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Zusammenfassung

Die Roboter kommen1 - damit ist nicht eine martialische Invasion durch Roboter

wie in der Science Fiction gemeint, sondern die Entwicklung, dass moderne Robo-

tersysteme zunehmend ihren abgeschotteten Arbeitsraum verlassen und auch phy-

sikalisch mit dem Menschen interagieren. Entfallen die räumlichen Barrieren zwi-

schen dem Arbeitsraum des Menschen und dem des Robotersystems, müssen neue

Sicherheits- und Bedienkonzepte für die physikalische Interaktion entwickelt wer-

den. Es muss sichergestellt werden, dass beispielsweise bei der gemeinsamen Mon-

tage innerhalb einer Fahrzeugkarosserie oder bei der Zusammenarbeit in der Enge

eines Operationssaals keine Gefahren entstehen. Sensorik ist dabei der Schlüssel

um Veränderungen der Umgebung und Aktionen des Menschen zu erfassen. Ein

Teilaspekt dabei ist das Erkennen des direkten physikalischen Kontakts des Robo-

ters mit seiner Umgebung bzw. mit dem Menschen. Um die Sicherheit von Mensch

und Roboter zu gewährleisten, ist eine lückenlose Überwachung der Außenhülle

des Robotersystems auf Kontakte wünschenswert. Eine vielversprechende Lösung

hierfür sind taktile Sensoren, die direkt auf der Außenhülle des Robotersystems

angebracht sind. Die Messdaten taktiler Sensoren können genutzt werden, um bei-

spielsweise adäquat auf eine Kollision zwischen Medizinroboter und Patient zu rea-

gieren oder um eine intuitive Interaktion bei Montageaufgaben zu ermöglichen.

Eine Herausforderung für die Entwicklung taktiler Sensoren ist die Adaption auf

komplexe, oftmals mehrfach gekrümmte Oberflächen, die mit den derzeit verfügba-

ren taktilen Sensoren nicht, oder nur unzureichend, möglich ist. Die Analyse des

Standes der Technik zeigt, dass die verwendeten Materialien und Herstellungsver-

fahren die Mehrzahl der verfügbaren taktilen Sensorsysteme auf die Anwendung

auf planaren oder einfach gekrümmten Oberflächen beschränken. Agieren Robo-

ter in der unstrukturierten und zeitveränderlichen Umgebung des Menschen, sind

Kollisionen nicht immer vermeidbar. Daher muss u.a. die Oberfläche des Roboter-

systems so gestaltet sein, dass die Folgen einer Kollision abgeschwächt werden.

Eine nachgiebige mechanische Dämpfungsschicht auf der Oberfläche des Roboters

1Titel des Ressorts Wissen, Die Zeit in der Ausgabe N° 4 vom 19. Januar 2012
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ist eine denkbare Lösung. Um die Feinfühligkeit der taktilen Sensoren durch die

Dämpfungsschicht nicht zu beeinträchtigen ist es vorteilhaft, die Sensorelemente

außen auf der Dämpfungsschicht zu integrieren. Als Konsequenz müssen jedoch

solche taktilen Oberflächensensoren – um bei Kollisionen nicht zerstört zu wer-

den, elastisch verformbar und überlastfest gestaltet sein. Zentraler Aspekt bei der

Entwicklung von taktilen Sensorsystemen war in der Vergangenheit meist die Fein-

fühligkeit sowie eine möglichst hohe räumliche Auflösung. Aspekte wie die spätere

Integration in ein Robotersystem und die Überlastsicherheit wurden oft vernach-

lässigt. Wird hingegen die Entwicklung auf Robustheit hin ausgerichtet, so fehlt

es den resultierenden Sensorsystemen zumeist an der nötigen Feinfühligkeit. Der

Stand der Forschung zeigt eindrucksvoll, dass isoliert betrachtet jede einzelne der

gewünschten Eigenschaften optimiert erreicht werden kann – nicht jedoch deren

Kombination. Der Fokus dieser Arbeit liegt daher auf der Lösung des Zielkonfliktes

zwischen hoher Messempfindlichkeit und mechanischer Robustheit. Angelehnt an

die Funktionalität der menschlichen Haut sollen – neben den multimodalen senso-

rischen Eigenschaften – mechanische Verformungs- und Dämpfungseigenschaften

realisiert werden, sowie die Einflüsse eines solchen Oberflächensensorsystems auf

die Thermoregulation berücksichtigt werden. Ausgehend von der Analyse des Stan-

des der Technik und den aktuellen Forschungsarbeiten, sowie den Ergebnissen ei-

gener Vorarbeiten werden Entwurfsparadigmen vorgeschlagen, welche die Lösung

des Zielkonflikts zwischen Messempfindlichkeit und Robustheit erleichtern. Die

Entwicklung sowie die Struktur der Arbeit sind an die in VDI-Richtlinie 2206 vor-

geschlagene Entwicklungsmethodik für mechatronische Systeme angelehnt. Hierin

wird das V-Modell aus dem Softwareengineering auf die Entwicklung mechatroni-

scher Systeme angepasst. Im Rahmen des Systementwurfs wird ein Gesamtkonzept

für eine skalierbare künstliche Haut für Robotersysteme erarbeitet, sowie ein inno-

vatives Konzept für die benötigte Sensordatenverarbeitung vorgeschlagen. Neben

der Skalierbarkeit von Sensorfläche, räumlicher Auflösung und Messempfindlich-

keit, wird die Skalierbarkeit der benötigten Herstellungsverfahren berücksichtigt.

Angelehnt an die Partitionierung in der Softwareentwicklung wird das gewünschte

Funktionsspektrum der künstlichen Haut in parametrierbare funktionale Kompo-

nenten unterteilt. Während des domänenspezifischen Entwurfs werden – basierend

auf der integrativen Entwicklung von maßgeschneiderten Materialien und skalier-

baren Herstellungsverfahren – Lösungen für die Umsetzung der einzelnen funktio-

nalen Komponenten erarbeitet. Beispielsweise werden neuartige elektrisch leitfähi-

ge Leiterbahnen auf Polymerbasis entwickelt, um die geforderte elastische Verform-

barkeit der Sensorfläche zu ermöglichen. Die Eigenschaften des geplanten Gesamt-

systems können durch die Modellbildung und Simulation der einzelnen funktiona-
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len Komponenten abgeschätzt werden. Für die Verifikation der gewünschten Eigen-

schaften wird, da derzeit kein standardisiertes Testverfahren für taktile Sensoren

zum Einsatz auf Robotersystemen existiert, ein im Rahmen dieser Arbeit entwi-

ckeltes einfaches Testverfahren verwendet, welches erstmalig eine Vergleichbarkeit

unterschiedlicher taktiler Sensorsysteme ermöglicht. Im Rahmen der Systeminte-

gration wird exemplarisch ein taktiler Oberflächensensor mit Auswerteelektronik

zur Erfassung von Normalkräften realisiert. Hierzu werden die benötigten funk-

tionalen Komponenten kombiniert, sowie die erforderlichen Herstellungsprozesse

und Materialien erprobt und prototypisch umgesetzt. Die Prototypen der künstli-

chen Haut werden auf einem eigens entwickelten Teststand identifiziert und deren

Praxistauglichkeit anhand von Versuchen zur Kollisionsdetektion mit einem DLR

Leichtbauroboter demonstriert. Die durchgeführten Untersuchungen zeigen, dass

mit dem vorgeschlagenen Gesamtkonzept eine bezüglich Sensorfläche, räumlicher

Auflösung und Messempfindlichkeit skalierbare künstliche Haut für Robotersys-

teme realisiert werden kann. Die Prototypen und Experimente zeigen, dass diese

künstliche Haut auf mehrfach gekrümmten, nachgiebigen Oberflächen eingesetzt

werden kann und der Zielkonflikt zwischen Messempfindlichkeit und Robustheit

gelöst wurde.
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Abstract

Modern robotic systems are gradually escaping their fenced workspace and begin to

physically interact with humans. If the physical barriers between the workspace of

the robotic system and the human fall away, new safety and interaction concepts

for the physical human robot interaction have to be developed. These concepts

have to make sure, that, e.g. during a joint assembly task within a car body nei-

ther the human nor the interacting robotic system are endangered. Sensor systems

are a key element to detect changes in the environment and sense actions of the

human user. One aspect herein is the detection of direct physical contact between

the robotic system and the environment or the human user. In order to ensure

safety of human and robotic system a close surveillance of the covering structure

of the robotic system with respect to physical contact is desired. A promising so-

lution are spatially distributed tactile sensors that are mounted on the covering

structure of the robotic system. The acquired tactile information can be utilized

to initiate adequate collision reaction strategies or as a means of intuitive human

machine communication. A major challenge for the development of tactile sensors

for robotic systems is the adaptation to the complex, often 3D-curved surfaces of

modern robotic systems. This adaptation is not or only insufficiently possible with

the available tactile sensors. The analysis of the state-of-the-art reveals, that the

applied materials and manufacturing technologies restricts the majority of tactile

sensors to the application on planar or developable surfaces.

If robotic systems operate in an unstructured and time varying environment col-

lisions can no longer be avoided. That is why, amongst other means, the surface

of the covering structure of the robotic system has to be equipped with a passive

mechanical damping layer. In order not to constrain the sensitivity of the tactile

sensors, the tactile sensors have to be integrated on top of the mechanical damp-

ing layer. Consequently, the tactile surface sensors have to be stretchable to allow

for the underlying mechanical damping layer to deform in case of a collision. In

addition, the tactile surface sensors have to be overload proof to withstand the

high indentation forces that occur in case of a collision. In the past, the majority

xi



xii

of approaches towards tactile sensors for robotic systems focussed on high spa-

tial resolution and sensitivity. A future integration into a robotic system or the

mechanical robustness of the tactile sensors have often been neglected. However,

if the development was focussed on mechanical robustness, the resulting tactile

sensors lack the required sensitivity. The analysis of the current state-of-the-art

of science and technology impressively shows that, considered individually, all re-

quirements can be fulfilled – but not their combination.

Therefore the focus of this thesis is the derivation of a solution of the goal con-

flict between the desired high sensitivity and the required mechanical robustness.

Human skin is considered as a design metaphor for the development of a multi

functional artificial skin concept that, next to providing the required sensory capa-

bilities, exhibits mechanical deformation and damping properties required for the

operation on a robotic system. Based on the analysis of the current state-of-the-art

of science and technology and the outcome of own previous work design paradigms

for the solution of the described goal conflict are proposed. The development and

the structure of this thesis are based on the design methodology for mechatronic

systems presented in VDI 2206. Herein the V-model, known from software engi-

neering, is adapted for the development of mechatronic systems. During the system

design an overall concept for a scalable artificial skin is derived. The concept allows

the adaptation of the properties of the artificial skin to the respective application

site on the robotic system. Besides the scalability of sensor surface area, spatial

resolution and sensitivity the pursued approach accounts for scalability of the un-

derlying manufacturing processes that is required for the successful integration

into robotic systems. In addition, a concept for the acquisition and preprocessing

of the tactile data is proposed. Based on the functional partitioning, known from

software design, the desired functional range of an artificial skin is divided in ad-

justable functional components. During the domain specific design concepts for

the individual functional components are derived based on the integrative design

of tailored materials and scalable manufacturing processes. As an example, novel

electrically conductive polymer based circuit tracks are developed in order to enable

the required elastic deformability of the sensitive surface area of the artificial skin.

The properties of a future artificial artificial skin system can be anticipated based

on the conducted FEM simulation.

Currently no standardized test procedure for the assessment of the functionality of

tactile sensor exists, therefore a simplified test procedure for the verification of the

desired properties of the artificial skin is proposed. Within the system integration

exemplarily a tactile surface sensor for the acquisition of normal indentation forces

is implemented. For this, the required functional components are combined and
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the underlying manufacturing processes are field-tested. The resulting artificial

skin prototypes are identified on a specialized testbed and applied on a robotic sys-

tem. The suitability for daily use of the artificial skin prototypes is examined in a

collision detection scenario on the DLR LWR III. The conducted tests demonstrate,

that the proposed overall design concept allows for the development of an artificial

skin that is scalable with respect to sensor surface area, spatial resolution and sen-

sitivity. The prototypes and the conducted experiments verify that the presented

artificial skin can be operated on 3D-curved surfaces of modern robotic systems

and that the goal conflict between sensitivity and a collision tolerant design can be

solved.
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1
Introduction

Today, various technical systems make use of tactile information. Ranging from

touch displays in modern cell phones to in-shoe measurement of pressure distri-

bution for the design of orthopedic insoles for running shoes. Tactile sensors in

general provide information regarding physical contact between different systems.

In the context of robotic systems tactile sensing can be defined as the acquisition of

information from tactile sensors located in or on the structure of a robotic system.

The definition of tactile sensors is not always consistent in literature, therefore the

definitions that are applied for this thesis are outlined in the following section.

"Tactile sensors" are defined according to Lee and Nicholls [86] "as a device or sys-

tem that can measure a given property of an object or contact event through physi-

cal contact between the sensor and the object". The success of electronic consumer

goods, e.g. smart phones, is, amongst other factors, based on the introduction of

touch sensitive displays. The touch sensitive displays make use of multiple inter-

action channels. For close interaction tactile input is combined with visual output.

By capturing the motion of one or multiple fingers on the touch screen, intuitive

interaction is possible and reduces the barriers of user acceptance. The introduc-

tion of an intuitive HMI might have the same effect on physical interaction between

human users and robotic systems and thus may help to facilitate the introduction

of robots into our everyday environment.

1
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Depending on the application site in the robotic system tactile sensors can be sub-

divided into intrinsic and extrinsic tactile sensors, see e.g. Tegin and Wikander

[162]. This subdivision follows the definitions often applied for human sensation:

haptic sensation consists of kinesthetic and tactile sensation, where kinesthetic

sensations originate from sensory cells in muscles and joints and tactile sensation

stems from the sensory cells in human skin. Both sensor categories contribute to

the sensation that is evoked by a physical contact. When we lift an object from

a table the kinesthetic sensors provide information regarding the joint angles and

muscle activation whereas the tactile sensors in the skin of the human hand pro-

vide information regarding the contact with the grasped object.

Similarly the intrinsic sensors that are located within the kinematic chain of the

rigid mechanic structure of a robotic systems, see figure 1.1(a), provide informa-

tion regarding the joint angles and torques that are applied in the robotic system.

The information regarding the resulting forces and torques is viable for the control

of the robotic system. According to Cutkosky et al. [146] P.456, intrinsic sensors

can be defined as "devices that measure an average or resultant quantity". For in-

trinsic sensors often metal structures equipped with strain gages are utilized. The

application of standardized precision elements enables highly accurate acquisition

of the forces and torques exerted on the structure of the robot. The technical equiv-

a) b)

10Kg10Kg

Figure 1.1: Classification of tactile senors, a) intrinsic sensors within the kinematic chain of the robot, b) extrinsic
tactile sensors on top of the covering structure of the robot

alent to the sensory cells of human skin is referred to as extrinsic tactile sensors,

see figure 1.1(b). Extrinsic tactile sensory provide information about the spatial

distribution e.g. of the pressure at the contact surface resulting from the physical

interaction with an object. According to Tegin and Wikander [162], an extrinsic
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tactile sensor "typically senses normal forces and contact positions". Tactile sens-

ing is, according to Harmon [50], beneficial for robotic systems in various contexts.

According to [146] P.456, (dexterous) manipulation, exploration and response are

supported by tactile sensors.

1.1 Tactile sensing in robotic applications

In the context of robotic hands extrinsic tactile information can be applied for grip

force control, multi-fingered manipulation and for robotic haptic exploration of un-

known environments. Okamura and Cutkosky [111] present an algorithm for the

detection of surface features for robotic haptic exploration based on tactile sensor

data. If applied to the complete surface of a robot, extrinsic tactile senors are able

to enhance robot "self awareness". Extrinsic tactile information can help to enable

safe human robot interaction as collisions can be detected and safe reaction strate-

gies can be activated. Therefore extrinsic tactile sensors can help to further the

capabilities of robots to discriminate between unintentional collision and intended

physical human robot interaction. An other field for the application of tactile sen-

sors in robotic interaction is robotic manipulation. According to [146] P.353, "Most

robot manipulation and assembly tasks would benefit from the utilization of tac-

tile sensory information". Okamura et al. [112] present an overview of dexterous

robotic manipulation and define contact models between different types of robotic

fingertips. Amongst others following modalities of an external mechanical stimulus

are important for robotic manipulation tasks:

• Contact detection

• Pressure distribution

• Slip detection

The event of making and breaking of physical contact can be applied in order to

determine if an object actually resides in a closed gripper or has been released. The

evaluation of the pressure distribution can be applied in the determination of the

curvature of an object in contact with the tactile sensor. The detection of slip can

be applied for autonomous grasp force adjustment during robotic manipulation.

Robotic exploration tasks can be supported by tactile information regarding:

• Object shape

• Object hardness / elasticity

• Surface roughness
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Cutkosky et al. [146] P.459 even suggest to include temperature sensors equipped

with a heating device in order to acquire the thermal conductivity and heat capacity

of the object in physical contact with the tactile sensor.

1.1.1 Industrial joint assembly tasks

Figure 1.2: Intuitive human robot interaction, during the completion of a joint assembly task. Photograph courtesy of
S. Parusel

The habitat of robots in industrial application has been and often still is exactly

structured and demarcated with high physical or optical fences. Industrial robotic

systems are kept enclosed in cages like dangerous predators in zoos. The workspace

of the robots is cleared and closely monitored with emergency stops and fences to

prevent the entrance of human users into the robot workspace. The complexity of

highly integrated mechatronic products results in demanding assembly processes.

Joint human-robot assembly tasks are designed, e.g by Reinhart et al. [125] and

Lenz et al. [88], to combine the strength of robotic systems with the flexibility of

human personnel, see figure 1.2. If human workers can enter the workspace of a

robotic system physical interaction can occur accidentally in the form of collisions,

or intentionally as desired physical Human Robot Interaction (pHRI). Thus, the

established paradigm defining a robot’s workspace as a no-go area for humans is

becoming outdated. The co-existence of humans and robots in the same workspace

requires additional information for the control of safe interaction. Before humans

can be allowed to enter the active workspace of robotic systems the effects of un-
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a) b)

Figure 1.3: Intended human robot interaction and unintended collision.

intentional collisions have to be analyzed. Therefore Haddadin and colleagues, e.g.

[46] have conducted an assessment of the severity of collisions between robots and

humans. It has been shown, that the severity of collision can be reduced if appro-

priate collision reaction strategies are applied.

Vision based surveillance systems are commercially available, but close interac-

tion in restricted workspaces often results in occlusion of the cameras and thus

in decreasing reliability of vision based scene surveillance. Therefore, additional

information from sensor systems that are not obstructed by close interaction is re-

quired in order to enable the discrimination between intended pHRI, figure 1.3(a)

and unintended collision, figure 1.3(b). Tactile sensors provide information regard-

ing the spatial distribution of an indentation force and thus can contribute to a safe

pHRI and the design of intuitive human machine interfaces (HMI).

Today, the physical interaction between human user and robotic system, e.g. for

user guided trajectory teaching, is often restricted to the control panel or the robot

end-effector as interaction area. These interaction areas can be equipped with

sensors that enable the acquisition of the forces and torques during physical inter-

action. Commonly force-torque sensors are located between the robot end-effector

and the attached tool. An example of a pHRI is presented by Voyles and Khosla

[170] who apply a force torque sensor at the robot tool center point to modify the

motion trajectory of a robotic manipulator.

Only recently, physical interaction between human user and the entire mechanical

structure of a robot based on data from intrinsic joint torque sensors is being inves-

tigated by Haddadin et al. [48]. The presented approach towards safe pHRI is based

on contact information derived from the intrinsic sensors of a DLR lightweight robot

(LWRIII) and allows the human user to utilize the entire structure of the LWRIII as

HMI.
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To further the ability of robots to physically interact with their environment, e.g. to

enable the detection of multiple simultaneous contacts, the sensory capabilities of

the robot can be enhanced by the introduction of tactile sensors on the surface of

the robot structure. One approach towards pHRI based on extrinsic tactile sensors

that are distributed on the robot surface is presented by Wösch and Feiten [183].

Based on the data gathered by the tactile sensors covering almost the entire surface

of the robot different reaction strategies for pHRI are implemented.

1.1.2 Service robotics in unstructured environments

Figure 1.4: The DLR Justin, a humanoid robotic system for service robotics in unstructured environment, e.g. Ott et
al. [114]

The introduction of robots into human every day environment has been predicted

for a long time. Elderly care or household robotics, see figure 1.4, are only two

popular scenarios for the desired interaction of humans and robots in the same

workspace. The recent increase in the number of humanoid robots which are ca-

pable of robust physical interaction with their environment demonstrates the po-

tential of service robotics in human everyday environment. This environment is

subject to continuous change, objects can be introduced in and removed from the

robot workspace at any time. Thus, robots for the application in human every day

environment have to be able to operate in unstructured environments. Collision-

free manoeuvering and object manipulation in an unstructured environment can
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be based on the acquisition of extensive sensory information. The sensor data

processing and the planning of the required trajectories is time consuming and

constrains the velocity of the moving robotic system.

A successful introduction of robots into the human environment requires that nei-

ther the human user nor objects in the environment are harmed or damaged by the

robotic system. Therefore passive and active collision detection as well as reaction

strategies are required. In order to reduce collision severity the skeletal structure of

a robot can be designed to be passively compliant, and thus collision tolerant, e.g.

Grebenstein et al. [45]. In addition the covering structure of robotic systems can be

equipped with a passive mechanically damping covering. Park et al. [116] evaluate

the design of mechanical damping layers to cover robotic systems. The authors

conclude, that the severeness of collisions can be reduced if a passive mechanical

damping layer is applied on the robot surface.

Active collision reaction can be based on input from the intrinsic sensors of the

robotic system. The detection of a contact triggers an active reaction strategy, that

activates e.g. the brakes of the manipulator or changes the control mode of the

robotic system. The combination of passive collision tolerant design and active

sensor based collision reaction strategies enables robotic systems that are capable

to manoeuver in unstructured environment without too much constraints with re-

spect to manoeuvering velocity.

A second important aspect for the introduction of tactile surface sensors is the

dexterity of robotic manipulators. For a service robotic scenario the manipulation

of objects is quintessential. The majority of the objects in human everyday envi-

ronment are designed to be manipulated by the human hand. To promote robotic

dexterity towards the manipulation of fine and fragile objects, dexterous robotic

hands e.g. the DLR-Hand-II presented in Butterfass et al. [11] as well as extensive

sensory input is required.The application of tactile sensors on robotic hands may

help to further increase the dexterity with respect to object manipulation.

The introduction of robotic systems into care facilities for the elderly is propagated

especially in robot-affine countries like Japan. The potential of robotic systems in

elderly care scenarios has been demonstrated in recent studies, e.g. by Wada et

al. [171]. The authors present a robot seal that actively interacts with the elderly,

and shows promising results especially with patients suffering from dementia. Tac-

tile sensors below the artificial fur enable an adequate reaction to the physical

input.
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Figure 1.5: The DLR Mirosurge setup for robotic minimally invasive surgery, e.g. Hagn et al. [49]

1.1.3 Medical robotics

The application of robotic systems in the medical context is currently intensively

investigated by various research groups and propagated by suppliers of medical

equipment. Today, robot assisted or robot-based surgical intervention is no longer

science fiction. Tele-manipulated robotic surgery systems have become standard

for a set of surgical procedures. Especially, for so called minimally invasive surgery

(MIS) the introduction of tele-manipulated robotic surgery systems is supposed to

revolutionize the way the surgeon works. Moorthy et al. [100] investigated the

impact of enhanced dexterity provided by robotic instruments in a robot based

surgical setup. The authors conclude that the dexterity is enhanced and the num-

ber of errors reduced in tele-operated robot based surgery.

The introduction of robotic systems into the operating room results in an even fur-

ther restriction of the space where surgeon and staff are able to manoeuver. Similar

to the pHRI in an industrial environment the interaction between operating room

(OR) staff and robotic systems in the constrained space of the operation room is

prone to unintended collisions. The close interaction of robot, surgeon, staff and

patient requires an even higher level of safety measures as unintended collisions

might affect the progress of the intervention and the patient’s health. The physical

interaction can be subdivided in extracorporal and intracorporal interaction. The

extracorporal interaction manly concerns surgeon and staff. For this interaction

the same safety enhancing strategies based on passive and active collision severe-
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ness reduction as in industrial context can be applied.

For the intracorporal interaction between robot and patient special attention has

to be paid in order to ensure the patient’s safety. In a minimally invasive operation

scenario the operation situs, e.g. the abdominal cavity, is no longer accessible for

the hands of the surgeon; the introduction of stick-like hand guided instruments

is required. This results in a loss of tactile feedback and offers only limited kines-

thetic feedback. Thus, basic surgical skills, e.g. the manual palpation of tissue e.g.

for the localization of tumors within healthy tissue are impaired.

The introduction of minimally invasive robotic surgery (MIRS), see e.g. figure 1.5

allows the surgeon to command the movement of robot guided instruments from an

input station that enables an ergonomic working position and provides 3D visual

feedback from the intervention site, e.g. Hagn et al. [49]. Similar to conventional

MIS the introduction of MIRS results in the loss of haptic and tactile feedback for

the surgeon. For the restoration of kinesthetic feedback a MIRS system is pre-

sented by Hagn et al. [140] that provides haptic force/torque feedback based on a

miniaturized 6 degree of freedom (DOF) force torque sensor (FTS) at the tip of the

robot guided instruments, e.g. Thielmann et al. [164]. The robot guided tissue

palpation presented by Seibold [141] is based on the sequential palpation of dis-

crete points of interest on the tissue surface. The acquired reaction forces offer a

high accuracy for each palpation point and are applied to compute a tactile map

of the region of interest. The major drawback of the sequential data acquisition is

the inherent discretization. Especially, small tissue alternations, e.g. ulcers may

not be identified if located between two discrete palpation points. Increasing the

accuracy of the palpation requires an increase of the number of discrete palpation

points and thus results in an increase of time required for the palpation.

These drawbacks may be countered by the introduction of spatially distributed tac-

tile sensors on the tips of the robot-guided instruments that enable a simultaneous

palpation of the region of interest. A spatially distributed tactile sensor for tissue

palpation with a surgical forceps is presented by Schostek [137]. This system offers

a high spatial resolution but is limited with respect to sensor size. The maximum

area that can be palpated at a time is 8.4mm × 13.5mm. Therefore objects larger

than the sensitive surface again require sequential palpation of the region of inter-

est. The size of the sensitive surface is restricted by the diameter of the point of

entry for the MIS instruments, the so called trocar. The development of spatially

distributed tactile sensors that allow for the simultaneous palpation of a region

of interest larger than the diameter of the trocar and offering a sensitivity similar

to the human fingertip would be desirable. A deformable tactile sensor would be

required for the instrument to fit through the trocar.
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1.2 Problem Statement

In 1982 Leon Harmon [50] stated, that "Touch sensing, [...], can be expected to

evolve into a highly developed technology in the near future, closely paralleling au-

tomated vision capability". While artificial vision technology has long since matured

and provides off-the-shelf solutions for robotic application, after more than thirty

years of research, covering a robot entirely with a touch sensitive cover is still far

from being standard. The essential question is:

What prevents the success of tactile sensors in robotic applications?

A possible answer to the above question may be found in the direction of the re-

search activities in tactile sensing. Only recently, the focus of the development of

tactile sensors for robotic fingers and grippers shifted to the design of touch sen-

sitive covers for the entire structure of a robotic system. A likely reason is that

the workspaces of humans and robotic systems have been consequently separated

from each other and a touch sensitive cover for the entire surface of the robotic

system just has not been necessary. Moreover, many of the basic approaches and

solution principles for tactile sensors have been published in the late eighties and

early nineties, this "ancient" knowledge often is neglected by young researchers

that are new to the field of tactile sensing, (this includes the author at the begin-

ning of this thesis, see section 3.2.7). The analysis of the literature regarding tactile

sensors reveals, that the probability is pretty high, that today’s "new" transduction

principles that are presented in "innovative" tactile sensor prototypes have already

been proposed in the eighties and nineties of the last century. As a result the focus

on the transduction properties which, according to Dahiya et al. [20] still is the

basic motivation for the development of tactile sensors prevents the shift towards

the development of implementable tactile sensor systems. A possible reason may

be found in the requirements defined for tactile sensor systems. Originally intro-

duced by Harmon [50] these requirements are based on the results of the analysis

of questionnaires sent to about fifty persons ranging from students to specialists in

robotics. One of the central questions was: "What would you like to see available

("blue sky") in tactile-sensing devices?" The answers to this open question can be

summarized as:

• Compliant and durable surface

• 1mm to 2mm spatial resolution

• 1g to 10g minimum sensitivity

• 1000 : 1 dynamic range
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• Monotonic output

• At least 100Hz frequency response

• High stability and repeatability

• Low hysteresis

Over the years these high expectations for the properties of an ideal sensor have

been converted to "general requirements" for tactile sensors. This process motivated

and still motivates researchers to develop new prototypes of tactile sensors aimed at

the fulfilment of the above quoted benchmark. As a result tactile sensors are often

presented as laboratory prototypes of tactile sensor systems in different stages of

integration. The challenge of the later spatial and functional integration of tactile

sensors has long since been identified to be hindering the successful introduction

of tactile sensors as a standard component for robotic systems, Jacobsen et al. [57]

or Cutkosky et al. in [146]. Dahiya et al. [20] point out, that "one should aim for

the tactile sensing system" and that "Much work needs to be done at the system

level before artificial touch can be used in a real-world environment". An insight

the authors of Jacobsen et al. [57] already emphasized in their article published in

1988. The authors state, that:

"[...] despite the dozens of tactile sensor designs that exist, it is becoming

clear to researchers that much work remains to be done at the system

level before machine touch can be understood and then used in dynamic

manipulation processes."

Until today only very few examples of successful integration of tactile sensor into

robotic fingertips have been reported, e.g. Weiss et al. [177].

The literature review presented in chapter 2 shows, that for each and every re-

quirement tactile sensors have been presented fulfilling that selected requirements.

Review articles, e.g. by Argall and Billard [4] or Dahiya et al. [20] show, that the

individual challenges can be met, however not all at the same time:

• High sensitivity, e.g. Mannsfeld et al. [94]

• High spatial resolution, e.g. Kolesar and Dyson [69]

• Robust sensor design, e.g. Fritzsche et al. [35]

• Integration into a robotic system, e.g. Weiss and Wörn [177]

When the combination of the ideal properties is considered, conflicts of goals arise.

Even if the challenge of the spatial and functional integration of tactile sensors into
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a robotic system can be solved, to the best knowledge of the author, no tactile sen-

sor system exists that is able to meet all requirements at the same time. Especially,

the conflict of goals between the desired high sensitivity and a collision tolerant de-

sign that is required for real world application of tactile sensors on a robotic system

remains unsolved. In addition, the results from the development of tactile sensors

for robotic fingertips can often not directly be scaled to meet the requirements of

whole-body touch sensitive covers for humanoid robotic systems. Especially, the

underlying materials and processing technology in most cases can not be scaled.

Figure 1.6 depicts a summary of the implications of the operation of tactile sensors
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Figure 1.6: The general contact event can be classified according to, wether the contact between the robotic system
and the environment or the human user is intended or unintended.

on a robotic system. The physical interaction between the robotic system and its

environment can be classified according to in which scenario the physical inter-

action occurs. Depending on the scenario different characteristics of the artificial

skin with respect to sensing capabilities and mechanical properties are required.

Physical interaction between the human user and the robotic system requires a

high sensitivity and an intuitive operation but is less demanding with respect to

transduction quality, as the human user is capable to adapt to the transduction

characteristics. For robotic manipulation of objects the detection of multiple simul-

taneous contact events is mandatory as well as the acquisition of the interaction



1.3. CONTRIBUTION OF THIS THESIS 13

forces is multiple degrees of freedom. In addition, manipulation tasks require a

robust sensor setup, as constant wear and tear challenge the tactile sensor dur-

ing manipulation tasks. Robotic exploration tasks demand a high sensitivity and

the reliable detection of multiple contacts whereas do not necessarily require multi

DOF acquisition of the interaction forces. Finally, the detection of unintended col-

lisions during the physical interaction requires fast sensing and pre-processing in

order to enable the initiation of adequate collision reaction strategies.

1.3 Contribution of this thesis

Within this thesis the development of tactile sensors is extended towards the design

of a multi-functional artificial skin for robotic systems. Therefore, an operation-

oriented approach is pursued that takes into account the requirements that arise

from the operation on a robotic system in real world application. While enabling

a high initial sensitivity that allows for the detection of indentation forces as small

as 0.05 N , collision forces that exceed 50 N can be exerted on the sensor without

mechanical damage. Based on general design paradigms that enable the solution of

the conflicts of goals, an overall concept for the design of a stretchable artificial skin

for robotic systems is proposed. The concept is based on the design of compatible

functional components that can be parameterized individually and enable the inte-

gration of additional sensory or mechanical functionality without introducing new

conflicts of goals. The individual adjustable functional components are designed to

contribute to the desired overall properties of the resulting artificial skin. Based on

the adaptive combination of the functional components a multi-functional artificial

skin is created that can be tuned to the requirements of the individual application

site e.g. on a humanoid robotic system. To facilitate the future integration into a

robotic system the resulting artificial skin can be scaled with respect to sensor sur-

face area, spatial resolution, and transduction properties. Therefore, an integrative

approach for the design of the artificial skin and the required scalable polymer

manufacturing processes is pursued. The scalability of the sensor design is based

on the development of scalable manufacturing processes and the required polymer

materials. Material science herein is understood as a tool rather than as a purpose

in itself. For the implementation of stretchable tactile surface sensors able to cover

the 3D curved surfaces of modern robotic systems, electrically conductive elastic

polymer compounds are developed. In order to demonstrate the effectiveness of the

proposed design paradigms a tactile surface sensor prototype is implemented that

combines high initial sensitivity with the required robustness for the operation in

real world robotic systems. In addition, a standard test procedure for the evaluation
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of tactile sensor systems is proposed in order to enable the comparison of tactile

sensor systems developed all over the world. To encourage the introduction of the

proposed procedure a set of simplified tests based on cost effective equipment is

proposed.

Within this thesis an overall concept for an artificial skin that takes into account

a future integration into a robotic system is proposed. Therefore an extended set

of concepts for functional components with additional functionality with respect to

the acquisition of shear forces and slip detection as well as thermal conditioning

functionality of the artificial skin is derived. The artificial skin hardware developed

in this thesis is focussed on a tactile surface sensor that is capable to transduce the

most prominent mechanical modalities of the indenting stimulus. The prototypical

implementation of the entire set of functional components, e.g. thermoregulation

and temperature acquisition will be subject to future studies. Similarly, the im-

plementation of higher level readout strategies, e.g. for the distal computing of the

detection of edges will not be addressed within this thesis.

1.4 Outline

This thesis consist of five chapters, following the above introduction to the field

of tactile sensing in robotic systems the literature describing the related state of

the art in science and technology is reviewed in chapter 2. The literature research

reveals that currently no general approach towards an adaptable artificial skin for

robotic systems exists. Therefore in chapter 3 an overall concept for a multi func-

tional artificial skin is derived. The development and the structure is based on the

design methodology for mechatronics systems proposed in VDI 2206 [169]. The

procedure is adapted for the design of an artificial skin. Consequently, a design

approach based on an integrative design of the functional components the required

manufacturing processes is pursued. For this thesis this approach is extended to

materials research for the derivation of the required material properties of the sen-

sor hardware. In chapter 4 a standard test procedure for tactile sensor systems is

proposed and applied for the evaluation of the properties of the generated proto-

types. In addition, a set of experiments demonstrating the successful integration

of a tactile surface sensor into an existing robotic system is presented. In the final

chapter 5 the results and findings of this thesis are summarized and future work

is outlined.
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State of the Art

A possible reason that there are no commercially available touch sensitive covers

for robotic systems may be the complex shape of the covering structure of modern

robotic systems. Especially, humanoid robotic systems are designed to mimic the

shape of a human body in order to increase the acceptance of the robotic systems

by the human user, e.g. see the study of the so called uncanny valley of Mori

[96] or MacDorman [93]. To resemble the shape of a human body, the covering

structure of humanoid robots has to be based on complex organic volumes with

3D-curved surfaces that can no longer be formed by the combination of simple

cuboid or cylindrical volumes. These biologically-inspired surfaces are mostly non-

developable and can not be covered with a single tactile sensor based on a rigid or

one-dimensionally bendable circuit board. The progress of the state of the art ar-

tificial tactile sensing for robotic systems has been documented over the last thirty

years in various review articles, [50, 103, 54, 86, 8, 85, 29, 162, 146, 20, 188].

The majority of the tactile sensor prototypes presented in literature has been based

on planar printed circuit boards (PCB). Based on this technology simple geometric

forms as cubes can be equipped with tactile sensors, see figure 2.1(a). Recently,

an increasing number of tactile sensor prototypes based on bendable PCBs also re-

ferred to as flexible PCBs are capable to cover one-dimensionally curved surfaces,

see figure 2.1(b), e.g. cylinders or cones. While there are various examples of tactile

15
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Figure 2.1: Planar surfaces, a) can be covered with tactile sensors based on rigid printed circuit boards, one-
dimensionally curved surfaces b), e.g. cylinders can be covered with bendable tactile sensors based on flexible polymer
based circuit boards, 3D-curved surfaces c) can not be directly covered with tactile sensors based on standard printed
circuit boards

sensors on the cylindrical shapes of robotic manipulators, e.g. Wösch and Feiten

[183] or Kerpa et al. [65], there are only a few approaches towards sensor setups

which are able to cover the arbitrary 3D-curved outer surfaces of today’s humanoid

robots, see figure 2.1(c). Two basic approaches to cover 3D-curved robotic surfaces

are pursued. Figure 2.2 depicts the two basic approaches. The first approach, de-

�� �� ��

Figure 2.2: 3D-curved surface a) covered with a: Modularized tactile sensor b), stretchable tactile sensor c)

picted in figure 2.2(b), is to subdivide the 3D-curved surface, e.g. figure 2.2(a), into

subsurfaces that can be covered with a rigid or bendable sensor module. The sen-

sor modules are then combined to form a sensitive cover of the 3D-curved surface.

The second approach, depicted in figure 2.2(c) is to cover the 3D-curved surface

with a stretchable sensor. The extensibility of the sensor allows to directly cover

concave surfaces even if the surfaces are non-developable.

2.1 Modular tactile sensor systems

The application of a combination of tactile sensor modules allows to cover 3D-

curved surfaces. The reduction of the size of the individual sensor module allows

to cover moderately curved surfaces with rigid or bendable tactile sensor modules

without affecting the resemblance of the shape of e.g. a humanoid robot too much.
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Below a set of recent approaches towards modularized tactile sensors is presented

in order of increasing ability to cover highly curved 3D surfaces.

Schürmann et al. [139] present a high speed tactile sensing module based on the

measurement of electrical resistivity in conductive foam. The presented technology

is based on the results of the work of Weiß and Wörn [177]. The sensor module

consists of a rigid rectangular PCB that contains the contacting electrodes and

readout circuitry. To form a sensor module the electrodes on top of the PCB are

covered with a conductive foam. An indentation of the foam surface results in a

change of electrical resistivity between the underlying contacting electrodes. The

presented prototype provides 16× 16 discrete transduction elements. In the style of

the spatially distributed transduction elements in cameras ("pixel"), the transduc-

tion elements of spatially distributed tactile sensors are often referred to as "tax-

els". The sensitive area measures 8cm×8cm. According to the authors the resulting

spatial resolution of 5mm in combination with the sensor surface suffices for the

detection of objects like a cup or glass. For the evaluation of the material proper-

ties of the foam cover the authors compare a 6mm thick sample of an unspecified

carbonized Polyurethane (PU) based foam and a 5mm thick foam sample extracted

from the commercially available DSAMOD sensor system of Weiss Robotics [66].

The authors state, that the PU based foam enables a higher initial sensitivity but

saturates at a lower force level than the DSAMOD foam. The given initial sensitivity

of 1 g
mm2 is sufficient for robotic exploration tasks. The saturation at 3 g

mm2 results

in a quasi binary sensor behavior if the entire range of expected interaction forces

(typical maximum fingertip force of a robotic hand: 30N , e.g. Butterfass et al. [11])

is considered. According to the authors the presented prototype might be the basis

for the development of a 1-dimensionally bendable sensor comparable to the sensor

prototype presented by Kerpa et al. [65].

Mittendorfer and Cheng [98] propose a modular multimodal sensing system that

allows for the acquisition of different modalities of an external stimulus. The pre-

sented sensor system is applied on a light weight robotic manipulator. According to

the authors the sensor system consists of off-the-shelf accelerometers, temperature

and proximity sensors. For the modules rigid PCBs are chosen for cost and reliabil-

ity reasons. The introduction of flexible or stretchable connecting wires is planned

in order to enhance the ability of the sensor system to conform to 3D-curved sur-

faces. The authors state, that in principal the size of the sensor modules could

be scaled down, but for the presented prototype the scaling is limited by the size

of the applied micro controller. The authors expect the interconnects between the

individual modules to fail during rough physical interaction. Therefore the routing

of the connecting wires is redundant, where only one of the applied four connectors
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needs to be functional to ensure the operation of a sensor module in the network.

As the sensor system currently does not provide pressure sensing capabilities, di-

rect tactile sensing is simulated by the applied proximity sensors. The temperature

sensing exploits the enhanced temperature of the sensor system that is mounted on

an operating light weight robot in order to enable the acquisition of thermal energy

dissipation if thermally conductive objects are in contact with the sensor. Mitten-

dorfer and Cheng [98] state, that the experiments regarding the thermal sensitivity

are conducted without polymer cover.

Cannata et al. propose a modular tactile sensor system based on the acquisition

of capacitance changes. The individual modules have a triangular shape inspired

by computer graphics. According to the authors the applied triangles enable the

covering of 3D-curved surfaces of a humanoid robot. Each sensor module con-

sists of a bendable triangular PCB that provides the electrodes of the capacitors

on one side and the wiring and off-the-shelf capacitance to digital converters. The

PCBs are covered with a 3mm to 5mm thick layer of silicone rubber to provide a

compliant surface. To enable the acquisition of changes in capacitance the sensor

modules requires a reference electrode. The sensor modules can be operated in

two different configurations. First, the sensor is operated without a fixed reference

electrode. This configuration utilizes the indenting object as reference electrode.

Consequently this configuration is limited to the detection of conductive objects,

e.g. human fingertips. In the second configuration a conductive cover is applied on

top of the silicone rubber. This conductive layer then acts as reference electrode.

Thus, an indentation caused by the contact of a non-conductive object results in a

displacement of the covering conductive layer. Due to the deformation of the sili-

cone layer the distance between the electrodes is altered. The resulting change of

the capacitance is acquired by an off-the-shelf transduction chip. A single module

of the presented prototype provides 12 electrodes enabling a spatial resolution of

about 5mm. The authors state, that the readout frequency for each module is 50Hz

and can be increased up to 500Hz if all electrodes of one module are combined

to gather an average measurement. The combination of modularization with the

application of bendable sensor modules allows to cover the 3D-surfaces of a small

humanoid robot. For the application on highly curved structures, e.g. the robot

fingertips specialized segments are applied, e.g. Schmitz et al. [133].

Fritzsche et al. [35] introduce a textile based tactile sensor that is capable of cov-

ering moderately curved 3D-surfaces. The sensor is based on the measurement of

the pressure induced changes of the resistivity of a polymer foam between textile

conductive pathways that are arranged in a matrix setup.According to the authors

the resulting sensor layer is approximately 2mm thick and can be operated on top
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of a 20mm thick energy absorbing layer referred to as cushioning layer. This layer

provides passive safety enhancement in robotic application. The authors state, that

the applied analog to digital converter (ADC) operates at up to 20kHz and enables

a resolution of 10bit. The textile material allows for the development of specialized

sensory covers for robots that can literally be tailored to fit the outer shape of tar-

get systems. The authors claim, that the sensor concept can be modified to suit

the requirements regarding shape, size and number of sensor cells. According to

Fritzsche and Elkmann [34] the presented matrix controller allows for the evalua-

tion of sensors consisting of up to 32 × 32 sensor cells. The authors state that the

size of the sensor cells can be scaled between 5mm × 5mm and 75mm × 75mm per

sensor cell. The scaling of the size is limited by the applied material that jackets

the chambers of the individual sensor cells. Thus, the presented approach is not

suitable for applications where high spatial resolution is required, e.g. the finger-

tips of a robot hand.

Lee et al. [84] present a flexible modular tactile sensor based on the measurement

of changes in electrical capacitance. The sensor modules consist of an array of

capacitors embedded into a flexible polymer matrix. The individual taxels are con-

nected via 0.02mm thick electroplated copper electrodes. A single sensor module is

22mm×22mm equipped with 16×16 taxels with a spatial resolution of 1mm. Accord-

ing to the authors the maximum frame rate for 16 × 16 taxels is 1kHz. The size of

the sensitive area can be enlarged be combining multiple sensor modules. The indi-

vidual sensor modules are connected with a conductive adhesive that, according to

the authors, can not be separated without the destruction of the sensor modules.

While enabling a reliable operation under mechanical loading an adhesive based

connection of the individual modules prevents an easy exchange of non-functional

sensor modules.

As a conclusion, the modularization of the surface of the robotic system allows to

cover moderately curved 3D surfaces with rigid or bendable tactile sensors that

can be manufactured based on well established processes that are applied for the

design of printed circuit boards. For surfaces with a high curvature the size of the

individual sensor modules has to be minimized. Accordingly, the number of often

mechanically fragile electrical interconnects between the individual sensor mod-

ules will increase. While the application of standardized manufacturing technology

simplifies the design of the sensor modules, the applied rigid or flexible materials

prevent the covering of the highly curved surfaces and thus the successful inte-

gration of modular tactile sensors towards a whole-body cover for modern robotic

systems. Furthermore, faceted surfaces may be functional, but represent only an

approximation of the intended design.
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An alternative approach towards a touch sensitive cover for robotic systems is the

application of polymer based tactile sensors that allow for a reversible elastic de-

formation and thus enable the covering of non-developable 3D curved surfaces of

a robotic system. Below the current state of tactile sensors based on stretchable

setups is outlined.

2.2 Stretchable tactile sensor systems

Today, an increasing number of research groups targets the development of stretch-

able electronic circuitry amongst others for the application in tactile sensors. The

review on dexterous in-hand manipulation by Yousef et al. [188] provides an

overview of the development of stretchable sensors. In general there are two basic

approaches for the design of stretchable circuit paths for the design of stretchable

tactile sensors. The most common is the application of metal based circuit tracks

that are manufactured in a shape that allows for an elastic extensibility. The sec-

ond approach is based on the development of dedicated polymer based electrically

conductive materials that are then applied for the design of stretchable tactile sen-

sors.

Cheng et al. [16] present a twistable tactile sensor prototype based on the mea-

surement of changes in electrical conductivity in a conductive polymer. The taxels

are arranged in an array setup. Each taxel consists of a small volume of con-

ductive polymer that is connected on top and bottom by spiral electrodes. The

manufacturing of the electrodes is based on a winding process. According to the

authors, the desired partial extensibility of the connecting wires is enabled by a

copper filament with a diameter of 0.25mm that is wound in a spiral around an elas-

tic, non-conductive polymer filament with a diameter of 0.3mm. The authors state,

that the presented prototype can be applied on the arbitrary surface of a human

shaped lower arm. The integration of the hard-soft interface between metal elec-

trode and polymer based taxel into the mechanically loaded sensing area creates

a limitation to the mechanical robustness of the tactile sensor. Moreover, the me-

chanical connection between the conductive polymer that is applied at the crossing

points of the spiral electrodes, conductive graphite is utilized to enable the electri-

cal connection to the "conductive polymer bumps" punched from the ready cured

conductive PDMS compound. Therefore there are two interfaces: First the interface

between the copper wire of the spiral electrode and the conductive graphite adhe-

sive; secondly the interface between the conductive graphite and the conductive

PDMS compound. Although the presented sensor prototype is stretchable enough

to be wrapped around a ping pong ball the major limitation of this approach is



2.2. STRETCHABLE TACTILE SENSOR SYSTEMS 21

the orientation and geometric fixation of the spiral electrodes during the manual

assembly process.

The works of Lacour and Wagner, e.g. [75, 172, 76, 17] represent the fusion of the

application of metal conductive structures and the utilization of polymer substrate.

The authors present electrically conductive circuit tracks based on thin films of

gold (< 100nm) that are deposited onto a pre-strained polymer substrate. After the

deposition of the thin gold layer the basic substrate is released resulting the sub-

strate to contract based on the elastic restoration forces. This contraction results

in a wavy electrically conductive structure. According to the authors the resulting

circuit tracks can be elongated up to 1% without a significant increase in electrical

resistivity. A further stretching of the gold plated polymer substrate results in a

linear increase of the electrical resistivity up to a strain level that ranges between

10% and 20%. Further stretching results in a fast increase of the measurable electri-

cal resistivity. The applied electron beam evaporation requires a vacuum chamber,

thus the maximum size of elastic circuits that can be manufactured at a time is

limited by the size of the vacuum chamber. Therefore the pursued approach is not

scalable to the manufacturing of large area stretchable circuits as required e.g. for

the manufacturing of tactile sensors for the torso of a humanoid robotic system.

Gonzales, Vanfleteren and colleagues, e.g. [42, 43] present a stretchable electronic

circuit based on planar meandering copper based circuit tracks. According to

the authors the proposed meandering structure allows for an overall elongation

of about 25% before the copper based circuit tracks mechanically fail. The applied

spin-coating of the photo-resist for the etching process prevents the scaling of the

process for the manufacturing of large area tactile sensors.

A similar approach is pursued by Lin and Jain [90] who propose a double layer de-

sign for metal based interconnects based on a meandering structure of the circuit

tracks. According to the authors a maximum strain of the interconnects of over

50% is possible yielding a maximum change in electrical resistivity of 5%. While the

authors claim to employ a scalable manufacturing process, again, the employed

eximer laser ablation process as well as the spin-coating process limit the maxi-

mum size of tactile sensors that can be manufactured applying the presented man-

ufacturing processes.

Amongst the most sophisticated approaches towards stretchable electronic circuits

is the work of Rogers and colleagues, e.g. [67], who present a technology that allows

for the generation of stretchable and foldable silicon integrated circuits. Multiple

conductive and semi-conductive layers are deposited on a polymeric substrate. The

silicone is strained before the integrated circuits are transferred to the silicone sub-

strate in order to create stretchable CMOS circuits. Thus, enabling stretchable in-
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tegrated circuits that can be elongated up to 10% and wrapped around a microscope

glass slide cover with a thickness of 100μm. The applied manufacturing principles

require extremely sophisticated and costly manufacturing and processing equip-

ment but enable the design of impressively deformable electronic circuits.

A different approach towards stretchable tactile sensors is pursued by the following

research groups. Instead of applying metal based conductive structures onto poly-

mer based substrates the research is targeted towards the design of polymer based

conductive materials that enable the design of stretchable polymer based tactile

sensors. The major challenge is the solution of the conflict of goals between the

desired high electrical conductivity and the required stretchability. Furthermore, it

is necessary to decrease the strain dependency of electrical resistivity of the poly-

mer based circuit tracks in order to enable the reliable operation of the resulting

electronic circuits under mechanical strain. The approach presented by Shimojo

et al. [145] enables a tactile sensor hardware that can be fit arbitrary surfaces.

The individual sensory elements are based on resistive rubber that is arranged in

a net structure. The small number of four readout wires is independent of the

sensor area and enables a fast response time of about one millisecond. The most

prominent limitation of this approach is low spatial resolution of 10mm× 10mm per

sensing element as well as a lack of scalability of the sensor surface area.

Alirezaei et al. [2] present a stretchable fabric sensor that is capable of covering ar-

bitrary 3D surfaces, e.g. the face of a mannequin. The tactile sensor is based on a

so called tomography principle that allows for the reduction of the required readout

wires. The presented prototype requires readout wires only at the rim of the tactile

sensor. Based on the analysis of the electrical conductivity of a net structured con-

ductive fabric between the individual contacting electrodes at the rim of the sensor

the location of a mechanical indentation can be computed applying a strategy that

is similar to tomography. The presented approach is limited with respect to spatial

resolution as well as the detection of multiple simultaneous indentations.

Noda et al. [107] present a stretchable tactile sensor for the joints of robotic sys-

tems. The acquisition of changes in strain is based on ionic liquid in channels that

are embedded in silicone. The stretching of the sensor results in a change of elec-

trical resistivity that can be acquired from copper based electrodes that contact the

ionic liquid. A surface structuring (silicone bump) on one of the two parallel chan-

nels is applied as detection point for indentation forces on the curved surface. The

major limitation of the presented approach is that it requires a separate channel

for each individual taxel plus one channel for the measurement and compensation

of the stretch induced by the movement of the joint of the robotic system.

Amongst the most sophisticated approaches towards electrically conductive poly-
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mer based circuit tracks is the work of Someya and colleagues, e.g. [152, 152, 142].

The presented stretchable organic light emitting diode (OLED) matrix display pre-

sented by Sekitani et al. [142] is based on individual pixels that are connected by

polymer based circuit tracks. The tracks are manufactured from a polymer that is

filled with carbon nano tubes (CNT). The resulting material exhibits a high electri-

cal conductivity and, even more impressing, shows almost no strain dependency

of the electrical resistivity up to mechanical strains of over 100%. In addition, the

conductivity of the materials is reversible if stretched up to 100%. The uniform

dispersion of the CNT requires a very sophisticated chemical processing of the in-

dividual ingredients. The only drawback of the presented approach with respect to

the application of the resulting sensors is the integration of mechanically rigid ele-

ments, e.g. transistors. This prevents the design of a mechanically overload proof

tactile sensor for robotic systems.

The majority of the stretchable tactile sensor prototypes that have been pre-

sented in section 2.2 is manufactured applying manual manufacturing procedures

(e.g. Yang et al. [187], who manually place individual electrodes for each taxel of a

32 × 32 tactile sensor matrix). While the manufacturing of a prototype will always

involve manual processing, the applied procedures and processes have to enable

a later automation of the manufacturing process as well as the spatial scalability

of the sensor manufacturing for whole body cover of a humanoid robotic system.

For the manufacturing of polymer based stretchable tactile sensors no dedicated

manufacturing technologies are available. Therefore many stretchable tactile sen-

sor prototypes are based on processes derived from the manufacturing of polymer

based electronic components, e.g. OLED. These processes often apply silicon wafers

and etching processes that are known from the manufacturing of micro electrome-

chanical systems (MEMS). The size of the applied silicon wafers limits the maximum

size of the resulting tactile sensors, e.g. spin coating of thin polymer foils onto a

silicon wafer, e.g. [82, 152, 13]. The application of standard polymer processing

machinery, e.g. extrusion, calandering and injection molding for functional poly-

mer products is not easily scalable to the small size and minimal material volumes

that are required for the manufacturing of tactile sensors for robotic systems. In

addition, the applied processes have to allow for the manufacturing of tactile sen-

sor that are capable to cover 3D curved surfaces. While a stretchable design poses

many additional challenges, e.g. manufacturing and robustness, it offers a pleni-

tude of opportunities for the design and implementation of tactile surface sensors.

To the best knowledge of the author no tactile sensor design exists that is based

on a scalable polymer processing technology that enables the automated manufac-
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turing of stretchable tactile sensors for the highly curved surfaces of robotic fingers

and at the same time allows for the processing of large area tactile sensors for a

whole-body cover of the 3D curved surfaces of robotic systems.

2.3 Discussion

Already in 1988 Jacobsen et al. [57] stated:

"If an ideal tactile sensing system satisfying [the] desired performance

criteria could easily be built, it would already have been done, and re-

searchers would now be focusing in earnest on the deeper issues of how

tactile data should be used in active machine manipulation. Unfortu-

nately, only partial systems exist, often consisting only of cleverly de-

signed transducer arrays with little potential for immediate application

in research because of their low reliability, lack of interfacing hardware,

or bulky geometry."

Unfortunately, today – almost a quarter of a century later – the same holds true for

the research efforts towards tactile sensor systems. The analysis of the state of the

art artificial tactile sensing shows, that even today the majority of tactile sensors is

developed with a focus on the transduction properties of the sensors. Although the

research towards artificial tactile sensing for robotic systems has a long history,

even basic challenges regarding the mechanical properties of the sensors and espe-

cially the unification of the required robustness and high sensitivity are still to be

solved. Moreover, the presented tactile sensor prototypes are mostly specialized for

a very specific task e.g. the acquisition of the pressure distribution on the robotic

fingertips. While an increasing number of research groups has shifted the focus

from the development of transduction hardware towards the development of tactile

sensor systems, the applied materials and design approaches for the tactile sensor

hardware are in most cases still not capable of fulfilling the basic requirements of

high sensitivity and compliance of the sensor surface. Although the systems orien-

tation seems to be promising with respect to the generation of de facto integrable

tactile sensor systems the majority of the presented tactile sensor systems are pro-

totypes showing that there is still a long way to go until robots can be fully covered

with a touch sensitive layer. One of the major challenges on this way is the devel-

opment of manufacturing technology that allows for the automated processing of

tactile sensors with very high spatial resolution for the application on robotic fin-

gertips as well as large area tactile sensors that enable a whole body touch sensitive

cover for humanoid robotic systems.
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Instead of targeting the research efforts towards a new transduction principle the

approach pursued within this thesis focuses on the development of an imple-

mentable sensor design that exploits well investigated transduction principles for

the sensing capabilities. One may conclude from the analysis of the state of the art,

that in order to achieve the desired combination of high sensitivity and overload-

proof, collision tolerant design it is necessary to widen the scope from the develop-

ment of tactile sensor systems towards a multi-functional artificial skin that can

be scaled and adapted to the requirements of the application site on the robotic

system. Thus, a spatial and functional integration towards an whole-body touch

sensitive cover for real world application of robotic systems may become feasible.
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Within this chapter a general concept for the design of a multi-functional artificial

skin for robotic systems is developed. The goal is to propose a work flow for the de-

sign as well as a toolbox of scalable functional components for the development of

specialized touch sensitive covers for the respective application site on the robotic

system. Based on the design methodology for mechatronic systems proposed in

VDI 2206 [169], see figure 3.1, an operation–oriented approach is pursued, that

accounts for the requirements and constraints arising from the spatial and func-

tional integration of an artificial skin into a robotic system.

Based on the partitioning of the functional range, adjustable functional compo-
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Figure 3.1: Mechatronic system components according to VDI2206 [169]

nents are developed during the domain specific design. The result is a toolbox

of adjustable functional components with optimized functionality. The integrative

design of the functional components and the required manufacturing processes ac-

counts for the required scalability of sensor system and manufacturing processes.

Based on the combination of the properties of the individual functional components

the desired overall behavior of the artificial skin can be obtained. Thus, the adap-

tation of the properties of the artificial skin to the respective requirements of the

different application sites on the robotic systems can be implemented. During the

system integration, exemplarily a stretchable tactile surface sensor is developed

and implemented based on the proposed manufacturing processes. The required

materials are investigated in order to suit the developed manufacturing procedures

and thus enable the implementation of the designed sensor setup.
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3.1 Methodology

The high spatial integration of mechatronic systems in general requires an opti-

mal design of the individual components of the overall system. The design of an

artificial skin system that enables a successful integration into a robotic system

has to consider the constraints arising from the integration. Therefore, the system

constraints for the later functional and spatial integration are crucial for the de-

sign process. According to VDI2206 [169] "Mechatronic systems comprise a basic

system, sensors, actuators and information processing". The authors propose the

representation of the relationship between these components as flows of material,

energy and information. Additionally a concept for the modularization and hierar-

chization of complex mechatronic systems is proposed. Applied to the integration
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Figure 3.2: The introduction of an artificial skin results in the increase of the number of interfaces

of artificial skin into the hierarchy of a robotic overall system the following flows

between robotic system and covering artificial skin can be defined:

Material flow between robot and skin is limited, examples could be fluids for

adaptive control of the mechanical damping properties of the skin, or the supply of

cooling agents from the robot to the skin sensor system.

Energy flow consists of mechanical energy, electric energy and thermal energy.

The covering structure of the robotic system mechanically supports the artificial
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skin. In the case of physical interaction of the robotic system with its environment

mechanical energy is exchanged between the mechanical structure of the robot

and the covering artificial skin. In addition, electric energy for the power supply of

the artificial skin and its readout system is transferred from the robotic system to

the covering artificial skin. Furthermore, electrostatic effects must be considered.

The operation of robotic systems results in the generation of waste heat that has

to be dissipated. Therefore, thermal energy from the mechatronic components of

the robot has to be transported to the artificial skin, if no internal cooling can be

integrated. Depending on thermal conductivity and thermal capacity of the applied

materials the artificial skin acts as a barrier for thermal energy dissipation from

the robotic system. This results in a thermal insulation of the robotic system and

may necessitate an internal cooling of the robotic system.

Information flow from the artificial skin to the control system of the robotic sys-

tem and vice versa must be established. The information of the artificial skin can

be utilized directly or indirectly. The direct integration of the output of the artificial

skin occurs if the data acquired by the artificial skin is applied in the motion con-

trol system of the robotic system. A collision event, detected by the artificial skin

results in the activation of pre-defined reaction strategies of the robotic system. In

this case the artificial skin acts as an additional source of information e.g. for re-

dundant safety systems. The indirect utilization of the artificial skin data occurs if

the data from the artificial skin is utilized for sensor data fusion in order to generate

additional information from the combination of data from various sensor systems.

An example is the combination of the resulting external force vector derived from

the intrinsic sensors of the robot with the information about contact location and

contact area distribution derived from artificial skin sensors. The reverse propaga-

tion of information (from the robotic system to the readout system of the artificial

skin) can be applied in order adapt the readout strategies of the artificial skin sys-

tem to the current state of the robotic system.

Important for the mechatronic integration is the definition of the interfaces for the

flows between the different components of the overall mechatronic system. Fol-

lowing the effects of the introduction of an artificial skin into a robotic system are

summarized.

The introduced artificial skin covers the basic system and thus acts as a barrier

between the basic system and the environment. Thus, the introduction of an arti-

ficial skin into a robotic system results in an increase of the number of interfaces

(declared with roman numerals in figure 3.2). In fact, the artificial skin acts as an

additional interface between the basic system and the environment. The artificial
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Figure 3.3: The V-model adapted for mechatronic systems design process, according to VDI2206 [169]

skin acts as an interface between the basic system and the environment. The in-

tended physical interaction of the robotic system with the environment, e.g. during

robotic manipulation of an object, mechanical energy is transmitted in both direc-

tions (I, IV) via the artificial skin surface. The tactile sensors of the artificial skin

transduce the external mechanical stimulus into a measurable quantity and pro-

vide tactile information for the information processing unit of the robotic system,

figure 3.2 (VI). In addition, the artificial skin acts as physical interface between the

robotic system and human users. The tactile surface sensors of the artificial skin

enable an additional channel for the intended pHRI, the artificial skin acts as a

HMI, figure 3.2 (I). In order to enable an intuitive interaction for intended pHRI the

sensitivity of the artificial skin has to be increased in order to minimize the required

interaction forces that are required for the artificial skin to act as HMI. In case of

an unintentional collision between the robotic system and the interacting human,

mechanical energy is transferred from the mechanical structure of the robotic sys-

tem (basic system), figure 3.2 (IV), via the covering tactile surface sensor to the

interacting human, figure 3.2 (II). Based on the described flows and the identified

interfaces between the robotic system and the environment a general concept for

the design of an artificial skin is derived in section 3.2.7.

Following, the applied methodology for the design process is outlined. The structure

of the design process is based on the design methodology for mechatronic systems
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presented in VDI 2206 [169]. According to the authors the adapted V-model can be

applied as a methodology for the macro cycle of the design of mechatronic systems,

it consists of the following steps:

• Identification of the requirements

• System design

• Domain-specific design

• System integration

• Assurance of properties

These steps can be accompanied by a supporting modeling and model analysis. A

set of subsequent macro-cycles is required in order to advance the development

from laboratory specimen over functional specimen to a mechatronic product that

is fit for mass production. This structure is intended for product development in an

industrial environment and thus is not directly applicable in a research environ-

ment. Therefore, the structure is adapted as follows. For this thesis, the structure
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Figure 3.4: Problem solving cycle as micro cycle for the development of mechatronic systems, according to
VDI2206 [169]

of the V-model, see figure 3.3 proposed in VDI 2206 [169] is adapted for the re-

search targeting the design of an artificial skin for robotic systems.

As no detailed development order is given for a research project the requirements
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for the desired tactile sensors system are based on the analysis of the current state

in tactile sensing and the analysis of the requirements that arise from the spatial

and functional integration of an artificial skin into a robotic system. Resulting from

the analysis of the limitations of the current state of artificial tactile sensing for

robotic systems the key challenges are identified.

During the system design a set of design paradigms for the design of the artificial

skin for real world application is proposed, see section 3.2.7.

The domain-specific design is restricted to the design of solutions for the functional

components of a tactile surface sensor hardware. Here the problem solving cycle

presented in VDI2206 [169], see figure 3.4, is proposed for the derivation of solu-

tions for the functional components of an artificial skin for robotic systems. Within

the system integration exemplarily a tactile surface sensor is developed based on

a selection of the functional components derived in section 3.4. Therefore, the

functional components are combined to form a stretchable tactile surface sensor.

Utilizing the proposed scalable manufacturing processes a set of tactile surface

sensor prototypes is implemented.
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3.2 System Design

The idea of applying results from the study of biological tactile sensing is all but

new. The investigation of biological touch sensitive systems in order to derive ap-

proaches for the design of tactile sensors for robotic system has an equally long

history as the development of tactile sensors itself. One of the first studies in this

field is the work by Lederman and Pawluk published in 1993 in their chapter in

[103]. Many of the bio-inspired approaches are based on a structure that is similar

to the bionic approach presented in Neumann et al. [102]. Other bionic approaches

are presented by Hill [53], Zerbst [189], Lindemann [91] and Stricker [154]. The un-

derlying basic structure of these approaches mostly consists of the analysis of the

technical challenge, the abstraction of the problem and a search for a solution for a

comparable problem in biological systems. Following, the underlying structure, the

principle or the strategy of the biological system is investigated and abstracted. Fi-

nally the abstract solution principle is transferred to a technically feasible solution

of the problem. Applied for the development of artificial skin for robotic systems bio-

inspired solutions are commonly derived from the analysis of human skin. For the

design of artificial skin for robotic systems the sensory capabilities and physiologi-

cal functionalities of human skin are the ultimate goal. The long term development

of artificial skin sensors is aimed towards the generation of artificial skin that is

able to provide a spectrum of functionalities as rich as human skin. In order to

enable intermediate steps of the evolution of tactile sensors towards technical skin

equivalents guidelines from human skin may be derived.

3.2.1 Human skin as design metaphor?

Experiments conducted by Monzee et. al [99] illustrate the loss of dexterity in hu-

mans if the thumb and the index finger of the human hand are anesthetized and

the subject looses the sensory feedback from the fingertips. With respect to the

outcome of the conducted experiments the authors state, that:

"[...] the most striking effect shown by all subjects in this study was the

use of vastly excessive grip forces during both lifting and holding [...]."

"With cutaneous sensation intact, all subjects in the present study gen-

erated only very small forces in directions other than those intended for

grasping and lifting. After digital anesthesia, the x- and z-axis linear

forces arising from the force imbalance between the fingers and from

pushing or pulling were significantly increased. In addition, significant
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off-axis torques appeared in the horizontal (y axis) and frontal (z axis)

planes."

One may thus conclude, that the loss of tactile information from the fingertips

results in a dramatic decrease in dexterity and that the mechanical properties of

human fingertips without sensitivity are not sufficient for dexterous manipulation

of small objects. On the other hand, the complicated handling of slippery objects

demonstrates the importance of the mechanical interface between fingertip and ma-

nipulated object. Even the sophisticated sensory feedback from human fingertips

is not always able to compensate for an insufficient mechanical contact between

fingertip and slippery objects. Hence only the combination of sensory feedback and

the mechanical composition of human skin result in the high dexterity observed in

humans.

Composition of human skin
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Figure 3.5: Human skin is composed of three main layers, the epidermis, the dermis and the subcutaneous fatty
tissue; Figure adapted from Kandel et al. [64]

Figure 3.5 depicts the principal setup of the human skin. It consists of a set of

layers with different mechanical properties. While the set of layer is identical over

the whole body, a varying thickness of the individual layers results in different

properties that are tuned to the requirements of the body site. According to Sil-

bernagel and Despopoulos [148] human skin consists of three major layers, the
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subcutaneous fatty tissue, the dermis and the superficial epidermis. The subcutis

consists of fatty tissue that is supported by connective tissue. The authors state,

that human skin at the sole of foot consists of a thick layer of cutis which covers a

pad of subcutaneous fatty tissue that is enclosed by pressure chambers formed by

connective tissue. The setup of the pressure chambers results from the adaptation

of the skin to the requirements posed by upright locomotion and the resulting high

pressures that can occur on the sole of the human foot. This setup forms an anti-

shock pad and in combination with a rich supply of blood vessels prevents decubital

gangrene induced by high local pressure. According to McGlone and Reilly [97] the

thickness of the dermis varies according to body site between 0.5mm at the eyelid

and over 5mm in the non-hairy skin of the palm or sole of foot. The data related

to the mechanical properties given in literature is highly variant and depends on

the applied experimental method and data acquisition process. The direct in-vivo

measurement of the mechanical properties of human skin is not possible as stan-

dardized tensile or compression tests on tensile testing machines are not feasible

with living tissue. Therefore, various approaches towards the indirect measure-

ment of the mechanical properties are presented in literature. A brief review of

experimental methods for the determination is presented by Korthagen [70]. Hen-

driks [52] applies indentation, suction and torsion experiments for the derivation

of the mechanical properties of human skin in vivo. The thickness of the individ-

ual layers of the skin on the human forearm is given according to Hendriks [52].

The so called stratum corneum exhibits a thickness between 10 μm and 20 μm. The

thickness of the living epidermis varies between 30 μm and 130 μm. The thickness of

the supporting dermis is approximately 1.1 mm and the underlying subcutaneous

fatty tissue 1.2 mm thick. Many experiments for the derivation of the mechanical

properties have been conducted applying dead tissue. According to Pailler-Mattei

et al. [115] the mechanical properties of in vitro tested stratum corneum can be de-

scribed by a Young’s Modulus of about 1GPa. In vivo experiments with human skin

are only possible on the surface of the intact skin. According to Diridollou et al.

[25] the direct acquisition of the mechanical properties of the individual skin layers

by vertical stress is not feasible. Therefore, computational models of the skin setup

are applied to calculate the properties of the layers from the reaction of the entire

skin. Hendriks [52] evaluates the deformation of human skin applying a suction

device. An alternative approach is the modeling of human skin tissue, Gerling and

Thomas [39] present a solid mechanics model for human skin layers. Dandkar et

al. [21] propose a FEM model of the fingertip for the investigation of tactile sense

and the underlying mechanics. The authors state, that a model consisting of mul-

tiple layers can approximate the behavior of human and monkey fingertips. Wu et
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al. [184] propose a model of the human fingertip incorporating non-linear behavior

of the tissue as well as effects of time-dependency. Tada et al. [161] present a

model of the layers of subcutaneous tissue based on indentation test under MRI

surveillance.

The majority of the presented computational models for the description of the me-

chanical properties of living human skin tissue is based on limited experimental

data or applies simplifications for the description of the material behavior. There-

fore, the presented computational models of human skin behavior are not suitable

for the application in the design of artificial skin for robotic systems.

Sensory capabilities in human skin

Weddell and Miller [175] present an early review of the research towards the skin

sensibility and outline the complexity of the research in this field. Järvilehto et al.

[58] state that the functionality of cutaneous receptors in animals are similar to the

one in humans. Their analysis also indicated a similarity of the receptors within

glabrous and hairy skin. Johansson [60] investigates the sensibility in human skin

and stated that there are four types of mechano-receptors with specialized function-

ality. In the same line of research Vallbo and Johansson [167] conduct experiments

examining the two-point thresholds on the skin surface for the characterization of

the size and distribution of the receptive fields of the human hand. They observed

a reduction of spatial resolution from the fingertip (two-point threshold 1.6mm) to

the palm (two-point threshold 7.7mm). Bruce and Sinclair [10] investigate the sen-

sitivity threshold of the skin on the human finger. The authors propose a test setup

that utilized the so called von Frey hairs, a set of mostly polymer based filaments

that exhibit a defined force if pressed to the skin. If this defined force is exceeded

the filament will bulge under the applied load and thus limit the transmitted inden-

tation force. The authors extend the von Frey hair based manual test by fixing the

von Frey hairs on an apparatus that enables the reproducible indentation move-

ment of the hairs into the skin surface. The authors conclude, that the differences

in sensitivity threshold do not correlate to the density distribution of the sensory

cells but may result from difference in the propagation of the mechanical stimuli

towards the sensory cells. Moreover, the authors suggest the significance of the

density of free nerve endings to contribute to the sensitivity threshold. Goodwin

et al. [44] analyze the effects of sinusoidal scanning movements of a grating over

a monkey finger and state that the effect of changing scanning speed and grating

properties are not independent. The influence of visual and tactile information on

human dexterous manipulation of objects with varying shape has been analyzed

by Jenmalm [59]. Edin [28] analyzes the sensitivity of human skin receptors under
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dynamic strain. Bell and Holmes [6] present a model of the dynamics of the re-

ceptor potential. In 1992 Johnson and Hsiao [63] present a review of the research

targeting the neural mechanisms of tactual texture perception. The authors con-

clude, that pattern recognition is based on the activity of the SAI receptor system.

Tangential forces exerted to human fingertips are evaluated by Birznieks et al. [9],

they state, that single afferent nerve fibers are not able to decode the direction of

tangential forces but from the combination of multiple afferent nerve fibers with

their direction dependent sensitivity. The sensory capabilities of human skin are

based on the data acquisition by a set of specialized sensory cells.

Sensory cells Human skin is equipped with a set of specialized sensory cells for

the transduction of mechanical stimuli. The works of Johansson and colleagues,

e.g. [60, 167, 62] have led to a generally accepted understanding of mechano-

perception in human skin. In human glabrous, non-hairy skin four different sen-

sory cell types, also referred to as low threshold mechano-receptors, have been

identified. According to Westling and Johansson [179] the sensory cells or recep-

tors can be categorized by the extension of the resulting receptive fields. Small

(millimeter scale) sharply bordered receptive fields are grouped as Type I, larger

(centimeter-scale) receptive fields with blurred borders are grouped as Type II re-

ceptors. In addition, a second classification is based on the behavior of the output

of the receptors if the skin is statically deformed. The so called fast adapting (FA)

receptors respond to changes in deformation and cease firing if the skin is stat-

ically deformed. In contrast to this, the so called slowly adapting (SA) receptors

provide an output if the skin is statically deformed. The different types of sensory

cells exhibit different transduction functionalities resulting in specialized trans-

duction behavior The following sensory cells are distributed within human skin,

Meissner’s corpuscles, Merkel’s disks, Pacinian corpuscles, and Ruffini endings,

see figure 3.5. Ogawa [109] proposed the Merkel cells as mechano-receptors in the

Merkel-Cell-Neurite (MCN) complex and thus can be considered as SA I receptors.

According to Ogawa the MCN are located "at the basal layer of the rete-pegs" (ridges

of the dermal-epidermal junction). Westling and Johansson [179] investigated the

activity of mechano-receptors and state, that Pacinian corpuscles are highly sen-

sitive to vibrations and amongst others participation in motor control. Until today

there is no consensus regarding the exact transduction functionality of the individ-

ual sensory cells. Therefore, the knowledge of the sensory cells in human skin can

not directly be applied for the design of the taxels of an artificial skin for robotic

systems.
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Receptive fields The surface areas on human skin that are enervated by a single

afferent neuron are referred to as receptive fields. Depending on the type of sensory

cell and its location within the skin layers the receptive fields vary in size and shape.

Depending on the type of sensory cell the size of the receptive fields varies widely.

According to Kis [68] the average diameters range from 2mm to 10mm. The density of

the sensory cells and thus the spatial extension of the receptive fields on the human

hand have been investigated by Johansson and Vallbo [62]. Due to the mechanical

filtering properties of the human skin layers the stimulus, e.g. of a point contact at

the skin surface is laterally distributed. Thus, more than one sensory cell can be

excited by the same stimulus which leads to so called overlapping receptive fields.

Conditioning of the stimulus The layers of human skin are not separated by

planar layers but exhibit an undulating interface between the dermis and the epi-

dermis, the so called dermal-epidermal junction, see figure 3.5. The widespread

theory, that the intermediate ridges act as a set of levers that promote the input

from the papillary ridges to the intermediate ridges originates from the analysis of

photographs of cross section of the digital skin by Cauna [15]. Recent experiments

and simulation contradict the lever theory and promote a theory that claims that

the intermediate ridges rather bend than pivot and thus mechanically focus stress

and strain at their tips where the Merkel cells are located [37]. Regardless of which

theory holds true, it may be hypothesized, that the 3D shaped intermediate ridges

support the mechanical conditioning of the external stimulus towards the location

of the Merkel cells.

Signal preprocessing and transfer in human skin

Lederman and colleagues, e.g. [78, 80, 79] investigate the tactile sensing and pro-

cessing mechanisms in biology, and propose approaches for the processing of tac-

tile information derived from technical tactile sensors. An elaborate overview over

human tactile sensing and perception with respect to the design of readout algo-

rithms for tactile sensors is presented by Kis [68]. The author summarizes the

findings from neuro-biology and outlines the implications for artificial tactile sens-

ing. The signals from the sensory cells are propagated from the skin to the central

nervous systems (CNS). The signal transfer happens in a parallel way, where the in-

dividual receptive field of the skin are enervated by parallel nerve fibers. This high

grade of parallelization allows the transfer of large amounts of information from

human skin to the central nervous system. A excellent description of the signal

preprocessing and transfer in the human nervous system is presented by Kandel

et al. [64]. The authors present the preprocessing functionality of the peripheral
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nervous system (PNS). Based on so called interneurons parallel nerve fibers inter-

act during the transmission of the tactile information and enable the enhancement

of the selectivity between two adjacent indentations on the skin surface. The signal

preprocessing thus compensates for the loss of the spatial resolution that results

from the mechanical properties of the layers of human skin. Kandel et al. [64]

describe the signal preprocessing functionality of the PNS in humans. According to

the authors the amount of tactile information, relayed form the PNS to the central

nervous system is reduced by the application of adaptive neighboring gain self ad-

justment. If multiple neighboring channels relay a signal to the first synapse the

individual signals influence the gain of the amplifier of the neighboring channels.

Nature resolves this via the so called cross-inhibition based on interneurons. As no

technical equivalent to the transmission and preprocessing of tactile information

in human PNS is available the preprocessing of tactile information in artificial skin

has to be based on conventional electronic circuits. The interested reader may be

also referred to the extensive study of Johansson and Flanagan [61] who present

a neurological analysis of human object manipulation based on tactile informa-

tion. The authors conclude, that tactile information plays an important role for the

acquisition of model parameters for the pre-task planning of a manipulation action.

Guidelines for the design of artificial skin

The review of the literature describing the capabilities of human skin reveals that

especially the sensory capabilities are based on the entire perception system. The

perception system includes the signal preprocessing in the PNS as well as the sig-

nal processing in the human brain. Thus, the tactile sensing functionality of hu-

man skin can not be considered independent of haptic perception or the cognitive

abilities of the human brain. Especially, the model-based manipulation of known

objects (e.g. the adjustment of the required arm stiffness and grasp force prior

to the physical contact with the object) shows that human dexterity in manipula-

tion results only in part from the sensory abilities. Therefore, for this thesis the

sensory capabilities of human skin are regarded only as a source of inspiration

for the design of the sensory elements of the artificial skin for robotic systems.

Where appropriate, the underlying working principles are adapted for the system

design of artificial tactile sensors and the development of the functional compo-

nents. The combination of sensory functionality, preprocessing and the unique

mechanical properties e.g. of the skin on human fingertips enables the dexterity

and fine manipulation capabilities that are observed in humans. The functional

range of human skin is based on the combination of a set of specialized functional

components. The overall mechanical properties result from the combination of a
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set of specialized skin layers. The superficial stratum corneum acts as a protection

layer that is constantly replaced to counter abrasion effects during everyday use.

The underlying combination of epidermis and dermis contains the sensory cells.

The mechanical setup and here especially the dermal-epidermal junction suppos-

edly contributes to the transduction of external stimuli. The mechanical setup of

human skin conditions the external stimuli to fit the sensitivity of the individual

sensory cells. The subcutaneous fatty tissue in human skin exhibits mechanical

damping and deformation properties and thus supports the cushioning of collisions

and enables stable grasps that are required for human dexterity. Copying the me-

chanical properties of human skin would result in a viscoelastic, hysteresis-tending

material behavior that is undesired for technical sensor systems. Following a bionic

design approach the underlying principle of the functional partitioning of the ca-

pabilities is applied for the structuring of development process. The derivation of

the artificial skin concept within this thesis is based on the functional partitioning

observable in human skin.

3.2.2 Operation–oriented artificial skin design

Already in 1988 Jacobsen et al. [57] stated, that

"A major portion of tactile sensing research has emphasized the fabrica-

tion of small, sensitive transducer arrays rather than the development of

complete touch sensing systems. This emphasis has resulted in a large

number of "bench top" sensors, very few of which have seen actual use

in real manipulation systems."

The review of the current state in artificial tactile sensing reveals that little has

changed in the last twenty five years. A possible reason for the small number of

successfully integrated tactile sensor systems may be found in the pursued de-

velopment approach. Many of the sensor prototypes presented in chapter 2 are

motivated by material scientists seeking for a possibility to present the potential of

the properties of newly developed materials. Therefore, new tactile sensor proto-

types are created based on the developed materials. Many researchers consider the

development of tactile sensor systems as a linear process, see figure 3.6. Based on

the findings in material science sensor setups are designed that make use of the

properties of the newly developed material. The transduction principle applied for

the senor design is based on the constraints of the sensor design, which itself is

dictated by the material properties. Thus, the design of the tactile sensors is trig-

gered, and often constrained, by the properties of the materials. As a result of this

approach, the resulting prototypes often contradict a later functional and spatial
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integration into a robotic system.

Following the linear development process the manufacturing technology is tailored

to the properties of the developed material instead of focusing on the manufacturing

process that is required for the implementation of an implementable tactile sensor

setup. For the design of "classical" tactile sensor systems various approaches are
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Figure 3.6: The "classical" material science motivated approach towards an operation oriented approach, that takes
into account the requirements of the operation of an artificial skin on a robotic system and accounts for the constraints
resulting from the spatial and functional integration into a robotic system.

presented in literature. The manufacturing processes of the sensor prototypes are

often based on well established industrial processes, e.g. manufacturing of printed

circuit boards or micro electromechanical systems (MEMS) based on silicon etch-

ing. The interested reader may be referred e.g. to the review of Dahiya et al. [20]

as a starting point. The selection of the manufacturing process is mostly focussed

on the manufacturing of a prototype. Very often, the manufacturing process is pre-

determined by the background of the respective research group. The applicability

of the selected manufacturing processes for the implementation of large area (in

the order of square meters, i.e. touch sensitive covers for entire robotic systems) is

not taken into account. The focus on material science and the applied transduction

properties overshadows the challenges of the later integration into a robotic system.

Thus, the sequential development approach often results in laboratory prototypes

that are not fit for the integration into an overall mechatronic system. The per-

formance of these prototypes during the operation on a robotic system under real

world conditions can in most cases not be specified.

In order to overcome the limitations of the currently presented tactile sensor proto-

types and further the successful integration into a robotic system the development

process for the artificial skin within this thesis is reversed. In addition the cross

correlation between the individual development steps is accounted for. Figure 3.7

depicts the dependencies of the development stages. For this thesis an operation–

oriented development approach is pursued.

• Requirements for the operation on a robotic system

• Constraints from the spatial and functional integration into a robotic system

• Design of a scalable sensor system
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• Design of the required manufacturing technology

• Materials research

Therefore, the development process is based on the analysis of the requirements

for the successful operation of the artificial skin in real application scenarios on

a robotic system. Subsequently, the constraints for the sensor data acquisition
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Figure 3.7: Operation–oriented development approach that takes into account the requirements of the operation of an
artificial skin on a robotic system and accounts for the constraints resulting from the spatial and functional integration
into a robotic system.

arising from the spatial integration are analyzed. The challenge of the sensor data

acquisition and processing in artificial skin systems is exemplified for a robotic fin-

ger. Based on these requirements and constraints the scope of the derivation of

a concept for an artificial skin is broadened from the sensory capabilities of "clas-

sical" tactile sensor systems to the multi-functionality observed in human skin.

Aside from the sensing capabilities, the mechanical and thermal properties of the

artificial skin are important to allow for a successful integration of the artificial

skin into a robotic system. The derivation of the artificial skin concept accounts

for the constraints stemming from the desired spatial and functional integration

into a robotic system. The development of "classical" tactile sensor systems can be

based on well established manufacturing processes, e.g. the design and manufac-

turing of standard flexible printed circuit boards. Due to the constraints from the

integration into a robotic system and the requirements presented in section 2.2 the

development of artificial skin sensors can not rely on such standard manufacturing

processes. Therefore, specialized manufacturing processes have to be designed in

order to enable the implementation of the proposed artificial skin setup. In order to

apply the manufacturing processes specialized polymer materials have to be inves-

tigated. The requirements for the properties of the material are defined by design of

the artificial skin and the applied transduction principle. In addition, the designed
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manufacturing processes require compatible properties of the material during the

manufacturing, e.g. viscosity. Within this thesis material science is applied as a

tool rather than regarded as a purpose in itself.
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3.2.3 Integration into robotic systems

Prerequisite for the operation of an artificial skin on a robotic system is the suc-

cessful integration of the mechanical structure of a robotic finger, figure 3.8(a) and

a tactile sensor system, figure 3.8(b) and thus enable the implementation of an ar-

tificial skin, figure 3.8(c) for robotic systems. Based on the analysis of the current
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Figure 3.8: One of the key challenges on the way from tactile sensor prototypes towards an artificial skin is the spatial
integration of a tactile sensing setup (b) into a robotic fingertip (a). In order to enable the successful integration the
development of the artificial skin has to take into account the requirements and constraints arising for the desired
spatial integration into a robotic system (c).

state of technology the following challenges have to be met in order to allow for a

successful integration of an artificial skin into a robotic system:

• Covering of non-developable surfaces

• Scalability of the artificial skin

• Scalability of the manufacturing processes

One of the most prominent challenges is the development of an artificial skin hard-

ware that can be applied onto the 3D-curved non-developable surfaces of modern

robotic systems. Two principle approaches are being investigated, the first based

on the combination of rigid or bendable modules, the second based on stretchable

materials. Various approaches towards the required covering of 3D-curved surfaces

of modern robotic systems are outlined in chapter 2.

The second most prominent challenge is the size of the surface area of a robotic

system. Ulmen and Cutkosky [166] state, that:
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"Though many sensors claim scalability, few sensorized coverings have

actually been scaled to completely cover a robot, and to do so has re-

quired extremely simple sensor designs [...]."

Covering the entire surface of a robotic system poses the challenge of scalability of

artificial skin sensors. Artificial skin sensor systems have to be adaptable to a large

variety of possible application sites on structure of the robotic system. Ranging

from the large area of the manipulator of a heavy duty industrial robot to the highly

curved surfaces of a robotic fingertip.

�� �� ��

Figure 3.9: For a successful integration the size and shape of the artificial skin needs to be scalable in order to allow for
the adaptation of the artificial skin according to the application site on the robotic system. While multiple approaches
towards tactile sensor for fingertips are presented in literature (a), only few approaches towards the covering of a robotic
arm structure (b) or even a whole-body sensitive cover for a humanoid robotic system are presented.

Scalable sensor surface area Many of the approaches presented in chapter 2 fol-

low an approach for the development of touch sensitive covers for robotic systems

that is based on the combination of identical sensor modules to cover the entire

surface of a robotic system. The approach pursued by Cannata et al. [12] is based

on identical segments that are applied to cover a humanoid torso and arms, while

specialized sensor segments are designed for the fingertips. While enabling large

area sensor systems this approach does not enable a site-dependent scaling of the

surface area of the sensor segments. Scaling of the resulting sensor surface by

the combination of identical sensor segments results in inflexibility with respect

to sensor surface area as well as spatial resolution and contradicts the adaptation

of the artificial skin to the requirements of the application site. True scalability

allows for the adaptation of the sensor area of the individual segments to the site-
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dependent requirements, see figure 3.9. For each application site the size of the

individual segments has to be adapted, e.g. for the fingertip of a robotic hand,

figure 3.9(a), the forearm of a humanoid robotic system, figure 3.9(b), or for large

area touch sensitive covers, e.g. for the torso of a humanoid robotic system, figure

3.9(c), Ohmura et al. [110] present a scalable tactile sensor principle that is based

on the acquisition of reflected light that is introduced by a LED into a covering layer

of urethane foam by photo-resistors. If the covering foam layer is compressed the

amount of reflected light changes. These changes are measured by an adjacently

applied photo-resistor. The major limitations of the proposed sensor system are

the high energy consumption and the cumbersome manual application of the indi-

vidual taxels onto the target geometry. In addition the scalability of the presented

approach towards tactile sensors with a high spatial resolution is limited by the

spatial low pass filtering of the applied urethane foam and the required wiring for

the individual pairs of LEDs and photo-resistors per taxel. One may conclude from

this example, that the design of the sensor hardware and the required manufac-

turing processes have to be scalable in order to enable the successful integration of

an artificial skin into a robotic system.

Scalability of the manufacturing processes The scalability of the artificial skin

requires a scalable manufacturing technology. Therefore, the required manufactur-

ing technology can not be considered as an independent step in the development

of artificial skin but has to be developed simultaneously to the design of the sensor

setup. The importance of the scalability of the manufacturing processes can be

exemplified by the following example: Hasegawa et al. [51] present the fabrication

process for a tactile sensor based on a woven fabric. While the approach to fabricate

a tactile sensor out of a woven fiber in principle allows for the implementation of

tactile sensors with scalable size the required manufacturing of the fibers restricts

the size of the sensor. The highly sophisticated metallization process requires costly

machinery, e.g. a sputtering apparatus contained in a vacuum chamber. In order

to enable the uniform deposition of the metal on the fiber, the fibers have to be

rotated during the metallization process inside the vacuum chamber. Thus, the

size of the vacuum chamber restricts the maximum length of the fibers that can be

metallized in one manufacturing step which in return limits the size of the sensor

that can be woven out of the fibers. Consequently, the surface area that can be cov-

ered with the resulting tactile sensor is affected by the insufficient scalability of the

fabrication process. The above described example demonstrates that the under-

lying manufacturing process can constrain the scalability of the resulting sensor

system. Therefore, the manufacturing processes have to be scalable in order to
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enable the scalability of the resulting tactile sensor system. Sekitani et al. [142]

identify the lack of scalability of the applied manufacturing technology as hindering

for the development of tactile sensors for large surface areas. The authors propose

a direct printing process based on conductive ink as a possible solution for scalable

sensors. Ulmen and Cutkosky [166] present a tactile sensing array based on the

acquisition of changes in capacitance. The authors state, that one of the objectives

of the presented approach is to enable a sensor that is

"scalable, with relatively few interface wires, enabling coverage of the

entire robot surface".

Wile the authors claim scalability for the presented sensor design, each individual

taxel of the prototype requires a separate readout wire that has to be manually

soldered to the steel mesh acting as sensing electrode. Thus, a scaling up of the

sensor size to the surface area of a humanoid robot would result in an extremely

large number of required readout wires.

3.2.4 Goal conflicts

The desired integration of an artificial skin into a robotic system posed multiple

requirements for the design of the artificial skin. Especially, if a whole-body artifi-

cial skin for a robotic system is desired numerous goal conflicts arise. Ulmen and

Cutkosky [166] state, that:

"The true challenge in designing a human-friendly whole body sensitive

skin is effectively combining these various desired properties."

As analyzed in Strohmayr [158] one of the most prominent goal conflicts is the

desired combination of a high initial sensitivity with an overload proof and thus

collision tolerant design of the artificial skin hardware. Figure 3.10 exemplifies the

goal conflict between sensitivity and collision tolerance of the artificial skin design.

The ability of the artificial skin to withstand collisions depends on the system’s

ability to absorb the energy that is introduced during a collision event. In order

to enable a safe pHRI passive and active measures for the reduction of collision

severeness are required. Passive severeness reduction measures can be based on

compliant cover layers for robotic systems. Ulmen and Cutkosky [166] state, that:

"Some artificial skins have excellent energy absorption properties [...]

However, this is typically at the cost of dynamic response and increased

hysteresis [...]".

The active measures for collision severeness reduction require a high sensitivity

and a short reaction time of the artificial skin. The analysis of the current state
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Figure 3.10: Initial sensitivity conflicts robustness. Uniting a high initial sensitivity with a collision tolerant design is
prerequisite for the application of an artificial skin in real world applications on a robotic system.

of technology suggests, that the required sensitivity of artificial skin for robotic

systems depends on the designated application site on the robotic system and the

specific task at hand. Thus, a generalization e.g. to a 1 g minimum required sensi-

tivity would be misleading. Especially, if tradeoffs with respect to integrability and

robustness have to be accepted in order to achieve this arbitrarily defined required

sensitivity. Therefore, the design of artificial skin has to aim for the optimal com-

bination of properties at the least acceptable sensitivity for the specific application

site and task.

A second conflict of goals arises from the desired reduction of the reaction time and

the required maximization of the information content that can be derived from the

artificial skin. In order to convey a as much tactile information from the artificial

skin to the control system of the robot either a high number of readout wires or a

preprocessing within the artificial skin is required to enable a serial transmission

of the information via a small number of readout wires. Jacobsen et al. [57] state,

that

"Critical trade-offs exist between the operating speed and the number of

electrical wires in a conduit."

Therefore, in section 3.2.7 concepts for the solution of the goal conflicts are de-

rived. In the following the implications of the operation of tactile sensors on robotic

systems to the design of an artificial skin are investigated.
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3.2.5 Operation on robotic systems

For a long term operation of artificial skin on robotic systems in real world applica-

tions the required robustness of the sensor hardware has to be combined with the

desired high initial sensitivity.

Robustness of the sensor hardware The surface of extrinsic sensors is subject

to mechanical loading. Already in 1988 Jacobsen et al. stated, that

"The entire [tactile sensor] system must be robust enough to withstand

the shocks and vibrations that are unavoidable in research and indus-

trial environments."

Figure 3.11 illustrates the challenge of the introduction of the artificial skin on top

of the supporting structure of the robotic system. Unintended physical interaction

Figure 3.11: Collision of robotic systems with obstacles in the environment can cause the mechanical destruction
even of the rigid covering structure of the robotic system. The above figure illustrates the consequences of collisions of
DLR-LWR III with the environment

(collisions) of robotic system with rigid objects in the environment results in high

local contact forces that are capable to mechanically destroy the support struc-

ture. Exemplarily, the damaged carbon fiber based covering structure of DLR light

weight robots (DLR LWR III) is depicted in figure 3.11. Therefore, an artificial skin

that is mounted on top of the mechanical support structure of a robotic system

mechanically has to withstand collisions. Many of the currently presented sensor



3.2. SYSTEM DESIGN 51

prototypes lack mechanical robustness and thus prevent a successful operation on

robotic systems. An exception is the tactile sensor system presented by Göger et al.

[40] which is mounted on the cylindrical and planar surfaces of a humanoid robot.

The authors state, that the presented tactile sensor system is

"[...] very robust and insensitive against mechanical overload; this is a

precondition to detect and to survive collisions."

According to Haddadin et al. [47], in case of collisions between robots and their en-

vironment, collision forces up to 2.5kN have been measured for robot manipulator

velocities of up to 2m/s. Therefore, an overload proof design of artificial skin sensor

is proposed. Figure 3.12 depicts the general categories of mechanical load types

����
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Figure 3.12: Artificial skin in real world application is subject to various mechanical load scenarios. Besides me-
chanical overload (a) and shear forces (b) during unintended collisions, abrasion (c) and cutting by sharp object (d)
endangers the integrity of the mechanical setup of an artificial skin.

that can act upon tactile sensors. Tactile sensors in real world application are sub-

ject to blunt impacts, figure 3.12(a), shear forces, figure 3.12(b), abrasion, figure

3.12(c) and cutting by sharp or pointed objects, figure 3.12(d). The large variety of

possible causes of mechanical failure of the artificial skin shows, that irrespective

of the ability of the artificial skin to withstand collisions, wear and tear of real world

application on a robotic system will result in mechanical damages of the artificial

skin surface. In this sense Speeter [153] concludes:

"Tactile sensors applied to robotic hands are subject to continuous wear

and abrasion and can be expected to fail after prolonged use. For this

reason, sensors that are easily and economically replaced offer signifi-

cant advantages over the lifetime of a system".

Artificial skin lacks the ability of biological skin to react to abrasion or injury. The

absence of self-healing or regrowth processes necessitates the exchange of artificial

skin that is subject to wear and tear in real world application. Thus, already during
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the design of the artificial skin systems the exchange of worn artificial skin com-

ponents has to be anticipated. A technical equivalent to biological regrowth might

be the introduction of an exchangeable superficial protection layer, that is replaced

on a regular basis in order to prevent the mechanical abrasion of the underlying

artificial skin and thus enable the long term operation of artificial skin on a robotic

system.

High initial sensitivity The required sensitivity of tactile sensors is controver-

sially discussed. The analysis of the state of the art suggests, that the required

performance depends on the performance of the respective tactile sensor of the

publication. The probably most cited sensitivity is the one introduced by Harmon

[50] in 1982 . The majority of publications cite the study of Harmon overly abbre-

viated with 1 g required sensitivity. Harmon himself summarizes the results of a

questionnaire with respect to sensitivity as:

"The degree of sensitivity required depends on application. Again, in-

terrelationships among variables were stressed; mass, velocity, acceler-

ation, response time, and strength of materials are mutually dependent

design parameters relevant to sensitivity requirements as well as to sta-

bility criteria. Among other considerations, a touch sensing transducer

and its appendage must not move or damage a touched (or collided with)

object. This depends first-order on the touched object’s mass and hence

is specialized for an application at the start. Most light assembly tasks

were seen to require force sensitivity (for each matrix element) of at least

one or a few grams. A few respondents saw 0.5 g as desirable, while

others said they would be content with 5− 10 g."

Mannsfeld et al. [94] present a highly sensitive tactile sensor array based on the

acquisition of changes in capacitance. The authors differentiate between medium

pressure sensitivity, ranging from 10 kPa to 100 kPa and low pressure sensitivity for

pressures below 10 kPa. According to the authors the medium pressure sensitivity

is sufficient e.g. for manipulation tasks, while low pressure sensitivity corresponds

to a gentle touch. With respect to the determination of the pressure level of a gentle

touch the authors refer the reader to the work of Dellon et al. [23].

Peine and Howe [119] request an even higher pressure sensitivity of 0.5 kPa for tech-

nical palpation devices. The authors argue, that, in order to enable the restoration

of tactile sensing capabilities of surgeons during minimally invasive surgery, the

tactile sensing system at least has to meet the sensitivity observable in human fin-

gertips.
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One may conclude from the diversity of requested sensitivity of an artificial skin

that the actually required sensitivity depends on the application site on the robotic

system and the specific task. Therefore, the design of the artificial skin concept is

focussed on the adaptability of the transduction properties rather than to aim for

the highest possible initial sensitivity.

Adaptable transduction properties To enable the successful operation of an ar-

tificial skin on a robotic system the range of the sensitivity has to be scalable in

order to fit the site-dependent requirements. Each of the application sites on a

robotic system poses different requirements for the covering artificial skin sensor,

e.g. high spatial resolution combined with high initial sensitivity on robotic finger-

tips or a high pressure range on the soles of a robot foot. Lai et al. [77] propose a

tactile sensing array with dynamically tunable transduction properties. The sens-

ing principle is based on the acquisition of the volume resistivity of a compound

of carbon nano tubes (CNT) dispersed in liquid crystal. The authors state, that

based on changes in the applied voltage the measurement range of the taxels can

be tuned. The major limitation of the proposed sensor setup is the applied glass

substrate which renders the sensor frail and limits the application to planar geome-

tries. The presented approach enables the dynamic adaptation of the transduction

properties. While this functionality might be beneficial e.g. for the adaptation of

the sensor to specific tasks, it is not necessary for the implementation of artificial

skin with transduction properties adapted to the application site on the robotic

system. Therefore, a concept for a static adaptation of the transduction properties

prior to the integration into a robotic system is proposed. The range of expected

indentation force or pressure depends on the site of application. For the example

of humanoid robotic systems the expected indentation forces range from a light

touch at the robotic fingertip, figure 3.13(a), over the interaction forces exerted on

a robotic arm, figure 3.13(b) during pHRI, to high local forces at the soles of the

robotic foot during biped locomotion, , figure 3.13(c). Therefor the measurement

range has to be adapted to the requirements of the application site. The expected

indentation forces for robotic fingertips are defined by the maximum applicable

force of the actuator of the robotic finger. The maximum fingertip e.g. of the DLR

Hand II reaches 30 N , e.g. Butterfass et al. [11]. Therefore, the measurement range

of an artificial skin may be limited to 30 N per taxel, which corresponds to the worst

case, the indentation of the artificial skin with maximum fingertip force on the sur-

face area of a single taxel. The measurement range for an artificial skin on the sole

of a robotic foot can be estimated from the weight of the robotic system, and the

surface area of a single foot, e.g. the DLR Biped Robot presented by Ott et al. [113].
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Figure 3.13: For the successful operation of artificial skin on robotic systems the measurement range of the artificial
skin needs to be scalable to enable the adaptation of the transduction properties to the requirements of the application
site on the robotic system. Hence artificial skin for robotic fingertips requires a high initial sensitivity while a mea-
surement range up equaling the maximum excertable force of the robotic fingertip is sufficient (a). For a robotic arm
structure (b), the measurement range needs to be adapted the the planned tasks, e.g. a pHRI based on tactile input
from the human user would require a higher sensitivity as would a task where only a collision detection has to be
enabled. Accordingly the measurement range of an artificial skin for the soles of a robotic foot depends on the weight
of the robotic system as well as from the dynamics the robotic system is capable of, e.g. for slow walking a smaller
measurement range is required than for a highly dynamic running system.

According to the authors the overall weight of the robotic system is 49.2 kg, and a

surface area of 95 mm × 250 mm for one sole of foot . Thus, the static indentation

forces on the sole of a robotic foot are about 480 N resulting in a static pressure of

approximately 20 kPa for a single footed stance. These examples show the variation

of the required measurement range according to the site of application. For the

design of an artificial skin for robotic systems one may conclude, that the measure-

ment range of the artificial skin has to be adaptable. Therefore, already during the

derivation of the concept of the artificial skin the adaptability of the transduction

properties has to be anticipated.

3.2.6 Sensor data acquisition

The design of the sensor data acquisition strategy for the artificial skin has to enable

the successful operation on robotic systems in real world applications. One has to

consider the constraints arising from the spatial integration into a robotic system.
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In order to enable the useful application of the tactile information derived from

the artificial skin for motion control of a robotic system, the artificial skin has to be

optimized with respect to reaction time and data rate. Jacobsen et al. [57] identified

the reduction of the number of readout wires as crucial for the implementation of

reliable tactile sensor systems for real-world application. The authors state, that

"Contact data from many sites must be transferred to the controller at

rates sufficient for tactile information to be successfully used in dynamic

end-effector control, yet since conduit routing and fatigue will play a ma-

jor role in system reliability, the system should be designed to minimize

the number of data conductors used."

In the same sense argue Engel et al. [31, 30], who present a multi-functional arti-

ficial skin based on a bendable Kapton� substrate. According to the authors, the

setup is capable of acquiring "temperature, hardness, force, thermal conductivity,

and curvature". Each of the so called sensing nodes requires ten readout wires,

therefore the authors conclude, that:

"[...] the utility of this sensor skin is limited by the scalability of the

wiring interconnects".

Therefore, the reduction of the number of required readout wires is one of the

major challenges for the design of an artificial skin system capable to cover the

entire surface of a robotic system. Within this thesis an approach based on the

minimization of the amount of data that is acquired at the first hand is pursued.

The goal of the development is the minimization of the number of required readout

wires without compromising the required information depth. Therefore, the size

and shape of the individual taxels is adapted to the requirements of the application

site on the robotic system.

Adaptable spatial resolution In order to minimize the acquisition of redundant

tactile information the size and shape of the individual taxels has to be adapted

to the requirements of the application site, see figure 3.14. The varying two-point

threshold in human skin is visualized in the so called Weinstein-Maps, e.g. de-

scribed in Myles and Binseel [101]. They represent the distribution of the two-point

threshold and the initial sensitivity over the human body. The analysis of the dis-

persion of sensory cells over the human body shows, that the dispersion is highly

variable and adapted to the needs of the body site. The highest initial sensitivity

in human skin can be observed in the skin of the lips and the fingertips. The two-

point threshold is minimal in these regions. This principle can be adopted for the

development of artificial tactile sensing systems. In order to do so, the design of the
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Figure 3.14: The size of a single taxel is compared for a robotic fingertip (a), the structure of a robotic arm or
manipulator (b), and the torso of a humanoid robotic system (c). The scalability of spatial resolution according to body
site is a prerequisite for the desired minimization of the amount of data that has to be preprocessed and transferred to
the control unit of the robotic system. The basic idea is the reduction of the spatial resolution to the minimum required
resolution according to the application site on the robotic system.

artificial skin sensor has to enable a scalable spatial resolution for the application

on various sites on the robotic system. With respect to humanoid robot systems the

required spatial resolution of artificial skin ranges from sub-millimeter resolution

at the lips and fingertips, figure 3.14(a), over a resolution of tens of millimeters on a

robotic arm, figure 3.14(b), to a spatial resolution of up to 70mm for the covering of

large surface areas as a the torso of a humanoid robotic system, figure 3.14(c). For

the acquisition of tactile data from large areas e.g. the torso of a humanoid robotic

system the information regarding the contact location within the surface area of an

individual taxel is not necessarily relevant. Whereas the indentation with pointed

object has to be detected reliably irrespective of the contact location. This requires

an equally distributed sensitivity over the surface area of each individual taxel.

Therefore, the extension of insensitive surface area within the sensing surface has

to be minimized. The ratio of sensitive versus insensitive areas is a measure of the

sensory performance of artificial skin sensors and can be defined as:

SIR =
Asensitive

Askin
(3.1)

Where the ratio of sensitive area Asensitive to the entire sensor area Askin is re-

ferred to as SIR. Hence the design of the artificial skin as well as the underlying

manufacturing processes have to enable the implementation of scalable taxels with

adaptable surface area and a SIR close to one.

To enable the acquisition of the required detailed tactile information and at the

same time minimizing the number of the required readout wires different contact-

ing principles for the connection of the individual taxels are proposed in literature.
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Figure 3.15: General contacting principles for the connection of the taxels of an artificial skin. Individual contacting
of the taxels (a), results in a minimal cross influencing of the taxels and thus enables a straight forward acquisition
of tactile information. The arrangement of the taxels in a matrix configuration (b), results in cross influencing of the
individual taxels requiring compensation in the readout circuit. The maximum reduction of the number of readout
wires is achieved if the sensitive area is contacted at the rims only (c). While enabling minimal numbers of readout
wires, this approach results in the reduction of the achievable spatial resolution and reduces the ability of the sensor
to detect multiple simultaneous indentations.

Figure 3.15 depicts the general contacting principles applied in tactile sensing

hardware. A straight forward principle is the electrical connection of each indi-

vidual taxel, figure 3.15(a), e.g. Weiss et al. [177], Ulmen et al. [166] and Oballe-

Peinado et al. [108]. Alternatively, the individual taxels can be addressed through a

matrix configuration of the readout wires, figure 3.15(b), e.g. Strohmayr et al. [159].

The application of a matrix configuration results in undesired cross correlation of

the individual tactile elements. The effects of a matrix configuration of a resistive

tactile sensor have been analyzed in Schnös [135]. Schnös proposes a strategy to

account for the systematic measurement error arising from the matrix configura-

tion of the readout wires. If taxels are connected in a matrix configuration sequen-

tial readout strategies have to be applied. Thus, the derived information from the

spatially distributed taxels is subject to temporal delay. This effect limits the sig-

nificance of the information derived from the tactile sensing array. Therefore, the

increase of the scanning rate of the matrix configuration is crucial for the validity of

the tactile information. With respect to the utilization of the tactile information for

the control of a robotic system the reaction time of the artificial skin sensor system

is essential.

An extreme reduction of the number of readout wires is shown by Alirezaei et al. [2]

who propose an approach based only on a fix number of readout wires connected

to the rim of a sensitive surface, figure 3.15(c). The scaling up of the sensor surface

area thus would not increase the number of required readout wires but decrease

the achievable spatial resolution. The major drawback of the presented approach is
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the comparatively low spatial resolution and the restricted ability to detect multiple

simultaneous indentations.

The above examples show, that the reduction of the number of readout wires re-

sults in undesired effect impairing the performance of the resulting sensing system.

Therefore, a tradeoff between the number of readout wires and the quality of the

transduction properties is inevitable. Within this thesis an approach for the sensor

data acquisition based on a matrix configuration of the sensitive area is pursued.

Readout concept The acquisition of tactile information from artificial skins can

not be considered individually as an isolated process but has to be understood as

an integral step in the design of the artificial skin hardware. The design of the

sensor data processing constraints the design of the transduction hardware and

vice versa. Following a concept for the sensor data acquisition in artificial skin is

derived that accounts for the constraints of the desired functional and spacial in-

tegration into a robotic system. Tactile information can be derived from data that
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Figure 3.16: Tactile information can be categorized according to the modus of acquisition. The acquisition can be
based on data from a single taxel (a), the variation of a single taxel (b) or a group of taxels (c), and the variation of their
activation status (d). In addition tactile information can be derived from sensor data fusion (e).

is acquired from: A single taxel, figure 3.16(a) and the variation of the activation

of a single taxel, figure 3.16(b). Based on the acquisition of multiple taxels, figure

3.16(c),and their course of activation, figure 3.16(d). In addition tactile information

can be derived from sensor data fusion, figure 3.16(e). For the processing of tactile



3.2. SYSTEM DESIGN 59

sensor data it is important to distinguish between information that can be derived

from a single taxel and information that requires data derived from multiple taxels.

The derivation of information based on tactile data stemming from multiple taxels

constraints the development of the required readout electronics, as e.g. the time

delays in an sequential readout of multiple taxels affects the validity of the derived

information. Additional information can be derived by assessing the changes of the

data from the taxels over time. Data processing strategies, e.g. optical flow analysis

can be adapted from image processing. Finally, information can be derived by the

fusion of data from different sensor types, e.g. intrinsic sensors within the robot

structure, tactile surface sensors and external vision systems.

Figure 3.17 depicts the standard configuration of a redout circuit for the acquisi-
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Figure 3.17: Design concept for the standard readout electronics, for multiple sensor patches. The figure exemplarily
depicts the setup for the acquisition of tactile information from a resistive tactile sensor in matrix configuration. Figure
adapted from Schnös [135].

tion of tactile information from a resistive tactile sensor. To increase the ability of

a robotic system to adequately react to contact events, e.g. an undesired collision

the time required for the artificial skin to reliably detect the contact event has to be

reduced. For this thesis the reaction time TR is defined as the time span between

the initial contact of an object with the surface of the artificial skin and the provi-

sion of a stable contact detection signal from the readout circuit. The reaction time

depends on the time required for the acquisition of the current activation status of

an individual taxel TS. Irrespective of the applied transduction principle this time
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span can not be reduced infinitely. Thus, the acquisition time of the activation sta-

tus of an entire sensor patch TP depends on the number of taxels to be scanned.

A sensor patch is defined as the portion of the artificial skin that is connected to a

single redout circuit. In addition, the time required for the transmission of the data

to the control system TS adds to the overall reaction time. Thus, for the reduction

of the reaction time of the artificial skin the amount of tactile data relayed to the

control of the robotic system has to be minimized. Jacobsen et al. [57] propose

a strategy for the reduction of the amount of data that has to be transmitted to

the control of the robotic system. The authors hint, that a "full scan" of all tactile

sensing elements of the sensor system within a single time interval of the data ac-

quisition prevents the scaling up of the number of taxels and thus limits the size

of the tactile sensor system. Therefore, the authors propose the utilization of a so

called "reactive scan" or an "anticipatory scan". The reactive scan can be based

on the focus of the data acquisition from taxels that have recently been activated.

While this strategy might be beneficial during e.g. slow finger movements in the

pick up phase during object manipulation. The focus on past contact events is

unlikely to improve the performance of the tactile sensor system during high speed

motion of the manipulator of the robotic system. Therefore, the authors propose a

so called anticipatory scan where e.g. the sensor patches on the fingertips during

the approach phase of object manipulation are scanned at a higher frequency. The

major drawback of this approach is the inherent reduction of reliability as individ-

ual taxels or groups of taxels are rendered more important than others.

In order to resolve the goal conflict between the desired reduction of the reaction

time and the reliability of the acquired tactile information, a readout strategy based

on the sequential increase of information content is proposed. A strategy for the in-

crease of the sampling rate of the resistive array sensor based on variable resolution

is proposed by Speeter [153]. Speeter concludes, that

"An additional feature of piezoresistive grid sensors, not unique to FSR,

is the ability to vary resolution by joining rows and columns with shunts.

The electronics required are simple and provide a powerful technique for

dynamic reconfiguration and control of maximal data sampling rates. [...]

By lowering the resolution, very high data rates can be achieved, possibly

allowing slip detection and vibration detection without specialized sens-

ing apparatus."

The implementation of the variable resolution is based on the application of mul-

tiplexers and analog switches enabling the electrical contacting of individual rows

and columns. The basic idea is the provision of a reduced amount of information

at a high update rate. Subsequent to a detected contact event the content of infor-
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mation is sequentially increased at the cost of an increase in reaction time.

Figure 3.18 depicts the working principle of the sequential increase of information

�� ���

�� �� ��


� �� ��

���

�

�

��� ��
�

Figure 3.18: The minimization of the reaction time of the artificial skin to a contact event is based on a readout
strategy that allows for the sequential increase of information depth.

content. Starting from the provision of a binary "early-warning" contact information

for the entire sensor patch, figure 3.18(a). Subsequently, the sensor patch is di-

vided in quadrants with decreasing size until the exact location of the contact event

is determined, figure 3.18(b,c). Following, the activation level of the contacted taxel

is evaluated, figure 3.18(d), and the spatial extension of the contact surface area

determined, figure 3.18(e). Finally the exact characteristics of the contact event

are derived from the data acquired by a multitude of specialized taxels, e.g. the

determination of the direction of the resulting indentation force vector form normal

and shear force sensitive taxels, figure 3.18(f). In order to implemented dynamically

adaptive receptive fields the standard configuration of a readout circuit, see figure

3.17, of a resistive tactile sensor matrix is optimized. Instead of applying multiplex-

ers that allow only for the sequential acquisition of individual taxels the application

of analog matrix switches is proposed that allow for the dynamic adaptation of vir-

tual receptive fields within a sensor patch. This hardware based approach forms

the basis for the application of the strategy to minimize the amount of acquired

data in order to reduce the overall reaction time of the artificial skin without com-

promising the reliability of the derived information.

In addition to the proposed sequential increase of information content, within this
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thesis the strategy of the anticipatory scan, proposed by Jacobsen et al. [57] is

generalized towards a motion dependent tactile attention. Based on the planned

trajectory of the robotic system sensor data is acquired from individual taxels or

sensor patches at a scanning rate dependent of the likeliness of a contact event on

these areas of the tactile sensor system. However, this approach does not apply

for impacts which occur trough moving objects. An example is the acquisition of

sensor data from the taxels that are located on the outside of an outward moving

elbow at an elevated scanning rate. Due to the outward motion of the robotic elbow

the likeliness of the occurrence of a contact event is higher for the taxels in motion

direction. The likeliness of a contact event on a specific taxel or sensor patch can

be estimated from the angle between the surface normal of the taxel and the mo-

tion direction of the robot segment the taxel is mounted on. Based on this strategy

a motion dependent robotic tactile attention can be implemented in the form of

an enhanced sensitivity and readout frequency of tactile surface sensor elements

with surface normals that are oriented in the motion direction of the structure they

are mounted on. In order to enable the implementation of the motion dependent

tactile attention the robotic system has to offer information regarding the current

and planned motion of the individual segments. To minimize the communication

load, the processing of the segment motion information can be located in the con-

trol system of the robot, thus only the information which taxels are currently and

will in near future be oriented in the direction of motion of the robot. The read-

out electronics can react accordingly and reconfigure the receptive fields and thus

adapt the selective tactile attention by increasing the local readout frequency in

order to decrease the reaction time after a collision detection. On the other hand,

the current configuration of the virtual receptive fields can be fed back to the robot

control system in order to actualize the information where the tactile attention is

focused to and thus create an a priori knowledge which receptive field has detected

a physical contact if the digital "early warning" signal is enabled.
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3.2.7 Artificial skin concept

Following a general concept for an artificial skin for robotic systems is derived based

on the lessons learned during the development of tactile sensors previous to this

study.

Previous to this thesis a variety of tactile sensors based on various transduction

principles has been investigated at DLR. The principle setup is described e.g. by

van der Smagt [149].The tactile sensor prototypes manufactured by Saal [129] have

been analyzed on a testbed designed in Strohmayr [158]. The results of the inden-

tation tests have been published in Strohmayr et al. [159]. While the manufactured

tactile sensor prototypes offered the desired high spatial resolution, the conducted

experiments revealed a set of disadvantages. The most critical being the observed

non-monotony of the output signal. If the sensor patch was mechanically com-

pressed on the testbed an unexpected initial increase of electrical resistivity was

observed. The further increase of the indentation force resulted in the expected de-

crease of electrical resistivity. An examination based on light microscope inspection
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Figure 3.19: Prior to this thesis a tactile sensor concept based on a crossed-wire approach has been pursued. The
SEM pictures revealed an unsatisfactory mechanical adhesion between the polymer matrix of the sensor and the metal
based readout wires, figure adapted from Strohmayr et al. [159].

and scanning electron microscopy (SEM) revealed an unsatisfactory adhesion be-

tween the molded-in metal wires and the particle-filled polymer, see figure 3.19. Ad-

ditional indentation testing revealed that the polymer matrix at the crossing points

was cut by the metal wires due to repetitive mechanical indentation of the tactile

sensors on the testbed. A conducted overload test showed, that the combination of

polymer sensor material and metal based readout wires in the mechanically loaded

area of the tactile sensor resulted in the mechanical destruction of the tactile sensor

prototypes. The severity of the discovered limitations and disadvantages encour-
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aged the questioning of the entire initial approach. The lessons learned from the

analysis of the described approach can be summarized as "How-NOT-To" design a

tactile sensor:

• DO NOT – Focus on high spatial resolution.

• DO NOT – Integrate the physical hard-soft interface between metal based path-

ways of the readout electronics and polymer inside the mechanically loaded

sensing area.

• DO NOT – Design a manufacturing process that requires time consuming

preparation and interchange of the required tools if the spatial resolution has

to be altered.

• DO NOT – Combine this manufacturing process with costly specialized tools

• DO NOT – Apply a manufacturing process that prevents the adaptation of the

sensor with respect to a change in sensor size and shape.

• DO NOT – Apply a solid polymer volume as transduction medium.

Nevertheless, the conducted experiments and the analysis of the literature led to the

identification of the following fundamental challenges for the design of an artificial

skin for robotic systems.

Design paradigms

The key challenge for the design of artificial skin sensor systems is the solution

of the conflicts of goals that arise from the combination of the requirements. One

of the most prominent goal conflicts arises from the combination of the required

collision tolerant sensor hardware and the desired high initial sensitivity. Following

a set of design paradigms is proposed to enable a solution of the conflicts of goals.

All-polymer sensor design The required mechanical properties presented in chap-

ter 1 suggest the application of polymer materials for the design of the sensitive

structure of artificial skin sensors. Two major advantages arise from the applica-

tion of polymer material. Firstly, polymers enable the design of stretchable sensor

hardware that can be applied on 3D curved surfaces of, e.g. the outer surface of

modern humanoid robot systems. Moreover, a stretchable polymer based design

of the sensitive layer may help to create sensors that are fit for mass producibil-

ity. Secondly, the application of polymers allows for the design of durable artificial

skin sensors that can be located upon a mechanical damping layer. This enables
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an overload proof design of the artificial skin sensors that is capable to withstand

the effects of collisions between the robot and its environment. The interaction of

metal conductors and polymer based materials for the design of compliant tactile

sensors is investigated in Strohmayr [158]. The study showed, that if such senors

are mechanically loaded with high pressures a relative movement between the rigid

metal based readout wires and the surrounding compliant polymer material is in-

duced. The relative movement results in the destruction of the polymer material at

the crossing points of the sensor matrix. From these findings one may generalize,

that a design approach entirely based on the application of polymer material for an

artificial skin may lead to a collision tolerant design. To enable an overload proof

artificial skin that can withstand high external pressure, the introduction of rigid

elements, e.g. metal readout wires, standard resistors etc., into the sensing sur-

face has to be avoided. In addition, the application of a protective top layer that

distributes the indentation forces of sharp objects to a larger surface area can help

to reduce maxima in local pressure. More general, an all-polymer design approach

may enable the implementation of overload proof artificial skin and thus forms the

basis for the solution of the most prominent conflict of goals. Following, design

paradigms for an increase of the sensitivity of an artificial skin area outlined.

Volume reduction A conflict of goals arises if high initial sensitivity and robust-

ness of the artificial skin sensor surface are required at the same time. Many of

today’s tactile sensors, presented in the current literature reviews, e.g. by Dahiya

et al. [20], are impeded by their lack of high initial sensitivity. The initial sensi-

tivity can be defined as the threshold of energy that has to be introduced to the

artificial skin sensor in order to evoke a detectable sensor output. The acquisition

of the mechanical domain of a contact event through tactile sensors often depends

on the displacement or a material deformation that is required in order to create

a sensor output signal. The required displacement or deformation depends on the

mechanical setup of the sensor as well as on the transduction principle. Hence the

sensitivity of the artificial skin sensor depends on the overall volume that has to

be deformed for the transduction. In order to decrease the required input energy

threshold, the material volume that has to be deformed has to be minimized. The

deformed volume reduction of a solid polymer material, figure 3.20(a) can be based

on two principles. Via material density reduction by the application of low density

materials, e.g. polymer foams, figure 3.20(b) or, via the reduction of the designed

density, see figure 3.20(c). Based on an approach similar to the setup proposed by

Wettels et al. [181, 180], Berselli et al. [7] present an approach towards the reduc-

tion of the material volume in order to minimize the normal indentation force that
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is required to generate the desired deformation of a soft polymer based fingertip.

Design density is a measure for the ratio between applied solid polymer material
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Figure 3.20: The required deformation energy can be reduced if a solid polymer material with small elastic modulus
is applied, material density (a), e.g. Strohmayr et al. [159]. A second approach is the application of open or closed cell
foams that introduce randomly arranged voids into the polymer material, compound density (b), e.g. Fritzsche et al.
[35] or Cannata et al. [12]. The third approach, pursued in this thesis, is based on the introduction of geometrically
defined voids, referred to as reduction of the designed density (c).

and incorporated unoccupied volume. With respect to artificial skin sensors the de-

sign density describes the material volume that is applied for the construction of the

entire volume of the artificial skin. The reduction of the design density is based on

a geometrically determined reduction of the solid volume within the sensor volume.

The geometrically determined volume reduction allows for the utilization of polymer

materials exhibiting beneficial material properties e.g. low mechanical hysteresis,

without compromising the sensing threshold. The deformation of the polymer ma-

terial requires energy input. With respect to the foreseen integration into a robotic

system not all the polymer volume can be applied for the transduction of the stim-

ulus. Thus, the setup of artificial skin sensor can be divided into sensitive and

non-sensitive structures. Non-sensitive structures are e.g. required for the fixation

of the sensitive elements and for the mechanical interface to the cover structure of

a robotic system. The non-sensitive volume contributes to the required robustness

of the artificial skin sensor. In general, the introduced energy is applied for the

deformation of both, sensitive and non-sensitive, volume. Therefore, the ratio of

deformed volume that contributes to the transduction of the stimulus and the vol-

ume of the non-sensitive supporting structure has to be optimized. The sensitivity

efficiency factor (SEF) for the design of artificial skin sensors is introduced.

SEF =
Vsensitive

Vskin
(3.2)

Where Vsensitive represents the volume that directly contributes to the transduction

of an external stimulus. The SEF relates the sensitive volume Vsensitive to the overall

skin volume Vskin that forms a single taxel or receptive field. If the receptive fields
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are separated by insensitive areas, these areas have to be added proportionately to

the receptive field and thus increase the artificial skin volume. The area of overlap-

ping receptive fields has to be subtracted accordingly. In addition to the reduction

of the deformed polymer of the sensitive layer itself, the location of the sensitive

layer within the overall layer setup of the artificial skin affects the quality of the

information that can be derived from this sensory layer. In general, the thickness

of the polymer material that covers the sensitive layer has to be minimized in order

to enable a high initial sensitivity of the overall artificial skin. Summarizing, the

following parameters can be optimized in order to enhance the initial sensitivity of

an artificial skin sensor:

• Overall deformed volume

• Material density

• Designed density

• SEF

Functional partitioning For the design of artificial skins for robotic systems ded-

icated functional layer are applied in order to provide the required wide functional

range. The composition of the artificial skin is based on two major skin layers.

First, a mechanical damping layer that enables the deformation of the artificial skin

and thus supports grasp stability or cushions involuntary collisions of the robotic

system with its environment. Second, a sensitive layer that comprises the sensory

capabilities and is located at the surface of the artificial skin. Figure 3.21(a), de-

picts the working principle of the "classical" approach for tactile sensors where the

restoration force, the mechanical damping properties and the transduction prop-

erties are implemented in the homogenous setup of the tactile sensor. This setup

is applied by various groups, e.g. applied by Fritzsche et al. [35] and Cannata et

al. [12]. For this approach the properties of the applied material have to be op-

timized in order to suit the required mechanical properties (restoration force and

mechanical damping) and at the same time fulfill the requirements with respect to

the transduction properties. An alternative approach, figure 3.21(b), pursued e.g.

by Weiss et al. [177] is based on an internal transduction layer and a superficial

damping layer. The transduction is based on the acquisition of the electrical resis-

tivity at the interface between an electrically conductive polymer and metal based

electrodes. Here, the restoration forces are generated from the micro surface struc-

ture of the polymer in physical contact with the surface of the metal electrodes.

This approach offers the advantage, that the transduction properties can be opti-

mized independently of the mechanical deformation and damping properties of the
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Figure 3.21: For the solution of the conflict of goals between the desired high initial sensitivity and the required
mechanical robustness of the artificial skin a functional partitioning of the functional range is proposed. For the
"classical" setup of tactile sensors (a) a homogeneous material is applied for the mechanical damping, the transduction
and the provision of the required restoration forces. Thus, the design of the material is always subject to tradeoffs
between the individual properties. In order to enable enhanced transduction properties a setup based on a superficial
damping layer and an underlying transduction layer (b) is proposed by various research groups. The major drawback
of this setup is the reduced initial sensitivity as external stimuli are cushioned by the superficial damping layer.
Therefore, a functional partitioning of the setup of the artificial skin is proposed, (c). Based on an internal damping
layer and a superficial transduction layer a setup can be derived that unites the desired high initial sensitivity with a
mechanically robust design of the setup. Prerequisite for the implementation of the proposed setup is the development
of a stretchable superficial tactile sensor that accounts for the deformability of the underlying damping layer.

superficial damping layer. The major drawback of this approach is the compara-

tively low sensitivity as the superficial damping layer has to be deformed in order to

evoke a measurable change of electrical conductivity at the underlying contacting

electrodes. A similar principle is applied for the approach of Wettels et al. [182].

Here the authors present a tactile sensing system integrated into the two distal

phalanges of a robotic finger. In contrast to Weiss et. al. [177], here the trans-

duction is based on the acquisition of the impedance in an electrically conductive

fluid. Again, the restoration forces for the transduction layer are generated from

the introduced micro-structure of the inner surface of the fluid cavity.

For the development of an artificial skin for robotic systems in this thesis the setup

depicted in figure 3.21(c) is proposed. The setup consists of an internal damp-
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ing/deformation layer enabling the the conformation of a robotic fingertip to a

grasped object as well as the dissipation of the kinetic energy introduced in case

of an unintended collision of the robotic system and an object or person in the en-

vironment. On top of the damping/deformation layer a superficial tactile sensing

layer is introduced. This configuration enables the increase of initial sensitivity as

a reduced material volume is to be deformed in order to evoke a measurable sensor

output. Thus, the proposed setup might enable the solution of the goal conflict be-

tween the desired high initial sensitivity and the required collision tolerant design.

The composition of the artificial skin out of a set of specialized layers with opti-

mized properties is prerequisite for the derivation of artificial skin sensor systems

for real world applications on robotic systems. The proposed design paradigms for

the development of artificial skin for robotic systems can be summarized as:

• Base the entire artificial skin on polymer materials

• Exclude rigid components from the mechanically loaded area

• Locate the transduction layer close to the surface

• Reduce the material volume to be deformed to evoke a sensor output

• Subdivide artificial skin into functional components

• Apply specialized functional layers with optimized properties
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Fingertip configuration

For this thesis artificial skin is defined as the combination of a deformable sen-

sitive layer, the tactile surface sensor, and an underlying damping layer covering

the rigid cover structure of the robotic system. The functional range of artificial

skin exceeds the functionality of tactile sensors. In addition to the provision of tac-

tile information artificial skin is capable to passively enhance safety and dexterity

of the robotic system. With a focus on the design of robotic fingers Shimoga and

Goldenberg [143] identify the importance of the attenuation of the impact forces in

order to ensure the proper functionality of "force, tactile and slip sensors that are

often located close to the finger tips". Figure 3.22 depicts the generalized setup of
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Figure 3.22: "Classical" fingertip configuration for robotic systems based on an internal tactile sensor and a superficial
deformation layer. Major disadvantage of the well established setup is the minimal initial sensitivity as external
indentation forces have to deform the superficial deformation layer in order to evoke a measurable signal from the
internal tactile sensor. On the right the configuration of a robotic fingertip based on an artificial skin approach is
depicted. The setup consist of an internal deformation layer and a superficial tactile sensor. Thus, the solution of
the conflict of goals between the required deformability of the fingertip and the desired high initial sensitivity becomes
feasible.

tactile sensors and artificial skin. On the left the ’classical’ setup of tactile sensors

is depicted where a sensitive layer is located directly on the rigid structure of the

cover of the robotic system. The sensitive layer of tactile sensors is the often cov-

ered by a damping or protecting layer.

The generalized setup of artificial skin, depicted on the right, goes without a rigid

base layer and solely consists of a mechanical damping layer and, on top, a stretch-
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able tactile surface sensor. While the loss of dexterity of surgeons by the use of thin

protective gloves is controversially debated e.g. in Webb and Pentlow [174] as well

as in Sawyer and Bennett [131] no one would argue that the task of fastening a

button of a shirt is not impaired by the use of thick, compliant gloves. The same

holds true for the setup of robotic end effectors. The fingertip setup depicted in

figure 3.22(a) consists of a rigid basis equipped with a tactile sensor that is then

covered with a compliant surface layer. The dexterity on robotic manipulators and

especially robotic hands depends on the sophistication of the actuated phalanges

and the quality of the sensory feedback. For the application of sensorized robotic

�� �� ��

Figure 3.23: Configuration of extrinsic sensors for robotic fingertips a), cross section of the classical setup with rigid
bone (ruled) sensitive layer on the bone surface and covering mechanical deformation layer b), artificial skin setup with
rigid bone covered with mechanical deformation layer and superficial tactile sensor

manipulators in tactile exploration poses additional requirements for the initial

sensitivity of the artificial skin. The "classical" fingertip setup, figure 3.23(b) con-

sists of a sensitive layer on the rigid bone of the robotic finger that is covered with

a mechanical deformation layer. To enable the contribution of information derived

from tactile sensors to a global 3D map of the environment the robotic manipulator

may not alter the position of objects that are subject to tactile exploration. Sen-

sor data fusion, e.g. of information derived from a vision system and data from a

tactile sensor, for the creation of a global 3D map depends on the accuracy of the

data fusion. If objects are moved during tactile exploration an update of the data

derived from the vision system becomes inevitable. In order to avoid disturbing

a scene of objects during tactile exploration a high initial sensitivity of the tactile

sensors is required to minimize the interaction forces between robotic manipulator

and explored object. In order to support grasp stability the contact area during

grasps has to be increased and, if possible, a form closure has to be generated

between robotic manipulator and grasped object. Therefore, the contact surface of

the robotic manipulator has to be equipped with a compliant layer for grasp sta-

bilization. To allow for the combination of the required high sensitivity and at the

same time enable the introduction of a mechanical deformation layer for grasp sta-
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bility enhancement an alternative fingertip configuration is proposed. The setup

depicted in figure 3.23(c) consists of a rigid basis an internal compliant layer and a

superficial tactile sensor. With respect to grasp stability Shimoga and Goldenberg

[143] propose soft fingertips in order to enhance the ability of robotic fingers to se-

curely grasp and manipulate objects with arbitrary surfaces. The authors propose

a set of experiments and criteria for the evaluation of the fitness of different mate-

rials for the application as a basis for soft materials. The interested reader may be

referred to the citations given in the paper, e.g. Akella and colleagues [1]. Curkosky

and Wright [19] investigate various geometries for the design of robotic fingertips.

The authors conclude, that compliant robotic fingertips based on elastomeric ma-

terials support grasp stability and enable the reduction of the required grip forces.

Cutkosky et al. [18] investigate different polymer materials as a basis for the cover-

ing of robotic fingers. The authors attempt to answer the question "What is the best

"skin" material for the contact areas of a robotic hand?". According to the authors,

"From a design standpoint, most of these factors can be reduced to re-

quirements in:

• friction and adhesion under the range of expected gripping and han-

dling conditions

• mechanical properties such as resilience and elasticity

• durability, resistance to abrasion and chemical attack

• suitability for tactile sensing and compatibility with various tactile

sensors."

Howe and Cutkosky [55] identify the importance of a soft layer for the design of

robotic fingertips. The soft layer eases the difficulties of stable grasp force control

and enables the mechanical decoupling of the sensor from vibrations induced from

the robotic finger. The authors point out, that a soft layer enhances the conforma-

bility and thus enables increased contact surface areas and thus helps to improve

grasp stability. In addition the authors identify the challenge of the fragility of the

soft layer and recommend the design of the skin consisting of "a thin outer skin of

relatively tough rubber and an inner layer of soft foam rubber".

Figure 3.24 depicts a grasping task with a "classical" fingertip setup. Already in

figure 3.24(a) the surface of the robotic fingertips makes contact with the object.

The covering mechanical deformation layer dissipates the energy transferred dur-

ing the initial contact. Thus, the underlying internal tactile sensors are not capable

to detect the initial contact between the surface of the robotic fingertip and the ob-

ject. If the grasp force is increased, figure 3.24 (b), the covering layer is deformed
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Figure 3.24: Grasping fine objects with "classical" robotic fingertips with an internal tactile sensor on the surface of
the rigid skeletal structure of the robotic fingertip. The covering deformation layer prevents the detection of the initial
contact between a small object (here a button) (a), only the increase of grasp force (b) results in a deformation of the
covering layer that results in the detection of the contact between the robotic fingertip and the object.

and transmits the introduced indentation force to the underlying internal tactile

sensors. Only at this time, the contact between the robotic fingertip and the ob-

ject can be detected by the internal tactile sensors. In analogy to the mechanical

damping layer for safe pHRI the compliant cover of robotic manipulators affects

the derivation of information from tactile sensors. According to Shimojo [144] an

elastic cover acts as a mechanical filter of the indentation force. Shimojo describes

the distribution of point contacts at the surface of a polymer layer to the under-

lying sensing elements. Shimojo [144] investigates the spatial filtering effects of
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Figure 3.25: The proposed introduction of geometrically defined voids supports the desired increase of the spatial
resolution and facilitates the discrimination of a two-point contact from a spatially distributed contact event
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elastic cover layers on top of tactile sensors. The author concludes that even for a

cover structure with a thickness of only 0.2mm the spatial filtering characteristics

may not be neglected for the design of tactile sensors with a spatial resolution of

1mm. Shimojo concludes, that the thickness and material properties of the cov-

ering material constrain the achievable spatial resolution of the underlying tactile

sensor. Thus, the conflict of goals between the required deformation layer for grasp

stability enhancement and the desired high spatial resolution may only be solved

if the sensitive layer of the artificial skin is located on top of the deformation layer.

Thus, the two-point threshold of the artificial skin becomes independent of the

mechanical properties and the thickness of the deformation layer. Figure 3.25 de-

picts the implication of the structure of the covering layer. The application of a

solid polymer volume, figure 3.25(a) results in the lateral distribution of the inden-

tation force. For a close two-point indentation the mechanical covering structure

distributes the point loads laterally. Thus, the capability of the underlying tactile

sensors to discriminate a distributed contact event from a two-point indentation

event is restricted. Therefore, a structuring of the covering layer is proposed, see

figure 3.25(b). The introduced voids in the covering structure prevent the lateral

distribution of the indentation forces. Thus, the two individual point loads can be

reliably discriminated from a spatially distributed contact event. If the sensitive

layer is located on top of the deformation layer the mechanical energy introduced

by a grasped object can be directly applied for the deformation of the surface sensor

and thus be utilized for the transduction into a measurable domain, figure 3.26 (a).

Hence the proposed setup enables a high initial sensitivity and thus enables the

solution of the goal conflict between required deformability and high initial sensi-

tivity. An increase of grasp force, figure 3.26, results in a further deformation of the

superficial tactile sensor and thus enables the activation of additional taxels. This

results in an increase of information that can be derived from the tactile surface

sensor and thus allows e.g. for the determination of a stable grasp configuration.

The location of the sensitive layer with respect to the overall covering of the rigid

structure of a robotic fingertip is important for the dexterous manipulation of fine

objects. Therefore, one may draw the following general conclusion:

In order to enhance the dexterity of robotic manipulators a compliant base layer

and tactile surface sensors with high spatial resolution are desirable. And, more

general: The distance of the tactile elements from the surface should be minimized.

The proposed setup of an underlying deformation layer and a superficial tactile

sensing layer requires a completely stretchable design of the sensitive area of the

surface sensor in order to allow the sensitive layer to conform the the surface of

an indenting object and thus to support the grasp stability. Moreover, the surface
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Figure 3.26: Robotic fingertips that are designed according to the design paradigms derived in section 3.2.7 consist
of an internal deformation layer and a superficial tactile sensor. The superficial tactile sensor requires only a small
contact force in order to generate a measurable sensor output and thus enables the detection of the initial contact even
for small objects (a). An increase of grasp force results in additional taxels to be activated and generates additional
information regarding the contact area (b).

properties of the sensing layer contribute to the friction properties of the result-

ing artificial skin. Thus, the development of the structure and the material of the

surface layer of the artificial skin has to enable friction enhancement in order to

support the dexterity of the underlying robotic finger.
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Whole-body cover for physical human robot interaction

While the motivation for the design of a touch sensitive cover for the entire surface

of a robotic system is different, the principles applied for the design of a finger-

tip setup are equally applicable for the design of an artificial skin as a whole-body

cover for robotic systems. The motivation for an artificial skin results from the

requirements of a safe and intuitive safe physical human robot interaction (pHRI).

Here, the conflict of goals arises from the desired combination of a collision tolerant

design and a required high initial sensitivity in order to allow for the discrimina-

tion between a collision and an intended physical interaction. Furthermore, a high

initial sensitivity of the artificial skin is required for an intuitive pHRI. An intuitive

pHRI is required in order to enable an increase in productivity arising from the di-

rect physical interaction of humans and robots in an industrial assembly scenario,

where humans and robots e.g. jointly assemble an automobile. Here, the robot

carries the weight of the pre-assemble components for the equipment of the car

interior. In order to successfully introduce and fixate the components inside the

car body, human and robotic colleague have to physically interact. Besides safety

issues the intuitive control of the robotic manipulator by the human user is essen-

tial for a time saving interaction. Standardized teach-in and repeat control for the

trajectories of the robot manipulator will not enable the exploitation of the potential

of the human-robot co-operation. Therefore, entirely new interaction and commu-

nication procedures have to be implemented. Recent research by Haddadin et al.

[48] shows the potential of a co-operation based on the physical interaction between

human user and the entire structure of the robot manipulator. Based on the infor-

mation from the intrinsic sensors of a DLR lightweight robot (LWR III) the human

user can alter the trajectory of the manipulator or change the reaction strategy in

case of a collision. While intrinsic sensor provide accurate information regarding

torque disturbances and thus allow for the calculation of the resulting interaction

or collision force vector, no information regarding the spatial distribution of the

physical stimulus can be provided if multiple simultaneous points of contact exist.

Therefore, the information stemming from the intrinsic sensors can be optimally

supplemented by information from spatially distributed tactile sensors on the sur-

face of the robotic manipulator. Requirements for a successful application of tactile

sensors as input channel for a HMI are a high sensitivity and the robustness of the

sensor hardware. The "classical" tactile sensor configuration, figure 3.27(a), con-

sists of a single, mechanically compliant layer functioning as transduction medium

that enables the required deformation and contributes to the thermal management

of the underlying robotic system. This setup necessitates a number of tradeoffs,

e.g. the initial sensitivity conflict the robustness of the sensor. In addition, the
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Figure 3.27: The tactile sensor setup, based on a uniform polymer layer providing mechanical damping and trans-
duction properties (a). This setup results in a tradeoff between mechanical properties and transduction properties.
The functional partitioning allows for the development of a setup consisting of a superficial transduction layer and an
underlying mechanical damping layer (b). The long term goal is the design of a multi-functional artificial skin based
on dedicated functional layers for transduction, damping and thermoregulation (c).
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required damping properties contradict a fast restoration of the sensor after the re-

lease of an external stimulus. Figure 3.27(b) depicts the setup proposed within this

thesis, the combination of two dedicated functional layers, a superficial sensing

layer and an underlying mechanical deformation/damping layer. On the one hand,

this setup results in the reduction of the required tradeoffs, as e.g. the mechanical

damping properties can be optimized without affecting the sensory capabilities. On

the other hand, this setup requires the development of a superficial sensing layer

that can be operated on top of a compliant mechanical damping layer.

Figure 3.27(c) depicts the long term goal, an artificial skin setup consisting of a

superficial sensing layer, a mechanical damping layer and an underlying thermal

management layer that contributes to the dissipation of the excess thermal energy

from the robotic system.

Recent studies of Haddadin and colleagues, e.g. [116] have shown that for pHRI

�� �� ��

Figure 3.28: Covering a robotic structure (a) with a single layer, acting as both, as transduction medium and me-
chanical damping layer (b) results in mechanically robust design but prevents a high initial sensitivity. Locating the
sensitive layer of a whole body cover for a robotic system on top of a separate mechanical damping layer results in a
high initial sensitivity but requires a stretchable design of the sensitive layer, (c).

a compliant damping layer on the cover structure of a robotic system can help to

prevent laceration and soft tissue damage. If an object comes into contact with

the surface the damping layer will shun from the load and allow the object to in-

dent the surface. Thus, high local pressures are distributed to a larger surface and

the severeness of the collision can be reduced. Covering a robotic structure, e.g.

a robotic forearm, see figure 3.28(a) with a combined transduction and damping

layer, figure 3.28(b) results in a goal conflict between the transduction properties

and the mechanical damping properties. During the development this setup always

requires tradeoffs between transduction properties and mechanical damping prop-

erties. Therefore, an alternative layer setup is proposed for an artificial skin. Figure
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3.28(c) depicts the setup consisting of an internal mechanical damping layer and

a superficial sensing layer. This setup allows to the dedicated material selection

and optimization of the properties of the individual layers. With respect to safety,

combining transduction and mechanical damping in a single layer as a cover for

a robotic system poses three general problems: Firstly, as intended for passive
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Figure 3.29: The "classical" setup of combination of tactile sensing and mechanical damping in a single layer (a)
enables the detection of a collision event only after the entire layer has been deformed. Thus, the information regarding
the occurrence of the collision is available only after the passive collision reaction strategies have been deployed (b).
The time span for the active collision severeness reduction strategies to take effect has to be bridged by the deformation
properties of the indenting object. In case of a rigid object or a vulnerable portion of the body of the interacting human
an injury or the mechanical damage of the robotic system can not be avoided for high velocities of the robotic system.

collision severeness reduction, the deformation of the combined layer dissipates

kinetic energy, see figure 3.29(a) and thus helps to increase the safety of pHRI.

While beneficial for the passive safety properties of the robotic system, the me-

chanical damping properties of the combined sensing/deformation layer limit the

initial sensitivity and thus affects the ability of the robotic system to actively react

to mechanical stimuli. Secondly, if transduction and damping properties have to

be combined, sensor provides the information of an occurring impact only after the

combined layer has been deformed, see figure 3.29(b). The robot control system

can thus start to react in order to counter the effects of the impact after the de-

formation of the damping layer. Hence it is not possible to utilize the combination

of the passive damping layer and active collision reaction strategies based on tac-

tile information and as a redundant safety feature. The drawbacks of a covering

mechanical damping layer can be avoided by locating specialized tactile surface

sensors on top of a dedicated mechanical damping layer. Based on the information

from tactile surface sensors active collision reaction strategies can be implemented

in the robot control. In combination with the passive mechanical damping layer

for the reduction of collision severeness redundant safety features for pHRI can be
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Figure 3.30: The introduction of tactile surface sensors on top of a mechanical damping layer enables the instan-
taneous detection of a collision during pHRI, (a). The information regarding the detected collision is provided to the
control system in order to trigger active collision severeness reduction strategies. The time span required for the con-
trol system to react and the initiated collision reaction strategies to take effect can be bridged by the passive collision
severeness reduction properties of the underlying mechanical damping layer. Therefore, the design of the passive me-
chanical damping layer has to account for the reaction time of the artificial skin and vice versa. At the instant of time
when the mechanical damping layer is fully compressed (b), the velocity of the robotic system has already been reduced
by the active collision reaction strategies. Thus, the residual relative velocity does no longer endanger neither the inter-
acting human nor the robotic system. Designed accordingly, the combination of active collision detection/reaction and
passive collision severeness reduction properties enables the cushioning of unintended collisions and thus contributes
to an enhanced safety during pHRI.

created. In case of a collision between the robot and a rigid object the tactile sensor

located on the surface of the damping layer can detect the impact quasi instanta-

neously, see figure 3.30(a). While the underlying damping layer is being deformed

by the impacting object, the control system can react to the impact according to the

chosen strategy and thus reduce the kinetic energy dissipated during the collision,

see figure 3.30(b). In addition the design of the damping layer may help to deflect

the impact from delicate areas on the robot’s outer structure towards areas more

capable to withstand the effects of an impact. Locating the touch sensitive layer on

top of a damping or deformation layer introduces a series of additional challenges

for the design and manufacturing of these sensors. The salient surface sensor has

to exhibit a deformability exceeding the deformability of the underlying damping

layer to prevent mechanical destruction of the sensor in case of a collision. This

required high deformation of the surface sensor prevents the application of rigid el-

ements like standard resistors or metal based circuit tracks. Thus, the application

of standard flexible printed circuit boards for the design of the sensitive area of a

tactile surface sensor is not possible. While posing additional challenges for the de-

sign and manufacturing of the sensor hardware, the introduction of a mechanical

damping layer below the sensitive layer allows for the design of a redundantly safe

cover for the robot.
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3.2.8 Discussion

The system design of artificial skin according to the proposed operation–oriented

approach enables an artificial skin setup that allows for the solution of the most

prominent conflict of goals between the required mechanical robustness and de-

sired high initial sensitivity. The proposed scalable design accounts for the desired

spatial and functional integration into a robotic system and thus renders the appli-

cation of artificial skin on a robotic system possible. The pursued approach allows

for the implementation of robotic fingertips with high spatial resolution while at the

same time enabling the design of a touch sensitive covering for the large surface

areas of an entire robotic system. The proposed strategy of the sequential increase

of the information content is based on existing knowledge derived from the analysis

of the literature from the last thirty years. The approach allows for the reduction of

the acquired amount of data and thus helps to reduce the reaction time of the arti-

ficial skin in case of a contact event. Therefore, the provision of tactile information

at update rates suitable for robotic manipulation and collision reaction strategies

is enabled. The functional partitioning of the artificial skin into specialized layers

allows for the independent optimization of the functional components and thus en-

ables the solution of the conflicts of goals. Following the domain specific design

proposed in VDI 2206 [169] in the next section specialized functional components

for a multi-functional artificial skin are designed. Applying the integrative design

of functional components and the required manufacturing processes a toolbox for

the development of an adaptable artificial skin is proposed. Therefore, the artifi-

cial skin is subdivided into the following functional components: Sensing elements,

basic mechanical structure and physical interface to the target system.
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3.3 Adjustable functional components

In the following section concepts for the functional components of an artificial skin

for robotic systems are derived. According to the proposed partitioning of the func-

tional range of an artificial skin the components are subsequently developed in

order to account for the cross-correlation of requirements between the individual

functional components. The development of a set of adjustable sensing elements

for the acquisition of the most prominent modalities of a physical stimulus forms

the basis of a toolbox for the development of an artificial skin that can be adapted

to the requirements of the application site on the robotic system. Subsequently,

a concept for the basic mechanical structure providing the spatial fixation and re-

quired restoration forces for the sensing elements is developed. Finally a solution

for the physical hard-soft interface between the sensing elements and the readout

electronics is presented.

3.3.1 Sensing elements

Within the following section solutions for the acquisition of the following stimulus

modalities are derived:

• Normal force

• Shear force

• Slip detection

The development is focussed on the integrative design of the functional compo-

nents and the required manufacturing processes and applied materials. Therefore,

the underlying manufacturing processes are designed prior to the definition of the

requirements for the material properties, thus a materials selection enabling the

application of the required manufacturing processes becomes feasible. The focus

of this approach is to enable the multi-modal scalability trough the introduction of

adjustable artificial skin components. For the development of dedicated sensing el-

ements the expected stimulus resulting from a physical contact between an object

and the artificial skin of a robotic system can be divided into a subset of modalities.

Figure 3.31 depicts the modalities of a mechanical stimulus, it consists of normal

force (a), shear force (b) or their combination (c). Selective normal or tangential

indentations are special cases, in general the force vector consists of a combination

of normal and tangential indentation force. If the friction is not sufficient to trans-

mit the tangential component of the indentation force, stick slip effects result in a

sliding of the indenting object over the sensor surface. The result is a vibration of
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Figure 3.31: The force component of the stimulus can be classified as normal indentation force a), tangential inden-
tation force b), and combined indentation force c), which contains components in normal and tangential direction.
In addition, a tangential relative movement between the surface of the artificial skin and an object in physical con-
tact results in vibrations that have to be acquired by the artificial skin d), in order to enable the detection of slip
between the surface of the artificial skin and an object, e.g. for the autonomous grasp force adjustment during robotic
manipulation.

the sensor surface. This vibration can be acquired by high frequency redout of the

normal force sensing elements or globally by a dedicated vibration sensing element.

Figure 3.31(d), depicts the vibration induced by relative movement between indent-

ing object and the surface of the tactile sensor. Tactile sensors can be developed

utilizing a multitude of transduction principles. The approaches are mostly based

on the acquisition of changes in:

• Electrical resistivity

• Electrical capacitance

• Light intensity or frequency

• Magnetic field

• Ultrasonic wave intensity

The different transduction principles and their advantages and disadvantages for

the application in tactile sensing for robotics are reviewed e.g. in Nicholls [103]. The

fitness of the individual transduction principles for the application in multi-fingered

grippers is analyzed e.g. by Weiß [176]. Weiß concludes that tactile sensors based

on the measurement of electrical resistivity in polymers offer the best match to the

requirements of robotic grippers. Differentiated according to the transduced stim-

ulus modality various transduction principles are reviewed by Cutkosky et al. in

their chapter in [146]. Nicholls [103] presents a list of advantages and disadvan-

tages of different transduction principles. The author states, that:

"A wide range of transduction methods have been used, from techniques

based on measuring change in resistance to photoelastic methods. No
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single technology has proved to be suitable for all applications, or to

satisfy all of the design criteria specified for ’usable sensors’".

Therefore, a set of dedicated sensing elements is developed for the different modal-

ities of an external stimulus. For each modality a suitable transduction principle is

proposed. Below, sensing elements for the acquisition of normal force, shear force

and vibration are designed.

Normal force acquisition

The functionality of the sensory elements for the acquisition of normal forces can

be abstracted as the transduction of mechanical input energy of a stimulus in nor-

mal direction related to the surface of the sensor into an electrically measurable

quantity. This can be achieved by various transduction principles. Following the

common transduction principles are evaluated with the focus on the compatibil-

ity of the approaches with the proposed design paradigms. According to Cutkosky

et al. [146] P.457, normal pressure is commonly transduced by arrays of piezo-

resistors, capacitors, micro electro mechanical systems (MEMS) or through a cam-

era based tracking of optical markers. While commonly utilized in the context of

tactile sensors, the original definition of piezo-resistivity, (e.g. described in Smith

[151]) refers to changes in electrical resistivity within mechanically loaded semi-

conductor structures. Most of the polymers that are applied for the development

of tactile sensors exhibit amorphous characteristics. Therefore, the utilization of

"piezo" in this context is somewhat misleading. Nonetheless, the effect of a decreas-

ing electrical resistivity in mechanically loaded polymers – in this thesis referred to

as mechano-resistive characteristics – forms the basis for the development of tactile

sensor arrays. Cutkoksy et al. present a detailed assessment of the advantages and

disadvantages of the different transduction principles in their chapter in [146]. The

authors list simple design and signal conditioning and suitability for mass produc-

tion as advantages for tactile sensors based on resistive arrays. While temperature

dependency, drift and hysteresis as well as frailty are considered disadvantages

of resistive array sensors. Following the transduction of normal forces based on

changes in electrical capacitance and resistivity are outlined.

Capacitance based approaches With respect to tactile sensors based on changes

in capacitance Nicholls [103] state:

"Capacitance sensors show some promise. The noise problem seems to

be partly soluble, and the sensors give wide dynamic range and are ro-

bust. However, capacitance decreases with reduced physical tactel size
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and so stray signals will influence the sensor output for very small sites."

For the robotic finger of the Stanford/JPL hand Fearing [32, 33] develop a capac-

itance based tactile sensor with 8 × 8 taxels. The taxels are arranged around a

cylinder along the axis of the finger. In order to acquire the indentation forces that

are exerted to the hemispherical fingertip a ring shaped electrode is arranged per-

pendicular to the finger axis below the hemispherical rubber finger tip. An example

for a sensor based on the change of the dielectric medium is presented by Cannata

et al. [12]. The proposed approach is based on the acquisition of the changes of the

capacitance between the sensor and e.g. a human finger that approaches the sen-

sor. The authors point out, that this effect is limited to the detection of electrically

conductive objects and therefore propose the application of a deformable polymer

based reference top electrode. Figure 3.32 depicts the general transduction princi-
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Figure 3.32: Tactile sensors based on the acquisition of changes in electrical capacity often make use of changes in
electrical capacitance resulting from a deviation of the upper electrode of the capacitor. The displacement of the upper
electrode results in a deformation of the dielectric medium between the capacitor electrodes. Thus, the measurable
electrical capacitance changes, depending on the external mechanical stimulus.

ple. A change in the distance between the plates of a capacitor results in a change

in capacitance according to:

C(Δ d) =
ε0εr ·A
d−Δ d

(3.3)

Where ε0εr represents the dielectric properties of the material separating the elec-

trodes of the capacitor, d the distance between the electrodes without mechanical
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load and Δ d the change in distance induced by the mechanical load. According to

Schrüfer [138] the sensitivity of a transducer based on the change of the distance

between two plates of a capacitor is defined as:

E =
dC

Δd
= −ε0εr ·A

d2
= −C

d
(3.4)

Schrüfer states, that the sensitivity is high for small distances between the plates

of the capacitor:
dC

C
= −Δd

d
(3.5)

The mechanical properties of the material separating the electrodes defines the

transfer function

C = f(Δ d) = f(Δ P ) (3.6)

Where P is the pressure resulting from a normal indentation force applied to the

surface area A of the capacitor. The pressure P on the capacitor is defined by:

P =
F

A
(3.7)

The measurement range depends on the relation of:

C

C0
= f(

d

d−Δd
) = f(

1

1− Δd
d

) (3.8)

The desired scalability poses a series of challenges for the readout electronics of a

capacitance based tactile sensor array. For tactile sensors with a high spatial res-

olution the absolute capacitance becomes very small as it depends on the surface

area of the capacitor according to:

C0 = f(A) (3.9)

If air is utilized as dielectric medium between the electrodes the resulting absolute

capacitance of the tactile elements is very small and thus requires a very sophisti-

cated readout electronics and rigorous EMI-shielding. Mannsfeld et al. [94] present

a highly sensitive tactile sensor matrix based on the acquisition of changes in ca-

pacitance. The applied process enables the introduction of geometrically defined

void into the senor surface. In case of a mechanical compression the polymer

material can shun from the load and fill the introduced voids. According to the

authors thus mechanical creep phenomena are reduced enabling fast restoration

times after an external load is removed. Although the applied materials do not

enable the stretching of the resulting sensor, the approach of the introduction of

geometrically defined voids instead of applying soft or porous polymer materials is

beneficial for the desired increase of the sensitivity of artificial skin sensors. Lee et
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al. [83] present a bendable three axis tactile sensor with 2mm spatial resolution.

Small indentation forces in the order of Millinewtons result in small displacement

of the electrodes of the capacitor (Δd in the order of μm). The resulting relative

change in capacitance is (C/C0 = 1.5). The absolute capacitance ranges in the order

of hundreds of femto-Farad. The authors state, that the full scale range of the sen-

sor is 20 mN . For the application, e.g. in a robotic gripper, a high dynamic range is

required. In order to enable an increased measurement range, the variable distance

between the electrodes (currently 6 μm) would have to be increased. According to

the authors the theoretical capacitance of the sensing elements is 172 fF . The abso-

lute change in capacitance is thus ΔCabs = 1.5·172fF−172fF = 86fF For a resolution

of 8bit an absolute change in capacitance of 0.336fF has to be acquired by the read-

out electronics. While the challenge of the acquisition of small absolute changes in

capacitance can be met by a careful design of the readout electronics, the authors

omit the effects of electromagnetic influence (EMI) to the sensor setup. The EMI-

shielding of sensor setups based on the acquisition of capacitance is crucial for the

desired integration into a robotic system. For the application on robotic systems,

e.g. the surface of the torso of a humanoid robotic system, tactile sensors based on

the measurement of changes in electrical capacitance are impeded by the required

elastic deformability. The readout electronics for capacitance measurement require

electrically highly conductive electrodes for the plates capacitors. The desired all-

polymer design of the sensitive area of the tactile sensor prevents the application

of rigid or flexible metal-based electrodes for the capacitors. The comparatively

low electrical conductivity of capacitor plates based on standard particle filled poly-

mers constrains the scanning rate of the resulting sensor system. Given good EMI

shielding and an adequate electrical conductivity of the polymer based electrodes,

an approach towards highly sensitive tactile sensors based on the acquisition of

changes in electrical capacitance is promising as highly integrated readout chips

are available of the shelf. An approach towards EMI-shielding based on carbon

black filled silicones is presented by Barba et al. [5]. The authors proposed a pre-

dictive model for the design of EMI shielding. Based on this or a similar approach

a stretchable EMI shielding layer for a capacitance based sensitive layer of an arti-

ficial skin might be feasible. Therefore, the acquisition of changes in capacitance is

envisaged in the design of the tactile surface sensors.
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Resistivity based approaches One of the most common transduction principles

is the acquisition of changes in electrical resistivity. Two principle approaches are

pursued. The acquisition of changes in the volume resistivity of a polymer material,

see figure 3.33(a) and the acquisition of changes in the transition resistivity between

two electrically conductive volumes, see figure 3.33(b). Already in 1993 Nicholls

[103] describes the two basic transduction principles. Nicholls concludes, that:

"Approaches based on measuring resistance have probably received the

most amount of attention in tactile sensing, and several designs have

been quite successful. A wide dynamic range can be attained with con-

siderable durability. Hysteresis and creep are present in most designs,

probably because of the reliance on elastomers."
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Figure 3.33: The principle setup for tactile sensors is often based on the acquisition of changes in electrical volume
resistivity, (a). The deformation of the mechano-resistive medium between the contacting electrodes results in a change
in electrical volume resistivity. The measurable electrical resistivity changes, depending on the applied external normal
force. This principle is applied e.g. by Duchaine et al. [27] Alternatively the transition resistivity between an electrically
conductive polymer and metal based contacting electrodes can be acquired, (b). For planar contacting surfaces between
the two volumes, according to Weiß [176], the transition resistivity depends primarily of the microscopic surface
structure of the polymer material.

Figure 3.34 depicts the transduction principle of mechano-resistive tactile sensors

based on changes in electrical volume resistivity. An approach based on volume

conductivity is applied e.g. by Duchaine et al. [27]. The authors present a tac-

tile sensor setup based on a pressure sensitive rubber layer that is electrically

contacted by two orthogonal sets of brass electrodes on the top and bottom of the

pressure sensitive rubber layer. The authors report a pressure threshold of approx-

imately 100kPa and a quasi binary sensor output. While sufficient for the detection

of collisions, a binary transduction principle is appropriate as a means for an in-

tuitive pHRI and thus is not suitable for the integration into a robotic system. An

alternative approach that avoids the introduction of metal based readout electrodes
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is presented by Fritzsche et al. [35]. The authors present a touch sensitive cover

for industrial robots based on the evaluation of pressure induced changes in the

electrical conductivity of a polymer foam. The top and bottom contacting electrodes

are designed based on electrically conductive textile. Thus, the presented sensor

setup enables the required deformability to be operated on top of a mechanical

damping layer. External indentation forces compress the electrically conductive

polymer foam, resulting in a measurable increase of electrical volume conductivity

of the polymer foam. As a result of the applied configuration the polymer foam acts

as transduction medium and provides the restoration forces enabling the recovery

of the tactile sensor after the release of an external indentation force. Thus, there

will always be a tradeoff between the desired electrical transduction properties and

the required mechanical deformation properties. While being well suited for the
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Figure 3.34: A deformation of the mechano-resistive medium between the contacting electrodes results in a change
in electrical volume resistivity of the polymer material. The measurable electrical resistivity depends on the external
mechanical load.

targeted safety enhancement for industrial robotic systems the pursued approach

prevents the application of the sensor system if the transmission of mechanical en-

ergy, e.g. for robotic object manipulation is desired. This limitation results from the

mechanical properties of the applied polymer foam, being inappropriate to trans-

mit shear forces required for robotic object manipulation. The second approach is

based on the acquisition of changes in electrical transfer resistivity between two

volumes. Most commonly a deformable polymer volume is combined with a metal
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based electrode. In the extensive study of Weiss [176] with a focus on transition

resistivity acquisition revealed, that the variation of the transfer resistivity between

a planar deformable polymer and an equally planar metal based contacting elec-

trode is primarily based on the deformation of the microscopic surface structure

of the polymer material as a result of an external indentation force. An approach

based on a combined acquisition of volume and transfer resistivity is presented

by Schostek [136]. The proposed transduction principle is applied in a palpation

device for minimally invasive surgery. The reported high sensitivity and the wide

dynamic range suggest the application of a transduction principle based on the

acquisition of transfer resistivity.

Concept The above presented examples show that both transduction principles,

the acquisition of changes in electrical capacitance as well as the acquisition of

changes in electrical resistivity are equally suited for the design of taxels for the

acquisition of normal forces. Both principles are prone to advantages and dis-

advantages, see e.g. Cutkosky et al. in [146]. Therefore, no disguised attempt to

introduce essentially arbitrary assessment criteria to favor one of the two transduc-

tion principles is made. Solely, the simplicity of the required readout electronics

and the somewhat less demanding EMI shielding led to the decision to opt for a

transduction based on changes in electrical resistivity. Thus, within this thesis

exemplarily a concept for the design of taxels for the acquisition of normal forces

based on changes in electrical resistivity is presented. The individual taxels have

to be arranged in order to form a spatially distributed touch sensitive area. The

challenge of the integration into a robotic system requires a compromise between

the quality of the measurement of the individual taxels and the number of the re-

quired readout wires. According to the discussion in section 3.2.6 the arrangement

of the individual taxels in a matrix setup combines the advantages of a satisfying

quality of the measurement with the required spatial resolution. In addition, a ma-

trix arrangement of taxels reduces the complexity of the inverse computation of the

location of the contact. Therefore, the transduction of normal forces is based on

the application of mechano-resistive taxels, , see figure 3.35(b) in an array configu-

ration, see figure 3.35(a). Furthermore, a matrix arrangement enables the desired

scalability of the artificial skin and thus promotes the introduction of artificial skin

as a whole-body cover for entire robotic systems.

To further a high sensitivity of the resulting sensor the deformed material volume is

reduced by the application of discrete, spatially separated taxels instead of a solid

polymer volume. In the review of Nicholls [103] various transduction principles and

sensor setups are discussed. The following quotation of Nicholls describes a sensor
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Figure 3.35: The basic setup of the normal force acquisition is based on an array of mechano-resistive taxels, (a).
Readout wires are arranged in two orthogonal layers with a mechano-resistive taxel at each crossing point. Ideally, the
variable resistivity is independent of the resistivity of the readout wires, (b). For the application in an artificial skin the
readout wires are designed as polymer based circuit tracks (PBCT), (c).

setup based on the orthogonal arrangement of carbon fibers. Nicholls states, that:

"Carbon fibres have been used in several tactile sensor designs [...].Car-

bon fibres are filaments of carbon created by baking unspun textile yarns,

and are cylindrical in cross-section. When two fibres rest in contact

with one another, the area of contact is very small, but when they are

pushed together, the contact area increases, thereby increasing the elec-

trical conductivity at the junction."

According to the proposed design paradigms no rigid element can be introduced

into the mechanically loaded sensing area, thus the application of carbon fibers is

not feasible for stretchable artificial skin. Therefore, the basic idea of the applica-

tion of two orthogonal intersecting cylindrical volumes for the design of a mechano-

resistive sensing array is adapted. The proposed carbon fibers are replaced by

electrically conductive polymer based electrodes. The transduction of external me-

chanical stimuli in the individual taxels is based on the mechanically induced al-

ternation of the contact surface area between two intersecting electrodes. Figure

3.35(c) depicts the principle setup. Jacobsen et al. [57] identify the interface be-

tween sensor and readout wires as central challenge for the successful integration

of tactile sensors into robotic systems. The authors state, that:
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"Connections to the sensor should be minimized to reduce the proba-

bility of site failure due to wire breakage, and conductors must exhibit

reasonable lifetimes under conditions of constant flexing."

This statement supports the proposed all-polymer design paradigm and the re-

sulting principle of the exclusion of the mechanical hard-soft interface form the

mechanically loaded area. In order to enhance the mechanical robustness of an

artificial skin the number of interfaces is reduced through the merging of contact-

ing electrodes and readout wires. The functionality of the contacting electrodes, to

provide an mechanically induced change of contact surface, is combined with the

contacting functionality of the readout wires. The resulting structure is referred

to a polymer based circuit track (PBCT). Figure 3.36(a) depicts the principle of an
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Figure 3.36: Real PBCT exhibit The acquisition of the transition resistivity is affected by the volume resistivity of
the PBCT (a). Subfigure (b) depicts the equivalent circuit diagram for a normal force acquisition taxel based on two
intersecting PBCT with non-negligible electrical volume resistivity. Subfigure (c) exemplifies the electrical equivalent
circuit diagram for a matrix configuration of multiple normal force acquisition taxels.

individual taxel based on two crossing PBCT. The ideal properties of an array of

mechano-resistive taxels can not be achieved if electrically conductive polymers are

applied instead of metal based readout wires. The measurable electrical resistivity

of an individual taxel consists of the combination of volume resistivity and transi-

tion resistivity at the crossing point, see figure 3.36(b). Thus, a cross-correlation

between the individual taxels of a matrix configuration, see figure 3.36(c) is ob-

served. In Schnös [135] the cross-correlation of an array of taxels based on PBCT is
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analyzed and a strategy for the minimization of this systematic measurement error

is proposed.

Following, possible manufacturing technologies for the implementation of PBCT are

derived. In accordance to the proposed partitioning of functional range of artificial

skin, the sensing elements are developed prior to the development of the basic me-

chanical structure of the artificial skin. Thus, the sensing functionality can be

separated from the mechanical functionality, e.g. the restoration force to regener-

ate the off-state of the sensor after the release of an external indentation force does

not have to be provided by the sensing elements themselves. This approach allows

for the further reduction of the material volume of the sensing elements.

Manufacturing process According to the design paradigms proposed in section

3.2.7 no rigid elements can be introduced into sensor areas that will be subject to

mechanical loading during the operation on a robotic system. Therefore, an all-

polymer approach for the design of the electrodes is pursued. Consequently, the

electrodes have to be manufactured applying a polymer material. Wakuda and Sug-
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Figure 3.37: The application of the polymer based printed circuit onto an arbitrary 3D-curved target surface is enabled
by the 3D positioning of the nozzle during the extrusion process.

anuma [173] propose a processing technology for the manufacturing of electrically

conductive fibers based on silver particle filled silicone adhesive. The proposed

material combination of a silicone based flexible matrix polymer with flake-shaped

silver particles results in a high electrical conductivity of the non-strained fiber.
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A drawback of the application of flake-shaped filler particles is the low relative

strain the fibers can be subjected to before breaking. While enabling a high elec-

trical conductivity in the unloaded fiber, the shape of the particles results in a

high strain dependency of the fibers. If the fibers are mechanically loaded, espe-

cially if stretched, the polymer matrix between the individual particles is elastically

stretched. Thus, the particle-particle distance is increased and consequently the

electrical resistivity of the entire fiber is increased. The authors propose a so called

injection forming process that is based on the dispensing of a silver flake filled heat

curing silicone rubber compound (conductive adhesive) into a heated oil bath. The

conducted experiments for the evaluation of the strain dependency of the electrical

resistivity show, that the high filler content and the aspect ratio of the filler par-

ticles allow only for a relative elongation of up to 15%. In addition, the proposed

processing results in a limp polymer based conductive wire, that subsequently has

to the handled and placed precisely in order to allow for the manufacturing of e.g.

a tactile sensor with a high spatial resolution. While the handling and ultrasonic

bonding of metal wires onto thermoplastic substrates is state of the art for the man-

ufacturing of bendable circuit boards, the handling and precise placement of the

elastic pre-extruded conductive polymer wires poses additional challenges for the

precision of the processing machinery. As the electrical conductivity of the polymer

wires depends on the strain of the wire, no mechanical stress may be introduced in

the polymer wire during the handling and fixation of the limp polymer wire on the

substrate.

To avoid this drawback, within this thesis an alternative approach based on the

simultaneous extrusion and placement is proposed. This process is referred to

as direct-extrusion printing, see figure 3.37. Therefore, the standard process of

extruding particle filled polymer matrixes is adapted in order to create a flexible

production process for the arrangement of the polymer based electrodes in the de-

sired matrix configuration. Figure 3.38 outlines the principle of the direct-extrusion

printing process. The electrically conductive polymer is extruded through a nozzle

while the tip of the nozzle is positioned to the desired location of the PBCT on the

target geometry. The major challenge for the manufacturing is the defined place-

ment of the PBCT in z-direction. On one hand, it is desired to enable a defined

off-state, thus the intersecting PBCT should not be in physical contact if the sensor

is unloaded. On the other hand the initial sensitivity depends of the offset distance

that has to be covered before the PBCT come into physical contact and a transition

resistivity can be measured. Therefore, the manufacturing process has to enable a

precise placement and fixation of the PBCT onto the target structure. Figure 3.38

depicts the flow phenomena within the nozzle. In order to allow for a constant
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Figure 3.38: Extrusion printing process for PBCT with cylindrical cross section

height h of the PBCT the positioning velocity Vpos has to be adapted to the volume

flow of the extruded PBCT. The derivation of the volume flow of Newtonian fluids

in a cylindrical tube is presented in the appendix A.1, according to Kuhlmann [74]

P.212 - P.214. The derived relation between the volume flow and the geometry of

the tube and the difference in pressure can be summarized as:

V̇ =
πa4

8μ

Δp

L
(3.10)

This relation shows, that the inner diameter (2 · a) of the extrusion nozzle for the

manufacturing of the PBCT restricts the flow rate V̇nozzle and thus affects the speed

of the nozzle positioning. In order to enable a reproducible cylindrical shape of the

PBCT the nozzle has to be displaced by the defined positioning velocity vpos. For

PBCT with a cylindrical cross section the width b of the PBCT equals the height

b = h = 2 · a. Thus, the area of the cross section of the PBCT is

APBCT = h2π (3.11)

Hence the flow velocity of the PBCT is

V̇PBCT = h2π · vpos (3.12)

and

V̇PBCT = V̇nozzle (3.13)

and the positioning velocity

vpos =
V̇PBCT

h2π
(3.14)
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the pressure gradient Δp = p1 − p2 can be estimated for the desired width of the

PBCT, the geometry of the nozzle and the dynamic viscosity of the desired polymer

material:

Δp = 4μ
wmax

( b2 )
2
L (3.15)

For Newtonian fluids the mean velocity is wmax = 2w̄. For the manufacturing of

a PBCT with circular cross section the positioning velocity has to equal the mean

velocity of the volume flow of the extruded polymer:

vpos = w̄ (3.16)

Δp = 4μ
2w̄

( b2 )
2
L = 32μ

vpos
b2

L (3.17)

Thus, the pressure difference required for the extrusion printing process depends

only on the viscosity of the polymer material and the geometry of the nozzle. The

viscosity, e.g. for an uncured silicone depends on the flow state described in the

flow law. The characterization facilities, available for this thesis, did not allow for

the acquisition of the flow law of the applied non-Newtonian polymers compounds.

Therefore, the flow characteristics of the applied polymer material have to be ex-

perimentally determined and adapted to the available processing machinery. The

material properties enabling the proposed manufacturing process are outlined in

section 3.4.2.
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Design parameters Initial tests revealed a quasi binary sensor output to external

mechanical loading of the PBCT with circular cross section. Therefore, a testbed


� ��

Figure 3.39: The adaptation of the relation between the applied external load and the resulting change in contact
area between two intersecting PBCT is enabled by the replacement of the circular cross section with a triangular cross
section.

for the investigation of the relation between applied normal force and the transfer

resistivity is developed and implemented in Leupolz [89]. The setup is based on

the experimental setup designed in Schnös [135]. Figure 3.40 depicts the applied

test principle. In order to evaluate the course of the electrical transfer resistivity at

the crossing point of two intersecting PBCT two test specimen are manufactured.

The PBCT are directly applied on a gold contact surface in order to prevent the

acquisition of changes of the transfer resistivity between the metal contacting and

the PBCT. The testbed developed in Leupolz [89] consists of a precision linear axis

with a stepper motor for the generation of the normal indentation force. The two

intersecting PBCT are fixated between the linear axis and the surface of a preci-

sion scale. Both, the applied normal force and the resulting transfer resistivity

are acquired. Figure 3.41 depicts the dependency of the electrical resistivity at the

contact area of two intersecting PBCT. A circular cross section results in a quasi

binary decrease of the resistivity as a result of the applied normal force. In con-

trast, a triangular cross section offers the desired analog output that allows for the

acquisition of the applied normal force. In order to enable the desired transduc-

tion properties the shape of the cross section of the PBCT has to be adapted, e.g.

from circular to triangular, see figure 3.39(a-b). There are countless patents and

patent applications describing approaches towards adaptable transduction proper-

ties of tactile sensors based on the shape of the cross section of the applied polymer

electrodes. One of the most sophisticated approaches is presented by Peterson et

al. in [120]. In the patent application the authors disclose a tactile sensor with

optimized relationship between changes in external applied pressure and resulting

change in contact surface area. The authors refer to the polymer based electrodes
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Figure 3.40: Initial test of the evaluation of the transduction properties of two intersection PBCT with triangular cross
section; Figure adapted from Schnoes [135].
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Figure 3.41: The adaptation of the relation between the applied external load and the resulting change in contact
area between two intersecting PBCT is enabled by the replacement of the circular cross section with a triangular cross
section. Figure adapted from Leupolz [89]
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Figure 3.42: To reduce the computational effort for the simulation of the transduction properties of a taxel (a), the
symmetry of the setup (b) is utilized to reduce the model to a quarter of the taxel (c,d).

as conductive rods and state, that:

"The conductive rods are formed with a selected cross-section, in order

that changes in the amount of pressure exerted on the sensor will pro-

duce corresponding changes in the contact surface area, and hence a

change in the electrical contact resistance [...]."

The proposed shape of the cross section of the electrodes resembles the cross sec-

tion of a boat hull. The presented "conductive rods" provide the sensor’s restoration

forces while at the same time enable the transduction. According to the functional
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Figure 3.43: The angle of the PBCT is varied in order to evaluate the adaptability of the transduction properties based
on an alternation of the angle of the triangular PBCT. The simulation is conducted for an angle of 30◦ (a), 45◦(b) and
60◦; figure adapted from Krauß [73].

partitioning proposed in section 3.2.7 the cross section of the PBCT proposed within

this thesis is designed independent of the required restoration forces. Therefore,

a simplified triangular shape of the cross section of the PBCT is proposed. Figure

3.39 depicts the replacement of cylindrical with a triangular cross section. A model

for the relation of the z-deviation and the contact area is proposed by Schnös [135].

The results of the study with respect to the relation between normal displacement

and contact surface area are summarized in figure A.1 in the appendix. The extend

of the contact surface area depends on the normal deviation of the upper PBCT, the
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Figure 3.44: The above figure depicts the results of a FEM analysis conducted in Krauß [73]. An external indentation
force results in a deflection of the upper PBCT and thus results in a change of the contact surface between the
triangular PBCT. Depending on the elevation angle of the PBCT the dependency of the contact surface area from the
displacement in normal direction can be adapted. Thus, the transduction properties of the normal force acquisition
taxel can be scaled to the requirements of the application site on a robotic system; figure curtesy of Krauß [73].

relation is depicted in figure A.1 in the appendix. In order to investigate the cor-

relation between the displacement in normal direction and the resulting change in

contact surface area for different angles of the PBCT a FEM simulation is conducted

in Krauß [73]. In order to reduce the computational effort the symmetry properties

of a taxel based on two intersecting PBCT is utilized by simulating only a quarter of

the taxel, see figure 3.42. Figure 3.43 depicts the applied PBCT angles applied for

the simulation. The FEM simulation conducted in the study of Krauß [73] exem-

plifies the dependency of the relation of the between the normal displacement and

the resulting change in contact surface area. The results of the FEM simulation

promote the application of a triangular cross section of the PBCT. The alternation

of the angle of the triangular PBCT enables the adaptation of the relation between

the displacement and the resulting change in contact surface area. Figure 3.44

depicts the relation between normal displacement and resulting change in contact

surface area between two intersecting PBCT. The relation is simulated for an PBCT

angle of 30◦, 45◦ and 60◦.
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Shear force acquisition

For the application in robotic grippers and hands the acquisition of the shear com-

ponent parallel to the surface of the robotic gripper is important for the evaluation

of grasp stability. The distributed acquisition of shear forces in artificial skin al-

lows for the generation of the information if the contact forces between the skin

surface and the gripped object are sufficient to transmit the desired manipulation

forces. Thus, a stable grasp can be maintained during dexterous manipulation by

adjusting grip forces to changes of the orientation of the gripped object. Based on

the acquisition of shear forces a robotic grasp force adjustment comparable to the

functionality observed in humans might be feasible. The acquisition of shear forces

can be based on two principle approaches: Indirectly, based on the acquisition of

the output of multiple normal force acquisition taxels or directly, via specialized

shear force acquisition taxels.

Indirect shear force acquisition The indirect acquisition of the shear force is

based on the evaluation of the output of multiple normal force acquisition taxels

in combination with a surface structure on top of the group of taxels. The surface

structure transforms the external shear force to normal forces acting on the indi-

vidual taxels. The evaluation of the shear force is based on the data stemming from

multiple normal force taxels. Often a computational model is applied for the calcu-

lation of the actual exerted shear force. Lee et al. [82] present a sensor setup that

allows for the acquisition of normal and shear forces based on the measurement

of changes in capacitance in a set of four adjoining capacitors. The direction of

the indentation force is calculated from the excitation of the individual capacitors.

According to the authors the macrostructure of the surface, here square bumps,

are manufactured by an etching process of a silicon mould that is subsequently

spin coated with silicone. The authors state, that the accuracy of the calculation

of the direction of the indentation force depends on the material properties of the

indenting object. For rigid objects that indent the surface bumps from one side an

error occurred. While the authors state, that the scenario of a rigid indentation

object is rather unlikely, a dependency of the reliability of the sensor data from the

material of the indenting object is not acceptable in safe pHRI.

Ando et al. [3] present a tactile sensor based on ultrasound, that enables the ac-

quisition of the indentation force in six axis. The presented formulas illustrate the

complexity of the backward calculation of the indentation force vector. Furthermore

the presented design is very well suited for the application in e.g. a robotic fingertip

as the sensor provides information regarding the resulting indentation force vector.

No spatially distributed information regarding the local shear force on the surface
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can be derived from the presented sensor design. Nevertheless, the spatially dis-

tributed acquisition of pure shear forces might be feasible in an array setup. The

mechanical structure of the sensor therefore would have to insulate the individ-

ual sensing cells from each other with respect to to propagation of the ultrasonic

waves. While the lateral insulation could be implemented by the introduction of

air filled gaps between the sensory cells, the technical feasibility of the insulation

in areas where the sensory cells are connected mechanically, e.g. by a covering

polymer layer, might prove difficult as the structure-borne sound would result in a

crosstalk between the individual sensory cells.

Vásárhelyi et al. [168] investigate the effects of elastic cover layers with respect to

the posed inverse calculation problem of the properties of the contact based on the

data from a tactile sensor covered with a structured polymer surface. The authors

state, that the hemispherical structures on the surface of the tactile sensor en-

able an independent coding of the normal- and shear-components of the external

load. Applying the proposed elastic normal force transduction setup a sensor ap-

proach towards indirect shear force acquisition can be derived if the sensor surface

is structured. This surface structure propagates the combined normal and shear

force components of the indentation force vector to the sensory elements distributed

below the surface structure. The tangential components of the forces are converted

to normal forces exerted to the single tactile elements. The comparison of the nor-

mal forces acting upon the individual sensory elements allows for the calculation of

the original spatial direction of the indentation force vector. Thus, a computational

model of the surface structure and the underlying sensory elements is required to

calculate the fraction of the shear forces. The introduction of a surface structure

that covers multiple sensory elements results in a decreasing spatial resolution of

the sensor. In addition the transduction properties of the sensor become location

dependent as discrete direction sensitive structures are formed.

The required material processing for the sensory elements is identical to the pro-

cessing required for the normal force acquisition sensory elements. In addition to

the sensory elements a structuring of the sensor surface is required. The design

parameters for the surface structures are diameter and height of the surface struc-

ture. Depending on the ratio between diameter and height of the surface structure

the sensitivity for normal and shear forces can be tuned.

The manufacturing of tactile sensors for the acquisition of shear forces based on

surface structuring requires the integration of a higher number of tactile elements

as each shear sensitive taxel consists of multiple normal force taxels. Therefore,

in general the spatial resolution of tactile sensors that are able to measure shear

forces via surface structuring is smaller compared to normal force sensing tactile
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sensors.

In order to enhance reliability of the information derived from the sensor and re-

duce the computational effort for the calculation of the direction of the force vector

an approach towards direct shear force acquisition is derived in the following sub-

section.

Direct shear force transduction In contrast to Vásárhelyi, Noda et al. [106] state,

that the backward calculation of the indentation vector "becomes a serious prob-

lem" if large surface areas of a robotic system have to be covered with tactile sen-

sors. Therefore, the authors propose a sensor setup that is based on sensitive

structures that are embedded into a polymer based surface layer. The orienta-

tion of the sensitive elements allows for the measurement of the deformation of

the polymer layer resulting from tangential loads. The presented approach aims

for the conditioning of the tangential load into a measurable domain. The lateral

displacementis transformed into a bending of the sensing elements. While the sen-

sor shows a sensitivity in the order of single-digit kPa), the sensory elements are

based on MEMS structures etched from a silicon wafer. Thus, the sensory elements

themselves are fragile and have to be embedded in a polymer material. Hence the

hard-soft interface is located within the mechanically loaded area and might fail in

case of an overload.

The concept of the direct acquisition of the shear component of an arbitrary inden-

tation load might be promising for the development of shear sensing elements.

An approach for the acquisition of the change of the surface area is proposed by

Rocha et al. [126]. The authors present a tactile sensor that is capable to acquire

the indentation force in three dimensions. The design is based on a set of capacitor

plates where four electrodes are arranged in a two by two array on the bottom of

a polymer separation layer and a reference electrode is placed in the center of the

array on top of the polymer layer. Tangential and combined forces result in a lat-

eral displacement of the top reference electrode with respect to the center of the two

by two array. The applied solid polymer layer between the electrodes presumably

results in a comparatively low sensitivity of the sensor setup. The resulting change

in the individual capacitors allows for the calculation of the 3D displacement of the

sensor. The authors omit the complex task of the calculation of the vector of the

indentation force. Nevertheless, the principle of the change of the surface area may

be promising for the design of selective shear force sensing elements. The mechan-

ical structure of the tactile surface sensor therefore would have to condition the

external stimulus in order to load the shear sensitive structures with pure shear

force.
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Noda et al. [106] present an approach towards direct shear force detection based

on silicon cantilevers that are equipped with a piezo-resistive layer. The cantilevers

are vertically arranged and encapsulated in a soft silicone layer. An external shear

load results in a bending of the cantilevers that results in a measurable change

in electrical resistivity. According to the design paradigms proposed in this thesis

no rigid structures may be introduced into the mechanically loaded sensing area.

Therefore, an approach towards direct shear force acquisition based on polymer

structures is desirable.

Park et al. [117] present a direct shear force acquisition sensor based on chan-

nels filled with a conductive liquid. An external load results in the displacement

of the conductive liquid. The decrease in volume results in a change in electrical

conductivity that can be acquired at the ends of the polymer encapsulated fluid

channels. According to the authors the presented sensor prototype is capable to

directly measure strains up to 100%. The major drawback of the proposed sensor

setup is the lack of scalability as multiple independent fluid channels are required

to form a taxel for the acquisition of the direction of an external shear force.

Concept In Strohmayr [158] the analysis of the undesired effects during the com-

pression of particle filled polymer blends led to the idea to turn the undesired par-

asitic effects, i.e. the increase of the electrical volume resistivity in particle filled

polymer compounds subject to mechanical strain, into a transduction principle

and utilize the effect for the direct acquisition of shear forces. The proposed setup

subsequently has been patented in Smagt et al. [150]. An approach quite similar

to this "new" transduction principle happens to be presented already in 1987 by

Russell [128]. Russel proposed the application of "conductive rubber strain gages"

that are fixated at the inner surface of a silicone based shell of a compliant fingertip

setup. Russel states:

"The availability of a new formulation of stretch sensitive elastomer pro-

vided the starting point for a sensor design which, it is hoped, will pro-

vide significant improvements over the original force sensor. The new

sensor detects deformation of a flexible "skin" supported by a pad of

polyurethane foam. This is in contrast to most other contact sensors,

which usually respond to forces normal to their surface."

Thus, the presented approach is readily "tailored" to support the approach towards

specialized strain sensitive taxels for an artificial skin for robotic systems pursued

within this thesis. From the study of Russell [128] it can be concluded, that the

direct acquisition of the shear component of the indentation force can be based on

the measurement of the strain in the surface layer that results from the indentation
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force. According to the proposed functional partitioning the transduction properties
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Figure 3.45: Depending on the form of the applied surface structuring the external shear force is propagated to the
strain sensitive structures in the sensitive layer.

of the sensory elements have to be optimized for the isolated acquisition of a modal-

ity of the external stimulus. Therefore, the design of the strains sensitive taxels has

to reduce the sensitivity of this structure to normal indentation forces. Figure 3.46

depicts the estimated deformation resulting from an external shear force. The goal

of the design of shear force sensitive taxels is the generation of a sensor setup that

exhibits a high sensitivity towards the shear component of the indentation force

vector while reducing the sensitivity towards normal indentation forces. Therefore,

the application of a surface structure for local strain enhancement is proposed, see

figure 3.45. An external shear force is thus conditioned by the surface structure

in order to enable the acquisition of local differences in surface strain. The shape

of the proposed surface bump affects the transduction properties. Lee et al. [82]

report measurement errors resulting from a shear force exerted to the applied trun-

cated pyramid-shaped surface bumps.

In order to enable transduction properties that are independent of the direction of

the exerted shear force hemispherical surface bumps are proposed, see figure 3.46.

Figure 3.46 depicts the conditioning functionality of the proposed hemispherical

surface structure. An external shear force acts upon the side of the surface struc-

ture and thus causes a deviation of the surface structure. As a result, the surface of

the taxel is strained for its initial length l0 to a length l0+Δl depending of the exter-

nal shear force. Thus, the external shear force is conditioned to a locally enhances

strain of the sensor surface. According to the design paradigm of an all-polymer

sensor setup, as presented in section 3.2.7, the sensory cells for the acquisition

of shear loads have to be based on a stretchable polymer material. In their patent

from 1985 Dario et al. [22] propose a multifunctional tactile sensor based on "piezo-

and pyro-electric (ferroelectric) properties of polymeric materials". With respect to
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Figure 3.46: Deviation of the strain sensitive structures as a result of the geometry of the surface structure.

the acquisition of strain the authors state, that

"[...] the protective plastic [...] can be thermo-formed in order to obtain

ridges, which act as levers to amplify superficial strain and to induce

larger strain in the sensors."

According to the authors:

"The major limitation of ferroelectric transducers in general is the lack of

truly static response [...]."

Therefore, for this thesis an alternative transduction effect is proposed for the ac-

quisition of external shear forces. Inspired by the approach of Russell [128] poly-

mer based strain sensitive structures (PBSS) are proposed for the acquisition of

local strain in the sensor surface. The sensor prototype described by Russell [128]

consists of a line of eight strain sensitive taxels. Thus, the setup is restricted to

the acquisition of strain in only one direction. Therefore, the proposed approach is

adapted for the direct acquisition of shear forces. In order to allow for the acquisi-

tion of arbitrary strain direction, four PBSS are combined to form a strain sensitive

taxel that is able to acquire the direction of the external shear force, see figure

3.47(a). Figure 3.47(b) depicts the equivalent circuit diagram for a strain sensitive

taxel. The combination of elasticity and strain sensitivity of resistive polymers al-

lows for the design of overload proof strain sensitive taxels for the direct acquisition

of the tangential component of an external indentation force.

Manufacturing processes With respect to the manufacturing process, Russell

[128] states:

"At present, the conductive material is cut to shape and then glued to

the skin surface. However, the conductive polymer can be screen printed

and therefore in the future it may be possible to manufacture the whole

sensor by a sequence of printing operations."
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Figure 3.47: Design of a direct shear force acquisition taxel based on four polymer based strain sensitive structures
(PBSS).

The direct extrusion printing process proposed for the manufacturing of the PBCT

for the normal force acquisition taxels can equally be applied for the manufactur-

ing of the PBSS. Similarly, the proposed direct extrusion printing process can be

applied to implement the required surface structures. In contrast to the material

properties required for the manufacturing of the PBCT, the material applied for the

surface structure has to exhibit a comparatively low viscosity in order to allow for

the dispensing of hemispherical surface structures.

Material properties Following the required material properties for the strain sens-

ing elements are outlined. The so called percolation theory, e.g. described in [127] is

an attempt to describe the effects that are considered to be responsible for the elec-

trical conductivity within the polymer matrix. The dependency of filler fraction and

resulting electrical conductivity is exemplarily depicted in figure 3.48. Depending

on the content of filler particles the measurable electrical volume conductivity of the

polymer compound varies. The relation depicted in figure 3.48 can be subdivided

into three sections. In section I, the low concentration of the electrically conduc-

tive filler particles results in an electrical insulation of the individual particles by

the non-conductive matrix polymer. Therefore, the electrical conductivity is low.

Within section II an increase of filler particle content results in the formation of

conductive pathways through the non-conductive polymer matrix. This section of-
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Figure 3.48: The percolation phenomenon, describes the non-linear relationship between electrical conductivity and
filler particle content in particle-polymer matrix compounds; Figure adapted according to Domininghaus [26].

ten is referred to as the percolation threshold. Within this section small changes in

filler concentration result in large changes in electrical conductivity. In section III

the electrical conductivity of the polymer compound becomes almost independent

of the filler particle content as numerous electrical pathways are formed within the

polymer matrix. Besides the alternation of the electrical conductivity, the intro-

duction of filler particles always affects the mechanical properties of the resulting

polymer-filler-compound. The interested reader may be referred e.g. to Princy et

al. [124].

The effects of mechanical loading to the electrical conductivity of polymer-filler com-

pounds has been intensely studied. The effect of axial stretching to the electrical

resistivity in carbon black filler silicone is analyzed e.g. by Kost et al. [72]. The

authors derive a model for the "strain dependent electrical resistance of carbon

black loaded silicone rubber". The model is presented as adapted from the model

describing the mechanics of biological material presented by Fung in e.g. [36].

A more recent study analyzing the electrical conductivity of silicone rubber filled

with carbon black and carbon fibers is presented by Sau et al. [130]. The results

with respect to the strain dependency of the electrical conductivity reveal a non-

monotonic relationship. While for relative elongations up to approximately 25% a

sharp increase in electrical resistivity is observed, effects within the polymer-filler

composite result in a subsequent decrease of the electrical volume resistivity for
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relative strains exceeding approximately 35%. Thus, a careful design of the strain

sensitive taxels is required in order to enable the monotony required for the acqui-

sition of relative strain.

Most of the commercially available electrically conductive polymers contain a filler

content that is well above the percolation threshold in order to minimize the influ-

ence of mechanical deformation on the electrical properties of the material. Thus,

specialized materials have to be developed in order to enable the required strain

dependent mechano-resistive behavior. The transduction properties of PBSS can

be adapted to the requirements of the application site on the robotic system by

the alternation of the strain dependency of the electrical conductivity of the applied

polymer-filler compound.
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Slip detection

The detection of slippage can be based on the acquisition of vibrations in the the

artificial skin resulting from the stick-slip effect, caused by a relative motion be-

tween an object and the artificial skin surface. According to Scheibert et al. [132]

in humans the "tactile perception of fine textures (spatial scale < 200 microme-

ters) is mediated by skin vibrations generated as the finger scans the surface." An

early technical approach towards the acquisition of vibrations in robotic fingertip

is presented by Tremblay and Cutkosky [165] in 1993. The authors propose the

acquisition of slip based on accelerometers located within a compliant robotic fin-

gertip. With respect to the integration of the proposed sensor setup into a robotic

system the authors conclude, that:

"Obviously, one could not hope to use an accelerometer based sensor

during rapid motion of the manipulator due to the presence of large me-

chanical vibrations that would render the incipient slips undetectable".

In addition, the proposed all-polymer design paradigm prevents the introduction of

rigid elements into the mechanically loaded sensing area.

An early work regarding dynamic tactile sensing is presented by Howe and Cutkosky

[55]. The authors present an approach towards tactile sensors that are dedicated

to the acquisition of mechanical transients. The applied piezo-electric polymers ac-

quire changes in mechanical stress below a rubber based skin of a robotic finger

and allows for the detection of surface structures with a hight of 6.5μm.

The more recent work of Yamada et al. [186] is based on a design approach for

robotic fingertips with elevated superficial ridges. In order to acquire incipient slip

PVDF film strips are introduced into the the superficial rubber based ridges. The

major disadvantage of the presented approach is the hard-soft interface between

the PVDF strips and the metal based readout wires. According to the authors the

presented prototype is based on two PVDF strips that are

"[...] longer than the width of the skin because the glued connection parts

between the PVDF strip electrodes and signal wires are harder than the

silicone rubber material. If the harder part was in the artificial finger

skin, mechanical behavior in the artificial finger skin would be changed."

Thus, the presented setup prevents the successful introduction of the sensitive

structures into a real robotic fingertip.

Teshigawara et al. [163] present a slip sensor based on the acquisition of changes

in the electrical resistivity of a silicone rubber filled with carbon particles. While the

authors conclude, that the sensor output results from changes in electrical volume
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conductivity within the polymer material, the presented approach based on a top

and bottom metal electrode is likely to result from the alternation of the transfer

resistivity between the metal electrodes and the polymer material. Again, the all-

polymer design paradigm prevents the application of the presented approach.

Concept The basic idea for the acquisition of vibration is based on the spatial

separation of the vibration sensing element from the mechanically loaded sensing

area. This approach allows for the application of dedicated transduction hardware

without compromising the all-polymer design paradigm. In order to allow for the

spatial separation of the transduction hardware from the sensing area a medium

is required that can be applied in an all-polymer artificial skin. Loeb et al. present

in their patent [92] a robotic fingertip with a specialized pressure sensor for the

acquisition of changes in pressure in a polymer enclosed cavity. If the volume of

the tactile elements is capsulated against the environment a global change of pres-

sure can be acquired resulting from the indentation force that is exerted on the

sensor surface. The integration of the robotic fingertip presented by Loeb et al.

[92] into robotic systems for real world application might be somewhat hindered by

the cumbersome filling process and complicated sealing off of the fluid filled cavity.

Therefore, the concept of the global pressure acquisition approach presented by

Loeb et al. [92] is adapted for this thesis. In order to facilitate the introduction

into a robotic system the propagation of the vibration to the specialized sensing

element via a fluid is replaced by the propagation via an enclosed volume of air or

gas. Accordingly, the dynamic pressure sensor applied as transduction element by

Loeb et al. [92] is replaced by a microphone.

The concept for the detection of slip is presented according to the solution derived

in Schneider [134]. Figure 3.49 depicts the principle setup for the acquisition of

vibrations in an all-polymer artificial skin setup. In order to allow for the remote

acquisition of the vibration the sensing area of the artificial skin is encapsulated.

Thus, a vibration induced from the relative sliding between an object and the sur-

face of the artificial skin results in changes in pressure in the enclosed cavity. To

enhance the induced vibrations a structuring of the sensor surface is proposed by

Trembay and Cutcosky [165]:

"The skin is covered with "nibs", or projections, that form local contact

regions that can slip independently from one another and produce small

vibrations."

Irrespective of the location of the vibration the global pressure within the cavity is

altered by the induced vibration. A drawback of this approach is the loss of the

spatial resolution of the location of the induced vibration. This loss of information
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Figure 3.49: A polymer encapsulated cavity within the artificial skin enables the propagation of pressure gradients
to a miniature microphone outside the mechanically loaded sensing area. The surface structure of the artificial skin
promotes stick-slip phenomena during relative sliding motion between the artificial skin surface and the object; figure
adapted from Schneider [134].

can be compensated if the information regarding the location of the contact is de-

rived from the normal force taxels. The remote location of the mechanically rigid

transduction elements results in the preservation of the required collision tolerance

of the artificial skin. In addition, the replacement of the fluid with a gas enables

the manufacturing of the polymer enclosed cavity based on the processes proposed

for the manufacturing of the PBCT and the PBSS.
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3.3.2 Mechanical structure

Resulting from the functional partitioning proposed in section 3.2.7, the mechan-

ical structure of the artificial skin needs to provide a broad range of functional-

ity. From a sensor design point of view the central functionality of the mechanical

support structure is to spatially fixate the sensing elements in the desired con-

figuration. In addition, the mechanical structure has to provide the restoration

force required for the recovery of a defined off-state of the sensitive elements after

the release of an external load. A second functionality required for the solution of

the goal conflict between high initial sensitivity and a collision tolerant design is

the mechanical conditioning of the external stimulus to the location and transduc-

tion properties of the sensing elements. Further, the mechanical structure needs to

enable the desired scalable spatial resolution and the adaptable transduction prop-

erties. With respect to the operation on a robotic system, the mechanical structure

is required for the transmission of desired and undesired interaction forces in case

of intended robotic manipulation or unintended collision respectively. In order to

support the desired increase of a safe physical interaction, the mechanical struc-

ture of an artificial skin is required to provide mechanical damping properties that

allow for the dissipation of the kinetic energy introduced in case of a collision. Fol-

lowing a concept for a multi functional mechanical structure of an artificial skin is

derived.

Concept

From the domain specific design of the sensing elements a set of requirements

arises. The most prominent, the required deformability which is prerequisite for

an enhanced dexterity and safety, is accounted for by the design of the mechan-

ical structure according to the proposed design paradigms introduced in chapter

3.2.7. Therefore, an all-polymer design of the mechanical structure is pursued.

The primary functionality of the mechanical structure is the spatial fixation of the

sensing elements in the desired configuration. The mechanical structure enables

the fixation of the crossing points of the PBCTs and thus maintains the position of

the taxels within the sensitive layer of the artificial skin. The mechanical structure

support the lower set of PBCT while at the same time fixate the upper set of PBCT at

a defined distance over the first set. In addition a macroscopic surface structuring

is proposed enabling the mechanical conditioning of the external stimulus.

Reduction of the required input energy by spacer-separated foil Siegel et al.

[147] argue, that the application of solid polymer sheets as the dielectric separation
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layer of a polymer based capacitor affect the sensitivity of the sensor as the ideally

incompressible rubber can not shun from the load. Therefore, the authors propose

the introduction of voids into the polymer dielectric material in order to provide a

volume where the polymer material can "escape" if the sensor setup is mechanically

loaded. Figure 3.20 in section 3.2.7 depicts the concept of the designed density.

The underlying idea is the introduction of geometrically defined voids into the me-

chanical structure of the artificial skin.

Therefore, the setup depicted in figure 3.50 is proposed for the mechanical struc-

ture of the artificial skin. The setup consists of two polymer based substrates,

figure 3.50(a) that are mechanically connected via polymer based spacers, figure

3.50(b). The resulting spacer separated sandwich foil, figure 3.50(c) accounts for

the proposed design paradigms and supports the solution of the goal conflict be-

tween high initial sensitivity and the required overload proof design. The proposed
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Figure 3.50: The reduction of the deformed volume by reduction of the designed density is implemented by the
replacement of a solid polymer volume by a polymer based sandwich foil. The setup is based on two basic polymer
foils that are separated by polymer spacers. The geometry and the fraction of the material volume of the spacers to the
entire volume between the two polymer foils defines the designed density of the resulting spacer separated sandwich
foil.

setup forms the basis for the implementation of an artificial skin according to the

proposed design paradigms. With respect to sensitivity the spacers play an impor-

tant role. Their shape, i.e. their length and diameter, greatly affect the mechanical

transfer function of the taxels. Polymer based spacers are applied in order to main-

tain the distance of the different layers of the multi layer foil even if it is wrapped

around edges with small curvature e.g. the rims of the robot’s covering structure.

The spacers convey the external mechanical load from the upper flexible substrate

to the lower flexible substrate and thus to the robot’s covering structure, see figure

3.51. External mechanical loading can result in normal as well as shear forces,

therefore the spacers are mechanically fixed to the layers of the multi layer foil

and are applied to propagate tangential forces to the underlying covering structure

of the robot. The proposed spacer separated sandwich foil enables a lateral func-
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Figure 3.51: In order to solve the goal conflict between required robustness and high initial sensitivity a concept based
on the lateral functional partitioning of the sensing layer is proposed

tional partitioning of the mechanical structure and enables the parallelization of

the acquisition and transmission of interaction forces.

Lateral mechanical insulation The mechanical structure of an artificial skin can

support the desired sensory capabilities by its design. Especially, the mechanical

separation of the individual taxels is important for the desired high spatial resolu-

tion. Already Lederman and Pawluk [81] point out that the

"[...] adjacent sensing elements within a tactile sensor may be passively

triggered by the mechanical response of the sensor covering to deforma-

tion".

Therefore, a mechanical decoupling of the adjacent taxels is required. Thus, the

mechanical fixation of the taxels in space has to be performed by a structure that

minimizes the lateral distribution of the mechanical stimulus. Siegel et al. [147]

argue, that what the authors call "response overlap between adjacent cells" is de-

sirable in order "avoids the dead zones between (adjacent) cells". One may thus

conclude, that the mechanical structure has to provide lateral mechanical separa-

tion of the individual taxels, jet has to ensure, that no "dead zones" are formed by

the separating mechanic support structure. The receptive fields of the sensory cells

of the human fingertip are overlapping, see 3.2.1. The effects of lateral distribu-
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Figure 3.52: The application of a solid polymer material results in the lateral distribution of a point contact at the
sensor surface. The introduction of geometrically defined voids, that enable a direct mechanical coupling in vertical
direction and at the same time inhibit the lateral propagation of the point contact facilitates the calculation of the
location of the point contact on the surface of the sensor.

tion of a point load on the surface would have to be accounted for in the readout

electronics and software. Figure 3.52(a) depicts the effect of the lateral distribution

of a point load at the surface of a solid polymer material. In order to reduce the

computational effort a spacer separated sandwich foil is applied that supports the

mechanical lateral insulation of neighboring taxels, see figure 3.52(b).

Conditioning of the external stimuli towards the location of the specialized
taxels The sensitivity of the resulting artificial skin is based on the interaction

between the sensing elements and the mechanical structure. A technical adaption

of the stimulus conditioning mechanism in human skin is being investigated by

Gerling et al. [38]. The major finding is the contradiction of the widespread theory

that in human skin the papillary ridges are mechanically coupled with the ridges of

the dermo-epidermal junction. The authors state, that the simulation of the inter-

play of the different skin layers suggests that the papillary ridges contribute to the

mechanical conditioning of the stimulus towards the sensory cells. The principle of

conditioning an external stimulus to the sensory elements is applied by Martin et

al. [95]. The authors present an approach that is based on commercial tactile sen-

sors pads that are integrated into the gloves of the NASA robonaut. Beads are sewn

into the textile material of the gloves of the NASA robonaut hands and act as "force

concentrators" over the force sensors. While the basic concept of the concentration

of the indentation force towards the sensory elements appears to be promising the

technical feasibility of rubber based force concentrators including the complex as-

sembly process resulted in the abandoning of the concept.
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Payeur et al. [118] introduce so called "protruding round tabs" into an elastic cov-

ering of a commercial FSR sensing array. (Please note, that already in Siegel et

al. [147] the application of a "sheet with protruding round tabs" is proposed in or-

der to overcome the incompressibility of silicone rubber). In addition, Payeur et al.

propose to introduce geometrically defined voids into the elastic cover in order to

allow for the tabs to expand laterally without affecting adjacent taxels. According to

the authors, the application of these tabs counters the lateral mechanical blurring

effect observed in solid polymer covers for tactile sensing arrays.

An internal mechanical structure for the concentration of the external load to-
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Figure 3.53: Concentration of the indentation force to the sensitive areas; by the introduction of surface structures
the contact area is minimized. Thus, the pressure that is exerted by the indenting object is virtually increased.

wards the sensitive areas is presented by Yamada and Cutkosky [185]. The authors

propose the application of a surface structure referred to as "tactile head with tetra-

hedral core" and internal so called "pressure transmitting nibs". This setup allows

for force acquisition in three degrees of freedom.

A tactile sensor for the acquisition of normal and shear forces based on changes

in electrical capacitance of a set of capacitors is presented by Lee et al. [82]. The

authors propose the structuring of the surface of the tactile sensor to enable the

transduction of shear forces. The applied truncated cone surface structure me-

chanically conditions the applied shear load to a subset of four capacitors that

are sensitive to normal force. The authors report, that the sensor provides an erro-

neous output if the load is applied to the side of the surface structure. The reported

error presumably is caused by the anisotropic mechanical conditioning. Therefore,

the transduction properties of an individual taxel are likely to depend on the angle
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between the surface normal and the vector of the applied load. This characteris-

tics render the sensor useless for real-world application in a robotic system. An

alternative approach based on the acquisition of changes in the electrical resistiv-

ity is presented by Su et al. [160]. The authors apply mechano-resistive polymer

structures based on carbon nano tubes (CNT) that are dispersed in silicone. In

a molding process the mechano-resistive polymer structures are arranged on a

millimeter scale bump shaped silicone structure. The shape of the macroscopic

surface structures enables anisotropic transduction properties. The authors state,

that the sensitivity with respect to normal and shear force depends on the shape of

the silicone bumps.

Concluding one may state, that the application of a macroscopic surface struc-

ture contributes to the mechanical conditioning of the applied load and enables

the transduction of normal and shear forces. In addition, the results presented in

literature point to the application of isotropic surface structures in order to avoid

a dependency of the transduction characteristics of the angle of the indentation

force. Therefore, for the design of an artificial skin for real-world application on

a robotic system macroscopic surface structures with a hemispherical shape are

recommended. The macroscopic surface structure is applied to concentrate the

occurring indentation force to the areas over the taxels and thus not to deform

the spaces in order to create a measurable signal. Applying the described strategy

the minimum required force may be minimized as only the upper substrate over

the taxels has to be deformed in order to create a measurable signal. Figure 3.53

depicts the working principle of the macroscopic surface structure. The indenta-

tion force is concentrated by the surface structure to a smaller projected contact

surface area, thus the pressure acting upon the underlying taxels is virtually in-

creased. This effect results in an increase of the initial sensitivity of the artificial

skin.

In figure 3.54 a model of the tactile sensor is subjected to normal load. The result-

ing distribution of the elastic strain is depicted for the spacer separated sandwich

foil without, figure 3.54(a) and with surface structure, figure 3.54(b). The goal of the

applied surface structure is maximize the initial sensitivity of the resulting tactile

sensor, therefore the pressure applied to the sensitive surface area of the sensors

has to be maximized. The introduction of the surface structure results in a virtual

increase of the pressure through the reduction of the contact surface area.

In order to facilitate the detection of incipient slip the surface of the macrostruc-

tural ridges is equipped with a microstructure, see figure 3.55. The introduced

voids between the spacers can be utilized to propagate slip-induced vibration to the

remote pressure acquisition elements proposed in section 3.3.1. The afore derived



3.3. ADJUSTABLE FUNCTIONAL COMPONENTS 119

	� ��

Figure 3.54: The introduction of surface structures minimizes the contact area. Thus, the applied force is concentrated
towards the sensitive surface area of the tactile sensor. The principle of the concentration of the applied force is
exemplified in the above simulation. Please note, that the material parameters applied for this simulation do not
represent the material properties applied for the proposed artificial skin.
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Figure 3.55: For the mechanical conditioning of relative sliding motion between an object and the surface of the arti-
ficial skin a combination of macroscopic and microscopic surface structuring is proposed. If the macroscopic surface
structures are move over the surface of an object the individual macroscopic surface structures can independently
slip over the surface and thus induce detectable vibrations. The microscopic structuring of the surface allows for the
tuning of the frictional behavior of the overall surface.

solution of the spacer separated sandwich foil for the mechanical structure of the

artificial skin contributes to the solution of the goal conflict between high sensitiv-

ity and required deformability. According to the proposed functional partitioning

in the following a specialized damping layer for the dissipation of kinetic energy is

derived.

Dissipation of kinetic energy in case of collisions With respect to the mechan-

ical properties of tactile sensors Kerpa et al. [65] recommend that tactile sensors

"should provide some mechanical damping behavior to protect the user in the case

of a collision". Duchaine et al. [27] argue, that:

"Most importantly, the skin should be able to absorb significant collision

energy in order to provide mechanical safety [...]".

In order to determine which level of safety is required Povse et al. [122] evaluate

the correlation between the energy density and perceived pain during robot-human

collisions. The focus of the conducted study is to determine from subjective reports

of human volunteers the pain level that is acceptable during pHRI. In contrast Park

et al. [116] investigate the impact energy density and soft tissue damage. The au-

thors propose a collision model to determine the elastic modulus of a mechanical

damping layer to cover robotic systems. One may conclude from these studies, that

irrespective of the focus on induced pain or resulting tissue damage a mechanical

damping layer on top of the rigid cover structure of robotic system is beneficial with

respect to the reduction of the collision severeness. Figure 3.56 depicts a set of dy-

namic indentation tests for the evaluation of the mechanical damping properties of

a selection of polymer materials. For the evaluation of the damping characteristics



3.3. ADJUSTABLE FUNCTIONAL COMPONENTS 121

	� �� �� �� �� �� ��

Figure 3.56: The three columns depict sequential high speed images of a dynamic indentation test for the selection of
the material for the mechanical damping layer of the artificial skin. The high speed images are acquired at a frame-rate
of 600 frames per second (fps), every fifth frame is depicted in the above figure. The following materials are analyzed:
Open-cell polyurethane foam (a), closed-cell low density polyurethane foam (b), high density closed-cell polyurethane
foam (c), silicone gels with varying Shore hardness (d-f) and a specialized damping material applied for protective
sporting garments. Please note, that the exact material of specimen (g) was not disclosed by the manufacturer.
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a test setup similar to the dynamic indentation test setup is proposed in section

4.1.2. For the tests metal ball bearing spheres (20mm diameter) are applied. The

spheres are fixated at a defined height above the surface of the specimen. Upon

release the spheres are accelerated by gravity. The initial height upon release is

100mm above the surface of the specimen of the damping material. During the im-

pact of the sphere with the specimen a fraction of the kinetic energy of the sphere

is dissipated by the polymer material of the specimen. Specimen (a) and (b) consist

of open-cell, (c) of a closed-cell polyurethane foam. Specimen (d-f) consist of cap-

sulated silicone gel. Specimen (g) was obtained from a commercial crash pad for

protective sporting garments. Please note, that the exact type of material of speci-

men (g) was not disclosed by the manufacturer of the crash pads. The combination

of the height that the spheres reach after the initial impact and the time period

until no more liftoff motion of the respective sphere can be observed in the high

speed images characterizes the mechanical damping properties of the individual

specimen. The detail still-frame at the bottom of figure 3.56 depicts the location of

the spheres at the instant when the first sphere (subfigure g) comes to rest. It can

be observed, that the damping properties of the materials (a-f) require longer time

periods to absorb the kinetic energy of the dynamic impact of the spheres. Thus,

it can be concluded, that with respect to the damping characteristics, material (g)

exhibits the most favorable behavior.

Thermoregulation In order to enable a successful integration into a robotic sys-

tem, the mechanical structure of an artificial skin has to provide a means of ther-

mal energy dissipation. Figure 3.57 depicts the temperature distribution on the

surface of robotic systems. The surface temperature of robotic systems, e.g. the

DLR Justin, figure 3.57(a) is generally elevated with respect to the ambient temper-

ature. Thermal energy is generated in non-ideal electric motors, friction affected

gears, and power electronics, e.g. within the wrist of the DLR Justin, figure 3.57(b).

Figure 3.57(c) depicts the temperature distribution in a robotic hand that is not

actively moving. The temperature of the polymer based fingertips is only slightly

elevated with respect to ambient temperature. Covering a robotic system with a

polymer based artificial skin results in a thermal insulation of the robotic surface

from the environment. Thus, the excess heat can not be dissipated as easily. Due

to the high mechatronic integration observed in modern robotic systems only lim-

ited designed space within the robotic structure is available for the introduction

of internal active cooling systems. Therefore, the covering artificial skin itself has

to provide an active means of thermal energy dissipation. Based on the proposed

functional partitioning a dedicated thermal management layer for the artificial skin
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Figure 3.57: The surface of robotic systems depends on the activity of the robotic system and the site on the surface;
subfigure a) depicts the temperature distribution of the DLR Justin after long term repetitive movement of the robotic
arms, subfigure b) shows the wrist, subfigure c) the hand of the DLR Justin.

is proposed. The optimal location for the cooling layer is directly on the mechanical

structure of the robotic system below the mechanical damping layer. Thus, the

cooling layer can contribute to the dissipation of thermal energy without affecting

the rest of the functionality of the artificial skin. In addition, this setup contributes

to a collision tolerant design of the overall artificial skin as the cooling layer is lo-

cated below the mechanical damping layer and thus is protected against indenting

objects. Figure 3.58 depicts the concept of the cooling layer. Based on the same
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Figure 3.58: Thermoregulation based on material flux of cooling agent. For the cavity of the cooling cavity, a concept
compatible to the desired layer setup of the artificial skin is proposed. The channels for the flux of the cooling agent
are manufactured in the same way as the standard polymer based spacers, in contrast to the spacers in the sensitive
layer the spacers of the cooling layer are continuous and thus form the boundary for the flow cavity.
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concept as the mechanical structure of the superficial sensing layer, the cooling

layer consists of a set of spacers introduced between two polymer foils. In order to

enable the formation of cooling channels linear spacers are introduced to form the

boundary of the sealed off cavity. The cooling channels can be filled with a fluidic of

gaseous coolant. A forced circulation of the coolant enables the dissipation of the

excess thermal energy from the robotic system. The proposed cooling layer thus

contributes to a successful integration of an artificial skin into robotic systems.



3.3. ADJUSTABLE FUNCTIONAL COMPONENTS 125

Manufacturing process

The manufacturing process for the spacer separated sandwich foil can be divided

in two subsequent steps. The preparation of the thin sheet polymer substrate and

the subsequent bonding of two substrates with polymer based spacers. In order

to enable the manufacturing of large area artificial skin the applied manufacturing

processes need to be scalable. Therefore, no process e.g. based on spin-coating

can be applied. Therefore, industry scale processes are evaluated for the manu-

facturing of the basic substrate. Standard industrial calendering processes allow

for the preparation of silicone foil as thin as approximately 0.5mm. If the thickness

of the foils is to be further reduced the adhesion of the ready cured foil is likely

to mechanically destroy the foil while detaching it from the rolls of the calander.

Therefore, a preparation process is designed that allows for the continuous prepa-

ration of large area polymer substrate with a thickness of less than 0.5mm. Figure
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Figure 3.59: Based on the adaptation of the standard calandering process for the manufacturing of large area polymer
foils a scalable manufacturing process of the basic polymer substrate for the mechanical base structure is proposed.

3.59 depicts the proposed manufacturing process. The processing consists of the

dosing of the uncured polymer through a slit nozzle into the gap between the calan-

der rolls. Applying a first set of non-heated rolls the uncured polymer is degassed

and pressed into the desired thickness. Following, the uncured polymer is heated

between a second set of calandering rolls. In order to complete the curing process

the sandwiched polymer can be processed between heating plates (not depicted).



126 CHAPTER 3. ARTIFICIAL SKIN FOR ROBOTIC SYSTEMS

Depending on the length of the heating plates and the processing velocity the cur-

ing time can be adapted to the time required for the polymer of choice. Subsequent

	� �� �� ��

Figure 3.60: The manufacturing process of the polymer spacers is adapted from the packaging of integrated circuits
where ball grid array chips are mounted upside down on the surface of printed circuit boards. The basic polymer
substrate is provided with polymer dots with defined material volume, e.g. by screen printing (a). Subsequently two
basic substrates equipped with polymer dots are opposed (b) and connected (c). Finally the polymer of the spacers is
fixated (d).

to the manufacturing of the basic polymer substrate a set of spacers is introduced

e.g. via screen printing. Following the two prepared basic substrates are bonded ac-

cording to the process depicted in figure 3.60(a-d). For a detailed description of the

manufacturing process the interested reader may be referred to Strohmayr [155].

Within this patent application the manufacturing process of the spacer separated

sandwich foil as a mechanical basic structure for an artificial skin is described in

detail. The proposed manufacturing process allow for the production of large area

artificial skin and thus supports the successful introduction into a robotic system.
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3.3.3 Physical sensor interface

A major sticking point on the way towards an implementable artificial skin is the

interface between the polymer based stretchable sensor and the metal based con-

ductive tracks of integrated circuits of the readout electronics. Already Russell

[128] identified the challenge of connecting polymer based to metal based conduc-

tive structures and proposed:

"In order to remove the problem of making reliable electrical connections

in an area subject to much bending and stretching both the strain sen-

sors and the interconnecting wiring are formed from conductive polymer."

Based on this recommendation no rigid readout wires are introduced into the me-

chanically loaded area of the proposed artificial skin. Nevertheless this only relo-

cates the problem of the interface between polymer and metal based circuit tracks.

Commenting the work of Someya and colleagues, e.g. [152], LeMiex and Bao [87]

state, that:

"The transistors are wired together with the elastic interconnects to cre-

ate the circuit, herein lies the challenging part, because fracture in flex-

ible circuits due to strain occurs predominantly at the contact point or

within the interconnect wire itself."

The authors refer the reader to the work of Lacour and colleagues, e.g. [76] who

target their work to the development of stretchable conductive pathways. Lacour et

al. [76] present an approach based on the metallization of stretchable substrates.

According to the authors an electronic circuit based on the proposed approach can

be stretched up to 12% without affecting the functionality of the circuitry. At strains

exceeding 12% the presented stretchable metal conductive pathways fail. From the

presented examples one may conclude, that not necessarily the conductive path-

way itself but the mechanical and electrical connection to the rigid metal based

circuit tracks is the weakest link. Most likely, the difference in elastic modulus

between the polymer and the metal based readout circuitry causes the interface to

fail. While a continuous change of elastic modulus would be optimal for the transi-

tion from polymer to metal no such material is known. Therefore, the attenuation

of the physical hard-soft interface has to be based on the design of the geometric

form of the metal based circuit tracks. Approaches based on meandering metal

circuit tracks, e.g. by Gonzalez et al. [42] prove to be promising but the difference

in elastic modulus between stretchable substrate and metal based meandering cir-

cuit track is still too sharp and causes the meander to fail under high or repetitive

stretching.
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In a study previous to this thesis tactile sensors based on the integration of metal

readout wires in a polymer matrix material are analyzed, Strohmayr [158]. The

experiments revealed that the integration of hard-soft-interfaces into the mechan-

ically loaded area of tactile sensors poses additional challenges for the design of

reliable sensors. Based on these findings a basic strategy for the design of inter-

faces between hard and soft materials for tactile sensors can be defined. The inter-

face between metal conductor and polymer based conductor has to be attenuated.

As an analogon for the design of hard-soft interfaces the design of mechanically
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Figure 3.61: Attenuation of the hard-soft interface between metal readout wire (left) and polymer based circuit track
(right). A tensile load results in the extension of the meandering metal based structure. In addition the contacting
island is deviated according to the deformation of the underlying polymer base substrate, the contacting island "floats"
on the polymer substrate.

loaded adhesive bonded joints can be analyzed. General principles for the design

are presented in Niemann [105] P.172 - P.181. According to Niemann, adhesive

bonded joints allow for the implementation of mechanically stable interfaces with

a uniform stress distribution, e.g. for a mechanical interface between metallic and

non-metallic components. In general, a shearing load is preferred in order to pre-

vent scalping. Therefore, the adhesive layer has to be applied in the direction of

the predominant load direction. These basic design rules can be adopted for the

design of hard-soft interfaces for artificial skin sensors. In addition to mechanical

bonding the interface between metal conductors and polymer based conductors the

electrical connection is vital for tactile sensor design.
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Concept

Carta et al. [14] present the implementation of a demonstrator circuitry that shows,

that an electronic circuit based on multiple islands that are connected via a me-

andering metal based interconnecting structure is operable. The authors report
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Figure 3.62: FEM simulation of the hard-soft-interface under tensile stress. The left collum shows the reaction of the
hard soft interface if the basic polymer substrate is elongated, the polyimide substrate is bonded to the stretchable
polymer substrate. The subfigures on the right demonstrate the residual stress in the polymer circuit track at the
interface from stretchable (soft) basic substrate to the polyimide based floating island. Please note, that the simulation
is based on a simplified setup that excludes the metal contacting wire on top of the polyimide substrate. A further sim-
plification is the model of the material of the elastic substrate (Neo-Hookean). Therefore, the results of the simulation
are indented as qualitative model to exemplify the working principle of the floating contacting islands.

a relative elongation up to 78% for the meandering structures that connect the

islands bearing the rigid components of the electronic circuitry. The presented

approach is adapted for the design of the hard-soft interface. The challenge of
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the transition from the elastic PBCT towards the rigid metal circuit tacks is met

as follows. There are three basic principles applied for the solution. Firstly the

mechanical connection and the electrical connection are spatially separated. Sec-

ondly the electrical and mechanical contacting takes place on so called floating

contacting islands which are able to move with the stretchable polymer substrate.

Thirdly, the residual strain at the hard-soft interface is bridged by a so called poly-

mer bonding approach. Figure 3.61 depicts the functioning principle of the floating

contacting islands that enable a gradual elimination of the strain resulting from the

elastic elongation of the flexible polymer substrate. Therefore, the floating island is

equipped with two extensions forming a zone where the strain gradually decreases.

In order to demonstrate the working principle of the floating contacting islands a

FEM simulation is conducted. Figure 3.62 depicts the results of the simulation.

The detailed subfigures on the right reveal a residual stress concentration at the

transition point where the PBCT is routed from the stretchable substrate onto the

floating contacting island. Figure 3.63 depicts a photograph of a prototype of the

floating contacting islands based on a flexible printed circuit board. In order to

Figure 3.63: Floating contacting islands

further minimize the influence of the mechanical stress in the contacting area the

transition from stretchable substrate to rigid metal contacting area is adapted from

the packaging of integrated circuits. Based on metal (mostly Gold) wires the die

is connected to the contacting pads of the overall chip via the so called bonding

process. This approach is adapted for the hard-soft interface between PBCT and

metal readout circuitry. At the transition point, i.e. the area where the PBCT leaves

the surface of the elastic substrate and is placed on the surface of the compa-

rably rigid flexible PCB the PBCT is routed in a free standing arc that spans the

transition point, see figure 3.64. According to the proposed spatial separation, the

mechanical connection is implemented within the strain reduction zone. Therefore
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the electrical connection is implemented by polymer bonding of the PBCT onto the

electrical contacting surface on the floating island. The interested reader may be
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Figure 3.64: The residual relative movement of the polymer based circuit track and the floating contacting island can
be dissolved in an polymer arc (polymer bonding). Through the combination of floating contacting island and polymer
bonding the electrical contacting area is freed from mechanical load.

referred to [157]. This patent application describes in detail the setup and func-

tioning principle of the floating contacting islands as a means for the solution of

the challenge of the hard-soft interface between polymer and metal based circuit

tracks. The manufacturing of the floating contacting island can be based on the

Figure 3.65: Prototype of the hard-soft interface based on polymer bonding of a PBCT onto a floating contacting island.

standard processes of industrial manufacturing of flexible printed circuit boards.

For the implementation of the polymer bonding the direct extrusion printing pro-

cess proposed in section 3.3.1 can be applied. Figure 3.65 depicts one of the first

prototypes of a hard-soft interface based on the proposed direct extrusion printing

process.
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3.4 System integration

Within this section the development of a scalable tactile surface sensor for the ap-

plication on robotic systems is presented. Exemplarily, a tactile surface sensor

for the acquisition of normal forces is described. The goal is a set of prototypes

that exemplifies that the design paradigms derived in section 3.2.7 enable the im-

plementation of a tactile surface sensor that can be scaled with respect to sensor

surface area and spatial resolution.

3.4.1 A scalable tactile surface sensor

A stretchable and thus collision tolerant tactile surface sensor is developed based

on the design paradigms proposed in section 3.2.7. The tactile surface sensor as

central element of an artificial skin for robotic systems is based on the combina-

tion of the functional components derived in section 3.3. The functionality of the

transduction principle is demonstrated for a normal force acquisition sensor. Fol-

lowing the proposed design paradigms an all-polymer tactile surface sensor is im-

plemented, that avoids rigid elements within the mechanically loaded sensor area.

Hence the resulting sensor prototype can be fully compressed without being me-

chanically damaged. To solve one of the most prominent challenges on the way from

�� �� �� ��

Figure 3.66: The tactile surface sensor consist of the following functional components: Two polymer foils (a), a set of
polymer based spacers (b) that mechanically fixate the two polymer foils. Two orthogonal sets of polymer based circuit
tracks (pbct) (c) are applied as readout wires while at the same time providing the desired transduction properties of
the tactile surface sensor. Sub-figure (d) depicts the integrated tactile surface sensor.

"classical" tactile sensors towards an implementable artificial skin a collision toler-

ant design has to be combined with the required high initial sensitivity of the sensor

system. The combination of the functional components derived in section 3.3 leads

to a tactile surface sensor that is able to unite an overload proof, collision tolerant

design with the required high sensitivity. Two strategies, derived in section 3.2.7
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Figure 3.67: The working principle of the tactile surface sensor is based on two sets of polymer based circuit tracks
(PBCT). The PBCT are arranged in two orthogonal sets that consist of an adaptable number of parallel PBCT. At each
crossing point a sensitive area (taxel) is formed. The mechanical base structure of the tactile surface sensor encloses
the two intersecting sets of PBCT. The sets are mechanically fixated to the two polymer foils of the spacer separated
sandwich foil. The upper set of PBCT is mechanically fixed to the bottom side of the upper polymer foil, the lower set of
PBCT is fixed to the upper top side of the bottom polymer foil. The two polymer foils are mechanically fixated to each
other via polymer based spacers.

are applied in order to increase the initial sensitivity of the sensor setup. Firstly, the

initial sensitivity of the tactile surface sensor is increased by reducing the polymer

volume that has to be deformed to evoke a measurable sensor output. The volume

reduction is based on the introduction of geometrically defined voids into the sen-

sor setup. The tactile surface sensor is therefore composed of a spacer separated

sandwich foil, see figure 3.67. In order to further enhance the initial sensitivity the

sensing elements are introduced into the geometrically defined voids. The scalable

tactile surface sensor is composed of the spacer separated sandwich foil as basic

mechanical structure and two orthogonal sets of polymer based circuit tracks that

have been developed in section 3.3. The basic mechanical structure is composed

from two polymer foils, figure 3.66(a), that are separated by polymer spacers, fig-

ure 3.66 (b). The taxels of the tactile surface sensor are composed of two sets of

polymer based circuit tracks, figure 3.66(c). The individual sets are arranged in

two spatially separated layers. The result of the combination of the functional com-

ponents is an entirely polymer based stretchable multilayer printed circuit board

that enables the transduction of normal forces based on an conformable array of
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taxels, figure 3.66(d). The polymer based spacers enable the mechanical fixation of

the two polymer foils. In addition the spacers provide the restoration force that is

required to separate the PBCT of a taxel after an external load is removed. More-

over, the spacers bear the mechanical load that results from external shear forces

and prevents the dislocation of the two polymer foils and thus enables a stable

arrangement of the individual taxels. Independent of the form of an underlying

mechanical damping layer the polymer based spacers secure the separation of the

PBCT in absence of an external load. Thus, a defined off-state of the tactile surface

sensor can be achieved. The functional principle of the proposed tactile surface

sensor is described in the patent application of Strohmayr [156].The second strat-

egy for the increase of the initial sensitivity is to endow the sensor surface with a

macroscopic surface structuring that conditions the mechanical stimulus towards

the sensitive areas of the tactile surface sensor. A FEM simulation of the behavior

of an artificial skin surface with and without macroscopic surface structure is con-

ducted in Krauß [73]. Following the results are summarized. Figure 3.68(a) depicts

�� ��

Figure 3.68: The simulation of the behavior of the combined functional components shows, that the introduction
of the macroscopic surface structure greatly affects the transduction properties of the tactile surface sensor, figure
adapted from Krauß [73]

the effect of an external normal indentation force, applied to a single taxel without

surface structure. The introduction of a surface structure, results in an concen-

tration of the indentation force towards the sensitive area directly above the taxel,

figure 3.68(b). Thus, the available indentation force is projected to a smaller con-

tact surface area and the applied pressure is virtually increased. A figure depicting

the individual simulation steps is presented in the appendix, see figure 3.54. The

analysis of the relation between the indentation force and the resulting changes in
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the contact surface area between the intersecting PBCT of the taxel is depicted in

figure 3.69(a). The dashed curve represents the transduction behavior with applied

surface structure. Clearly two regions can be distinguished. In region ’A’ the inden-

tation force acts solely of the surface structure, thus a high initial sensitivity can be

observed. As soon as the surface structure is completely indented the indentation

force acts upon the entire surface area of the taxel. Depending on the height of

the surface structure the force required for the complete indentation of the surface

structure can be adapted. The underlying spacers contribute to the reaction force

countering the external normal indentation force, in region ’B’ and thus a further

increase of the external indentation force results in a smaller change in the contact

surface area. Thus, the sensitivity is decreased and enables an increase of the dy-

namic range of the taxel. Figure 3.69(b) exemplarily depicts the acquired electrical

conductance of the tactile surface sensor prototype for a quasi-static indentation

of a single taxel. The quasi-static indentation tests have been conducted and de-

scribed in detail in Leupolz [89]. The diameter of the cylindrical indentation probe

is 2mm. The graph depicted in figure 3.69(b) illustrates the feasibility of the im-

plementation of a taxel with high initial sensitivity (region ’A’) and a wide dynamic

range (region ’B’).
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(a) The introduction of a surface structure results in an increase of local pressure in the sensitive area
of the taxel and thus enhances the sensitivity of the tactile surface sensor in region ’A’. In region ’B’ the
surface structure is completely indented and the external indentation force is exerted on a larger surface
area; Figure curtesy of Krauß [73]
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(b) The response of the tactile surface sensor prototype for a quasi-static indentation of a single taxel.
Test conducted on the testbed developed in Leupolz [89]; Figure curtesy of Leupolz [89]

Figure 3.69: Transduction properties of the combined functional components. Subfigure (a) depicts the results of a
FEM analysis. Subfigure (b) depicts the transduction properties of the implemented tactile surface sensor prototype.
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3.4.2 Materials and methods

Taking into account the future integration of the tactile surface sensor as a whole-

body touch sensitive cover for an entire robotic system the implementation of the

tactile surface sensor is based on manufacturing processes that enable the scal-

ing of the resulting sensor prototype. For the implementation the manufacturing

processes proposed in section 3.3 are applied. Therefore, in the following the ap-

plicable polymer materials are selected according to their fitness for the proposed

manufacturing processes. Standard industrial polymer processing technology often

involves batch sizes of hundreds of kilograms and thus can not directly be scaled

down to the small polymer volumes that are required for the manufacturing of an

artificial skin. Therefore, a specialized micro-scale polymer processing technology

is developed in Pfeiffer [121]. To form the polymer based circuit tracks an adap-

tive extrusion printing technology that enables the manufacturing of tactile surface

sensors for 3D-curved surfaces is introduced, compare section 3.3.1.

The control of the manufacturing process of the PBCT enables the tuning of the

desired transfer function of the resulting taxels to the requirements of the intended

application site. The design of the nozzle of the printer affects the shape of the

PBCT and thus contributes to the transduction principle. Consequently, the uti-

lized polymer base materials are selected in order to allow for the implementation of

the proposed manufacturing processes. The development of polymer materials that

exhibit the desired electrical and mechanical properties is based on the finding of

the development of the functional components in section 3.3. The proposed man-

ufacturing, e.g. the formation of the desired cross section of the PBCT during the

extrusion printing requires a structural viscosity of the polymer material. There-

fore, the application of an uncured polymer material with high viscosity is proposed.

In order to meet the requirements according to Harmon [50] the materials applied

for the implementation of the tactile surface sensor have to be mechanically flexi-

ble, conformable and stretchable. Therefore, the application of elastomers as basis

material for tactile sensors is most promising.

Material The desired stretchability of the tactile surface sensor requires the appli-

cation of stretchable electrically conductive circuit tracks. With respect to stretch-

able conductive circuit tracks Lacour et al. [76] state, that:

"Conformable electronic surfaces require electrical conductors that are

fully elastic and have a resistivity as low as that of metals. Currently,

conductive rubbers – silicones filled with carbon or silver particles – are

among the few materials that are both mechanically elastic and electri-

cally conductive. However, they present high electrical resistivity that
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may change significantly under stretching, leading to poor interconnect

performance and reliability".

The electrical conductivity of polymer compounds can be increased by incorporating

electrically conductive particles into a polymer matrix. The electrical conductivity

of the particle filled polymer matrix is highly dependent of the applied filler content.

Wessling [178] proposes a model for the electrical conductivity of carbon black filled

polymer material. The author states, that the nonlinearity of the relationship be-

tween the ratio of the added filler material and the polymer matrix can be explained

by a phase transition of the arrangement of the carbon black particles. According

to Wessling, the transition from dispersed to flocculated phase can describe the

non-linear change in electrical resistivity. The addition of rigid particle into the

compliant polymer matrix not only affects the electrical conductivity of the result-

ing filled polymer but also alters the mechanical properties of the filled polymer. In

general the addition of filler particles increases the tear strength and at the same

time reduces the elongation at break. Princy et al. [124] conclude from their study

on conductive silicone rubber compounds:

1. "The resistivity of the composites that contain carbon blacks like

acetylene black, lamp black, and ISAF black decreases as the carbon

black concentration increases.

2. The mechanical properties like tensile strength, tear strength, and

elongation at break decreases, and hardness increases as the amount

of carbon black increases.

3. Resistivity increases on heating and decreases on cooling in the case

of acetylene black and lamp black. For ISAF black, resistivity first

increases and reaches a maximum at 80°C, and then decreases on

heating and also decreases on further cooling.

4. The area of the hysteresis loop during the heating–cooling cycle de-

pends on carbon black concentration."

With increasing filler content the undisturbed volume of the polymer surround-

ing the particles decreases. Hence less polymer results in decreasing elasticity of

the filled polymer. Thus, the content of the filler particles can not be arbitrarily

increased. These effects create a conflict of goals as high electric conductivity is

required but at the same time the elasticity of the resulting polymer compound is

essential for the later integration into robotic systems. Following the required ma-

terial properties for the sensory elements are outlined. The design of the sensory

cells requires the manufacturing of stable polymer printed circuit paths that can



3.4. SYSTEM INTEGRATION 139

be handled without melting away. Therefore, only polymers can be applied that

exhibit a structural viscosity, i.e. that are paste-like at ambient pressure and tem-

perature. The desired 3D shape of the printed electrodes prevents the application of

pourable polymers, e.g. conductive inks. The application of thermoplastics would

be desirable from a compounding point of view as e.g. twin-screw extruders allow

for homogeneous dispersion of the conductive filler particles in the polymer matrix.

The handling of a viscous high temperature polymer melt for manufacturing of tac-

tile sensors would require the constant heating of the polymer melt and thus can

not be applied for the proposed direct extrusion printing process.

Therefore, the application of a heat curing polymer compound, e.g. silicone is

proposed. The effects of strain to the electrical resistivity of silicone filled with

electrically conductive carbon black particles are investigated e.g. by Kost et al.

[71]. With respect to the application of carbon black filled silicone polymer a strain

dependency of the electrical resistivity is observed. While a mechano-resistive be-

havior is e.g. desired for the strain sensing elements, a dependency of the volume

resistivity of the PBCT acting as readout wires is undesired. This is because not

only the mechanical loading of the sensitive element but also the elongation of the

elastic contacting wires results in an increasing electrical resistivity and thus the

reliability of the derived tactile information is reduced. Therefore, the influence

of mechanical loading on the electrical conductivity of the conductive polymer has

to be minimized. There are multiple approaches towards the minimization of the

resistive effects within polymer compounds under mechanical loading. The first

approach is based on the reduction of the elongation of the PBCT due to mechan-

ical loading e.g. through a meandering structure of the PBCT. This results in an

increased overall length of the PBCT entailing an increase of the overall electrical

resistivity of the PBCT. In order to avoid these effects, the mechano-resistive be-

havior of the polymer compound has to be reduced in order to enable electrically

highly conductive PBCT.

The combination of particles with different average particle size is proposed by

Cheng et al. [16] who disperse copper powder (average particle size 50μm), carbon

black (average particle size 35nm) and silver powder (average particle size 25 nm)

in silicone. The authors apply a process based on the addition of cyclohexane to

reduce the viscosity of the silicone during the mixing process. The cyclohexane

is removed from the compound prior to the mold process. The authors report an

electrical resistivity of a single taxel to change from 10MΩ (no pressure applied) to

5kΩ (taxel mechanically loaded with 700kPa). While the reported mechano-resistive

behavior is desired for the transduction of mechanical load to a change in elec-

trical resistivity, it is undesired for the design of PBCT. In addition the minimum
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reported electrical resistivity is too high for the application in PBCT. Moreover, the

high overall filler content of approximately 40%w/w is likely to result in a low ex-

tensibility of the resulting cured silicone compound. Thus, the proposed approach

based on the combination of different particles with different scale of the average

particle size can not directly be utilized for the design of PBCT. Nevertheless the

basic idea of this approach can be adapted to the challenge of the minimization of

the mechano-resistive effect. Therefore, the principle of the multiple filler particles

is adopted for this thesis.

Next to the concentration and the size of the applied particle, the morphology of

the particles is crucial for the electrical conductivity of the resulting filled polymer

material. The basic idea is the formation of a micrometer-scale 3D network of elec-
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Figure 3.70: Reduction of the strain dependency of the electrical volume resistivity by the application of electrically
conductive particles with terete aspect ratio

trically highly conductive particles. Figure 3.70 depicts the basic principle. If a

PBCT based on spherical particles, figure 3.70(a), is elongated, figure 3.70(b) the

point contacts between the individual particles are disturbed. This effect results in

a dependency of the electrical conductivity of the PBCT from the elongation of the

PBCT. In order to avoid this undesired effect, instead of spherical or flake-shaped

particles, the application of terete particles is proposed. In addition, the terete par-

ticles are axially oriented, figure 3.70(c). The basic idea is that a comparatively

constant volume resistivity can be achieved through a parallel sliding contact be-

tween the particles in the case of an axial elongation of the PBCT, figure 3.70(d).
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To enhance the electrical conductivity even further the terete particles are not in-

corporated into an insulating polymer matrix but into a polymer matrix filled with

electrically conductive nano-particles. Therefore, a combination of nanometer- and

micrometer-scale particles is incorporated in a polymer matrix. This hybrid filler

system is based on the combination of different fillers and their distribution in

the polymer matrix. The proposed axial orientation of the terete particles can be

obtained through the utilization of rheological phenomena during the direct extru-

sion printing process. Gradients in flow velocity are exploited in order to orient

the terete particles within the PBCT. Figure 3.71 depicts the working principle of

the in-line orientation of the terete particles during the direct extrusion printing

process. This approach enables the manufacturing of electrically highly conduc-
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Figure 3.71: Principle of the inline manufacturing process of the PBCT with an anisotropic volume resistivity

tive PBCT with a reduced mechano-resistive behavior. Extrusion experiments have

shown, that the addition of solvents results in polymer compounds that exhibit a

pronounced structural viscosity due to the required high concentration of filler par-

ticles. In combination with an increased pressure difference the deposition process

can not be controlled properly. A relative change of only 50Pa changes a paste-

like polymer compound into a low viscosity fluid, preventing the adaptation of the

required nozzle positioning velocity. Therefore, the application of solvents for vis-

cosity reduction of particle filled polymer compounds is not to be recommended.

Hence an alternative approach enabling the solvent-free processing of the polymer
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compounds is proposed in Pfeiffer [121]. Following the approach towards a micro

mixing technology for highly viscous polymers is outlined accordingly.

Micro mixing of highly viscous silicone

The standard mixing procedures of highly viscous polymers in industry involve

thousands of kilograms per batch and require huge machinery. For the application

in artificial skin only small material quantities in the order of grams are required at

one time. The processes and apparatuses of the polymer processing industry can

not directly be scaled down to single grams per batch therefore in Pfeiffer [121] a

micro mixing system for highly viscous polymers is developed, figure 3.72 (a). The

main objective of the mixing process is the uniform mixing of the different polymer

components. Due to the high viscosity no turbulent mixing process can be applied.

Therefore, a mixing based on laminar flow phenomena and diffusion processes in

the polymer compound are investigated. The effect of the reduction of the aspect
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Figure 3.72: Micro scale mixing of highly viscous polymers based on the mixing principle of H. Nieländer [104], figure
adapted from Pfeiffer [121].

ratio of carbon fibers during the mixing into nitrile rubber is described by Pramanik

et al. [123]. According to the authors the aspect ratio of the applied carbon fibers

is reduced during the mixing process as a result of the shear forces exerted to the

fibers. Therefore, the general objective of the design of a mixing process is to thor-

oughly mix the two polymer components and at the same time keep shear forces
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within the polymer compound as low as possible in order to avoid the reduction

of the aspect ratio of the introduced fibers. Therefore, the mixing principle pro-

posed in the patent application of Nieländer [104] in 1970 is applied. The micro

mixing system implemented in Pfeiffer [121] is based on the synchronous transla-

tional displacement of the mixing cavity and the rotation of the mixer within the

cavity, figure 3.72(b). During the mixing process the polymer material is displaced

and flows through the voids in the rotating mixer. The thickness of the layers of

the components of the polymer is reduced in order to allow for the mixing of the

polymer components based on diffusion processes, figure 3.72(c). Figure 3.72(d)

exemplifies the mixing of the two polymer compounds, unmixed (top) and partially

mixed (bottom). The main objective of the micro mixing process design was the

minimization of dead volumes and the resulting material loss. Hence the mixing

has to take place in a cavity that can is applied throughout the polymer process-

ing. The quality of the mixing process based on different mixing strategies and

different mixing elements is investigated by Pfeiffer [121]. Based on these results

a reliable and reproducible mixing process for the applied silicone could be imple-

mented. This mixing process is the basis for all subsequent manufacturing steps

of the proposed polymer based artificial skin.

Fillers and their distribution in the polymer matrix
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Figure 3.73: For the dispersion of particles in highly viscous polymers the following process is proposed.
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The dispersion of particles in a highly viscous polymer matrix is based on the prin-

ciple manufacturing process depicted in figure 3.73. The first step is mixing of the

liquid solvent with the powder of the nanometer particles, e.g. carbon black (XC72

Cabot�, [41]), figure 3.73 (a). In order to avoid a premature curing of the result-

ing compound, as a result of an increase of temperature in the polymer compound

during the mixing process. Subsequently the particle aggregates are de-aggregated

via ultrasound induced vibration, figure 3.73(b). Following, a defined volume of

a pre-mixed polymer compound (e.g. components A and B of a two component

heat curing silicone, pre-mixed according to Pfeiffer [121]) is added, figure 3.73(c).

Then, the resulting low viscous solution is mixed applying a high speed mixer, figure

3.73(d). The resulting homogeneous dispersion is degassed and the volatile solvent

removed from the dispersion, e.g. via a vacuum in an exsiccator, figure 3.73(e).

The product, a highly viscous polymer compound is utilized as a master-batch.

By adding defined volumes of unfilled polymer, the desired particle concentration

can be obtained, figure 3.73(f). Finally, the highly viscous polymer is thoroughly

mixed according to the process proposed in Pfeiffer [121], figure 3.73(g), to obtain

the polymer compound with the desired electrical and mechanical properties for

the extrusion printing process, figure 3.73(h).
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3.4.3 Prototypes

For the evaluation of the proposed design strategy and the required manufacturing

processes a set of prototypes of the tactile surfaces sensor is implemented. In or-

Figure 3.74: Prototypes of the scalable tactile surface sensor of the artificial skin. The sensor on the left provides a
spatial resolution of 1.25mm, e.g. for the equipment of robotic fingertips. The sensor prototype on the right provides a
spatial resolution of 2.5mm, e.g. for the palms of robotic hands. The figure illustrates the scalability of the proposed
sensor design and the underlying manufacturing processes.

der to demonstrate the scalability of the spatial resolution three different types of

prototypes with different spatial resolution are manufactured. The spatial resolu-

tion of the prototypes ranges from 1.25mm, depicted in on the left in figure 3.74 to

2.5mm depicted on the right. The suitability of the manufacturing processes for the

implementation of large area tactile surface sensors is demonstrated with the man-

ufactured 40 × 40 taxel array. The resulting 1600 taxels enable a spatial resolution

of 2.5mm, figure A.4 in the appendix depicts the assembled prototype. In order to

demonstrate the adaptability of the proposed design approach a large area tactile

surface sensors is implemented. The manufactured prototype forms the basis for

a whole-body touch sensitive cover for entire robotic systems. Figure 3.75 depicts

one of the first prototypes of the large area tactile surface sensor. Figure 3.76 de-

picts a tactile surface sensor prototype with 5× 8 taxels and a spatial resolution of

20mm for large surface areas. The photograph illustrates the ability of the tactile

surface sensor to be integrated on top of a mechanical damping layer and cover the

complex 3D-curved geometry of the covering structure of a DLR LWR III.

Readout electronics For the evaluation of the properties of the proposed tactile

surface sensor a dedicated readout electronics is designed in Schnös [135] and re-
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Figure 3.75: Prototype of normal force acquisition tactile surface sensor with 3 × 5 taxels with a spatial resolution of
20mm. The presented prototype is designed on order to cover a large surface area as the depicted covering structure
of the DLR Hand-Arm-System (upper arm cover).

Figure 3.76: Front and side view of a prototype of a normal force acquisition tactile surface sensor with 5 × 8 taxels.
The spatial resolution of the prototype is 20mm. While the spatial resolution is comparatively low, the design of the
tactile surface sensor enables the reduction of the insensitive surface area. The sensitivity of the tactile surface sensor
is independent of the location of a contact within the surface area of an individual taxel.
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fined and supplemented in Schneider [134]. The performance of a tactile sensor

system depends on the mechanical design of the sensor hardware and the applied

readout electronics. In order to increase the performance of the tactile surface sen-

sors a dedicated readout electronics is implemented. The readout strategy pursued

in Schnös [135] is depicted in figure 3.77. The applied data acquisition strategy is

based on the sequential addressing of individual taxels. Thus, the reaction time

of the entire tactile sensor system depends on the number of taxels. The maxi-

mum scanning rate is defined by the number of taxels to be scanned. The physical

properties of the readout electronics of the artificial skin sensor system restrict the

scanning rate. Depending on the scanning rate the time required to ensure, that

all taxels have been read out cumulates to the overall reaction time of the tac-

tile surface sensor system. In order to reduce the reaction time and e.g. enable

the initiation of active collision reaction strategies, the readout strategy proposed

in section 3.2.6 is implemented in the readout electronics designed in Schneider

[134]. To allow for the implementation, the hardware of the readout electronics has

to be adapted. In practical, the multiplexers applied in Schnös [135] are replaced

by analog switching matrices in the design of Schneider [134]. The basic idea for

the optimization of the reaction time of the readout electronics is the supply of tac-

tile information in a sequential manner. Based on the sequential increase of the

information content a high speed sensor data processing can be implemented. One
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Figure 3.77: Sensor data acquisition and preprocessing structure, according to Schnös [135]

of the bottlenecks for the reduction of the reaction time is the applied bus system

for the communication between artificial skin and the control unit of the robotic

system. In order to account for a future functional and spatial integration into a

robotic system the selection of the applied bus system has to be based on the spa-

tial restrictions arising from the integration. The following parameters determine

the choice of bus system for highly integrated mechatronic systems:
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• Number of required cables

• Size and number of the electronic components required for the implementation

• Required shielding, e.g. shielding of individual cables

• Data rate

• Overhead per package in percent

• Power consumption

• Robustness of data transmission

• Bus topology

According to Schneider [134] one of the best compromises for the application in a

human sized hand is offered by the so called controller area network (CAN) bus

system. The application of CAN bus systems in mass products results in small bus

controller components that allow for the design of a bus system in the geometrically

constraint environment of a human sized robotic hand. In Schneider [134] a new

version of the readout electronics is implemented.

Herein the readout strategy proposed in section 3.2.6 is implemented. In order

to increase the readout frequency and thus to minimize the reaction time of the

artificial skin sensor system in case of a collision the design of the electronics

is adapted. Instead of the formerly applied multiplexers a set of analog matrix

switches is integrated. Theses switches allow for the combination of numerous

taxels and thus enables the formation and dynamic configuration of the size and

shape of the virtual receptive fields.

The tactile information is provided through three independent channels, based on

three independent layers of communication. The communication between artificial

skin readout electronics and the robot control system consists of: Firstly, a bi-

directional high level information transmission channel, e.g. for the transmission of

the orientation of a detected edge of an object in physical contact with the artificial

skin surface. Additional high level information, e.g. the thermal conductivity of an

object can be transmitted applying the same communication channel. The second

layer consists of a bi-directional mid-level real-time channel for the transmission of

the filtered and compressed array data from the artificial skin to the robot control

system in order to create a data basis for elaborate shape recognition computations

that are too time consuming to be executed directly in the distal artificial skin

readout electronics. The information flow from the robotic system towards the

artificial skin contains the information which taxel surface normals are oriented in
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the direction of a planned motion of the robotic system. In the opposite direction

the information of the current configuration (location, size, shape, involved taxels)

of the dynamic receptive fields is conveyed. In addition the averaged activation level

of the individual receptive fields, a detected movement of the center of mass of the

contact and information regarding initial slip detection can be provided. The third

layer consists of a digital "early-warning", initial-contact signal that is propagated

via a separate hardware channel. Practically this can be e.g. a twisted pair cable.
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Review publications, e.g. [20] and [188] reveal the lack of a standardized perfor-

mance metrics for tactile sensors and the accompanying readout systems. As the

authors struggle to compare the published properties of different tactile sensor sys-

tems, the lack of a standardized test procedure for tactile sensor systems becomes

apparent. Currently, each research group applies a specialized testing procedure

for the evaluation of the performance of their tactile sensor system. The test setup

proposed by Hristu et al. [56] involves a mechanical 5-DOF apparatus for manual

indentation of a compliant robotic fingertip. The proposed test procedure involves

the subsequent manual indentation of pre-defined locations on the fingertip. The

presented test procedure is very sensor–specific as e.g. no planar tactile sensors

could be evaluated with the proposed test scenario. In addition, the high variance

of the manual input parameters prevents the reliable comparison of different tactile

sensor approaches. The presented approach exemplifies, that there is a need of a

standardized testing procedure in order to create comparable results for the evalu-

ation of the performance of the presented tactile sensor systems. Thus, a certain

test biasing is immanent if one creates a tactile sensor and then designs a testbed

for this sensor. Many of the test facilities presented in literature are based on

highly expensive, high precision laboratory equipment that not all research groups

are able to acquire. Thus, the repetition of the conducted experiments often is

not possible and a direct comparison of the performance of different tactile sensor

systems is prevented. Therefore, in the following section a simplified standard test

procedure based on the reduction of input variables is proposed to enable a cost

effective comparable performance evaluation of different tactile sensor systems.

4.1 A standard test for tactile surface sensors

The focus of the presented standard test procedure is the limitation of variable in-

put parameters and create a set of tests that, while being of simple design, allow for

the evaluation of the performance of tactile sensor systems. The proposed metrics

for the evaluation of tactile sensors defines criteria for the evaluation of tactile sen-

sors based on a standard set of stimuli that enable comparative testing applying

cost efficient testing equipment. While the performance of a tactile sensor without

the accompanying readout electronics is interesting from a scientific point of view,

the performance of a tactile sensor alone is not meaningful for the application in

the target system. In order to account for the multitude of application scenarios for

tactile sensor systems in robotic systems the proposed testing procedure consists

of the evaluation of static and dynamic transduction properties.
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4.1.1 Static indentation testing

For the evaluation of the absolute sensitivity threshold of tactile sensor systems it is

necessary to define when a contact event can be classified as detected. Especially,

polymer based tactile sensors are subject to noise and drift phenomena. If these

effects are deterministic, the readout electronics can be utilized to partially com-

pensate for these undesired effects. If the filtering characteristics of the readout

electronics are optimized for the cancelation of noise from the signal, the reaction

time of the sensors system will be increased. The goal for tactile sensor systems

is to identify the optimal compromise between noise cancelation and reaction time.

With respect to the operation of tactile sensors on a robotics system, e.g. to trigger

an emergency stop in case of a collision, it is important to reduce the number of

false positive detections. In order to do so, the threshold for the detection level has

to be increased. Consequently, the initial sensitivity of the tactile sensor system is

decreased. Again, the compromise between sensitivity and number of false positive

detections will be optimized to the application site and specific task. To enable the

comparison of different tactile sensor systems that apply different compensation

strategies, it is useful to relate the performance metrics to the characteristics of the

output signal of the readout electronics. Only if all characteristics are analyzed for

a specific tactile sensor system and electronics configuration a comparison of two

different tactile sensor systems is enabled. The following minimum set of charac-

teristics has to be reported:

• Reaction time

• Signal to noise ratio

• Initial sensitivity

Standard indentation spheres Depending on the targeted site on the robotic sys-

tem different indentation characteristics are required to enable the assessment of

the performance of the tactile sensor system. Therefore, a wide range of input

stimuli is required. At the same time, the number of variable input parameters

has to be reduced in order to enable comparable test results for different tactile

sensor systems. Instead of designing a large variety of indentation probes, a set of

steel ball bearing spheres of different diameters is chosen as standard indentation

probes. These indentation spheres are then applied in a static and dynamic test

procedure. Hence the variable input parameters for the static indentation testing

are restricted to diameter and density and thus to the weight of the standard in-

dentation sphere. In order to cover the required measuring range from one gram
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to one kilogram a set of indentation spheres with a diameter ranging from one mil-

limeter to 63 millimeters is chosen. The majority of the tactile sensor prototypes

presented in literature consists of taxels that exhibit a location–dependent sensi-

tivity, i.e. depending of where on the surface area of a single taxel an external

indentation force is applied, different transduction properties will be observed for a

single taxel. Increasing the radius of the indenting object will decrease the location

dependency of the transduction properties. For the generation of comparable test

results it is therefore important to determine the minimum required radius of the

indenting object that results in an equally distributed transduction characteristic

of the individual taxels. For the standard test procedure the radius of the applied

indentation sphere Robj has to be larger than the distance between the centers of

two adjacent taxels Tx,y:

Robj >> Tx,y (4.1)

5-2-5 static indentation test

For the assessment of the static transduction properties a so called 5− 2− 5 static

indentation test is proposed. This test targets the evaluation of the static sensitivity

and repeatability of the tactile sensor system. The following test procedure is pro-

posed: Record the output from the readout electronics for the unloaded sensor for

a five seconds time interval. The average value and the noise of the signal are deter-

mined as a reference for the assessment of the detection threshold. Subsequently a

test sphere with an appropriate diameter is manually applied on the surface of the

sensor. In order to eliminate the influence of the dynamic indentation, a holding

time of two seconds is proposed. Following, the output signal from the readout

electronics from the indented sensor is recorded for a subsequent time interval of

five seconds. The following characteristic values for the sensor can be derived from

the 5− 2− 5 static indentation test:

• Static initial sensitivity

• Static measuring range

• Repeatability of the transduction properties

The static initial sensitivity (SIS) of the tactile sensor system relative change of

the output signal induced by the indentation of a standard indentation sphere

related to sphere diameter. A minimum of ten subsequent repetitions of the 5 −
2 − 5 static indentation test creates the data basis for the determination of the SIS

value of the tactile sensor system. The SIS consists of the diameter of the applied

indentation sphere and the relative change of the output signal with relation to
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the signal to noise ratio (SNR). The smallest indentation sphere that results in the

defined change of the sensor output signal with respect to the SNR defines the SIS

of the tactile sensor system.

The static load limit is defined by the diameter of the indentation sphere that results

in the saturation of the loaded taxels. Consequently, the static measuring range is

defined by the static initial sensitivity and the static load limit.

Number of activated taxels A second basic criterion for the performance of a

tactile sensor system is the number of tactile elements responding if the sensor

surface is statically or dynamically loaded with a defined indentation sphere. The

number of activated taxels in combination with the prior knowledge of the radius

and thus of the curvature of the indenting standard test sphere allows for the

comparison of the mechanical compliance of the surface of a tactile sensor system.

Activation radius A third important parameter for the evaluation of the perfor-

mance of a tactile sensor system is the surface area of a single taxel. Depending

on the form of the receptive field of a taxel the surface area of a single taxel can be

e.g. circular or quadratic. Assuming a circular shape and a radius equaling half

the spatial resolution the surface area can be described as:

ATc =
(xR

2

)2 · π (4.2)

Based on the number of activated taxels in one axis on the surface of the tactile

sensor the activation radius can be determined. The maximum extension, i.e. the

number of activated taxels times the spatial resolution results in the activation

radius of the tactile sensor system.

The indentation of a compliant surface with a spherical object results in a ball

scraper contact area (Abs). The extension of the contact area can be described as:

Abs = 2 · r · z · π (4.3)

where r is the radius of the indenting sphere and z is the indentation depth. For

small indentation depth the surface area of a ball scraper can be approximated

with a planar projected circular area on the tactile sensor surface. The activation

radius (Ract) can be described as a function of the maximum number of activated

taxels (ntx) and the spatial resolution of the tactile sensor in this axis (xrx).

Ract =
(ntx − 1) · xrx

2
(4.4)

Hence, the projected planar contact surface area (Aproj ) can be described as:

Aproj = R2
act · π =

( (ntx − 1) · xrx

2

)2

· π (4.5)
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For the determination of the pressure applied to the surface of the tactile sensor

the weight of the indentation sphere is determined as a function of the density of

the applied steel, the volume defined by the radius of the indentation sphere and

the normal gravity at the site of the lab.

Fg = ρ · Vsphere · g (4.6)

Where ρ is the density, V the volume and g the normal gravity. The averaged

projected pressure on the activated taxels can be described as:

Pproj =
Fg

Aproj
(4.7)

where

Pproj =
4 · r3 · ρ · g

3 ·
(

(ntx−1)·xrx

2

)2 (4.8)

From the projected pressure (Pproj ) the averaged force on a single taxel (FT ) can be

described as:

FT = Pproj ·ATc (4.9)

4.1.2 Dynamic indentation testing

For the application in robotic systems tactile sensor systems have to acquire dy-

namic contact events. Especially the discrimination between intended pHRI and

involuntary collisions requires the evaluation of the course of the indentation forces

over time. To evaluate the dynamic transduction properties of a tactile sensor sys-

tem mostly specialized testbeds are designed. One major drawback of the tests con-

ducted on specialized testbeds is the dependency of the results from the actuation

of the testbed, e.g. on the chosen actuator, the applied force gauge, as well as the

control strategy (e.g. force or position control). Therefore, the following test strat-

egy aims towards a setup that does not require an actuator to create the desired

dynamic indentation. Applying the proposed standard indentation spheres as in-

dentation objects, gravity is utilized as a source for the mechanical energy required

for the desired dynamic indentation. The basic principle is the mechanical fixation

of the indentation sphere at a defined height over the surface of the tactile sensor

system. Upon the release of the sphere the light barrier L0 detects the start of the

dynamic indentation test (t0), see figure 4.1 (a). Following, gravity accelerates the

sphere towards the surface of the sensor. A second light barrier L1, that is located

directly over the surface of the tactile sensor detects the begin of the indentation

of the tactile sensor (t1),figure 4.1(b). The elastic properties of the polymer based

tactile sensor surface result in an indentation of the sphere while the sphere is
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Figure 4.1: Principle of the standard procedure for the dynamic indentation test of the performance of tactile sensors.

decelerated and the kinetic energy is transferred to the tactile sensor. Subsequent

to the equilibrium between indentation and restoration force, the sphere is accel-

erated in the opposite direction by the restoration forces of the deformed polymer

material. The duration of the indentation depends on the weight, the velocity at the

initial contact and the mechanic damping properties of the applied sensor material.

L1 is activated for the duration of the indentation, see figure 4.1(c). A third light

barrier L2, that is located at a distance over the surface of the tactile sensor that

equals the diameter of the indentation sphere, detects the release of the sphere and

thus indicates the end of the indentation phase (t2), see figure 4.1(d).

This dynamic impact test procedure allows for the evaluation of the following prop-

erties of the tactile sensor system:

• Dynamic initial sensitivity

• Response time

• Mechanical damping properties

• Restoration time after release

• Overload testing

Following, the characteristic time intervals are outlined.

According to the law of conservation of energy the potential energy is transferred to
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kinetic energy:

m · g · h =
1

2
m · v2 (4.10)

The velocity of the indentation sphere at the instant of impact (vsphere) is defined by

vsphere(t1) =
√

2 · g · h (4.11)

According to:

vsphere(t1) = g · (t1 − t0) (4.12)

and √
2 · g · h = g · (t1 − t0) (4.13)

The height upon release (hinit) can be determined from the time interval between

the activation of L0 at t = t0, and the activation of L1 at (t1).

hinit(t0) =
g(t1 − t0)

2

2
(4.14)

Thus, the measurement of the initial distance between the motionless sphere and

the surface of the tested tactile sensor can be replaced by the measurement of the

time elapsed between the release of the sphere at t = t0 and the activation of the

light barrier on the surface of the tactile sensor, at t = t1.

The dynamic initial sensitivity of the tactile sensor system can be determined as

a function of the diameter of the applied indentation sphere and the initial height

h. The mechanical energy that is required to generate a reliable detection can be

estimated from the transferred impulse.

Emin =
1

2
m · v(t1)2 =

1

2
m · (g · (t1 − t0))

2 (4.15)

The minimal release height to generate a measurable sensor output in combination

with the diameter of the applied sphere defines the dynamic initial sensitivity of

the tactile sensor system. The response time of the tactile sensor system can be

determined from the time interval between the activation of L1 at t = t1 and the time

when the initial response signal from the readout electronics reaches the detection

threshold defined in section 4.1.1.

The mechanical compliance of the sensor surface can be estimated from the time

interval between the initial contact (t1) and the release of the indentation sphere

from the surface after the indentation (t2) in relation to the initial height h.

The duration of the second activation of L2 can be applied as an estimate for the

velocity of the backscattered indentation sphere. Especially, for the application of

artificial skin as a mechanical damping layer for the cushioning of a collision of the

robotic system with its environment it is desired to dissipate as much kinetic energy
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in the mechanical damping layer of the skin as possible. A minimum velocity of the

backscattered sphere indicates a high fraction of kinetic energy dissipation. The

acceleration of the backscattered sphere ceases at the lift-off of the sphere from

the surface of the tactile sensor and can be detected by the second activation of

L2 at (t2). The dissipated energy (Edissipated) can be estimated from the difference in

velocity before and after the indentation period.

Edissipated = Ekin(t1)− Ekin(t2) (4.16)

Edissipated = Ekin(t1)− Ekin(t2) =
1

2
m · (v(t1)− v(t2))

2 (4.17)

Edissipated =
1

2
m · (g · (t1 − t0)− (2Rsphere · (t2(off)− t2(on))))

2 (4.18)

For the assessment of the restoration time after the release of the sphere from the

surface the time interval between the second activation of L2 and the convergence

of the output signal from the readout electronics to the value prior to the inden-

tation is acquired. Where appropriate, the convergence to 95% of the initial value

is sufficient. Figure 4.2 depicts a sequential series of high speed images taken at

600fps. The top of the figure depicts a sequence on every fifth frame acquired. In or-

der to illustrate the ability of the presented tactile surface sensor system to record

the course of the indentation resulting from the impact, the bottom of the figure

depicts a series of high speed images acquired at 600fps where every subsequent

frame is depicted.

Overload testing

In the following, a test procedure for the evaluation of the robustness of the tac-

tile sensor surfaces the ability to withstand collision consequences like high local

pressure induced by a collision between a fast moving robot and a rigid obstacle

is proposed. Collision forces between robots and humans have been analyzed by

Haddadin et al. [47]. The authors state, that the maximum impact forces during

a collision between a DLR LWR III and a specialized head-dummy were measured

as high as 2.5kN for velocities of 2m/s. In order to enable a test setup, that allows

for the assessment if a tactile sensor system is capable to withstand such impact

forces a suitable testbed is required. At DLR a impact test facility for the evalu-

ation of impact tests is available, the setup is described in Haddadin et al. [48].

An impactor is positioned in a defined hight over the test specimen. The impactor

is released and collides with the specimen. The impact forces are acquired by a

high speed force sensor located within the impactor. In order to to evaluate if the

tactile sensor prototypes are capable to withstand high indentation forces apparent

during a collision the prototypes are tested on the impact test setup described in
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Figure 4.2: Dynamic indentation test of the performance of tactile surface sensor based on the described standard
test. The high speed photographs are recorded with 600fps. On top, a sequence of every fifth frame of the high speed
images is depicted. On the bottom every frame is depicted to illustrate the ability of the tactile surface sensor system
to record the course of the impact of the sphere.
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Haddadin et al. [48]. The weight of the impactor is defined as 2158g with a radius

of the impact surface of 20mm. In order to evaluate the layer setup of an artificial

skin proposed in section 3.2.7 the prototype of the tactile surface sensor is located

on top of a layer of the damping material evaluated in section 3.3.2. The test setup

is adapted from the test facility proposed in DIN EN 1621-1 [24] for the assessment

of protective clothing for motor-cyclists. The test setup is altered with respect to

the design of the impactor. Instead of a square plate a hemispherical impactor with

a radius of 20mm is applied. Thus, a point contact between impactor and anvil is

created. Thus, the damping and load distribution characteristics of the evaluated

damping material are evaluated for a simulated impact between a rigid object and

a robotic system covered with an artificial skin. Figure 4.3 depicts a series of se-

quential high speed images acquired at 600fps. The sequence illustrates the ability

of the tactile surface sensor to elastically deform its shape and thus conform to

the deformation of the underlying mechanical damping material. A measure for the

Figure 4.3: Dynamic overload test with 1.5m/s, the radius of the hemispherical indentation object is 20mm. The
weight of the indentation object is 2158g. The images are acquired at 600fps, subsequent frames are depicted in the
above figure.

collision tolerance of the respective tactile sensor is the release hight and thus the

impact force the sensor can withstand damaging of the taxels at the location of the

impact. The functioning of the sensor can be assessed by a follow up 5− 2− 5 static

indentation test with the smallest detectable indentation sphere prior to the over-

load test. In order to exemplify the dynamic transduction capabilities of the tactile

surface sensor prototype implemented within this thesis, the sensor output during
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Figure 4.4: Dynamic response of the tactile surface sensor prototype during the overload testing. The depicted graph
illustrates the capability of the presented prototype to withstand the high impact forces and at the same time acquire
tactile data at a rate of 409fps; Figure curtesy of Schneider [134].

the impact of an overload test with an indentation velocity of 0.5m/s is depicted in

figure 4.4. The depicted graph illustrates that the presented prototype of the tactile

surface sensor is capable to withstand high indentation forces resulting from an

unintended collision and at the same time is capable to acquire tactile data from

the individual taxels at a rate of 409fps.

4.2 Application

While the environment of the laboratory provides controllable conditions for the

evaluation of the sensory capabilities of the surface sensor, it lacks real world in-

terferences like electromagnetic fields, changes in ambient temperature, humidity,

dirt and most challenging - the human user. Influences tactile surface sensors

have to deal with in out-of-the-lab, real world, application. Therefore, the tactile

surface sensor is integrated into different robotic applications to test its fitness for

applications in human everyday environment. At the same time these experiments

demonstrate that the surface sensors are truly implementable. For the assessment

of the contribution of the proposed artificial skin setup to the overall safety of the

robotic system a prototype of the artificial skin is applied on the covering structure

of a DLR LWR III. The data acquired trough the tactile surface sensor is applied to
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compute a signal to trigger the emergency stop of the robotic system. The experi-

ments are conducted at the velocity of 0.2 m/s of the tool center point of the robotic

system. As the damping material cushions the impact, the initially transmitted

impact force can be reduced. In addition, the torque applied by the motors of the

robotic system can be reversed, the brakes activated and thus the entire robotic

manipulator can be decelerated. Figure 4.5 depicts three sets of sequential pho-

tographs of the experiments conducted with the artificial skin on a DLR LWR III.

The first series depicts the detection of the collision between the artificial skin and

a toy flower with small interia. Even the contact of the freely moving bloom suffices

to trigger the emergency stop of the robotic system. The second series depicts the

successful detection of the contact of a single post-it� sheet. The contact is de-

tected and the emergency stop of the robotic system is triggered. The third series

exemplifies the ability of the presented artificial skin to detect a collision between

the artificial skin and soft tissue (the authors nose). The artificial skin reliably

detects the contact and triggers the emergency stop of the robotic system.

4.3 Results

Based on the proposed general design concept a set of tactile surface sensors for

the application on robotic systems have been implemented within this thesis. The

spatial resolution of the presented prototypes ranges from 1.25 mm to 20 mm. For

the future integration into robotic fingertips a first prototype with a spatial resolu-

tion of 1.25 mm has been implemented. The elastic stretchability of the prototype is

prerequisite for the artificial skin to conform to the highly curved surface of mod-

ern robotic fingertips. To evaluate the proposed manufacturing processes a series

of prototypes exhibiting a spatial resolution of 2.5 mm has been manufactured. The

implemented tactile surface sensors exhibit different transduction properties that

are required for application on the different application site on a robotic system.

In order to evaluate the adaptability of the proposed manufacturing processes for

the implementation of large area tactile surface sensors a prototype with a spa-

tial resolution of 20mm has been implemented. Thus, the implemented prototypes

demonstrate the scalability of the spatial resolution as well as the scalability of

the surface area of the artificial skin. In addition, the proposed direct extrusion

printing process enables the implementation of a scalable artificial skin that can be

adapted to the respective application site on the robotic system. The manufactured

prototypes demonstrate the feasibility of the adaptation to the requirements of the

application site on the robotic system. Thus it could be shown, that the proposed

overall concept for an artificial skin is suitable for the future implementation of a
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Figure 4.5: First experiments for the artificial skin based collision detection. Collision detection with a toy flower with
small inertia (left), collision detection with a single post-it� sheet (middle), facial collision with the author’s nose (right)
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whole-body touch sensitive cover for entire robotic systems.

The static initial sensitivity of the presented prototypes is sufficient to detect an ex-

ternal indentation force of 0.05 N that is exerted onto the surface of a single taxel.

The conducted static indentation tests revealed, that the static transduction prop-

erties of the proposed sensor setup can be further optimized with respect to the

achieved static measuring range of the individual taxels. The conducted dynamic

indentation tests and the application of the prototypes on the DLR LWR III show,

that the proposed data acquisition and transmission concept for the sequential in-

crease of information depth enables the increase of the framerate from 400fps, if

every taxel is acquired sequentially, to 1000fps, if all taxels of a sensor patch are

combined. The combination of the individual taxels results in the formation of a

virtual receptive field that can be read out without the restrictions that arise e.g.

from the switching in a multiplexer. Thus, the time artificial skin requires to detect

a contact event can be decreased from 2.5ms to 1.0ms.

The overload testing of the manufactured prototypes demonstrates the effectiveness

of the combination of dedicated functional layers to form a multifunctional artificial

skin. The elastic deformability of the implemented tactile surface sensors enables

the superficial sensors to conform to the deformation of the underlying mechanical

damping layer in case of a collision. Thus, the proposed setup enables the tactile

surface sensor to withstand a collision without mechanical damage. In addition,

the investigated passive mechanical damping layer below the tactile surface sensor

is capable to cushion the impact and thus passively reduce the collision severeness.

The time interval between the detection of a collision by the tactile surface sensors

and the active reaction strategies to take effect can be bridged by the deformation of

mechanical damping layer. First experiments with respect to physical human robot

interaction based on information derived from the artificial skin sensor prototype

exemplify that an intuitive interaction between human user and robotic system can

be implemented based on artificial skin data.
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5
Conclusion and Outlook

The desired direct physical interaction between human user and robotic system in

a joint workspace requires new safety and interaction concepts. In order to allow

for a safe and intuitive interaction between human user and robotic system the

surveillance of the surface structure of the robotic system with respect to physical

contact is required. The availability of an artificial skin equivalent for robotic sys-

tems has been foreseen for a long time but the plentitude of information that can

be derived from physical contact by human skin is still unavailable for technical

systems. The spatial and functional integration of tactile sensors into a robotic

system is one of the key challenges to be solved. The derivation of an artificial

skin that allows for the successful integration into a robotic system requires an

operation–oriented design approach that takes into account the constraints aris-

ing from the overall system. Especially, the covering of the 3D-curved surfaces of

modern robotic systems restricts the application of available tactile sensor systems.

Therefore, within this thesis an overall concept for an implementable artificial skin

for robotic systems has been derived.

167
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5.1 Conclusion

The proposed overall concept for the design of a multifunctional artificial skin an-

ticipates the constraints of a future spatial and functional integration into a robotic

system and accounts for the requirements of an operation on a robotic system in

real world applications. Based on a set of design paradigms the overall concept

supports the solution of goal conflicts during the development of the artificial skin.

The applied partitioning of the functional range of the artificial skin allows for the

dedicated design of specialized materials for the individual functional components.

Thus, the pursued approach avoids tradeoffs, e.g. between the desired sensitivity

and the required collision tolerance. The integrative development of the functional

components and the underlying scalable manufacturing processes allows for the

implementation of an artificial skin that can be scaled with respect to surface area,

spatial resolution and sensitivity.

The feasibility of the desired scalability of the spatial resolution could be shown

in various prototypes that exhibit spatial resolutions ranging from 1.25 millimeter

to 20 millimeters. The implemented prototypes thus demonstrate, that the pursed

approach enables tactile surface sensors that can be adapted to the requirements

of the respective application site on the robotic system. In addition, the manufac-

tured tactile surface sensor prototypes can be applied on the 3D-curved surfaces of

modern robotic systems and thus demonstrate, that the proposed overall concept

solves one of the major challenges on the way towards a touch sensitive whole-body

cover for entire robotic systems.

The successful development of specialized materials, enabling the implementation

of the individual functional components, provides a toolbox of functionalities that

can be combined in order to adapt the properties of the artificial skin to the re-

quirements of the application site on the robotic system.

The derived design paradigms allow for the development of tactile surface sensors,

that solve the goal conflict between sensitivity and a collision tolerant - overload

proof design. The solution of the most prominent goal conflict is exemplified by the

implemented prototypes, that are capable to detect an external indentation force

as low as 0.05N while at same time are robust enough to withstand collision forces

exceeding 50N . The proposed strategy for the sequential increase of the informa-

tion depth enables a tactile sensor system that is able to detect a collision in 1.0

millisecond.

For the assessment of the implemented artificial skin system the performance is

compared to the set of overall requirements for ideal tactile sensor systems, intro-

duced by Harmon [50]. The presented artificial skin system is capable to fulfil the

following requirements:
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• Compliant and durable surface �

• 1mm to 2mm spatial resolution �

• 1g to 10g minimum sensitivity �

• 1000 : 1 dynamic range � (future challenge)

• Monotonic output �

• At least 100Hz frequency response �

• High stability and repeatability � (future challenge)

• Low hysteresis �

The implemented prototypes do not only fulfil the majority of the requirements for

an ideal tactile sensor, but are in addition based on scalable manufacturing pro-

cesses that allow for a cost effective manufacturing of large area artificial skin.

The presented artificial skin is capable to cover the 3D-curved surfaces of modern

robotic systems. The ability of the artificial skin to conform to the shape of the

robotic system may help to increase the acceptance of the human user.

Moreover, the elastic stretchability of the implemented tactile surface sensors en-

ables the introduction of a passive mechanical damping layer into the overall artifi-

cial skin and thus contributes to an increase of safety during direct pHRI. Further-

more, the combination of the information from the intrinsic joint torque sensors

with the tactile data derived from the tactile surface sensors forms the basis the

implementation of a redundant safety system for pHRI.

Moreover, the scalability of the spatial resolution allows for the design of touch

sensitive covers for robotic fingertips and prosthesis. The proposed combination

of highly sensitive, stretchable tactile surface sensors with an underlying mechan-

ical deformation layer may contribute to the enhancement of the fine dexterity of

robotic hands and prosthesis.

Thus the presented thesis contributes to the long term evolution of tactile sensors

towards a future multifunctional artificial skin that can be applied as a touch sensi-

tive whole-body cover for entire robotic systems. The integration of an artificial skin

will help to increase safety and enable an intuitive physical interaction between hu-

mans and robotic systems. Thus, the presented thesis may contribute to the future

successful integration of robotic systems in human everyday environment.
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5.2 Outlook

With respect to the artificial skin hardware the following properties will be further

optimized:

The dynamic range of the individual taxels has to be increased in order to account

for the 1000 : 1 dynamic range requested by Harmon [50]. Moreover, the ability of

the presented tactile surface sensors to withstand high indentation forces has to be

extended with the ability to withstand abrasion in long term application. In addi-

tion, the stability and repeatability with respect to static or quasi-static indentation

forces requires improvement. Further, the concepts for the specialized taxels for

the acquisition of shear forces and vibrations will be implemented.

During this thesis a series of new concepts for the further optimization of the pro-

posed artificial skin have been derived. Therefore, future research efforts will,

amongst others, address the following ideas:

Intra-sensor scalability of the spatial resolution In order to further tune the

transduction properties of the artificial skin to the requirements of the application

site an intra-sensor scalability of the spatial resolution is proposed. The concept

�� ��

Figure 5.1: The proposed direct extrusion-printing process in principal enables the adaptation of the spatial resolution
from an equidistant configuration (a), to a location dependent scaling of the tuning of the spatial resolution within a
single sensor patch (b).

depicted in figure 5.1 requires a flexible manufacturing process that allows for an

adapted positioning and spatial distribution of the individual taxels.

Motion dependent tactile attention Based on the knowledge of the motion of a

robotic system in its environment, the probability of an intended physical contact

or an undesired collision can be determined. If e.g. a robot arm moves in clockwise

rotation around its vertical base axis a collision on the counterclockwise surfaces
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of the robot structure is less likely than a collision on the surfaces facing clockwise.

Depending on the angle between the surface normal of the tactile elements with a

surface normal and the space-resolved vector of the motion direction a probabil-

ity map of the robot surface can be defined. A strategy for the adaptation of the

readout frequency of the tactile elements on the surfaces averted from the motion

direction can be defined. Based on the knowledge of the local curvature of the robot

structure, a ration between expected occurrence of a contact in a direction normal

to the surface of the tactile sensing element and in tangential direction respectively

can be defined. Depending on this ratio the tactile attention can be focussed to

the corresponding specialized tactile elements on the surface of the robot struc-

ture. Thus, a space- and direction-resolved probability for collisions and contacts

can be derived. In combination with a controllable readout strategy for the tactile

surface sensor system this collision/contact probability map can be applied for the

optimization of the data generation of the surface sensor system and thus help

to reduce the computational load without compromising the required high speed

readout of the tactile surface sensors.
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A.1 Volume flow of Newtonian fluids in a cylindrical

tube

Following the derivation of the volume flow of Newtonian fluids in a cylindrical tube

is presented according to Kuhlmann [74] P.212 - P.214:

"Parallel shear flow can be described as:

u = w(x, y)ez (A.1)

where the non-linearity of the Navier-Stokes equations is zero:

u · ∇u = 0 (A.2)

For parallel shear flow the velocity field is:

u · ∇u = (
δu

δx
+

δv

δy
+

δw

δz
)w(x, y)ez = 0 (A.3)

where u = 0, v = 0 and δ / δz → 0. If cylinder-coordinates are applied, the

symmetry of the cylindrical tube results in:

u = w(r)ez (A.4)

u · ∇u = (uer + veϕ + wez) · (er
δ

δr
+

eϕ

r

δ

δϕ
+ ez

δ

δz
)u = 0 (A.5)

with equation A.4,

w
δ

δz
w(r)ez = 0 (A.6)

For the stationary laminar flow in the cylindrical tube u = v ≡ 0 and

δp

δr
=

δp

δϕ
= 0 (A.7)

accordingly the pressure depends of the position on the axis of the tube,

p = p(z). Hence the Navier-Stokes equation in cylinder coordinates can

be reduced to:

0 = −δp(z)

δz
+

μ

r

δ

δr
r
δ

δr
w(r) (A.8)

As the derivation of the pressure solely depends on z, and the derivation

of the velocity field solely depends on r, the equation can only be true for

all r and z if the terms are constant:

δp(z)

δz
=

μ

r

δ

δr
r
δ

δr
w(r) = −K = const. (A.9)
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Therefore, the pressure p = −Kz linearly decreases in flow direction. The

integration of the remaining differential equation for w results in:

r
dw

dr
= −K

2μ
r2 +A (A.10)

With the separation of the variables,

dw = (−K

2μ
r +

A

r
)dr (A.11)

and an additional integration

w(r) = −K

4μ
r2 +A ln(r) +B (A.12)

The integration constants are defined by the flow characteristics in a

tube, where the fluid adheres to the wall (w(a) = 0), where a is the in-

ner radius of the tube and w(0) < ∞ → (A = 0). The resulting velocity

distribution is called Hagen-Poiseuille-flow:

w(r) =
Ka2

4μ
(1− r2

a2
) (A.13)

where the maximum velocity can be observed for r = 0:

wmax =
Ka2

4μ
(A.14)

The volume flow for the cylindrical cross section of the tube A = πa2 can

be calculated as:

V̇ =

∫
A

u · dA =

∫ 2π

0

∫ a

0

w(r)rdrdϕ = 2πwmax
a2

4
= πa2

wmax

2
(A.15)

With wmax = Ka2/4μ and K = Δp/L the volume flow results:

V̇ =
πa4

8μ

Δp

L
(A.16)

The volume flow through a cylindrical tube thus depends on the dynamic

viscosity and is proportional to the pressure gradient."
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A.2 Model of the contact surface area

In Schnös [135] a model for the description of the relation between the normal

deviation of the PBCT and resulting alternation of the contact surface area between

the intersecting PBCT. The results of Schnös [135] with respect to the description

of the change in contact surface area are summarized in figure A.1.
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Figure A.1: External indentation force results in a deflection of the upper PBCT and thus results in a change of the
contact surface between the triangular PBCT; figure curtesy of Schnoes [135]
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A.3 FEM simulation

�� �� ��

Figure A.2: External indentation force results in the deformation of the intersecting PBCT and thus evokes a change
of the contact surface between the triangular PBCT; Depicted is the overall deformation resulting from the normal
displacement of the PBCT with 30 (a), 45 (b) and 60. Figure adapted from Krauss [73]
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�� ��

Figure A.3: The simulation of the behavior of the combined functional components shows, that the introduction of the
macroscopic surface structure greatly affects the transduction properties of the tactile surface sensor, figure adapted
from Krauss [73]
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A.4 Photograph of the tactile surface sensor proto-

type

Figure A.4: Prototype of a normal force acquisition tactile surface sensor with 40× 40 taxels. The spatial resolution is
2.5mm


