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Preface

Abstract

One of the guiding problems in the history of mathematics has been Rie-
mann’s moduli problem. It deals with the question “How many different
complex structures can be put on a compact topological surface of genus
g?”. The moduli space Mg, the space of isomorphism classes of compact
Riemann surfaces of genus g, is the corresponding classification space for
this problem.

Interestingly, Mg itself carries the structure of an algebraic variety, but a
description of its geometry is rather difficult. One approach to understand
the geometry of Mg is to examine curves in Mg.

Origamis are combinatorial objects that provide a possibility to construct
such curves. An origami is obtained by gluing finitely many unit squares of C
in a certain way. Formally it can be described as a finite covering p : X → E
of a topological torus E, ramified over a single point P̄ ∈ E. This results in
a compact, square-tiled surface X of genus g ≥ 1. One can put a translation
structure onX∗ = X\p−1({P̄}) with the help of the tiling and then vary this
translation structure by shearing the squares into parallelograms. This yields
a Teichmüller embedding ι : H ⊂ - ∆ into the corresponding Teichmüller
space Tg,n, where n = |X \ X∗|. The affine group Aff+(X∗), the group of
orientation preserving affine diffeomorphisms, acts on ∆ as a subgroup of
the mapping class group, and in fact is the stabilizer of ∆. This action can
also be interpreted as an action of the Veech group Γ(X∗) ⊂ SL2(R) on H
via Moebius transformations, where Γ(X∗) = der(Aff+(X∗)) is the image of
the derived map.

For an origami, the Veech group is always a subgroup of SL2(Z) of finite
index. Therefore, its quotient H/Γ(X∗) ∼= ∆/Aff+(X∗) is an algebraic curve,
and it is birationally equivalent to the image of the projection of ∆ to Mg,
which is thus an algebraic curve C in Mg.

In this thesis, we examine a particular origami of genus 2. We determine
the equation of an affine curve that is birationally equivalent to the curve C
in M2, given by the origami.
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2

The main result of this thesis is presented in Theorem IV.3.7. The re-
mainder of the thesis is organized as follows.

In Chapter I, we give a first definition of an origami and we present the
example origami S that we wish to study (cf. Figure I.2). We point out some
results that have already been achieved for other origamis.

Chapter II contains known results about Riemann surfaces that are used
later on; in particular, we present some properties of elliptic curves and
hyperelliptic surfaces. Furthermore, we introduce the moduli space of curves
and the corresponding Teichmüller space.

Chapter III again deals with origamis. First, we investigate translation
surfaces, their affine groups and their Veech groups. Then we give another
definition of an origami and show how one can construct a bunch of transla-
tion surfaces out of an origami. We define the affine group, the Veech group
and the group of automorphisms of an origami and state some important
properties of these groups (Proposition III.3.11 and Proposition III.3.14).
Finally, we establish the relation to the Teichmüller space and to the mod-
uli space and explain how an origami leads to a curve in the moduli space.
As an example, we investigate some properties of the curve C associated to
our origami S (cf. Example III.4.10).

In Chapter IV, we study the group of automorphisms of our origami
S (cf. Proposition IV.1.5). We show that every translation surface coming
from the origami S is birational to an affine plane curve depending on two
complex parameters λ, µ (cf. Theorem IV.2.6). Finally, we establish a re-
lation between λ and µ, which leads to our main result about the curve C
associated to the origami S.
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Chapter I

Introduction

I.1 A First Approach to Origamis

Here, we introduce a first description of origamis. We present the orgami S
that we will study in this thesis and reveal a few of its properties. Finally,
we take a look at other origamis that one might be interested in.

An origami is best depicted by giving the following recipe.

I.1.1 Definition. Let us take a finite number of copies of the Euclidean unit
square. We glue the squares together at their edges observing the following
rules

• Each upper edge of a square is identified with the lower edge of a
square by a translation.

• Each left edge of a square is identified with a right edge of a square
by a translation.

• The topological space X obtained thereby is connected.

An origami is then the result of the gluing process together with the tiling
of the topological space into squares.

The name origami goes back to Pierre Lochak [Loc05], where it refers to
a more general object. In this thesis, we stick to the case of what one might
call oriented origamis as they are presented by Schmithüsen in [Sch04].

There are some other ways in which one can describe origamis (see e.g.
[Sch04]); one of these will be presented later in III.3.

3



CHAPTER I. INTRODUCTION 4

I.1.2 Example. The basic example of an origami is made of only one unit
square. In this case, there is only one possibility to glue the edges and the
result is a compact surface of genus one, i.e. a torus (cf. Figure I.1). We
denote E the basic origami . Note that there is one distinguished point P̄ on
E, where the edges meet.

P̄ P̄

P̄P̄
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Figure I.1: Gluing one unit square yields a torus

A first observation is that an origami always defines a compact topological
surface of genus g ≥ 1.

I.1.3 Example. Throughout the whole thesis, we study a particular origami,
which we name S. It consists of six unit squares that are glued as indicated
in Figure I.2. Here, edges with the same letters are identified. The symbols
�, �, f and w mark the four points of S where the edges meet.

1 2 3
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x

Figure I.2: The origami S

The genus g of S can be computed using Euler’s formula. The surface is
tiled into 6 squares with 12 edges, which meet in the four vertices �, �, f
and w. Therefore,

4− 12 + 6 = 2− 2g,

and S is an origami of genus 2.

There are two points on S, where more than four squares abut, namely
� and �.

We can use the fact that the squares are subsets of the Euclidean plane to
define a translation structure (cf. III.1) on it. In particular, we can measure
angles on S with respect to the translation structure. If we travel around one
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of the points � or � on a small closed loop, we see that the angle around it
is equal to 4π, whereas it is 2π at every other point of S. These two points
are singularities of the translation structure, and they are called cusps (cf.
III.3.1).

It is a consequence of the Riemann-Roch Theorem that an origami of
genus 2 has either one or two cusps (cf. Proposition III.3.8). Origamis of
genus 2 with only one cusp are studied in [HL06].

The reason, why we chose to examine this special origami, is that it
has a translation, i.e. there is a permutation of the squares that respects the
gluings, namely (1 6)(2 4)(3 5). In addition to that the origami S has a hyper-
elliptic involution, since it is of genus 2 (cf. IV.1); these two automorphisms
will be the ingredients to obtain our main result (cf. IV.3).

Having obtained a result for the origami S, one could ask whether this
can be generalized to other origamis.

The origami S is in fact part of a whole family of origamis of genus 2
that all admit a translation. Let n, k ∈ N>0 and let c = 2k, d = 2k + n.
Then the origami Sn,k is defined by Figure I.3. Here, the gluings are made
by identifying opposite sides. Then

(c+ 1 d+ 1)(c+ 2 d+ 2) · · · (c+ n d+ n) · (1 k + 1)(2 k + 2) · · · (k 2k)

is a permutation of the squares of Sn,k that respects the gluings.

Our example origami is the origami S = S1,2.

c+ 1 c+ 2 · · · c+ n 1 2 · · · k

k + 1 k + 2 · · · 2k d+ 1 d+ 2 · · · d+ n

Figure I.3: A family of origamis

But these are far from being the only origamis in genus 2 that have a
translation. In fact, any (normal) covering of degree 2 of a trivial origami
(i.e. an origami of genus 1) that is ramified over precisely 2 points, leads to
an origami of genus 2 with a translation.

I.2 Known Results

We want to give an overview of origamis of which one knows an equation.
Möller [Möl05] studied two particular examples of origamis in genus 2 and
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was able to give an equation. One of them is the origami S1,1 defined above,
the other one is called L(2, 2) and is given by Figure I.4. (Again, the gluings
are made by identifying opposite sides.)

Figure I.4: The origami L(2, 2)

Herrlich and Schmithüsen studied an extraordinary example of an origami
in genus 3 in [HS05], whose curve in the moduli space M3 intersects infinitely
many other origami curves, and they determined its equation. In [Her06],
we are given the equations of a whole infinite sequence of origami curves.



Chapter II

Fundamentals

II.1 Riemann Surfaces

We will see that origamis give rise to Riemann surfaces. Therefore, we recall
some aspects of Riemann surfaces in this section. For a detailed introduction
to this subject one may read for example [For81].

Recall that one defines a Riemann surface as a connected manifold of
complex dimension 1. This implies that a Riemann surfaces can also be
viewed as a smooth manifold of real dimension 2, since biholomorphic maps
of C are also analytic maps of R2, and we will sometimes switch between
these two points of view.

Moreover, a Riemann surface is an orientable manifold, because the de-
terminant of the Jacobian of a biholomorphic map (which we consider as
a map between open sets of R2) is positive. We always equip a Riemann
surface with the orientation coming from its complex structure.

Speaking in the language of categories, the notion of a Riemann surface
gives rise to a category Riem, whose objects are Riemann surfaces and whose
morphisms are non-constant holomorphic maps between Riemann surfaces.

II.1.1 Notation. We recall some classical Riemann surfaces and their no-
tations in this thesis. We denote the complex plane by C and the Riemann
sphere by P1 = C ∪ {∞}. The upper half-plane is denoted by

H = {z ∈ C | Im(z) > 0} ,

and the unit disk is denoted by

D = {z ∈ C | |z| < 1} .

7



CHAPTER II. FUNDAMENTALS 8

For a Riemann surface X, O(X) is the ring of holomorphic functions and
M(X) denotes the field of meromophic functions on X. The group of holo-
morphic automorphisms of X is the group of biholomorphic maps X → X,
and we denote it Aut(X).

Riemann surfaces can be divided in two classes, according to whether
they are compact or not. Among the non-compact Riemann surfaces, there
are some that are “almost compact” in the following sense.

II.1.2 Definition. A Riemann surface X is said to be a Riemann surface
of finite type, if there exists a compact Riemann surface X̄, such that X can
be embedded into X̄ via a holomorphic, injective map i : X ⊂ - X̄, such
that X̄ \ i(X) is finite. We define the genus of X to be the genus of X̄. An
element of X̄ \ i(X) is called a puncture of X and the cardinality of X̄ \ i(X)
is called the number of punctures.

We will see in Corollary II.3.7 that the genus g and the number of punc-
tures n of a Riemann surface of finite type X are well-defined. The pair
(g, n) is called the type of X.

II.2 Covering Maps

II.2.1 Definitions

Since our definition of a covering map is somewhat non-standard, we present
it in this section. For a reference on this topic one may consult e.g. [For77].

II.2.1 Definition. Let X,Y be topological spaces.

a) A map p : Y → X is called covering map, if p is open, continuous and
discrete (here, discrete means that the preimage p−1({x}) of every x ∈ X
is a discrete subset of Y ).

b) Let p : Y → X be a covering map. A point y ∈ Y is said to be a
ramification point of p if there does not exist a neighborhood V of y such
that p|V is injective. A point x is said to be a branch point of p, if it is
the image of a ramification point.

c) A covering map with no ramification points is called an unramified cov-
ering , otherwise it is called a ramified covering .

The reason for studying covering maps is the following.
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II.2.2 Remark. A holomorphic map f : X → Y between two Riemann
surfaces is a covering map, provided that it is not constant. Clearly, f is
open and continuous, and the identity theorem implies that it is discrete,
since f is non-constant. A non-constant holomorphic map between Riemann
surfaces is therefore also called a holomorphic covering map.

II.2.3 Definition. A topological covering map is a map p : Y → X, such
that every point x ∈ X has an open neighborhood U ⊂ X, whose preimage
has a decomposition

p−1(U) =
⋃
i∈I

Vi

with open, disjoint sets Vi ⊂ Y , such that for all i ∈ I the map p|Vi → U is
a homeomorphism.

It is easy to see that a topological covering map is in particular an un-
ramified covering.

II.2.2 Proper Covering Maps

When studying Riemann surfaces, it is of some importance to know about
the properties of morphisms that preserve compactness. This leads to the
notion of proper maps. The following discourse is taken partly from [For81].

II.2.4 Definition. Suppose thatX, Y are locally compact topological spaces
(i.e. X,Y are Hausdorff spaces and every point has a compact neighbor-
hood). A covering map p : Y → X is called proper , if the preimage of any
compact set in X under p is a compact set in Y .

Note that if Y is compact, then every covering map p : Y → X is proper.
Let us sum up some properties of proper covering maps in the following
proposition.

II.2.5 Proposition. Let X,Y be locally compact topological spaces, and let
p : Y → X be a covering map.

a) If p is proper, then it is finite. Moreover, if X is connected and Y is
non-empty, then p is surjective.

b) If p is a finite, topological covering map, then it is proper.

c) If p is a proper, unramified covering map, then it is a topological covering
map.
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d) If p is finite, surjective and unramified, then it is a topological covering
map.

Proof: Part a). Let p be proper and let x ∈ X. Since p is discrete, p−1({x})
is a discrete, compact subset of Y , and thus finite. The second statement
follows from the fact, that a proper map is closed, i.e. the image of a closed
subset is closed. The set p(Y ) is an open, closed, non-empty subset of X.
Since X is connected, it follows that X = p(Y ).

Part b). Suppose that p is a finite, topological covering map and let
S ⊂ X be compact. Let s ∈ S. By our assumption, there exists an open
neighborhood Us of s such that p−1(Us) =

⋃
j∈J Vs,j where the sets Vs,j are

disjoint and p|Vs,j → Us is a homeomorphism. Let U ′s ⊂ Us such that its
closure satisfies U ′s ⊂ Us.

The set Rs := S ∩ U ′s is compact. We have

p−1(Rs) =
⋃
j∈J

(p|Vs,j → Us)−1(Rs).

By our assumption, J is a finite set, and thus p−1(Rs) is compact as a finite
union of compact sets.

Now we use the fact that S is compact. For s ∈ S let U ′′s be an open
neighborhood of s contained in U ′s. Then, S ⊂

⋃
s∈S U

′′
s , hence there exists a

finite, open covering S ⊂
⋃

1≤k≤m U
′′
sk

. Thus, we also have S ⊂
⋃

1≤k≤m U
′
sk

,
whereby

S =
⋃

1≤k≤m
(U ′sk

∩ S) =
⋃

1≤k≤m
Rsk

.

Therefore,
p−1(S) = p−1(

⋃
1≤k≤m

Rsk
) =

⋃
1≤k≤m

p−1(Rsk
)

is a compact set, as it is a finite union of compact set.

For the proof Part c), we refer to [For81, Theorem 4.22].

Part d) Let x ∈ X. Since p is surjective, p−1({x}) 6= ∅. Suppose that
{y1, . . . , yd} are the (finitely many) preimages of x. Since Y is a Hausdorff
space, there exist disjoint open sets Vi ⊂ Y , 1 ≤ i ≤ d, such that Vi is a
neighborhood of yi. Since p is an unramified covering, we can assume that
p|Vi → p(Vi) =: Ui is already a homeomorphism. The set

Ũ =
d⋂
i=1

Ui

is an open neighborhood of x. We set Ṽi = (p|Vi → Ui)−1(Ũ). Then Ṽi∩ Ṽj =
∅ for 1 ≤ i, j ≤ d, i 6= j, since Vi and Vj are disjoint. The map p|Ṽi → Ũ is a
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homeomorphism and p−1(Ũ) =
⋃d
i=1 Ṽi. This shows that p is a topological

covering. �

II.2.3 Lifting Properties

Later on, we will be placed in the following situation. Given a covering map
p : Y → X between topological spaces X,Y , when does an automorphism
f : X → X induce an automorphism f̂ of Y , such that p ◦ f̂ = f ◦ p? It is
thus of some importance to know, under which conditions we can “lift” a
map via a covering. We explain this now.

Let X, Y , Z be topological spaces and let p : Y → X be a covering
map. Let f : Z → X be a continuous map. A lift of f is a continuous map
f̂ : Z → Y such that f = p ◦ f̂ .

For a topological space X and a point x ∈ X, we denote by π1(X,x) the
fundamental group of X with basepoint x. This is the group of homotopy
classes of closed paths on X that start and end in the point x, and it encodes
information on the topology of X. If Y is another topological space and if
f : X → Y is a continuous map, then it induces a group homomorphism

f∗ : π1(X,x) → π1(Y, f(x))

between the fundamental groups. In particular, if p : Y → X is a topological
covering map, then one can show that the corresponding group homomor-
phism p∗ is injective (see [Hat02, Proposition 1.31].

The following proposition states under which conditions a lift exists.

II.2.6 Proposition. Let X, Y be topological spaces and let p : Y → X be
a topological covering. Let Z be a path-connected and locally path-connected
topological space and let f : Z → X be continuous. Choose two points z ∈ Z,
y ∈ Y , such that f(z) = p(y). Then, there exists a lift f̂ : Z → Y of f , if
and only if f∗(π1(Z, z)) ⊂ p∗(π(Y, y)). Moreover, if two lifts f̂ , f̂ ′ agree in
one point z0 ∈ Z, then f̂ = f̂ ′.

Proof: We refer to [Hat02, Proposition 1.33 and 1.34] for a proof of this
statement. �

II.3 Holomorphic Covering Maps

In this section, we develop some properties of non-constant holomorphic
maps that are used later on.
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II.3.1 The Riemann-Hurwitz Formula

One of the main tools in the study of compact Riemann surfaces is the
Riemann-Hurwitz formula, which relates the degree of the holomorphic map
f : X → Y and its ramification behaviour to the genera of the compact
Riemann surfaces X and Y .

II.3.1 Definition & Remark. Let X and Y be compact Riemann sur-
faces, and let f : X → Y be a non-constant holomorphic map.

a) We denote the multiplicity of f at the point P ∈ X by multP (f), i.e.
multP (f) is the unique integer k ≥ 1 such that f can be expressed as

z 7→ zk

in local coordinates at the point P ∈ X. A point P ∈ X with multP (X) >
1 is a ramification point of f and the set of ramification points of f is a
discrete, closed subset of X, and thus finite.

b) By Proposition II.2.5, f is a finite map. We denote the degree of f by
deg(f), i.e. deg(f) is the well-defined integer n ≥ 1 such that each point
y ∈ Y ′ has precisely n preimages in X. Here Y ′ = Y \B, where B is the
image of the set of ramification points of f .

c) The degree and the multiplicity are related by

deg(f) =
∑

P∈f−1({Q})

multP (f),

for every Q ∈ Y .

Proof: See e.g. [For81, p. 29]. �

II.3.2 Proposition. (Riemann-Hurwitz formula)
Let f : X → Y be a non-constant holomorphic map between compact Rie-
mann surfaces X and Y of genus g(X) and g(Y ). Then,

2g(X)− 2 = deg(f) · (2g(Y )− 2) +
∑
P∈X

(multP (f)− 1).

Proof: See e.g. [Mir95, Chapter II, Theorem 4.16]. �
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II.3.2 Proper Holomorphic Covering Maps

Next, we discuss the possibility of extending a holomorphic covering map in
certain situations. Usually, the following propositions will be applied in the
context of Riemann surfaces of finite type. Again, we follow mainly [For81].

II.3.3 Proposition. Let X be a Riemann surface, let A ⊂ X be a closed,
discrete subset and let X ′ = X \ A. Suppose that Y ′ is a Riemann surface
and that p′ : Y ′ → X ′ is a proper, unramified, holomorphic covering. Then
p′ extends to a proper, holomorphic covering map p. More precisely, there
exists a Riemann surface Y , a proper, holomorphic covering map p : Y → X
and a biholomorphic map φ : Y ′ → Y \ p−1(A) such that the diagram

Y ′
φ
- Y \ p−1(A) ⊂ - Y

X ′

p′
?
⊂ - X

p
?

commutes.

Proof: See [For81, Theorem 8.4]. �

II.3.4 Proposition. Let X,Y, Z be Riemann surfaces and let p : Y → X,
q : Z → X be proper, holomorphic covering maps. Let A ⊂ X be closed and
discrete and let X ′ = X \ A, Y ′ = Y \ p−1(A) and Z ′ = Z \ q−1(A). Then
any biholomorphic map f ′ : Y ′ → Z ′, satisfying p|Y ′ = q|Z′ ◦ f ′ extends to a
biholomorphic map f : Y → Z, such that p = q ◦ f and f |Y ′ = f ′.

Proof: See [For81, Theorem 8.5]. �

II.3.5 Corollary. If p : Y → X is the continuation of p′ : Y ′ → X ′ as in
Proposition II.3.3, then Y and p are unique up to biholomorphic maps.

II.3.6 Corollary. Let X, Y be compact Riemann surfaces and let X ′ =
X\{a1, . . . , ar}, Y ′ = Y \{b1, . . . , bs}. Then, every isomorphism f : X ′ → Y ′

extends uniquely to an isomorphism f : X → Y .

Proof: We use meromorphic functions as covering maps in order to apply
the propositions above. There exists a non-constant h ∈ M(Y ). Let A =
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{a1, . . . , ar} and let
V = P1 \ (h(A) ∪R),

where R are the branch points of h. Let Y ′′ = Y \ h−1(h(A) ∪ R). Then
h|Y ′′ → V is a proper, unramified, holomorphic covering map, and the same
holds for g′′ := h|Y ′′ ◦ f |X′′ , where X ′′ := f−1(Y ′′). Thus, we can extend g′′

to a proper, holomorphic covering map g : X → P1 by Proposition II.3.3.
By Proposition II.3.4, we can now extend f |X ′′ → Y ′′ to an isomorphism
f : X → Y . �

II.3.7 Corollary. Let X be a Riemann surface of finite type. The com-
pact Riemann surface X̄, having the property that there exists an injective
holomorphic map i : X → X̄, such that X̄ \ i(X) is finite, is unique up to
biholomorphic maps. In particular, the genus and the number of punctures
of a Riemann surface of finite type are well-defined.

II.3.3 Group Actions on a Riemann Surface

Another tool that we will make use of extensively later on, is to generate
holomorphic covering maps from a Riemann surface X to another with the
help of automorphisms in Aut(X). The next proposition states, in which
cases this leads to meaningful results.

II.3.8 Proposition. Let X be a Riemann surface, and let G be a finite
group together with an effective group action ρ : G → Aut(X) on X. Then
the orbit space X/G can be given the structure of a Riemann surface such
that the projection

π : X → X/G, P 7→ ρ(G)(P )

is a holomorphic covering map of degree deg(π) = |G|. Moreover, the multi-
plicity of π at P ∈ X is equal to multP (π) = |GP |, where GP is the stabilizer
of P .

Proof: A detailed proof is given e.g. in [Mir95, Chapter III., Theorem 3.4].
�

II.4 Riemann Surfaces and Algebraic Curves

In this section, we establish the connection between compact Riemann sur-
faces and algebraic curves. It turns out that every compact Riemann surface
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is an algebraic curve, having certain additional properties and vice versa. In
fact, we get an equivalence of categories.

An affine, plane curve C ⊂ C2 = A2 is the locus of zeros of an irreducible
polynomial f ∈ C[X,Y ]. It is called nonsingular at a point P ∈ C, if either
partial derivative ∂f/∂X or ∂f/∂Y is not zero at P . If this holds for every
point, then C is a regular or smooth curve.

From the Implicit Function Theorem, we can deduce that a regular, affine,
plane curve is always a Riemann surface, the local charts being projections
on either the first or the second coordinate. However, it is not a compact
Riemann surface, but only a Riemann surface of finite type. In order to make
it compact, one could take its projective closure and obtain a projective plane
curve, but possibly loses the regularity of the curve. The following formula
can serve as a criterion to check, whether or not we can expect a regular,
projective, plane curve.

II.4.1 Proposition. (Plücker’s formula)
A regular, projective, plane curve of degree d (i.e. it is defined by a homo-
geneous polynomial of degree d) has genus g = (d− 1)(d− 2)/2.

Proof: See e.g. [Mir95, p. 144, Proposition 2.15] �

To eliminate the singularities, one can “blow up” or desingularize the
curve. This yields a curve in a higher dimensional space Pn. Then, it is no
longer described by a single polynomial, but it is the locus of zeros of a
whole set of polynomials. More precisely, it is a local complete intersection
(see e.g. [Mir95]). Such an object is called projective, regular curve, and one
can show that it is a compact Riemann surface. In fact, one has more.

II.4.2 Theorem. The category Proj of projective, regular curves (together
with non-constant morphisms) and the category Riemc of compact Riemann
surfaces (together with non-constant holomorphic maps) are equivalent.

Proof: See e.g. [Rey89, Théorème 1.5] �

The true link between algebraic curves and compact Riemann surfaces
is the function field. Let Funct be the category of finitely generated field
extensions of C with transcendence degree one, together with field homo-
morphisms. If C is an algebraic curve over C, then its field of rational func-
tions k(C) belongs to Funct, and conversely C can be recovered from k(C),
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i.e. there is an equivalence of categories in this case. For compact Riemann
surfaces, one has the following.

II.4.3 Theorem. To a compact Riemann surface X, we assign its field of
meromorphic functions

X 7→ M(X),

and to a non-constant holomorphic map f : X → Y between compact Rie-
mann surfaces, we assign the field homomorphism

M(f) = f∗ : M(Y ) →M(X), α 7→ α ◦ f.

Then M defines a contravariant functor

M : Riemc → Funct

that gives rise to an equivalence of categories.

Proof: See e.g. [Rey89, Théorème 7.2] �

An interesting property of the functor M is that it respects the degrees.

II.4.4 Proposition. Let X and Y be compact Riemann surfaces and let
f : X → Y be a holomorphic map of degree n. Then, the field extension

f∗ : M(Y ) →M(X)

is a finite extension of degree n.

Proof: See e.g. [For81, Theorem 8.3] �

II.4.1 The Riemann-Roch Theorem

Roughly speaking, the Riemann-Roch Theorem is a statement about the
existence and number of meromorphic functions on a compact Riemann
surface, whose zeros, respectively poles, lie in a given set. It is one of the
main theorems for compact Riemann surfaces, respectively projective, reg-
ular curves and has very strong consequences.

First, we recall quickly some notations that are needed to formulate the
Riemann-Roch Theorem and that will reappear later on in the discussion of
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hyperelliptic surfaces. A detailed treatment of this subject can be found in
[FK80] or [For81].

In the following, let X always be a compact Riemann surface of genus
g ≥ 0. A divisor D on X is a finite formal sum

D =
∑
P∈X

ordP (D) · P

with ordP (D) ∈ Z, i.e.D is an element of the free abelian group with basisX.
Recall that the degree of a divisor is defined as deg(D) =

∑
P∈X ordP (D).

A divisor is called effective, if ordP (D) ≥ 0 for all P ∈ X.

A non-zero meromorphic function f ∈M(X) defines a divisor (f), called
principal divisor , by setting

(f) =
∑
P∈X

ordP (f) · P,

where ordP (f) is the order of f at the point P ∈ X. Furthermore, we set

(f)0 =
∑
P∈X,

ordP (f)>0

ordP (f) · P

the divisor of zeros of f and

(f)∞ =
∑
P∈X,

ordP (f)<0

−ordP (f) · P

the divisor of poles of f . Hence, (f) = (f)0 − (f)∞.

Two divisors D1, D2 on X are called linearly equivalent , if their difference
is a principal divisor, i.e. there exists f ∈M(X) such that

D1 −D2 = (f),

and we write D1 ∼ D2, if this is the case. Note that ∼ is a congruence
relation for the addition of divisors.

If ω is a non-zero meromorphic 1-form on X, we can associate the divisor
(ω) to it in the following way: let ω = fdz on a complex chart (U, z) on X
about a point P . Then f ∈M(U)\{0} and we set ordP (ω) = ordP (f). Now
we define (ω) by

(ω) =
∑
P∈X

ordP (ω) · P.

A divisor of this form is called canonical divisor . Note that for any two
meromorphic 1-forms ω1, ω2 6= 0, there exists a meromorphic function f ∈
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M(X)\{0}, such that ω1 = fω2. Therefore, all canonical divisors are linearly
equivalent.

For a divisor D on X, we define

L(D) = {f ∈M(X) | ordP (f) + ordP (D) ≥ 0} ∪ {0}.

This is a finite dimensional C-vector space and its dimension is denoted by
`(D).

Note that if D1 and D2 are linearly equivalent divisors on X, i.e. D1 −
D2 = (f) for an element f ∈M(X), then

L(D1) −→ L(D2)
g 7−→ f · g

is an isomorphism of C-vector spaces.

II.4.5 Theorem. (Riemann-Roch Theorem)
Let X be a compact Riemann surface of genus g ≥ 0. Let D be a divisor on
X and let W denote a canonical divisor on X. Then,

`(D) = deg(D)− g + 1 + `(W −D)

Proof: A proof of the Riemann-Roch Theorem can for instance be found
in [FK80, Section III.4]. Let us remark that `(W −D) is well-defined, since
any two canonical divisors are linearly equivalent, since linear equivalence is
a congruence relation and since the dimension of L(W−D) does not change,
as long as we stay in the same equivalence class. �

II.4.6 Corollary. Let X be a compact Riemann surface.

a) The canonical divisor satisfies `(W ) = g and deg(W ) = 2g − 2.

b) If the divisor D satisfies deg(D) > 2g − 2, then `(W − D) = 0. In this
case, the Riemann-Roch Theorem yields

`(D) = deg(D)− g + 1.

Proof: Part a) If we apply the Riemann-Roch Theorem to the zero divisor
0, we get

`(0) = deg(0)− g + 1 + `(W ).
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Since a holomorphic function on a compact Riemann surface is constant,
`(0) = 1, and thus `(W ) = g. Next, we apply the Riemann-Roch Theorem
to the divisor W and obtain

`(W ) = deg(W )− g + 1 + `(0),

hence deg(W ) = 2g − 2.

Part b) If D is a divisor with deg(D) > 2g − 2, then W −D has degree
deg(W −D) < 0. But this implies `(W −D) = 0. �

II.4.7 Corollary. Let X be a compact Riemann surface of genus g ≥ 0.
Then M(X) separates the points of X, i.e. given two distinct points P1, P2 ∈
X, there exists a meromorphic function f ∈ M(X), such that f(P1) 6=
f(P2).

Proof: Let D = (g + 1)P1. Then the Riemann-Roch Theorem yields

`(D) = deg(D)︸ ︷︷ ︸
=(g+1)

−g + 1 + `(W −D)︸ ︷︷ ︸
≥0

≥ 2.

Thus there exists a non-constant meromorphic function f ∈ L((g + 1)P1),
and f has a pole (of order ≤ (g + 1)) at P1, while it is holomorphic at P2.
Therefore, f(P1) 6= f(P2). �

II.5 Elliptic Curves

Elliptic curves are not only involved in the definition of an origami, but they
also play a role, when it comes to calculating the equation of our example
origami, since we will make use of the group structure on a certain elliptic
curve to find its equation. We present some basic facts about elliptic curves
in this section. A reference for this subject is e.g. [Sil92].

II.5.1 Definition. An elliptic curve (over C) is a pair (X,N), where X is
a compact Riemann surface of genus one and N ∈ X is a point. A morphism
between two elliptic curves (X,N), (X ′, N ′) is a non-constant holomorphic
map f : X → X ′ such that f(N) = N ′.

From the point of view of Riemann surfaces, an elliptic curve is described
as follows.
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A lattice Λ is a discrete subgroup of (C,+) of the form

Λ = Zλ1 + Zλ2,

with λ1, λ2 ∈ C linearly independent over R. The quotient C/Λ is a Riemann
surface and is called a torus.

II.5.2 Proposition. For every lattice Λ ⊂ C, the torus C/Λ, together with
the point 0̄ = 0 + Λ ∈ C/Λ, is an elliptic curve.

Conversely, every elliptic curve (X,N) is isomorphic to a torus (C/Λ, 0̄)
for a lattice Λ ⊂ C.

Proof: For the first statement, we refer to [For81, Corollary 17.13]. The
second one can be found e.g. in [For81, Theorem 21.10]. �

On the other hand, we can describe elliptic curves in the language of
algebraic geometry.

II.5.3 Proposition. Let E be a regular, projective curve having the affine
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (II.1)

with ai ∈ C, i = 1, 2, 3, 4, 6, and let ∞ denote the point at infinity. Then
(E,∞) is an elliptic curve.

Conversely, for an elliptic curve (X,N), there exist parameters a1, a2,
a3, a4, a6 ∈ C such that (X,N) ∼= (E,∞), where (E,∞) is given by (II.1).

Proof: Given a regular, projective curve E corresponding to Equation
(II.1), we can compute its genus with the help of Plücker’s formula II.4.1.
Since E belongs to a homogeneous polynomial of degree 3, its genus is given
by

g =
(d− 1)(d− 2)

2
= 1.

Hence, E is a Riemann surface of genus one.

To show the converse, we look at the divisors jN , 2 ≤ j ≤ 6. From
Corollary II.4.6, we deduce that `(jN) = j for all j ≥ 1. Let x ∈ L(2N)
be a non-constant function. Since `(3N) = 3, there exists another non-
constant function y ∈ L(3N), such that 1, x, y are linearly independent.
Then, 1, x, y, x2, yx, x3, y2 are seven functions in L(6N), and as `(6N) = 6,
there exist c1, . . . , c6 ∈ C, such that

y2 + c1yx+ c2y = c3x
3 + c4x

2 + c5x+ c6.
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The coefficient c3 6= 0, since the left hand side of the equation has a pole
of order 6 and x3 is the only function on the right hand side with a pole of
order 6. Therefore, we can divide by c3 and obtain a1, a2, a3, a4, a6 ∈ C
such that

y2 + a1yx+ a3y = x3 + a2x
2 + a4x+ a6.

It remains to show that this also defines a regular curve in P2. But this is
quite similar to what we will do later in the proof of Theorem IV.2.6, so we
will not carry out this now. �

II.5.4 Corollary. An elliptic curve (X,N) carries a natural structure of
an abelian group with N as the zero element.

There are several approaches to show that an elliptic curve (X,N) is also
an abelian group. If we represent it as C/Λ with a lattice Λ, this is immediate.
One can also show it with the help of the Riemann-Roch Theorem II.4.5 and
prove that there is a bijection of X with the subgroup of its Picard group
that consists of the divisors of degree zero (see e.g. [Har77, Example 1.3.7]).
Finally, one has a concrete formula for the group law on an elliptic curve,
represented by an equation of the form (II.1). This is the way, we will need
it.

The Group Law. If we represent an elliptic curve (X,N) by an equation
of the form (II.1), then the group law on (X,N) has the following form (see
[Sil92]).

Let P1, P2, P3 be three points on X \{N}, Pi = (xi, yi), i = 1, 2, 3, where
(xi, yi) satisfy (II.1). We distinguish three cases:

a) If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then

P1 + P2 = N.

b) If x1 6= x2, let

α =
y2 − y1

x2 − x1
, and β =

y1x2 − y2x1

x2 − x1
.

Otherwise, let

α =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
,

β =
−x3

1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3
.
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Then P3 = P1 + P2 is given by

x3 = α2 + a1α− a2 − x1 − x2

y3 = −(α+ a1)x3 − β − a3.

II.6 Hyperelliptic Surfaces

As we will see, our origami S gives rise to Riemann surfaces of genus 2. In
this section, we show that a Riemann surface of genus 2 is a hyperelliptic
surface and shares some special properties, which will be presented here and
on which we will rely later. This section is based upon [FK80].

II.6.1 Weierstraß points

Let X be a compact Riemann surface of genus g ≥ 1 and let P ∈ X. We
start by taking a look at the divisors jP , where j is a positive integer. For
most of the points of X, there does not exist a meromorphic function, which
is holomorphic everywhere except at P and has a pole of order ≤ g at P .
The points of X that admit such a function are called Weierstraß points.
Such points exist, if the genus satisfies g ≥ 2, and one can show that there
are always finitely many of them. The consideration of the Weierstraß points
of X will be very useful in our discussion of hyperelliptic surfaces later.

II.6.1 Lemma. Let P ∈ X be a point of a compact Riemann surface X.
Then,

`(jP )− `((j − 1)P ) ∈ {0, 1}

for all j ∈ N.

Proof: Let f ∈ L(jP ) be a meromorphic function. Expanding f in a
Laurent series in local coordinates (U, z) about P yields

f =
∞∑

k=−j
ak(z − z(P ))k.

We define a C-linear map

Φ : L(jP ) → C, f 7→ a−j ,

which sends f to its highest coefficient. Then kerΦ = L((j − 1)P ) and
Φ is either surjective or the zero map. Therefore, `(jP ) − `((j − 1)P ) =
dimC(Φ(L(jP )) ∈ {0, 1}. �
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Let X be a compact Riemann surface of genus g ≥ 1 and let P ∈ X. We
consider the numbers `(jP ), where j ∈ {0, . . . , 2g}. Since g ≥ 1, we know
that there are only constant functions in L(P ), i.e. `(P ) = 1. On the other
hand, since deg(2gP ) > 2g − 2, Corollary II.4.6 implies that

`(2gP ) = deg(2gP )− g + 1 = g + 1.

Thus one has an increasing sequence

1 = `(0) = `(P ) ≤ `(2P ) ≤ . . . ≤ `(2gP ) = g + 1.

Since `(jP ) − `((j − 1)P ) ∈ {0, 1} by the preceding lemma, there must be
g numbers in {1, . . . , 2g}, where the sequence increases by 1 and g numbers
in {1, . . . , 2g}, where the sequence remains constant. Note that it is a con-
sequence of Corollary II.4.6 that `(jP )− `((j − 1)P ) = 1, if j ≥ 2g, so only
the case j ≤ 2g leads to interesting results.

II.6.2 Definition. Let j ≥ 1. We will call j a gap for P , provided that
`(jP ) − `((j − 1)P ) = 0, i.e. there is no meromorphic function f ∈ M(X),
holomorphic in X \ {P} with a pole of order j at P . Otherwise j will be
called a non-gap.

Let (n1, . . . , ng) with 1 = n1 < n2 < . . . < ng ≤ 2g be the gap sequence
at P , i.e. n1, . . . , ng are precisely the gaps at P . Likewise, its complement
(a1, . . . , ag) in the set {1, . . . , 2g} will be called the sequence of non-gaps.

II.6.3 Remark. Let P ∈ X. If r, s ∈ {1, . . . , 2g} are non-gaps, then r + s
is a non-gap.

Proof: Let r be a non-gap at P . Thus, there exists a function f ∈M(X),
holomorphic in X \ {P} with a pole of order r at P . Similarly, there exists
a function g ∈M(X), holomorphic in X \ {P} with a pole of order s at P .
Then f · g is holomorphic in X \ {P} and has a pole of order r + s at P .
Thus r + s is a non-gap. �

II.6.4 Definition. Let P ∈ X and let (n1, . . . , ng) be the gap sequence at
P . The weight of P is defined as

τ(P ) :=
g∑
i=1

(ni − i).

A point P is called a Weierstraß point , if τ(P ) > 0, i.e. if (n1, . . . , ng) 6=
(1, 2, . . . , g).
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An important statement with regard to the Weierstraß points on a com-
pact Riemann surface X is the following.

II.6.5 Theorem. Let X be a compact Riemann surface of genus g. Then,∑
P∈X

τ(P ) = (g − 1)g(g + 1)

Proof: See [FK80], p.84, III.5.10. for a proof of this statement. �

Thus for every compact Riemann surface X of genus g ≥ 2, there exist
Weierstraß points on X. Moreover, there are only finitely many of them.

II.6.2 Hyperelliptic Surfaces

II.6.6 Definition. Let X be a compact Riemann surface of genus g ≥ 2.
X is called hyperelliptic, if it admits a non-constant meromorphic function
f ∈M(X) such that f : X → P1 is a two-sheeted covering map.

II.6.7 Remark. A compact Riemann surface X of genus g ≥ 2 is hyper-
elliptic, if there exists an effective divisor D on X satisfying

deg(D) = 2 and `(D) = 2,

for the existence of such a divisor D ensures that there is a non-constant
meromorphic function f ∈ M(X) with exactly 2 poles (counted with mul-
tiplicities), which makes f a two-sheeted covering map.

II.6.8 Proposition. If X is a compact Riemann surface of genus 2, then
X is hyperelliptic.

Proof: We consider a Weierstraß point P ∈ X, whose existence is pro-
vided by Theorem II.6.5. Then, 2 cannot be a gap at P , and `(2P ) = 2.
Thus there exists a non-constant meromorphic function f ∈ L(2P ), and X
is hyperelliptic. �

II.6.9 Proposition. Let X be a hyperelliptic Riemann surface of genus
g ≥ 2 and let f ∈M(X) be a two-sheeted covering map. Then f is ramified
over exactly 2g+ 2 points, and the ramification points of f are precisely the
Weierstraß points of X.
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Proof: Applying the Riemann-Hurwitz formula II.3.2 to the covering
f : X → P1 yields

2g − 2 = deg(f)(2g(P1)− 2) +
∑
P∈X

(multP (f)− 1)

= −4 +
∑
P∈X

(multP (f)− 1)

Hence, ∑
P∈X

(multP (f)− 1) = 2g + 2,

and since f is a two-sheeted covering, one has multP (f) ∈ {1, 2}. This shows
that there are precisely 2g + 2 points, where f is ramified.

Now, let P ∈ X be a ramification point of f . Then P is a Weierstraß
point. Indeed, if f(P ) = ∞, then f has a double pole at P . Otherwise, if
f(P ) 6= ∞, then the function

1
f − f(P )

has a double pole at P . So in each case, there exists a non-constant function
in L(2P ), which means that 2 is not a gap at P and the gap sequence
(n1, . . . , ng) 6= (1, 2, . . . , g).

Moreover, since the sum of two non-gaps is again a non-gap, all the
numbers 2, 4, . . . , 2g are non-gaps at P . These are already g numbers, which
means, that the sequence of gaps at P must be

(n1, . . . , ng) = (1, 3, 5, . . . , 2g − 1).

Hence, the weight of P is

τ(P ) =
g∑
i=1

(ni − i) =
g∑
i=1

((2i− 1)− i)

=

(
g∑
i=1

i

)
− g =

g(g + 1)
2

− g =
g(g − 1)

2
.

Therefore, the sum of the weights of the (2g + 2) ramification points of f is
equal to (g− 1)g(g+ 1). Thus by Theorem II.6.5, there are no other Weier-
straß points, and each Weierstraß point is already a ramification point of f . �

The next proposition shows that the two-sheeted covering of a hyper-
elliptic surface is in some sense unique.
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II.6.10 Proposition. Let X be a hyperelliptic Riemann surface and let both
f : X → P1 and h : X → P1 be two-sheeted covering maps. Then there exists
a Möbius transformation γ, such that

f = γ ◦ h

Hence, the two-sheeted covering map is unique up to fractional linear trans-
formations.

Proof: Let P ∈ X be a Weierstraß point. Then P is a ramification point
of f . We will show that the polar divisor (f)∞ of f is linearly equivalent to
2P . If f(P ) = ∞, there is nothing to prove. Otherwise, let f(P ) = c ∈ C.
Then f − c has a double zero at P , and 2P = (f − c)0. Since

(f)0 − (f − c)0 = (f)0 − (f)∞ + (f)∞︸ ︷︷ ︸
=(f−c)∞

−(f − c)0 = (f)− (f − c),

the divisors (f)0 and (f − c)0 are linearly equivalent. From (f)0 ∼ (f)∞, it
follows that 2P ∼ (f)∞. Similarly, (h)∞ ∼ 2P , which means that (h)∞ ∼
(f)∞.

Now let (f)∞ = Q+R and (h)∞ = Q′+R′. Since Q+R ∼ Q′+R′, there
exists a function g ∈M(X) such that Q′ +R′ = (g) +Q+R, and g induces
an isomorphism

L(Q′ +R′) → L(Q+R)
ω 7→ g ω

Since `(Q + R) = `(Q′ + R′) = 2, the set {1, f} is a C-basis for L(Q + R)
and {1, h} is a C-basis for L(Q′ + R′). Thus there exist a, b, c, d ∈ C with
ad− bc 6= 0, such that

1 = a · g1 + b · gh
f = c · g1 + d · gh

Therefore,

f =
dh+ c

bh+ a
,

and γ := (z 7→ dz+c
bz+a) is a Möbius transformation satisfying f = γ ◦ h. �

Next we will show that hyperelliptic surfaces are always endowed with a
particular automorphism that characterizes them.
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II.6.11 Theorem. Let X be a compact Riemann surface of genus g ≥ 2.
Then, X is hyperelliptic, if and only if there exists a holomorphic involution
σ ∈ Aut(X) with 2g + 2 fixed points. Moreover, the fixed points of σ are
precisely the Weierstraß points of X.

Proof: Let X be hyperelliptic and let f : X → P1 be a two-sheeted
covering map. Let A ⊂ X be the set of ramification points of f . We define
a map σ : X → X as follows: Let P ∈ X \A. Then |f−1({f(P )}| = 2, so let
QP ∈ X be the unique point satisfying f(P ) = f(QP ) and P 6= QP . We set

σ : X −→ X

P 7−→ σ(P ) =
{
QP , P ∈ X \A
P , P ∈ A

We have to show that σ is a holomorphic map. Let P ∈ X \ A. Then f is
unramified at P , and there exists an open neighborhood V ⊂ P1 of f(P )
and open sets U1, U2 ⊂ X such that

f−1(V ) = U1 ∪ U2 and U1 ∩ U2 = ∅

and such that f |Ui → V is biholomorphic (i = 1, 2). We assume that P ∈ U1.
Thus by the definition of σ, we have

σ|U1 = (f |V → U2)−1 ◦ (f |U1 → V )

Hence, σ|U1 is holomorphic as a composition of two holomorphic maps.

It remains the case P ∈ A. Since f has multiplicity 2 at P , there exists
a chart φ : U → D on X at P with φ(P ) = 0 and a chart ψ : U ′ → D on P1

at f(P ) with ψ(f(P )) = 0, such that f(U) ⊂ U ′ and

ψ ◦ f ◦ φ−1 = (ω 7→ ω2)

In particular, there is no other ramification point in U except P . Let Q ∈ U ,
Q 6= P and let ω1 = φ(Q), ω2 = φ(σ(Q)). Then

ω2
1 = ψ ◦ f(Q) = ψ ◦ f(σ(Q)) = ω2

2,

and ω1 6= ω2, because Q 6= σ(Q). Hence ω2 = −ω1, which means that

φ ◦ σ ◦ φ−1(ω) = −ω , for all ω ∈ φ(U) = D.

Thus there is a chart around P , such that σ is holomorphic. Therefore σ is a
holomorphic involution of X and its fixed points are the 2g+ 2 ramification
points of f , which coincide with the Weierstraß points of X.
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On the other hand, if there is an involution σ ∈ Aut(X), fixing 2g + 2
points, then the quotient map φ : X → X/<σ> is a two-sheeted covering
map, ramified at 2g + 2 points. Thus by Riemann-Hurwitz, we get

2g(X)− 2 = deg(φ)(2g(X/<σ>)− 2) +
∑
P∈X

(multP (φ)− 1)

2g − 2 = 4g(X/<σ>)− 4 + 2g + 2.

Therefore, X/<σ> has genus 0 and is biholomorphic to P1. This shows that
X is hyperelliptic. Moreover, the ramification points of φ : X → P1 are the
Weierstraß points of X, as we have seen in Proposition II.6.9. �

II.6.12 Remark. The proof of Theorem II.6.11 shows that every two-
sheeted covering f : X → P1 of a hyperelliptic surface is a quotient map for
the action of the subgroup {id, σ} ⊂ Aut(X) on X.

II.6.13 Corollary. On a hyperelliptic surface X of genus g ≥ 2, there is
only one involution that fixes 2g + 2 points. It will therefore be called the
hyperelliptic involution of X.

Proof: Let σ be the involution constructed in Theorem II.6.11 and let
ϑ ∈ Aut(X) be another involutive automorphism with 2g + 2 fixed points.
Again by the proof of Theorem II.6.11, the fixed points of ϑ must be the
Weierstraß points of X. Let f : X → P1 be a two-sheeted covering map.
Then f ◦ ϑ is also a two-sheeted covering map and by Proposition II.6.10,
there exists a Möbius transformation γ such that f ◦ ϑ = γ ◦ f . Let P ∈ X
be a Weierstraß point. Then γ ◦f(P ) = f ◦ϑ(P ) = f(P ) and f(P ) is a fixed
point of γ. Thus γ fixes 2g + 2 ≥ 3 distinct points and hence is the identity
map. So f ◦ ϑ = f . For a point Q ∈ X, it follows that either ϑ(Q) = Q or
ϑ(Q) = σ(Q). One of the sets {Q ∈ X |ϑ(Q) = Q}, {Q ∈ X |ϑ(Q) = σ(Q)}
has an accumulation point. From the identity theorem for holomorphic func-
tions and from ϑ 6= id, it follows that ϑ = σ. �

II.6.14 Corollary. On a hyperelliptic surface X, the hyperelliptic involu-
tion σ lies in the center of Aut(X).

Proof: Let ρ ∈ Aut(X). Then ρ σ ρ−1 is also an involution that fixes the
2g+2 points ρ(P ), where P is a fixed point of σ. Thus by Corollary II.6.13,
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it is the hyperelliptic involution, and it follows that ρ σ = σ ρ. �

II.7 The Moduli Space and the Teichmüller Space

In this section we will present the moduli space of compact Riemann sur-
faces of genus g and the corresponding Teichmüller space. We will merely
concentrate on the definitions and the properties of these spaces without
going into details.

II.7.1 The Moduli Space Mg

II.7.1 Definition. Let g ≥ 0. The moduli space Mg is the set of all equi-
valence classes of compact Riemann surfaces of genus g. In other terms, we
define Mg as

Mg = {X |X is a compact Riemann surface of genus g}/∼,

where we set X ∼ Y for two Riemann surfaces X,Y , if and only if there
exists a biholomorphic map f : X → Y .

Thus Mg is the classification space for the different complex structures
that can be put on a topological surface of genus g. Equivalently, one can de-
scribeMg as the classification space for projective, regular algebraic curves of
genus g, using the equivalence of theses two categories (cf. Theorem II.4.2).
Interestingly, Mg can itself be endowed with a topology and turned into an
algebraic variety. However, the geometry of Mg is very difficult to under-
stand, at least if the genus g ≥ 2. A detailed discussion of moduli spaces can
for example be found in [HM98].

Let us take a look at Mg for g = 0 and g = 1. A compact Riemann
surface of genus 0 is always biholomorphically equivalent to the Riemann
sphere P1. Thus the moduli space M0 is simply a point. If the genus g = 1,
every compact Riemann surface in M1 is biholomorphically equivalent to
a torus of the form C/Λ, where Λ ⊂ C is a lattice. Thus the classification
problem consists in deciding, when two lattices in C lead to the same complex
structure, and M1 turns out to be isomorphic to C.

In general, for g ≥ 2, one can show that Mg is a complex space of dimen-
sion 3g − 3.
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II.7.2 The Teichmüller Space Tg

Frequently, an attempt to handle a classification problem is to endow the
objects with an additional structure or marking in order to separate them
artificially. One now has to classify the marked objects and in a second step
to understand the equivalence relation that forgets the marking. This was
the underlying idea that led to the discovery of the Teichmüller space.

In our situation, we will mark Riemann surfaces by using orientation pre-
serving diffeomorphisms from a reference surface R to an arbitrary Riemann
surface S. The set of equivalence classes of marked Riemann surfaces is then
the Teichmüller space. In this section, we present some properties of the
Teichmüller space without proofs. They can be found for example in [IT92].

II.7.2 Definition. Let g ≥ 1 and let R be a compact Riemann surface of
genus g. For two Riemann surfaces S, S′ and orientation preserving diffeo-
morphisms f : R → S, f ′ : R → S′, we define an equivalence relation by
(S, f) ∼ (S′, f ′), if

f ′ ◦ f−1 : S → S′ is homotopic to a biholomorphic map h : S → S′.

Let

T (R) := { [S, f ] | S is a Riemann surface, f : R→ S

is an orientation preserving diffeomorphism}

be the set of equivalence classes of ∼. We call T (R) the Teichmüller space
of R.

The Teichmüller space of compact Riemann surfaces of genus one plays
a special role. Most of the properties of Teichmüller spaces hold only if the
genus satisfies g ≥ 2.

II.7.3 Remark.
a) Let R,S be compact Riemann surfaces of genus g(R) and g(S). There

exists an orientation preserving diffeomorphism f : R→ S, if and only if
g(R) = g(S).

b) Let R be a compact Riemann surface. Then the Teichmüller space T (R)
is a complex manifold. If R has genus g ≥ 2, then the dimension of T (R)
is equal to 3g − 3.

c) Let R, R′ be compact Riemann surfaces. Then the Teichmüller spaces
T (R) and T (R′) are isomorphic as complex manifolds.

d) Again let R be a compact Riemann surface of genus g ≥ 2. There exists
a distance on T (R), the Teichmüller distance, which turns T (R) into a
metric space.
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Proof: Part a) follows from the fact that two surfaces that admit a smooth
structure are homeomorphic, if and only if they are diffeomorphic. Thus if
R and S have the same genus, there exists a diffeomorphism f : R → S.
By composing with an orientation reversing diffeomorphism of R we can
assume that f preserves the orientation. Part c) is then a consequence of
a): Let R,R′ be compact Riemann surfaces of genus g. Then there exists an
orientation preserving diffeomorphism d : R → R′. Let P = [S, f ] ∈ T (R),
then P ′ = [S, f ◦ d−1] is a point in T (R′). This induces an isomorphism
T (R) → T (R′).
For a general discussion of Part b) and d), we refer to [IT92]. �

Remark II.7.3 c) tells us that the following definition makes sense.

II.7.4 Definition. Let g ≥ 0. We define Tg, the Teichmüller space of genus
g, as the set T (R), where R is an arbitrary compact Riemann surface of
genus g.

II.7.5 Definition. Let R be a compact Riemann surface of genus g. Let
Diffeo+(R) be the group of orientation preserving diffeomorphisms of R and
let Diffeo0(R) ⊂ Diffeo+(R) be the subgroup of such diffeomorphisms that
are homotopic to the identity map. Clearly, Diffeo0(R) is a normal subgroup.
The quotient group

Diffeo+(R)/Diffeo0(R)

is called the Teichmüller modular group or the mapping class group of Tg.
We denote it by Mod(g).

Let Tg = T (R) be the Teichmüller space of genus g. Let d ∈ Diffeo+(R)
and let P = [S, f ] be a point in T (R). We set

d ◦ [S, f ] := [S, f ◦ d−1]

and obtain a new point [S, f ◦ d−1] ∈ Tg.

R
f

- S

R

d
? f ◦ d−1

-

Since for any element d ∈ Diffeo0(R) we have d ◦ [S, f ] = [S, f ], the map

ρ(d) : Tg → Tg, [S, f ] 7→ [S, f ◦ d−1]

depends only on the equivalence class of d in Mod(g). Moreover, ρ(d ◦ d′) =
ρ(d) ◦ ρ(d′). Thus, we have a group action of Mod(g) on Tg.
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II.7.6 Theorem. Let Tg be the Teichmüller space of genus g and let d ∈
Mod(g). Then, ρ(d) is a holomorphic isometry of Tg and the group Mod(g)
acts properly discontinuously on Tg via d 7→ ρ(d) as a group of holomorphic
isometries. Its quotient Tg/Mod(g) is isomorphic to Mg. We denote the
quotient map by proj : Tg →Mg.

Proof: We refer to [IT92] for a proof of this theorem. �

II.7.3 The Spaces Tg,n and Mg,n

Another concept of marking besides the one used for the Teichmüller space,
is to mark a finite number of points on a Riemann surface. We consequently
allow only morphisms that respect the marked points, i.e. that map a marked
point to another. This concept leads to the moduli space Mg,n and the
corresponding Teichmüller space Tg,n.

In the following, let g and n always be non-negative integers, satisfying
3g − 3 + n > 0.

II.7.7 Definition. Let X,Y be compact Riemann surfaces of genus g. Let
P1, . . . , Pn ∈ X and Q1, . . . , Qn ∈ Y be n marked points on X and Y
respectively. We set

(X;P1, . . . , Pn) ∼ (Y ;Q1, . . . , Qn),

if there exists a biholomorphic map f : X → Y satisfying

f(Pi) = Qi, for all i ∈ {1, . . . , n}.

Then ∼ is an equivalence relation and the corresponding set of equivalence
classes is denoted by Mg,n. We call Mg,n the moduli space of compact Rie-
mann surfaces of genus g with n marked points.

II.7.8 Definition. The Teichmüller space Tg,n of compact Riemann sur-
faces of genus g with n marked points is defined in a similar way. Let R be a
closed Riemann surface of genus g. Let P1, . . . , Pn be n marked points on R.
Let S, S′ be Riemann surfaces and let Q1 . . . , Qn, Q′1, . . . , Q

′
n be n marked

points on S and S′ respectively. Moreover, let f : R → S, f ′ : R → S′ be
orientation preserving diffeomorphisms, satisfying

f(Pi) = Qi and f ′(Pi) = Q′i for all i ∈ {1, . . . , n}.
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Then, (S, f ;Q1, . . . , Qn) ∼ (S′, f ′;Q′1, . . . , Q
′
n), if

f ′ ◦ f−1 : S → S′ is homotopic to a biholomorphic map h : S → S′

with h(Pi) = P ′i (1 ≤ i ≤ n)

Again, ∼ is an equivalence relation and we define Tg,n to be the set of
equivalence classes for ∼.

Similarly to the unmarked case, we define the Teichmüller modular group
Mod(g, n) to be the quotient group

Diffeo+(R)n/Diffeo0(R)n,

where Diffeo+(R)n denotes the orientation preserving diffeomorphims of R
that fix each of the n points P1, . . . , Pn, and Diffeo0(R)n is the normal sub-
group of those homotopic to the identity map.

II.7.9 Remark.
a) The analogue of Theorem II.7.6 holds respectively.

b) The analogues of parts a), c) and d) of Remark II.7.3 hold respectively.

c) Mg,n and Tg,n are both complex spaces of dimension 3g − 3 + n.

d) There are natural projections

Mg,n →Mg and Tg,n → Tg

that forget the marked points. In the first case, this is a morphism be-
tween algebraic varieties, in the second case, it is a holomorphic map.

Proof: We refer to [Abi89] and to [Gar87]. �



Chapter III

Origamis

Origamis, as we have defined them in I.1.1 are so far only combinatorial
objects. The purpose of this chapter is to explain how we can turn them
into Riemann surfaces. Moreover, we describe how an origami gives rise to
a curve in the moduli space. The main results of this chapter come from
the works of Veech [Vee89], McMullen [McM03], Earle and Gardiner [EG97]
and Schmithüsen [Sch04]. In our presentation, we closely follow Schmithüsen
[Sch05] and Herrlich and Schmithüsen [HS06].

III.1 Translation Surfaces

An origami is a special case of a translation surface. These are surfaces
that are endowed with an atlas, for which the transition maps are locally
translations. We will present some properties of translation surfaces in this
section.

III.1.1 Definition & Remark.
a) Let X be a topological surface, i.e. a connected topological manifold of

real dimension 2. An atlas A on X is called a translation atlas, if for any
two charts (U, φ), (U ′, φ′) with U ∩ U ′ 6= ∅ the transition map

φ′ ◦ φ−1 : φ(U ∩ U ′) → φ′(U ∩ U ′)

is locally a translation of R2, i.e. for every point P ∈ U ∩U ′, there exists
an open neighborhood V ⊂ U∩U ′ of P such that φ′◦φ−1 : φ(V ) → φ′(V )
is a translation of R2.

b) As for the case of Riemann surfaces, one defines a translation structure
on X in the following way.

We say that two charts (U, φ), (U ′, φ′) on X are compatible, if the tran-
sition map φ′ ◦φ−1 : φ(U ∩U ′) → φ′(U ∩U ′) is locally a translation. Two

34
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translation atlases A,A′ on X are said to be equivalent, if each chart
of A is compatible with each chart of A′. This clearly is an equivalence
relation. An equivalence class of translation atlases is called a transla-
tion structure on X, and it contains a unique maximal translation atlas.
In the following, we will often identify a translation structure with the
unique maximal translation atlas that it contains.

c) If ν is a translation structure on X, then the pair Xν := (X, ν) is called
a translation surface.

In the following, we always identify C with R2 by sending 1 to (1, 0)t

and i to (0, 1)t. In this way, translations of R2 become translations of C and
vice versa. Moreover, a translation is a biholomorphic map. This shows the
following remark.

III.1.2 Remark. Let Xν be a translation surface. Then the translation
structure ν induces a unique complex structure on X. Thus a translation
surface is also a Riemann surface.

III.1.3 Examples.
a) C itself with the translation structure given by the atlas A consisting of

the single chart (C, id) is a translation surface, because the condition on
the transition maps is trivially satisfied.

Which other maps are compatible to the chart (C, id)? Surely, any trans-
lation C → C, z 7→ z+c (c ∈ C) and any restriction of a translation to an
open subset of C satisfies this property. But since we require the transi-
tion maps to be only locally translations, any homeomorphism φ : U → V
of open sets of C is compatible to (C, id), as long as on each connected
component, it is the restriction of a translation of C.

b) Let B =
(
a b
c d

)
∈ SL2(R) and let ΛB ⊂ C be the lattice generated by

ω1 = a+ ic and ω2 = b+ id, i.e. ΛB = Zω1 + Zω2. Then C/ΛB is a torus
and it is naturally endowed with a translation structure, which descends
from C.

Indeed, let π : C → C/ΛB, z 7→ z + ΛB denote the quotient map.
Recall that π is a topological covering and that a chart on C/ΛB is
always a local inverse of π. More precisely, if P ∈ C/ΛB, let z0 ∈ π−1(P )
be any preimage and let V ⊂ C be an open neighborhood of z0 not
containing two points z, w that are equivalent modulo ΛB (i.e. ∀z, w ∈
V : z − w 6∈ ΛB). Then π|V → U := π(V ) is a homeomorphism and its
inverse φ : U → V is a chart on C/ΛB for its complex structure.

We claim that these charts also form a translation atlas for C/ΛB. Let
φ : U → V , φ′ : U ′ → V ′ be two charts on C/ΛB such that U ∩ U ′ 6= ∅.
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Let
ψ := φ′ ◦ φ−1 : φ(U ∩ U ′) → φ′(U ∩ U ′).

For z ∈ φ(U ∩ U ′), we have π(ψ(z)) = π(z), thus ψ(z) − z ∈ ΛB. Since
the map ψ− id is continuous and takes values in a discrete set, it must be
locally constant. Hence ψ is locally a translation and C/ΛB is endowed
with a translation structure, which we call νB.

We will refer to the translation surface (C/ΛB, νB) as EB.

Note that every torus is biholomorphic to a torus of the form C/ΛB with
a lattice ΛB, B ∈ SL2(R), defined as above.

III.1.1 Translations

We want to define the category Tr of all translation surfaces. First of all, we
must say what a morphism between translation surfaces is.

III.1.4 Definition. Let Xν , Yω be translation surfaces and let f : Xν → Yω
be a continuous map. We say that f is a translation, if for any two charts
(U, φ) ∈ ν, (V, ψ) ∈ ω, satisfying f(U) ⊂ V and for any point P ∈ U , there
exists an open neighborhood W ⊂ U of P , such that on φ(W ) we have

ψ ◦ f ◦ φ−1 = (z 7→ z + c), (c ∈ C).

III.1.5 Remark. Let f : Xν → Yω be a map between translation surfaces.
The following statements are equivalent:

a) The map f is a translation.

b) For every point P ∈ Xν , there exist charts (U, φ) ∈ ν at P and (V, ψ) ∈ ω
at f(P ), such that ψ ◦ f ◦ φ−1 is locally a translation of C.

c) For every point P ∈ Xν , there exist charts (U, φ) ∈ ν at P and (V, ψ) ∈ ω
at f(P ), such that ψ ◦ f ◦ φ−1 is a translation of C.

Proof: The implications a) ⇒ b) and b) ⇒ c) are immediate. We have
just to take into account that a map is locally a translation, if and only if it
is a translation on every connected component of its domain. The proof of
the implication c)⇒ a) is slightly tedious and we will not carry it out here. �

III.1.6 Remark.
a) If Xν , Yω, Zµ are translation surfaces and f : Xν → Yω and g : Yω → Zµ

are translations, then g ◦ f is a translation.



CHAPTER III. ORIGAMIS 37

b) The category Tr, whose objects are translation surfaces and whose mor-
phisms are translations, is a subcategory of the category Riem.

c) If f : Xν → Yω is a translation, then f : Xν → f(Xν) is locally bijective.

d) Let Xν , Yω be translation surfaces. Then Xν
∼= Yω, if and only if there

exists a bijective translation f : Xν → Yω.

Proof: The assertion in a) can easily be shown by expressing f and g in
local coordinates. Part b) follows directly from a) and Remark III.1.2. Part
c) follows immediately from the definition. To show d) it suffices to prove
that the inverse of f is again a translation, which is easy to see. �

III.1.7 Definition. We denote the set of all bijective translations of Xν

by Trans(Xν). Clearly, Trans(Xν) is a group and we call it the group of
translations of Xν .

III.1.8 Proposition. Let Xν be a translation surface. Let Z be a Hausdorff
space and let p : Z → X be a topological covering of X. Then there is a
unique translation structure η on Z such that p is a translation.

Proof: Let z ∈ Z and let φ : U → V be a chart of ν at the point p(z).
Since p is a topological covering, there exists an open neighborhood W ⊂ Z
of z and an open neighborhood U ′ ⊂ X of p(z) such that p|W → U ′ is a
homeomorphism. By adjusting W and U ′ if necessary, we can assume that
U ′ ⊂ U . Let ψ := φ ◦ p|W and let A be the set of all maps obtained in this
way. It is easy to see that A is a translation atlas. Let η be the translation
structure that it defines. Then p : Zη → Xν is a translation.

If η′ is another translation structure on Z, such that p is a translation,
then id : Zη → Zη′ is a translation. Thus Zη ∼= Zη′ . �

III.1.9 Example. Let B ∈ SL2(R), let ΛB be the lattice defined by B
and let us again consider the torus EB = (C/ΛB, νB) as in Example III.1.3
b). The map π : C → C/ΛB is a topological covering and we can lift the
structure νB via π to C. The resulting translation structure η then coincides
with the natural translation structure νC of C, generated by the single chart
(C, id).

Making use of Proposition III.1.8, we only have to show that π is a
translation for the respective translation structures νC and νB. So let z ∈ C.
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Following Remark III.1.5, we can choose a chart of the form (W, id|W ) of
νC at z such that W does not contain two points z, w that are equivalent
modulo ΛB. Furthermore, let (U, φ) be a chart of νB at π(z). Then we have

φ ◦ π ◦ id|W = φ ◦ π|W

and (π|W )−1 is already a chart of νB, thus φ ◦π|W is a transition map of νB
and hence locally a translation.

III.1.2 Translation Surfaces from Holomorphic 1-Forms

A translation surface leads to a Riemann surface. But we can also proceed
in the opposite direction. As this brings in some new aspects, we shortly
describe how this is done.

For a Riemann surface X, we denote by Ω(X) the vector space of holo-
morphic 1-forms (or holomorphic abelian differentials) on X, i.e. an element
ω ∈ Ω(X) is locally an expression of the form f dz, where (U, z) is a chart
on X and f ∈ O(U) is a holomorphic function. If Y is a Riemann surface
and p : Y → X is a holomorphic map, then p∗ω, the pullback of ω, is a
holomorphic 1-form in Ω(Y ), that is locally an expression of the form

p∗(f dz) := (p∗f)d(p∗z) := (f ◦ p)d(z ◦ p),

if ω is locally given by f dz.

III.1.10 Example. Let X be a Riemann surface, and let ω ∈ Ω(X) be a
holomorphic 1-form. Let Z be the set of zeros of ω and let X∗ = X \Z. We
define charts on X∗ in the following way:

Let P0 ∈ X and let U be an open neighborhood of P that is homeomor-
phic to D. We set

φ : U → C, P 7→
∫ P

P0

ω ,

where we integrate over an arbitrary path that connects P0 to P . Note that φ
is well-defined, because U is simply connected. The map φ is a local primitive
of ω. As ω has no zeros in U , φ is locally injective. Thus if we restrict φ to
an open subset U ′ ⊂ U , we get a biholomorphic map

φ|U ′ → φ(U ′).

The set of all charts obtained in this way is a translation atlas Aω on X∗.

To see this, let φ : U → C, ψ : V → C be two charts of Aω. Then φ and
ψ are both local primitives of ω, thus their difference is locally constant.
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Next we see about the points that we took out. The following remark is
well-known and can for instance be found in [Zor06].

III.1.11 Remark. A zero P of the holomorphic 1-form ω leads to a sin-
gularity of the translation structure. Around the point P the translation
surface locally looks like a cone; the angle is no longer equal to 2π, but it
mesures 2π(d+1), where d is the zero order of ω at P . We call a singularity
of this type a cusp or a conical point.

With the help of Example III.1.10, we get another description of the
translation structure on the torus.

III.1.12 Remark. Let B ∈ SL2(R). The 1-form dz on C descends to a
1-form ω on C/ΛB as dz is invariant under the group ΛB. Moreover, ω has
no zeros, as this is true for dz, and thus induces a translation structure
νω on C/ΛB. Then the translation surfaces EB = (C/ΛB, νB) and Eω =
(C/ΛB, νω) are isomorphic.

Proof: A chart φ of νω is a local primitive of ω. So we have dφ = ω. If we
pull back ω to C via π : C → C/ΛB we recover the 1-form dz, which has
primitives of the form z + c = idC + c, where c ∈ C is a constant. Then,

dz = π∗ω = π∗dφ = d(φ ◦ π).

Hence d(z − φ ◦ π) = 0, which implies that locally, we have

φ ◦ π = φ ◦ π ◦ idC = z + c

for a constant c ∈ C. Therefore π is a translation for the translation struc-
tures νC and νω, and by Example III.1.9, π is a translation for νC and νB.
As π is locally invertible, the map idC/ΛB

is locally a composition of trans-
lations. �

III.1.13 Remark. Let p : Y → X be an unramified holomorphic map
between Riemann surfaces. Let ω ∈ Ω(X) be a holomorphic 1-form, and let
X∗ = X \ Z, where Z is the set of zeros of ω. Let νω be the translation
structure on X∗. Then the pullback p∗ω defines a translation structure p∗νω
on p−1(X∗) ⊂ Y , such that p is a translation.

Proof: There are no zeros of p∗ω in p−1(X∗). This holds, since locally
p∗ω = p∗(f dz) = (f ◦ p)d(z ◦ p) and since ω has no zeros in X∗. Thus, it
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defines a translation structure p∗νω on p−1(X∗). Let (U, φ) be a chart of
p∗νω, and let (V, ψ) be a chart of νω, such that p(U) ⊂ V . Then dφ = p∗ω
and dψ = ω. One has

d(ψ ◦ p) = dp∗ψ = p∗(dψ) = p∗ω = dφ,

which implies d(ψ ◦ p− φ) = 0. Thus for P ∈ U , we get

ψ ◦ p(P ) + c = φ(P ), c ∈ C.

If we write z = φ(P ), it follows that

ψ ◦ p ◦ φ−1(z) = z + c,

hence p is a translation. �

III.2 The Affine Group and the Veech Group

For a fixed translation surface, we will now consider maps that respect the
given translation structure of the surface. Naturally, they will locally look
like affine maps of C. The affine group of a translation surface is the group
of all orientation preserving affine diffeomorphisms. To each element of the
affine group, we can associate a matrix. The set of these matrices form a
group, which is called the Veech group of the translation surface. The Veech
group will play a prominent role in our discussion of Teichmüller curves.

III.2.1 Notation. We will introduce a convenient notation for real affine
maps of the complex plane. Let A =

(
a b
c d

)
∈ R2×2. For a complex number

z = x+ iy, x, y ∈ R, we set

A · z := (ax+ by) + i(cx+ dy).

Then every real affine map R2 → R2,
(
x
y

)
7→ A

(
x
y

)
+
(
t1
t2

)
,
(
t1
t2

)
∈ R2 can be

written in the form
f : C → C, z 7→ A · z + t

with t = t1 + it2 ∈ C.

III.2.2 Definition & Remark.
a) Let Xν , Yω be translation surfaces and let f : X → Y be a continuous

map. Then f is called affine (with respect to the translation structures ν
and ω), if it can locally be described as a real affine map. More precisely,
let (U, φ) ∈ ν, (V, ψ) ∈ ω be charts, such that f(U) ⊂ V . Then for every
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z ∈ φ(U), there exists an open neighborhood W ⊂ φ(U) of z and there
exists a matrix A ∈ R2×2 and an element t ∈ C such that

ψ ◦ f ◦ φ−1|W = (z 7→ A · z + t). (III.1)

b) With the notations from a), the following statements are equivalent:

(1) The map f is affine.

(2) For every point P ∈ Xν , there exists a chart (U, φ) of ν at P and a
chart (V, ψ) of ω at f(P ) such that ψ ◦ f ◦ φ−1 is locally an affine
map of R2.

(3) For every point P ∈ Xν , there exists a chart (U, φ) of ν at P and a
chart (V, ψ) of ω at f(P ) such that ψ ◦ f ◦ φ−1 is an affine map of
R2.

This is the analogue of Remark III.1.5. Again we omit the proof.

c) An affine map f : Xν → Yω that is a diffeomorphism is called affine
diffeomorphism.

d) Notice that f is an affine diffeomorphism, if and only if f is bijective. In
this case, the matrix A in (III.1) is always in GL2(R).

III.2.3 Example. If Xν is a translation surface and f : Xν → Xν is a
bijective translation, then f is an affine diffeomorphism and the matrix in
(III.1) is equal to I =

(
1 0
0 1

)
.

Notice that a translation surface is an orientable manifold. So we can
speak of orientation preserving maps. In particular, if f : Xν → Xν is an
affine diffeomorphism of a translation surface Xν , then f preserves the ori-
entation, if and only if the matrix A in (III.1) lies in GL+

2 (R) = {A ∈
GL2(R) | det(A) > 0}. We will mainly be interested in those affine diffeo-
morphisms, which are orientation preserving.

III.2.4 Definition. Let Xν be a translation surface. The affine group of
Xν is defined as

Aff+(Xν) = {f : X → X | f orientation preserving diffeomorphism,
affine with respect to ν}

III.2.5 Remark. Aff+(Xν) is a group.
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Proof: We have to show that the composition of two elements f, g ∈
Aff+(Xν) is well-defined. It suffices to see that g ◦ f is again affine and to
calculate its matrix at a point P ∈ X in terms of the matrices of f and g.
Let P ∈ X. By Remark III.2.2 b), there exist charts (U, φ), (V, ψ), (W,ϑ) ∈ ν
at P , f(P ) and g ◦ f(P ) respectively, such that f(U) ⊂ V and g(V ) ⊂ W
and such that

ψ ◦ f ◦ φ−1 = (z 7→ A · z + t)
ϑ ◦ g ◦ ψ−1 = (z 7→ B · z + s),

with A,B ∈ GL+
2 (R) and s, t ∈ C. Thus,

ϑ ◦ g ◦ f ◦ φ−1 = ϑ ◦ g ◦ ψ−1 ◦ ψ ◦ f ◦ φ−1

= (z 7→ B · z + s) ◦ (z 7→ A · z + t)
= (z 7→ BA · z +B · t+ s).

Thus g◦f is affine with respect to ν. Since BA is again in GL+
2 (R), it follows

that g ◦ f ∈ Aff+(Xν). �

III.2.6 Lemma. Let Xν , Yω be translation surfaces. If f : Xν → Yω is an
affine map, then the matrix in equation (III.1) is globally the same, i.e. it is
independent of the choice of charts and of the point P .

Proof: First we show the independence of the choice of charts. Let P ∈ X
and let (U, φ), (U ′, φ′) be two charts of ν at P and let (V, ψ), (V ′, ψ′) be two
charts of ω at f(P ). There exists a neighborhood W ⊂ U ∩ U ′ of P such
that

ψ ◦ f ◦ φ−1|φ(W ) = (z 7→ A1 · z + t1)

and
ψ′ ◦ f ◦ φ′−1|φ′(W ) = (z 7→ A2 · z + t2),

where A1, A2 ∈ R2×2, t1, t2 ∈ C.
The transition maps of two charts of ν and ω are locally translations. Thus

we have φ′ ◦ φ−1|φ(W ) = (z 7→ z + c) for an element c ∈ C, if we assume,
that W is connected (we shrink W if necessary). Similarly, ψ ◦ψ′−1|ψ′(W ) =
(z 7→ z+ c̃), c̃ ∈ C, where W ′ ⊂ V ∩V ′ is a connected neighborhood of f(P ).
Hence,

A1 · z + t1 = ψ ◦ f ◦ φ−1(z)
= ψ ◦ (ψ′−1 ◦ ψ′) ◦ f ◦ (φ′−1 ◦ φ′) ◦ φ−1(z)
= (ψ ◦ ψ′−1) ◦ (ψ′ ◦ f ◦ φ′−1) ◦ (φ′ ◦ φ−1)(z)
= A2 · z +A2 · c+ t2 + c̃
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for all z ∈ φ(W ∩ f−1(W ′)). Taking the derivative yields A1 = A2 =: A.

It remains to show that the matrix is independent of the point P ∈ X.
From now on, we assume that each chart has a connected domain. Let

M = {Q ∈ X | ∃ a chart (U, φ) ∈ ν at Q and a chart (V, ψ) ∈ ω at f(Q)
such that ψ ◦ f ◦ φ−1 = (z 7→ A · z + t), t ∈ C}.

Since P ∈ M , the set M is not empty. Clearly, M is an open subset of X.
Let M̄ = X \M . Then M̄ is also open. Indeed, if Q ∈ M̄ , there exists a
chart (U ′, φ′) ∈ ν at Q and a chart (V ′, ψ′) ∈ ω at f(Q) such that

ψ′ ◦ f ◦ φ′−1 = (z 7→ A′ · z + t′)

for a matrix A′ 6= A and t′ ∈ C. Thus every point in U ′ ∩ f−1(V ′) is also in
M̄ . Using the fact that X is connected, we conclude that M̄ is empty. This
achieves the proof. �

III.2.7 Definition & Remark.
a) Lemma III.2.6 allows us to define a map

der : Aff+(Xν) → GL+
2 (Xν), f 7→ A,

where A is the matrix from equation (III.1). We say that A = der(f) is
the derivative of f . The map der is called the derived map.

b) The map der is a group homomorphism.

c) The image der(Aff+(Xν)) ⊂ GL+
2 (R) is called the Veech group of Xν and

we denote it by Γ(Xν).

d) The kernel of der is precisely the subgroup Trans(Xν) ⊂ Aff+(Xν).

Proof: The fact that der is a group homomorphism follows directly from
the proof of Remark III.2.5 and from Lemma III.2.6, and we obviously have
ker(der) = Trans(Xν). �

III.2.8 Examples.
a) The affine group of C. Let C be endowed with the natural translation

structure νC as in Example III.1.3. Then f is an element of Aff+(C), if
and only if there exists A ∈ GL+

2 (R), t ∈ C such that f can be written
as

f : C → C, z 7→ A · z + t.
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b) The affine group of EB. Let B ∈ SL2(R) and let EB be the torus with
the translation structure constructed in III.1.3. We wish to determine the
group Aff+(EB). Let f ∈ Aff+(EB). Since π : C → C/ΛB is the universal
covering, we can lift f to a map f̂ such that the diagram

C
f̂

- C

C/ΛB

π

? f
- C/ΛB

π

?

commutes. Example III.1.9 now tells us that π is a translation. More-
over, π is locally invertible and each local inverse is also a translation.
Therefore, f̂ is an affine map of C and der(f̂) = der(f).

Thus, it suffices to determine, under which condition an element of the
affine group of C descends to EB. Let f̂ ∈ Aff+(C), f̂(z) = A · z + t
with A ∈ GL+

2 (R), t ∈ C. Let ΛB be the lattice defined by B, ΛB =
{B · (n+ im) |n,m ∈ Z}. If f̂ descends to EB, then the map

π ◦ f̂ = (z 7→ A · z + t+ ΛB)

must be ΛB-invariant. Thus for any λ ∈ ΛB we must have

π ◦ f̂(z + λ) = π ◦ f̂(z) for all z ∈ C.

This is equivalent to

A · (z + λ) + t+ ΛB = A · z + t+ ΛB,

which means that A · λ ∈ ΛB. Hence, given any λ = B · (n+ im) ∈ ΛB,
there must exist n′,m′ ∈ Z such that

AB · (n+ im) = B · (n′ + im′),

whereby it follows that B−1AB ∈ SL2(Z).

Thus an element f̂ descends to EB, if and only if der(f̂) ∈ BSL2(Z)B−1.
Altogether we have shown that

Γ(EB) = BSL2(Z)B−1.

In particular, if we consider the torus EI = C/(Z + iZ), we get

Γ(EI) = SL2(Z).
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In particular, this shows that Γ(EB) ⊂ SL2(R). This fact generalizes to
an arbitrary translation surface of finite volume, since every affine diffeo-
morphism preserves the volume, which is equivalent to its derivative having
determinant ±1. For instance, if the translation surface Xν is obtained from
a holomorphic 1-form on compact Riemann surface X̄, then it has finite
volume, and its Veech group Γ(Xν) is a subgroup of SL2(R).

III.2.9 Remark. Let X be a topological surface. Then the group SL2(R)
acts on the set of translation structures on X in the following way. For a
matrix B ∈ SL2(R), let

ϕB : C → C, z 7→ B · z.

Let ν be a translation structure on X and let ψ be a chart of ν. We perform
an affine deformation of ψ by composing it with ϕB and we denote by B · ν
the resulting translation structure, whose charts are of the form ϕB ◦ψ. This
gives a group action

(B, ν) 7→ B · ν.

Proof: Let ν be a translation structure on X. If I denotes the identity ma-
trix of SL2(R), then we clearly have I · ν = ν. Moreover, if B,B′ ∈ SL2(R),
then the charts of (BB′) · ν are of the form ϕBB′ ◦ ψ with a chart ψ ∈ ν.
Now ϕBB′ = ϕB ◦ ϕB′ , thus (BB′) · ν = B · (B′ · ν), which completes the
proof. �

III.2.10 Proposition. Let Xν be a translation surface, let B ∈ SL2(R) and
let XB·ν be the translation surface obtained by the action of B. Then

Aff+(XB·ν) ∼= Aff+(Xν), Trans(XB·ν) ∼= Trans(Xν)

and Γ(XB·ν) = BΓ(Xν)B−1.

Proof: Let id : Xν → XB·ν be the map that is topologically the identity
map and that switches over the translation structures. Then id is an affine
map with derivative B and induces a group isomorphism

Ψ : Aff+(XB·ν) → Aff+(Xν)
f 7→ Ψ(f) = id−1 ◦ f ◦ id.

Ψ is well-defined, since Ψ(f) is a composition of affine diffeomorphisms and
since der(Ψ(f)) = der(id−1 ◦f ◦ id) = B−1 der(f)B is again in GL+

2 (R). One
can easily verify that Ψ is a group homomorphism and that its inverse is
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given by Aff+(Xν) → Aff+(XB·ν), g 7→ id◦g◦id−1. Moreover, der(Ψ(f)) = I,
if and only if der(f) = I, thus Ψ(Trans(XB·ν)) = Trans(Xν).

This argument also shows that the corresponding Veech groups are conju-
gated to each other in GL+

2 (R). For if A ∈ Γ(XB·ν) and f ∈ Aff+(XB·ν) with
der(f) = A, then der(Ψ(f)) = B−1AB ∈ Γ(Xν), which implies Γ(XB·ν) ⊂
BΓ(Xν)B−1. The other inclusion follows similarly. �

III.2.11 Example. Let us once again consider the case of our tori EB,
B ∈ SL2(R). The associated set {νB |B ∈ SL2(R)} furnishes us with a
bunch of translation structures on the torus. On the other hand, we let act
SL2(R) on the set of translation structures and we can determine the orbit
of νI under this action (where I denotes the identity matrix of SL2(R)). Our
claim is that we get nothing new.

Claim. Let B ∈ SL2(R). Then νB = B · νI .
Let id : EI → EB·I := (C/ΛI , B · νI) be the map that is topologically the

identity. Then der(id) = B. On the other hand, the affine map ϕB : C →
C, z 7→ B · z descends to a map ϕ̄B : EI → EB, since B · ΛI = ΛB and its
derivative is also equal to B.

EI
id

- EB·I

EB

ψ
6

ϕ̄B -

Hence the map
ψ = id ◦ ϕ̄−1

B : EB → EB·I

has derivative der(ψ) = BB−1 = I and is thus a translation. Therefore,
EB ∼= EB·I .

Thus, the action of an element B ∈ SL2(R) on νI corresponds to a shear-
ing of the unit square into a parallelogram.

EI →

�
�

�
��

�
�

�
��

EB

Figure III.1: The action of B =
(
1 1
0 1

)
on EI
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III.3 Origamis

In this section, we will see another way to define origamis. So far, an origami
(as we have presented it in Definition I.1.1) is the topological surface ob-
tained by gluing a finite number of unit squares at their edges. This also
means that one has a natural map onto the basic origami that consists of
only one unit square. Since the basic origami can be identified with a torus,
we may now reformulate the definition of an origami.

III.3.1 Definition. Let E be a fixed torus (i.e. a topological surface of
genus one) and let P̄ ∈ E be a point. Then

E∗ = E \ {P̄}

is a once-punctured torus. An origami of genus g ≥ 1 is a finite covering

O = (p : X → E)

such that X is a compact surface of genus g and such that for X∗ = X \
p−1({P̄}), the restriction

p : X∗ → E∗

is a finite, topological covering map (i.e. p is ramified at most over the point
P̄ ).

III.3.2 Remark. The definition given in III.3.1 is equivalent to our earlier
definition of an origami in I.1.1.

Proof: An origami as defined in I.1.1 was the result of a gluing process.
Let X be the topological space obtained by gluing a finite number of copies
of the unit square at their edges. Recall that the basic origami E is a torus
and let P̄ ∈ E be the point where the edges meet. Let p : X → E be the map
sending each of the squares to the basic origami. This map is well-defined,
since all gluing relations are respected, and for E∗ and X∗ defined as above,
we get a finite, topological covering p : X∗ → E∗.

On the other hand, let O = (p : X → E) as in III.3.1. Let us choose
generators x, y : [0, 1] → E of the fundamental group π1(E, P̄ ). If we cut E
along the simple closed curves x and y, we get a patch homeomorphic to a
square. Thus, the preimage of x([0, 1])∪ y([0, 1]) under p provides a tiling of
X into squares.

These two processes are inverse to each other, thus the two definitions
coincide. �
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Note that the choice of a fixed torus E in Definiton III.3.1 is not a restric-
tion. If Ẽ is another torus and P̃ ∈ Ẽ, one always finds a homeomorphism
h : E → Ẽ satisfying h(P̄ ) = P̃ . Thus, an origami O = (p : X → E) defined
over E becomes an origami Õ = (p̃ : X → Ẽ) defined over Ẽ by setting
p̃ = h ◦ p.

We have to say, when two origamis shall describe the same object. One
easily checks that the following is an equivalence relation.

III.3.3 Definition. Let O = (p : X → E), O′ = (p′ : X ′ → E) be two
origamis (defined over the same torus E). Then O and O′ are called equiv-
alent , if there exists a homeomorphism f : X → X ′ such that p′ ◦ f = p.

In the following, we fix the torus E := C/(Z + iZ) and the point P̄ :=
0̄ ∈ E (where 0̄ is the image of 0 under the projection π : C → E) and we
restrict to origamis O = (p : X → E) defined over E, where p is ramified at
most over 0̄.

III.3.4 Definition. Let O = (p : X → E) be an origami. Then we can
define a translation structure on X∗ in the following way:

Let the torus E = C/(Z+ iZ) be equipped with the translation structure
νI as in Example III.1.3 and let E∗I = (E \ {0̄}, νI) be the corresponding
punctured translation surface.

By Proposition III.1.8, we can lift the translation structure νI on E∗I via
p to a translation structure ηI on X∗. We denote the translation surface that
we obtain by X∗

I := (X∗, ηI).

Note that equivalent origamis lead to isomorphic translation surfaces.

III.3.5 Consequence. An origami O = (p : X → E) defines a bunch of
translation surfaces (X∗

B)B∈SL2(R) by setting X∗
B = (X∗, B ·ηI), where B ·ηI

is the image of the translation structure ηI under the action of B ∈ SL2(R).

Note that one may proceed in another way to obtain the same translation
surface X∗

B: One can first vary the translation structure on E∗I and then lift
the deformed translation structure to X∗. By Example III.2.11, we have
(C/ΛI , B ·νI) ∼= (C/ΛB, νB). Thus, for any two charts (U, φ) ∈ νI , (U ′, φ′) ∈
νB, the diagram

EI ⊃ U
ϕ̄B - U ′ ⊂ EB

C

φ
? z 7→B·z+t

- C

φ′

?
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is commutative. Here, t ∈ C and ϕ̄B is defined as in Example III.2.11. Hence,
if ηB denotes the lift of the translation structure νB on E∗B := EB \ {0̄} via
ϕ̄B ◦ p, we find that (X∗, B · ηI) ∼= (X∗, ηB).

Moreover, if we set pB = ϕ̄B ◦p for B ∈ SL2(R), we obtain covering maps
pB : X∗

B → E∗B.
Let us retain these results in the following proposition.

III.3.6 Proposition. Let B ∈ SL2(R). Let ϕ̄B : EI → EB be the map
induced by C → C, z 7→ B · z. Then there exists an affine diffeomorphism
ψB : X∗

I → X∗
B with derivative der(ψB) = B such that the diagram

XI∗
ψB - X∗

B

E∗I

pI
?

ϕ̄B
- E∗B

pB
?

commutes. Moreover, ψB is unique up to composition with an element of
Trans(X∗

I ) or Trans(X∗
B).

Proof: By the above argument, the map id : X∗
I → (X∗, B ·ηI) ∼= (X∗, ηB)

that is topologically the identity and changes the translation structures has
the required properties. If ψB and ψ′B are two such affine diffeomorphisms,
then ψ−1

B ◦ ψ′B ∈ Trans(X∗
I ) and ψ′B ◦ ψ

−1
B ∈ Trans(X∗

B), since they both
have derivative I. �

We now view the translation surfaces (X∗
B)B∈SL2(R) as Riemann surfaces

and get the following proposition.

III.3.7 Proposition. Let O = (p : X → E) be an origami of genus g.

a) The origami O defines a family of Riemann surfaces (X∗
B)B∈SL2(R) of

finite type (g, n) (where n equals the cardinality of p−1({0̄})) together
with covering maps pB : X∗

B → E∗B.

b) For each B ∈ SL2(R), the covering map pB : X∗
B → E∗B can be extended

to a proper, holomorphic covering map pB : XB → EB, where XB is a
compact Riemann surface of genus g, such that there exists a biholomor-
phic map i : X∗

B → XB \ p−1
B ({0̄}).

Proof: Since Part a) is a consequence of b), only Part b) is to show. By
Proposition II.2.5, the map p : X∗ → E∗ is proper. Therefore, we can apply
Proposition II.3.3. This achieves the proof. �
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III.3.1 Cusps

Let O = (p : X → E) be an origami. Now we start with the Riemann
surface XB, B ∈ SL2(R) and go back to a translation surface with the help
of a holomorphic 1-form.

From Remark III.1.12, we know that EB ∼= Eω, where ω is the holo-
morphic 1-form induced by dz on C. Let p∗Bω be the pullback of ω via
pB : XB → EB. It follows from Remark III.1.13 and from Proposition III.1.8
that the translation structure induced by p∗Bω is the same as the translation
structure ηB on X∗

B.

Therefore, we state the following proposition.

III.3.8 Proposition. Let O = (p : X → E) be an origami of genus g ≥ 1.
The translation structure ηB and the translation structure defined by ωB :=
p∗Bω lead to isomorphic translation surfaces.

The translation structure ηB extends to X \ Z, where Z is set of zeros
of ωB, and a point P ∈ Z is a cusp with cone angle 2π(ordP (ωB) + 1).
Moreover, there are precisely 2g−2 zeros of ωB, counted with multiplicities.
In particular, if g = 1, then ηB extends to all of X.

Proof: By Corollary II.4.6, it follows that∑
P∈Z

ordP (ωB) = deg(ωB) = 2g − 2.

A comparison with Remark III.1.11 shows the remaining assertions. �

In particular, an origami of genus 2 has either one or two cusps.

III.3.9 Example. Our origami S = (p : X → E) from Example I.1.3 has
two cusps in the points � and �, the cone angle being equal to 4π in each
of them. They correspond to two simple zeros of the associated holomorphic
1-form.

III.3.2 The Veech Group and the Group of Automorphisms
of an Origami

Given an origami O = (p : X → E), we want to study affine diffeomor-
phisms, respectively biholomorphic maps that exist on the whole family of
translation surfaces, respectively Riemann surfaces.
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We know from Proposition III.2.10 that the affine groups (Aff+(X∗
B))B

are all isomorphic and that the Veech groups of the surfaces (X∗
B)B are all

conjugated to each other. Therefore, we may restrict to the case B = I and
examine Aff+(X∗

I ), Trans(X∗
I ) and Γ(X∗

I ).

III.3.10 Definition. Let O = (p : X → E) be an origami. The affine group
of the origami O is defined as

Aff+(O) := Aff+(X∗
I )

and the Veech group of O is defined as

Γ(O) := Γ(X∗) := Γ(X∗
I ).

Finally, the group of translations of the origami O is defined as

Trans(O) := Trans(X∗
I ).

III.3.11 Proposition. Let O = (p : X → E) be an origami. Every f ∈
Aff+(O) descends via p to an element f̄ ∈ Aff+(E∗I ). Therefore, the Veech
group Γ(O) is a subgroup of SL2(Z). It is even a subgroup of finite index in
SL2(Z).

Proof: See [Sch05, Proposition 2.6] and [Sch05, Corollary 2.9] for a proof
of this statement. �

III.3.12 Definition. Let O = (p : X → E) be an origami and let Aut(X∗
I )

denote the set of biholomorphic maps X∗
I → X∗

I . An automorphism of O is
an element f ∈ Aut(X∗

I ), such that for all B ∈ SL2(R) the map

idB ◦ f ◦ (idB)−1 : X∗
B → X∗

B

is a holomorphic map in Aut(X∗
B). Here, idB : X∗

I → X∗
B is the map that

is topologically the identity and that exchanges the translation structures.
The group of automorphisms of O is denoted by Aut(O).

III.3.13 Remark. It is easy to see that Aut(O) is in particular a group.
Thus, Aut(O) is a subgroup of Aut(X∗

I ). By Corollary II.3.6, every biholo-
morphic automorphism of X∗

I extends uniquely to XI , therefore Aut(O) can
also be considered as a subgroup of Aut(XI).

III.3.14 Proposition. The group Aut(O) consists precisely of the affine
maps in Aff+(X∗

I ) with derivative I or −I.
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Proof: Let f ∈ Aff+(X∗
I ) with der(f) = ±I. Then f is holomorphic and

for a matrix B ∈ SL2(R) the map idB ◦ f ◦ (idB)−1 has derivative ±I, so it
is also a holomorphic map. Thus f ∈ Aut(O).

Conversely, let f ∈ Aut(O). Let P ∈ X∗
I and let (U, φ) and (V, ψ) be

charts of the translation structure νI at P and f(P ) respectively. We consider
the map

F = ψ ◦ f ◦ φ−1

which is a map between open sets of C and we want to compute its derivative
at z0 = φ(P ).

Let ϕB : C → C, z 7→ B · z (B ∈ SL2(R)). If φ is a chart for νI then
ϕB ◦ φ is a chart for νB. Thus if we express the map idB ◦ f ◦ (idB)−1 in
local coordinates, we get

ϕB ◦ ψ ◦ f ◦ (ϕB ◦ φ)−1 = ϕB ◦ F ◦ ϕB−1 .

By our assumption, the map ϕB ◦F ◦ϕB−1 is holomorphic in a neighborhood
of B · z0. With the help of the following lemma we conclude that F is affine
with derivative der(F ) = c · I, c ∈ R \ {0}. Thus, f is an affine diffeomor-
phism of X∗

I , and by Lemma III.2.6, der(F ) = der(f) ∈ Γ(O) ⊂ SL2(R).
Therefore der(f) ∈ {±I}. �

III.3.15 Lemma. Let f : U → C be a holomorphic map on a domain
U ⊂ C. For B ∈ SL2(R) let ϕB : C → C, z 7→ B · z. If for all B ∈ SL2(R)
the map

ϕB ◦ f ◦ ϕB−1

is holomorphic, then there exists c ∈ R such that f ′(z) = c for all z ∈ U .

Proof: Let z0 ∈ U and let A = A(z0) be the real derivative of f at
z0. By the Cauchy-Riemann differential equations, A ∈ R≥0 · SO2(R). The
derivative of ϕB ◦f ◦ϕB−1 evaluated at B ·z0 is then equal to BAB−1. Since
ϕB ◦ f ◦ ϕB−1 is holomorphic, it follows that BAB−1 ∈ R≥0 · SO2(R). We
write A =

(
a b
−b a

)
. In particular, for B =

(
1 1
0 1

)
the matrix(

1 −1
0 1

)(
a b
−b a

)(
1 1
0 1

)
=
(
a+ b 2b
−b a− b

)
has to be in R≥0 · SO2(R). It follows that 2b = b, and hence b = 0. Thus,
f ′(z0) = a ∈ R. So f ′(U) ⊂ R, which is not open in C. Since f ′ is holomor-
phic on U , this forces f ′ to be constant. �
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III.4 Teichmüller Curves

Our aim is to sketch why and how an origami defines an algebraic curve
in the moduli space. This is a special case of a more general concept. Let
X be a translation surface that is a finite Riemann surface of genus g with
n punctures. Then X induces an embedding ι of the upper half-plane into
the Teichmüller space T (X) = Tg,n. The image of ι composed with the
projection proj : Tg,n → Mg,n is sometimes an algebraic curve. In fact, this
happens if and only if the Veech group Γ(X) is a lattice in SL2(R) (i.e. it
has a fundamental domain of finite hyperbolic volume). For an origami O,
its Veech group Γ(O) always satisfies this condition, thus an origami always
induces a curve in the associated moduli space.

III.4.1 Definition. Let 3g − 3 + n > 0, and let Tg,n be the Teichmüller
space of marked Riemann surfaces of genus g with n punctures.

a) A map
ι : H → Tg,n

is called Teichmüller embedding , provided that ι is a holomorphic, iso-
metric embedding (with respect to the hyperbolic metric on H and the
Teichmüller metric on Tg,n).

b) Let ι : H → Tg,n be a Teichmüller embedding. Then ∆ = ι(H) is called
Teichmüller (geodesic) disk . If the image of ∆ under the map proj :
Tg,n →Mg,n is an algebraic curve C, then C is called Teichmüller curve.

III.4.1 Constructing a Teichmüller embedding

In the following, let g, n ≥ 0 be integers, satisfying 3g − 3 + n > 0. Let
Xν = (X, ν) denote a fixed translation surface, such that Xν is a Riemann
surface of finite type, having genus g and n punctures. Let Tg,n be the
corresponding Teichmüller space. We take Xν as a reference surface and
think of Tg,n as T (Xν).

First, we want to explain, how such a translation surface Xν defines a
Teichmüller embedding and an associated Teichmüller disk.

Recall that the group SL2(R) acts on the set of translation structures
of X (cf. III.2.9). If we are given a matrix B ∈ SL2(R), let us denote by
XB the translation surface (X,B · ν) (thus Xν itself is equal to XI). Let
id : XI → XB be the map that is topologically the identity. Then,

PB = [XB, id : XI → XB]
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defines another point in Tg,n and we get a map

SL2(R) → Tg,n, B 7→ PB. (III.2)

Let B,B′ ∈ SL2(R) and let B′B−1 ∈ SO2(R). We claim that PB = PB′ .
Indeed, the map

(XI
id- XB′) ◦ (XI

id- XB)−1 : XB → XB′

has derivative B′B−1 ∈ SO2(R) and is thus biholomorphic.

Therefore, the map in (III.2) factors through SO2(R)\SL2(R) and induces
a map

ι̂ : SO2(R)\SL2(R) → Tg,n, B · SO2(R) 7→ PB.

We can identify SO2(R)\SL2(R) with H in the following way. The group
SL2(R) acts on the upper half-plane by Möbius transformations. Namely,
for a matrix B =

(
a b
c d

)
∈ SL2(R) and τ ∈ H, let

B(τ) =
aτ + b

cτ + d
.

This action is transitive and the subgroup SO2(R) of SL2(R) is the stabilizer
of i. With these ingredients we can construct a bijection as follows.

III.4.2 Remark. The map

̂ : SL2(R) → H, B 7→ −B−1(i)

induces a bijection
j : SO2(R)\SL2(R) → H.

Proof: First of all, note that ̂ is well-defined. Let

k : H → SL2(R), τ 7→ 1√
Im(τ)

(
1 Re(τ)
0 Im(τ)

)
.

Then ̂◦k = idH, hence ̂ is surjective. If ̂(B) = ̂(B̃), then B−1(i) = B̃−1(i),
and therefore B̃B−1(i) = i, whereby we have that B̃B−1 ∈ StabSL2(R)(i) =
SO2(R). Hence, B̃−1B ∈ SO2(R) and B ∈ B̃ · SO2(R). Similarly, B̃ ∈
B · SO2(R), and altogether we have B · SO2(R) = B̃ · SO2(R). This shows
that j is a bijection. �

Thus by composing ι̂ with j−1, we get a map

ι = ι̂ ◦ j−1 : H → Tg,n.
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III.4.3 Proposition. The map ι : H → Tg,n is an isometric, holomorphic
map1. Thus, ι is a Teichmüller embedding and we denote ∆ := ι(H) the
corresponding Teichmüller disk.

Proof: We may refer to [HS06, Proposition 2.8] for a proof of this fact. �

III.4.2 Constructing a Teichmüller curve

For a Teichmüller disk constructed in this way, we want to establish what
its image in the moduli space looks like and when it is a Teichmüller curve.
To do this, we need to know how the modular group Mod(g, n) acts on the
Teichmüller disk.

First of all, we observe that the affine group Aff+(XI) is a subgroup of
Diffeo+(XI). Thus Aff+(XI) acts on Tg,n. We want to specify what this
action does on the points of ∆.

III.4.4 Remark. Let f ∈ Aff+(XI) and let PB ∈ ∆, where B ∈ SL2(R).
With the notations of p. 31, we have

ρ(f)(PB) = PBA−1

where A = der(f).

Proof: We have to show that ρ(f)(PB) = [XB, (id : XI → XB) ◦ f−1] is
the same point as PBA−1 . Consider the following commutative diagram.

XI
f−1

- XI
id

- XB

XBA−1

ψ

-

id -

Here

XBA−1
ψ- XB = (id : XI → XB) ◦ f−1 ◦ (id : XI → XBA−1)−1,

and the derivative of ψ evaluates to der(ψ) = BA−1(BA−1)−1 = I. Thus, ψ
is a biholomorphic map and ρ(f)(PB) = PBA−1 . �

1The reason why we define the map j in such a complicated way, is that we want ι
to become a holomorphic map. Normally, one would define j to be the map A 7→ A(i),
(A ∈ SL2(R)).
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Remark III.4.4 shows that Aff+(XI) stabilizes ∆. Thus, it can be mapped
by a group homomorphism to the stabilizer of ∆,

Stab(∆) = {f ∈ Mod(g, n) | f(∆) = ∆} .

The following proposition states that this group homomorphism is even an
isomorphism.

III.4.5 Proposition. The group Aff+(XI) is equal to Stab(∆) ⊂ Mod(g, n).

Proof: The group homomorphism Aff+(XI) → Stab(∆) is injective by
[EG97, Lemma 5.2] and it is surjective by [EG97, Theorem 1]. �

Furthermore, Remark III.4.4 shows that the action of f ∈ Aff+(XI) on
∆ depends only on the derivative der(f). Thus, we can interpret this action
as an action of the Veech group Γ(X) on ∆. Namely, let A ∈ Γ(X) and
PB ∈ ∆ (B ∈ SL2(R)). Then Γ(X) acts on ∆ by

ρ(A)(PB) = PBA−1 .

Thus, the Veech group Γ(X) acts on ∆ as a group of holomorphic isome-
tries (since this is the case for Aff+(XI)). On the other hand, Γ(X) ⊂ SL2(R)
and it acts on H via Moebius transformations, i.e. as a group of holomorphic
isometries of H. Veech showed in [Vee89] that this action is always discrete,
in other terms, Γ(X) is a Fuchsian group.

The two actions fit together via the holomorphic isometry ι : H ⊂ - ∆
in the following way.

III.4.6 Remark. Let A ∈ Γ(X) and let R =
(−1 0

0 1

)
. Then A and RAR−1

act on H via Moebius transformations and the diagram

H
t 7→ −t̄

- H
ι

- ∆

H

A
? t 7→ −t̄

- H

RAR−1

? ι
- ∆

ρ(A)
?

commutes.

Proof: See [HS06, Remark 2.20]. �
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Now we consider the image of the Teichmüller disk ∆ in the moduli space
Mg,n. Let proj : Tg,n →Mg,n denote the natural projection (cf. II.7.6).

H
ι

- ∆ ⊂ - Tg,n

Mg,n

proj
?

proj ◦ ι -

By the preceding remark, it follows that proj ◦ ι factors through H/Γ∗(X).
This is the quotient by the mirror Veech group Γ∗(X) defined by

Γ∗(X) = RΓ(X)R−1,

where R =
(−1 0

0 1

)
.

The quotient H/Γ∗(X) is a Riemann surface of finite type, and thus an
algebraic curve, if and only if the group Γ∗(X) (and consequently Γ(X)) is
a lattice in SL2(R), i.e. H/Γ∗(X) has finite hyperbolic volume.

Finally, there is a strong link between H/Γ∗(X) and the image of the
Teichmüller disk in the moduli space.

III.4.7 Theorem. Let Xν be a translation surface of genus g obtained from
a compact surface by removing n points. The construction of the associated
Teichmüller disk leads to a Teichmüller curve C in Mg,n if and only if the
group Γ∗(X) is a lattice in SL2(R). In this case H/Γ∗(X) is the normaliza-
tion of C and is birationally equivalent to C.

H
ι

- ∆ ⊂ - Tg,n

H/Γ∗(X)
?

birational

- C

proj
?
⊂ - Mg,n

proj
?

Proof: See [McM03, Corollary 3.3] �

III.4.3 Origami Curves

Now we specialize the above construction to the case of origamis. Let O =
(p : X → E) be an origami of genus g. Let X∗

I be the corresponding transla-
tion surface as constructed in Definition III.3.4 and let n be the number of
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punctures ofX∗
I . Applying the above construction toX∗

I yields a Teichmüller
disk in Tg,n.

By Proposition III.3.11, the Veech group Γ(O) is always a subgroup of
SL2(Z) of finite index and hence a lattice in SL2(R): a fundamental domain
for Γ(O) is given by a finite union of translates of a fundamental domain
for SL2(Z), which has finite volume. Thus, by Theorem III.4.7, an origami
leads to a Teichmüller curve in Mg,n.

III.4.8 Definition. A Teichmüller curve coming from an origami is called
an origami curve.

III.4.9 Definition. Let O = (p : X → E) be an origami of genus g ≥ 1.
By Theorem II.4.2, we can assign an algebraic curve to each of the Riemann
surfaces XB, B ∈ SL2(R). By an equation of the origami O, we mean a
family of polynomials (Fλ)λ∈U in C[x, y], parametrized by a Zariski-open
set U ⊂ C, such that

(1) for each XB, there exists a λ ∈ U such that XB is birational to the set
of zeros Cλ of Fλ

(2) and such that the projection U →Mg, λ 7→ Cλ is finite.

III.4.10 Example. With the help of [Sch05], we can compute the Veech
group for our origami S introduced in Example I.1.3. Let

S :=
(

0 −1
1 0

)
and T :=

(
1 1
0 1

)
be the standard generators of SL2(Z). Then Γ(S) is generated by

S2 =
(
−1 0
0 −1

)
, TST−2 =

(
1 −3
1 −2

)
, STS−1 =

(
1 0
−1 1

)
,

T 3 =
(

1 3
0 1

)
and T 2ST−1 =

(
2 −3
1 −1

)
,

and coset representatives of SL2(Z)/Γ(S) are given by

I =
(

1 0
0 1

)
, T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
and T 2 =

(
1 2
0 1

)
.

Furthermore, we can compute the geometrical type of the affine algebraic
curve H/Γ̄(S), where Γ̄(S) = Γ(S)/{±I} ⊂ PSL2(Z) is the projective Veech
group of S. Let F = ∆(P,Q,R) be the standard fundamental domain of
PSL2(Z), i.e. F is the hyperbolic pseudo-triangle with vertices

P = −1
2

+ i

√
3

2
, Q =

1
2

+ i

√
3

2
and R = i∞.
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The coset representatives of Γ̄(S) in PSL2(Z) are the projections Ī, T̄ , S̄, T̄ 2

of the respective matrices to PSL2(Z). A fundamental domain for H/Γ̄(S)
is thus given by

FS = F ∪ T̄ (F) ∪ S̄(F) ∪ T̄ 2(F).

Therefore, we can depict FS according to [Sch05] and get a picture as in

Figure III.2: Fundamental domain for H/Γ̄(S)

Figure III.2. We even have a triangulation of H/Γ̄(S) with t = 4 triangles,
e = 6 edges and v = 4 vertices. Thus the genus of H/Γ̄(S) can be computed
with the help of Euler’s formula; we have

v − e+ t = 2− 2g(H/Γ̄(S)),

whereby
g(H/Γ̄(S)) = 0.

Among the four vertices, 3 and 4 are vertices at ∞. In other terms, H/Γ̄(S)
has two cusps.

Altogether, this shows that the origami curve of S, of which H/Γ̄(S) is
the normalization, is birational to P1.

Note that it may happen that two origamis lead to the same Teichmüller
disk and consequently to the same origami curve. In fact, this is always the
case if the Veech group of an origami is not entirely SL2(Z).

III.4.11 Definition. Let O = (p : X → E), Õ = (p̃ : X̃ → E) be origamis.
Then O and Õ are called affinely equivalent , if there exist affine diffeomor-
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phisms ψ : X∗
I → X̃∗

I , and ψ̄ : E∗I → E∗I such that

X∗
I

ψ
- X̃∗

I

E∗I

pI
?

ψ̄
- E∗I

p̃I
?

commutes. (Here the respective translation structures on X∗ and X̃∗ are
induced by lifting νI on EI).

Obviously, this gives rise to an equivalence relation. Moreover, the deriva-
tive of ψ̄ is in SL2(Z) by Example III.2.8. Conversely, given a matrix B ∈
SL2(Z), we get an origami that is affinely equivalent to a given one as a
consequence of Proposition III.3.6.

III.4.12 Proposition. Let O = (p : X → E) be an origami. Then the
origamis that are affinely equivalent to O modulo the ones that are equivalent
to O, correspond bijectively to the right cosets of Γ(O) in SL2(Z).

Proof: Let Õ = (p̃ : X̃ → E) be an origami that is affinely equivalent to O.
We continue to use the notations above. If B = der(ψ) ∈ Γ(O), then there
exists f ∈ Aff+(X∗

I ) with der(f) = B. The map f descends to f̄ ∈ Aff+(E∗I )
by Proposition III.3.11. Then, ψ̄ ◦ f̄−1 : E∗I → E∗I is a translation of E∗I .
Thus it is also a translation of EI that fixes the point 0̄. Since a translation
has no fixed points, Trans(E∗I ) = {id}, and it follows that

pI = ψ̄ ◦ f̄−1 ◦ pI = p̃I ◦ ψ ◦ f,

thus O and Õ are equivalent.

Conversely, if O and Õ are equivalent, and if ψ : X∗
I → X̃∗

I is an affine
diffeomorphism, then surely der(ψ) ∈ Γ(O). �

III.4.13 Example. To draw pictures of the origamis that are affinely equiv-
alent to a given one, we can proceed as follows. Each of these origamis
corresponds to a coset of Γ(O) in SL2(Z). We take a coset representative
A ∈ SL2(Z) and shear the original picture of O with the linear map z 7→ A·z.
Then we have to subdivide the result into upright squares again and to ex-
amine how the gluings have changed.

If we apply these considerations to our example origami S, then we can
depict four origamis SA, A ∈ {I, T, S, T 2} that are affinely equivalent to S
(where S itself is SI).
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Figure III.3: The origami S = SI
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Figure III.4: The origami ST to T =
(
1 1
0 1
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Figure III.5: The origami SS to S =
(
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1 0
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Figure III.6: The origami ST 2 to T =
(
1 2
0 1

)



Chapter IV

The Origami S

From now on we focus on our example origami S = (p : X → E) as presented
in Example I.1.3. This is an origami defined over the torus E = EI =
C/(Z + iZ). First we examine the automorphisms of S.

As the origami S was defined by a picture (cf. Figure I.2), we will have
to transfer properties given by pictures into algebraic terms.

Let X denote the topological space of S and let p : X → E be the asso-
ciated covering map. Let X∗

I and XI be the associated translation surface,
respectively Riemann surface (cf. Definition III.3.4). For the sake of sim-
plicity of notations, let us in the following write X∗ := X∗

I and X := XI

(hoping that this will not amount to confusion).

IV.1 Automorphisms of S

IV.1.1 The Hyperelliptic Involution on the Origami

We already saw in Example I.1.3, that S is an origami of genus g = 2. Hence,
by Proposition II.6.8, the Riemann surface X is a hyperelliptic surface. We
wish to identify the hyperelliptic involution on X.

IV.1.1 Definition. Let σ : X → X be the map given by the following
picture.

−→
σ

X σ(X)

1 2 3

4 5 6

�

�

�

�

�

e
u
e

1 3 2

5 4 6

�

�

�

�

�

u
e
u
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Obviously, restricting σ to X∗ yields an automorphism σ : X∗ → X∗ and
this is an affine map with derivative −I. Thus, by Proposition III.3.14, σ is
an element of Aut(S).

IV.1.2 Proposition. The map σ : X → X is a holomorphic involution,
having the following six fixed points

×
×

×

×
×

×

Hence, σ is the hyperelliptic involution of the hyperelliptic Riemann surface
X.

Proof: Looking at the definition of σ, one sees that σ is an involution. By
Corollary II.6.13, any holomorphic involution that fixes 2g + 2 = 6 points
is already the hyperelliptic involution. The fixed points can easily be found
with the help of the following consideration.

The map σ : X∗ → X∗ descends to the map ϕ−I : E → E on E = C/ΛI .
The image of a fixed point of σ is a fixed point of ϕ−I . The fixed points of
ϕ−I are precisely the 2-torsion points 0+ΛI , 1

2 +ΛI , i12 +ΛI and 1
2 +i12 +ΛI .

Thus, we only have to look at the fibers of these latter points to find fixed
points of σ. �

IV.1.2 The Group Aut(S)

IV.1.3 Definition. Let τ : X → X be given by the following picture.

−→
τ

X τ(X)

1 2 3

4 5 6

�

�

�

�

�

e
u
e

6 4 5

2 3 1

�

�

�

�

�

u
e
u

For the same reasons as for σ, the map τ is an element of Aut(S). Since its
derivative is equal to I, τ is an isomorphism for the translation structure on
X∗, hence a translation.
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IV.1.4 Remark. The map τ is an involution. Hence, the set

G = {id, σ, τ, στ}

is a subgroup of Aut(S), isomorphic to the Klein four-group V4. The element
στ : X → X is given by the picture

−→
στ

X στ(X)

1 2 3

4 5 6

�

�

�

�

�

e
u
e

6 5 4

3 2 1

�

�

�

�

�

e
u
e

Proof: One checks that τ2 = id by looking sharply at the defining picture.
By Corollary II.6.14, one has τσ = στ , thus G ∼= V4. �

IV.1.5 Proposition. The group Trans(S) is equal to {id, τ} and the group
Aut(S) is equal to {id, σ, τ, στ} ∼= V4.

Proof: First we show that the group of translations of X∗ is precisely
{id, τ}. Let t ∈ Trans(X∗). Then the induced biholomorphic automorphism
t : X → X must map singularities of the translation structure ηI to singu-
larities. Thus, t({�,�}) = {�,�}. Moreover, t : X∗ → X∗ is a deck trans-
formation for the covering p : X∗ → E∗ and must therefore map squares to
squares.

Let Qi be the square labeled with i in Figure I.2. Then t(Q1) = Qr where
r ∈ {1, . . . , 6}. The left edge of Q1 is mapped to the left edge of Qr. Since
the left edge of Q1 abuts on the vertex �, the possibilities are r = 1, 2, 4, 6.
The vertices at the right edge of Q1 are identical, thus only r = 1, 6 are
left over. By the identity theorem, either t = id or t = τ . Note that this
argument generalizes to any member of the family Sn,k, k, n ≥ 1 (cf. Figure
I.3).

Now let f ∈ Aut(S), i.e. f ∈ Aff+(X∗
I ) with der(f) = ±I. If der(f) = I,

then f is already a translation, hence f ∈ {id, τ} by the above argument. If
der(f) = −I, then σ ◦ f is a translation and hence f ∈ {σ, στ}. �

To find fixed points of τ and στ , we proceed as in the proof of Proposition
IV.1.2.

IV.1.6 Remark. The fixed points of τ are the points � and �. The fixed
points of στ are the points f and w.
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IV.2 Properties of Riemann Surfaces of Genus Two

In this section, we study the family of Riemann surfaces (X∗
B)B∈SL2(R) com-

ing from the origami S from a more general point of view. The automorphism
group of any of these surfaces contains the Klein four-group Aut(S) ∼= V4 as
a subgroup. Moreover, the sets of fixed points of σ, τ and στ are mutually
disjoint. In this section, we focus on Riemann surfaces of genus two with
this property.

In the following, Y always denotes a compact Riemann surface with the

Property (∗). The genus of Y is two and Aut(Y ) has a subgroup
G = {id, σ, τ, στ} isomorphic to V4, where σ is the hyperelliptic
involution on Y and σ, τ and στ have no common fixed point.

Furthermore, let φ : Y → Y/<σ> ∼= P1 be a covering map for the action
of σ on Y . Let A ⊂ Y be the set of fixed points of σ, which is at the same
time the set of ramification points of φ, and let B = φ(A) ⊂ P1 be the set
of branch points.

IV.2.1 Remark. The map φ|A is injective, and therefore the cardinality of
B is equal to 6. Moreover, φ−1(B) = A.

Proof: This is due to the fact that σ2 = id, so the fixed points of σ corre-
spond to orbits of < σ > on Y , having only one element. �

IV.2.2 Proposition. Any automorphism θ ∈ Aut(Y ) descends via φ to
an automorphism θ̄ ∈ Aut(P1). The automorphism θ̄ acts on B, and this
action has no fixed point, if and only if the automorphisms σ and θ have no
common fixed point.

Conversely, any automorphism γ ∈ Aut(P1) that satisfies γ(B) = B can
be lifted to an automorphism γ̂ ∈ Aut(Y ) and there are precisely two possible
lifts γ̂ and σγ̂.

Proof: By Corollary II.6.14, we have σθ = θσ, and therefore the map φ◦θ
is invariant on the orbits of < σ >. Thus, we get a map θ̄ : P1 → P1 such
that the diagram

Y
θ

- Y

P1

φ
?

θ̄
- P1

φ
?
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commutes. Moreover,
σθ(P ) = θσ(P ) = θ(P )

for any fixed point P of σ, so θ(P ) is again a fixed point of σ. Thus, θ(A) = A.
By θ̄φ = φθ, it follows that θ̄(B) ⊂ B and even θ̄(B) = B, since θ̄ is bijective.

Let z ∈ B be a fixed point of θ̄ and let P ∈ A be its preimage under
φ. Then, φθ(P ) = θ̄(z) = z = φ(P ). By the above remark, φ|A is injective,
hence θ(P ) = P , and P is a common fixed point of σ and θ. Conversely, for
any such fixed point P , θ̄φ(P ) = φθ(P ) = φ(P ), thus φ(P ) ∈ B is a fixed
point of θ̄.

To show the converse, let U = P1\B and let W = Y \φ−1(B) = Y \A. Let
q ∈ W and let φ(q) = r ∈ U . Let H = φ∗(π1(W, q)) be the subgroup of the
fundamental group π1(U, r) coming from the topological covering φ|W → U .
We set r′ := γ(r) and choose a point q′ ∈ φ−1({r′}). Let H ′ = φ∗(π1(W, q′)).
Our aim is to find γ̂ : W →W such that the diagram

W
γ̂

- W

U

φ
? γ

- U

φ
?

commutes. By Theorem II.2.6, it suffices to show that γ∗(H) ⊂ H ′.

We first choose appropriate generators for π1(U, r). The fundamental
group of P1 with six points removed is isomorphic to the free group on
five generators g1, . . . , g5 , each of the generators being a loop around a
point in B. Up to renumbering the elements g1, . . . , g5, the element g6 =
g−1
1 g−1

2 · · · g−1
5 then winds around the remaining sixth point of B. Let us

make this a bit more explicit.

Let us write B = {b1, . . . , b6} and let us fix an index i ∈ {1, . . . , 6}. Let
ai ∈ A be the preimage of bi ∈ B. Since bi is a branch point of φ, there exist
charts zi : Vi → D at ai and wi : Ui → D at bi, such that wi ◦φ◦z−1

i = (D →
D, z 7→ z2). We consider the fundamental group of Ui\{bi}. Let ri be a point
in Ui \ {bi} and let βi be a generator of π1(Ui \ {bi}, ri). (This fundamental
group is isomorphic to Z.) To relate π1(Ui \ {bi}, ri) with π1(U, r), let αi be
a path in U that joins r to ri. Then αiβiα

−1
i is a path that goes from the

base point r to ri, then winds around bi once and goes back to r. We set
gi := αiβiα

−1
i . Up to replacing βi by its inverse path and renumbering, the

elements g1, . . . , g6 generate π1(U, r) and are subject to the single relation

g1g2 · · · g6 = 1.

Since φ is a two-sheeted covering map, its monodromy is a group homo-
morphism

ρ : π1(U, r) → Z/2Z.
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What is the image of gi under ρ? There are only two possibilities: either the
lift of gi starting at q is a closed path in W , in which case ρ(gi) = 0 or it is
not, i.e. ρ(gi) = 1. Since gi = αiβiα

−1
i , it follows that ρ(gi) = ρi(βi), where

ρi : π1(Ui \ {bi}, ri) → Z/2Z,

is the monodromy of the covering φ|Vi \{ai} → Ui \{bi}. Since this covering
can be expressed as z 7→ z2, we have ρi(βi) = 1, and hence ρ(gi) = 1.

It is easy to see that H = ker ρ. Moreover, an element h ∈ π1(U, r) can
be written as

h = gε1l1 · · · g
εs
ls

with s ∈ N and lj ∈ {1, . . . , 6}, εj ∈ {±1}, 1 ≤ j ≤ s. If h ∈ ker ρ, then

0 = ρ(h) = ρ(gε1l1 ) + . . .+ ρ(gεsls ) = 1 + . . .+ 1︸ ︷︷ ︸
s-times

.

It follows that s is even, if and only if h ∈ ker ρ.

Let g′i = γ(gi), 1 ≤ i ≤ 6. Since γ(B) = B and since γ is an automorphism
of P1, it maps a small neighborhood of bi to a small neighborhood of γ(bi) ∈
B, 1 ≤ i ≤ 6. Therefore, the monodromy

ρ′ : π1(U, r′) → Z/2Z

maps g′i to 1 for all i ∈ {1, . . . , 6}. Again, we have H ′ = ker ρ′.

Let us show that γ∗(H) ⊂ H ′. Let h ∈ H, then

h = gε1l1 · · · g
εs
ls

with lj ∈ {1, . . . , 6}, εj ∈ {±1}, 1 ≤ j ≤ s and s ∈ 2N. Applying γ∗ to h
yields

γ∗(h) = γ∗(gl1)
ε1 · · · γ∗(gls)εs ∈ ker ρ′ = H ′,

because s is even. This shows the existence of a lift γ̂ of γ. By Theorem
II.2.6, the map γ̂ is uniquely determined by its value at the point q ∈ W .
As γ̂(q) ∈ φ−1({r′}) = {q′, σ(q′)}, it follows that γ admits precisely two lifts
γ̂ and σγ̂. �

Proposition IV.2.2 shows that studying automorphisms of Y essentially
means studying Moebius transformations of Aut(P1) that fix the set of
branch points of φ. The following properties of Moebius transformations
will therefore be useful later on.

IV.2.3 Lemma. An element γ ∈ Aut(P1), γ 6= id of finite order has exactly
two fixed points.
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Proof: We write γ as z 7→ az+b
cz+d with a, b, c, d ∈ C and ad− bc 6= 0. Then,

γ has either one fixed point or two fixed points since the equation

az + b

cz + d
= z

leads either to a linear or a quadratic polynomial in z. We show that γ has
infinite order, if it has only one fixed point. Let z0 be a fixed point of γ.
There exists a Moebius transformation β ∈ Aut(P1) such that β(z0) = ∞.
Let γ̃ := βγβ−1. Then the order of γ̃ and the number of fixed points are
the same as for γ. Moreover, ∞ is a fixed point of γ̃. Therefore, γ̃ can be
written as z 7→ rz+ s with r, s ∈ C, r 6= 0. By our assumption, the equation

z = rz + s

has no solution in C. This is the case, if and only if r = 1 and s 6= 0. Hence,
γ̃ = (z 7→ z + s), s 6= 0, and it has infinite order. �

IV.2.4 Lemma. Let γ ∈ Aut(P1), γ 6= id and let z ∈ P1 be not a fixed
point of γ. Then, the cardinality of the orbit < γ > ·z is equal to the order
of γ.

Proof: Let Γ =< γ > and let Γz be the stabilizer subgroup of z. Then
the cardinality of the orbit Γ · z is equal to (Γ : Γz) by the orbit-stabilizer
theorem. Thus we have to show that Γz = {id}. First we assume that γ has
two fixed points. Let γ̃ ∈ Γz, γ̃ = γm, m ∈ Z. Every fixed point of γ is
already a fixed point of γm. Thus γm has three fixed points, and it follows
that γ̃ = γm = id.

On the other hand, if γ has only one fixed point, then we can proceed
as in the proof of the preceding lemma and assume that γ(∞) = ∞. Thus,
we can write γ : z 7→ z + b, b ∈ C, b 6= 0. The orbit of z ∈ C under the
action of < γ > is {z, z+b, z+2b, z+3b, . . .} and its cardinality is infinite. �

IV.2.1 Parametrization

By Theorem II.4.2, the Riemann surface Y can be equivalently described as
a projective, regular curve over C. Furthermore, any algebraic curve that has
the same function field as Y is birationally equivalent to Y . We now want
to find an affine plane curve with this property (this is the most simple
object that we can expect). We show that for any Riemann surface Y that
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satisfies Property (∗), there exists an equation of such an affine plane curve
depending on two complex parameters λ, µ. This description can be found
e.g. in [Gey74], where points in moduli space M2 are classified according to
their automorphism group.

First, we choose appropriate coordinates of P1 such that B, the set of
branch points of φ, and the automorphism τ̄ ∈ Aut(P1) induced by τ ∈ G
have a very simple form. This is possible since by Proposition II.6.10, the
quotient map φ : Y → P1 is unique up to composition with an element
β ∈ Aut(P1).

Since τ̄2 = id, it follows from Lemma IV.2.3, that τ̄ has two fixed points
w1, w2. By our assumption on Y , the automorphisms τ and σ have no
common fixed point. Therefore, Proposition IV.2.2 implies that {w1, w2} ∩
B = ∅. Let b ∈ B be any element. We have three wishes for a Moebius
transformation β and we wish that

β(w1) = 0, β(w2) = ∞, β(b) = 1.

(Fortunately, our wishes come true.) Then the map β ◦ φ is also a covering
map for the action of σ on Y and τ descends to τ̃ = βτ̄β−1 via β ◦ φ, since

β ◦ φ ◦ τ = β ◦ τ̄ ◦ φ = τ̃ ◦ β ◦ φ.

Then we get
τ̃(0) = 0, τ̃(∞) = ∞,

and τ̃ can be written as z 7→ az with a ∈ C, a 6= 0. Since τ̃2 = id, it follows
from τ̃2(1) = 1 that a2 = 1, which leads to a = −1, for τ̃ 6= id. So τ̃ is the
map

P1 → P1, z 7→ −z.

Let B̃ = β(B). Then B̃ is the set of branch points for the covering map
β ◦ φ. To derive the form of B̃, note that the map τ̃ acts on this set. Since
1 ∈ B̃, so is τ̃(1) = −1. Let λ ∈ B̃ \ {1,−1}, then τ̃(λ) = −λ ∈ B̃. In the
same way, let µ ∈ B̃ \ {1,−1, λ,−λ}, then −µ ∈ B̃. Hence,

B̃ = {1,−1, λ,−λ, µ,−µ}.

Altogether, we have shown the first half of the following proposition.

IV.2.5 Proposition. Let Y be a Riemann surface, satisfying Property (∗).
In particular, we fix an involution τ ∈ Aut(Y ) such that τ and the hyper-
elliptic involution σ have no common fixed point. Then there exists a quotient
map φ : Y → P1 for the action of the hyperelliptic involution on Y , such
that the automorphism τ ∈ Aut(Y ) descends to the map

τ̄ : P1 → P1, z 7→ −z,
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and such that the set of branch points of φ is of the form

B = {1,−1, λ,−λ, µ,−µ},

where λ, µ ∈ C \ {0,±1} and λ 6= ±µ.
If φ̃ : Y → P1 is a map with the same properties as φ, then φ̃ = δ ◦ φ,

where δ is one of the maps in the set

{ id, (z 7→ λ−1z), (z 7→ µ−1z) }
∪ { τ̄ , (z 7→ λ−1z) ◦ τ̄ , (z 7→ µ−1z) ◦ τ̄ }
∪ { (z 7→ z−1), (z 7→ λz−1), (z 7→ µz−1) }
∪ { (z 7→ z−1) ◦ τ̄ , (z 7→ λz−1) ◦ τ̄ , (z 7→ µz−1) ◦ τ̄ }.

Proof: By Proposition II.6.10, there exists δ ∈ Aut(P1), such that φ̃ = δ◦φ.
The map φ̃ satisfies τ̄ φ̃ = φ̃τ . Thus

τ̄ δφ = τ̄ φ̃ = φ̃τ = δφτ = δτ̄φ,

which leads to τ̄ = δτ̄δ−1, because φ is surjective. If we write δ = (z 7→ az+b
cz+d)

with ad− bc = 1, then this is equivalent to(
a b
c d

)(
−1 0
0 1

)(
a b
c d

)−1

=
(
−1 0
0 1

)
.

The solutions of this equation are
(
a 0
0 1

a

)
and

(
0 b
1
b

0

)
. Thus, there exists r ∈

C \ {0} such that δ = (z 7→ rz) or δ = (z 7→ rz−1). Let φ̃(A) = B̃ be the
set of branch points of φ̃. Then δ(B) = B̃. Since 1 ∈ B̃, there exists b ∈ B,
such that δ(b) = 1. This determines the factor r, and δ is one of the maps
in the list. Conversely, every map in the list induces a covering map δ ◦ φ of
the desired form. �

Note that if Y satisfies Property (∗) and if it has another involution τ ′ of
the same kind as τ , then there might be more maps δ ∈ Aut(P1) that link
two covering maps φ, φ̃ as above.

IV.2.2 An Affine Plane Curve for the Riemann Surface Y

Next, we aim at proving the following theorem (see also [Gey74, I. Case 6)]).

IV.2.6 Theorem. Any compact Riemann surface Y that satisfies Property
(∗) is birationally equivalent to an affine plane curve

Cλ,µ :=
{
(u, v) ∈ C | v2 = (u2 − 1)(u2 − λ2)(u2 − µ2)

}
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for some parameters λ, µ ∈ C \ {0,±1}, λ 6= ±µ.
Conversely, given λ, µ ∈ C \ {0,±1}, λ 6= ±µ, the affine plane curve

Cλ,µ is a Riemann surface of finite type and can be completed to a compact
Riemann surface Y that satisfies Property (∗), using the covering map

φ̂ : Cλ,µ → C, (u, v) 7→ u.

In order to prove the theorem, we make the following observations. Let
Y be a Riemann surface that satisfies Property (∗). The parameters (λ, µ)
will depend on the chosen covering map φ : Y → P1, so we have to fix one
first, and we take a covering map as given by Proposition IV.2.5.

To obtain the equation of an affine plane curve that is birationally equiv-
alent to Y , we naturally have to consider the field of meromorphic functions
of Y . The covering map φ : Y → P1 induces a field extension

φ∗ : M(P1) →M(Y )

by setting φ∗(f) := f ◦ φ for a function f ∈M(P1).

If we set x : P1 → P1, z 7→ z, then the field M(P1) is canonically iso-
morphic to C(x) the field of rational functions in one variable over C. The
covering map φ has degree two, thus φ∗ is a finite field extension of the same
degree two by Proposition II.4.4. Hence there exists a function y ∈ M(Y )
and there exist functions a, b ∈M(P1) such that

y2 + φ∗(a)y + φ∗(b) = 0

holds in M(Y ) and such that

M(Y ) = M(P1)(y) = C(x)(y).

Note that {1, y} is a basis of the two-dimensional C(x)-vector space M(Y )
and that this basis can still be modified by addition or multiplication of y
with an element of M(P1). In particular, this means that we can complete
the square. Hence, we can assume that there exist y ∈ M(Y ), c ∈ M(P1)
such that

y2 = φ∗(c).

Furthermore, by multiplying this equation with the square of the denomina-
tor of c, we can assume that c is a polynomial. Next, we can write c = fg2,
where f, g ∈ C[x] are polynomials and f is square-free with leading coeffi-
cient 1. Thus, if we divide the equation y2 = φ∗(c) by g2, we find y ∈M(Y ),
f ∈ C[x] square-free, satisfying

y2 = φ∗(f), (IV.1)

while M(Y ) = M(P1)(y) still holds.
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IV.2.7 Remark. The locus of zeros of the polynomial V 2−f(U) ∈ C[U, V ],
coming from Equation (IV.1), defines a regular, affine plane curve

CY :=
{
(u, v) ∈ C2 | v2 − f(u) = 0

}
⊂ C2,

and hence a Riemann surface.

Proof: This is due to the fact, that f is a square-free polynomial: V 2−f(U)
is irreducible and f and its derivative f ′ have no common zero. Therefore,
the partial derivatives

∂U (V 2 − f(U)) = −f ′(U), ∂V (V 2 − f(U)) = 2V

evaluated at p ∈
{
(u, v) ∈ C2 | v2 − f(u) = 0

}
are not both equal to zero. �

We show that this affine plane curve is biholomorphically equivalent to
an open subset of the Riemann surface Y .

Because of the choice of φ, the point ∞ ∈ P1 is not a branch point of φ.
Hence, there are exactly two points ∞1, ∞2 that are mapped to ∞ by φ.
Let

Yaff := Y \ {∞1,∞2}.

IV.2.8 Proposition. Let y ∈ M(Y ) satisfy Equation (IV.1). Then the
mapping

ψ :


Yaff −→ CY = {(u, v) ∈ C2 | v2 = f(u)}

z 7−→ (φ∗(x)(z), y(z))

is biholomorphic.

Proof: First of all, we must show that ψ is well-defined. For a meromorphic
function g on Y let P (g) := {z ∈ Y | g(z) = ∞} be the set of poles of g.
Then

P (y) = P (y2) = P (φ∗(f)) = P (φ∗(x)) = φ−1(∞).

Thus for all z ∈ Y the image ψ(z) = (φ∗(x)(z), y(z)) lies in C2. Moreover
y2 = φ∗(f) implies y(z)2 = f(x ◦ φ(z)) = f(φ∗(x)(z)). This shows that ψ is
well-defined.

Next we show that ψ is one-to-one. Let z1, z2 ∈ Yaff with ψ(z1) = ψ(z2).
Then φ∗(x)(z1) = φ∗(x)(z2) and y(z1) = y(z2). Since every function g ∈
M(Y ) can be written as a rational function in φ∗(x) and y, it follows g(z1) =
g(z2) for all g ∈M(Y ). By Corollary II.4.7, we get z1 = z2.
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Finally, we show that ψ is also onto. Let (u, v) ∈ C2 with v2 = f(u). Since
φ∗(x) = φ and since φ is onto, there exists a z0 ∈ Y with φ∗(x)(z0) = u.
It remains to show that v ∈ {y(z0), y(σ(z0))}, which in turn means that
y(σ(z0)) must be equal to −y(z0), since the equation

y2(z0) = f(φ∗(x)(z0)) = f(u) = v2

holds. To the element σ ∈ Aut(Y ) we assign the automorphism σ∗ of M(Y ),
defined by f 7→ σ∗(f) := f ◦ σ−1. If f ∈M(P1), then

σ∗(φ∗(f)) = f ◦ φ ◦ σ−1 = f ◦ φ ◦ σ = f ◦ φ = φ∗(f),

so σ∗ leaves an element of M(P1) invariant. On the other hand σ∗ is not
the identity map. Otherwise, if σ∗(y) = y, then for all z ∈ Y one has
y(σ−1)(z) = y(σ(z)) = y(z). Together with σ∗(φ∗(x)) = φ∗(x) and Corollary
II.4.7, we would have σ(z) = z for all z ∈ Y , contradicting the fact that
σ 6= id. Applying σ∗ to the equation (IV.1) we get

(σ∗(y))2 = σ∗(y2) = σ∗(φ∗(f)) = φ∗(f) = y2

Since σ∗ 6= id, this shows σ∗(y) = −y.
It remains to show that ψ is holomorphic. A chart (U,ϕ) of CY can be

choosen to be locally either the projection onto the first or on the second
coordinate. This implies that ϕ ◦ψ = φ|ψ−1(U) or ϕ ◦ψ = y|ψ−1(U), which in
turn shows ψ is holomorphic. This completes the proof. �

In particular, we can transfer the covering map φ to CY by setting φ̂ :=
φ ◦ ψ−1. Then φ̂ is the projection to the first coordinate

φ̂ : CY −→ C, (u, v) 7−→ u.

It remains to gather some information on the polynomial f . By the choice
of coordinates we already know that all ramification points of φ are in Yaff.

IV.2.9 Lemma. If z ∈ Y is a ramification point of φ, then f(φ∗(x)(z)) =
0. Conversely, if u ∈ C satisfies f(u) = 0, then φ−1({u}) is a singleton and
thus a ramification point of φ.

Proof: Let z ∈ Y be a ramification point of φ. Then σ(z) = z and

y(z) = y(σ(z)) = y(σ−1(z)) = σ∗(y(z)) = −y(z),

thus 0 = y(z)2 = f(φ∗(x)(z)).
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In order to show the converse, let u ∈ C be a zero of f and let φ̂−1({u}) =
{(u, v1), (u, v2)} be the set of preimages of u. Then,

v2
1 = f(u) = 0 = f(u) = v2

2,

so v1 = v2 = 0 and φ−1({u}) is a singleton. �

Altogether we can now complete the proof of Theorem IV.2.6.

Proof of Theorem IV.2.6: Let λ, µ ∈ C \ {0,±1}, λ 6= ±µ and let
B = {1,−1, λ,−λ, µ,−µ} be the set of branch points of φ. By the preceding
lemma,

CY =
{
(u, v) ∈ C2 | v2 = (u2 − 1)(u2 − λ2)(u2 − µ2)

}
,

and CY is biholomorphically equivalent to Yaff, which is a Zariski-open sub-
set of Y . Therefore, CY is birationally equivalent to Y in the category of
algebraic varieties.

Let λ, µ ∈ C \ {0,±1}, λ 6= ±µ. Being an affine plane curve, Cλ,µ is
naturally also a Riemann surface of finite type. The holomorphic map

φ̂ : Cλ,µ → C, (u, v) → u

is a finite, surjective covering map. Let B = {1,−1, λ,−λ, µ,−µ} and let
A = φ̂−1(B). If we restrict φ̂ to Cλ,µ \ A, then it is unramified. Thus by
Proposition II.2.5, it is proper. Hence, Proposition II.3.3 implies that φ̂ can
be extended to a holomorphic map φ : Y → P1, where Y is a compact
Riemann surface of genus 2 such that Cλ,µ \ A ⊂ - Y . By Proposition
II.3.4, the four automorphisms of Cλ,µ.

idCλ,µ
, (u, v) 7→ (u,−v), (u, v) 7→ (−u, v), and (u, v) 7→ (−u,−v)

extend uniquely to automorphisms of Y . The map (u, v) 7→ (u,−v) extends
to the hyperelliptic involution on Y , since it is an involution with |A| = 6
fixed points. Moreover, we will see later in Corollary IV.2.15 that the con-
dition on the fixed points of the four automorphisms is fulfilled. �

IV.2.10 Remark. Note that the projective closure

{(u, v) ∈ C2 | v2 − f(u) = 0} ⊂ P2

has a singularity at ∞. This is due to the general fact, that a regular, pro-
jective curve of genus two cannot be embedded in P2, which is a consequence
of Plücker’s Formula II.4.1.



CHAPTER IV. THE ORIGAMI S 75

IV.2.3 A First Approach to the Moduli Space M2

Now we want to answer the question how many different choices of param-
eters (λ, µ) belong to the same Riemann surface Y . In other words, when
do (λ, µ) and (λ′, µ′) give rise to isomorphic curves Cλ,µ, Cλ′,µ′ , i.e. when
do they define the same point in the moduli space M2? We make a first
approach to answer this question. A more detailed description can be found
e.g. in [Gey74].

The underlying parameter space P is the set

P = (C \ {0,±1} × C \ {0,±1}) \ (∆ ∪∆′),

where ∆ = {(z, z) | z ∈ C} is the diagonal and ∆′ = {(z,−z) | z ∈ C}. We
get a map

pr : P →M2, (λ, µ) 7→ Cλ,µ,

where Cλ,µ is the affine plane curve defined in Theorem IV.2.6. (Note that
this theorem also permits us to identify Cλ,µ with its associated compact
counterpart.)

Clearly, (λ, µ) and (µ, λ) lead to isomorphic curves Cλ,µ and Cµ,λ. Because
λ and µ only appear squared in the equation to CY , the pairs

(λ,−µ), (−λ, µ) and (−λ,−µ)

also lead to curves that are isomorphic to Cλ,µ.

Moreover, we can still vary the covering map by composition with δ ∈
Aut(P1) from the list in Proposition IV.2.5 and stay in the same isomorphism
class. This leads to changing the set of branch points B and thus to changing
(λ, µ). We get the following proposition.

IV.2.11 Proposition. The group Γ generated by

A : (λ, µ) 7→ (λ−1, µ−1), B : (λ, µ) 7→ (µ, λ), C : (λ, µ) 7→ (λ−1, λ−1µ)

D : (λ, µ) 7→ (−λ, µ), E : (λ, µ) 7→ (−λ,−µ)

acts on the algebraic variety P as a group of automorphisms. The following
holds:

a) Γ is isomorphic to the semidirect product V4 oϕ D6, where the dihedral
group D6

∼=< A,B,C > acts on the Klein four group V4
∼=< D,E > by

conjugation.

b) The map pr : P →M2 induces a surjective morphism

pr : P/Γ → S ⊂M2,

where S is the set of Riemann surfaces in M2 that satisfy Property (∗).
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c) If we restrict pr to pr−1(S ′), where S ′ ⊂ S is the set of Riemann surfaces,
whose automorphism group is precisely G ∼= V4, then pr is an isomor-
phism.

Proof: Part a). Note that each of these maps is a well-defined auto-
morphism of P . Clearly,

< D,E >= {id, D,E,DE = ED} ∼= V4.

Moreover, A2 = id, and one shows easily that AB = BA, AC = CA. The
elements B and BC generate a subgroup isomorphic to S3. Surely, B2 =
id, and an easy computation shows that (BC)3 = id and that B(BC) =
(BC)2B. Therefore,

< A,B,C >∼= (Z/2Z)× S3 = D6.

It remains to show that < D,E > is a normal subgroup of Γ. This can be
verified on the generators:

ADA = D, AEA = E, BDB = DE, BEB = E, CDC = E, CEC = D.

Thus, ϕ :< A,B,C >→ Aut(< D,E >), g 7→ (h 7→ ghg−1) is a well-defined
homomorphism and Γ ∼= V4 oϕ D6.

Part b). By Theorem IV.2.6, the map pr : P → S is surjective. Next, we
justify that pr : P → M2 factors through P/Γ. This has already been done
above for < D,E >. Let Y be a Riemann surface, satisfying Property (∗).
Let φ : Y → P1 be a covering map such that Yaff

∼= Cλ,µ for (λ, µ) ∈ P .
Then the set of branch points of φ can be written as

B = {1,−1, λ,−λ, µ,−µ}.

Applying A to (λ, µ) corresponds to changing the covering map φ by δ =
(z 7→ z−1). Thus,

Cλ,µ ∼= Cλ−1,µ−1 .

If we change the covering map by composition with δ = (z 7→ λ−1z), then
B is mapped to

B′ = {1,−1, λ′,−λ′, µ′,−µ′} = {1,−1, λ−1,−λ−1, λ−1µ,−λ−1µ},

so applying C to (λ, µ) yields isomorphic curves. Note that δ = τ̄ corresponds
to applying E to (λ, µ). By composing the maps A, B, C and E, one sees
that all the cases of the list in Proposition IV.2.5 are treated. This shows
that we get a map pr : P/Γ →M2.
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Part c). To prove that the restriction of pr to pr−1(S ′) is injective, let
(λ1, µ1), (λ2, µ2) ∈ P , and let Yi be the compact Riemann surface associated
to Cλi,µi

, i = 1, 2 as in Theorem IV.2.6. Suppose that Y1, Y2 ∈ S ′, i.e.

Aut(Yi) = {id, σi, τi, σiτi} ∼= V4, i = 1, 2

and suppose that they are isomorphic via an isomorphism

h : Y1 → Y2.

Let φi : Yi → P1 be the associated covering map, coming from the projection
onto the first coordinate in Cλi,µi

. We show that φ2◦h is also a quotient map
for the hyperelliptic involution σ1 on Y1. The map h◦σ1◦h−1 is a holomorphic
involution on Y2 with 6 fixed points, and it follows from Proposition II.6.13,
that h ◦ σ1 ◦ h−1 = σ2 is the hyperelliptic involution on Y2. Therefore,

φ2 ◦ h ◦ σ1 = φ2 ◦ h ◦ σ1 ◦ h−1 ◦ h = φ2 ◦ σ2 ◦ h = φ2 ◦ h.

Before we can apply Proposition IV.2.5, it remains to check, whether τ1
descends to z 7→ −z via φ2 ◦ h. This holds, since h ◦ τ1 ◦ h−1 is either equal
to τ2 or to σ2τ2, and both τ2 and σ2τ2 descend to z 7→ −z by the choice of
φ2. Hence there exists δ ∈ Aut(P1) from the list in Proposition IV.2.5, such
that

Y1
h

- Y2

P1

φ1
?

δ
- P1

φ2
?

But this means that (λ1, µ1) and (λ2, µ2) are equivalent modulo Γ. �

IV.2.4 Automorphisms of the Affine Curve

Now that we have modeled Y as an affine plane curve, we want to translate
G ⊂ Aut(Y ) into a group of automorphisms of the affine curve. Let us fix
parameters (λ, µ) ∈ P , such that

Yaff
∼
ψ
- Cλ,µ = CY ,

where ψ is the isomorphism introduced in Proposition IV.2.8. Note that ψ
depends on the choice of parameters.
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IV.2.12 Remark. The map σ̂ = ψ ◦ σ ◦ ψ−1 ∈ Aut(CY ), induced by the
hyperelliptic involution, is given by

σ̂ : CY → CY , (u, v) 7→ (u,−v).

Proof: In the course of the proof of Proposition IV.2.8, we showed that
y(σ(z)) = −y(z). Moreover, φ∗(x)(σ(z)) = φ∗(x)(z), which proves our claim.
�

IV.2.13 Lemma. The automorphisms τ and στ ∈ Aut(Y ) have two fixed
points.

Proof: The quotient map Y → Y/<τ > is a two-sheeted covering. Let g
denote the genus of Y/<τ > and B be the number of fixed points of τ . The
Riemann-Hurwitz formula II.3.2 implies that

2g(Y )− 2 = 2(2g − 2) +B,

which is equivalent to
6−B

4
= g.

Since g ≥ 0, the only possible values for B are 2, 6. As τ is different from the
hyperelliptic involution, Corollary II.6.13 implies that B = 2. This argument
works similarly for στ . �

IV.2.14 Proposition. The automorphisms τ and στ of Y induce the auto-
morphisms

(u, v) 7→ (−u, v)
and

(u, v) 7→ (−u,−v)
of CY .

Moreover, there exists a choice of parameters (λ, µ) ∈ P , such that Yaff

is isomorphic to Cλ,µ = CY and such that τ̂ = ψ ◦ τ ◦ψ−1 ∈ Aut(CY ) is the
map

CY → CY , (u, v) 7→ (−u, v).

Proof: First we show that τ̂ is well-defined. This is equivalent to proving
τ(Yaff) = Yaff. For i = 1, 2, we have

φτ(∞i) = τ̄φ(∞i) = τ̄(∞) = ∞.
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Thus τ(φ−1({∞})) ⊂ φ−1({∞}) and even τ(φ−1({∞})) = φ−1({∞}), since
τ is bijective. Hence, τ(Yaff) = Yaff.

Recall that τ is a lift of τ̄ and that the only other lift of τ̄ is στ . So let t
be a lift of τ̄ |C : z 7→ −z to Aut(CY ). We make the ansatz

t : CY → CY , (u, v) 7→ (t1(u, v), t2(u, v)).

Since φ̂t = τ̄ φ̂, we get t1(u, v) = −u. As

t2(u, v)2 = f(t1(u, v)) = f(−u) = f(u) = v2,

the only possibilities are t2(u, v) = ±v. Thus, t, and consequently τ̂ , is either
the map (u, v) 7→ (−u, v) or (u, v) 7→ (−u,−v).

Let us assume that τ̂ = (u, v) 7→ (−u,−v). The map (u, v) 7→ (−u,−v)
has no fixed points in CY , since (u, v) = (0, 0) 6∈ CY . Therefore, the two fixed
points of τ are ∞1 and ∞2. On the other hand, solving (u, v) = (−u, v),
yields u = 0, and (0, iλµ), (0,−iλµ) are fixed points of (u, v) 7→ (−u, v) in
CY . This means that the fixed points of στ lie in φ−1({0}). Changing (λ, µ)
to (λ−1, µ−1) corresponds to composing φ with δ = (z 7→ z−1). The map
δ exchanges 0 and ∞, thus if we choose the parameters (λ−1, µ−1), then
τ̂ ∈ Aut(Cλ−1,µ−1) is of the form (u, v) 7→ (−u, v). �

In the following, let us assume that Cλ,µ = CY is chosen in such a way
that

τ̂ = (u, v) 7→ (−u, v).
With this definition, the above proof also shows the following corollary.

IV.2.15 Corollary. The fixed points of στ are the points ∞1, ∞2, and the
fixed points of τ correspond to the points {(0, iλµ), (0,−iλµ)} ∈ CY .

Now we investigate the quotient surface Ȳ := Y/<τ >. Let π : Y → Ȳ be
the quotient map.

IV.2.16 Proposition. The Riemann surface Ȳ has genus one. With the
above assumption on the form of τ̂ , the points π(∞1) and π(∞2) satisfy
π(∞1) = π(∞2) =: N , and the elliptic curve (Ȳ , N) has the equation

y2 = (x− 1)(x− λ2)(x− µ2).

Proof: It follows from the Riemann-Hurwitz formula II.3.2 that Ȳ has
genus one. Because of our assumption, a quotient map for the action of
< τ̂ > on CY is given by

π̂ : CY → CȲ , (u, v) 7→ (x, y) = (u2, v),



CHAPTER IV. THE ORIGAMI S 80

where CȲ :=
{
(x, y) ∈ C2 | y2 = (x− 1)(x− λ2)(x− µ2)

}
. This is true, since

π̂(u1, v1) = π̂(u2, v2), if and only if v1 = v2 and (u1−u2)(u1+u2) = 0, which
in turn is equivalent to (u1, v1) = (u2, v2) or (u1, v1) = τ̂(u2, v2).

The Riemann surfaces Ȳ and CȲ are linked via

CȲ = CY /< τ̂ > ∼= Yaff/<τ > = Ȳ \ π({∞1,∞2}).

So CȲ is a Riemann surface of finite type and can be embedded into the
compact Riemann surface Ȳ . On the other hand, the projective closure of
CȲ ,

CȲ =
{
(X : Y : 1) ∈ P2 | Y 2 = (X − 1)(X − λ2)(X − µ2)

}
∪ {(0 : 1 : 0)}

is also a compact Riemann surface that contains CȲ as a Zariski-open subset.
By Corollary II.3.7, CȲ is isomorphic to Ȳ . This implies π(∞1) = π(∞2),
and the elliptic curve (Y,N) has the above equation. �

IV.3 An Affine Equation for the Origami S

Let us return to our origami S = (p : X → E). We already know from Propo-
sition IV.1.5 and Theorem IV.2.6 that every surface XB has a parametriza-
tion with parameters (λ, µ) ∈ P , such that XB corresponds to the curve
Cλ,µ. Since the family of Riemann surfaces (XB)B∈SL2(R) describes a curve
in the moduli space M2, there has to be an algebraic relation between λ and
µ, which we are going to establish in the following.

First, we consider S again from a topological point of view. In particular,
the map τ ∈ Aut(S) is a homeomorphism of X, such that p ◦ τ = p, i.e. it
is a covering transformation for S = (p : X → E). Let

π : X → X/<τ >, x 7→< τ > ·x

denote the quotient map.

IV.3.1 Proposition. The map π|X∗ → X∗/<τ > is a topological covering
map. Moreover, there exists a unique covering map p̄ : X/<τ > → E such
that p = p̄ ◦ π and such that

S̄ = (p̄ : X/<τ > → E)

is an origami of genus one.

A picture for the origami S̄ is given by Figure IV.1. Here, the letters
indicate, which edges are glued together and numbers indicate, which squares
of S are mapped to which squares of S̄. The points � and � are the images
of the fixed points of τ and the point @ is the image of f and w ∈ X.
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Figure IV.1: The origami S̄

Proof: For x̄ =< τ > ·x ∈ X/<τ >, we set

p̄(x̄) := p(x).

This is a well-defined map p̄ : X/<τ > → E, since τ is a covering transfor-
mation, which is equivalent to p being constant on every orbit < τ > ·x,
x ∈ X. Obviously, p̄ ◦ π = p.

If we make use of the fact that X is the topological space of the Riemann
surface XI and that τ ∈ Aut(XI), then π : XI → XI/<τ > is a holomorphic
covering map and XI/<τ > is a surface of genus one. Moreover, π is proper
and unramified on X∗

I . By Proposition II.2.5, π is a topological covering
map.

It remains to show that S̄ = (p̄ : X/<τ >) → E is an origami. First, we
show that p̄ is a finite covering map. Let U ⊂ E be open, then p−1(U) is open,
as well as π(p−1(U)), since X/<τ > is endowed with the quotient topology.
As π is surjective by Proposition II.2.5, π(p−1(U)) = p̄−1(U). Thus, p̄ is
continuous. In the same way, π−1(V ) is open for an open set V ⊂ X/<τ >
and p(π−1(V )) = p̄(V ) is open in E, since p is open. Finally, p̄ is also discrete
and finite, since p is discrete and finite and since π is surjective. Therefore,
p̄ : X/<τ > → E is a finite covering map.

Since the genus of X/<τ > equals one, p̄ is unramified. Since X/<τ >
is compact, p̄ is proper and it follows by Proposition II.2.5, that it is a
topological covering map.

The uniqueness of p̄ follows from the fact that π is surjective, and the
picture for S̄ is derived directly from the picture for the action of τ on S
(cf. Definition IV.1.3). �

We abbreviate X/<τ > by X̄ and X∗/<τ > by X̄∗.

IV.3.2 Proposition. Let ν be a translation structure on E and let η be the
lift of ν on X∗ via p. There exists a unique translation structure η̄ on X̄∗

such that π : X∗ → X̄∗ and p̄ : X̄∗ → E∗ are translations.

Moreover, the translation structure η̄ extends uniquely to a translation
structure, also called η̄, on X̄.
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Proof: By Proposition III.1.8, we can lift the translation structure ν via p
to a unique translation structure η̄ on X̄∗, such that p̄ is a translation. Since
p and p̄ are translations, and since p̄ is locally invertible, the map π is also
a translation.

Since p̄ is a topological covering, Proposition III.1.8 also guarantees that
we can extend η̄ to X̄ in a unique way. �

We can apply the preceding proposition to define a translation structure
on X̄ for every B ∈ SL2(R). As usual, let E = EB = (C/ΛB, νB) be the
torus associated to B. We denote by η̄B the lift of νB to X̄∗, respectively
X̄, and we write X̄∗

B, respectively X̄B for the resulting translation surfaces.
Furthermore, πB : X∗

B → X̄∗
B shall denote the map π with respect to these

translation structures.

Next, we compare the origami S̄ to the torus C/(Z3 + Zi). As Z3 + Zi is
a subgroup of Z + Zi, the canonical map C → C/(Z + Zi) factors as in the
diagram

C - C/(Z3 + Zi)

C/(Z + Zi)

q
?-

IV.3.3 Proposition. Let C =
(
3 0
0 1

)
and let ΛC be the lattice associated to

C, i.e. ΛC = Z3 + Zi. Then T = (q : C/ΛC → E) is an origami defined
over E = (C/(Z + Zi), 0̄), and T is isomorphic to S̄ = (p̄ : X̄ → E). The
translation structure νC on C/ΛC descending from C coincides with the lift
of the translation structure νI on E via q. Moreover, there exists a bijective
translation

f : X̄I −→ EC := (C/ΛC , νC),

such that f(@) = 0̄, f(�) = 1̄ and f(�) = 2̄, and such that the diagram

X̄I
f

- EC

EI

q
�

p̄ -

commutes.

Proof: The map q : C/ΛC → C/ΛI , z+ΛC → z+ΛI is a finite topological
covering map with q−1(0̄) = {0̄, 1̄, 2̄}. More precisely, the degree of q equals
(ΛI : ΛC) = 3 and q is the quotient map for the action of ΛI/ΛC ∼= Z/3Z
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on C/ΛC . Since this action is free and since ΛI/ΛC is finite, it follows by
Proposition II.2.5 that q is a topological covering map. Thus, T is an origami.

From Figure IV.1, we conclude that T and S̄ are isomorphic origamis.
Hence, there exists a homeomorphism f̃ : X̄ → C/ΛC such that p̄ = q ◦ f̃ .
Next, we endow E and X̄ with the respective translation structures νI and
η̄I . An argument similar to the one in the proof of Proposition IV.3.2 shows
that we get the same translation structure on C/ΛC , if we either lift νI to
C/ΛC or if we consider the translation structure νC descending from C.

With this setting, the maps p and q are translations. As q is locally in-
vertible, the map f̃ is a translation as well. By composition of f̃ with a
translation of C/ΛC , we get a translation f with the right properties. �

If we consider X̄I and C/ΛC as Riemann surfaces, then the preceding
proposition implies that they are isomorphic via an isomorphism that maps
@ to 0̄. This means that the elliptic curves (X̄I ,@) and (C/ΛC , 0̄) are iso-
morphic.

IV.3.4 Consequence. If N = @ is the zero element of the elliptic curve
(X̄I , N), then the points � and � are 3-torsion points and their sum equals
N .

We now want to generalize this consequence to an arbitrary element in the
family (XB)B∈SL2(R). First, we introduce some notations. For B ∈ SL2(R),
let ψB : X∗

I → X∗
B be an affine diffeomorphism as in Proposition III.3.6.

Then,
Aut(X∗

B) = ψB ◦Aut(S) ◦ ψ−1
B = {id, τB, σB, σBτB},

where τB = ψB ◦ τ ◦ ψ−1
B and σB = ψB ◦ σ ◦ ψ−1

B , and these are affine,
holomorphic automorphisms of X∗

B. As usual, they extend to biholomorphic
maps XB → XB by Corollary II.3.6. Furthermore, @B denotes the image of
the fixed points of σBτB under πB : XB → X̄B = XB/<τB > and �B and
�B denote the images of the fixed points of τB.

IV.3.5 Proposition. Let ϕ̄B : EI → EB, z + ΛI 7→ B · z + ΛB. There
exists a unique affine map ψ̄B : X̄I → X̄B with derivative B such that the
diagrams

X̄I
ψ̄B - X̄B X∗

I

ψB - X∗
B

and

EI

p̄I
?

ϕ̄B
- EB

p̄B
?

X̄∗
I

πI
?

ψ̄B
- X̄∗

B

πB
?
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commute. Moreover, ψ̄B(@I) = @B, ψ̄B(�I) = �B and ψ̄B(�I) = �B.

Proof: We define ψ̄B as

ψ̄B : X̄I → X̄B, < τI > ·x 7−→< τB > ·ψB(x).

This yields a well-defined map, since τB = ψBτIψ
−1
B , and ψ̄B is affine with

derivative B as ψ̄B can locally be described as a composition of a local
inverse of πI with πB ◦ ψB. Thus we found a map ψ̄B such that the right
diagram commutes. This also implies that ψ̄B(@I) = @B, ψ̄B(�I) = �B

and ψ̄B(�I) = �B.

It remains to show that ϕ̄B ◦ p̄I = p̄B ◦ ψ̄B. This holds, since

ϕ̄B(p̄I(< τI > ·x)) = ϕ̄B(pI(x)) = pB(ψB(x)) = p̄B(< τB > ·ψB(x))
= p̄B(ψ̄B(< τI > ·x)).

�

Note that B · ΛC = ΛBC . We define a map χB by

χB : C/ΛC → C/ΛBC , z + ΛC 7→ B · z + ΛBC .

If we endow C/ΛC and C/ΛBC with their translation structures νC and νBC ,
then χB is an affine diffeomorphism with derivative B. At the same time it
is a group homomorphism.

By Proposition IV.3.3, we know that

(C/ΛC , B · νC) ∼= (X̄, B · η̄I) ∼= (X̄, η̄B),

and Example III.2.11 tells us that

(C/ΛC , B · νC) ∼= (C/ΛBC , νBC).

Thus,
X̄B

∼= EBC := (C/ΛBC , νBC)

in the category of translation surfaces. Moreover, we can choose a bijective
translation fB : X̄B → EBC with fB(@B) = B · 0̄ = 0̄, fB(�B) = B · 1̄ and
fB(�B) = B · 2̄.

IV.3.6 Proposition. The map ψ̄B : (X̄I ,@I) → (X̄B,@B) is a group iso-
morphism between the elliptic curves (X̄I ,@I) and (X̄B,@B). The points �B

and �B are 3-torsion points of the elliptic curve (X̄B,@B), and their sum
equals @B.
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Proof: We have the following commutative diagram

(X̄I ,@I)
ψ̄B- (X̄B,@B)

(EC , 0̄)

fI
?

χB
- (EBC , 0̄)

fB
?

where fI and fB are isomorphisms of elliptic curves and χB is a group iso-
morphism. This shows that ψ̄B is also a group isomorphism and we conclude
with the help of Consequence IV.3.4. �

From now on, let us consider a compact Riemann surface XB, B ∈
SL2(R), coming from the origami S, thus an arbitrary element in the family
(XB)B∈SL2(R). By Theorem IV.2.6, we find a covering map φB : XB → P1

and parameters (λ, µ) ∈ P such that the affine part XB \ φ−1
B ({∞}) of XB

is isomorphic to the affine plane curve Cλ,µ. Moreover, we can assume by
Proposition IV.2.14 that (λ, µ) ∈ P are chosen such that τB ∈ Aut(XB)
corresponds to the morphism

(u, v) 7→ (−u, v)

of Cλ,µ. From Remark IV.1.6 and from Corollary IV.2.15, we obtain infor-
mation on the fixed points of τB and σBτB, namely

{ f, w} = φ−1
B ({∞}) = {∞1,∞2}

and
{�,�} = {(0, iλµ), (0,−iλµ)}.

From Proposition IV.2.16, it follows that the elliptic curve

(X̄B,@B)

has the equation
y2 = (x− 1)(x− λ2)(x− µ2),

since @B is the image of the fixed points of σBτB under πB. From Proposition
IV.3.6, it follows that

{�B,�B} = πB({(0, iλµ), (0,−iλµ)}) = {(0, iλµ), (0,−iλµ)} =: {PB, QB}

are 3-torsion points of (X̄B,@B), such that PB + QB = @B. The latter
relation can be rewritten as

[2]PB = QB. (IV.2)



CHAPTER IV. THE ORIGAMI S 86

IV.3.7 Theorem. The origami curve C of the origami S = (p : X → E)
is equal to the projection of the affine curve C ⊂ P to the moduli space M2,
where C is defined by

C :=
{

(λ, µ) ∈ P | µ =
λ

λ+ 1

}
.

In particular, the origami curve C consists of those curves that are biratio-
nally equivalent to

y2 = (x2 − 1)(x2 − λ2)(x2 −
(

λ

λ+ 1

)2

)

with λ ∈ C \ {0,±1,−1
2 ,−2}. Moreover, the curve C is an affine curve of

genus zero.

Proof: We compute the double of PB with respect to the group structure
on (X̄B,@B) and compare it with QB. As the equation for (X̄B,@B) is given
by

y2 = (x− 1)(x− λ2)(x− µ2)
= x3 + (−1− λ2 − µ2)x2 + (λ2 + µ2 + λ2µ2)x− λ2µ2,

a comparison with Proposition II.5.3 shows that (X̄B,@B) has the data

a1 = 0
a3 = 0
a2 = −1− λ2 − µ2

a4 = λ2 + µ2 + λ2µ2

a6 = −λ2µ2

We use the addition formula on p. 21 to compute [2]PB: Let PB = (x1, y1) =
(0, iλµ) and QB = (x2, y2) = (0,−iλµ). Then,

α =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

=
3 · 02 + 2(−1− λ2 − µ2) · 0 + λ2 + µ2 + λ2µ2 − 0 · iλµ

2iλµ+ 0 · 0 + 0

=
λ2 + µ2 + λ2µ2

2iλµ
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and

β =
−x3

1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

=
−03 + (λ2 + µ2 + λ2µ2) · 0 + 2(−λ2µ2)− 0 · iλµ

2iλµ+ 0 · 0 + 0

=
−2λ2µ2

2iλµ
= iλµ,

and the first coordinate of [2]PB is given by

x([2]PB) = α2 + a1α− a2 − x1 − x1 = α2 + 0 · α− a2 − 0− 0

=
(
λ2 + µ2 + λ2µ2

2iλµ

)2

+ 1 + λ2 + µ2

=
λ4 + µ4 + λ4µ4 + 2λ2µ2 + 2λ4µ2 + 2λ2µ4

−4λ2µ2
+ 1 + λ2 + µ2

=
1

−4λ2µ2

(
λ4 + µ4 + λ4µ4 + 2λ2µ2 + 2λ4µ2 + 2λ2µ4 −

− 4λ2µ2 − 4λ4µ2 − 4λ2µ4
)

=
1

−4λ2µ2

(
λ4 + µ4 + λ4µ4 − 2λ2µ2 − 2λ4µ2 − 2λ2µ4

)
=

1
−4λ2µ2

(
(−λ2 − µ2 + λ2µ2)2 − 4λ2µ2

)
=

(
−λ2 − µ2 + λ2µ2

2iλµ

)2

+ 1

Since x([2]PB) = x2 = 0, it follows that

0 =
(
−λ2 − µ2 + λ2µ2

2iλµ

)2

+ 1,

and therefore
−λ2 − µ2 + λ2µ2

2iλµ
= ±i,

or equivalently
−λ2 − µ2 + λ2µ2 = ∓2λµ.

We distinguish two cases:

Case 1: −λ2 − µ2 + λ2µ2 = −2λµ
Then one has

−λ2 − µ2 + 2λµ = −(λ− µ)2 = −λ2µ2,
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hence
λ− µ = ±λµ,

and thus
µ =

λ

±λ+ 1
.

Case 2: −λ2 − µ2 + λ2µ2 = +2λµ
Then one has

−λ2 − µ2 − 2λµ = −(λ+ µ)2 = −λ2µ2,

which implies
λ+ µ = ±λµ,

and therefore
µ =

λ

±λ− 1
.

Since y([2]PB) evaluates to

y([2]PB) = −(α+ a1)x([2]PB)− β − a3

= −(α+ 0) · 0− β − 0
= −β
= −iλµ = y2,

the equation [2]PB = QB is fulfilled, if µ is one of the four numbers

µ1(λ) =
λ

λ+ 1
, µ2(λ) =

−λ
λ− 1

, µ3(λ) =
λ

λ− 1
, µ4(λ) =

−λ
λ+ 1

.

It remains to explain, why these four cases reduce to a single one. We define

Ci = {(λ, µ) ∈ P | µ = µi(λ)} ,

and we claim that they are all mapped to the same set in M2.

Claim. We have pr(Ci) = pr(Cj) for all i, j = 1, . . . , 4.

Indeed, the pair (λ, µ1(λ)) = (λ, λ
λ+1) is equivalent to (λ, µ4(λ)) = (λ, −λλ+1)

under the action of Γ, hence pr(C1) = pr(C4). Similarly, pr(C2) = pr(C3).
Moreover,

(λ, µ3(λ)) =
(
λ,

λ

λ− 1

)
=
(
λ,

−λ
−λ+ 1

)
is equivalent modulo Γ to(

−λ, −λ
−λ+ 1

)
= (−λ, µ1(−λ)),
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so pr(C3) = pr(C1). This shows the above claim.

Next, we define a map

F : C \ {0,±1,−1
2
,−2} → P, λ 7→

(
λ,

λ

λ+ 1

)
.

This yields a well-defined map: given λ ∈ C \ {0,±1,−1
2 ,−2}, we have to

check that λ
λ+1 ∈ C \ {0,±1,±λ}. The condition λ

λ+1 6= 0 requires λ 6= 0,
from λ

λ+1 6= −1, we get λ 6= −1
2 and finally λ

λ+1 6= −λ requires λ 6= −2.
Moreover, F is an injective morphism with image C := C1.

Therefore, every Riemann surface coming from the origami S is biratio-
nally equivalent to a curve Cλ,µ such that (λ, µ) ∈ C. A Riemann surface
coming from S corresponds to a point in the Teichmüller disk ∆S ⊂ T2,4

and from Theorem III.4.7, we know that the image of the projection of ∆S

to the moduli space M2 is an algebraic curve C, which is closed in M2. Thus,
C ⊂ pr(C), where pr : P → M2. Since F and pr are continuous for the
Zariski-topology and since C \ {0,±1,−1

2 ,−2} is irreducible, we conclude
that C = pr(C). �

Having obtained this result, one could be tempted to ask further ques-
tions. In the very beginning, we have introduced the family Sn,k, n, k ≥ 1 of
origamis of genus 2 that all have a translation and of which our origami S is
a member (cf. Figure I.3). If we strip down the argument for S, we see that
it was crucial that S carries a translation τ , whose quotient is an elliptic
curve, so we are able to find an equation for the two ramification points
of τ . Therefore we can generalize the computation of the equation for S to
any member of the family Sn,k, n, k ∈ N>0. The only flaw is the increasing
complexity to obtain a relation between the two parameters λ, µ for larger
n, k, because of the addition formula on an elliptic curve.

More generally, we have even remarked that any (normal) covering of
degree 2 of a trivial origami, ramified over precisely 2 points leads to an
origami of genus 2 with a translation. This is a consequence of the Riemann-
Hurwitz formula II.3.2. So we can proceed in the following way. We take a
trivial origami O = (p : E0 → E) and choose two distinct points P , Q in
the fiber over P̄ ∈ E. We construct an origami O′ = (p′ : X → E) with the
help of a monodromy representation

ρ : π1(E0 \ {P,Q}) → Z/2Z.

as in [Mir95, Proposition 4.9,p. 91]. Then one could examine the auto-
morphism group Aut(O′). The origami O′ should probably lead again to
a bunch of Riemann surfaces that satisfy Property (∗) with O playing the
role of S̄. If this is the case, then Theorem IV.2.6 holds for these surfaces,
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i.e. they are described by affine curves Cλ,µ for some parameters (λ, µ) ∈ P .
The zero element of E0 with respect to the equation

y2 = (x− 1)(x− λ2)(x− µ2)

is again the image of the ramification points of στ , and this leads to a
homogeneous linear equation for P and Q on the elliptic curve E0, whereby
we can possibly determine the origami curve of O′.

These generalizations will be carried out in our future work.
Another aspect, which remains to be studied, is whether there exist

points on the origami curve C of S, where the group of biholomorphic auto-
morphisms is bigger. Geyer [Gey74] gives a fairly explicit description of M2

in terms of the automorphism groups of its points. We have seen in Proposi-
tion IV.2.2, that studying automorphisms of curves of genus 2 corresponds
to studying Moebius transformations that permute 6 points. Instead of ex-
amining the group Aut(X) for a curve X, we can hence study its reduced
automorphism group Aut(X) = Aut(X)/<σ>. In particular, a curve that
satisfies Property (∗) has Aut(X) ⊃ Z/2Z.

Geyer classifies the curves in M2 by giving an individual parametrization
depending on the highest order of an element in Aut(X). Altogether, he
obtains the following result (see [Gey74, Satz 3, Satz 4]).

IV.3.8 Theorem. The moduli space M2 of algebraic curves of genus 2 over
C is a 3-dimensional, rational, normal, affine variety V with one singular
point P that corresponds to the curve X with Aut(X) ∼= Z/5Z.

The curves satisfying Property (∗) form a rational surface S in M2. The
surface S is not normal, its singular points form a rational curve C1 and
parametrize the curves X of genus 2 with Aut(X) ⊃ V4.

Another rational curve C2 on S describes the curves X of genus 2 with
Aut(X) ⊃ S3. In both cases, one has equality, except at the two intersec-
tion points P1, P2 of C1 and C2, which correspond to curves X in M2 with
Aut(X) ∼= S4 and Aut(X) ∼= D6 respectively.

To find the intersection of the origami curve C with the curves C1 and
C2, where the automorphism group is bigger, one would have to adapt the
individual parametrizations of C1 and C2 to the one of C.

An answer to this question would also provide information whether the
restriction of the projection pr : P/Γ →M2 to pr−1(C) is in fact an isomor-
phism, in which case C would be isomorphic to its normalization H/Γ̄(S),
or if it is not an isomorphism, in which case there would exist singularities
on C.

This is another interesting problem, which we are going to deal with in
the future.
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Birkhäuser, Boston, 1989.
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