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Deutsche Zusammenfassung (German Summary)

Unter drahtlosen Sensornetzen (DSN) versteht man Netze aus einer Vielzahl kleiner Sen-
sorknoten, die ihre Umwelt mittels Sensoren überwachen und drahtlos miteinander kom-
munizieren können. Die einzelnen Sensorknoten sind dabei vollwertige, wenngleich leis-
tungsschwache Kleinstrechner. Die stetig voranschreitende Miniaturisierung von Hard-
warekomponenten und der damit einhergehende Preisverfall haben dazu geführt, dass
Sensornetze bereits heute zur großflächigen Überwachung von Gebieten eingesetzt wer-
den, beispielsweise zur Detektion von Waldbränden oder zur automatischen Bewässerung.
Es ist davon auszugehen, dass künftig immer größere und leistungsfähigere Sensornetze
verfügbar sein werden.

Die vorliegende Arbeit, die im Rahmen des Graduiertenkollegs 1194 Selbstorganisie-
rende Sensor-Aktor-Netzwerke entstanden ist, behandelt algorithmische Fragestellungen
zur Kommunikation und zur kommunikationsbasierten Lokalisierung in drahtlosen Sen-
sornetzen. Die Arbeit gliedert sich in zwei Teile. Im Bereich der Kommunikation steht das
Scheduling, die zeitliche Planung von drahtlosen Übertragungen, im Fokus. Der Lokali-
sierungsteil beschäftigt sich mit der automatischen Erkennung topologischer Eigenschaf-
ten drathloser Netze unter ausschließlicher Nutzung von Nachbarschaftseigenschaften im
zugrundeliegenden Kommunikationsgraphen, der schritthaltenden Lokalisierung mobiler
Sensorknoten anhand von Signalstärkemessungen und der indirekten Lokalisierung stati-
scher Sensornetze mithilfe eines mobilen Sensorknotens. Es folgt eine knappe Übersicht
der behandelten Fragestellungen sowie der erzielten Resultate.

Kommunikation in drahtlosen Netzen

Dieser Teil der Arbeit beschäftigt sich mit der effizienten und ressourcensparenden Kom-
munikation in drahtlosen Sensornetzen. Hierbei wird das physikalisch motivierte Signal-
To-Interference-Plus-Noise-Ratio (SINR) Modell zu Grunde gelegt, bei dem man ver-
einfachend davon ausgeht, dass Übertragungen genau dann erfolgreich sind, wenn das
Verhältnis zwischen empfangener Signalstärke und der Summe der auftretenden Interferen-
zen einen bestimmten Grenzwert überschreitet. Verglichen mit graphbasierten Kommuni-
kationsmodellen, die in der Algorithmik bis vor wenigen Jahren fast ausschließlich verwen-
det wurden, erlaubt das SINR-Modell eine wesentlich genauere Modellierung tatsächlich
auftretender Effekte. Diese realistischere Modellierung wird jedoch mit einer höheren Kom-
plexität beim Entwurf und der Analyse von Algorithmen erkauft. Folgende Fragestellungen
werden behandelt:

Dynamische Sendeleistungskontrolle

Das Problem der Sendeleistungskontrolle besteht darin, für eine gegebene Menge drahtloser
Übertragung minimale Sendeleistungen zu bestimmen, so dass unter Annahme des SINR-
Modells Fehlübertragungen durch Interferenzeffekte ausgeschlossen werden können. Die
Sendeleistungskontrolle ist ein zentraler Bestandteil zahlreicher Scheduling-Algorithmen.
Die gebräuchlichen Ansätze zur Lösung des Problems können zwar zu einer gegebenen
Menge drahtloser Übertragungen effizient optimale Sendeleistungen bestimmen, sie sind
aber nicht darauf ausgelegt dynamisch auf kleinere Änderungen im Netzwerk zu reagieren.
Gerade solche kleineren Änderungen sind aber im Zusammenhang mit Schedulingalgo-
rithmen besonders interessant, da man effizient testen möchte, welche Auswirkungen die
Aktivierung bestimmter Übertragungen auf die optimalen Sendeleistungen der anderen
Sender hätte.
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Die in der vorliegenden Arbeit vorgeschlagenen Datenstrukturen zur Sendeleistungskon-
trolle nehmen sich dieses Problems an. Neben der effizienten Berechnung optimaler Sen-
deleistungen zu einer gegebenen Menge von Sendern erlauben sie insbesondere, ausgehend
von einer Teillösung sehr effizient auf kleinere Änderungen in der Eingabe zu reagieren.

Zeitliche Planung drahtloser Übertragungen

Die Idee beim Scheduling drahtloser Übertragungen besteht darin, durch zeitliche Tren-
nung stark miteinander interferierender Übertragungen das Auftreten von Fehlübertragun-
gen zu vermeiden. Hierdurch erhofft man sich sowohl höhere Datendurchsätze, als auch
Energieeinsparungen durch das Vermeiden wiederholter Übertragungsversuche.

Aufbauend auf den zuvor beschriebenen Datenstrukturen zur dynamischen Sendeleis-
tungskontrolle wurden neue Verfahren zum Scheduling entwickelt. Diese Verfahren grenzen
sich von existierenden Ansätzen dadurch ab, dass sie zu aktivierende Übertragungen da-
nach auswählen, welche Effekte deren Aktivierung auf die optimalen Sendeleistungen der
anderen aktiven Sender hätte. Mit Hilfe der neuen Methoden zur Bestimmung optimaler
Sendeleistungen ist dies effizient möglich, und im simulationsbasierten Vergleich mit meh-
reren existierenden Ansätzen hat sich gezeigt, dass durch diese Strategie Verbesserungen
sowohl bezüglich des erreichbaren Datendurchsatzes, als auch bezüglich der benötigten
Sendeleistungen, möglich sind.

Scheduling im geometrischen SINRG Modell

Das SINR-Modell selbst macht keinerlei Aussagen darüber, wie sich die Signalstärke in
Abhängigkeit von der Distanz zwischen Sender und Empfänger verhält. Aus theoreti-
scher Sicht ist es daher sehr schwierig, die Güte von Scheduling-Algorithmen analytisch
zu untersuchen. Aus diesem Grund wurde vor einigen Jahren das geometrische SINRG

Modell eingeführt, bei dem man zusätzlich vereinfachend annimmt, dass der Abfall der
Signalstärke über die Distanz durch ein Potenzgesetz beschrieben werden kann. Unter
dieser zusätzlichen Annahme ist es möglich, beispielsweise Approximationsgarantien für
Algorithmen zu beweisen.

Im Zusammenhang mit dem Scheduling im SINRG Modell sind noch einige Komple-
xitätsfragen ungelöst. In der vorliegenden Arbeit wird gezeigt, dass das Scheduling mit
Sendeleistungskontrolle im SINRG Modell NP-schwer ist, sofern die zulässigen Sendeleis-
tungen beschränkt sind oder nur aus einer Menge zur Verfügung stehender Sendeleistungen
gewählt werden können.

Lokalisierung in drahtlosen Sensornetzen

Zusammenhangsbasierte Randerkennung

Bei der zusammenhangsbasierten Randerkennung betrachtet man ein sehr großes Sensor-
netz und möchte herausfinden, welche der Knoten sich in der Nähe des äußeren Randes des
Netzes oder in der Nähe eines größeren Lochs, also eines Bereiches ohne Sensorknoten im
Inneren des Netzes, befinden. Hierzu wird angenommen, dass man über keinerlei Informa-
tionen bezüglich der Positionen der Sensorknoten oder der Winkel zwischen Sensorknoten
verfügt. Die einzige Information, auf die man zurückgreifen kann, ist das Wissen darüber,
welche Sensorknoten sich zueinander in Kommunikationsreichweite befinden.

Auch für dieses Problem existieren bereits mehrere Lösungsansätze. Der Fokus bei
dem in dieser Arbeit entwickelten Verfahren liegt darauf, mit möglichst wenig Kommu-
nikation und Berechnungsaufwand auszukommen, um das Verfahren auch für schwache
Sensorknoten und dynamische Szenarios einsetzbar zu machen. Mit Hilfe des entwickelten
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Ansatzes kann jeder Knoten selbständig anhand von Zusammenhangsinformationen aus
seiner lokalen 2-Hop Nachbarschaft entscheiden, ob er sich potenziell in der Nähe einer Be-
grenzung des Netzes befindet. Hierzu wird ausgenutzt, dass sich Randknoten von inneren
Knoten im Bezug auf statistische Eigenschaften bezüglich der Längen von Zyklen in der
2-Hop Nachbarschaft, welche bestimmte Eigenschaften aufweisen, unterscheiden. Anhand
von Simulationen wurde der beschriebene Ansatz mit mehreren etablierten Verfahren zur
Randerkennung verglichen. Dabei hat sich herausgestellt, dass er im Vergleich zu ähnlich
gut klassifizierenden Ansätzen sehr effizient ist und insbesondere relativ stabil bezüglich
inhomogener Verteilungen der Sensorknoten.

Signalstärkebasiertes Tracking

Beim signalstärkebasierten Tracking geht es um die schritthaltende Lokalisierung einer
Person oder eines mobilen Gerätes anhand von Signalstärkemessungen. Die Idee ist, dass
das mobile Gerät, beispielsweise ein Handy, die Signalstärken aus Paketen auswertet, die
es von Ankerknoten mit bekannten Positionen empfängt, und daraus die Distanz zu den
Ankerknoten schätzt. Das beschriebene Lokalisierungsproblem wird seit Jahren intensiv
erforscht. Häufig verwendete Ansätze sind Varianten des Kalmanfilters, Partikelfilter und
das Fingerprinting, bei dem man in einer Trainingsphase für eine Vielzahl von Referenz-
positionen die empfangenen Signalstärken misst und später zur Lokalisierung die wahr-
scheinlichste Referenzposition ermittelt.

In der vorliegenden Arbeit wird die Anwendung von kräftebasierten Verfahren auf das
signalstärkebasierte Tracking untersucht. Kräftebasierte Verfahren werden seit Jahrzehn-
ten erfolgreich im Bereich der Visualisierung von Graphen und der Einbettung von Netz-
werken eingesetzt. Man modelliert dabei gewünschte Distanzen zwischen Knoten durch
Federn, die zwischen die Knoten gespannt sind. Die Ideallängen der Federn entsprechen
dabei den Wunschdistanzen. Ist die aktuelle Distanz zwischen den Knoten geringer als die
Wunschdistanz, so wirken abstoßende Kräfte, andernfalls wirken anziehende Kräfte. Die
Kräfte sind umso größer, je größer die Abweichung von der Wunschdistanz ist. Eine gute
Einbettung kann dann dadurch gefunden werden, dass man iterativ ein Kräftegleichgewicht
herstellt.

Die Einbettung eines ganzen Netzes ist relativ aufwändig. Glücklicherweise ist man
beim Tracking in der komfortablen Situation, dass in jedem Zeitschritt nur ein einzelner
Knoten eingebettet werden muss. Daher kann man erwarten, dass die Positionsbestim-
mung effizient möglich ist. In der vorliegenden Arbeit wird untersucht, wie sich Wis-
sen über die Signalausbreitung in Gebäuden sinnvoll in geeignete Definitionen für Feder-
kräfte übertragen lässt. Des Weiteren wird analysiert, wie sich Bewegungsmodelle durch
Einführung zusätzlicher Kräfte realisieren lassen.

Die Leistungsfähigkeit der vorgeschlagenen kräftebasierten Trackingverfahren wird an-
hand von Echtweltdaten und Simulationen im Vergleich mit erweiterten Kalmanfiltern
(EKFs) untersucht. Die Echtweltdaten stammen hierbei aus Messungen in einem Sensor-
netz mit 60 Knoten und sind ebenfalls im Rahmen des Graduiertenkollegs 1194 in einem
anderen Teilprojekt entstanden.

Bei den Untersuchungen hat sich gezeigt, dass der Einsatz kräftebasierter Verfahren
zum Tracking vielversprechend ist. Die Laufzeitkomplexität pro Zeitschritt ist linear in
der Anzahl der verwendeten Messungen, und da zur Bestimmung resultierender Kräfte
lediglich Vektoren addiert werden müssen ist das Verfahren sehr effizient. Darüber hinaus
gibt es nahezu keine Einschränkungen bezüglich der Definition weiterer Kräfte, wodurch
man sehr einfach zusätzliches Wissen im Verfahren integrieren kann. So kann man bei-
spielsweise auf den Einsatz von Linearisierungen verzichten, die bei anderen Ansätzen wie
dem erweiterten Kalmanfilter nötig sind.
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Indirekte Lokalisierung drahtloser Sensornetze

Zahlreiche Anwendungen in Sensornetzen benötigen Wissen über die Positionen der einzel-
nen Sensorknoten. Je nach Einsatzszenario existieren hierfür bereits zahlreiche Methoden,
die es ermöglichen, dass das Sensornetz sich nach der Ausbringung selbständig lokalisiert.

Die vorliegende Arbeit beschäftigt sich mit der indirekten Lokalisierung von Sensornet-
zen. Im Vordergrund steht ein Szenario, bei dem eine größerer Anzahl von Sensorknoten
in einem Gebäude ausgebracht wird. Es wird davon ausgegangen, dass die einzelnen Sen-
sorknoten keinerlei Information über ihren Aufenthaltsort besitzen. Zur Lokalisierung des
Sensornetzes sollen ein oder mehrere mobile Sensorknoten eingesetzt werden, welche re-
gelmäßig Pakete von den stationären Sensorknoten erhalten und anhand der empfangenen
Signalstärken Distanzen zu den stationären Knoten schätzen. Ausgehend von einer Viel-
zahl solcher Distanzschätzungen soll anschließend das Netzwerk lokalisiert werden.

Das in dieser Arbeit untersuchte Verfahren grenzt sich von den meisten existieren-
den Ansätzen dadurch ab, dass weder Informationen über exakte oder ungefähre Positio-
nen einzelner Sensorknoten zur Verfügung stehen, noch über die absolute oder relative
Bewegung der mobilen Sensorknoten. Insbesondere die relativ großen und teils systema-
tischen Fehler, die sich zwangsweise aus der signalstärkebasierten Distanzschätzung in
Innenräumen ergeben, spielen in den meisten existierenden Arbeiten zur indirekten Loka-
lisierung keine Rolle.

Als Einsatzszenario für den beschriebenen Lokalisierungsansatz wird die Ausbringung
eines Sensornetzes in einem Gebäude zum anschließenden Tracking mobiler Sensorknoten
näher untersucht.
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Chapter 1

Introduction

Wireless Sensor Networks (WSN) consist of small autonomous devices, which are spa-
tially distributed and use sensors to cooperatively monitor physical or environmental con-
ditions. Each sensor node can be regarded as an independent small computer, which is
equipped with sensors and communication hardware. The ongoing miniaturization of sen-
sor nodes and the availability of cheaper and cheaper hardware make it possible to use
sensor networks for large-scale monitoring tasks. Possible applications range from envi-
ronmental monitoring over industrial machinery surveillance to home automation [ZJ09].
It is hoped that sometime soon the sensor nodes will become small and cheap enough
that thousands of them can be scattered in the environment to work cooperatively. This
concept became known as smart dust [KKP99], because the devices are intended to be
only the size of dust particles. It is believed that in the near future, sensor networks will
play a very important role in many areas of everyday life. Thus, it is no surprise that
there has been an enormous amount of research on sensor networks over the last years.

The constraints concerning both size and costs of sensor nodes put high demands
on the used hardware and software. Accordingly, many applications for wireless sensor
networks introduce new and interesting challenges to the design of algorithms. Sensor
nodes are usually operated by battery and it is not always possible to replace batteries
when sensor nodes run out of power. This means that lifetime and operability of sensor
networks are limited by the available energy, and energy-efficiency is one of the major goals
in the design of algorithms for wireless sensor networks. Another aspect that distinguishes
wireless sensor networks from conventional wireless networks is that in many scenarios
both computational power and available memory are significantly limited. This means
that one is especially interested in resource-efficient algorithms. The large dimensions
of the intended sensor networks in terms of node number makes it also necessary that
algorithms for sensor networks scale very well with network size. In this context, the focus
lies on distributed algorithms in which the workload is spread. Due to the high number of
involved devices and the energy limitations, one also has to deal with failures of devices.
This can for example be achieved by introducing a certain degree of redundancy.

In many applications it is also necessary that sensor nodes know their absolute or
relative location to identify the position where certain measurements were taken. Such in-
formation is for example necessary to locate outbreaks of forest fires or cracks in pipelines.
There are many possibilities how position estimates can be obtained. If the network is
rather small, it might be possible to initialize the position of each node manually. For
outdoor scenarios, systems such as the Global Positioning System (GPS) [HWLC97] or
Galileo [HWBL+08] can be used to locate sensor nodes with a precision of a few meters.
However, in the context of sensor networks there are also many applications where location
discovery is still a challenging problem. Manual localization is ruled out as soon as many
nodes are involved, if nodes are mobile, or if nodes are distributed in some random and
unpredictable fashion, e.g., by throwing them out of a plane to distribute them efficiently
over a vast area. The problem with the use of GPS or similar systems is that they only
work outdoors and they also require that the sensor nodes are equipped with additional
hardware. This makes the nodes larger and more expensive, which might be prohibitive in
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some applications. For this reasons, location discovery is one of the fundamental research
topics in the context of wireless sensor networks.

There exists an extensive amount of literature concerning various aspects of wireless
sensor networks. More detailed introductions to wireless sensor networks and their ap-
plications are presented in [ASSC02, ZJ09]. Overviews with focus on algorithmic aspects
can be found in [WW07, Bou09].

1.1 Overview and Contributions

This thesis deals with several aspects concerning communication and localization in wire-
less networks. Roughly speaking, in the communication part of this thesis the focus is on
reliable and energy-efficient communication in wireless networks, whereas the localization
part deals with aspects concerning location discovery in wireless sensor networks. Despite
this separation into two parts, both topics are to some extent intertwined. The location
discovery, as considered in this thesis, is based on communication between nodes, and the
communication between nodes relies significantly on the properties of signal propagation
in wireless networks, which is extensively analyzed in the localization part. We now give
a brief outline of this thesis and an overview of the main contributions.

Chapter 2: Preliminaries

This chapters presents an introduction to general notations, models, and techniques that
build the foundations of this thesis. It covers mathematical foundations, methods to
compute embeddings of graphs, and some information on information processing using
Kalman filters. Additionally, an introduction to the modeling of radio propagation and
interference is given. Several existing models are described and compared with respect to
their benefits and shortcomings. The chapter concludes with a brief survey on localization
in wireless sensor networks, which covers the estimation of distances and angles between
nodes, the localization of static nodes, the tracking of mobile nodes, and the localization
of whole sensor networks.

Part I: Communication

Chapter 3: Dynamic Power Control

The problem of power control considers the computation of minimum transmission powers
for a given set of wireless transmissions. In this chapter, we present new data structures
for the computation of optimum transmission powers. In contrast to existing approaches,
the proposed data structures are optimized for efficient dynamic updates of optimum
transmission powers. Especially when there are only slight changes in the input, e.g., when
single additional transmissions are activated or deactivated, the presented data structures
allow for significantly more efficient updates of optimum transmission powers. Three
slightly different data structures are presented, which differ in the supported operations
and the corresponding complexities.

Chapter 4: Energy-Efficient Scheduling

We introduce new heuristics for the joint problem of transmission scheduling and power
control. In contrast to existing approaches, the presented heuristics aim at minimizing
the transmission powers that are necessary to execute a given set of wireless transmissions
within a given timespan. For this purpose, they use the full knowledge about resulting
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optimum transmission powers to decide which of the transmissions are activated concur-
rently. In order to compute power changes efficiently, the algorithms make extensive use
of the data structures that are presented in Chapter 3.

In a simulation-based comparison with existing approaches, it turns out that the new
scheduling heuristics outperform the other approaches with respect to both throughput
and power-efficiency, i.e., they yield Pareto-superior schedules. Additionally, they can be
used to find a good tradeoff between throughput and required transmission powers.

Chapter 5: Complexity of Scheduling with Power Control in SINRG

The geometric SINRG model is a theoretical model for signal propagation and interference
in wireless networks. The model is frequently used for the design of scheduling algorithms
with provable worst-case guarantees. In the context of the SINRG model, some complex-
ity questions are still unresolved. We present an NP-hardness proof for the problem of
scheduling with power control in the geometric SINRG model. The proof applies to sit-
uations where upper and lower bounds on the available transmission powers exist. This
also includes situations where the transmission powers can be chosen from a discrete set
of allowed power levels.

Part II: Localization

Chapter 6: Connectivity-based Detection of Network Boundaries

Several applications in wireless sensor networks require knowledge about boundaries and
holes of the network. We present a new distributed algorithm for connectivity-based
boundary recognition. The main benefit of the new algorithm in contrast to existing
approaches is that it requires very little information—only connectivity information of
a local 2-hop neighborhood—to decide very reliably whether a node is close to a hole
or boundary. The algorithm is compared in extensive simulations to several existing
approaches. Despite its low computational cost, the algorithm produces in all considered
settings surprisingly few misclassifications.

Chapter 7: RSS-based Localization: Preliminaries

The remaining chapters of this thesis deal with localization based on received signal
strengths (RSS). To evaluate the proposed approaches, both data from real-world ex-
periments and simulations are used. This chapter starts with a description of the sensor
network experiments and the used hardware. Subsequently, some preliminary experiments
concerning signal propagation and attenuation effects of walls are analyzed. The gained
insights are finally used to design meaningful simulations, and a direct comparison between
the experiments and the simulations is presented.

Chapter 8: RSS-based Position Estimation

This chapter deals with the localization of stationary devices based on received signal
strengths. In the considered problem, signal strengths of wireless broadcasts are analyzed
to estimate distances to beacon nodes with known positions. This information is then used
to localize nodes with unknown positions. In preparation for Chapter 9, which introduces
force-directed methods for the RSS-based tracking of mobile devices, the focus of this
chapter is on the design of adequate force-definitions for the representation of RSS-based
distance estimates in force-directed localization approaches. To evaluate the achievable
localization accuracies, a comparison with several other approaches for RSS-based position
estimation is presented based on real-world measurements.
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Chapter 9: Force-Directed Tracking

Force-directed methods are very popular in the areas of graph drawing and network embed-
ding. Additionally, there also exist several force-directed approaches to find embeddings
of wireless sensor networks based on connectivity information or received signal strengths.
In this chapter, we study the use of force-directed methods for the tracking of pedestrians
in indoor environments based on RSS measurements and movement information. Different
possibilities to represent knowledge from movement models or inertial data by additional
kinds of forces are discussed. Additionally, similarities and differences between the pro-
posed force-directed tracking approach and extended Kalman filters are examined. The
performance of the force-directed tracking approach is then evaluated based on real-world
measurements and additional simulations.

Chapter 10: Indirect Network Localization

The automatic localization of wireless networks is one of the fundamental topics in research
on wireless sensor networks. Several approaches exist for this problem. Some assume that
positions of some anchor nodes are known, others use communication between static nodes
to estimate pairwise distances and to compute an embedding based on this information.

In this chapter, we present an approach for the indirect localization of wireless sensor
networks. The presented approach is an extension of the well-known MDS-MAP embed-
ding algorithm [SRZF03], but instead of using communication between static nodes to
estimate distances, we use a mobile node to estimate pairwise distances between static
nodes indirectly. In contrast to most existing indirect approaches, we assume that neither
information about anchor node positions is available, nor about the movement of the mo-
bile node. Furthermore, we put special focus on the additional difficulties that arise in
connection with the high uncertainties of distance estimates based on RSS-measurements
in indoor environments. To evaluate the performance of the presented approach, we use
simulations and real-world experiments in an indoor scenario. As an example application,
the RSS-based tracking based on the computed node positions is studied.

Chapter 11: Conclusion

This chapter presents a brief summary of the main contributions of this thesis and con-
cludes the thesis.

This work was supported by the German Research Foundation (DFG) within the Re-
search Training Group GRK 1194 “Self-organizing Sensor-Actuator Networks”. Parts
of this work have been published in [KVW08, VKW09, KVW10, SVG+10, SVW11a,
SVW11b, VSG+12]. The chapters on wireless communication in the SINR model de-
scribe joint work with Bastian Katz and Dorothea Wagner, the chapter on connectivity-
based boundary recognition describes joint work with Dennis Schieferdecker and Dorothea
Wagner, and the chapters on RSS-based localization in wireless sensor networks describe
joint work with Johannes Schmid, Tobias Gädeke, Klaus D. Müller-Glaser and Dorothea
Wagner.



Chapter 2

Preliminaries

This chapter introduces basic notations, models, and techniques that will be assumed
as known in the remainder of this thesis. The chapter starts with some terminology in the
context of graphs and networks, followed by basics of algorithm analysis and complexity
theory. Subsequently, some approaches to compute embeddings of graphs and networks
are presented. In the area of information processing, the basic concepts of Kalman filters
and extended Kalman filters are described. The chapter concludes with an overview of
the modeling of radio propagation and interference in wireless networks and a brief survey
on localization in wireless sensor networks.

2.1 Mathematical Foundations

2.1.1 Graphs and Networks

In this section, we introduce some basic terminology in the context of graphs and networks.
The presented definitions follow the usual definitions of graphs and networks. For more
detailed information on graph theory and related questions, we refer to the standard
literature on this topic, e.g., [Jun08, Die10].

An undirected graph or graph is a pair G = (V,E), where V is a finite set of vertices
and E ⊆ V ×V is a set of unordered pairs of vertices, called edges. An edge between u ∈ V
and v ∈ V is denoted by {u, v}. Two vertices that are connected by an edge are called
adjacent or neighbors. Pairwise non-adjacent vertices or edges are called independent . A
set of vertices or edges is called independent if no two of its elements are adjacent. In
contrast to an undirected graph, a directed graph or digraph G = (V,A) consists of a finite
set of vertices V and a set A ⊆ V × V of ordered pairs of vertices, called arcs. An arc
from u ∈ V to v ∈ V is denoted by (u, v).

In many situations it is useful to assign to each edge e = {u, v} ∈ E a weight w(e).
For example, in the context of sensor networks, this weight could be the distance between
sensor nodes u and v, or the power required for a transmission between u and v. Such a
graph G with weighted edges is referred to as a weighted graph.

A path P in a graph G = (V,E) is a sequence (v1, v2, . . . , vk) of distinct vertices
v1, . . . , vk ∈ V such that {vi, vi+1} ∈ E for 1 ≤ i < k. Similarly, a directed path in a
digraph G = (V,A) is a sequence (v1, v2, . . . , vk) of distinct vertices v1, . . . , vk ∈ V such
that (vi, vi+1) ∈ A for 1 ≤ i < k. The number of edges of a path is called the length of
the path. If P = (v1, v2, . . . , vk) is a path and k ≥ 3, then C = (v1, v2, . . . , vk, v1) is called
a cycle. The length of a cycle is its number of edges.

Given an unweighted graph G = (V,E), for each pair (u, v) ∈ V ×V , the hop-distance
or distance between u and v is defined as the number of edges of a shortest path in G
from u to v.

The set of neighbors of a vertex v in a graph G = (V,E) is denoted by NG(v), or
briefly by Nv. We will call the set of neighbors of a vertex v also the neighborhood of
v. The degree dG(v) = d(v) of a vertex v is the number |E(v)| of edges incident to
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v. For undirected graphs, this is equal to the number of neighbors of v. The number
d(G) :=


v∈V d(v)/|V | = 2|E|/|V | is called the average degree of G.

We call a non-empty graph G connected if any two of its vertices are linked by a path
in G. G is called k-connected (for k ∈ N) if |G| > k and any two of its vertices can be
joined by k independent paths. A maximal connected subgraph of an undirected graph G
is called a connected component of G.

Given a graph G = (V,E), a d-dimensional embedding p : V → IRd assigns each vertex
v ∈ V coordinates p(v) in a d-dimensional space.

A graph G = (V,E) is called unit disk graph (UDG) if and only if there is an embedding
of the nodes in the plane such that there exists an edge {u, v} between node u and node v
if and only if the Euclidean distance dist(u,v) between u and v is less than or equal to 1.

Given some parameter d ∈ [0, 1], a graph G = (V,E) is a d-quasi unit disk graph
(d-QUDG) if and only if there is an embedding of the nodes in the plane such that
dist(u,v) ≤ d ⇒ {u, v} ∈ E and dist(u, v) ≥ 1 ⇒ {u, v} ̸∈ E.

2.1.2 Algorithms and Complexity

Time and space complexity. In the design of algorithms, one is often interested in
worst-case and average-case running times. The worst-case running time specifies the
longest running time for any input of size n. Knowing the worst-case running time gives a
guarantee that an algorithm will never take any longer. This makes the worst-case running
time particularly interesting from a theoretical point of view.

Analogously, the average-case running time specifies the running time for an average
input for the considered problem. In order to compute average running times, a probabilis-
tic analysis has to be applied. However, it often is not clear what constitutes an average
input for a problem, thus the applicability of the average-case analysis is limited [CLRS09].

In addition to the time complexity of an algorithm, one is usually also interested in the
space complexity , which is basically the number of memory cells that an algorithm needs.
In many applications, there is a tradeoff between time complexity and space complexity,
i.e., sometimes it is possible to save computation time by using additional memory.

Asymptotic notation. As usual in the theoretical analysis of algorithms, we present
time and space complexities in terms of asymptotic bounds. To describe the asymptotical
behavior, we use the common Landau notation [Knu76]: For two functions f, g : N → R,
f ∈ O(g) if and only if there exist constants c ∈ R and n0 ∈ N such that f(n) ≤ cg(n)
for all n ≥ n0. Similarly, f(n) ∈ Ω(g) if and only if there exist constants c ∈ R+ and
n0 ∈ N such that f(n) ≥ cg(n) for all n ≥ n0. Finally, for g : N → R, Θ(g) is given as
Θ(g) = O(g) ∩ Ω(g).

The classes P, NP, and NPC. In this section, we give a very brief introduction to
three complexity classes that are frequently used to categorize problems according to their
hardness. The following presentation is on a rather high level of abstraction. For further
information and more rigorous definitions we refer to [GJ79, Weg05, CLRS09].

The first class, P, consists of all problems that are solvable in polynomial-time, i.e.,
problems that can be solved in time O(nk), with n being the size of the input and k being
some arbitrary but fixed constant. Such problems are usually considered to be tractable,
and an algorithm whose worst-case time complexity is polynomially bounded in the size of
the input is referred to as efficient. This does not necessarily mean that the problem really
can be solved efficiently in practice, as even an “efficient” algorithm with time complexity
O(nk) can only solve very small instances if k is large.

The complexity class NP consists of the problems that are verifiable in polynomial
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time. In this context, verifiable means that if we are given a solution to the problem, we
can check in polynomial time whether the solution is correct.

It clearly holds that P ⊆ NP, but whether P = NP or P ̸= NP is still unknown. In
fact, this fundamental question constitutes one of the most important open problems in
the field of theoretical computer science. The reason for this importance will become clear
soon, but first we have to introduce some further terminology.

Most problems that are considered in computer science are optimization problems, in
which each feasible solution has some value, e.g., the length of a computed path in a
shortest-path algorithm, and the goal is to find a feasible solution with optimum value. In
contrast to optimization problems, a decision problem is a problem that only allows the
answers yes or no. Usually it is possible to reformulate optimization problems to decision
problems by imposing a bound on the value that is optimized. For example, instead of
asking for the shortest path, it is possible to ask whether there exists a path whose length
is shorter than or equal to some given value z.

Apparently, an algorithm that solves an optimization problem can also be used to solve
the corresponding decision problem, as, to decide whether the answer is yes or no, the
value of an optimum solution simply has to be compared with the bound that is imposed
by the corresponding decision problem. Thus, showing that a decision problem is hard
also implies that the corresponding optimization problem is hard.

Let now Π1 and Π2 be two decision problems, and let I1 be an instance of Π1, where an
instance I of a problem is simply a valid input to the problem. A polynomial-time reduction
≤P from Π1 to Π2 is a polynomial-time algorithm that computes for each instance I1 of
Π1 an instance I2 of Π2 such that I1 is a yes-instance of Π1 if and only if I2 is also a
yes-instance of Π2. This means, if there exists a polynomial-time reduction from Π1 to
Π2 and if there exists a polynomial-time algorithm that solves Π2, then the combination
of both implies a polynomial-time algorithm that solves Π1. Thus, in this case, Π2 is at
least as hard as Π1.

A problem Π1 is said to be NP-hard if every problem Π2 ∈ NP can be reduced to
Π1 in polynomial time, i.e., Π2 ≤P Π1 for all Π2 ∈ NP. Furthermore, a problem Π1 is
NP-complete if it is NP-hard and Π1 ∈ NP. According to this definition, every problem in
NP can be reduced in polynomial time to any NP-complete problem, making NP-complete
problems in some sense the “hardest” problems in NP. If only one NP-complete problem
could be solved in polynomial time, then this would directly imply P = NP. The class
that contains all NP-complete problems is denoted by NPC.

There is one problem left, though. One has to show for one first problem that all
problems in NP are polynomial-time reducible to that problem. This breakthrough was
achieved by Cook [Coo71] for the Sat problem, the problem to decide whether a given
Boolean formula in Chomsky normal form (CNF) is satisfiable. Based on this major
result, many other problems have been proven to be NP-complete over the last decades.
An extensive list of many fundamental problems that are NP-complete can for example
be found in the book on intractability by Garey and Johnson [GJ79].
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2.2 Embedding of Graphs and Networks

2.2.1 Multidimensional Scaling

Multidimensional scaling (MDS) refers to a family of techniques, which use a matrix
∆ ∈ Rn×n of dissimilarities or distances between n items to compute an embedding of
the items in d-dimensional space, such that the distances in the computed embedding
correspond as closely as possible to the given distances. This is, given a set V of items
and distances δuv between all pairs {u, v} ∈ V ×V of items, the objective of MDS is to find
for each v ∈ V a position pv ∈ Rd such that ||pu − pv|| ≈ δuv for all pairs {u, v} ∈ V × V .
There exist many different types of MDS techniques, e.g., metric and nonmetric MDS,
replicated MDS, weighted MDS, deterministic and probabilistic MDS. In this work, we
use the classical MDS method, which has been proposed by Torgerson [Tor65]. In classical
MDS, proximities are treated as distances in an Euclidean space. A detailed description
of multidimensional scaling, including several variants of MDS, can be found in [CC01].

2.2.2 Force-Directed Embedding

Force-directed embedding approaches, also known as spring embedders, are very popular
in the areas of graph drawing and network embedding. Originally, spring embedders have
been used in the context of VLSI design [QB79]. The introduction to the area of graph
drawing is usually accounted to an early work by Eades [Ead84]. The basic idea behind
force-directed approaches is to model graph vertices by steel rings and to replace the edges
by springs in order to form some kind of mechanical system. Starting from some initial
layout, the vertices are then released so that the spring forces move the system to a state of
minimal energy. One of the reasons why spring embedders are so popular is the enormous
flexibility they offer. There are virtually no restrictions on the kinds of forces that can be
used to model the springs. Accordingly, force-based methods can be adjusted to various
applications and objectives.

As one example for a force-directed embedding method, we give in the following a brief
overview of the well-known Fruchterman-Reingold spring embedder [FR91]. For further
details on spring embedders and graph drawing in general, we refer to the book on graph
drawing by Kaufmann and Wagner [KW01].

Fruchterman-Reingold algorithm. Given an undirected graph G = (V,E), the algo-
rithm of Fruchterman and Reingold tries to find an embedding of G such that nodes u
and v which are connected, i.e., {u, v} ∈ E, are located close together, and unconnected
nodes are separated from each other.

For every node v ∈ V , let pv = (xv, yv) be the position of node v in a given embed-
ding E . Additionally, let duv = ||pu − pv|| be the Euclidean distance between u and v in
E . The unit vector −−→pupv from pu to pv is given by

−−→pupv =
(pv − pu)

||pv − pu||
. (2.1)

In order to achieve that connected nodes are pulled together, an attracting force fattr is
introduced for all pairs u, v of nodes, for which {u, v} ∈ E. In dependence of the positions
pu and pv of u and v, this force is given by

fattr(pu, pv) =
||pu − pv||2

k
· −−→pvpu ∀{u, v} ∈ E . (2.2)

Moreover, to prevent that nodes are pulled too close together, and to achieve that
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unconnected nodes are separated spatially, an additional repelling force frep is introduced
between all pairs u, v ∈ V of nodes:

frep(pu, pv) =
k2

||pu − pv||
· −−→pupv ∀u, v ∈ V (2.3)

In both force definitions, k = C


area
|V | is a constant that controls the distances in the

computed embedding in dependence of the area that is available for the drawing and the
number of network nodes.

To compute an embedding of the network, the algorithm first is initialized with some
initial embedding Einit, e.g., by distributing the nodes randomly in the intended area.
In general, this initial embedding is under tension, meaning that when summing up all
forces that act on a node u ∈ V , the resulting force vector points in some direction. The
Fruchterman-Reingold algorithm now iteratively tries to find an embedding that is in force
equilibrium. In each step, for all nodes the forces acting on the node are summed up and
the node is moved a small distance into the direction where the force vector points. This
is repeated until either a certain number of iterations is reached or the lengths of all force
vectors fall below some predefined threshold. To determine the movement distances, the
Fruchterman-Reingold algorithm uses a cooling scheme. While the movement distances
are rather large in the beginning, they become smaller over time, thus resulting in a
convergence of the approach.

2.2.3 MDS-MAP

MDS-MAP [SRZF03] is a well-known technique to compute embeddings of wireless sen-
sor networks. Unlike many other embedding approaches, MDS-MAP works even when
no anchor nodes with known positions are available. The computation of the embedding
is based on classical multidimensional scaling (MDS) [Tor65]. Accordingly, as classical
MDS requires pairwise distances between all nodes, the first step of MDS-MAP consists
in finding appropriate estimates for the node distances. Usually it is assumed that only
connectivity information is given, i.e., the knowledge which of the nodes are able to com-
municate with each other. For such nodes that can communicate directly, a distance of
1 is assumed. Distances between the remaining pairs of nodes are approximated using
shortest-path computations. If better distance estimates are available, e.g., by means of
distance estimates based on received signal strengths, this information can easily be used
instead of the hop-distances.

Given the estimates for the distances between all pairs of nodes, MDS-MAP computes
an embedding using classical MDS. If additional knowledge about the positions of some
anchor nodes is available, this information can be used in a subsequent step to map the
relative coordinates computed by MDS to absolute coordinates. The time complexity of
MDS-MAP is in O(n3), with n being the number of nodes.

Over the last years, several modifications and extensions of MDS-MAP have been pro-
posed, which mostly aim at the improvement of the computed embeddings. An overview
of some of these approaches will be given in Section 10.1.1.
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2.3 Information Processing

2.3.1 Kalman Filter

The Kalman filter was proposed by R.E. Kalman [Kal60] as a recursive solution to the
discrete-data linear filtering problem. Since then, the Kalman filter has become one of
the most frequently used tools in the area of autonomous and assisted navigation. As we
will use an extension of the Kalman filter later on as a reference approach for RSS-based
tracking in wireless networks, we will give a very brief overview of the main concepts in
this section. This presentation of the Kalman filter is based on [WB01] and [May79].
Additional information on the Kalman filter, as well as mathematical derivations, can be
found in many textbooks on stochastic estimation, e.g., in [May79].

The Kalman filter can be used to estimate the state x ∈ Rn of a discrete-time controlled
process that is governed by the linear stochastic difference equation

xk = Axk−1 +Buk−1 + wk−1, (2.4)

where A is an n × n matrix that relates the state xk−1 at time step k − 1 to the current
state xk, in the absence of changes in direction and speed and neglecting process noise, B
is an n× l matrix which relates optional control input u ∈ Rl to xk, and wk is a random
variable that represents the process noise at time k. The state estimation xk at time k is
then improved using a measurement z ∈ Rm with

zk = Hxk + vk, (2.5)

where the m× n matrix H relates the state xk to the measurement zk and vk represents
the measurement noise. It is also assumed that the random variables wk and vk are
independent of each other, normally distributed and zero-mean, i.e., p(w) ∼ N(0, Q) and
p(v) ∼ N(0, R). The process noise covariance Q and measurement noise covariance R are
assumed to be constant.

In order to estimate the state of the process, a form of feedback control is used. The
Kalman filter consists of two groups of equations: time update and measurement update
equations. The time update equations use the current state estimate x̂k−1 and error
estimate Pk−1 and project them forward in time to get a priori estimates x̂−k and P−

k for
the next time step:

x̂−k = Ax̂k−1 +Buk−1 (2.6)

P−
k = APk−1A

T +Q (2.7)

The measurement update is then used to incorporate new measurements zk into the
a priori estimate x̂−k , in order to obtain an improved a posteriori estimate x̂k and corre-
sponding error covariance Pk. The used equations are as follows:

Kk = P−
k HT (HP−

k HT +R)−1 (2.8)

x̂k = x̂−k +Kk(zk −Hx̂−k ) (2.9)

Pk = (I −KkH)P−
k (2.10)

Kk denotes the Kalman gain of step k and defines the weighting of the predicted position
estimate x̂−k relative to the measurement zk for the a posteriori estimate x̂k. Roughly
speaking, the higher the measurement uncertainty Rk, the stronger is the weighting of x̂−k ,
and the higher the uncertainty of prediction x̂−k , the stronger is the weighting of zk. One
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can show that Kk is defined such that it minimizes the a posteriori error covariance. For
a detailed derivation of this equations, we refer to [WB01].

One nice feature of the Kalman filter is its recursive nature. In each step, only the a
posteriori estimates of the last time step are used to predict the new a priori estimates.
This allows for very efficient implementations of the Kalman filter, as it does not require
to keep all data in memory.

2.3.2 Extended Kalman Filter (EKF)

As mentioned in the previous section, the Kalman filter offers an optimal solution to the
problem of estimating the state of a linear discrete-time controlled process. Unfortunately,
processes of interest and measurement relationships are often not linear. To deal with such
situations, an extended Kalman filter (EKF) can be used. The principle behind the EKF
is that it linearizes about the current mean and covariance, using the partial derivates of
the process and measurement functions. In contrast to the Kalman filter, the EKF thus
can deal with situations where the process state xk is given by a non-linear stochastic
difference equation

xk = f(xk−1, uk−1, wk−1) , (2.11)

in which the non-linear function f relates the state of time step k − 1 to the state of the
current time step, and where the state xk at time k is related to the measurement zk by
an arbitrary non-linear function h

zk = h(xk, vk) . (2.12)

Again, uk represents the control input, wk represents the process noise, and vk represents
the measurement noise.

The derivation of the time and measurement update equations of the extended Kalman
filter is beyond the scope of this brief introduction. For further information, we refer to
[May79, WB01].

Unfortunately, the EKF also has a significant disadvantage in comparison to the
Kalman filter: The distributions of the random variables are no longer normal after appli-
cation of the non-linear transformations. Accordingly, the EKF is only an ad hoc estimator,
which approximates Bayes’ rule by linearization [WB01]. Thus, unlike the Kalman filter
for linear systems, the EKF cannot provide guarantees on the optimality of the computed
estimates.

2.4 Radio Propagation and Interference

Radio propagation in wireless networks is influenced by a multitude of effects, most of
which are highly unpredictable. The mutual cause of all random effects is the reflection,
diffraction, and scattering of electromagnetic waves on all kinds of obstacles and surround-
ings. Multi-path propagation of radio waves results in interferences, which result in rapid
fluctuations of received signal strengths even over very short distances of only few wave-
lengths. In consequence, modeling the radio channel is very difficult, and there exists a
variety of radio models for all kinds of scenarios.

Most existing models for radio propagation are statistical models, which try to predict
both the average decay of signal strength over distance and the variability of the signal
strength over short distances. Models that mainly focus on the mean decay of signal
strength over distance are usually called large-scale propagation models, those that consider
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the fluctuations over short distances or time intervals are called small-scale propagation
models.

In addition to the statistical models, there also exists a variety of deterministic models
for signal decay and interference. The use of such deterministic models is motivated by the
fact that they allow for mathematical worst-case analyses and theoretical comparisons of
algorithms that are influenced by radio propagation. In particular for worst-case analyses,
which play an important role in the theoretical analysis of algorithms, statistical models
are inconvenient. The worst-case usually would just mean that the signal does not reach
the receiver with sufficient power to be decoded. For this reason, deterministic propaga-
tion models are frequently preferred in the algorithmic and theoretical computer science
communities.

As radio propagation, and particularly the modeling of radio propagation, plays an
important role for several problems that are considered in this thesis, we give in the fol-
lowing a brief overview of some possibilities to model radio propagation and interference.
However, as the modeling of radio propagation is a very extensive and diverse field, this
overview can only scratch the surface. For a more detailed introduction to statistical mod-
els for radio propagation and to the physical background of radio propagation, we refer
to the book on wireless communication by Rappaport [Rap01]. Details on deterministic
and graph-based interference models for the design of algorithms with worst-case guaran-
tees can be found in the survey on algorithmic models for sensor networks by Schmid et
al. [SW06] and in the book on algorithms for sensor and ad-hoc networks by Wagner and
Wattenhofer [WW07].

2.4.1 Modeling of Path Loss

Path loss describes the signal attenuation of a radio signal on the way from its sender to
the receiver. This includes both the signal decay with distance and attenuation effects at
obstacles. Depending on the scenario, different path loss models can be used. The following
brief overview is based on the book on wireless communication by Rappaport [Rap01].

Friis free space model. Let Pt denote the power transmitted by the sender and Pr(d)
denote the power with which the signal is received by the receiver in distance d from the
receiver. In the simple case of free space propagation in the far-field of the transmitting
antenna, the received power Pr(d) in dependence of the distance d between sender and
receiver can be described with Friis free space equation [Rap01], which in its simplest form
states that

Pr(d) =
PtGtGrλ

2

(4π)2d2
, (2.13)

where Gt is the additional antenna gain of the transmitter, Gr is the antenna gain of the
receiver, and λ is the wavelength of the radio wave in meters. Usually, the path loss PL is
defined as the difference between the transmitted power and the received power, measured
in decibels (dB). The path loss may or may not include the effects of antenna gains. If
antenna gains are not considered, it is assumed that the antennas have unity gain. For
Friis free space model, assuming unity gain for the antennas gives

PLdB(d) = 10 log10
Pt

Pr
= −20 log10


λ

4πd


. (2.14)

Even for line-of-sight communication over short distances, the received signal strength
depends on a multitude of effects, e.g., the characteristic of the antennas. For this reason,
a usual approach is to measure the received signal strength (RSS) Pr(d0) at some reference
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distance d0, and then to relate the distance Pr(d) for distances d > d0 to Pr(d0). For free
space propagation, this gives

Pr(d) = Pr(d0)


d0
d

2

. (2.15)

Log-distance path loss model. In practical applications, one usually has to deal with
additional effects that are caused by all kinds of obstacles. This is particularly true for
indoor signal propagation, where walls typically result in significant signal attenuation.
A famous model to subsume all additional effect that are caused by obstacles is the log-
distance path loss model. The log-distance model is inspired by the observation that
even under realistic conditions, the average received signal strength in dependence of the
distance between sender and receiver can be described very well by a power law, i.e.,

Pr(d) ∝
Pt

dα
. (2.16)

The constant α in Equation 2.16 is the so-called path loss exponent , which defines how fast
the signal strength decreases with distance. For unobstructed outdoor communication, α
is usually assumed to be about 2. In buildings, walls and obstacles result in additional
attenuation, which usually results in higher values of α in the range of 3 to 5. However,
walls can also have positive effects on the received signal strengths. For line-of-sight
transmissions in buildings, even α-values lower than 2 are possible. For example, [Rap01]
states that for this situation typical values of α are in the range of 1.6 to 1.8.

Using path loss exponent α and the path loss PLdB(d0) at some reference distance d0,
the path loss in the log-distance path loss model is given as

PLdB(d) = PLdB(d0) + 10α log10


d

d0


. (2.17)

Log-normal shadowing. Equation 2.17 only considers the average large-scale decay of
signal strength. However, received signal strengths also fluctuate very intensely over very
short distances, caused by multi-path propagations and self-interferences. It has been
shown in various measurements that received signal strengths for a given sender-receiver-
distance are normally distributed around the average value when measured in dB [Ber87].
To model this, Equation 2.17 can be extended by a zero-mean Gaussian random variable
Xσ, giving

PLdB(d) = PLdB(d0) + 10α log10


d

d0


+Xσ . (2.18)

Modeling of indoor path loss. Radio propagation in indoor environments is character-
ized by a particularly high degree of signal strength fluctuation. Various kinds of obstacles
result in an enormous amount of reflection, diffraction, and scattering of radio waves. This
is aggravated by the fact that different kinds of materials have very different effects on
signal propagation.

To model the characteristics of indoor propagation, various models have been proposed.
Very popular is the use of the log-distance model, usually extended by the Gaussian
random variable Xσ of the log-normal shadowing (cf. Equation 2.18). Appropriate values
for the path loss exponent α and the variance of Xσ have been determined in experimental
studies for various types of buildings. An early study, considering several scenarios and
radio signals of different frequencies, is for example given in [ARY94].

The log-distance model subsumes various kinds of effects in two quantities, the path
loss exponent α and the standard deviation of the random variable Xσ, which models



14 Chapter 2: Preliminaries

the fluctuations of the signal strength for a given distance. However, especially in indoor
scenarios, there are several effects on received signal strengths that can be predicted to
some degree. For example, the penetration of walls and floors causes significant signal
attenuation. These so-called partition losses have been analyzed for various kinds of
obstacles and materials, e.g., in [Rap91]. A study with focus on the attenuation of floors
was for example presented in [SR92]. In [SR92], it was also shown that the standard
deviation of the noise in the log-distance path loss model can be significantly reduced by
modeling effects such as the penetration of floors separately. In the presented attenuation
factor model , the path loss was modeled as

PLdB(d) = PLdB(d0) + 10αSF log10


d

d0


+ γFAF , (2.19)

where αSF denotes the path loss exponent for measurements at the same floor and γFAF

is an additional floor attenuation factor (measured in dB), which models the signal atten-
uation that is expected in consequence of the type and number of penetrated floors.

2.4.2 Modeling of Communication and Interference

Whether or not a specific transmission is successful depends on several factors. In partic-
ular, the signal that reaches the receiver must be strong enough to be decoded, and there
must not be too much interference from concurrent transmission. In order to analyze algo-
rithms that are influenced by signal propagation and interference, well defined conditions
for successful reception are necessary. This section gives a brief overview of models that
are frequently used to describe communication in wireless networks.

Unit disk graph models. Wireless receivers usually have a limited sensitivity, meaning
that they are only able to decode signals that exceed some hardware-dependent threshold.
As the signal strength of wireless transmissions decreases with distance, this means that
signals that were transmitted with some fixed power can only be received up to some
distance dmax. Beyond that distance, the signal is too weak to be decoded. In analogy
to graph-theoretic unit disk graphs (cf. Section 2.1.1), this simple observation is modeled
in unit disk graph communication models (UDG models), which assume that two wireless
nodes can communicate with each other if and only if their distance does not exceed dmax.

Quasi unit disk graph models. Due to multi-path propagation and attenuation effects,
received signal strengths are subject to high fluctuations. In consequence, knowing the
distance between a sender-receiver pair is not sufficient to decide whether a transmission
is successful or not. However, for small distances one usually can be pretty sure that
the received signal strength is sufficiently high for successful reception, and for very large
distances it is also relatively certain that the transmission has to fail. This is modeled
in quasi unit disk graph communication models (QUDG models) by assuming that all
transmissions up to some distance d1 are possible, all transmissions exceeding a sender-
receiver distance d2 definitely fail, and for all other transmissions there is only a certain
possibility that they succeed.

Graph-based interference models. Even when the signal strength at the receiver
exceeds the receiver sensitivity threshold, this is no guarantee that the signal can be
decoded. Additionally, the received signal strength has to exceed both the background
noise and the interferences that are caused by concurrent transmission of nearby senders
by a certain amount. One possibility to model this additional condition are conflict graph
models. A conflict graph defines for each pair of links, i.e., sender-receiver pairs that could
communicate with each other if they would not have to share the communication channel,
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whether it is possible that both links are active concurrently without failures. Several
models to decide for pairs of links whether concurrent transmission is possible or not
have been proposed. A famous example is the protocol model [GK00], which assumes two
conditions for successful transmission from some sender s to a receiver r: First, the distance
between s and r must be smaller than the maximum transmission range R. Second, the
distance between any other sender s2, which is active concurrently, and r must exceed
(1+∆)R for an appropriate constant ∆. An overview on further graph-based interference
models is presented in [WW07].

SINR model. Graph-based interference models have two fundamental problems: they
oversimplify the distance dependence of received signal strengths and they are not able
to model that interferences from several concurrent transmissions can sum up. As a re-
sult, many effects that occur in reality are not reproducible by graph-based interference
models [MWW06]. These problems are tackled by the physically motivated signal-to-
interference-plus-noise-ratio model (SINR model), which assume that a transmission is
successful if and only if the ratio of the received signal strength to the sum of all inter-
ferences plus the background noise exceeds some hardware-dependent SINR threshold β.
In its most general form, the SINR model makes no assumptions concerning the signal
decay. Instead, it allows arbitrary link gains for all pairs of senders and receivers. A formal
introduction of the SINR model will be given in Section 3.2.

Geometric SINRG model. The SINR model makes no assumptions concerning signal
propagation. This makes it hard to give worst-case guarantees for algorithms that are
based on the SINR model. To alleviate this problem, frequently an extended version of the
model is used, the physical model [GK00], also called geometric SINRG model [GOW07].
In the SINRG model, it is additionally assumed that the signal decay with distance can
be fully described by a simple power law. In analogy to the log-distance path loss model
(cf. Section 2.4.1), the SINRG model uses a path loss exponent α to define how fast
the signal decays with distance. Based on the assumptions of the SINRG model, several
approximation algorithms for the scheduling of wireless transmissions have been proposed
recently. A formal introduction of the geometric SINRG model will be given in Section 4.2.

Generalized physical model. Like the unit disk graph model, the SINRG model is
unable to model the random nature of received signal strengths. Each distance is assigned
a well-defined signal strength. To allow for fluctuations in signal strength while preserving
the possibility to provide worst-case guarantees, a generalization of the SINRG model has
been introduced by Moscibroda et al. in [MWZ06]. The proposed generalized physical
model assumes that the signal strength Pr that reaches a node r from some sender s can
deviate up to a constant factor θ from the theoretical value as given by the SINRG model,
i.e.,

1

θ

Pt

d(s, r)α
≤ Pr ≤ θ

Pt

d(s, r)α
, (2.20)

with Pt being the used transmission power, d(s, r) being the distance between sender s
and receiver r, and α being the corresponding path loss exponent.
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2.5 Localization in Wireless Sensor Networks

Location discovery is a very ample problem, which has been studied in various different
contexts including robotics, ad hoc networks, military, aviation and space travel. Today,
most outdoor localization problems have been solved with the upcoming of global naviga-
tion satellite systems such as GPS [HWLC97] or Galileo [HWBL+08]. However, especially
for sensor networks consisting of many devices and for indoor scenarios, cheap and reliable
localization still poses a considerable challenge.

In this section, we give a brief overview on research concerning different aspects of
localization in wireless sensor networks. The different approaches differ widely in their
requirements and achievable localization accuracies. Like it is often the case for wireless
sensor networks, there is no all-round approach that works optimally for all situations.
Instead, the best localization approach usually strongly depends on the considered appli-
cation.

The intention of this brief survey is to give a quick overview on different areas of
research in the context of localization in wireless networks and to show how the research
presented in this work fits into a bigger context. For topics that are covered in this thesis,
additional information on related work will be given in the corresponding chapters. For
more detailed surveys on localization in wireless networks, we refer to [MFA07, Bou09,
WGD10].

2.5.1 Estimation of Distances and Angles

Several approaches for the communication-based estimation of distances and angles in
wireless networks have been presented. They differ widely both in achievable accuracies
and in the requirements on the hardware, and it strongly depends on the considered
application which of the approaches is suited best.

Connectivity: Connectivity information, i.e., the knowledge which nodes can communi-
cate with each other, offers a very simple and cheap possibility to estimate distances
between wireless nodes. If two nodes are able to communicate, one can assume that
they are within one communication range of each other. Not surprisingly, this distance
estimate is relatively inaccurate.

Received Signal Strength (RSS): Most modern communication hardware allows to mea-
sure the signal strength of received wireless packets using a received signal strength
indication (RSSI). As the signal strength on average decreases with the distance be-
tween sender and receiver, one can use this information for a more accurate distance
estimation than it would be possible using only connectivity information. In real-
ity, the received signal strength is additionally influenced by a multitude of effects,
e.g., obstacles, interferences, and antenna characteristics. Accordingly, RSS-based
distance estimation is rather inaccurate, with an average error in the range of some
meters [SHS01]. However, as RSS-based distance estimation is available on many
modern devices without additional cost, it offers a viable possibility to estimate dis-
tances in applications that do not require high accuracies. In Section 7.3, we present
a study of RSS-based distance estimation based on experiments in a wireless sensor
network.

Time of Arrival (ToA): Another way to estimate distances between nodes is to measure
the time a signal needs to propagate from one node to another. Using the propagation
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speed of the signal in the considered medium, one can easily determine the distance
between the nodes [HWLC97]. Depending on the used kind of signal, extremely
precise clocks are necessary, and it is also necessary that the clocks of the nodes are
precisely synchronized.

Time Difference of Arrival (TDoA): Similar to the time of arrival method, one can use time
differences to estimate distances between nodes. Basically, there are two possibilities:
One can either use a single signal from one node and measure the differences of the
arrival times at different other nodes, or one node sends signals with different propa-
gation velocities at the same time, e.g., radio and ultrasound like in the Cricket indoor
location system [PCB00] and the SpiderBat ranging platform [OSW10, OSW11], and
the difference of the arrival time is then used to estimate the distance. Using TDoA
approaches, accuracies in the range of few centimeters are possible [SHS01, OSW11].

Angle of Arrival (AoA): Using antenna arrays or directive antennas, it is also possible to
estimate the angle of arrival of wireless signals [NN03]. For example, one can mea-
sure arrival times at different receivers and use this information in combination with
knowledge about the positions of the receivers to estimate the angle to the sender in
relation to reference points or an electronic compass [PMBT01]. A recent approach
for angle of arrival measurement is the SpiderBat system [OSW10, OSW11], where
an array of ultrasound receivers is used to measure angles with an accuracy in the
range of few centimeters.

For a more detailed overview on possibilities for distance and angle estimation, we refer
to [Bou09].

2.5.2 Position Estimation

The approaches that are described in Section 2.5.1 allow it to estimate distances and angles
between nodes. In this section, we give a brief overview on methods that are frequently
used to estimate node positions based on this kind of information.

Center of Reference Nodes: A very simple approach to estimate the position of a wireless
node is to put it in the center of the reference nodes that are within communication
range [HHB+03]. From a computational point of view, this approach is very efficient,
but, not surprisingly, the achievable accuracy is rather low and many reference nodes
are required to achieve reasonable localization results.

Trilateration: If distances to three or more reference nodes with known positions (also
called anchor nodes) are available, the position can be computed as the intersection
of circles around the reference nodes with radii that correspond to the respective
distances. In reality, usually both the distance estimates and the positions of the ref-
erence nodes are inaccurate. To estimate the node position despite this inaccuracies,
one can solve the (possibly over-determined) system of equations that is induced by
the distance estimates using a least squares approach [TBC11].

Triangulation: In contrast to trilateration, triangulation allows to estimate the posi-
tion of a device based on knowledge about angles to at least three reference nodes
with known positions. The position is then computed using simple trigonometrical
relationships [NN03].
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Probabilistic Approaches: Probabilistic approaches [SR04b, PS07] aim at estimating
the probability that the device is located at certain positions in space. Instead of
computing a single position estimate, probabilistic approaches consider many points in
space and compute the likelihood, given the distance estimates and their uncertainties,
that the device is at these positions. If the application requires a single position
estimate, for example the most likely position can be returned.

Fingerprinting: Fingerprinting works by directly associating location-dependent charac-
teristics, such as received signal strengths, with each location. The corresponding
characteristics have to be collected in an initial training phase and are stored in a fin-
gerprint database [YYAS03]. To locate a mobile device, the received signal strengths
at the unknown location are compared to the entries in the database, and the location
whose RSS fingerprint is closest to the signal strengths that were received is returned
as position estimate. The achievable accuracy depends on the number of locations
that are sampled in the fingerprint database. If the database contains data from
many positions, fingerprinting offers good accuracies compared to other RSS-based
approaches. However, the required initial training phase is also relatively complex.
Recent examples for fingerprinting are presented in [AC09, PCC+10, BOGVB10].

Global Navigation Satellite Systems (GNNS): In outdoor scenarios, global navigation satel-
lite systems [HWBL+08] such as the global positioning system (GPS) offer an efficient
possibility to estimate node positions within an accuracy of few meters. Devices with
GPS receivers can use ToA information to estimate their distances to four or more
GPS satellites with known positions. The position of the device, i.e., its latitude, lon-
gitude and altitude, can then be computed using trilateration. While GPS probably is
the optimal solution for many scenarios, this technique also has some disadvantages,
which disallow its use in several situations: As special GPS receivers are necessary,
cost, size, and energy consumption of the sensor nodes are increased, which is par-
ticularly undesirable for sensor networks. Additionally, GPS is only applicable in
scenarios where the nodes have unobstructed sight to the satellites, making this tech-
nique unavailable for indoor localization.

2.5.3 Tracking

In the tracking problem in wireless sensor networks, the position of a mobile device has
to be estimated and followed over some period of time. In addition to the information
that is available in the static position estimation problem, in the tracking problem one
often has additional knowledge from movement models or inertial sensors, which allows
an improved localization. Tracking has been studied intensely in various fields of science,
using all kinds of means to estimate distances and positions. In the area of wireless
sensor networks, the position estimation is mostly based on connectivity information or
measurements of received signal strengths. The following approaches are frequently used
for tracking in wireless networks:

Static Position Estimation: The simplest possibility to realize tracking in wireless net-
works is to use one of the approaches for position estimation that are described in
Section 2.5.2 repeatedly. Especially fingerprinting is frequently used without using ad-
ditional information from movement models or inertial data. However, if movement
knowledge is available, utilizing this information can result in significantly improved
localization results.
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Kalman Filters: Among the most frequently used approaches for tracking in wireless net-
works are variants of Kalman filters such as extended Kalman filters (EKFs) [WB01]
or unscented Kalman filters (UKFs) [JUDW95]. Kalman filters themselves are only
applicable to linear systems. Accordingly, they cannot be applied directly to the con-
sidered localization and tracking problems, as these are non-linear due to the involved
distance estimates. EKFs and UKFs are extensions of standard Kalman filters, which
approximate the non-linear system by a linear system using either analytical (EKF) or
statistical (UKF) techniques. More detailed information on Kalman filters and EKFs
is presented in Section 2.3. Examples for the use of EKFs and UKFs for tracking in
wireless networks can be found in [PW09, SKL10, SBN+11].

Particle Filters: Particle filters are simulation-based model estimation techniques, which
are usually used to estimate Bayesian models. In particle filters, probability distribu-
tions are represented by a set of randomly chosen weighted samples. If the number of
samples is sufficiently high, particle filters can be designed such that they approach
the optimal Bayesian estimate. In particular, particle filters are not restricted to the
modeling of Gaussian distributions, but they are fully capable of modeling multimodal
probability distributions. However, to achieve this improved estimation, particle fil-
ters also have significantly higher computational costs than for example EKFs. Like
EKFs, particle filters are frequently used for the tracking of mobile devices in wireless
networks, e.g., in [MNR+06, WLS+07].

2.5.4 Network Localization

Most of the approaches in the previous sections assume the availability of reference nodes
with known positions. However, in many possible applications of wireless sensor networks,
especially those that involve hundreds or thousands of sensor nodes, it cannot be expected
that all positions are initialized manually or that all devices have the capabilities to deter-
mine their own position autonomously using techniques such as GPS. As knowledge about
node positions is very crucial for most applications in sensor networks, various approaches
have been proposed to infer absolute or relative node positions from information about
connectivity or from the locations of some reference nodes with known positions.

Boundary Recognition: For some applications, it is sufficient to know whether a node
lies within the network or near a hole or boundary of the network. This knowledge
can then for instance be used to aid efficient routing within the network or for load
balancing near holes. Possibly applications of boundary detection and related work
are described in Chapter 6, which deals explicitly with boundary recognition based
on connectivity information.

Network Localization with Anchor Nodes: In some scenarios, it is assumed that a subset of
the wireless devices, so-called anchor nodes, know their position. Several approaches
have been proposed to use this information to infer the positions of nodes with un-
known positions. For example, in the Ad Hoc Positioning System (APS) [NN01] nodes
determine their hop-distances to anchor nodes with known positions. Based on the
hop distances, trilateration is used to compute the position estimates. The Recursive
Position Estimation (RPE) [ACZ01] approach works similar, but additionally regular
nodes become anchor nodes as soon as they have an own position estimate. In [SR04b],
a mobile beacon node with known position is used to initialize the positions of static
sensor nodes using a probabilistic approach.
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Anchor-free Network Localization: There also exist approaches that allow the estimation
of node positions in wireless sensor networks without any reference nodes. A famous
example for such anchor-free approaches is MDS-MAP [SRZF03], where distances
between nodes are estimated by the corresponding hop distances and multidimensional
scaling is then used to approximate the underlying embedding of the network. An
extension of MDS-MAP has been presented in [SR04a], where parts of the network are
embedded independently from each other and the single maps are finally combined to
an embedding of the whole network. Approaches for the force-directed embedding of
wireless sensor networks are for example presented in [EFI+10, CKKK10].

Simultaneous Localization and Mapping (SLAM): Simultaneous localization and mapping
(SLAM) describes a class of approaches, where a mobile device with unknown position
is used to map the environment. Usually it is assumed that either information about
the movement of the mobile device is available, for example by means of odometry
data, or knowledge about the positions of some reference points. In SLAM, the posi-
tion of the mobile device and the positions of the reference points are then estimated
alternately. An example for the use of SLAM in sensor networks is given in [HMS01],
where mobile robots are localized simultaneously with a sensor network.
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Chapter 3

Dynamic Power Control

In this chapter, we present a new approach for the dynamic computation of optimum
transmission powers. Unlike existing methods for the power control problem, the presented
data structure is optimized for the efficient prediction of power changes when there are
only small changes in the network. Three variants of the data structure are discussed,
which differ in the supported operations and the corresponding complexities.

3.1 Introduction

Efficient communication is one of the very fundamental topics in the area of wireless net-
works. When nearby nodes communicate in the same frequency range, they have to share
the same medium. The consequence is interference between concurrent transmissions,
which can result in worse transmission rates or even in the failure of transmissions. The
amount of interference is influenced by many factors, e.g., distances to interfering senders,
environmental conditions, and used transmission powers. In the context of wireless com-
munication, it is usually assumed that, for a transmission to be successful, the received
signal strength has to exceed the interfering signals at the receiver by a certain amount.
This leads to interesting optimization problems: By increasing the transmission power, a
sender can increase the likelihood that the receiver is able to decode the signal. However,
this also increases the interference at other receivers that are nearby, thus potentially
causing the corresponding transmissions to fail. Accordingly, in order to ensure that all
transmissions are successful, some tradeoff has to be found.

Finding such a tradeoff is the goal of the power control problem: Given a set of
wireless transmission requests, one has to compute minimum transmission powers such
that all transmissions are successful. Power control is a central building block in many
algorithms that deal with communication in wireless networks. For example, in the area of
topology control, power control is used to limit the transmission range of senders with the
goal to avoid interferences in the network [MWZ06]. Similarly, power control is frequently
used in combination with scheduling approaches for wireless transmissions. By reducing
the transmission powers for transmissions over short distances, one can avoid unnecessary
interference and thus increase the overall throughput in the network.

3.1.1 Related Work

Solving the power control problem, i.e., finding minimum transmission powers for a set
of wireless transmissions, is a common subproblem of many algorithms that deal with
wireless communication. Accordingly, the problem has been studied for a long time, and
different solution approaches have been proposed.

Originally, power control has been studied in the context of channelized cellular sys-
tems [Zan92b, Zan92a, FM93, GVG94]. The focus of power control in this early work was
the minimization of the outage probability due to co-channel interference. Power control
was used to defer single transmissions in order to achieve a certain signal-to-noise ratio.
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In an early work by Zander [Zan92b], which was based on prior work for satellite commu-
nication by Aein [Aei73], it was shown that under the assumption that the noise at the
receiver can be neglected, the largest possible signal-to-interference ratio (SIR) β∗ for a set
of transmissions can be computed using an eigenvalue decomposition. In this case, β∗ is
related to spectral properties of a normalized variant Z of the underlying link gain matrix
(the link gain matrix defines for each pair of nodes how much the signal is attenuated on
the way from the sender to the receiver). With λ∗ being the largest real eigenvalue of Z,
β∗ is given as

β∗ =
1

λ∗ − 1
. (3.1)

The power vector P ∗ that achieves β∗ is then given by the eigenvector of Z corresponding
to the eigenvalue λ∗. This power control approach was then used in several heuristics to
find a maximal subset S ⊆ S of a set S of transmissions, such that all transmissions of S
concurrently exceed a given SIR β [Zan92b, Zan92a, FM93].

Another possibility to tackle the power control problem is to express it by a linear
program (LP) and then to use an LP solver to compute optimum transmission pow-
ers [WCRP05]. This approach also works when background noise is considered. The
corresponding formulation of the power control problem as a linear program is given in
Section 3.3.

A further approach, which is used by most recent heuristics for the combined problem
of scheduling and power control, is to start with small transmission powers and then to
iteratively increase the powers until either all transmissions become feasible, or one of the
senders exceeds its maximum transmission power. This can be done in such a way that
the resulting transmission powers converge to the optimum [FM93, Yat95, EE04]. This
iterative power control approach can also easily be used in a distributed setting. In order
to achieve faster convergence, one usually uses in each iteration transmission powers that
are by a slight factor α (e.g., α = 1.05) higher than the powers that are necessary to cope
with the current interference. With this optimization, the approach usually converges
after few iterations [EE04]. However, this also results in transmission powers that are
slightly higher than the optimum powers. If applied in a centralized setting, an iteration
of the algorithm takes O(n2) time, thus a nearly optimal power assignment can also be
found in O(n2) time.

Most related work on power control considers the joint problem of scheduling with
power control. Further information on related work in this area is given in Chapter 4,
which deals with energy-efficient scheduling with power control.

3.1.2 Overview

If one has to compute a power assignment only once for a given set of links, or if the powers
are computed in a distributed way, the existing iterative power control approach is very
efficient. However, in the combined problem of scheduling and power control, such power
assignments have to be computed over and over until the final set of links and powers is
found. Between the computations, there usually are only very small changes to the set of
active transmissions, e.g., single transmissions are activated or deactivated. Additionally,
as we will see later, one can achieve very good schedules by basing the decision which
transmissions to activate on the effects the decision has on the transmission powers of
other active links. To utilize this observation, a scheduling algorithm has to frequently
predict how transmission powers change when additional transmissions are activated.

In this work, we examine how such incremental changes can be computed more effi-
ciently than by just recomputing all transmission powers from scratch. For this purpose,
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we present in Section 3.4 a data structure that is optimized for the incremental activa-
tion of links and the efficient prediction of power changes when further transmissions are
activated.

In many real-world applications, it might also be necessary to react efficiently to various
other kinds of changes in the network. For example, if nodes move, link gains between
senders and receivers might change. Additionally, it may happen that new nodes enter the
network, which makes additional updates necessary that can not easily be performed using
the aforementioned data structure. For this reason, we demonstrate in Section 3.5 how
the data structure can be extended to allow additional operations such as the deactivation
of links or the update of transmission powers when the ambient noise changes.

In order to enable the efficient prediction of power changes for the activation or deacti-
vation of single transmissions, one has to maintain some information even for transmissions
that are not active. This results in additional computational effort, which is more than
compensated when the prediction functionality is used frequently. However, if such pre-
dictions are rare or completely unnecessary, one does not have to maintain this additional
information. In Section 3.6, we show how the presented data structure can be adjusted
to this situation, and which improvements this enables for the time complexities of some
operations.

3.2 Problem Definition

Scenario and terminology. We consider a wireless network N . In this network, we are
given a set {l1, l2, . . . , ln} of links between nodes of the network. Each link li = (si, ri) is
defined by a sender si and a receiver ri. It is assumed that the distance between si and ri
is sufficiently small to allow communication between both nodes. A link li is called active
if si transmits data to ri. We denote the transmission power that si uses by Pi. In the
following, we assume that there exists an upper bound Pmax on the available transmission
powers, i.e., 0 ≤ Pi ≤ Pmax for all senders si. It further holds that Pi > 0 if and only
if link li is active. If si transmits with power Pi, then the signal is received by ri with
lower power Pii. This weakening of signal strength is caused by path losses on the way
from the sender to the receiver, e.g., by free-space path losses or by attenuation of the
signal due to walls and obstacles (for further information on path losses see Section 2.4).
The link gain γii between sender si and receiver ri subsumes these losses and defines how
much the signal strength decreases on the way from sender si to receiver ri. When si
sends with power Pi, then the signal is received by ri with power Pii = γiiPi, where γii
depends on the distance between si and ri, as well as on environmental conditions and
obstacles. If si transmits data to ri, then the signal of si also reaches other receivers rj
that are nearby. In this case, the signal causes interference at the affected receivers. The
amount of interference depends on the link gain between sender si and receiver rj and on
the transmission power Pi of si, i.e., Pij = γijPi. In addition to this interference due to
concurrent transmissions, every receiver ri experiences some background noise ηi. In the
following, tuples ti = (si, ri, Pi) are also called transmissions. Each transmission is defined
by a sender-receiver-pair (si, ri) and the transmission power Pi that si uses.

Feasibility of transmissions. In order for a receiver ri to be able to decode the signal
of a transmission from si, the signal strength at the receiver must be sufficiently stronger
than the sum of the interferences plus the ambient noise. This condition is expressed by
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the so-called signal-to-interference-plus-noise ratio (SINR) condition:

SINR(ri) =
Piγii

j ̸=i Pjγji + ηi
≥ βi (3.2)

The SINR condition states that, for a transmission to be feasible, the ratio of the signal
to the sum over all interferences plus background noise has to exceed some threshold
βi > 1. Analogously, a set {t1, t2, . . . , tk} of transmissions is said to be feasible if SINR
condition (3.2) is fulfilled for every receiver ri, 1 ≤ i ≤ k. The resulting interference
model, the SINR model , is physically motivated and it is assumed that it reflects reality
reasonably well [WW07]. Further information on the SINR model and its relation to other
interference models can be found in Section 2.4.1.

Power control. In the power control problem, one is given a set L of links, and link
gains γij for all pairs (si, rj) of senders si and receivers rj . If it is possible to find for all
links li ∈ L transmission powers Pi ∈ (0, Pmax] such that the resulting transmission set is
feasible, the task is to compute such powers. Otherwise, it has to be indicated that the
link set is infeasible. In order to extend the lifetime of the network, the optimization goal
is to find minimum such transmission powers. As we will see in Section 3.3, the notion
of minimum transmission powers is well-defined and independent of the metric that is
applied.

3.3 Mathematical Background

Given n active transmissions, the necessary condition for successful transmission is given
by the SINR inequalities (3.2). For every link li, one can easily rearrange the corresponding
inequality to obtain a sufficient condition for the transmission power Pi of si:

Pi ≥


j ̸=i

Pj
βiγji
γii

+ ηi
βi
γii

, 1 ≤ i ≤ n . (3.3)

This condition can directly be transferred into an LP for the minimization of the sum of
transmission powers:

min!


1≤i≤n

Pi

s. t. Pi ≥


j ̸=i

Pj
βiγji
γii

+ ηi
βi
γii

for 1 ≤ i ≤ n (3.4)

Pi ≥ 0 and Pi ≤ Pmax for 1 ≤ i ≤ n .

In this form, we also observe that minimizing the sum of powers yields the same result
as minimizing any function f(P1, . . . , Pn) that is (not necessarily strongly) monotonically
increasing in the Pi. Such functions include the maximum, the minimum, or any norm.
Explicitly, if the problem is feasible, for any such function f , the optimum solution p⋆ :=
(P ⋆

1 , . . . , P
⋆
n)

T is given by setting P ⋆
i to the minimum value of Pi in any feasible solution

p = (P1, . . . , Pn)
T . This is well-defined since the value of any Pi in any feasible solution is

bounded from below and the set of feasible solutions is closed. Assume P ⋆ is not feasible
(if it is, it is obviously optimal), i.e., assume that Equation (3.4) is violated for some i. By
construction, there is a feasible solution pi := (P i

1, . . . , P
i
n)

T with P ⋆
i := P i

i . For all j ̸= i,
we have P ⋆

j ≤ P i
j by construction and hence Equation (3.4) holds for i, in contradiction

with the assumption.
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Next, we show that for the optimal solution p⋆, Equation (3.4) is tight, since otherwise,
some P ⋆

i could be reduced without losing feasibility. That is, finding powers minimizing
any monotonically increasing function f subject to 0 ≤ Pi ≤ Pmax and

Pi =


j ̸=i

Pj
βiγji
γii

+ ηi
βi
γii

, 1 ≤ i ≤ n (3.5)

is equivalent to the problem stated above. Note that in this work we assume non-zero
noise, i.e., ηi > 0 for all links li. Writing Equation (3.5) as

A · p = b (3.6)

with

A =




1 −β1γ21
γ11

. . . −β1γn1

γ11

−β2γ12
γ22

1 . . . −β2γn2

γ22
...

...
. . .

...

−βnγ1n
γnn

−βnγ2n
γnn

. . . 1




, p =




P1

P2
...
Pn


 , b =




β1η1/γ11
β2η2/γ22

...
βnηn/γnn


 ,

we obtain the following result, which justifies dropping the optimization criterion:

Proposition. If there is any feasible solution to the power control problem, Equation (3.6)
has a unique solution, which is the optimum p⋆.

Proof. Assume that the power control problem has a feasible solution. Then p⋆ is an
optimum solution to the power control problem and also a solution to Equation (3.6).
Assume another solution p′ to Equation (3.6). Then A is not regular and A · p̄ = 0 for
p̄ = p⋆ − p′. Then A · (p⋆ − λp̄) = b for all λ ∈ R, and taking any non-zero entry P̄i and a
sufficiently small ε ∈ R+, we get a feasible solution ps := p⋆ − (ε/P̄i)p̄ with P s

i = P ⋆
i − ε

and P s
j ≥ 0 for all 1 ≤ i ≤ n, which contradicts with the optimality of p⋆. �

Hence, from now on, for a given set of links, we are only interested in finding any
solution p = (P1, . . . , Pn)

T to Equation (3.6). If all Pi are nonnegative and smaller than
or equal to Pmax, this solution is the optimum (and unique). If there is no solution or any
solution with some Pi < 0 or Pi > Pmax—which is always the case if there is more than
one solution—, we can conclude that the problem is infeasible.

Solving equation system (3.6) in a naive way would not give a real advantage over
existing approaches for power control, as practical analytical methods for solving equation
systems have almost cubic time complexity. However, we will show in the following how
the equation system can be solved stepwise (similar to a Gaussian elimination on parts
of the equation system), thus providing an efficient method for incremental activation
of transmissions, and how partial solutions of the equation system can be used to react
efficiently to changes that can occur in dynamic networks.
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3.4 Data Structure for Incremental Activation

We start with a data structure that is optimized for algorithms which activate transmis-
sions iteratively and need an efficient prediction of resulting optimum transmission powers.
The proposed data structure consists of a matrix (two-dimensional array) A and a vector
(one-dimensional array) b. The combined matrix [A|b] represents the current state of equa-
tion system (3.6). For every link li, it contains one row that represents the SINR equation
of li. Entry aij of matrix A gives the coefficient of power Pj in the current representation
of the SINR equation of link li. Rows that correspond to inactive links are irrelevant, as
the corresponding SINR constraints do not have to be fulfilled. Thus, they do not have to
be stored explicitly in memory (they are identical to the corresponding rows of equation
system (3.6)), and we will also omit them in our illustrations.

For a set S of active links, we denote the corresponding arrays by AS and bS . In
the beginning, when S = ∅, A∅ and b∅ are initialized with the initial values of A and b
in equation system (3.6). Every time a link li is activated, matrix [AS |bS ] is modified
such that one can easily extract optimum transmission powers for set S′ = S ∪ {li} from
the resulting matrix [AS′ |bS′

]. In the following sections, we will see how several useful
operations can be realized by such matrix transformations. All transformations guarantee
that the underlying solution of the equation system is preserved. In particular, it will
always hold that an optimum solution to equation system

n

j=1

aSijPj = bSi ∀li ∈ S , (3.7)

with Pj = 0 for all inactive links lj , gives optimum transmission powers for all active links.
The matrix transformations are designed such that after every operation the following
invariants hold (cf. Figure 3.1a):

aSii = 1 ∀li ∈ S (3.8)

aSij = 0 ∀(li, lj) ∈ S × S, i ̸= j . (3.9)

We will see in the following sections how this structure enables efficient computation and
updating of optimum transmission powers.

3.4.1 Extracting Optimum Powers

As a first convenient consequence of invariants (3.7), (3.8) and (3.9), one can infer the
unique optimum power assignment for a set S of active transmissions directly from the
corresponding matrix [AS |bS ]. The power Pi of an active link li is defined by the corre-
sponding equation in (3.7). According to invariants (3.8) and (3.9), aSii = 1 and aSij = 0
for all other active links lj ∈ S \ {li}. Additionally, we know that the transmission powers
of inactive links are zero. With this knowledge, equation system (3.7) can be simplified to

Pi = bSi ∀li ∈ S . (3.10)

and we get that if we guarantee that the matrix operations that result in matrix [AS |bS ]
do not alter the solution of the underlying equation system (3.6), then an optimum power
assignment for link set S is simply given by

Pi =


bSi , if li ∈ S

0, otherwise
. (3.11)

Thus, given [AS |bS ] for a set S of active links, the optimum power P ⋆
i for an active link

li ∈ S can be extracted in O(1) time.



3.4 Data Structure for Incremental Activation 29

1 a12 a16 . . . b1
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. . .
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(d)

Figure 3.1: Matrix [A|b]. (a) [AS |bS ] for S = {l1, l3, l4, l5}. (b) When link l6 is activated, invariants
(3.8) and (3.9) are possibly violated for the corresponding row and column. (c) Situation after
Steps A and Step B of the activation. (d) After Step C, all invariants are fulfilled again.

3.4.2 Activating a Transmission

Let T be the set of inactive links. We now examine how we can activate an inactive link
li ∈ T , yielding S′ = S ∪ {li} and T ′ = T \ {li}. For now, we assume that there exists
a feasible power assignment for S′. To preserve the invariants of our data structure, row
i of matrix [AS |bS ] becomes important. We start by initializing the row with the SINR
constraint of link li. At this point, all values of row i can be non-zero (cf. Fig. 3.1b). In
order to restore invariant (3.9) for row i, we have to produce aS

′
ij = 0 for all lj ∈ S. As

aSjj = 1 at this point, this can be achieved by subtracting row j multiplied by aSij from
row i for all lj ∈ S (Step A):

a⋆ik = aSik −


lj∈S
aSija

S
jk ∀lk ∈ S ∪ T b⋆i = bSi −



lj∈S
aSijb

S
j (3.12)

Next, to fulfill invariant (3.8), we divide row i by a⋆ii to get aS
′

ii = 1 (Step B, cf. Fig 3.1c):

aS
′

ik = a⋆ik/a
⋆
ii ∀lk ∈ S ∪ T bS

′
i = b⋆i /a

⋆
ii (3.13)

Finally, for every lj in S, we subtract row i multiplied by aSji from row j, resulting in

aS
′

ji = 0, thus restoring invariant (3.9) for row j (Step C, cf. Fig 3.1d):

aS
′

jk = aSjk − aSjia
S′
ik ∀lj ∈ S, lk ∈ S ∪ T bS

′
j = bSj − aSjib

S
i ∀lj ∈ S (3.14)

Note that the described operations do not alter the solution of the underlying equation
system.

The asymptotical time complexity of the whole activation update is in O(k n), with
k = |S| and n = |S ∪ T |. This is quite expensive, as we also updated columns of inactive
transmissions. As we will see in Section 3.4.3, this allows us to predict very efficiently
how the optimum powers change when a single transmission is activated. If such one-step-
ahead predictions are frequent compared to actual activations of links, as it is the case for
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some iterative scheduling algorithms, the additional effort to update columns of inactive
links pays of. However, if such predictions are not necessary, one can realize the activation
of transmissions in time O(k2), as we will show in Section 3.6.

So far we did not deal with the case that a set of links cannot be scheduled concur-
rently when trying to activate an additional link li. With the considerations above, closer
inspection of the equation system reveals that we can identify an event that indicates and
proves infeasibility:

Proposition. Let S be a feasible set of active transmissions with corresponding matrix
[AS |bS ] and li an inactive transmission. The power control problem has a feasible solution
for S′ = S ∪ {li} if and only if the matrix operations in Step A yield an entry aS

′
ii > 0 and

the operations in Step B and Step C yield only entries bS
′

j ≤ Pmax for lj ∈ S ∪ {li}.

Proof. Making an induction over the cardinality of S, we can assume that during the
computation of [AS |bS ] the case of an aSii ≤ 0 never occurred in Step A (this trivially holds
for S = ∅). Hence, during all preceding matrix operations it is an invariant that (a) entries
aii > 0, (b) entries bi > 0, (c) entries aij ≤ 0 for i ̸= j. This can be seen by induction
over the matrix operations: the invariants hold for the initial matrix [A∅|b∅], and if they
hold, Step A effectively adds positive multiples of other rows to the changed row. When
adding a multiple of row j to row i, the only possible violation of the invariants is exactly
the case that aii becomes non-positive, which, by the outer induction, did not happen so
far.

Then, in Step B, we multiply row i by a positive factor (not violating any invariant),
and in Step C, we effectively add a positive multiple of row i to the other rows, which by
construction cannot violate any invariant either.

If we perform Step A for a new link li ̸∈ S, and we get aii > 0, then again all invariants
hold during all update operations and the relevant blocks of the matrix [AS′ |bS′

] encode a
feasible (and hence optimal) solution for the links in S′ = S ∪ {li}, given by the Pi = bS

′
i ,

which is feasible if and only if all these powers additionally are below Pmax. If, on the
other hand, in Step A a matrix entry aS

′
ii ≤ 0 occurs, then there cannot be a solution to the

corresponding subproblem with all Pi ≥ 0, since we still have bS
′

i > 0, but all aS
′

ij ≤ 0. �

3.4.3 Prediction for Activation

In some applications it is necessary to efficiently predict the effects that the activation of a
single link li would have, without actually updating the full data structure. Using matrix
[AS |bS ], it is possible to compute the corresponding changes very efficiently. By looking
at [AS′ |bS′

] for the resulting set S′ = S ∪{li} of active transmissions, one can see that the
optimum power P ′

i of link li in S′ is

P ′
i = bS

′
i =

bSi −lj∈S aSijb
S
j

1−lj∈S aSija
S
ji

. (3.15)

Thus, given [AS |bS ], we can compute P ′
i in O(k) = O(|S|) time. In similar fashion, with

bS
′

i known, for every link lj ∈ S we can compute the new optimum power P ′
j in constant

time with
P ′
j = bS

′
j = bSj − aSjib

S′
i ∀lj ∈ S . (3.16)

This means, given matrix [AS |bS ] for some feasible link set S, we can compute optimum
powers for all transmissions in set S ∪ {li} in O(k) time. This efficiency can only be
achieved because of two reasons: First, invariant (3.9) allows us to produce aij = 0 for all
lj ∈ S with only O(k) operations, whereas we would need O(k2) operations if we would
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not have the diagonal matrix structure for the sub-matrix corresponding to the activated
transmissions. Second, we precomputed the aji values during the previous activation steps.
Otherwise, we would have to compute them now in O(k2) time, as described in Section 3.6.

3.4.4 Space Complexity

For a set of n links, the space complexity of the presented data structure is in O(n2).
This is asymptotically optimal, as the gain matrix in the input already has Θ(n2) entries.
For scheduling approaches where several time slots are filled in parallel, such as the one
described in Section 4.3.2, it might be necessary to use several power control data struc-
tures, one for each time slot. Let m be the number of slots, ni be the number of active
links in time slot i, and n the overall number of considered links. Then, one only needs
O(ni n) matrix entries to store the contents of the data structure of slot i, as only rows of
active transmissions have to be stored. Assuming without loss of generality that no link
has to be scheduled more than once, one gets with

m
k=1 ni ≤ n that the overall space

consumption of the m data structures is still in O(n2) and thus optimal.

3.5 Data Structure for Dynamic Power Control

In order to allow additional operations, such as the efficient deactivation of single links
or power updates when link gains between nodes change, one has to keep track of the
operations that resulted in the current state of matrix [AS |bS ]. In this section, we examine
how this can be achieved efficiently and what kinds of additional operations this enables.

To keep track of performed operations, we introduce an additional matrix C. Similar
to AS , the state of the matrix corresponding to a set S of active transmissions is denoted
by CS . Matrix C is defined such that:

aSij =

n

k=1

cSika
∅
kj , 1 ≤ i, j ≤ n bSi =

n

k=1

cSikb
∅
k , 1 ≤ i ≤ n (3.17)

Descriptively, every row i of matrix [AS |bS ] is a linear combination of the original SINR
constraints of active links, and cSij gives the corresponding factor of the SINR constraint
of link lj . In the beginning, when S = ∅, matrix C is initialized with

c∅ij =


1, if i = j

0, otherwise
. (3.18)

For CS , only rows and columns that correspond to links in S (active links) are of interest.
Accordingly, only those rows and columns have to be stored explicitly in memory.

3.5.1 Extracting and Predicting Optimum Powers

Given matrix [AS |bS ], the extraction of optimum transmission powers for active transmis-
sions and the prediction of optimum powers if an additional transmission is activated do
not alter matrix [AS |bS ]. Thus, both operations can be performed exactly as described in
Sections 3.4.1 and 3.4.3.

3.5.2 Activating a Transmission

If a transmission is activated, the necessary changes for matrix [AS |bS ] are the same as
the ones described in Section 3.4.2. Additionally, matrix C has to be updated so that the
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invariants of (3.17) remain satisfied. This can be achieved by performing the same matrix
operations to CS that are performed to [AS |bS ].

In Step A, row j of [AS |bS ] multiplied by aSij was subtracted from row i for all lj ∈ S.
This translates to:

c⋆ik = 0−


lj∈S
aSijc

S
jk ∀lk ∈ S, c⋆ii = 1 (3.19)

Next, in Step B, row i of [AS |bS ] was divided by a⋆ii, which means for C:

cS
′

ik = c⋆ik/a
⋆
ii ∀lk ∈ S ∪ {li} (3.20)

Finally, in Step C, for every lj in S, row i multiplied by aSji was subtracted from row j,
which gives:

cS
′

jk = cSjk − aSjic
S′
ik ∀lj ∈ S, lk ∈ S (3.21)

After these operations, the invariants of (3.17) are restored.

Figure 3.2 sketches the situation before and after the activation of some link l6. Prior
to the activation, the row of l6 in C contains only a single entry, c66 = 1, as the SINR
constraint of l6 is in its initial state. Similarly, c66 is also the only non-zero element in
the column of l6, as the SINR constraint of l6 has not yet been subtracted from any other
SINR constraint. After the activation of l6, the rows of all other active transmissions
have possibly been subtracted from the row of l6, and subsequently the row of l6 has been
subtracted from the rows of all other active transmissions. Note that it is not necessary
to save rows or columns that do not belong to active transmissions, e.g., the rows and
columns of l2 and l6 in Figure 3.2a.

The update of matrix C has time complexity O(k2), which means that the overall
asymptotic complexity of the activation operation is not negatively influenced by the
maintenance of C.

c11 c13 c14 c15 . . .

c31 c33 c34 c35

c41 c43 c44 c45

c51 c53 c54 c55
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. . .

. . .

. . .

. . .

. . .

1

(a)
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c′66

. . .

. . .

. . .

. . .c′61 c′63 c′64 c′65

c′16

c′36

c′46

c′56

1 . . .

(b)

Figure 3.2: Matrix CS stores the operations that resulted in the current state of matrix [AS |bS ].
(a) Situation for S = {l1, l3, l4, l5}. (b) Situation after activation of l6.

3.5.3 Deactivating a Transmission

In order to efficiently deactivate a transmission, we can use the fact that matrix CS stores
the operations that resulted in the current state of [AS |bS ]. Let us assume that we want
to deactivate some link li ∈ S, resulting in S′ = S \ {li} and T ′ = T ∪ {li}. To remove the
effects of li on the other active links lj ∈ S′, we have to perform operations such that in
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the end it holds that cS
′

ji = 0 for all lj ∈ S′. At the same time, we have to take care that
invariants (3.7), (3.8), (3.9), and (3.17) stay fulfilled.

Thanks to invariant (3.9), we know that aSij = 0 for all transmissions lj ∈ S \{li}. This
means that we can subtract row i of [AS |bS ] from the rows of other active links lj ∈ S \{li}
without affecting columns that correspond to links in S′. Only the column of li and the
columns of inactive links are affected, which is no problem concerning invariants (3.8) and
(3.9). Thus, to get cS

′
ji = 0 for all lj ∈ S′ without violating the invariants, we subtract in

[AS |bS ] and CS for each lj ∈ S′ row i multiplied by cSji/c
S
ii from row j, giving

aS
′

jk = aSjk − cSji/c
S
ii · aSik ∀lj ∈ S′, lk ∈ T ′ (3.22)

bS
′

j = bSj − cSji/c
S
ii · bSi ∀lj ∈ S′ (3.23)

cS
′

jk = cSjk − cSji/c
S
ii · cSik ∀lj ∈ S′, lk ∈ S . (3.24)

The rows of [AS′ |bS′
] and CS′

corresponding to li can then simply be reset to the initial
state. With |S| = k, we get that this update can be performed in time O(k n). Without
the information stored in CS , it would not be easily possible to deactivate an arbitrary
transmission without violating the invariants. Instead, one would have to generate [AS′ |bS′

]
by resetting the data structure to the initial state and then using |S′| activation operations
to activate the links of S′ one-by-one, resulting in time complexity of O(k2n).

3.5.4 Prediction for Deactivation

Analogous to the prediction of activation effects, one can also predict the effects that the
deactivation of a single transmission would have, without having to update the full data
structure. If some link li is deactivated, the powers for the links lj ∈ S \{li} which remain
active are given by

P ′
j = bS

′
j = bSj −

cSji

cSii
bSi ∀lj ∈ S \ {li} . (3.25)

Thus, for each link lj that remains active, the new optimum power P ′
j can be predicted

in constant time. As li is deactivated, we get P ′
i = 0. With k = |S|, the prediction of all

updated powers can thus be achieved in O(k) time. Note that this fast computation is
only possible because of invariants (3.8) and (3.9). Without these invariants, subtracting
row i of [AS |bS ] from some other row j would possibly affect entries ajk, k ∈ S′, making
additional adjustments necessary.

3.5.5 Changes in Background Noise

Next we examine the necessary operations to react to changes in background noise. One
scenario where this kind of update may be important are local scheduling approaches,
where scheduling decisions are solely based on local information. In this scenario, the
interference from transmissions that are outside of the local neighborhood will be noticed
as background noise. Accordingly, if the activity outside of the local neighborhood changes,
it may be necessary to adjust the background noise level used in the calculations. Let us
assume that the background noise level of one link li changed from ηi to η′i. This changes
the initial b∅i value by

∆b∅i =
βi
γii

(η′i − ηi) (3.26)

which gives us
P ′
j = (bSj )

′ = bSj + cSji∆b∅i ∀lj ∈ S . (3.27)
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This update can be performed in O(1) time for each link, resulting in an overall time
complexity of O(k). Again, this efficiency is only possible thanks to the information
stored in matrix C.

3.5.6 Changes in Link Gain

If some link gain γij between an active sender si and an active receiver rj changes, for
example because a node moved, this has severe effects on matrix [AS |bS ]. For i ̸= j, value
a∅ji changes. However, due to the performed matrix operations, this affects all active rows
of column i. Restoring the invariants would require O(k n) operations. For i = j, the
situation is even worse. As γii affects all columns of row i except of column i, in the end
most entries of [AS |bS ] are affected. Additionally, it is likely that many link gains change
at the same time. For example, if a node moves, its effect on all active transmissions
that are in proximity will change. Accordingly, the easiest way to deal with link gain
changes is to simply perform a deactivation operation for the corresponding node, adjust
the corresponding matrix row to the new circumstances, and reactivate the transmission.
The complexity of this operations is in O(k n), thus asymptotically this approach is not
worse than restoring the invariants directly.

3.5.7 Space Complexity

For matrix C, only the rows and columns that correspond to active transmissions have to
be saved. With k = |S| being the number of active transmissions, the space complexity is
in O(k2). Accordingly, the space complexity of the whole data structure is dominated by
matrix [A|b], whose space complexity was analyzed in Section 3.4.4.

3.6 Data Structure without Prediction

So far, we involved all columns of [A|b] in the updates, even those of inactive transmissions.
This allowed us to achieve the activation prediction in O(k) time, which is very handy
for scheduling approaches that base their decisions on the effects that the activation of a
transmission entails. If such predictions are not necessary or rare, one can improve the
complexity of other operations at the cost of the prediction operation. We now describe
how the operations can be adjusted, and which improvements are possible.

All operations that change [A|b] basically do nothing but adding/subtracting matrix
rows from each other or multiplying a single row with some constant value. Instead of
adding/subtracting/multiplying the whole row, one can also restrict the operations to the
columns that correspond to active transmissions. With this modification, the complexity
of adding/subtracting/multiplying a row is reduced from O(n) to O(k). As the powers of
inactive transmissions are set to zero, this has no direct influence on the solution of the
equation system that is given by the rows of active links.

With this modification, the time complexities of transmission activation, transmission
deactivation, and link gain updates are reduced to O(k2). However, for operations that
involve the activation of a new transmission, additional modifications are necessary. If
some transmission li is activated, the corresponding column is outdated as only columns
of active transmissions have been updated. Accordingly, for all lj ∈ S, the aji values have
to be updated. To achieve this efficiently, we can use the fact that matrix C stores how
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row j of matrix [AS |bS ] evolved from [A∅|b∅]. Using this information, we get

aSji =


lk∈S
cSjka

∅
ki ∀lj ∈ S (3.28)

Retrieving the aSji values for all active links lj has time complexityO(k2). For the activation

of links, this means that the resulting time complexity is also in O(k2). Unfortunately,
the activation prediction also needs the aSji values, so the corresponding time complexity

is dominated by the computation of the aSji values and thus in O(k2). Asymptotically, the
prediction thus is no longer more efficient than actually activating the transmission. Yet,
in practice, it still allows to save some computations.

3.7 Comparison and Applications

Table 3.1 shows a comparison of asymptotical running times for the different operations
of the presented data structures. The first variant of the data structure, which is opti-
mized for TDMA scheduling approaches that require frequent power predictions for the
activation of single links, is denoted Variant 1. The extended data structure for dynamic
scenarios that also allows additional operations, such as the deactivation of links or up-
dates after properties of the network change, is labeled Variant 2. Finally, the version
that is optimized for situations without activation prediction is denoted Variant 3. Time
complexities are given in dependence of the number k of active transmissions and the
number n of considered links.

Note that the trivial approach that computes optimal transmission powers from scratch
using a standard approach for the solution of equation system such as Gaussian elimination
requires Θ(k3) time for each operation and the iterative approach that approximates the
optimum transmission powers needs a constant number of iterations with time complexity
Θ(k2) per iteration.

Variant 1 Variant 2 Variant 3

Extracting Powers O(k) O(k) O(k)

Activating O(k · n) O(k · n) O(k2)

Deactivating - O(k · n) O(k2)

Activation Prediction O(k) O(k) O(k2)

Deactivation Prediction - O(k) O(k)

Link Gain Update - O(k · n) O(k2)

Noise Update - O(k) O(k)

Table 3.1: Comparison of asymptotical time complexities for the different data structures.

Which approach is preferable strongly depends on the considered application. If we
are simply given a set T of transmissions for which we want to compute good transmission
powers once, the existing iterative algorithm that is used in many approaches for scheduling
with power control might be best. It will return almost optimal powers in time O(|T |2),
whereas stepwise activation with the proposed data structures requires O(|T |3) time.

This situation changes as soon as optimum powers for similar sets of transmissions have
to be computed over and over, for example if a scheduling algorithm computes iteratively
the effects of transmission activations or if we have an online situation where transmissions
are activated and deactivated dynamically. Let us consider the case where a scheduling
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approach assigns transmissions one-by-one to slots. In this scenario, both the iterative
method and the third variant of the proposed power control data structure have time
complexity O(|T |3) to activate a set T of transmissions. However, the proposed data
structure computes the optimum solution directly by solving the underlying equation
system stepwise, whereas the iterative approach needs several iterations per transmission
activation to approximate the optimum solution.

Lastly, we consider the situation where a scheduling approach bases its decisions on
the effects that the activation of link entails. Examples for such algorithms are given in
Section 4.3. Here, the additional effort for updating columns of inactive links is more
than compensated by a frequent use of the activation prediction operation, which allows
to predict the transmission power changes in θ(k) time, in contrast to θ(k3) to get an
exact solution by solving the underlying equation system every time from scratch using an
approach such as Gaussian elimination, or θ(k2) for approximating optimal transmission
powers using the iterative power control approach.

3.8 Summary

We presented novel data structures for the computation of optimum transmission powers
under the assumptions of the general SINR model. All data structures work by exactly
solving the underlying equation system, which is defined by the link gains between nodes
and by the background noise, stepwise. This makes them very efficient for situations where
the final set of active transmissions is not known beforehand, but constructed iteratively
by activating transmissions one-by-one.

Depending on the considered scenario, one can choose from three variants of the data
structure: The first two variants aim at situations where predictions of power changes are
frequent, whereas the third variant is more appropriate when transmissions are activated
one after another, but without or with only few intermediate predictions of power changes.
Concerning the difference between the first two variants, the first variant is optimized for
situations where only link activation is necessary, whereas the second variant supports
additional operations at the prize of maintaining some additional information.

The presented data structures can be used as building blocks for all kinds of approaches
that require the centralized computation of optimum transmission powers. An example
is given in the next chapter, where the data structures are used in connection with the
scheduling of wireless transmissions.



Chapter 4

Energy-Efficient Scheduling

In this chapter, we consider the computation of energy-efficient time division multiple
access (TMDA) schedules for wireless transmissions. Based on the data structures for dy-
namic power control that were presented in Chapter 3, new heuristics for the problem of
scheduling with power control are proposed. The heuristics aim particularly at the compu-
tation of balanced schedules, which offer high throughput but at the same time also reduce
the necessary transmission powers. The performance of the heuristics is evaluated—based
on simulations—in comparison to several existing approaches for the TDMA scheduling
problem. According to the simulation results, the presented heuristics achieve significant
improvements in terms of both throughput and power-efficiency. Additionally, they can
also be adjusted to achieve a compromise between throughput and power consumption.
This makes them especially attractive for scenarios in which low transmission powers are
more important than mere throughput.

4.1 Introduction

Even with optimal power control (cf. Chapter 3), it is not possible to carry out arbitrary
many transmissions concurrently within a limited area. Thus, for reliable communication,
it is unavoidable to deal with interferences and transmission failures. In the Open Systems
Interconnection (OSI) model, it is the task of the medium access control layer (MAC layer)
to manage the access to the shared medium in wireless networks. Therefore, the MAC
layer has to make sure that no transmission gets lost due to interferences, either by re-
transmitting failed transmissions or by scheduling the transmissions such that interference
does not lead to failures. Several MAC protocols have been proposed to achieve this goal:

In the ALOHA [Rob75] protocol, packets are sent as soon as they are generated. Every
time a packet is received, the receiver confirms this with an acknowledgement message. If
the sender does not receive an acknowledgment, the message is retransmitted after a ran-
dom period. Using the ALOHA approach, it can easily happen that two or more nearby
senders transmit concurrently. In such situations, both the transmission that started first
and the transmissions that started later can fail. To avoid this, carrier sense multiple
access (CSMA) [TK75] can be used. A sender using CSMA first checks if other nodes
are transmitting. If the channel is clear, the transmission starts immediately. Otherwise,
the sender waits for all active transmissions to finish and then starts to transmit after
some random back-off time. However, using the CSMA protocol it still can happen that
two senders s1 and s2 both want to send to the same receiver r but are unable to hear
each other. Thus, they send at the same time, and both transmissions might fail. This
problem is known as the hidden terminal problem [TK75]. To avoid the hidden termi-
nal problem, a three-way-handshake is introduced in the CSMA with collision avoidance
(CSMA/CA) protocol. If a receiver r is willing to accept some transmission, it answers
with a clear-to-send (CTS) message. This CTS message is then received by all other
senders in transmission range of r and prevents them from communicating with r. Today,
most wireless networks use the CSMA/CA protocol. The most famous example is the
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IEEE 802.11 wireless LAN protocol family [otICS97].

Time division multiple access (TDMA) methods are a different approach to deal with
interference. In contrast to the aforementioned contention-based protocols, where a trial-
and-error approach is used, in TDMA nodes agree in advance on a schedule. This schedule
assigns nodes to time slots such that interference is minimized. Only nodes that are so
far from each other that the caused interferences are neglectable are assigned to the same
time slot. TDMA can help in several ways to conserve energy: Nodes can go to an energy-
saving sleep mode between their assigned time slots, there is less contention-introduced
overhead, nodes can transmit with less transmission power as they can estimate the oc-
curring interference, and—at least theoretically—there are no collisions which result in
energy-consuming retransmissions. Accordingly, especially if robustness and durability
are of greater importance than network performance, TDMA-based methods are an inter-
esting alternative to contention-based approaches.

In this chapter, we consider an extended version of the TDMA scheduling problem,
the problem of scheduling with power control. While in the basic scheduling problem
all nodes have fixed transmission powers and the task consists in finding an assignment
of transmissions to time slots, the problem of scheduling with power control additionally
involves the computation of adequate transmission powers. Power control adds a powerful
degree of freedom to the scheduling problem. The quality of a schedule then substantially
determines both throughput and power efficiency of the wireless communication. Obvi-
ously, distribution of transmissions to a small number of time slots is desirable to decrease
the time to complete the requests, i.e., to improve the throughput. On the other hand,
less interference between concurrent transmissions allows for lower transmission powers
and can hence reduce energy consumption. Especially in wireless sensor networks, where
energy is a limited and valuable resource, the computation of good TDMA schedules can
help to extend the lifetime of the whole network.

Since schedules that are admissible without power control are also solutions if power
control is possible, power control can be exploited to reduce the energy consumption of
such schedules in a subsequent and largely orthogonal step. However, solving both prob-
lems simultaneously helps to compute schedules with higher throughput and less energy
consumption: power control admits schedules that would otherwise violate interference
constraints, since reducing transmission powers can also reduce interference between con-
current transmissions.

Overview and contributions. Two very natural optimization criteria for good sched-
ules are the length of the schedule and the transmission power that is needed to process
all transmissions. At the first glance, those two objectives seem to contradict each other.
In shorter schedules, the number of transmissions per slot is higher. The consequence
is higher interference, which in turn means that more power is needed. And surely, the
most power-efficient schedule would be the one where every transmission has its own slot.
However, there is also some synergy. In order to compute short schedules, the interference
between concurrent transmissions has to be kept small. And smaller interference also
means less power consumption. Therefore, transmission power minimization seems to be
a good greedy strategy for both objectives.

Based on this observation, we propose new greedy heuristics for the TDMA scheduling
problem, which aim at minimizing the required transmission powers. Two different strate-
gies for the assignment of transmissions to slots are considered: In the first strategy, time
slots are filled one after another. This is the usual approach of most existing heuristics. In
the second approach, several slots are considered in parallel and transmissions are assigned
to the slot where they fit best, i.e., the slot where their activation results in the lowest
increase in transmission powers. As we will see, the second strategy allows for much more
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balanced schedules and makes it also possible to find a good compromise between schedule
length and power consumption.

To evaluate the proposed heuristics, we implemented them together with several ex-
isting approaches, including heuristics and approximation algorithms. A simulation-based
comparison of the different approaches is presented, which considers both the achieved
throughput and the necessary transmission power.

4.1.1 Related Work

Scheduling with power control has originally been studied in the context of channelized cel-
lular systems [Zan92a, Zan92b, FM93, LLS95] and code division multiple access (CDMA)
systems [UY98]. All early approaches worked by deferring transmissions until a certain
minimum signal-to-interference ratio (SIR) was achieved. To compute the achievable SIR,
either an eigenvalue decomposition of a normalized variant of the link gain matrix was
used [Zan92b] (cf. Section 3.1.1), or a distributed algorithm for power control, in which
all senders increase their transmission powers iteratively until the required SINR is met at
all receivers [Zan92a, FM93]. The decision which transmissions are deferred was usually
based on the underlying link gain matrix. Some of these approaches are described in more
detail in Section 4.4.3.

The first work dealing with the joint problem of scheduling with power control in
wireless ad hoc networks was presented by ElBatt and Ephremides in [EE02, EE04]. The
authors show that the power control problem in TDMA wireless ad hoc networks is similar
to the one in channelized cellular systems, making it possible to apply the distributed power
control algorithms of [Zan92a, FM93] to the considered problem. The presented algorithm
for scheduling with power control alternates between scheduling and power control phases
and defers transmissions until the required signal-to-interference-plus-noise ratio (SINR) is
met. Distributed algorithms for scheduling with power control with focus on multicasting,
i.e., one-to-many transmission, are proposed in [WCRP03, WCRP05]. Cruz et al. [CS03]
and Bhatia et al. [BK04] go one step further and present approaches that consider the
joint problem of routing, link scheduling and power control in multi-hop networks. The
work by Kozat et al. in [KKT04] also considers communication in multi-hop networks.
In their approach, links that cause maximum interference are removed until the required
SINR is met. An algorithm also taking energy efficiency into account is given by Lu and
Krishnamachari in [LK05]. Instead of deferring links until the required SINR is met, they
continue deferring links until only one link is left. Among all feasible link sets that are
computed by this approach, the one that offers the best relation between the number of
scheduled links and necessary transmission powers is chosen.

The work presented so far has originated mostly from the networking and commu-
nication communities. In the algorithmic community, where the focus usually is on the
theoretical analysis of algorithms, research on communication in wireless networks devel-
oped differently. Originally, most work was done on graph-based interference models such
as the protocol model [GK00] (cf. Section 2.4.2). This made it possible to apply results
from graph-theory to analyze algorithms theoretically, e.g., by reducing the considered
problems to variants of independent set, matching, or coloring problems. Examples for
such approaches are [RL93, GC01, KMPS04, MW05, vRSWZ05, SMS06, KMW08].

However, over the last years, the focus in algorithmic research shifted from graph-based
models to physically-motivated interference-based models. The most famous such model
is the physical model (SINRG model) [GK00]. The introduction of the physical model to
the algorithmic community is usually attributed to Gupta and Kumar [GK00], who proved
bounds for throughput under random node placement and optimal node placement. In
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the SINRG model, it is assumed that the received signal strength is fully determined by
the distance between sender and receiver, which allows for theoretical worst-case analyses
of algorithms.

The shift from graph-based models to variants of the SINRG model was motivated
by a series of studies, which demonstrated that graph-based interference models are too
simplistic. For example, Grönkvist and Hansson [GH01] showed that interference-based
scheduling protocols result in superior throughput in comparison to graph-based interfer-
ence models. Furthermore, Behzad and Rubin show in [BR03] that many schedules that
are computed in graph-based models are not feasible under the SINR model, as graph-
based models do not model the aggregation of interference. Moscibroda et al. examine
in [MWW06] experimentally nested pairs of transmissions, where a sender-receiver pair
is placed between another sender-receiver pair. They show that for certain arrangements,
both transmissions can be successful at the same time if the inner sender uses lower trans-
mission power than the outer one. This situation is only reproducible with the SINRG

model, showing that the theoretical limits of protocols that obey the rules of graph-based
models can be broken by protocols based on the SINRG model. An experimental compar-
ison of graph-based models and interference-based models is presented by Maheshwari et
al. in [MJD08]. They also find that the physical model reflects reality significantly better
than all considered graph-based models.

As the SINRG model is more realistic than graph-based models but it still allows
mathematical analyses, it was quickly accepted by the algorithmic community, and many
interesting results emerged during the following years. We now present a selection of
some of the results concerning scheduling in the SINRG model. For additional overviews
with focus on recent approximation results, we refer to [KV10, HM11, Kes11]. A survey
on approximation algorithms for the physical interference model has been presented by
Goussevskaia et al. in [GPW10].

The influence of power control in the SINRG model is examined theoretically in
[MW06] by Moscibroda and Wattenhofer. They show that uniform power assignments
and linear power assignments can result in unnecessary long schedules, by presenting an
algorithm that schedules a strongly connected set of links in O(log4 n) slots, whereas ev-
ery schedule with uniform or linear power assignment requires Ω(n) slots. The results
of [MW06] are improved in [MWZ06]. Additionally, the authors prove theoretical bounds
on the scheduling complexity of arbitrary topologies, i.e., the time that is required to
schedule all communication requests of a topology.

The complexity of scheduling in the geometric SINRG model was first considered
in [GOW07] by Goussevskaia et al.. The authors show that the problem is NP-hard if
uniform powers are used. In [VKW09], this result was extended to an NP-hardness proof
for scheduling with power control under the assumption that the available transmission
powers are bounded.

In [BBS06], Brar et al. study the scheduling of links with non-uniform link demands.
Under the assumption of uniform random node distribution, they prove that their algo-
rithm achieves an approximation factor for the length of the computed schedule relative
to the optimum schedule.

Performance guarantees of the first approximation algorithms for the scheduling prob-
lem that did not depend on assumptions about the node placement usually still depended
on structural properties of the networks, e.g., the ratio Λ of maximum and minimum
sender-receiver separation [GOW07, CKM+07]. The first wireless scheduling algorithm
with an approximation guarantee independent of the network topology was presented by
Goussevskaia et al. in [GHWW09]. They introduce a constant-factor approximation algo-
rithm for the problem to schedule as many transmissions as possible in one time slot. By
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applying this algorithm repeatedly, they get an O(log n) approximation for the schedul-
ing problem. This result was improved in [HW09] by Halldórsson and Wattenhofer to a
constant-factor approximation algorithm for the scheduling problem. In [HW09], they also
examine the robustness of the SINRG model with respect to variations in signal attenua-
tion or ambient noise levels. In particular, they show that constant model and parameter
changes modify the schedule length only by a constant. A model which allows such devia-
tions from the predicted signal strength is the generalized SINR model, which was proposed
by Moscibroda et al. in [MWZ06]. There also exist extensions of the SINRG model which
allow to model different link qualities depending on the SINR, e.g., in [SMR+09] a graded
SINR model is proposed which assumes that the packet reception rate increases gradually
with increasing SINR.

In [KVW08], Katz et al. deal with the problem of scheduling in the SINRG model
based solely on local information. They present lower bounds on the limitations that
one has to accept in order to design local algorithms and present greedy algorithms with
approximation guarantees for scheduling based on local information.

An approximation algorithm for scheduling with power control in the SINRG model
is presented by Halldórsson in [Hal09]. This algorithm guarantees an approximation ratio
of O(log n · log log Λ), where Λ is the ratio between the longest and shortest link length.
The first constant-factor approximation algorithm for scheduling with power control was
presented very recently by Kesselheim in [Kes11]. This algorithm works not only in fading
metrics, but also in general metrics, then giving an O(log n) approximation.

Randomized approaches to the scheduling problem with performance guarantees are
presented in [FKV09, KV10, HM11].

Besides these approximation results for scheduling in the SINRG model, there also
exist approaches for the computation of optimum or near-optimum schedules for small
inputs. In [BVY04], Björklund et al. presented a column generation method for spatial
TDMA scheduling in ad hoc networks. Further methods for the exact computation of
TDMA schedules have for example been presented in [JPPQ03, BR05] based on integer
linear programming and in [Völ08] based on constraint programming.

4.2 Problem Definition

In this chapter, we use the same basic setting and terminology as in the previous chapter
on power control (cf. Section 3.2). Again, a wireless network N is considered. We assume
that for all senders si and receivers rj the corresponding link gains γij are known. For
the feasibility of transmissions, we assume the SINR model, i.e., a transmission between a
sender-receiver-pair (si, ri) is successful if and only if the corresponding SINR condition (cf.
Equation (3.2)) is fulfilled. The SINR thresholds βi of all receivers ri are part of the input.

In the scheduling problem, one is given a set L = {l1, l2, . . . , ln} of links and transmis-
sion powers Pi to be used by the senders. Usually the case of uniform transmission powers
Pi ≡ P is considered. In the scheduling problem, a partition of L into disjoint transmission
sets has to be computed such that all sets are feasible. The single transmission sets are
called time slots or simply slots, and we refer to the number of slots in a schedule as the
schedule’s span or the length of the schedule. The goal of the scheduling problem is to
find a schedule with minimum span in order to maximize the communication throughput .

A generalization of the scheduling problem is the problem of scheduling with power
control, in which one has to compute a partition of a set L of links and proper transmis-
sion powers Pi for all senders. We assume that an upper bound Pmax on the available
transmission powers is given, i.e., 0 ≤ Pi ≤ Pmax. Again, the computation of a feasible
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schedule with minimum span is an important problem, but one can also be interested in
minimizing the energy consumption for a given span. Note that pure energy minimization
trivially leads to solutions where every time slot contains exactly one single link. In this
chapter, we will addresses both relevant problems, pure throughput maximization and the
bicriterial problem.

4.3 Heuristics for Energy-Efficient Scheduling

4.3.1 Greedy Slot-by-Slot Approaches

Most existing heuristics for the TDMA scheduling problem use a slot-by-slot approach, i.e.,
they try to fill one time slot after another as good as possible. To maximize the number
of transmissions that fit into a time slot, they usually either start with all transmissions
and defer single transmissions until the required signal-to-noise ratio is accomplished, or
they fill time slots greedily until no more transmissions fit into the slot.

For the greedy strategies that are presented in this section, we use the second approach.
Starting with empty time slots offers two benefits: First, the computation of feasible
transmission sets is much faster, as we assume that the number of transmission requests
significantly exceeds the number of transmissions that fit into a single time slots. Especially
checking whether valid transmission powers exist for a given set of transmissions can be
very time-consuming when many transmissions are considered concurrently.

Second, when filling slots, one can easily base scheduling decisions on knowledge about
transmissions that definitely will end up in the considered time slot. In the approach that
removes transmissions one after another, it could happen that a transmission is removed
only because of another transmission which later is also removed from the set of active
transmissions.

In many existing approaches, the order in which the links are added or deferred is
precomputed and depends on node degree, sender-receiver distance, entries of the link
gain matrix, or similar criteria. In contrast, the heuristics presented in this section use a
strategy that select links depending on the effects that the decision has on all resulting
optimum transmission powers.

Greedy-Least-Maximum-Power (GLMP). In the first considered strategy, we al-
ways add the link li that minimizes the maximum transmission power that some trans-
mission in the time slot requires after li is activated. This way, links are picked which
either can tolerate a lot of interference or which fit well to the links that are already
in the slot. In the following, we refer to this strategy as Greedy-Least-Maximum-Power
(GLMP). Formally, the selection strategy of GLMP can be stated as follows: Let S be the
set of transmissions that are already active and T the set of transmissions that are still
to be scheduled. P (lj) denotes the optimum transmission power of some already active
link lj ∈ S and P i

j denotes the optimum power for Pj if some link li ∈ T is additionally
activated. GLMP then chooses a link li such that

li ∈ argmin
li∈T


max

lj∈S∪{li}
P i
j


. (4.1)

Greedy-Least-Additional-Power (GLAP). The second strategy that we consider,
Greedy-Least-Additional-Power (GLAP), picks in each step the link that minimizes the
combined transmission power used by all links in the time slot after the new link is acti-
vated. While the first strategy, GLMP, avoids that a single node requires high transmission
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powers, GLAP aims at minimizing the average power of all links. Formally, in each step
GLAP activates a link li with

li ∈ argmin
li∈T


 

lj∈S∪{li}
P i
j


 . (4.2)

Complexity of link selection. Both approaches make it necessary to compute in each
step for every link li ∈ T the new optimum transmission powers of the resulting link set
S ∪ {li}, assuming that li is activated. Using the iterative power control algorithm that is
used by most existing heuristics, this takes O(k2) time for each of the O(n) possible links,
where k = |S| is the number of links that are already assigned to the considered time slot
and n = |S ∪ T | is the overall number of links. (Note that in this work we assume the
centralized computation of schedules and transmission powers). At this point, the power
control data structure that was presented in Section 3.4 comes into play. It allows us to
predict updated optimum transmission powers for S ∪ {li} in O(k) time. This makes it
possible to find the best link in O(k n) time instead of O(k2 n) time. As soon as we have
determined the optimum link li, we can add it in O(k n) time to the set S of active links.

Scheduling algorithm. In summary, the sequential slot-by-slot scheduling approach
works as follows: Start with an empty set S of active links. While the set T of links that
have to be scheduled is non-empty, find the link l ∈ T that fits best to the current set of
active links. Depending on the objective, this can either be the link that minimizes the
maximum transmission power (GLMP) or the one that minimizes the combined transmis-
sion power after the new link is activated (GLAP). If such a link exists, add it to S and
continue with the set T ′ = T \ {l}. If no more links fit to the set of active links, continue
with a new time slot. This process is repeated until T is empty. The overall running
time is in O(kmaxn

2), where kmax is the maximum number transmissions that are active
concurrently in any time slot. Note that the worst-case occurs when kmax ∈ O(n). In this
case, the running time is O(n3). This is still not bad as the size of the input, given by the
link gain matrix, is already in Θ(n2). Even if one had an optimum assignment of links to
time slots given as input, the computation of optimum powers using equation system (3.6)
and common approaches to solve equation systems such as Gaussian elimination would in
this case also require O(n3) time.

4.3.2 Balanced Approaches

As stated above, schedule length is not the only possible optimization criterion. In this
section, we deal with the problem of finding a good compromise between schedule length
and power consumption. Given a set T of links and a set S = {S1, S2, . . . , Ss} of time
slots, we want to distribute the links of T to the slots of S in a power-efficient manner.

For this purpose, we process the links in order of increasing sender-receiver-gain, so
that we deal with the most sensitive links first. For each link l ∈ T , we greedily determine
the best time slot Si ∈ S for that link. At this, the goodness of a time slot is measured by
the power consumption in the slot after activation of l. Again, we consider two strategies,
which are similar to the ones used in the greedy slot-by-slot approach of the last section.

Balanced-Least-Maximum-Power (BLMP). In the first strategy, Balanced-Least-
Maximum-Power (BLMP), the considered link l is assigned to the time slot that minimizes
the maximum transmission power that is necessary in the time slot after the link l is
activated. Let for some link lj , which is already assigned to some time slot Si, Pj denote
the transmission power that lj requires to transmit concurrently with all other links that
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are assigned to slot Si. Furthermore, let P l
j denote the transmission power that lj would

require if l were activated additionally in the same slot Si. Strategy BLMP then assigns
l to a time slot Si with

Si ∈ argmin
Si∈S


max

lj∈Si∪{l}
P l
j


. (4.3)

Balanced-Least-Additional-Power (BLAP). In the second strategy, Balanced-Least-
Additional-Power (BLAP), link l is assigned to the slot Si that minimizes the additional
power consumption that is necessary to activate l. To determine the additional power
consumption, we sum up the resulting transmission powers of l and all other links that
are assigned to the same time slot, and subtract the sum over all transmission powers in
that time slot before l was activated. Formally, BLAP selects a slot Si with

Si ∈ argmin
Si∈S


 

lj∈Si∪{l}
P l
j −



lj∈Si

Pj


 . (4.4)

In comparison to the slot-by-slot approaches of Section 4.3.1, the balanced approaches
aim at significantly more balanced schedules, since all slots are expected to have on average
a similar number of active links.

Complexity. Like GLMP and GLAP, strategies BLMP and BLAP require frequent
computations of power changes that occur when single links are activated. For this reason,
we again use the power control data structure of Section 3.4 to predict updated powers for
a slot with k transmissions in O(k) time. As described in Section 3.4.4, it is not necessary
to maintain the complete matrix [A|b] for every single slot. Instead, it is sufficient to
maintain for each time slot only those rows that correspond to SINR constraints of links
that are already assigned to that slot. Thus, for a slot with k active links, we only need
O(k n) matrix cells. This gives the whole algorithm an O(n2) space complexity, which is
optimal, as the gain matrix in the input already has space complexity Θ(n2).

Determining the number of slots. Due to the initially fixed number of slots, it may
happen that a link does not fit in any of the available slots. In this case, one or more new
slots can be added to the set of available slots.

When the desired number of time slots is not clear from the application, one can also
start with a single slot. This approach still yields more balanced schedules than the slot-
by-slot approach, since to links with high gain, which are scheduled latest, all opened slots
are available.

However, if there is a need to create more than the initial number of slots, balancing is
imperfect, since links scheduled early do not have all slots of the final schedule at choice.
Hence, when interested in a balanced schedule with low span (i.e., a schedule that needs
few time slots), it is best to find the minimum number of slots that is sufficient for this
approach, e. g., using binary search. To achieve under normal circumstances a reasonable
result with only a single restart, one can take the schedule returned for a single initial slot
and use its span to make a good guess for the number of initial time slots for a second
iteration. For example, 80% of the time slots that were necessary in the first iteration
should already by a good choice for the initial number of slots in the second iteration.
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4.4 Simulations

To examine the performance of our algorithms, we implemented them together with several
existing approaches to the TDMA scheduling problem. In this section, we describe our
simulations and present simulation results for different application scenarios.

4.4.1 Scenarios and Model Parameters

For the simulations, we use three different scenarios. The first one assumes that the sender-
receiver pairs are randomly distributed in the Euclidean plane. There is no connected
network structure. The signal strength is computed according to the log-distance path loss
model with path-loss exponent α = 3 and without noise (cf. Section 2.4.1). This scenario
resembles a sensor network with high number of nodes where only some of the nodes want
to send concurrently. This kind of scenario was for example used in [GHWW09]. An
example is shown in Figure 4.1a.

(a) (b) (c)

Figure 4.1: Simulation scenarios. (a) Random link scenario. (b) Network scenario. (c) Network in
building with wall attenuation and random effects.

The second scenario is based on a network topology. The nodes are placed randomly in
the Euclidean plane. Every pair of nodes that can communicate according to the SINRG

model (α = 3, β = 10) is connected by two links, one in each direction (cf. Figure 4.1b).
This scenario represents a network in which all nodes try to communicate frequently.
Similar models were used in [EE02, EE04]. We assume that all links have the same traffic
demands and that each link only has to be active for exactly one time slot, in which the
corresponding SINR condition is fulfilled. This prevents that single links dominate the
length of the computed schedules. Of course, all algorithms can just as well be used in
situations with arbitrary link demands.

Our last scenario aims at recreating effects that occur in buildings with walls and
obstacles. We assume that the signal strength falls of with path-loss exponent α = 2.5
as long as there is no wall. Additionally, every wall that crosses the line of sight between
a sender-receiver-pair results in normally distributed attenuation. Finally, the random
effects that are caused by reflections and self-interference are represented by adjusting the
signal strength of every link with a zero-mean, normally distributed random attenuation
with standard deviation σ = 2dB. An example is shown in Figure 4.1c. One can see that
the signal attenuation at walls leads to some kind of cluster formation within rooms, a
feature that does not show up in the other scenarios.

In all scenarios, we assume an omnipresent background noise η and minimum SINR
β = 10. The other model parameters are normalized such that the maximum transmission
radius dmax with power Pmax = 1 equals distance 100 if there are no walls and if we assume
α = 2 for the path loss exponent. For α = 3, this gives dmax = 21.54.

Note that in all scenarios we make the simplifying assumption that the exact signal
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strength is known. This means that under the given model assumptions we do not have
to care about transmission failures as long as the algorithms make sure that the required
SINR ratios are fulfilled. In the following simulations, we study how many time slots each
algorithm needs to process all links under this conditions, and how much transmission
power (i.e., the sum over all transmission powers Pi) is required.

4.4.2 Input Generation

In the first scenario, we distributed between 100 and 2500 links randomly in an area with
dimensions 400×400. First, the senders were placed randomly. Subsequently, the receivers
were placed within a radius of 0.9dmax around their senders.

In the second scenario, we placed between 25 and 250 nodes randomly in an area of
dimensions 200× 200. All pairs of nodes with distance less than 0.9dmax were connected
by two links, one in each direction. In this scenario, every node can act both as sender
and receiver and be part of many links. However, we additionally ensured that in every
time slot every node can only take part in one transmission.

In the indoor scenario, between 20 and 200 nodes were randomly distributed in an area
of size 200×200. Additionally, wall segments were placed on a regular 8×8 grid. On each
of the 112 inner grid segments, a wall was put with probability 60%. The attenuation of
each wall segment was determined by a normally distributed random value with µ = 5dB
and σ = 2dB. Finally, links were added for all nodes that were able to communicate with
each other according to the general SINR model.

4.4.3 Examined Algorithms

In order to evaluate our algorithms, we implemented several existing algorithms for the
scheduling problem. At this, we only considered algorithms that are especially designed
and optimized for the physical SINR model (including the SINRG model). This section
gives a short overview on the selected algorithms. In case an algorithm was not named by
the authors, we gave a name based on author names and year of publication.

SRA (Stepwise Removal Algorithm) and LISRA (Limited Information Stepwise Re-
moval Algorithm), which have been proposed by Zander in [Zan92b] and [Zan92a], are
among the first approaches for scheduling with power control. Both approaches work by
postponing transmissions to the next time slot until the required signal-to-interference ra-
tio (SIR) β is achieved. The optimum achievable SIR for a given set of links is computed
by an eigenvalue decomposition of the normalized link gain matrix Z (cf. Section 3.1.1).
In SRA, in each step the link with the largest row or column sum of Z is removed, since
these sums provide a bound on the maximum achievable eigenvalue. LISRA, on the other
hand, removes in each step the link that achieves the lowest SIR when all senders transmit
with equal power. We had to adjust both approaches slightly, as in their original formula-
tion they do not consider background noise. The modification consisted in using optimum
transmission powers respecting background noise instead of the eigenvalue decomposition
to check whether a set of transmissions is feasible.

An approach very similar to SRA is SMIRA (Stepwise Maximum Interference Removal
Algorithm), which has been proposed by Lee et al. in [LLS95]. The algorithm also defers
transmissions until the achievable SIR exceeds the given threshold. Instead of using row
or column sums of the normalized gain matrix, SMIRA bases its decision on the interfer-
ences that are caused under an optimum power assignment, and defers transmissions that
either receive or cause a lot of interference. We implemented SMIRA, but due to its high
computational cost in our simulation scenarios (as we consider many links at once, SMIRA
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requires many eigenvalue decompositions for large matrices), we did not include it in our
simulations. However, in a comparison based on smaller instances, SMIRA performed
about equally well as SRA.

ElBatt04 [EE04] is a very influential algorithm for scheduling with power control in
the SINR model. The algorithm alternates between scheduling and power control and
defers transmissions with minimum SINR until an admissible set of powers can be found.

Like the heuristics proposed in this thesis, DiGreedy [LK05] is an approach to find
a good compromise between schedule length and power consumption. The underlying
principle is similar to the one in ElBatt04. Links with high interference are deferred until
a feasible link set is found. Additionally, every feasible set is rated based on schedule
length and power consumption. In order to optimize the relation of throughput and
power consumption, additional links are removed one by one from the set of active links.
In the end, from all feasible link sets the one with the best rating is chosen. Using a
parameter, one can decide whether throughput or power efficiency is more important.
When optimized for throughput, DiGreedy is equivalent to ElBatt04. As DiGreedy is very
computational expensive and at most as good as ElBatt04 concerning the throughput, we
did not analyze it further.

Instead of selecting links that are deferred, LiEph05 [LE05] starts with empty slots
and adds links according to some scheduling metric that takes into account queue sizes and
the number of blocked links. As soon as no more links fit into a slot, a new slot is opened.
A similar approach is used by GreedyPhysical [BBS06]. Instead of the scheduling metric
that is used in LiEph05, an interference number is used to sort the links in the beginning.
The links are then processed according to their order and added to the first feasible time
slot. Under the assumption of a uniform random node distribution, the authors were able
to prove an approximation factor for the length of the computed schedule relative to the
optimum schedule.

ApproxLogN, which was proposed by Goussevskaia et al. in [GHWW09], was the first
algorithm which guaranteed an O(log n) approximation for the scheduling problem in the
SINRG model without further assumptions concerning the node placement. The authors
also showed that their algorithm is superior to the algorithm ApproxDiversity, which was
proposed in [GOW07].

HaWa09, which was introduced by Halldórsson and Wattenhofer in [HW09], is a sim-
plified version of ApproxLogN. HaWa09 is the first algorithm for which the authors could
prove that it achieves a constant factor approximation for the scheduling problem in the
SINRG model.

Note that GreedyPhysical, ApproxLogN, and HaWa09 are optimized for scheduling
with uniform transmission powers. We applied the algorithms according to their original
description and computed subsequently optimum powers for the generated schedules.

4.4.4 Results

Throughput. We start with an examination of the lengths of the computed TDMA
schedules, i.e., the number of required time slots. The schedule length determines the
communication throughput, and all considered algorithms are intended for computing
short schedules.

Figure 4.2 shows the distribution of schedule lengths for 500 independent runs based
on the random link scenario. In each run, 800 sender-receiver pairs have been distributed
randomly on the area with dimensions 400 × 400. We observe that the heuristics that
are proposed in this work resulted in significantly shorter schedules than the existing
approaches. In the following, we are going to interpret this result in detail.
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Let us start with the approaches SRA, LISRA, and ElBatt04, which try to fill one slot
after another as good as possible, by choosing links that are deferred. All three approaches
have the same problem: To decide which link is removed from the slot, all links that are
not yet deferred are taken into account in the decision process. Accordingly, it can happen
that a link is removed due to another link l1, which later is also removed due to yet another
link l2. As a result, some links might be removed although they actually would fit to the
final set of links that are activated.

This problem has been analyzed theoretically by Moscibroda et al. in [MOW07].
The authors showed that it is possible to create an input with n links, where all three
heuristics require Ω(n) time slots, although it is possible to schedule all links in O(log n)
slots. Thus, the schedules computed by the heuristics can be exponentially worse than the
optimal schedules.

Figure 4.2: Schedule lengths for the random link scenario. The boxes show the upper and lower
quartiles, the whiskers show the maximum and minimum schedule lengths. The bars in the middles
of the boxes show the mean values.

Algorithm LiEph05 fills slots starting with an empty slot, but it does not efficiently
consider how well a new transmission fits to the transmissions that are already assigned
to the slot. Thus, it could happen that two transmissions that are located closely are
assigned to the same time slot. In consequence, both transmissions interfere strongly with
each other and this possibly prevents other links from being activated. In the worst case,
it is possible that a pair of transmissions is activated in the beginning such that one of
the transmissions can tolerate no additional interference at all. In this case, according to
the SINR model, no other transmission can be assigned to the same time slot.

The worse result of GreedyPhysical in comparison to the other existing approaches is
explained by the fact that GreedyPhysical is the only algorithm considered so far that does
not use power control to check whether links can be activated concurrently. Apparently,
this has negative effects on the achievable throughput.

Next, let us consider heuristics GLMP, GLAP, BLMP, and BLAP. For both balanced
approaches, BLMP and BLAP, two variants are presented. The first one starts with only
one open slot, and new slots are opened as soon as necessary. In contrast, the second
variant is executed after the first variant, and right from the beginning 80% of the slots
that were necessary using the first variant are opened. Apparently, both BLMP and BLAP
could improve their results slightly by using a second run.

Overall, the balanced approaches resulted in schedules with slightly higher throughput
than the greedy approaches GLMP and GLAP, with the BLMP approach achieving the
highest throughput of all considered approaches.

Note that algorithms ApproxLogN and HaWa09 are not included in Figure 4.2, as they
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required on average significantly more time slots (292 and 694, respectively) than the other
approaches. At first, this might sound surprising, as both approaches provide provable
worst-case guarantees. However, there is an explanation. First of all, the intention in the
design of the approximation algorithms was very different from the one in the design of
the heuristics. While the heuristics are optimized for using maximum knowledge about
the actual interference from concurrent transmissions, the approximation algorithms aim
at provable guarantees under worst-case assumptions. In the considered scenario, it seems
that these worst-case assumptions are more pessimistic than necessary.

It turns out that the size of the deployment area plays an important role in the
throughput difference between the approximation algorithms and the other approaches.
In our simulations, the considered area is rather small. Accordingly, all interference must
emerge from a relatively small area. The approximation algorithms do not utilize this
knowledge, but instead they are based on the worst-case assumption that there could
also be interference from transmissions further away. In contrast, the heuristics measure
the occurring interference and recognize that there is no interference from senders further
away. The more conservative assumptions of the approximation algorithms thus cause that
less transmissions are assigned to the same slot than possible. We also performed some
simulations with significantly larger deployment areas. In our simulations, the difference
between the heuristics and the approximation algorithms diminished with increasing size
of the deployment area.

Note that part of the difference between the heuristics and the approximation al-
gorithms is also caused by the fact that the approximation algorithms are designed for
scheduling with uniform powers. However, the significantly higher throughput of Greedy-
Physical, which is also based on uniform transmission powers, shows that this alone can
only account for a small fraction of the difference.

Table 4.1 shows the mean schedule lengths for the described random link scenario.
Additionally, mean schedule lengths for the other two scenarios are presented. For the
network scenario, 175 nodes were placed on an area of dimensions 200× 200, resulting in
830 links on average. In the scenario where the network is within a building, 125 nodes
were placed, resulting in 864 links on average. Each value in Table 4.1 represents an
average over 500 independent runs.

For heuristics BLMP and BLAP, two values are given per scenario. Again, the first
value corresponds to the first run where the balanced approach starts with only one open
slot, whereas the second value corresponds to the run where the number of open slots is

Random Network Building
Algorithm (∅ 800 links) (∅ 830 links) (∅ 864 links)

SRA 41.5 162.9 237.1
LISRA 45.8 158.4 237.5
ElBatt04 46.2 162.5 247.7
LiEph05 42.3 157.9 199.9

GreedyPhy 50.7 143.0 173.5
ApproxLogN 292.1 632.1 -
HaWa09 694.0 808.5 -

GLMP 33.7 125.2 177.7
GLAP 34.4 127.4 180.6
BLMP 31.8 / 30.0 113.4 / 112.4 161.4 / 161.9
BLAP 31.7 / 31.0 115.1 / 113.3 162.7 / 163.4

Table 4.1: Average schedule lengths for the considered scenarios.
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initialized with 80% of the slots that were necessary in the first run.

In their original formulation, ApproxLogN and HaWa09 rely on the assumptions of
the SINRG model. Accordingly, they cannot guarantee successful reception in scenarios
that include random effects, such as the considered indoor scenario. For this reason, for
these algorithms no schedule lengths are given for the indoor scenario in Table 4.1.

We observe that in the network scenarios, the differences between the different ap-
proaches are significantly smaller. To some extent this is caused by the smaller deploy-
ment area, which leaves less possibilities to combine transmissions cleverly. Additionally,
the requirement that every node can only take part in one transmission at the same time
restricts the possibilities further. However, even in the network scenarios, the balanced
approaches BLMP and BLAP compute the schedules with highest throughput.

In the following, the main focus of the evaluation will be on the approaches ElBatt04,
LiEph05, and GreedyPhysical, as well as on the proposed heuristics GLMP, BLMP, and
BLAP.

Throughput in dependence of link density. Figure 4.3 shows for the scenario with
random sender-receiver pairs how the schedule length increases with increasing number
of transmissions, i.e., increasing link density. Every data point shows the mean schedule

Figure 4.3: Average schedule lengths for the random link scenario.

length for the corresponding number of transmissions, averaged over 150 random runs.
Due to the higher computational complexity of the approach, we computed the results for
ElBatt04 only for up to 1500 transmissions.

We observe that all approaches show an almost linear relation between link density
and schedule length. Like before, BLMP and BLAP compute the schedules with highest
throughput, with BLMP being marginally better.

Figure 4.4 shows the corresponding information for the two network scenarios. Every
data point corresponds to an average over 150 runs. In this setting, the relative perfor-
mance differences between the algorithms are not as distinctive as in the setting with
random sender-receiver pairs. Additionally, GreedyPhysical seems to gain performance
in comparison to ElBatt04 and LiEph05. But we observe that BLMP and BLAP again
compute the schedules with highest throughput.

Power consumption. So far, we evaluated the algorithms based solely on the lengths
of the computed schedules. Especially in wireless sensor networks, there might be situa-
tions where the available energy is limited and one is mainly interested in energy-efficient
schedules. For this reason, we take in this section a closer look at the transmission power
that is necessary to complete all transmissions. To estimate the used power, we simply
sum up over all transmission powers that are necessary for successful reception according
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(a) Network scenario (b) Network in building

Figure 4.4: Average schedule length for the two network scenarios.

to the SINR model. Note that this is a significant abstraction from reality. In real-world
scenarios, many other contributions and effects have to be considered to get a reasonable
estimate of the energy that is required for a transmission.

Figure 4.5 shows the dependence between average power consumption and link density.
For every algorithm, the average transmission power per node in throughput optimal
schedules is given as a fraction of the maximum transmission power Pmax. Moreover,
a lower bound Preq on the necessary transmission power is shown. Preq is defined as
the average power that is used when all transmission are scheduled in different slots.
This completely avoids interference, and the transmission power only has to be chosen
sufficiently high so that the received signal strength exceeds the background noise by the
required signal-to-noise ratio β.

Figure 4.5: Power consumption (random link scenario).

Apparently, there is only a slight increase in average transmission power for higher link
densities. The reason is that the average number of transmissions that fit into a single
slot is determined by the parameters of the communication model and the distribution of
the nodes. This means that using twice as many transmissions usually also means that
almost twice as many time slots are needed. Accordingly, the required mean transmission
powers do not grow arbitrarily, but they converge to some value that depends on the used
algorithm, communication model and node placement strategy.

Of the algorithms considered in Figure 4.5, GreedyPhysical results in the lowest trans-
mission powers, followed by BLAP. However, when interpreting Figure 4.5, one has to
keep in mind that schedules of different lengths are compared. It is to be expected that
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schedules with lower throughput also need less power, as it is less likely that transmissions
interfere with each other. This is also the reason why in the considered scenarios the
average powers of ApproxLogN and HaWa09 are almost equal to Preq—the algorithms
only pack links together which are very distant from each other.

A direct comparison of the average power consumptions for the schedules of all algo-
rithms is given in Table 4.2. Powers are given relative to Preq, thus highlighting the over-
head that one has to accept for packing several transmissions into the same slot. Table 4.2
is based on the same simulations that were used in Table 4.1 to compare the throughput
of the approaches. Accordingly, every value is based on 500 independent random runs.

Random Network Building
Algorithm (∅ 800 links) (∅ 830 links) (∅ 864 links)

SRA 155.1 144.5 123.3
LISRA 160.9 153.7 130.9
ElBatt04 168.1 153.7 131.8
LiEph05 164.0 174.9 155.3

GreedyPhy 142.3 158.3 147.0
ApproxLogN 100.2 100.0 -
HaWa09 100.0 100.0 -

GLMP 191.8 171.7 141.8
GLAP 185.1 166.3 137.6
BLMP 185.0 / 174.5 173.5 / 170.2 140.3 / 145.4
BLAP 156.4 / 148.2 153.4 / 146.6 126.5 / 121.6

Table 4.2: Average power consumption relative to Preq (in %).

Altogether, BLAP shows by far the best relation between throughput and necessary
transmission power. As we will see in the following section, reducing the throughput of
BLAP to the throughputs of the other algorithms results in significant power savings.

Throughput vs. power consumption. As argued in the beginning of this chapter,
to some extent throughput and power consumption are conflicting optimization criteria.
The lowest transmission powers are necessary when every transmission gets its own time
slot. On the other hand, in order to achieve high throughput, many transmissions have to
be active concurrently, which also means higher interference and thus higher transmission
powers. In this section, we analyze this tradeoff between throughput and energy consump-
tion in more detail. For this purpose, we randomly selected some of the schedules that
were computed for the scenario with 1500 random links and plotted them in Figure 4.6.
Each data point corresponds to a single schedule and shows the corresponding throughput
and energy consumption. The further left a data point is, the higher is the throughput of
the corresponding schedule, and the lower a point is, the less transmission power is used
on average. The different point colors correspond to different scheduling approaches.

Apparently, in this scenario the different point clouds are nicely separated. BLMP
and BLAP achieve the highest throughput. At the same time, BLAP is also highly
competitive with respect to the required energy. Algorithm GLMP also computes short
schedules. However, due to the slot-by-slot approach, the transmissions are not distributed
in a balanced way, thus the energy demand is much higher than for BLMP and especially
BLAP.

We already mentioned that BLMP and BLAP allow to compute energy-efficient sched-
ules by using more slots than necessary. This compromise is visualized by the curves in
Figure 4.6. For example, one can deduce that, using BLAP, one can schedule all 1500 links
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Figure 4.6: Throughput vs. power consumption for 1500 random links.

within 70 time slots using—on average—a mean transmission power of only about 1.2Preq.
The throughput-vs-energy curve of BLAP is way below all other algorithms. Thus, given
the same number of time slots that any other algorithm uses, the schedules computed by
BLAP are significantly more economical with respect to transmission powers.

Figure 4.7 shows the corresponding throughput vs. power consumption plots for the
scenarios with network topologies. Again, compared to the scenario with random sender-
receiver pairs, in these scenarios the differences between the single algorithms are not
as distinct. Especially in the indoor scenario, the random effects lead to much scatter.
However, the results of all scenarios suggest that BLAP computes the best schedules
concerning both throughput and used transmission powers.

(a) Network scenario with 200 random nodes (b) Network in building with 120 random nodes

Figure 4.7: Throughput vs. power consumption for the network scenarios.

Network lifetime. In wireless sensor networks, it is often assumed that the available
energy of sensor nodes is limited and that the lifetime of the network thus depends on the
power consumption of the single nodes. In this section, we examine how the scheduling
algorithms could affect the lifetime of the network if the power consumption was mainly
dominated by the used transmission powers. We exemplary consider the network scenario
with 200 randomly distributed nodes and examine the time that passes until 10%, 20%,
30%, 50%, and 75% of the nodes run out of battery, assuming that all links are active for
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about the same time and that all nodes have the same initial battery charge.

The lifetime improvement that could be achieved under the aforementioned simplifying
assumptions by using the BLAP heuristic is shown in Table 4.3. We always assume that
BLAP is allowed to use the same number of time slots that the corresponding other
algorithm would need. For example, when using BLAP instead of ElBatt04, using the
same number of time slots it takes 29.3% longer until 10% of the nodes run out of battery.

compared to 10% 20% 30% 50% 75%

ElBatt04 29.3 32.5 35.1 40.2 48.9
LiEph05 45.0 51.4 57.8 67.7 85.7

GreedyPhy 42.2 38.7 36.6 33.5 29.9
GLMP 26.4 31.2 35.4 43.1 56.0

Fixed Power 157.6 214.6 270.9 406.4 738.2

Table 4.3: Lifetime improvement by heuristic BLAP [in %]

The last row of Table 4.3 shows the advantage of a throughput optimized schedule using
BLAP in comparison to a schedule without power control. Note that in the considered
scenario it does not matter which scheduling algorithm is used to compute the schedule
with uniform powers, as all senders use the maximum transmission power either way.
Apparently, even in short schedules with very high throughput, a lot of energy can be
saved by using power control.

4.5 Final Remarks

Interpretation of the results. In all considered scenarios, the balanced approach that
minimizes the sum of resulting optimum transmission powers achieved the best results
when throughput and transmission powers are considered concurrently. Only the balanced
approach that minimizes the maximum resulting transmission power was able to achieve a
slightly higher throughput, at the cost of significantly higher average transmission powers.

While it is not surprising that the balanced approaches reduce the required transmis-
sion powers, one might wonder why they have such a positive influence on the throughput.
At a first glance, the usual approach of most heuristics, to minimize the occurring interfer-
ence in some way, seems more appropriate to throughput maximization. However, when
comparing both approaches, it turns out that the increase in transmission powers contains
more information than the increase in interference. Even if one transmission causes much
interference at another concurrent transmission, this is no problem as long as the sender
and receiver of the disturbed transmission are much closer than the interfering sender
and the receiver. Considering solely the caused interference makes no distinction between
those sender-receiver pairs that are close and others that are far apart. In contrast, con-
sidering the change in transmission power catches this difference. If sender and receiver
of the transmission that is disturbed are close, even high interference causes only a slight
increase in the required transmission power.

Worst-case behavior. Given the impressive performance of both BLAP and BLMP in
our simulations, one might wonder how the heuristics perform in worst-case scenarios.
Unfortunately, it is possible to construct worst-case instances for BLAP and BLMP in
which both approaches behave extremely bad when they are started with only one open
slot, i.e., for an input with n links the heuristics compute a schedule that requires n/2
slots, although it is possible to schedule all links within two slots. The basic idea of
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the construction is as follows: Starting with the link with lowest link gain, the links are
distributed in increasing order of link gain such that always two consecutive links are
located close together, but the different pairs of links are vastly separated. For each of the
link pairs, the senders and receivers are located such that both transmissions can be active
concurrently, but in this case the interference at one of the receivers is such high that the
receiver cannot tolerate any more interference. If the distances between the different link
pairs are chosen sufficiently high, it is possible to schedule n/2 links at once, one from each
link pair. The remaining n/2 links can then be scheduled in a second slot. However, BLAP
and BLMP are defined such that they schedule the single pairs together, as the links are
strictly considered in order of increasing link gain, and by construction it is possible to
schedule every link pair as long as no other transmissions are active. In consequence, both
heuristics produce a schedule that requires n/2 slots.

Note that part of the problem was that we assumed that the heuristics are started
with only one open slot. If, instead, they were initialized with 2 slots, they would also
find the optimum schedule in the described example. For each larger number k of initial
slots, they would compute a schedule with exactly k slots. This suggests that finding a
good value for the initial number of slots, e.g., by means of a binary search, might be
worthwhile.

Combination with approximation algorithms. Even though the worst-case analy-
sis revealed that the presented heuristics can perform arbitrarily worse than a constant-
factor approximation algorithm, our simulations also showed that even for approximation
algorithms—at least the ones considered in this thesis—there is still a lot of potential for
improvements when it comes to random networks. Fortunately, one can easily combine
the presented heuristics with arbitrary approximation algorithms, thus combining the ben-
efits of both worlds. First, a constant-factor approximation algorithm (e.g., [Kes11]) is
used to compute a schedule that is by at most a constant factor longer than an optimum
schedule. Subsequently, beginning with some arbitrary time slot, the transmissions of the
considered slot are redistributed to the other slots, using one of the balanced heuristics.
This is repeated until it is no longer possible to remove further slots and to redistribute
the corresponding transmissions. Such a combined approach promises to produce good
results for both random networks and worst-case networks.

Outlook. To achieve the observed improvements in throughput and power consumption,
a combination of three strategies was necessary: First, time slots had to be filled beginning
with empty slots. Second, instead of filling slots one after another, several slots had to
be filled in parallel. Third, transmissions had to be distributed according to the effects
that their activation had on the optimum transmission powers of all other links in the
same slot. We hope that these observations help in the design of improved algorithms,
optimally with worst-case guarantees.

4.6 Summary

In this chapter, we studied the problem of scheduling with power control. Our focus was
on heuristic approaches that aim at the minimization of the transmission powers that are
required to achieve a certain throughput. For this, the assignment of transmissions to
time slots was done based on the effects that the activation of the transmission had on the
resulting optimum transmission powers of all senders. To keep the computational costs of
the frequent optimum power computations low, we utilized the new power control data
structures that were presented in Chapter 3. In addition to the usual greedy slot-by-slot
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approach, which is pursued by most existing heuristics, we also considered a balanced
approach in which several time slots are filled in parallel.

To evaluate the proposed heuristics, we implemented them together with several ex-
isting approaches to the problems of scheduling with and without power control. In all
three considered scenarios, the balanced approaches achieved significantly higher through-
put than the other approaches. Additionally, especially BLAP required surprisingly low
transmission powers, taking the achieved throughput into account. Thanks to their design,
the balanced approaches can be easily used to achieve a compromise between throughput
and power consumption. By initializing them with more slots than necessary, the trans-
missions are distributed evenly, thus reducing the average transmission power that is
necessary in the single slots. This allowed BLAP in our simulations to compute schedules
that outperformed the schedules of the other approaches with respect to both throughput
and power consumption at the same time, i.e., BLAP yielded Pareto-superior schedules.



Chapter 5

Complexity of Scheduling with
Power Control in SINRG

Recently, the geometric SINRG model has become very popular in the algorithmic
community. Like abstract graph-based interference models, the SINRG model enables
a thorough theoretical worst-case analysis of algorithms that deal with communication.
However, in contrast to graph-based models, which are usually based on strongly simpli-
fying assumptions, the SINRG model is believed to reflect reality reasonably well.

In this chapter, we consider the question concerning the complexity of scheduling with
power control in the geometric SINRG model. We show that the problem is NP-hard if
the available transmission powers are bounded, independent of the actual bounds. This
also implies that scheduling with a finite number of power levels is NP-hard. Thus, the
presented proof covers most cases that are relevant in practice.

5.1 Introduction

In the general SINR model, link gains can be chosen arbitrarily. This flexibility makes it
easy to reduce NP-complete problems to the problem of scheduling in the SINR model,
thus proving the NP-hardness of the problem. In contrast, in the geometric SINRG model,
link gains are not part of the input. Instead, they are implicitly given by the node positions
and the resulting distances between nodes. Given the assumption of the SINRG model
that the signal strength is fully determined by the distance between the sender and the
receiver, it is no longer possible to construct arbitrary link gain matrices, making it harder
to find reductions of NP-complete problems to the scheduling problem.

The complexity of scheduling in the geometric SINRG model was first studied by Gous-
sevskaia et al. in [GOW07]. The authors proved that both the scheduling problem and
the one-shot scheduling problem, the problem to fit as many transmissions as possible into
the same time slot, are NP-hard if all senders use uniform transmission powers. More-
over, approximation algorithms for both problems were given. However, the complexity
of scheduling with non-uniform transmission powers stayed unresolved, and analyzing the
complexity of the joint problem of scheduling and power control was proposed as an ex-
citing research direction. In [LvRW08], the complexity of scheduling with power control
was mentioned as one of five very essential problems to understanding sensor networks.

At a first glance, it seems straightforward that scheduling with power control is NP-
hard when even the more constrained problem of scheduling with fixed powers is NP-hard.
However, it turns out that this additional degree of freedom makes it actually harder to
show the hardness of the problem. The reason is that slight changes of one transmission
power directly affect the necessary transmission powers of all nodes which are nearby in a
non-trivial way, and that these effects usually propagate through the whole network.

In this chapter, we consider a variant of scheduling with power control, where the
available transmission powers are bounded. We assume that every node can choose its
transmission power arbitrarily either from an interval [Pmin, Pmax], with Pmin > 0 and
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Pmax < ∞, or from a finite set {Pmin = P1, P2, . . . , Pj = Pmax} ⊂ [Pmin, Pmax] of power lev-
els. We show that under this assumptions, both scheduling with power control (SchedPC)
and one-shot scheduling with power control (OneShotSchedPC) are NP-hard. From a
practical point of view, the limitation on arbitrary power bounds is not restricting, as
wireless hardware usually has a maximum transmission power, and due to ambient noise
every successful transmission has to exceed some minimum transmission power.

Our proofs extend the NP-hardness proofs given in [GOW07] for scheduling with
uniform powers to the problem of scheduling with power control. The main idea is to
construct problem instances such that some senders are forced to transmit with minimum
power Pmin, while the remaining senders are forced to use the maximum power Pmax.
With such a construction, we know all transmission powers in advance and can use a
construction similar to the one used in [GOW07].

Related Work. Work related to scheduling with and without power control in the SINRG

model is presented in Section 4.1.1.

5.2 Problem Definition

In contrast to the previous two chapters, which were based on the general SINR model,
this chapter deals with scheduling in the geometric SINRG model. In consequence, the
problem definitions in this chapter are slightly different from the ones used before. The
models and notations used in this chapter are similar to those used in [GOW07] for the
NP-hardness proof for scheduling without power control. The main distinction is that we
allow arbitrary transmission powers for all senders.

In the two considered scheduling problems, we are given a set L = {l1, . . . , ln} of
links, where each link li = (si, ri) represents a communication request from a sender si
to a receiver ri. The senders and receivers are distributed in the Euclidean plane and
the distance between two nodes si, rj is denoted by dij = d(si, rj). Thus, dii denotes the
distance between a sender si and its corresponding receiver ri. Unlike [GOW07], we do
not assume that the senders use uniform transmission powers, but consider the choice of
transmission powers Pi to be part of the addressed optimization problems.

The signal power Srj (si) received at rj from sender si depends on the transmission
power Pi of si and the distance dij between nodes si and rj . The SINRG model assumes a
strong relationship between distance and received signal strength. It is assumed that the
link gain γij between nodes si and rj is fully determined by the distance dij between si and
rj , and that γij = (1/dij)

α. The path loss exponent α defines how fast the signal decays
with distance. Accordingly, in the SINRG model, the signal strength Srj (si) received by
a node rj from a sender si is given by Srj (si) = γijPi = Pi/d

α
ij . As usual, it is assumed

that α > 2.

Every sender sj that sends concurrently with si causes an interference Iri(sj) = Sri(sj)
at the receiver ri of link li. The notation Iri(sj) is used in order to highlight that we talk
about interference and not about a useful signal. It is assumed that all interferences ac-
cumulate. The total interference Iri experienced by receiver ri is given as the sum of all
interferences caused by concurrently sending nodes, i.e., Iri :=


sj ̸=si

Iri(sj). Further-
more, it is assumed that every receiver is exposed to an ambient noise with power η. In the
SINRG model, a transmission (si, ri, Pi) is successful if and only if the ratio of the received
signal strength Sri(si) and the total interference Iri plus background noise η exceeds some
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minimum signal-to-interference-plus-noise-ratio (SINR) β, i. e.,

SINR(ri) =
Sri(si)

Iri + η
=

Pi/d
α
ii

j ̸=i Pj/dαji + η
≥ β, (5.1)

with β > 1. In the following, we ignore the influence of background noise (η = 0) without
loss of generality.

Scheduling with power control. In the problem of scheduling with power control
(SchedPC), we are given a set L = {l1, . . . , ln} of transmission requests, as well as lower
and upper bounds Pmin and Pmax, Pmin ̸= Pmax, on the available transmission powers.
The goal is to assign every sender si a transmission power Pi ∈ [Pmin, Pmax], and to dis-
tribute all requests of L to time slots such that all transmissions in the same slot can be
executed simultaneously with the designated transmission powers. At this, a transmission
li = (si, ri, Pi) is successful if and only if SINR inequality (5.1) is fulfilled. A schedule
S = (S1, S2, . . . , ST ) is a partition of L, where St denotes the set of links assigned to time
slot t and T denotes the length of the schedule. Every sender is only active in the assigned
time slot. A power assignment P is a function P : {si|(si, ri) ∈ L} → [Pmin, Pmax] that
assigns to every sender si a valid transmission power Pi := P(si). A schedule S is said
to be valid with respect to a power assignment P if all transmissions are successful in
their corresponding time slots, using the designated powers. The SchedPC problem for
(L,Pmin, Pmax) is to find a power assignment P and a valid schedule S, such that S has
minimal length among all valid power assignments and schedules.

One-shot scheduling with power control. Instead of asking for a shortest schedule for
a given set of links, one can also ask for a maximum number of transmissions to be carried
out in a single time slot. If power control is included, this problem is called the one-shot
scheduling with power control (OneShotSchedPC) problem, and like in the SchedPC
problem, we are given a set L = {l1, . . . ln} of links and upper and lower bounds Pmax and
Pmin on the available transmission powers. Additionally, all links are weighted, i. e., we
are given a weight wi for every link li. Now, in the OneShotSchedPC problem, we try
to fill one single slot as good as possible. Thus, the objective is to find a subset S ⊆ L as
well as a power assignment P such that all links in S can be scheduled concurrently and
S maximizes the total weight


lj∈S wj .

5.3 Scheduling with Power Control

In the following, we extend the NP-hardness proof for scheduling without power control,
given in [GOW07], to the more general SchedPC problem. In particular, we show that
SchedPC is NP-hard for arbitrary Pmin, Pmax.

To this extent, we will give a polynomial time reduction of an NP-complete problem to
SchedPC, the Partition problem, which has been shown to be NP-complete in [Kar72]:
Given a multiset I = {i1, . . . , in} of integers, find I1, I2 ⊂ I such that I1 ∩ I2 = ∅,
I1 ∪ I2 = I, and



ij∈I1
ij =



ij∈I2
ij =

1

2



ij∈I
ij .

Let I = {i1, . . . , in} be an instance of Partition. Without loss of generality, we
assume that all elements are distinct and positive and we set

n
j=1 ij = σ. In order

to solve the Partition problem for I, we construct an instance LI = {l1, . . . , ln+2} of
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SchedPC with n + 2 links for arbitrary Pmin and Pmax. We will then prove that there
exists a schedule of length 2 if and only if the Partition instance I has a solution.

What makes it hard to find an NP-hardness proof for SchedPC is that every sender
can arbitrarily choose its transmission power from an interval of possible powers. In order
to handle this, we construct our SchedPC instance such that some of the senders have to
use transmission power Pmax, and the remaining senders have to use power Pmin. Thus,
we know all the transmission powers in advance. This construction is shown in Figure 5.1.

rn+1

sn+1

sn+2

s1 s2 snr1 r2 rn

dmin dmin dmin

S = β σ2

I = i1

I = i2

I = in

rn+2

S = β σ2

Figure 5.1: Reduction of Partition to SchedPC

For every integer ij ∈ I we introduce a link lj = (sj , rj). Every sender sj is placed at
position

pos(sj) =


Pmin

ij

1/α

, 0


, ∀1 ≤ j ≤ n .

The position is chosen such that the interference caused at the origin (0, 0) of the coordinate
system equals ij when sj sends with power Pmin. Next, we place the receivers such that
every transmission lj can be executed successfully, even if sj sends with power Pmin and
every other sender sends with power Pmax. For this, every sender-receiver-pair has to be
placed sufficiently close together. As we will show later, a distance

dmin = P
1/α
min · 1/(imax − 1)1/α − 1/i

1/α
max

1 + (Pmax
Pmin

nβ)
1
α

,

where imax is the maximum value in I, is sufficient. Thus, we place every receiver ri, 1 ≤
i ≤ n, at position

pos(ri) = pos(si) + (dmin, 0) .

Finally, we have to place ln+1 and ln+2. We positioned the senders s1, . . . , sn such that
the interference which they cause at the origin is proportional to i1, . . . , in. In order to
take advantage of this property, we place rn+1 and rn+2 at the origin.

pos(rn+1) = pos(rn+2) = (0, 0) .

Last, we place their senders sn+1 and sn+2 perpendicular to the x-axis at distance (2Pmax/βσ)
1/α,

i.e.,

pos(sn+1) =


0,


2Pmax

β · σ

1/α


,

pos(sn+2) =


0,−


2Pmax

β · σ

1/α


.
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In the following, we show that

• in every 2-slot solution of the SchedPC problem, the senders s1, . . . , sn have to use
transmission power Pmin,

• in every 2-slot solution of the SchedPC problem, the senders sn+1 and sn+2 have
to use transmission power Pmax,

• there exists a 2-slot solution to the constructed SchedPC instance if and only if the
Partition problem has a solution, and

• every 2-slot solution of the SchedPC instance implies a solution to the correspond-
ing Partition problem.

Let us start with some observations: As rn+1 and rn+2 share the same position, ln+1

and ln+2 cannot be scheduled simultaneously. Thus, every schedule needs at least two
slots. Moreover, sn+1 and sn+2 have the same distance to every receiver.

Lemma 1. Every transmission li, 1 ≤ i ≤ n, is successful with transmission power Pmin,
no matter how many other links are active concurrently and no matter which transmission
powers they use.

Proof. Obviously, the worst thing that can happen is that all senders sj , 1 ≤ j ≤ n ∧ j ̸= i,
and one of the senders sn+1, sn+2, transmit concurrently with power Pmax. Let Li = {lj |1 ≤
j ≤ n + 1, i ̸= j}. Since the positions of the senders s1, . . . , sn depend on the values of
i1, . . . , in, we can determine the minimum distance between two senders sj and sk, j ̸= k,

d(sj , sk) = |d(sj , rn+1)− d(sk, rn+1)| (5.2)

=




Pmin

ij

 1
α

−

Pmin

ik

 1
α

 (5.3)

≥ P
1
α
min


1

(imax − 1)1/α
− 1

i
1/α
max


. (5.4)

Thus, the sender sj closest to ri, i ̸= j, is located at least at distance d(sj , si)− dmin

from ri. All other senders (including sn+1 and sn+2) are farther away. Now, we can show
a lower bound for SINR(ri):

SINR(ri) =

Pi
dαii

lj∈Li

Pj

dαji

(5.5)

≥
Pmin
dαii

lj∈Li

Pmax
dαji

(5.6)

≥
Pmin
dαmin

nPmax
(d(sj ,si)−dmin)α

(5.7)

≥ 1

n

Pmin

Pmax


1 +


Pmax

Pmin
nβ

 1
α


− 1

α

(5.8)

= β (5.9)

As SINR(ri) ≥ β, it follows that transmission li is successful. �
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Lemma 2. There exists a solution to a Partition problem I if and only if there exists
a 2-slot schedule for LI . In the corresponding schedule, the senders s1, . . . , sn have to use
transmission power Pmin and the senders sn+1 and sn+2 have to use transmission power
Pmax.

Proof. We start with showing that every solution to the Partition problem implies a
valid 2-slot schedule with corresponding power assignment P. Let us assume that we
know two subsets I1, I2 ⊂ I, whose elements sum up to σ/2. For every ij ∈ I1, we assign
the link lj to the first time slot. Moreover, we assign ln+1 to the first time slot. The
remaining links are assigned to the second time slot. We set P1 = P2 = · · · = Pn = Pmin

and Pn+1 = Pn+2 = Pmax. We know from Lemma 1 that transmissions l1, . . . , ln are
always successful, so let us focus on the receivers rn+1 and rn+2. The situation is the same
for both receivers, so it suffices to examine rn+1. The signal power rn+1 receives from its
sender sn+1 is

Srn+1(sn+1) =
Pmax

2Pmax
βσ

 1
α

α =
βσ

2
.

Besides, rn+1 experiences from each sender sj the interference

Irn+1(sj) =
Pmin

Pmin
ij

 1
α

α = ij .

This results in a total interference of

Irn+1 =


ij∈I1
ij =

σ

2
.

For the SINR at rn+1 we get

SINR(rn+1) =
Srn+1(sn+1)

Irn+1

=
βσ/2

σ/2
= β.

Altogether, the constructed 2-slot schedule is valid for the given power assignment P. It
is easy to see that P is the only possible power assignment for the given schedule. If sn+1

or sn+2 would send with less power than Pmax, the corresponding SINR would fall below
β. The same thing would happen if one of the other senders would use a transmission
power above Pmin.

Finally, we have to show that we cannot find a 2-slot schedule for LI if there does not
exist a solution to the Partition problem. No solution to the Partition problem implies
that for every partition of I into two subsets, the sum of one set is greater than σ/2. This
means that, even if all senders other than sn+1 and sn+2 use power Pmin, the minimum
transmission power possible, the interference at rn+1 in slot 1 or the interference at rn+2

in slot 2 exceeds σ/2. Even if sn+1 and sn+2 send with the maximum transmission power
Pmax, the signal only arrives at the receivers with power βσ/2. Thus, the SINR of either
ln+1 or ln+2 is below β and the transmission fails. �

From the above construction and observations, we can conclude the main theorem of
this section:

Theorem 1. The SchedPC problem in the SINRG model is NP-hard.
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5.4 One-Shot Scheduling with Power Control

The one-shot scheduling problem without power control in the SINRG model was proved
to be NP-hard in [GOW07]. In the following, we extend this proof to the decision problem
of one-shot scheduling with power control (OneShotSchedPC).

Again, we give a polynomial time reduction from an NP-complete problem, in this
case from the well-known Knapsack problem [GJ79]. In the Knapsack problem, we are
given a set X = {x1, . . . , xn} of items with values pj and weights wj . The goal is to pick
the most valuable set of items that does not exceed a given overall weight W . Formally,
we aim at finding a set X ′ ⊆ X, with


xi∈X′ wi ≤ W , that maximizes


xi∈X′ pi.

We give a polynomial time reduction from Knapsack to OneShotSchedPC, similar
to the one from Partition to SchedPC. The corresponding construction is depicted in
Figure 5.2. Given an instance I of Knapsack, we use n + 1 links LI = {l1, . . . , ln+1}

rn+1

sn+1

s1 s2 snr1 r2 rn

dmin dmin dmin

weight = p2
S = βW

weight = 2
∑n

1
pj

I = w2

weight = p1

I = w1

weight = pn
I = wn

Figure 5.2: Reduction of Knapsack to OneShotSchedPC

and arbitrary but fixed minimum and maximum powers Pmin and Pmax. The first n links
l1, . . . , ln represent the items of the Knapsack problem. Link ln+1 enforces the connection
between optimal solutions of OneShotSchedPC and optimal solutions of Knapsack.

Without loss of generality, we assume that all items have distinct integer weights. This
time, we place the senders s1, . . . , sn such that the received power from si at the origin
(0, 0) equals wi if si transmits with power Pmin, i.e.,

pos(si) =


Pmin

wi

1/α

, 0


, ∀1 ≤ j ≤ n .

Again, we make sure that l1, . . . , ln can be scheduled with power Pmin, regardless of all
other links. Thus, we have to put ri close enough to si. As in Section 5.3, the sender-
receiver distance

dmin = P
1
α
min ·

1
(wmax−1)1/α

− 1

w
1/α
max

1 + (Pmax
Pmin

nβ)
1
α

,

where wmax is the largest weight in the Knapsack instance, is sufficient. This gives

pos(ri) = pos(si) + (dmin, 0) .

Thereafter, we have to place the additional link ln+1. The receiver rn+1 is placed at (0, 0),
i.e.,

pos(rn+1) = (0, 0) ,

and we place the sender sn+1 such that the received power at (0, 0) is βW if sn+1 sends
with maximum power Pmax:

pos(sn+1) =


0,


Pmax

βW

1/α

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Finally, we have to assign the links appropriate weights. The links l1, . . . , ln are assigned
the value of the corresponding item:

weight(li) = pi, ∀1 ≤ i ≤ n (5.10)

The weight of special link ln+1 is set to twice the value of all items

weight(ln+1 ) = 2 ·
n

j=1

pj ,

in order to make sure that ln+1 is part of every optimal solution of theOneShotSchedPC
instance.

Lemma 3. Let (SOPT,POPT) with schedule SOPT and power assignment POPT be an
optimum solution of OneShotSchedPC instance (LI , Pmin, Pmax). Then, (SOPT,P∗)
with P1 = P2 = · · · = Pn = Pmin and Pn+1 = Pmax is also an optimum solution of I.

Proof. If we set the transmission powers of s1, . . . , sn to Pmin then we do not lose anything,
as we defined dmin such that l1, . . . , ln are successful with power Pmin, no matter which
other senders are active simultaneously and no matter which transmission powers they
use. Moreover, we also can set Pn+1 = Pmax, as this does not influence the links l1, . . . , ln
and it only increases SINR(rn+1). So the schedule SOPT is also valid with respect to P∗.

This means that we can assume without loss of generality that every optimum schedule
has to be valid with power assignment P∗. Now we use this property to show that every
optimum schedule implies a valid solution to the Knapsack problem. In particular, we
have to show that 

lj∈SOPT

wj ≤ W.

This follows from the SINR constraint of ln+1:

SINR(rn+1) =
Srn+1(sn+1)

Irn+1

(5.11)

=

Pmax/


Pmax
βW

 1
α

α


lj∈SOPT

Pmin/


Pmin
wj

 1
α

α (5.12)

= β · W
lj∈SOPT

wj
(5.13)

So, in order for ln+1 to be transmitted successfully, which means that SINR(rn+1) ≥ β,
it must hold that


lj∈SOPT

wj ≤ W . Moreover, it is easy to verify that every solution

X ′ of the Knapsack problem with value V implies a solution (S,P∗) of the correspond-
ing OneShotSchedPC problem with value V ′ = V + 2 ·n

j=1 pj . Thus, thanks to the
choice of the weights in (5.10), every solution that maximizes the overall weight of our
OneShotSchedPC instance at the same time maximizes the value of the corresponding
solution to the underlying Knapsack problem. Altogether, we have shown that Knap-
sack is polynomial time reducible to OneShotSchedPC. �

Again, we conclude with the main theorem:

Theorem 2. The problem OneShotSchedPC in the SINRG model is NP-hard.
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5.5 Final Remarks

Power control with a finite set of power levels. In modern hardware, the transmit-
ters usually can choose their transmission power from a finite set of powers. Thus, the
complexity of scheduling in this scenario has high practical relevance. The NP-hardness
proofs given in the previous sections do not use the fact that the available transmission
powers formed a continuous interval [Pmin, Pmax], so they easily extend to any case where
the available transmission powers have a minimum Pmin > 0 and a maximum Pmax < ∞.
This includes the case of a finite set {Pmin = P1, . . . , Pk = Pmax} of available power levels.

Proving NP-completeness. To show that Scheduling and OneShotScheduling lie
in NP, one had to demonstrate that it is possible to check a solution to the considered
problem in polynomial time by comparing all signal-to-noise ratios to the given threshold
β. For computation models featuring real-valued arithmetic, this can be easily shown.
However, even in the presumably easy case of α = 3 and β ∈ N, and all si and ri placed
on an integer grid, comparing signal-to-noise ratios to the threshold β boils down to the
comparison of a sum of square roots of integers to an integer. Unfortunately, it is an open
problem whether or not this can be done in polynomial time on a Turing machine, which
is necessary to prove the above problems to be in NP [Che06]. At the time being, even the
decision problem whether a set of nodes on the integer grid have a Euclidean minimum
spanning tree with a length bounded by a given integer cannot be claimed to be in P.
Thus, proving NP-completeness for SchedPC and OneShotSchedPC also calls for this
gap in complexity theory to be closed.

5.6 Summary

We have shown that scheduling with power control and one-shot scheduling with power
control in the geometric SINRG model are NP-hard in situations where the transmission
powers are bounded. This also includes the case where the senders are allowed to choose
their power from a finite set of powers. To our knowledge, the complexity of the more gen-
eral problem with completely arbitrary transmission powers is still unresolved. However,
from a practical point of view, the variant with bounds on the transmission powers is more
relevant, as the hardware usually sets an upper limit on possible transmission powers, and
the omnipresent background noise defines a lower limit on any reasonable transmission
power.
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Chapter 6

Connectivity-based Detection of
Network Boundaries

In this chapter, we study the connectivity-based detection of holes and boundaries in
large sensor networks. A new distributed algorithm is presented, which enables a node
to decide autonomously whether it is a boundary node. For this, only connectivity infor-
mation of the node’s local 2-hop neighborhood is required. The algorithm is evaluated in
extensive simulations, and qualitative and quantitative comparisons with several previous
approaches are presented.

6.1 Introduction

There are many applications in wireless sensor networks that require a certain knowledge
of the underlying network topology, especially about outer boundaries of the network or
areas within the network with low node density. Some examples where such information is
very useful are intrusion detection, data gathering [WGM06], services like efficient routing
within the network [FGG04, RRP+03], or event detection [DLL09]. In many situations,
holes can also be considered as indicators for insufficient coverage or connectivity. Espe-
cially in dynamic settings, where nodes can run out of power, fail, or move, an automatic
detection of holes and boundaries is thus inevitable.

For this reason, several boundary recognition algorithms have been developed pre-
viously. However, most of them have certain disadvantages. Some algorithms rely on
oversimplified assumptions concerning the communication model, others require knowl-
edge about absolute or relative node positions, which is usually not available in large-scale
sensor networks. Additionally, there are algorithms that are not distributed or require
information exchange over long distances, so they do not scale well with network size.
And those algorithms that solely work locally usually produce many misclassifications.
Furthermore, many of the existing algorithms are too complex for an actual implementa-
tion on real sensor nodes. So there is still demand for simple and efficient algorithms for
boundary recognition. In this chapter, we present a novel algorithm for connectivity-based
boundary recognition.

6.1.1 Related Work

Since there is a wide range of applications that require boundary detection, there is an
equally large number of approaches to detect and classify holes. Based on the underlying
ideas, the approaches can be classified roughly into three categories.

Geometrical approaches use information about node positions, distances between nodes,
or angular relationships to detect network holes and boundaries. As a consequence, these
approaches are limited to situations where GPS devices or similar equipment are available.
Unfortunately, in many realistic scenarios this is not the case. Examples for geometrical
approaches are Fang et al. [FGG04], Martincic et al. [MS04], and Deogun et al. [DDHG05].
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Statistical approaches try to recognize boundary nodes by low node degree or similar
statistical properties. As long as nodes are smoothly distributed, this works quite well
as boundary nodes usually have less neighbors than interior nodes. However, as soon as
node degrees fluctuate noticeably, most statistical approaches produce many misclassifica-
tions. Besides, these algorithms often require very high average node degrees. Prominent
statistical approaches are the algorithms by Fekete et al. [FKKL05, FKP+04] and Bi et
al. [BTG+06].

Topological approaches concentrate on information given by the connectivity graph
and try to infer boundaries from its topological structure. The algorithm of Kröller et
al. [KFPF06] works by identifying complex combinatorial structures called flowers. Un-
der certain assumptions about the communication model, such flowers exist with high
probability if the average node degree is above 20. The algorithm requires that every
node knows its 8-hop neighborhood. Funke [Fun05] and Funke et al. [FK06] describe al-
gorithms that construct iso-contours and check whether those contours are broken. If a
node recognizes that a contour is broken, it classifies the corresponding contour end-points
as border nodes. The first algorithm requires that the whole network is flooded starting
from some seed nodes. The second algorithm works distributed, based on 6-hop neigh-
borhoods. An algorithm that works well even in networks with low average node degree
is given by Wang et al. [WGM06]. The algorithm involves several steps, some of which
require that the whole network is flooded. The centralized methods proposed by Ghrist et
al. [GM05] and De Silva et al. [DSG06] detect holes by utilizing algebraic homology theory.
In [SSG+08, SSGM10], Saukh et al. propose an algorithm that tries to identify certain
patterns in the neighborhood of a node. Under certain conditions, they can guarantee
that all nodes that are classified as inner nodes lie inside of the network. The algorithm is
distributed and every node only needs information of its h-hop neighborhood. The radius
h depends on the node density. For low density, h = 6 is used. For higher densities,
it is possible to use smaller neighborhoods. A recent distributed algorithm by Dong et
al. [DLL09] is especially aimed at locating small holes.

In previous work, there exist several classification schemes for boundary detection.
Until recently, most boundary (or hole) definitions were based on an embedding of the
connectivity graph. In [FGG04], Fang et al. determine the Delaunay triangulation of the
embedded connectivity graph and remove edges of length greater than one. They classify
faces of this reduced Delaunay graph with at least four edges as holes of the network.
Boundary nodes are those nodes that induce these faces. In [KFPF06], Kröller et al. define
boundaries according to a decomposition of the plane into faces based on the embedded
connectivity graph. A face is called a hole if the circumference of its convex hull exceeds a
minimum value. Since vertices of a face usually do not correspond to network nodes, the
authors define boundary nodes to be the nodes on a cycle in the network graph surrounding
this face. The approaches by Fekete et al. [FKKL05, FKP+04] apply a basic boundary
definition for the continuous case. Given a set of holes, a closed cycle is called a boundary
if it separates the area of a hole from the area occupied by the network. A mapping of
the continuous boundary to network nodes is not defined. Saukh et al. [SSGM10] classify
a node as boundary node if there exists any feasible embedding of the connectivity graph
in which this node is located on the boundary of the embedded graph. The boundary
definition proposed by Dong et al. [DLL09] uses topological properties. A cycle in the
connectivity graph is defined to be a topological boundary if, given an arbitrary embedding
of the graph, the embedded cycle can be continuously transformed into a boundary of the
embedded graph.
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6.1.2 Contributions

We examine a novel boundary recognition algorithm that enables a node to decide solely
based on the connectivity information of its local neighborhood whether it is a boundary
node. The basic principle of the algorithm is that every node infers from connectivity
information of its 2-hop neighborhood whether it is enclosed by a closed circle of nodes
that are exactly 2 hops away. If such a circle exists, it is used as a witness that the node
is not a boundary node. The difficulty is to decide whether such an enclosing circle exists,
using only connectivity information. We show that this can be checked very efficiently in
a distributed fashion.

The presented algorithm has several benefits over existing approaches. Unlike many
other algorithms, it is strictly local and suited for distributed application. It uses solely
connectivity information, so no information about absolute or relative node positions is
necessary. The algorithm also makes little assumptions about the communication model
and it works even well if the underlying network is not a unit disk graph. Another very
important aspect is that it is much easier to understand and implement than many existing
approaches and that it is very robust to non-uniform node deployment and variations in
node degree. Finally, the algorithm is equally well suited to detect extensive boundaries
or small network holes that can occur when single nodes fail or move.

In extensive simulations, the algorithm is compared quantitatively and qualitatively
to several other well-known algorithms. In order to enable an objective comparison, we
give an intuitive definition of network holes and classify network nodes into three separate
groups–mandatory boundary nodes, optional boundary nodes, and interior nodes. The clas-
sification is defined based on the position of a node relative to network holes and borders.
Our simulations show that the presented algorithm, despite its simplicity, outperforms the
other algorithms in most scenarios by detecting a higher percentage of boundary nodes
correctly and, at the same time, misclassifying less interior nodes.

6.2 Models and Definitions

6.2.1 Network Model

We assume that the nodes of the sensor network are distributed in the two-dimensional
Euclidean plane. The connectivity graph C(V,E), with graph nodes v ∈ V corresponding
to sensor nodes and graph edges (u, v) ∈ E; u, v ∈ V representing communication links
between sensor nodes, defines which of the sensor nodes can communicate directly with
each other. An embedding p : V → IR2 assigns two-dimensional coordinates p(v) to
each node v ∈ V . For easier reading, we normalize distances to the maximum possible
communication distance between sensor nodes.

Communication model. A communication model defines under which conditions a pair
of sensor nodes is able to communicate directly with each other. For our simulations, we
use two simple communication models which are frequently used in the context of boundary
recognition algorithms. In the unit disk graph (UDG) model, it is assumed that two sensor
nodes u, v ∈ C can communicate with each other, i.e., there exists a communication link
between them, if their distance |p(u)p(v)| is at most 1. In the d-quasi unit disk graph
(d-QUDG) model, sensor nodes u, v ∈ C can communicate reliably if |p(u)p(v)| ≤ d for a
given d ∈ [0, 1]. For |p(u)p(v)| > 1 communication is impossible. For d < |p(u)p(v)| ≤ 1,
we assume that communication is possible with a probability of 50%.

Of course, in reality things are much more complicated and both UDG model and d-
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QUDG model are extreme abstractions. However, we believe that they offer a reasonable
starting point to compare the basic properties of different boundary recognition algorithms
under well-defined conditions.

Node distribution. For the spacial distribution of network nodes, we consider two dif-
ferent strategies: Using random placement , nodes are placed uniformly at random on the
plane. This models situations where sensor nodes are arbitrarily scattered in the environ-
ment, e.g., by throwing them from a plane.

Using perturbed grid placement, the nodes are placed on a grid with grid spacing 0.5 and
subsequently translated by a uniform random offset taken from [0, 0.5] in both dimensions.
This models deployments where sensor nodes are placed in a regular pattern without the
need to closely watch the exact placement. Compared with random placement, perturbed
grid placement guarantees a more uniform node distribution with less variance in node
degree. Perturbed grid placement is frequently used to examine boundary recognition
algorithms.

6.2.2 Hole and Boundary Model

For a simulation-based comparison of boundary recognition algorithms, well-defined hole
and boundary definitions are required. In this work, we take a practical look at what to
label as holes and boundary nodes. In short, we call large areas with no communication
links crossing them holes and nodes on the borders of these areas boundary nodes.

hole

Figure 6.1: Hole definition.
The hole border is shown by
the dashed line.

Hole definition. For our hole definition, we consider the
actual embedding of the given sensor network. All faces in-
duced by the edges of the embedded connectivity graph p(C)
are hole candidates. Similarly to [KFPF06], we define holes
to be faces of p(C) with a circumference of at least hmin.
Figure 6.1 depicts a hole according to our definition. Note
that the exterior of the network is an infinite face. Thus,
it is regarded as a hole for the purpose of computation and
evaluation.

Of course, the actual embedding of the sensor network is
not known to the boundary recognition algorithms and only
used for the final evaluation of the computed classifications.

A B

Mandatory Node

Optional Node

Interior Node

Figure 6.2: Boundary node
classification.

Boundary node definition. As seen in Figure 6.2, hole
borders and node locations do not have to align. Thus, there
exists the problem which nodes to classify as boundary nodes.
For example, it can be argued whether nodes A and B should
be boundary nodes or not. One can find arguments for both
possibilities, and it might depend on the application which
definition is preferable. To alleviate this problem, we classify
nodes into three categories:

• Mandatory Boundary Nodes. Nodes that lie exactly on
the hole border are boundary nodes.

• Optional Boundary Nodes. Nodes within maximum
communication distance of a mandatory node can be
called boundary nodes, but do not have to be.

• Interior Nodes. All other nodes should not be classified
as boundary nodes.
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The resulting node classification is shown in Figure 6.2. Mandatory boundary nodes form
thin bands around holes, interrupted by structures like for nodes A and B before. Together
with the optional boundary nodes, they form a halo around each hole. Any point within
the halo is at most one maximum communication distance away from the border of the
enclosed hole. A sample classification is depicted in Figure 6.3.

Figure 6.3: Node classification. Border outline of mandatory nodes (large, blue), halo of optional
nodes (large, orange), interior nodes (small, black). Full network and magnified upper right corner
are shown.

In our opinion, this distinction of mandatory and optional boundary nodes enables a
fairer comparison between different boundary recognition techniques, as it does not lay
down how to classify the controversial optional boundary nodes. Of course, there might be
scenarios where a completely different classification is more appropriate, but the presented
classification should cover a reasonable range of interesting applications.

6.3 Enclosing Circle Boundary Recognition

We now present a distributed algorithm that enables a node to detect reliably if it is
surrounded by other nodes, using only connectivity information of its local 2-hop neigh-
borhood. The basic idea of this enclosing circle boundary recognition (EC-BR) algorithm
is as simple as efficient. The node ignores its direct neighbors and considers only nodes
that are exactly two hops away. For a node u, we denote the corresponding node set

as N
2\1
u and the induced subgraph as G

2\1
u = (N

2\1
u , E

2\1
u ). Based on the connectivity

information in G
2\1
u , the node tries to decide if it is surrounded by a closed path C . If

such a closed path exists, called enclosing circle in the following, the node can be sure
that it is not a boundary node. Otherwise this is seen as an indication that the node lies
somewhere near a hole or border (compare Figure 6.4).

6.3.1 Detection of Enclosing Circles

Knowing the actual node positions, it would be easy to decide if an enclosing circle exists.
However, we do not have this information and we also do not want to reconstruct node
positions as this would be computationally expensive. So, how can we distinguish between
enclosing circles as the one in Figure 6.4b and non-enclosing circles such as the one in
Figure 6.4c? The length of the circle is obviously no sufficient criterion as both circles
have the same length and only the first one is enclosing. Fortunately, there is a structural
difference between both types of circles: the circle in Figure 6.4b encloses the hole like a
tight rubber band and there is no way to split it into smaller circles by adding edges from

E
2\1
u , whereas it is quite easy to find edges in Figure 6.4c that could be used to split the

circle into shorter circles. More formally, the first circle has the property that for each pair
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u

(a)

u

z

C

(b)

Border

u′

(c)

Figure 6.4: Basic idea of EC-BR. (a) 2-hop neighborhood of a node u. (b) Enclosing circle C . (c)
Boundary node u′ without enclosing circle. A non-enclosing circle is highlighted.

v, w of nodes on the circle, the shortest path between them using only circle edges is also

a shortest path between them in G
2\1
u . Now we try to find a preferably long circle with

this property in G
2\1
u . If we assume a unit disk graph and node u is enclosed by nodes

of G
2\1
u , there has to exist such a circle of length at least 7. On the other hand, if u lies

somewhere near a hole then u is not fully enclosed by other nodes and it is highly unlikely
that a large circle with the aforementioned property exists.

1

2

3

4

5

6

z

C

Figure 6.5: Modified breadth-first
search for efficient circle detection.

To find a maximum circle with the given property,
we can use a modified breadth-first search. The corre-
sponding search tree for G

2\1
u of Figure 6.4b is depicted

in Figure 6.5. We start the search from a random node

z in G
2\1
u with maximum degree. In every step of the

search, we maintain shortest path lengths for all pairs of
visited nodes. When a new edge is traversed, there are
two possibilities: either a new node is visited, or a pre-
viously encountered node is revisited. In the first case,
we just set the shortest path distances between the old
nodes and the new node. This can be done efficiently, as
all distances can be directly inferred from the distances

to the parent node. In the second case, we found a new circle in G
2\1
u . The length of

the circle is the current shortest path between the endpoints v and w of the traversed
edge e = (v, w) plus one. Subsequently, we update the shortest path information of all
nodes. During the search, we keep track of the maximum length of a circle encountered so
far. Depending on the maximum length that was found during the search, the considered

node is classified as either a boundary node or an inner node. For every edge in G
2\1
u ,

the update of pairwise distances has to be performed at most once. Thus, the asymptotic

time complexity of this approach is in O(mn2), with m = |E2\1
u | and n = |N2\1

u |. Later in
this section we will show how this complexity can be reduced to O(m).

Figure 6.6 depicts histograms of maximum circle lengths in our simulations with net-
works based on unit disk graphs and quasi unit disk graphs. There are apparently two
very well defined peaks, corresponding to nodes with and without enclosing circles. Based

on this distributions, we classify all nodes u that have a maximum circle in G
2\1
u with

length of at least 6 as inner nodes and all other nodes as boundary nodes. Our simu-
lations indicate that this statistical classification into nodes with and without enclosing
circle works extremely well for both UDGs and QUDGs. Later on, we will see how good
this correlates with being in the interior or being on the boundary of the network.

It is also noteworthy that this kind of classification is extremely robust to variations
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Figure 6.6: Distribution of maximum circle lengths for UDGs and QUDGs.

in node degree: it does not matter whether N
2\1
u consists of a small number of nodes or

hundreds of nodes, the same threshold 6 on the maximum circle length can be used to
distinguish interior nodes from boundary nodes. The classification stays the same, as long
as we assume that the node density is sufficiently high so that inner nodes are actually
surrounded by other nodes. This robustness distinguishes EC-BR from other existing
statistical approaches.

Enclosing circle detection in linear time. The enclosing circle detection of EC-BR
runs distributed on every single node and each node only has to consider its 2-hop neigh-
borhood, so its runtime is virtually uncritical. Nevertheless, for the sake of completeness,

we mention how the search can be improved to run in time O(m), with m = |E2\1
u |, if the

underlying network has properties of a quasi unit disk graph. The key insight is that it
does not make any difference for the classification if a node u is enclosed by thousands of
nodes or by just enough nodes so that the circle is closed. Thus, in a first step, node u

can filter N
2\1
u to a small set of representatives. By considering each edge in E

2\1
u once,

a maximal independent set I of G
2\1
u can be computed in time O(m). Based on packing

arguments, the number of nodes in set I is bounded by a small constant for QUDGs. By
iterating again over all edges, we assign each node v to the nodes of I that v is connected

to. Next, two nodes in I are connected if there exists an edge (v, w) ∈ E
2\1
u with v and w

assigned to these two nodes. As the size of I is asymptotically independent of the network
size, this can also be achieved in time O(m). Now, node u is enclosed by nodes in I if

and only if it was enclosed in G
2\1
u . Thanks to the constant size of I, the time for the

enclosing circle detection on I is asymptotically independent of the size of G
2\1
u . However,

the classification thresholds have to be adjusted as the edges in the representative graph
no longer correspond to 1-hop distances. Altogether, the enclosing circle detection can be

done in time linear in the size of E
2\1
u .

6.3.2 Classification Result

Figure 6.7a shows an example of a classification with EC-BR. The large blue points corre-
spond to nodes that have been classified as boundary nodes, the small dots to nodes that
are believed to be inner nodes. Apparently, the nodes that are close to holes or the outer
boundary are correctly identified. However, there are two aspects of the classification of
EC-BR which attract attention.

One aspect is that the detected boundaries are rather broad, meaning that even nodes
that are only in proximity to a hole or the outer boundary are classified as boundary
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(a) Before refinement. (b) Magnification of upper left part. (c) After refinement.

Figure 6.7: Classification of EC-BR before and after refinement.

nodes. The reason for this is that in EC-BR, every node checks whether the nodes in 2-
hop distance form a closed circle. And even for nodes that are almost one hop away from
a hole or boundary such a closed circle does not exist. The result is that the recognized
border has a thickness of about one hop.

The second striking aspect are the many small circles which do not belong to the
large-scale boundaries. By looking at the magnification in Figure 6.7b, one can see that
the marked circles enclose small holes in the network. We will see in the next paragraph
how one can easily remove both kinds of artifacts, the wide borders and the circles around
tiny holes in the network. However, in many situations exactly this kind of information
might be of interest. The detection of small holes, for instance, can be used to detect node
failures or areas of insufficient coverage. And having a broader border might increase
the fault tolerance and makes it easier to distribute messages along the border as it is
guaranteed to be connected. Additionally, neighboring boundary nodes can divide their
workload and thus extend the lifetime of their batteries.

6.3.3 Refinement

Sometimes one might be only interested in large-scale boundaries and not in the small
holes that occur in areas with low node density. For these situations, EC-BR can be
extended with a very simple refinement, which removes most of the small holes and also
makes the boundaries thinner. The basic insight behind the refinement is that a node
which lies near a hole is surrounded by other nodes that are marked as boundary nodes
and by the hole itself. So the node simply has to check whether a certain percentage γ of
its neighbors are currently classified as boundary nodes. If this does not hold, the node
changes its classification from being a boundary node to being an interior node. Under the
idealized assumption that the connectivity graph is a unit disk graph, γ = 100% results in
very precise boundaries. For more realistic communication models, a threshold γ ≈ 70%
is more reliable.

The effect of this simple refinement strategy is depicted in Figure 6.7c. Apparently, all
nodes but the ones near large-scale holes are now classified as inner nodes and the border
is very precise.
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6.3.4 Detection of Large-Scale Holes

In some situations, one might only be interested in holes which exceed some given circum-
ference rmin. Although EC-BR is not directly designed for such kinds of computations,
it can be easily extended to this problem. One simple and efficient possibility is to use
EC-BR to compute a set of boundary candidates. As long as rmin is larger than the
circumference of a 1-hop neighborhood, one can expect that the wanted boundary nodes
are among the boundary candidates computed by EC-BR. In a subsequent step, one can
use the refinement step of the Multidimensional Scaling Boundary Recognition algorithm
(MDS-BR), which is described in Section 6.4.2, to identify the nodes that are near holes
with circumferences exceeding rmin. Of course, depending on rmin it might be necessary
to consider a neighborhood with larger radius than 2 hops. However, as only those nodes
have to be considered which have been identified by EC-BR as hole candidates, only infor-
mation of a small subset of all nodes in the neighborhood has to be communicated. Thus,
the presented approach can be used to recognize hole structures of arbitrary size with low
communication expense.

6.3.5 Connected Boundary Cycles

Some applications require knowledge about connected boundary cycles. In its standard
form, EC-BR does not provide this information, as boundary cycles cannot be determined
locally. To compute connected boundary cycles using EC-BR, one can proceed as follows:
First, EC-BR is used to compute a set of boundary candidates. Within the halo of
boundary node candidates, a shortest path query is started from an arbitrary node to find
an enclosing circle. As the halo consists of the one hop neighborhood of the boundary, we
are guaranteed that a connected component around the hole exists. After a closed cycle
is found, all nodes within the 1-hop neighborhood of the cycle are classified as interior
nodes. This is repeated until all nodes either belong to a connected boundary cycle or
they are classified as interior nodes. Special care has to be taken in the case that two large
holes are less than one hop distance away from each other. In this case, the two boundary
cycles have to share some nodes.

6.3.6 Misclassification of Nodes

For some approaches to the boundary recognition problem it is possible to prove theoretical
guarantees concerning the classification quality. For example, one can show that under
certain assumptions no boundary node is classified as an interior node, or that every node
that is classified as a boundary node really lies near a hole or at least near an area with
low node density. While it is definitely worthwhile to be able to give such theoretical
guarantees, we decided to focus on the design of efficient heuristics. This has several
reasons: To be able to provide theoretical guarantees, one usually has to pay some price. A
minimum requirement are rather strict assumptions concerning the communication model.
Additionally, it is often necessary to make further assumptions concerning the distribution
of the sensor nodes, or to use a less intuitive definition of network holes. This alone is
no big issue, as the algorithms still might work very well even in more realistic situations
where the assumptions are not fulfilled. However, to enable the theoretical guarantees, the
algorithms usually also have to consider a rather large neighborhood (e.g., 5 hops or even
more) and to use more expensive operations. As our goal was to design efficient algorithms
that are suited for real-world application in large-scale sensor networks, we decided to focus
on heuristics which work well using as little information and communication as possible.

In the remainder of this section, we analyze under which circumstances nodes are
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misclassified by EC-BR. For this, it is important to keep in mind that the definition of
misclassifications strongly depends on the considered application. There are situations
where areas of low node density are to be detected, and other situations where only large-
scale holes play a role. The hole definition used in this work includes rather small holes.
This is only meaningful if the average node density is sufficiently high so that there is no
excess of small holes. For low-density networks, another hole definition that aims at larger
holes might be preferable.

Misclassification of boundary nodes. EC-BR classifies nodes based on the length of
a longest cycle found by the enclosing circle detection. We now show that it is possible to
construct degenerated settings for which a non-enclosing cycle is considered to be enclosing
by EC-BR. Figure 6.8 shows the construction of such a cycle of length 7 which, assuming
a UDG communication model, is wrongly assumed to be enclosing. The nodes have to
be placed very carefully in order to prevent the emergence of communication links that
split the cycle into smaller cycles. This makes this kind of misclassification very unlikely.
Moreover, an additional node located within the depicted cycle would most likely split the
cycle and thus prevent the misclassification. Accordingly, for networks with higher node
densities this kind of misclassification becomes less likely.
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Figure 6.8: Example for a situation in which EC-BR wrongly classifies a circle to be enclosing.
(a) Three nodes A, B, and C are placed such that they are slightly more than one communication
distance away from node u, and both A and C have almost distance one to node B. (b) Two nodes
D and E are added into the dark gray areas such that they are less than distance one away from
each other, less than distance two away from u, and more than distance one away from node B.
(c) Finally, two nodes F and G are placed into the gray areas such that F is less than distance
one away from both A and D, G is less than distance one away from both C and E, and F and G
are both more than distance one away from node B. The enclosing circle detection would wrongly
classify the depicted circle of length 7 to be enclosing. (The nodes within 1-hop distance of u are
omitted in this description. They have to be arranged such that the depicted nodes A-G are within
2-hop distance of u).

Misclassification of interior nodes. The second type of misclassification, classifying
interior nodes as boundary nodes, occurs more frequently. This happens if the node density
within the 2-hop neighborhood of a node is so small that no enclosing circle exists. Thus,
misclassification of an interior node can usually be seen as an indication of insufficient
node density. But as long as the overall node density is sufficiently high, this kind of
misclassification can be easily fixed using the refinement step.
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6.4 MDS Boundary Recognition

In [SVW11b], we also presented a second distributed algorithm, Multidimensional Scaling
Boundary Recognition (MDS-BR), in which every node approximates the embedding of
its neighborhood using multidimensional scaling [Tor52] and subsequently checks some
angular conditions to decide whether it probably is surrounded by other nodes. In this
work, we use MDS-BR mainly as an additional reference approach to EC-BR. This section
gives a brief overview of the algorithm and the underlying ideas. For a more detailed
study of the algorithm, including complexity, parameter analyses and possible extensions,
we refer to [SVW11a, SVW11b].

6.4.1 Base Algorithm

To decide independently whether to classify itself as a boundary node, each node u first
gathers the connectivity information of its 2-hop neighborhood N2

u . The hop distances
in N2

u are then used to approximate true distances between nodes. Using the approxi-
mated pairwise distances, multidimensional scaling is used to compute a two-dimensional
embedding of N2

u ∪ {u}. Based on this embedding, two conditions are checked:

The first condition states that the maximum opening angle α between two subsequent
neighbors v, w of u in circular order and u must be larger than a threshold αmin. This
situation is depicted in Figure 6.9a. This primary condition models the observation that
boundary nodes exhibit a large gap in their neighborhood, while interior nodes usually
are completely surrounded by other nodes.
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Figure 6.9: MDS-BR classification conditions.

The second condition is used to filter micro-holes framed by 4 nodes with a circum-
ference of at most 4 maximum communication distances, such as the one depicted in
Figure 6.9b. It is checked whether neighbors v and w of u have common neighbors other
than u in the cone opened by (uv) and (uw) (cf. Figure 6.9c). If this condition is fulfilled,
node u is classified as interior node. Of course, if such holes are to be detected, one can
omit this additional condition.

Both conditions only require angular information, so any embedding algorithm yielding
realistic angles between nodes could be used – one is not limited to MDS. Furthermore,
as only very small graphs are embedded, it is not necessary to compensate for problems
occurring in large graphs such as drifting or foldings. In particular, every node only has to
compute the embedding of its 2-hop neighborhood, so the computational effort is rather
low compared to many other approaches.
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6.4.2 Refinement

Figure 6.10a shows a classification of the base algorithm of MDS-BR. Apparently, nodes
around holes and the outer boundary are correctly classified. However, there is also some
noise due to the detection of boundary nodes around small holes and misclassifications.

(a) Classification of the base algorithm (b) Result after refinement

Figure 6.10: Classification result of MDS-BR on a sample network. Nodes that are classified as
boundary nodes are highlighted.

To remove these artifacts, a refinement step can be used. Note that it is not possible to
simply use the refinement of EC-BR, as MDS-BR does not have the property that manda-
tory boundary nodes are surrounded by a halo of nodes that are classified as boundary
nodes. Thus, using the refinement of EC-BR would result in most mandatory boundary
nodes being reclassified to be interior nodes.

Instead, we use the observation that interior nodes that are falsely classified as bound-
ary nodes are usually isolated, with no or only few other nodes around them being classified
as boundary nodes, while real boundary nodes usually form larger structures with many
consecutive nodes classified as boundary nodes. The refinement is performed distributed
on the current set of boundary node candidates. First, each boundary node candidate u
gathers its rmin-hop neighborhood Ñ rmin

u of other nodes marked as boundary nodes, where
rmin is a free parameter. Then, u verifies if there exists a shortest path of at least rmin

hops in Ñ rmin
u ∪ {u} that contains u. If no such path exists, u classifies itself as interior

node. This approach removes boundary nodes that are not part of a larger boundary
structure, with rmin specifying the desired size of the structure. Again, only connectivity
information is required for the refinement.

The effect of this refinement can be seen in Figure 6.10b. Apparently, the noise could be
successfully removed without negatively affecting the classification of mandatory boundary
nodes.

6.5 Simulations

To assess the quality of boundary recognition algorithms, we use various simulations and
consider the misclassification rates for both boundary nodes and interior nodes. In our
opinion, it is extremely important to find a good tradeoff between misclassifications of
interior nodes and boundary nodes. It is easy to design a simple algorithm that provably
does not miss any boundary node, or never misclassifies an interior node as boundary node.
This can be achieved by simply classifying all nodes as boundary nodes, or classifying all
nodes as interior nodes. The difficulty thus lies in designing an algorithm that minimizes
both kinds of misclassifications at the same time.
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6.5.1 Simulation Setup

Network layout. We generate network layouts by iteratively placing nodes on an area of
50× 50 maximum communication distances according to one of the distribution strategies
described in Section 6.2: perturbed grid placement (pg) or random placement (rp). After
each node placement, communication links are added according to the UDG or QUDG
model. Nodes are added until an average node degree davg is reached. As we are not only
interested in the detection of the outer boundary, we additionally apply hole patterns such
as the ones in Figure 6.11 to generate areas without nodes. When a node is generated
that would lie within a hole, it simply is discarded.

Figure 6.11: Hole patterns. Node distributions with perturbed grid placement and davg = 12.

For our simulations, we use different combinations of placement strategies, communica-
tion models and node densities. If not stated otherwise, the default layout uses perturbed
grid placement, the UDG model, and average node degree davg = 12.

Considered algorithms. To analyze the performance of EC-BR, we compare it to sev-
eral other boundary recognition algorithms. For the quantitative analysis, we use the
algorithm by Fekete et al. [FKP+04] (labeled Fekete04), the centralized and distributed
algorithms by Funke [Fun05] and Funke et al. [FK06] (labeled Funke05 and Funke06, re-
spectively), and MDS Boundary Recognition (MDS-BR) [SVW11b]. In addition, we show
qualitative comparisons of these algorithms and the algorithms by Wang et al. [WGM06]
and Saukh et al. [SSGM10]. We apply our own implementation of these algorithms ac-
cording to their description in the respective publications and use the recommended pa-
rameters. For the refinement of EC-BR, we use the threshold γ = 100% if not stated
otherwise.

Unfortunately, the number of existing approaches makes it impossible to include all
of them in our comparison. Thus, we tried to select algorithms that assume similar con-
ditions and constraints as our approaches. Many of the other existing algorithms are not
directly comparable as they use additional information like absolute or relative node po-
sitions, they require connectivity information of large neighborhoods or even the whole
network, they strongly rely on certain network properties such as much higher average
node degrees, or they require expensive operations like flooding the whole network or cen-
tralized computation. Some of these approaches might even achieve better classifications
by utilizing more information or more expensive operations. However, our goal in this
work is to show that solely connectivity information of nearby nodes and a relatively low
average node degree are sufficient to achieve very good classification results.

Measurement procedure. Each simulation scenario is evaluated 100 times for each of
the hole patterns in Figure 6.11. Every face with circumference hmin ≥ 4 is considered
a hole, e.g., a square of edge length 1 with no communication link crossing it. In the
quantitative overviews, mean misclassification ratios (false negatives) in percent are stated.
For optional boundary nodes, we give the percentage of nodes classified as interior nodes.
The best results for each setup are highlighted in bold.
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As stated before, different boundary recognition approaches use slightly different defi-
nitions for holes and boundaries. Thus, it is possible that these approaches perform worse
under the definition used in our comparison. Still, we believe that a simulation-based
comparison such as the one presented here is necessary to get a feeling for the similarities
and differences between the approaches. In our opinion, the used distinction of mandatory
and optional boundary nodes helps to allow for a fairer comparison. Only nodes that are
immediately at the boundary or at least one hop away from the boundary are considered
for determining the classification quality. For the other nodes, it might depend on the
scenario whether they should be classified as boundary nodes or not, thus they are not
rated.

6.5.2 Visual Comparison

We start with a visual comparison of the classification results of the considered algorithms
in Figure 6.12. In Figure 6.12a, the set of mandatory boundary nodes for the considered
scenario is highlighted as bold points, all other nodes are plotted as thin dots. To compute
the set of mandatory boundary nodes, the given embedding of the sensor network was
used. Figure 6.12b shows the classification of EC-BR without refinement. One can clearly
see that nodes within 1-hop distance of a large-scale hole or the outer boundary are
reliably classified as boundary nodes. Additionally, there are several small circles around
small areas with low node density. The effect of the refinement of EC-BR is shown in
Figure 6.12c. After the refinement, the algorithm returns precise outlines of inner and
outer borders with almost no artifacts. While originally most optional nodes were classified
as boundary nodes, now most of them are classified as interior nodes.

Funke06 also correctly identifies the boundaries with some artifacts. Similar to EC-BR,
the apparent noise is caused by small holes which are surrounded by marked nodes. The
results of Fekete04 and Funke05 show many artifacts. Additionally, the algorithms failed
to detect some mandatory boundary nodes. The global algorithm by Wang et al. [WGM06]
produces closed boundary circles with no artifacts. Due to the nature of the algorithm,
marked boundaries are not always at the true border but shifted inwards. Because of this,
the misclassification rate for mandatory boundary nodes would be rather high. However,
depending on the scenario this might be no problem, and the algorithm works much better
in networks with very low average node degree than most other algorithms, including EC-
BR. The algorithm of Saukh et al. also produces a very interesting classification. To
some extent the result is similar to EC-BR without refinement, as nodes that are only in
proximity to a border are also classified as boundary nodes. For the given example the
algorithm produces no artifacts, like EC-BR with refinement. Unfortunately, the good
classification also has its price, as the algorithm requires an immense computational effort
and connectivity information from a larger neighborhood. The classification of MDS-BR,
which is depicted in Figure 6.12i, is similar to the one of EC-BR with refinement and
contains almost no misclassifications of mandatory boundary nodes or interior nodes.

Influence of the refinement. In order to convey a feeling for the influence of the
refinement of EC-BR, we present some additional classification results before and after
refinement in Figure 6.13. Later on, in Section 6.5.7, we will deal with the questions
whether the refinement also is suited to improve the classification results of the other
algorithms.
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(a) Mandatory Nodes (b) EC-BR (c) EC-BR Ref.

(d) Fekete 04 (e) Funke 05 (f) Funke 06

(g) Wang 06 (h) Saukh 10 (i) MDS-BR

Figure 6.12: Visual comparison of several algorithms for boundary detection.

6.5.3 Network Density

In this section we consider how the classification performance depends on the average node
degree davg of the network. A visual impression is given for the considered algorithms
in Figure 6.14. Obviously, for all algorithms the number of interior nodes classified as
boundary nodes increases rapidly for average node degrees 10 and below. The reason is
that for low node densities many small-scale holes emerge. Thus, most nodes are close to
a hole and (correctly) classified as boundary nodes. Accordingly, for such sparse networks
different algorithms and boundary definitions might be more appropriate.

For node degrees 11 and above, EC-BR classifies almost only nodes close to the large-
scale holes or the outer border as boundary nodes, while most other algorithms show a lot
of “noise”, i.e., interior nodes falsely marked as boundary nodes. Furthermore, especially
Fekete04 and Funke05 have problems detecting the boundary correctly.

In the classifications of Funke06, there are many small circles of nodes that are marked
as boundary nodes. Similar but less such structures show up in the classifications of MDS-



84 Chapter 6: Connectivity-based Detection of Network Boundaries

Figure 6.13: Examples for EC-BR on networks with average node degree 12 and different hole
patterns. The top row shows the classification before refinement, the bottom row the classification
with refinement.

BR. The circle shape is a clear sign that the corresponding classifications are no random
misclassification, but that the nodes actually surround a larger area without nodes. EC-
BR without refinement would also mark the corresponding areas, but the refinement step
reverts the corresponding classifications, as they do not cover large enough areas. The
algorithm of Saukh et al. again produces nice classifications for average node degrees of
11 and more. Again, all nodes in proximity to a large-scale hole are correctly classified as
boundary nodes.

In Table 6.1, we present a quantitative comparison of misclassifications. The numbers
state the percentage of false classifications for mandatory boundary nodes and interior
nodes. Networks with different average node degrees davg are considered. For example,
for an average node degree of 12, EC-BR without refinement classifies on average 0%
mandatory nodes as interior nodes and 7.5% interior nodes as boundary nodes. After the
refinement, the misclassifications of interior nodes are resolved, but 0.4% of the mandatory
nodes have been wrongly reclassified to be interior nodes.

Mandatory Interior
9 12 15 18 21 9 12 15 18 21

EC-BR 2.1 0.0 0.0 0.0 0.0 54.8 7.5 3.8 2.2 1.6
EC-BR Ref 4.4 0.4 0.6 1.0 1.3 7.1 0.0 0.0 0.0 0.0

Fekete04 34.7 14.2 6.7 3.4 1.9 9.8 3.5 7.2 6.9 2.5
Funke05 16.6 6.3 5.7 5.1 5.0 21.7 3.5 2.0 1.3 0.9
Funke06 39.7 13.8 16.6 18.9 20.9 13.0 3.4 1.4 0.6 0.3
MDS-BR 1.9 2.9 3.5 3.8 3.9 19.0 0.7 0.3 0.1 0.0

Table 6.1: Misclassification ratios (false negatives) in percent for average node degrees between 9
and 21.

Like in the visual comparison, it turns out that the used hole definition is inadequate
for networks with an average node degree as low as 9, as in this case many small holes
occur which fall below the used threshold for interesting holes. For more dense networks,
EC-BR without refinement classifies almost all mandatory nodes correctly, but according
to the used hole definition, a small percentage of interior nodes is falsely classified to be
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Figure 6.14: Influence of average node degree on the classification result. The numbers in the
pictures state the average node degree of the respective network.
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boundary nodes. The refinement fixes the misclassification of interior nodes very well, at
cost of some misclassifications of mandatory nodes. Overall, the simulations indicate that
for the examined hole definition EC-BR with refinement dominates the other considered
approaches.

Table 6.2 shows the percentage of optional nodes that are classified as interior nodes.
Recall that optional nodes are the nodes within one maximum communication distance of
a hole that are not mandatory boundary nodes. As mentioned before, it mainly depends
on the application whether optional nodes are rather boundary nodes or interior nodes.
Here, the results for EC-BR are particularly interesting. Before refinement, the algorithm
classifies almost all of the optional nodes as boundary nodes, while still providing a strict
separation to the interior nodes. After refinement, EC-BR classifies less optional nodes as
boundary nodes than all other approaches, while still recognizing almost all mandatory
boundary nodes correctly. So depending on the scenario, one can decide whether or not
it is advantageous to use the refinement.

Optional
9 12 15 18 21

EC-BR 0.3 0.1 0.2 0.2 0.3
EC-BR Ref 51.2 80.4 81.3 82.8 84.3

Fekete04 83.2 80.3 69.0 63.5 64.6
Funke05 61.5 59.5 55.4 52.5 50.6
Funke06 80.6 70.7 71.9 72.5 73.2
MDS-BR 68.0 79.8 79.8 79.8 80.0

Table 6.2: Percentage of optional nodes that are classified as interior nodes for average node degrees
between 9 and 21.

6.5.4 Random Placement vs. Perturbed Grid Placement

For most applications of wireless sensor networks, it is likely that the nodes are distributed
in some systematic way. Accordingly, perturbed grid placement is frequently used in work
on automatic boundary recognition. As perturbed grid placement ensures a low variance
in node degree over the entire network, one can expect that it especially benefits statistical
approaches for boundary recognition.

However, there are also scenarios where it is more appropriate to assume a truly
random placement. Random placement results in a more chaotic distribution of nodes
and in the emergence of many small holes, as can be seen in Figure 6.15. In this section,

(a) Perturbed grid placement (b) Random placement

Figure 6.15: Comparison of different placement strategies.
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we examine the influence of the placement strategy on the classification quality.
Table 6.3 compares misclassification rates for both placement strategies on networks

with an average node degree davg = 15. Apparently, when random placement is used,
EC-BR without refinement classifies many interior nodes as boundary nodes. The reason
is that in this case many small holes emerge, which fall below the threshold of the hole def-
inition but which are still large enough to be detected by EC-BR. By using the refinement,
EC-BR can fix most misclassifications and achieves the best average misclassification rate
for interior nodes. Despite the random placement, only 4.1% of the interior nodes are
classified as boundary nodes. At the same time, EC-BR with refinement produces also the
least percentage of misclassifications of mandatory boundary nodes. The performance of
the other considered algorithms decreases dramatically compared to perturbed grid place-
ment. Only MDS-BR has a similarly low misclassification rate for mandatory nodes when
random placement is used.

Mandatory Interior
random perturbed random perturbed

placement grid placement grid

EC-BR 2.0 0.0 48.7 3.8
EC-BR Ref 4.0 0.6 4.1 0.0

Fekete04 26.2 6.7 13.0 7.2
Funke05 15.5 5.7 16.1 2.0
Funke06 45.8 16.6 7.9 1.4
MDS-BR 5.2 3.5 12.2 0.3

Table 6.3: Misclassifications for random placement and perturbed grid placement.

We also analyze the influence of the network density when using random node place-
ment. Table 6.4 shows the classification results for mandatory and interior nodes when the
average node degree is varied. We see that all algorithms perform better with increasing
network density. Interestingly, Funke06 seems to miss much more mandatory nodes than
the other algorithms when random placement is used. For sparse networks, all algorithms
show an increased misclassification of interior nodes. This is partly caused by the recogni-
tion of very small holes, which are detected by the algorithms but fall below the threshold
of the hole definition. If one is interested in such holes, EC-BR without refinement can be
used, otherwise EC-BR with refinement seems to work very well.

Mandatory Interior
15 20 25 15 20 25

EC-BR 2.0 1.6 0.5 48.7 25.9 11.3
EC-BR Ref 4.0 3.1 1.9 4.1 0.5 0.1

Fekete04 26.2 13.7 7.7 13.0 13.9 12.3
Funke05 15.5 9.4 6.7 16.1 8.1 3.6
Funke06 45.8 29.1 26.4 7.9 6.1 2.8
MDS-BR 3.8 5.2 5.8 13.4 5.2 1.7

Table 6.4: Misclassifications in dependence of average node degree for random placement.
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6.5.5 Beyond Unit Disk Graphs

Unit disk graphs are frequently used for theoretical analyses and in simulations. They are
motivated by the fact that under good-natured conditions every sender has a transmission
range which is roughly fixed. However, under realistic assumptions the transmission range
also depends on environmental conditions and obstacles, as well as on unpredictable effects
such as interference and signal reflections. In this section, we evaluate the algorithms under
more realistic conditions. Uncertainties are taken into account by the use of the quasi unit
disk graph model, which incorporates the observation that short-range transmissions are
usually successful while long-range transmissions have some random behavior. A visual
comparison between a classification result of EC-BR on a network which is based on
the UDG model and a network that is based on the 0.75-QUDG model is presented in
Figure 6.16. The most apparent difference is that there are many isolated misclassifications
of interior nodes in the QUDG classification Fortunately, it is easily possible to eliminate
these artifacts using the refinement of EC-BR.

(a) UDG (b) 0.75-QUDG

Figure 6.16: Comparison of EC-BR classification results before refinement.

Another difference is that in networks based on the QUDG model it is not necessarily
true that a mandatory boundary node is completely surrounded by EC-BR boundary
candidates. Accordingly, for the EC-BR refinement a lower threshold than 100% has to
be used. For our experiments, we use γ = 70%. This threshold works well for both UDGs
and QUDGs.

Table 6.5 compares the algorithms for average node degrees 12 and 15 in simulations
on 0.75-QUDG networks. EC-BR without refinement classifies for networks with low node
density many interior nodes as boundary nodes. The reason is that many nodes that are
less than one maximum communication distance away still cannot communicate with each
other. Thus it often is not possible to find an enclosing circle. However, as the misclassified

Mandatory Interior
12 15 12 15

EC-BR 0.0 0.0 28.5 7.7
EC-BR Ref 0.0 0.0 4.9 0.3

Fekete04 16.9 6.9 8.8 8.9
Funke05 9.0 7.4 12.9 5.2
Funke06 15.6 15.4 12.4 3.7
MDS-BR 8.3 11.2 8.3 1.6

Table 6.5: Misclassifications for the 0.75-QUDG model and different average node degrees.
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nodes are usually isolated (cf. Figure 6.16), the problem can easily be avoided by using the
refinement of EC-BR. With refinement, EC-BR clearly outperforms the other approaches
in our simulations.

In Table 6.6, we go a step further and compare 0.25-QUDGs with 0.75-QUDGs. This
means that there is a very high level of uncertainty. As expected, all algorithms produce
more misclassifications. Again, EC-BR with refinement produces the best separation of
interior nodes and mandatory boundary nodes.

Mandatory Interior
0.25-QUDG 0.75-QUDG 0.25-QUDG 0.75-QUDG

EC-BR 3.0 0.0 41.5 28.5
EC-BR Ref. 12.7 0.0 1.7 4.9

Fekete04 14.6 16.9 13.6 8.8
Funke05 11.5 9.0 17.8 12.9
Funke06 24.2 15.6 2.8 12.4
MDS-BR 27.7 8.3 11.8 8.3

Table 6.6: Misclassifications for 0.25- and 0.75-QUDG models with average node degree 12.

6.5.6 Parameter Selection

Most approaches to the boundary recognition problem involve several parameters which
have to be tuned to a specific scenario in order to produce nice classifications. A very nice
feature of EC-BR in this context is that a single fixed parameter set already works well for
all scenarios. The circle length of 6 as a threshold to distinguish inner nodes from boundary
nodes is mostly independent of node degree, kind of placement, and communication model.
And for the refinement, checking whether 70% of the neighbors are marked as being on the
boundary works well in all situations. If desired, for the special case of unit disk graphs a
threshold of γ = 100% can be used to obtain a slightly thinner boundary.

6.5.7 Refinement

For EC-BR and MDS-BR, we used two different refinement heuristics to eliminate false
positives. One might ask why two different refinement routines are necessary, or how well
each of them works with the other algorithm. In short, each refinement step is adjusted
to the corresponding algorithm and performs poorly with the other one. To illustrate
this behavior, Figures 6.17 and 6.18 show the results of EC-BR and MDS-BR with both
refinement heuristics.

Using the refinement step of EC-BR in connection with MDS-BR, almost no node
is classified as boundary node. This occurs as MDS-BR already yields a thin outline of
the boundary, but the refinement of EC-BR reclassifies all boundary nodes that are not
surrounded by other boundary node candidates. To obtain better results, threshold γ can
be adjusted. In this scenario, the best results are achieved if a node has to be surrounded
by only γ = 20% of boundary nodes. This considerably improves the classification, but
there are still sections of the boundary missing while “noise” already starts to emerge.

If the refinement step of MDS-BR is applied to the classification results of EC-BR,
only few boundary nodes are switched to interior nodes. As EC-BR yields a broad halo
around each boundary node, the refinement of MDS-BR almost always finds a sufficiently
long path within this halo. Even using more aggressive parameter values for the refinement
does not improve the results by much. Some additional small structures are removed, but
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(a) (b) (c) (d)

Figure 6.17: Impact of using different refinement heuristics on the classification results of MDS-BR.
(a) No Refinement. (b) MDS-BR Refinement. (c) EC-BR Refinement (γ = 100%). (d) EC-BR
Refinement (γ = 20%).

(a) (b) (c) (d)

Figure 6.18: Impact of using different refinement heuristics on the classification results of EC-BR.
(a) No Refinement. (b) EC-BR Refinement. (c) MDS-BR Refinement (rmin = 3). (d) MDS-BR
Refinement (rmin = 10).

(a) (b) (c) (d)

Figure 6.19: Impact of MDS-BR refinement on different algorithms. (a) MDS-BR. (b) Fekete04.
(c) Funke05. (d) Funke06.
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the boundary remains a broad halo.
One might wonder whether the refinements of EC-BR and MDS-BR could be used to

improve the other examined algorithms. The only approach that could possibly benefit
from the refinement of EC-BR is the algorithm of Saukh et al.. However, this algorithms
is already very computational expensive and it produces very little noise, so the main
advantage would be that the computed boundary is thinner. Similar to MDS-BR, the
other algorithms all produce boundaries which are already too thin for the refinement of
EC-BR.

We now analyze the performance when MDS-BR refinement is applied to other algo-
rithms. As seen in Figure 6.19, the refinement removes some of the initial noise, but the
results remain worse than MDS-BR. In case of Kroeller04, the noise is almost completely
gone, but so are large parts of the boundary. The results of Funke05 retain some of the
original noise but still show a broad boundary structure at the border. Similar to EC-BR
with MDS-BR refinement, Funke06 retains boundaries around micro-holes, but boundaries
around small structures are completely lost.

Overall, it is evident that the refinements of EC-BR and MDS-BR are tailored for their
respective base algorithms. In conjunction with them they yield significant improvements,
but if applied to the results of a different algorithm, the final classification turns out to be
quite poor. This also refutes the assumption that the presented algorithms only perform
so well due to the refinement step, and others could close the gap easily by using the same
refinement.

6.6 Summary

In this chapter, we studied the Enclosing Circle Boundary Recognition (EC-BR) algo-
rithm, a distributed algorithm for location-free boundary recognition in wireless sensor
networks. With EC-BR, every node only needs connectivity information of its local 2-hop
neighborhood to decide with high probability whether it is near a hole or boundary. Its
low communication overhead makes EC-BR an excellent choice for boundary recognition
in large-scale sensor networks. Additionally, EC-BR should be well suited for scenarios
which include mobility or dynamic changes of the network topology.

We showed in extensive simulations that EC-BR is very robust to different network
densities, communication models, and node distributions. Its low computational complex-
ity and communication overhead make it very attractive for real-world implementation
even on weak sensor nodes.
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Chapter 7

RSS-based Localization:
Preliminaries

Localization based on received signal strengths is very popular in the context of wireless
sensor networks. On the hardware side, all that is necessary are wireless receivers that
provide some kind of received signal strength indication (RSSI). This kind of hardware
cannot only be produced very small and cheap, but it is also already available on most
devices that communicate wirelessly. Thus, RSS-based localization can be performed
without adding further hardware, which would make the sensor nodes larger or more
expensive. Unfortunately, RSS-based localization also has some shortcomings. Probably
the biggest issue is that received signal strengths are influenced by a multitude of factors,
many of which are rather unpredictable. In particular, the dependence between distance
and received signal strength is strongly influenced by the used hardware, the frequency of
the radio signal and the distribution and constitution of walls and other obstacles. As a
result, it is not easily possible to directly compare localization results that were produced
with different kinds of hardware or in different settings.

In this chapter, we describe the experiments and simulations that we use in this work to
compare different localization approaches. We start with a short description of the experi-
ments. Subsequently, we analyze the collected experimental data to study the dependence
between distances and received signal strengths in the considered setting, focusing also
on the attenuation effects at walls. The observations of this analysis are finally used to
design a meaningful simulation setup.

7.1 Experimental Setup

7.1.1 Used Hardware

For the real-world experiments, a network of 61 self-built sensor nodes was used. The
sensor nodes have been built in another project of the DFG Research Training Group 1194
on wireless sensor networks by Johannes Schmid. Each sensor node consist of a Texas
Instruments MSP430 MCU and a 2.4 GHz IEEE 802.15.4 compliant CC2520 radio chip,
with a receiver sensitivity of −98 dBm. The communication in the network is based on
the ZigBee standard [Gis08]. SD-card interfaces at some of the sensor nodes make it
possible to record received signal strengths to an SD card to enable offline processing and
evaluation. Additionally, a Xsens MTi-G Inertial Measurement Unit (IMU) was used to
collect acceleration data during the experiments. For further information on the used
sensor network and the XSens MTi-G IMU, we refer to [SVG+10].

7.1.2 Scenarios and Data Collection

For the sensor network experiments, 60 sensor nodes were deployed more or less randomly
in two floors at different buildings of the Karlsruhe Institute of Technology. The first
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set of experiments was done at the Institute for Theoretical Informatics (ITI). After the
deployment of the sensor nodes, the corresponding node positions have been carefully
marked in a map. Figure 7.1 shows a map of the ITI floor, with the sensor node posi-
tions marked by blue points. Next, several walking trajectories have been planned, and
important waypoints have been marked and numbered on a map. One example for such
a walking trajectory is shown by the red line in Figure 7.1.

10 m 20 m 30 m 40 m 50 m0

10 m

20 m

Figure 7.1: Floor plan of the ITI. The blue dots correspond to sensor node positions, the red line
shows one sample walking trajectory.

The experimental data were then collected as follows: A person with an additional
sensor node attached in front of the body followed each of the pre-planned trajectories
from waypoint to waypoint. The other sensor nodes were programmed to broadcast their
IDs and positions with a frequency of 4Hz. While the person was walking, the on-body
sensor node was used to save for every time step of 0.25 seconds the RSS values of 24
received messages, together with the node ID of the sender and the time the message was
received. Every time when a waypoint was passed, the elapsed time since the start of the
experiment was recorded. In the end, the positions of the waypoints together with the
recorded passing times have been used to reconstruct the walked trajectory. To estimate
the trajectory and arrival times for positions between the waypoints, linear interpolation
was used. The final result of this procedure was a set of positions and corresponding
passing times for the trajectory, and a set of RSS values with reception times and node
IDs for the received messages. Additionally, an Xsens MTi-G Inertial Measurement Unit
was used to detect steps during the experiments.

10 m 20 m 30 m 40 m 50 m 60 m 70 m 80 m
0

10 m

20 m

30 m

Figure 7.2: Floor plan of the ITIV. The blue dots correspond to sensor node positions, the red line
shows one sample walking trajectory.
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Using the same approach, an additional second data set has been taken at the Institut
für Technik der Informationsverarbeitung (ITIV). This time, up to 46 RSS measurements
were stored per time step (0.25 seconds). The corresponding map of the ITIV floor,
together with the positions of the sensor nodes and one sample trajectory, are depicted in
Figure 7.2.

In this work, we mainly use the data from four experiments at the ITI and five ex-
periments at the ITIV. Some statistical data for these experiments are given in Table 7.1.
In the row RSS Measurements, only recorded RSS values are counted. The numbers are
given in multiples of 1.000, e.g., in the first experiment at the ITI about 38.000 RSS values
have been recorded.

Scenario
ITI ITIV

1 2 3 4 1 2 3 4 5

Beacon Nodes 60 60 60 60 60 60 60 60 60
Time Step Duration (s) 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4
RSS Values / Time Step 24 24 24 24 46 46 46 46 46

Duration (s) 408 334 104 325 289 681 658 910 206
Walked Distance (m) 198 214 87 261 257 460 461 615 218
Avg. Velocity (km/h) 1.8 2.3 3.0 2.9 3.2 2.4 2.5 2.4 3.8

RSS Measurements 38k 31k 9k 30k 34k 75k 70k 99k 24k
Detected Steps 395 424 155 497 443 879 890 1157 346

Table 7.1: Properties of the experimental runs.

The experiments at the ITI building have been performed in cooperation with Johannes
Schmid, the data of the additional experiments at the ITIV building have been kindly
provided by Johannes Schmid.

7.2 Data Analysis

A basic understanding of the characteristics of received signal strengths is crucial for the
design of efficient algorithms and meaningful simulations. For this reason, we present in
this section a short study of received signal strengths for the considered sensor network
experiments. In particular, we examine the influence of sender-receiver-distances and of
walls, which obstruct the line of sight between sender and receiver, on received signal
strengths. For references to related work in the context of the study of signal propagation
in buildings, we refer to Section 2.4.1.

7.2.1 Distance Dependence of RSS

Figure 7.3 shows a box-and-whisker plot for the dependence of received signal strengths on
the distances between senders and receivers for experiments at the ITI and the ITIV. The
boxes show the upper and lower quartiles, i.e., the signal strengths such that 25% of the
measurements for the considered distances have higher or lower RSS values, respectively.
The whiskers show the 10th and 90th percentiles.

The decay of received signal strengths, at least on average, is evident in both plots.
However, one can also see that the uncertainties are very high. For example, the upper
and lower quartiles are separated on average by about 12 dBm. This corresponds to a
difference of at least a factor of about 101.2 (≈ 15) in signal strengths between the 25%
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(a) Experiments at the ITI (b) Experiments at the ITIV

Figure 7.3: Distance dependence of received signal strengths.

measurements with highest RSS and the 25% measurements with lowest RSS, for the
same distance. Additionally, one can see that even for short distances some packets had
a received signal strength close to the receiver sensitivity of −98 dBm.

For distances exceeding about 12m, it appears that the signal strength decays much
slower with distance. However, at least to some degree this is due to the limited receiver
sensitivity: All packets that arrive with signal strength lower than the receiver sensitivity
of −98 dBm are simply not detected, meaning that for larger distances only those packets
that arrive the receiver with unusually strong power are included in the averaging. Overall,
the plots for the ITI and the ITIV look very similar, suggesting that both buildings share
similar characteristics concerning signal propagation.

Figure 7.4 shows the distribution of the measured signal strengths for several distance
bins, corresponding to a 1m range of distances each. The curves with points correspond
to the measurements at the ITI, the plain curves correspond to the measurements at the
ITIV. Astoninglishly, both kinds of curves are extremely close, which is very unexpected
for RSS measurements in different buildings. This similarity is probably caused by the
enormous amount of measurements, hundreds of thousands of RSS-distance-pairs were
used, and by similar characteristics of both buildings with respect to the distribution and
constitution of walls.

As expected, the distributions of RSS measurments for a given distance range follow
a Gaussian distribution. For small distances up to about 8m, the standard deviation is
about 9 dBm. For larger distances, the standard deviation decreases due to the limited

Figure 7.4: Signal strength distribution for several distance ranges. For each curve, only those
measurements with the given sender-receiver distance were used. The curves with points are based
on the experiments at the ITI, the plain curves are based on the experiments at the ITIV.
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sensitivity of the receiver, which is unable to decode messages whose signal strength is
below −98 dBm. There are some slight deviations from the normal distribution, which
are evident for the experiments in both buildings, e.g., a slightly higher than expected
frequency for the RSS range from −55 dBm to −53 dBm or a slightly lower than expected
frequency for the range from −85 dBm to −83 dBm. These deviations are probably caused
by characteristics of the radio receivers.

In Figure 7.4, one can also clearly see how the limited receiver sensitivity affects the
otherwise normal distribution for measurements over large distances. As the receiver does
not detect packets with signal strength below −98 dBm, even for distances of only about
15m the distribution significantly differs from a normal distribution.

We also observe in Figure 7.4 that even the curves of distance bins that correspond to
very different distances overlap significantly. This indicates that one has to expect very
high uncertainties when RSS measurements are used to infer distances between pairs of
nodes.

7.2.2 Influence of Walls

The high fluctuation of signal strengths for a given distance is caused by a multitude of
effects. In this section, we take a closer look at the role that is played by walls that
obstruct the line of sight between senders and receivers.

Figure 7.5 depicts the average number of walls that cross the line of sight between
senders and receivers in dependence of the sender-receiver-distance. Interestingly, although
the two buildings have very different shapes (cf. Figures 7.1 and 7.2), up to a distance of
about 25m the average number of walls per distance is almost equal in both buildings.
Assuming a similar constitution of the walls, this observation might explain the very
similar RSS characteristics of both buildings in Figure 7.4.

Figure 7.5: Average number of penetrated walls
in dependence of distance.

Figure 7.6: RSS in dependence of distance and
penetrated walls for ITI (solid lines) and ITIV
(dotted lines).

Next, we take a look at the signal attenuation caused by walls. For this, we partition
all RSS measurements with respect to the number of walls that cross the line of sight
between the position of the sender and the measurement position. Figure 7.6 shows the
distance dependence of the RSS for the measurements where the line of sight between
sender and receiver crossed between 0 and 3 walls. Again, the similarity between the
measurements in the ITI building and those in the ITIV building is apparent. At least
for the first few meters, one can roughly say that the average signal strength falls of with
about 3 dBm per meter and additional 3.5 dBm per penetrated wall.

In some of the figures in this chapter, we focus only on the signal strength behavior
over short distances up to about 15 meters. The reason is that we will base our localization
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approaches mainly on RSS measurements with high signal strengths, which usually do not
occur for transmissions over larger distances. As soon as larger distances are considered,
additional effects occur, for example due to the limited sensitivity of the receivers or border
effects caused by the limited dimensions of the test areas.

7.2.3 Distance Distribution for Given RSS

In RSS-based distance estimation, a given RSS value is translated into some distance
estimate. Figure 7.7 shows distance distributions in dependence of the received signal
strength. Apparently, measurements with high RSS offer the most information. The
lower the signal strength, the broader the distribution of sender-receiver-distances that
resulted in the corresponding RSS measurement. For example, if a packet is received with
an RSS of −50 dBm, one can assume with high certainty that the sender is less than 6
meters away. But for an RSS of −80 dBm, the distribution is already very spread out.

(a) The boxes show upper and lower quartiles,
the whiskers show the 5th and 95th percentiles.

(b) Distance distribution for certain RSS values.
Signal strengths are stated in dBm.

Figure 7.7: Distance distributions for given RSS.

The distributions in Figure 7.7b differ significantly from normal distributions. This
has two reasons: First, there are more measurements over larger distances than over short
distances, as the enclosed area grows quadratically with increasing radius. Second, there
are also border effects, this time for strong signals. As there are no negative distances,
distributions whose peaks are at small distances are skewed to the right.

7.3 Inferring Distances from RSS

There are several possibilities to infer distances from RSS values. For example, given a
signal strength measurement, one can use distributions like the ones depicted in Figure 7.7
to assign each distance d some probability that the sender is located in distance d. Such an
approach is used for example in the probabilistic algorithm for indirect node localization
presented in [SR04b].

Non-probabilistic algorithms usually require that each RSS value is mapped to a single
distance. The standard approach in this context is based on the log-distance path loss
model [SBN+11]. First, signal strength measurements are taken for known distances.
These RSS-distance pairs are then used to compute a good fit for the parameters of the
log-distance model, i.e., the path loss exponent and the path loss at some reference distance
d0. The mapping from RSS values to distances is then computed by inverting the function
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of the log-distance model. There also exist possibilities to determine parameters of the
model based only on RSS measurements, thus avoiding the difficult distance measurements
for the initializing phase [MAF07].

Especially if only few measurements are available, the use of the log-distance model
helps to avoid an overfitting on the training data, as unrealistic variations of the RSS-
distance-relation are smoothed. However, the use of the log-distance model also has some
shortcomings. Even though the model usually allows a good fit to the data, it is a rather
strong assumption that the signal decay in buildings can be described fully using only
two parameters. When the parameters of the log-distance model are fitted to the mea-
surements, the resulting curve is usually optimized for medium to long distances, as there
are more measurements over larger distances than over short distances. However, for lo-
calization, especially the measurements over short distances with high signal strength are
interesting, as they offer the most information about the sender-receiver distance. Addi-
tionally, when optimizing the RSS-distance relation for a certain kind of wireless network
and building, it even might sometimes be preferable to represent the special characteristics
of the considered setting in the mapping of signal strengths to distances.

As we have a sufficiently large amount of RSS-distance pairs for the calibration, we use
in this work a direct mapping from RSS values to estimated distances. For the calibration
procedure, we use an additional training data set consisting of about 300, 000 RSS-distance
pairs. This data set was determined with the same experimental setup as outlined in
Section 7.1, but in additional runs.

Given a large amount of RSS-distance pairs and a single RSS value r for which the
distance has to be estimated, it is tempting to take all sender-receiver distances of mea-
surements that resulted in RSS r and to choose the mean of this set (cf. Figure 7.7a).
This seems natural, as such an approach promises to minimize the average distance esti-
mation error. Figure 7.8a shows how the distance estimation behaves on average for this
assignment strategy. Apparently, for measurements over small distances, the distance is
systematically overestimated. This overestimation can be explained by the asymmetric
distribution of distances that result in a certain RSS, which was already discussed in con-
nection with Figure 7.7. In experiments with this kind of mapping from RSS to distances,
it turned out that the systematic overestimation of short distances had a negative influence
on the localization accuracy.

(a) Strategy 1 (b) Strategy 2

Figure 7.8: Average distance estimation vs. real distance for two different mappings from signal
strengths to distances.

To achieve that short distances are about equally often overestimated and underesti-
mated, the function that represents the mean signal strength in dependence of distance
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(cf. Figure 7.3) has to be inverted. This is the standard approach that is usually used
in connection with the log-distance model, and we also use this approach, just without
the additional fit to the log-distance model. Figure 7.8b shows the resulting relation be-
tween estimated distances and real distances for the measurements in our experiments.
Apparently, for distances up to about 8m, the estimated distances fit the real distances
on average very well.

7.4 Simulations

Realistic modeling of signal decay is a tough topic. This already holds true for outdoor
scenarios, and in indoor environments things become even worse due to walls, obstacles,
and a variety of other effects. Thus, simulation results involving simulated signal strengths
always have to be handled with some care. However, simulations also offer some benefits in
comparison with real world experiments: They make it possible to specify all assumptions
and circumstances, making results better reproducible than it is the case for real-world
experiments. Additionally, simulations make it easy to evaluate algorithms on a large
data basis, whereas the execution of real-world experiments is very time consuming and
error-prone.

One important aspect that motivates the use of simulations in the considered localiza-
tion scenario is that simulations eliminate the uncertainties in connection with the exact
positions of static and mobile nodes. Although we took immense care to protocol the po-
sitions of the sensor nodes as good as possible, there is still some uncertainty concerning
the exact positions. The same holds even more true for the walked trajectory, which in the
considered experiments is presumably only known with an accuracy of maybe one meter.

For this reasons, we supplement the real-world experiments with additional simula-
tions. Of course, when considering localization based on signal strengths, it is important to
model at least the dominant aspects of signal propagation reasonably well. For localization
within buildings, this includes the attenuation effects that are caused by walls.

We put some effort into the design of reasonably realistic simulations. Our goals were
to imitate the average signal decay over distance, the average attenuation at walls, the
variance of signal strengths for fixed distances, and the acceptance rates of packets in
dependence of distance and number of penetrated walls. In this section, we describe the
design of our simulations and compare some simulation results with real-world measure-
ments. All simulations are based on the floor plan of the ITI.

7.4.1 Modeling of Path Loss

Simulation of indoor signal propagation is frequently based on the log-distance path loss
model (cf. Section 2.4.1), i.e., it is assumed that the signal decay can be represented by a
simple power law. The popularity of the log-distance model is caused by the fact that the
function which represents the average signal strength for a given distance (cf. Figure 7.3)
can usually be fitted to some power law. The path loss exponent of the log-distance
model, which depends on the characteristics of the building, then models how fast the
signal decays.

For the considered indoor localization problem, this modeling entails two major draw-
backs: First, it does not represent the systematic signal attenuation at walls. This means
that, in the simulation, a sender-receiver-pair that is separated by several walls on average
measures the same signal strength as another sender-receiver pair that is separated by the
same distance, but without any walls obstructing the line of sight. Second, when fitting
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the log-distance model to the experimental data, one usually does not take into account
that only a fraction of the packets that are sent over a large distance reach their destina-
tion. Thus, even for such distances for which the average signal strength at the receiver is
below the receiver sensitivity threshold, the log-distance model assumes an average signal
strength above the receiver sensitivity. As a result, if one does not take care of this effect,
even for large distances between sender and receiver most packets reach the receiver with
a signal strength above the sensitivity threshold. This can have significant impact on
localization results.

In our simulations, we use an approach similar to the one used in the free space +
linear path attenuation model that was proposed in [DBKR90]. In this model, to mimic
the signal decay in buildings, a free space path loss is supplemented with an additional
loss factor that increases exponentially with distance. Like [DBKR90], we also found for
our experimental data that such an exponential component helps to fit the data better.
In [DBKR90], the exponential factor already subsumed the effects of walls, and an ad-
ditional floor attenuation factor (cf. Section 2.4.1) was used to represent the average
attenuation that is caused by the penetration of floors. In this work, we only consider a
single floor, so the floor attenuation factor plays no role. Instead, we consider the pene-
tration of walls separately. To compute the received signal strength PRx(d) for a single
packet that is sent over distance d, we use the following formula

PRx(d) = −53 dBm− 20 log10
d

d0
dBm− αd−

w

i=1

Xi −Xσ , (7.1)

where −20 log10
d
d0

models the free space path loss, d0 = 1m is the corresponding reference
distance, α = 0.5 dBm/m is an attenuation constant that controls the exponential path
loss caused by obstacles such as furniture and office equipment, w is the number of walls
that obstruct the line of sight between sender and receiver, Xi ∼ N (−3.5, 12) [dBm] is a
normally distributed random variable that models the attenuation at the i-th wall crossing
the line of sight, and Xσ ∼ N (0, 82) [dBm] is a normally distributed random variable that
subsumes all other random effects. The parameters in Equation 7.1 have been chosen to
fit the experimental data. In Section 7.4.3, we present a comparison of the resulting signal
decay characteristics with the data from the experiments. Additional details about the
modeling of signal propagation and path loss are given in Section 2.4.1.

7.4.2 Simulation Scenarios

Node Placement. For the simulations, we use random node placements. To achieve
that the node distribution is somewhat balanced, we use the following approach: First,
200 nodes are distributed randomly within the considered area. The intended number
of nodes is then selected by first choosing the two nodes with maximum distance from
each other and subsequently selecting additional nodes one by one. In each step, the node
which maximizes the minimum distance to any already chosen node is selected. This is
repeated until the intended number of nodes is reached.

If not stated otherwise, we use 50 sensor nodes in the simulations. If several algorithms
are compared, all algorithms get the same node placements as input.

Walking Trajectories. We consider 3 different walking scenarios, which mainly differ
in the length of the walked trajectory and the areas of the floor that are covered. The
consideration of different path lengths will allow us later in Chapter 10, where the indirect
localization of a sensor network by a mobile sensor node is studied, how the localization
accuracy depends on the walked trajectory. The first scenario (SIM 1, Figure 7.9a) models
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(a) Scenario SIM 1: Short walk through some rooms.

(b) Scenario SIM 2: Short walk through most rooms.

(c) Scenario SIM 3: Long walk covering the whole floor.

Figure 7.9: Overview of the simulations scenarios. In each figure, the red line shows the corre-
sponding walking trajectory and the blue points show one sample distribution of 50 wireless sensor
nodes.

a brief walk through parts of the floor. In the second scenario (SIM 2, Figure 7.9b), most
of the rooms are visited once. The third scenario (SIM 3, Figure 7.9c) represents a long
walk that covers most of the area of the floor. In all simulations, we assume that the
mobile device moves along the trajectories with constant speed of 4 km/h.

Communication. Communication in the simulations is modeled in analogy to the real-
world experiments. Every sensor node broadcasts its positions four times per second.
The received signal strengths are modeled according to Equation 7.1. If the RSS of a
message falls below the receiver sensitivity of -98 dBm, it is assumed that the receiver has
no knowledge of the message. If not stated otherwise, we assume that the receiver saves
the RSS values of all received packets, i.e., there is no limitation to 24 RSS values per
time step of 0.25 seconds like in the experiments at the ITI.



7.4 Simulations 103

7.4.3 Comparison between Simulation and Experiment

In this section, we present a brief comparison between the simulations and the real-world
measurements. For the simulations, the same trajectories that have been used in the real-
world experiments are used. To make the simulations and the experiments comparable,
we assume in this section that like in the experiments at the ITI, for each time step only
RSS measurements for up to 24 different sensor nodes are saved.

Figure 7.10a shows signal strength distributions for certain distance intervals. For each
distribution, only those measurements are used for which the sender-receiver distance falls
into the considered distance interval. The comparison between simulation and experiment
reveals that at least up to a distance of 12m, the statistical distributions of simulation
and experiment are very similar.

(a) Signal strength distributions (b) Signal decay in dependence of penetrated walls

Figure 7.10: Comparison of received signal strengths between real-world measurements (ITI, solid
lines) and simulations (dashed lines).

Figure 7.10b shows the influence, which the number of penetrated walls has on the
received signal strengths. The systematic signal attenuation due to walls is apparent for
both experiments and simulations.

Finally, in Figure 7.11 we study how the probability that a certain message belongs
to the 24 measurements that are stored in the database in each time step depends on the
distance between the sender and the receiver and the number of penetrated walls.

Whether or not a message is stored depends on two conditions. First, the signal
strength at the receiver must exceed the receiver sensitivity. Otherwise, the message simply
cannot be decoded. Second, among all messages that exceed the sensitivity threshold, only
the RSS values of 24 random messages are saved in the database.

Figure 7.11a shows that in the experiments even for short distances only the RSS values
of about half the broadcasted messages ended up in the database (e.g., a message that was
sent over a distance of only 5 meters hand only a chance of about 50% to be saved). This
suggests that per time step on average about 48 of the 60 broadcasted messages could
be decoded by the mobile node (twice as many as could be saved). As can be seen in
Figure 7.11b, the simulations result in quite similar usage rates. Even the influence of
walls on the probability that a message ends up in the database seems to be comparable.

Altogether, the comparison between experiments and simulations suggests a close cor-
respondence of both in the considered statistical characteristics of signal decay.
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(a) Real-world measurement (b) Simulation

Figure 7.11: Usage rate of broadcasted messages in dependence of sender-receiver distance and
number of penetrated walls. Of all messages whose signal strength at the receiver exceeds the
receiver sensitivity, only the RSS values of 24 random messages are used (=stored) due to hardware
limitations.

7.5 Summary

In this chapter, we laid the groundwork for the following chapters on RSS-based localiza-
tion. First, we described the setup and the hardware of the sensor network experiments
that are used in the following. Next, we analyzed the experimental data, showing the
dependence of the received signal strength on the distance between sender and receiver
and on the number of penetrated walls. The observations of the experimental study were
then used to motivate the modeling of the simulations that are used in this thesis, and the
simulation setup was described. Finally, a direct comparison between simulation and ex-
periment was presented. It turned out that both experiment and simulation show similar
behavior concerning the considered statistical aspects.



Chapter 8

RSS-based Position Estimation

Force-directed approaches, also known as spring embedders, have proven very success-
ful in the areas of graph drawing and network embedding. In this thesis, we examine the
application of force-directed methods to the problem of RSS-based tracking in wireless
networks. To create a competitive force-directed tracking approach, reasonable represen-
tations of distance estimates and movement knowledge are necessary. In this chapter, we
focus on the design of forces for the representation of RSS-based distance estimates. For
this, we consider the static position estimation problem that does not involve movement
of nodes. Several possible force definitions are examined, and a comparison with some
other approaches for RSS-based position estimation is given.

8.1 Introduction

In this chapter, we consider the RSS-based position estimation problem, where a static
node with unknown position analyzes the received signal strengths of wireless messages
from beacon nodes with known positions to estimate its position.

This chapter is a preparation for Chapter 9, where additionally movement knowledge
is used to track mobile nodes. The quality of tracking algorithms is determined by several
intertwined factors, namely the efficient usage of knowledge from RSS measurements, the
efficient usage of knowledge from movement models or inertial data, and finally the fusion
of both kinds of data sources. Looking at the static position estimation problem makes
it possible to study design decisions for the RSS-based component independently from
effects that are caused by the use of movement information.

In the following sections, we study various kinds of localization approaches. The main
focus lies on different possibilities to realize force-directed localization. RSS measurements
are transformed into attractive and repulsive forces between the node that is to be located
and the beacon nodes. The position estimate is then found by iteratively computing a
force equilibrium. Several force definitions are compared, to study how RSS measurements
can be efficiently incorporated into force-directed localization approaches.

To investigate which design decisions are important for good RSS-based localization
and to get a feeling for achievable accuracies, some other position estimation techniques
are included in the comparison, ranging from least-squares trilateration approaches to
probabilistic approaches. The insights that are gained in this chapter will then be used in
Chapter 9 for the design of a force-directed tracking approach.

Related work. This chapter on RSS-based position estimation presents mainly a prepa-
ration for the force-directed tracking approach that is introduced in the next chapter. As
both chapters share large parts of the related work and our main focus is on the force-
directed tracking, the overview on related work for both chapters is given in Section 9.1.1.

Note that it is not our intention to promote the force-directed position estimation
approach as a novel approach to position estimation. Instead, we study it solely as a
building block of the force-directed tracking approach.
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8.1.1 Problem Definition

We consider a wireless network consisting of a node w with unknown position pw = (x, y)
and a set (b1, ..., bn) of nodes with known positions, called beacon nodes or short beacons.
Let pi = (xi, yi) denote the position pi of beacon node bi.

It is assumed that node w receives one wireless message mi from each beacon bi.
Situations where several messages from the same beacon node bi are received can easily
be represented by assuming that all messages come from different beacon nodes bj that
are located at position pj = pi. The received signal strength Si of message mi is then used
to estimate the distance between node w and beacon node bi. Let di = dist(w, bi) denote
the Euclidean distance between node w and beacon node bi, and d̂i the distance that is
estimated based on the RSS Si of message mi. The goal is to estimate the position of w
either directly based on the received signal strengths of the received messages, or based
on the estimated distances to the beacon nodes.

8.2 Force-Directed Position Estimation

Force-directed approaches are widely used in the context of graph drawing and network
embedding. Usually they are used to compute embeddings for whole networks. In this
work, we examine to what extent force-directed approaches are suited for the problems of
position estimation and tracking in wireless sensor networks.

8.2.1 Basic Idea

Basically, all applications of force-directed methods to compute embeddings of graphs and
networks work similar: distance estimates between graph nodes are modeled as virtual
springs, and an embedding is found by moving nodes until a force equilibrium is estab-
lished [Ead84, FR91].

To model the considered position estimation problem by such a spring network, we
introduce two types of nodes. For each beacon node bi in the real network, we introduce
an anchor node ai in the spring network. The positions of the anchor nodes are fixed and
correspond to the positions of the original beacon nodes. The node w that is to be located
is represented by a so-called position node z, whose position is variable. Additionally,
for each distance estimate a virtual spring is introduced. The springs are defined such
that either an attracting force is exerted if the position node is farther away from the
anchor node than expected, or a repelling force otherwise. If multiple measurements
are available, multiple springs exert forces in different directions. Figure 8.1 depicts the
described modeling.

Initially, the position of node z is initialized with a guess for the position of node w.
Node z is then moved until a force equilibrium is found. The position estimate for node
w can finally be inferred from the final position of node z. In comparison to the graph
embedding problem, where the goal is to find an embedding for a whole network, the
situation here is much simpler, as only a single node has to be embedded. As we will see
in Chapter 9, things get more interesting in the tracking problem, where additional kinds
of springs are introduced to represent movement knowledge.
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Figure 8.1: Signal strength measurements are translated into distance estimates, which then are
represented by springs. The position estimate is computed by finding a force equilibrium. Left:
Real-world sensor network. Circles correspond to beacon nodes, the square represents the device
with unknown position. Right: Spring graph. Each beacon bi is represented by an anchor node
ai, the device w that is to be located by a position node z. Distance estimates are represented by
springs.

8.2.2 Forces for RSS-based Distance Estimates

An important aspect of the force-directed approach is that it makes almost no restrictions
on the mathematical representation of the modeled forces. This allows the design of
forces that are highly adjusted to the characteristics of the underlying measurements. In
particular, one cannot assume that the same force definitions that work well for graph
drawing are also optimally suited to represent distance estimates that are based on RSS
measurements. In this section, we describe several force definitions that could be used
to model RSS-based distance estimates. The performance of the different definitions will
then be examined in the experimental section based on real-world measurements. As we
will see, it pays off to adjust the force-definitions to the characteristics of the underlying
measurements.

For each RSS-based distance estimate between node w and a beacon node bi, we
introduce one virtual spring between position node z and the corresponding anchor node ai
in the spring network. Let (x, y) be the current position of z, (xi, yi) the position of anchor
node ai, d̂i the estimated distance from w to beacon node bi, v⃗i = (xi − x, yi − y)T the
vector pointing from z to ai, and |v⃗i| the Euclidean length of v⃗i. The first force F⃗1(d̂i)
considered in our study is defined as follows:

F⃗1(d̂i) =
v⃗i
|v⃗i|

· d̂i − v⃗i (8.1)

This definition corresponds to the desired behavior: If the estimated distance is larger
than the current distance, then F1 points in the direction of the anchor node, otherwise
it points in the opposite direction. The length of the force vector is proportional to the
absolute difference between the current distance and the estimated distance.

The second force definition is motivated by the graph drawing algorithm of Fruchter-
man and Reingold [FR91], which is known to work very well for the computation of graph
embeddings, and which has also been used to compute embeddings of wireless sensor net-
works [EFI+10]. For each range measurement, an attractive force F⃗attr and a repulsive
force F⃗rep are introduced as follows:

F⃗attr(d̂i) = −|v⃗i|2
d̂i

· v⃗i
|v⃗i|

, F⃗rep(d̂i) =
d̂2i
|v⃗i|

· v⃗i
|v⃗i|

. (8.2)

The acting force F⃗2 is then given by

F⃗2(d̂i) = F⃗attr(d̂i) + F⃗rep(d̂i) = −|v⃗i|2
d̂i

· v⃗i
|v⃗i|

+
d̂2i
|v⃗i|

· v⃗i
|v⃗i|

. (8.3)
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The remaining force definitions, F⃗3 to F⃗6, take into account that the average distance
estimation error is higher for distance estimates based on weak signals (cf. Figure 7.7).
To avoid that the position estimation is negatively influenced by inaccurate measurements
over long distances, additional normalization factors are used to weaken the influence of
measurements with low received signal strength. These normalization factors are either
based on the estimated distance d̂i to the considered beacon node bi, or on the standard
deviation σi of the estimation error that is expected for a distance estimation based on
the received signal strength Si of message mi. The definitions of F⃗3 to F⃗6 are as follows:

F⃗3(d̂i) =
F⃗1(d̂i)

d̂i
, F⃗4(d̂i) =

F⃗1(d̂i)

d̂2i
, F⃗5(d̂i, σi) =

F⃗1(d̂i)

σ̂i
, F⃗6(d̂i, σi) =

F⃗1(d̂i)

σ̂2
i

(8.4)

If data about received signal strengths and corresponding distance estimation errors
are available, one can infer the σ-values directly from this data. Otherwise, the stan-
dard deviations can be estimated based on experiences with the used sensor network and
knowledge about characteristic of the considered building. In this work, we computed the
standard deviations directly by analyzing the data from additional experiments in the ITI
and ITIV buildings.

The same normalization factors that are used in F⃗3 to F⃗6 could also be used in con-
nection with F⃗2. In our experiments, using a normalized version of F⃗2 instead of one of
the force definitions F⃗3 to F⃗6 did not result in improved localization results.

In principle, each of the described force definitions could be used to model RSS-based
distance estimates in a force-directed approach. In our experimental study in Section 8.4.2,
F⃗3 and F⃗6 have been found to be best suited for representing RSS measurements. If not
stated otherwise, in this work F⃗3 will be used to model RSS-based distance estimates.

8.2.3 Initializing the Position Estimate

The initial position of z plays an important role in the performance of the force-directed
position estimation. For one, the farther z is from the true position of w, the more
iterations are necessary to move z to a position where all acting forces are in equilibrium.
Additionally, it is not guaranteed that the force-directed improvement steps move z to
some global optimum. Instead, if the initial position of z is chosen unfavorably, it is
possible that the optimization ends in some local optimum, i.e., a force equilibrium that
does not have to be close to the true position of w. Accordingly, it is worthwhile to put
some effort into choosing a good initial position for z.

For the static position estimation considered in this chapter, initializing the position
of z with the position of the beacon node from which the message with highest RSS
was received worked very well in our experiments. However, depending on the density of
beacon nodes, it is possible that this initial position estimate is several meters away from
the true position. In the tracking problem as considered in the next chapter, the situation
is much better. If the update frequency for the position estimation is sufficiently high,
one can expect that the tracked device does not move far between two successive distance
estimations. Thus, by initializing the new position to the old position, it is likely that the
initial position estimate is already close to the final position of z.
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8.2.4 Approximating a State of Equilibrium

Starting from the initial position of z, the position estimate is improved iteratively by
moving z in small steps until a force equilibrium is reached. To get the movement di-
rection for the next improvement step, all forces acting on z are simply added up (see
Figure 8.2). In this work, all forces are considered to be 2-dimensional vectors. Accord-
ingly, the movement direction can be computed very efficiently in time linear in the number
of forces.

RSS measurement forces Resulting movement direction

Figure 8.2: Computation of the movement direction for an incremental improvement step. Left:
The dashed lines show the current distances according to the current position estimate, the solid
lines show the estimated distances as inferred from the RSS measurements. The small arrows
symbolize the resulting spring forces. Right: The final direction for the next movement is computed
by adding up the force vectors.

The movement is done in small steps into the computed movement direction until either
the length of the resulting force vector falls below some predefined threshold, indicating
that the forces are almost in equilibrium, or a maximum number of improvement steps
have been performed. The second rule assures that the approach does not run into an
infinite loop.

For the force-directed position estimation, we use up to 80 steps with 20 cm movements,
followed by up to 5 steps with 5 cm movements. After each movement, the acting forces are
recomputed to get the new movement direction. The maximum number of improvement
steps and the used displacement distances depend on the expected distance between the
initial position estimate and the actual position of w. Thus, in situations where the initial
position estimate is believed to be quite close to the real position, only a small number of
improvement steps is necessary.

Instead of using a fixed displacement distance, one could also make the movement
distance dependent on the length of the computed force vector. Yet another possibility
would be to use some cooling approach like it is used in the Fruchterman-Reingold em-
bedding algorithm [FR91], where the displacement distance is large in the beginning and
becomes smaller over time. We examined both possibilities, but they did not result in an
additional improvement of localization accuracy.

8.3 Reference Approaches

To put the localization results of the force-directed position estimation approach into a
larger context and to get a feeling for achievable accuracies, we implemented some standard
approaches for RSS-based position estimation in wireless networks. This section gives a
brief overview.
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8.3.1 Least-Squares Trilateration

Trilateration is a very intuitive method to compute position estimates from distances to
known reference points. If the positions of the reference points and the corresponding
distances are known exactly, one can compute the unknown position (x, y) by intersecting
circles around three reference points with radii corresponding to the distance estimates.
In reality, the distances, and often also the positions of the reference positions, are only
known inaccurately. In these cases, the circles do not have to intersect in a single point.

If estimated distances d̂i to more than three reference positions are known, one gets
an overdetermined system of equations:

(x− x1)
2 + (y − y1)

2 ≈ d̂21
... (8.5)

(x− xn)
2 + (y − yn)

2 ≈ d̂2n

In such a case, sometimes the expression multilateration is used instead of trilateration.
Note that the equations only hold approximately, as the estimated distances d̂i are assumed
to contain errors. The usual approach to solve equation system (8.5) consists in finding a
solution that minimizes the error. In the following, we consider the trilateration approach
that is described for localization in wireless networks in [Bou09].

First, the non-linear system of equations is linearized by subtracting the last equation
from the other equations. This gives the linear system




2(x1 − xn) 2(y1 − yn)
...

...
2(xn−1 − xn) 2(yn−1 − yn)




  
A


x
y



  
x

≈




x21 − x2n + y21 − y2n + d̂2n − d̂21
...

x2n−1 − x2n + y2n−1 − y2n − d̂2n−1 + d̂2n




  
b

,

which can be solved using a standard least squares approach [GVL96], using the following
parameter estimation:

x = (ATA)−1(ATb) (8.6)

As we will see in the experimental section, it actually makes a big difference which of
the n equations is subtracted from the other ones. The larger the error in the equation that
is chosen, the worse the final localization result. In the experimental part, we will label
the variant that subtracts the equation corresponding to the measurement with highest
signal strength Trilat #1 and the variant that subtracts the equation of the measurement
with the weakest signal strength Trilat #2.

One problem with the described approach is that it does not take the uncertainties
of the measurements into account. To examine the difference this makes, we addition-
ally implemented trilateration variants that are based on a weighted least-squares ap-
proach [Kay93, TBC11], using the parameter estimation

x = (ATWA)−1(ATWb) , (8.7)

with weighting matrix W . Let σ2
i denote the variance of the distance estimation error

corresponding to the signal strength Si, which was measured for the packet from beacon
node bi. Assuming that the distance estimation errors are uncorrelated, W is chosen to
be the diagonal matrix with Wii = 1/σ2

i .
We denote the weighted least squares approach that subtracts the equation of the

strongest signal with Trilat #3, and the one that subtracts the equation of the weakest
signal with Trilat #4.
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8.3.2 Probabilistic Approaches

In probabilistic approaches, the measured RSS value is not mapped to a single distance, but
to a probability distribution that assigns each distance a specific likelihood. By combining
probabilities from different RSS measurements, it is possible to compute probabilities of
presence for arbitrary positions in space. In this work, we compare four slightly different
variants of probabilistic approaches.

The first considered approach is inspired by [SR04b], where a mobile beacon node b
with known position is used to localize the nodes of a static sensor network. To keep
the computational effort manageable, the possible locations are restricted to points on
a 2-dimensional grid. Let X denote the set of valid x-coordinates, Y denote the set of
valid y-coordinates, and P(x, y) denote the estimated probability that a certain static
node is at position (x, y). In the beginning, all possible positions are assigned the same
probability. Each time a static node receives a new message from the mobile beacon with
signal strength S, the RSS information of the packet together with the current position
(xb, yb) of the beacon is used to construct a new constraint on the position estimate of the
static node. The updated probabilities P ′(x, y) are computed as

P ′(x, y) =
P(x, y) · PS (d((x, y), (xb, yb)))

x̄∈X


ȳ∈Y P(x̄, ȳ) · PS (d((x̄, ȳ), (xb, yb)))
∀(x, y) ∈ X × Y , (8.8)

where PS (d((x, y), (xb, yb))) is the probability that a node receiving a packet with signal
strength S is at distance d((x, y), (xb, yb)) from the sender (cf. Figure 7.7). This approach
can easily be transferred to the considered scenario by assuming that the messages are
not received from a single mobile beacon broadcasting from different positions, but from
different static beacon nodes that broadcast from their corresponding positions.

To evaluate the performance of this approach, we consider two variants to infer the
position estimate (x̂, ŷ) from the computed probabilities. In the first variant (Prob #1 ), we
assume that the position estimate corresponds to a grid point with maximum probability,
i.e.,

(x̂, ŷ) ∈ argmax
(x,y)∈X×Y

P(x, y) . (8.9)

In the second variant (Prob #2 ), which is the variant used in [SR04b], the position estimate
is determined as a weighted average:

(x̂, ŷ) =




x∈X



y∈Y
x · P(x, y),



x∈X



y∈Y
y · P(x, y)


 . (8.10)

The second considered approach is based on Bayesian inference [Win03]. Again, we
assume that the node w with unknown position receives a message with signal strength S
from some beacon node b. Let X̄ be the proposition that node w is at some given position
(x, y) and Z̄ the proposition that a message is received from beacon b with signal strength
S. Using Bayes’ theorem, the posterior belief P (X̄|Z̄) in X̄ after Z̄ is observed is then
given by

P (X̄|Z̄) =
P (Z̄|X̄)

P (Z̄)
· P (X̄) , (8.11)

where P (X̄) is the prior, the degree of belief in X̄ before Z̄ is observed, and P (Z̄|X̄) is
the likelihood, the probability that Z̄ is observed, given that X̄ holds. Transferred to the
notation of Equation (8.8), this gives

P ′(x, y) =
P(x, y) · Pd((x,y),(xb,yb))(S)

x̄∈X


ȳ∈Y P(x̄, ȳ) · Pd((x̄,ȳ),(xb,yb))(S)
∀(x, y) ∈ X × Y , (8.12)
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with Pd((x,y),(xb,yb))(S) being the probability that a message that is received from a sender
in distance d((x, y), (xb, yb)) is received with signal strength S (cf. Figure 7.4).

Again, we consider the strategy of Equation (8.9), which uses a grid point with max-
imum probability as position estimate, and the variant of Equation (8.10), which deter-
mines the position estimate as a weighted average. In the following, we call the first variant
Prob #3 and the second variant Prob #4.

8.3.3 EKF Measurement Update

Tracking approaches that are based on extended Kalman filters (EKFs) use two kinds
of updates to estimate the position of a moving object: time updates and measurement
updates. The time updates use (noisy) knowledge about the movement of the object
to predict position changes between consecutive time steps. The measurement updates
incorporate additional knowledge that is gained by measurements, e.g., by RSS-based es-
timations of distances to beacon nodes. The weighting between both kinds of updates
is controlled by the corresponding uncertainties, and the key to good tracking results
lies in the combination of both. Nevertheless, in this chapter we are going to reduce
EKF approaches to their measurement part. The intention behind this somewhat unusual
approach is that we want to analyze how much knowledge an EKF gains from RSS mea-
surements in comparison to the other approaches that are analyzed in this chapter. Due
to the strong intertwining of both kinds of updates in the EKF, it is not easily possible
to isolate the measurement update from the time update. For instance, the EKF uses
a linearization of the measurement function around the current position estimate to ap-
proximate the non-linear system by a linear one. The more the position estimate differs
from the real position, the larger are the effects this linearization exerts on the localization
accuracy.

For our study of the measurement update, we use the tracking EKFs that will be
described later in Section 9.3. To examine the measurement update under optimal con-
ditions, we initialize the EKF with the true position (according to the reference path)
as prediction and then analyze how the measurement update distorts this ideal position
estimate. To minimize the influence of the prediction, the corresponding covariances are
set extremely high so that in the final result only the measurement result is weighted. In
our experiments, this approach is labeled EKF Meas #1.

Additionally, to get a feeling how the initial position estimate influences the final
localization result, we implemented a second variant that initializes the position estimate
to the position of the beacon node from which the strongest signal was received. This
approach is labeled EKF Meas #2.

8.4 Evaluation

8.4.1 Experimental Setup

To evaluate the different approaches for RSS-based position estimation, we use the exper-
imental data from the sensor network experiments in the ITI building (cf. Section 7.1).
During each time step of 0.25 seconds, RSS measurements of messages from up to 24 differ-
ent beacon nodes have been collected. As the person carrying the mobile sensor node can
only move a very short distance during that time interval, it is justified to assume that all
packets have been received at the same position. Thus, by considering the measurements
of each time step as a single position estimation instance, our experiments at the ITI give
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a total of about 4600 real-world instances.

In our evaluation, we consider the influence of the number of used measurements and
the number of beacon nodes on the localization accuracy. If less than 24 measurements are
used, the measurements with highest signal strength are chosen. The intention behind this
is that the average distance estimation error on average increases for estimations based on
weaker signals. Thus, it can be better to use only measurements with high RSS. Instead of
using the n strongest signals, one could achieve similar results by defining a RSS threshold
below which measurements are simply ignored.

For the experiments where only a subset of the 60 available beacon nodes is used,
the beacons are chosen as follows: First, we selected the two beacons with maximum
distance from each other among all beacons. Subsequently, we iteratively chose the beacon
that maximized the minimum distance to any already selected beacon, until the intended
number of beacons was reached. The motivation behind this strategy is to get a set of
beacons that are preferably uniformly distributed.

In the experiments that focus on the number of used measurements, all 60 beacon
nodes are used. In the experiments that analyze the influence of the number of beacon
nodes, for each localization instance the 10 measurements with highest RSS are used.

To compare the localization accuracies of different position estimation techniques, we
consider the average localization error, i.e., the average distance between the computed
positions and the true positions.

8.4.2 Results

Different force definitions. We start with a comparison of the different force defini-
tions that were presented in Section 8.2.2. Figure 8.3a shows how the localization accuracy
depends on the number of used measurements. Apparently, when F⃗1, F⃗2, or F⃗5 are used,
the localization error increases quickly if more than 18 measurements are used. The rea-
son is that F⃗1 and F⃗2 do not use a weighting that weakens the influence of measurements
with low signal strength, which usually result in higher distance estimation errors. Force
definition F⃗5 uses a weighting, but it seems that dividing the force by the standard devi-
ation corresponding to the measured RSS is not sufficient for very weak signal strengths.
In the considered experiments, the best results are achieved by using either F⃗3 or F⃗6 in
connection with about 14 RSS measurements.

When looking at the influence of the number of beacon nodes in Figure 8.3b, it is
not surprising that the localization accuracy improves when more beacon nodes are used.

(a) Error in dependence of used measurements. (b) Error in dependence of beacon number.

Figure 8.3: Position estimation error for different force definitions.



114 Chapter 8: RSS-based Position Estimation

Closer inspection of the plots reveals, that for less than 35 beacons the average localization
error starts to increase quickly for forces F⃗1 and F⃗2, and to some degree also for force F⃗5.
The reason for this effect is the same that has already been observed in the plots dealing
with the influence of the number of used measurements. As a fixed number of 10 RSS
measurements is used independent of the number of beacon nodes, the weakest of the 10
measurements corresponds to measurements over larger distances when less beacon nodes
are used. It seems that for 35 used beacons and below, bad distance estimates come into
play. As we will see in the next paragraphs, all approaches that do not use a weighting
based on the RSS will perform significantly worse when less than 35 beacons are used.

Trilateration approaches. The first observation that strikes the eye when looking at
the plots for the trilateration approaches in Figure 8.4 is that it makes a big difference
which equation of equation system (8.5) is subtracted from the other equations to linearize
the equation system. Trilat #2, the unweighted approach that subtracts the equation that
corresponds to the weakest of the considered signals, produces significantly larger errors
than Trilat #1, the unweighted approach that subtracts the equation of the strongest
signal.

Comparing Trilat #3 with Trilat #1 shows that the additional weighting results in
improved position estimates. Particularly, it avoids that the localization results become
much worse when more than about 18 measurements are used.

Interestingly, for the trilateration variant that subtracts the equation of the weakest
signal, the additional weighting has almost no effect. The reason is that for this approach
the large distance estimation error that can be expected due to the low signal strength is
added (without weighting) to all other equations.

(a) Error in dependence of used measurements. (b) Error in dependence of beacon number.

Figure 8.4: Position estimation error of different trilateration approaches.

The plot that considers the error in dependence of the number of beacon nodes shows a
similar picture, with Trilat #3 performing best in all cases. However, in comparison with
the force-directed approaches, even Trilat #3 performs rather bad. This is a little sur-
prising, as dedicated trilateration approaches are considered. It seems that the considered
analytical trilateration approach is rather unsuited for RSS-based localization in wireless
networks. Instead, iterative trilateration approaches that cope without linearization might
be preferable, e.g., [LLW06].

Probabilistic approaches. For the probabilistic approaches, we computed for each lo-
calization instance the probabilities according to equations (8.8) and (8.12) for all positions
on a grid of dimensions 50m× 50m, centered at the true position. The used grid spacing
was 25 cm.
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The average localization errors are shown in Figure 8.5. We observe that even for the
probabilistic approaches, the localization accuracy can be improved by using only a subset
of the available measurements. Among the probabilistic approaches, Prob #4, the variant
that is based on Bayesian inference and that computes the position estimate as a weighted
average, performs best in our experiments.

(a) Error in dependence of used measurements. (b) Error in dependence of beacon number.

Figure 8.5: Position estimation error for different probabilistic approaches.

EKF measurement update. In the EKF, the influence of single measurements is
weighted based on the corresponding covariances. In consequence, the measurement up-
date is relatively robust even when measurements with low RSS are included.

As the EKF uses a linearization around the current position estimate, the localization
result also depends on the quality of the predicted position. In the experiments with all
60 beacon nodes, the difference between EKF Meas #1, the variant that initializes the
position estimate to the reference position, and EKF Meas #2, the variant that initializes
the estimate to the position of the beacon from which the strongest signal was received,
is rather small as long as a sufficient number of measurements is used.

(a) Error in dependence of used measurements. (b) Error in dependence of beacon number.

Figure 8.6: Position estimation error of the EKF measurement updates.

Figure 8.6b shows that the performance of EKF Meas #2 gets significantly worse when
only few beacon nodes are used. As weighting is used, this is probably not caused by the
use of weak RSS values. Instead, if less beacons are available, then the initial position
estimate, i.e., the position of the beacon with highest RSS, is on average further away
from the true position. Thus, the linearization is computed at a position that is more
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distant to the true position. This seems to have an additional negative influence on the
localization accuracy.

Comparison. We conclude this study with a brief comparison between the top candi-
dates of the different kinds of approaches in Figure 8.7. In our experiments, the proba-
bilistic approach Prob #3 achieved the best localization results. This is not surprising, as
this is also the most complex approach with the highest computational costs. Surprisingly,
the iterative force-directed approach was able to achieve similar accuracies, using much
less computational effort.

The trilateration approaches and the EKF measurement update resulted on average
in higher localization errors. The higher errors are probably caused by the linearization
of the problem.

(a) Error in dependence of used measurements. (b) Error in dependence of beacon number.

Figure 8.7: Comparison of different kinds of approaches.

8.5 Summary

In this chapter, we took a look at the problem of RSS-based position estimation in wireless
networks. For the force-directed approach, we analyzed different possibilities to represent
RSS-based distance estimates by forces. Additionally, to get a feeling for achievable ac-
curacies and to see how different design decisions influence the localization result, we
implemented and examined several other kinds of localization approaches.

According to our experiments, the force-directed approach allows the computation of
competitive position estimates. As we will see in the next chapter, it is very easy to
extend the force-directed position estimation approach to more complex problems, e.g.,
the tracking of mobile devices, by introducing additional kinds of forces.



Chapter 9

Force-Directed Tracking

In this chapter, we study the force-directed tracking of mobile devices based on signal
strength measurements. In the considered tracking problem, it is assumed that addi-
tional knowledge about the movement of the mobile device is available. This knowledge
can originate from movement model assumptions or from inertial data. As an example
application, we consider the tracking of mobile devices that are carried by pedestrians,
using a network of wireless beacon nodes with known positions. We show how the force-
directed position estimation approach that was presented in the last chapter can be easily
extended with additional kinds of forces that model the additional movement knowledge.
The proposed force-directed tracking approach is then compared to a similar model in
an extended Kalman filter (EKF), and similarities and differences between both kinds of
approaches are examined. Finally, the performance of both approaches is evaluated based
on real-world experiments and simulations.

9.1 Introduction

In the tracking problem that is considered in this chapter, the position of a mobile device
that is carried by a pedestrian in an indoor environment has to be estimated continuously
over time. Of course, one could repeatedly use one of the position estimation techniques
that were studied in Chapter 8 to keep track of the position of the mobile device. Figure 9.1
shows an example of a trajectory that was computed in this way. For the computation of
the trajectory, the force-directed position estimation technique from Section 8.2 was used
once for each time step.

0 m 10 m 20 m 30 m

Figure 9.1: Computed path using the force-directed position estimation once per time step. The
red lines show the reference trajectory, the green lines connect successive position estimates.

Apparently, due to the high fluctuation of RSS measurements, the position estimates
jump significantly around the true position. This behavior is not limited to the force-
directed approach, but all approaches that are discussed in Chapter 8 show similar behavior
when used for RSS-based tracking. If additional information about the movement of the
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device is available, e.g., in form of movement model assumptions or inertial data, this
information can be used to get significantly improved localization results. In this chapter,
we examine how such additional information can be utilized in a force-directed tracking
approach.

9.1.1 Related Work

In this overview on related work for chapters 8 and 9, we mainly focus on three lines of
research: First, the localization of static devices based on signal strengths. Second, the
RSS-based localization of mobile devices. And third, force-directed methods for localiza-
tion in wireless sensor networks.

RSS-based position estimation. For the localization of static devices based on signal
strengths, there exist two main approaches: fingerprinting and range-based methods.

In fingerprinting, a map of signal strengths to all beacon nodes is created for various
positions in an initial training phase and stored in a database. Every time when a node
is to be localized, the signal strengths that the node measures are compared to the signal
strengths in the database, and the position with closest correspondence to the measured
signal strengths is returned. Examples for fingerprinting approaches are [BP00, PAK+05,
ACZ05, LW07, KPV07, YYN08, AC09, PCC+10, BOGVB10].

In range-based methods, knowledge about the signal decay over distance is utilized
to estimate distances based on the received signal strengths. The position estimate is
then computed using some trilateration approach, based on the distance estimates in
combination with the known beacon node locations. In the circular positioning algo-
rithm [Li06, LLW06], a gradient method is used to iteratively minimize the sum of the
squared differences between the estimated distances and the true distances. Another tri-
lateration approach is the hyperbolic positioning algorithm [LLW06], in which a lineariza-
tion is used to transform the non-linear position estimation problem into a linear problem.
Subsequently, a least-squares approach is used to computed an optimum solution for the
linearized problem. Both the circular positioning algorithm and the hyperbolic position-
ing algorithm have been extended in [TBC11] with an additional weighting of distance
estimates based on their uncertainties.

Especially in wireless sensor networks, many approaches for localization use trilatera-
tion based on hop-distances instead of RSS-based distances, e.g., [NN01, SPS02].

In addition to trilateration approaches, there also exist probabilistic approaches to turn
RSS measurements into position estimates. Probabilistic approaches utilize knowledge
about the probabilities that certain signal strengths are measured for a considered distance.
This usually allows for higher localization accuracy at the prize of higher computational
costs. An example for such a probabilistic approach is [SR04b], where measurements of a
GPS-equipped mobile node are used to localize static sensor nodes.

Surveys with additional information on wireless position estimation can be found
in [SCGL05, Gez08].

RSS-based tracking. Most approaches for RSS-based tracking utilize additional infor-
mation about the movement of the tracked object to improve the localization result. An
exception are the aforementioned fingerprinting methods, which are frequently used with-
out additional knowledge. However, the relatively high effort of the initial map-building
phase makes fingerprinting rather inapplicable for many application scenarios of RSS-
based tracking. Besides fingerprinting, there exist two popular kinds of approaches that
are mostly used for tracking based on RSS measurements: variants of Kalman filters and
particle filters.
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Kalman filters themselves are optimal estimators for linear systems if the noise is nor-
mally distributed and zero-mean and the covariances of the noise are exactly know [May79].
However, due to the non-linear nature of the localization problem, non-linear variants of
Kalman filters have to be used. One of the most well-known variants is the extended
Kalman filter (EKF). EKFs are frequently used for RSS-based tracking in wireless net-
works, e.g., in [RM09, PW09, SVG+10, YJGJ10, SGSMG11, SBN+11]. Besides the EKF,
sometimes the newer unscented Kalman filter (UKF) [JUDW95] is used for tracking in
wireless networks [SKL10, SBN+11]. Like the EKF, the UKF is a non-linear filter, but
in contrast to the analytical EKF, the UKF uses sample-points, called sigma-points, to
represent the probability distribution.

Both EKF and UKF can be used to fuse information from different data sources
into one state estimate. Examples for the use of EKFs in connection with RSS-based
distance estimates and information from an inertial measurement unit (IMU) can be found
in [RGHR10, JSPG10].

Particle filters are simulation-based model estimation techniques, which represent
probability distributions by a set of randomly chosen weighted samples. In contrast to
EKFs, they allow to represent non-Gaussian and multi-modal probability distributions.
This usually allows for improved localization accuracies. However, to achieve this im-
proved estimation, particle filters also have significantly higher computational costs than
EKFs. Like EKFs, particle filters are frequently used for the tracking of mobile devices in
wireless networks, e.g., in [MNR+06, WLS+07, GWJ+11, CEL+11].

Force-directed localization approaches. Originally, force-directed methods have been
used in the context of VLSI design [QB79]. However, it was soon realized that they are
also very well suited to compute embeddings of graphs and networks. The introduction of
force-directed methods to the area of graph drawing is usually accounted to an early work
by Eades [Ead84], and even today force-directed methods are still frequently used in the
area of graph drawing, e.g., [DEG+12].

As graph drawing problems and network embedding problems are closely related, it is
not surprising that force-directed methods are frequently used to compute or to improve
embeddings of sensor networks. For example, in the anchor-free localization approach
by Priyantha et al. [PBDT03], a force-directed relaxation method is used to refine an
initial embedding of the network. Similarly, in [MLRT04] a force-directed relaxation was
proposed as an optional refinement after an initial cluster localization. In [EFI+10], Efrat
et al. compare several force-directed approaches to find embeddings of sensor networks
based on signal strengths and angular information. A distributed force-directed algorithm
that computes a network embedding based on local distance and angular information is
introduced in [CKKK10].

All these approaches consider the embedding of whole sensor networks. To the best
of our knowledge, the application of force-directed methods to the problem of RSS-based
tracking has not yet been studied.

9.1.2 Problem Definition

We assume that a wireless network consisting of n beacon nodes (b1, ..., bn) with known
positions is distributed in the 2-dimensional plane. Let pi = (xi, yi) denote the position
of beacon node bi. Each beacon node sends a message containing its ID and position once
per time step. A person carrying a mobile device m is moving through the network. The
true position of m in time step t is denoted by ptm = (xtm, ytm). The mobile device is
used to receive the broadcasts of the stationary beacon nodes, and the distances to the
beacon nodes are estimated based on the received signal strengths. For time step t, the
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true distance between m and beacon bi is denoted by dti = dist(ptm, pi) and the distance
estimate that is based on the received signal strength is denoted by d̂ti. If m did not receive
a message from bi in time step t, then d̂ti is undefined.

The goal is to estimate the position ptm of m for each time step t ∈ {1, . . . , T}, with
T being the total number of time steps. To estimate the position at time t, all RSS
measurements that have been received up to that time can be used. Additionally, it
is allowed to use additional movement knowledge. In this work we consider the use of
assumptions about the movement of pedestrians and the use of step recognition data from
an inertial measurement unit (IMU).

To compare the localization accuracy of different tracking approaches, we again use the
average localization error . In the context of tracking, this is the average of the distances
between the true positions and the computed positions. Let p̂tm denote the estimate for
the position of m at time t. The average localization error E is then computed as

E :=
T

t=1

dist(p̂tm, ptm)/T . (9.1)

9.2 Force-Directed Tracking Algorithm

Although the basic principle of the force-directed tracking approach is very similar to the
one of the force-directed position estimation approach that was presented in Section 8.2,
some changes are necessary in order to model the dynamic nature of the tracking problem.
Like in the force-directed position estimation, we introduce for each beacon node bi of the
real network an anchor node ai in the spring network. The positions of the anchor nodes
are fixed and correspond to the positions of the original beacon nodes. However, instead
of introducing a single position node z that represents the position of the mobile node m,
we introduce a separate position node zt for each time step t ∈ {1, . . . , T}. The reason
for the introduction of multiple position nodes is that this allows to model additional
forces between different position estimates, e.g., to represent movement knowledge. Note
that it usually is not necessary to consider more than two position nodes at once, one
for the current and one for the previous time step. Knowledge from earlier time steps
is not necessary, as the current position only depends on the previous position and the
movement that occurred meanwhile.

For each time step t, all RSS-based distance estimates d̂ti to some beacon node bi are
represented by a corresponding spring between position node zt and anchor node ai in the
spring network. In this work, we use for RSS-based distance estimates the force definition
F⃗3 as defined in Equation 8.4.

Figure 9.2 visualizes the described modeling. Note that the modeling described so far
results in exactly the same tracking results as using the simple force-directed position esti-
mation approach for each time step separately. The reason is that we do not yet combine
information between different time steps. How such a combination can be established is
the topic of the following sections.

9.2.1 Forces from Movement Model Assumptions

Due to the high fluctuations in RSS-based distance estimations, the position estimate can
jump in the range of meters, even if the mobile node does not move at all. To avoid
this, we use the fact that the time difference between consecutive measurements is rather
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Figure 9.2: Basic modeling in the force-directed tracking approach. Left: Real-world network.
Circles correspond to beacons, squares to the positions at which the mobile device computes
distance estimates to the beacons. Right: Spring graph. Beacons are represented by anchor nodes,
measurement positions by position nodes. Distance estimates are represented by springs.

small (1/4 second in our experiments and simulations), meaning that the person carrying
the mobile device cannot move far within this time. Assuming a maximum velocity vmax

of the tracked object (i.e., the person), a maximum distance ∆t · vmax is assumed for
the movement of the receiver during one time period ∆t. To model this, we introduce
additional spring forces between consecutive position nodes (cf. Fig. 9.3).

{ { {

∆t

∆t

≤ ∆t · vmax

∆t

Figure 9.3: Time differences are translated into distance estimates between measurement nodes.

For example, a pedestrian usually does not move faster than vmax = 5km/h. From
this we can infer that consecutive measurement positions should be no further apart than
dmax = ∆t · vmax, with ∆t being the time difference between two measurements.

Let (x̂k−1
m , ŷk−1

m ) be the final position estimate for m, i.e., the final position of position
node zk−1 in time step k − 1, and w⃗ = (x̂k−1

m − x̂km, ŷk−1
m − ŷkm)T the vector pointing from

the current position of node zk to the position of zk−1. By introducing the force

F⃗move =


0⃗ if |w⃗| ≤ dmax

(|w⃗| − dmax) · w⃗/|w⃗| if |w⃗| > dmax
, (9.2)

on position node zk, with |w⃗| being the Euclidean length of vector w⃗, we model an at-
tracting force that acts on zk as soon as it is located more than distance dmax away from
the previous position node zk−1. This force is proportional to the amount distance dmax is
exceeded. If the position nodes are closer than dmax, no force is introduced. This simple
example shows how easily further knowledge can be modeled by additional forces.

9.2.2 Combination with Step Recognition

Today, most mobile devices have a built-in accelerometer, which can be used to identify
steps by recognizing peaks in the acceleration pattern. As an example of how to extend
the system model with additional information, we study the possibility of incorporating
such step information. At this point, we do not want to go into the technical details of
step detection, but we just assume that we know when the person takes a step forward.



122 Chapter 9: Force-Directed Tracking

Until now, we assumed that the position of the mobile node is re-estimated every time
step, using the new RSS measurements that arrived since the last time step. For each
time step, a new position node was introduced and the oldest position node was removed
from the network. If movement step information is available, we use a slightly different
approach. Now, new position nodes are only introduced if steps are detected. If new
distance measurement are obtained, the corresponding forces are simply attached to the
current position node. Again, a connection of the current step node with the previous
step node is incorporated by an additional force similar to F⃗move from the last paragraph
(cf. Figure 9.4)

≈ 0.5
− 0.7

m

Acceleration

Step Step

Figure 9.4: Step detection is used to detect and combine co-located measurements. The natural
length of the spring that connects consecutive position nodes is set to a typical step length.

There are two differences to the model without step recognition: dmax is now set to an
average step length and, as we now believe that the person actually moved, one can also
make the force between consecutive position nodes repelling if the distance between the
position nodes is shorter than a usual step.

If the person does not move for a while, it can happen that many measurements
accumulate between two steps. In this case one does not have to use all measurements.
Instead, it is usually sufficient to use only the k latest measurements, with k being chosen
appropriately for the considered application.

9.2.3 Approximating a State of Equilibrium

After determining all forces that are exerted by the introduced springs, a state of force
equilibrium, i.e., a position where all forces are in equilibrium, has to be found. In this
work, all forces are considered to be 2-dimensional vectors. For each kind of force, we define
an additional weighting that allows to control the importance of the forces relative to each
other. By adding the vectors multiplied by the corresponding weight, we get the direction
to which to move the position estimate. The movement is done in small increments of
5 cm to 10 cm. After each movement, the acting forces are recomputed to get the new
movement direction. The number of necessary iterations depends on the scenario. For
tracking without step detection we use 7 iterations with 10 cm movements, followed by
3 iterations with 5 cm movements. In the model with step detection, we recompute the
position only once per step. Accordingly, we use a slightly higher number of iterations:
12 iterations with 10 cm movements followed by 3 iterations with 5 cm movements. More
dynamic position changes could be enabled by greater displacement distances or a higher
number of iterations. Of course, iterations could also be done as long as an improvement
is achieved and interrupted otherwise.

9.2.4 Possible Extensions

There are many possibilities to extend the presented force-directed tracking approach with
additional knowledge, e.g., to incorporate data from additional sensors. In this section,
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we briefly mention some possibilities for natural extensions. However, the ideas presented
in this section will not be further analyzed in this work.

Using absolute orientations. Today, many mobile devices are equipped with electronic
compasses. Data from such a compass could be used to get the absolute orientation of
the moving object. In combination with step recognition, this kind of information could
be easily incorporated in the force-directed tracking approach, by assuming that the next
position node is preferably located one step distance in the direction of the estimated
movement direction. To allow for uncertainties, the forces could be designed such that
they attract the position node to the preferred new location and that the force is increasing
with increasing distance to that location.

Using relative orientations. Instead of using absolute orientations from a compass,
a gyroscope sensor can be used to estimate relative orientation changes between time
steps. Lately, gyroscopes also became increasingly popular in consumer hardware such
as cell phones. The advantage of gyroscopes in comparison to compasses is that they
are not influenced by magnetic fields, which often disturb electronic compasses in indoor
environments. Figure 9.5 illustrates how information from a gyroscope can be used in a
force-directed tracking approach. The previous orientation is updated with the estimated
rotation and the expected position is placed at a distance that corresponds to one step
length. An attracting force is added, which pulls the position node towards the expected
position.

Angular Velocity

estimated
angle α

expected
position

≈ 0.6m

Figure 9.5: Gyroscope measurements can be used to compute relative orientations between con-
secutive steps.

Note that in order to infer the previous orientation from the position estimates of
the force-directed tracking approach, it is not sufficient to consider only the previous
position node and the position node before the previous node. Due to the high fluctuation
of position estimates, the estimated orientation could be significantly off. Instead, the
orientation of position nodes that are several time steps apart from each other should be
considered.

Keeping position estimates variable. In this work, we assume that in each time step
t only the position of the newest position node zt is flexible. However, in some scenarios
it might be desirable that measurements of later time steps are also used to improve
the position estimates of earlier time steps. In the force-directed approach, this can be
realized by considering in each time step more than only the last two position nodes.
For example, at time t one could keep the position of node zt−k fixed, and release the
positions of nodes {zt−k+1, . . . , zt}, with k being an appropriate constant. For nodes zi
with t − k < i < t, an additional force similar to Fmove is introduced that attracts zi
to zi+1 if the corresponding distance is larger than expected. New positions for nodes
{zt−k+1, . . . , zt} are then computed by iteratively finding force equilibria for all nodes.
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9.2.5 Time and Space Complexity

Both time and space demand of the force-directed tracking approach are very low. De-
pending on the scenario, the algorithm can either store the coordinates of the beacons in
terms of anchor nodes, or, if the beacons include their positions in the broadcast, it is
not even necessary to store anchor nodes. For position nodes as well, only coordinates
have to be stored. At no point in time more than two position nodes have to be kept
in memory—one for the current position estimate and one for the previous position esti-
mate, to allow the use of movement forces. In each iteration of a measurement update,
the movement direction is determined by simply adding up 2-dimensional force vectors.
This can be done very efficiently in time O(f), with f being the number of forces. As the
number of iterations is fixed (10-15 in our experiments and simulations), the complexity of
the whole measurement update also is in O(f). Summarizing, both time and space com-
plexity of measurement updates are linear in the number of involved forces. This makes
the force-directed approach very attractive even for application on devices with very low
computational power or little memory.

9.3 Extended Kalman Filters

Extended Kalman filters are frequently used for RSS-based location tracking. In this
work, we use the EKF as a reference approach to the force-directed tracking and examine
similarities and differences between both approaches. For the EKF, we keep the description
to a minimum and refer to the standard literature on this topic, e.g., [May79]. The
descriptions and implementations of our EKFs are based on the tutorial on Kalman filters
by Welsh and Bishop [WB01].

9.3.1 EKF with Movement Model

Similar to the model established in Section 9.2.1, we use the knowledge that a person can
only move a limited distance between two consecutive measurements. In this section, we
use a notation that is slightly different from the one introduced in Section 9.1.2, to stay
closer to the notation that usually is used in connection with Kalman filters. The process
state at time step k consists of the two-dimensional coordinates (xk, yk), which represent
the position of the mobile node at time k, and movement is introduced in form of process
noise. This results in the following process model

x⃗k =


xk
yk


=


xk−1 + w1

yk−1 + w2


, (9.3)

with noise terms w1 and w2 that are assumed to be normally distributed and zero-mean.
The measurement z⃗k at time step k is then given by

z⃗k =





(xk − xa1)

2 + (yk − ya1)
2 + v1

...
(xk − xam)

2 + (yk − yam)
2 + vm


 , (9.4)

where (xai , yai) is the position of the i-th beacon node used at time k and vi is the
measurement noise for the distance estimation to this beacon.

If not stated otherwise, we use the m = 10 measurements with highest RSS in the
measurement update, as this offers a good compromise between computational effort and
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achievable accuracy. This means that the set of beacons that are used for the localization
changes from one time step to another. The variance of vi depends on the received signal
strength, as distance estimations based on weak signals involve higher uncertainties than
distance estimations based on strong signals. As described in Section 7.3, we inferred
the uncertainties of the distance estimations directly from a set of training data. Further
information on the definition of the process noise will be given in Section 9.5.1.

9.3.2 EKF with Step Detection

Like in Section 9.2.2 for the force-directed approach, the EKF can also be extended with
step information in the system model. We now separate process updates and measurement
updates. While measurement updates still occur every time when new RSS measurements
arrive, process updates are only performed when a new step has been detected. Addition-
ally, the variance of the process noise in equation (9.3) is adjusted to reflect the expected
position change during one step. Further information on the used process noise is given
in Section 9.5.1.

Both the EKF and the force-directed approach offer the possibility to design more
sophisticated models, for instance by including velocities in the process model. We re-
frained from using more complex models in both approaches, as the goal of this work is to
demonstrate similarities and differences of both approaches under simple and comparable
conditions.

9.4 Force-Directed Tracking vs. EKF Tracking

Overall, the modeling of the force-directed approach and the described EKF is done in
a similar way. In the force-directed approach, the forces that are exerted by the springs
between consecutive position nodes ensure that the position estimate does not jump too far
between consecutive time steps. In the EKF, the uncertainty of the process state controls
how much the position estimate can change. However, there also are some distinctions
between both approaches.

Concerning the measurements, the EKF uses a linearization around the current posi-
tion estimate. This linearization can introduce an additional error, which depends on the
quality of the current position estimate. In the force-directed approach, distances can be
modeled directly, using non-linear terms.

Both the force-directed approach and the EKF combine a measurement with a pre-
diction from a movement model. In the EKF, prediction and measurement update are
initially computed separately and then fused based on the covariance estimates that de-
scribe the uncertainties of prediction and measurement. In contrast, in the force-directed
approach, both measurement and movement forces are considered concurrently. The posi-
tion estimate is computed by finding a force equilibrium for all kinds of forces at the same
time.

As there is no directional information available, the EKF uses a normal distribution
with mean at the previous position as prediction for the position of the next time step. This
means that the last position is the most likely one and the likelihood that the mobile device
is in a certain position decreases with distance to the last position estimate. In the force-
directed approach, the movement force only acts if the distance to the previous position
estimate exceeds some distance dmax. This means that all positions within distance dmax

are equally likely with respect to the movement model. If step recognition is used, the
EKF assumes after a step is detected that the last position estimate is still the most likely
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position, but with an increased uncertainty. In the force-directed approach, one can model
that an attractive force acts if the positions are too far apart and an additional repulsive
force if they are too close together. This would result in a complex probability density
function, which could only be modeled using a more complex Bayesian filter.

9.5 Experiments

To evaluate the performance of the force-directed tracking approach, we present an exper-
imental comparison with the described EKF implementation. The comparison is based
on the sensor network experiments as described in Section 7.1. For both approaches, we
analyze a variant that uses RSS measurements in combination with a movement model
and another variant that combines the RSS measurements with step recognition data.
The EKF that uses only RSS measurements for the localization is labeled “EKF (RSS)”
in the following. The variant that additionally uses step information is labeled “EKF
(RSS+Steps)”. Similarly, “Force (RSS)” and “Force (RSS+Steps)” denote the variants of
the force-directed approach that use only received signal strengths or both signal strengths
and step data, respectively.

9.5.1 Parameter Influence

In the considered EKF model, movement is modeled by process noise. The higher the
uncertainty of the process state, the stronger is the influence of measurement updates on
the final position estimate. Figure 9.6a shows how the overall localization accuracy of
our EKF implementations, averaged over all nine experiments, depends on the assumed
standard deviation σw of process noise w1 and w2 (cf. Equation 9.3). We first analyze
the extreme cases. If σw is chosen very low, measurement updates have little influence
and the position estimate can not keep up with the movement of the tracked object. In
this case, the localization error can become arbitrarily high. If σw is chosen too high,
the prediction looses influence and the position estimate is mainly determined by the
measurement update. This situation is similar to the one analyzed in Section 8.3.3 on the
EKF measurement update.

According to Figure 9.6a, for the considered experiments the optimum values for σw are
7.5 cm for the model without step detection and 11.5 cm for the model with step detection.
We will use this optimum parameters for the following analysis. However, one has to keep
in mind that good values for σw strongly depend on factors such as walking velocity or
the uncertainties of the measurements. Under realistic circumstances, these factors are
not fully known, so one will usually not be able to use optimum parameters. Thus, from
a practical point of view, determining the optimal parameters could be considered as an
overfitting on the data. We use this approach nevertheless, as it is somewhat difficult to
compare different approaches when suboptimal parameters are used. As the same set of
parameters is used for all 9 experiments, the overfitting should be kept within reasonable
limits.

In the force-directed approach, the behavior of the movement model is determined by
two parameters: the expected movement distance dmax between two position estimations
and the weighting factor wmove for the movement force F⃗move (we assume that the mea-
surement forces are weighted with weight 1). Figure 9.6b shows the influence of wmove for
the force-directed approach without step detection (dmax = 0.2m) and with step detection
(dmax = 0.5m). Note that normally one would choose the values of dmax a little higher,
e.g., dmax = 0.35m per 0.25 seconds or dmax = 0.65m per step. We chose the values
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(a) Influence of σw in the EKF. (b) Influence of wmove in the force-directed approach.

Figure 9.6: Influence of model parameters on the localization accuracy.

deliberately a little smaller to be able to demonstrate the influence of wmove. If wmove is
chosen very low, the movement force plays almost no role for the final movement direction.
In this case, we are back at the situation without movement forces, which was analyzed in
the chapter on force-directed position estimation. For high values of wmove, a very strong
movement force acts as soon as the position estimate leaves the area with radius dmax

around the last position estimate. However, no matter how large wmove is chosen, the
position estimate still can move distance dmax per step. This explains why the localization
error in Figure 9.6b does not increase significantly for high values of wmove.

From a practical perspective, the modeling of the force-directed approach with a ra-
dius dmax within which no movement forces act offers some advantages. There are many
scenarios for which it is easy to define a meaningful value for dmax. For example, a sin-
gle step can not be arbitrary wide. In contrast, in the analyzed EKF model, the actual
movement distance is determined by a combination of several complex factors, such as
uncertainties of single measurements for example. This makes it harder to model such
kinds of knowledge. Of course, it can happen that dmax is chosen significantly too small
for the considered application. In this case, the outlined force-directed approach behaves
similar to the EKF, meaning that the position estimate cannot catch up with the true
position if wmove is chosen too large.

According to Figure 9.6b, the optimum values for wmove are wmove = 385 for the model
without step recognition and wmove = 710 for the model with step recognition. As for the
EKF, we will use this optimal parameters in the following studies.

9.5.2 Influence of Beacon Number

In this section, we examine the influence that the number of beacon nodes has on the
localization results. To determine the subset of used beacons, we use the same approach
as in the chapter on RSS-based position estimation: First, the two beacons with maximum
distance from each other are selected. Subsequently, in each step the beacon that maxi-
mizes the minimum distance to any already selected beacon is chosen until the intended
number of beacons is reached.

Figure 9.7 shows the average error over all experiments in dependence of the number
of beacons. Again, in each step the 10 best RSS measurements were used. Altogether, the
differences between the different approaches are rather small. In the considered experi-
ments, the force-directed tracking approach that uses additional step information performs
best, followed by the variant that uses only RSS measurements. Apparently, the EKFs
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with and without step detection show nearly the same average error. It seems that as
long as the person walks somewhat steadily and the parameters are chosen accordingly,
it makes no big difference whether the position update is done once per time step of 0.25
seconds or once every time when the person moves one step. Also, it can be seen that
depending on the intended application even a small network with only 15 to 20 beacons
might be sufficient to achieve a mean localization accuracy of about 2.5m.

Figure 9.7: Average localization error in dependence on the number of used beacon nodes.

9.5.3 Tracking Examples

So far, all presented results were averaged over all experiments. To give a rough impression
of how the algorithms performed in the single experiments, Table 9.1 gives an overview of
the localization errors for each experimental run. The results were obtained using all 60

Algorithm / Scenario
ITI ITIV

1 2 3 4 1 2 3 4 5

EKF (RSS) 1.69 1.54 1.44 1.32 1.67 2.11 1.83 2.25 2.06
EKF (RSS+Steps) 1.56 1.59 1.48 1.34 1.68 2.03 1.77 2.18 2.08
Force (RSS) 1.88 1.41 1.39 1.06 1.37 2.22 1.95 2.37 1.47
Force (RSS+Steps) 1.47 1.41 1.63 1.24 1.30 1.85 1.71 2.10 1.49

Force (No Model) 2.81 2.22 2.41 2.60 3.00 3.56 3.37 3.60 3.86

Table 9.1: Average localization errors (in m) for the single experiments.

beacon nodes and the 10 best RSS measurements per time step. Additionally, the average
localization errors of the force-directed position estimation technique from the last chapter
are given. Apparently, using the additional movement forces between consecutive position
nodes in the force-directed tracking approach lowered the error by more than one meter
on average.

To conclude the experimental part, two tracking results are presented in Figures 9.8
and 9.9. The path estimate in Fig. 9.8 was computed using the force-directed method
without step detection. In comparison with Fig. 9.1, which is based on the same ex-
perimental run, we see that the movement model significantly improved the localization
quality.

An example for a tracking result of the force-directed tracking method with step detec-
tion is shown in Figure 9.9. In both figures, we refrained from including the corresponding
EKF trajectories, as the figures would become very confusing otherwise. Overall, the
trajectories that are computed by the EKFs look very similar.
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Figure 9.8: ITI: Tracking result using the force-directed approach without step recognition. The
orange path shows the reference trajectory, the green path shows the computed trajectory.

Figure 9.9: ITIV: Tracking result using the force-directed approach with step recognition. The
orange path shows the reference trajectory, the green path shows the computed trajectory.

9.6 Simulations

In this section, we present some additional simulation results to supplement the results of
the experiments. For the simulations, we used the simulation setup as described in Sec-
tion 7.4. In the simulations, we restrict ourselves to tracking based on RSS measurements
and movement model assumptions. To evaluate the approaches that additionally use step
detection, a reasonable simulation of step data would be necessary, which is beyond the
scope of this work. The simulations are based on the scenarios SIM 1 - SIM 3 as described
in Section 7.4.2.

Figure 9.10 shows the dependence of the localization accuracy on the number of beacon
nodes. For each walking scenario and each considered number of beacon nodes, 50 networks
with different beacon node positions were used.

(a) SIM 1 (b) SIM 2 (c) SIM 3

Figure 9.10: Average localization errors in dependence of the number of beacon nodes for different
simulation scenarios.
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The overall picture in Figure 9.10 is very similar to the one that was observed in
the real-world experiments, with slightly lower localization errors for the force-directed
approach than for the EKF. On average, the mean localization error of both approaches is
a little lower than in the real-world experiments. One reason for this difference is that in
the experiments, due to hardware limitations, only 24 RSS values were recorded per time
step. In the simulations, we omitted this restriction, as this limitation is very specific to
the hardware used in the experiments.

Between the different simulation scenarios, SIM 1 resulted in slightly lower localization
errors than the other simulation scenarios. The reason probably is that for SIM 1 less
positions of the simulated trajectory lie close to the border of the sensor network. This
is advantageous, as the localization usually is better when the mobile node is surrounded
by beacon nodes. An example of a localization result with the force-directed tracking
approach for simulation scenario SIM 2 with 50 beacon nodes is depicted in Figure 9.11.

Figure 9.11: Localization result for simulation scenario SIM 2. A network of 50 beacon nodes
was used (blue points). The orange path shows the reference trajectory, the green path shows
the trajectory computed by the force-directed tracking method. In this simulation, the average
localization error is about 1.5 meters.

9.7 Summary

In this chapter, we considered the application of force-directed approaches to the problem
of RSS-based tracking in indoor environments. Different possibilities to model knowledge
from movement models or inertial data have been described. The force-directed tracking
approach was then compared to implementations of extended Kalman filters (EKFs). In
our experiments and simulations, in which we analyzed the influence of parameters and
beacon number, the force-directed tracking approach resulted in slightly lower localization
errors than the EKFs. One possible cause for this difference is that, unlike EKFs, the
force-directed approach does not require linearization.

Outlook. This work can only serve as a starting point, and further research is necessary
to investigate the possibilities force-directed approaches offer in the context of tracking
in wireless networks. In our opinion, the main benefit of the force-directed approach in
comparison to other approaches is that it offers an immense freedom in building up system
models. Process state and measurement inputs are not limited to normal distributions,
and additional knowledge can easily be introduced with new kinds of forces. As runtime
and space complexity of the outlined force-directed tracking algorithm depend linearly on
the number of concurrent forces, it is well suited even for usage on hardware with restricted
resources.
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Indirect Network Localization

In the previous chapters, we examined the use of sensor networks with known node
positions to localize mobile devices based on signal strength measurements. In this chapter
we consider the problem of localizing the sensor network itself. We present an indirect
localization approach in which a mobile node is used to compute an embedding of the
network, using solely information about signal strength measurements. In contrast to
most existing work, we assume that neither information about the positions of anchor
nodes is available, nor about the movement of the mobile node. The proposed approach
puts extremely low requirements on the stationary nodes. It is not even necessary that
they are able to communicate with each other. All computations are outsourced to one or
few mobile devices.

The presented indirect localization approach is evaluated based on simulations and
real-world experiments. Additionally, a comparison with two approaches that additionally
use knowledge about the true movement of the mobile node is presented. As a possible
application of the presented approach, the RSS-based tracking using the computed sensor
node positions is examined.

10.1 Introduction

Most applications of wireless sensor networks require at least rough knowledge about the
positions of the sensor nodes. Especially when the number of network nodes is high, a
manual initialization of node positions is out of questions. Moreover, globally available
positioning systems such as GPS only work outdoors. For this reason, many approaches
for automatic localization of sensor networks have been proposed.

The existing localization approaches strongly differ with respect to the assumptions
they make about the available knowledge. In some approaches, it is assumed that for some
sensor nodes, so-called anchor nodes, the exact position or at least a position estimate is
available. This information is then used to estimate the positions of the remaining nodes.
Frequently, it is also assumed that angular information about the relative positions of
nodes is available, e.g., using multiple antennas or antenna arrays.

A whole family of approaches uses communication between the stationary nodes to
estimate pairwise distances between the nodes. Usually it is assumed that the networks
are really large and the true distances are approximated by hop distances. However,
these approaches work similarly well with RSS-based distance estimates. Due to the
nature of communication-based distance estimation, one usually only obtains distances of
nodes that are at most one maximum communication radius away from each other. The
standard approach to infer the distances of nodes that are further apart is to use shortest
path computations in the network that is induced by the available distance estimates.
Finally, an embedding technique such as multidimensional scaling or a force-directed spring
embedder is used to compute an embedding of the network. The most prominent such
approach is MDS-MAP, which has been proposed by Shang et al. in [SRZF03].

In the area of indirect localization, some approaches assume that a mobile device is
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available whose position is known, e.g., by means of a GPS receiver. The mobile device
either sends or receives wireless messages at known positions around the nodes that are
to be located. Based on the received signal strengths in combination with the known
positions, the positions of the stationary devices are determined.

Another kind of approach works by alternately localizing the mobile device and the
stationary beacon devices. These so-called SLAM approaches (simultaneous localization
and mapping) usually assume that either some initial information about reference positions
is available, or information about the movement of the mobile device, e.g., in terms of
odometry data.

In this work, we follow an approach similar to MDS-MAP. But instead of using com-
munication between stationary nodes to estimate inter-node distances, we use a mobile
node, e.g., a person that walks through the network with a wireless receiver. The mo-
bile device collects wireless messages that are broadcasted by the stationary sensor nodes,
and the task is to localize the sensor network based on the corresponding received signal
strengths. In the considered scenario, we assume that there exists no information about
any reference positions or the movement of the mobile device.

Contributions. Indirect localization of sensor networks has already been studied in sev-
eral variants. However, usually either knowledge about the movement of the mobile device
is assumed [SR04b, XCZ08], or the distance estimation method is significantly better, e.g.,
using time difference of arrival (TDoA) or other accurate techniques [PBDT05, ZL11]. In
this work, we focus on additional difficulties that arise in connection with RSS-based dis-
tance estimation in indoor environments. The considered setting thus differs in several
ways from most existing work on MDS-based localization: Our simulations are adjusted to
measurements from real-world experiments and they also include systematic errors such
as the attenuation of signals at walls. Additionally, we consider effects that are caused by
the limited sensitivity of wireless receivers, e.g., distances to nodes that are far away are
systematically underestimated as only those signals that randomly exceed the receiver sen-
sitivity are detected. We describe the resulting additional difficulties and present simple
but efficient possibilities to cope with them.

To evaluate the presented indirect localization approach, we use extensive simulations.
A comparison with two approaches for indirect localization is presented, which additionally
use full knowledge about the movement trajectory of the mobile device. As an example
application, the tracking based on the computed sensor node positions is studied, and
achievable tracking accuracies are examined based on simulations. Finally, some real-world
examples are presented and additional problems that can arise in real-world application
are discussed.

Applications. The presented approach can be used in all applications that require rough
knowledge about the positions of the sensor nodes. As one possible example, we consider
in this work the ad-hoc deployment of a sensor network for the subsequent localization of
mobile devices. The presented indirect localization approach makes it possible to use a
heterogeneous network with many low-cost stationary nodes and only few powerful mobile
nodes. The stationary nodes only have to send messages with their unique node ID.
Thus, they can be produced very small and cheap. For some scenarios, it might even
be possible to use disposable nodes. Only the mobile nodes, which are small in number,
have to process messages and to compute an embedding of the network. As they are
carried on body, they do not get lost during operation. Thus, they can easily be reused.
Additionally, the necessary computations are not computationally expensive, so average
modern cell phones should be completely sufficient.

In the considered scenario, the stationary nodes are distributed throughout the build-
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ing or area of interest. After deployment, they regularly send messages with their unique
ID. These messages are received by mobile devices, which are carried by people. The
measured signal strengths are then used to infer information about distances between
stationary nodes. Given the calculated distances, a standard approach such as multidi-
mensional scaling is used to find an embedding of the network. This is done centralized
at the mobile nodes.

Usually, centralized approaches are undesirable in sensor networks, as they require a
lot of communication and, thus, they normally do not scale well with network size. In
the considered scenario, the situation is different. The RSS data is collected directly in
the mobile nodes and can also be processed there. It is sufficient when the mobile devices
exchange the computed distances from time to time. If the mobile devices are conven-
tional cell phones, this could be easily realized by connecting to some internet service.
Alternatively, one could also use the stationary network nodes to pass the messages. For
realistic network dimensions, the amount of data that has to be exchanged should be quite
manageable. Either way, using a heterogeneous network where all the processing is done
by few mobile nodes should make it possible to use larger stationary networks with lower
costs.

10.1.1 Related Work

Existing approaches for the sensor network localization problem can be classified according
to the kind of information that is used, ranging from solely connectivity information to
knowledge about node distances and positions of anchor nodes. In the following, we give
a brief overview on the different possibilities for locating a sensor network.

Anchor-based localization. If anchor nodes or reference points with known positions
are available, one can use distance or angular information to infer the positions of nodes
with unknown locations by using trilateration or triangulation [NL02, SRL02]. Another
example for this approach is the distributed ad hoc positioning system (APS) proposed
by Niculescu and Nath in [NN01]. It either uses hop distances (DV-hop) or RSS-based
distance estimates (DV-distance) to infer distances to known anchor nodes. Using these
distance estimations, a node can compute its own position using a trilateration method
similar to the one used in the Global Positioning System (GPS). The method proposed by
Savarese et al. [SRL02] consists of two steps. The first step, Hop-TERRAIN, is similar to
DV-hop and computes initial position estimates. The second step is an iterative refinement
where each node uses least-squares trilateration to update its position. Like DV-hop, the
method needs to know positions of at least three anchor nodes. In [DPEG01], Doherty et
al. use a convex constraint satisfaction approach to formulate the problem as a feasibility
problem. The convex constraint problem is then solved by semi-definite programming. If
directional information is available, it is even possible to use linear programming. This
method requires the availability of anchor nodes with known positions, preferably on the
outer boundary of the network. Given a high number of anchor nodes, the collaborative
multilateration approach proposed by Savvides et al. in [SPS02] can be used. Nodes that
are connected to at least three anchor nodes determine their position and in turn become
new anchor nodes. This is iterated until every node has a position estimate. In the RF-
based localization system of Bulusu et al. [BHE00], a grid of beacon nodes with known
positions is used. A node localizes itself to the centroid of a set of reference points that
are within communication distance. Again, this method needs a high number of beacons
to achieve reasonable accuracy.
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Anchor-free localization. A method that works without anchor nodes and orienta-
tion information is MDS-MAP [SRZF03] (cf. Section 2.2.3). In MDS-MAP, an all-pairs-
shortest-path algorithm is used to roughly estimate distances between each possible pair
of nodes. Subsequently, classical multidimensional scaling (MDS) [Tor65] is used to de-
rive node locations that fit the estimated distances. Optionally, if anchor nodes with
known positions are available, this information is used to normalize the resulting coor-
dinates. As MDS-MAP has difficulties to deal with irregular node placements, several
modifications and extensions have been proposed. MDS-MAP(P) [SR04a] is a distributed
version of MDS-MAP which divides the network into overlapping subnetworks. For these
subnetworks, embeddings are computed using MDS. Subsequently, the single embeddings
are stitched together by aligning them as good as possible. An optional least-squares
refinement is used to improve the embedding. Similar approaches have been proposed
in [YW08, SDK08], where the network is separated into small clusters which are em-
bedded using MDS and finally merged. A slightly different approach has been proposed
in [MSZ+06], where clustering is used to compute a subset of nodes that are embedded
using MDS. The remaining nodes are then localized based on the computed positions using
some cheaper technique such as trilateration.

In [CPI06], a distributed weighted-MDS method (dwMDS) was introduced by Costa
et al., which weights single measurements according to the expected accuracy.

In the approach by Basu et al. [BGMS06], distance and compass information are
used to compute an embedding. In [KW07], Katz and Wagner considered the anchor-
free localization of sensor networks based on noisy measurements of distances and relative
directions. They showed that the problem to recover the nodes’ positions is NP-hard in
this setting, and presented a distributed algorithm that aims at robustness to erroneous
measurements and scalability. Another work that deals with direction-based localization
was presented by Katz et al. in [KGW07].

In [PBDT03], Priyantha et al. proposed AFL, a distributed, anchor-free localization
approach that is based on force-directed methods.

In [EEF+06, EFI+10], Efrat et al. examined force-directed approaches for centralized
sensor network localization. For the case that angular measurements are available, they
proposed a force-directed approach that uses ideas from dead-reckoning to achieve im-
proved estimates for the relative positions between distant sensor nodes. A distributed
version of this multi-scale dead-reckoning (MSDR) algorithm was presented by Coogan et
al. in [CKKK10].

The indirect localization of RFID tags has been considered by Shi and Wong in [SW11].
Some RFID readers are deployed around the area of interest and distances between RFID
tags are estimated indirectly based on signal strength measurements. An embedding of
the RFID tags is then found based on MDS-MAP. Optionally, an additional refinement
can be used to improve the localization results.

Indirect localization with mobile beacons. Most approaches that use a mobile bea-
con node for the localization of sensor networks assume that the position of the mobile
beacon node is known, e.g., by means of a GPS receiver or an inertial measurement unit
(IMU). This information can then be used during deployment to initialize the positions of
the sensor nodes. Such an approach is for example used in [GGK+03, SHS04, SVG+10].

Another possibility is that the mobile beacon node broadcasts its known position in
regular intervals. These broadcasts are then received by the stationary sensor nodes and
the position is determined using trilateration or similar techniques. Examples for this kind
of approach are [SR04b, XCZ08].

In [HE04], Hu et al. introduced the sequential Monte Carlo Localization method, a
particle filter approach that localizes a heterogeneous network of static and mobile nodes.
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In their approach, it is assumed that for some of the nodes, so-called seeds, the positions
are known. Both static nodes or mobile nodes can be seed nodes.

The results of [HE04] were generalized in [RD07] by Rudafshani and Datta. They also
considered a network with mobile nodes, where some of the nodes know their positions,
e.g., by means of GPS. In contrast to [HE04], they assume that even non-seed nodes
broadcast their position estimates and that these estimates are used by other nodes to
locate themselves.

If information about the relative movement of the mobile device is known, this infor-
mation can also be used for localization. An example is [RB00], where a group of robots
shares odometric data to locate themselves. Approaches in the context of simultaneous
localization and mapping (SLAM), where both the position of a mobile device and the
positions of reference points are estimated at the same time, frequently also utilize odom-
etry data. An example is [HMS01], where one or multiple mobile robots are localized
simultaneously with a sensor network.

There also exist some approaches that work without knowledge about the location
and the relative movement of the mobile device. In [PBDT05], a mobile device is used
to measure distances between node pairs until the resulting distance constraints form a
globally rigid structure that guarantees a unique localization. The approach is based on
the Cricket location-support system [PCB00], which estimates distances based on time
differences of arrival (TDoA) between RF signals and ultrasound pulses. This TDoA
approach allows distance estimation accuracies in the range of few centimeters. Thanks to
the high accuracy of the distance estimations, only few measurements are necessary to get
rigid structures. In [ZL11], sensor nodes are deployed manually. Every time a sensor node
is placed, a mobile beacon, which sends RF signals and ultrasonic pulses, is switched on
for a short period. By measuring TDoA between the different kinds of signals, distances
between the mobile node and nodes that are already deployed are estimated. These
distance estimates are then used as distance estimates between the newly deployed node
and the nodes that have been deployed earlier. The embedding of the sensor network is
finally computed using MDS-MAP.

Further information on localization of wireless sensor networks can be found in several
surveys on this topic, e.g., [MFA07, WGD10].

10.2 Indirect Localization

In the standard MDS-MAP approach, the embedding of the sensor network is found as
follows: Sensor nodes which are within communication range of each other exchange wire-
less messages. The distances between nodes that can communicate directly are then either
estimated based on the received signal strengths, or they are simply set to 1 if hop dis-
tances are used. Distance estimates for pairs of nodes that are further away from each
other are determined using shortest path computations in the network that is induced
by the available distance estimates. Finally, the pairwise distances are used to compute
an embedding of the network using multidimensional scaling (MDS). In some variants of
MDS-MAP, an additional refinement is used to improve the embedding.

In this section, we introduce a modified version of MDS-MAP that enables the indirect
localization of wireless sensor networks. To indicate that the embedding is computed
indirectly, we will label the approach MDS-IND. If an additional force-directed refinement
is used after the embedding with MDS, the resulting approach will be labeled MDS-
IND(R).
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10.2.1 Indirect Distance Estimation

We considered three strategies to indirectly estimate distances between static sensor nodes.
The first variant uses a two-way measurement: Each time when the mobile nodem receives
RSS-measurements to more than one static sensor node, for each pair (u, v) of sensor nodes
the RSS-based estimates d̂m,u and d̂m,v of the distances between nodes m and u and nodes

m and v are used to get an upper bound d̂m,u+ d̂m,v ≥ d̂u,v on the estimated distance d̂u,v
between u and w (cf. Figure 10.1). The idea then was to use the smallest upper bound
as distance estimate, maybe increased by some percent to account for uncertainties in the
RSS-based distance estimation process.

u

v

u

v

Figure 10.1: Two-way distance estimation. The blue points correspond to static sensor nodes u
and w with unknown positions, the red line shows the (unknown) trajectory of the mobile node
m, and the red points mark positions where the mobile node takes RSS measurements. Left: For
measurements in the gray area, the average distance estimation approximates the true distance
reasonably well. Right: Example for a measurement position that results in strongly overestimated
distances.

Unfortunately, it turned out that this kind of distance estimation is extremely unre-
liable. One reason is that if, for two static nodes u and v, the mobile node does not get
close to either u or v, or alternatively to the straight line connecting u and v (this area is
highlighted in Figure 10.1 in gray color), then the distance between u and v is significantly
overestimated, and there is no simple way to detect whether this happens. Second, even
when using the lower quartile of the “upper bounds” instead of the minimum, large dis-
tances are still significantly underestimated due to the high fluctuation of signal strengths,
whereas short distances are already significantly overestimated. For this reason, we will
not go further into the details of this approach.

The second strategy that we considered was the approach for indirect distance esti-
mation proposed in [SW11] for the indirect localization of RFID tags. Although the work
in [SW11] considers several static RFID readers instead of a mobile device, the underly-
ing problem of indirect distance estimation is quite similar. One can simply consider the
positions of the different RFID readers as different positions where a single mobile device
takes RSS measurements. The approach works as follows: Using triangular inequalities,
each pair of distance estimates d̂m,u and d̂m,v from mobile node m to two static nodes u
and v is used to get an upper bound and a lower bound on the distance du,v between u
and v, i.e.,

|d̂m,u − d̂m,v| ≤ du,v ≤ d̂m,u + d̂m,v . (10.1)

Then, to account for uncertainties of error-prone distance estimates, the final upper bound
duu,v and lower bound dlu,v on the distance du,v are computed by averaging over all computed
upper and lower bounds. The distance du,v is then estimated as the mean of the upper
bound duu,v and the lower bound dlu,v, i.e.,

d̂u,v = (duu,v + dlu,v)/2 . (10.2)
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We implemented this strategy, but it turned out that the high uncertainty of the RSS-
based distance estimation resulted in a severe overestimation of short distances. The
reason is that even if two nodes u and v are close, there might be some measurements
where one of the distance estimates d̂m,u and d̂m,v is much larger than the other one. In

such a case, |d̂m,u− d̂m,v| can exceed du,v significantly. As a result, for small distances du,v
the computed lower bounds dlu,v often exceeded du,v in our simulations.

Figure 10.2 shows for a single simulation run how the computed upper and lower
bounds duu,v and dlu,v on the distance and the final distance estimate d̂u,v correlated with the
true distances du,v between the corresponding sensor nodes. We observe that both upper
and lower bounds result in a significant overestimation of short distances. In consequence,
the final distance estimate also is far too large for short distances.

(a) Lower bounds dlu,v. (b) Upper bounds duu,v. (c) Distance estimates d̂u,v.

Figure 10.2: Indirect estimation of pairwise distances using the method proposed in [SW11]. The
plots are based on a single run of simulation scenario SIM 2 with 50 random sensor nodes. (a) Each
data point shows for a single pair of static nodes how the lower bound on the distance correlates
to the true distance. (b) Correlation between upper bounds and true distances. (c) Correlation
between estimated distances and true distances.

The third and last strategy that we considered utilizes the fact that one can relatively
accurately detect whether the mobile node m is close to some static sensor node u, by sim-
ply checking whether the received signal strength exceeds some specific proximity threshold
θRSS. If this happens, the distance between u and some other node v can be approximated
by the distance between m and v, i.e., du,v ≈ dm,v. Thus, to estimate the distance between
two nodes u and v, the mobile node estimates its distance to u or w when it assumes to
be close to the respective other node. All such distance estimates are collected, and the
final estimate for the distance between u and v is computed as the mean or median of
all distance estimates. This approach, which is illustrated in Figure 10.3, has the nice
property that it is about equally likely that the distance between a pair {u, v} of nodes
is overestimated or underestimated. Thus, one can expect that the mean or median of
all distance estimates approximates the true distance reasonably well. In the experiments
and simulations of this thesis, we use the median of the estimates. Furthermore, to achieve
additional robustness, we required a minimum of 20 estimates per pair of nodes, otherwise
the distance estimate was ignored.

Apparently, if m gets neither close to u nor to w, the described one-way distance
estimation will give no estimate for the distance between u and w. Thus, one has to make
sure that most sensor nodes are visited (i.e., approached up to a distance of few meters) at
some point by a mobile node. However, this restriction also has its positive aspects. While
in the two-way distance estimation approach it was not easily possible to check whether
the sum of the distances from m to u and from m to w gets close to the distance between
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u

v

u

v

Figure 10.3: One-way distance estimation. The blue points correspond to static sensor nodes u
and v with unknown positions, the red line shows the (unknown) trajectory of the mobile node m,
the red points mark positions where the mobile node takes RSS measurements. At positions where
m receives very strong signals from one of the nodes (gray areas), it estimates its distance to all
other nodes which are in communication range based on received signal strengths. The green lines
symbolize single distance estimates. The final distance estimate between u and v is computed as
the average of all distance estimates from m to nodes u or v.

u and w, the selection rule of the one-way distance estimation makes sure that only those
measurements are used for which one can expect that the distance between m and u or
between m and w is comparable to the distance between u and w.

One question that remains open at this moment is how the threshold θRSS on the
signal strength, which indicates proximity to a sensor node, should be chosen. A good
choice for the value of θRSS depends on the used hardware and the trajectory of the mobile
node, i.e., how closely the mobile node approaches the static sensor nodes. In the scenario
of indoor localization, as considered in this thesis, a value of θRSS that corresponds to
an estimated distance of 2m to 5m seems to work well. A simulation-based study on
how the localization accuracy depends on the value of θRSS and on the walked trajectory
is presented in Section 10.5.1. Some examinations of distance estimations based on the
one-way approach will be shown later for simulation scenario SIM 2 in Figure 10.4a, for a
real-world experiment at the ITI in Figure 10.12a, and for an experiment at the ITIV in
Figure 10.14a.

10.2.2 Completing Pairwise Distances

After the one-way distance estimation, only distance estimates between nodes which are
not much more than one communication distance away from each other are available.
Similar to the original MDS-MAP approach, we use shortest path computations in the
graph that is induced by the available distance estimates to approximate distances of
nodes which are further away from each other. However, the characteristics of RSS-based
distance estimation make some slight modifications necessary.

Figure 10.4a shows for a simulation based on scenario SIM 2 with 50 sensor nodes how
the estimated distances correlate to the real distances. Each data point belongs to a single
pair of static sensor nodes. We observe that only for few nodes that are further than 30m
away from each other a distance estimate could be established.

If all distance estimates of the one-way distance estimation are used in the shortest
path computation, one gets the situation depicted in Figure 10.4b. Wo observe that all
long-range distances are significantly underestimated. This behavior is caused by the
high fluctuation of signal strengths, which leads to the effect that the distances between
single pairs of nodes are significantly underestimated. In combination with shortest path
computations, a single underestimated distance can cause that most long-range distances
are underestimated.

To alleviate this problem, we introduce a second threshold, distance threshold θdist. All
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(a) One-way distance estimates. (b) Compl. distances, no cutoff. (c) Compl. distances, θdist = 8m.

Figure 10.4: Estimation of pairwise distances between static nodes. Each data point shows for a
single pair of static nodes how the estimated distance correlates to the true distance. The plots
are based on a single run of simulation scenario SIM 2 with 50 random sensor nodes. (a) Situation
after the initial one-way distance estimation. (b) Situation after shortest path distance completion
without threshold. (c) Situation after shortest path distance completion with θdist = 8m.

distance estimates of the one-way distance estimation that exceed the cutoff value θdist are
not used in the shortest path computation. The motivation behind this approach is that
the distance estimation error increases significantly for larger sender-receiver distances (cf.
Section 7.2). Thus, considering only short distances in the shortest path computations
promises to reduce the error. Again, there is a tradeoff. If θdist is chosen too small, the
network that is induced by the remaining one-way distance estimates might fall apart into
unconnected components. In our experiments and simulations, values of θdist in the range
from 7m to 10m resulted in reasonable results. Figure 10.4c shows the effect of using only
distance estimates up to θdist = 8m in the shortest path computations. We observe that
the systematic underestimation of long distances is successfully avoided.

To convey an impression of the knowledge about pairwise distances before the shortest
path computations, Figure 10.5 presents an example for which pairs of nodes the one-way
distance estimation established an estimate. Distance estimates which exceed θdist = 8m
are filtered out, as they are not used in the shortest path computation. The color of
the edges indicates whether the corresponding distance estimate overestimates (red) or
underestimates (green) the true distance.

Figure 10.5: Pairwise distance estimates for scenario SIM 2 with 50 sensor nodes. Pairs of static
nodes for which the distance estimate is less than θdist = 8m are connected by an edge. Green
edges indicate that the actual distance is underestimated, red edges indicate that the distance is
overestimated.
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Figure 10.6: Example for an embedding of simulation scenario SIM 2 using MDS-IND(R). The
simulated sensor network consists of 80 sensor nodes. Blue points show the computed sensor node
positions. Blue lines emerging from the computed sensor node positions point to the actual posi-
tions of the sensor nodes. The orange line shows the simulated trajectory of the mobile node. The
green line shows an estimate of the walked trajectory, using the force-directed tracking approach
in combination with the estimated beacon node positions.

10.2.3 Network Embedding and Refinement

After the shortest path computation, pairwise distance estimates are available for all pairs
of static sensor nodes. Using this information, an arbitrary embedding approach can be
used to find an embedding of the network. In this work, we compute the embedding
using multidimensional scaling (MDS) in combination with a subsequent force-directed
refinement. Most variants of MDS, e.g., multilevel variants or the well-known MDS-
MAP(P) [SR04a] approach, aim at solving problems that occur in very large networks,
with hundreds of nodes, or in networks that span several communication radii. However,
the networks that are considered in this work usually consist of less than a hundred
nodes and they also cover a relatively small area in terms of maximum communication
distances. Thus, we use in this work classical MDS [Tor65]. For the refinement, we use a
Fruchterman-Reingold spring embedder (cf. Section 2.2.2).

An example of a sensor network embedding that was computed using the described
MDS-IND approach is presented in Figure 10.6. To align the computed node positions
with the real node positions, an optimal linear transformation that minimizes the sum of
the squared errors between the true positions and the estimated positions was used. For
the transformation, only translation and rotation were used. In particular, the scale of
the estimated embedding was not changed.

Note that the described MDS-IND approach does not assume that a map of the build-
ing is available. In the considered scenario, one only gets positions of sensor nodes relative
to each other. The alignment of the computed node positions to the map of the build-
ing was done afterwards, with the intention to convey an impression of the localization
accuracy that is achievable with MDS-IND.

10.2.4 Using Multiple Mobile Nodes

The presented approach can be easily extended to the use of multiple mobile nodes, which
cooperatively collect RSS data that is used later to compute an embedding of the network.
The input of MDS-IND consists solely of sets of RSS measurements which were taken more
or less simultaneously, thus data sets that are collected by different nodes simply have to
be transferred to the node or device that computes the embedding of the network. If the
devices that collect the data use different hardware, an additional adjustment might be



10.3 Application: Tracking 141

necessary to make the RSS measurements comparable.

10.3 Application: Tracking

The presented MDS-IND approach can be used in connection with any application that
needs position estimates of the sensor network. In this work, we consider as one of many
examples the tracking of mobile devices based on signal strength information. For the
tracking, we use the force-directed tracking approach that was presented in Chapter 9.
But instead of the true positions of the sensor nodes, the position estimates of MDS-IND
or MDS-IND(R) are used to reconstruct the walked trajectory.

Figure 10.7 shows a simulation output of MDS-IND(R) followed by force-directed
tracking using the computed node positions. The reconstructed trajectory provides a rea-

Figure 10.7: Output after an embedding of the network using MDS-IND(R) and subsequent track-
ing with the force-directed tracking approach using the estimated node positions. The blue points
show the estimated node positions, the green line shows the estimated walking trajectory. This
figure is based on the same data as Figure 10.6, but all information that is not part of the output
of the algorithms is omitted.

sonable impression of the real trajectory that was used in the simulation (cf. Figure 10.6).
Note that in general the computed embedding and, thus, the computed trajectory can be
arbitrarily rotated or mirror-inverted. If additionally positions of some anchor nodes are
known, the computed trajectory can be easily displayed on a map, similar to Figure 10.6.
Alternatively, compass data could be used to adjust the orientation of the computed node
positions and the estimated trajectory.

10.4 Reference Approaches

As a reference approach for indirect network localization, we use the probabilistic indi-
rect localization approach that was presented in [SR04b]. In the considered algorithm, a
mobile beacon node with known position repeatedly broadcasts its current position. The
broadcasts are received by the static nodes, which use the broadcasted position informa-
tion in connection with the received signal strength of the message to estimate their own
positions.

The scenario of [SR04b] differs in two ways from the scenario considered in this work:
First and most important, in [SR04b] the position of the mobile node is known by means
of GPS or similar techniques. This offers a significant advantage compared to the situation
considered in this work, where no knowledge about positions and relative movement of



142 Chapter 10: Indirect Network Localization

the mobile node is available. Second, in [SR04b] the mobile node sends the broadcasts
which are then received by the static nodes, whereas in this work the static nodes broad-
cast their IDs and the mobile node measures the received signal strengths. This second
distinction should make no real difference, as on average one can expect similar received
signal strengths in both cases. Altogether, it seems natural that additional knowledge
about the trajectory of the mobile node allows for much better embeddings of the sensor
network. In our simulations, we examine how big this difference is.

The probabilistic approach of [SR04b] is computationally very expensive. For each
static sensor node, a map of probabilities has to be stored for a relatively large area.
To examine whether similar results can be achieved with less effort, we adjust the force-
directed RSS-based position estimation technique of Section 8.2 to the problem of indirect
localization using a mobile node with known trajectory. The necessary modification is
straightforward: Each broadcasted message of the mobile node is simply considered to be
coming from a different static beacon node whose position corresponds to the position of
the mobile node at the time the broadcast was sent.

It would also be very interesting to compare the presented indirect MDS-IND(R)
approach to the traditional MDS-MAP approach that uses RSS measurements between
static sensor nodes to find an embedding of the network. It is not directly clear, which of
both approaches results in more accurate embeddings. The original MDS-MAP approach
has the advantage that the RSS measurements are taken directly by the nodes whose
distance is to be determined, whereas the MDS-IND approach uses indirect measurements,
which potentially introduce additional kinds of errors. On the other hand, received signal
strengths strongly depend on the exact position of the measurement and on the orientations
of senders and receivers. For the static sensor nodes, both position and orientation do not
change, thus, it is possible that the fixed positions and orientations of the nodes results
in extraordinary high or low signal strengths. On the contrary, the mobile node takes
measurements at many different positions, so there might be a chance that on average
the measured signal strengths resemble the signal strength that is expected based on the
distance between the two static nodes. Unfortunately, in our experiments it was not
possible to collect the necessary data, as only the mobile node was able to store received
signal strengths. Additionally, it is also not directly clear how much fluctuation of the
RSS values should be used in the simulations to simulate communication between static
sensor nodes. For this reasons, the described comparison will only be subject of future
research.

10.5 Simulations

For the simulation-based evaluation of the proposed MDS-IND approach, we use the sim-
ulation scenarios SIM 1 to SIM 3 as described in Section 7.4.2. However, departing from
the previous chapters on RSS-based position estimation and tracking, we now assume that
the positions of the static beacon nodes are completely unknown.

Quality Measurement. Several quality measures have been used in the literature to
evaluate the quality of positioning algorithms. For anchor-free localization approaches,
the localization result can be rotated or flipped. To deal with this, often quality measures
are used that measure the stress of the solutions, i.e., the deviation of the distances d̂ij
between nodes in the computed embedding from their true distances dij . Examples for
such quality measures are the global stress root-mean-square error (GSR), which has been
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used in [KW07],

GSR :=
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and the Frobenius metric (FROB) [GVL96],

FROB :=
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which has been used in [EEF+06, KW07, EFI+10]. In both definitions, n states the number
of static sensor nodes.

The problem with these measures, as well as with similar measures that are also
based on distances between sensor nodes, is that they are hard to interpret and they
sometimes hide systematic errors such as different scales [Kat09]. For this reason, we
use an approach similar to the one used in [Kat09] to measure the quality of computed
embeddings: For each computed embedding, a best-fit affine transformation [TCPK01]
using rotation, translation, and reflection is used to align the estimated positions with the
true positions. Subsequently, the quality of the embedding is determined as the average
distance between the computed positions and the true positions. This measure is analogous
to the one used in this work for the RSS-based position estimation and tracking, and it
resembles the visual impression very well.

10.5.1 Proximity Threshold θRSS

We first analyze how the node localization quality depends on the value of θRSS, the
threshold that controls for which signal strengths it is assumed that the mobile node is
close to some static node. Figure 10.8 shows for various values of θRSS the resulting average
node localization error , i.e., the average deviation between the true node position and the
position estimate computed by MDS-IND(R). Each data point represents an average of 50
runs, using different random placements of 50 sensor nodes. For all embeddings, θdist = 8m
was used.

Figure 10.8: Average node localization error of MDS-IND(R) in dependence of the used proximity
threshold θRSS.

The U-shape of the functions, which is apparent for all simulation scenarios, clearly
shows that both very small and very large values of θRSS result in bad localization results.
If θRSS is chosen too large, i.e., if a sensor node is only assumed to be nearby when
the received signal strength is very strong, there are many pairs of nodes for which no
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distance estimate can be established. On the other hand, if θRSS is chosen too small,
even distance estimates that are taken rather far from a sensor node are included in the
distance estimations of that node.

Considering the differences between the simulation scenarios, it turns out that for
scenario SIM 1, the scenario with the short trajectory that only covers parts of the floor,
the value of θRSS that results in the best localization results is lower than for the other
scenarios. This seems reasonable, as in scenario SIM 1 the mobile node does on average not
approach the sensor nodes as closely as in the other scenarios. Thus, even measurements
at larger distances from a node have to be used in the distance estimations. It is also
apparent in Figure 10.8 that the longer trajectories of SIM 2 and SIM 3 result in broader
intervals of good values for θRSS, i.e., values that result in good localization results. Again,
the reason is that lower values of θRSS can be used if the static nodes are approached more
closely.

For the trajectories of the simulation scenarios SIM 2 and SIM 3, the achievable average
localization error is in the range of about 2m. The average error using SIM 1 is slightly
higher. For the following experiments, we use the same parameter θRSS = −65 dBm for
all simulation scenarios. Note that this threshold is not optimal for scenario SIM 3, which
explains why in some experiments the observed average localization error of SIM 3 will be
slightly higher than the one of SIM 2.

10.5.2 Influence of Node Number and Refinement

In this section, we examine the influence of the number of static nodes on the localization
accuracy. The node number influences the localization result, as a larger number of nodes
also entails a higher node density per area, which in turn means that more pairwise distance
estimates are available to compute the embedding of the network.

To assess the influence of the force-directed refinement, the average node localization
error using MDS-IND and the average error using MDS-IND(R) are considered separately
in Figures 10.9a and 10.9b, respectively. Each data point represents an average of 50
simulation runs, using different random node placements. In each run, the parameters
θRSS = −65 dBm and θdist = 8m were used.

(a) MDS-IND (b) MDS-IND(R)

Figure 10.9: Average node localization error in dependence of the number of static sensor nodes.

Considering the result of MDS-IND, all three simulation scenarios approach an average
localization error of roughly 3m when more than 60 sensor nodes are used. For less than 50
sensor nodes, the localization accuracy decreases quickly. Among the different simulation
scenarios, SIM 1 results in the worst results. The reason is that SIM 1 is based on a
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short walking trajectory, which covers only parts of the floor. SIM 2 and SIM 3 achieve
comparable results, with SIM 2 showing slightly lower localization errors. As mentioned
in the last section, this is partly caused by the parameter setting θRSS = −65 dBm, which
is not optimal for scenario SIM 3. However, Figure 10.8 suggests that even with a better
choice of θRSS, the significantly longer walking trajectory of scenario SIM 3 does not result
in improved localization results.

Figure 10.9b reveals that the additional force-directed refinement results in signifi-
cantly reduced localization errors. The rough tendency of the average localization error
is similar to the results without refinement, but for network sizes of 60 nodes and above,
the refinement results in accuracy improvements of almost 1m. Additionally, for network
sizes approaching 100 nodes, the differences between scenarios SIM 2 and SIM 3 seem to
diminish.

10.5.3 Localization with Additional Movement Knowledge

Some existing work on indirect network localization assumes that information about the
movement of the mobile device is available. To examine how much improvement this
additional knowledge enables, we consider in this paragraph the most extreme case by
assuming that the exact positions of the mobile device at each measurement are known.
To utilize the additional movement knowledge, we use the probabilistic indirect localiza-
tion approach that was presented in [SR04b] and the force-directed position estimation
approach of Chapter 8.2. Further details on both algorithms are given in Section 10.4.

Figure 10.10 shows the average localization errors of both approaches for the three
simulation scenarios of Section 7.4.2. Each data point is based on 20 different runs with
varying node placements.

Figure 10.10: Average node localization error for the probabilistic approach (Prob) and the force-
directed approach (Force), which both use full knowledge about the trajectory of the mobile device.

It is not surprising that in this scenario the number of nodes has no significant im-
pact on the average localization accuracy, since the localization process of one node is
not influenced by other nodes. However, the trajectory of the mobile device that is used
for the measurements makes a difference. In general, more measurements result in im-
proved localization results. Additionally, it is advantageous for the localization result if
measurements are taken from different directions around a node. This is also reflected in
the simulation results. The trajectory of scenario SIM 1 resulted in the worst localization
results, whereas SIM 3 produced the best results. However, the difference between SIM 2
and SIM 3 is extremely small, so it is not likely that longer walking trajectories would
result in much better localization results.

Comparing the considered approaches with each other, the difference in localization
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accuracy is small, with the force-directed approach producing slightly smaller errors on
average. Taking into account that the force-directed approach also is significantly cheaper
in terms of computational effort, this result is rather unexpected.

Next, we take a look at the performance of MDS-IND(R) in comparison to the ap-
proaches considered in this section. For MDS-IND(R), the average node localization error
depends on the number of network nodes. For network sizes of 70 nodes and above, the
average localization error approaches about 2m to 2.5m in scenario SIM 1 and about 1.5m
to 2m in scenarios SIM 2 and SIM 3 (cf. Figure 10.9). This is about 50 cm higher than the
force-directed approach that is considered in this section. Considering that the approaches
of this section use exact knowledge about the walked trajectory, whereas MDS-IND(R)
does not require any such knowledge, this difference is surprisingly small.

10.5.4 Application: Tracking

When the embedding of MDS-IND(R) is used for a subsequent tracking of mobile devices,
the resulting localization accuracy depends in two ways on the number of network nodes:
First, as observed in the previous section, the uncertainty in the computed positions of the
static beacon nodes is influenced by the overall number of nodes in the network. Second,
independent of the accuracy of the beacon node positions, a higher density of beacon nodes
usually results in improved tracking accuracies.

To evaluate how well the node position estimates of MDS-IND(R) are suited for the
tracking of mobile devices, we use the following approach: For each simulation scenario, the
measured signal strengths are first used to compute an embedding of the beacon nodes.
Subsequently, the computed node positions are used in combination with the tracking
approach of Section 9.2. Like in Section 9.2, the quality of the computed trajectory is
then evaluated using the mean distance between the true trajectory positions and the
computed trajectory positions. Figure 10.11 shows the achieved accuracies for the force-
directed tracking after the beacon node positions have been computed using either MDS-
IND or MDS-IND(R). Every data point represents an average of 50 runs with varying
sensor node placements.

(a) MDS-IND (b) MDS-IND(R)

Figure 10.11: Average tracking error, using estimated node positions instead of true node positions.
For the RSS-based tracking, the force-directed tracking approach was used.

For the MDS-IND approach without refinement, the average tracking error levels off
in the range of 2m to 2.5m. Again, using the additional refinement of the sensor node
positions pays off in terms of achievable accuracy. For the tracking after computing the
node positions with MDS-IND(R), the average tracking error in the simulations approaches
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the range of 1.5m to 2m for sufficiently high numbers of sensor nodes. As before, using
less than 50 sensor nodes results in significantly worse localization results. Overall, the
simulations suggest that MDS-IND(R) is able to achieve sufficiently accurate estimates to
use the computed positions for subsequent RSS-based tracking of mobile nodes.

10.6 Application in Real-World Networks

To conclude this chapter, we present some examples of how MDS-IND(R) works in con-
nection with real-world measurements. Again, we use the experiments as described in
Section 7.1, but this time we assume that the trajectory of the mobile node is completely
unknown.

The first two examples show how the result of MDS-IND(R) looks if everything works
as intended. The first example is based on experimental run ITI 2. Similarly to Fig-
ure 10.4, Figure 10.12 shows how the estimates of pairwise node distances correlate with
the true distances. Apparently, the experiment shows the same general behavior as the

(a) One-way distance estimates. (b) Compl. distances, no cutoff. (c) Compl. distances, θdist = 7.5m.

Figure 10.12: Estimation of pairwise distances between static nodes. Each data point shows for a
single pair of static nodes how the estimated distance correlates to the true distance. The plots are
based on experimental scenario ITI 2 with 60 sensor nodes. (a) Situation after the initial one-way
distance estimation. (b) Situation after shortest path distance completion without threshold. (c)
Situation after shortest path distance completion with θdist = 7.5m.

simulations: After the one-way distance estimation, there are many pairs of nodes which
are separated by a large distance, but which are estimated to be only 10m to 15m apart.
If the shortest path computation is used without threshold, large distances are systemat-
ically underestimated. By using only distances up to θdist = 7.5m in the shortest path
computations, this systematic underestimation of large distances can be avoided. Note
that the final result is significantly influenced by an adequate choice of θdist. For this
example, we found a reasonable value using a trial-and-error approach. Determining θdist
automatically is an interesting topic for future research.

The final embedding using MDS-IND(R) is shown in Figure 10.13. Additionally, a
force-directed reconstruction of the walked trajectory, which is based on the estimated
beacon positions, is shown. Taking into account that some of the estimated beacon po-
sitions differ significantly from the true positions, the computed walking trajectory is
unexpectedly close to the real trajectory. Note that both the map and the true node
positions are only shown to provide a visual impression of the errors that are introduced
in the estimation process. The real output of the algorithms only consists of the estimated
node positions and the reconstructed trajectory (cf. Figure 10.7).
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Figure 10.13: Example for the result of MDS-IND(R) on the data of experimental run ITI 2. Blue
points show the estimated sensor node positions, blue lines emerging from the computed sensor
node positions point to the true position of the sensor node. The orange line shows the trajectory
of the mobile node that was used to collect the RSS data. The green line shows an estimate of
the walked trajectory using the force-directed tracking algorithm with the estimated beacon node
positions.

The second real-world example is based on an experiment at the ITIV. The corre-
sponding building presents a good example to demonstrate two additional difficulties that
can arise in connection with RSS-based localization of sensor networks. Both issues are
caused by the U-shape of the building (cf. Figure 10.13). First, the U-shape enables line-
of-sight connections even over large distances. For instance, if a mobile node makes RSS
measurements in one wing of the building, there is a good chance that some packets of
sensor nodes in the other wing of the building are received with relatively high signal
strength. This effect is caused by line-of-sight connections through windows from one side
of the building to the other side. In the process of RSS-based distance estimation, this can
result in extremely underestimated distances. Results of this effect can be seen clearly in
Figure 10.14a. Even for some node-pairs which are separated by more than 50m, the one-
way distance estimation returns distance estimates of less than 15m. Without a threshold
on the distance estimates that are used in the shortest path distance computation, the
shortest path computation causes a severe underestimation of large distances, as can be
seen in Figure 10.14b. However, by using a threshold of θdist = 8m, the problem can be

(a) One-way distance estimates. (b) Compl. distances, no cutoff. (c) Compl. distances, θdist = 8m.

Figure 10.14: Estimation of pairwise distances between static nodes. The plots are based on an
experimental run in the ITIV floor with 60 sensor nodes.
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successfully avoided in the considered experiment (cf. Figure 10.14c).

The second problem that can be caused by buildings in U-shape can actually result in
an overestimation of distances. As discussed, one usually should try to filter those distance
estimates that correspond to node pairs which have direct line-of-sight through windows
of the building. As a result, there should be no direct distance estimates of node pairs in
which one node is situated in one wing of the building and the other node is situated in the
other wing of the building. In consequence, the distance between such pairs of nodes has
to be estimated based on shortest path computations. However, as the shortest path will
go mostly through the inner part of the building, it is likely that the distances between
nodes in different wings of the building are systematically overestimated. To a certain
degree, this effect can also be seen in Figure 10.14c.

Figure 10.15: Example for a result of MDS-IND(R) on the data of an experiment at ITIV. A
reconstruction of the walked trajectory using the force-directed tracking approach in combination
with the estimated node positions is shown by the green line.

This being said, the embedding corresponding to the plots in Figure 10.14 is shown in
Figure 10.15. For the most part, the reconstructed trajectory in Figure 10.15 reasonably
resembles the truly walked trajectory. However, apparently there are also some parts
where the deviation between the computed path and the ground truth is significant.

Finally, we also want to show an example of an embedding, where the node positions
could not be reconstructed so nicely. Figure 10.16 shows an embedding of an experiment

Figure 10.16: Example for a result of MDS-IND(R) based on the data of an experiment at ITIV. A
reconstruction of the walked trajectory using the force-directed tracking approach in combination
with the estimated node positions is shown by the green line.
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in which the used threshold θdist = 8m was not sufficient to filter all distance estimates
that were significantly too low. As a result, the embedding is compressed and the U-shape
is somewhat stretched out. However, for scenarios in which a rough approximation of
the network embedding and the walked trajectory is sufficient, the result might be still
sufficient. Unfortunately, embeddings such as the one in Figure 10.16 were not uncommon
for embeddings based on our real-world data. Accordingly, improved methods for the
detection of strongly underestimated distances might be necessary in order to enable a
robust and reliable application in reality.

10.7 Summary

In this chapter, we considered the indirect and anchor-free localization of wireless sensor
networks based on signal strength measurements in indoor environments. In contrast to
most existing work on indirect localization, we assumed that no knowledge about the
movement of the mobile device or about reference positions is available.

In the considered scenario, the high fluctuations of received signal strengths in indoor
environments, the systematic attenuation of signals at walls, and the limited sensitivity
of wireless receivers, introduce additional difficulties for the indirect estimation of dis-
tances, which, in existing work, are often not relevant (e.g., because distance estimation
approaches with significantly higher accuracy are used, such as TDoA) or not consid-
ered (e.g., because simplifying simulations are used). We described these difficulties and
presented simple and efficient solution strategies.

To evaluate the achievable localization accuracy, we used simulations modeling com-
munication in an indoor environment. In the simulations, the influence of the number of
network nodes and the influence of the movement trajectory of the mobile device were
studied. Additionally, the improvements that are achieved by a force-directed refinement
were analyzed. In our simulations, the refinement improved the accuracy of the sensor
node localization by almost 1m on average.

To assess the localization quality, a comparison with two approaches for indirect net-
work localization, which additionally used full knowledge about the movement trajectory
of the mobile device, was presented. The difference in localization accuracy between the
indirect approach without such knowledge and the two other approaches was surprisingly
small—the average node localization error differed in the simulations only by about 50 cm.

As one possible application of the presented approach, the RSS-based tracking of mo-
bile devices based on the estimated beacon node positions was examined. The achievable
tracking accuracy was examined in simulations, also considering the influence of the num-
ber of beacon nodes.

Finally, some real-world examples were presented, and additional difficulties that might
occur in a real-world application of the presented approach were discussed.

To summarize the results, in the simulations the indirect embedding usually worked
very well, with an average node localization error in the range between 2m and 2.5m
after the force-directed refinement. The average localization error for the tracking based
on the computed node positions was in the range of about 2m, only about 0.5m to
0.8m larger than for tracking based on the true node positions. However, our real-world
experiments indicated that for a reliable and robust application in reality, an additional
outlier detection for strongly underestimated distances might be necessary.
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Conclusion

From an algorithmic point of view, wireless sensor networks offer many new and in-
teresting challenges. Among these challenges, this work addressed different aspects of
communication and localization in wireless sensor networks.

Communication in wireless sensor networks. In the area of communication, new
data structures for the efficient computation of optimum transmission powers were in-
troduced. The focus in the design of the data structures was on enabling efficient re-
computation of optimum powers when there are only slight changes in the input. The
presented data structures differed in the kinds of supported operations and the corre-
sponding complexities. The first data structure was optimized for situations in which
wireless transmissions are activated one after another. In this scenario, the data structure
allows to compute very efficiently how optimum transmission powers change if inactive
transmissions are additionally activated. An application for this data structure are time
division multiple access scheduling algorithms that fill time slots iteratively. The sec-
ond data structure additionally saves information about the operations that resulted in
the current state of the underlying matrices. Using this additional information, the data
structure can provide further operations efficiently, e.g., the deactivation of transmissions.
Finally, a modification of the second data structure was described, which allows to im-
prove the complexities of some operations at the cost of a less efficient prediction of power
changes for the case that transmissions are activated.

The second contribution in the area of communication dealt with the computation of
efficient time division multiple access schedules. New heuristics were presented, which aim
at minimizing the transmission powers that are necessary to schedule a set of transmissions
within a given number of time slots. In contrast to existing approaches, the new heuristics
base their decisions on the resulting effects on optimum transmission powers. To compute
power changes efficiently, the aforementioned data structures for dynamic power control
were used. In a simulation-based comparison with existing approaches, it turned out
that this scheduling strategy not only reduces the necessary transmission powers, but it
also results in throughput improvements. As a second difference to existing scheduling
algorithms, two of the presented heuristics do not fill time slots greedily one-by-one, but
instead they consider several time slots in parallel and assign transmissions to slots where
they fit best. This allowed the computation of more balanced schedules, which required
significantly lower average transmission powers. In addition, this strategy can be used to
find a compromise between throughput and power consumption.

The last contribution dealing with communication in wireless networks considered the
complexity of scheduling with power control in the geometric SINRG model. NP-hardness
proofs for the problems of scheduling with power control and one-shot scheduling with
power control were presented. The presented proofs are applicable in scenarios where the
allowed transmission powers are bounded, including the situation where the powers can
be chosen from a finite set of allowed powers.



152 Chapter 11: Conclusion

Localization in wireless sensor networks. The first problem that was considered
in the area of localization in wireless sensor networks was the problem of connectivity-
based boundary recognition. A new algorithm was presented, EC-BR, which enables each
node to decide autonomously, based solely on connectivity information of its local 2-hop
neighborhood, whether it is situated in close proximity to an area of low node density or
an outer boundary of the network. Several simulation scenarios were considered to assess
the performance of EC-BR in comparison to existing algorithms for boundary recognition.
At this, different node densities, node placement strategies, and communication models
were examined. In comparison to the other algorithms, EC-BR produced surprisingly
good classification results, with low misclassifications rates for both boundary nodes and
inner nodes.

The remainder of this thesis dealt with localization based on received signal strengths
(RSS). First, the real-world sensor network experiments that are used in this thesis were
described, and a preliminary analysis of the experimental data was presented. The ob-
servations of this analysis were then used to motivate the simulation setup that was used
in the following chapters for the simulation-based evaluation of localization algorithms.
Additionally, a comparison between simulations and experiments was presented.

The next two chapters dealt with force-directed localization in wireless networks.
Force-directed approaches have been used frequently before to compute or refine embed-
dings of whole sensor networks. In this thesis, the focus was on force-directed localization
and tracking of single mobile nodes, using additional information from movement models
or inertial data.

In the first chapter, the static localization problem was considered, where only RSS-
based distance estimates to beacon nodes with known positions are used to localize single
nodes. Several possibilities to represent RSS-based distance estimates by spring forces
were compared experimentally. In addition, further existing localization approaches were
analyzed, to enable an assessment of the quality of the force-directed position estimation.

The second chapter on force-directed localization dealt with the problem of RSS-based
tracking in wireless sensor networks. Different possibilities to represent movement knowl-
edge with additional forces have been presented. Additionally, similarities and differences
to tracking with extended Kalman filters (EKF) have been discussed. The force-directed
tracking approaches and comparable implementations of extended Kalman filters have
then been analyzed based on the real-world data. In the experiments, the influence of the
beacon number and the influence of the number of RSS measurements that are used per
time step were examined. Additionally, simulations were used to verify the experimen-
tal results. Both the experiments and the simulations showed slightly lower localization
errors for the force-directed tracking approach. In addition to the slightly improved lo-
calization results, the main advantage of the force-directed tracking approach probably
lies in its ability to represent all kinds of knowledge very easily by the introduction of
additional forces. Force-definitions are not limited to simple functions, and both time and
space complexity of the approach are linear in the number of used forces. This makes the
force-directed tracking approach well suited even for application on hardware with limited
resources.

The final chapter of this thesis dealt with the automatic localization of wireless sensor
networks. An extension of the well-known MDS-MAP approach was presented, which
allows the indirect localization of wireless sensor networks. While in the original MDS-
MAP approach communication between static sensor nodes is used to estimate pairwise
distances between nodes, the presented approach uses a mobile device to indirectly es-
timate distances in the sensor network. In contrast to most existing work on indirect
localization, the presented approach uses no knowledge about node locations or the move-
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ment of the mobile device. Additionally, special focus was put on the difficulties that arise
due to the high uncertainties of RSS-based distance estimations in indoor environments.
The examined approach was then evaluated based on simulations. Three different walking
scenarios have been considered to evaluate the influence of the walked trajectory on the
resulting localization accuracy. Additionally, a comparison with two other approaches,
which additionally used full knowledge about the true trajectory of the mobile node, has
been presented. As a possible application of the indirect localization approach, the sub-
sequent RSS-based tracking based on the computed beacon positions has been studied.
The chapter was concluded with examples of embeddings that were computed based on
real-world data, and with a discussion of additional difficulties that might arise when the
presented approach is used in practice.
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A

adjacent, 5

ALOHA, 37

anchor node, 17, 19, 106, 120, 131

anchor-free, 20

angle of arrival, 17

arc, 5

asymptotic notation, 6

attenuation factor model, 14

average localization error, 120

average node localization error, 143

B

background noise, see noise

beacon, 106, 119

boundary node, 72

mandatory, 72

optional, 72

boundary recognition, 19, 69

C

carrier sense multiple access, 37

with collision avoidance, 37

communication model, 71

communication request, 58

complexity, 6

space, 6

time, 6

conflict graph, 14

connected component, 6

connectivity, 6

connectivity graph, 71

CSMA, 37

cycle, 5

D

decision problem, 7

distance estimation, 16

from connectivity, 16

from RSS, 16, 98

from time differences, 17

indirect from RSS, 136

distance threshold θdist, 138

E

EC-BR, 73
refinement, 76

edge, 5
independent, 5

EKF, see extended Kalman filter
embedding, 6, 8, 71
enclosing circle, 73

detection, 73
extended Kalman filter, 11, 19

F

fingerprinting, 18
floor attenuation factor, 14
force, 8, 106

from movement model, 120
from RSS measurement, 107
from step recognition, 121

force-directed
embedding, 8
position estimation, 106
tracking, 120

Friis model, 12
Fruchterman-Reingold algorithm, 8

G

geometric SINR
condition, 59
model, 15, 58

global positioning system, 18
GPS, see global positioning system
graph, 5

connected, 6
cycle, 5
distance, 5
weighted, 5

H

hole, 72
hop-distance, 5

I

IMU, see inertial measurement unit
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inertial measurement unit, 93
instance, 7
interference, 11, 25, 58
interference model, 14

graph-based, 14
interior node, 72
ITI, 94
ITIV, 95

K

Kalman filter, 10, 19
measurement update, 10
time update, 10

L

Landau notation, 6
link, 25, 58

active, 25
density, 50
gain, 25, 58
gain matrix, 24

log-distance path loss model, 13
log-normal shadowing, 13

M

MAC, see medium access control
MDS, see multidimensional scaling
MDS-BR, 79

refinement, 80
MDS-IND, 135
MDS-MAP, 9
medium access control, 37
misclassification, 77
multidimensional scaling, 8

classical, 8

N

neighbor, 5
neighborhood, 5
network localization, 131
noise, 25
NP, 6

complete, 7
hard, 7

O

O-notation, 6

Omega-notation, 6
one-shot scheduling, 59

in the SINRG model, 59
OneShotSchedPC, 59
optimization problem, 7

P

P, 6
particle filter, 19
partition loss, 14
partition problem, 59
path, 5

directed, 5
length, 5

path loss, 12
exponent, 13, 58
free space, 12
indoor, 13
log-distance model, 13
modeling, 12, 100

physical model, 15
generalized, 15

placement
perturbed grid, 72
random, 72

polynomial-time reduction, 7
position estimate, 106

initialization, 108
position estimation, 17, 105

force-directed approach, 106
probabilistic approaches, 111
problem, 106
trilateration, 110

position node, 106, 120
power assignment, 59
power control, 26

dynamic data structure, 31
iterative heuristic, 24
problem definition, 26

power level, 58
propagation model, 11
protocol model, 15
proximity threshold θRSS, 137

Q

quasi unit disk graph, 6
communication model, 14, 71

QUDG, see quasi unit disk graph
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R

radio propagation, 11
received signal strength, 3, 16, 93

indication, 16
receiver, 25
RSS, see received signal strength
RSSI, 16
running time

average-case, 6
worst-case, 6

S

SchedPC, 59
schedule

length, 41
span, 41
throughput, 41
valid, 59

scheduling, 41
in the SINRG model, 59
problem definition, 41
with power control, 41

sender, 25
signal-to-interference-plus-noise ratio, 26

model, see SINR model
simultaneous localization and mapping, 20,

132
SINR, 26

condition, 26
geometric model, 15, 58
model, 15, 26

SIR, 24
SLAM, 20, 132
slot, 41
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