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Abstract 
 

In recent geothermal projects that were associated with 
induced seismicity it has been observed that the largest 
earthquake or earthquakes occurred after shut-in, the moment 
when the pressurised fluid injection in the borehole is stopped. 
We use a probabilistic approach based on Omori's law and a 
Gutenberg-Richter magnitude distribution to demonstrate that 
the probability of exceeding a certain maximum magnitude 
after shut-in is as high or higher than before stopping the fluid 
injection. The amount of this increase is dependent on the 
exponent of Omori's law q. For the reference case of q=2 and 
a 10% probability at shut-in time  we obtain an increase to 
14.6% for . If we consider a constant probability level 
of occurrence for an event larger than a given magnitude at 
shut-in time, this maximum magnitude increases by 0.12 units 
for . For the Fenton Hill experiment recent studies 
reveal q=7.5 that corresponds to only a small amount of 
probability increase for the post-injection phase. 

 
 
Introduction  
 
It is known that fluid injections at geothermal sites, which are performed to develop 
the reservoirs, can induce low magnitude earthquakes in critically stressed zones of 
the surrounding rock. Even after shut-in, that is, after the pressurised fluid injection 
into the borehole is stopped, a significant number of seismic events can occur. The 
understanding, characterisation, and forecasting of post-injection events is particularly 
important, because during recent geothermal projects such as Soultz-sous-Forêts 
(Charléty et al., 2007), Basel (Häring et al., 2008), and Landau it has been observed 
that the largest earthquakes tend to occur after shut-in. This makes it still more 
difficult to control such events. Those earthquakes have had a large impact in society 
and understanding their temporal occurrence was identified as one major goal of 
geothermal research (Mayer et al., 2007). There is speculation that the largest 
earthquakes are therefore causally related to the shut-in as if the stop of injection 
would lead to the larger earthquake. However, recent findings from Langenbruch & 
Shapiro (2010a) suggest that the presence of unstable pre-existing fractures may 
increase the seismicity rate and thus the probability of exceeding a certain magnitude 
even after stopping injection. 
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We demonstrate in this paper (a) that the largest earthquakes should occur after the 
shut-in of injection in the context of the “Seismicity Based Reservoir Characterization 
Theory (SBRC)”; (b) that even larger earthquakes have to be expected, if injection 
would be continued; (c) that the largest expected magnitude can be estimated. All 
three statements apply in a probabilistic sense only.  
 
Theory 
 
There are two fundamental laws in statistical seismology, namely the Omori law, 
which describes the decay rate of aftershock activity after tectonically driven 
earthquakes, and the Gutenberg-Richter relation describing the frequency magnitude 
distribution of earthquakes. It was observed and verified in recent works that both 
fundamental laws are also valid in the context of injection-induced seismicity 
(Shapiro et al., 2007; Langenbruch & Shapiro, 2010a).  
 
We describe the fluid injection by a point source in a permeable fluid-saturated 
medium with pre-existing fractures and assume that the fluid is liberated from this 
source with constant strength until the shut-in time .  
 
According to Shapiro et al. (2007) this leads to a constant seismicity rate  for 
earthquakes with magnitudes larger than some lower threshold value . For another 
magnitude M the Gutenberg-Richter earthquake size distribution suggests a constant 
seismicity rate : 

νM = ν1 ⋅10
−b M −m1( ) . (1) 

In general, the behaviour of seismicity triggering in space and time is controlled by 
the relaxation process of stress and pore pressure perturbation that was initially 
created at the injection source. This relaxation process can be approximated by linear 
pressure diffusion in the pore fluid of rocks. Following the Mohr-Coulomb failure 
criterion the resulting increase in pore pressure can lead to rock failure along pre-
existing, sub-critically stressed cracks. If critical pore pressures leading to reactivation 
of individual pre-existing fractures are equally distributed between a lower bound 
Cmin=0 Pa and a maximum value Cmax larger than the overpressure between source 
and reservoir, Omori's law can be utilised to describe the decay rate of seismic 
activity after shut-in of injection in the following modified form (Langenbruch & 
Shapiro, 2010a): 

ν1 t( ) = ν1 ⋅
tS
t

⎛
⎝⎜

⎞
⎠⎟
q

, (2) 

with the constant seismicity rate  during injection, time t ≥ 0 from injection start, 
the shut-in time , and the exponent q between 1 and 2. Recently the analysis of 
seismicity data from geothermal projects suggests even higher values for q 
(Langenbruch & Shapiro, 2010a; see below). 
 
We assume that the induced earthquakes represent a Poisson process (Shapiro et al., 
2010; Langenbruch & Shapiro, 2010b). If the seismicity rate is constant the Poisson 
process is called homogeneous. The probability that no earthquake in excess of M 
occurs between the initiation of injection and some time t can be written as 
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P0 M ,t( ) = exp −νM ⋅ t( ) = exp −v1 ⋅10
−b M −m1( )( ) = exp −v1 ⋅ exp

−β M −m1( )( ) , (3) 

with . The distribution is of Gumbel type, which is not surprising 
as we look for the extreme value of  earthquakes. 
 
If the Poisson process varies with time it becomes inhomogeneous. The probability 
that no earthquake in excess of M occurs between the initiation of injection and some 
time t can be written as  

P0 M ,t( ) = exp − νM τ( )dτ
0

t

∫
⎛

⎝⎜
⎞

⎠⎟
. (4) 

For the shut-in time we get for the probability that magnitude M is not exceeded 
between time 0 and : 

ln 1
P0 M ,ts( ) = νM ⋅ ts . (5) 

Using the decaying seismicity rate for the time after shut-in we get 

ln 1
P0 M ,t( ) = νM ⋅ ts + νM τ( )dτ

ts

t

∫ = νM ⋅ ts ⋅ 1+
1

q −1
−

1
q −1( ) ⋅ t ts( )q−1

⎛

⎝
⎜

⎞

⎠
⎟ . (6) 

Thus it is clear that the probability  of not exceeding magnitude M is still 
decreasing after shut-in. If the injection is not shut off but continues some time 
beyond ( ) we have the trivial relation 

ln 1
P0 M ,t( ) = νM ⋅ ts ⋅ 1+

t − ts
ts

⎛
⎝⎜

⎞
⎠⎟
= νM ⋅ t . (7) 

Hence the probability to exceed magnitude M (that is ) still increases after shut-
in. Let us give an example (Fig. 1): If the probability to exceed magnitude M at the 
time of the shut-in is given by =10%, this probability increases to =14.6% 
considering all events occurring until  and an exponent of q=2 (eq. 6). For 
q=1.5 the above probability changes to =15.4%. The corresponding value for a 
on-going injection is: =19% (eq. 7). 
For q=1, first the limit of q-1 decreasing to zero has to be evaluated (see appendix): 

lim
q→1

P0 M ,t ≥ tS( ) = exp −νMtS ⋅ 1+ ln t tS( )( )( ) . (8) 

For  it follows that =16.3%. However, this theoretical limit of q is not 
expected in nature.  
 
Next we study how the probabilistically determined largest earthquake changes in 
magnitude given a constant probability level of occurrence. We assume a 50% chance 
that no earthquake larger than occurs: 
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Figure 1. Probability  of not exceeding a maximum magnitude M with time (shut-in 
time ). The solid black line corresponds to continued injection. Other lines show  
after shut-in for different q-values: q=1 (dotted red), q=1.5 (dashed red), q=2 (solid 
red), and as obtained for the Fenton Hill dataset q=7.5 (solid blue). Main graph:     
P0 ( )=90%, inset P0 ( )=99.9%. 

 

ln 1
P0 Ms ,ts( ) = νMs

⋅ ts = ν1 ⋅10
−b Ms −m1( ) ⋅ ts = ln

1
0.5

≈ 0.7 . (9) 

 
From this  can be calculated if ν1  and b are known. Keeping the probability level 
constant – in our example 50% – we can ask how would the maximum magnitude 
increase beyond  if we (a) continue injection until  and (b) stop injection and 
wait until . 
 
The general implicit formula for both cases is 

P0 Ms ,ts( ) = P0 Ms + ΔM ,t( ) . (10) 

In case (a) we get after some manipulations: 

ΔM =
1
b
log t ts( ) . (11) 

Thus we have a 50% chance that no earthquake larger than  occurs until  and if 
we then extend the injection time from  to we have a 50% chance to get no 
earthquake larger than 

Ms + ΔM = Ms +
1
b
log 2( ) ≈ Ms +

0.3
b

≈ Ms + 0.2 , (12) 

assuming a b-value of 1.5. The general shut-in case leads to 
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Figure 2. Temporal development of seismicity in the Fenton Hill geothermal project. 
Grey areas show the mean rate before shut-in time  for gaps in the observation due 
to a not operating monitoring system. After shut-in grey areas show the best fit for 
Omori’s law with q=7.5. 

 

ΔM =
1
b
log 1+ 1

q −1
−

1
q −1( ) ⋅ t ts( )q−1

⎛

⎝
⎜

⎞

⎠
⎟ .  (13) 

 
For the reference value of q=2 and again , we find 

ΔM =
log1.5
b

≈ 0.12 . (14) 

With q =1.5 this changes to  

ΔM =
log1.6
b

≈ 0.14 . (15) 

For the lower value of q=1 the limit of equation 13 has to be evaluated: 

lim
q→1

ΔM =
1
b
log lim

q→1
1+ 1

q −1
−

1
q −1( ) ⋅ t ts( )q−1

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

. (16) 

With the results from above it follows: 

lim
q→1

ΔM =
1
b
log 1+ ln t ts( )( ) . (17) 

For the b=1.5 and  given above that is 

lim
q→1

ΔM ≈ 0.152 . (18) 

 
Fenton Hill 
 
We apply the above theory to real data that was recorded during the Fenton Hill (New 
Mexico, USA) Hot Dry Rock injection experiment in 1983 (House, 1987). After 62 h 
the injection was stopped and the seismic monitoring went on for 23 h, i.e =1.4. 
Figure 2 shows the temporal evolution of the observed seismicity. Gaps in the 
monitoring are filled in with the mean seismicity rate before shut-in. The decay of 
seismicity for the post-injection phase can be well approximated by the modified 
Omori law. A value of q=7.5 results in the best fit to the observed post-injection 
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seismicity. Highly unstable fracture systems result in low q-values and a high 
seismicity rate close before and after the shut-in. This may also be the reason for large 
magnitude events close before or after shut-in. With increasing stability of the fracture 
system the q-value increases (Langenbruch & Shapiro, 2010a). We use the value of 
q=7.5 to calculate the probability P0 of not exceeding magnitude . Assuming P0 = 
99.9% at shut-in time, P0 becomes 99.88% for  (eq. 6, see Fig. 1). 
 
Conclusion 
 
We have shown that based on a modified Omori law and a Gutenberg-Richter 
distribution the probability  of not exceeding a maximum magnitude during 
injection and after its termination can be determined. The decay of seismicity after 
shut-in and thus  strongly depends on the exponent q of the modified Omori law. 
Two characteristic values have been calculated for the post-injection phase and the 
case of an on-going injection: (a) the continuing decrease of  and (b) the increase of 
the maximum magnitude given a constant probability level of occurrence. For (a) we 
find an increase of , i.e. the probability of exceeding a maximum magnitude, 
from a given value of 10% at shut-in time  to 14.6% for time  (q=2). At the 
same time a continued injection would result in =19%. The maximum 
magnitude (b) thus increases for  by 0.2 for continued injection and 0.12 for 
the shut-in case (that corresponds to an increase of seismic energy by a factor of 1.5). 
Thus for low probabilities to exceed the maximum magnitude at shut-in time and a 
high q-value only a small increase in the risk is to be expected, while higher 
probabilities in combination with lower q-values result in a significant enlargement of 
the probability of exceeding the magnitude threshold. 
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Appendix 
 
For the evaluation for q=1, we substitute r=q-1: 

lim
r→0

P0 M ,t ≥ tS( ) = exp −νMtS ⋅ 1+ limr→0

1
r
−

1
r ⋅ t tS( )r

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. (A1) 

With 

lim
r→0

1
r
−

1
r ⋅ t tS( )r

⎛

⎝
⎜

⎞

⎠
⎟ = lim

r→0

1− t tS( )−r
r

 (A2) 

 
and applying L'Hôpital's rule 
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lim
x→0

f x( )
g x( ) = limx→0

′f x( )
′g x( ) , (A3) 

 
it follows: 

lim
r→0

1− t tS( )−r
r

= lim
r→0

t tS( )−r ⋅ ln t tS( ) = ln t tS( )  (A4) 

and 

lim
r→0

P0 M ,t ≥ tS( ) = exp −νMtS ⋅ 1+ ln t tS( )( )( ) . (A5) 

 
 
References 
 
Charléty, J., Cuenot, N., Dorbath, L., Dorbath, C., Haessler, H. & Frogneux, M. 

(2007). Large earthquakes during hydraulic stimulations at the geothermal site of 
Soultz-sous-Forêts. Int. J. Rock Mech. Min., 44, 1091-1105. 

 
Häring, M. O., Schanz, U., Ladner, F. &. Dyer, B. C. (2008). Characterisation of the 

Basel 1 enhanced geothermal system, Geothermics 37, 5, Pages 469-495, doi: 
10.1016/j.geothermics.2008.06.002. 

 
House, L. (1987). Locating microearthquakes induced by hydraulic fracturing in 

crystalline rocks. Geophys. Res. Lett., 14, 919–921. 
 
Langenbruch, C. & Shapiro, S. A. (2010a). Decay Rate of Fluid Induced Seismicity 

after Termination of Reservoir Stimulations. Geophysics, Geo-2009-0404 
(accepted). 

 
Langenbruch, C. & Shapiro, S. A. (2010b). Inter Event Times of Fluid Induced 

Seismicity. Extended abstract F022, 72nd EAGE Conference & Exhibition 
 
Majer, E. L., Baria, R., Stark, M., Oates, S., Bommer, J., Smith, B. & Asanuma, H. 

(2007). Induced seismicity associated with Enhanced Geothermal Systems. 
Geothermics, 36, 185-222. 

 
Shapiro, S. A., Dinske, C. & Kummerow, J. (2007). Probability of a given-magnitude 

earthquake induced by a fluid injection. Geophys. Res. Lett., 34. 
doi:10.1029/2007GL031615. 

 
Shapiro, S. A., Dinske, C., Langenbruch, C. & Wenzel, F. (2010). Seismogenic index 

and magnitude probability of earthquakes induced during reservoir fluid 
stimulations. The Leading Edge; March 2010, 29/3, 304-309, doi: 
10.1190/1.3353727 

 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 


