amplitude and slightly less artefacts than the other two reconstructions (c) and
(d). Unlike the decentral sphere, the large amplitude is not as pronounced for the
breast phantom.

The differences between the Born reconstruction and the two variants of the full
version (e) and (f) are in the same order of up to 80 %. The changes introduced by
the speed of sound correction are much smaller (up to 10 %).

More interesting results are visible in the reconstructions of the big breast in
figure 6.16. It can be seen by the bad visibility of the skin, that the breast is too close to
the USCT wall. This is the same problem of missing illumination as for the decentral
sphere. However, this was accepted in order to have access to the simulation larger
object (factor three in terms of wavelengths). The cancerous inclusion is hardly
visible in the Born reconstruction and cannot be seen in the reconstruction of the
full simulation. The speed of sound correction has a larger influence due to the
shorter wavelengths and also because of the larger delays due to the increased size
of the object. Therefore the cancer can be seen in the enhanced reconstruction. It
can also seen in the difference image (g), that the speed of sound correction has a
much larger impact than in the previous objects. All difference images yield values
between −100 % and +75 %.

Figure 6.16: (Next page) Enlarged breast model simulated and reconstructed in several ways.
From top to bottom: Ground truth(a), reconstruction of Born simulation(b), reconstruction of full
simulation(c), reconstruction of full simulation using the known ground truth in speed of sound
correction(d), percental difference between Born and full reconstruction(e), percental difference
between Born and speed of sound reconstruction(f), percental difference between full and speed of
sound reconstruction(g). Black lines mark positions at which the other visualised planes are placed.
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6.3.4 Result

The impact of the Born approximation on imaging is two fold. It has an impact on
the arrival times of pulses fo 4 µs, which is relevant for higher bandwidth imaging.
The amplitude of multiply scattered waves is at 10 % of the first reflection. Both
effects can clearly be seen, both in the simulations and in the reconstructions. It is
currently possible to do an exact computation with an object dependent factor of
25 to 100 times more computing time compared to the time required to compute
a simulation within the Born approximation. However, this is not possible for the
reconstruction for two reasons:

1. The theory is not implemented into an algorithm which could be used to
generate images from the USCT. (There is an implementation taking place
currently in the TU Delft).

2. Even with such an algorithm ready, the computational requirements are too
large to reconstruct the full USCT.

The speed of sound correction of SAFT appears to be the best correction currently
available to obtain images in a reasonable time. To see the effect of the speed of sound
correction in a simulation a finer discretisation is required. As can be deducted from
the observation in section 6.2.1 at least 5123 voxels and 512 frequencies are required
for this.

On the computational resources available for this thesis, this would require
roughly one year to be computed.

6.4 The effect of surface sources

All simulations used so far were based on the assumption of point sources, i.e. a
uniform emission of the pressure fields to all directions. Such emitters represent an
ideal case which is not realistic. A point source is idealised by vanishing surface
area. This approximation holds if the sidelength of the surface is considerably
smaller than the wavelength. To obtain realistic simulations, it should be possible
to simulate emitters taking their dimensions correctly into account. Therefore, it
will be analysed if surface sources can properly be simulated in this section. The
existing simulation will be enhanced to take the spatial dimensions of an emitter
as used in the USCT device into account. The field of the surface source is created
by integrating the field of point sources along the active surface of the emitter. To
obtain precise results the discretisation has to be fine-grained enough. 75 points per
wavelength should be used to achieve a tolerable accuracy of less than 1 % [McG04].
The simulations conducted in this thesis uses 100 points per wavelength. For each
simulated wavelength the same discrete point sources were used.

The simulations in this theses are conducted at the centre frequency of 70.3 kHz.
To obtain results comparable to the USCT device, the simulated emitter was enlarged
to be of the same size – when measured in wavelengths. For the centre frequency of
USCT of 2.5 MHz this corresponds to a sidelength of 32 mm which has to be used in
our simulations.

The emitter is sub structured into four elements of piezo ceramics which are
separated partially by air and by polyurethane. Figure 6.17 shows the layout of the
emitter indicating the scaled sizes.
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Figure 6.17: Layout of the structured emitter as used in USCT. The dimensions are scaled up from
2.5 MHz for simulation at 70.3 kHz.

Each of the four elements shown in figure 6.17 was represented by 4225 point
sources. The sources were placed so that an offset is equally distributed to both
sides. This setup is used for several simulations.

Firstly we visualise the wave front emitted by the surface emitter using the pulse,
specified in figure 6.8. Results are shown in figure 6.18, from two perspectives. It
can be seen that the pressure field is distributed non-uniformly into the volume.
More quantitative analyses are given in the following subsections

6.4.1 Energy distribution

To analyse the difference of the energy distribution caused by a surface source and a
point source, an adequate normalisation has to be used. In this case two normali-
sations are applied. Firstly the distance dependence is removed by multiplication
of the squared pressure with r2, to obtain the normalised energy equivalent. The
second normalisation requires the total energy received to be 1. In this norm it
can best be compared which receivers will receive more or less energy. Figure 6.19
shows the b-scans in the chosen norm as well as accumulated normalised energy
equivalent over receiver number. It can be seen that the surface source emits more
energy to directions normal to the emitter surface. Side lobes are not visible in
figure 6.19.

6.4.2 Comparison with a far field simulation

To obtain a quantitative verification of the simulations made, the radiation pattern
of the surface source from the numerical solution is compared with a simulation of
rectangular surface sources in the far field. This simulation is based on solving the
Rayleigh integral within the Fraunhofer approximation which is valid in the far field.
The theory is described in [OF89] and was implemented in a tool within the USCT
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Figure 6.18: Pressure wave emitted by the surface emitter from two perspectives at given time steps.
The left column shows the wave front as observed when looking into the emitter, the right column
visualises the wave front in plane perpendicular to the emitter and to the left column.
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project called TAC (Transducer Array Calculation). The Fraunhofer approximation
is valid [LLL10] if

a2

Lλ
< 1 , (6.3)

with the sidelength of the emitter a and the distance L. For our case (a = 32 mm,
L = 120mm, λ = 21 mm) equation (6.3) yields 0.4 and the Fraunhofer approximation
is valid.

In the numerical solution the directivity pattern in several distances from the
source was determined. For the given geometry and wavelength, the far field
approximation is valid starting at 8 cm distance from the source (see also figure A.17
in the appendix). The directivity pattern is obtained by collecting values of the
pressure amplitude in a half circle of radius 12 cm around the centre of the source.

The radiation pattern obtained with both methods for the centre frequency of
70.3 kHz is compared in figure 6.20. Both plots are normalised to one. The pressure
field of a point source is also shown for reference. It can be seen that both simulations
yield very similar results. The noise in the exact simulation originates from the low
spatial sampling.

A quantitative comparison is not possible using the polar plot and the output of
TAC because access to the raw data is not possible in this specific case. However, a
more meaningful and quantitative comparison is possible when using the intensity
distribution for many frequencies. For this, the frequency distribution of the pulse
used (see figure 6.8) as input to TAC which computes the directivity pattern for each
frequency weighted with the Fourier spectrum of the pulse. The same result can
be obtained using the exact simulation. Both results are shown and compared in
figure 6.21. It can be seen that both simulations differ less than 6 %. This is due to
the limited spatial resolution which causes error when computing spatial positions
from angles.

6.4.3 Result

Simulations taking the spatial dimensions of the USCT emitters into account can be
made within the implemented numerical solution. The results are comparable to
those within the far field approximation (less than 6 % difference). However, com-
puting constraints currently limit the maximal frequency which can be simulated.
In the presented case of fmax = 140 kHz the directivity pattern is very different for
the size of the ultrasound emitter of 9 mm. To demonstrate the capability of the
simulation the emitter was scaled up. In this setup a full simulation of the USCT
including an object like in the previous section is not reasonable.

6.5 Visibility of microcalcifications

Some cancer types have the interesting property that due to their speed of growing,
their metabolism is anaerobic. This causes the environment of the growing tumor to
be acidic. If the tumor is situated within a mammary gland, the calcium of the milk
it contains will precipitate and build clusters of microcalcifications. One element
of such a cluster is of 35 µm to 100 µm in diameter. This is a factor six below the
wavelength of the USCT. Due to the high speed of sound of hydroxyl apatite out
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of which the calcifications consist (6790 m
s ) it might be possible to visualise their

scattering signals in the USCT, despite it is smaller than a wavelength. However,
microcalcifications represent the highest challenge for imaging with USCT.

To investigate the possibility of visualising microcalcifications included in the
breast two modified breast models were simulated and reconstructed. One breast
phantom was modified to contain one voxel (2.1 mm) of hydroxyl apatite. When
scaled to the wavelength of the USCT this corresponds to a size of 60 µm. The second
simulation was done with the breast model containing a cube of eight voxels of
hydroxyl apatite, which models a microcalcification with a diameter of 120 µm.

Figure 6.5.1 shows the results of the Born reconstruction and the enhanced
reconstruction of both breast phantoms. In (a) the ground truth is shown.

The born reconstruction (b) and the full reconstruction (c) of the phantom with a
small inclusion indicate that the calcification cannot be reconstructed, while the large
inclusion can be visualised in both types of reconstructions (d) and (e). However,
the percental difference between the enhanced reconstructions of unmodified breast
phantom and the small microcalcification (f) exhibits that the small inclusion causes
changes of up to 20 %. These might be too low to be visualised but they are in the
image. The large inclusion, which can be clearly seen in the image causes differences
of up to 140 % when compared to the unmodified breast model (g).

In images (e) and (g) an artefact can be seen in the x-y plane. It originates from
the strong scattering of the microcalcification and is due to the ellipsoids which are
added into the result image as part of the SAFT algorithm.

An additional simulation of 643 voxels and fmax = 70 kHz where one voxel
corresponding to a microcalcification of 120 µm was conducted. The results are not
shown. The born reconstruction of this simulation shows no sign of the hydroxyl ap-
atite inclusion. Since this lower resolution simulation can not show the calcification
which was visible at 1283 voxels, it is likely, that the smaller calcification of 60 µm
will be visible at higher resolutions starting at 2563 voxels. However, this needs to
be shown first.

A comparison of the A-scans is shown in appendix A.2 in figures A.12 through
A.14. Visible differences in the selected A-scans occur in the transmitted signals
rather than in the reflected ones. It is therefore more likely that transmission to-
mography is suitable to find microcalcifications than reflection tomography (SAFT)
which was used to create the images.

6.5.1 Result

Microcalcifications of sub wavelength sizes of 60µm can be detected in the USCT
using SAFT, but it will be difficult to visualise them. Smaller calcifications are very
unlikely to be seen, while very large calcifications (120 µm) will be visible.
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Figure 6.22: (Previous page) Breast model with an inclusion of hydroxyl apatite of 60 µm (not
shown) and 120 µm (a). The two models with small and large inclusion are visualised with the
born reconstruction and the enhanced reconstruction ((b)-(e)). The difference of the enhanced
reconstruction of the unmodified breast model with the small inclusion and the large inclusion are
shown in (f) and (g) in percent. For better visualisation, all regions with speed of sound above 2000 m

s
were clipped.



CHAPTER

SEVEN

DISCUSSION AND
CONCLUSION

When building new experiments or measurement devices it is desirable to simulate
the properties of the device before it is finally constructed. This allows to evaluate
and to improve the design of the system. Additionally, software components which
are required for the analysis of measurement data can be developed while the
system is built. In many cases the ground truth, which serves as input data for the
simulation is valuable knowledge for the development of data analysis software.
For a 3D USCT system, however, simulations are very demanding in terms of the
algorithm but also in terms of its hardware requirements with respect to memory size
and parallel processing facilities or computing time. This is due to the combination
of the ultrasound wave simulation which is already very demanding with the fact
that USCT requires 628 emitters to be simulated.

Prior attempts to simulate the system using finite differences required to reduce
the system size by a factor 10 [WRS+06]. This is because in general finite difference or
finite element methods require at least ten points per wavelength to obtain accurate
results [LBPT05, IB95]. Therefore, these methods generally limit the size of the
problem they can solve.

More advanced methods which employ conjugate gradient schemes to solve
the Helmholtz equation of the problem are available [FB93, AD09] and require only
four points per wavelength [VH09] but have not been applied to simulate the USCT
system so far.

The value of this thesis beyond the state of the art is that it implements an algo-
rithm that generates reliable simulated data for the USCT system. Full confidence in
the correctness of the simulation results is guaranteed within the approximations
made, so that the simulated data can be trusted and used for further development of
the imaging algorithm. Additionally, an easy to use access to distributed computing
resources from within Matlab is now available. This is targeted at the benefit of
scientific developers who can now develop algorithms on parallel resources. Before,
the time for testing software changes on distributed resources took much longer
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because deployment was not supported. It was therefore not useful for productive
development.

To achieve these goals an integrative architecture for PArallel INfrastructure
(PAIN) was designed and implemented. High level functionalities such as automatic
compilation, deployment, run and data retrieval were integrated into a user friendly
Matlab interface.

derived. The numerical implementation of the derived solution was done with
friendly support of Koen van Dongen of TU Delft. The implementation was made
under the assumptions that changes in the density can be neglected and that absorp-
tion does not occur. The implemented numerical solution was successfully verified
with results of an analytical solution. This was also used to quantify the error of the
approximation of neglected density changes in the numerical solution. The overall
simulation has an interface that creates an processable input for the unmodified
reconstruction algorithm so that the simulated data can be used for imaging.

7.1 Discussion of Results and Methodology

The development of the numerical algorithm and the simulation of several test cases
with different objects inside the USCT are discussed in the following.

7.1.1 Discussion of the approximations

The impact of two approximations was evaluated. One is made in the simulation,
the other in the reconstruction.

Constant density approximation in the simulations

In the simulation the assumption was made that scattering of pressure waves at den-
sity changes can be neglected for human tissue. The impact of this assumption was
challenged by using the analytical solution which does not make this assumption.

It was found that the least error is obtained, if the missing changes in the density
are reflected by modifying the compressibility and using measured speed of sound
values. For the evaluated example of cancer embedded in fat – the simplest model
of a breast with a tumor – the error in the spatial energy distribution introduced by
this approximation is below 10 %. Errors in arrival time were not observed.

Born approximation in the reconstruction

The analysis of the error introduced by the Born approximation which is made
in the reconstruction algorithm SAFT (Synthetic Aperture Focussing Technique)
was more complex. Therefore, we firstly studied the consequences which the Born
approximation has on the results of the simulation. We found the known effects of
missing multiple scattering and insensitivity to changes in speed of sound. Addi-
tionally, it was found that transmitted signals show a difference of a phase change
of π compared to exact simulations. The impact of the neglected velocity of sound
was quantified to be of 4 µs for a breast like object inside the USCT. At a centre
frequency of 2.5 MHz and bandwidth of 1 MHz corresponds to more than twice the
pulse length. This has a big impact on USCT imaging using SAFT, because pulses
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from different directions will not add up at the same point but instead on a ring.
This significantly reduces the contrast of the image.

For image reconstruction using SAFT the Born approximation is made in the
reconstruction algorithm while exact data are used as input. In order to evaluate the
impact of this approximation in imaging, the reconstruction algorithm is first used
with Born approximated data. This means we are using the same approximation in
both, simulation and imaging. This is called “committing an inverse crime” [Wir04],
because it leads to better images than can be generated under realistic circumstances.
The inverse crime was used to create reference images. These were compared
to reconstructions using exact data as input. The used metric of comparison are
percental difference images. The largest differences are found at the surfaces of the
objects used in the simulations. This is due to the reflections being placed at wrong
positions because of the wrong treatment of the speed of sound within the Born
approximation.

The SAFT algorithm offers one extension to go beyond the Born approximation.
It uses the spatial distribution of the speed of sound – the so called sound speed
map – to compute the average speed of sound along the path which the wave
travelled. This is used to find the correct source of the reflection. The required sound
speed map is known in simulations or obtained using time-of-flight tomography
in measurements. These corrections improve the reconstructed images. These
improvements are visualised in percental difference images. It is found that the
introduced error is only partially corrected. It was furthermore found that the
errors introduced and the corrections take place at different locations and have a
larger effect when the object is larger in terms of wavelengths. This suggests that
the chosen discretisation of 1283 voxels and 128 frequencies was not fine-grained
enough to model the speed of sound corrections in a realistic way. It indicates that
accurate simulations require a finer discretisation.

7.1.2 Discussion of the scaled frequencies

The simulations of the USCT within the maximal frequencies of fmax = 140 kHz
used have been proven to be correct within the assumption made. However, the
USCT system operates at fmax = 3.5 MHz. Due to the computing constraints, the
simulations can not be run at this frequency.

This results in two effects. The first is that in the simulations the objects inside the
USCT are much smaller in terms of wavelengths. The consequence is that scattering
is dominated by scattering at objects in the size of the wavelength rather than by
refraction. This was visible in the different results the speed of sound correction
mentioned above.

The second effect is that the emitters can be treated as point sources at the low
frequencies. At higher frequency simulations, the spatial dimension of the emitters
leads to a characteristic directivity pattern.

To prove the correctness of the implemented algorithm also for higher frequen-
cies in terms of the directivity pattern, a comparison with a tool (Transducer Array
Calculator, TAC) which is specifically designed for the simulation of characteristic
directivity patterns was made. A virtual emitter was scaled up so that it had the
same size in wavelengths as the real emitters used in USCT at 2.5 MHz.
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The tool TAC uses the Rayleigh integral within the Fraunhofer approximation,
i.e. results are valid only in the far field. For the geometries used, 12 cm is well
within the far field for the two cases compared. At this distance from the emitter the
full spectrum was compared with the results of TAC. Less than 5 % difference were
found. The remaining differences were attributed to the limited spatial resolution
in the numerical result, which caused errors when computing the spatial positions
from angles.

The contrary effect was exploited to evaluate the visibility of microcalcifications
which pose the highest challenge in respect to imaging for USCT. These calcifications
indicate aggressive, i.e. fast growing types of cancer and are of sizes between 35 µm
and 100 µm. The voxel sidelength of dr = 2.1 mm in frequencies with fcentre = 70 kHz
corresponds to a sidelength of dr = 60 µm at fcentre = 2.5 MHz. Two cases of
microcalcifications were simulated. Each was included in the breast model and
had a size of 60 µm or 120 µm in diameter. The smaller inclusion can almost not be
visualised, the changes introduced are below 20 % of image amplitude. The larger
inclusion can clearly be seen, the introduced change is up to 100 %. An additional
simulation at fcentre = 35 kHz, where the large calcification corresponds to one
voxel, showed that the large calcification cannot be visualised. This indicates that
microcalcifications at the size of one voxel (60 µm for USCT) can not be found.

7.1.3 Discussion of the computing infrastructure

The core of a distributed solution is the distributed computing middleware. In
this thesis the middleware PAIN was developed. It provides an easy to use and
comfortable interface for interactive access to compute resources directly from within
Matlab. PAIN was used to run many simulations of different aspects within this
thesis in parallel. The performance of the distributed architecture was measured.
A minimal overhead of 70 ms is introduced per access to the distributed resources,
which allows to even distribute short running tasks. It was demonstrated that tasks
of 60 seconds runtime a speed-up of 160 can be reached on 192 hosts. Even at the
chosen runtime of 60 s still 83 % efficiency can be reached.

We were able to allocate all of the 720 CPU cores provided on the cluster for
simulations of the test cases. Optimisations can still be introduced for larger data
transfers because only 20 % of the available bandwidth were allocated.

Beyond the scalability of PAIN itself, the numerical algorithm for simulation of
pressure waves in media scales remarkably well, because it can be hierarchically dis-
tributed on three levels: Each emitter can be computed independently. Its simulation
can be split into the independent simulation of frequencies. The frequency simu-
lation utilises the Fourier transform, which makes use of multi-core architectures.
For example on the grid, this would lead to a distribution of the 628 emitters to 628
computer centres at which one computer would be assigned for each frequency to
solve. On each computer, all cores are utilized to compute the fast Fourier transform
(fft).

The interface of PAIN is very comfortable for use from within Matlab, because
existing code can be used. In addition, when changes to the code are made, an
automatic recompilation and redeployment will be triggered. So that the latest
software of the user is always available on the remote resources. It is also possible
to use PAIN from the commandline to remotely execute arbitrary Unix commands.
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This also includes the execution of user provided executables. In this way PAIN can
also be used for distributed C-code.

The Matlab license model permits the way in which PAIN distributes the exe-
cutables. The campus license needs to be installed only on the developers computer.
It includes the Matlab compiler used to create the executable which is run on the
distributed resources. On these resources the Matlab compiler Runtime needs to be
installed. It is free of charge.

7.1.4 Discussion of the limited resolution

The simulations have been conducted in the coarse grained grid of 1283 voxels and
128 frequencies ( fmax = 140 kHz). The spatial and the temporal discretisations are
coupled via the requirement that four points per wavelength are required to compute
the convolution without aliasing artefacts. The results of chapter 6, especially for
detailed analysis of the reconstructions using simulated data with SAFT, but also
the spatial dimensions of the emitters indicate that simulations at higher frequencies
are required for more detailed analyses. For this spatial discretisation has to be
more fine-grained. In case of USCT frequencies of up to 3.5 MHz are used. To
simulate this case 40963 voxels and 4096 frequencies and 64 TB RAM are required
on every computer in the distributed system. A rough estimate shows that the
computing time of at least 40, 000 years on the cluster with 720 cores is finally the
largest problem.

The approach of the filtered convolution method allows to carry out convolutions
with only two points per wavelength [VH09]. In this case the problem can be reduced
to a discretisation of only 20483 voxels and still 4096 frequencies.

If additionally, only frequencies of up to 3 MHz can be accepted for the simula-
tion, the discretisation requirements drop to 10243 voxels and 2048 frequencies. This
represents the largest case which can be solved today. It requires computers with
256 GB RAM, which are available in some modern HPC clusters. To estimate the
required computing time, we assume an additional factor two introduced by the
filtered convolution method and assume that no additional RAM will be required.
Due to the good scalability of the simulation, its runtime can roughly be assessed
via the available number of CPU cores of a system. A factor eight increase of the
number of voxels (e.g. 1283 → 2563) leads to a factor eight more memory and a
factor 2 · 81.2 more CPU time. The factor two represents the increased amount of
required frequencies. Additionally, more iterations are required by the algorithm at
higher resolutions to reach convergence. This effect is difficult to predict and was
therefore not taken into account when extrapolating computing times. For the case
of 10243 this leads to at least 80 years of computation time on our 720 core cluster.
Using cloud computing resources for this computation can be rented for 15 million
e at Amazon. The computing time depends only on the number of resources which
can be allocated simultaneously.

On the fastest German supercomputer (Cray XE6 in Stuttgart) this computation
can be executed in approximately two months. In this case modifications of the
software have to be made with regard to the HPC architecture and to the distribution
of tasks.

If the whole LHC computing grid could be allocated simultaneously and if
all computers had the required 256 GB RAM, this computation could be done in
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approximately 40 days on the grid. In this case slight modifications of PAIN are
required.

Graphical CPUs (GPUs) are used more recently by many groups to speed up
computations. However, GPUs do not appear to be useful in this case, because
the fast Fourier transformation (fft) is the critical part in the simulation for the
performance. The problem is that for the fft all data has to fit into the memory
of the graphics card. For simulations of 10243 voxels, 256 GB of RAM are required,
which exceeds the capabilities of today’s graphics cards.

7.2 Conclusions and Recommendations for Future Work

The aim of this thesis to generate exact simulated data for USCT was reached.
Additionally, characteristics of the assumptions within SAFT and the speed of sound
correction were quantified. Furthermore, a middleware for parallel computing was
developed so that cluster or cloud access from Matlab is possible without expert
knowledge in this field.

For extending the simulations towards the high frequencies used in USCT future
two options are suggested. One is the evaluation and integration of the filtered
convolution method so that only two points per wavelength are required for convo-
lutions. This allows a reduction of the spatial discretisation by a factor two, resulting
in a factor eight smaller problem size and is crucial for higher frequency simulations.

The other item for future work is to clarify the hardware platform to use for the
large scale simulations. The adaptations which have to be made to exploit the full
potential of the chosen architecture are very architecture specific. This also means
that the general part is already implemented within this thesis.

Both topics need to be addressed so that simulations with 5123 Voxels and
fmax = 1.2 MHz can be carried out. Simulations with 2.4 MHz may be possible
depending on the performance of the resources which can be accessed. Simulations
with 3.5 MHz are unlikely to be computable in the near future.
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A.1 Energy distribution for various Objects in the USCT
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Figure A.1: Sounds speeds of the used breast model inside the USCT
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Figure A.2: Breast model with enhance speed of sound for cancer
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Figure A.3: Sounds speeds of the used sphere inside the USCT
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Figure A.4: Decentrally placed sphere
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Figure A.5: Sounds speeds of the used sphere inside the USCT
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Figure A.6: Decentrally placed sphere with inclusions
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Figure A.7: Sounds speeds of the used breast model inside the USCT
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Figure A.8: Decentrally placed sphere with inclusions and noise
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A.2 Additional A-scans

The amplitude scans (A-scans) on the following pages refer to the objects shown on
the previous pages.
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Figure A.9: A-scans for decentrally placed sphere



A.2. ADDITIONAL A-SCANS 115

 

 

Reflection (emitter 1, receiver 225, transmission signal removed)

t [ms]

Reflection (emitter 1, receiver 225)

t [ms]

Transmission (emitter 1, receiver 190, transmission signal removed)

t [ms]

Born Approximation

Full simulation

Transmission (emitter 1, receiver 190)

A
m
p
li
tu
d
e
re
la
ti
v
e
to

p
in
c

t [ms]

A-scans for the decentral sphere with inclusions

0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.1 0.15 0.2 0.25 0.3 0.35 0.4

×10−4

×10−4

−5

0

5

−0.5

0

0.5

−1

0

1

−0.2

0

0.2

Figure A.10: A-scans for decentrally placed sphere with inclusions
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Figure A.11: A-scans for the decentrally placed sphere with inclusions and noise
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Figure A.12: A-scans for breast model with enhance speed of sound for cancer
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Figure A.13: A-scans for the breast model with a small microcalcification
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Figure A.14: A-scans for the breast model with a large microcalcification



120 APPENDIX A. FIGURES

A.3 Plane wave scattering

I therefore ran four more (numeric) simulations of a plane wave scattered on the
sphere. Two with the sphere having a higher speed of sound (1703 m/s) than the
surrounding medium (1524 m/s), two with a lower speed of sound (1391 m/s).

Figure A.15 shows a plane wave scattered on a sphere with higher speed of
sound compared to the embedding. Top is the exact solution and bottom is the
Born approximated solution. It can be seen that the Born approximation does not
correctly model the speed of sound. Figure A.16 shows a plane wave scattered on
a sphere with lower speed of sound compared to the embedding. Top is the exact
solution and bottom is the Born approximated solution. It can be seen that the Born
approximation does not correctly model the speed of sound.
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Figure A.15: Comparison of plane wave scattered on a sphere within Born approximation (bottom)
and the exact solution (top) for selected time steps
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Figure A.16: Comparison of a plane wave scattered on a sphere within Born approximation (bottom)
and the exact solution (top) for selected time steps
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A.4 Directivity patterns of the surface source
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Figure A.17: Directivity pattern of the surface source in section 6.4 in various distances from the
source. Each plot was normalised to one.
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A.5 Technical Drawings

Figure A.18: A map of the USCT. Numbers indicate Transducer Array System (TAS) head numbers.



APPENDIX

B

DERIVATIONS AND TOOLS

B.1 The spatially averaged Green’s function

For r = 0 this integral can be solved straightforward, while for r 6= 0 the following
derivation is necessary. Using the symmetry of the Green’s function, we have
freedom to choose r parallel to the z-Axis. In spherical coordinates we then define

Q = ||r + r′||
=
√

r2 + r′2 + 2rr′ cos ϑ′

⇒ dQ
dϑ′

= −rr′ sin ϑ′
1
Q

.

Using (B.1) in (3.17), we get

[Ĝ(x)] = − 3
8πR3

∫ r′=R

r′=0

∫ Q=r−r′

Q=r+r′
e−ikQ r′

r
dQdr′ , (B.1)

which can be integrated. This leads to two cases for the spatially averaged Green’s
function:

[Ĝ(x)] =





3 e−ikr
4k3πR3r

(sin(kR)− kR cos(kR)) ∀ x 6= 0

3
4k2πR3

(
(1 + ikR)e−ikR − 1

)
∀ x = 0 .

(B.2)
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B.2 The Fourier transform

The Fourier transform is an integral coordinate transformation which transforms a
periodic function into a basis in which it is described by its frequency components.
The Fourier transform has the nice property that derivatives with respect to time
can be described by the multiplication of a factor iω with the Fourier transform of
that function:

∂

∂t
f (x, t) = F−1 {iωF { f (x, t)}} (B.3)

⇔ F
{

∂

∂t
f (x, t)

}
= iω f̂ (x, ω) . (B.4)

The Fourier transform is defined as

f̂ (x, ω) = F [ f (x, t)]

=
∫ ∞

−∞
f (x, t) e−iωt dt (B.5)

and the inversion as

f (x, t) = F−1[ f̂ (x, ω)]

=
1

2π

∫ ∞

−∞
f̂ (x, ω) eiωt dt . (B.6)

The ^ indicates the Fourier transformed function with respect to time. Since this
includes the frequency dependence, its dependence is only explicitly shown in the
definition above and omitted elsewhere.

The shown examples apply the Fourier transform on the time, thereby trans-
forming the function to frequency domain. This Fourier transform is also referred
to as the temporal Fourier transform. The spatial Fourier transform applies to all
spatial coordinates used. For this the 2D or 3D Fourier transform has to be used.

B.3 Energy in a pressure wave

The energy of a pressure wave can be computed like

E = 1/2x2
p

ωk
κ

t · A , (B.7)

with xp the particle displacement, ω the circular frequency, k the wavenumber, κ the
compressibility, t the time and A the surface on which the wave energy is measured.
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The derivation is simple:

Particle movement: s(x, t) = xp sin(kx−ωt) (B.8)

Particle velocity: v(x = 0, t) =
∂s
∂t

(B.9)

= −Aω cos(ωt) (B.10)

Pressure difference caused by : ∆p = −1
κ

x
∆V
V

(B.11)

= −1
κ

∂s
∂x

(B.12)

= −1
κ

xpk cos(ωt) (B.13)

Power: P(t) = vF = v∆pA (B.14)

= x2
p

ωk
κ

cos2(ωt)A (B.15)

Averaged over one wavelength: P =
1
2

x2
p

ωk
κ

A (B.16)

Energy: E = Pt (B.17)

=
1
2

x2
p

ωk
κ

tA (B.18)

Therefore image the squared pressure amplitudes is directly proportional to the
energy, because all other parameters remain constant. Only the amplitude which
changes over time and space gives relevant information.
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APPENDIX

C

SOURCE CODE

C.1 mpain – the Matlab interface to PAIN

1 i f u s e _ p a r a l l e l _ i n f r a s t r u c t u r e
2 % d i s t r i b u t e
3 f o r k = 2 : nt /2;
4 j i d ( k ) = mpain_async ( @fsk_fd_remote , geo , f r e q ( k ) , n f f t ) ;
5 end
6 % c o l l e c t
7 f o r k = 2 : nt /2;
8 [ p _ i n c _ f t p _ t o t _ f t ] = mpain_wait ( j i d ( k ) ) ;
9 end

10 e l s e
11 % or run l o c a l l y
12 f o r k = 2 : nt /2;
13 [ p _ i n c _ f t p _ t o t _ f t ] = fsk_fd_remote ( geo , f r e q ( k ) , n f f t ) ;
14 end
15 end

Listing C.1: Practical example of parallelising code using mpain. The function fsk_fd_remote is
either called remotely or locally. In the remote case two loops are used: one for distributing the tasks
and a second one for collecting their output.

Scan barcode to see
movie on youtube

http://marcus.hardt-it.de/diss/breast-eb.html
http://marcus.hardt-it.de/diss/breast-eb.html
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