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Abstract

Ontologies describe real-world entities in terms of axioms, i.e. statements about them, and
have become an established instrument for formally modelling and representing knowledge.
The diversity of available ontologies results in a heterogeneous landscape where ontologies
can overlap in their content. Such an overlap can be caused by ontologies modelling
the same or a similar domain created by different ontology designers, or with a different
focus on a domain. If overlapping ontologies are to be used in a semantic application,
sophisticated methods are required to overcome this heterogeneity. Identifying the overlap
of ontologies is tackled by the discipline of ontology alignment.

An alignment between two ontologies denotes a set of correspondences between on-
tological entities. In this thesis, the ontology alignment problem is considered an opti-
misation problem. Thereby, optimality is defined in terms of an objective function that
evaluates candidate alignments according to ontology modelling- and domain-specific cri-
teria, such as significance and similarity of entity identifiers, or logical implications of an
alignment. This optimisation problem is solved using biologically-inspired optimisation
techniques, exemplary demonstrated by a novel Evolutionary Algorithm and an adapted
Discrete Particle Swarm Optimisation algorithm. The Evolutionary Algorithm implements
concepts from Evolutionary Programming and Extremal Optimisation and operates on a
newly developed data structure for representing alignments. The Discrete Particle Swarm
Optimisation algorithm extends an existing algorithm for a structurally similar problem.

The presented approach is the first to systematically apply biologically-inspired opti-
misation algorithms to the problem of ontology alignment. These algorithms have several
advantages, which address relevant issues of the alignment problem: First, the inherent
parallelisability of biologically-inspired optimisation techniques enables the exploitation
of distributed computing environments, such as cloud infrastructures. This improves on
scalability aspects of the alignment task. Second, biologically-inspired optimisation al-
gorithms are metaheuristics, which are largely independent from the objective function.
Thus, arbitrary alignment quality criteria can be encoded, reflecting the characteristics of
the ontologies. This makes the approach flexible regarding the nature of the ontologies.
Third, candidate alignments are assessed as a whole during the optimisation process. This
allows for consideration of global alignment quality criteria that go beyond the traditional
pairwise computation of entity similarities. Finally, the iterative nature of biologically-
inspired optimisation techniques demonstrates anytime behaviour, i.e. the algorithm can
be interrupted at any time and the best alignment found so far can be obtained.

The presented algorithms were implemented in the form of two software prototypes, a
generic ontology alignment API and evaluation library for flexibly building objective func-
tions. The prototypes were evaluated using established ontology alignment benchmarks,
among other experiments. It could be shown that biologically-inspired optimisation tech-
niques are applicable to the ontology alignment problem and can compute alignments of
good quality depending on the configuration of the objective function, while at the same
time being scalable through high parallel efficiency.
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Chapter 1

Introduction

This thesis contributes to the state of the art by applying techniques from the discipline
of Computational Intelligence to a problem in the area of Knowledge Representation. The
problem under consideration is the well-known problem of ontology alignment. Here, the
ontology alignment problem is regarded an optimisation problem, and population-based
biologically-inspired optimisation techniques are used for solving it.

The remainder of this chapter presents a motivation in Section 1.1 arguing that the
presented approach is promising, and provides an overview of the thesis in Section 1.2
together with references to the author’s accompanying publications.

1.1 Motivation

Today’s world is characterised by an increasing amount of information being available to
an increasing number of people, facilitated by technologies that provide or exploit global
interconnectedness. The size of the GoogleTM search index, for instance, increased from
1 billion (1,000,000,000) in the year 2000 to 1 trillion (1,000,000,000,000) Web pages in
20081. In order to utilise and exploit this vast amounts of information efficiently, automatic
systems are being developed to search, filter, combine, and interlink pieces of information
to higher level knowledge artifacts. In the research field of Knowledge Representation
there have been enduring efforts in developing methods to symbolically represent complex
statements and facts about arbitrary domains of interest in so-called ontologies. The
Web Ontology Language (OWL) [92], for instance, provides means to represent knowledge
about a domain of interest using a language with clearly defined logical underpinning.
This provides real added value by allowing for inferring implicit knowledge from explicitly
given axioms and facts, exploiting the formal semantics of the underlying logic. Semantic
technologies are being developed in order to facilitate the creation and usage of ontologies,
for instance, in semantic applications that benefit from that added value.

It is practically infeasible to have one large and global formal knowledge base that
serves all purposes. Rather what can be observed is the emergence of a multitude of on-
tologies modelling specialised domain knowledge and serving specialised needs. However,
use cases arise where incorporating knowledge from different existing ontologies is ben-
eficial. Overcoming this heterogeneity in the ontology landscape by identifying overlaps
between ontologies and creating correspondences between ontological objects is tackled in
the discipline of ontology alignment.

Example. In the biomedical domain ontologies are widely used to represent complex cor-
relations of anatomy, genetics, diseases, etc. Related pieces of information are used in

1http://googleblog.blogspot.de/2008/07/we-knew-web-was-big.html, accessed April 13, 2012

1
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different contexts, which resulted in the development of a multitude of ontologies. The
BioPortal [96] is a coordinated effort to provide an infrastructure for hosting, maintaining,
searching, and browsing these ontologies. In April 2012, the BioPortal hosted 297 ontolo-
gies, which are describing 6,365,010 terms, which are in turn used for 1,958,459,267 direct
annotations2.

In order to understand the basic concepts of ontology alignment, consider the two sim-
ple ontologies from the bibliographic domain shown in Figure 1.1. Both ontologies were
developed by academic institutions in order to represent scientific publications. In this sim-
plified visualisation the nodes represent classes of objects, and the tree structure expressed
by indentation denotes subclass relationships (is-a relations). From the class labels it can
be seen that both ontologies model various publication types, where Ontology 1.1b covers
a wider domain than Ontology 1.1a, i.e. the ontologies have a partial overlap. The chal-
lenge for automatic ontology alignment algorithms is to identify this overlap and deliver
an alignment, which is a set of correspondences, in this case between ontology classes. The
correct alignment in this example seems obvious to an English speaking human being since
he or she can make sense of the class labels. It might become more difficult if a language
other than English is used, labels are expressed as synonyms, are of a technical jargon, or
are omitted at all in favour of automatically generated identifiers. In the latter case, for
instance, the labels cannot be used at all to compute an alignment, so other criteria such
as hierarchy structures and other ontology features need to be exploited. Abstracting from
the concrete criteria that might be available in a particular case, there is a theoretically
large number of possible alignments for any two ontologies. Given this large number of
potential alignments the problem of ontology alignment can be seen as the problem of
finding the best one among those candidates.

When it comes to complex optimisation problems, nature demonstrates astonishing
solutions. By means of evolution, nature has produced creatures and organisms that
are optimally adapted to their environments. Remarkable examples are insects that look
like leafs for optimal camouflage, or carnivore plants that nourish on insects in order to
survive in infertile environments. Evolutionary biology has revealed that nature finds op-
timal solutions by evolutionary processes, such as having a large population of individuals,
reproduction, genetic recombination, mutation, and natural selection [35, 44].

Research in the area of Computational Intelligence is inspired by the way nature is solv-
ing problems. The discipline of Evolutionary Computation mimics evolutionary processes
as found in natural systems, in order to solve complex optimisation problems. Several
computational paradigms have been developed in this context, ranging from Genetic Al-
gorithms to Evolution Strategies, which have been successfully applied to various real-world
optimisation problems, e.g. in the engineering domain [36].

One particular result of natural evolution is the phenomenon of collaboration among
population members, also known as swarm intelligence. Here, groups of individuals col-
laborate to solve problems that cannot be solved by singular individuals alone. Flocking
birds or schooling fish, for instance, distract predators by appearing in large numbers,
thus minimising the risk for each individual to be caught. Another example are ants
communicating via pheromones in order to direct fellow individuals to food.

A more recent development in Computational Intelligence is the area of computational
swarm intelligence, where the social behaviour of swarming animals is modelled. The most
well-known paradigms are Particle Swarm Optimisation and Ant Colony Optimisation.
Advocates of the swarm intelligence paradigm consider the incorporation of the social

2http://bioportal.bioontology.org/, accessed April 13, 2012

http://bioportal.bioontology.org/
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Figure 1.1: Two example ontologies about the domain of bibliography. The figures show
the class hierarchy of each ontology, which is only partially displayed/unfolded. Indented
classes are subclasses of their parent, which denotes an is-a relationship between sub- and
superclasses. Note that there is only a partial overlap between the two ontologies, since
Ontology (b) covers a wider domain than Ontology (a).

behaviour and the resulting information exchange between individuals as a real advantage
over earlier techniques explored in the field [75].

In this thesis the term “biologically-inspired optimisation techniques” is used as an
umbrella expression for all aforementioned natural phenomena transferred to computa-
tional models in order to solve complex optimisation problems. In this context, the term
“metaheuristics” is also often used in order to express the universal applicability of the
described techniques.

The interesting properties of biologically-inspired optimisation techniques and the im-
portance and complexity of the ontology alignment problem motivated this research that
strives for answering the following central question:

Can biologically-inspired, population-based optimisation metaheuristics be used
to solve the ontology alignment problem?

We expect that applying biologically-inspired optimisation techniques to the ontology
alignment problem is a feasible and suitable approach. This expectation is based on the
following conjectures regarding ontologies and ontology alignment, and the properties of
biologically-inspired optimisation techniques that match those conjectures:

Conjecture 1 (Scalability through Parallelisation). Due to increasing popularity and
adoption in data intensive application domains, ontologies are continuously becoming
larger in size. For instance, the Gene Ontology (GO) is updated daily and the number of
represented “biological process terms” increased from 13,916 in September 2007 [125] to



4 Introduction

22,382 in March 20123—an increase of 60 % in 4.5 years.

Biologically-inspired optimisation algorithms are typically population-based. This fea-
ture makes them inherently parallelisable, since all computations done for an individual in
the population can be done independently from all other individuals. Typically the costs
for computing an individual are relatively high compared to the communication costs be-
tween individuals, which suggests high parallel efficiency according to Ahmdal’s Law [1].
Hence it is expected that using biologically-inspired optimisation techniques for ontology
alignment can demonstrate a gain in scalability.

Conjecture 2 (Flexibility through Generic Metaheuristics). Despite the availability of
ontology design guidelines and methodologies, e.g. ontology design patterns [101], there is
only an imprecise notion of what constitutes a valid ontology. This results in a plethora
of existing ontologies that reveal different characteristics in terms of how knowledge is
modelled. While some ontologies, for instance, are modelled following a strict formal and
axiomatic approach, others reflect a simple taxonomy with almost all concept meanings
remaining implicit with the natural language semantics of concept labels. When computing
an alignment between ontologies, those ontology characteristics play an important role
when identifying corresponding ontology entities.

Biologically-inspired optimisation techniques as understood in this thesis can be sub-
sumed under the general term metaheuristics. Blum and Roli summarise that “metaheuris-
tics are strategies that ‘guide’ the search process [. . . ] and may make use of domain-specific
knowledge in the form of heuristics that are controlled by the upper level strategy” [10].
For the application domain of ontology alignment, these heuristics can exploit any char-
acteristics of the particular ontologies to be aligned. This makes biologically-inspired
optimisation techniques flexible and largely independent of ontology characteristics. Once
the chosen metaheuristic is tailored towards the ontology alignment problem, what remains
is a matter of adjusting the heuristics according to the ontologies at hand.

Conjecture 3 (Alignment-Level Optimisation through Global Evaluation). The expres-
sive power of state-of-the-art ontology modelling languages allows for the expression of
complex statements and entity descriptions in ontologies. Particularly in the presence of
logical negations, class descriptions in ontologies can become unsatisfiable, i.e. no instance
can be assigned to the concept without causing a logical contradiction. Ontologies con-
taining unsatisfiable class descriptions are called incoherent [102]. In case correspondences
as parts of an alignment are interpreted as statements about entity equivalence, such un-
satisfiable class descriptions can be implied by the alignment. Thereby, unsatisfiability
is usually not caused by a single correspondence, but rather by a combination of two or
more correspondences. For this reason, when selecting correspondences to be contained
in an alignment, they cannot only be considered in isolation but globally in the context
of the complete alignment. For example, consider the two ontologies shown in Figure 1.1.
An alignment between them containing the correspondences a:Article ↔ b:Article and
a:Book ↔ b:Publication would cause an incoherency, since a:Article and a:Book are
disjoint in Ontology 1.1a and b:Publication and b:Article are in a subsumption rela-
tion in Ontology 1.1b. The incoherency cannot be detected by looking at each of the two
correspondences in isolation.

Most traditional alignment approaches select correspondences according to the sim-
ilarity of the corresponding entities based on the entities’ local characteristics. Hence,
such inter-correspondence effects causing incoherencies are usually ignored. Biologically-
inspired optimisation techniques do not face this problem, since they evaluate solutions as

3http://www.geneontology.org/GO.downloads.ontology.shtml, accessed March 31, 2012

http://www.geneontology.org/GO.downloads.ontology.shtml
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a whole. Apart from assessing the contributions of solution components, they naturally
consider their interplay.

In this respect there is a relation between the ontology alignment problem and the
abstract NK model of rugged fitness landscapes introduced by Kauffman [73, 74]. The
model describes the fitness landscape of a system of N interdependent (discrete) variables.
The state of each variable contributes to the fitness of the entire system. The extent of
the contribution depends on the state of the variable itself, as well as the state of other
variables, it depends on. The number of dependencies is denoted as K. Applied to the
problem of ontology alignment, the alignment represents the system, and the correspon-
dences represent the variables. Kauffman explains the shape of the fitness landscape in
terms of K, and concludes that a clear peak in the landscape can be observed for small
K, while for large K, the fitness landscape demonstrates a rugged, almost random shape.
Due to this observation it is difficult for standard greedy optimisation algorithms to deter-
mine the optimal configuration of the system, bearing the need for probabilistic, heuristic
approaches, such as biologically-inspired optimisation techniques.

Conjecture 4 (Anytime Behaviour through Iterative Approximation). In several ontology
processing tasks a “perfect” answer is not as important as getting an approximate answer
quickly. This holds in particular if the loss in quality is compensated by the gain in runtime
performance. This trade-off has been investigated for ontology reasoning [112], but not
systematically analysed for ontology alignment. Depending on the application scenario,
approximate solutions might be more or less tolerable. For instance, in many cases of
search result enhancements, where ontology alignments are exploited, a perfect alignment
might not be as important as rather quick response time. On the other hand, in the case
of aligning large ontologies in a periodic but not time-critical fashion (for instance in a
nightly alignment computation) result quality prevails over short computation time.

Biologically-inspired optimisation techniques perform an iterative search in order to
find the optimal solution. In each iteration the best solution found so far can be obtained.
This feature is called anytime behaviour and is intrinsic to biologically-inspired optimi-
sation techniques. It depends on the use case to exploit this feature or wait until the
algorithm terminates. The level of approximation is given by the elapsed portion of the
maximum number of iterations to perform.

State-of-the-art approaches for solving the ontology alignment problem can only par-
tially cope with the requirements described in these conjectures. Since most alignment
algorithms involve the computation of similarity matrices between all pairs of ontology
entities, they have problems taking into account global alignment constraints. The size
of these similarity matrices grows quadratically with the size of the ontologies, thus ham-
pering scalability. Furthermore, the matrix-based approach does not allow for delivering
intermediate results in terms of anytime behaviour.

Paulheim [100] proposes a modularisation approach in order to improve scalability. To
this end he splits the ontologies into overlapping fractions and computes partial alignments
using standard methods. The modularisation, however, cannot consider global alignment
constraints as described above.

1.2 Overview

This thesis is organised in eight chapters, including this introduction. The remainder is
structured as follows.

Chapter 2 introduces the basic notions and foundations required in later chapters of
the thesis. In the first part of the chapter, Section 2.1 introduces ontologies and Sec-
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tion 2.2 introduces ontology alignment. In the second part of the chapter, biologically-
inspired optimisation techniques are presented in Section 2.3, with a particular focus on
population-based metaheuristics. The most important definitions introduced in this chap-
ter were published by the author at the 7th International Symposium on Foundations of
Information and Knowledge Systems (FoIKS 2012) [19].

Chapter 3 presents related work and prior art from various directions. Section 3.1
discusses related ontology alignment approaches in terms of their capabilities regarding
global alignment criteria. To this end, an abstract categorising point of view is taken.
Section 3.2 discusses concrete related approaches of applying biologically-inspired optimi-
sation techniques to the problem of ontology alignment, in the area of semantic technologies
in general, and to other problems that are structurally similar to the ontology alignment
problem. Summarisations of the most relevant prior art were published by the author at
the 7th International Symposium on Foundations of Information and Knowledge System
(FoIKS 2012) [19] and in the Information Sciences journal [16].

In Chapter 4 a number of evaluation metrics are presented that are used to compile
an objective function for the optimisation algorithms. Thereby, Section 4.1 formally intro-
duces similarity metrics on the correspondence level, as well as on the alignment level. In
Section 4.2 several aggregation methods are presented in order to combine those correspon-
dence or alignment evaluation scores. The presented metrics were continuously extended
and improved throughout the development of the implementation prototypes and were
partially published in the Information Sciences journal [16].

The core contribution of this thesis is presented in Chapter 5, namely the development
of an Evolutionary Algorithm and a Discrete Particle Swarm Optimisation algorithm for
the ontology alignment problem. To this end, an objective function used for assessing can-
didate alignments is defined in Section 5.1. Suitable encodings for representing alignments
in the algorithms are introduced in Section 5.2. Section 5.3 describes the two algorithms
and how they handle the iterative solution updates. Section 5.4 concludes the chapter
with a discussion about several design choices regarding the algorithms and a comparison.
The Evolutionary Algorithm presented in this chapter was published by the author at
the 7th International Symposium on Foundations of Information and Knowledge System
(FoIKS 2012) [19]. The Discrete Particle Swarm Optimisation algorithm was published in
the Information Sciences journal [16].

Implementation aspects are covered in Chapter 6. Apart from introducing the pro-
totypes MapEVO in Section 6.3 and MapPSO in Section 6.4 a novel generic alignment
API, named KADMOS, is introduced in Section 6.1. Since similarity metrics for corre-
spondences and alignments are used in both prototypes in the same way, an independent
software module called HARMONIA Commons is introduced in Section 6.2. The use of
the KADMOS API and the HARMONIA Commons module is by no means restricted to
the prototypes MapEVO and MapPSO. A focus in this chapter is also on the deployment
of the prototypes, presented in Section 6.5, especially emphasising the issues related to
deployment and exploiting parallelism in cloud computing infrastructures. All software
prototypes are publicly available as open-source projects, and the MapPSO implementa-
tion prototype was partially described in the Information Sciences journal publication [16].
A dedicated paper describing the cloud deployment and the challenges faced with improv-
ing parallel efficiency was published by the author at the 5th International Workshop on
Ontology Matching (OM-2010) [17].

Chapter 7 describes evaluation results obtained by using the MapEVO and MapPSO
prototypes. Since it is difficult to evaluate the various facets of the presented approach, sev-
eral experiments have been conducted to cover the different aspects. Section 7.1 describes
the performance metrics that are used for assessing an alignment quality. Section 7.2
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presents results from the continuous participation of MapPSO and MapEVO in the Ontol-
ogy Alignment Evaluation Initiative (OAEI), as well as standalone experiments using the
OAEI data sets. The diversity in result quality and its correlation to the instantiation of
the objective function is studied in Section 7.3. Iterative convergence and the related fea-
ture of anytime behaviour is demonstrated in Section 7.4. An evaluation of the scalability
by exploiting the parallelisability of population-based optimisation algorithms is presented
in Section 7.5 by aligning two large biomedical ontologies on a cloud infrastructure. Sec-
tion 7.6 concludes the chapter with a discussion about the evaluation results. The OAEI
results were published by the campaign organisers in their summary papers at the Ontol-
ogy Matching workshops from 2008 till 2011 [28, 45, 46, 47] as well as in the accompanying
OAEI papers by the author [15, 18, 12, 13]. Some detailed OAEI results were further
published in the Information Sciences journal [16]. Cloud-based scalability experiments
were published at the 5th International Workshop on Ontology Matching (OM-2010) [17]
and at the 7th International Symposium on Foundations of Information and Knowledge
System (FoIKS 2012) [19]. The latter publication also contains experimental results using
the OAEI data sets outside the official campaign modalities.

Chapter 8 summarises the thesis and its main findings in Section 8.1, and presents an
outlook on promising further research directions in Section 8.2.
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Chapter 2

Foundations

Applying a specific technique to a specific problem requires a basic understanding of rele-
vant definitions, terms, and methods. This chapter presents fundamental notions required
for understanding the main contributions of this thesis.

According to the twofold nature of this research, the chapter is divided into two parts.
First, Sections 2.1 and 2.2 introduce foundations with respect to ontologies and ontology
alignment. Thereby, the ontology alignment problem is considered as an optimisation
problem, such that it can be targeted by biologically-inspired optimisation techniques,
which are subject of Section 2.3. In this second part of the chapter, several population-
based approaches are presented using a generic notation.

This chapter is not meant to serve as a comprehensive, textbook-like introduction to
the research fields of ontology alignment or biologically-inspired optimisation. The in-
terested reader is referred to the large body of introductory literature in the fields of
ontology alignment [50], semantic technologies in general [65], or biologically-inspired op-
timisation [3, 4, 75].

2.1 Ontologies

In the literature there is a wide range of definitions and unspoken agreements of what
an ontology is. In 1993 Gruber defined an ontology as an “explicit specification of a
conceptualization” [59], This popular and frequently cited definition was later refined by
Studer et al. [122] by the properties “formal” and “shared” in order to account for machine
readability and generality aspects. In the context of ontology alignment the property of
“explicitness” is of particular importance, since an algorithm identifying overlapping parts
of ontologies relies on how explicit the specification of entities in the ontologies really is.
A study [14] of the characteristics of ontologies found on the Web, for instance, revealed
that a majority of the ontologies do not exploit expressive ontology language features to
describe their entities. Instead, those ontologies model simple taxonomies with a significant
portion of the semantics hidden in the natural language semantics of entity identifiers.

There are two frequently encountered points of view regarding the primary contents of
an ontology. Firstly, an axiom-centric point of view, where an ontology is seen as a set of
axioms that refers to a set of entities. Secondly, an entity-centric point of view, where an
ontology is seen as a set of entities with additional axioms that make statements about the
relationships among those entities. The key difference is that in the former point of view,
an entity does not exist without any axiom referring to it, while in the latter, axioms are
not necessarily required.

In the ontology alignment community typically the entity-centric point of view is com-

9
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mon [50], however, in this thesis, ontologies are considered from the axiom-centric point
of view, which is common in the logic community. The reason is the fact that axioms are
the only way to express relations between and statements about entities, which is essential
information for computing ontology alignments. An entity without any axioms referring
to it would not carry any information apart from its identifier.

An ontology is represented in an ontology language. There have been many propos-
als for ontology languages in the past [31], however, few have evolved into dominating
standards, such as RDF Schema [61], or the Web Ontology Language (OWL) [92]. The
following definitions are abstract in terms of not being bound to any particular ontology
language.

Definition 2.1. An ontology O is a set of axioms.

Ontology languages provide a range of language features. The notion of expressiveness
applies to ontologies in terms of the expressiveness of the underlying ontology language,
or in terms of the way, language features are exploited by the ontology. Informally, an
ontology is said to be of low expressiveness if its underlying ontology language is of low
expressiveness, or if it exploits only a few language features. Conversely, an ontology is said
to be of high expressiveness if its underlying ontology language is of high expressiveness,
and it exploits a large number of those language features.

Definition 2.2. The vocabulary voc(O) of an ontology O is a set of entities, which are
referred to by the axioms of O. Every e ∈ voc(O) is associated with an entity type τ(e)
with τ : voc(O) → T , where T is a fixed finite set of types. For any given t ∈ T the
type-restricted vocabulary voct(O) = {e ∈ voc(O) | τ(e) = t} is the set of all entities in the
vocabulary of type t.

Typical state-of-the-art ontology formalisms support vocabularies with various entity
types of different semantics.

Example. In OWL the set of entity types is defined as

T = {class, object property, data property, individual}

where, informally, an individual represents a real-world object, a class denotes a set of
individuals, an object property denotes a binary relation between two individuals, and
a data property denotes a binary relation between an individual and a data value.

The Description Logics foundation of OWL 2 DL [99] features three types of axioms:
TBox axioms (terminology), ABox axioms (assertions) [2], and RBox axioms (roles) [68].

Definition 2.3. Let O be an ontology. An annotation property in O is a function
a : voc(O) → 2AnnotationValue, mapping entities to sets of annotation values, where an
annotation value can be “a literal [data value, author’s remark], an IRI, or an anonymous
individual” [92]. The annotation set annot(O) of an ontology O is the set of all functions
a, where a is an annotation property occurring in O.

The fact that for an entity there can be multiple annotations using the same annotation
property requires the function to deliver a set of annotation values. In contrast to entities
in the vocabulary of an ontology, annotation properties have no semantics and are not
considered as entities in this thesis. Consequently annotation properties cannot participate
in correspondences and alignments. However, since annotations frequently encode (non-
logic) natural language descriptions of entities depending on the usage scenario of the
ontology, they provide important information in order to determine similarities between
entities.
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Example. In OWL a frequently used annotation is rdfs:label providing a label describing
an entity, typically in natural language.

Definition 2.4. The size of an ontology ]O is the number of entities referred to by its
axioms. Hence, ]O = |voc(O)|.

For every t ∈ T let ]tO = |voct(O)| denote the number of ontology entities of a specific
type t, also called the size of O with respect to t.

2.2 Ontology Alignment

The discipline of ontology alignment tackles the problem of heterogeneity in the ontology
landscape. In this thesis, the term “ontology alignment” (or “alignment” for short) is
used for both the process of identifying overlapping parts of ontologies, and the result of
this process in terms of a collection of correspondences. Thereby, an alignment spans two
ontologies and considers ontology entities as participating objects.

The following sections formalise ontology alignment as required in the subsequent chap-
ters of this thesis, and introduce the alignment problem as an optimisation problem.

2.2.1 Alignment Formalism

The notion of an alignment requires the notion of a correspondence, which is defined as
follows.

Definition 2.5. Given two ontologies O1 and O2, a correspondence between O1 and
O2 is a pair of entities C = 〈e, f〉, where e ∈ voct(O1) and f ∈ voct(O2), i.e. e and
f are of the same entity type t ∈ T . The set of all possible correspondences is C =⋃
t∈T voct(O1) × voct(O2), the set of all pairs of entities in O1 and O2 with matching

types.

The definition includes the restriction that correspondences need to be type specific,
i.e. a correspondence cannot hold between two entities of different types. This definition
determines the constraints for valid correspondences, but does not allow for comparing
any two correspondences.

Definition 2.6. The confidence of a correspondence is defined as a function ι : C → [0, 1],
denoting a certainty of a correspondence. To this end, a confidence of 0 means least
certainty, while a confidence of 1 means highest certainty.

By this definition, arbitrary quality metrics can be used to calculate the confidence of
a correspondence, allowing for evaluation, comparison, or selection.

The definition of a correspondence allows for the definition of an alignment.

Definition 2.7. Given two ontologies O1 and O2, an alignment A ⊆ C between O1 and
O2 is a set of correspondences between entities of O1 and O2. An alignment is called valid
is it satisfies the following conditions:

• For each e ∈ voc(O1) there is at most one f ∈ voc(O2) with 〈e, f〉 ∈ A.

• For each f ∈ voc(O2) there is at most one e ∈ voc(O1) with 〈e, f〉 ∈ A.

A valid alignment thus constitutes an injective, functional relation. The set of all possible
alignments is A = {A | A ∈ 2C , A is a valid alignment}, where 2C denotes the power set
of all possible correspondences.
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For the sake of brevity in the remainder of this thesis, when referring to an alignment
it is considered a valid alignment, unless stated otherwise.

Definition 2.8. The size of an alignment A is the number of correspondences it contains,
denoted as |A|.

Note that the conditions in Definition 2.7 restrict the size of an alignment to be less
or equal the size of the smaller ontology:

|A| ≤
∑
t∈T

min{]tO1, ]tO2} ≤ min{]O1, ]O2} (2.1)

Definition 2.9. The alignment quality is defined as a function F : A → [0, 1], assigning
an evaluation score to each alignment. To this end, a quality of 0 means the lowest (worst)
evaluation score, while a quality of 1 means the highest (best) evaluation score.

Typically, the correspondence confidence ι and the alignment quality F are related
in a way that the quality of an alignment computes from the confidence values of its
correspondences plus additional alignment evaluation metrics. However, this relation is
not enforced by either definition.

The literature provides several generalisations of these definitions that allow for more
expressive correspondences and alignments. Euzenat and Shvaiko [50] summarise in details
the developments in the field. One typical generalisation on the alignment level is to relax
(or abolish) the restrictions in Definition 2.7. This can allow for an entity to participate in
more than one correspondence, or force every entity of an ontology to participate in at least
one correspondence. This characteristic is denoted as alignment multiplicity (alignment
cardinality). Definition 2.7 used in this thesis allows for partial alignments, where there
might be no complete overlap of ontologies, and enforces alignments to be precise, i.e.
disallowing an entity of an ontology to correspond to more than one entity of the other
ontology. (This is what Euzenat and Shvaiko call an “?:?” alignment [50].)

An extension on the correspondence level is the specification of a relation expressed by
a correspondence. This relation between corresponding entities can be equivalence, spe-
cialisation/generalisation, disjointness, or general relatedness. In principle, all relations
between entities possible in the given ontology language can be used as correspondence
relation. In this thesis there is no distinction between different correspondence relations.
Definition 2.7 deliberately does not define any semantics for correspondences and align-
ments. Indeed the interpretation of correspondences and alignments is strongly use case
dependent. However, in many cases a correspondence between ontological entities is seen
as a statement expressing that those entities are “equivalent” or at least in some sense
“similar”. Depending on the interpretation of correspondences, they can have an impact
on the semantics of entities defined in the ontologies to the point of introducing inco-
herency or inconsistency. Irrespective of the correspondence interpretation in the use case
at hand, a common assumption is to regard a correspondence as equivalence axiom for the
two corresponding entities.

The following definitions use OWL axioms [92] in order to express ontology axioms
induced by an alignment. (Note that this does not limit the argument to this particular
ontology language, as axioms from other languages can be used analogously.)

Definition 2.10. Let C = 〈e, f〉 ∈ A be a correspondence in A. The ontology axiom
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induced by C is defined as

aC =


EquivalentClasses(e, f) if τ(e) = τ(f) = class

EquivalentObjectProperties(e, f) if τ(e) = τ(f) = object property

EquivalentDataProperties(e, f) if τ(e) = τ(f) = data property

SameIndividuals(e, f) if τ(e) = τ(f) = individual

Following Definition 2.1 with an ontology being a set of axioms, a merged ontology can
simply be created as the set union of the axioms from both ontologies.

Definition 2.11. Let O1 and O2 be ontologies, and let A be an alignment between them.
The merged ontology based on A is defined as

OA = O1 ∪ O2 ∪ {aC | C ∈ A}

Informally, the merged ontology based on an alignment A is the union of the set of
axioms from the two ontologies aligned by A, augmented by the ontology axioms induced
by the correspondences in A. Note that OA is itself an ontology.

The notions from Definitions 2.10 and 2.11 are relevant since the effects of adding
axioms induced by an alignment can be used to define the correspondence confidence and
alignment quality functions.

2.2.2 Ontology Alignment Problem

The ontology alignment problem is the problem of finding an optimal alignment for two
given ontologies. An alignment A between two ontologies O1 and O2 is called optimal with
respect to F iff there is no other alignment A′ betweenO1 andO2, such that F (A′) > F (A).
In other words, the optimal alignment A∗ is defined as

A∗ = argmaxA∈A F (A) (2.2)

which is the alignment of best quality according to F .
The solution space for this optimisation problem is the set of all possible alignments

A as from Definition 2.7. With no prior assumptions about the input ontologies and the
expected alignment, every alignment A ∈ A, which is valid by definition, is a candidate
solution to the ontology alignment problem.

Size of the Solution Space. Finding the optimal alignment is a challenging endeavour
due to the size of the solution space. In order to determine the size of the solution space
for two given ontologies O1 and O2, let m = ]tO1 and n = ]tO2 be the number of entities
of the same type t in two ontologies O1 and O2. By Definition 2.7, a valid alignment can
contain at most min{m, n} correspondences (for entities of type t). Consider the number
of alignments with exactly k ≤ min{m, n} correspondences. To fix one such alignment,
one has to pick k elements from voct(O1), and, independently, k elements from voct(O2).
For each of these choices there are k! different ways of arranging the selected sets into k
non-overlapping pairs from voct(O1)× voct(O2). Thus there are(

m

k

)
·
(
n

k

)
· k! =

m!

(m− k)!

(
n

k

)
(2.3)

alignments of size k. Consequently, the number of all alignments of arbitrary size is

min{m,n}∑
k=0

m!

(m− k)!

(
n

k

)
(2.4)
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Figure 2.1: Size of the solution space (logarithmic scale), considering only a single entity
type with f(m, n) representing Equation (2.4). With m = ]tO1 and n = ]tO2, f(m, 20)
shows the growth of the solution space with constant n = 20, while f(m, n) illustrates the
growth for m = n equally sized ontologies. (exp = em as comparison).

To determine the total number of alignments, one has to calculate the number of possible
combinations by multiplying the respective single-type alignment counts. Thus the number
of total alignments is ∏

t∈T

min{]tO1, ]tO2}∑
k=0

]tO1!

(]tO1 − k)!

(
]tO2

k

)
(2.5)

The size of the solution space is exponential with respect to the size of the ontologies,
since neither the size of the alignment, i.e. the degree to which the ontologies overlap, nor
the assignment of entity pairs is known upfront. Figure 2.1 illustrates the growth of the
solution space for a single entity type with growing ontology sizes.

This exponential size of the solution space implies that an enumeration of solutions or
an exhaustive search for the optimal solution is infeasible for real-world ontologies. The
study underlines the challenge imposed by ontologies of increasing sizes as stated in the
introductory Conjecture 1.

2.3 Biologically-inspired Optimisation Methods

Located in the research area of Computational Intelligence, biologically-inspired methods
are algorithms that mimic natural phenomena by an artificial computational model. Par-
ticularly interesting phenomena that can be observed are optimisation processes, such as
the optimal adaptation of organisms to their natural environment, or the collaborative
behavioural patterns of hunters or prey.

Following nature’s model, most biologically-inspired optimisation techniques are pop-
ulation-based, randomised algorithms [75]. This requires a notion for random numbers,
which is provided by the following definition.
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Definition 2.12. randU ∈ [0, 1] defines a real-valued uniform random number between 0
and 1.

The function randU : 2N → N selects an element from a set of natural numbers with
uniform probability, i.e. given a set {1, . . . , n}, randU ({1, . . . , n}) selects a number be-
tween 1 and n with probability 1/n.

For the sake of simplicity, randU denotes both a real-valued number and a function.
In the remainder of this thesis it will always be clear from the context in which manner it
is used.

This section presents the classical representatives [44, 75, 43] of nature-inspired opti-
misation techniques in their basic versions1. Without doubt there are many variations of
these algorithms designed for specific problems, in particular regarding the various prob-
abilities and update operations involved (cf. Chapter 3 for related examples). Moreover,
different algorithms are traditionally designed for either continuous or discrete optimisa-
tion problems. However, there are variants of all algorithms making them applicable to
both continuous and discrete problems.

The focus of this thesis is on population-based optimisation metaheuristics. As a single
example for a biologically-inspired optimisation technique that is not population-based,
Extremal Optimisation is mentioned.

Without focusing on the particularities of concrete algorithms, population-based opti-
misation metaheuristics can be generally introduced as follows.

Definition 2.13. Let P be the problem space associated to some problem. A population
is defined as a pair 〈I, p〉, where I is a finite set of individuals and p : I → P is a function
assigning to every individual of the population a position in the problem space.

Definition 2.14. An update operation is a function U mapping populations to popula-
tions.

Definition 2.15. Let U be an update operation. An optimisation run with respect to U
is a finite sequence 〈I1, p1〉, . . . , 〈In, pn〉 of populations, where 〈Ii+1, pi+1〉 = U(〈Ii, pi〉)
for all i ∈ {1, . . . , n− 1}. The numbers 1, . . . , n are referred to as iterations2.

The following paragraphs use these abstract definitions and describe the differences of
various metaheuristics that have been proposed in the past. Most notably these differences
refer to the update operation U that controls the re-positioning of individuals and thus
the convergence of the algorithm throughout the iterations.

2.3.1 Evolutionary Computation

Inspired by the Darwinian theory of the evolution of species [35], “evolutionary computa-
tion refers to computer-based problem solving systems that use computational models of
evolutionary processes, such as natural selection, survival of the fittest and reproduction,
as the fundamental components of such computational systems.” [44, Chapter 8]. Op-
timisation algorithms that employ Evolutionary Computation techniques are commonly
classified as Evolutionary Algorithms [44, Chapter 8].

1The reader familiar with biologically-inspired optimisation literature might find the notations used here
non-standard. However, the notation used in this thesis can cover all mentioned optimisation paradigms
in an abstract manner and allows for specialising the algorithms for the ontology alignment problem by
minimal adjustments.

2In Evolutionary Algorithms, typically the term “generation” is preferred over “iteration” due to its
direct analogy in natural systems.
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The following paragraphs describe the basic variants of Evolutionary Algorithms in
the light of the general notations of population-based optimisation metaheuristics given
in the beginning of this section.

Genetic Algorithms

Probably the most popular and widely known class of Evolutionary Algorithms are Genetic
Algorithms, first introduced by Holland [66]. The paradigm simulates sexual reproduction
with solutions represented as chromosomes (individuals). Typically, a binary encoding is
used for potentially continuous parameter ranges, thus resulting in a separation between
the genotype (individual representation) and the phenotype (solution representation).

Given a population 〈I, p〉, an individual x ∈ I (chromosome) represents a binary
encoding of a parameter configuration as solution candidate. In each iteration (generation)
during the optimisation run, the update operation U creates a new population of different
individuals, with the population size remaining constant. This is done in several steps:

1. Given the parent population 〈Ii, pi〉, for every individual x ∈ Ii a fitness value is
computed, reflecting the quality of the solution represented by the individual with
respect to the objective function.

2. From the parent population 〈Ii, pi〉, |Ii| independent selections are performed (e.g.
using “roulette wheel” selection) in order to obtain a temporary population 〈Ii′ , pi′〉
of individuals that are allowed to reproduce. The selection is based on the fitness
scores, such that better adapted individuals have a higher probability to be selected
(possibly multiple times).

3. From the selected individuals random pairs are chosen for reproduction. A given
probability determines whether this reproduction step will involve the crossover op-
eration. There are various variations of the crossover operator (n-point, uniform,
etc.), sharing the general idea of exchanging genetic material between individuals.
Formally, the temporary population 〈Ii′ , pi′〉 from the previous step is transformed
into another temporary population 〈Ii′′ , pi′′〉 as follows: Based on a given reproduc-
tion rate, a subset of Ii′′ is created by crossover operations from randomly selected
parents from Ii′ . Retaining the original population size, remaining individuals for
Ii′′ are selected randomly from the parent population Ii′ , such that |Ii′′ | = |Ii|.

4. From the new temporary population 〈Ii′′ , pi′′〉 individuals undergo a random muta-
tion with a given, though generally small probability. Mutation in this case means
flipping bits on the bit string of an individual with the given probability. After this
operation, the population in the new iteration is 〈Ii+1, pi+1〉 with |Ii+1| = |Ii|.

Evolution Strategies

Developed by Rechenberg [108] and Schwefel [115], Evolution Strategies is a paradigm
for optimising parameters of an objective function with a focus on self-adaptation of its
evolution process. Thus, in analogy with nature one can speak of “evolution of evolu-
tion” [44, 75]. In contrast to Genetic Algorithms, parameters are encoded directly as
real-valued numbers, which makes Evolution Strategies best suitable for continuous opti-
misation problems.

Given a population 〈I, p〉, an individual x ∈ I represents a parameter configuration as
solution candidate, as well as evolution parameters that influence the update operation.
In each iteration during the optimisation run, the update operation U creates a new
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population of different individuals, with the population size remaining constant. In order
to obtain the new generation, for a population 〈Ii, pi〉, U creates a temporary population
〈Ii′ , pi′〉, with µ = |Ii| being the number of parents and λ = |Ii′ | being the number of
offsprings. Offsprings are created by applying recombination and mutation, utilising the
evolution parameters being part of each individual’s representation. There are two types
of selection strategies in order to determine the new population 〈Ii+1, pi+1〉:
• The (µ, λ) selection selects the best µ individuals from the λ offsprings only.

• The (µ+ λ) selection selects the best µ individuals from the union of the µ parents
and the λ offsprings.

In order to increase selection pressure, the number of offsprings to be generated temporarily
is recommended to be about seven times the size of the parent population [43, Chapter 4].

Evolutionary Programming

First introduced by Fogel [52], Evolutionary Programming simulates evolution in terms
that it maintains a population of individuals that are exposed to the environment (objective
function), and favours those that are best adapted (survival of the fittest).

As opposed to Genetic Algorithms, the update function in Evolutionary Programming
does not involve a recombination operation for exchanging information between individuals
in the population. However, each individual creates an offspring by mutation, temporarily
doubling the size of the population.

Formally, the update operation U for Evolutionary Programming is defined as follows:
In a temporary population 〈Ii′ , pi′〉, for each j ∈ {1, . . . , |Ii|} let x|Ii|+j ∈ Ii′ be the
mutated species created by xj . Thus, for all k ∈ {1, . . . , |Ii′ |}

pi′(xk) =

{
pi(xk) if 1 ≤ k ≤ |Ii|,
qi(xk) if (|Ii|+ 1) ≤ k ≤ |Ii′ |

where qi maps a species to the new position after mutation.
In a subsequent selection step, half of that population becomes extinct, returning to

the original size of the population. Survivors are typically determined by some sort of
tournament selection, where species pairwise compete with other species, which results in
a ranking that is used to select survivors of that iteration. Formally, using a particular
selection principle, the population in the (i + 1)th iteration is 〈Ii+1, pi+1〉, such that
Ii+1 ⊆ Ii′ with |Ii+1| = |Ii|.

Differential Evolution

A relatively new population-based Evolutionary Computation paradigm is Differential
Evolution developed by Storn and Price [121]. Traditionally, the algorithm is tailored to
optimise real-valued objective functions, i.e. given a population 〈I, p〉, for every x ∈ I,
p(x) = (x1, x2, . . . , xn) is a vector of real-valued parameters. As update operation, the
approach employs a mixture of mutation and crossover. Given a population 〈Ii, pi〉 in
iteration i, the update operator U generates the population of the (i + 1)th iteration as
follows. For every individual xt ∈ I with t ∈ {1, . . . , |Ii|}, a trial individual is created,
by selecting three individuals x(1), x(2), x(3) ∈ Ii, such that x(1) 6= x(2) 6= x(3) 6= xt. Let
r = randU ({1, . . . , n}). The trial individual x′ is composed as p(x′) = (x′1, x

′
2, . . . , x

′
n),

such that for all j ∈ {1, . . . , n}

x′j =

{
x
(3)
j + γ(x

(1)
j + x

(2)
j ) if φj < pr or r = j

xtj otherwise
(2.6)
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where pr ∈ [0, 1] is the probability of reproduction, φj = randU , a new uniform random
number for every j, and γ is a real-valued factor to control the impact of the differential
variation. The second condition r = j ensures that at least one parameter in x′ is modified
via recombination.

For the (i+ 1)th iteration every individual xt ∈ I is replaced with the trial individual
x′ created following Equation (2.6) iff x′ improves over xt. Otherwise xt is transferred into
the next iteration unchanged.

There exists also a binary version for Differential Evolution, developed by Pampará et
al. [98].

Extremal Optimisation

It can be observed that evolution in nature according to the principles of natural selection
does not happen by systematic breeding of well-adapted species, but rather by extinction
of poorly adapted ones. Motivated by this phenomenon, Boettcher and Percus [23, 24]
developed a technique called Extremal Optimisation. Thereby, a solution to the given op-
timisation problem is developed iteratively by modifying solution components according to
the Bak-Sneppen model [5] that describes evolution happening in avalanches even though
the whole system experiences only small constant changes. Accordingly, in each iteration,
only the worst performing solution component and its two neighbours are removed and
replaced by random new components. Due to the the fact that the solution is constantly
changing, the algorithm never converges [106].

The classical version of Extremal Optimisation maintains a single solution that is
iteratively modified as described above. Randall proposes an enhanced, population-based
variant [105], which applies the same principles of the Bak-Sneppen model to a population
of individuals, each representing a solution. To this end, at regular intervals throughout
the optimisation run, the worst performing individual and its two closest neighbours in
terms of shared solution components are removed and replaced by random new ones.

Genetic Programming

An evolutionary algorithm for a predefined application domain is Genetic Programming [79].
This application domain is the generation of a computer programme best suitable to solve
a given problem. Thinking about Genetic Programming as a means to create an ontology
alignment algorithm does not appear completely unrealistic, however, the approach would
significantly differ from the one followed in this thesis. While this thesis investigates ways
to discover an alignment between two ontologies that is optimal with respect to certain
quality criteria, a Genetic Programming approach would strive for finding an algorithm
that produces optimal alignments. Thus, Genetic Programming would tackle the problem
at a higher abstraction level, which makes it irrelevant in the context of this thesis.

2.3.2 Computational Swarm Intelligence

In contrast to the area of Evolutionary Computation, computational swarm intelligence is
inspired by the natural phenomenon of swarming animals, such as schooling fish or flocking
birds. The most distinct feature in computational swarm intelligence is social behaviour
in the sense that individuals in the population are influenced by other individuals when
moving through the problem space [75].

The following paragraphs describe the two basic variants of computational swarm in-
telligence – Particle Swarm Optimisation and Ant Colony Optimisation – in the light of
the general notation of population-based metaheuristics from the beginning of this section.
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Particle Swarm Optimisation

Initially developed by Kennedy and Eberhart [76] and later refined by Shi and Eber-
hart [116] in the late 1990s, Particle Swarm Optimisation is a relatively young population-
based optimisation paradigm. In contrast to Evolutionary Algorithms presented earlier
in this section, the population of individuals (swarm) remains constant throughout the
complete optimisation run. That is, no individual (particle) joins or leaves the swarm,
no offsprings are created, and no individual becomes extinct. Instead, in each iteration3

every individual moves to a new position in the problem space, influenced by other in-
dividuals in the population. Thus, for each iteration i ∈ {1, . . . , n − 1}, Ii+1 = Ii. In
its classical implementation, every individual remembers the best position in the problem
space it has ever visited (personal best) and knows about the best position any individual
in its neighbourhood has ever visited (neighbourhood best). In each iteration i the update
operation U adds a velocity vector vi(xj) to the position pi(xj) of each individual xj ∈ Ii,
1 ≤ j ≤ |Ii|, changing its position in the problem space. The velocity vector is composed
of the personal and neighbourhood best positions, as well as an inertia component [116].
The new population in the (i+1)th iteration thus is 〈Ii+1, pi+1〉 = U(〈Ii, pi〉) = 〈Ii, pi+1〉,
where ∀xj ∈ Ii, 1 ≤ j ≤ |Ii| : pi+1(xj) = pi(xj) + vi(xj).

There are different neighbourhood topologies that influence the social interaction be-
tween individuals, and thus how information about good positions in the problem space
propagates through the population [44]. A straightforward variant is gBest Particle Swarm
Optimisation that implements a complete graph topology, i.e. every individual knows
about the personal best of every other individual, thus the neighbourhood best is always
the best position the whole population has ever seen. On the other hand, lBest Parti-
cle Swarm Optimisation implements a neighbourhood topology, where an individual only
knows about the personal best positions of some of the other individuals (its neighbours).

Ant Colony Optimisation

The optimisation algorithm originally introduced by Dorigo in his PhD thesis [39], called
Ant System was the first of a family of algorithms that became known as Ant Colony
Optimisation [41]. Inspired by the behaviour of natural ants, the optimisation problem
needs to be encoded as a graph, which can be traversed by the artificial ants in order
to find an optimal path. In this approach the social component, which is typical for the
swarm intelligence paradigm, is realised by means of pheromone trails that influence the
probability of ants choosing particular edges on the graph.

The most notable differences to Particle Swarm Optimisation is that the population
members have no memory, and the social component is not realised by direct commu-
nication but indirectly by pheromone trails deposited on the graph—a principle called
“stigmergy”. Thus there is also no notion of a social network structure that governs the
communication between groups of individuals (or subswarms).

Even though there would be no need to keep the population size constant, due to the
lack of individual memory or social networks, Ant Colony Optimisation algorithms main-
tain a constant number of individuals (ants). Thus, for each iteration i ∈ {1, . . . , n− 1},
Ii+1 = Ii. Let the problem space be represented as a graph G = (V, E), where V is a
set of nodes and E is a set of edges. Let s ∈ V be the start node, and let t ∈ V be
the target node. After traversing the graph from s to t in iteration i ∈ {1, . . . , n}, every
individual xj ∈ Ii, 1 ≤ j ≤ |Ii| represents a solution pi(xj) = (s, v1, . . . , vnj , t), with

3In the field of Particle Swarm Optimisation, typically a more adapted terminology is used. So the
“population” is called “swarm”, “individuals” are called “particles”, and “generations” are called “itera-
tions”.
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s, t, v1, . . . , vnj ∈ V . Subsequently, every solution is evaluated and pheromones are up-
dated for the edges. Depending on the concrete Ant Colony Optimisation variant, different
updating strategies can be followed. Also depending on the Ant Colony Optimisation vari-
ant is the behaviour of an ant when traversing the graph in subsequent iterations. In this
respect, the approaches differ in the way ants subsequently choose edges to follow. At each
node an ant makes a probabilistic decision based on pheromone values and (greedy) local
support heuristics.

Ant Colony Optimisation algorithms have been successfully applied to many graph
problems, such as the Travelling Salesman Problem [40].



Chapter 3

Related Work

The work presented in this thesis brings together two research areas within the wide field
of artificial intelligence: a problem in the area of Knowledge Representation, ontology
alignment, is tackled by techniques from the area of Computational Intelligence, more
precisely by means of biologically-inspired optimisation techniques. Due to this “intersub-
disciplinary” nature, there are numerous research endeavours that can be regarded related
to this one.

In the following Section 3.1 ontology alignment approaches are categorised and dis-
cussed from a rather generic point of view. It shall be noted that there is no complete
overview of the ontology alignment literature presented, and the interested reader is re-
ferred to pertinent surveys that are available. However, ontology alignment approaches
are coarsely categorised according to the way they tackle the ontology alignment problem,
and a general discussion is presented. In particular constraint-based approaches are high-
lighted in Section 3.1.2, since they can consider global alignment constraints and thus have
an advantage over traditional matrix-based approaches, which are generically summarised
in Section 3.1.1. Hence, the constraint-based approaches share the same advantage as the
approach presented in this thesis.

Related work regarding the application of biologically-inspired optimisation techniques
is presented in Section 3.2. In particular three main areas of related work are important
to be discussed:

• Prior approaches of applying biologically-inspired optimisation techniques in the con-
text of ontology alignment. These most relevant efforts are discussed in Section 3.2.1.

• Prior approaches of applying biologically-inspired optimisation techniques in the
context of semantic technologies in general. This widens the scope of the problem
domain and underlines the growing interest and relevance in the semantic technolo-
gies community. Prior work in this direction is presented in Section 3.2.2.

• Prior approaches of applying biologically-inspired optimisation techniques in the
context of other problem domains that are structurally similar to the problem of
ontology alignment. Earlier developed techniques and applications that are relevant
and were inspiring for this thesis are presented in Section 3.2.3.

3.1 Ontology Alignment

Ontology alignment is an active field of research within the area of semantic technologies.
Not only the growing interest in the Linked Data Web [9] establishes new challenging
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Figure 3.1: General workflow for pairwise ontology matching (following Rahm [104]).

application areas for ontology alignment, but also the adoption and development of ex-
pressive ontologies in specialised domains such as bioinformatics [117, 21]. This increasing
interest in solutions for the ontology alignment problem motivated the development of a
large number of approaches. A detailed overview is given by frequent surveys [57, 50, 30],
the pertinent Web resources of the ontology alignment research community1, or via the
Ontology Alignment Evaluation Initiative (OAEI)2 [49].

The discipline of ontology alignment is closely related to the more general task of
schema matching [8] or graph matching. Indeed, several techniques for entity similarity
computation, such as similarity flooding [90] or virtual document construction [103] (cf.
Chapter 4) have been developed for graph matching and transferred to ontology alignment.

Despite the large number of ontology alignment approaches there are only a few general
paradigms of how the alignment problem is tackled. The most prominent and widely used
paradigm is a matrix-based approach, where an alignment is extracted from a matrix
reflecting pairwise entity comparisons. A second approach is constraint-based, where an
alignment is generated in a way that it meets global validity and quality constraints. The
following paragraphs provide more details about those two approaches.

3.1.1 Matrix-based Approaches

Most state-of-the-art ontology alignment systems follow a pairwise ontology matching
approach by computing one or several similarity matrices. Hereby, a similarity matrix
denotes a data structure containing similarity scores for all pairs of ontology entities from
the two ontologies to be aligned. Figure 3.1 illustrates the typical workflow for pairwise
ontology matching as described by Rahm [104]. The step “matcher execution” refers to the
computation of one or more similarity measures for the entity pairs, which are combined
before a set of correspondences (alignment) is selected.

The numerous alignment approaches following this matrix-based principle differ in the
details at the various steps along this generic workflow. Different similarity metrics, for
instance, can be incorporated and used to compute a number of similarity matrices. Also,
combination of similarity metrics (matcher results) can be done in different ways. Finally,
the extraction of alignments from the combined similarity matrices, which is typically a
variant of the Hungarian method for assignment problems [80, 93] can vary across different
alignment approaches, as for instance in the AgreementMaker system [34].

Matrix-based approaches typically have problems taking global alignment evaluation
metrics into account. While a similarity can be derived for any entity pair considering the
entities’ local characteristics and possibly their ontology context, it is difficult to assess a
correspondence in the presence of other correspondences. The reason is that the presence of

1http://ontologymatching.org/, accessed March 23, 2012
2http://oaei.ontologymatching.org/, accessed March 23, 2012

http://ontologymatching.org/
http://oaei.ontologymatching.org/
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any correspondence in the alignment is not known before the selection step (cf. Figure 3.1),
but in order to incorporate it into the evaluation of a potential entity pair the information
is required already when computing the matrix entries in the matcher execution step.
Some state-of-the-art alignment systems came up with methods to deal with this problem.

The RiMOM (Risk Minimization based Ontology Mapping) system3 uses Bayesian
decision theory in order to select correspondences from the similarity matrices [124, 123].
This decision making process is based on the entities’ characteristics and their ontology
context, but disregards the alignment context (presence of other correspondences). While
not being explicitly mentioned by the authors, this problem, however, is partially addressed
by an iterative process allowing the extracted alignment to be refined and corrective actions
to be taken.

The ASMOV system4 [69] follows the same approach of an iterative alignment correc-
tion. In contrast to RiMOM the goal of this iterative process is explicitly dedicated to
the semantic verification, i.e. the correction of alignments whose correspondences imply
subsumptions in the merged ontology that cannot be verified by the ontologies themselves.

3.1.2 Constraint-based Approaches

In contrast to matrix-based approaches the constraint-based approaches consider the align-
ment problem as a constraint satisfaction problem. The most notable difference to matrix-
based approaches is the ability to consider global alignment-level constraints that naturally
account for the fact that correspondences might influence each other in terms of contribut-
ing to a good or bad alignment, and thus cannot be considered in isolation.

Ontology Merging using Answer Set Programming

An approach for merging ontologies by tackling the task as a constraint satisfaction prob-
lem was first introduced by the author in 2006 [11, 20]. An algorithm was presented using
the Answer Set Programming formalism [54] to declaratively denote the constraints a valid
merging has to fulfil. Apart from generic structural constraints the proposed algorithm
utilises the capabilities of the answer set solver dlvhex 5 to evaluate the truth value of logic
programming atoms externally. In the particular case of ontology merging, a dlvhex plugin
was developed to accesses WordNet R© in order to exploit linguistic knowledge intrinsic to
the labels in the ontologies. Consequently the answer set solver can compute answer sets,
each one representing a valid merged ontology according to the given constraints.

Depending on the input ontologies several answer sets may be produced. On the one
hand this provides the possibility to incorporate a human user in the way that he or she
could simply select one of the “proposals” provided by the algorithm. On the other hand
this shows that simple constraints, such as linguistic features based on WordNet R© are
often not sufficient to come up with a unique intuitive solution. However, due to the
declarative nature of the constraint-based approach the answer set program could easily
be augmented by more declarations that cover other characteristics of “intuitively” good
solutions.

A drawback of the solution is that one could observe poor runtime performance in spite
of the highly optimised implementation of the answer set solver used. This is due to the
inherent combinatorial explosion when computing models in disjunctive logic programming
formalisms, such as Answer Set Programming.

3http://keg.cs.tsinghua.edu.cn/project/RiMOM/, accessed October 11, 2011.
4http://www.infotechsoft.com/products/asmov.aspx, accessed March 28, 2012
5http://www.kr.tuwien.ac.at/research/systems/dlvhex/, accessed October 14, 2011.

http://keg.cs.tsinghua.edu.cn/project/RiMOM/
http://www.infotechsoft.com/products/asmov.aspx
http://www.kr.tuwien.ac.at/research/systems/dlvhex/
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CODI

A more mature implementation of constraint-based ontology alignment is developed at the
University of Mannheim, named CODI [95]. This system uses Markov logic to declara-
tively encode hard and soft constraints in order to restrict the alignment produced by the
algorithm as follows:

• hard constraints are enforced when computing an alignment, i.e. there cannot be
an alignment violating any of those constraints. Alignment cardinality, alignment
coherency [88], or any other condition that needs to hold for a valid alignment can
be enforced by hard constraints.

• soft constraints are not enforced but have weights attached representing the “impor-
tance” of the constraint. Structural ontology properties as well as so-called a priori
similarities resulting from lexical entity comparison are examples for soft constraints
provided by the authors.

After encoding all constraints as logic formulae, the problem of ontology alignment is solved
by computing the most probable alignment using maximum a posteriori inferencing in the
Markov logic framework. The authors use integer linear programming in order to efficiently
perform this sort of inference problem [109].

3.2 Applications of Biologically-inspired Optimisation Meth-
ods

While biologically-inspired optimisation metaheuristics are making their way into appli-
cations in the engineering domain [36, 83], they have only recently raised interest in the
field of semantic technologies. The topic is particularly pushed by a research group at
the Vrije Universiteit Amsterdam6, a recently organised workshop “NatuReS”7 (Nature-
inspired Reasoning for the Semantic Web), or the interest in special journal issues, such as
the IEEE Computational Intelligence Magazine with an upcoming special issue “Semantic
Web meets Computational Intelligence”8.

This section surveys the existing approaches of applying biologically-inspired meta-
heuristics to the problem domain of ontology alignment and other areas of semantic tech-
nologies research. Additionally, the application of biologically-inspired metaheuristics in
problem domains that are structurally similar to the ontology alignment problem are in-
vestigated.

3.2.1 Applications in Ontology Alignment

To date, biologically-inspired metaheuristics have rarely been applied in the context of
ontology alignment. To the best of the author’s knowledge, there is only one proposal,
GAOM, that applies a Genetic Algorithm to the alignment problem by treating it di-
rectly as an optimisation problem as it is done by the approach presented in this thesis.
Other applications of biologically-inspired metaheuristics, such as the systems GOAL and
ECOMatch, treat the problem of parameter configuration for matching systems. Theses
approaches are presented in the following paragraphs.

6mainly Stefan Schlobach, Christophe Guéret and Kathrin Dentler
7http://natures.few.vu.nl/2008/, accessed March 28, 2012
8http://lists.w3.org/Archives/Public/semantic-web/2011Sep/0009.html, accessed March 28,

2012

http://natures.few.vu.nl/2008/
http://lists.w3.org/Archives/Public/semantic-web/2011Sep/0009.html
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GAOM. Proposed in 2006 by Wang et al. [130] the GAOM system applies a Genetic
Algorithm to the ontology alignment problem. To this end, an individual in the pop-
ulation (chromosome) represents a valid solution to the alignment between two ontolo-
gies O1 and O2. Let n1 = ]O1 and n2 = ]O2. A solution is represented as a string
m(1) m(2) · · · m(n1), where m is a function m : {1, . . . , n1} → {1, . . . , n2}, such that
m(i) denotes a correspondence between the ith concept of O1 and the m(i)th concept
of O2. This representation limits the algorithm to compute only alignments where every
concept from O1 occurs in exactly one correspondence, while each concept in O2 can cor-
respond to multiple concepts in O1. This lax definition of the solution string avoids the
need for corrective crossover operations as no invalid solutions can be created. Moreover,
the algorithm is only feasible when a complete alignment for one ontology is desirable, i.e.
no partial overlap between the ontologies is expected.

The fitness function is determined by the number of elements in the solution string that
actually match. Given a solution string two rules are applied to evaluate each correspon-
dence. The first rule, called “intentional rule” checks for a lexical match of several local
feature values of the concepts participating in the correspondence. These local features are
concept names, “properties related with the concept”, and “set of instances associated with
the concept” [130]. However, the authors leave it unclear what exactly is meant by those
names, properties, and instances, in particular with respect to the lexical check that is
performed. The second rule, called “extensional rule” incorporates dependencies between
different correspondences in a solution, thus introducing a global alignment evaluation
metric that goes beyond the assessment of single correspondences in isolation. For two
concepts c1, c2 ∈ O1 that correspond to concepts c′1, c

′
2 ∈ O2, respectively, the rule checks

for a lexical match between the “relationships” between the two concepts within each
ontology. Again, the authors leave it unclear what exactly is meant by those relationships.

Although the authors report positive evaluation results with respect to the OAEI 2005
benchmarks data sets, the algorithm did non officially participate in the campaign or at
least provides detailed results other than aggregated evaluation scores. Unfortunately,
the system is not publicly available and only presented in a single publication [130]. It
seems it has not been maintained after that publication in 2006, since the authors are not
responsive to requests and have been publishing in different fields of research since this
publication. This leaves the conclusion that the status of GAOM is as presented in this
single publication meaning that it is capable of aligning only concepts of two ontologies,
where one ontology is completely aligned with another one. This is sufficient for the OAEI
benchmark data sets, but inappropriate for real-world ontologies that have only a partial
overlap.

Alignment Parameter Optimisation. Contributing to the ontology alignment prob-
lem on the meta level, an application of Genetic Algorithms named “Genetics for Ontology
Alignment” (GOAL) was introduced by Martinez-Gil et al. [86, 87]. In contrast to the
GAOM system the ontology alignment problem is not considered an optimisation problem
per se, but as a problem of computing a weighted average of similarity measures used to
obtain the actual alignment. The authors focus on finding the optimal weight configura-
tion for several similarity measures. To this end, a Genetic Algorithm is applied in four
independent optimisation tasks. The fitness function used in these tasks coincide with
alignment precision, recall, F-measure, and number of false positives, respectively.

Indispensable to this optimisation is the presence of a reference alignment for the given
ontology pair. This makes the approach at best useful for two ontologies with no given
reference alignment, if those ontologies have similar characteristics to other ontologies for
which a reference alignment is known. Depending on the characteristics the optimal weight
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configuration could be transferred to the new pair of ontologies with unknown alignment.
Experiments reported by the authors show that for the OAEI 2007 benchmarks data sets,
very good results with respect to all objective functions could be obtained.

Similar to the GOAL approach, Ritze and Paulheim present the ECOMatch sys-
tem [110] that tackles the problem of parameter optimisation at a broader level. While
GOAL only considers weights for similarity measures, ECOMatch optimises the complete
set of parameters for any given ontology alignment system. The alignment system itself is
thereby used as a black box. The authors conduct experiments with various biologically-
inspired metaheuristics, e.g. Genetic Algorithms, Differential Evolution, and Hill Climbing
in order to optimise the F-measure with respect to a partial reference alignment. This par-
tial reference alignment is a fraction of the complete reference alignment provided by a
domain expert. The authors show that for a partial reference that covers at least 10 %
of the complete reference, the F-measure with respect to this partial reference correlates
with the F-measure with respect to the complete reference. Consequently, such a partial
reference alignment is sufficient to determine a parameter configuration that is expected
to be optimal even if no complete reference alignment is available. These insights by Ritze
and Paulheim regarding the sufficiency of a partial reference could be applied to the GOAL
approach by Martinez-Gil et al. [86, 87] when optimising weights of similarity measures.
However, no empirical evaluation in this direction has been conducted so far.

Another approach similar to GOAL, but with an exclusive focus on instance features,
was proposed by Wang et al. [131]. This work aims at identifying concept correspondences
based on the instances asserted to those concepts, where assertions do not necessarily need
to be shared across the two ontologies. Among other techniques, the authors evaluate the
feasibility of Evolution Strategies in order to identify the optimal weighting of instance
features.

3.2.2 Applications in Other Semantic Technologies

Apart from their application in the discipline of ontology alignment, population-based
optimisation techniques have been utilised in other fields of semantic technologies with
increasing popularity.

Oren et al. [97] use a Genetic Algorithm in order to tackle the problem of RDF query
answering. With an RDF query being a graph pattern, the authors consider the single
triple patterns and partial triple patterns as constraints to be satisfied by every correct
query result. Consequently the fitness function is defined by the number of constraints be-
ing violated by a given solution candidate. Every individual in the population represents a
valid solution, i.e. a complete variable assignment with respect to the graph pattern. Fol-
lowing the principles of Genetic Algorithms, individuals undergo selection, recombination,
and mutation processes. The authors promote the approximate and anytime character-
istics of their approach, which reflect the nature and requirements of the Semantic Web.
In a subsequent work [60] the authors improve and evaluate their algorithm regarding
performance and scalability. They report positive and encouraging results, also regarding
the general feasibility of an approximate approach for the query answering problem.

The approach taken in this thesis is to consider a particular problem as optimisation
problem and utilise biologically-inspired optimisation algorithms for solving it. Unlike
this optimisation-based point of view, other approaches utilise “Swarm Intelligence” in a
more general analogy, highlighting the social and collaborative aspects of independent and
distributed agents.

Dentler et al., for instance, tackle the problem of computing the deductive closure of
a (possibly distributed) RDF graph [38]. In this case, distributed agents independently
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traverse the RDF graph and apply rules according to the underlying RDF Schema. Thus,
implicit statements are materialised and made explicit by the agents. Different types of
agents apply different rules, thus keeping the single individuals simple. Despite the analogy
to ants it would be misleading to talk about an Ant Colony Optimisation algorithm, since
the approach does not search for an optimal path or solve any other optimisation problem
as done by typical Ant Colony Optimisation systems.

One should note that the term “Swarm Intelligence” is sometimes used in a rather
sloppy manner, for instance to denote a collection of different agents pursuing different
jobs in an adaptive information retrieval architecture on the Web. Ratnayake et al. [107],
for instance, describe how a small set of four agents acts as a modularised software ar-
chitecture. This is not reflecting the general understanding in Computational Intelligence
and in this thesis accordingly. Hence such approaches are not considered relevant for this
work.

3.2.3 Applications in Structurally Related Problem Domains

Abstracting from the concrete problem of ontology alignment, this section surveys applica-
tions of biologically-inspired metaheuristics to problems which are structurally similar to
ontology alignment. In particular these are approaches for discrete optimisation problems,
as the alignment problem can be seen as the problem to either select or not select any
potential correspondence for being part of the solution, i.e. the optimal alignment.

Discrete Particle Swarm Optimisation for Attribute Selection

Although traditionally designed and best suitable for continuous optimisation problems,
Particle Swarm Optimisation (PSO) has also successfully been applied to discrete prob-
lems.

Correa et al. [32, 33] introduced a novel discrete version of the Particle Swarm Optimi-
sation algorithm, (DPSO) and applied it to the problem of attribute selection for a Näıve
Bayes classifier. The objective is to find the smallest set of attributes, which maximises the
predictive accuracy of the classifier. Unlike classical binary PSO [77] the proposed DPSO
does not represent solutions as bit strings of equal length, but rather as sets of indexes,
where set sizes can vary from particle to particle. While the position in the search space is
represented as this set of attribute indexes, the velocities are represented as “proportional
likelihoods”. The particle update is done in three steps:

1. Determine proportional likelihoods for attribute indexes. Let n be the number of
possible attributes, and let |I| be the number of particles in the swarm. Let xi ∈ I be
a particle, with i ∈ {1, . . . , |I|}, and p(xi) ⊆ {1, . . . , n} the attribute selection rep-
resented by xi. Further, let ppersonal(xi) be its personal best, and pglobal be the global
best. For each attribute index j ∈ {1, . . . , n} compute a proportional likelihood as
follows:

(a) Assign an initial proportional likelihood of 1.

(b) Add a constant α, iff j is contained in p(xi).

(c) Add a constant β, iff j is contained in ppersonal(xi).

(d) Add a constant γ, iff j is contained in pglobal.

(e) Multiply with a uniform random number ϕj ∈ (0, 1).

2. Sort the attribute indexes according to their proportional likelihoods.
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3. Select the k attribute indexes with the highest proportional likelihood, where k is
the size of particle xi.

When comparing the DPSO with the classical binary PSO on a classification task using
a bioinformatics data set, the authors report similar scores with respect to predictive
accuracy. However, regarding the number of attributes selected, the DPSO identifies a
smaller set, which is preferable. The reason for this is the initialisation of particles. In
the binary PSO, each bit in the bit string is initially set to 1 with a probability of 0.5,
which results in a distribution9 of particles sizes, which is centred around n/2, where n
is the number of available attributes. Apart from the criterion of minimising the number
of attributes, both approaches (binary PSO and DPSO) increase the prediction accuracy
compared to the use of all available attributes.

Assignment Type Problems

Related to the problem of ontology alignment are all types of assignment problems. Ran-
dall et al. [106] investigate the application of Extremal Optimisation for the General As-
signment Problem, the Bin Packing Problem, and the Capacitated Single Allocation Hub
Location Problem. While the canonical Extremal Optimisation algorithm could not pro-
vide satisfactory results, an enhanced population-based approach [105] can deal with con-
straints that determine the feasibility of solutions found. To this end, the approach allows
the transition through infeasible areas of the solution space. Moreover, the incorporation
of local search is reported as a crucial component in order to improve the solution after
the coarse-grained search of the metaheuristic.

Sequence Alignment in Molecular Biology

A problem that is also structurally similar to ontology alignment is the problem of aligning
DNA, RNA, or amino acid sequences in the context of molecular biology. As in ontology
alignment there is typically no complete overlap between sequences due to insertions, re-
placements, or deletions occurring in the nucleotide or amino acid sequences. Chellapilla
and Fogel [29] have used Evolutionary Programming for solving the multi-sequence align-
ment based on their observation that dynamic programming approaches traditionally used
for this problem reveal bad performance when the number of sequences is large, the aver-
age lengths of the sequences is large, and similarities between the sequences are low. The
Evolutionary Programming algorithm the authors propose makes use of several mutation
operators that are adapted to the problem at hand. To this end, “shuffle” operators per-
form swapping of symbols or subsequences, and “growing” and “recombination” operators
compute variations that take into account the presence of already aligned columns.

3.3 Discussion

There is a large number of approaches for solving the ontology alignment problem. Most of
these approaches tackle the problem by computing matrices denoting the similarities of all
entity pairs from two ontologies. These matrix-based approaches are prone to scalability
problems and lack the possibility of having the similarity of an entity pair being dependent
on other correspondences in the same alignment. Moreover, the extraction of an alignment
from the matrix or matrices requires all similarities to be already computed. Hence, these

9For n attributes, there are n Bernoulli trials with a success (selection) probability of p = 0.5, resulting
in a binomial distribution.
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approaches cannot be interrupted to retrieve intermediate alignment results. Constraint-
based approaches, such as the CODI system, exist but tend to suffer from scalability
problems due to their complex internal inferencing mechanism.

On the other hand, biologically-inspired optimisation techniques have recently at-
tracted interest in the Semantic Web community and have been applied for a variety
of problems, including ontology alignment. However, the existing biologically-inspired op-
timisation approaches for ontology alignment either impose unacceptable alignment con-
straints, or target only the sub-topic of finding an optimal parameter or weight configu-
ration for an alignment algorithm. Apart from existing approaches in the actual problem
domain of ontology alignment, there are plenty of applications of biologically-inspired opti-
misation techniques for problems that are structurally similar to ontology alignment. The
problem of attribute selection for a machine learning classifier, as well as several assignment
type problems are relevant examples that suggest the feasibility of biologically-inspired op-
timisation in the context of ontology alignment.
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Chapter 4

Evaluation Metrics for Ontology
Alignment

In order for an algorithm to determine the optimal alignment between two ontologies, it is
crucial to have a formal notion of what an optimal alignment is. This notion of optimality
in turn requires any two alignments to be comparable with respect to their quality in
order to make a statement such as “Alignment A is better than alignment B”. Vaguely
speaking, an alignment is better than another one if it better fulfils the requirements and
expectations of the alignment consumer. Ideally these requirements and expectations are
reflected by a set of explicitly defined quality criteria according to which an alignment can
be assessed.

The flexibility of ontology languages and the various different ways ontologies are
modelled in practise make it difficult to define simple alignment quality criteria according
to which such an alignment evaluation can be computed. The following examples show
how entirely different quality criteria are necessary to define a useful evaluation.

Example. Consider two ontologies and an alignment between them being interpreted only
in terms of the logical underpinnings that determine the formal semantics of ontological
entities. The alignment is considered as a set of equivalence axioms represented by the
correspondences. In this strict logical sense, every alignment is optimal, which does not
cause the merged ontologies augmented by the alignment to become inconsistent or contain
unsatisfiable classes, since there exists at least one model that satisfies all axioms.

Example. Consider two ontologies of low expressiveness developed by the same person or
company but for different purposes. The ontologies have a significant overlap, and equal
entity identifiers are used in these overlapping parts. The ontology language feature of
negation1 is not used in either ontology, thus no inconsistency can be induced by any
possible alignment. In this case non-logical alignment quality criteria have to be applied.

Example. Consider two ontologies of low expressiveness where one is a copy of the other
with annotation values of entities translated into another language. Since all other ontology
modelling characteristics remain equal, exploiting natural language dictionaries is crucial
for comparing alignment candidates and finding an optimal one.

Example. Consider two ontologies of low expressiveness about the same domain of interest
developed in different countries with annotation values of entities in different natural
languages. Since different people or companies created these ontologies, they are most
likely structurally different, cover a slightly wider or narrower domain, or represent a

1Negation also captures “convenience” axioms, such as disjointness, which resolve to axioms containing
negation after rewriting.
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less or more detailed formalisation of the domain. Various ontology features need to be
considered in this case in order to assess the quality of an alignment, since neither logical,
linguistic, lexical, or structural characterstics alone might be sufficient to reflect alignment
quality.

While in the first example only semantically significant language features need to be
considered in order to determine whether an alignment is optimal, the other examples
require additional techniques. In the second example, no inconsistent ontology could be
induced by any alignment, however, the clear overlap (in terms of shared entity identifiers)
indicates that entities with the same identifier should correspond. Entirely different iden-
tifiers might be present in the third example, however, the exploitation of an appropriate
dictionary clearly indicates corresponding entities. In the fourth example, several ontology
features, and possibly domain-specific background knowledge, need to be exploited and
combinded in order to detect the best correspondences.

As the examples show, identifying universal criteria that describe the quality of align-
ments is a difficult problem. What is intuitively understood as a high quality alignment
depends on mainly two factors:

• Alignment use case, i.e. the way an alignment is used by a semantic application.

• Elaborateness of the ontologies, i.e. the extent to which domain knowledge is made
explicit in the ontology models. This extent might vary due to the use case of the
ontology (where less or more details about the domain of interest might be required),
and the expressiveness of the ontology language used.

It can be observed that most ontologies found on the Web are of low logical expres-
siveness [14]. The notion of ontologies being an “explicit specification” [59] is thus to a
large extent being neglected by leaving a significant portion of that specification implicitly
encoded in natural language annotations. For that reason several ontology alignment sys-
tems such as ctxMatch [25] or S-Match [56] focus on the exploitation of natural language
semantics [55] in order to identify relations between ontological entities.

This chapter describes various evaluation metrics for correspondences and alignments
that reflect some interesting and frequently occurring evaluation criteria, as well as means
to combine them to a single evaluation score for an alignment. However, it should be noted
that this selection is by no means exhaustive, i.e. some alignment use cases might require
additional criteria to be encoded, which are not described here. In fact, the evaluation
metrics proposed here are of a rather general nature in order to provide a proof-of-concept
implementation of a fitness function for the optimisation algorithms presented in Chap-
ter 5. It is not the goal of this thesis to provide an algorithm and according evaluation
metrics for a particular alignment use case or scenario, for which specifically tailored eval-
uation metrics might be required.

In the following Section 4.1 various evaluation metrics are presented, which are organ-
ised in three levels. The first level, presented in Section 4.1.1 describes local evaluation
metrics for correspondences without context, while Section 4.1.2 describes the second
level, namely correspondence evaluation metrics that respect the alignment context for
the correspondence under evaluation. Section 4.1.3 presents the third level, namely global
evaluation metrics for complete alignments. Several ways of combining these evaluation
metrics are presented in Section 4.2 in terms of aggregation functions.
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4.1 Evaluation Metrics

Every quality criterion that is to be considered when assessing an alignment is reflected
by an evaluation metric. There are metrics for evaluating individual correspondences,
and metrics for evaluating alignments as a whole. Correspondence evaluation metrics are
further divided into those taking into account solely information about the corresponding
entities in their ontology context, and those additionally taking into account information
from the alignment context, i.e. information derived from other correspondences present
in the alignment.

4.1.1 Local Correspondence Evaluation

A correspondence between two ontological entities can be evaluated according to informa-
tion about the entities and the ontologies in whose vocabularies they occur.

Definition 4.1. Let O1 and O2 be ontologies. Let C = 〈e, f〉 be a correspondence with
e ∈ voct(O1) and f ∈ voct(O2) for some t ∈ T . A local correspondence evaluation metric
is a function h : C → [0, 1] computing an evaluation score h(C) for C, solely based on
information attached to or derivable for e (and f respectively) in the context of O1 (and
O2 respectively). An evaluation score for C reflects a similarity of e and f . To this end,
an evaluation score of 1 means highest similarity, an evaluation score of 0 means lowest
similarity.

Local correspondence evaluation metrics typicall exploit annotations of entities. The
following extraction functions provide access to the various annotation values.

Definition 4.2. Let O be an ontology and let e ∈ voc(O) be an entity. The identifier
extractor is defined as a function idO : voc(O) → String that maps an entity to its
identifier.

Example. In the case of OWL, the identifier extractor returns the IRI fragment of the
entity.

Definition 4.3. Let O be an ontology and let e ∈ voc(O) be an entity. The label extractor
labelO ∈ annot(O) is defined as a function labelO : voc(O)→ 2String that maps an entity
to its labels. If there is no label assigned to an entity, the label extractor is undefined.
If there is exactly one label assigned to an entity, the label extractor delivers a singleton
containing exactly this label.

Example. In the case of OWL, the label extractor returns the set of rdfs:label annotation
values, or is undefined if there is no such annotation.

Definition 4.4. Let O be an ontology and let e ∈ voc(O) be an entity. The comment
extractor commentO ∈ annot(O) is defined as a function commentO : voc(O) → 2String

that maps an entity to its comments. If there is no comment assigned to an entity, the
comment extractor is undefined. If there is exactly one comment assigned to an entity,
the comment extractor delivers a singleton containing exactly this comment.

Example. In the case of OWL, the comment extractor returns the rdfs:comment annota-
tion values, or is undefined if there is no such annotation.

Analogously to these extractor functions there can be others to obtain annotations
defined by specific vocabularies, such as the Dublin Core R© Metadata Element Set2 (e.g.

2http://dublincore.org/documents/2010/10/11/dces/, accessed March 11, 2012.

http://dublincore.org/documents/2010/10/11/dces/
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dcterms:title), the Friend-of-a-Friend (FOAF) Vocabulary3 (e.g. foaf:name), the Sim-
ple Knowledge Organization System (SKOS) [6] (e.g. skos:prefLabel), etc., depending
on their occurrence in the ontologies to be aligned.

The following paragraphs define some local correspondence evaluation metrics. Each
metric represents a quality criterion for correspondences.

Lexical Similarity

There are cases where it is required to compare text strings on the character level, in
order to come up with a similarity for two entities. This lexical similarity is typically
useful in alignment scenarios where different abbreviations, whitespace encoding (such as
“CamelCase”, dash, or underscore), or upper-/lowercase policies are applied.

Example. Considering the ontologies presented in Figure 1.1, different abbreviation schemes
can be found for the entities TechReport and TechnicalReport. The entities Incollection
and InCollection are an example for upper-/lowercase variation.

Several metrics have been proposed for computing a similarity (or distance) measure
for two strings. A prominent measure is the Levenshtein distance [82], which, for two
strings s1 and s2, denotes the minimum number of substitution, insertion, and deletion
operations required to transform s1 into s2 (or vice versa).

Another metric for computing a string similarity has been proposed by Stoilos et
al. [120], which is specially tailored to meet the requirements frequently faced in the context
of ontology alignment. Thus it overcomes several shortcomings of other metrics, such as the
Levenshtein distance, which have originally been designed for use cases other than ontol-
ogy alignment. The String Metric for Ontology Alignment (SMOA) proposed by Stoilos et
al. builds on the notion of common substrings and the lengths of the remaining unmatched
substrings. The overall SMOA function is defined as smoa : String × String → [0, 1].
Let s1 and s2 be two strings. For any string s let |s| denote its length. Let CS be the
set of common substrings of s1 and s2, such that for any two substrings cs1, cs2 ∈ CS
holds cs1 is not a substring of cs2 and vice versa. Let u1 be the string resulting from s1
after removing all cs ∈ CS, and let u2 be the string resulting from s2 after removing all
cs ∈ CS.

smoa(s1, s2) = c(s1, s2)− d(s1, s2) + w(s1, s2) (4.1)

where

c(s1, s2) =
2
∑

cs∈CS |cs|
|s1|+ |s2|

(4.2)

contributes positively to the similarity according to the lengths of commons substrings,
and

d(s1, s2) =
|u1| · |u2|

p+ (1− p) · (|u1|+ |u2| − |u1| · |u2|)
(4.3)

contributes negatively to the similarity according to the lengths of unmatched substrings.
The non-negative parameter p weights the contribution of this “difference” component of
the similarity due to the intuition that the difference should contribute less to the overall
similarity than the commonality.

w(s1, s2) is used for “improvement of the result using the method introduced by Win-
kler [133]” [120].

3http://xmlns.com/foaf/spec/, accessed March 11, 2012.

http://xmlns.com/foaf/spec/
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Lexical Entity Identifier Similarity. In many cases equal identifiers are used for
entities in different ontologies. Not only artificial identifiers, such as product codes, can
occur, but also natural language names. The ontologies from the introductory example in
Figure 1.1 use natural language names as identifiers. As this example shows, variations in
spelling, formatting, and abbreviation require the application of sophisticated similarity
metrics. The lexical entity identifier similarity denotes the similarity of two text strings
that represent the identifiers of the two entities to be compared. In OWL, the identifier
of an entity is an IRI, however, since typically the namespace context is not significant for
similarity computation, this comparison only considers IRI fragments.

Let e1 ∈ voc(O1) and e2 ∈ voc(O2) be two entities. The lexical entity identifier
similarity is defined as

hlexIDSim(〈e1, e2〉) = smoa(idO1(e1), idO2(e2)) (4.4)

Note that this definition uses the SMOA similarity to compute a lexical similarity. It can
be replaced by any other function for string similarity, such as the Levenshtein distance.

Lexical Entity Label Similarity. Entities can be annotated with labels. The lexical
entity label similarity denotes the similarity of two text strings that represent the labels
of the two entities to be compared.

Let e1 ∈ voc(O1) and e2 ∈ voc(O2) be two entities. The lexical entity label similarity
is defined as

hlexLabelSim(〈e1, e2〉) = smoa(labelO1(e1), labelO2(e2)) (4.5)

Analogously to the lexical entity identifier similarity, the SMOA similarity can be replaced
by any other function for string similarity, such as the Levenshtein distance.

Linguistic Similarity

Since ontological entities typically have real-world analogies, it is common to observe
natural language labels, comments, or other annotations. If sufficient for the use case
at hand4, the semantics of an entity is often not completely explicitly formalised in the
ontology, but remains intrinsic to the natural language annotations describing the entities.
In those cases it is indispensable to include natural language processing techniques in order
to assess correspondences.

A frequently applied technique for computing a similarity between two natural language
texts proposed by Salton et al. is the vector space model [113]. Let d and d′ be two
natural language texts to be compared. Let T = {t1, t2, . . . , tn} be a set of distinct
terms occurring in d with n being the number of distinct terms in d. Analogously, let
T ′ = {t′1, t′2, . . . , t′n′} be a set of distinct terms occurring in d′ with n′ being the number
of distinct terms in d′. For the two texts d and d′, a bag of words is defined as the union
T̄ = T ∪ T ′ = {t̄1, t̄2, . . . , t̄m}. This set representation contains all terms occurring in d
or d′ with no duplicates and can now be denoted as a vector ~T = (t̄1, t̄2, . . . , t̄m). Let
~U = (u1, u2, . . . , um) be a vector representation of d, where each uj is the number of

occurrences of t̄j in d. Analogously, let ~U ′ = (u′1, u
′
2, . . . , u

′
m) be a vector representation

of d′, where each u′j is the number of occurrences of t̄j in d′. The vector space similarity

of two texts d and d is the cosine of the angle φ between ~U and ~U ′

cosφ =
~U · ~U ′

|~U | · | ~U ′|
(4.6)

4For example, if the ontologies are primarily used for human consumption.
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Textual Entity Identifier Similarity. Natural language terms are frequently used
as entity identifiers. This does not exclude the use of multi-word identifiers, as long as
they meet the requirements for valid and unique identifiers. For instance, the identifier
Fun-And-Leisure is a multi-word, valid IRI fragment. After removal of word separator
characters and stop words, the identifier can be interpreted as natural language text and
the vector space model can be applied in order to compute a similarity between two
identifiers. Let 〈e1, e2〉 be a correspondence between two entities e1 ∈ voc(O1) and e2 ∈
voc(O2) Let d1 and d2 be the natural language texts extracted for idO1(e1) and idO2(e2),
respectively. Let cosφ be the cosine angle for the vector representations of d1 and d2 as
defined in Equation (4.6). The textual entity identifier similarity is defined as

htextIDSim(〈e1, e2〉) = cosφ (4.7)

Textual Entity Label Similarity. Natural language terms are frequently used in entity
labels. This does not exclude the use of multi-word identifiers. For instance, the label
“conference proceedings editor” is a multi-word entity label. After stop word removal, the
label can be interpreted as natural language text and the vector space model can be applied
in order to compute a similarity between two labels. Let 〈e1, e2〉 be a correspondence with
e1 ∈ voc(O1) and e2 ∈ voc(O2). Let d1 and d2 be the natural language texts extracted
from labelO1(e1) and labelO2(e2), respectively. Let cosφ be the cosine angle for the vector
representations of d1 and d2 as defined in Equation (4.6). The textual entity label similarity
is defined as

htextLabelSim(〈e1, e2〉) = cosφ (4.8)

Entity Comment Similarity. Comment annotations of entities may contain sentences
or phrases to describe an entity in natural language. After stop word removal, the vector
space model can be applied in order to compute a similarity between two comments. Let
〈e1, e2〉 be a correspondence with e1 ∈ voc(O1) and e2 ∈ voc(O2). Let d1 and d2 be the
natural language texts extracted from commentO1(e1) and commentO2(e2), respectively.
Let cosφ be the cosine angle for the vector representations of d1 and d2 as defined in
Equation (4.6). The entity comment similarity is defined as

hentityCommentSim(〈e1, e2〉) = cosφ (4.9)

Virtual Entity Document Similarity. Apart from label and comment annotations,
arbitrary RDF vocabularies, such as the Simple Knowledge Organization System (SKOS) [6],
the Dublin Core R© Metadata Element Set5, the Friend-of-a-Friend (FOAF) Vocabulary6,
etc., are frequently used to annotate ontological entities. Additionally, any custom anno-
tations can be defined and used in an ontology. The collection of all annotation values that
are relevant for an entity can provide an accurate description of this entity, independent
of the specific annotation vocabularies used. Motivated by this variety of mostly linguistic
information represented by those annotation values, Qu et al. introduced the notion of
virtual documents [103]. These represent a collection of relevant annotation values for an
entity, which can then be used for computing a vector space similarity between any two
entities.

While Qu et al. define virtual documents for general RDF graphs, the remainder of
this paragraph defines an adaptation for more axiomatised ontology languages, such as
OWL, taking into account different entity types and relations among them. To this end,

5http://dublincore.org/documents/2010/10/11/dces/, accessed March 11, 2012.
6http://xmlns.com/foaf/spec/, accessed March 11, 2012.

http://dublincore.org/documents/2010/10/11/dces/
http://xmlns.com/foaf/spec/
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the annotation values regarded relevant for an entity depends on the entity type. Let O
be an OWL ontology7. Let e ∈ voc(O) be an entity of type τ(e) ∈ T , with

T = {class, object property, data property, individual}

For any entity e ∈ voc(O), let

V (e) = [t(1,1), . . . , t(1,n1), . . . (4.10)

t(i,1), . . . , t(i,ni), . . .

t(m,1), . . . , t(m,nm)]

be a list of terms, where t(j,1), . . . , t(j,nj) are terms occurring in aj(e) with aj ∈ annot(O)
for 1 ≤ j ≤ m. Informally, if e has m annotations, then V (e) is a virtual document
containing all terms (including duplicates) that occur in the annotation values of the
annotations of e.

Let in the following be ◦ an associative concatenation operator for virtual documents,
such that for any two virtual documents V = [t1, . . . , tn] and W = [u1, . . . , um], the
concatenation is V ◦W = [t1, . . . , tn, u1, . . . , um].

Depending on τ(e), the set of relevant entities rel(e) for collecting annotation values
is defined as follows:

• τ(e) = class:
Let supO(e) be the set of direct superclasses of e in O. Let subO(e) be the set of
direct subclasses of e in O. Let domO(e) be the set of entities in the description of
the properties in O for which e occurs in the domain restriction. Let rangeO(e) be
the set of entities in the description of the object properties in O for which e occurs
in the range restriction. Let indO(e) be the set of individuals asserted to e in O.

Then the virtual document for rel(e) is defined as

V (rel(e)) = V (e) ◦ (4.11)

V (supO(e)) ◦ V (subO(e)) ◦
V (domO(e)) ◦ V (rangeO(e)) ◦
V (indO(e))

• τ(e) = object property:
Let supO(e) be the set of direct object superproperties of e in O. Let subO(e) be
the set of direct object subproperties of e in O. Let domO(e) be the set of entities
occurring in the class descriptions of the domain restriction of e in O. Let rangeO(e)
be the set of entities occurring in the class description of the range of e in O. Let
indO(e) be the set of individuals asserted to e in O.

Then the virtual document for rel(e) is defined as

V (rel(e)) = V (e) ◦ (4.12)

V (supO(e)) ◦ V (subO(e)) ◦
V (domO(e)) ◦ V (rangeO(e)) ◦
V (indO(e))

7Depending on the ontology language, the notion of relevance for annotation values with respect to an
entity has to be determined accordingly.
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• τ(e) = data property:
Let supO(e) be the set of direct data superproperties of e in O. Let subO(e) be
the set of direct data subproperties of e in O. Let domO(e) be the set of entities
occurring in the class descriptions of the domain restriction of e in O. Let indO(e)
be the set of individuals asserted to e in O.

Then the virtual document for rel(e) is defined as

V (rel(e)) = V (e) ◦ (4.13)

V (supO(e)) ◦ V (subO(e)) ◦
V (domO(e)) ◦
V (indO(e))

• τ(e) = individual:
Let clsO(e) be the set of classes to which e is asserted in O. Let sbjO(e) be the set
of object or data properties in O for which e is subject. Let objO(e) be the set of
object properties in O for which e is object.

Then the virtual document for rel(e) is defined as

V (rel(e)) = V (e) ◦ (4.14)

V (clsO(e)) ◦
V (sbjO(e)) ◦
V (objO(e))

Let e1 ∈ voc(O1) and e2 ∈ voc(O2) be two entities. Then d1 = V (rel(e1)) and
d2 = V (rel(e2)) are the virtual documents for e1 and e2, respectively. Let cosφ be the
cosine angle for the vector representations of d1 and d2 as defined in Equation (4.6). The
virtual entity document similarity is defined as

hentityVDSim(〈e1, e2〉) = cosφ (4.15)

4.1.2 Contextual Correspondence Evaluation

A correspondence between two ontological entities can be evaluated according to infor-
mation known for the entities in their ontology context, as well as in the context of the
alignment the correspondence is an element of.

Definition 4.5. Let O1 and O2 be ontologies. Let A be an alignment between O1 and
O2, and let C = 〈e, f〉 ∈ A be a correspondence in A. A contextual correspondence
evaluation metric is a function hA : C → [0, 1] computing an evaluation score hA(C) for C
in the alignment context A based on the information attached to or derivable for e (and f
respectively) in the context of O1 (and O2 respectively) and A. An evaluation score for C
reflects a similarity of e and f . Thereby, an evaluation score of 1 means highest similarity,
an evaluation score of 0 means lowest similarity.

Contextual correspondence evaluation metrics exploit the presence or confidence of
other correspondences in the same alignment context. These other correspondences refer to
entities, whose relation to the entities of the correspondence under evaluation is important.
For a given entity, the following extraction functions provide access to other entities in the
same ontology.
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Definition 4.6. Let O be an ontology. Let e ∈ voc(O) be an entity with τ(e) being an
entity type that allows for a subsumption relation v. A neighbour of e with respect to v
is an entity f ∈ voc(O) with τ(f) = τ(e), such that f v e (e v f) and there is no f ′, such
that f v f ′ v e (or e v f ′ v f , respectively).

If v denotes the explicit subsumption relation, i.e. all subsumption axioms are ex-
plicitly stated in the ontology, every neighbour of an entity e with respect to v is called
explicit neighbour.

Definition 4.7. Let O be an ontology and let e ∈ voc(O) be an entity with τ(e) being an
entity type that allows for a subsumption relation. The superentity extractor is defined as a
function supO(e) : voc(O)→ 2voc(O), where supO(e) = {f ∈ voc(O) | τ(e) = τ(f), e v f}
is the set of superentities of e in O.

Definition 4.8. Let O be an ontology and let e ∈ voc(O) be an entity with τ(e) being an
entity type that allows for a subsumption relation. The subentity extractor is defined as a
function subO(e) : voc(O)→ 2voc(O), where subO(e) = {f ∈ voc(O) | τ(e) = τ(f), f v e}
is the set of subentities of e in O.

Example. In the case of OWL, the superentity extractor would return all direct super-
classes for any entity of type class, all direct object superproperties for any entity
of type object property, and all direct data superproperties for any entity of type
data property. The subentity extractor would analogously return the according suben-
tities [92].

The following paragraphs define some contextual correspondence evaluation metrics.
Each metric represents a quality criterion for correspondences.

Hierarchy Similarity

For entities of certain types a subsumption relation can be expressed, forming a subsump-
tion hierarchy.

The hierarchy similarity denotes the similarity of two entities based on the presence
of correspondences between neighbour entities in the alignment context. It is defined as

hAhierarchy(〈e, f〉) = ωsup
|{〈e′, f ′〉 ∈ A | e′ ∈ supO1

(e), f ′ ∈ supO2
(f)}|

min{supO1
(e), supO2

(f)}
+

ωsub
|{〈e′, f ′〉 ∈ A | e′ ∈ subO1(e), f ′ ∈ subO2(f)}|

min{subO1(e), subO2(f)}
(4.16)

where

ωsup =
min{supO1

(e), supO2
(f)}

min{supO1
(e), supO2

(f)}+ min{subO1(e), subO2(f)}
(4.17)

and ωsub = 1 − ωsup. Informally, the hierarchy similarity composes of two components
for superentities and subentities, respectively. Each component denotes the fraction of
potential correspondences of super- (sub-)entities that are actually contained in the align-
ment. The contribution of each component is weighted according to a heuristic indicating
the importance of super- and subentities. The idea behind looking at the smaller set of
super- (and sub-)entities is that this size determines the maximum number of possible
correspondences between super- (or sub-)entities. If, for instance, there is larger number
of potential subentity correspondences than superentity correspondences, the subentity
component should be weighted higher.
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Example. Given the two ontologies from Figure 1.1, denoted as O1.1a and O1.1b, let C =
〈Entry, Publication〉 ∈ A be a correspondence. The numbers of super- and subentities
for the two entities of C are

supO1.1a
(Entry) = 1

subO1.1a(Entry) = 14

supO1.1b
(Publication) = 1

subO1.1b
(Publication) = 12

According the the weighting heuristic, ωsup = 1/13 and ωsub = 12/13. From this example
one can see that the heuristic reflects the intuition that a large number of correspondences
between subentities should be considered as more important than the single possible cor-
respondence between the superentities.

Suppose A contains the following correspondences in addition to C:

〈Thing, Thing〉, 〈Article, Article〉, 〈Book, Book〉, 〈Booklet, Booklet〉,
〈Manual, Manual〉, 〈Misc, Misc〉, 〈Unpublished, Unpublished〉,
〈Proceedings, Proceedings〉.

These are 7 out of 12 possible correspondences between subentities and the only one
possible correspondence between superentities. Using the weights determined above, the
hierarchy similarity of C computes as

hAhierarchy(C) =
1

13
· 1

1
+

12

13
· 7

12
≈ 0.615

Hierarchy Propagation Similarity

Similar to the hierarchy similarity is the hierarchy propagation similarity, however, this
one does not account for the fraction of potential correspondences of super- or subentities.
Instead, it propagates the similarities from correspondences of super- and subentities to
the correspondence under evaluation. The computation of this similarity can be seen as a
simplified, non-iterative version of the similarity flooding algorithm8 by Melnik et al. [90],
following the intention that if two nodes of two different graphs are considered similar, then
the “neighbours” of those nodes can be considered somewhat similar, too. The similarity
thus propagates to neighbouring nodes. Deviating from the authors’ original work, when

8In their original work, Melnik et al. allow arbitrary labelled edges, where similarities only propagate
along edges of the same label.

Technically, for two directed graphs G1 = (V1, E1) and G2 = (V2, E2) with labelled nodes and edges, a
pairwise connectivity graph Gpc = (Vpc, Epc) is constructed, such that Vpc ⊆ V1 × V2 and Epc ⊆ Vpc × Vpc.
In Gpc every node v = (v1 ∈ V1, v2 ∈ V2) is assigned an initial similarity, i.e. the initial similarity between
v1 ∈ V1 and v2 ∈ V2. Furthermore, two nodes v = (v1 ∈ V1, v2 ∈ V1) and w = (w1 ∈ V1, w2 ∈ V2) are
connected via an edge e ∈ Epc iff there are edges e1 = (v1, w1) ∈ E1 and e2 = (v2, w2) ∈ E2, and e1
and e2 have the same label. In a next step, from the pairwise connectivity graph an induced propagation
graph Gip = (Vip, Eip) is constructed, such that Vip = Vpc and Eip = Epc ∪ {(w, v) : (v, w) ∈ Epc}.
Thus Gip contains all edges from Gpc and their inverse edges. Additionally, each edge e ∈ Eip is assigned
a propagation coefficient w ∈ [0, 1] denoting the contribution of a node’s similarity to the similarity of its
neighbour connected via e.

Based on this Gip data structure an iterative fixpoint computation leads to a new assignment of simi-
larity measures to pairs of nodes from G1 and G2. The authors point out that there are several ways of
assigning the propagation coefficients and calculate updated similarities in each iteration step. Empirical
experiments revealed insights into the behaviour of different propagation coefficients and fixpoint compu-
tation formulae. Further, the experiments demonstrated that the initial similarities assigned to node pairs
have less important impact on the resulting similarities than expected.
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transferring their generic graph matching algorithm to the more specific problem of on-
tology alignment, nodes, edges, and their labels must be interpreted in ontological terms.
What can be straightforward in RDF graphs becomes more challenging in RDFS- and
OWL-based ontologies, where classes and properties are first class entities with specific
axiomatic relationships, such as subsumption, or domain and range restrictions.

Compared to similarity flooding hierarchy propagation similarity is simplified, since
only the subsumption hierarchy is considered when determining “neighbours”. Further-
more, only a single correspondence is evaluated with similarities propagated from those
“neighbouring” entities. The hierarchy propagation similarity is non-iterative, since only
a snapshot evaluation is computed based on similarities of neighbouring entities, which
might not be stable themselves.

Let O1 and O2 be two ontologies, and let e1 ∈ voc(O1) and e2 ∈ voc(O2) be entities
with τ(e1) = τ(e2) being an entity type that allows a subsumption relation. Let

Csup = {〈f1, f2〉 ∈ A | f1 ∈ supO1
(e1) and f2 ∈ supO2

(e2)} (4.18)

Csub = {〈f1, f2〉 ∈ A | f1 ∈ subO1(e1) and f2 ∈ subO2(e2)} (4.19)

be the sets of correspondences of the super- and subentities, which are also present in the
alignment context. Let

Cneighbour = Csup ∪ Csub (4.20)

be the set of neighbouring correspondences.

The hierarchy propagation similarity is defined as

hAhierarchyProp(C) =


∑
C′∈Cneighbour

ι(C′)

|Cneighbour| if |Cneighbour| 6= 0

undefined otherwise
(4.21)

Example. Given the two ontologies from Figure 1.1, denoted as O1.1a and O1.1b, let A be
an alignment containing the following correspondences:

C0 = 〈Entity, Publication〉
C1 = 〈Thing, Thing〉
C2 = 〈Article, Article〉
C3 = 〈Conference, Event〉
C4 = 〈Booklet, Booklet〉

Let the confidences of these correspondences be as follows:

ι(C0) = 0.0

ι(C1) = 0.8

ι(C2) = 0.9

ι(C3) = 0.4

ι(C4) = 0.8

Let C0 be the correspondence under evaluation.

With Thing being a superentity of Entry in O1.1a and Thing being a superentity of
Publication in O1.1b,

Csup = {C1} = {〈Thing, Thing〉}
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Analogously, with Article and Booklet being subentities of Entry in O1.1a and Article

and Booklet being subentities of Publication in O1.1b,

Csub = {C2, C4} = {〈Article, Article〉, 〈Booklet, Booklet〉}

This results in Cneighbour = {C1, C2, C4}. Using the confidence values of these corre-
spondences, the hierarchy propagation similarity computes as

hAhierarchyProp(C) =
0.8 + 0.9 + 0.8

3
≈ 0.83

Property Domain/Range Similarity

Axioms in ontologies can express restrictions about the domain or range of a property,
provided that the ontology language supports those sorts of restrictions and entity types.
For instance, in OWL, domains for entities of type object property and data property,
as well as ranges for entities of type object property can be restricted to satisfy a par-
ticular class expression. Since this similarity is only applicable if the underlying ontology
language supports the entity types and axioms described above, the remainder of this
paragraph is based on the assumption that such an ontology language is used.

The property domain/range similarity is a similarity metric for properties, based on
the similarity of (or bare presence of correspondences between) classes, to which their
domains/ranges are restricted. In other words, two properties are more likely to be similar
if they have their domains (or ranges, respectively) restricted to classes, which are already
known to be similar (in the alignment context).

Let O1 and O2 be two ontologies, and let e1 ∈ voct(O1) and e2 ∈ voct(O2) be entities
with t being a property-like entity type that can have domain and range restrictions. Let
D1 and D2 be the sets of atomic domain classes of e1 and e2, respectively, where all entities
in D1 and D2 have the same entity type. Let R1 and R2 be the sets of range classes of
e1 and e2, respectively, where all entities in R1 and R2 have the same entity type. Let
C = 〈e1, e2〉 be a correspondence and let A be the alignment context in which it shall be
evaluated. Let

CD = {〈f1, f2〉 ∈ A | f1 ∈ D1 and f2 ∈ D2} (4.22)

CR = {〈f1, f2〉 ∈ A | f1 ∈ R1 and f2 ∈ R2} (4.23)

be the sets of correspondences of the domain and range classes, which are also present in the
alignment context. The similarity component considering domain class correspondences is
only defined, if min{|D1|, |D2|} 6= 0, i.e. if both e1 and e2 have at least one atomic domain
class. In the following let min{|D1|, |D2|} > 0. The derived domain class similarity is

dder =

{∑
C∈CD

ι(C)

|CD| if |CD| 6= 0

1 otherwise
(4.24)

which averages the confidences of corresponding domain classes, if there are any9. In case
the number of domain class correspondences present in A is close to the maximum number
possible (which is the smaller number of domain classes of e1 or e2, respectively) this is
also an indicator of similarity between e1 and e2. If one of e1 and e2 does not have any
domain classes, this similarity component is undefined.

dnum =
|CD|

min{|D1|, |D2|}
(4.25)

9This derived domain class similarity is an analogous definition of the hierarchy propagation similarity
for subsumption hierarchies described earlier.
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In order to also account for the number of potential domain class correspondences, regard-
less of their presence in A, another similarity can be approximated by

dpot = 1− 1

min{|D1|, |D2|}+ 1
(4.26)

The similarity derived from the domain classes of e1 and e2 now computes as

d = ωderdder + ωnumdnum + ωpotdpot (4.27)

where ωder, ωnum, and ωpot are weighting factors in order to account for the influence of
each similarity indicator, where ωder + ωnum + ωpot = 1.

The values for range class similarities are computed analogously. The similarity com-
ponent considering range class correspondences is only defined, if min{|R1|, |R2|} 6= 0,
i.e. if both e1 and e2 have at least one atomic range class restriction. In the following let
min{|R1|, |R2|} > 0.

rder =

{∑
C∈CR

ι(C)

|CR| if |CR| 6= 0

1 otherwise
(4.28)

rnum =
|CR|

min{|R1|, |R2|}
(4.29)

rpot = 1− 1

min{|R1|, |R2|}+ 1
(4.30)

and accordingly
r = ωderrder + ωnumrnum + ωpotrpot (4.31)

The total property domain/range similarity computes as

hApropDRClass(〈e1, e2〉) =


undefined if both d and r are undefined

sigmoid (d) if r is undefined

sigmoid (r) if d is undefined

sigmoid
(
d+r
2

)
otherwise

(4.32)

where sigmoid : R→ (0, 1) is a weighting function defined as

sigmoid(x) =
1

1 + e−10(x−0.5)
(4.33)

and illustrated in the plot in Figure 4.1. The reason for using this weighting function
is to emphasise the similarity scores provided by this metric close to the co-domain of
hApropDRClass. This causes the evaluation scores to be more discriminative and results in
a higher significance of this metric when computing an aggregated evaluation score for a
correspondence.

Class as Domain/Range Similarity

Similar to the property domain/range similarity, this similarity is only applicable if the
underlying ontology language supports the entity types and axioms that allow for domain
and range restrictions, The remainder of this paragraph is based on the assumption that
such an ontology language is used.

The class as domain/range similarity is a similarity metric for classes, based on the
similarity of (or bare presence of correspondences between) properties, which have their
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Figure 4.1: sigmoid function 1
1+e−10(x−0.5) in the relevant function domain [0, 1].

domain/range restricted to the classes under consideration. In other words, two classes are
more likely to be similar if they are both in the domain (or range, respectively) restrictions
of two properties, which are already known to be similar (in the alignment context).

The following definitions are analogous to the ones defined earlier for the property
domain/range similarity and follow the same reasoning.

Let O1 and O2 be two ontologies, and let e1 ∈ voct(O1) and e2 ∈ voct(O2) be entities
with t being a class-like entity that can occur as domain or range restriction. Let P1 and
P2 be the sets of properties that have e1 and e2 as domain restriction, respectively, where
all entities in P1 and P2 have the same entity type. Let Q1 and Q2 be the sets of properties
that have e1 and e2 as range restriction, respectively, where all entities in Q1 and Q2 have
the same entity type. Let C = 〈e1, e2〉 be a correspondence and let A be the alignment
context in which it shall be evaluated. Let

CD = {〈f1, f2〉 ∈ A | f1 ∈ P1 and f2 ∈ P2} (4.34)

CR = {〈f1, f2〉 ∈ A | f1 ∈ Q1 and f2 ∈ Q2} (4.35)

be the sets of property correspondences in the alignment context, for which the following
holds: every element in CD is a correspondence of two properties, which have their domains
restricted to e1 and e2, respectively. Analogously, every element in CR is a correspondence
of two properties, which have their ranges restricted to e1 and e2, respectively.

Given CD and CR, the derived domain and range similarities dder and rder are defined
exactly as in Equations (4.24) and (4.28). The other similarity components dnum, rnum,
dpot, and rpot are defined analogously as in Equations (4.25), (4.29), (4.26), and (4.30),
respectively:

dnum =

{ |CD|
min{|P1|, |P2|} if min{|P1|, |P2|} 6= 0

1 otherwise
(4.36)

rnum =

{ |CR|
min{|Q1|, |Q2|} if min{|Q1|, |Q2|} 6= 0

1 otherwise
(4.37)

dpot = 1− 1

min{|P1|, |P2|}+ 1
(4.38)

rpot = 1− 1

min{|Q1|, |Q2|}+ 1
(4.39)
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The aggregation of similarity components from domain and range point of view is again
exactly as in Equations (4.27) and (4.31), with the total class as domain/range similarity
being computed as

hAclassDRProp(〈e1, e2〉) =


undefined if both d and r are undefined

sigmoid (d) if r is undefined

sigmoid (r) if d is undefined

sigmoid
(
d+r
2

)
otherwise

(4.40)

Criss-cross Correspondence

Correspondences between entities of entity types that allow for a subsumption relation
can appear in a constellation where they “cross” each other. A correspondence 〈e1, e2〉 is
crossed by another correspondence 〈f1, f2〉, iff f1 is higher in the subsumption hierarchy
than e1 in O1, and f2 is lower in the subsumption hierarchy than e2 in O2, or vice versa.
If correspondences are interpreted in a way that they induce axioms according to Defi-
nition 2.10, such a crossing would cause the hierarchies between the entities of any two
crossing correspondences to collapse, which is not desired.

The criss-cross correspondence evaluation metric penalises correspondences that par-
ticipate in a crossing. It is a binary metric that scores 0 if the correspondence under
evaluation is crossing at least one other correspondence, and 1 otherwise. The metric is
formally defined as

hAcrissCross(〈e1, e2〉) =


0 if ∃〈f1, f2〉 ∈ A such that

f1 ∈ subO1(e1) ∧ f2 ∈ supO2
(e2) or

f1 ∈ supO1
(e1) ∧ f2 ∈ subO2(e2)

1 otherwise

(4.41)

Explanation-based Evaluation

If correspondences are interpreted as equivalence axioms according to Definition 2.10, the
merged ontology model might contain unsatisfiable classes. Intuitively, if an axiom induced
by a correspondence contributes to the unsatisfiability of a class, the correspondence should
get a low evaluation score.

Let U be the set of unsatisfiable classes in O1 ∪O2. Let UA be the set of unsatisfiable
classes in OA. Let ∆U = UA \U be the set of classes in O1∪O2 that became unsatisfiable
by adding axioms10 induced by the alignment A. For each unsatisfiable class u ∈ ∆U
let E be the set of axioms explaining the unsatisfiability of u by means of the “black
box simple expand-shrink strategy” described by Kalyanpur [72]. Let aC be the ontology
axiom induced by C, according to Definition 2.10. The explanation-based correspondence
evaluation metric is defined as

hAexplanation(C) =

{
0 if aC ∈ E
1 otherwise

(4.42)

4.1.3 Alignment Level Evaluation

A naive way of computing an evaluation score for an alignment is to aggregate the eval-
uation scores for each correspondence in the alignment. However, there are alignment

10Note that for description logic based ontologies adding axioms induced by the alignment can never
cause previously unsatisfiable classes to become satisfiable, since description logics are monotonic.
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quality criteria that cannot be measured on the level of individual correspondences, e.g.
the alignment size.

Example. Consider the overall alignment evaluation being an aggregation of all individual
correspondence evaluations. Then an alignment between two ontologies containing 10 very
good correspondences and 2 bad correspondences would gain a worse evaluation than an
alignment of the same ontologies that contains only 1 very good correspondence. This is
due to the fact that the alignment size is not honoured.

Definition 4.9. Let O1 and O2 be ontologies. Let A be an alignment between O1 and
O2. An alignment evaluation metric is a function H : A → [0, 1] computing an evaluation
score H(A) for A. An evaluation score of 1 means best evaluation, and an evaluation score
of 0 means worst evaluation.

The following paragraphs define some alignment evaluation metrics. Each metric rep-
resents a quality criterion for alignments.

Correspondence Contribution

The straightforward determination of an alignment evaluation is to compute an aggregated
score from all individual correspondence evaluations. For all C ∈ A let ι(C) reflect the
evaluation of C with respect to the various metrics presented in Sections 4.1.1 and 4.1.2.
The correspondence contribution alignment evaluation metric is defined as

HcorrContrib(A) =
1

|A|
∑
C∈A

ι(C) (4.43)

Alignment Size

Ontologies do not necessarily have a complete overlap, i.e. not every entity of either ontol-
ogy has to participate in the alignment. However, it is desirable to identify the maximum
overlap between ontologies, i.e. prefer alignments of larger size to smaller ones. Without
loss of generality11 let min{]tO1, ]tO2} > 0, ∀t ∈ T . The alignment size evaluation metric
is defined as

Hsize(A) =
1

|T |
∑
t∈T

|{〈e, f〉 ∈ A | τ(e) = τ(f) = t}|
min{]tO1, ]tO2}

(4.44)

Alignment Consistency

If correspondences are interpreted as equivalence axioms, the merged ontology model might
become inconsistent. Whether or not an alignment induces an inconsistency can be used
as a global alignment evaluation metric. Let OA be the merged ontology model based on
A according to Definition 2.11. The alignment consistency evaluation metric is defined as

Hconsist(A) =


1 if OA is consistent

0 if OA is inconsistent

undefined if O1 or O2 is inconsistent

(4.45)

11In the case where one ontology does not contain any entities of some type t, the summand for t in
Equation (4.44) is omitted and the normalisation is computed by dividing by |T \ {t}|, instead of |T |. In
the case where for all entity types one of the ontologies does not contain any entities, no alignment is
possible and the alignment size evaluation metric is undefined.
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Alignment Coherency

If correspondences are interpreted as equivalence axioms, the merged ontology model might
contain unsatisfiable classes. The number of unsatisfiable classes induced by an alignment
can be used as a global alignment evaluation metric. Let U be the set of unsatisfiable
classes in O1 ∪ O2. Let UA be the set of unsatisfiable classes in OA. Let ]OA be the
number of classes in OA, i.e. the number of classes in O1 ∪ O2. The alignment coherency
evaluation metric is defined as

Hcoherence(A) =

{ |UA|−|U |
]OA−|U | if |U | 6= ]OA
1 otherwise

(4.46)

This metric does only account for the number of classes that become unsatisfiable because
of the alignment, and disregards the classes that were originally unsatisfiable in the two
ontologies. In the case where all classes were originally unsatisfiable, the measure computes
to 1, i.e. highest similarity, since the alignment has no impact on coherency in this case.

Structural Preservation

Motivated by the observation that two ontologies modelling the same domain are typically
structured similarly with respect to their taxonomic (subsumption) and meronomic (part-
of) hierarchies, Joslyn et al. propose a metric for evaluating ontology alignments based
on structural preservation [71]. Their proposed metric is based on the notion of distance
between entities according to those hierarchies. Informally, for two ontologies in the same
domain, any two entities from the first ontology that have a close distance should corre-
spond to two entities from the second ontology that have a close distance as well. The
same holds for entities, which are farther apart.

The authors formalise their metric using concepts from order theory and the property
of taxonomic / meronomic hierarchies in ontologies being partially ordered sets. For each
pair of entities in an ontology the “lower cardinality-based distance” is computed12, which
is a metric based on the entities’ successor sets and the intersection of those sets. Each
entity pair’s lower cardinality-based distance is subsequently normalised with respect to
the size of the ontology. Based on these distances known for all entity pairs in each
ontology, a discrepancy can be computed for any pair of correspondences in an alignment,
and consequently for the complete alignment by averaging over all pairs of correspondences
in the alignment.

The authors evaluate their similarity metric using the anatomy ontologies from the
Ontology Alignment Evaluation Initiative (OAEI) 2008 (cf. Section 7.2), and identified a
positive correlation of F-measure scores of the participating systems and the alignment
discrepancy.

For any two correspondences C = 〈e1, e2〉 and D = 〈f1, f2〉 contained in an alignment
A, let

δ(C, D) = |d̄(e1, f1)− d̄(e2, f2)| (4.47)

be the correspondence discrepancy, where d̄(ei, fi) (i ∈ {1, 2}) is the normalised lower dis-
tance between the entities ei and fi within ontology Oi. Joslyn et al. suggest to normalise
the distance to the size of the ontology in order to obtain a relative distance13. Following

12The reason for preferring the lower cardinality-based distance to the upper one is based on the assump-
tion that ontologies are typically “down-branching”, meaning that entities tend to have more subentities
than superentities.

13Since the authors disregard that fact that different entity types can form hierarchies, and thus structural
preservation needs to be considered with respect to those entity types, the authors’ original formalisation
has been adapted in this respect.
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the authors’ definition, the normalised lower distance for e, f ∈ voct(O) is d̄(e, f) = d(e, f)
]tO−1

for any two entities of the same type. Informally, the lower cardinality-based distance
d(e, f) computes as the difference between the total number of subentities of e and f
(including duplicates), and the largest number of subentities shared by both e and f . This
denotes a distance metric on e and f , which is lower if the entities share a larger fraction
of their subentities with one another, and thus are closer to each other in the subsumption
hierarchy. (See the original work of Joslyn et al. [71] for details.)

The structural preservation evaluation metric is defined using the average correspon-
dence discrepancy of all pairs of correspondences in an alignment A:

HstructPreserv(A) = 1−
∑

C,D∈A δ(C, D)(|A|
2

) (4.48)

Criss-cross Alignment

An evaluation metric analogous to the criss-cross correspondence similarity can be applied
on the alignment level. The notion of “crossing” correspondences is used as in Equa-
tion (4.41). The portion of correspondences that cross other correspondences can be used
as a global alignment evaluation metric.

Let O1 and O2 be two ontologies, and let A be an alignment between them. The set
of correspondences that cross other correspondences is defined as

X = {〈e1, e2〉 ∈ A | ∃〈f1, f2〉 ∈ A such that (4.49)

f1 ∈ subO1(e1) ∧ f2 ∈ supO2
(e2) or

f1 ∈ supO1
(e1) ∧ f2 ∈ subO2(e2) }

The criss-cross alignment evaluation metric is defined as

HcrissCross(A) = 1− |X|
|A|

(4.50)

4.2 Similarity Aggregation

In order to compute a single evaluation for a correspondence or an alignment, the individual
evaluation scores discussed in Section 4.1 need to be aggregated.

Definition 4.10. An aggregation function is a function Γ : Rn × Rn → R computing an
aggregation Γ(~f, ~ω), where ~f is a vector of evaluation scores, and ~ω is a vector of weights.

4.2.1 Maximum Aggregation

A simple aggregation function is a projection of the highest evaluation score. There is
no interpretation of weights for this aggregation function. The maximum aggregation is
defined as

Γmax(~f, ~ω) = max{f1, . . . , fn} (4.51)

This aggregation method is greedy in the sense that it disregards all individual evaluation
scores apart from the best one. There are few use cases, where several alternative evalu-
ation metrics are to be aggregated, and only the highest score should be considered, e.g.
the evaluation of different pairs of annotation values. In case the evaluation metrics reflect
complementary evaluation criteria, it is not reasonable to use this method.
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4.2.2 Weighted Average Aggregation

A possible combination of evaluation scores is the computation of a weighted mean. The
weighted average aggregation is defined as

ΓweightAvg(~f, ~ω) =

∑n
i=1 ωifi∑n
i=1 ωi

(4.52)

This aggregation method allows full flexibility for assigning the relative importance of
the evaluation scores to be aggregated. However, this flexibility comes at the cost of a
significant configuration overhead when determining the weights, and thus predicting the
relative importance of evaluation metrics. In particular this becomes problematic when
the same weight configuration is used for aligning different ontologies. Since ontologies can
have different characteristics, different evaluation metrics are important, and the weight
configuration might not be transferable.

4.2.3 Ordered Weighted Average Aggregation

A self-adaptive solution for weighted average aggregation is to re-order weights according
to the evaluation scores. The ordered weighted average aggregation has been described
and successfully applied to ontology alignment by Ji et al. [70]. For ~f = (f1, . . . , fn), let
ρ : {1, . . . , n} → {1, . . . , n} be a permutation, such that for all 1 ≤ i < j ≤ n holds
fρ(i) ≤ fρ(j). The ordered weighed average aggregation is defined as

Γowa(~f, ~ω) =

∑n
i=1 ωifρ(i)∑n
i=1 ωi

(4.53)

This aggregation method does not allow for assigning a fixed weight to a particular evalu-
ation metric, but to assign a fixed weight to each position in the reordering of evaluation
scores. Prior to the computation of this aggregation, the evaluation scores are arranged in
descending order. Note that this does not necessarily specify that the highest evaluation
score gets the highest weighting, since the weight order is fixed.
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Chapter 5

Ontology Alignment using
Biologically-Inspired Optimisation
Techniques

This chapter presents the core contribution of this thesis. The main results are published
in Information Sciences Volume 192, June 2012 [16], as well as at the 7th International
Symposium on Foundations of Information and Knowledge Systems, March 2012 [19].

Two applications of biologically-inspired optimisation techniques for the ontology align-
ment problem are presented:

• An Evolutionary Algorithm

• A Discrete Particle Swarm Optimisation algorithm

Regarding the Evolutionary Algorithm, not a particular incarnation is directly imple-
mented, rather than a hybrid approach incorporating ideas from Evolutionary Program-
ming [52] and population-based Extremal Optimisation [105]. The reason is that for
ontology alignment the influence of solution components, i.e. correspondences, is expected
to be relatively significant for the overall solution quality. Extremal Optimisation works
mainly on the solution component level, while Evolutionary Programming considers so-
lutions more globally. Other hybrids, e.g. EPSOC [83] have shown to be successful in
various application domains. However, the ontology alignment problem has several pecu-
liarities, such as validity constraints that motivated the development of a special purpose
Evolutionary Algorithm. Similar adjustments according to special purpose applications of
Evolutionary Algorithms have been reported previously [29, 126, 83, 106].

Particle Swarm Optimisation [76, 116] as a second approach for tackling the ontology
alignment problem was motivated by the fact that the social component in the Swarm
Intelligence paradigm is considered a major advance in the area of population-based opti-
misation [75]. A structurally similar problem to ontology alignment, which has successfully
been addressed using a Discrete Particle Swarm Optimisation approach [32, 33], was used
as a basis for the presented algorithm.

The general procedure of applying (iterative) biologically-inspired optimisation algo-
rithms to a particular problem is as follows:

1. The problem must be represented as an optimisation problem

2. An objective function must be developed for assessing candidate solutions

3. A suitable solution representation format must be chosen

51
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4. Suitable update operations must be defined

5. A termination criterion must be specified

As termination criterion, the presented algorithms use a specified maximum number
of iterations that have to be completed, which is set sufficiently high in order to allow
the algorithms to converge. In fact, other termination criteria, such as elapsed wall-clock
time, a solution quality threshold, or stagnation of solution improvement can be used to
determine or improve the runtime of the algorithm but do not contribute to its convergence.

In the previous Section 2.2.2 the ontology alignment problem was formally introduced
as an optimisation problem with optimality defined according to an alignment quality
metric. In the following Section 5.1 this quality metric is turned into an objective function.
Section 5.2 introduces two solution representation formats, namely the correspondence
set representation and the correspondence permutation representation that are used in
the presented algorithms. The Evolutionary Algorithm and the Discrete Particle Swarm
Optimisation algorithm used for solving the ontology alignment problem are presented in
Section 5.3. Section 5.4 concludes the chapter with a discussion about the disregard of
any recombination operators, as well as a comparison of the two presented approaches.

5.1 Objective Function

A solution to the ontology alignment problem is an alignment (cf. Section 2.2.2). Indepen-
dent of the way a metaheuristic represents a solution internally, there must be an objective
function used to assess the quality of the solution. The approach presented in this thesis
tackles the ontology alignment problem as a single-objective optimisation problem, i.e. a
single function evaluates an alignment and hence allows for comparing any two alignments
between the same ontologies according to this function.

The alignment quality function from Definition 2.9 serves as objective function. Com-
plying with the flexibility regarding various ontology characteristics to be considered (cf.
Conjecture 2 in Section 1.1), the objective function is instantiated using similarity met-
rics and aggregation functions from the “toolbox” presented in Chapter 4. To this end,
there are evaluation metrics on the alignment level, as well as evaluation metrics on the
correspondence level.

Typically the evaluation scores for the single correspondences (both local and contex-
tual) have a significant contribution to the overall alignment evaluation score, and thus
to the alignment quality. An objective function that is set up accordingly, thus implicitly
computes evaluation scores for the single correspondences. These correspondence evalu-
ation scores can be used to assign for each correspondence C ∈ A its confidence ι(C).

The assumption that for each correspondence of an alignment C ∈ A its confidence
ι(C) contributes positively to the alignment quality F (A), makes ι a valuable support
heuristic to be used by the presented metaheuristic applications. Speaking in terms of
metaheuristics, the fitness of an individual in the population is equal to its objective
function.

5.2 Solution Representation

The way candidate solutions are represented is an important factor for the efficient ex-
ecution of the algorithm. On the one hand, the solution representation should facilitate
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the evaluation of a solution via the objective function. On the other hand, it should fa-
cilitate the maintenance of solution validity constraints1 throughout the optimisation run
(cf. Definition 2.7). The section introduces two solution representation formats, which are
later used in the presented alignment algorithms, namely the correspondence set and the
correspondence permutation.

5.2.1 Correspondence Set Representation

The correspondence set representation is the straightforward way of representing a solution
to the alignment problem, namely as a set of correspondences. Hence the correspondence
set representation coincides with the definition of a valid alignment given in Definition 2.7.

An advantage of this representation is that it allows for easy assessment of the repre-
sented alignment with respect to the objective function. A disadvantage is that it requires
the update operation U to be aware of global alignment constraints, such that only valid
candidate alignments are produced by U . In other words, U must be aware of the valid-
ity criteria given in Definition 2.7, i.e., U must be specified in a way that only valid 1:1
alignments are generated when applying the update operation.

Example. Given the two ontologies from Figure 1.1, the correspondence set representation
of a solution to the ontology alignment problem is

{〈Thing, Thing〉, 〈Entry, Publication〉, 〈Article, Article〉, 〈Book, Book〉,
〈Inproceedings, InProceedings〉, 〈Manual, Manual〉, 〈Misc, Misc〉,
〈Phdthesis, Thesis〉, 〈Proceedings, Proceedings〉, 〈TechReport, TechnicalReport〉,
〈Unpublished, Unpublished〉}

5.2.2 Correspondence Permutation Representation

The correspondence permutation representation denotes a novel data structure that does
naturally exclude invalid solutions (alignments).

Definition 5.1. For two ontologies O1 and O2, let m be the number of entities of type t
in O1, and let n be the number of entities of type t in O2. A correspondence permutation
is a function πt : {1, . . . , m} → {1, . . . , n} ∪ �, such that for all 1 ≤ i < j ≤ m with
πt(i), πt(j) 6= � holds πt(i) 6= πt(j). (For the sake of brevity the type specifier t can be
omitted if the type is irrelevant for a particular argument.)

Intuitively, a correspondence permutation can be understood as an array of m elements:
π(1) π(2) · · · π(m). Thereby each of the numbers 1 . . . n occurs at most once in this
array, whereas � can occur arbitrarily often.

Assuming that the array index represents the entity index of (the smaller) ontology O1

and that the array element at position j denotes the index π(j) of the entity in ontology
O2, it is straightforward that each array entry represents a correspondence 〈ej , fπ(j)〉 if
fπ(j) 6= �, and no correspondence for ej otherwise.

Example. Figure 5.1 shows an example of a correspondence permutation that represents
a possible alignment for the two ontologies from Figure 1.1. (The example represents the
same solution as the example for the correspondence set representation in Section 5.2.1.)

Since by Definition 2.5 correspondences can only exist between entities of the same
type, a solution representation would require |T | correspondence permutations, one for
each entity type.

1The presented approaches do not allow infeasible solutions during the course of the optimisation run.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 15 16 17 � � � � 18 19 � 20 25 21 23 29

Figure 5.1: Example of a correspondence permutation using indexes from Figure 1.1. The
array index represents the entity index of the ontology from Figure 1.1a, while the array
elements represent entity indexes of the ontology from Figure 1.1b.

If for any t ∈ T , ]tO1 6= ]tO2, the index sets for voct(O1) and voct(O2) should be
swapped, such that m < n for increasing memory efficiency. (If the array index would
reflect the entity index of the larger type-restricted vocabulary, such that m > n, the
correspondence permutation would needlessly contain at least m−n “�” values.) For the
sake of simplicity in the remainder of this chapter this optimisation is ignored.

5.3 Iterative Convergence

Biologically-inspired optimisation algorithms work iteratively. Thereby the desired be-
haviour is that they converge towards a (near-)optimal solution in a guided fashion, i.e.
convergence happens significantly faster than for randomly sampling the solution space.
On the other hand, the algorithm should be robust against getting stuck in local optima,
resulting in a premature stagnation of the convergence.

For the presented Evolutionary Algorithm, the convergence is controlled by mutation
and selection operators that update the individuals of the population in each iteration.
For the Discrete Particle Swarm Optimisation algorithm, the particle movements are re-
sponsible for convergence by positioning the particles at new promising positions in the
solution space.

5.3.1 Mutation and Selection in an Evolutionary Algorithm

This section presents a novel Evolutionary Algorithm for solving the ontology alignment
problem. The algorithm is a hybrid approach taking advantage of features of Evolutionary
Programming and population-based Extremal Optimisation [105, 83].

Formal Definitions

As presented generally for Evolutionary Algorithms in Section 2.3, a population 〈I, p〉 of
species (candidate solutions) is exposed to an environment (problem space). In a num-
ber of n iterations (generations) the population continuously changes, such that better
adapted individuals survive and reproduce themselves, while less adapted individuals be-
come extinct. Two crucial operations are involved in this approach, namely mutation and
selection. While mutation is applied to single individuals, selection is applied to the entire
population.

Each species represents a candidate alignment between two ontologies O1 and O2 us-
ing the correspondence permutation representation introduced in Section 5.2.2. Thereby,
for each entity type t ∈ T there is a correspondence permutation πt : {1, . . . , mt} →
{1, . . . , nt} where mt = ]tO1 and nt = ]tO2. For every species x ∈ I the position in the
problem space is defined as

p(x) =
⋃
t∈T

{
〈ej , fπ(x)

t (j)
〉 | j ∈ {1, . . . , mt}, π(x)t (j) 6= �

}
(5.1)
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where π
(x)
t denotes the correspondence permutation for type t represented by species x.

The set p(x) of correspondences represented by the correspondence permutations for the
different entity types in O1 and O2 is called the configuration of the species. Note that
this configuration is also an alignment. Without loss of generality, the remainder of this
section considers only a single entity type for the sake of brevity.

Mutation Operators. In traditional Evolutionary Algorithms as presented in Sec-
tion 2.3 mutation of species is a purely random modification of a solution component2

in order to explore previously unexplored regions of the problem space. This approach
is valid and expedient for black box optimisation problems, where there is no suitable
support heuristic in order to evaluate solution components. However, in many application
domains, there is some knowledge about the structure of the problem, and thus about the
contribution of solution components to the overall solution. In these cases, it is common
practise to use adapted (informed) mutation operators in order to accelerate the conver-
gence. For instance in an application of Evolutionary Programming for the problem of
multi-sequence DNA/RNA alignment, Chellapilla and Fogel [29] implement a mutation
operator that uses an already good part of the solution and tries to improve its neighbour-
hood. In a similar fashion for the problem of ontology alignment, the confidence of single
correspondences in an alignment can be used as a support heuristic that has an impact on
the mutation. (See discussion in Section 5.1.)

In the following paragraphs, two mutation operators are introduced that are adapted to
ontology alignment and exploit the correspondence confidence values as a support heuristic:
the swap operator and the exchange operator.

Swap Operator. The swap operator us transforms a correspondence permutation
π into a new one π′ by picking two indexes j and k, such that 1 ≤ j < k ≤ m and
π(j), π(k) 6= �. Subsequently, it transforms the correspondence permutation as follows by
setting π′(j) = π(k) and π′(k) = π(j) as well as π′(l) = π(l) for all l 6∈ {j, k}.

Let j be a candidate index to be selected for being swapped. If π(j) 6= �, let Cj =
〈ej , fπ(j)〉 be the correspondence represented by j and let ι(Cj) be its confidence. Further

let µ = 1
|A|
∑

D∈A ι(D) the mean confidence of all correspondences in the alignment. Index
j is selected for being swapped with probability

pswap(j) = pswapSelect(ι(Cj), µ) · % (5.2)

where % is a parameter used to limit the number of swap operations happening3 and
pswapSelect(x, µ) is defined as follows:

pswapSelect(x, µ) =

{
1− (sigmoidµ(x) · 2µ) if x ≤ µ
1− (sigmoidµ(x) · 2(1− µ) + 2µ− 1) otherwise

(5.3)

where

sigmoidµ(x) =
1

1 + e−10(x−µ)
(5.4)

is the sigmoid function shifted, such that its inflection point is at µ. Figure 5.2 illustrates
how the pswapSelect depends on the particular correspondence’s confidence and the mean
confidence of all correspondences.

2Typically solutions are represented as bit strings, where the mutation operator randomly flips bits.
3The parameter % should typically be a small value (good results were achieved with values between 0.1

and 0.3), since it limits impact of the swap operator and makes this mutation less “aggressive”.
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Figure 5.2: Probability to select an index as candidate for swapping. The probability is
computed according to Equation (5.3) and depends on the confidence of the correspondence
represented by the index, and the mean confidence of all represented correspondences. The
plots show the probabilities for three different mean confidences (µ1 = 0.1, µ2 = 0.5, µ3 =
0.8).

The rational behind this sort of probability computation is that depending on the
evaluation metrics used to determine the confidence of a correspondence, the confidence
values are not distributed equally in the range [0, 1]. In case no suitable evaluation metrics
are available, or the used evaluation metrics do not perfectly address the required ontology
characteristics, the evaluation scores would centre around a comparatively low value. The
computation of the pswapSelect probability takes the mean confidence into account and
favours correspondences of a confidence below average to be swapped, and reduces the
probability for correspondences with a confidence above average.

Note that the swap operator does not change the size of the alignment, since no corre-
spondences are removed from or added to the alignment. Moreover, the entities from both
ontologies participating in the alignment, will be the same before and after executing the
swap operator.

Exchange Operator. The exchange operator ue also transforms a correspondence
permutation π into a new one π′. The operator modifies the configuration of a species
by removing an existing correspondence (setting its correspondence permutation value to
�), by adding a new correspondence (setting a � correspondence permutation value to
the index of an entity that is not already participating in another correspondence), or by
replacing an existing entity with another entity that is not already participating in another
correspondence.
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Figure 5.3: Decision tree for executing the exchange operator.

Let R = {1, . . . , n} \ {π(1), . . . , π(m)} be an archive of entity indexes of O2 not
currently participating in a correspondence. The exchange operator modifies the corre-
spondence permutation C according to the decision tree shown in Figure 5.3. The action
to perform is selected for each correspondence permutation index j independently.

The top-level branching is done depending on whether the current correspondence
permutation index actually represents a correspondence. If the index does not represent
a correspondence, i.e. π(j) = �, a decision is taken whether to add a correspondence
to be represented by this index. This modification is performed with probability psetV .
If the index j actually represents a correspondence, i.e. π(j) 6= �, a first decision is
taken with probability pchange whether to perform a change at all. In the positive case,
probability psetN determines whether the correspondence will be removed or whether the
entity fπ(j) ∈ O2 corresponding to ej ∈ O1 will be replaced by a random entity from O2

that is not currently participating in any correspondence.

The probabilities pchange, psetN , and psetV depend on the number of iterations that
have elapsed. Let i be the current iteration, and let imax be the maximum number of
iterations to perform.

The probability psetV to add a new correspondence for an entity ej ∈ O1 which is
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Figure 5.4: Exchange operator: probability psetV to add a correspondence.

currently not participating in any correspondence is defined as

psetV (i) = − i

imax
(b− a) + b (5.5)

which is a decreasing linear function depending on the iteration progress i/imax. It has two
constant parameters a and b, determining the lower and upper bound of the probability,
respectively. Figure 5.4 shows a plot of psetV .

The rational behind the probability decreasing in the course of the iterations is that
the added correspondence is randomly chosen. There is no guarantee about the quality of
the newly generated correspondence. Towards the end of the optimisation run with few
iterations left, there are few chances that a chosen correspondence of low quality will be
corrected by future mutations. So decreasing the probability throughout the iterations
makes the algorithm more conservative towards the end.

The lower and upper bound parameters a and b should be set according to the intuition
of the probability decrement. In particular, the lower bound a should be close to 0. The
upper bound b can incorporate knowledge about the expected overlap of the ontologies,
since the higher its value, the more likely “�” entries in the correspondence permutation
will be replaced by entity indexes. This leads to a more complete overlap represented by
the alignment. Empirical studies have shown that values of b between 0.2 and 0.5 lead to
good results.

The probability psetN to remove an existing correspondence for an entity ei ∈ O1 is
defined as

psetN (i) =
i

imax
(b− a) + a (5.6)

which is an increasing linear function depending on the iteration progress i/imax. It has two
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Figure 5.5: Exchange operator: probability psetV to remove a correspondence.

constant parameters a and b, determining the lower and upper bound of the probability,
respectively. Figure 5.5 shows a plot of psetN .

The rational behind the probability increasing in the course of the iterations is that
towards the end of the optimisation run with few iterations left, there are few chances that
a bad correspondence will be improved by future mutations. So increasing the probability
to remove bad correspondences throughout the iterations cleans out the alignment from
bad correspondences thus decreasing its size. This behaviour is particularly desired for
ontologies with only a partial overlap.

Following this intuition, the lower and upper bound parameters a and b should be set
accordingly. Removing correspondences should be a rare operation at the beginning of the
optimisation run, so a should be set to a value close to 0. The upper bound parameter b
determining the probability at the end of the optimisation run can incorporate knowledge
about the expected overlap of the ontologies, since a higher value of b causes the alignment
to shrink towards the end of the algorithm execution4. Empirical studies have shown that
values of b of between 0.1 and 0.5 lead to good results.

The probability pchange to change an existing correspondence for an entity ej ∈ O1

depends not only on the iteration i, but also on the confidence ι(〈ej , fπ(j)〉) of the corre-
spondence represented by index j. It is defined as

pchange(i, ι) =

{
1− ι

ga(i)
if ga(i) > ι

0 otherwise
(5.7)

4Since the decision of whether to remove a correspondence also depends on its confidence (cf. Equa-
tion (5.7)), the expected confidence value above which correspondences are regarded “good” also influences
the choice of the value of parameter b.
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Figure 5.6: Exchange operator: probability pchange to change an existing correspondence.
a denotes the initial confidence threshold.

where

ga(i) = (1− a)
i

imax
+ a (5.8)

Similar to the pswap probability the pchange probability depends on the confidence of the
correspondence considered for a change as a support heuristic. The probability for an
existing correspondence to be changed decreases with a higher confidence. As a second
factor, the iteration progress influences the probability. At the beginning of the optimisa-
tion run, correspondences with a confidence above a threshold a are never changed. In the
course of the iterations this threshold increases towards 1 in the last iteration. Figure 5.6
shows a plot of pchange.

The rational behind the definition of this probability function is as follows. On the one
hand, correspondences with low confidence should always have a higher probability to be
changed than those with a high confidence. On the other hand, the probability to change a
correspondence should increase with the iteration progress also for better correspondences,
for the following two reasons:

• After the decision to perform a change it is decided whether to remove the corre-
spondence or replace its second entity with probability psetN . This latter probability
is increasing, such that in combination with pchange changes will more likely re-
move than modify correspondences. This will sort out correspondences of low and
medium confidence and help improving the average confidence of correspondences in
the alignment.

• In early iterations correspondences of medium confidence will be kept, since there
will be chances in later iterations that these correspondences will be altered by the
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 15 16 21 � � � � 18 24 � 20 � 17 23 29

⇓
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 15 16 17 � � � � 18 24 � 20 � 21 23 29

⇓
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 15 16 17 � � � � 18 19 � 20 25 21 23 29

Figure 5.7: Example application of the swap operator followed by the exchange operator
on a correspondence permutation.

swap operator. Conversely, it is more likely that towards the end of the optimisation
run correspondences of low and medium confidence have undergone several swap
operations already. Correspondences that remain with low or medium confidences
then have the chance to be replaced or removed.

The dependence on the elapsed number of iterations has previously been studied by
Thomsen [126] in terms of so-called annealing schemes. The underlying idea is that with
the iteration progress the found solution becomes more stable, and appropriate actions
can be taken, such as limiting the amplitude of changes done by the mutation operator,
or, as in this case, increasing the chance to clean out bad solution components towards
the end of the execution.

Example. In order to illustrate the effects of the two mutation operators presented in the
previous paragraphs, a correspondence permutation is mutated to achieve the one from
Figure 5.1 using the two operators. Figure 5.7 illustrates the application of the swap
operator, followed by an application of the exchange operator. In the first step indexes 4
and 14 are selected for being swapped. In the second step, index 10 is selected for being
exchanged, and since its value is not �, a decision is taken whether to replace the previous
value, 24, with � or another random value from the archive. In this case the decision is
to replace it with another value, 19. For the array index 13 the exchange operator is also
applied, and since its value is � and the decision to set a new value was positive, it is
replaced by a random value from the archive, here 25.

Selection. Apart from mutation the second important operation in evolutionary pro-
cesses modelled by this evolutionary algorithm is selection. In this algorithm a simplified
linear rank-based selection [58] is applied, which is controlled by a selection ratio parameter
ζ. For a population 〈I, p〉 and an objective function F (cf. Section 5.1 and Definition 2.9)
a ranking is defined as a bijective function r : I → {1, . . . , |I|}, such that for any two
xi, xj ∈ I with 1 ≤ i < j ≤ |I| holds r(xi) < r(xj) iff F (p(xi)) < F (p(xj)). Let
E = {x ∈ I | r(x) ≤ ζ · |I|} be the set of species to become extinct. Let S = {x ∈
I | r(x) > (|I| − ζ · |I|)} be the set of species to be allowed to reproduce. Each species
x ∈ S reproduces by creating exactly one offspring y, which is a clone of x, such that
p(y) = p(x). Note that the population size remains constant due to |E| = |S|. Let s be
a selection function transforming a population 〈I, p〉 into a new one 〈I ′, p′〉, such that
I ′ = (I \ E) ∪ {x | x is a clone of y ∈ S} and for all x ∈ I ′

p′(x) =

{
p(x) if x ∈ I \ E
p(y) if x is an offspring of y ∈ S

(5.9)
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The first case represents the preservation of the assignment of a “surviving” species x, that
is if x ∈ I and x ∈ I ′. The second case represents the assignment of the “new” species,
i.e. those that were created by reproduction. They are assigned the same position in the
solution space as their parent y ∈ S.

The presented Evolutionary Algorithm for ontology alignment performs several atomic
mutation operations before carrying out a selection step. This reflects an intensified search
by the different species in different areas of the problem space, before a poorly perform-
ing species becomes extinct. Reducing the impact of selection like this is motivated by
the following observation. Experience has shown that for this application of Evolution-
ary Computation the mutation operation has a stronger emphasis on the quality of the
obtained solutions. The reason is that the influence of the support heuristic of correspon-
dence level evaluation scores is relatively significant for the overall alignment evaluation.
The mutation operators are influenced by those evaluation scores for correspondences
and modify the represented alignment on the correspondence level. Reducing the fre-
quency of selection operations has also been shown to be successful by Randall [105] for
a population-based Extremal Optimisation algorithm. A similar selection strategy where
the worst performing population members according to the objective function are replaced
was introduced in the EPSOC algorithm by Lewis et al. [83].

Considering the periodic application of the selection function s, as well as the mutation
operators us and ue, the update of a population from iteration i to iteration (i+1) computes
as

〈Ii+1, pi+1〉 = U(〈Ii, pi〉) (5.10)

where Ii+1 = s(Ii) and pi+1 = (ue ◦ us ◦ s)(pi).

Algorithm

This subsection presents an algorithm that computes an ontology alignment following the
method presented in the previous paragraphs. The algorithm is split into three parts:
an initialisation step, the evolution of the population, and an update procedure i.e. the
application of the two mutation operators for each species.

Algorithm 5.1 Initialisation of Species

Require: |I| the number of species
for i = 1 to |I| do

for all t ∈ T do
mt = min{]tO1, ]tO2}
nt = max{]tO1, ]tO2}
R⇐ {1, . . . , nt}
for j = 1 to mt do
πt(j) = randU (R)
R⇐ R \ πt(j)
Compute ι(〈ej , fπt(j)〉)

end for
end for

end for

The computation of an alignment starts with an initialisation as presented in Algo-
rithm 5.1. Hereby, each species is initialised with a random configuration of a correspon-
dence permutation for each entity type.
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The optimisation run is an iterative, guided evolution of the population as encoded
in Algorithm 5.2. The total number of iterations is split into “sprints”, where several
consecutive mutations happen without a selection. This can be seen as a single mutation
with intermediate confidence re-computations on the correspondence level. The rational
behind this method, as well as the details about the selection step were given in the
previous paragraphs.

Algorithm 5.2 Population Evolution

Require: |I| the number of species
imax the number of iterations
isel the number of selection steps
ζ the selection ratio

for s = 1 to isel do
for j = 1 to |I| do

for i = 1 to bimax/iselc do
Mutate species xj ∈ I according to Algorithm 5.3
(using current iteration i+ s · bimax/iselc)

end for
Compute F (p(xj))

end for
Replace ζ · |I| worst species according to F
with ζ · |I| best species according to F (cf. Equation (5.9))

end for

The update of species according to the two mutation operators presented earlier is
done according to Algorithm 5.3. Note that all species can be evaluated and updated in
parallel.

5.3.2 Particle Movement in Swarm Optimisation

This section presents a novel Discrete Particle Swarm Optimisation (DPSO) algorithm
for solving the ontology alignment problem. The algorithm is motivated by a DPSO
algorithm of Correa et al. [32] applied to the problem of attribute selection for a Näıve
Bayes classifier (cf. Section 3.2.3). Correa et al. [32] show that the classical binary PSO
has problems finding the optimal (smallest) number of attributes. In the case of ontology
alignment there is the analogous problem of finding the largest number of correspondences
in an alignment. For this reason, the approach presented here does not adopt the classical
binary PSO, but instead uses a modified version of the DPSO by Correa et al. based on
the correspondence set representation introduced in Section 5.2.1.

Formal Definitions

Recalling and extending the definitions from Section 2.3 a particle swarm is a population
〈I, p〉, which moves through the problem space in n iterations. In traditional PSO, in
each iteration, each particle updates its position in the problem space using a so-called
velocity vector. This movement happens via a guided, randomised re-initialisation of each
particle. Since this approach uses a modified discrete PSO, this idea is partially relaxed,
and particles and velocities are defined following the approach of Correa et al. [32].

Each particle represents a candidate alignment between two ontologies O1 and O2 us-
ing the correspondence set representation introduced in Section 5.2.1. Particles can have
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Algorithm 5.3 Update of Species xi

Require: i the current iteration
∀t ∈ T :
πt a correspondence permutation
mt = min{]tO1, ]tO2}
nt = max{]tO1, ]tO2}
Rt ⊆ {1, . . . , nt} an archive of indexes of currently unused entities of type t from the
bigger of voct(O1) and voct(O2).

for all t ∈ T do
{swap operator:}
S ⇐ ∅
for j = 1 to mt do

if randU < pswap(j) then
S ⇐ S ∪ {j}

end if
end for
S′ ⇐ S
π′t ⇐ πt
for all k ∈ S do
k′ ⇐ randU (S′)
πt(k)⇐ π′t(k

′)
S′ ⇐ S′ \ {k′}

end for
for all C ∈ {〈ej , fπt(j)〉 | j ∈ {1, . . . , mt}, πt(j) 6= �} do

Compute ι(C)
end for

{exchange operator (decision tree, cf. Figure 5.3):}
for j = 1 to mt do

if πt(j) = � then
if randU < psetV (i) then
πt(j)⇐ randU (Rt)
Rt ⇐ Rt \ {πt(j)}

end if
else

if randU < pchange(i, ι(〈ej , fπt(j)〉)) then
if randU < psetN (i) then
Rt ⇐ Rt ∪ πt(j)
πt(j)⇐ �

else
πt(j)⇐ randU (Rt)
Rt ⇐ Rt \ {πt(j)}

end if
end if

end if
end for
for all C ∈ {〈ej , fπt(j)〉 | j ∈ {1, . . . , mt}, πt(j) 6= �} do

Compute ι(C)
end for

end for
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different dimensionality, i.e. the number of correspondences in the alignment it currently
represents, and hence differ from traditional PSO, where each particle has the same dimen-
sionality. A dimensionality of zero means that a particle represents the empty alignment.
For every particle x ∈ I the position in the problem space is defined as a vector5

p(x) =
{
C(x,1), C(x,2), . . . , C(x,k)

}
(5.11)

where for each j ∈ {1, . . . , k}, C(x,j) is a correspondence as defined in Definition 2.5.
This set of correspondences is also called a configuration of the particle. Note that this
configuration is also an alignment. Since the maximum number of correspondences in an
alignment according to Equation (2.1) is

N =
∑
t∈T

min{]tO1, ]tO2}

the (variable) dimensionality of a particle is k ∈ {0, . . . , N}. According to Definition 2.9,
the fitness of a particle x is

F (p(x)) (5.12)

Each particle x maintains the configuration of the best alignment it has ever represented
with respect to F . This personal best (pBest) alignment of dimensionality l ∈ {0, . . . , N}
is denoted by

ppersonal(x) =
{
D(x,1), D(x,2), . . . , D(x,l)

}
(5.13)

where for each j ∈ {1, . . . , l}, D(x,j) is a correspondence. Note that the number of
correspondences can change during the iteration of the swarm (see later in this section).
Hence the dimensionality l of the pBest configuration of a particle does not need to coincide
with the dimensionality k of its current configuration. The neighbourhood best (nBest),
i.e. the best performing parameter configuration any particle in the neighbourhood of a
particular particle x has ever represented with respect to F is denoted by

pneighbour(x) =
{
D(x,1), D(x,2), . . . , D(x,m)

}
(5.14)

where for each j ∈ {1, . . . , m}, D(x,j) is a correspondence. Its dimensionality is m ∈
{0, . . . , N}.

To ensure a guided convergence towards an optimal alignment during the iterations, the
influence of arbitrary random re-initialisation of each particle has to be restricted. To this
end, the likelihood is raised that those correspondences in a particle are preserved, which (i)
are evaluated best, and (ii) are also present in the personal (5.13) or neighbourhood (5.14)
best alignment.

The fitness vector of a particle x is denoted by a 2-by-k array

~Fx =

(
ι(x,1) ι(x,2) . . . ι(x,k)
C(x,j1) C(x,j2) . . . C(x,jk)

)
(5.15)

associating a fitness ι(x,µ) to each correspondence C(p,jµ). The confidence ι as defined in
Definition 2.6 is used to reflect the fitness of a correspondence. This is a support heuristic
and does not replace the main objective6 to optimise F (p(x)). The vector is ordered by
its confidence values.

5Note that the exact mathematical notation is violated and the vector is denoted with curly braces, as
it can also be seen as a set.

6The objective function F (A) typically incorporates the confidence values ι(C), ∀C ∈ A as done by the
correspondence computation alignment evaluator (cf. Equation (4.43)). This, however, is not necessarily
required.
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A velocity vector is defined as another 2-by-k array

~Vx =

(
v(x,1) v(x,2) . . . v(x,k)
C(x,l1) C(x,l2) . . . C(x,lk)

)
(5.16)

mapping a proportional likelihood v(x,µ) to each correspondence C(x,lµ). The vector is
ordered by its proportional likelihoods. Proportional likelihoods are used to raise the
probability of those correspondences to be preserved in a particle that are also present in
the personal and neighbourhood best alignments. Initially, for each C(x,lµ), v(x,µ) is set to
1. This initialisation is also done for new correspondences joining the particle during its
movement. The update of the proportional likelihoods is then done in two steps, using
two parameters β ∈ R+ and γ ∈ R+. Firstly, if C(x,lµ) is present in ppersonal(x), add β to
v(x,µ). If it is present in pneighbour(x), add γ to v(x,µ). These two parameters control the
influence of the fact that a correspondence is also present in the personal best (β) or the
neighbourhood best (γ) alignment, respectively. After this, each v(x,µ) is multiplied by
a uniform random number φµ = randU ∈ [0, 1]. The proportional likelihoods realise the
social component typical for PSO algorithms.

To calculate a keep-set, which will not be replaced by a random re-initialisation during
an iteration, two sets are defined as

F(x,κ) =
{
C(x,jµ) | µ ∈ {1, . . . , κ · k}, jµ a reordering as in ~Fx

}
(5.17)

V(x,κ) =
{
C(x,lµ) | µ ∈ {1, . . . , κ · k}, lµ a reordering as in ~Vx

}
(5.18)

with a parameter κ ∈ [0, 1] to control the size of the keep-set. The sets F(x,κ) and V(x,κ)
hence contain those correspondences of a particle, which are the κ · k best evaluated, and
highest ranked according to their proportional likelihood, respectively. The keep-set is
now defined as

K(x,κ) = F(x,κ) ∩ V(x,κ) (5.19)

containing those correspondences, which are part of both sets F(x,κ) and V(x,κ). Values for
κ should not be chosen too small in order to avoid an empty keep-set after computing the
intersection according to Equation (5.19). On the other hand, κ should not be chosen too
large either in order to avoid getting stuck in local optima by keeping too large portions
of the alignment throughout the iterations. Values for κ of around 0.5 have shown to lead
to good results.

For a more stringent convergence towards an optimum alignment, an additional safe-set
is introduced as

S(x,σ) =
{
C(x,jµ) | ι(x,µ) > 1− σ

}
(5.20)

a set of correspondences, which will never be replaced in this particle. Here σ ∈ [0, 1] is
the confidence threshold for correspondences to be included in the safe-set. Since there
is the chance of getting stuck in a local optimum for the alignment, one would typically
choose a very small value for σ. In each step from iteration i to iteration (i + 1), the
update algorithm firstly computes a new particle length k′ according to a self-adaptation
process as discussed later in this section. Secondly, the particle updates its configuration
as

〈Ii+1, pi+1〉 = U(〈Ii, pi〉) (5.21)

where Ii+1 = Ii and for all x ∈ Ii+1

pi+1(x) = S(x,σ) ∪K(x,κ) ∪R (5.22)
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where R is a set of k′ − |S(x,σ) ∪ K(x,κ)| random new correspondences, such that the
alignment validity (cf. Definition 2.7) is maintained.

Informally, the particle keeps the set S(x,σ) ∪ K(x,κ) and replaces the remaining k′ −
|S(x,σ) ∪K(x,κ)| correspondences with new random ones. This behaviour ensures a conver-
gence of each particle towards an optimum according to the objective function, which is
based on Definition 2.9, since the keep-set will steadily increase, and the fluctuation due
to random re-initialisation will become less drastic as the swarm evolves.

The presented DPSO differs from the approach by Correa et al. mainly in two aspects.
Firstly, the size, i.e. dimensionality of each particle is updated in each iteration, where in
the approach of Correa et al. each particle is given a randomly chosen size, which does
not change throughout the iterations. In their approach this is reasonable seeing that in
their experiment [32] the authors used a population size, which is much larger than the
number of possible particle lengths. For the problem of ontology alignment the number
of possible particle lengths can be much larger, since it depends on the size of the input
ontologies, i.e. their number of entities. It might thus become difficult to increase the
population size accordingly, which makes it necessary to dynamically adjust the particle
lengths in order to find the optimal size of an alignment. The second aspect in which
this approach differs from the one by Correa et al. is the particle update procedure. In
this approach, the change of a particle’s configuration does not only depend on the con-
figuration of the personal best and neighbourhood best7, but also on the evaluation of
the single correspondences. This is not possible in the use case of attribute selection for
a classifier, as attributes cannot be evaluated independently. However, in the presented
DPSO, the influence of single correspondence evaluations should not be overemphasised,
since the goal is to obtain globally good solutions, which have to meet criteria that cannot
be expressed by evaluating correspondences in isolation. Thus incorporating the corre-
spondence confidences this way should merely be seen as a heuristic, which has shown to
provide good results (cf. Chapter 7).

Example

In order to illustrate the theoretical procedure from the previous paragraphs, one iteration
is run through in this example, updating a particle x. Consider an alignment of the two
example ontologies presented in Figure 1.1. Suppose, x represents an alignment consisting
of k = 5 correspondences

p(x) =
{
C(x,1), C(x,2), C(x,3), C(x,4), C(x,5)

}
which are allocated as in Table 5.1. Suppose the confidence values of the single correspon-
dences have been determined and are represented as follows

~Fx =

(
0.96 0.85 0.81 0.67 0.13
C(x,3) C(x,2) C(x,5) C(x,1) C(x,4)

)
Note that the array is sorted by its confidence values in descending order, as larger values
mean a better evaluation.

The velocity vector ~Vx has been initialised with all proportional likelihoods set to 1:

~Vx =

(
1 1 1 1 1

C(x,1) C(x,2) C(x,3) C(x,4) C(x,5)

)
7Correa et al. use the entire swarm as neighbourhood, so in their original work they use a global best

instead of a neighbourhood best.
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Table 5.1: Example correspondence set and assigned confidence values for a candidate
alignment represented by particle x of the two example ontologies presented in Figure 1.1.

Correspondence Confidence value

C(x,1) = 〈Unpublished, Publication〉 0.67

C(x,2) = 〈Inproceedings, InProceedings〉 0.85

C(x,3) = 〈Book, Book〉 0.96

C(x,4) = 〈Mastersthesis, Event〉 0.13

C(x,5) = 〈TechReport, TechnicalReport〉 0.81

Now suppose, correspondences C(x,2), C(x,3), and C(x,5), are also present in ppersonal(x),
and C(x,3) is also present in pneighbour(x). Parameters β and γ are added accordingly (e.g.
β = 0.4 and γ = 0.5):

~Vx =

(
1 (1 + β) (1 + β + γ) 1 (1 + β)

C(x,1) C(x,2) C(x,3) C(x,4) C(x,5)

)
After adding the parameters, each proportional likelihood is multiplied by a uniform ran-
dom number φj = randU ∈ [0, 1], ∀j ∈ {1, . . . , 5}. The array will then be sorted by its
proportional likelihoods in descending order, as higher values mean a higher likelihood.
This might result in something like

~Vx =

(
1.34 1.12 0.88 0.76 0.32
C(x,2) C(x,5) C(x,4) C(x,3) C(x,1)

)
Suppose κ = 0.6 is chosen, so the keep-set K(x,κ) is built as the intersection of the first

κ · k = 3 correspondences of the arrays ~Fx and ~Vx, which results in

K(x,κ) =
{
C(x,2), C(x,5)

}
Assume that σ = 0.1 is chosen and thus the safe-set S(x,σ) determined as

S(x,σ) =
{
C(x,3)

}
The update algorithm will now keep the set

S(x,σ) ∪K(x,κ) =
{
C(x,2), C(x,3), C(x,5)

}
and replaces the remaining two correspondences with random new ones.

Self-Adaptation of Particle Length

A general problem when aligning two ontologies is that the optimal number of correspon-
dences is not known upfront. This method approaches this by assigning each particle a
random number of correspondences during the initialisation. The initial guesses are uni-
formly distributed between zero and the maximum number of possible correspondences
between the two ontologies. Assuming that the chances for a particle to receive a good
fitness value are higher if its number of correspondences is close to the optimal number
of correspondences, the heuristic below attempts to adjust the number of correspondences
for each particle and in each iteration based on the current neighbourhood best particle.
Let kx be the number of correspondences represented by particle x, and let knBest be the
number of correspondences represented by the nBest. (Note that correspondences for each



5.3 Iterative Convergence 69

entity type are considered separately.) Each particle adjusts its number of correspondences
if the following expression becomes true:

r1 ≥ τi if knBest > kx
r1, r2 ≥ τi if knBest < kx

false else
(5.23)

where r1 = randU and r2 = randU denote random values and τi an iteration dependent
threshold value defined as

τi = λ

(
i

imax

)2

(5.24)

where λ ∈ [0, 1] is a constant weighting factor and i and imax denote the current and max-
imum iteration, respectively. The probability for a change therefore increases with the
number of iterations which prevents very rapid changes of the number of correspondences
at the beginning of the process where the prediction of the actual number of correspon-
dences is less accurate than later in the optimisation. Furthermore the probability for
decrease is always significantly lower than for an increase. The underlying assumption
behind this is that more correspondences are generally more desirable and in the majority
of tests this scheme has proven to be successful.

For each of the particles whose number of correspondences are changed, the maximum
range of this change is determined by

∆kmaxx =

{
winc · (knBest − kx) if knBest > kx
wdec · (kx − knBest) if knBest < kx

(5.25)

where winc and wdec denote weighting factors for the size of the interval. The extended
range ensures, similar to the velocity update in continuous PSO that the interval exceeds
the distance between the two values and allows a new value to either under- or overshoot
the reference value, i.e. the number of correspondences of the neighbourhood best particle.
The new number of correspondences of each type for a particle x is then adjusted by a
random value ∆kx = randU (0, . . . , ∆kmaxx ). The new number of correspondences k′x of
particle x can be computed as

k′x =

{
kx + ∆kx if knBest > kx
kx −∆kx if knBest < kx

(5.26)

In the case of an increase the algorithm attempts to adopt these from the keep-set of
the neighbourhood best particle. If more new correspondences are needed than can be
added this way the remaining correspondences are randomly created. In either case only
valid correspondences are added, i.e. the new correspondences cannot violate constraints
such as the restriction to 1:1 alignments, etc. When on the other hand the number of
correspondences decreases, a fitness ranking of all correspondences is performed and the
worst performing elements are removed.

Algorithm

This subsection presents an algorithm that computes an ontology alignment following the
method presented in the previous paragraphs. In this presentation the algorithm is split
into three parts, an initialisation step, the swarm iteration, and an update procedure to
determine the new configuration of each particle.
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Algorithm 5.4 Initialisation of Particles

Require: |I| the number of particles
for i = 1 to |I| do

for all t ∈ T do
nt = min{]tO1, ]tO2}
kt ⇐ randU ({1, . . . , nt}), a uniform random number
for j = 1 to kt do

Randomly select entities e1 ∈ voct(O1) and e2 ∈ voct(O2) that have not already
been selected, and create correspondence Cj = 〈e1, e2〉
Compute ι(Cj)
p(xi)⇐ p(xi) ∪ {Cj}

end for
Build ~Fi according to (5.15)
Compute F (p(xi))
ppersonal(xi)⇐ p(xi)

end for
end for

Algorithm 5.5 Swarm Iteration

Require: |I| the number of particles,
imax the number of iterations
for i = 1 to imax do

for j = 1 to |I| do
Update particle xj ∈ I according to Algorithm 5.6
if F (p(xj)) > F (ppersonal(xj)) then
ppersonal(xj)⇐ p(xj)

end if
if F (p(xj)) > F (pneighbour(xj)) then
pneighbour(xj)⇐ p(xj)

end if
end for

end for

The computation of an alignment starts with an initialisation, encoded in Algorithm 5.4.
In this initialisation step, each particle is initialised with a random number of correspon-
dences. It also encompasses evaluation, i.e. computation of the fitness value of each cor-
respondence and the initial assertion of the personal best alignment.

The execution of the algorithm is an iterative, guided evolution of the particle swarm
as outlined in Algorithm 5.5. In each iteration, the personal and neighbourhood best
alignment is updated, if a new best performing particle is seen. The guided evolution of
particles behaves according to the update procedure denoted by Algorithm 5.6. Note that
each particle can be evaluated and updated in parallel.

The particle update procedure in Algorithm 5.6 states the formal definitions presented
earlier in this section in a sequential manner. The single steps are explained in detail
there.
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Algorithm 5.6 Update of Particle xi

Require: k the number of correspondences in this particle
β, γ, κ, σ parameters
~Vi the proportional likelihood vector
~Fi the evaluation vector

Compute new particle length k′ according to (5.26) {this also modifies xi by adding or
removing correspondences according to the length adjustment}
for µ = 1 to k′ do

if C(i,lµ) ∈ ppersonal(xi) then
v(i,µ) ⇐ v(i,µ) + β

end if
if C(i,lµ) ∈ pneighbour(xi) then
v(i,µ) ⇐ v(i,µ) + γ

end if
v(i,µ) ⇐ v(i,µ) · φµ, φµ = randU ∈ [0, 1] a uniform random number

end for
Sort ~Vi by vi in descending order
Sort ~Fi by fi in descending order
Compute K(i,κ) according to (5.17), (5.18), and (5.19)
Compute S(i,σ) according to (5.20)
Replace correspondences p(xi) \ (S(i,σ) ∪K(i,κ)) by the same number of randomly gen-
erated new ones
for all C ∈ p(xi) do

Compute ι(C)
end for
Compute F (p(xi))

5.4 Discussion

This section concludes the chapter by providing a discussion of the presented algorithms
on the theoretical level. The discussion focuses on two aspects: (i) the crossover and mu-
tation operators, and the reason why the former is not used in the presented Evolutionary
Algorithm, and (ii) the differences and similarities between the Evolutionary Algorithm
and the Particle Swarm Optimisation algorithm.

5.4.1 Mutation vs. Crossover

As part of the update operation in Genetic Algorithms a recombination (crossover) is per-
formed, where two parent individuals are selected and sections of their solution strings
are exchanged. The motivation of this operation is the idea that exchanging partial in-
formation from two good solutions bears the chance of obtaining a better solution. While
this idea of recombination straightforwardly applies to simple solution representations,
there are difficulties when permutation-like representations are used. Since applying the
crossover operation for two permutations typically generates offsprings which are not valid
permutations anymore, corrective measures have been proposed [132]. Such measures are
reasonable if they preserve crucial information that are a determining factor for the quality
of the parent solution participating in the crossover.

Example. Consider a candidate solution for the Travelling Salesman Problem (TSP) that
is represented by a permutation. The order in which cities are visited is an important
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factor for the solution quality. Hence, a corrective measure for permutation recombination
that reconstructs a valid permutation string from the parental fragments while preserving
the relative order of their elements is desired.

A correspondence permutation as from Definition 5.1 does not have the ordering as de-
cisive factor but the assignment of values to specific positions. Hence, corrective measures
that change the exact position of a value in the correspondence permutation lose valu-
able parental information if that position was decisive for the quality of the parent. The
GAOM approach for ontology alignment by Wang et al. [130] does apply crossover, but
does not perform any corrective measures. This causes the undesirable limitations studied
in Section 3.2.1, such as enforced coverage of one ontology and enforced 1:m alignment
cardinality.

There has been continuous argument between advocates of the Genetic Algorithm
community, and promoters of Evolutionary Programming, on the topic about usefulness
and necessity of the mutation and crossover operators [118]. While Genetic Algorithms
employ the crossover operator, Evolutionary Programming deliberately abandons crossover
in favour of the exclusive application of mutation. It is generally accepted that crossover
is best suitable for exploitation of areas of the problem space where there are known good
solutions, while mutation is better for exploration of new areas in the problem space [118].
As discussed in the previous paragraphs, the exploitation behaviour of crossover cannot
easily be achieved for the correspondence permutation used for ontology alignment.

Additionally, mutation is considered important in non-stationary environments [118],
which paves the way for applying the presented Evolutionary Algorithm for ontology align-
ment also for scenarios with changing ontologies.

5.4.2 Evolutionary Algorithm vs. Particle Swarm Optimisation

The two biologically-inspired optimisation paradigms of Evolutionary Algorithms and Par-
ticle Swarm Optimisation have been chosen for implementing prototypical algorithms to
solve the ontology alignment problem. Both approaches are population-based and thus
could be formalised in a similar fashion using the generic notations introduced in Sec-
tion 2.3. The commonalities become clear in the similar structure of the algorithms,
which could both be described in three analogous parts of initialisation (Algorithms 5.1
and 5.4), population iteration (Algorithms 5.2 and 5.5), and individual update (Algo-
rithms 5.3 and 5.6).

Objective Function. Both algorithms use the same objective function F for evaluat-
ing alignments, and a support heuristic ι for evaluating correspondences. They use both
objective function and support heuristic as a black box, i.e. they do not depend on their
internal structure. This independence underpins the hypothesis from the introductory
Conjecture 2 that biologically-inspired optimisation techniques can be applied for ontology
alignment despite different ontology characteristics. These characteristics can be encoded
into the objective function using the extensible “toolbox” of similarity metrics and aggre-
gation functions presented in Chapter 4. Furthermore, the global alignment evaluation
performed by F accounts for global metrics, substantiating the introductory Conjecture 3.
This holds for both Evolutionary Algorithms as well as Particle Swarm Optimisation.

Support Heuristic. Both algorithms use a support heuristic ι reflecting the confidence
of any correspondence participating in the alignment. The use of this support heuristic is
based on the assumption that the quality of an alignment is to a significant extent governed
by the quality of its correspondences. This makes the application of biologically-inspired
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optimisation techniques and the encodings presented in this chapter less an “uninformed”
search as it is typically the case in application domains of those metaheuristics. On the
other hand exploiting the correspondence level information in the update operations of
the algorithm seems a reasonable approach to foster convergence.

In the case of the Evolutionary Algorithm, the mutation operators make use of the
correspondence confidence values when choosing a correspondence to be altered. In the
case of Particle Swarm Optimisation, the keep-set for each particle is partially, and the
safe-set entirely determined by the confidence values of represented correspondences.

Social Component. A major difference between the Evolutionary Computation and
the Swarm Intelligence paradigms is the social component being exploited in the latter.
While in the presented Evolutionary Algorithm global alignment criteria are mostly con-
sidered by favouring well performing solutions during the selection process, this informa-
tion is communicated via a social network in the presented Particle Swarm Optimisation
algorithm.

Compared to the selection operation in the Evolutionary Algorithm, the propagation
via the social network in the Particle Swarm Optimisation approach is expected to have
less drastic influence, since it does not replace or remove solutions, but “only” changes
probabilities.
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Chapter 6

Implementation

This thesis is accompanied with several implementation prototypes that have been devel-
oped in the context of the THESEUS programme1 funded by the German Ministry of
Economics and Technology. Within the THESEUS programme, the work package “On-
tology Management” of the Core Technology Cluster (CTC) has been responsible for
providing a scalable ontology management infrastructure to be applied to various use case
domains. The prototypes presented in this chapter constitute the THESEUS component
HARMONIA.

On the one hand the implementation serves the purpose of enabling the evaluation of
the concepts introduced in Chapter 5. On the other hand, it is intended to provide software
artifacts that are ready to be used and extended, and thus enable the research community
to pick up ideas and extend them in various directions. In order to facilitate the latter,
several design decisions were taken and software development techniques applied.

The pursued implementation objectives can be summarised as follows:

1. Reusablility : Decoupling of independent or shared software modules enables reusabil-
ity of components in other components and applications.

2. Robustness: Object-oriented software development and design patterns increase sta-
bility, efficiency, and testability.

3. Flexibility : The large amount of parameters influencing the behaviour of the imple-
mented approaches requires means to adjust the configuration without major efforts.
To achieve this all important parameters can be set via external configuration files.

All components have been implemented in the JavaTM 6 programming language due
to its wide acceptance in the community of semantic technology researchers and the avail-
ability of powerful 3rd-party libraries, such as the OWL API.

This chapter describes four software components. An application programming inter-
face (API) for ontology alignments named KADMOS is presented in Section 6.1. Imple-
mentations of the evaluation metrics for correspondences and alignments as discussed in
Chapter 4 are presented in Section 6.2. The Sections 6.3 and 6.4 describe the specific
implementations for the Evolutionary Algorithm approach (MapEVO) and the Particle
Swarm Optimisation approach (MapPSO) for ontology alignment, respectively. Section 6.5
presents several ways of how the algorithms can be deployed and thus made usable by client
applications. Apart from deployment as application programming interface (API), Web
Service, and a proprietary packaging format for an evaluation platform, the section focuses
on deployment in a cloud computing infrastructure in order to exploit the parallel nature

1http://theseus-programm.de/, accessed March 22, 2012

75

http://theseus-programm.de/


76 Implementation

of the population-based optimisation algorithms. Finally, in Section 6.6 some notes about
the development infrastructure are presented.

6.1 KADMOS API

Any alignment algorithm requires efficient means to represent and operate on alignments.
There is an open-source implementation project of an Application Programming Interface
(API) for ontology alignment2 [37], initiated by INRIA Grenoble Rhône-Alpes3. This API
is frequently used for developing alignment systems, however, it has several shortcomings.
Firstly, there is a negligent use of object typing. The static typing mechanism of the
JavaTM programming language is misused by defining java.lang.Object argument types
in core methods in order to pretend flexibility regarding the ontology representation frame-
work. This, in accordance with poor documentation, hampers ease of use and increases
the chance of runtime errors. Secondly, the API does not allow for a clear separation of
concerns regarding alignment representation and algorithm implementation. Alignment
algorithms implementing the INRIA Alignment API’s AlignmentProcess interface have
to represent the complete alignment themselves. Thirdly, API objects are not serialis-
able, which hinders the implementation of distributed alignment algorithms that need to
communicate by sending and receiving API objects.

These shortcomings gave reason to implement a novel simple, efficient alignment API
as an alternative to be used in various alignment algorithms. This API, named KAD-
MOS API, is more restricted compared to the INRIA Alignment API in terms of func-
tionality, since it is being developed from scratch. However, it overcomes the issues men-
tioned above by JavaTM generics in order to guarantee correct API usage, separation of
representation and algorithm, and serialisation facilities.

The KADMOS API uses the OWL API4 [67] in order to represent OWL ontology
objects.

6.1.1 Core Representation API

The core of the KADMOS API is the representation of correspondences and alignments.
Figure 6.1 shows the interfaces and methods they expose. The generic Correspondence

interface represents a correspondence of two entities of the same type T, which has to
be a subtype of OWLEntity provided by the OWL API. In addition to the two entities, a
correspondence has a confidence value to be set by algorithms in order to make a state-
ment about how certain the correspondence is. The interface Alignment represents an
alignment and provides access to the correspondences it contains. Most of its methods
are for convenience and allow for implementing classes to use various index data struc-
tures in order to efficiently access correspondences. Both Correspondence and Alignment

implement the marker interface Evaluable in order to allow static typing in other mod-
ules using the KADMOS API for assessing correspondences or alignments, such as the
HARMONIA Commons module (cf. Section 6.2).

For efficient instance control and correct instantiation, the factory design pattern is
used for creating correspondences and alignments. Every implementing class is expected
to also provide a specific factory for instantiating it. This mechanism is used for in-
stance in the AlignmentParser that uses the specified factories to create an object model

2http://alignapi.gforge.inria.fr/, accessed November 28, 2011. In the remainder of this chapter,
this API is called “INRIA Alignment API” in order to avoid confusion with the KADMOS API.

3http://www.inria.fr/centre/grenoble, accessed November 28, 2011.
4http://owlapi.sourceforge.net/, accessed March 22, 2012

http://alignapi.gforge.inria.fr/
http://www.inria.fr/centre/grenoble
http://owlapi.sourceforge.net/
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Figure 6.1: UML class diagram of the KADMOS API.
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of an externalised alignment, e.g. an XML-based file representation. Analogously, an
AlignmentRenderer interface is provided to allow for different implementations for exter-
nalising alignments.

6.1.2 Alignment Algorithm API

Decoupled from the representation API for correspondences and alignments, an algorithm
API is provided as part of the KADMOS API. Figure 6.6 illustrates two interfaces to be
implemented by alignment algorithms. Algorithms that take two ontologies and compute
an alignment can implement the AlignmentAlgorithm interface. Algorithms that are
capable of using an initial alignment, i.e. an alignment or partial alignment that is known
prior to the execution of the algorithm, can implement the UpdatingAlignmentAlgorithm
interface. The algorithm can be provided with arbitrary configuration parameters via an
optional method setParameters.

6.1.3 Cloud Adapter API

In order to facilitate the use of cloud infrastructures the KADMOS API provides in-
terfaces and implementations for connecting to computing resources of “Infrastructure-
as-a-Service” (IaaS) providers. Figure 6.2 illustrates the cloud adapter API included in
KADMOS. It includes two generic interfaces, CloudController and CloudWorker, that
can be used by algorithms that follow the common server/worker pattern. These interfaces
can be implemented for any IaaS cloud computing environment. There are implementa-
tions provided by KADMOS for the Amazon Web ServicesTM (AWS) infrastructure, where
the management of Amazon Machine Images (AMIs) is encapsulated by an AWSAdapter.
Since computationally intensive algorithms, such as ontology alignment algorithms, can
have long response times for single worker jobs, it is crucial for the controlling instance to
know whether a worker is still alive and computing, or whether it is no longer responsive
due to a network problem or the like. Hence, KADMOS provides the ServerHeartbeat-

Communicator and ClientHeartbeatCommunicator facilities in order to send a periodic
heartbeat in case a worker response is taking a long time. Messages sent between server
and worker, as well as the heartbeat signal, are encapsulated in a SimpleCloudMessage

object.

6.2 HARMONIA Commons

Shared components available to be used by arbitrary alignment algorithms have been
implemented in the module HARMONIA Commons. The module is decoupled from any
particular alignment algorithm and uses the KADMOS API for representing alignment
objects. Essentially this component can be used to assess any KADMOS object that is
characterised as Evaluable by the according marker interface. Currently these objects
are correspondences and alignments.

The design of the module defines a generic interface Evaluator with three specialisa-
tions:

• Correspondence evaluation (BaseMatcher)

• Alignment evaluation (AlignmentEvaluator)

• Evaluation aggregation (Aggregator)
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Figure 6.2: UML class diagram of the KADMOS cloud adapter API.
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Figure 6.3: UML class diagram of the HARMONIA Commons module for alignment
evaluation.

Correspondence and alignment evaluators are only applicable to the types Correspondence
and Alignment, respectively, while aggregators can be applied to any evaluable object.
Aggregators have several other evaluators registered and aggregate their individual eval-
uations to a single evaluation value. The generic availability of aggregators allows for the
configuration of complex alignment evaluation functions that comprise global measures on
the alignment level, as well as local measures on the correspondence level.

Figure 6.3 shows the UML class diagram for the alignment evaluation module of
HARMONIA Commons. It illustrates, how abstract classes implement core functional-
ity for each evaluator type. Concrete implementations thus have to extend these abstract
classes and essentially have to implement a single abstract method. The class indicated as
(Optimiser) in the diagram represents any of the optimisation metaheuristics investigated
in this thesis. However, any alignment algorithm (regardless whether it is optimisation-
based or not) can use the module to evaluate alignments or correspondences.

The HARMONIA Commons alignment evaluation module contains implementation
classes for the evaluation functions defined in Section 4.1. This is by no means an exhaus-
tive set of implemented evaluation measures and can be extended according to whatever
alignment quality criteria are relevant for the alignment task at hand. There is no clear
separation between local and contextual correspondence evaluators on the implementation
side, since the alignment context has to be provided at initialisation time for all evalua-
tors. Table 6.1 lists the implementation classes of local correspondence evaluators for the
evaluation functions defined in Section 4.1.1. Table 6.2 lists the implementation classes of



6.2 HARMONIA Commons 81

Table 6.1: List of implementation classes for local correspondence evaluators. Package
names are omitted for readability purposes. (All local correspondence evaluators are im-
plemented in the package de.fzi.harmonia.commons.basematcher.*.)

Implementation class Evaluation function

EntityNameDistanceMatcher hlexIDSim(C)

EntityLabelDistanceMatcher hlexLabelSim(C)

EntityTextNameDistanceMatcher htextIDSim(C)

EntityTextLabelDistanceMatcher htextLabelSim(C)

EntityCommentDistanceMatcher hentityCommentSim(C)

EntityVirtualDocumentDistanceMatcher hentityVDSim(C)

Table 6.2: List of implementation classes for contextual correspondence evaluators. Pack-
age names are omitted for readability purposes. (All contextual correspondence evaluators
are implemented in the package de.fzi.harmonia.commons.basematcher.*.)

Implementation class Evaluation function

HierarchyDistanceMatcher hAhierarchy(C)

SimilarityFloodingDistanceMatcher hAhierarchyProp(C)

ClassAsDROfPropertyMatcher hAclassDRProp(C)

PropertyByDRClassMatcher hApropDRClass(C)

CrissCrossMatcher hAcrissCross(C)

SimpleBlackBoxExplanationMatcher hAexplanation(C)

contextual correspondence evaluators for the evaluation functions defined in Section 4.1.2.
The implementation classes for alignment evaluators are listed in Table 6.3 along with the
according evaluation functions defined in Section 4.1.3. The implementation classes for
aggregators are listed in Table 6.4 along with the according aggregation functions defined
in Section 4.2.

The setup of the complete evaluation function is configured via a common parameter
object that is passed to every evaluator when it is created. Every evaluator is assigned a
unique identifier (specified in the configuration parameters), which allows for using evalu-
ators of the same type in different places of the evaluation function. To this end, the direct
“user” of an evaluator is responsible for its initialisation, e.g. an aggregator is responsible
for the initialisation of the evaluators, whose values it aggregates. In order to guarantee
consistent and efficient instance creation, an EvaluatorFactory is provided. This factory

Table 6.3: List of implementation classes for global alignment evaluators. Package names
are omitted for readability purposes. (All global alignment evaluators are implemented in
the package de.fzi.harmonia.commons.alignmentevaluator.*.)

Implementation class Evaluation function

CorrespondenceEvaluator HcorrContrib(A)

AlignmentSizeEvaluator Hsize(A)

AlignmentConsistencyEvaluator Hconsist(A)

AlignmentCoherenceEvaluator Hcoherence(A)

StructuralPreservationEvaluator HstructPreserv(A)

CrissCrossAlignmentEvaluator HcrissCross(A)
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WeightedAverageAggregator ID:
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Figure 6.4: Example implementation of an objective function for evaluating a single align-
ment using HARMONIA.

implements instance control mechanisms in order to avoid too many redundant objects. To
this end, there can be only one factory instance for each set of configuration parameters.
Further, the factory creates only a single instance of an evaluator for every evaluator type
(specified by its class name) with a given identifier, and for a given alignment context.
With particular respect to population-based optimisation algorithms, where each individ-
ual of the population represents a valid alignment, there is one alignment context for each
individual.

Example. The scenario for single-objective optimisation-based alignment approaches as
presented in this thesis requires the computation of a single fitness value for a complete
alignment in each iteration. This fitness value has to comprise global alignment assess-
ments at the alignment level, as well as local assessments at the correspondence level.
The fitness function is computed in several stages. In a first stage the alignment algo-
rithm instantiates an aggregator that combines various global alignment assessments. As
an example let this aggregator be a WeightedAverageAggregator for the single (global)
alignment evaluators AlignmentSizeEvaluator, AlignmentConsistencyEvaluator, and
CorrespondencesEvaluator. These alignment evaluators form the second stage. The
CorrespondencesEvaluator is a special case in the sense that is an alignment evaluator,
which acts itself as an aggregator in order to compute a single value from the evaluations of
all correspondences in the alignment. Since there are different similarity metrics that can
be applied to evaluate a correspondence (implemented as BaseMatcher objects), those val-

Table 6.4: List of implementation classes for aggregators. Names of packages are
omitted for the sake of readability. (All aggregators are implemented in the package
de.fzi.harmonia.commons.aggregator.)

Implementation class Aggregation function

MaxAggregator Γmax(~f, ~ω)

WeightedAverageAggregator ΓweightAvg(~f, ~ω)

OWAAggregator Γowa(~f, ~ω)
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1 <?xml version="1.0" encoding="UTF-8"?>

2 <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

3 <properties>

4 <comment>

5 Sample configuration parameters file for dynamic evaluator configuration.

6 </comment>

7 <!-- ... -->

8 <entry key="globalEvaluator">

9 de.fzi.harmonia.commons.aggregator.WeightedAverageAggregator

10 globalEvaluatorID

11 </entry>

12 <entry key="globalEvaluatorID.evaluators">

13 de.fzi.harmonia.commons.alignmentevaluator.AlignmentSizeEvaluator

14 alEval1

15 de.fzi.harmonia.commons.alignmentevaluator.AlignmentConsistencyEvaluator

16 alEval2

17 de.fzi.harmonia.commons.alignmentevaluator.CorrespondenceEvaluator

18 alEval3

19 </entry>

20 <entry key="globalEvaluatorID.weights">

21 0.3 0.3 0.4

22 </entry>

23 <entry key="alEval3.evaluator">

24 de.fzi.harmonia.commons.aggregator.OWAAggregator corrAggr1

25 </entry>

26 <entry key="corrAggr1.evaluators">

27 de.fzi.harmonia.commons.basematcher.EntityNameDistanceMatcher corrEval1

28 de.fzi.harmonia.commons.basematcher.EntityLabelDistanceMatcher corrEval2

29 </entry>

30 <entry key="corrAggr1.weights">

31 0.6 0.4

32 </entry>

33 <!-- ... -->

34 </properties>

Figure 6.5: Excerpt of an example configuration parameters file (in the XML serialisation
format of java.util.Properties).

ues must themselves be aggregated into a single evaluation for each correspondence. This
correspondence level aggregation is the third stage. Here, for instance, an OWAAggregator

can be applied to favour better evaluation scores. The single base matchers providing
similarity measures for individual correspondences are the fourth stage in the composition
hierarchy. Figure 6.4 illustrates this example.

Note that the described setup is not hard-coded, but fully configured according the
single parameter object externally provided. The listing of such an external parameter file
for this example is shown in Figure 6.5.

6.3 MapEVO

The MapEVO system is a prototypical implementation of the Evolutionary Algorithm for
ontology alignment formally introduced in Section 5.3.1. It utilises the KADMOS API
and the HARMONIA Commons library presented in the preceding Sections 6.1 and 6.2,
for representing and evaluating alignments and correspondences. The central MapEVO
entry point is the class
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Figure 6.6: UML class diagram for the MapEVO and MapPSO implementations of the
KADMOS alignment algorithm interfaces.

de.fzi.mapevo.algorithm.MapEVOAlignmentAlgorithm

that implements the KADMOS interface

de.fzi.kadmos.api.algorithm.AlignmentAlgorithm

as illustrated in Figure 6.6. Apart from this top-level entry point, the implementation
of MapEVO comprises objects representing species as population members, the corre-
spondence permutation data structure (cf. Section 5.2.2), as well as encapsulations of the
mutation operators (cf. Section 5.3.1).

Omitting the implementation details at the level of utilities and data structure objects,
Figure 6.7 shows a sequence diagram of the core components of the MapEVO system. The
diagram illustrates the sequence of interactions between system objects in the course of
one alignment request, which is triggered by an external caller that is invoking the align

method of the MapEVOAlignmentAlgorithm object. This object subsequently initialises a
set of Species, which themselves initialise two Evaluator instances for the evaluation of
correspondences and complete alignments, respectively, as well as the MutationOperator

object. For each of the fixed number of selection steps to be performed, the algorithm runs
an according fraction of the total number of iterations. In each iteration, the following
steps are performed:

1. Swap operation (with a probability determined as formally described in Section 5.3.1)

2. Evaluation of those correspondences that changed in the previous mutation opera-
tion.
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Figure 6.7: UML sequence diagram of the MapEVO algorithm.
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3. Exchange operation (with a probability determined as formally described in Sec-
tion 5.3.1)

4. Evaluation of those correspondences that changed in the previous mutation opera-
tion.

5. Evaluation of the complete alignment represented by the new state of the correspon-
dence permutations.

In the selection step the population is updated according to the selection method described
in Section 5.3.1.

6.4 MapPSO

The MapPSO system is a prototypical implementation of the algorithm for ontology align-
ment based on Discrete Particle Swarm Optimisation, formally introduced in Section 5.3.2.
It utilises the KADMOS API and the HARMONIA Commons library presented in the
preceding Sections 6.1 and 6.2, for representing and evaluating alignments and correspon-
dences. The central MapPSO entry point is the class

de.fzi.mappso.align.MapPSOAlignmentAlgorithm

that implements the KADMOS interface

de.fzi.kadmos.api.algorithm.UpdatingAlignmentAlgorithm

as illustrated in Figure 6.6. Apart from this top-level entry point, the implementation
of MapPSO comprises objects representing particles as population members, as well as
particle clusters managing collections of particles. The concept of particle clusters allows
for the agglomeration of a number of particles in one compute node. In its basic configu-
ration a particle cluster contains one single particle, which reflects the standard setting in
Particle Swarm Optimisation. However, putting more than one particle into a cluster al-
lows for particle pooling, which is a purely practical solution to address problems occurring
in distributed computing environments, such as cloud infrastructures (cf. Section 6.5.3).
The social component of Particle Swarm Optimisation algorithms additionally requires
the implementation of neighbourhoods and communicators, particularly considering the
multi-threaded execution in a potentially distributed environment.

Figure 6.8 shows a sequence diagram of the core components of the MapPSO system.
The diagram illustrates the sequence of interactions between system objects in the course
of one alignment request, which is triggered by an external caller that is invoking the
align method of the MapPSOAlignmentAlgorithm object. The algorithm subsequently
initialises a set of ParticleCluster objects, a Topology, which describes the social net-
work structure between particle clusters, and a ClusterCommunicator, which is respon-
sible for propagating the new best alignment being found in any particle cluster. Several
implementations have been provided realising concrete variants of particle clusters, social
network topologies, and communicators, which are listed in Table 6.5.

The sequence diagram in Figure 6.8 shows a more complex interaction between ob-
jects than the corresponding diagram for MapEVO (Figure 6.7) due to the implemen-
tation of the social component. To this end, each ParticleCluster manages a set of
AlignmentParticle objects. Invoking the update method of an AlignmentParticle

triggers the “relocation” of the particle in the problem space as formally described in Sec-
tion 5.3.2 (the sequence diagram omits the details on this level). In order to perform this
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Figure 6.8: UML sequence diagram of the MapPSO algorithm.
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Table 6.5: Implementation classes for building up particle neighbourhoods and communi-
cation strategies in MapPSO.

ParticleCluster

LocalCluster Particle cluster located on the local machine.

AWSCluster Particle cluster located on an AmazonTM EC2 instance (cf. Section 6.5.3).

Topology

StarTopology All particle clusters are connected to all other particle clusters.

RingTopology Every particle cluster has two neighbours, thus forming a ring of clusters.

FourClusters Particle clusters are grouped into four groups, where all particle clusters in a
group are connected as in the StarTopology. In each group there are three
disjoint particle clusters building the bridges to the three other groups.

ClusterCommunicator

SynchronousClusterCommunicator In every iteration, particle clusters are waiting for each
other before communicating their new best alignment
to their neighbours.

AsynchronousClusterCommunicator Particle clusters communicate to their neighbours
without waiting for each other (cf. Section 6.5.3).

“relocation”, each particle’s fitness must be evaluated by calling the Evaluator. Each
ParticleCluster obtains all personal best configurations of its AlignmentParticle ob-
jects and, in case a new best alignment is found in any of them, communicates this new best
alignment to the ClusterCommunicator. The ClusterCommunicator uses the Topology

in order to propagate the new best alignment to all neighbouring particle clusters, which
consequently update their local best (neighbourhood best) alignment state. Since such
updates can come from any neighbouring particle cluster, the cluster reports the local
best state in each iteration to all of its AlignmentParticle objects.

6.5 Deployment

There are many ways of utilising an ontology alignment algorithm, ranging from a stan-
dalone ontology alignment application to being completely embedded in another semantic
application. The two algorithms presented in this thesis, MapPSO and MapEVO, are
deployed in various ways in order to allow for different levels of integration with users or
applications.

In order to preserve independence of the concrete alignment algorithm, the various
means of deployment have been realised generically in the KADMOS alignment infras-
tructure.

6.5.1 Application Programming Interface

The most low-level way of using any KADMOS-based alignment algorithm is to di-
rectly import, instantiate, and invoke methods of the KADMOS AlignmentAlgorithm

or UpdatingAlignmentAlgorithm interfaces (cf. Figure 6.6). To this end, the correspond-
ing interfaces (KADMOS) and classes (MapPSO, MapEVO, or any other KADMOS-based
algorithm) must be provided in the JavaTM classpath or – more conveniently – provided
as Apache MavenTM dependency in case the semantic application makes use of Apache
MavenTM software management.

There are two restrictions for this kind of algorithm usage. First, since KADMOS
is a JavaTM API, only JavaTM applications can directly access the API. Second, since
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KADMOS is based on the OWL API, the semantic application’s internal ontology repre-
sentation must be realised using the OWL API, as well5.

6.5.2 Web Service

A language independent and decoupled way of using any KADMOS-based alignment al-
gorithm is via a Web Service interface. To this end, alignment algorithms can be deployed
as SOAP6 1.1 [26] Web Service. KADMOS provides the means to deploy and launch any
KADMOS-based alignment algorithm as Web Service that is accessible from any remote
location.

The advantage of this way of communication with an alignment algorithm is that is
independent of the implementation language of the caller due to the open WSDL/SOAP
standard. However, a disadvantage is the longer response time, since alignment service
and caller are only loosely coupled, i.e. input ontologies, as well as resulting alignment are
passed in terms of dereferenceable URLs, and each call of the alignment service causes a
potential reloading of the ontologies and the alignment from scratch7.

This sort of Web Service deployment has been done in order to participate in the first
SEALS evaluation campaign8.

6.5.3 Cloud Infrastructure

Exploiting the inherent parallelisability of population-based optimisation metaheuristics,
the PSO-based alignment algorithm developed in this thesis has been deployed to a cloud
infrastructure [17]. This section gives some background on cloud computing and dis-
cusses the challenges and experiences when porting the algorithms on the Amazon Web
ServicesTM (AWS) infrastructure. There are experiments regarding network communi-
cation related issues, which is most crucial for the PSO-based alignment approach, due
to the social component in the particle swarm that requires more intensive communica-
tion between individuals than an Evolutionary Algorithm. For this reason, the following
paragraphs focus on the cloud deployment aspects of the MapPSO algorithm.

Background on Cloud Computing

Cloud computing is a new paradigm that has been evolving over the last few years. Most
definitions of cloud computing have in common that cloud computing offerings can be
categorised using the “Everything-as-a-Service” (XaaS) model. A more detailed view of
this model is the “Cloud Computing Stack” [81]. According to the XaaS model the three
main service classes are “Software-as-a-Service” (SaaS), “Platform-as-a-Service” (PaaS),
and “Infrastructure-as-a-Service” (IaaS). While SaaS offerings usually provide an interface
directly to the end user by providing a Web Service interface or a graphical user interface
(GUI) the PaaS and IaaS offerings can be used by software architects to build new SaaS
services on top of them. PaaS offerings usually provide a platform where the software
developer can deploy the new services [81].

5It is always possible to implement proprietary wrappers, such that OWL API objects can be passed
to and from the alignment algorithm, however, this overhead should give reason to think of other ways of
integrating the alignment algorithm in the first place.

6Simple Object Access Protocol
7Surely, various ways of caching and ontology/alignment “diffs” in the case of repeated calls, would be

straightforward extensions that diminish the communication bottleneck.
8For a full description of the first SEALS evaluation campaign, see http://www.seals-project.eu/

seals-evaluation-campaigns/1st-evaluation-campaigns/ontology-matching, accessed January 10,
2012.

http://www.seals-project.eu/seals-evaluation-campaigns/1st-evaluation-campaigns/ontology-matching
http://www.seals-project.eu/seals-evaluation-campaigns/1st-evaluation-campaigns/ontology-matching
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The IaaS offerings at the “Basic Infrastructure Services” level, give the developer full
control over the servers that are running his software. At this level the user can deploy new
machines using Web Service technologies. This offers the power and flexibility to work on
a machine level without running one’s own data centre and so having convenient access to
new resources. Offerings such as the Amazon Elastic Compute Cloud (EC2) give users the
opportunity to automatically deploy hundreds of virtual machines within minutes. Thus,
it is possible to build highly scalable applications that can scale up and down in short
periods. One famous example of a successful cloud offering is Animoto9. The Animoto
application transforms music files and photos into small video slide shows. After offering
their service to users on a social network the demand of virtual machines went from about
40 to 3500 [78]. This scalability was only possible by designing the Animoto software as a
distributed algorithm deployed on Amazon EC2.

Another interesting feature of cloud offerings is the typical pay-as-you-go pricing model.
This means that users only pay for the resources they are really using. Having such a
pricing model it makes no difference if one single server is running for 10 hours or if 10
servers are running for just one hour. The New York Times used this pricing scheme
when they built their “TimesMaschine”. By using Amazon EC2 they were able to convert
their whole archive (4 TB of scanned TIFF files), spanning the years 1851-1922, to Web
documents within 24 hours and total costs of US$ 890 [64].

In the context of semantic technologies and the Semantic Web, cloud computing tech-
nologies have been successfully applied, mainly for RDF storage [119, 94, 91], querying [91],
and materialisation of RDF/OWL knowledge bases [129, 128].

Deployment

The deployment of MapPSO in Amazon EC2 has been realised using a server-worker
pattern as depicted in Figure 6.9. Several workers evaluate and update several local
particles each, while they are managed by a central server. Each worker determines the
local best alignment among the results of its particles and sends it to the server. The server
determines the global best alignment, then broadcasts it and synchronises the workers.
Exchange of information between server and workers is realised by the Amazon Simple
Queue Service (SQS)10 or via TCP/IP. The exchange of concrete particle states is realised
by the Amazon Simple Storage Service (S3)11 for reasons of scalability, reliability, and
parallel access.

Challenges

Deploying the algorithm on virtual machines connected by a network bears two main
challenges. Firstly, the communication latency is much higher when communicating via
network than via main memory. Hence finding and broadcasting the global best particle
leads to a higher communication overhead, which slows down the algorithm and creates
unwarranted costs.

Secondly, the computation times of workers in a particular iteration differ. This dif-
ference occurs mainly for two reasons: the unpredictable performance of the virtual envi-
ronment, and the varying particle sizes. The performance of the virtual machine depends
on its mapping to real hardware. For example a “noisy” neighbour, i.e. another program
sharing the same real hardware via a different virtual machine, can slow down network

9http://animoto.com/, accessed January 10, 2012
10http://aws.amazon.com/sqs/, accessed January 10, 2012
11http://aws.amazon.com/s3/, accessed January 10, 2012

http://animoto.com/
http://aws.amazon.com/sqs/
http://aws.amazon.com/s3/
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Figure 6.9: UML deployment diagram for the MapPSO deployment in the Amazon Web
ServicesTM cloud infrastructure using the server-worker pattern.
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communication. In turn, a virtual machine can utilise more computing power if there
are no or only inactive neighbours. This results in unbalanced performance of the vir-
tual machines. The random initialisation of particles and their different sizes add to this
discrepancy in computation time. A small particle needs less computation time than a
big particle, therefore a worker with smaller particles will require less runtime per iter-
ation. The random initialisation of particles with different sizes is necessary to search
for the optimal alignment size and thus be able to identify partial overlaps of ontologies.
This computation time discrepancy causes fast workers to idle while waiting for the slower
workers and thus decreases parallel efficiency.

Increasing Parallel Efficiency

The challenges of deploying the algorithm to a cloud-based infrastructure identified have
been addressed and solutions are proposed as follows.

Addressing Latency. Amazon SQS was used as a means for communication between
server and workers. Amazon advertises SQS as reliable, scalable, and simple. However, it
turned out that SQS has high latency. For reducing the network latency, direct communi-
cation has been implemented using the TCP/IP protocol. Apart from reduced latency, this
also resulted in a reduction of the additional communication overhead caused by multiple
workers.

The latency is reduced further by only sending particle states when necessary, i.e. when
a better particle state has been found. To achieve this a worker sends the fitness value of
its local best particle to the server and writes the particle state itself into the S3 database.
The server then broadcasts the global best fitness and the according database location to
all worker instances.

The number of read operations is minimal when using the PSO complete graph topol-
ogy (cf. Table 6.5), since each particle must know about the global best. In case the global
best does not change, no worker has to read a particle state. The (unlikely) worst case in
terms of communication latency happens if every worker finds a new best alignment and
thus writes its particle state before it has to read a new one found by another worker in
the same iteration.

Addressing Runtime Discrepancy. The effect that workers require different run-
times for particle fitness computation can be minimised by particle pooling, i.e. having
each worker instance computing multiple particles (particle clusters, cf. Section 6.4, Ta-
ble 6.5: AWSCluster). Using few particles per worker results in high runtime variance
between workers caused by different particle sizes and the resulting uneven workload. Us-
ing more particles per worker, i.e. the workload for each worker being the sum of workloads
contributed by each of its particles, averages the runtime because a rather uniform distri-
bution of small and big particles per worker is expected. Using a multi-particle approach
also increases parallel efficiency due to the increased overall runtime required to evaluate
and update several particles. By increasing the runtime the proportion of time used for
communication decreases and thus parallel efficiency is increased.

Using asynchronous particle updates is another way to compensate the runtime dis-
crepancy (cf. Table 6.5: AsynchronousClusterCommunicator). When using synchronous
particle updates every worker has to wait for the slowest worker and thus is wasting com-
putation time. In the asynchronous communication mode workers keep on evaluating and
updating their particles until they find a particle state that is better than the global best
they know about. They send this particle state to the server and continue. The server
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Figure 6.10: Synchronous vs. asynchronous particle updates using 1 and 16 workers with
1 particle per worker. Bars denote an average of 10 runs (individual runs denoted left of
the bars). Depicted is the total runtime for aligning the mouse ontology from the OAEI
anatomy track (cf. Section 7.2.3) with itself.

broadcasts the new particle state if it is better than the global best known by the server.
Preventing workers to idle drastically increases parallel efficiency.

Introducing an asynchronous particle update strategy has an effect on the underly-
ing particle swarm metaheuristic. Having not all particles exchanging information at the
same time step has a similar effect than changing the social network structure of the PSO
from a complete graph topology12 to a cluster topology13 [44, Chap. 12] (cf. Table 6.5),
which results in fast communication between particles on the same worker compared to the
communication between workers themselves. A clustered (lBest) topology in general re-
sults in slower convergence but better robustness compared to the complete graph (gBest)
topology [44, Chap. 12].

Furthermore, a loss of information can be observed compared to the synchronous up-
date mechanism. This is due to the fact that particles compute iterations with possibly
outdated information about the global best, which might be available on a worker that is
still computing another particle. The problem has been analysed by Lewis et al. [84] for
parallel multi-objective PSO in heterogeneous and unreliable computing environments.
Their investigations revealed that the information loss can be compensated by the in-
creased number of computations that are possible due to the reduced waiting time.

The beneficial effect on the runtime for an alignment is reflected in Figure 6.10, showing

12In the literature the complete graph topology is sometimes (incorrectly) referred to as “star topology”.
13While in a complete graph topology, every particle shares information with every other particle, the

cluster topology allows only groups of particles to communicate with each other, while the groups them-
selves exchange information only via dedicated particles, which are part of two clusters.
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runtime behaviour for two medium sized ontologies for both synchronous and asynchronous
particle updates. As expected, using an asynchronous communication mode does not have
any effect if only a single worker is used. However, for 16 workers that need to communicate
their local best results in each iteration, a clear runtime improvement of almost 50 % can
be observed.

One further effect resulting from the asynchronous particle updates is that workers
hosting mainly small particles can complete an iteration more quickly than those hosting
mainly large particles. Therefore small particles tend to compute more iterations and thus
influence the swarm stronger than it would be the case in the synchronous mode. This is
beneficial to the overall runtime of the algorithm, because the average size of particles is
smaller and therefore iterations are faster.

Final Remarks on the Cloud Deployment. The presented cloud deployment of the
MapPSO system exploits the straightforward parallelisability of population-based opti-
misation algorithms. Apart from the technical issues that had to be addressed, cloud
deployment bears other chances, such as dynamic scalability that now are ready to be
exploited by ontology alignment algorithms. Together with the Web Service interface
presented in Section 6.5.2, a dynamically scalable alignment cloud service (Alignment-
as-a-Service) can be provided, ready to meet requirements arising from the upcoming
on-demand, pay-per-use Service Web.

6.5.4 SEALS Tool Package

Since 2010, the annual Ontology Alignment Evaluation Initiative (OAEI) evaluation cam-
paign is carried out using the SEALS evaluation platform14 (cf. Section 7.2). From 2011
on, alignment tool developers, who intend to participate in this established evaluation cam-
paign, need to package their tools in a way15 [89] that it can be automatically deployed
and invoked on the SEALS platform.

This packaging has been done for MapPSO and MapEVO, in order to participate
in the respective evaluation campaigns (cf. Section 7.2). Technically, the preparation of
the SEALS tool package involves the implementation of a tool bridge that implements
a unified interface common to all ontology alignment tools, and delegates the alignment
request to a concrete tool. Besides the tool bridge, a descriptor file must be provided
describing the content of the complete tool package. The package itself is bundled as a
ZIP file containing the descriptor, the tool bridge implementation, as well as the tool itself
including all library dependencies.

Note on the SEALS Tool Packaging. Since the SEALS tool package has to
contain all library dependencies required by the bundled tool, there is the risk of potential
conflicts with libraries used within the SEALS platform. In the version of the SEALS
platform used for the evaluation campaigns relevant for MapPSO and MapEVO, such
library conflicts occurred. Some of those conflicts could be resolved by removing the
respective libraries from the tool package, so that the bundled tool is no longer self-
contained, but still executable in the platform. However, other conflicts were nested deep
in indirect dependencies and could not be resolved easily, which led to the necessity to
deactivate reasoning-based evaluation metrics (cf. Section 4.1).

14http://about.seals-project.eu/, accessed December 19, 2011.
15http://oaei.ontologymatching.org/2011/seals-eval.html, accessed March 21, 2012 and http://

oaei.ontologymatching.org/2011.5/seals-eval.html, accessed March 21, 2012

http://about.seals-project.eu/
http://oaei.ontologymatching.org/2011/seals-eval.html
http://oaei.ontologymatching.org/2011.5/seals-eval.html
http://oaei.ontologymatching.org/2011.5/seals-eval.html
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Table 6.6: Apache MavenTM repositories.

Repositories

Releases http://mavenrepo.fzi.de/semweb4j.org/repo

Snapshots http://mavenrepo.fzi.de/semweb4j.org/snapshots

Table 6.7: Apache MavenTM identifiers.

Component group ID artifact ID

KADMOS de.fzi.kadmos kadmos

API kadmos-api

Command line kadmos-cmdutils

utilities
Web utilities kadmos-webutils

INRIA API kadmos-INRIA-wrapper

wrapper

HARMONIA Commons de.fzi.harmonia. harmonia-commons

Evaluators commons harmonia-basematchers

MapPSO de.fzi.mappso MapPSO

Core MapPSO-core

AWS Worker MapPSO-awsWorker

SEALS Tool Bridge MapPSO-seals-toolbridge

MapEVO de.fzi.mapevo MapEVO

Core MapEVO-core

AWS Worker MapEVO-awsWorker

SEALS Tool Bridge MapEVO-seals-toolbridge

6.6 Development

All software projects described in this chapter, namely KADMOS, HARMONIA Com-
mons, MapPSO, and MapEVO, are publicly available as source code and binaries. The
open source development and hosting platform sourceforge16 is used for all software de-
velopment related issues, such as source code version control (Subversion), issue tracking,
and mailing lists.

In particular, the software project KADMOS is being developed in the sourceforge
project located at

https://sourceforge.net/projects/kadmos/

while the software projects HARMONIA Commons, MapPSO, and MapEVO are being
developed in the sourceforge project located at

https://sourceforge.net/projects/mappso/

All software is being developed using the JavaTM (JDK 6) programming language, due
to its platform independence and the availability of powerful APIs in particular regarding
Web technologies (OWL API, AWS, Web Services, etc.).

For smooth project and dependency management, Apache MavenTM is used. Apart
from managing dependencies of the projects developed, MavenTM allows for the publication
of developed components as artifacts, such that they can be used as dependencies in other
software projects themselves (cf. Section 6.5.1). To this end, software artifacts are available
in remote MavenTM repositories as listed in Table 6.6. The Maven identifiers required by
developers that intend to use the components as dependencies are listed in Table 6.7.

16http://sourceforge.net/, accessed January 11, 2012

http://mavenrepo.fzi.de/semweb4j.org/repo
http://mavenrepo.fzi.de/semweb4j.org/snapshots
https://sourceforge.net/projects/kadmos/
https://sourceforge.net/projects/mappso/
http://sourceforge.net/
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On October 5th 2011, MapPSO has been included to the Softpedia Mac OS software
database, and on March 27th 2012 to Softpedia’s database of software programs for the
Windows operating system. The promotion via the Softpedia platform includes the Softpe-
dia “100 % Free” award17, which means that MapPSO was thoroughly tested for spyware,
adware, viruses, etc.

17http://mac.softpedia.com/progClean/MapPSO-Clean-106454.html, accessed October 25, 2011 and
http://www.softpedia.com/progClean/MapPSO-Clean-210834.html, accessed March 27, 2012.

http://mac.softpedia.com/progClean/MapPSO-Clean-106454.html
http://www.softpedia.com/progClean/MapPSO-Clean-210834.html


Chapter 7

Evaluation

The suitability of applying biologically-inspired optimisation techniques to the ontology
alignment problem is empirically evaluated in this chapter. What is presented are studies
about how the two approaches introduced in Chapter 5, namely an Evolutionary Algorithm
and a Discrete Particle Swarm Optimisation algorithm meet the expectations expressed
by the motivational conjectures from Section 1.1. All studies are conducted using the
prototypical implementations MapEVO and MapPSO presented in Chapter 6.

Bellahsene et al. recognise that “a fundamental requirement for providing universal
evaluation of matching and mapping tools is the existence of benchmarks.” [7]. In the
context of ontology alignment there is an established annual campaign called the Ontology
Alignment Evaluation Initiative (OAEI) [49], which provides different test cases in various
evaluation tracks. Over the years the OAEI has become the de facto evaluation platform
for ontology alignment tools. A problem with evaluating ontology alignment tools in
the OAEI context is that the test cases have a strong focus on comparing tool outputs
with provided reference alignments in terms of the standard metrics precision, recall, and
F-measure. Some tracks consider runtime as another criterion for comparison. Until
the most recent campaign in spring 2012, there was no suitable track for evaluating the
scalability of alignment systems, which is not surprising due to the lack of high quality
reference alignments for large ontologies. Even the large biomedical ontologies track in
the latest campaign does not provide a complete reference alignment, but only a partial
one. A second problem with OAEI evaluations is that the tools are required to use a
single configuration for all test cases. This requirement is enforced since the campaign is
carried out via the SEALS evaluation platform, where all tools have to be uploaded as a
self-contained bundle (cf. Section 6.5.4) using a single (universal) configuration. Following
the hypothesis from the introductory Conjecture 2, different criteria have to be considered
in order to compute alignments for ontologies with different modelling characteristics.
So what is essentially evaluated by enforcing the same configuration for ontologies with
different modelling characteristics is the ability of an alignment tool to automatically
adjust its own configuration.

Due to these restrictions the evaluation presented in this chapter does not solely rely
on OAEI data sets. Instead the evaluation is split into several parts in order to back up the
hypotheses denoted in the introductory conjectures that biologically-inspired optimisation
techniques are a valid approach for solving the ontology alignment problem. After intro-
ducing the basic alignment algorithm performance metrics in Section 7.1, the evaluation
storyline of this chapter is as follows:

1. The OAEI data sets are used in Section 7.2 in order to demonstrate that the presented
approaches are able to provide high quality alignment results for certain test cases.

97
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The analysis is further extended by demonstrating that in many cases where the
algorithms perform poorly according to traditional precision and recall metrics, the
results are not “far” from the reference alignment according to generalised metrics.

2. Since biologically-inspired optimisation techniques are expected to be independent
from the objective function to be optimised, a separate study is conducted in Sec-
tion 7.3 to investigate the correlation between alignment quality and the configura-
tion of the objective function. This in particular explains the performance in terms
of alignment quality for the various OAEI tests, depending on the objective function.

3. The insights gained from the previous study suggest that the alignment quality
strongly depends on a suitable objective function for the ontology pair at hand. An-
other experiment is carried out in Section 7.4 to demonstrate the convergence of the
algorithms. The convergence in terms of a continuous improvement of the objec-
tive function value is compared to the convergence of the F-measure performance of
intermediate alignments, which demonstrates a clear correlation.

4. The scalability of the approaches is demonstrated in Section 7.5 by exploiting the
inherent parallelisability of the algorithms. This experiment is conducted using
the MapPSO prototype in a cloud computing infrastructure by aligning two large
biomedical ontologies. Since no reference alignment is available for the used test
data, the convergence of the algorithm is analysed considering objective function
value and alignment size for each particle (population member).

The chapter concludes with a discussion in Section 7.6 summarising how the evaluation
results correspond to and underpin the conjectures established in Section 1.1.

7.1 Alignment Algorithm Performance Metrics

Assessment of alignment quality is typically done by comparing the alignment with a gold
standard (or reference alignment). This comparison is done on the correspondence level
by identifying those correspondences contained in the alignment to be evaluated that are
also contained in the reference alignment. This allows for the computation of precision,
recall, and F-measure scores, known from information retrieval. Definition 2.7 allows for
the application of set intersection on alignments. Let A1 and A2 be alignments. Then
A1 ∩A2 is the set of correspondences contained in both A1 and A2.

Definition 7.1. Let A be the alignment to be evaluated. Let R be the reference alignment
that serves as a gold standard for A. The precision of A with respect to R is defined as

prec(A, R) =
|A ∩R|
|A|

The recall of A with respect to R is defined as

rec(A, R) =
|A ∩R|
|R|

The F-measure is defined as the harmonic mean of precision and recall:

F1(A, R) = 2 · prec(A, R) · rec(A, R)

prec(A, R) + rec(A, R)
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Figure 7.1: Excerpts from two ontologies with two possible correspondences showing the
effect of generalised precision and recall.

According to this definition the precision of an alignment A with respect to a reference
R denotes the fraction of correspondences in A that are correct. The recall of an alignment
A with respect to a reference R denotes the fraction of expected correspondences that are
contained in A.

The feasibility of these traditional precision and recall metrics in the context of on-
tology alignment is debatable. The main reason for this scepticism is the fact that
these metrics disregard semantics from ontological modelling that might lead to situa-
tions where correspondences not contained in the reference alignment are not entirely
wrong. For instance, consider the scenario in Figure 7.1, where the correspondence
〈TechReport, TechnicalReport〉 (continuous line) would be correct with respect to the
reference alignment, while the alignment to be evaluated contains the correspondence
〈TechReport, Report〉 (dashed line). Depending on the alignment use case, the correspon-
dence represented by the dashed line is not completely incorrect, since TechnicalReport

and Report are in a subsumption relation. For instance, if the alignment is used to in-
corporate additional data sources for an instance retrieval task, the query results when
retrieving all technical reports would be augmented by all instances of Report from the
additional ontology. The result would contain all instances of TechnicalReport, thus the
result set would be complete. If the end user can cope with some false positives, such as
the instances of ProjectReport, the correspondence does no harm.

In order to cope with these kinds of situations, Ehrig and Euzenat introduced the
notions of generalised precision and recall [42]. To this end, a proximity function is intro-
duced, which replaces the simple correspondence count for the intersection of alignment
and reference. Instead the proximity function considers the “closeness” between corre-
spondences from the alignment under evaluation and correspondences from the reference
alignment.

In order to be a real relaxation, the proximity function must not return a value lower
than the correspondence count for the intersection of alignment and reference. On the
other hand, it must not return a value greater than the size of the smaller of alignment
and reference. Thus, a proximity function ω(A, R) of an alignment A and a reference
alignment R is bounded as follows:

∀A, R : |A ∩R| ≤ ω(A, R) ≤ min{|A|, |R|} (7.1)

Definition 7.2. Let A be the alignment to be evaluated. Let R be the reference alignment
that serves as a gold standard for A. Let ω be a proximity function. The generalised
precision of A with respect to R in terms of ω is defined as

precω(A, R) =
ω(A, R)

|A|
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The generalised recall of A with respect to R in terms of ω is defined as

recω(A, R) =
ω(A, R)

|R|

The generalised F-measure is defined analogously to the traditional F-measure from Def-
inition 7.1.

Ehrig and Euzenat proposed three implementations of the proximity function result-
ing in three generalised precision and recall metrics for ontology alignment. One such
implementation is symmetric precision and recall, where for each correspondence C in
an alignment A the proximity function adds 1, if the correspondence also occurs in the
reference alignment R. If R contains a correspondence that is close to C, i.e. where one
of the corresponding entities is a direct super- or subentity of the one in C, the proxim-
ity function adds 0.5. In all other cases the proximity function adds 0. In the example
from Figure 7.1 the correspondence 〈TechReport, Report〉 would score 0.5 for symmetric
precision and recall, instead of 0 for classical precision and recall.

7.2 Ontology Alignment Evaluation Initiative

The Ontology Alignment Evaluation Initiative (OAEI) is a coordinated effort to evaluate
and compare ontology alignment systems since 2005 [49]. The first OAEI in 2005 was a
joint endeavour originating from two predecessor events in 2004: The Information Inter-
pretation and Integration Conference (I3CON) held at the NIST1 Performance Metrics
for Intelligent Systems (PerMIS) Workshop 2004 in Gaithersburg, MD, and the Ontology
Alignment Contest at the 3rd Evaluation of Ontology-based Tools (EON) Workshop held
at the International Semantic Web Conference (ISWC) 2004 in Hiroshima.

The MapPSO prototype has continuously participated in the OAEI campaign from
2008 till 2011 [15, 18, 12, 13] and in the second SEALS evaluation campaign in spring
2012 (OAEI 2011.5)2 The MapEVO prototype participated in the OAEI 2011 [13] and in
the second SEALS evaluation campaign.

Project SEALS (Semantic Evaluation at Large Scale). In 2010 and 2011 some
OAEI tracks have become part of the evaluation campaigns of the EU 7th Framework
Programme (FP7) project SEALS (Semantic Evaluation at Large Scale)3. Within the
project an evaluation platform and infrastructure is set up to evaluate semantic tools of
different categories. The project picks up earlier efforts and experiences from the OAEI
and transfers them onto the SEALS platform in the context of evaluating systems in the
category “Ontology Matching Tools”. The SEALS project is devoted to run two evaluation
campaigns. With respect to “Ontology Matching Tools” the first evaluation campaign
coincided with the OAEI 2010. Despite not being an official SEALS evaluation campaign,
the OAEI 2011 was conducted under SEALS conditions using the SEALS platform in its
development status at that time. Not in the traditional sequence of OAEI events, the
second SEALS evaluation campaign was carried out the beginning of 2012.

The SEALS platform is designed to guarantee comparability of tools and repeata-
bility of evaluations. Regarding tools under evaluation this means that a standalone,
self-contained version of each tool must be packaged and uploaded onto the SEALS tool

1National Institute of Standards and Technology
2http://oaei.ontologymatching.org/2011.5/, accessed May 23, 2012
3http://about.seals-project.eu/, accessed December 19, 2011.

http://oaei.ontologymatching.org/2011.5/
http://about.seals-project.eu/
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repository, including its parameter configuration. In the context of the “Ontology Match-
ing Tools” evaluation, several different alignment scenarios (evaluation data sets) are re-
quested to be processed by the tools using the same set of configuration parameters. The
parameter configurations used for MapEVO and MapPSO for the campaigns carried out
in the SEALS platform are presented in Appendix B.

7.2.1 Benchmarks Track

The benchmarks track, organised by INRIA Grenoble Rhône-Alpes, France, has been part
of the Ontology Alignment Evaluation Initiative (OAEI) since its foundation in 2005. The
data sets remained roughly constant apart from minor fixes. Since 2011 the data set is not
known prior to the execution of the campaign, since it is systematically generated for each
evaluation campaign. However, participants are provided with a similar data set prior to
the campaign for testing purposes.

Description

This track aims to identify strengths and weaknesses of alignment systems using a sys-
tematically generated data set. To this end, an ontology from the bibliography domain
is systematically modified by omitting features (or combinations of features) that can be
exploited by alignment systems in order to find correspondences. Each modified version
has to be aligned with the original ontology, resulting in a total of 103 alignment tasks
in 2011. These alterations are mostly covered in test group 2xx, which constitutes the
majority of test cases. Test group 1xx is solely concerned about language conformance
with respect to the archaic OWL dialects “Lite” and “DL”. In the data set used before
2011, four additional real world ontologies were part of the track (test group 3xx), which
were to be aligned with the original ontology.

The systematic modification of the ontology comprises the omission or modification of
labels, comments, asserted individuals, properties, or the subsumption hierarchy.

In the OAEI 2010 and 2011 the benchmarks track was conducted in the context of the
SEALS project. Additionally, this track was carried out as part of the second SEALS
evaluation campaign in spring 2012 (OAEI 2011.5).

Apart from the original data set, which was modified only slightly since 2005, the 2011
campaign contained other data sets that were automatically generated using a particular
“seed” ontology [111]. To this end, a data set generator using this “seed” ontology creates
a set of test cases similar to the original data set. The generator allows for a systematic
modification of the “seed” ontology, i.e. removal of annotations, removal/adding of classes
of a particular hierarchy level, etc., where the extent of the modification with respect to
each feature can be parametrised. In 2011, four data sets were used, namely the original
one (original, 33 classes, 24 object properties, 40 data properties, 56 named individuals),
the original one used as seed for automatic benchmark generation (biblio, same size as
original), the ekaw ontology from the conference track used as seed (ekaw, 74 classes and
33 object properties), and a finance ontology used as seed (finance, 322 classes, 247 object
properties, 64 data properties, and 1113 named individuals).

Results

The MapPSO system participated in the benchmarks track since 2008; the MapEVO
system participated since 2011. Table 7.1 shows the results in terms of precision and recall
for MapPSO and MapEVO in the years of participation. The table shows the aggregated
results for the three groups of tests. Reference alignments are publicly available for the
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Table 7.1: Evaluation results for MapPSO and MapEVO in the OAEI benchmarks track
since 2008 [28, 45, 46, 47]. (2011 results refer to the generated data set using the ekaw
seed ontology, 2011.5 results refer to the generated data set using the biblio seed ontology.)
MapEVO scores for 2010 were computed outside the official OAEI campaign [19], since
MapEVO was still under development at that time.

System MapPSO MapEVO

Year Test group Precision Recall Precision Recall

2008 1xx 0.92 1.00 – –
2xx 0.48 0.53 – –
3xx 0.49 0.25 – –
H-mean 0.51 0.54 – –

2009 1xx 1.00 1.00 – –
2xx 0.73 0.73 – –
3xx 0.54 0.29 – –
H-mean 0.63 0.61 – –

2010 1xx 1.00 1.00 (0.96) (1.00)
2xx 0.67 0.59 (0.89) (0.51)
3xx 0.72 0.39 (0.77) (0.44)
H-mean 0.68 0.60 (0.89) (0.53)

2011 1xx 0.99 0.92 0.99 1.00
2xx 0.63 0.62 0.54 0.21
H-mean 0.64 0.62 0.55 0.22

2011.5 H-mean 0.58 0.12 0.43 0.33

years 2008 till 2010 (before the evaluation was conducted via the SEALS platform). Using
these reference alignments, the evaluation could be repeated outside the official OAEI
setting for MapEVO, which was still under development in 2010. These locally computed
evaluation scores are denoted in parentheses in Table 7.1. Using the available reference
alignments, the individual results for each test case could be repeated locally in terms of
computing precision, recall, as well as generalised precision and generalised recall. The
details are presented in Appendix A. It can be observed that the results are diverse and, as
expected, alignment quality drops with the absence of information that can be exploited
by the alignment system. Note that by definition the generalised precision and recall scores
are in all cases strictly better than the classical metrics.

A comparison between all participating systems in the OAEI 2011 in the benchmarks
track is shown in Table 7.2. In can be observed that MapEVO and MapPSO could compute
alignments for all data sets in the track, even for the larger ontologies, where “many of
the participants were not able to process them” [47]. Regarding the alignment quality in
terms of F-measure, MapEVO and MapPSO show results below average compared to other
participants. This can be explained on the one hand by the fact that due to the generic
configuration in 2011, which was used for all OAEI tracks, the chosen objective function
was not optimal for the benchmarks track. On the other hand, no confidence filtering
was done as a postprocessing step, which caused the delivered alignments to still contain
correspondences of low confidence. The organisers analysed this in terms of confidence-
weighted precision and recall, and report that “these measures provide precision increasing
for most of the systems, specially edna, MapEVO and MapPSO (which had possibly many
incorrect correspondence with low confidence)” [47].

Regarding the second SEALS evaluation campaign (OAEI 2011.5) a similar perfor-
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Table 7.2: F-measure results for all participants in the OAEI 2011 benchmarks track [47].
(“X” denotes an execution error, “T” denotes timeout of 2 h for a single test case).

System original biblio ekaw finance

MapEVO .41 .37 .33 .20
MapPSO .50 .48 .63 .14

(AgrMaker) .88 X .71 .78
Aroma .78 .76 .68 .70

CSA .84 .83 .73 .79
CIDER .76 .74 .70 .67

CODI .80 .75 .73 X
edna .52 .51 .51 .50

LDOA .47 .46 .52 T
Lily .76 .77 .70 T

LogMap .60 .57 .66 X
MaasMatch .59 .58 .61 .61

MapSSS .84 X .78 T
Optima .64 .65 .56 T

YAM++ .87 .86 .75 T

mance regarding alignment quality was achieved. As in the previous OAEI 2011 campaign,
no confidence filtering was applied, which might have improved the results. Additionally,
MapPSO was configured in a way that it disregards the computation of property corre-
spondences, favouring execution in those tracks with larger ontologies, where property
correspondences are of no importance. This configuration decision was motivated by the
single-configuration policy of the OAEI campaigns executed on the SEALS platform (cf.
Section 7.6). The omission of property correspondences resulted in a decrease of the recall
score for MapPSO.

Discussion

Two phenomena can be observed when studying the results from the OAEI benchmarks
track:

1. On the one hand, for some test cases the algorithms are able to compute alignments
of very good quality in terms of precision and recall. On the other hand, there are
test cases for which the algorithms perform rather poorly (cf. Appendix A). The
alignment algorithms were configured equally for all test cases, and the information
contained in the ontologies is systematically removed. Thus, the assumption is that
the alignment and correspondence evaluation metrics (cf. Chapter 4) implemented
in the objective function are sensible for some of the test cases, while they are not
sufficient for others. This assumption motivated experiments with alignment and
correspondence evaluation metrics, and how they perform for different test cases.
The experiments are presented in the following Section 7.3.

2. The performance of the alignment algorithms is strictly better with respect to sym-
metric precision and recall than for the classical metrics. In their official OAEI result
analysis for 2009 the organisers report that “[. . . ] MapPSO has significantly better
symmetric precision and recall than classical precision and recall, to the point that
it is at the level of the best systems. This may be due the kind of algorithm which is
used, that misses the target, but not by far” [45]. Similarly, for the OAEI 2011 the
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organisers report that with respect to generalised evaluation metrics “[. . . ] the ex-
ception is MapEVO, which has a considerable improvement in precision. This could
be explained by the fact this system misses the target, by not that far (the false
negative correspondences found by the matcher are close to the correspondences in
the reference alignment) so the gain provided by the relaxed [generalised, author’s
remark] measures has a considerable impact for this system. This may also be ex-
plained by the global optimization of the system which tends to be globally roughly
correct as opposed to locally strictly correct as measured by precision and recall” [47].
These observations match the general behaviour of optimisation metaheuristics that
they perform a coarse grained search, and an additional local search step is required
to fine-tune the results [106, Sect. 6.3].

Criticism. The OAEI benchmarks track has become a de facto standard for evaluating
ontology alignment systems and comparing new systems with the state-of-the-art. How-
ever, the data sets should be used with care when reporting about the performance of
alignment systems. This holds in particular for the provided reference alignments, as they
are systematically generated along with the individual test ontologies. This means that
for each alteration of the original ontology, the reference alignment is altered accordingly.
It requires special care when this is done automatically, since removing features from
the ontology can lead to situations, where there is no or not enough remaining evidence
that certain entities participate in a particular correspondence. Such correspondences
must not be included in a reference alignment, which is reflecting the gold standard for
the particular alignment test case. Unfortunately, such correspondences can be found
in the reference alignments provided with the benchmarks track. An example from the
OAEI 2011 version of the track in which such a situation occurs is test case #201 [13].
There the two correspondences 〈Conference Trip, GBCFRTQEDNXEZMVRUWLFXTDFKC〉 and
〈Conference Banquet, KKRDJIPEEQFBQKOWPOPJWENCPL〉 are part of the reference align-
ment and both are assigned a confidence value of 100 %. Even though there is evidence
– drawn from the position in the subsumption hierarchies – that the two entities from
the first ontology correspond to the two entities from the second ontology, it is unclear
which corresponds to which. This precise assignment cannot even be done by a human
being closely looking at the ontologies, since all features that support any of the two
correspondences have been removed in test case #201. Since in this example both corre-
spondences cannot be information theoretically justified, they should not be part of the
reference alignment. An alternative remedy would be to reduce the confidence value in the
reference alignment for both correspondences to 50 %, since it is still up to the alignment
system to guess an assignment, however, the chance for a correct guess is at most 50 % in
this case.

As a conclusion, the OAEI benchmarks track should only be used bearing in mind the
fact that in many test cases, precision and recall of 100 % cannot be achieved reliably.
Furthermore, it is not documented what the highest achievable precision and recall scores
are for each test case, so eventually the data sets can only be used to compare systems
with respect to precision and recall metrics.

7.2.2 Directory Track

The directory track, organised by the University of Trento, was part of the Ontology
Alignment Evaluation Initiative (OAEI) from 2005 till 2010. In 2005 a different data set
was used than in subsequent years. This 2005 data set “allowed only the estimation of
recall” [46, Section 6]. For that reason, and since the recall scores reported for 2005 are
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Table 7.3: Evaluation results for the MapPSO system in the OAEI directory track 2008
and 2010 [28, 46].

Precision F-measure Recall

MapPSO (2008) 0.57 0.40 0.31

MapPSO (2010) 0.61 0.60 0.58

below 35 % for all participants [51], that year is spared out for comparative analysis in this
section.

Description

The track aims to reflect the real world use case of aligning large Web directories [46,
Section 6]. To this end, the data used in the directory track is extracted from the Web di-
rectories of GoogleTM4, Yahoo! R©5, and LookSmart R©6 As Web directories represent simple
taxonomies, the ontologies are of low expressiveness mainly consisting of a classification
(subsumption) hierarchy. The prepared data set consists of 4639 individual alignment
tasks each one being a pair of ontologies from the Web directories. For each task there is
a manually created reference alignment. The submitted alignments were compared with
these reference alignments, and precision, recall, and F-measure scores were reported.

Results

The MapPSO system participated in the directory track in the years 2008 and 2010.
Table 7.3 shows the results in terms of precision, recall, and F-measure for the MapPSO
system in the years of participation.

The figures show an improvement in precision from 57 % to 61 %, and in recall from
31 % to 58 %. In particular the significant increase in recall caused the F-measure score to
increase by one third.

With the data set staying the same since 2006 it was possible to compare the perfor-
mance of alignment systems over time, as well as the best performing systems from each
year. Figure 7.2 shows the performance of the three best participating systems for each
year in terms of precision, recall, and F-measure.

As can be seen from the plots, best precision scores achieved were roughly constant
around 60 % from 2007 on. The challenge of the track seems to achieve high recall scores.
The plots show that those best performing systems of the five years on average achieve
about 50 % recall. An exceptional year was 2007, where two of the three best performing
systems identified more than 70 % of the expected correspondences (recall).

MapPSO with its results from 2010 is ranked second with respect to F-measure in the
that year7. Compared to the best performing systems in the history of the track, MapPSO
ranks third with respect to F-measure. (The ASMOV system achieved a slightly higher
F-measure score of 63 % twice in the years 2009 and 2010.) Regarding recall, MapPSO is
ranked fifth (again double counting ASMOV from the years 2009 and 2010), and regarding
precision, MapPSO is ranked second. It shall be noted that the difference between the top

4http://www.google.com/dirhp, unavailable since GoogleTM shut down the service in July 2011.
5http://dir.yahoo.com/, accessed December 13, 2011
6http://www.looksmart.com/r?country=uk. The Web resource is no longer available since March

2006 (see http://www.searchenginejournal.com/looksmart-closes-zeal-concentrates-on-furlnet/

3161/, accessed December 13, 2011).
7It has to be mentioned that in the year 2010 only three systems participated in the directory track.

http://www.google.com/dirhp
http://dir.yahoo.com/
http://www.looksmart.com/r?country=uk
http://www.searchenginejournal.com/looksmart-closes-zeal-concentrates-on-furlnet/3161/
http://www.searchenginejournal.com/looksmart-closes-zeal-concentrates-on-furlnet/3161/
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Figure 7.2: Top 3 performing systems in the OAEI directory track for each year from
2006 till 2010 [46, Section 6]. (Based on http://oaei.ontologymatching.org/2010/

results/directory/files/comparison.png, accessed December 14, 2011.)

performing systems here is in the range of a few percent regarding precision, recall, and
F-measure.

In addition to the “small” tasks provided from 2006 to 2010, there was a “single” task
provided in 2010, where the scalability of alignment systems should be evaluated. MapPSO
results were submitted for this task, however, the track organisers reported that “the task
was cancelled due to lack of resources needed to cross check the reference alignments” [46,
Section 6].

Discussion

The results of MapPSO in the OAEI directory track have shown that the system is com-
petitive in real world alignment scenarios from the domain of Web directories. Since in
the history of the track only “small” tasks were evaluated, this statement refers solely to
alignment quality and not to scalability. From the best performing alignment systems in
the five year history of the track MapPSO was able to achieve the third highest F-measure
score from all participating systems. The fact that the performance of different systems
varies only in the range of a few percent gives reason to assume that fine-tuning similarity
metrics is an important factor. In particular regarding MapPSO there was no linguistic
background knowledge exploited when computing the results. However, linguistic knowl-
edge could play an important role when aligning Web directories, due to the possibly
hidden semantics in class labels. For instance in order to correctly identify correspon-
dences for a class labelled “Breweries & Brands”, linguistic analysis of the label would be
required that goes beyond the purely lexical methods that were used in the configuration
of MapPSO for this track.

http://oaei.ontologymatching.org/2010/results/directory/files/comparison.png
http://oaei.ontologymatching.org/2010/results/directory/files/comparison.png
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7.2.3 Anatomy Track

The anatomy track, organised by the University of Mannheim, is part of the Ontology
Alignment Evaluation Initiative (OAEI) since 2005. Since 2007 the ontologies used in the
data set remained the same, however, several improvements have been made since then
for both the ontologies and the (manually created) reference alignment.

Description

The track aims to reflect the real world use case of aligning large ontologies from the
biomedical domain. The data set used in the anatomy track consists of the two ontolo-
gies “Adult Mouse Anatomy” and an excerpt of the National Cancer Institute (NCI)
thesaurus8, as well as a manually created reference alignment [21]. In 2011 the “Adult
Mouse Anatomy” contained 2744 classes, the NCI excerpt 3304 classes and the reference
alignment 1516 correspondences. In this respect, the anatomy track is the largest data
set in the OAEI with a high quality reference alignment available. According to the track
organisers, the data set contains about 60 % of trivial correspondences in the sense that
they can be identified by basic string comparison techniques.

In the OAEI 2010 and 2011 the anatomy track was conducted in the context of the
SEALS project. Additionally, this track was carried out as part of the second SEALS
evaluation campaign in spring 2012.

The anatomy track had four participation modalities until 2012 that allowed systems
to modify their configuration parameters in order to maximise precision, recall, F-measure,
and to additionally consume a partial initial alignment. Since the SEALS platform does
not allow for adjustment of configuration parameters, the modalities to maximise precision
and recall, respectively, were discarded in the OAEI 2011 and the second SEALS evaluation
campaign in spring 2012.

Results

The results for each participant in the OAEI 2011 anatomy track are listed in Table 7.4.
Due to the size of the ontologies, 5 out of 15 systems were not able to compute a result in
less than 24 h. The organisers report that “the two systems MapPSO and MapEVO can
cope with ontologies that contain more than 1000 concepts, but have problems with find-
ing correct correspondences. Both systems generate comprehensive alignments, however,
MapPSO finds only one correct correspondence and MapEVO finds none. This can be
related to the way labels are encoded in the ontologies. The ontologies from the anatomy
track differ from the ontologies of the benchmark and conference track in this respect” [47].
No alignment quality results of MapEVO and MapPSO were reported by the organisers
for the OAEI 2011.5 campaign9.

Outside the official OAEI setting, experiments with MapEVO were conducted using
specific configuration and the anatomy track ontologies from the year 2010. Thereby, a
larger number of iterations was used and the objective function was adjusted to consider
the label encoding used in this track. The results are shown in Table 7.5. A significant im-
provement with respect to the 2010 reference alignment can be demonstrated, in particular
in terms of precision.

8http://ncit.nci.nih.gov/, accessed December 15, 2011
9http://web.informatik.uni-mannheim.de/oaei/anatomy11.5/results.html, accessed May 23, 2012

http://ncit.nci.nih.gov/
http://web.informatik.uni-mannheim.de/oaei/anatomy11.5/results.html
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Table 7.4: Alignment size, precision, recall, and F-measure results for all participants in
the OAEI 2011 anatomy track [47]. (“X” denotes an execution error, “T” denotes timeout
of 24 h).

System Size Precision F-measure Recall

MapEVO 1079 .00 .00 .00
MapPSO 2730 .00 .00 .00

(AgrMaker) 1436 .94 .92 .89
Aroma 1279 .74 .68 .63

CSA 2472 .47 .57 .76
CIDER T T T T

CODI 1298 .97 .89 .83
edna 934 1.0 .77 .62

LDOA T T T T
Lily 1368 .81 .77 .73

LogMap 1355 .95 .89 .85
MaasMatch 1079 1.0 .45 .29

MapSSS X X X X
Optima X X X X

YAM++ X X X X

Table 7.5: Evaluation results of the MapEVO system for the OAEI anatomy ontologies
2010. (No official OAEI participation.)

Precision F-measure Recall

MapEVO (2010) 0.82 0.56 0.43

Discussion

The analysis of the organisers reflects the generic configuration of the two systems MapEVO
and MapPSO used in the OAEI 2011 campaign. The objective function is statically con-
figured and no adjustments are done automatically in order to meet track specific re-
quirements. In the case of the anatomy track, for instance, the IRI fragments of entities
interpreted by the hlexIDSim and htextIDSim are internal identifiers that cannot be used
for evaluating correspondences. The generic configuration used, however, treats them as
significant, which perturbs the overall similarity aggregation and thus prevents useful han-
dling of correspondence confidences. The similarity, however, is beneficial in other OAEI
tracks, which is the reason why it is incorporated into the objective function used.

In contrast, for instance, the AgreementMaker system follows the approach to use a
specific setting tailored for each of the three OAEI track, which is automatically selected
during execution—a behaviour which is forbidden for OAEI participation. (See note in
Section 7.6.)

In a separate experiment with an adjusted objective function, MapEVO was able to
demonstrate a significant improvement. In particular the precision scores above 80 % are
competitive. Regarding the recall score of below 50 %, it has to be mentioned that no
external background knowledge base was used for similarity computation and correspon-
dence evaluation. However, in order to obtain competitive recall results in the anatomy
track most systems utilise the UMLS metathesaurus [22]. According to the organisers,
the reference alignment contains about 60 % of “trivial” correspondences [48] that do not
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Table 7.6: Precision, recall, and F-measure results for all participants in the OAEI 2011
conference track [47].

System Precision F-measure Recall

MapEVO .15 .04 .02
MapPSO .21 .23 .25

(AgrMaker) .65 .62 .59
Aroma .35 .4 .46

CSA .5 .55 .6
CIDER .64 .53 .45

CODI .74 .64 .57
LDOA .1 .17 .56

Lily .36 .41 .47
LogMap .84 .63 .5

MaasMatch .83 .56 .42
MapSSS .55 .51 .47
Optima .25 .35 .57

YAM++ .78 .65 .56

require external resources in order to be identified. This naturally limits the recall that
can be achieved by alignment systems that do not exploit such external knowledge, such
as the UMLS metathesaurus. This puts the recall score of MapEVO reported in Table 7.5
into a different perspective.

7.2.4 Conference Track

The conference track, organised by the University of Economics, Prague, Czech Republic,
was part of the Ontology Alignment Evaluation Initiative (OAEI) since 2006. From 2006
till 2008, the conference track was organised as “consensus workshop”, where references
alignments were not available prior to execution of the campaign. Instead, generated
alignments were evaluated manually, and put up for discussion in the Ontology Matching
workshop. Since 2009, reference alignments are available and used for evaluation, similarly
to the other OAEI tracks10. In each year additional ontologies were added to the data set.

Description

The track aims to reflect the real-world use case of aligning ontologies from the domain
of conference organisation. Compared to other OAEI tracks, ontologies in the conference
track are more expressive in terms of the description logic fragments they cover. In 2011
the data set consisted of 16 ontologies of various size and expressiveness11. The task is to
find correspondences between all ontologies, which participating tools typically handle by
computing alignments between all pairs of ontologies in the data set.

In the OAEI 2010 and 2011 the conference track was conducted in the context of the
SEALS project. Additionally, this track was carried out as part of the second SEALS
evaluation campaign in spring 2012.
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Results

The results for each participant in the OAEI 2011 conference track are listed in Table 7.6.
The performance of both MapPSO and MapEVO prototypes is clearly below average
in this track. Due to the deactivation of property correspondence computation (see also
Section 7.2.1) the recall score for MapPSO decreased to 0.05 in the OAEI 2011.5 campaign.
For MapEVO the result (in terms of F-measure) remained roughly similar compared to
2011.

Discussion

The poor performance of MapPSO and MapEVO in this track may have several reasons.
Firstly, the single configuration used for all tracks in the OAEI 2011 and 2011.5 partic-
ipation was not taking into account complex ontology language features as found in the
conference track. For instance, ontologies in this track frequently contain complex class
descriptions in subclass axioms, which are not considered and interpreted by the corre-
spondence and alignment evaluators used in the objective function. Thus the objective
function used could not grasp the characteristics of the ontologies used in the conference
track. Secondly, the entity labels used in this track demonstrate several linguistic facets
that are not taken care of by any of the used correspondence evaluators. In particular
normalisation and the analysis of compound words and phrases seems to be beneficial for
this track, but is not done by any of the evaluators used in MapPSO and MapEVO.

7.2.5 Large Biomedical Ontologies Track

The large biomedical ontologies track, organised by the University of Oxford, United King-
dom, was introduced as part of the Ontology Alignment Initiative (OAEI) in the context
of the second SEALS evaluation campaign in spring 2012. The track was set up in the
context of the LogMap project12 that has a focus on providing logically correct mappings
between large biomedical data sets, such as SNOMED Clinical Terms (SNOMED CT)13,
the Foundational Model of Anatomy (FMA)14, and the National Cancer Institute The-
saurus (NCI)15.

Description

From the real-world problem of obtaining correspondences between concepts of the large
biomedical ontologies, an OAEI track was set up as a challenge for ontology alignment
tools. The track consists of only a single pair of ontologies, namely FMA and NCI.
However, each of the two ontologies has been reduced in its size in order to have three
tasks in this OAEI track of differently sized ontologies16:

1. Small ontology fragments of overlapping parts. The FMA module contains 3,696
concepts, which is 5 % of the complete FMA, while the NCI module contains 6,488
concepts, which is 10 % of the complete NCI.

10http://nb.vse.cz/~svatek/ontofarm.html, accessed December 19, 2011
11http://nb.vse.cz/~svabo/oaei2011/, accessed December 19, 2011
12http://www.cs.ox.ac.uk/isg/projects/LogMap/, accessed April 2, 2012
13http://www.ihtsdo.org/snomed-ct/, accessed April 2, 2012
14http://sig.biostr.washington.edu/projects/fm/, accessed April 2, 2012
15http://ncit.nci.nih.gov/, accessed April 2, 2012
16http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/, accessed April 2, 2012

http://nb.vse.cz/~svatek/ontofarm.html
http://nb.vse.cz/~svabo/oaei2011/
http://www.cs.ox.ac.uk/isg/projects/LogMap/
http://www.ihtsdo.org/snomed-ct/
http://sig.biostr.washington.edu/projects/fm/
http://ncit.nci.nih.gov/
http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/
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2. Big ontology fragments of overlapping parts. The FMA module contains 28,861
concepts, which is 37 % of the complete FMA, while the NCI module contains 25,591
concepts, which is 38 % of the complete NCI.

3. Complete ontologies with the FMA containing 78,989 concepts and the NCI contain-
ing 66,724 concepts.

Two reference alignments are provided that were extracted using the UMLS metathe-
saurus [22], where one reference is the unmodified UMLS mapping (3,024 correspondences),
and the other reference is repaired in order to avoid inconsistencies (2,898 correspon-
dences). Both references are not meant to be complete, since a manually validated, com-
plete alignment between FMA and NCI does not exist. It is one of the goals of the track
organisers to use the OAEI challenge to extend the UMLS baseline mappings and provide
a “silver standard” for advancing in this biomedical use case scenario.

Results

The result for the large biomedical ontologies track were provided by the organisers only
for new or modified systems compared to the OAEI 2011 campaign, and for those par-
ticipants that could process the ontologies from the OAEI 2011 anatomy track. Thus
results were reported for 10 out of 19 participating systems that were able to process the
large biomedical ontologies. All of these 10 systems could cope with the small overlapping
ontology fragments, while only 9 system could cope with the big overlapping fragments
and the complete ontologies. MapEVO and MapPSO were able to process all inputs. The
participating systems were “executed [. . . ] in two different settings: (1) a standard laptop
with 2 cores and 4 GB of RAM, and (2) a high performance server with 16 CPUs and
10 GB [of RAM, author’s remark]”17. For the small overlapping ontology fragments task,
all systems except one were able to compute the alignment in the conventional “laptop”
setting. Out of the 10 participating systems, for the big overlapping ontology fragments
task only 8 systems, and for the whole ontologies only 7 systems could be run in the
“laptop” setting. The presented approaches MapEVO and MapPSO, however, were able
to complete the tasks in this restricted setting.

Table 7.7 shows the results of all examined participants for the small overlapping
ontology fragments task with respect to the unmodified UMLS reference. The results of
MapEVO and MapPSO regarding the precision and recall scores in this task are clearly
below average. While in the small overlapping fragments task scores of less than 5 %
were achieved, the results are 0 for the big overlapping fragments and whole ontologies
tasks. These low scores were expected, in particular for the two larger test cases, since a
configuration was used that did not unveil the full potential of the presented algorithms. To
be specific, a low population size was used due to the restrictions of the SEALS evaluation
platform (cf. Section 7.6). Moreover, a small number of iterations was used in order to
meet the time limits imposed by the evaluation campaign setting.

Discussion

This track demonstrates the ability of the MapEVO and MapPSO prototypes to process
large ontologies. Only 10 out of the 19 systems participating in the OAEI 2011.5 were able
to process those ontologies, and, regarding the whole ontologies task, only 7 out of those
10 systems could perform on restricted hardware resources. MapPSO and MapEVO are
able to be executed on those limited resources. Additionally, MapPSO and MapEVO are

17http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/results2011.5.html, accessed May 23, 2012

http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/results2011.5.html
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Table 7.7: Alignment size, precision, recall, and F-measure results for all partici-
pants in the OAEI 2011.5 large biomedical ontologies track (small overlapping on-
tology fragments) drawn from http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/

results2011.5.html, accessed May 23, 2012. The scores refer to the unmodified UMLS
reference.

System Size Precision F-measure Recall

MapEVO 633 .003 .002 .001
MapPSO 3654 .022 .024 .027

Aroma 2575 .824 .758 .702
CSA 3607 .528 .574 .629

GOMMA-bk 2878 .957 .933 .910
GOMMA-nobk 2628 .973 .905 .846

LogMap 2739 .952 .905 .863
LogMapLt 2483 .969 .874 .796

MaasMatch 3696 .597 .657 .730
MapSSS 1483 .860 .566 .422

capable of utilising multiple compute nodes due to their parallel algorithm architecture,
which, however, could not be fully utilised in this evaluation campaign setting. On the
other hand, the results demonstrate that the latest versions of some competing ontology
alignment systems are indeed also able to process large ontologies provided that sufficient
hardware resources are available.

Regarding the alignment quality results, the low scores mainly go back to the trade-off
parameter configuration imposed by the single-configuration policy of the OAEI. On the
other hand, the small population and the low number of iterations used in the setting
lead to significantly worse scores than if those were set sufficiently large. A sufficient
configuration is not a problem in distributed execution environments (cf. Section 7.5), but
cannot be realised in the resource and time restricted setting of the evaluation campaign.

7.3 Effectiveness of Evaluation Metrics

The evaluation results from the previous Section 7.2 show a diverse performance of the
introduced prototypes MapEVO and MapPSO regarding alignment quality. While for
some test cases, such as benchmarks 103 the results with respect to precision and recall
are very good, there are other cases, e.g. anatomy , where the results are rather poor. An
interesting observation in the context of the anatomy track was the fact that the same
algorithm (MapEVO) revealed significantly better results when executed locally on the
same data set with an adapted objective function. This section investigates the correlation
between algorithm performance in several test cases and the performance of the alignment
evaluation metrics introduced in Chapter 4. To this end the discriminatory behaviour of
the evaluation metrics is analysed. “Discriminatory” in this case means the property of
an evaluation metric to provide a high score for a very good alignment, and a low score
for a very bad alignment. This behaviour is indispensable for the optimisation algorithms
to distinguish between good and bad solutions and thus converge towards the optimum.

In order to measure the discriminatory behaviour of the evaluation metrics their evalu-
ation scores are computed for some of the OAEI test cases’ reference alignments, which are
supposed to represent the optimal alignment for those cases. Additionally, the evaluation
metrics are applied to five randomly generated alignments for the ontologies of the same

http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/results2011.5.html
http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/results2011.5.html
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test cases, with their average reported. It is assumed that a random alignment is a rather
bad solution candidate for the alignment problem, so it is expected that the average of the
evaluations of those random alignments is relatively low compared to the evaluation of the
reference alignment. In order to have a single evaluation score for correspondence level
evaluators, the evaluation scores of all correspondences in the alignment are aggregated
by computing the arithmetic mean18. Note that this aggregation hides the impact of cor-
respondence level evaluators when their evaluation scores are used as support heuristics
in the optimisation algorithms. Hence, a correspondence level evaluator that has poor
discriminatory behaviour on the alignment level as presented here, may still be valuable
in terms of distinguishing good from bad correspondences.

7.3.1 Evaluation Metrics in the OAEI benchmarks Track

The systematic design of the test suite in the OAEI benchmarks track revealed on the one
hand good performance for MapEVO and MapPSO, for instance in test case 103, on the
other hand bad performance, for instance in test case 252. Figure 7.3 shows the evalua-
tion scores for local correspondence evaluators, contextual correspondence evaluators, and
global alignment evaluators, respectively, for the benchmarks test case 103.

In particular the local correspondence evaluators show clear discriminatory behaviour,
which is less significant for the contextual correspondence evaluators. At this point it
should be mentioned that the hAhierarchyProp metric depends on the evaluations of “neigh-
bouring” correspondences (cf. Equation (4.21)), which is always 1.0 in the reference align-
ment, and a uniform random value in the random alignments. In the light of this analysis,
the highly discriminatory behaviour is still representative, since the low value for the ran-
dom baseline alignment shows that there are only few neighbouring correspondences at all.
In a real optimisation run these neighbouring evaluation scores depend on the evaluation
computations from previous iterations, as it is the case for many contextual correspon-
dence evaluators. For the global metrics on the alignment level, the Hconsist metric is a
discrete one that scores either 0 or 1. The metric seems to be valuable since all random
alignments induce an inconsistency. Consequently the Hcoherence metric scores 0, since
due to the inconsistency, all classes have become unsatisfiable. The contextual hAexplanation
is inapplicable for the reference alignment, since there cannot be an explanation if there
are no unsatisfiable classes. The same metric is also inapplicable for the random align-
ments, since they are all inconsistent, and computing explanations cannot be done on an
inconsistent ontology.

The evaluation results produced by the same evaluators for the OAEI benchmarks test
case 252, where the overall result of MapEVO and MapPSO was not satisfactory (cf.
Section 7.2.1 and Appendix A) are shown in Figure 7.4.

Compared to the results for test case 103, it can be observed that the local corre-
spondence evaluation metrics do not provide high scores for the reference alignment, and
consequently show no discriminatory behaviour. The results for the contextual corre-
spondence evaluators and the global alignment evaluators are similar to those for test
case 103. The availability of highly discriminatory local evaluation scores seems to be an
important factor to achieve good overall alignment performance. An explanation for this
observation is that some contextual correspondence evaluators (hAhierarchyProp, hApropDRClass,

hAclassDRProp) are propagating evaluation scores from other correspondences to the one un-
der evaluation. So good correspondences should have a high evaluation score in order to
influence other correspondence scores accordingly. Local correspondence evaluation met-

18This is the same computation as done by the correspondence contribution alignment evaluator (cf.
Equation (4.43))
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Figure 7.3: Evaluation scores for different evaluator types for reference and random align-
ments of test case 103 from the OAEI benchmarks track. Inapplicability of an evaluator
is indicated by a negative score.
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rics are bootstrapping the evaluation scores, which can in later iterations be propagated
by contextual evaluators. The absence of discriminative local correspondence evaluation
metrics hampers the effect of contextual evaluators as well.

7.3.2 Evaluation Metrics in other OAEI Tracks

The discriminatory behaviour of evaluation metrics is studied for two ontologies from the
OAEI conference track, ekaw.owl and iasted.owl (Figure 7.5), as well as for the anatomy
track ontologies (Figure 7.6), and the small sized versions of the ontologies from the large
biomedical ontologies track (Figure 7.7).

It can be observed that the performance and discriminatory behaviour of evaluation
metrics are diverse. This confirms the assumption that ontologies of varying characteris-
tics require different alignment evaluation metrics in order to distinguish good from bad
solutions, thus underpinning the introductory Conjecture 2. In the concrete scenarios
this becomes most obvious for the hlexIDSim and hlexLabelSim (htextIDSim and htextLabelSim,
analogously) evaluation metrics. While there is significant information in the entity iden-
tifiers in the conference ontologies, the identifiers are meaningless in case of the anatomy
ontologies. The opposite holds for the entity labels. Recalling the anatomy results from
Section 7.2.3 the objective function used in the official campaign did not consider entity
labels, but only entity identifiers, which explains the poor alignment quality achieved in
the OAEI 2011.

Another observation is the discriminative behaviour of the hAhierarchy evaluator for the
conference track ontologies. Here, the random alignment achieves a better score than the
alignment. This most likely goes back to the fact discussed earlier in Section 7.2.4 that
the conference ontologies contain complex class descriptions in subclass axioms, which are
not interpreted by the current implementations of the hAhierarchy evaluator. This often leads
to situations, where existing correspondences of super- or subclasses are not recognised as
such by the evaluator.

7.3.3 Discussion

It can be observed that the structural evaluators hAcrissCross, HstructPreserv, and HcrissCross

do not show any significant discriminatory behaviour for all considered test cases. This is
most likely due to the structural constitution of the ontologies in these test cases, which
presumably reflect the constitution of most real-world ontologies in this respect. Having
a closer look reveals that the metric according to Joslyn et al. [71] requires common
“paths” on the subsumption hierarchy of entities in any two correspondences in order to
cause the metric to produce a low score. Any correspondences with entities that have
no common subsumer score high. In ontologies that are relatively shallow in terms of
their subsumption hierarchy compared to their total number of entities, a large fraction of
correspondences do not have entities with common subsumers. Thus the metric provides
high evaluation scores even for random alignments. A similar phenomenon can be observed
for the criss-cross evaluation metrics both on the correspondence and on the alignment
level. Correspondences of entities that are not on the same path in terms of super- or
subentities cannot cross and thus cannot produce a low evaluation score.

It should be noticed that the observations regarding the criss-cross metric on the cor-
respondence level are an aggregated value. This does not mean that individual corre-
spondences are not evaluated low if they are crossing other correspondences. So for all
algorithm internal decisions that depend on the single correspondence evaluations as a sup-
port heuristic, the criss-cross metric can provide valuable information. For the criss-cross
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Figure 7.5: Evaluation scores for different evaluator types for reference and random align-
ments of two ontologies from the OAEI conference track (ekaw.owl and iasted.owl).
Inapplicability of an evaluator is indicated by a negative score.
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metric on the alignment level, as well as the structural preservation metric, the evaluation
scores do indeed provide no significant information regarding the quality of an alignment.
In the case of the structural preservation metric, the computation of Joslyn et al. might
require adjustments in order to account for the structural properties of ontologies. Addi-
tionally, it might be a promising approach to convert the structural preservation metric
from a global alignment level metric to a contextual correspondence level metric in or-
der to achieve a fine-grained discrimination for correspondences similar to the criss-cross
evaluator.

A delicate metric is the alignment size evaluator Hsize. The figures show that for all
randomly generated alignments the size evaluator scores about 0.5. This is due to the
way random alignments are generated here: each possible correspondence is selected for
the alignment with a probability of 0.5. The motivation of the alignment size evaluator
is to reward larger alignments in order to maximise the overlap. As it can be observed in
Figures 7.5 and 7.6 for the conference and anatomy track, respectively, some ontologies
have a small overlap. If the influence of the alignment size evaluator is too high, e.g. in a
weighted average aggregation (cf. Section 4.2.2), resulting alignments tend to be too large,
which causes the recall score to decrease (cf. Sections 7.2.3 and 7.2.4).

For all test ontology pairs used in this study the random baseline alignments always
induce an inconsistency, apart from the large biomedical ontologies test case. Since incon-
sistency implies that all classes are unsatisfiable, the coherency evaluator Hcoherence delivers
0. As a consequence the explanation-based evaluator hAexplanation on the correspondence
level becomes inapplicable for an inconsistent ontology. These results corroborate Con-
jecture 3 from Section 1.1 by demonstrating that even for seemingly inexpressive and
simple ontologies such as the OAEI benchmarks, inconsistencies are induced by any of five
randomly created alignments. It has to be noted that a merged ontology based on an
alignment being inconsistent causes the explanation evaluator to fail quickly. In the single
case of large biomedical ontologies where the merged ontology based on the alignment is
not inconsistent, the explanation evaluator fails with an out-of-memory error. The reason
for this behaviour is the great computational expense that comes with reasoning inten-
sive calculations. This circumstance makes the explanation evaluator hAexplanation difficult
to employ even for moderately sized ontologies. The explanation computation could be
optimised for the special case considered in ontology alignment19.

7.4 Convergence and Anytime Alignment

This section analyses the convergence of the MapEVO and MapPSO prototypes. An
experiment has been conducted using the OAEI benchmarks test case 103. The insights
from the previous Section 7.3 are that the quality of the result produced by the introduced
algorithms strongly depends on the suitability of the evaluation metrics used to compose
the objective function. For the benchmarks test case 103 an objective function can be
configured such that the algorithm provides good results in terms of precision, recall, and
F-measure.

Figures 7.8 and 7.9 illustrate the convergence of MapEVO and MapPSO, respectively,
in terms of the objective function (alignment quality function F (A)), alignment size, as well
as the F-measure evaluation of the intermediate alignments with respect to the reference
alignment. Quality, size, and F-measure refer to the best alignment with respect to F (A)

19The black box simple expand-shrink strategy [72] could be modified in order to specifically check
the axioms induced by the correspondences in the alignment, thus avoiding the computation of complete
explanations.
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Figure 7.8: Convergence of MapEVO for the benchmarks test case 103 regarding alignment
quality (objective function) F (A), alignment size, and F-measure (with respect to the
provided reference alignment).

in the whole population in each iteration.

For both experiments, the same configuration20 was used. In particular, both algo-
rithms were configured with a population size of 40 and an objective function comprising
the evaluation metrics Hsize, HcrissCross, HstructPreserv, hAhierarchy, hAhierarchyProp, hAcrissCross,
hlexIDSim, hlexLabelSim, htextLabelSim, and hentityVDSim.

It can be observed that the alignment quality is continuously improving throughout the
iterations. However, an improvement of the alignment quality used as objective function
does not always directly correlate with an improvement of F-measure. This shows that
the objective function does not always correctly reflect the quality criteria expected by the
reference alignment. In most cases a drop in F-measure is correlated with a change in the
alignment size. Increasing the size of an alignment is considered desirable by the objective
function due to the impact of Hsize that is striving for larger alignments. On the other
hand, a larger alignment bears the risk of containing more suboptimal correspondences,
which is penalised by the precision evaluation and thus influences the F-measure.

This behaviour is relevant for Conjecture 4 from Section 1.1 regarding the anytime
behaviour of biologically-inspired optimisation techniques. In fact, interrupting the opti-
misation run at any time indeed delivers an alignment that is the best one found so far
according to the objective function. However, it is not guaranteed that this alignment is
the best one found so far compared with a reference alignment. Nevertheless, both Fig-

20Since the two algorithms have different configuration parameters, using the same configuration in
this experiment refers to the same configuration of shared components, i.e. population size and objective
function (cf. Section 6.2).
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Figure 7.9: Convergence of MapPSO for the benchmarks test case 103 regarding alignment
quality (objective function) F (A), alignment size, and F-measure (with respect to the
provided reference alignment).

ures 7.8 and 7.9 show a relatively monotonic increase of F-measure such that the general
claim can be defended that the presented algorithms demonstrate anytime behaviour in
order to give up quality for runtime.

A comparison of the convergence plots for MapEVO and MapPSO points out a slightly
different convergence speed for both prototypes. Thereby, MapPSO demonstrates faster
convergence, and reaches a stable state after about 250 iterations. In contrast, MapEVO
converges slower and reaches a stable state after about 400 iterations. This difference is
strongly influenced by algorithm specific parameters such as for instance the probability
bounds or the swap frequency delimiter % for MapEVO, or β, γ, λ, κ, and σ for MapPSO.

7.5 Case Study: Gene Ontology (GO) and Medical Subject
Headings (MeSH)

The Gene Ontology (GO) [125] is a controlled and well-maintained vocabulary for anno-
tating genes and gene products. It describes so-called “terms” in three main branches,
namely cellular component (2,980 terms), biological process (22,382 terms), and molecular
function (9,329 terms)21 [53].

The Medical Subject Headings (MeSH) thesaurus contains 26,142 descriptors22 about

21The numbers refer to the ontology version 1.2830, dated 30/03/2012 16:15 http://www.geneontology.

org/GO.downloads.ontology.shtml, accessed March 31, 2012
22http://www.nlm.nih.gov/pubs/factsheets/mesh.html, accessed April 2, 2012

http://www.geneontology.org/GO.downloads.ontology.shtml
http://www.geneontology.org/GO.downloads.ontology.shtml
http://www.nlm.nih.gov/pubs/factsheets/mesh.html
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the domains of medicine, nursing, dentistry, veterinary medicine, health care systems, and
preclinical sciences [53]. One of its use cases is to serve as an index for about five thousand
biomedical journals in the MEDLINE / PubMED R© database23.

Using the GO and MeSH in an integrated manner can provide an added value to
biomedical information systems [27]. Motivated by a requirement from the THESEUS
SME 2009 award winning project GoOn24 the MapPSO prototype was used for computing
an alignment between GO and MeSH.

For the experiment, the OWL versions of the ontologies were used, where the GO
contains ∼31,650 classes, and the MeSH contains ∼15,340 classes. The experiment [19]
has been executed using the Amazon Web ServicesTM (AWS) cloud infrastructure using
the cloud deployment mechanisms [17] presented in Section 6.5.3.

The cloud infrastructure was configured such that a single particle is evaluated on
each Amazon Elastic Compute Cloud (EC2) instance. The chosen EC2 instance type was
“m1.small” for all instances, which is a 32 bit single-core compute node with 1 EC2 Com-
pute Unit, which “provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron
or 2007 Xeon processor”25 with 1.7 GB memory, operated by Linux (cf. Table 7.8).

Since no reference alignment is available for these data sets, no thorough evaluation
of the alignment quality could be provided. However, the convergence of the algorithm
could be measured in terms of the fitness scores of each particle throughout the iterations.
Figure 7.10 shows the convergence behaviour regarding alignment quality of the MapPSO
algorithm for this experiment, while Figure 7.11 shows the convergence behaviour regard-
ing alignment size. The particles are depicted by the different lines in the figures.

MapPSO was configured to execute with 8 particles and 30 iterations using an asyn-
chronous communication strategy (cf. Section 6.5.3), which is reflected by the varying
time intervals between iterations for the different particles. It can be observed that the
wall-clock time taken for an iteration strongly depends on the size of the alignment rep-
resented by the particle, since larger particles have longer runtimes. For instance, the
initially largest particle according to Figure 7.11 takes the longest time for 30 iterations.
Moreover, it can be observed that the instant a particle adjusts its size typically coincides
with a significant improvement of its quality.

No other state-of-the-art ontology alignment system is reported to be capable of ex-
ploiting distributed computing architectures or cloud infrastructures. For this reason it
is difficult to carry out a fair comparative study on how well other state-of-the-art can
cope with the same data set. While in the experiment, MapPSO was given 8 instances
of relatively small EC2 nodes, the other systems were given a single, but more powerful
machine. Table 7.8 contrasts the two settings.

In the experiment only those alignment systems were tested that could successfully
process the OAEI 2011 anatomy track. Table 7.9 shows the results of the experiments. It
can be observed that the MaasMatch system [114] is the only system that could provide
a non-empty alignment in about 17 hours. This was only possible when providing 4 GB
of heap space, since the system also failed with 2 GB as used on a single compute node
for MapPSO. The success of MaasMatch may be related to the fact that this was the only
system running multi-threaded and thus making full use of the 4 cores available on the
test machine.

23http://www.ncbi.nlm.nih.gov/pubmed/, accessed April 2, 2012
24http://theseus-programm.de/en/942.php, accessed April 3, 2012
25http://aws.amazon.com/ec2/instance-types/, accessed April 11, 2012

http://www.ncbi.nlm.nih.gov/pubmed/
http://theseus-programm.de/en/942.php
http://aws.amazon.com/ec2/instance-types/
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Figure 7.10: Convergence behaviour of the MapPSO algorithm regarding alignment quality
(objective function) on the AWS cloud infrastructure when aligning the Gene Ontology
(GO) with the Medical Subject Headings (MeSH). Each line depicts the progress of a
particle and line marks denote iterations.

7.6 Discussion

The suitability of biologically-inspired optimisation techniques for solving the ontology
alignment problem has been backed up by various experiments. It could be demonstrated
that biologically-inspired optimisation techniques provide an answer to all conjectures
declared in Section 1.1.

The quality of the results obtained by the two presented algorithms was measured
using the Ontology Alignment Evaluation Initiative (OAEI) data sets. Since 2008, the
MapPSO system constantly participated in the official campaign. It could be observed
that the results are of diverse quality. The MapPSO system performed competitively in
the directory track. While for some test cases in the benchmarks track very good results
with respect to classical precision and recall measures could be obtained, there were other
cases, where the result quality was poor. Interestingly, for both MapPSO and MapEVO
it was reported by the organisers that with respect to the generalised precision and recall
measures (cf. Section 7.1) a significant improvement can be observed. This matches the
expectation that biologically-inspired optimisation techniques provide a coarse-grained
search, and usually require local search techniques to fine-tune the results [106, Sect. 6.3].

A second aspect regarding the result quality is its correlation with the objective func-
tion. Those test cases, where good results could be obtained are those for which the
similarity metrics used for instantiating the objective function show a high discriminative
behaviour (cf. Section 7.3). This means that similarity metrics are used that can clearly
distinguish good alignments from bad ones, high quality results can be obtained. This sup-
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Figure 7.11: Convergence behaviour of the MapPSO algorithm regarding alignment size
on the AWS cloud infrastructure when aligning the Gene Ontology (GO) with the Medical
Subject Headings (MeSH). Each line depicts the progress of a particle and line marks
denote iterations.

ports the main argument that biologically-inspired optimisation techniques can be used
for solving the ontology alignment problem. However, a high quality objective function
is required that encodes mechanisms to exploit the relevant ontology characteristics. In
order to improve the results regarding alignment quality, developing additional metrics
that cover further ontology characteristics would be beneficial, as well as improving the
existing metrics. Examples for possible improvements would be the adaptation of the ex-
planation evaluator or the structural preservation evaluator as discussed in Section 7.3.3,
or the interpretation of complex entity expressions in most of the contextual evaluators.

Independent of how the objective function exploits the relevant ontology characteris-
tics, convergence could be observed for both MapEVO and MapPSO. In particular this
convergence could be observed for aligning large biomedical ontologies (Gene Ontology and
Medical Subject Headings) on a cloud infrastructure (cf. Sections 7.4 and 7.5). The studies
show the expected anytime behaviour, where at any point in time during the optimisation
run, the currently best alignment can be used. A correlation between F-measure of this
intermediate alignment and the objective function value could be observed. The experi-
ments further demonstrate that large ontologies can be processed at all, and distributed
computing resources, such as cloud infrastructures can be used. Insights obtained from the
recent OAEI 2011.5 large biomedical ontologies track, however, demonstrate that recent
versions of various state-of-the-art alignment tools are able to process large ontologies, as
well. Many of those systems, however, require powerful monolithic computing resources,
whereas MapPSO can utilise a large number of individually less powerful resources. This
matches the paradigm shift from monolithic to distributed computing infrastructures, re-
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Table 7.8: Computing infrastructure used for experiments with MapPSO and other sys-
tems for aligning the Gene Ontology (GO) with Medical Subject Headings (MeSH).
MapPSO used 8 EC2 instances on the Amazon R© Web Services (AWS) cloud.

AWS EC2 instance Local machine
(MapPSO) (other systems)

CPU 1 × 1 ECU (∼ 2007 4 × Intel R© Core
TM

i7
Opteron/Xeon 1.0-1.2 GHz) CPU, M620, 2.67 GHz

Memory 1.7 GB 4 GB

Architecture i386 x86

Operating System 32 bit Linux 64 bit Linux

Table 7.9: OAEI 2011 participants used for aligning the Gene Ontology (GO) with Medical
Subject Headings (MeSH). Only those systems were tested that could successfully process
the OAEI 2011 anatomy track.

System Description

AgrMaker system was not made available for testing
Aroma empty alignment after ∼20 seconds

CSA empty alignment after ∼7 minutes
(ArrayIndexOutOfBoundsException)

CODI internal error
(IllegalStateException)

Lily out-of-memory
LogMap out-of-memory

MaasMatch non-empty alignment after ∼17 hours

alised for instance by modern cloud computing solutions.

Evaluation in the SEALS Platform. The SEALS project has the goal to provide
a universal evaluation platform that allows for controlled and repeatable execution of
tools. The evaluation environment is set up as a virtual machine in which the tool under
evaluation is automatically deployed and executed. While this environment is suitable
and desired for executing and comparing monolithic systems that are designed to run
on a single machine, it is unsuitable for algorithms that are designed to be executed
in a distributed environment, such as cloud infrastructures. Due to this limitation, the
MapPSO and MapEVO algorithms cannot use their full potential when being executed
in the SEALS platform. The OAEI tracks providing large ontologies to be aligned thus
could only be addressed using a configuration that uses the computing resources available
on a single compute node. For instance in the case of MapPSO this means that only a
few particles can be used and since all particles need to be computed on a single compute
node, the runtime for one iteration increases and the overall runtime to obtain a reasonable
result is increased drastically.

Another criticism regarding the evaluation in the SEALS platform is the enforced
single-configuration policy, meaning that participating alignment systems have to use a
single configuration for all OAEI tracks or have to implement self-tuning. This is done by
some systems, in the case of AgreementMaker even to an extent that is discouraged by the
OAEI organisers. They report that “AgreementMaker used machine learning techniques to
choose automatically between one of three settings optimized for the benchmark, anatomy
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and conference data set. It used a subset of the available reference alignments as input
to the training phase and clearly a specific tailored setting for passing these tests. This
is typically prohibited by OAEI rules. However, at the same time, AgreementMaker has
improved its results over last year so we found interesting to report them” [47].

Given the different characteristics of ontologies in the different OAEI tracks, what the
OAEI campaign is essentially evaluating is the ability of alignment systems to automati-
cally adapt their configuration. Neither MapPSO nor MapEVO implement sophisticated
self-adaptation procedures. However, a very simple preprocessing was implemented for the
second SEALS evaluation campaign in order to have a sufficient number of iterations in
order to achieve convergence for each test case (large biomedical ontologies excluded due
to time restrictions).
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Chapter 8

Conclusion

An investigation of how biologically-inspired optimisation techniques can be used for solv-
ing the ontology alignment problem was presented in this thesis. In particular two ap-
proaches were introduced, an Evolutionary Algorithm, and a Discrete Particle Swarm
Optimisation algorithm, both adapted for and applied to the ontology alignment problem.
Biologically-inspired optimisation techniques demonstrate several interesting features and
properties that suite well some of the challenges faced in the problem domain of ontology
alignment. More precisely the aspects considered here were laid out in Section 1.1 in terms
of four conjectures:

• Scalability improvement of ontology alignment due to the inherent parallelisability
of population-based biologically-inspired optimisation techniques.

• Adaptability of the ontology alignment algorithm to ontologies with different mod-
elling characteristics, due to the independence of biologically-inspired optimisation
techniques from their objective function.

• Consideration of inter-correspondence dependencies and global alignment evaluation
criteria due to the global representation and assessment of solutions in biologically-
inspired optimisation techniques.

• Support for a gradual trade-off between alignment quality and runtime due to the
inherent anytime behaviour of biologically-inspired optimisation techniques based on
their iterative execution.

This chapter summarises the main findings in Section 8.1 and provides an outlook on
future research directions in Section 8.2.

8.1 Results

Two novel algorithms were developed in this thesis to solve the ontology alignment prob-
lem:

• An Evolutionary Algorithm based on ideas from Evolutionary Programming and Ex-
tremal Optimisation, as well as other facets that have been shown useful in related
applications. The algorithm maintains a population of species, each undergoing
adapted mutations in every iteration. In frequent intervals, a ranked-based selec-
tion is done removing the worst species and allowing the best ones to reproduce.
The mutation operators modifying each individual’s configuration are influenced by

129
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correspondence confidences as support heuristic. Furthermore they are influenced
by the iteration progress to limit the amplitude of changes towards the end of the
optimisation run.

• A Discrete Particle Swarm Optimisation Algorithm inspired by an approach to solv-
ing the structurally similar problem of attribute selection for a machine learning
classifier. The algorithm maintains a population of particles, moving through the
problem space of all possible candidate alignments. The new position of each parti-
cle, i.e. the set of correspondences it represents, is influenced by two factors:

– Each correspondence is likely to be preserved in the alignment if it is also present
in the particle’s personal best configuration, or in the best configuration of any
particle in the particle’s neighbourhood.

– For each correspondence its confidence, as a support heuristic, influences the
decision whether it will be preserved in the next iteration.

In order to compose useful objective functions, a collection of similarity metrics has
been provided. Three types of metrics were presented:

• Local correspondence level metrics, solely exploiting information available for the
two corresponding entities and their ontology context.

• Contextual correspondence level metrics, exploiting additionally the alignment con-
text, i.e. the evaluation of correspondences in the presence of other correspondences.

• Global alignment level metrics, considering criteria accessible only for complete align-
ments.

The presented similarity metrics can be seen as an exemplary tool box in order to instan-
tiate arbitrary objective functions. For special alignment scenarios, additional metrics are
required, which is why the presented evaluation metrics are not meant to be an exhaustive
collection.

Regarding the motivational conjectures from Section 1.1, the developed algorithms
show satisfactory behaviour, summarised in the following paragraphs.

Scalability (Conjecture 1). There is a tendency of ontologies to become larger due to
the increasing amount of knowledge and the availability of powerful information systems to
exploit it. This can in particular be observed in the biomedical domain. Population-based
biologically-inspired optimisation techniques are inherently parallelisable in the way that
in each iteration, each population member evaluates a candidate solution independently.
This property was preserved when adjusting the classical optimisation algorithms to the
alignment problem in this thesis. The remaining bottleneck in the Evolutionary Algo-
rithm is the centralised ranking and controlled duplication and removal of species from
the population. In the Particle Swarm Optimisation algorithm, the bottleneck is the com-
munication via social networks and, compared to the Evolutionary Algorithm, the more
fine-grained exchange of information on the correspondence level (shared correspondences
in particles).

On the implementation side these requirements regarding the communication bottle-
neck, particularly in distributed environments, were considered. On the one hand, a novel
API, named KADMOS, was developed for the use in both prototypes with a particular
focus on serialisability and a communication API for cloud infrastructures. On the other
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hand, for the MapPSO prototype, an asynchronous particle update strategy was applied,
and a concept called particle pooling was introduced in order to improve parallel efficiency.

The applicability to large ontologies was demonstrated by computing an alignment for
the Gene Ontology (GO) and the Medical Subject Headings (MeSH) with several tens of
thousands of concepts. The MapPSO prototype was used to compute an alignment on the
Amazon Web ServicesTM cloud infrastructure. Due to the absence of a suitable reference
alignment, no quality evaluation of the results could be done, however, the convergence of
the algorithm could be observed, which shows the continuous improvement of the computed
alignment with respect to the objective function used.

A recent alignment system evaluation and comparison in the context of the Ontol-
ogy Alignment Evaluation Initiative revealed that some other state-of-the-art systems are
also able to process large ontologies. In particular the availability of a powerful (high-
memory) computing resource enables some systems to cope with large inputs. This leads
to a differentiated view of the advantage in scalability of biologically-inspired optimisation
techniques applied to ontology alignment. However, in the light of the paradigm shift
towards distributed and cloud-based computing infrastructures the parallelisability of the
presented algorithms can be seen as an advantage nonetheless. For the population-based
approaches the single compute nodes in the distributed infrastructure can be relatively
moderate in terms of number of CPUs or cores, and memory, which is compensated by
the total number of compute nodes utilised.

Flexibility (Conjecture 2). The different interpretations of the term “ontology”, the
availability of ontology languages of different expressiveness, as well as the different use
cases for ontologies result in a variety of ontologies demonstrating different modelling
characteristics. These characteristics play an important role when an alignment between
two ontologies is to be computed. The notion of “optimality” for an ontology alignment
depends on a ranking of candidate alignments, in order to make a statement such as
“alignment A is better than alignment B”. In biologically-inspired optimisation tech-
niques, ranking criteria are encoded in an objective function, where the optimiser strives
for finding the solution with the best objective function value.

The presented applications of biologically-inspired optimisation techniques for ontol-
ogy alignment use an objective function for global alignment evaluations, and a support
heuristic for evaluations on the correspondence level. Both are treated as black boxes
by both optimisation metaheuristics. In this sense the presented algorithms are applica-
ble for aligning ontologies of different characteristics, provided the way to exploit these
characteristics is appropriately encoded in the objective function and support heuristic.

Regarding the implementation prototypes, both MapEVO and MapPSO utilise the
same objective function and support heuristic. Various similarity metrics are provided
as an external library, named HARMONIA Commons, making it possible to configure
arbitrary objective functions and support heuristics, and facilitate extensibility.

Empirical studies have shown that the configuration of the objective function (and
support heuristic) is crucial for obtaining high quality results. To this end, a correlation
between the discrepancy of used similarity metrics and the result quality in various test
cases was demonstrated. This correlation explains the diverse results of the presented im-
plementation prototypes in the Ontology Alignment Evaluation Initiative (OAEI), where
the same objective function was used for aligning ontologies with a wide range of modelling
characteristics. In those cases, where the objective function and support heuristic were
suitably configured, results of good quality could be obtained.
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Global Alignment Metrics (Conjecture 3). In particular for those ontologies that
exploit ontology language features of higher expressiveness, care must be taken when
computing an alignment, in which correspondences are meant to be interpreted with an
equivalence semantics. The reason is that treating correspondences as equivalence axioms
can have an impact on the consistency or coherency of the merged ontology based on an
alignment. Inter-correspondence effects can cause classes to become unsatisfiable, or even
the merged ontology to become inconsistent. The way biologically-inspired optimisation
techniques treat the objective function as a black box allows for encoding both inter-
correspondence evaluation criteria (evaluation of a correspondence in the context of other
correspondences), or arbitrary other global alignment metrics into the objective function
and the support heuristic.

The HARMONIA Commons library provided as a separate implementation module
for being used by both prototypes MapEVO and MapPSO, as well as by arbitrary other
software modules, allows for easy encoding of contextual correspondence level and global
alignment level evaluation metrics.

Experiments with various similarity metrics have shown that even for seemingly simple
ontologies, random alignments with their correspondences interpreted as equivalence ax-
ioms induce inconsistencies. This is a strong indication that dedicated similarity metrics
are required in order to avoid inconsistency or incoherency inducing alignments.

Approximate and Anytime Alignment (Conjecture 4). Depending on the appli-
cation scenario of ontology alignment, the expectation regarding result quality can vary.
While safety-critical applications require high result quality, simple search applications
might require less quality. Conversely, those simple search applications might require
faster response time than critical applications, where long runtimes can be accepted. The
iterative nature of biologically-inspired optimisation techniques bears the potential to in-
terrupt the process at any point in time and retrieve the best intermediate result computed
so far. This property was preserved when adjusting the classical optimisation algorithms
to the alignment problem in this thesis, since implementing this feature is straightforward.

The convergence of the implemented prototypes MapEVO and MapPSO in terms of
the improved objective function value was compared with the F-measure denoting the
quality of intermediate alignments with respect to a given reference alignment. In this
empirical study, a correlation could be observed1.

One other interesting observation in the course of evaluating the approaches was that
the results found by both MapPSO and MapEVO in the context of the Ontology Alignment
Evaluation Initiative were often not exactly matching the reference alignment, but were
close to the reference. This could have been shown by applying relaxed precision and
recall metrics. It is a typical behaviour of biologically-inspired optimisation metaheuristics,
that they provide coarse-grained near-optimal results, and typically require a local search
component in order to find the absolute optimum [106].

8.2 Outlook

The presented work provides a first systematic study of applying biologically-inspired
optimisation techniques to directly solve the ontology alignment problem. Due to the

1The correlation between objective function value and F-measure was not entirely smooth. More pre-
cisely, there are cases where an improvement of the objective function score correlated with a decrease in
F-measure, which was mostly due to a change in the size of the alignment in the respective iterations. As
from previous experiments, the reason is in the definition and configuration of the objective function, in
particular with respect to the influence of the alignment size.
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numerous facets that can be focused on and varied when applying an optimisation method
to a given problem, there are plenty of directions that can be followed in order to extend
and refine the work.

One research direction is clearly the improvement of alignment results. As the pre-
sented studies have shown, the result quality strongly depends on the instantiation of the
objective function and thus on the feasibility of used similarity metrics. Developing new
generic and special-purpose similarity metrics thus is always a way to improve result qual-
ity, for instance, in biomedical use cases where the UMLS metathesaurus [22] would be
a valuable resource. In order to provide a generic zero-configuration alignment system,
sophisticated preprocessing techniques have to be applied in order to self-adapt the objec-
tive function and other critical parameters. Successful alignment systems with respect to
the OAEI data sets perform such a self-adaptation. AgreementMaker, for instance, uses a
mechanism of base matcher self-assessment in order to estimate the “local confidence” [34]
of selected correspondences. The RiMOM system features the dynamic weight calcula-
tion for the predicting value aggregation based on the analysis of ontology characteristics
in a preprocessing step [85, 134]. Another option for improving the objective function
on demand would be to incorporate interactive components, such as user interaction for
adjusting parameters [127], or directly influencing the optimisation algorithm [63].

In case the algorithm will be applied in a fixed, well-known use case domain, a pri-
ori configurations of the objective function would be beneficial. Using the methods of
Martinez-Gil [86, 87] (GOAL), or Ritze and Paulheim [110] (ECOMatch), one could ob-
tain such a configuration in case a partial reference alignment is available or manually
created upfront. Similarly, test planning methods, or Genetic Programming [79] could be
applied for finding a good fitness function.

Another direction of future research that is likely to have an impact on improving
the quality of generated alignments is the application of local search components, since
optimisation metaheuristics are typically only providing only near optimal solutions [106].
Such local search components could be applied both during the optimisation run, or as a
postprocessing step at the end.

Obviously, an exhaustive in-depth study of all available biologically-inspired optimisa-
tion metaheuristics with respect to their applicability to the ontology alignment problem
was beyond the scope of this thesis. However, for instance, using Ant Colony Optimi-
sation could be another promising approach for solving the ontology alignment problem.
Similar to the metaheuristics used in this thesis, the individuals (ants) could be computed
independently from each other. However, a shared data structure would be necessary
for their communication via stigmergy. This requires a different and more complex de-
ployment in distributed computing infrastructures, and could hamper scalability without
efficient optimisations on the implementation side. The presented Evolutionary Algorithm
does not exploit the feature of Self-Organised Criticality according to the Bak-Sneppen
model [5], since it requires the notion of a global neighbourhood relation of individuals
in the population. This in turn requires frequent pairwise comparisons of individuals on
their component level (in case shared solution components are used to determine closest
neighbours, as proposed by Randall [105]). This consequently imposes additional chal-
lenges for deployment on distributed computing infrastructures, as it is the case for Ant
Colony Optimisation.

Further extension of the presented approaches would be to relax the restrictions of
ontology alignment representations, in order to allow for entities corresponding to more
than one other entity. This could be required in some use cases, however, such a relaxation
would significantly increase the solution space to 2]O1·]O2 making the optimisation problem
even more difficult. Another related approach that might be worth exploring is to allow
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the algorithm to move candidate solutions through infeasible solution spaces during the
optimisation run. This could make it easier to detect better correspondences for entities
which are already participating in another correspondence. Currently, in an iteration no
new correspondence can be created for an entity, which is “blocked” by participating in
another correspondence, since otherwise the alignment would become invalid.

In cases where ontology alignments have to be computed in changing environments,
i.e. with frequently or constantly changing ontologies, biologically-inspired optimisation
techniques can provide a valuable solution [62]. The way the presented approaches are
useful in such scenarios, could be analysed in future studies.

Last but not least, the possibility to exploit Infrastructure-as-a-Service (IaaS) cloud
services to build a scalable and elastic Software-as-a-Service (SaaS) alignment service opens
the door for business models providing flexible alignment services for the demands of future
semantic applications.
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[28] Caterina Caracciolo, Jérôme Euzenat, Laura Hollink, Ryutaro Ichise, Antoine Isaac,
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In Pavel Shvaiko, Jérôme Euzenat, Fausto Giunchiglia, Heiner Stuckenschmidt,
Natasha Noy, and Arnon Rosenthal, editors, Proceedings of the 4th International
Workshop on Ontology Matching, volume 551, pages 49–60, http://ceur-ws.org,
October 2009. CEUR Workshop Proceedings.

[35] Charles Darwin. On the Origin of Species by Means of Natural Selection, or the
Preservation of Favoured Races in the Struggle for Life. John Murray, London,
United Kingdom, November 1859.

[36] Dipankar Dasgupta and Zbigniew Michalewicz, editors. Evolutionary Algorithms in
Engineering Applications. Springer, Berlin, Heidelberg, 1997.
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[50] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer, Berlin, Heidelberg,
2007.
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[97] Eyal Oren, Christophe Guéret, and Stefan Schlobach. Anytime Query Answering
in RDF through Evolutionary Algorithms. In Amit P. Sheth, Steffen Staab, Mike
Dean, Massimo Paolucci, Diana Maynard, Timothy W. Finin, and Krishnaprasad
Thirunarayan, editors, Proceedings of the 7th International Semantic Web Confer-
ence, volume 5318 of Lecture Notes in Computer Science, pages 98–113, Berlin,
Heidelberg, October 2008. Springer.

[98] Gary Pampará, Andries P. Engelbrecht, and Nelis Franken. Binary Differential
Evolution. In Proceedings of the IEEE Congress on Evolutionary Computation, pages
1873–1879, Washington, DC, USA, July 2006. IEEE Computer Society.

[99] Peter F. Patel-Schneider, Boris Motik, and Bernardo Cuenca Grau. OWL 2 Web
Ontology Language Direct Semantics. W3C recommendation, W3C, October 2009.

[100] Heiko Paulheim. Skalierbarkeit von Ontology-Matching-Verfahren. Master’s thesis,
Technische Universität Darmstadt, February 2008.

[101] Valentina Presutti, Eva Blomqvist, Enrico Daga, and Aldo Gangemi. Pattern-based
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Appendix A

Ontology Alignment Evaluation
Initiative benchmarks

The following figures illustrate the detailed results of the MapPSO prototype in the bench-
marks track of the Ontology Alignment Evaluation Initiative (OAEI) campaigns from 2008
till 2010. Precision and recall evaluations for each year are shown in separate plots. Each
plot shows the score of MapPSO for each test case in the benchmarks track. Both classical
precision and recall, as well as symmetric precision and recall (cf. Section 7.1) are shown1.

In the benchmarks data set, a single ontology is first aligned with itself (test case 101)
and systematically to alterations of itself. Test cases 30x) are alignments of the original
benchmarks ontology with real-world ontologies found on the Web. For details about the
structure of the data set and the details of the different alterations, see

http://oaei.ontologymatching.org/2008/benchmarks/index.html

http://oaei.ontologymatching.org/2009/benchmarks/index.html

http://oaei.ontologymatching.org/2010/benchmarks/index.html

1Since the symmetric measure is always greater or equal to the classical measure by definition, the bars
indicating the classical measure is drawn in front of the symmetric measure.
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Figure A.1: Classical and symmetric precision for the OAEI 2008 benchmarks track.
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Figure A.2: Classical and symmetric recall for the OAEI 2008 benchmarks track.
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Figure A.3: Classical and symmetric precision for the OAEI 2009 benchmarks track.
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Figure A.4: Classical and symmetric recall for the OAEI 2009 benchmarks track.
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Figure A.5: Classical and symmetric precision for the OAEI 2010 benchmarks track.
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Figure A.6: Classical and symmetric recall for the OAEI 2010 benchmarks track.
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Appendix B

Parameter Configurations used in
Evaluations

The following tables list the parameter configurations for MapEVO and MapPSO used in
the Ontology Alignment Evaluation Initiative (OAEI) in the years 2011 and 2012. The
evaluations were carried out in the SEALS platform, which imposes several restrictions,
e.g. on the population size to be chosen.

The evaluation modalities required a single configuration to be used for all tracks in
the campaign. Since no sophisticated self-adaptation procedure was developed for the
presented prototypes, these configurations were chosen rather conservatively. However,
for the OAEI 2012, a very simple self-adaptation was implemented in order to adjust the
number of iterations to be performed depending on the size of the larger ontology. This is
required to ensure the number of iterations to be large enough to allow for convergence,
and small enough to safe time after convergence.

Since all evaluations are carried out on a single machine in the SEALS platform, a
relatively small population is used in all settings. While in 2011 classes, object properties,
and data properties correspondences were considered, in 2012 only class correspondences
were considered, since there is no need for property correspondences in the anatomy and
large biomedical ontologies tracks. However, this setting suggests the recall scores in
the benchmarks and conference tracks to drop, since properties are part of the reference
alignments there. The algorithm internal settings were kept stable, apart from the %
parameter which was introduced after the 2011 campaign1.

Regarding the objective function, a very basic setting was used in 2011 with only
alignment size and correspondence contribution being used on the alignment level. The
correspondence contribution is the mean value of correspondence confidences (cf. Equa-
tion (4.43)). Each correspondence confidence is the weighted average of a very basic
collection of correspondence evaluators. In 2012, a wider collection of evaluators were
used, incorporating label and virtual document similarity on the correspondence level, as
well as structural metrics on both the alignment and the correspondence level.

1The equivalent of not incorporating the % factor is equal to setting % = 1.
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Parameter Value Description

imax 200 number of iterations
|I| 10 population size
isel 50 number of selections (cf. Algorithm 5.2)
ζ 0.25 selection ratio (cf. Algorithm 5.2)

% 1.0 swap limitation (cf. Equation (5.2))
a in pchange 0.5 cf. Equations (5.7) and (5.8)
a in psetN 0.01 correspondence removal probability

lower bound (cf. Equation (5.6))
b in psetN 0.1 correspondence removal probability up-

per bound (cf. Equation (5.6))
a in psetV 0.02 correspondence adding probability lower

bound (cf. Equation (5.5))
b in psetV 0.2 correspondence adding probability up-

per bound (cf. Equation (5.5))

objective function

F (A) = ΓweightAvg((Hsize(A), HcorrContrib(A)),

(0.6, 0.4))

where for all C ∈ A

ι(C) = ΓweightAvg((hlexIDSim(C),

htextIDSim(C),

hAhierarchy(C),

hApropDRClass(C)),

(.25, .25, .25, .25))

which is also used as support heuristic.

Table B.1: Configuration parameters of MapEVO for OAEI 2011.
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Parameter Value Description

imax 1000 number of iterations
|I| 20 population size

enable classes true

enable object properties true

enable data properties true

enable individuals false

κ 0.6 keep-set threshold (cf. Equation (5.19))
σ 0.1 safe-set threshold (cf. Equation (5.20))

topology StarTopology social network structure (cf. Table 6.5)
comm. strategy synchronous cf. Table 6.5
β 0.1 proportional likelihood increment (per-

sonal best)
γ 0.05 proportional likelihood increment (local

best)

λ 0.3 size change probability factor (cf. Equa-
tion (5.24))

winc start value 2.5 cf. Equation (5.25)
winc end value 1.5 cf. Equation (5.25)
wdec start value 1.5 cf. Equation (5.25)
wdec end value 1.1 cf. Equation (5.25)

objective function

F (A) = ΓweightAvg((Hsize(A), HcorrContrib(A)),

(0.6, 0.4))

where for all C ∈ A

ι(C) = ΓweightAvg((hlexIDSim(C),

htextIDSim(C),

hAhierarchy(C),

hApropDRClass(C)),

(.25, .25, .25, .25))

which is also used as support heuristic.

Table B.2: Configuration parameters of MapPSO for OAEI 2011.
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Parameter Value Description

imax 100 + max{]O1, ]O2} number of iterations
|I| 8 population size
isel 4 number of selections (cf. Algorithm 5.2)
ζ 0.25 selection ratio (cf. Algorithm 5.2)

% 0.3 swap limitation (cf. Equation (5.2))
a in pchange 0.5 cf. Equations (5.7) and (5.8)
a in psetN 0.01 correspondence removal probability

lower bound (cf. Equation (5.6))
b in psetN 0.1 correspondence removal probability up-

per bound (cf. Equation (5.6))
a in psetV 0.02 correspondence adding probability lower

bound (cf. Equation (5.5))
b in psetV 0.2 correspondence adding probability up-

per bound (cf. Equation (5.5))

objective function

F (A) = ΓweightAvg((Hsize(A), HcorrContrib(A),

HcrissCross(A), HstructPreserv(A)),

(0.1, 0.3, 0.1, 0.1))

where for all C ∈ A

ι(C) = ΓweightAvg((hlexIDSim(C),

hlexLabelSim(C), htextLabelSim(C),

hentityVDSim(C), hAhierarchy(C),

hAhierarchyProp(C), hAcrissCross(C)),

(0.1, 0.5, 0.3, 0.2, 0.2, 0.4, 0.1))

which is also used as support heuristic.

Table B.3: Configuration parameters of MapEVO for OAEI 2011.5.
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Parameter Value Description

imax 100 + max{]O1, ]O2} number of iterations
|I| 32 population size

enable classes true

enable object properties false

enable data properties false

enable individuals false

κ 0.6 keep-set threshold
(cf. Equation (5.19))

σ 0.1 safe-set threshold
(cf. Equation (5.20))

topology StarTopology social network structure
(cf. Table 6.5)

comm. strategy synchronous cf. Table 6.5
β 0.1 proportional likelihood increment

(personal best)
γ 0.05 proportional likelihood increment

(local best)

λ 0.3 size change probability factor (cf.
Equation (5.24))

winc start value 2.5 cf. Equation (5.25)
winc end value 1.5 cf. Equation (5.25)
wdec start value 1.5 cf. Equation (5.25)
wdec end value 1.1 cf. Equation (5.25)

objective function

F (A) = ΓweightAvg((Hsize(A), HcorrContrib(A),

HcrissCross(A), HstructPreserv(A)),

(0.1, 0.3, 0.1, 0.1))

where for all C ∈ A

ι(C) = ΓweightAvg((hlexIDSim(C),

hlexLabelSim(C), htextLabelSim(C),

hentityVDSim(C), hAhierarchy(C),

hAhierarchyProp(C), hAcrissCross(C)),

(0.1, 0.5, 0.3, 0.2, 0.2, 0.4, 0.1))

which is also used as support heuristic.

Table B.4: Configuration parameters of MapPSO for OAEI 2011.5.
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γ, 66, 71, 122
ζ, 61, 63
κ, 66, 71, 122
λ, 69, 122
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σ, 66, 71, 122
wdec, 69
winc, 69

ACO, see Ant Colony Optimisation
aggregation, 48, 52, 72, 78, 81, 82

maximum, 48
ordered weighted average, 49
weighted average, 49

AgreementMaker, 22, 108, 126, 133
alignment, 1, 11, 21, 55, 65, 76

AlignmentParser, 76
AlignmentRenderer, 78
axioms, 13
candidate, 13, 54, 63
cardinality, 12, 24
coherency, 47
consistency, 46
constraint-based computation, 22, 23
evaluation, see global alignment evaluation
global evaluation, see global alignment eval-

uation
intersection, 98
matrix-based computation, 22
mean correspondence confidence, 55
multiplicity, 12
optimality, 13, 31, 65
problem, 13
quality, 12, 31, 52, 80, 112, 120, 121, 124
size, 12, 46, 56, 68, 92, 120, 123, 125
space, 11
state-of-the-art, 21, 123
validity, 11, 24, 53, 67, 69

Alignment API, see INRIA Alignment API
alignment coherency evaluation, 47, 113, 120
alignment consistency evaluation, 46, 113
alignment context, 4, 38, 80, 82
alignment size evaluation, 46, 120, 121
Alignment-as-a-Service, 94
Amazon Machine Image, 78
Amazon Web ServicesTM, 78, 89, 91, 123–126

EC2, 90, 123

S3, 90, 92
SQS, 90, 92

Amdahl’s Law, 4
AMI, see Amazon Machine Image
annealing scheme, 61
annotation, 33, 35

rdfs:comment, 33
rdfs:label, 11, 33

Answer Set Programming, 23
Ant Colony Optimisation, 19, 27, 133
anytime behaviour, 5, 26, 121, 125
Apache MavenTM, 88, 95

identifiers, 95
repositories, 95

API, see Application Programming Interface
Application Programming Interface, 76, 88, 95
approximation, 5, 26
ASMOV, 23, 105
ASP, see Answer Set Programming
assignment problem, 28
asynchronous communication, see communica-

tion strategy
attribute selection, 27, 63
AWS, see Amazon Web ServicesTM

axiom, 9, 110, 116
equivalence, 12, 31, 45–47

Bak-Sneppen model, 18, 133
Bin Packing Problem, 28
Binary Differential Evolution, 18
Binary Particle Swarm Optimisation, 27, 63
biologically-inspired optimisation, 3, 14
BioPortal, 2
bootstrapping problem, 116

candidate alignment, see alignment
Capacitated Single Allocation Hub Location

Problem, 28
chromosome, 16
class as domain/range similarity, 43, 113
class hierarchy, 2, 3, 39, 40, 104, 105
cloud computing, 78, 86, 89, 91, 123, 125, 126
coarse-grained search, 104, 124
CODI, 24
coherency, 24
combinatorial explosion, 23
comment extractor, 33
communication strategy, 86
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asynchronous, 88, 92, 93, 123
synchronous, 88, 93

Computational Intelligence, 2, 14, 21
computational swarm intelligence, 2, 18
confidence filtering, 102, 103
configuration parameters, see parameters
constraint-based alignment, see alignment
contextual correspondence evaluation, 38, 81,

113–115, 117–120
continuous optimisation, 15, 16
convergence, 54, 65, 112, 120, 125
correspondence, 11, 53, 55, 65, 76

axiom, 12
confidence, 11, 12, 52, 55, 56, 65, 67, 76, 102,

104
threshold, 60

relation, 12
correspondence contribution, 46
correspondence permutation, 53, 54, 72, 84, 86
correspondence set, 53, 63, 68
criss-cross alignment evaluation, 48, 116, 121
criss-cross correspondence evaluation, 45, 121
crossover, see recombination
CTC, see THESEUS programme
ctxMatch, 32

Darwin, Charles, 15
decision tree, see mutation
decoupling, 75
description logics, 10, 109
Differential Evolution, 17, 26
directed graph, 40
discrete optimisation, 15, 27
Discrete Particle Swarm Optimisation, 27, 51, 63,

86
discriminatory behaviour, see evaluation metric
disjointness, 4, 31
DL, see description logics
DPSO, see Discrete Particle Swarm Optimisation
Dublin Core R©, 33, 36
dynamic environment, see non-stationary envi-

ronment

EC2, see AWS
ECOMatch, 26, 133
ekaw ontology, 101, 116
Elastic Compute Cloud, see AWS
entity, 9, 11, 76

index archive, 57
neighbour, 39
type, 10, 76

EPSOC, 51, 62
equivalence axiom, see axiom
Evaluable, 76, 78
evaluation metric, 31, 33, 56

alignment global, see global alignment eval-
uation

correspondence contextual, see contextual
correspondence evaluation

correspondence local, see local correspon-
dence evaluation

discriminatory behaviour, 112
evolution, 2, 15
Evolution Strategies, 16, 26
Evolutionary Algorithms, 15, 51, 54, 55, 72, 83,

89
Evolutionary Computation, 2, 15
evolutionary process, 2, 15
Evolutionary Programming, 17, 28, 51, 55, 72
explanation-based correspondence evaluation,

45, 113, 120
exploitation, 72
exploration, 55, 72
Extremal Optimisation, 18, 28

population-based, 18, 51, 62

F-measure, 25, 26, 97, 98, 102, 103, 105, 107,
120–122

F-score, see F-measure
F1 score, see F-measure
factory pattern, 76, 82
fitness function, see objective function, 25
fitness landscape, 5
fitness vector, 65
flexibility, 4, 75
FMA, 110
FOAF, see Friend-of-a-Friend
Foundational Model of Anatomy, see FMA
Friend-of-a-Friend, 34, 36

GA, see Genetic Algorithms
GAOM, 25, 72
Gene Ontology, 3, 122, 124–126
General Assignment Problem, 28
generalised F-measure, 100
generalised precision, 99, 100, 102, 103, 124
generalised recall, 99, 100, 102, 103, 124
generation, see iteration
Genetic Algorithms, 16, 25, 26, 71, 72
Genetic Programming, 18, 133
global alignment evaluation, 4, 5, 22, 23, 25, 45,

67, 72, 78, 81, 82, 113–115, 117–120
GO, see Gene Ontology
GOAL, 25, 133
gold standard, see reference alignment
GoogleTM, 1, 105

HARMONIA, see THESEUS programme
Commons, 95

HARMONIA Commons, 78, 83, 86
heartbeat, 78
heterogeneity, 1
hierarchy propagation similarity, 40, 113, 121
hierarchy similarity, 39, 116, 121
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Hill Climbing, 26
Hungarian method, 22

IaaS, see Infrastructure-as-a-Service
identifier extractor, 33
incoherency, 4, 12, 31, 113
inconsistency, 12, 31, 46, 113, 120
individual, 15
induced propagation graph, 40
inertia, 19
Infrastructure-as-a-Service, 78, 89
initialisation, 72
INRIA Alignment API, 76
IRI, 33, 35, 108
iteration, 15, 54, 57, 63, 65, 70, 82, 84, 88, 121,

126
progress, 58–61

iterations, 123
iterative convergence, 5, 51, 54, 63, 70, 72, 121

JavaTM, 75, 88, 95
generics, 76

KADMOS, 76, 83, 86, 88, 95
algorithm API, 78
API, 76

keep-set, 66, 68, 73
Knowledge Representation, 1, 21

label extractor, 33
latency, 90, 92
Levenshtein distance, see lexical similarity
lexical similarity, 34

entity identifier, 35, 108, 116, 121
entity label, 35, 116, 121
Levenshtein distance, 34, 35
String Metric for Ontology Alignment, 34

linguistic similarity, 35, 106
entity comment, 36
textual entity identifier, 108
textual entity label, 36, 116, 121
textual identifier, 36, 116
virtual document, 36, 121

local correspondence evaluation, 33, 80, 81, 113–
115, 117–119

local optimum, 54
local search, 28, 104, 124, 133
logics, 1, 4, 31

negation, 4, 31
LogMap, 110
LookSmart R©, 105
lower cardinality-based distance, 47

MaasMatch, 123
MapEVO, 83, 85, 88, 100–102, 108, 112, 120, 122

algorithm, 62, 84
convergence, 121

formalisation, 54
mutation, 55
selection, 61
software, 95

MapPSO, 86–91, 100–102, 105, 106, 108, 112,
120, 122, 124–126

algorithm, 69, 84
convergence, 122
formalisation, 63
software, 95

Markov logic, 24
materialisation, 27, 90
matrix-based alignment, see alignment
Maven, see Apache MavenTM

maximum aggregation, see aggregation
mean confidence, see alignment
Medical Subject Headings, 122, 124–126
memory efficiency, 54
merged ontology, 13, 45
meronomy, 47
MeSH, see Medical Subject Headings
metaheuristic, 3, 4, 52, 73, 89, 104
modularisation, 5
multi-sequence alignment, 28, 55
mutation, 2, 16, 17, 54, 64, 71, 84

exchange operator, 56, 64, 86
addition probability, see psetV
change probability, see pchange
decision tree, 57, 64
removal probability, see psetN

swap operator, 55, 64, 84
probability, see pswap

National Cancer Institute, see NCI thesaurus
natural language, 4, 9, 10, 23, 31, 32, 35, 106
natural language processing, 35
NatuReS, 24
NCI thesaurus, 107, 110
negation, see logics
neighbourhood best, 19, 65, 88
NK model, 5
NLP, see natural language processing
noisy neighbour, 90
non-stationary environment, 72, 134

OAEI, see Ontology Alignment Evaluation Ini-
tiative

objective function, 25, 52, 61, 72, 82, 102, 103,
108, 110, 116, 120, 121, 124

ontology, 1, 3, 9, 10
annotation property, 10
annotation set, 10
characteristics, 4, 9, 25, 52, 56, 72, 97, 110,

116, 125, 127
design patterns, 4
expressiveness, 10, 31, 32, 105, 109
language, 10, 31, 32
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size, 11
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vocabulary, 10

ontology alignment, see alignment
Ontology Alignment Evaluation Initiative, 22,

25, 26, 47, 94, 97, 100, 124
anatomy track, 47, 93, 107, 108, 112, 116,

118, 120, 123
benchmarks track, 25, 26, 101–103, 112–115,

120, 124
conference track, 109, 116, 117, 120
directory track, 104–106, 124
large biomedical ontologies track, 97, 110,

116, 119, 120, 127
large biomedical ontologies track, 112

optimisation run, 15, 53, 63, 113, 125
order theory, 47
ordered weighted average aggregation, see aggre-

gation
OWA aggregation, see ordered weighted average

aggregation
OWL, 1, 10–12, 33, 35, 36, 39, 41, 42, 90, 123

class, 10, 13, 37, 42
data property, 10, 13, 38, 42
individual, 10, 13, 38
object property, 10, 13, 37, 42

OWL API, 75, 76, 89, 95

PaaS, see Platform-as-a-Service
pairwise connectivity graph, 40
pairwise ontology alignment, see matrix-based

alignment
parallel efficiency, 63, 89, 92
parameter optimisation, 25, 26
parameters, 75, 78, 81, 83, 97, 101, 108, 110, 121,

126, 133
particle, 19, 86

configuration, 65
dimensionality, see particle size
initialisation, 70, 72
length, see particle size
size, 65, 68, 90, 123

particle cluster, 86, 88
particle pooling, 86, 92
Particle Swarm Optimisation, 19, 27, 72

gBest, 19
lBest, 19

particle topology
cluster topology, 88, 93
complete graph topology, 88, 93
ring topology, 88

pay-as-you-go, 90
pchange, 57, 59, 60
personal best, 19, 65, 88
pheromone, 19
Platform-as-a-Service, 89

population, 2, 4, 15, 18, 28, 54, 61, 63, 70, 72,
82, 84, 86, 89, 121, 123

ranking, 61
size, 67, 121

postprocessing, 133
precision, 25, 97, 98, 102, 105, 107, 120
preprocessing, 127, 133
propagation coefficient, 40
property domain/range similarity, 42, 113
property hierarchy, 39, 40
proportional likelihood, 27, 66, 67, 71
psetN , 57–59
psetV , 57, 58
PSO, see Particle Swarm Optimisation
pswap, 55, 56

query answering, 26, 90

random alignment, 112, 116
random number, 15, 66, 69
ranking, see population
RDF, 26, 36, 41

storage, 90
RDFS, 10, 27, 41
rdfs:comment, see annotation
rdfs:label, see annotation
reasoning, 26, 94, 120
recall, 25, 97, 98, 102, 105, 107, 120
recombination, 2, 16, 17, 25, 71
reference alignment, 25, 97, 98, 104, 107, 112,

116, 120
relaxed F-measure, see generalised F-measure
relaxed precision, see generalised precision
relaxed recall, see generalised recall
reproduction, 2
Resource Description Framework, see RDF
Resource Description Framework Schema, see

RDFS
reusability, 75
RiMOM, 23, 133
robustness, 75
runtime, 5, 23, 52, 92, 94, 97, 122, 123, 126
runtime discrepancy, 92

S3, see AWS
SaaS, see Software-as-a-Service
safe-set, 66, 68, 73
scalability, 4, 97, 106
SEALS Project, 94, 100, 126

evaluation platform, 97, 100, 102, 126
first evaluation campaign, 89, 100
second evaluation campaign, 100, 107, 109,

110, 127
tool packaging, 94

selection, 2, 16, 17, 54, 61, 84, 86
frequency, 62, 63
rank-based, 61



164 Index

ratio, 61
self-adaptation, 16, 68, 127, 133
Self-Organised Criticality, 133
semantic application, 1, 32, 88, 89, 134
semantic technologies, 1, 26, 90
sequence alignment, 28
server-worker pattern, 90, 91
sigmoid function, 43, 44, 55
similarity aggregation, see aggregation
similarity flooding, 22, 40
similarity matrix, 5, 22
similarity metric, 22, 52, 72
Simple Knowledge Organization System, 34, 36
Simple Object Access Protocol, 89
Simple Queue Service, see AWS
Simple Storage Service, see AWS
single-objective optimisation, 52, 82
SKOS, see Simple Knowledge Organization Sys-

tem
S-Match, 32
SMOA, see lexical similarity
SNOMED, 110
SOAP, see Simple Object Accesss Protocol
social behaviour, 3, 18, 66, 73, 86, 89
social component, see social behaviour
Softpedia, 96
software development, 75, 95
Software-as-a-Service, 89
solution representation, 52
solution space, 13

infeasible, 134
size, 13, 14

sourceforge, 95
species, 15, 17, 18, 54, 63, 84

configuration, 55
initialisation, 62, 72

SQS, see AWS
stigmergy, 19, 133
structural preservation evaluation, 47, 116, 121
structural similarity, 47
Subversion, 95
support heuristic, 20, 52, 55, 60, 62, 65, 72, 113,

116
SVN, see Subversion
swarm, 19, 63, 70
swarm intelligence, 2, 18, 26
swarm topology, 19, 86

complete graph topology, 19, 88, 92
four clusters topology, 88
ring topology, 88

symmetric F-measure, see generalised F-measure
symmetric precision, see generalised precision
symmetric recall, see generalised recall
synchronous communication, see communication

strategy

taxonomy, 4, 9, 47, 105

TCP/IP, 90, 92
termination criterion, 52
test planning, 133
THESEUS programme, 75

Core Technology Cluster, 75
HARMONIA, 75
SME, 123

Travelling Salesman Problem, 20, 71
TSP, see Travelling Salesman Problem

UMLS metathesaurus, 108, 111, 133
uniform random number, see random number
unsatisfiability, 4, 31, 45, 47, 113
update operation, 15, 53, 64, 71, 72
user interaction, 133

vector space model, 35
velocity, 19, 63
velocity vector, 66
version control, 95
virtual document, 22, 36
virtual machine, 90, 126

wall-clock time, see runtime
Web directory, 105, 106
Web Ontology Language, see OWL
Web Service, 89, 90
Web Services Description Language, 89
weighted average aggregation, see aggregation
WordNet R©, 23
WSDL, see Web Services Description Language

Yahoo! R©, 105
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