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Referent: Prof. Dr. Kurt Busch

Korreferent: Prof. Dr. Martin Wegener





Fakultät für Physik
Institut für Theoretische Festkörperphysik

Waveguide Quantum Optics:
A Wave-Function Based Approach

PhD Thesis

by

Dipl.-Phys. Paolo Longo

July 20, 2012

Instructor: Prof. Dr. Kurt Busch
2nd Instructor: Prof. Dr. Martin Wegener





Introduction

The interaction of light and matter is one of the oldest and—at the same time—one of
the most active fields of research in fundamental and applied sciences. Its scope ranges
from theoretical aspects of classical and quantum-mechanical electromagnetism over laser
physics and optical technologies such as telecommunication and illumination to industrial
and medical applications.

Prospective Key Technologies of the 21st Century...

The 21st century is said to be the century of the elementary excitation of the electromagnetic
field—the photon. In analogy to electronics, scientists have coined the term “photonics”.
Concerning this matter, the German Federal Ministry of Education and Research loosely
paraphrases the field of photonics as focusing on the generation, control, measurement, and
“the use of light in virtually every area that is vital to society and the economy” [1]. Many
subfields of photonic technologies already account for a considerable part of the European
industry and a turnover of 30 billion euros is expected over the course of the next ten years
in Germany [1].

In many respects, photonics already constitutes a mature and applied discipline that
developed from the insights scientists gained into the fundamental concepts of light–matter
interaction. In contrast to this, some subfields of quantum information may probably be
just at the border of turning from a fundamental science into a technology in the not-too-far
future. To this end, a “European strategy for research in the field of Quantum Information
Sciences and Technologies” [2] has been initiated by the European Commission, which is just
one example of the many international efforts in this realm. Probably the most revolutionary
long-term goal of quantum information is the realization of large-scale quantum computation,
which would solve problems that are intractable on a classical computer. In any case, the
interaction of light and matter is at the heart of all building blocks which have been proposed
in this context.

Current visions as well as mid- and long-term goals which are based on the understanding,
control, and utilization of the physical mechanisms associated with light–matter interaction
include, for instance, quantum computation and communication, quantum simulators, fast
and all-optical signal processing, high-precision sensors, and concepts in metrology in general.
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...and the Role of Physics

To scientifically evaluate the feasibility of such ambitious aims, a first step consists of a
thorough analysis of light–matter interaction in prototypical, basic building blocks by means
of simplified but not oversimplified model systems. Physicists mainly agree that light is
a promising means of transmitting information. Indeed, fiber technology allows for the
low-loss guidance of photons over long distances. Photons are also suitable in the context of
on-chip structures in an integrated optical setting. Furthermore, physicists also agree that an
ultimate key point in the context of light–matter interaction is the generation, manipulation,
and detection of single photons [3–6].

In this regard, it is helpful to distinguish between the linear and nonlinear properties
of light–matter interaction as follows. The linear properties are responsible for confining,
guiding, and directing electromagnetic waves in a passive manner. Besides optical fibers,
tailored materials which are structured on the length scale of the electromagnetic radiation’s
wavelength—so-called Photonic Crystals—have proven to be especially well-suited for these
tasks [7]. Waveguiding structures in which the propagation of radiation is effectively reduced
to one spatial dimension are particularly interesting. In these systems, the photon dynamics
can easily be dominated by interference effects as a consequence of the reduced solid angle
into which radiation can couple. Realizations of such one-dimensional systems include line
defects in Photonic Crystal structures [8, 9], waveguides of coupled resonators [10–17], super-
conducting transmission lines in the microwave domain [18–21], Photonic Crystal fibers [22],
and conventional optical fibers (cf. Fig. 1 for examples).

Usually, photons do not interact with each other. Controlling light with light there-
fore requires matter—or, more precisely, a nonlinearity—as a mediator of such interactions.
Amongst the probably most common examples of realizing an effective photon–photon in-
teraction are single (artificial) atoms which couple strongly to photons [23], Kerr nonlinear-
ities [24], and the radiation-pressure induced interaction of mechanical motion and radia-
tion [25].

Waveguide Quantum Optics

The combination of the aforementioned linear properties of light–matter interaction in the
form of a one-dimensional waveguide and a single nonlinear subsystem allows for the study
of interacting photons on a basic level. In a quantum-mechanical description, this setup
represents a problem of “waveguide quantum optics”, and is at the heart of the present
thesis. Even though the above examples are predominantly motivated by photonics, it
turns out that a number of analogous systems share many properties with typical “quantum
photonic” realizations. To a certain degree, examples include the dynamics of magnons in
spin chains [26, 27], cold atoms in optical lattices [28, 29], and waveguide arrays in the realm
of classical optics [30, 31], just to name a few.
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Figure 1: Realizations of one-dimensional waveguiding systems.
(a) A one-dimensional waveguide of coupled toroidal whispering-gallery mode resonators.
The inset indicates the possibility of coupling an artificial atom to the waveguide
(adapted from Ref. [14]). (b) Scanning electron micrograph of an optical delay line
composed of photonic-wire ring resonators which are side-coupled to their neighbors
over a gap distance of about 200 nm (adapted from Ref. [13]). In setups like (a) and (b),
photons can “hop” along one spatial dimension if the resonators’ spacing is such that the
tails of the evanescent field modes of adjacent resonators overlap. (c) A transmission-
line resonator can be coupled to a superconducting qubit to study the transport of
microwave photons (adapted from Ref. [18]). Chapter 1 provides further examples of
effectively one-dimensional waveguiding structures (cf. Fig. 1.1).
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Outline of the Thesis

This thesis is organized as follows: Chapter 1 is dedicated to the theoretical foundations
of electrodynamics in media and quantum optics as they are important for the following
chapters. In Chap. 2, I introduce a discrete real-space formulation of the relevant Hamilto-
nians. Furthermore, the numerical framework central to this thesis—a wave-function based
time-evolution scheme—is briefly presented.

Before I discuss the main results of this thesis, I give an introduction to the topic of
waveguide quantum optics in Chap. 3. In particular, I provide a short review based on
existing theoretical works on a one-dimensional waveguide coupled to a single emitter or
a small number of emitters. Then, I discuss the properties of the relevant Hamiltonian
of a one-dimensional tight-binding waveguide coupled to a single two-level atom, including
its single-particle spectrum as well as the single- and two-photon transport. I clarify the
role of the few-photon nonlinearity provided by the two-level atom and that of spatially
localized atom–photon bound states. I describe the effect of interaction-induced radiation
trapping, followed by a numerical study on the existence of photon–photon bound states.
The introduction to waveguide quantum optics is completed by a short overview of related
works in which I have been involved but which are beyond the scope of this thesis.

In Chap. 4, I investigate the Hong-Ou-Mandel effect in the context of two photons imping-
ing from different ends of a waveguide towards a single scatterer. Specifically, I calculate the
coincidence probability of finding one photon on each end of the waveguide after scattering.
This results in a so-called Hong-Ou-Mandel dip which can in principle be used to identify
effective photon–photon interactions as they are mediated by a two-level atom. The influence
of atomic dissipation and dephasing is also taken into account.

The transport properties of coherent and single-photon-added coherent states in a wave-
guide with a side-coupled Kerr-nonlinear resonator are discussed in Chap. 5. Besides non-
linear effects such as self-induced transparency and bistability, I numerically demonstrate
how the pulse propagation of a single-photon-added coherent state can be understood as
a single-photon Fock state in an “alternative vacuum” provided by a coherent state. This
leads to a time-dependent, tunable scattering potential on the single-photon level and can
be exploited for the gating of single photons.

Chapter 6 is dedicated to the problem of spontaneous emission in a one-dimensional tight-
binding waveguide. In particular, I identify the regimes of Markovian and non-Markovian
radiation dynamics with the help of the time evolution of the atom’s excited state, output
spectra, atom–field and field–field correlation functions. Furthermore, several loss mecha-
nisms such as atomic dissipation and dephasing, lossy field modes, and an open waveguide
are taken into account.

In Chap. 7, I consider the dynamics of two magnons propagating in a Heisenberg spin
chain under the influence of a non-uniform, external magnetic field. The external field is
adjusted such that it forms a potential supporting exactly one single-particle bound state.
For this situation, I demonstrate how an impinging spin wave can extract a magnon which
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is stored in the ground state of the external potential to form a propagating two-magnon
bound state. Such a mechanism of interaction-induced extraction of the stored magnon can
be understood as a readout.

Chapter 8 summarizes and concludes the present thesis. It ends with an outlook on
possible future studies in the field of waveguide quantum optics.
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1 Chapter 1

Fundamentals

This chapter introduces the theoretical foundations and concepts of electrodynamics in media
and quantum optics. The discussion is limited to topics relevant for later chapters. I start
by adapting and rewriting Maxwell’s macroscopic equations so that they take a form suit-
able for quantization. After the procedure of canonical quantization, I give a few examples
for photonic systems and their eigenmodes with an emphasis on effectively one-dimensional
waveguiding structures since they are of central interest in this thesis. I introduce basic no-
tions of quantum optics such as the dynamics of the electromagnetic field, its most important
states as well as different physical mechanisms of light–matter interaction. The chapter ends
with the definition of observables and physical quantities followed by a short introduction to
the dynamics of open systems with respect to the quantum jump approach.

1.1 Electrodynamics in Media

Throughout this thesis, I focus on single quantum mechanical subsystems and their inter-
action with electromagnetic radiation. Unless stated otherwise, I assume a linear, isotropic,
non-dispersive, non-dissipative and source-free dielectric without magnetic response acting
as a host medium. However, this medium can have structural features on the scale of the
electromagnetic radiation’s wavelength, which makes it possible to tailor the dispersion prop-
erties although the corresponding bulk material properties are non-dispersive.

In this section, I present the theoretical foundations for the description of the back-
ground medium. The incorporation of individual, quantum mechanical subsystems follows
in Sec. 1.3.2.

1.1.1 Classical Fields

In the context of photonics, it is well-established to resort to Maxwell’s macroscopic equa-
tions. Starting from the microscopic equations, a decomposition of the sources into free and
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1 Fundamentals

bound parts as well as an averaging over atomic scales leads to the equations of motion for
the macroscopic fields which are defined on a coarser scale [32]. This is a safe approximation
since atomic and optical scales differ by several orders of magnitude. For instance, imagine
an atomic distance of the order of Ångstroms and an optical wavelength of several hundred
nanometers as a rough estimate for the length scales involved. A similar argument holds for
typical time scales.

In the following, I briefly recapitulate Maxwell’s macroscopic equations and, by introducing
potentials in a suitable gauge, rewrite them with the help of the Lagrange and Hamilton
formalism such that they take a form which is convenient for quantization.

Maxwell’s Equations

Given the aforementioned assumptions, electromagnetic fields in media are described by the
macroscopic Maxwell equations. In the absence of free sources, they read (SI units) [32]

∇×E(r, t) = − ∂

∂t
B(r, t) , (1.1a)

∇×H(r, t) =
∂

∂t
D(r, t) , (1.1b)

∇ ·D(r, t) = 0 , (1.1c)

∇ ·B(r, t) = 0 , (1.1d)

where the electric field E(r, t), the magnetic induction B(r, t), the magnetic field H(r, t),
and the dielectric displacement D(r, t) are real-valued fields as a function of position r and
time t. The constitutive relations for the class of materials under consideration,

D(r, t) = ε0ε(r)E(r, t) , (1.2a)

B(r, t) = µ0H(r, t) , (1.2b)

close the set of Eqs. (1.1). In Eq. (1.2a), ε0 denotes the permittivity of vacuum and ε(r) is the
position-dependent dielectric function of the medium. Examples for the dielectric function
follow in Sec. 1.2. The permeability of vacuum is denoted by µ0.

For the remainder of this thesis and if not stated otherwise, a unit system is chosen in
which the vacuum speed of light becomes unity, i. e., c = 1/

√
ε0µ0 ≡ 1. This corresponds to

transforming Maxwell’s equations to dimensionless units (see Appendix A for details). The
introduction of a vector potential A(r, t) and a scalar potential φ(r, t) via

B(r, t) = ∇×A(r, t) , (1.3a)

E(r, t) = −∇φ(r, t)− ∂

∂t
A(r, t) , (1.3b)

automatically satisfies Eqs. (1.1a) and (1.1d), and turns Eqs. (1.1b) and (1.1c) into a set of

2



1.1 Electrodynamics in Media

coupled wave equations for the potentials, i. e.,

−∇×∇×A(r, t)− ε(r)
∂

∂t
∇φ(r, t)− ε(r)

∂2

∂t2
A(r, t) = 0 , (1.4a)

(
∇ε(r)

)
·
(
∇φ(r, t)

)
+ ε(r)∇2φ(r, t) +

(
∇ε(r)

)
·
(
∂

∂t
A(r, t)

)

+ε(r)
∂

∂t
∇ ·A(r, t) = 0 . (1.4b)

By utilizing the radiation gauge1 in which φ(r, t) ≡ 0, Eqs. (1.4a) and (1.4b) reduce to

∇×∇×A(r, t) + ε(r)
∂2

∂t2
A(r, t) = 0 , (1.5)

provided that
∇ ·

(
ε(r)A(r, t)

)
= 0 . (1.6)

Equation (1.6) is a constraint to possible solutions of the wave equation (1.5) and simplifies
to the Coulomb gauge, i. e., ∇ · A(r, t) = 0, in case the dielectric function represents a
spatially homogeneous medium, i. e., ∇ε(r) = 0. Furthermore, Eq. (1.6) states that the
vector potential is in general not transverse.

Mode Decomposition, Lagrangian, and Hamiltonian Density

A general solution of Eq. (1.5) is of the form2

A(r, t) =
∑

λ

Aλ(r, t) =
∑

λ

(
A

(+)
λ (r, t) + A

(−)
λ (r, t)

)

=
∑

λ

(
A

(+)
λ (r)aλ(t) + A

(−)
λ (r)a∗λ(t)

)
, (1.7)

where aλ(t) = aλ(0)e−iωλt. The separation of variables turns Eq. (1.5) into the eigenvalue
problem

∇×∇×A
(±)
λ (r) = ε(r)ω2

λA
(±)
λ (r) . (1.8)

Note that the eigenmodes A
(±)
λ (r) are now complex-valued fields with

A
(−)
λ (r) =

(
A

(+)
λ (r)

)∗
, (1.9)

which assures that the decomposition (1.7) is real-valued. The modes are labeled with a
multi-index λ and the sum in Eq. (1.7) should, at this stage, be understood as allowing both

1This gauge is also called Dzyaloshinsky gauge.
2Different functions are distinguished by their variables.
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1 Fundamentals

a summation over discrete values of λ and an integration in case the spectrum is (partially)
continuous.

Having identified the fundamental solutions of Eq. (1.5), the classical Lagrangian density L
can be formulated in terms of the Aλ(r, t). Applying the Euler-Lagrange equations3,

∂

∂t

∂L
∂Ȧi

+
∑

j=x,y,z

∂

∂xj

∂L
∂(∂Ai∂xj

)
− ∂L
∂Ai

= 0 i = x, y, z , (1.10)

to L =
∑

λ Lλ with

Lλ =
1

2
ε(r)Ȧ2

λ(r, t)− 1

2

(
∇×Aλ(r, t)

)2
(1.11)

reproduces wave equation (1.5) for each Aλ(r, t) [33]. Thus, the Aλ(r, t) represent a valid
choice for generalized coordinates and their associated canonical momenta are given by4

πλ =
∂L

∂Ȧλ(r, t)
= ε(r)Ȧλ(r, t) . (1.12)

The classical Hamiltonian density H̄ =
∑

λ H̄λ is obtained by performing a Legendre trans-
formation, i. e., H̄ =

∑
λ πλ(r, t) · Ȧλ(r, t)− L, arriving at

H̄λ =
π2
λ(r, t)

2ε(r)
+

1

2

(
∇×Aλ(r, t)

)2
. (1.13)

Equation (1.13) represents the energy density of the electromagnetic field for mode λ.

Next, it is convenient to define

A
(+)
λ (r) =

1√
2Vλωλ

uλ(r) , (1.14)

where Vλ is the mode volume in which the complex-valued and dimensionless eigenmode uλ(r)
is defined (cf. Eqs. (1.7)–(1.9)). The mode functions can be chosen such that they are or-
thogonal with respect to the scalar product

∫
d3rε(r)u∗λ′(r) · uλ(r) = Vλδλλ′ , (1.15)

and satisfy ∫
d3r

(
∇× u∗λ′(r)

)
·
(
∇× uλ(r)

)
= Vλω2

λδλλ′ (1.16)

3Dots denote derivatives with respect to time.
4Applying constitutive relation (1.2a) and exploiting the radiation gauge, the canonical momenta are given

by the dielectric displacement field, i. e., πλ(r, t) = −Dλ(r, t). Here, Dλ(r, t) = ε(r)Eλ(r, t) and Eλ(r, t)
is defined in Eq. (1.26b). Note that Eq. (1.2a) has to be taken in dimensionless units (cf. Appendix A).
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1.1 Electrodynamics in Media

as well as
u∗λ(r) = uλ′ 6=λ(r) , (1.17)

where δλλ′ is the Kronecker delta. Using these properties, inserting Eq. (1.7) together with
Eqs. (1.14) and (1.12) into Eq. (1.13), integrating the Hamiltonian density (1.13) over all
space, and suppressing the time arguments, the Hamilton function finally reads5

H =
∑

λ

ωλ
2

(
aλa

∗
λ + a∗λaλ

)
. (1.18)

Hamiltonian (1.18) represents a sum over uncoupled harmonic oscillators of unit mass with
the generalized coordinates {qλ} and canonical momenta {pλ} given by

qλ =
1√
2ωλ

(aλ + a∗λ) , (1.19a)

pλ =
1

i

√
ωλ
2

(aλ − a∗λ) . (1.19b)

With regard to the canonical quantization in the next section, the Hamilton function (1.18)
is written in a symmetric form.

1.1.2 Field Quantization

The correspondence principle6 is utilized in order to arrive at a quantum mechanical de-
scription of the electromagnetic field. Canonical coordinates {qλ} and momenta {pλ} are
replaced by operators {q̂λ} and {p̂λ}, respectively, obeying the fundamental commutation
relations [

q̂λ, p̂λ′
]

= q̂λp̂λ′ − p̂λ′ q̂λ = i~δλλ′ . (1.20)

For the remainder of this thesis, units are chosen such that the reduced Planck constant ~ ≡ 1
(see Appendix A for details). The amplitudes {aλ} and {a∗λ} as defined in Eqs. (1.19) are

replaced by annihilation and creation operators {âλ} and {â†λ}. According to Eqs. (1.19)
and (1.20), they obey

[
âλ, âλ′

]
=
[
â†λ, â

†
λ′

]
= 0 , (1.21a)

[
âλ, â

†
λ′

]
= δλλ′ . (1.21b)

5Integrands proportional to u2(r), (∇×u(r))2, and the respective complex conjugate terms do not contribute
because of property (1.17).

6Although Maxwell’s microscopic equations are Lorentz invariant, the equations for the macroscopic fields
are in general not. This stems from the fact that the transition from microscopic to macroscopic fields
includes an arbitrary decomposition of the sources in free and bound parts as well as an averaging over
atomic scales. The correspondence principle applied here and the equations of motion in this thesis are
thus from the realm of non-relativistic quantum mechanics. This approach is widely used in the field of
solid-state based quantum electrodynamics and has proven to be successful, although, at first sight, one
might wonder why a non-relativistic theory is used to describe the propagation of photons.
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1 Fundamentals

Replacing the classical amplitudes by operators and utilizing Eq. (1.21b), the Hamilton
operator reads

Ĥ =
∑

λ

ωλ

(
â†λâλ +

1

2

)
. (1.22)

Equations (1.21) imply that the fundamental excitations of the free electromagnetic field
described by a Hamiltonian of the form (1.22)—photons—are bosons7. Because of the corre-
spondence principle, Hamiltonian (1.22) is in the Heisenberg picture but has the same form
in the Schrödinger picture since âλ(t) = âλ(0)e−iωλt.

Although the second term in Hamiltonian (1.22) (commonly referred to as zero point
energy) can have interesting observable consequences, e. g., the Casimir effect [34, 35], it
does not affect the dynamics of the systems studied in this thesis and will be ignored in the
following. Furthermore, operators will not be indicated by hats anymore since it is clear
from the context whether a function or an operator is meant.

1.2 Photonic Systems and Eigenmodes

The theoretical description of electromagnetic fields in Sec. 1.1 is—besides the assumptions
on the general properties of the materials under investigation—not restricted to a specific
realization of a photonic system. The quantization is especially valid for arbitrary profiles
of the dielectric function ε(r) as long as the eigenmode solutions of Eq. (1.8) fulfill con-
straints (1.6) and (1.15)–(1.17). Here, I present the expansion of the field operators in terms
of eigenmodes and I discuss examples for actual physical realizations of photonic systems in
Sec. 1.2.2.

1.2.1 A-, E-, and H-Fields of the Eigenmodes

According to mode decomposition (1.7) and Eqs. (1.3) and (1.14), the operator of the vector
potential

A(r, t) =
∑

λ

(
A

(+)
λ (r)e−iωλtaλ(0) + A

(−)
λ (r)eiωλta†λ(0)

)
(1.23)

is related to its corresponding electric and magnetic field via

E(r, t) =
∑

λ

(
E

(+)
λ (r)e−iωλtaλ(0) + E

(−)
λ (r)eiωλta†λ(0)

)
(1.24)

and

H(r, t) =
∑

λ

(
H

(+)
λ (r)e−iωλtaλ(0) + H

(−)
λ (r)eiωλta†λ(0)

)
, (1.25)

7To be precise, the D-field already describes a combined excitation of light and matter. Photons in matter
should therefore actually be referred to as polaritons. I disregard this subtlety in the following and continue
to speak of photons.
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where

A
(+)
λ (r) = Aλuλ(r) , (1.26a)

E
(+)
λ (r) = iωλAλuλ(r) ,

H
(+)
λ (r) = Aλ∇× uλ(r) , (1.26b)

Aλ =
1√

2Vλωλ
. (1.26c)

The quantity Eλ = ωλAλ is called vacuum field amplitude8. Note that all operators are in the
Heisenberg picture and dimensionless units are chosen (cf. Appendix A). In order to actually
calculate the eigenmodes, it is advantageous to reformulate the eigenvalue problem (1.8) in
terms of the magnetic field [8, 36, 37], leading to9

∇× 1

ε(r)
∇×H

(+)
λ (r) = ω2

λH
(+)
λ (r) (1.27)

for each mode.

1.2.2 Examples for Eigenmodes

In this subsection, I present a few examples for photonic systems. The emphasis is on effec-
tively one-dimensional waveguiding structures and the discussion is limited to a qualitative
level.

Photonic Crystals

Periodic Nanostructures allow for tailored optical properties of dielectric media. In case the
periodicity is of the order of the wavelength of light10, these structures are termed “Photonic
Crystals”. Here, I briefly present the properties which are most relevant in the context of
this thesis. For a more complete and thorough discussion, see Refs. [7, 8, 38, 39].

As already mentioned in Sec. 1.1, loss-less, dispersion-free, and isotropic materials are
considered which can be described by a scalar dielectric function ε(r). In the case of Photonic
Crystals, it is periodic, i. e.,

ε(r) = ε(r + R) , (1.28)

where R is an arbitrary lattice vector from the underlying Bravais lattice. Depending on
whether the dielectric function is periodic with respect to a one-, two- or three-dimensional

8The quantity Eλ is proportional to the vacuum fluctuations, i. e.,
√
〈0|E2

λ(r, t)|0〉 − 〈0|Eλ(r, t)|0〉2 ∝ Eλ.
The vacuum state is denoted by |0〉 (cf. Sec. 1.3.1).

9For simplicity, I only write down the equations for the (+)-modes in the following since the corresponding
(−)-modes can be obtained by complex conjugation (cf. Eqs. (1.9) and (1.23)–(1.25)).

10For the remainder, the term “light” is used to refer to any kind of electromagnetic radiation and is not
restricted to the visible domain.
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lattice one speaks of one-, two- or three-dimensional Photonic Crystals. The assumption of a
periodic dielectric function simplifies eigenproblem (1.27) to an eigenproblem with periodic
coefficients. Therefore, the eigenmodes fullfill Bloch’s theorem, i. e., they are plane waves
modulated by a lattice-periodic function:

H(r) = hk(r)eikr , (1.29a)

hk(r) = hk(r + R) . (1.29b)

Similar to the case of an electronic band structure, the periodicity of the dielectric function
leads to a band structure for electromagnetic fields, i. e., ω = ωnk. Eigenmodes and eigen-
frequencies of a Photonic Crystal are thus labeled by a band index n and a wavevector k,
i. e.,

H
(+)
nk (r) = hnk(r)eikr . (1.30)

The mode functions hnk(r) are defined in the Wigner-Seitz cell of the crystal so that the
mode volume is the volume of the Wigner-Seitz cell, and wavevectors are restricted to the
first Brillouin zone. For an infinite crystal, k is continuous and sums over wavevectors need to
be replaced by integrals. These modes are consistent with the terminology and the properties
introduced in Sec. 1.1. Most importantly, they fulfill11

∫
d3r

(
H

(+)
n′k′(r)

)∗
H

(+)
nk (r) = δnn′δ(k− k′) , (1.31)

which means that there is no band mixing for the free electromagnetic field.

Probably the most remarkable property of Photonic Crystals is the possibility of a photonic
band gap, i. e., a frequency range in which the density of electromagnetic statesN (ω), defined
as

N (ω) =
∑

n

∫

BZ
dqk δ(ω − ωnk) (1.32)

for a q-dimensional Photonic Crystal, is zero. The integral in Eq. (1.32) runs over the first
Brillouin zone. Controlling spontaneous emission by modifying the density of electromagnetic
states was one of the very first motivations in the field of Photonic Crystals, and I address
this topic in Chap. 6 of this thesis.

Structures in which there is effectively only one dimension for the electromagnetic radiation
to propagate exhibit very special features. For instance, spontaneous emission of an atom in
a homogeneous background is most often regarded as a loss mechanism. The reduction to
one spatial dimension, however, induces dominant interference effects as a consequence of the
smaller solid angle radiation can couple into. In this thesis, the main emphasis is on such

11The integral in Eq. (1.31) runs over the Wigner-Seitz cell of the crystal and δ(·) represents the Dirac delta
function.
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(a) (b)

(c) (d)

Figure 1.1: Examples of effectively one-dimensional waveguiding structures.
As a realization of a coupled-resonator optical waveguide, one of the early theoretical
proposals [10] suggested, for instance, microdisk cavities (a). Here, the electromagnetic
field modes of the cavities couple to their nearest neighbors via evanescent field tails, thus
forming a one-dimensional waveguide. In (a), n2 and n1 6= n2 denote the different indices
of refraction andR stands for the lattice constant (adapted from Ref. [10]). (b) Measured
dispersion relation of coupled nanocavities (adapted from Ref. [11]). N denotes the
number of cavities which form the waveguide and Lcc is the lattice constant (see Ref. [11]
for details). Note the cosine shape of the dispersion relation. (c) Scanning electron
micrograph of a delay line consisting of photonic-wire ring resonators which are coupled
to a waveguide bus (adapted from Ref. [13]). (d) A line defect in a woodpile Photonic
Crystal acting as a waveguide (adapted from Ref. [9]).
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1 Fundamentals

(effectively) one-dimensional systems. Figure 1.1 displays examples12 for one-dimensional
waveguiding structures.

In so-called coupled-resonator optical waveguides (CROWs), the electromagnetic field
modes of neighboring cavities couple to each other via their evanescent field tails (Figs. 1.1(a),
1(a), and 1(b)). This effectively forms a one-dimensional waveguide for photons, which can
be described by a tight-binding ansatz, leading to a dispersion relation of the form [10]

ωK = Ω

[
1− ∆α

2
+ κ1 cos(KR)

]
. (1.33)

The wavenumber K is in the interval
[
−2π/R, 2π/R

]
(see Fig. 1.1(b) for an example of a

measured dispersion relation [10]). The nearest-neighbor coupling strength is given as the
overlap of neighboring mode functions, i. e.,

κ1 =

∫
d3r

[
ε0(r−Rez)− ε(r−Rez)

]
EΩ(r)EΩ(r−Rez) . (1.34)

The eigenfrequency of a single, isolated cavity is denoted by Ω. The term 1−∆α/2 merely
shifts the zero of the dispersion relation and is therefore not considered in the following.
Equation (1.34) contains the difference between the dielectric function of a single cavity,
ε0(r), and the total system of coupled resonators, ε(r), as well as the electric field mode
functions EΩ(r) of a single cavity. ez is a unit in vector in the direction of propagation
(z direction). Equations (1.33) and (1.34) are taken from Ref. [10] without change of notation.
The notation used in this thesis is slightly different and is introduced in Chap. 2.

A line defect in a Photonic Crystal represents another realization of a one-dimensional
waveguide, providing a one-dimensional continuum13 for photons. Realizations include, for
instance, Photonic Crystal slab waveguides [8] or waveguides in three-dimensional woodpile
structures [9] as shown in Fig. 1.1(d). Line defects can be engineered such that their dis-
persion relation lies in the band gap of the surrounding Photonic Crystal. Radiation can
therefore not escape into the crystal. Even though the dispersion relations of such waveguides
do not necessarily resemble the form of a cosine-dispersion relation, they could approximately
be described by the latter for wavenumbers around a specific operating point.

The tight-binding description of one-dimensional waveguiding structures is extensively
applied throughout this thesis. On the one hand, there exist experimental realizations for
which a tight-binding formulation is an adequate description. On the other hand, if one just
regards a one-dimensional tight-binding chain as a model system, it is important to point out
that a cosine-dispersion relation, despite its simple form, qualitatively covers many physical
aspects which would be absent in the case of unbound, linear dispersion relations. For

12Since these examples are adapted from different references, the notation, terminology, and unit system
might slightly differ from those used in this thesis.

13For the remainder of the thesis, the term “continuum of modes” also refers to a quasi-continuum as it
emerges in a finite system.
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instance, attributes such as nonlinear group-velocity dispersion and the existence of a finite
bandwidth, i. e., a cutoff in the density of states, are inherent properties of a cosine-dispersion
relation. A more detailed description of the tight-binding approach is given in Chap. 2.

Optical Fibers

Optical fibers represent a well-established class of photonic systems and allow the low-loss
guidance of light over large distances. Here, I only motivate qualitatively that optical fibers
are another realization of a one-dimensional electromagnetic continuum which can also be
considered in a quantum-optical framework.

The dielectric function of a conventional optical fiber is invariant with respect to rotations
around the fiber axis and with respect to translations in fiber direction [40]. Thus, ε(r) only
depends on the radial coordinate and represents the index profile14 of the fiber, e. g., a step-
or a gradient-index profile. Due to symmetry, the eigenproblem (1.27) reduces to a radial
equation. Depending on the actual realization of the dielectric function’s profile, different
numbers of guided modes, i. e., field distributions which are localized in the high-index region
of the fiber core and decay in the low-index region of the cladding, exist. The underlying
guiding mechanism here is total internal reflection. These modes exhibit a one-dimensional
dispersion relation. However, they do not exist for arbitrary frequencies and have an upper
and lower cutoff.

Besides conventional optical fibers, so-called Photonic Crystal fibers [22] consist of the
fiber core, which can be a low-index material or even air, surrounded by a two-dimensional
Photonic Crystal structure. In case of a low-index core, the guiding mechanism is based on
the existence of a photonic band gap of the surrounding Photonic Crystal. For these struc-
tures, eigenproblem (1.27) becomes more complicated when compared to a conventional fiber.
Nonetheless, there are single-mode solutions which effectively constitute a one-dimensional
electromagnetic continuum for propagation along the fiber axis. Furthermore, Photonic
Crystal fibers provide properties which might also be appealing for quantum-optical experi-
ments, e. g., for realizing a source of correlated photon pairs [41].

1.3 Concepts of Quantum Optics

In this section, I present basic notions and concepts of quantum optics. The discussion of the
dynamics and the states of the electromagnetic field which are used in this thesis is followed
by the introduction of different mechanisms of light–matter interaction. I then briefly define
various observables and physical quantities which are important in later chapters, followed
by the theoretical foundations for the dynamics of open systems with respect to the quantum
jump approach. The emphasis is on the theoretical framework rather than on examples for

14To be precise, the refractive index here is n(r) =
√
ε(r).
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actual physical realizations. For the latter, I only make a few remarks and refer to the
respective discussions in later chapters.

1.3.1 Dynamics and States of the Electromagnetic Field

In the Schrödinger picture, the time evolution of the electromagnetic field’s state |Ψ〉 is
described by the Schrödinger equation

i
∂

∂t
|Ψ〉 = H|Ψ〉 , (1.35)

where H is the Hamilton operator of the underlying system. In the following, I present three
classes of states which represent possibles bases of the electromagnetic field.

Fock States

Since the Hamilton operator (1.22) represents a sum over individual harmonic oscillators,
Fock states constitute a valid choice for a basis. The state of a multi-mode electromagnetic
field with N modes is thus given as the direct product of the number states for each mode λ,
i. e.,

|{nλ}〉 = |nλ1〉 ⊗ |nλ2〉 ⊗ · · · ⊗ |nλN 〉 =
N∏

l=1

(
a†λl

)nλl
√
nλl !

|0〉 , (1.36)

where |0〉 denotes the vacuum state. The action of creation, annihilation, and number
operators on a basis state are given by

a†λp |nλ1 , nλ2 , . . . , nλN 〉 =
√
nλp + 1|nλ1 , nλ2 , . . . , nλp + 1, . . . , nλN 〉 , (1.37a)

aλp |nλ1 , nλ2 , . . . , nλN 〉 =
√
nλp |nλ1 , nλ2 , . . . , nλp − 1, . . . , nλN 〉 , (1.37b)

a†λpaλp |nλ1 , nλ2 , . . . , nλN 〉 = nλp |nλ1 , nλ2 , . . . , nλp , . . . , nλN 〉 . (1.37c)

The orthonormality relation reads

〈n′λ1 , n′λ2 , . . . , n′λN |nλ1 , nλ2 , . . . , nλN 〉 =

N∏

l=1

δn′λlnλl
. (1.38)

The expectation value of the electric field operator (1.24) vanishes for a Fock state, i. e.,

〈nλ1 , nλ2 , . . . , nλN |E(r, t)|nλ1 , nλ2 , . . . , nλN 〉 = 0 . (1.39)

As long as there is no superposition of number states with different particle numbers, Fock
states can therefore be regarded as being “very non-classical” in the sense that expectation
values of field operators vanish and only quantum fluctuations exist. Fock states are eigen-
states of the number operator (cf. Eq. (1.37c)) from which the light intensity can be obtained.
Number operators do not commute with the field operators defined in Eqs. (1.23)–(1.25).
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1.3 Concepts of Quantum Optics

Coherent States

Coherent states as a description of the quantized electromagnetic field were first proposed by
R. Glauber [42]. In fact, they can be regarded as being “as classical as possible” in the sense
that they resemble a classical field very well. The state of a multi-mode electromagnetic field
can be expressed as the direct product of coherent states for each mode, i. e.,

|{αλ}〉 = |αλ1〉 ⊗ |αλ2〉 ⊗ · · · ⊗ |αλN 〉 . (1.40)

Here, for the sake of simplicity, I only write down all expressions for a single coherent state.
A coherent state with a complex-valued amplitude α is defined as

|α〉 = e−
|α|2
2

∞∑

n=0

αn√
n!
|n〉 , (1.41)

which represents an infinite sum over Fock states |n〉. Properties important in the context
of this thesis include

a |α〉 = α |α〉 , (1.42a)

〈α|α〉 = 1 , (1.42b)

〈α|β〉 = e−
1
2
|α|2− 1

2
|β|2+α∗β , (1.42c)

1

π

∫
d2α|α〉〈α| = 1 , (1.42d)

〈α|a†a|α〉 = |α|2 , (1.42e)

〈α|E(r, t)|α〉 = iE
(
αe−iωtu(r)− α∗eiωtu∗(r)

)
. (1.42f)

Coherent states are an over-complete, non-orthogonal basis of the radiation field with a
mean particle number of |α|2. According to Eq. (1.42f), they yield an expectation value of
the electric field operator which takes the form of a classical field (E is the vacuum field
amplitude).

Furthermore, by defining a unitary coherent state displacement operator,

Da(ξ) = eξa
†−ξ∗a , (1.43)

a coherent state can be interpreted as a displaced vacuum state since

|α〉 = Da(α)|0〉 . (1.44)

Moreover, the displacement operator fulfills

D†a(ξ) = D−1
a (ξ) = Da(−ξ) , (1.45a)

D†a(ξ)aDa(ξ) = a+ ξ , (1.45b)

D†a(ξ)a
†Da(ξ) = a† + ξ∗ , (1.45c)

Da(ξ)
∣∣µ
〉

=
∣∣ξ + µ

〉
. (1.45d)
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These properties are important for the analysis of photon-added coherent states which are
discussed in the subsequent paragraph.

Photon-Added Coherent States

A so-called m-photon-added coherent state is obtained by successively applying the creation
operator m times on a coherent state, i. e., |α,m〉 ∝ (a†)m |α〉 [43]. In this thesis, only
photon-added coherent states where a single photon is “added” are investigated. A single
mode then takes the form

|α, 1〉 =
1√

1 + |α|2
a†|α〉 . (1.46)

Again, the direct product of all modes, i. e.,

|{αλ, 1λ}〉 = |αλ1 , 1λ1〉 ⊗ |αλ2 , 1λ2〉 ⊗ · · · ⊗ |αλN , 1λN 〉 (1.47)

is used to account for multi-mode fields. The following expressions are only for a single
mode.

When compared to a single-photon Fock state, Eq. (1.46) can be interpreted as a sin-
gle photon in an “alternative vacuum” given by the coherent state |α〉. By applying the
displacement operator (1.43) and exploiting properties (1.45a), (1.45c), and (1.45d), the
single-photon-added coherent state transforms into a superposition of a single photon and
the vacuum state,

D†a(α)|α, 1〉 =
1√

1 + |α|2
D†a(α)a†Da(α)D†a(α)|α〉

=
1√

1 + |α|2
(
a† + α∗

)
Da(−α)|α〉 (1.48)

=
1√

1 + |α|2
(
a†|0〉+ α∗|0〉

)
.

Displacing the basis of the“background”coherent state can therefore simplify the description
of single-photon-added coherent states. Equation (1.48) is very important for Chap. 5. See
Refs. [43, 44] for further details and properties of photon-added coherent states.

1.3.2 Light–Matter Interactions

Photons do not interact directly with each other15, which makes them—at first sight—
hard to manipulate and process. Different physical mechanisms can, however, lead to an
effective photon–photon interaction at energy scales which are relevant in solid-state based
(quantum) optical systems. In that case, a subsystem which mediates the effective interaction

15Direct photon–photon interactions only become relevant at very high intensities.
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is required. Such systems include, for instance, artificial atoms acting as saturable absorbers,
mechanical motion (phonons), and classical optical nonlinearities such as a Kerr-nonlinear
response. In this section, I introduce the quantum mechanical description of these systems
which is applied in later chapters.

Atom–Photon Interactions

In what follows, the term “atom” is used to refer to both natural and artificial atoms in-
dependent of their actual physical realization. Possible examples include quantum dots in
Photonic Crystals or resonator arrays [4, 45, 46], fibers with side-coupled resonators [47],
and qubits in superconducting circuitry [48–50].

Throughout this thesis, atom–photon interactions are restricted to the dipole approxima-
tion, i. e., the limit in which the spatial extent of the atom is much smaller than typical
wavelengths of the radiation field. In this case, the appropriate interaction Hamiltonian16

Hat−phot = −P ·E(R0) (1.49)

describes the coupling of an electric dipole operator P to the electric field operator E(R0)
at the position R0 of the atom. Moreover, only single-electron transitions are considered.
Therefore, the atomic subsystem is taken into account as a single-particle problem. An
expansion of the electric dipole moment operator in terms of single-particle eigenstates of
the atomic subsystem, {|Θn〉}, takes the form

P = −er = −e
∑

nm

|Θn〉〈Θn|r|Θm〉〈Θm| =
∑

nm

Pnm|Θn〉〈Θm| . (1.50)

In Eq. (1.50),

Pnm = −e〈Θn|r|Θm〉

= −e
∫

d3r

∫
d3r′〈Θn|r〉〈r|r|r′〉︸ ︷︷ ︸

=rδ(r−r′)

〈r′|Θm〉

= −e
∫

d3rrθ∗n(r)θm(r)

= P∗mn (1.51)

denotes the dipole matrix elements, in which −e is the electron’s charge, r its position
operator, and θn(r) signifies the electronic wave functions in real space. Note that Pnn = 0
because the position operator has odd parity. Hence, the dipole operator induces transitions

16In the dipole approximation, Hamiltonian (1.49) is equivalent to the minimal coupling Hamiltonian of an
electron in the electromagnetic field. As is extensively discussed in Ref. [51], the connection is given by a
local gauge transformation.
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between electronic levels. Using the general decomposition of the electric field operator,
Eq. (1.24), the interaction Hamiltonian in the Schrödinger picture can be rewritten as

Hat−phot =
∑

λnm

(
Vλnm|Θn〉〈Θm|aλ + V ∗λnm|Θm〉〈Θn|a†λ

)
, (1.52)

where

Vλnm = −Pnm ·E(+)
λ (R0)

= −i

√
ωλ
2Vλ

Pnm · uλ(R0) . (1.53)

In general, the atom–photon coupling strength depends on the specific properties of the
electromagnetic mode such as its vacuum field amplitude and the mode function u(R0) at
the atom’s position (cf. Sec. 1.2.1). The overlap of the dipole matrix elements Pnm with
the mode functions contains all information about the relative spatial orientation. Note
that Vλnn = 0.

For the next argument, M non-degenerate electronic levels for the atomic subsystem with
Hamiltonian

Hat =

M∑

n=1

Ωn|Θn〉〈Θn| (1.54)

are assumed and the eigenenergies are labeled such that Ω1 < Ω2 < · · · < ΩM . Furthermore,
Ωnm ≡ Ωn − Ωm = −Ωmn so that Ωnm > 0 holds for n > m. In the interaction picture,
Hamiltonian (1.52) can be rewritten as

Hat−phot =
∑

λn>m

Vλnm

(
e−i(Ωnm−ωλ)t|Θn〉〈Θm|aλ + e+i(Ωnm+ωλ)t|Θm〉〈Θn|aλ

)
+ h.c. . (1.55)

The so-called rotating-wave approximation is applied as follows. Hamiltonian (1.55) contains
different time scales. Compared to the difference between the atomic transition energy and
the photon energy, Ωnm − ωλ, the respective sum of these energies is regarded to result in
a rapidly varying time exponential, which is, loosely speaking, “averaged out” and therefore
neglected. To be precise, |(Ωnm − ωλ)/Ωnm| � 1 and |Vλnm/ωλ| � 1 have to be fulfilled
simultaneously for the rotating-wave approximation to be justified [52, 53]. Beyond this
regime, especially in the case of ultra-strong coupling, the counter-rotating terms must not
be neglected. However, throughout this thesis, I assume the rotating-wave approximation to
be applicable. Hamiltonian (1.55) then simplifies to

Hat−phot =
∑

λn>m

(
Vλnm|Θn〉〈Θm|aλ + V ∗λmn|Θm〉〈Θn|a†λ

)
, (1.56)

where all operators are in the Schrödinger picture.
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1.3 Concepts of Quantum Optics

In most situations, a large number of atomic levels in (1.54) is far detuned with respect
to the frequency components of the electromagnetic fields involved. This motivates the
restriction to only a few atomic levels. Although a very brief detour on three-level systems
is given in Chap. 3, atom–photon interactions are, in this thesis, mainly investigated in the
context of two-level systems. In that case, only M = 2 levels, |↓〉 and |↑〉, are considered.
With the transition energy Ω ≡ Ω↑↓ = Ω↑ − Ω↓ = −Ω↓↑ > 0 Hamiltonian (1.54) reads

Hat = (Ω + Ω↓)|↑〉〈↑|+ Ω↓|↓〉〈↓| . (1.57)

By choosing the ground state energy to be Ω↓ = −Ω/2, the Hamiltonian simply reads

Hat =
Ω

2
σz (1.58)

with the Pauli matrix

σz = |↑〉〈↑| − |↓〉〈↓|
= σ+σ− − σ−σ+ . (1.59)

The atomic raising and lowering operators are

σ+ =
∣∣↑
〉〈
↓
∣∣ , (1.60a)

σ− =
∣∣↓
〉〈
↑
∣∣ , (1.60b)

and satisfy the fundamental anti-commutation relation

{σ+, σ−} = σ+σ− + σ−σ+ = 1 . (1.61)

The dipole operator then reads

P = P↑↓σ
+ + P∗↑↓σ

− , (1.62)

leading, in the rotating-wave approximation, to an interaction Hamiltonian of the form

Hat−phot =
∑

λ

(
Vλ aλσ

+ + V ∗λ a
†
λσ
−
)
. (1.63)

The first term in Hamiltonian (1.63) describes the process of photon absorption combined
with the excitation of the two-level system whereas the second term, vice versa, describes
photon emission and atomic relaxation. A very important property, which is exploited in the
numerical scheme presented in Chap. 2, is the conservation of the total excitation number,
i. e.,

C =
∑

λ

a†λaλ +
1

2
(σz + 1) (1.64)
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is a constant of motion of the Hamiltonian (1.63). This feature stems from the rotating-

wave approximation and would be invalid if counter-rotating terms proportional to a†λσ
+

and aλσ
− were taken into account17.

Putting together Eqs. (1.22), (1.58), and (1.63), the total Hamiltonian

H =
∑

λ

ωλa
†
λaλ +

Ω

2
σz +

∑

λ

(
Vλ aλσ

+ + V ∗λ a
†
λσ
−
)

(1.65)

describes the interaction of a multi-mode electromagnetic field with a single two-level system
in the dipole- and rotating-wave approximation. Equation (1.64) is still a conserved quan-
tity since the first two terms in the full Hamiltonian only act in their respective subspace,
i. e., in the photonic or atomic subspace, without changing the excitation number. Hamilto-
nian (1.65) represents a multi-mode version of the Jaynes-Cummings model [56, 57]. In the
context of few-photon transport, J. T. Shen and S. Fan coined the term18 “Dicke Hamilto-
nian” for Eq. (1.65) [60]. A tight-binding formulation in real space is extensively applied in
the following chapters.

One can arrive at an alternative and equivalent formulation of Hamiltonian (1.65) by
regarding the two-level system as a bosonic degree of freedom with an infinite repulsion for
multiple occupancy [61–63]. In that case, one applies the replacements

σ+ → b† , (1.66a)

σ− → b , (1.66b)

Ω

2
σz → Ωb†b− Ω

2
1 + Ub†b(b†b− 1) , (1.66c)

where −Ω
2 1 merely represents a constant energy shift which can be ignored. The two-level

description is recovered by taking the limit

U →∞ . (1.67)

The last term in Eq. (1.66c) only plays a role for two or more excitations. In the language of
condensed matter theory, this system could be regarded as being “strongly correlated” and
the atom clearly mediates an effective photon–photon interaction. The formulation (1.66) is
used in Chaps. 3 and 4.

17Very often [35, 54, 55], terms proportional to a†λσ
+ and aλσ

− are referred to as not conserving energy,
which is misleading. In fact, as long as the Hamiltonian is time-independent, energy is always conserved.
However, the total number of excitations defined in Eq. (1.64) is not conserved anymore once the counter-
rotating terms are taken into account. This dramatically complicates both numerical as well as analytical
approaches. For instance, an analytic solution to the Rabi model has been found just recently [53].

18Historically, the term “Dicke Hamiltonian” stands for a quantum system of many two-level systems coupled
to a single electromagnetic mode [58, 59], which is not Hamiltonian (1.65). Unfortunately, this ambiguity
can cause confusion.
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1.3 Concepts of Quantum Optics

Finally, another variation of Hamiltonian (1.65) where each electromagnetic mode is cou-
pled to a single two level-system is worth mentioning. In a tight-binding formulation, this
system is known as the Jaynes-Cummings-Hubbard system, which offers a variety of physical
effects [64–68]. Aspects of this system are not investigated here since they are beyond the
scope of this thesis. However, the Jaynes-Cummings-Hubbard model is directly amenable to
the numerical scheme presented in Chap. 2.

Field Interactions via Kerr-type Nonlinearities

The formalism of field quantization for the macroscopic Maxwell equations in Sec. 1.1 was
restricted to the case of linear, isotropic, dispersion- and loss-free dielectrics (cf. constitutive
relations (1.2)). In the presence of non-resonant nonlinearities, the medium’s response can
be written as a power series in terms of the electric field, leading to a constitutive relation
of the form19 [69, 70]

Di(r) = Ei(r) + χ
(1)
ij (r)Ej(r) + χ

(2)
ijk(r)Ej(r)Ek(r) + χ

(3)
ijkl(r)Ej(r)Ek(r)El(r) + . . . . (1.68)

Here, the indices stand for Cartesian coordinates and the Einstein summation convention

is assumed. For the remainder, I only consider isotropic media (χ
(1)
ij (r) = δijχ

(1)(r)), for

which ε(r) = 1 + χ(1)(r), and assume the bulk material to be inversion-symmetric so that

χ
(2)
ijk = 0. Neglecting possible surface effects, the focus here is on the third-order nonlinear

susceptibility—the Kerr nonlinearity.

Unlike the quantization procedure presented in Sec. 1.1, a rigorous, non-heuristic quanti-
zation for nonlinear media is highly sophisticated and complicated, which would go beyond
the scope of this chapter. Instead, by referring to the corresponding references, I directly
discuss the underlying Hamiltonian and its possible realizations.

J. E. Sipe et al. showed in a general context [71] as well as for the special situation of a
Kerr nonlinearity in a Photonic Crystal [72] that the additional term in the Hamiltonian for
a single mode of the electromagnetic field has the form

HNL ∝
(
wa+ w∗a†

)4
, (1.69)

where w and the missing prefactors will not be specified at this qualitative level. For a dif-
ferent approach, see the work of M. Hillery and L. D. Mlodinow [73] or Ref. [70]. Multiplying
out all terms in Hamiltonian (1.69) and normal-ordering the operators reveals different pro-
cesses occurring at separated time scales. For instance, in the Heisenberg picture, a term

19In nonlinear optics, Maxwell’s equations cannot be scaled arbitrarily. The scale of the electric field
(cf. Appendix A) becomes important and dimensionless units have to be used carefully. In the following,
however, I do not address this issue since Kerr nonlinearites are taken into account in a phenomenological
way instead of calculating coupling terms directly from, for instance, known values of χ(3) in an ab initio
fashion.
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proportional to a4 oscillates with a frequency that is four times the optical frequency of
the mode, whereas a term proportional to a†a†aa is static. In the spirit of the rotating-
wave approximation, all rapidly varying terms are then neglected, leading to a simplified
Hamiltonian,

HKerr = ∆a†a†aa , (1.70)

in which ∆ is the strength of the Kerr nonlinearity. In the case of an atomic ensemble,
Hamiltonian (1.70) can be deduced by applying an adiabatic elimination [24]. Furthermore,
despite all approximations applied, Hamiltonian (1.70) has proven to be a valid description
in various physical realizations such as nonlinear cavities [24, 74, 75], exciton–exciton inter-
actions in semiconductors [76], interacting polaritons in an array of coupled cavities [15–17],
in the context of ultra-cold bosonic atoms [28], and in optomechanical systems [77], to name
just a few. For the latter, an approach different to Ref. [77] is presented in the next section.

Phonon–Photon Interactions

Although a major part of quantum optics is concerned with atom–photon interactions, the
coupling of the electromagnetic field to mechanical degrees of freedom has recently become
a well-established subfield called optomechanics. The first speculations about the existence
of radiation pressure can be dated back to Kepler [78] who tried to find an explanation for
the fact that a comet’s tail always points away from the sun. However, radiation pressure
forces are not part of our everyday life’s perception since they are very weak for macroscopic
objects. Only with the advent of modern nanotechnological fabrication techniques, a system-
atic study of radiation pressure effects has become possible, allowing for significant coupling
of mechanical motion and light in the regime of a few nanonewton. To date, a variety of
different optomechanical systems exists. Vibrating waveguides in an integrated optics con-
figuration [79–82], ground-state cooling of a single mechanical mode [83–85], optomechanical
crystals [86, 87], and applications in quantum information [88] are just a few examples. See
Refs. [89–92] for an overview.

Similar to the case of nonlinear dielectric media, the quantization of the electromagnetic
field coupled to mechanical motion, which is usually taken into account in form of time-
dependent boundary conditions, can be rather complicated. Reference [25] provides a de-
tailed discussion of the classical and quantum mechanical problem. Here, I merely present a
qualitative explanation.

Consider a single electromagnetic mode of frequency ω (operators a and a†) coupled to a
mechanical oscillator (operators b and b†) via radiation pressure. The generic Hamiltonian
has the form

Hphon−phot = ωa†a+ νb†b+ ga†a(b† + b) . (1.71)

Here, ν is the mechanical resonator’s eigenfrequency and g represents the optomechanical
coupling strength. Qualitatively, Hamiltonian (1.71) can be understood as follows. For
simplicity, assume a one-dimensional optical resonator (the argument also applies to more
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1.3 Concepts of Quantum Optics

general situations). Radiation pressure leads to a change in the mechanical oscillator’s
displacement, i. e., the length of the resonator, which, in turn, changes the displacement-
dependent eigenfrequency of the electromagnetic field mode because the frequency of a res-
onator depends on its length. If these displacements are assumed to be small compared to
the length scales of the quantization volume in equilibrium (equilibrium position x0), the
electromagnetic mode frequency ω(x) can be expanded to first order in the displacement x,
i. e., ω(x) ≈ ω(x0) + ∂ω(x)/∂x|x=x0 · (x− x0). For the mechanical displacement, the propor-
tionality x− x0 ∝ b+ b† holds, which, inserted into the Taylor expansion and into ω(x)a†a,
already yields the interaction term proportional to a†a(b† + b). For the one-dimensional
resonator, ∂ω(x)/∂x|x=x0 < 0 so that g < 0, which also applies to more complicated sys-
tems. Note that the above explanations are heuristic and imprecise20. They merely serve
as an intuitive and simple motivation of Hamiltonian (1.71). For a rigorous treatment, see
Ref. [25].

Hamiltonian (1.71) can be generalized to

H =
∑

λ

(
ωλa

†
λaλ + νλb

†
λbλ + gλa

†
λaλ(b†λ + bλ)

)

+
∑

λλ′

Jλλ′a
†
λaλ′ . (1.72)

Here, each electromagnetic mode λ interacts with a single mechanical oscillator. In this
Hamiltonian, ωλ and νλ denote, respectively, the optical and mechanical eigenfrequencies
with the corresponding photonic (aλ and a†λ) and phononic (bλ and b†λ) annihilation and
creation operators. The optomechanical interaction strength due to radiation pressure is
gλ. All information about photonic inter-mode coupling is encoded in the hopping terms
Jλλ′ = J∗λ′λ. One specific realization of Hamiltonian (1.72) is addressed in Chap. 5. In this
section, only general properties21 are discussed.

Similar to the atom–photon interactions without the rotating-wave approximation
(cf. Eq. (1.55)), Hamiltonian (1.72) does not conserve the total number of excitations. The
quantity

C =
∑

λ

(
a†λaλ + b†λbλ

)
(1.73)

is therefore not a constant of motion. However, the on-site terms in the first line of Eq. (1.72)
resemble the so-called independent boson model [93], which describes the interaction of an
electronic level with a bosonic bath. Here, all operators are bosonic, which introduces a subtle
and interesting difference when compared to the fermionic counterpart. To gain further

20Especially the replacement x− x0 ∝ b+ b† is very vague. In the Taylor expansion, x− x0 is first assumed
to be a real number, but later an operator is inserted. In a detailed analysis, as presented in Ref. [25], the
photonic operators parametrically depend on the mechanical degrees of freedom.

21At this point, there is no need to interpret Hamiltonian (1.72) as an array of optomechanical resonators in
real space. However, in Chap. 5, the Jλλ′ actually represent such a realization.
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insight into the properties of Hamiltonian (1.72), the method of canonical transformation
[93] is utilized. Using

H̄ = eSH({a†λ}, {aλ}, {b
†
λ}, {bλ})e−S

= H({ā†λ}, {āλ}, {b̄
†
λ}, {b̄λ}) (1.74)

with
S =

∑

λ

κλa
†
λaλ(b†λ − bλ) (1.75)

and the properties

āλ = eSaλe−S = aλXλ(κλ) , (1.76a)

b̄λ = eSbλe−S = bλ − κλa
†
λaλ , (1.76b)

results in

H̄ =
∑

λ

(
ωλa

†
λaλ + νλb

†
λbλ −∆λa

†
λaλa

†
λaλ

)

+
∑

λλ′

Jλλ′a
†
λaλ′X

†
bλ

(κλ)Xbλ′
(κλ′) . (1.77)

Here, Xλ(κλ) = e−κλ(b†λ−bλ) denotes a displacement operator (cf. Eq. (1.43)), κλ = gλ/νλ,
and ∆λ = g2

λ/νλ = κλgλ. Transformation (1.74) represents an intensity dependent
displacement of the mechanical oscillators’ amplitudes and is also known as “polaron trans-
formation”.

The photonic and phononic on-site terms in Hamiltonian (1.77) are now decoupled and the
optomechanical nonlinearity results in an effective photon–photon interaction, resembling an
attractive Bose-Hubbard model. In this formulation, photons and phonons do not interact
directly, but photon hopping is accompanied by a change in the mechanical oscillators’
amplitudes, which is expressed by the displacement operators. Photons in the same mode
interact via an effective Kerr nonlinearity (cf. Eq. (1.70)). Also note that the interaction
term can be rewritten according to

−∆λa
†
λaλa

†
λaλ = −∆λa

†
λaλ −∆λa

†
λa
†
λaλaλ , (1.78)

where the first term, −∆a†λaλ, is usually referred to as the so-called “polaron shift”. In

the case of fermions, the interaction term −∆a†λa
†
λaλaλ would be absent because of Pauli’s

principle.
Up to this point, the transformation to Hamiltonian (1.77) is exact. However, because of

the displacement operators, the hopping terms connect all particle numbers in the phononic
Hilbert space. Similar to the case of atom–photon interactions, this renders both an analyt-
ical and a numerical treatment difficult.
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In what follows, the aim is to derive an approximate Hamiltonian for the photons only. In
order to eliminate the phononic degress of freedom, it is instructional to have a closer look at
the combination of operators in the hopping terms and expand the displacement operators
to first order in κλ, i. e.,

aλXλ(κλ) ≈ aλ
(

1− κλ(b†λ − bλ)
)
. (1.79)

Hopping from mode λ to mode λ′ thus reads

a†λX
†
λ(κλ)aλ′Xλ′(κλ′) ≈ a†λaλ′

(
1 + κλ(b†λ − bλ)− κλ′(b†λ′ − bλ′)

)
. (1.80)

Hence, a photon which is scattered from mode λ′ to mode λ additionally displaces both
mechanical oscillators according to the amplitudes κλ and κλ′ . Note that for real hopping
amplitudes, i. e., Jλλ′ = Jλ′λ, and κλ = κλ′ = κ, the first corrections are quadratic in
κ because the Hermitian conjugate of Eq. (1.80) in the sum of Hamiltonian (1.77) cancels
terms linear in κ.

The regime of κλ � 1 represents the situations in which the optomechanical nonlinearity
is small compared to mechanical frequencies. In addition, optical frequencies exceed me-
chanical frequencies by orders of magnitude so that νλ � ωλ. In analogy to cavity quantum
electrodynamics, this is the regime of weak coupling. The assumption κλ � 1 should be
valid for certain optomechanical systems (for instance, see Ref. [94]), allowing to subsume
the net effect the phonons have on the photon’s inter-mode scattering in effective, renormal-
ized hopping terms. Furthermore, if the mechanical subsystem is not subject to a special
state preparation, this can be achieved by replacing the phononic displacement operators
by their thermodynamic expectation values with respect to the free phononic Hamiltonian
Hp =

∑
λ νλb

†
λbλ, i. e.,

Xλ(κλ)→ χλ(κλ) =
tr
(
Xλ(κλ)e−β(Hp−µN)

)

tr
(

e−β(Hp−µN)
) . (1.81)

The inverse thermal energy is denoted by β, µ = 0 is the vanishing chemical potential for
phonons, and N counts the total number of phonons. The method of Feynman disentangling
of operators [93, 95, 96] (see Appendix B for details) finally yields

χλ(κλ) = e
−κ2λ

(
Bνλ (β)+ 1

2

)
, (1.82)

where Bνλ(β) = 1/(eβνλ − 1) denotes the Bose-Einstein distribution. This replacement
effectively decouples the photonic and phononic system such that the photonic Hamiltonian
now reads

H =
∑

λ

(
ωλ −∆λ

)
a†λaλ −

∑

λ

∆λa
†
λa
†
λaλaλ +

∑

λλ′

J ′λλ′a
†
λaλ′ , (1.83)
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where the renormalized hopping elements are

J ′λλ′ = χλ(κλ)χλ′(κλ′)Jλλ′ . (1.84)

Since Hamiltonian (1.83) is valid in the limit of weak coupling, the polaron shift is very small
and ωλ −∆λ ≈ ωλ.

1.3.3 Observables and Physical Quantities

In this section, I give general definitions of observables and physical quantities. In later
chapters, they are adapted and simplified according to the special type of problem under
investigation. In the following, 〈·〉 denotes the quantum-mechanical expectation value.

Occupation Numbers

The occupation number of a bosonic mode λ is defined as the expectation value of the
corresponding number operator, i. e.,

〈nλ〉 = 〈a†λaλ〉 . (1.85)

In the context of transport calculations, quantities such as transmittance and reflectance
can be constructed as a sum over selected modes. For a two-level system, the inversion
〈σz〉 ∈ [−1, 1] is a typical measure for the atomic excitation. In this thesis, I prefer the
occupation of the excited atomic state, i. e.,

〈σ+σ−〉 =
1

2

(
〈σz〉+ 1

)
. (1.86)

In the alternative formulation of a bosonic site with infinite on-site repulsion for two or more
excitations, the atomic excitation reads 〈b†b〉 (cf. Sec. 1.3.2 and Eqs. (1.66)).

Field–Field Correlation Functions

Field–field auto and cross correlation functions, defined according to

Cff
λλ′(t, t

′) = 〈a†λ(t)aλ′(t
′)〉 , (1.87)

help to identify memory effects between modes λ and λ′. Furthermore, the auto correlation
function is proportional to the well-known amplitude correlation function g(1) [97, 98] and
it determines the output spectrum (see below).
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Output Spectrum

Imagine an ideal photo detector. It can be utilized to obtain emission spectra of atoms, e. g.,
of a single two-level system. The output or emission spectrum S(ω), which is sometimes
also termed “fluctuation spectrum”, is defined as the Fourier transform of the temporal cross
correlation function of the field amplitudes [99]. The spectral contribution of mode λ reads

Sλ(ω) =

∞∫

−∞

dτeiωτ 〈a†λ(t+ τ)aλ(t)〉

=

∞∫

−∞

dτeiωτCff
λλ(t+ τ, t) . (1.88)

In this definition, it is assumed that the spectrum S(ω) does not depend on a time argument
anymore, which requires the correlation function to be translationally invariant in time, i. e.,
it describes a stationary process. For a non-stationary processes such as when considering
pulses, definition (1.88) still depends on one time argument. In that case, S(ω, t) is the
spectrogram22 of the process [100, 101].

In Chap. 6, Eq. (1.88) is adapted and simplified to the specific problem of a single-
excitation wave function in order to study the spontaneous emission spectrum. Note that
in Eq. (1.88) all contributions to the spectrum are given by degrees of freedom of the ra-
diation field. If one is interested in the spectrum emitted by a two-level atom, one could
also ask for the “spectrum” of the atomic degrees of freedom, i. e., the Fourier transform of
〈σ+(t+ τ)σ−(t)〉. Although, for instance, in the case of resonance fluorescence it is common
to relate the output spectrum to the Fourier transform of the correlator 〈σ+(t+ τ)σ−(t)〉
[51], a detector only records the spectral information which is contained in electromagnetic
field modes. Throughout this thesis, I therefore use Eq. (1.88) since the focus is on the
spectral information which is accessible through the degrees of freedom of the radiation
field.

Atom–Field Correlation Functions

In analogy to field–field correlators, atom–field correlation functions are defined via

Caf
λ (t, t′) = 〈σ+(t)aλ(t′)〉 . (1.89)

These functions are, for instance, important for the investigation of memory effects between
a field mode λ and a two-level system.

22Depending on the nomenclature of the different scientific communities, the spectrogram is also referred to
as the “Wigner-Ville distribution”. See Refs. [100, 101] for more details.
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Joint Probabilities

The n-mode quantity

Pλ1λ2...λn = 〈a†λn . . . a
†
λ2
a†λ1aλ1aλ2 . . . aλn〉 (1.90)

is proportional to the probability of finding the radiation field in modes λ1, λ2, . . . , and λn.
In this thesis, I focus on the case of n = 2, i. e.,

Pλ1λ2 = 〈a†λ2a
†
λ1
aλ1aλ2〉 . (1.91)

This quantity is adapted and properly normalized in order to suit the problem of photon
transport in Chaps. 3 and 4. Note that Eq. (1.90) is reminiscent of the quantum-optical
correlation functions G(n) introduced by R. Glauber [97, 98]. However, Eq. (1.90) only
represents the special case in which the the operators have the same time argument.

Fidelity of Wave Functions

Consider two complex-valued, time-dependent quantities ζλ(t) and ρλ(t) with norms
Nζ =

√∑
λ |ζλ|2 and Nρ =

√∑
λ |ρλ|2. The fidelity,

Fζρ(t) =

∣∣∣
∑

λ ζ
∗
λ(t)ρλ(t)

∣∣∣
√
Nζ(t)Nρ(t)

, (1.92)

serves as a measure for the overlap of these two quantities at equal times. Throughout this
thesis, this simple definition of the fidelity is sufficient. For a formal treatment, temporal
overlaps, and a generalization to mixed quantum states, see Ref. [102].

1.3.4 Open System Dynamics and Quantum Jumps

The time evolution of the total state vector of radiation field modes and further subsystems,
e. g., two-level atoms, is given by the Schrödinger equation (1.35). It describes a coherent and
deterministic evolution of a state |Ψ(t)〉 whose norm is conserved because the Hamiltonian is
Hermitian. In this formulation, it is therefore very hard to describe open systems which are
subject to irreversible loss mechanisms of different kinds. A common strategy to overcome
this drawback lies in the reformulation of the problem in terms of a density matrix whose
dynamics is given by a master equation, in which several super operators, e.g., Lindblad
operators, describe the coupling to an environment [103, 104].

The introduction of a density matrix, however, drastically increases the number of degrees
of freedom and therefore renders the problem computationally much more demanding. The
numerical scheme used in this thesis is addressed in Chap. 2. Here, I focus on a brief
description of the key elements of an approach which incorporates open system dynamics in
a wave-function based formalism by means of stochastic quantum jumps. This quantum jump
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1.3 Concepts of Quantum Optics

approach, which is often also termed “Monte Carlo wave function method”, has proven to be
successful in a number of quantum-optical problems. For in-depth reviews, see Refs. [105,
106].

Master Equations in Lindblad Form, Jump Operators, and Stochastic Time Evolution

Consider the general form of a master equation,

∂

∂t
ρ = i[ρ,H] + L(ρ) , (1.93)

where ρ =
∑

iwi|Ψi〉〈Ψi| is a density matrix, H the Hamilton operator for the coherent time
evolution, and L(ρ) a super operator describing the incoherent open system dynamics. In
this thesis, only super operators of Lindblad type, i. e.,

L(ρ) = −1

2

∑

m

{C†mCm, ρ}+
∑

m

CmρC
†
m , (1.94)

are considered. Curly brackets denote an anticommutator. C†m and Cm signify creation and
annihilation operators, respectively, which are constructed out of the system’s operators and
chosen according to the special type of relaxation under consideration. They are termed
“jump operators”.

The central idea of emulating a master equation like Eq. (1.93) within a wave function
formalism is to calculate many stochastic trajectories of the wave function |Ψ(i)(t)〉, and to
finally average observables Ô(t) over all M individual realizations, i. e.,

〈Ô(t)〉 = tr(Ô(t)ρ) ≈ 1

M

M∑

i=1

〈Ψ(i)(t)|Ô|Ψ(i)(t)〉 . (1.95)

A single trajectory is obtained by using the following scheme, which can be interpreted as a
series of successive gedanken measurements:

• For a time step ∆t, propagate the wave function deterministically according to the
Schrödinger equation with an effective, non-Hermitian Hamiltonian

Heff = H − i

2

∑

m

C†mCm . (1.96)

• After time step ∆t, calculate jump probabilities

pm = ∆t〈Ψ(t)|C†mCm|Ψ(t)〉 (1.97)

and obtain the total jump probability p =
∑

m pm.
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• Draw a uniformly distributed random number ς from the interval [0, 1].

• If ς > p, no jump occurs. Renormalize the wave function to unity and start with the
next time step.

• If ς ≤ p, a quantum jump occurs. Pick a jump m′ according to the probability
pm′
p , e. g.,

by drawing a random number and applying the method of linear search (cf. Ref. [103]
and Appendix C).
Collapse the wave function for the selected jump according to

|Ψ〉 → Cm′ |Ψ〉√
〈Ψ|C†m′Cm′ |Ψ〉

. (1.98)

Start with the next time step.

Here, I only presented the realization of the quantum jump approach which is applied in
this thesis. For further details and extended schemes, as well as a rigorous proof of the
equivalence of this approach and a master equation of Lindblad type, see Refs. [105, 106].

Relaxation of T1-type

In realistic situations, dissipation is a major concern. For instance, a two-level system
eventually suffers from radiative and non-radiative damping. All microscopic mechanisms
leading to damping are commonly subsumed in a single phenomenological time scale T1.

The master equation for a damped two-level system [103, 104],

∂

∂t
ρ = i[ρ,H]− 1

2T1
{σ+σ−, ρ}+

1

T1
σ−ρσ+ , (1.99)

is obtained by defining jump operators according to C = 1√
T1
σ−. This equation describes

the coupling to a reservoir at zero temperature. For the case of a single two-level atom which
is exclusively coupled to such a reservoir, i. e., H = Ω

2 σz, the initial condition ρ(0) = |↑〉〈↑|
decays exponentially in time according to 〈↑|ρ(t)|↑〉 = e

− t
T1 . This approach can also be

applied to a harmonic oscillator, e. g., a mode λ of the radiation field. In that case, one has
to set Cλ = 1√

T1
aλ.

The coupling of a two-level atom to a reservoir of finite temperature can also be described
within a Lindblad formalism with the help of two jump operators [104, 106]. A finite tem-
perature results in a modification of the decay rate and induces a finite occupation of the
excited atomic state in the long-time limit according to a Boltzmann factor e−βΩ, where β
is the inverse thermal energy. Similarly, in thermal equilibrium, the radiation field modes λ
are occupied according to the Bose-Einstein distribution Bωλ(β) (cf. Sec. 1.3.2). Throughout
this thesis, I restrict the investigations to a regime where both e−βΩ � 1 and Bωλ(β) ≈ 0
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1.3 Concepts of Quantum Optics

holds. This allows one to model the coupling of T1-type of two-level systems and bosonic
modes to a reservoir of effectively zero temperature according to Eq. (1.99). For instance,
this is justified for frequencies in the visible spectrum at room temperature.

Dephasing of T2-type

Besides non-radiative decay, several processes can lead to dephasing, i. e., a randomization of
the phase relations in the wave function. Phenomenologically, such processes can be related
to a time scale T2 [70, 107]. In the case of a two-level system, a jump operator C = 1√

2T2
σz

results in the master equation

∂

∂t
ρ = i[ρ,H]− 1

2T2
ρ+

1

2T2
σzρσz . (1.100)

Again, if the Hamiltonian is just H = Ω
2 σz, an initial condition ρ(0) ∝ |↑〉〈↓| decays in time

according to 〈↑|ρ(t)|↓〉 ∝ e
− t
T2 . In situations where the state of the two-level system can be

visualized on the Bloch sphere, dephasing of T2-type damps the expectation values 〈σ+〉 and
〈σ−〉 on a time scale T2. In this thesis, I do not describe the dynamics of a two-level system
in terms of a reduced density matrix for the atom only and, therefore, not refer to the usual
picture of the Bloch sphere but monitor the dephasing process with the help of atom–field
correlators (cf. Chap. 6).

Finite Systems and the Problem of Absorbing Boundary Conditions

Since a computational domain is limited in practice, it is impossible to simulate an infinite
system within the numerical framework which is presented in Chap. 2. Luckily, realistic
nanophotonic structures have a finite size, e. g., a Photonic Crystal with a few unit cells.
Radiation eventually leaks out at the boundaries of a finite system, which, again, poses the
problem of an open quantum system. In classical computational electrodynamics, perfectly
matched layers (PMLs) are used to absorb the outgoing energy. In many-body quantum
mechanics, the problem of absorbing boundaries has—to the best of my knowledge—not yet
been solved in general for arbitrary bosonic and fermionic systems. In this section, I motivate
how the quantum jump approach can be used to absorb excitations leaving the system.

Consider a quantum system whose closed-system dynamics is governed by the Hamilto-
nian H0. Let B define a subset of the full single-particle Hilbert space. The states |µ〉 ∈ B
define the part of the system to which I refer as the boundaries, i. e., regions23 which are
“leaky”, allowing incoming radiation to be absorbed with negligible back-reflection. This
behavior can be achieved by introducing a Hamiltonian Habs which only acts on states from

23So far, I did not introduce the notion of real space and momentum space. The arguments in this section
apply in general. However, the concept of absorbing boundaries is most transparent and useful in real
space.
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the set B in addition to the normal dynamics given by H0. Habs is a Hamilton operator with
non-Hermitian on-site terms,

Habs = −i
∑

µ

γµa
†
µaµ , (1.101)

where the rates γµ ≥ 0. Thus, the total dynamics given by H = H0 + Habs leads to the
time-evolution operator

U = e−i(H0+Habs)t . (1.102)

Thus, the states
∣∣µ
〉
∈ B are damped exponentially in time according to the rates γµ. These

rates have to be chosen such that reflections from the imaginary on-site potential are small
(see Chap. 6 for an example). Using Eq. (1.102) in the quantum jump approach allows one
to account for a finite and therefore lossy system. Its finite-size open system dynamics due
to the absorbing boundaries can be interpreted as relaxations of T1-type since the jump
operators are given by

Cµ =
√
γµaµ . (1.103)

For simplicity, the approach presented here only includes bosonic degrees of freedom. How-
ever, it equally well applies to fermions or spins24.

Comments on the Quantum Jump Approach with Respect to a Single-Particle
Problem

Although the approach presented in the previous section is not limited to the single-excitation
subspace of the Hilbert space, it greatly simplifies in that case. In this thesis, absorbing
boundaries are only used for single-particle problems.

As explained before, the effect of T1-relaxation on a single mode is to exponentially damp
its occupation number. For the special case of a single-excitation problem, the same effect
occurs in a single run using the non-Hermitian Hamiltonian (1.96) without collapsing the
wave function. This stems from the fact that the collapse of a single-excitation state results
in the vacuum state, which has no dynamics25 since Heff |0〉 = 0. As long as there is only
a single excitation in the system, the effects of finite system size and T1-relaxation can be
accounted for via an effective Hamilton operator Heff (cf. Eq. (1.96)) without collapsing the
wave function.

This is not possible for dephasing of T2-type or for the general case where there is more
than one excitation in the system. For the latter case, a non-Hermitian Hamiltonian without
appropriate quantum jumps would cause damping of excitations from regions outside the
boundaries due to the entangled nature of the Fock basis. For instance, in the case of two

24No attempt is made to solve the problem of absorbing boundaries in the presence of a Fermi sea. The
approach presented here is valid as long as losses eventually lead to a collapse of the wave function
towards the vacuum state |0〉.

25To be precise, the property H|0〉 = 0 only holds if H commutes with the total number of excitations. This
is always the case for all numerical simulations throughout this thesis.
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excitations, states like |µ1µ2〉 occur, for which only one of the quantum numbers µ1 and µ2

belongs to the boundaries. In this situation, if no quantum jumps are taken into account,
the non-Hermitian Hamiltonian would damp the amplitude of the total state |µ1µ2〉, which
is inappropriate.
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2 Chapter 2

Lattice Models and Numerical
Scheme

In this chapter, I present a discrete momentum and real-space formulation of the generic
Hamiltonians introduced in Chap. 1. Specifically, by virtue of a Fourier lattice transform,
relations for coupling constants and dispersion relations are obtained. After a discussion of
the classes of initial states which are relevant for later chapters, the numerical framework is
introduced—a wave-function based time-evolution scheme. Parts of this chapter have been
published in Refs. [61, 63, 108], where further details can be found.

2.1 Discrete Systems

So far, the actual meaning of the sum over all modes, which appears throughout Sec. 1.3,
was not specified. From now on, only discrete sums over a finite number of modes are
considered. Although this discretization might be regarded as an approximation to a system
with a continuous mode spectrum, e. g., the dispersion relation of an optical fiber or a one-
dimensional line defect in a Photonic Crystal, there are photonic systems which are inherently
discrete, e. g., finite arrays of cavities.

Furthermore, the mode index λ, which appeared in Chap. 1, remained unspecified so far.
In the following, λ stands for a multi-index λ = (nk) in which n is a discrete index depending
on the specific system, e. g., the band index in a Photonic Crystal or a polarization index,
and k denotes a wavevector1 from the first Brillouin zone. The wavevector is discrete, either
because a continuous system was discretized or the system itself is discrete. In any case, k
is defined in reciprocal space and its components ki can only take on values

ki = −π
`i

+
2π

`i
· r
Ni

r = 1, 2, . . . , Ni , (2.1)

1Since units are chosen in which ~ = 1 (cf. Appendix A), the terms “wavevector” and “momentum” are used
interchangeably.
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2 Lattice Models and Numerical Scheme

where `i is the lattice constant in direction i and Ni denotes the number of supported modes
along that direction. For the example of a resonator array, Ni simply counts the number of
resonators along direction i.

2.2 Fourier Lattice Transform

In principle, all subsequent investigations could be directly carried out in the discrete k-space
formulation. I find it, however, useful to work with an equivalent real space formulation since
the motion of wave packets can then easily be visualized. To this end, I apply a Fourier lattice
transform to the bosonic operators in q-dimensional momentum space, i. e.,

a†nk =
1√

N1 . . . Nq

N1∑

j1=1

· · ·
Nq∑

jq=1

eik·ra†nr . (2.2)

Here, a†nr represents a creation operator from the q-dimensional real space lattice, i. e., it
creates an excitation in mode n at lattice point r = (j1`1, . . . , jq`q)

T. The Fourier lattice
transform does not alter the bosonic commutation relations, i. e.,

[
anr , an′r′

]
=
[
a†nr, a

†
n′r′

]
= 0 , (2.3a)

[
anr, a

†
n′r′

]
= δnn′δrr′ . (2.3b)

2.2.1 Hamiltonians in Real Space

The Fourier lattice transform is now applied to the Hamiltonians introduced in
Secs. 1.1.2 and 1.3.2. Relations for coupling constants and dispersion relations are obtained.

Interaction of a Single Two-Level Atom with a Multi-Mode Field

In momentum space, Hamiltonian (1.65) reads

H =
∑

nk

ωnka
†
nkank +

Ω

2
σz +

∑

nk

(
Vnkankσ

+ + V ∗nka
†
nkσ

−
)
, (2.4)

where ωnk denotes the photonic dispersion relation or band structure and Vnk is the momentum-
dependent atom–photon coupling strength. This Hamiltonian can be recast into

H =
∑

nrr′

Jnrr′a
†
nr anr′ +

Ω

2
σz +

∑

nr

(
Gnranrσ

+ +G∗nra
†
nrσ
−
)
, (2.5)

where the hopping elements read

Jnrr′ ≡ Jnr−r′ =
1

N1 . . . Nq

∑

k

ωnkeik·(r−r′) . (2.6)
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The atom–photon coupling takes the form

Gnr =
1√

N1 . . . Nq

∑

k

Vnke−ik·r . (2.7)

The corresponding inverse relations read

ωnk =
∑

r−r′
e−ik·(r−r′)Jnr−r′ , (2.8a)

Vnk =
1√

N1 . . . Nq

∑

r

eik·rGnr . (2.8b)

Note that if the hopping elements in Eq. (2.8a) are only non-zero for nearest neighbors,
a cosine-dispersion relation is obtained (cf. Chap. 3). Furthermore, if the atom–photon
coupling strength is momentum-independent, it is local in real space.

Hamiltonian (2.5) conserves the total number of excitations, which can be written as
(cf. Eq. (1.64))

C =
∑

nr

a†nranr +
1

2
(σz + 1) . (2.9)

A Multi-Mode Field with Kerr-type Nonlinearity

A real space Hamiltonian describing the interaction of a multi-mode field with a local Kerr
nonlinearity of the form (1.70) can be formulated as

H =
∑

nrr′

Jnrr′a
†
nr anr′ +

∑

nr

∆nra
†
nra
†
nranranr . (2.10)

The strength of the Kerr nonlinearity for band n in unit cell r is denoted by ∆nr. In this
thesis, I focus on the case of a local nonlinearity, i. e., ∆nr ∝ δrr0 (see Chap. 5). Note that
Hamiltonian (1.83), which was derived as an approximate Hamiltonian in the context of
phonon–photon interactions, is of the same form as Eq. (2.10).

2.3 Initial States

In this thesis, quantum-optical problems are addressed in a time-dependent framework (see
Sec. 2.4). Since the Schrödinger equation is first order in time, knowledge of the state vector
at one point in time is sufficient to—at least in principle—calculate the state of the system
at any other point in time. Here, I introduce different classes of initial states which are
important for the preceding chapters.
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2.3.1 Wave Packets

Although monochromatic plane waves are very often an excellent description for states of
the electromagnetic field, they never occur in practice. From an experimental point of view,
there are always wave packets of finite width, which exhibit a certain spectral distribution
instead of being monochromatic. From a numerical point of view, real-space methods rely
on a finite computational domain so that wave packets represent a “natural” choice anyway.
In the following, a Gaussian wave packet is defined via

ϕ
(k0rcs)
r = Ce−

(r−rc)
2

2s2 eik0·r , (2.11)

where k0 is the carrier wavevector, rc and s denote center and width, respectively. C is a
normalization constant2. For simplicity, the index n is suppressed in the following and all
equations are written for the case of a single band.

Few-Photon Pulses

According to Eq. (1.36), the Fock basis for a multi-mode radiation field is given as the direct
product of single-mode Fock states. In real space, the corresponding basis is given by the
product of single-site states. Hence, a general bosonic m-excitation state can be constructed
as

|Ψ〉 =
∑

r1

· · ·
∑

rm

Φr1...rma
†
r1 . . . a

†
rm |0〉 . (2.12)

Due to the bosonic nature, Φr1...rm has to be totally symmetric with respect to permutations
of the coordinates {ri} and can thus be written as

Φr1...rm = Ŝr1...rmϕ
(k

(1)
0 r

(1)
c s

(1)
)

r1 . . . ϕ
(k

(m)
0 r

(m)
c s

(m)
)

rm . (2.13)

Ŝr1...rm denotes the symmetrization operator which performs a sum over all permutations of

the coordinates and ϕ
(... )
r is a single-particle Gaussian wave packet as defined in Eq. (2.11).

In this thesis, I focus on Fock states with one or two excitations only. For two excitations,
Eq. (2.12) reads

|Ψ〉 =
∑

r1

∑

r2

Φr1r2a
†
r1a
†
r2 |0〉 , (2.14)

where

Φr1r2 =
1√
2

(
ϕ

(k
(1)
0 r

(1)
c s

(1)
)

r1 · ϕ(k
(2)
0 r

(2)
c s

(2)
)

r2 + ϕ
(k

(1)
0 r

(1)
c s

(1)
)

r2 · ϕ(k
(2)
0 r

(2)
c s

(2)
)

r1

)
. (2.15)

2In the numerical simulations presented in the preceding chapters, all initial states are automatically nor-
malized to unity before the time evolution. To be precise, in Eq. (2.11), s2 is actually not the variance of

the Gaussian |ϕ(... )
r |2 (the variance is s2/2). However, for the remainder, I simply refer to s as the width

of the wave function.
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The single-excitation initial state takes the form

|Ψ〉 =
∑

r

ϕ
(k0rcs)
r a†r|0〉 . (2.16)

For two excitations, a bosonic field defined on N lattice sites has

d(2) =
N∑

i=1

i∑

j=1

=
N∑

i=1

i =
N

2
· (N + 1) ∼ N2 (2.17)

degrees of freedom, i. e., wave function coefficients in the Fock basis, whereas for a single
particle

d(1) =
N∑

i=1

= N . (2.18)

In general, an m excitation state requires d(m) ∼ Nm degrees of freedom.

Coherent State Pulses

In analogy to the previous section, a coherent state pulse which is defined on N lattice sites
can be written as the tensor product of single-site coherent states, i. e.,

|Ψ〉 = |{α(k0rcs)
r }〉 = |α(k0rcs)

r1 〉 ⊗ · · · ⊗ |α(k0rcs)
rN 〉 , (2.19)

in which

α
(k0rcs)
r = α(0) · ϕ(k0rcs)

r . (2.20)

Since the wave function in Eq. (2.11) is normalized to unity,

∑

r

∣∣∣α(k0rcs)
r

∣∣∣
2

=
∣∣∣α(0)

∣∣∣
2

(2.21)

holds. Similar to the case of a single-mode coherent state, which was introduced in Sec. 1.3.1,
|α(0)|2 denotes the mean particle number of the pulse.

Pulses of Photon-Added Coherent States

As mentioned in Sec. 1.3.1, I only focus on single-photon-added coherent states in this thesis.
A pulse of such states can be regarded as a combination of pulses of a single-photon Fock
state and a coherent state where the coherent state amplitudes take the role of the vacuum
state, i. e.,

|Ψ〉 = C
∑

r

ϕ
(k0rcs)
r a†r|{α

(k′0r
′
cs
′)

r }〉 . (2.22)
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Note that the pulse parameters of the single-photon wave function and the coherent state
need not be identical. C represents a normalization constant, which can be calculated as
(superscripts suppressed)

〈Ψ|Ψ〉 = C2
∑

rirj

ϕ∗rjϕri〈{αr}| arja
†
ri︸ ︷︷ ︸

δrirj+a†riarj

|{αr}〉

= C2


∑

i

|ϕri |2 + (
∑

i

ϕriα
∗
ri)

2




= C2(1 + |α(0)|2) (2.23)
!

= 1

so that

C =
1√

1 + |α(0)|2
. (2.24)

For the derivation of Eq. (2.23), I used Eqs. (1.42a), (2.11), and (2.21).
In Chap. 5, the action of a combined displacement operator (cf. Sec. 1.3.1)

D({αr}) =
∏

ri

Dari
(αri) (2.25)

on the single-photon-added coherent state (2.22) is exploited, i. e.,

D†({αr})|Ψ〉 = C
∑

r

ϕrD
†({αr})a†rD({αr})D†({αr})|{αr}〉

= C
∑

r

(
ϕra

†
r|0〉+ ϕrα

∗
r|0〉

)

= C
∑

r

ϕra
†
r|0〉+ Cη|0〉 , (2.26)

where again all superscripts are suppressed and η =
∑

r ϕrα
∗
r. In analogy to Eq. (1.48),

Eq. (2.26) represents a superposition of the vacuum state and a single-photon wave function.

2.3.2 Atomic Excitation

So far, only initial states of the radiation field were introduced. In the context of spontaneous
emission in Chap. 6, however, the radiation field is initially in its vacuum state and, in order
to monitor the emission dynamics of a single two-level system, the initial condition

|Ψ〉 = |↑〉 (2.27)

is used (cf. Sec. 1.3.2).
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2.4 Time Evolution and Numerics

All subsequent numerical studies rely on a numerical solution of the Schrödinger equation

i
∂

∂t
|Ψ〉 = H|Ψ〉 (2.28)

and, if the dynamics of open systems is taken into account, the incorporation of stochastic
quantum jumps (cf. Sec. 1.3.4). For a time interval ∆t during which no quantum jumps
occur, the state vector of the system at time t is propagated to a later time t+ ∆t with the
help of the time-evolution operator according to

|Ψ(t+ ∆t)〉 = e−iH∆t|Ψ(t)〉 . (2.29)

Equation (2.29) is valid for all systems studied in this thesis since only time-independent
Hamiltonians H are considered. The numerical time evolution is carried out using Krylov-
subspace based operator-exponential techniques [109–111], which only rely on the implicit
action of the Hamiltonian on a given state and never explicitly need the full Hamiltonian
matrix, thus being well-suited for sparse problems. For details on the numerical scheme in
the context of few-photon propagation, see Refs. [61, 108].

Although the Schrödinger equation (2.28) is a linear differential equation, it can lead
to a nonlinear system as is, for instance, the case in Chap. 5 for coherent and photon-
added coherent states. In such situations, the resulting effective equations of motion are
integrated in time by means of a standard Runge-Kutta solver. In Chaps. 3–7, the discussion
of numerical issues is in general omitted since—in my opinion—this would represent an
interruption of the train of thoughts. See Appendix C for numerical details and parameters
of all simulations presented in this thesis.

From a conceptual point of view, a wave-function based method in Fock space, such as
the one used throughout this thesis, is only applicable if the Hilbert space is block diagonal
with respect to different excitation numbers, i. e., for Hamiltonians which conserve the total
number of excitations (cf. Eqs. (1.64), (1.73), and (2.9)). Only then, the problem can be
subdivided into, for instance, the single- and the two-particle sector of the Hilbert space.

As far as the problem of finite system sizes is concerned, simulations have to be stopped
before a noticeable amount of excitation reaches the system’s boundaries in order to avoid
artificial reflections. Admittedly, this statement is rather imprecise and it depends on the
actual problem. Since all processes are monitored in real space, one can already gain an
“intuitive feeling” for when the simulation needs to be stopped. It is important that no exci-
tation reflected by the system’s hard-wall boundaries interferes with the subsystem which is
monitored. For instance, if the excitation of an atom is monitored, radiation may artificially
be reflected by the boundaries but it must not return and interfere with the atom. If, fur-
thermore, the pulse shape would be of interest, the simulation has to be stopped before the
pulse’s tail reaches the boundaries. For all results presented in this thesis, the distribution of
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the time evolution of the occupation numbers in real space, 〈a†rar〉, was monitored to assure
there is no artificial corruption of the dynamics.

For the example of a pulse whose center propagates at group velocity vg along a one-
dimensional system of length L, the so-called transit time

τtrans ∼
L

vg
(2.30)

sets the scale of the maximal simulation time. This time, however, only serves as an estimate
and depends on the actual problem. Furthermore, absorbing boundaries are taken into
account in Chap. 6 (cf. Sec. 1.3.4) so that the simulation time can be enhanced.
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3 Chapter 3

Waveguide Quantum Optics

This chapter provides an introduction to the field of waveguide quantum optics. After a
short motivation of the term “waveguide quantum optics”, I briefly review the field based on
existing theoretical works. I introduce the prototypical model of a single two-level atom in
a tight-binding waveguide and discuss its properties in the context of eigenstates as well as
single- and two-photon transport. To complete the introduction, I mention related works in
which I have been involved, followed by an outlook on the following chapters of this thesis.

3.1 Introduction to Waveguide Quantum Optics

There exists no rigorous definition for the term “waveguide quantum optics” or “waveguide
quantum electrodynamics”. Therefore, the following discussion of the scope of the research
field “waveguide quantum optics” remains to be a personal opinion. Systems where a single
or a few modes of the radiation field are coupled to a single emitter, a few, or an ensemble
of emitters are investigated in the related field of “cavity quantum electrodynamics” (cavity
QED). In this context, the Jaynes-Cummings [56, 57], the Rabi [53], and the Dicke model [58,
59] are commonly used to capture the essential physical mechanisms.

When compared to cavity QED, the crucial attribute of waveguide quantum optics is that
the radiation field is described as a continuum (or in the case of finite and/or discrete systems
as a quasi-continuum) of modes. Systems in which the propagation of photons is effectively
reduced to one spatial dimension are of particular interest because the photon dynamics
can be strongly dominated by interference effects. Such a one-dimensional continuum of
electromagnetic modes is usually associated with a waveguide, hence, the term “waveguide
quantum optics”. For instance, physical realizations include artificial atoms in Photonic
Crystal defect structures [4], silicon-based on-chip circuitry [3, 6, 112], and microwave pho-
tonics in the context of superconducting circuits [18, 49]. The detailed understanding of
quantum-mechanical wave packet dynamics together with the characterization of the emis-
sion dynamics of single emitters in such systems are typical questions posed in the field of
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waveguide quantum optics. Even though studying the transport in electronic systems seems
to be similar at first sight, the behavior of photonic systems fundamentally differs from their
“fermionic counterparts” due to the absence of a Fermi surface.

The specifics of the radiation field being described as a continuum of modes does not
necessarily restrict physical realizations to systems which are effectively one-dimensional.
Even though the prototypical models which are being studied in the field of waveguide
quantum optics are predominantly motivated by photonic realizations, waveguide quantum
optics can be—at least in my opinion—understood in a broader sense, including other areas
of solid-state physics as well. To name just one example, by regarding the dynamics of
bosons in general, the propagation of magnons in spin chains (cf. Chap. 7) also represents a
problem of waveguide quantum optics.

This chapter is structured as follows. In Sec. 3.2, I start by providing a brief review of
existing theoretical works in the context of the photon dynamics in a waveguide with a
single atom and variations thereof. After that, I introduce and discuss the Hamiltonian of a
tight-binding waveguide locally coupled to a single two-level atom in Sec. 3.3. This includes
the identification of scattering states as well as atom–photon bound states in the single-
particle spectrum and their influence on the single- and two-photon transport properties.
In Sec. 3.4, I briefly mention related studies to complete the introduction to the field of
waveguide quantum optics. I conclude the chapter in Sec. 3.5 where I also give an outlook
on the following chapters of this thesis.

3.2 A Brief Review of the Field

In this section, I briefly review1 the field of waveguide quantum optics. I restrict the dis-
cussion to theoretical works focusing on photon dynamics in a one-dimensional waveguide
coupled to a single or a few emitters. The wave propagation in Jaynes-Cummings-Hubbard
systems [65, 113] or Dicke-like setups [114, 115] is not addressed in the following. Even
though I carefully selected the references, I do not claim this review to be exhaustive.

A discussion of the scientific terms used, e. g., “tight-binding waveguide” or “continuous
waveguide”, is given in Sec. 3.3. For now, it is sufficient to point out that the terms “tight-
binding waveguide” and “discrete model” are used interchangeably as well as “continuous
waveguide” and “continuum model”.

The Years 2005–2007

In 2005, Fan and Shen investigated the transport of a single-photon in a one-dimensional
waveguide coupled to a single two-level atom [60]. In their description, the waveguide mode

1I consider publications until April 2012. The order is chronological (up to the month) as they appeared in
peer-reviewed journals. In case only a preprint exists, the date of publication of the preprint is taken into
account. Furthermore, I also took diploma and master’s theses I was aware of into account.

42



3.2 A Brief Review of the Field

is assumed to exhibit a linear dispersion relation without cutoff, which makes the problem
amenable to a field-theoretical description of the Hamiltonian in terms of left- and right-
moving photons. Furthermore, the authors assume the atom–photon coupling to be local in
real space. The main result of Ref. [60] states that the two-level atom behaves as an energy-
dependent mirror. Consequently, a single frequency, i. e., a single plane-wave component,
can be reflected completely if its corresponding energy is on resonance with the atomic
transition. In addition, the authors propose the use of a single-photon transfer matrix in
order to study setups of a chain of atoms or an atom surrounded by dielectric mirrors in
a waveguide. As demonstrated in the following, the system investigated by Shen and Fan
turned into an essential model—into one of the “hydrogen atoms”—of waveguide quantum
optics. The results of Ref. [60] were adapted by the same authors to the case of a cooper
pair box in a transmission line [116].

A considerable breakthrough with surprising results beyond the single-particle description
was achieved by Shen and Fan in 2007. They analytically solved the problem of two-photon
transport in the system described above [117, 118]. A consequence of the fact that the
atom can absorb at most only one photon at a time is a strongly correlated two-photon
transport, resulting in an effective, spatial attraction or repulsion of photons, the redistri-
bution of the individual photon’s energy under the constraint of global energy conservation,
and the emergence of so-called photon–photon bound states. The latter is a two-particle
state which decays exponentially as a function of the relative coordinate of the two photons
(cf. Sec. 3.3.3).

The Year 2008

The work by Shen and Fan on the single-photon transport can be regarded as a precursor to
a variety of different works on that particular kind of systems as well as on variations thereof.
For instance, Fabry-Pérot-like effects were investigated by terminating a waveguide with a
perfect mirror and a two-level system [119]. In addition to the field theoretical description of
Shen and Fan, the single-particle scattering solutions of the discrete model were investigated
by Zhou et al. [120]. The authors calculated reflection and transmission coefficients for a
single-photon plane wave in a one-dimensional tight-binding waveguide coupled to a two-
level system. Furthermore, it was shown that the results of Shen and Fan can be obtained
by performing the continuum limit. The discrete model, which could be regarded as the
other “hydrogen atom” of waveguide quantum optics, was then also investigated in various
contexts. Gong et al. studied aspects of electromagnetically induced transparency for a
Λ-type three-level atom [121] and Zhou discussed the properties of a potential “super cavity”
formed by two atoms in a waveguide [122].
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The Year 2009

In 2009, Shen and Fan presented studies on a single photon in a waveguide coupled to either a
cavity containing an atom [123] or a whispering gallery mode resonator with an atom [124]. In
the latter case, the resonator was modeled by means of clock- and anti-clockwise propagating
photons. Shi et al. applied field-theoretical techniques [125] and complemented the work of
Shen and Fan on the correlated two-photon transport. In the context of the discrete system,
Jing et al. pointed out the existence of localized single-particle bound states [126]. The
energy of such atom–photon bound states lies in the band gap of the waveguide’s dispersion
relation (cf. Sec. 3.3.1). These state are dressed eigenstates, i. e., of polaritonic nature, and
occur, for instance, in the context of spontaneous emission (cf. Chap. 6). Furthermore, they
played a central role in my diploma thesis [63], where I numerically investigated the transport
of few-photon Fock states in a tight-binding waveguide coupled to a two-level system. Since
atom–photon bound states are single-particle states, one can resort to the results obtained
in the context of the single-particle properties of electronic systems [93].

More insights into the transport properties of a single photon were given by Lia et al., who
proposed to control the transmittance by tuning the frequency of one or two cavities that
form the discrete waveguide [127]. Numerical techniques capable of describing the dynamics
of few-photon wave packets were published in Ref. [108], which is also the groundwork for the
numerical scheme utilized in this thesis (cf. Chap. 2). As a complement to Ref. [121], Tsoi
and Law addressed the single-photon transport through a finite chain of Λ-type three-level
atoms in a tight-binding waveguide [128].

The Year 2010

The year 2010 was characterized by a vast amount of publications in the field of waveguide
quantum optics. For instance, it was pointed out that the few-photon nonlinearity realized
by the two-level atom could be exploited to excite spatially localized atom–photon bound
states, resulting in interaction-induced radiation trapping in a tight-binding waveguide [62]
(cf. Sec. 3.3.3). Further studies on the single-photon transport in the continuous system
were carried out by Yu and Fan, who introduced a harmonically driven cavity as another
means to control photon transport [129], and by Zang and Yang, who further addressed
Fabry-Pérot-like behavior in the context of different setups of two cavities side-coupled to a
waveguide [130].

Based on the two-photon results of Shen and Fan [117, 118], Roy proposed a “few-photon
optical diode” for a two-level atom asymmetrically coupled to the waveguide [131]. An in-
depth discussion of the single-photon transport in a continuous waveguide coupled to a single
driven or undriven V - or Λ-type three-level system was given by Witthaut et al. [132]. Fo-
cusing on the two-particle transport in the tight-binding waveguide, Becker analyzed the
influence of a few two-level systems [133], whereas Stawiarski utilized path-integral tech-
niques in order to describe the effect of radiation trapping in the language of condensed
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matter theory [134]. Blancon employed the computational scheme outlined in Ref. [108] to
the problem of microwave photon propagation in superconducting circuitry [50] (cf. Sec. 3.4).
Shen and Fan continued to explore the propagation of a single photon in a waveguide cou-
pled to a ring resonator containing an atom by deriving the parameters needed to achieve
zero single-photon transmittance [135]. The interesting aspect of achieving full inversion of
an atom by a single-photon pulse, which is related to the inverse problem of spontaneous
emission, was addressed by Raphaeli et al. [136].

An important result is given by the fact that the two-photon transport in a waveguide
with a local Kerr nonlinearity shares many properties with the transport through a two-level
system. Specifically, Liao and Law proposed such a system as another candidate in which
features such as the emergence of photon–photon bound states in analogy to Refs. [117, 118]
can occur [74]. A significant step towards the general many-body solution of the original
waveguide–atom system as introduced by Fan and Shen was given by Zheng et al. [137], who
reported the existence of “multiphoton bound states” [137]. A technical aspect of photon
scattering in a continuum of modes with a linear dispersion relation without cutoff was devel-
oped by Fan et al., who adapted an input-output formalism to the scattering problem [138].
Hach et al. studied the single-photon solutions in the continuum model for the case of a
Jaynes-Cummings cavity in a waveguide [139] similar to Refs. [123, 124].

The Year 2011

In 2011, Roy proposed a scheme to control photon–photon bound states by virtue of a driven
Λ-type three-level system [140]. Details on the mechanism of interaction-induced radiation
trapping occurring in the discrete system were published in Ref. [61], which is an extension
to Ref. [62]. As a complement to Ref. [131], Yan et al. studied in detail the single-photon
transport through a two-level atom asymmetrically coupled to a continuous waveguide [141].
An extensive study of the single-photon wave packet dynamics through driven and undriven
three-level systems was carried out by Martens [142]. The idea of going beyond the two-level
description led to a proposal of Zheng et al. to exploit N -type four level systems to generate
and further control the propagation of photon–photon bound states [143]. Similarly, Raphaeli
et al. studied the effect of a pair of non-identical atoms on the emergence of photon–photon
bound states [144]. Shi et al. extended earlier works on the two-photon transport in the
continuous waveguide to the case where the scatterer is a Jaynes-Cummings cavity [145].

The Year 2012 (until April)

In 2012, Yan et al. proposed a cavity containing a driven four-level system in a waveguide
as an alternative scheme to control the photon correlations mediated by the scatterer [146].
The input-output theory as adapted by Fan et al. in Ref. [138] was applied to the problem of
resonance fluorescence. Specifically, the authors calculated the spectrum of a coherent state
scattered by a two-level atom in a continuous waveguide and found features such as the
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Mollow triplet [147]. In Ref. [148], which is a direct application of the results from Ref. [60],
Cheng and Song propose a pair of quantum dots as a means to control the transport of
single surface plasmons. A complement to Ref. [134] is given by the work of Pletyukhov and
Gritsev, who developed a general formalism for the calculation of the many-photon transport
properties [149]. Their method is restricted to a one-dimensional continuum of waveguide
modes exhibiting a linear and unbounded dispersion relation. Concerning the single-photon
properties, Bradford et al. addressed mechanisms of single-photon frequency conversion in the
context of a three-level atom embedded in the continuous waveguide [150, 151]. The problem
of stimulated emission was investigated by Raphaeli and Fan in one of its most basic forms—
a single photon incident on an excited atom in a waveguide [152]. An interesting proposal of
converting coherent light into nonclassical radiation was given by Zheng et al. The authors
showed that the many-body photon states, which can emerge in a waveguide coupled to a
Λ-type three-level or an N -type four-level atom, can be exploited to generate a source of
nonclassical light [153]. Moeferdt analyzed how the technique of full-counting statistics can
be adapted to pulse propagation in the context of waveguide quantum optics [154].

3.3 A Single Two-Level Atom in a One-Dimensional Waveguide

In the following, I focus on a simplified but not oversimplified model system of a single two-
level atom in a one-dimensional waveguide. The aforementioned model of a tight-binding
waveguide captures physical features such as a nonlinear dispersion relation, the regime
of slow light, and a band gap. These features cannot be accounted for in a model with a
linearized dispersion relation without cutoff. A one-dimensional tight-binding model suggests
experimental realizations such as coupled-resonator optical waveguides [11–13] or super-
conducting transmission line resonators [19–21]. However, if the underlying physical system
is not discrete, a tight-binding formulation can serve as an approximation to the actual
dispersion relation around a certain operating wavelength.

In this section, I introduce the Hamiltonian of a single two-level atom in a tight-binding
waveguide. I discuss its single-particle eigenstates and summarize the single- and two-photon
transport properties. For the latter, I especially explain the mechanism of interaction-
induced radiation trapping, followed by a discussion about the existence of photon–photon
bound states.

3.3.1 The Hamiltonian and its Single-Particle Eigenstates

Based on Eq. (2.5), the Hamiltonian of a two-level atom locally coupled to a single band
tight-binding waveguide reads (cf. Fig. 3.1(a))

H =
∑

x

ω0a
†
xax − J

∑

x

(
a†x+1ax + a†xax+1

)
+

Ω

2
σz + V

(
ax0σ

+ + a†x0σ
−
)
. (3.1)
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Here, ω0 is the eigenenergy of a single resonator. The nearest-neighbor hopping amplitude J
is determined by the overlap of the electromagnetic mode profiles of adjacent resonators
(cf. Eq. (1.34)). The assumption of a local atom–photon coupling V implies its independence
on the photon momentum (cf. Eq. (2.8b)). The site to which the single two-level atom is
coupled is denoted by the index x0. According to Eq. (2.6), the tight-binding description is
equivalent to a waveguide dispersion εk = ω0−2J cos(k). For convenience, I shift the middle
of the waveguide band to zero so that

εk = −2J cos(k) , (3.2)

which corresponds to setting ω0 = 0 in the Hamiltonian. Note that the eigenenergy of the
free waveguide is bounded by ±2J , leading to a bandwidth of the dispersion relation of 4J .
Dimensionless units according to Appendix A are employed such that ~ ≡ 1 and the lattice
constant for the one-dimensional lattice is unity, i. e., ` = a ≡ 1.

The Hamiltonian (3.1) is the prototypical model to which I referred in Sec. 3.2 as one of the
“hydrogen atoms” of waveguide quantum optics. It is of central importance in this thesis.
A field-theoretical continuum model can be obtained by assuming a linearized dispersion
relation without cutoff and the introduction of field operators for right- and left-moving
photons [60, 125].

To obtain the single-particle eigenstates of Hamiltonian (3.1), one has to solve the eigen-

problem (H − E)|Ψ〉 = 0 with |Ψ〉 =
∑

x ϕxa
†
x|0, ↓〉+ e|0, ↑〉. As shown in Ref. [120] and in

Appendix D, this leads to a set of coupled equations for the amplitudes ϕx and e, which can
be combined to

0 = −Eϕx − J
(
ϕx+1 + ϕx−1

)
+

V 2

E − Ω
ϕx0δxx0 . (3.3)

A complete basis of the single-particle Hilbert space consists of two classes of solutions.
First, scattering eigenstates of the form

ϕx =





eikx + rke
−ikx x < x0

ϕx0 x = x0

tke
ikx x > x0

(3.4)

with E = −2J cos(k) determine the single-photon transport properties through the reflection
and transmission amplitudes rk and tk (cf. Sec. 3.3.2). Second, an ansatz of the form

ϕx ∝ e−κ|x−x0| (3.5)

with E = −2J cosh(κ) yields the quartic equation

η4 +
Ω

J
η3 +

(
V

J

)2

η2 − Ω

J
η − 1 = 0 (3.6)
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Figure 3.1: Schematic sketch of a two-level atom in a tight-binding waveguide (a) and
the corresponding single-particle eigenenergies (b).
The single-particle spectrum consists of two parts. The (quasi-)continuum of scattering
states includes energies E = εk = −2J cos(k), where the photon momentum is from the
first Brillouin zone. In addition to that, there is one photon–atom bound state each
above the upper and below the lower band edge. The gray shaded region indicates the
band gap of the free waveguide. The red dashed lines denote the atom–photon bound
states’ energies obtained from Eq. (3.6) with Ω =

√
2J and V = J . Note that the x-axis

(momentum) only applies to the continuum of scattering states.

for the variable η ≡ e−κ (cf. Ref. [61]). This equation determines the eigenenergy of atom–
photon bound states. Such states are spatially localized excitations of polaritonic nature—
dressed states. In other words, a fraction of spatially localized radiation is accompanied by
a finite occupation of the atom’s excited level. Equation (3.6) supports exactly two physical
solutions for which the ansatz (3.5) remains normalizable. For any finite values of Ω/J
and V/J , there exists always one atom–photon bound state each below the lower and above
the upper band edge. Figure 3.1(b) depicts the complete single-particle spectrum of the
Hamiltonian (3.1).

3.3.2 Single-Photon Transport

The problem of single-photon transport was solved analytically by Zhou et al. in terms of
monochromatic plane waves [120]. The ansatz (3.4) leads to a reflectance (cf. Ref. [120] and
Appendix D)

|rk|2 =
V 4

V 4 + 4J2 sin2(k) · (εk − Ω)2
. (3.7)

Hence, the two-level system can be regarded as being an energy-dependent mirror which
can completely suppress the transmission of a single frequency component, provided that

48



3.3 A Single Two-Level Atom in a One-Dimensional Waveguide

the resonance condition εk = Ω is fulfilled. For the propagation of a single-photon pulse,
however, the atom can only be regarded as an “almost perfect mirror” since the resonance
condition only holds for one of the pulse’s Fourier components [108].

Here, the atom–photon bound states are irrelevant since they do not overlap with the initial
condition of a photon in the waveguide and the atom being in its ground state. They are
energetically separated from the continuum of waveguide modes. Nonetheless, in the context
of spontaneous emission, which is also a single-particle problem, atom–photon bound states
can play a crucial role (cf. Chap. 6).

3.3.3 Two-Photon Transport

In comparison to the single-photon problem, the two-photon transport turns out to be much
more demanding, both numerically and analytically. To the best of my knowledge, an
analytical solution of the two-particle eigenproblem for Hamiltonian (3.1) in terms of wave
functions of the form

|Ψ〉 =
∑

x1x2

Φx1x2a
†
x1a
†
x2 |0, ↓〉+

∑

x

ex|0, ↑〉 (3.8)

has not been derived yet. The complexity of the problem arises due to several reasons. First,
as demonstrated in Chap. 2, the dimension of the Hilbert space grows exponentially with the
number of particles. Second, the two-level atom can at most absorb one photon at a time,
representing a few-photon nonlinearity (cf. Eqs. (1.66)). This induces correlations between
the photons so that the two-particle solution is not just given as the direct product of single-
particle solutions. Third, the existence of atom–photon bound states adds another difficulty
to the problem which does not occur in the case of a waveguide with an unbound dispersion
relation. In the studies of Shen and Fan [117, 118], the linearized dispersion relation without
cutoff effectively removes the atom–photon bound states from the accessible Hilbert space.

However, numerical studies explicitly demonstrated the importance of the atom–photon
bound states for the two-photon dynamics in a system described by Hamiltonian (3.1). This
issue is addressed below.

Interaction-Induced Radiation Trapping

With respect to global energy conservation, an initial state of two photons propagating in
the waveguide can in principle excite a single-particle atom–photon bound state. However,
this requires a nonlinear scattering mechanism such as it is provided by the two-level atom.
According to Eqs. (1.66), the two-level atom can be regarded as an oscillator with infinite
anharmonicity. The term Ωb†b + Ub†b(b†b − 1) is equivalent to a two-level description in
the limit U → ∞, where double occupation of the atomic site becomes prohibited. This
few-photon nonlinearity represents an effective photon–photon interaction mediated by the
atom. It is absent in the case of a harmonic oscillator (U = 0).
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Numerical simulations demonstrated that the few-photon nonlinearity provides a mecha-
nism for in-band photons to excite the localized atom–photon bound states and, therefore,
trap radiation [61–63]. This process of interaction-induced radiation trapping can be un-
derstood as follows. Once one of the two impinging photons excites the two-level atom, the
second photon sees a modified and (partly) saturated atom. By virtue of the multi-particle
scattering process provided by the nonlinear U -term, the second photon is scattered into the
atom–photon bound states. After the scattering, the atom–photon bound states are again
decoupled from the continuum of waveguide modes. Hence, the excited atom–photon bound
states cannot decay. As shown in Sec. 3.3.1, they are eigenstates of the Hamiltonian (3.1).
The polaritonic nature of the atom–photon bound states implies that a fraction of the radi-
ation remains trapped in the spatial vicinity of the atom, which is accompanied by a partial
occupation of the atom’s excited level.

To trap a considerable amount of radiation, the system parameters and the properties of
the initial photons need to be optimized [61–63]. For instance, since the atom–photon bound
states’ energies are in the band gap, the initial photon momenta should be close to one of the
two band edges. However, a propagation of the wave packets without detrimental effects from
the strong group-velocity dispersion near the band edge of the cosine-dispersion relation must
still be possible. An initial carrier wavenumber of k0 = 3π/4 has proven to be a reasonable
compromise [61–63]. In that situation, only the atom–photon bound state from the upper
band gap is considerably excited (cf. Fig. 3.1(b)). In addition to that, the detuning between
each photon and the atom should be zero. In other words, efficient radiation trapping
requires a resonant atom–photon interaction. Furthermore, in the tight-binding waveguide,
the atom–photon coupling V should be of the same order as the nearest-neighbor hopping
constant J , i. e., V/J ∼ 1.

The studies in Refs. [61–63] also addressed the issue of controlling the amount of trapped
radiation by changing the detuning of one of the two photons or by varying the initial spa-
tial separation of the photon wave packets. Moreover, it was demonstrated that the effect of
interaction-induced radiation trapping also occurs in waveguides which exhibit more com-
plicated dispersion relations. Unlike in models of a waveguide with an unbound dispersion
relation, the existence of a cutoff in the density of photonic states therefore introduces the
interaction-induced effect of radiation trapping, which, consequently, does not exist in the
studies by Shen and Fan [117, 118]. However, their studies reveal that the atom still induces
correlations between two photons, leading to the emergence of photon–photon bound states.
To date, an analytical solution of the two-photon eigenproblem of Hamiltonian (3.1) in terms
of wave functions has not been derived yet. Therefore, the question whether photon–photon
bound states also exist in the discrete model remains to be open. Below, I present a numerical
study which addresses this issue.
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On Photon–Photon Bound States

In the following, I numerically address the question of whether photon–photon bound states
as found by Shen and Fan for the case of a waveguide with an unbound dispersion relation
also exist in the tight-binding model. The concept of two-body bound states can actually
be found in various contexts such as “dimer states” in the Bose-Hubbard model [155, 156],
“polariton–polariton bound states” in the Jaynes-Cummings-Hubbard model [157], or bound
pairs of magnons in the Heisenberg model (cf. Chap. 7). The crucial difference between these
examples and Hamiltonian (3.1) is that the two-level atom represents a local nonlinearity in
contrast to systems with spatially uniform nonlinearities.

As a first step, I identify the parameter regime in which the results for the waveguide with
the unbound dispersion relation as obtained by Shen and Fan [117, 118] can be compared
to the tight-binding model. This is achieved by matching the fundamental energy scales.
In the model by Shen and Fan, there is no energy scale associated with the bandwidth of
the dispersion relation since it is unbound. However, the authors set the group velocity to
unity in Refs. [117, 118]. In the lattice model, the group velocity can be obtained from the
derivative of the cosine-dispersion relation εk = −2J cos(k) with respect to the momentum k,
i. e., vg = 2J sin(k). I therefore adjust the group velocity to the value used by Fan and Shen
and I furthermore demand a vanishing group-velocity dispersion at a specific wavenumber k0,
which is the property of a linear dispersion. Consequently, vg = 1 and ∂2εk/∂k

2|k=k0 = 0
yield J = 0.5 and k0 = ±π/2. Thus, initial states in the lattice model should only be from
the linear regime of the dispersion relation (around k0 = ±π/2). Because of J = 0.5, the
bandwidth of the free waveguide’s dispersion relation is 4J = 2.

Another important point when comparing the field-theoretical results of Shen and Fan [117,
118] to numerical findings in the tight-binding model is to understand the properties of
wave packets of finite width. The transport properties of stationary plane waves can be
approximately mimicked by assuring that the pulses are sufficiently broad in real space so
that they only cover a narrow spectral window in momentum space. This requires sufficiently
large computational domains.

The strategy to identify possible signatures of a photon–photon bound state in the discrete
lattice model is as follows. First of all, the results of Shen and Fan from Refs. [117, 118] need
a closer inspection. Two photons incident from the left end of the waveguide are scattered
into a two-photon out-state which consists of three parts. They represent the situations
in which both photons are reflected, one is reflected and one is transmitted, and both are
transmitted. The wave function for the latter case reads [118]

t2(xr, xc) =

√
2

2π
eiExc

(
t̄k t̄p cos(∆xr)−

Γ2

4∆2 − (E − 2Ω + iΓ)2
ei(E−2Ω)

|xr |
2
−Γ
|xr |
2

)
, (3.9)

where xr is the relative and xc the center-of-mass coordinate of the two-particle wave func-
tion, respectively. The total energy of both photons is denoted by E and ∆ is their energy
difference. The single-particle transmission coefficients corresponding to momenta k and p

51



3 Waveguide Quantum Optics

are t̄k and t̄p, respectively. The atom–photon coupling strength is V and Γ = 2V 2. The
transition energy of the two-level system is denoted by Ω.

The first term in Eq. (3.9) describes the situation of two photons passing the two-level
atom as individual particles, whereas the second term is the photon–photon bound state
induced by the correlations mediated by the atom. Note the exponential decay with respect
to the relative coordinate. In general, the out-state for two photons being transmitted is
thus a superposition of individual particles and the two-particle bound state. However, if the
single-particle resonance condition is fulfilled, i. e., k = Ω in the model by Shen and Fan, the
two-level atom acts as a perfect mirror for a single photon of momentum k. Furthermore,
without loss of generality, I set the zero of the energy such that Ω = 0 in the model by Shen
and Fan.2 This corresponds to the center of the waveguide band in the tight-binding model.
In addition to that, I assume photons with equal momenta for the in-state. Altogether, this
leads to E = ∆ = t̄k = t̄p = 0 and the wave function (3.9) simplifies to

t2(xr, xc) = −
√

2

2π
e−V

2|xr| . (3.10)

For this special case, the probability of finding two photons being transmitted is solely
determined by the photon–photon bound state and can be controlled by the atom–photon
coupling V .

Another problem when comparing to time-dependent transport calculations (besides the
aforementioned non-monochromaticity) is that scattering states are not normalizable to
unity. However, although Eq. (3.10) diverges when it is integrated over all space (i. e., over
xr and xc), it has a precise physical meaning. First, the probability density is independent of
the center-of-mass coordinate. The divergence only stems from the fact that Shen and Fan
assumed an infinite system. Second, the integration with respect to the relative coordinate
yields a finite result, i. e.,

∞∫

−∞

dxr|t2(xr, xc)|2 =
1

2π2
· 1

V 2
∝ 1

V 2
. (3.11)

Hence, the probability of finding both photons after scattering on the right end of the wave-
guide is proportional to V −2, which also sets the decay length of the wave function (3.10).

In order to test whether this dependence also holds for the two-photon transport in the
tight-binding waveguide, I analyze the wave packet dynamics with the help of the numerical
scheme outlined in Chap. 2. As mentioned above, the fixed system parameters for the lattice
model are J = 0.5 and Ω = 0. The computational domain of the tight-binding waveguide
consists of 999 lattice sites and the atom is coupled to site 500. The initial state is the
product of two single-particle Gaussian wave functions with equal parameters. As discussed

2Setting Ω = 0 does not mean that the atom’s levels are degenerate. The transition of the two-level atom
couples to the dispersion relation of the waveguide at an energy Ω = 0.
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above, the initial carrier wavenumber is k0 = π/2, the width of the wave packet is chosen to
be s = 70, and for the initial center I choose xc = 250 (cf. Sec. 2.3).

After scattering, I compute the quantity

PRR =
∑

x1∈R

∑

x2∈R
〈a†x2a†x1ax1ax2〉 , (3.12)

as a measure for the probability of finding two photons on the right-hand side of the atom
(cf. Eq. (1.91), R = {501, . . . , 999}). The projection on two photons automatically excludes
any possible contribution from an atom–photon bound state since such is a mixed atom–
photon excitation (cf. Sec. 3.3.1).

In addition to that, I account for the non-monochromaticity of the wave packets as follows.
Each simulation is re-run for the situation where the two-level system is replaced by a
harmonic oscillator, i. e., a bosonic site. This represents the U = 0-case in the alternative
description of the two-level atom (cf. Eqs. (1.66)). In that case, the many-body solution
is given as the direct product of the single-particle solution so that photon–photon bound
states cannot be excited. I then subtract the residual transmittance in the case of a harmonic
oscillator from the case of a two-level atom, i. e.,

δPRR = PTLS
RR − PHO

RR . (3.13)

Here, the individual terms are defined according to Eq. (3.12). As a result, δPRR represents
the “purified” probability of finding two photons being transmitted. The dependence of this
quantity on the atom–photon coupling V can then finally be compared to Eq. (3.11).

Figure 3.2 displays δPRR as defined in Eq. (3.13), PTLS
RR , and PHO

RR as a function of V −2.
While δPRR seems to be well-represented by a linear fit in the range of V = 0.3 (V −2 = 11.11)
to V = 0.7 (V −2 = 2.04), deviations occur for both small and large V . For large V
(V −2 → 0), the curve flattens because the atom–photon coupling strength becomes com-
parable to the hopping amplitude J so that the finite bandwidth of the cosine dispersion
relation becomes important. In this situation, the nonlinearity of the cosine-dispersion rela-
tion and the existence of band edges cannot be neglected. In the limit of small atom-photon
coupling (V −2 → ∞), the length scale of the photon–photon bound state according to the
solution by Shen and Fan (cf. Eq. (3.10)) is not much smaller than the width of the wave
packet used in the numerical simulation. In other words, the wave packet does not cover the
spatial extent of the photon–photon bound state. This leads to a flattening of the predicted
V −2-behavior3.

To summarize, I compared the results of Shen and Fan on the photon–photon bound
state [117, 118] with results from a time-dependent transport simulation in the discrete
model. For the specific situation where the transmission of a single (monochromatic) photon
is suppressed, the results of Shen and Fan predict a transmittance which scales as V −2,

3Numerical experiments with wave packets of smaller widths confirm that deviations from the predicted
behavior occur at even smaller V −2.
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Figure 3.2: Probability of finding two photons after scattering in the right end of the
waveguide.
The green circles represent the case of a harmonic oscillator (PHO

RR ), whereas the blue
diamonds denote the results for a two-level atom (PTLS

RR ). The difference of these two
quantities according to Eq. (3.13) is denoted by the black boxes. All quantities are
plotted as a function of V −2. While a linear fit (solid red line) seems to be reasonable
for values V = 0.3 (V −2 = 11.11) to V = 0.7 (V −2 = 2.04), significant deviations occur
outside this range (see text for explanation).

where V is the atom–photon coupling strength. According to Shen and Fan, this behavior
can be attributed to a photon–photon bound state. Time-dependent transport calculations
in the tight-binding model confirm such a dependence, albeit in a certain parameter range
only. Deviations occur when either the atom–photon coupling strength becomes comparable
to the bandwidth of the cosine-dispersion relation or the predicted spatial extent of the
photon–photon bound state is not small compared to the width of the wave packets used
in the numerical simulation. These findings suggest the existence of photon–photon bound
states in the tight-binding model, provided that the comparison with the results of Shen and
Fan is valid. However, unless an analytical solution for the tight-binding model in terms of
two-photon wave functions is found, these findings must only be regarded as being a possible
signature for the existence of photon–photon bound states rather than being a rigorous proof.

3.4 Related Works

Before the main results of this thesis are discussed in Chaps. 4–7, I briefly present a few
excerpts of other related works from the field of waveguide quantum optics. The following
studies have been carried out by master/diploma students at the Institut für Theoretische
Festkörperphysik with whom I had the opportunity to work together. The presentation is
restricted to a qualitative level and I provide the corresponding references for further details.
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A Single Photon in Superconducting Circuitry—A Qubit Coupler Device

In his master’s thesis, Jean-Christophe Blancon studied microwave photon transport pro-
cesses through qubit-coupled superconducting metamaterials [50]. By employing the com-
putational scheme of Chap. 2, it was demonstrated that the tunable dispersion relations
resulting from superconducting transmission lines with embedded Josephson junctions can
be exploited to realize a single-photon switch.

In essence, the switch is based on coupling two photonic bands via a two-level atom. The
key ingredient is the tunability of the position of one of the two bands with respect to the
other. Such a two-band model can be realized in superconducting transmission lines with
embedded Josephson junctions [19, 20]. The studies of Blancon focused on the case where
one of the transmission lines exhibits a so-called left-handed dispersion relation, i. e., group
and phase velocity have opposite sign. Figures 3.3 and 3.4 summarize the functional principle
of the qubit coupler (cf. Refs. [50, 158] for further details).

Single-Photon Transport Through Driven Three-Level
Systems—Electromagnetically Induced Transparency

Christoph Martens studied the dynamics of single-photon wave packets in a tight-binding
waveguide coupled to a three-level system [142, 159]. In the case of a driven Λ-type three-level
system (cf. Fig. 3.5(a)), electromagnetically induced transparency of a single photon wave
packet can be realized. Depending on the detunings between the impinging photon and the
undriven transition as well as the classical field and the driven transition, the transmittance of
the single-photon wave packet can be controlled. Specifically, if both detunings are identical
(“two-photon resonance”), the photon is always transmitted even if it is resonant with a
transition. Figure 3.5 displays a schematic sketch of the setup as well as an example for the
transmittance as a function of both detunings.

A Coherent State Pulse Scattered at a Two-Level Atom—Nonlinear Spectral
Features

Julia Werra investigated the dynamics of coherent state wave packets (cf. Sec. 2.3.1) in a
tight-binding waveguide coupled to a single two-level atom [161]. In the spirit of a semiclas-
sical description, the resulting equations are essentially the optical Bloch equations coupled
to the degrees of freedom of a waveguide. The two-level atom induces a variety of nonlinear
effects which determine the features of the scattered pulses’ spectrum. Figure 3.6 displays
the output spectrum (cf. Sec. 1.3.3) recorded at one lattice site next to the site to which the
atom is coupled. The pulse impinges from the left hand side of the atom (carrier wavenumber
k0 = π/2) and its initial mean photon number |α(0)|2 is varied.
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(a) (b)

Figure 3.3: Functional principle of the qubit coupler.
(a) The qubit coupler consists of two transmission lines which are coupled via a two-level
atom. The parameters of the lower transmission line (“input line”) are assumed to be
fixed, whereas the properties of the upper transmission line (“output line”) are tunable
via a current that is applied on the Josephson junctions. Each transmission line exhibits
a right- and a left-handed band [19, 20]. The input line is operated in its right- and
the output line in its left-handed band. In the numerical simulation, the transmission
lines are modeled as an array of coupled resonators (dots) with a specified dispersion
relation. The two-level atom (transition energy Ω) is coupled to one of the resonators
of each transmission line (atom–photon couplings V1 and V2). (b) The relative position
of the output line’s dispersion relation (red curves) to the input line (blue curve) can
be tuned via a bias current on the Josephson junctions. Courtesy of Jean-Christophe
Blancon [50].
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(a) (b)

Figure 3.4: Eigenenergies of the qubit coupler and numerical results.
(a) The single-particle eigenenergies of the combined system result from a hybridization
of the two subsystems of transmission line and two-level atom (cf. Sec. 3.3.1). Depending
on the relative detuning between the two bands of the transmission lines, the transfer
of excitation from the input to the output line can be controlled. (b) As a function
of the detuning between the two bands, the amount of excitation which is transferred
to the output line (red curve) and remains in the input line (black and blue curves)
demonstrates the characteristics of a switch. Courtesy of Jean-Christophe Blancon [50].
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Figure 3.5: Level scheme of a driven Λ-type three-level system and electromagnetically
induced transparency.
(a) The impinging single photon (carrier wavenumber k0) couples to the undriven tran-
sition (levels |1〉 and |2〉, detuning δ). In addition to that, a classical time-harmonic
driving field (frequency ωL) induces transitions between the levels |3〉 and |2〉. The cor-
responding detuning is denoted by ∆. (b) The transmittance of a single-photon wave
packet (k0 = π/2) depends on both detunings δ and ∆. For δ = ∆, the wave packet
is always transmitted even if it is resonant with a transition. Courtesy of Christoph
Martens [142].
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Figure 3.6: Output spectrum of a coherent state pulse scattered at a two-level atom.
The nonlinear dynamics induced by the two-level atom results in various spectral fea-
tures as a function of the initial pulse’s amplitude (note that the scale of colorbar is
logarithmic). Here, the carrier wavenumber is k0 = π/2 and the atomic transition cou-
ples to the middle of the waveguide band, i. e., Ω = 0 (cf. Sec. 3.3). The atom–photon
coupling is V = 0.7J . The single-photon resonance condition is indicated by the ver-
tical dashed line at ω = 0. The transmission of the pulse is suppressed as long as the
two-level atom is not significantly saturated (α(0) . 0.7). For higher pulse intensities,
self-induced transparency occurs, i. e., spectral components around ω = 0 are transmit-
ted. As a consequence of cascaded nonlinear processes, side bands occur at multiples of
the Rabi frequency (which corresponds to the pulse’s maximum). The black dashed lines
indicate the first three branches. The lowest side band can be understood as the Mollow
triplet [160]. Depending on the number of inversion cycles the atom experiences during
its interaction with the pulse, additional side bands occur at integer fractions of the
Rabi frequency. Moreover, since the transmission spectrum is recorded in the vicinity
of the atom, spectral components of the atom–photon bound states are visible slightly
above the upper (ω > 2J) and below the lower band edge (ω < −2J). This spectral
feature results from an intensity dependent, effective atom–photon coupling strength.
See Ref. [161] for further details. Courtesy of Julia Werra.

59



3 Waveguide Quantum Optics

3.5 Conclusion and Outlook

In this chapter, I gave an introduction to the field of waveguide quantum optics. I first
motivated in Sec. 3.1 which classes of systems can be regarded as representing a problem
of waveguide quantum optics. On the basis of a one-dimensional waveguide coupled to a
single atom, I provided a brief review of existing theoretical works in Sec. 3.2. In Sec. 3.3, I
presented the Hamiltonian of a tight-binding waveguide locally coupled to a single two-level
atom. I introduced the single-particle eigenstates of the Hamiltonian, which can be separated
into scattering states and atom–photon bound states. While the single-photon transport
properties are solely determined by the scattering states (Sec. 3.3.2), atom–photon bound
states can play an essential role in the transport of two photons (Sec. 3.3.3). Specifically,
I discussed the effect of interaction-induced radiation trapping in this context. Moreover, I
numerically addressed the question of the existence of photon–photon bound states which
are induced by the atom. Finally, I briefly mentioned related studies in which I was partly
involved but which are beyond the scope of this thesis (Sec. 3.4).

Undoubtedly, the field of waveguide quantum optics in general has not yet been analyzed
in every detail. However, when it comes to the prototypical model of a single atom in a
waveguide, many physical properties with respect to few-photon states have already been
investigated (cf. Sec. 3.2). Therefore, it is the aim of this thesis to reveal the new physical
mechanisms which can occur when the model of a single atom in a waveguide is analyzed from
a new point of view and/or slightly modified. Specifically, if the two-level atom is regarded
to act as a beam-splitting device, the Hong-Ou-Mandel effect can be exploited to identify
effective photon–photon interactions mediated by the atom (Chap. 4). If the two-level atom
is replaced by a Kerr nonlinearity, the transport properties of a coherent state can be uti-
lized to control the transmission of the single-photon fluctuations in a single-photon-added
coherent state (Chap. 5). Moreover, the single-particle problem of spontaneous emission in a
waveguide geometry represents a paradigmatic system for studying non-Markovian dynamics
(Chap. 6). Even though at first sight the dynamics of two magnons in a Heisenberg spin
chain seems to be rather different from photons propagating in a fiber, interacting magnons
actually represent another topic of waveguide quantum optics (Chap. 7). In Chap. 8, I pro-
vide a broader and more general outlook for future studies.
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4 Chapter 4

The Hong-Ou-Mandel Effect in the
Context of Few-Photon Scattering

The Hong-Ou-Mandel effect is studied in the context of two-photon transport in a one-
dimensional waveguide with a single scatterer. Depending on the realization of the scatterer
and its properties, I calculate the joint probability of finding both photons on either side of
the waveguide after scattering. I specifically point out how Hong-Ou-Mandel interferome-
try techniques could be exploited to identify effective photon–photon interactions which are
mediated by the scatterer. The Hong-Ou-Mandel dip is discussed in detail for the case of a
single two-level atom embedded in the waveguide, and dissipation and dephasing are taken
into account. Parts of this chapter have been published in Ref. [162].

4.1 Introduction

Two photons impinging on a balanced beam splitter from different ports leave the device
together in either one of the two output ports. This rather counter-intuitive and inher-
ently quantum mechanical phenomenon, which is known as the Houng-Ou-Mandel effect,
was demonstrated experimentally in 1987 [163]. Since then, the topic of two-photon inter-
ference turned into a rich and multifaceted field of research. Besides the generalization of
the Hong-Ou-Mandel effect to the multi-particle case [164] or the proposal of its fermionic
analog [165], it is believed that Hong-Ou-Mandel interference can be successfully exploited
in the context of linear-optical quantum computation [5]. Indeed, since photons themselves
rarely interact with each other, they seem to be difficult to manipulate and process. The
Hong-Ou-Mandel effect, however, solely relies on the statistics of the involved particles and
is therefore at the very heart of quantum optics per se. To date, photon pairs can be rou-
tinely sent through optical fibers [166], and—due to the rapid progress in the fabrications
of nanophotonic components—integrated optical waveguiding structures on silicon chips are
very promising candidates towards more complicated networks of multimode interference
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devices [6]. Furthermore, in the realm of optical metamaterials, the measurement of the
Hong-Ou-Mandel dip for magnetic plasmon waves has been reported recently [167].

Of course, these examples only represent a very incomplete and biased selection from the
vast amount of publications available on this topic and a well-balanced review of all relevant
works is clearly beyond the scope of this chapter. However, the beam splitter in a Hong-
Ou-Mandel setup is very often just regarded as an optical component with which one can
study the quantum mechanical nature of light by means of coincidence experiments. In the
following, I take a slightly different viewpoint and address the question of how the Hong-Ou-
Mandel effect can be exploited—used as a probe—to learn something about the properties
of the beam-splitting device itself. This question is of direct relevance to the problem of
two photons propagating from different ends in a waveguide towards a scatterer, e. g., an
artificial atom.

The outline of this chapter is as follows. In Sec. 4.2, I review the quantum mechanical
description of a beam splitter, the Hong-Ou-Mandel effect, and its relation to scattering
problems. After a qualitative motivation for why the Hong-Ou-Mandel effect can serve as
a probe for effective photon–photon interactions, I introduce the types of scatterers which
are investigated in this chapter, i. e., a local on-site potential and a two-level atom. I then
formulate the corresponding Hamiltonians in analogy to Chap. 3, followed by the beam-
splitter conditions which are deduced from the stationary single-particle scattering states.
After that, the central quantity of this chapter—the joint probability of finding both photons
on either side of the waveguide after scattering—is defined. In Sec. 4.4, I provide a detailed
analysis of the Hong-Ou-Mandel dip for the case of a local on-site potential and a two-level
atom. As mentioned in Chap. 3, the latter is a saturable absorber and effective photon–
photon interactions are essential. In addition, I take the influence of dissipation of T1-type
and dephasing of T2-type on the Hong-Ou-Mandel dip into account. I conclude the chapter
in Sec. 4.5 and give a short outlook on possible future work.

4.2 Fundamentals

In this section, I begin with a review of the quantum mechanical description of a beam
splitter and relate it to a scattering problem. I then introduce the Hong-Ou-Mandel effect
as a probe for photon–photon interactions, the types of impurities which are investigated,
and influencing variables for the Hong-Ou-Mandel dip.

4.2.1 The Quantum-Mechanical Beam Splitter as a Four-Port Device and its
Relation to Scattering Problems

A consistent quantum-mechanical treatment of a beam splitter requires its interpretation as
a four-port device [35, 163, 168]. Since the “conventional” type of beam splitter does not
induce direct interactions between the involved particles—in the majority of cases photons—
its single-particle solution can be readily applied to the multi-particle case. With the help of
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the scattering matrix formalism, the operators for the input ports 0 and 1 (a0 and a1) can be
related to the output ports 2 and 3 (operators a2 and a3, cf. Fig. 4.1). The transformation
reads (

a2

a3

)
= Ŝ

(
a0

a1

)
, (4.1)

where

Ŝ =

(
t′ r
r′ t

)
(4.2)

represents the scattering matrix with the corresponding reflection and transmission ampli-
tudes (cf. Ref. [35]). Note that up to this point no statement about the commutation and
anticommuation relations of the operators involved is required. This formalism is valid both
for bosons and fermions. The reciprocity relations and the conservation of the total proba-
bility can be deduced by enforcing the same particle statistics for the operators describing
the in- and output ports (cf. Eq. (4.1)).

The general form of the scattering matrix above allows for a description of unbalanced
beam splitters which do not equally “split” a single photon into the two output ports. How-
ever, the effect which is of central importance in the following—the Hong-Ou-Mandel effect—
can be best understood for the case where the beam splitter is balanced in the sense that a
single particle scattering off the beam splitter is transferred to one of the output arms with
equal probability of 50%.

For simplicity, only photons are considered in the following. The reflected beam undergoes
a phase shift of π/2 and the transmission and reflection amplitudes are t′ = t = 1/

√
2 and

r = r′ = i/
√

2, respectively [163]. An input state with two photons in different input ports
reads

|in〉 = a†0a
†
1|0〉 , (4.3)

where |0〉 represents the vacuum state. According to Eqs. (4.1) and (4.2), the corresponding
output state is

|out〉 =
1

2

(
a†2 + ia†3

)(
ia†2 + a†3

)
|0〉

=
i

2

(
a†2a
†
2 + a†3a

†
3

)
|0〉 . (4.4)

This remarkable result, which is known as the Hong-Ou-Mandel effect [163], states that two
photons impinging on a beam splitter from different input ports leave the device “together”
in either one of the output ports. For a balanced beam splitter, the probability of finding
one photon in one output arm and the other photon in the other arm is zero. The Hong-Ou-
Mandel effect is a true quantum mechanical effect in the sense that it cannot be obtained in
the limit of a low-intensity coherent state (cf. Ref. [35]). The tendency of photons to “stick
together” is a consequence of the bosonic particle statistics. Fermions behave the opposite
way, i. e., the probability of finding two fermions in one output arm is zero.
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0
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Figure 4.1: Schematic sketch of a beam splitter as a four-port device and its analogy
to a scattering problem.

In experiments, one usually faces photonic wave packets of finite width. The initial differ-
ence in the distance of both wave packets to the beam splitter determines their overlap at
the position of the beam splitter and thus influences the joint probability of both particles
leaving the device in the same port. The joint probability of both photons leaving the device
in different ports, which can be obtained from coincidence measurements, shows a dip as a
function of the difference in the separation to the beam splitter. This dip is known as the
“Hong-Ou-Mandel dip” and was first reported in 1987 [163].

Now, I establish a connection between the beam splitter as a four-port device and the scat-
tering of photons at a local impurity. In scattering theory, one usually divides the system
into left and right leads, e. g., a waveguide in the context of photons, and a local scattering
potential which is placed in the middle. By means of the scattering matrix formalism, a
single-particle input state |in〉 = |k〉 = a†k|0〉 of momentum k is transformed into a transmit-

ted and a reflected momentum state according to |out〉 = Ŝ|in〉 with

a†k → Ŝa†k = rka
†
−k + tka

†
k , (4.5)

where rk and tk signify the reflection and transmission amplitudes, respectively. For an
in-state in the left lead, the wavenumber needs to fulfill k > 0, for the right lead k < 0.1

Thus, there are four “ports” in total, namely k > 0 and k < 0 for the left and the right
lead, respectively (cf. Fig. 4.1). It is assumed that the magnitude of the momentum, |k|,
is unchanged here. In other words, only elastic and time-reversal-symmetric single-particle
scattering processes are considered, which is in accord with the Hamiltonians introduced in
Sec. 4.2.3.

The analogy to the aforementioned balanced beam splitter is completed by demanding
|rk|2 = |tk|2 = 1

2 which—strictly speaking—can only be achieved for a single frequency since
beam splitters are dispersive optical elements.

1This argument only holds for a so-called right-handed dispersion relation, for which group velocity and
wavenumber have the same sign. As stated in Sec. 4.3, I assume J > 0 throughout the whole chapter.

64



4.2 Fundamentals

4.2.2 Hong-Ou-Mandel Interferometry as a Probe for Photon–Photon
Interactions

In many cases, the equations of motion for a single-photon state and a coherent state are
identical or describe—at least approximately—the same dynamics in the low-intensity limit.
Thus, although the equations for a single photon are deduced from the Schrödinger equation,
they do not provide “more physics” than the corresponding equations for the coherent state.
Of course, the evolution is always given by the Heisenberg equations of motion (or the
Schrödinger equation), for either single-photon or coherent states. However, “true” quantum
mechanical effects which go beyond interference effects in a wave mechanical sense mainly
occur for two reasons.

First, the inherent statistics of the underlying fundamental excitations, e. g., fermions,
bosons, spins, or polaritons as a mixture thereof, can cause such “true” quantum mechanical
effects since the concept of the fundamental commutation and anticommutation relations
does not exist for c-number fields. The Hong-Ou-Mandel effect is probably the most promi-
nent example in this regard, even though it is often only referred to as an interference effect.

Second, interacting particles can lead to a strong modification of the many-body solution
in contrast to the single particle case. The interactions might be either direct such as the
Coulomb interaction of electrons or effectively mediated, e. g., an effective photon–photon
interaction induced by a saturable absorber.

In Sec. 4.4, I demonstrate how the Hong-Ou-Mandel effect serves as a probe for identifying
effective photon–photon interactions. Influencing variables are selectively taken into account
to study their effects on the shape of the Hong-Ou-Mandel dip which is obtained from the
solution of the time-dependent problem.

4.2.3 Types of Impurities and their Single-Particle Scattering Solution

In this section, I briefly introduce the types of scatterers which are investigated in the
following, their stationary, single-particle scattering solution, and the corresponding beam-
splitter constraint. See Appendix D for details on the calculation.

General Form of the Scattering Equation

For the remainder of this discussion, the leads of the system are modeled as a one-dimensional
tight-binding waveguide (cf. Chap. 3) with Hamiltonian

Hleads =
∑

x

ωa†xax − J
∑

x

(
a†x+1ax + a†xax+1

)
(4.6)

and the local impurity couples to site x0. Similar to Ref. [120], the single-particle scattering
solution is obtained by solving the eigenvalue problem in the single-excitation subspace using
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(a)

(b)

Figure 4.2: Schematic sketch of (a) a local on-site potential and (b) a two-level atom
in a tight-binding waveguide.
The strength of the on-site potential is g, the atom–photon coupling strength and the
atomic transition energy are V and Ω, respectively. The waveguide’s hopping amplitude
is denoted by J .

the ansatz

ϕx =

{
eikx + rke

−ikx x < x0

tke
ikx x ≥ x0

(4.7)

for the wave function amplitudes in the waveguide (see Appendix D for details). The discrete
scattering equation has the generic form

0 = (ω − E)ϕx − J(ϕx+1 + ϕx−1) + δxx0G(E)ϕx0 (4.8)

where E = εk = ω − 2J cos(k) is the eigenenergy of the scattering state corresponding to
wavenumber k ∈ [−π, π] (cf. Chap. 3). The reflection amplitude is

rk = −e−2ik J
2 − (ω − E +G(E)− Jeik)(ω − E − Je−ik)

J2 − (ω − E +G(E)− Jeik)(ω − E − Jeik)
. (4.9)

The function G(E) depends on the actual realization of the impurity. Note that 1 + rk = tk
and the conservation of probability, |rk|2 + |tk|2 = 1, hold. In the following, the free wave-
guide’s dispersion relation is chosen such that it lies in the middle of the cosine band,
i. e., ω = 0.

Local On-Site Potential

A local on-site potential can be regarded as a deviation of the eigenfrequency of one of
the cavities forming the tight-binding waveguide. In that case, the total Hamiltonian reads
H = Hleads +Hpot, where

Hpot = ga†0a0 (4.10)
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is the contribution due to the impurity which is part of the tight-binding chain itself and g
is the strength of the local on-site potential (cf. Fig. 4.2).

The function G(E) then simply becomes (cf. Eq. (4.8))

G(E) = g . (4.11)

Consequently, the reflection amplitude takes the form

rk = − g

g − 2iJ sin(k)
. (4.12)

Thus, the balanced beam splitter with |rk|2 = |tk|2 = 1
2 is realized for

g = ±2
∣∣J
∣∣ ∣∣sin(k)

∣∣ . (4.13)

Local Two-Level System

As shown in Chap. 3, the Hamiltonian of a single two-level atom in a waveguide can be
written in the form of a single spin-1

2 locally side-coupled to a tight-binding waveguide
(cf. Chap. 3), i. e.,

H = Hleads +
Ω

2
σz + V

(
a†x0σ

− + ax0σ
+
)
. (4.14)

The transition energy of the two-level atom is denoted by Ω and V is the atom–photon
coupling strength (cf. Fig. 4.2 and Chaps. 2 and 3).

The single-particle solution to this problem yields

G(E) =
V 2

E − Ω
(4.15)

and thus [120]

rk =
V 2

2iJ sin(k)(−Ω− 2J cos(k))− V 2
. (4.16)

The condition |rk|2 = |tk|2 = 1
2 results in the beam-splitter constraint (see Appendix D for

details)

V = ±
√∣∣2J sin(k)(−2J cos(k)− Ω)

∣∣ . (4.17)

For instance, k = 3π/4 yields V = ±
√√

2|J ||
√

2J − Ω|.

4.2.4 Influencing Variables for the Hong-Ou-Mandel Dip

In reality, various mechanisms lead to a fading of the Hong-Ou-Mandel dip. For instance,
wave packets have a finite width. Thus, the temporal overlap of two excitations at the
position of the scatterer does not only depend on the difference in the initial distance to
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the latter but also on the widths of the wave packets. In realistic scenarios, single-particle
excitations might experience a non-vanishing group-velocity dispersion, which also influences
the temporal overlap at the position of the scatterer. Moreover, since the scattering solutions
presented above are energy eigenstates, the condition for a balanced beam splitter can only
be met for a single frequency out of the spectrum of the initial pulses.

From a theoretical point of view, it is interesting to monitor the qualitative change of
the Hong-Ou-Mandel dip when the energy levels of the scatterer are smoothly changed from
the harmonic to the strongly anharmonic case, i. e., when the transition from a harmonic
oscillator to a two-level system is performed.

Additionally, in almost every realistic situation where atoms are coupled to light modes,
dissipation and dephasing are important. In the quantum jump approach, dissipation of
T1-type is described by the relaxation operator CT1 =

√
1/T1σ

−. Similarly, dephasing of
T2-type requires CT2 =

√
1/(2T2)σz (cf. Sec. 1.3.4 and Refs. [105, 106]).

4.3 Initial States and Joint Probability

Since the Hong-Ou-Mandel effect requires a minimum of two excitations to be investigated,
I consider initial states according to Eq. (2.15) of the form (cf. Eq. (2.14))

∣∣Ψ(0)
〉

=
∑

x1x2

Φx1x2a
†
x1a
†
x2 |0〉 , (4.18)

where Φx1x2 is a boson-symmetric product of single-particle pulses launched from different
ends of the waveguide (cf. Fig. 4.3). To be precise, the wave function is of the form

Φx1x2 ∝
(
ϕ
k
(1)
0 x

(1)
c s

(1)

x1 · ϕk
(2)
0 x

(2)
c s

(2)

x2 + ϕ
k
(1)
0 x

(1)
c s

(1)

x2 · ϕk
(2)
0 x

(2)
c s

(2)

x1

)
, (4.19)

where ϕ
k0xcs
x is a Gaussian wave function with carrier wavenumber k0, center xc, and

width s (cf. Sec. 2.3.1). Unless stated otherwise, I choose k
(1)
0 = −k(2)

0 ≡ k0 = 3π/4,

s(1) = s(2) ≡ s = 7, x
(1)
c ≡ xc = 50, and x

(2)
c = N +1−xc+∆x in the following. The relative

displacement ∆x is varied from −30 to +30 in order to record the Hong-Ou-Mandel dip.
When ∆x = 0, both pulses initially have the same distance to the scatterer. The waveguide
consists of N = 199 sites and the scatterer couples to site x0 = (N + 1)/2 = 100. For the
remainder, the nearest-neighbor hopping strength J serves as the fundamental energy scale.
I assume J > 0 so that the waveguide is “right-handed”, i. e., group velocity and wavevector
have the same sign. Time is measured in units2 of J−1. Furthermore, I choose ∆t = 0.1J−1,
which is smaller than any other time scale in the system, as the fundamental time step in
the stochastic time evolution. See Refs. [61, 108], Chap. 2, and Appendix C for more details
about the simulation.
2Note that dimensionless units according to Appendix A are employed.
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Figure 4.3: Schematic sketch of the two-excitation initial state.

The motion of the wave packets can be monitored in real space with the help the occupa-
tion numbers 〈a†xax〉(t). However, occupation numbers do not explicitly reveal correlations
between the reflected and transmitted amounts of the two-excitation wave packet. There-
fore, in order to obtain the Hong-Ou-Mandel dip, one has to consider the joint probability
of finding one photon on the left and the other on the right-hand side of the impurity after
scattering. Once a photon is detected, it is absorbed, i. e., the state after one photon was
detected at site x and another photon at site y is proportional to axay|Ψ〉, where |Ψ〉 is the
two-photon state after scattering. The probability is then proportional to

∑

f

∣∣∣〈f |axay|Ψ〉
∣∣∣
2

=
∑

f

〈Ψ|a†ya†x|f〉〈f |axay|Ψ〉 = 〈Ψ|a†ya†xaxay|Ψ〉 . (4.20)

Since |Ψ〉 is a two-particle state, only the vacuum state contributes in the sum over all final
states3 |f〉. Equation (4.20) is the n = 2-mode joint probability as defined in Eq. (1.91). For
the discussion of the Hong-Ou-Mandel dip, I use the normalized quantity

PLR =

∑
x∈L
y∈R
〈a†ya†xaxay〉

∑
x,y∈L∪R〈a

†
ya
†
xaxay〉

, (4.21)

which is the central quantity in this chapter. It is the joint probability of finding one photon
on the left (L = {1, 2, . . . , x0−1}) and the other on the right-hand side (R = {x0+1, . . . , N})
of the scatterer. The projection of the state on two photons in the waveguide automatically
excludes any possible contribution from an atom–photon bound state since such is a mixed
atom–photon excitation (cf. Sec. 3.3.1). Expression (4.21) has to be evaluated for times after
the wave packets have scattered at the impurity but before the reflected and transmitted
pulses are influenced by the system’s hard-wall boundaries (cf. Chap. 2 for details). Plotted
as a function of ∆x, i.e., as a function of the spatial separation of both incoming wave packets
(cf. Fig. 4.3), Eq. (4.21) reproduces the famous Hong-Ou-Mandel dip.

3The final states form a complete basis, i. e.,
∑
f |f〉〈f | = 1.
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Figure 4.4: Hong-Ou-Mandel dip for a system where a local scattering potential is
coupled to a photonic tight-binding waveguide.
The latter consists of N = 199 sites and the local scatterer in form of an on-site potential
is coupled to site x0 = 100. The strength of the potential is g = 2|J ||sin(k0a)|, which
is the condition for a balanced beam splitter (cf. Eqs. (4.10) and (4.13)). The carrier
wavenumber is k0 = π/2.

4.4 Results and Discussion

In this section, I present results on the numerical study of Hong-Ou-Mandel interferometry
according to the setup as described above. I start with a scatterer in form of a local on-site
potential. This setup resembles the situation of a “usual” beam splitter and results in a
Hong-Ou-Mandel dip as originally reported in [163]. After that, the emphasis is on a two-
level atom, whose properties are gradually changed in order to study the resulting effects on
the shape of the Hong-Ou-Mandel dip.

4.4.1 Local On-Site Potential in a Tight-Binding Waveguide

Figure 4.4 displays the Hong-Ou-Mandel dip for a system as described in Sec. 4.2.3 and
Eq. (4.10). The strength of the on-site potential is set to g = 2|J ||sin(k0a)| where the carrier
wavenumber is k0 = π/2. The coincidence probability of one photon being left and the
other one being right practically vanishes for perfect overlap of the wave packets at the
position of the scatterer, i. e., at ∆x = 0. For large separations, both wave packets pass the
scatterer individually. Thus, one can read off the single-photon transmission probability at
∆x ∼ ±30, which is (nearly) perfectly 50%. The reason why the local on-site potential works
that well as a beam splitter for non-monochromatic excitations is because the reflectivity
does not change for small deviations around the central carrier wavenumber of k0 = π/2, i. e.,
∂k|rk|2 |k=π/2= 0 (see Appendix D for details). This special property is due to a combination
of the scatterer being part of the chain, i. e., it is not side-coupled, and the cosine dispersion
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of the tight-binding waveguide. Furthermore, effects due to nonlinear dispersion are reduced
since the group-velocity dispersion is zero at k0 = π/2.

4.4.2 Local Two-Level System in a Tight-Binding Waveguide—the
Hong-Ou-Mandel Effect as a Probe for Photon–Photon Interactions

Now, I turn to the question of how a two-level system, which—in contrast to an on-site
potential—is a saturable scatterer, qualitatively influences the Hong-Ou-Mandel dip. In the
single-excitation subspace, there is no difference whether the atomic degree of freedom is
treated as such or merely replaced by a bosonic site. However, two excitations can dramati-
cally change the transport properties as was already demonstrated in the context of radiation
trapping in Refs. [61, 62]. For this trapping effect to be most efficient, the photon energy
should be on resonance with the atomic transition energy. This resonance condition cannot
be fulfilled in the Hong-Ou-Mandel setup because the condition for a balanced beam split-
ter is required to achieve single-particle reflection and transmission with equal probability
(cf. Eq. (4.17)). In the following, I choose the carrier wavenumber to be k0 = 3π/4 so that

V =
√√

2|J ||
√

2J − Ω| (cf. Sec. 4.2.3).

Influence of the Atomic Transition Energy on the Hong-Ou-Mandel Dip

I start by varying the atomic transition energy Ω whilst keeping the beam-splitter condition
from Eq. (4.17). Increasing the atomic transition energy from Ω = 0 to Ω = 1.2J has
several consequences. First, the atom–photon detuning Ω− εk=3π/4 = Ω−

√
2J is reduced.

Second, the atom–photon coupling strength V is decreased. Figure 4.5(a) shows the tendency
that the deviation from a perfect Hong-Ou-Mandel dip becomes more pronounced as the
detuning is reduced. This is in line with Refs. [61, 62] because radiation trapping, which is
one consequence of effective photon–photon interactions, is most efficient if V ∼ J and the
resonance condition is fulfilled.

Mechanisms leading to such an effective photon–photon interaction can be identified in
a faded Hong-Ou-Mandel dip. The fading is stronger than one would expect if only single-
photon effects due to an unbalanced beam splitter were considered. This can be seen in
Fig. 4.5(a) by noting that the limit of vanishing pulse overlap at the scatterer (∆x → ±∞)
is nearly immune to changes in the atom–photon detuning. Since this limit represents in-
dividual particles passing the device, the fading of the Hong-Ou-Mandel dip must be due
to effective photon–photon interactions whose effects can—at least in theory—be separated
from signatures which are only induced by beam splitter imperfections.

The latter results in not all curves in Fig. 4.5(a) meeting exactly at PLR = 0.5. The two-
level atom acts as a dispersive beam splitter and—in contrast to the on-site potential—the
atomic degree of freedom is side-coupled. Additionally, the wavenumber k0 = 3π/4 is from
the nonlinear regime of the dispersion relation. Thus, the reflectivity does change to first
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Figure 4.5: Hong-Ou-Mandel dip for a system where a two-level system is coupled to
a photonic tight-binding waveguide.
For a central carrier wavenumber of k0 = 3π/4, the beam-splitter condition reads

V =
√√

2|J ||
√

2J − Ω|. (a) Note that by varying the atomic transition energy rela-
tive to the cosine band, the atom-photon coupling strength V changes as well due to the
beam-splitter constraint. The combinations of transition energy and coupling strength
used are Ω = 0: V =

√
2J , Ω = 0.4J : V = 1.198J , Ω = 0.6J : V = 1.073J , Ω = 0.8J :

V = 0.932J , Ω = 1.0J : V = 0.765J , Ω = 1.2J : V = 0.550J . (b) The parameters are
the same as in (a) except that Ω = J and the initial width of the wave packets is varied
(cf. Sec. 2.3).

order in small deviations around k0 = 3π/4, i.e., ∂k|rk|2 |k=3π/4 6= 0 (see Appendix D for
details). As an example, I choose Ω = J in all subsequent considerations.

Influence of the Wave Packets’ Width on the Hong-Ou-Mandel Dip

The influence of different initial widths of the wave packets on the Hong-Ou-Mandel dip
is shown in Fig. 4.5(b). Hong-Ou-Mandel interferometry techniques can be exploited to
actually determine the spatial overlap and thus the extent of the impinging wave packets.
Both the single-photon limit and the depth of the Hong-Ou-Mandel dip change with the
width of the wave packets. This can be understood as follows. As the extent of the wave
packet gets smaller in real space, it covers a broader spectral range in momentum space.
Since the beam-splitter condition only holds for a single frequency, more and more frequency
components pass the beam splitter with a probability different than 50%. In addition, an
increasing spectral range in momentum space leads to more frequency components which
participate in the effective photon–photon interaction as discussed in Refs. [61, 62] and
Chap. 3.
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Figure 4.6: Hong-Ou-Mandel dip in analogy to Fig. 4.5(a) but for Ω = J and different
strengths of the anharmonicity U (see text for details).
For U = 0, the fading of the Hong-Ou-Mandel dip is solely due to beam splitter im-
perfections at the single-photon level. The fading depends non-monotonically on the
anharmonicity (see text for explanation). The single-photon limit (∆ → ±∞) is inde-
pendent of the actual value of the anharmonicity. In the inset, I display the the depth
of the Hong-Ou-Mandel dip as a function of the anharmonicity U .

From the Harmonic Oscillator to the Two-Level System

From a theoretical point of view, the transition from a harmonic oscillator to a two-level
system, i. e., from the harmonic to the strongly anharmonic case is most elucidating. In line
with Refs. [61, 62] and as described in Sec. 1.3.2, I therefore replace the Pauli operators of
the two-level system in Eq. (4.14) by bosonic operators b and b†. Specifically, the formulation
Ω
2 σz → Ωb†b+Ub†b(b†b−1) describes a harmonic oscillator for U = 0 and a two-level system
in the limit U →∞.

Figure 4.6 displays the Hong-Ou-Mandel dip for different strengths of the anharmonicity U .
In the absence of interaction (U = 0), the Hong-Ou-Mandel dip becomes “perfect” besides
the beam splitter imperfections due to the single-excitation transport characteristics. For
U > 0, i. e., in the interacting system, the fading of the Hong-Ou-Mandel dip depends
non-monotonically on the value of the anharmonicity until it saturates in the limit U →∞.

This behavior can be understood as follows. As demonstrated in Refs. [61, 62] and men-
tioned in Chap. 3, the interactions induced by a finite U -term become most pronounced
if the atom–photon detuning is zero. However, in the Hong-Ou-Mandel setup, the res-
onance condition is not fulfilled since the scatterer acts as a beam splitter. To further
understand this non-monotonicity, it is helpful to consider the detuning between two im-
pinging photons and the energy they had in case they double-occupied the atomic site, i.e.,
δ = nΩ + Un(n− 1)− nεk0 , where n = 2 and εk0 is the single-photon energy. If the single-
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particle resonance condition, i. e., Ω = εk0 , was fulfilled, δ would grow monotonically as U
is increased. In the Hong-Ou-Mandel dip in Fig. 4.6, Ω − εk0 = (1 −

√
2)J < 0 so that δ

changes its sign as U grows. This eventually leads to the non-monotonic dependence of the
depth of the Hong-Ou-Mandel dip.

Note again that the offset in Fig. 4.6 in the limit of ∆→ ±∞ is independent of the actual
value of the anharmonicity. In this limit, the excitations pass the device individually as
single particles.

Influence of Dissipation and Dephasing

In reality, even if the waveguide is considered to be practically lossless, the two-level system
still suffers from non-radiative losses and the coupling to non-guided modes (subsumed in
time constant T1) as well as from pure dephasing, i. e., the randomization of the phase
relation between the atom’s ground and excited state (subsumed in time constant T2).

Figure 4.7(a) displays the effect of different T1-times on the shape of the Hong-Ou-Mandel
dip. Once a photon is lost, i. e., the T1-relaxation operator was applied to the two-particle
state (cf. Sec. 4.2.4), the wave function collapses to a single-particle state and two-particle
coincidences become impossible, which leads to a less pronounced Hong-Ou-Mandel dip.
However, since the definition of the joint probability PLR in Eq. (4.21) is normalized to the
total probability, the single-photon limit is independent of the value of T1. Note that in the
quantum jump approach as described in Sec. 1.3.4, all wave function trajectories enter the
expectation values in Eq. (4.21), including those that represent zero coincidences.

The effect of pure dephasing on the Hong-Ou-mandel dip is displayed in Fig. 4.7(b). The
two-level atom mediates the effective photon–photon interaction less efficiently once the
phase coherence between the atom and the impinging photons is destroyed. This leads to a
fading of the Hong-Ou-Mandel dip but for moderate T2-times the single-photon limit seems
to be practically unaffected. Only very short dephasing times lead to a significant change
in the single-photon transport which results in the beam splitter being unbalanced and thus
the single-photon limit changes.

This can be understood as follows. Pure dephasing can be regarded as the temporal
fluctuation of the atom’s level spacing. In the regime of strong dephasing, the detuning
between the instantaneous atomic transition energy and the photon energy according to
the central carrier wavenumber of the wave packet thus strongly fluctuates. This, in turn,
implies that the condition for equal reflection and transmission of a monochromatic wave
is only fulfilled for very short instances of time. In the present setup, this enhances the
transmittance of the single-excitation wave packet (Fig. 4.8). Here, I use the definition

T = 1
2〈a
†
x0ax0〉+

∑N
x=x0+1〈a

†
xax〉 for the transmittance. For the parameters chosen here, T2-

times comparable to the temporal overlap τ of the wave packet at the position of the atom
lead to an enhanced transmission. As a crude estimate, τ ∼ s/vg, where vg = 2J sin(k0) is
the group velocity.

From the above investigations one might get the impression that a clear-cut separation of
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Figure 4.7: Influence of T1-relaxation and T2-depahsing on the Hong-Ou-Mandel dip.
(a) Hong-Ou-Mandel dip for the same parameters as in Fig. 4.5(a) with Ω = J but the
two-level system experiences losses of T1-type. Even though losses of T1-type lead to
irreversible photon loss, the single-photon limit is independent of the value of T1 because
of the normalization of Eq. (4.21). The black dashed curve represents the lossless case in
which T1 =∞. (b) Hong-Ou-Mandel dip as shown in Fig. 4.7(a) but now with pure de-
phasing of T2-type instead of T1-relaxation. Moderate dephasing times affect the depth of
the Hong-Ou-Mandel dip but leave the single-photon limit practically unchanged. Very
short dephasing times change the single-particle transport characteristics and, therefore,
the single-photon limit in the Hong-Ou-Mandel dip. The black dashed curve represents
the lossless case in which T2 = ∞. In the simulation for the stochastic time evolution,
500 and 2000 samples were used for (a) and (b), respectively (cf. Appendix C).
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Figure 4.8: Single-particle transmittance T through a two-level system which is subject
to pure dephasing of T2-type.
For strong dephasing, i. e., T2-times comparable to the temporal overlap of the wave
packet at the position of the atom, the transmission is enhanced for the parameters
chosen here. The parameters of the initial wave packet are k0 = 3π/4, s = 12, and
xc = 50. 1000 samples were used in the simulation for the stochastic time evolution
(cf. Appendix C). The solid line is just a guide to the eye.

the influences of the open system dynamics (T1 and T2) and the actual interaction between
two excitations is impossible and one still would have to speculate to which degree an im-
perfect Hong-Ou-Mandel dip really is the signature for effective photon–photon interactions.
I would like to emphasize that the previous studies were driven by the explicit knowledge
of the stationary, i.e., the monochromatic, single-particle solution yielding a condition for
the balanced beam splitter. This condition is, as was shown, not perfectly met for pulses of
finite width. However, given a fixed width of the wave packets and fixed values of T1 and T2,
the condition for the balanced beam splitter can be recovered in a trial-and-error fashion by
tuning the two-level system’s transition energy or coupling strength such that in a single-
photon setup reflection and transmission occur with equal probability. In addition to that,
carefully designed and/or tunable dispersion relations such as those available in Photonic
Crystal waveguides [7] can reduce group-velocity dispersion over a broad range of carrier
wavenumbers which makes the beam splitter less dispersive for the frequencies of interest.

Alternatively, the Hong-Ou-Mandel interferometry technique could also be exploited to
probe the environment by comparison of the measured Hong-Ou-Mandel dip and the “clean”
theoretical curve. A numerical fit in which the parameters of the environment are tuned
such that the two curves match, finally allows to determine T1 and/or T2 times. In that
case, however, one still would need sufficient knowledge about possible sources of either T1-
dissipation or T2-dephasing, since these two quantities cannot be clearly separated from one
another in the Hong-Ou-Mandel dip.
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4.5 Conclusion, Outlook, and Critical Discussion

In conclusion, I presented a detailed analysis of the dynamics of two photons impinging
from both ends of a tight-binding waveguide on a local scatterer. This scenario is intimately
related to the fundamental Hong-Ou-Mandel effect. Specifically, the joint probability of
finding one photon on either side of the impurity after scattering was calculated by means
of the numerical framework as presented in Chap. 2. As a function of the initial difference
in the wave packet separation to the impurity, this quantity is nothing but the famous
Hong-Ou-Mandel dip.

In case the local scatterer is just given as an on-site potential, I demonstrated that the
Hong-Ou-Mandel effect can become perfect in the sense that the joint probability is zero
for maximal wave packet overlap at the scatterer. To this end, the parameters of the on-
site potential were adjusted such that a (monochromatic) single photon is reflected and
transmitted with equal probability.

I then applied the same strategy to the case of a single two-level system embedded in the
waveguide. In this case, the Hong-Ou-Mandel effect can be less pronounced, resulting in a
non-zero joint probability, even though beam splitter imperfections on the single-photon level
due to non-zero group-velocity dispersion were taken into account. I therefore concluded that
an “imperfect” Hong-Ou-Mandel dip can be interpreted as the signature for effective photon–
photon interactions which are mediated by the two-level system. In addition, these findings
were related to earlier works on interaction-induced radiation trapping (cf. Refs. [61, 62] and
Chap. 3) in order to get a coherent and complete picture of the dynamics.

I then proceeded by investigating the influence of dissipation and dephasing on the shape of
the Hong-Ou-Mandel dip. To this end, the stochastic quantum jump approach was employed
(cf. Sec. 1.3.4) and I considered the two-level system to be subject to relaxation of T1-type
as well as pure dephasing of T2-type. Due to the normalization of the joint probability to
the total probability in the system, T1-relaxation only affects the depth of the Hong-Ou-
Mandel dip. T2-dephasing can also change the offset since the single-photon transmittance
is modified. Knowing these properties, Hong-Ou-Mandel interferometry techniques can—at
least in principle—also be exploited to probe the environment.

A variety of extensions and modifications to the work presented in this chapter can be
envisioned for future investigations. For instance, the Hong-Ou-Mandel effect could serve as
a probe to identify signatures from more complicated structures such as Jaynes-Cummings
cavities, Kerr-nonlinear media, or tunable few-level systems. Especially driven three-level
systems might be interesting candidates towards a tunable Hong-Ou-Mandel effect. Besides
this, the Hong-Ou-Mandel setup is also worth investigating in the context of polaritons such
as those emerging in Jaynes-Cummings-Hubbard systems [15, 64, 65, 68, 157, 169]. Here, due
to the mixed nature of the elementary excitations, coincidences can be investigated beyond
the photon–photon sector.

The findings presented in this chapter could be criticized with regard to the following
points. In order to clearly separate interaction-induced effects from effects which are due to
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beam-splitter imperfections, a strategy needs to be developed with which a“clean”Hong-Ou-
Mandel dip can be obtained, i. e., a Hong-Ou-Mandel dip free of beam-splitter imperfections.
In addition to that, a functional dependency of the Hong-Ou-Mandel dip on T1- and T2-times
(as well as on the U -term in case of an anharmonic oscillator) would clearly help to gain
further insight even if such a function was only obtained empirically. I did not address such
issues in this chapter. Furthermore, even though I considered dissipation and dephasing of
the beam-splitting device, I neglected these effects in the waveguide.
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5 Chapter 5

Dynamics of a Photon-Added
Coherent State in a Waveguide
Coupled to a Nonlinear Resonator

In this chapter, I study the dynamics of coherent states and photon-added coherent states
in a tight-binding waveguide with a side-coupled Kerr-nonlinear resonator. The theoretical
analysis is based on the Heisenberg equations of motion, which are solved in an appropriately
displaced basis. For coherent states, I derive the stationary scattering states, and in the con-
text of a single-photon-added coherent state, I investigate the problem of pulse propagation
numerically. Specifically, I demonstrate how the fields provided by the coherent states facili-
tate a tunable scattering potential on the single-photon level, allowing for the gating of single
photons. I address the issue of dissipation in terms of a “leaky” cavity, and I comment on a
possible realization in the field of optomechanics. Parts of this chapter have been published
in Ref. [170].

5.1 Introduction

Owing to the advances in nanotechnology, the realization of integrated quantum photonic
circuitry has recently witnessed considerable progress towards the ultimate goal of creating,
manipulating and detecting single photons [3–6]. Several systems such as arrays of coupled
optical resonators [11, 15] and Photonic Crystals (cf. Sec. 1.2) are currently being explored.
Interestingly, the approaches of introducing functionality in these waveguiding systems range
from individual atoms over classical nonlinearities to the incorporation of mechanical degrees
of freedom.

Despite the variety in actual physical realizations, a Kerr-nonlinear response very often
represents a reasonable building block for a prototypical model system (cf. Sec. 1.3.2). With
regard to the theoretical analysis in the realm of quantum optics, it is common to either
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investigate the dynamics of the “most classical states”—coherent states—or, in contrast to
that, Fock states. There is, however, a less-explored class of states—photon-added coherent
states—, which are kind of “in between” coherent states and Fock states (cf. Sec. 1.3.1). The
main emphasis in this chapter is on the dynamics of photon-added coherent states.

This chapter is structured as follows. In Sec. 5.2, I introduce the system of a tight-binding
waveguide with a side-coupled Kerr-nonlinear resonator, the corresponding equations of mo-
tion, and the definition of the occupation numbers which represent the central quantity in
this chapter. In Sec. 5.3, I derive the analytical scattering solution of the nonlinear problem
in the context of coherent states and I comment on self-induced transparency and bistabil-
ity. The dynamics of a single-photon-added coherent state is then investigated numerically.
Specifically, I demonstrate how a coherent state can control the effective scattering potential
which is “seen” by a single photon. This mechanism can be exploited for the gating of single
photons. The issue of dissipation is addressed by taking radiation losses of the side-coupled
resonator into account. After that, I comment on possible realizations in an optomechanical
setup. I conclude the chapter in Sec. 5.4 and suggest possible topics for future studies.

5.2 Theoretical Formulation

In this section, I introduce the Hamiltonian of a tight-binding waveguide with a side-coupled
Kerr-nonlinear cavity. Furthermore, I derive the Heisenberg equations of motion and project
them on coherent states and photon-added coherent states, followed by the definition of
occupation numbers used in this context.

5.2.1 The Hamiltonian

In the following, I consider a chain of identical and equally spaced optical resonators. They
form a waveguide whose dispersion relation is centered around the resonators’ resonance
frequency ω0. In addition, one of these resonators is side-coupled to a single resonator which
exhibits a Kerr-nonlinear response (cf. Secs. 1.3.2 and 2.2.1). Such a system could, for in-
stance, be realized by appropriately placed micro-disk resonators such as those mentioned
in Sec. 1.2.2, where the side-coupled resonator is made from or coated with a different mate-
rial. However, besides the realization in the field of cavity arrays [11, 15–17], the analysis is
easily extended to similar waveguide–resonator systems such as optical fibers side-coupled to
Kerr-nonlinear resonators [47], systems with ultracold bosonic atoms [28], and even optome-
chanical systems (see Ref. [77] and Sec. 1.3.2). A schematic sketch of the system is depicted
in Fig. 5.1.

The Hamiltonian reads

H =
∑

x

ω0a
†
xax−J

∑

x

(a†x+1ax+a†xax+1)−J ′(a†x0c+ax0c†)+Ω0c
†c+∆c†c†cc− i

2
Γc†c . (5.1)
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Figure 5.1: Schematic sketch of a tight-binding waveguide with a side-coupled Kerr-
nonlinear cavity.
The waveguide’s nearest-neighbor hopping constant is J and the additional cavity with
a Kerr-nonlinearity ∆ is coupled to site x0 with a side-coupling strength of J ′. The
waveguide’s cosine-dispersion relation is depicted in (b), where the zero of the energy is
shifted to the middle of the band.

Here, the coupled-resonator optical waveguide is described by a nearest-neighbor coupling
constant J between the lattice sites x, leading to a cosine dispersion relation
εk = ω0 − 2J cos(k) of the waveguide1 (cf. Sec. 1.2.2 and Chap. 3). As was pointed out
in Chaps. 2 and 3, Hamiltonian (5.1) serves as an approximate model system if the un-
derlying physical system is not inherently discrete, e. g., an optical fiber. In that case, the
dispersion relation of the model system is matched to the one of the physical system around
an operating wavelength. J ′ describes the coupling of the side-coupled resonator (operators
c† and c) to site x0 which is in the middle of the waveguide. The eigenfrequency of the non-
linear cavity is Ω0 and the strength of the Kerr nonlinearity is denoted by ∆ (cf. Sec. 1.3.2).
In principle, J ′ could be different from the waveguide’s hopping strength J but, in order
to keep the subsequent discussion simple, I assume J ′ = J . For the same reason, I assume
that the side-coupled resonator’s eigenfrequency coincides with those of the waveguide res-
onators, i. e., ω0 = Ω0. In the spirit of the quantum jump approach, which was introduced
in Sec. 1.3.4, Γ describes the decay rate to modes other than the waveguide, e. g., photon
loss to non-guided modes or due to scattering at fabrication imperfections.

As pointed out in Sec. 1.3.2, the Hamiltonians for a Kerr nonlinearity and the effective
photon–photon interaction which is obtained in an optomechanical setup by eliminating the
phononic degrees of freedom are, up to a few subtle differences, very similar. Although the
results presented here refer to Hamiltonian (5.1), they can, in principle, also be obtained for

1Dimensionless units according to Appendix A are employed so that the lattice constant is unity.
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an optomechanical realization. See Sec. 5.3.3 for a brief discussion of the latter.

5.2.2 Equations of Motion and Projection on States

For the subsequent considerations, it is useful to derive the Heisenberg equations of motion
with respect to Hamiltonian (5.1) for the operators ax and c, respectively. They read

i∂tax = ω0ax − J(ax+1 + ax−1)− J ′δxx0c , (5.2a)

i∂tc = Ω0c− J ′ax0 + 2∆c†cc− i
Γ

2
c . (5.2b)

I now project these equations of motion on the different classes of states which are discussed
in the following, i. e., I multiply Eqs. (5.2) from the right with a ket |Ψ〉 and from the left
with the corresponding bra 〈Ψ|.

Projection on Coherent States

Coherent states on the lattice as a product of single-site coherent states were introduced in
Sec. 2.3. Applied to Eqs. (5.2a) and (5.2b), I get the equations of motion for the coherent
states’ amplitudes:

i∂tαx = ω0αx − J(αx+1 + αx−1)− J ′δxx0γ , (5.3a)

i∂tγ = Ω0γ − J ′αx0 + 2∆|γ|2γ − i
Γ

2
γ . (5.3b)

Here, {αl} and γ are the c-numbers associated with the single-site coherent states on the
waveguide sites and the side-coupled resonator, respectively. These equations represent
a variant of the nonlinear Schrödinger equation, in which the nonlinearity is local. The
analytical solution to the nonlinear scattering problem is derived in Sec. 5.3.1.

Projection on Single-Photon-Added Coherent States

For the present problem, a single-photon-added coherent state as introduced in Eq. (2.22)
takes the form

|Ψ〉 = C
∑

x

(
ϕxa

†
x + ψc†

)
|{αx}, γ〉 . (5.4)

As in the case of the “pure” coherent state, {αl} and γ are the coherent states’ complex-
valued amplitudes, whereas ϕx and ψ denote the single-photon wave function amplitudes
in the waveguide and the side-coupled resonator, respectively. In the following, it is helpful
to perform the projection of Eqs. (5.2) on states like (5.4) in the displaced basis which was
introduced in Eqs. (2.25) and (2.26). Here, the displaced single-photon-added coherent state
reads

|Ψ̃〉 = D†({αx})|Ψ〉 = C
∑

x

(
ϕxa

†
x + ψc†

)
|0〉+ Cη|0〉 (5.5)
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with η =
∑

x ϕxα
∗
x + ψγ∗. By multiplying Eqs. (5.2) from the right with D({αl}) and from

the left with D†({αl}), the displacement operator’s properties2 (1.45b) and (1.45c) can be
exploited. Separating c-numbers from operators (similar to Ref. [171]), I arrive at

i∂tαx = ω0αx − J(αx+1 + αx−1)− J ′δxx0γ , (5.6a)

i∂tax = ω0ax − J(ax+1 + ax−1)− J ′δxx0c , (5.6b)

i∂tγ = Ω0γ − J ′αx0 + 2∆|γ|2γ − i
Γ

2
γ , (5.6c)

i∂tc = Ω0c− J ′ax0 − i
Γ

2
c

+4∆|γ|2c
+4∆γc†c+ 2∆γ2c†

+2∆c†cc+ 2∆γ∗2cc . (5.6d)

The time evolution of the coherent states thus decouples from the single photon. Further-
more, the last two terms in Eq. (5.6d) do not contribute when projected on state (5.5). In the
following, I refer to the coherent states as the mean field and regard the single photon part
as fluctuations3. The latter can alternatively be described by the effective, time-dependent
Hamiltonian

Heff =
∑

x

ω0a
†
xax − J

∑

x

(a†x+1ax + a†xax+1)− J ′(a†x0c+ ax0c
†)

+Ω0c
†c+ 4∆|γ(t)|2c†c − i

Γ

2
c†c

+∆γ2(t)c†c† + 2∆γ(t)c†c†c . (5.7)

The following arguments are needed for further simplifications. In the interaction picture,
the annihilation operators oscillate according to ax ∝ e−iω0t and c ∝ e−iΩ0t in time. More-
over, for the solution of the scattering problem for coherent states, an incoming plane wave
with wavenumber k results in γ(t) ∝ e−iεkt, where εk = ω0− 2J cos(k) (shown in Sec. 5.3.1).
Note that all phases except for those of the two last terms in Hamiltonian (5.7) are static4.
In the spirit of the rotating-wave approximation, I neglect the term ∆γ2(t)c†c† ∝ e4iJ cos(k)·t

and 2∆γ(t)c†c†c ∝ e2iJ cos(k)·t, which is justified as long as the energies corresponding to
the dominant carrier wavenumbers of an incoming coherent state wave packet are detuned
with respect to the eigenfrequency of the side-coupled cavity. For convenience, I furthermore
set ω0 = 0, i. e., the zero of the waveguide’s dispersion relation is shifted to the middle of

2In the Heisenberg picture, D†({αl})∂taxD({αl}) = ∂t
(
D†({αl})axD({αl})

)
holds because of

∂tD
†({αl}) = −∂tD({αl}).

3This does not mean that a mean-field approximation was applied.
4Remember that the eigenfrequencies of all cavities coincide, i. e., ω0 = Ω0.
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the band. The simplified Hamiltonian then takes the form

Heff = −J
∑

x

(a†x+1ax + a†xax+1)− J ′(a†x0c+ ax0c
†) + 4∆|γ(t)|2c†c − i

Γ

2
c†c . (5.8)

This Hamiltonian describes the time evolution of the fluctuations which are controlled by
the spatio-temporal profile of the coherent state’s intensity in the side-coupled cavity. The
term 4∆|γ(t)|2c†c thus represents a tunable, local scattering potential. The time evolution
of the coherent state pulse as determined by Eqs. (5.6a) and (5.6c) serves as an input for
Hamiltonian (5.8), which, in turn, acts on state (5.5). In this formulation, the total number

of excitations C =
∑

x a
†
xax + c†c is conserved.

5.2.3 Occupation Numbers

In this chapter, I restrict the discussion to the waveguide’s occupation numbers, i. e.,
〈nx〉 = 〈a†xax〉 (cf. Sec. 1.3.3). For the “pure” coherent states, they simply read

〈nx〉 = 〈a†xax〉 = |αx|2 , (5.9)

whereas the single photon-added coherent state in the displaced basis yields

〈nx〉 = 〈D†({αx})a†xaxD({αx})〉
= 〈a†xax〉+ αx〈a†x〉+ α∗x〈ax〉+ |αx|2
= |Cϕx|2 + 2|C|2Re(η∗α∗xϕx) + |αx|2 . (5.10)

In this chapter, I am only interested in the effects of the mean fields on the fluctuations.
Hence, I monitor |αx|2 and |ϕx|2 separately instead of using the superposition (5.10). In order
to compare the nonlinear dynamics of the mean field for different initial intensities |α(0)|2
(cf. Sec. 2.3.1), all subsequent plots are normalized according to |αx|2/|α(0)|2.

5.3 Transport Properties

In this section, I discuss the transport properties of a coherent state and a single-photon-
added coherent state. For the latter, I numerically investigate the problem of pulse propa-
gation, whereas for the former the discussion is limited to the stationary scattering states of
the nonlinear problem.

5.3.1 Coherent State

The exact analytical solution of the stationary scattering states for a coherent state in a
system as described by Eqs. (5.3) is derived.5 All formulae are written down for the loss-
less case (Γ = 0) and for the situation in which the resonator’s eigenfrequencies coincide,

5After this chapter has been finished, I became aware of Ref. [172], in which a similar scattering problem is
investigated.
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i. e., ω0 = Ω0 (cf. Sec. 5.2.1). For convenience, the index of the site to which the nonlinear
cavity couples is shifted to zero. For these equations, a time-harmonic ansatz6 ∝ e−iωt for
the amplitudes yields the set of discrete scattering equations

ωαi = −J(αi+1 + αi−1)− J ′δi0γ , (5.11a)

ωγ = −J ′α0 + 2∆|γ|2γ , (5.11b)

for which I use the ansatz7

αx =

{ Aeikx + rke
−ikx x < 0

α0 x = 0
tke

ikx x > 0
, (5.12)

in which k ≥ 0. The input power is denoted by |A|2. Without loss of generality, A ∈ R is
assumed. Evaluating Eq. (5.11a) for x = −1, x = 0, x = 1, and x = 2, respectively, yields

0 = rk(−Jeik − ω)eik − J(α0 +Ae−2ik)− ωAe−ik , (5.13a)

0 = rk(−Jeik) + tk(−Jeik)− JAe−ik − ωα0 − J ′γ , (5.13b)

0 = tk(−Jeik − ω)eik − Jα0 , (5.13c)

ω = −2J cos(k) . (5.13d)

Combining Eq. (5.13d) with Eqs. (5.13a) and (5.13c) gives α0 = tk and rk = tk − A which,
after basic manipulations and using Eq. (5.13b), leads to

γ = −rk
J ′

2iJ sin(k) . (5.14)

Inserting this expression into Eq. (5.11b) finally gives, after some reordering, the central
equation for the reflection amplitude

0 = |rk|2rk + ak(ibk + ck)rk + iakbkA , (5.15)

which is nonlinear. In Eq. (5.15), I introduced the abbreviations

ak ≡ − J ′2

2∆v2
k

, (5.16a)

bk ≡ J ′2

vk
, (5.16b)

ck ≡ εk , (5.16c)

6As before, no new symbol is introduced to denote the time-independent amplitudes so that, for instance,
γ(t) = γe−iωt.

7I assume J > 0, i. e., a right-handed waveguide (see also Chap. 4).
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in which εk = −2J cos(k) is the dispersion relation of the waveguide and vk = 2J sin(k) its
corresponding group velocity. Note that ak, bk, ck, A ∈ R.

In order to solve Eq. (5.15), I start by rewriting the reflection coefficient as rk ≡
√
Rke

iφk

so that Eq. (5.15) takes the form

0 = R
3
2
k + ak(ibk + ck)R

1
2
k + iakbkFk , (5.17)

where Fk ≡ Ae−iφk . The sum and the difference of Eq. (5.17) and its complex conjugate
lead to

0 = R
3
2
k + akckR

1
2
k − akbkIm(Fk) , (5.18a)

0 = R
1
2
k + Re(Fk) . (5.18b)

Using Re(Fk) = A cosφk and Im(Fk) = −A sinφk, yields Rk = A2 cos2 φk and

A2 cos3 φk + akck cosφk − akbk sinφk = 0 . (5.19)

By exploiting cos2 φk = 1/(1 + tan2 φk), Eq. (5.19) can be further manipulated, yielding

w3
k − ηkw2

k + wk − ηk − µk = 0 , (5.20)

in which

wk ≡ tanφk , (5.21a)

ηk ≡ ck
bk
, (5.21b)

µk ≡ A2

akbk
, (5.21c)

so that

Rk =
A2

1 + w2
k

. (5.22)

Eq. (5.20) is amenable to a computer algebra system8. The solutions read

w
(1)
k =

1

6

(
2ηk + 2 · 2 1

3Lk + 2
2
3Kk

)
, (5.23a)

w
(2)
k =

1

12

(
4ηk − 4 · (−2)

1
3Lk + 2(−2)

2
3Kk

)
, (5.23b)

w
(3)
k =

1

12

(
4ηk + 4 · 2 1

3 (−1)
2
3Lk − 2

2
3 (1 + i

√
3)Kk

)
, (5.23c)

8MATHEMATICA was used to solve Eq. (5.20).
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where

Lk ≡ 1

Kk

(
−3 + η2

k

)
, (5.24a)

Kk ≡
(

2ηk(9 + η2
k) + 3(9µk + Sk)

) 1
3
, (5.24b)

Sk ≡
√

12(1 + η2
k)

2 + 12ηk(9 + η2
k)µk + 81µ2

k . (5.24c)

The criterion for selecting the appropriate solutions out of Eqs. (5.23) is

0 ≤ Rk
|A|2 ≤ 1 (5.25)

since the the total power is conserved. The existence of multiple branches is thus in principle
possible.

In Fig. 5.2(a), I display the transmittance for an incoming plane wave of power |A|2 = 1
and momentum k = π/2 as a function of the side-coupling strength J ′ and the nonlinearity ∆.
For these parameters, the solutions obtained from Eqs. (5.23)–(5.25) are unique. I explicitly
accounted for the possibility of both positive and negative nonlinearities since there exist
Kerr-nonlinear media of both types [173]. The features of Fig. 5.2(a) can be understood
as follows. In the limit of vanishing nonlinearity, i. e., ∆ → 0, a plane wave state with
carrier momentum k = π/2 is always reflected completely, independent of the value of
the side-coupling strength J ′. The plane wave with energy εk=π/2 = 0 is on resonance
with the side-coupled resonator’s eigenfrequency Ω0 = 0. Conversely, if J ′ → 0, any plane
wave state is transmitted completely, since the side-coupled cavity is decoupled from the
waveguide. Before discussing features such as self-induced transparency and bistability,
Fig. 5.2(b) demonstrates that for the parameters investigated in Sec. 5.3.2, i. e., J ′ = J
and ∆ = 0.05J , the solutions (5.23) are unique. Similarly, Fig. 5.2(c) displays for a fixed
side-coupling strength J ′ = 0.6J and input power |A|2 = 1 how an increasing nonlinearity ∆
finally gives rise to a bistability in the transmission characteristics. Furthermore, Fig. 5.2(d)
shows the tendency to enhance the transmittance when the input power is increased, resulting
in self-induced transparency.

A complete analysis of the bistable transmission characteristics of coherent states in the
underlying system would require a stability analysis of Eqs. (5.23). This, however, is beyond
the scope of this chapter since, for the next section, I only need to know where a bistable
situation could occur so that it can be avoided.

5.3.2 Single-Photon-Added Coherent State

In order to illustrate how the dynamics as described by Eqs. (5.6a), (5.6c), and Hamilto-
nian (5.8) may be exploited for manipulating photon transport on the few-photon level,
I consider the situation of a propagating coherent state pulse which is “disturbed” by an
accompanying single-photon wave packet.
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Figure 5.2: Transmission characteristics for a coherent state in a tight-binding wave-
guide with a side-coupled Kerr-nonlinear cavity.
(a) Normalized transmittance Tk/|A|2 = 1−Rk/|A|2 for an incoming plane wave of power
|A|2 = 1 and momentum k = π/2 as a function of the side-coupling strength J ′ and the
nonlinearity ∆. For these parameters, the solutions according to Eqs. (5.23)–(5.25) are
unique. (b) Normalized transmittance for J ′ = J and ∆ = 0.05J as a function of the
wavenumber k. The resonance condition shifts with increasing input power |A|2, which
eventually leads to self-induced transparency. In the linear system, the resonance occurs
at k = π/2 since επ/2 = Ω0 = 0. A slight shift can already be observed for |A|2 = 1. The
parameters for J ′ and ∆ are those which are used in Sec. 5.3.2. Note that no bistability
occurs. (c) Normalized transmittance as a function of the eigenenergy εk = −2J cos(k)
for a side-coupling strength of J ′ = 0.6J . The solutions according to Eqs. (5.23) become
non-unique as the nonlinearity ∆ is increased (|A|2 = 1), leading to bistability. (d) An
increase of the input power eventually leads to self-induced transparency (∆ = 0.01J).
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The initial center xc and the width s (cf. Eq. (5.5) and Sec. 2.3.1) of both pulses are
therefore chosen to be equal. The carrier wavenumbers, however, differ. I denote the latter
by kMF

0 for the coherent state pulse, termed “mean field”, and kFL
0 for the single-photon

pulse, termed “fluctuations”. As a specific example, I choose kMF
0 = 0.6π and kFL

0 = 0.5π.
This choice is guided by the fact that while the excitations are energetically well separated
(ε(kMF

0 ) = 0.618J and ε(kFL
0 ) = 0, cf. Fig. 5.1), their group velocities are quite similar

(vg(kMF
0 ) = 1.902J and vg(kFL

0 ) = 2J). The former property also ensures that the incom-
ing coherent state pulse is sufficiently detuned with respect to the side-coupled resonator’s
eigenfrequency so that the approximations leading to the effective Hamiltonian (5.8) hold.
The small difference in the group velocities results in a single-photon pulse which accompa-
nies the coherent state pulse sufficiently long so that they still experience a strong spatial
overlap when arriving at the position of the side-coupled resonator.9 The fluctuations are
on resonance with the latter, i. e., ω0 = 0 = −2J cos(kFL

0 a), while the mean-field part is
detuned. Furthermore, for the subsequent computations, I choose ∆ = 0.05J and denote
the mean particle number in the initial coherent state pulse by |α(0)|2. I would like to point
out that the solution to the nonlinear scattering problem of the “pure” coherent states ex-
hibits features such as self-induced transparency and bistability as was shown in Sec. 5.3.1.
However, for the parameters I chose here, Eqs. (5.23) only yield one solution which satisfies
constraint (5.25) (cf. Fig. 5.2(b)).

Figure 5.3(a) displays the corresponding time evolution for a weak mean-field part with
|α(0)|2 = 1 in the absence of losses (Γ = 0). In this case, the corresponding effective
time-dependent scattering potential 4∆|γ(t)|2 is only weakly shifted from its bare (time-
independent) value, which is zero (cf. Hamiltonian (5.8)). The single photon therefore essen-
tially remains on resonance with the side-coupled resonator whereas the coherent state part
is detuned. In essence, mean-field and fluctuations experience the side-coupled resonator as
an energy-dependent mirror (cf. Ref. [108] and Chap. 3) resulting in the fluctuations being
(almost completely) reflected while the mean-field part is partially reflected and partially
transmitted. This situation can be drastically altered by increasing the mean-field intensity.
In Fig. 5.3(b), the dynamics of the mean field and the fluctuations similar to Fig. 5.3(a)
is shown but now with |α(0)|2 = 72. For this intensity, the scattering potential is strongly
modified such that the mean-field pulse is almost completely reflected. Conversely, the fluc-
tuations are now partially transmitted and partially reflected. Upon interacting with the
side-coupled resonator, the original pulse that consisted of a photon-added coherent state is
split into a“purified” single-photon pulse in transmission and a reflected single-photon-added
coherent state with a reduced intensity of the added photon. In other words, a single photon
can be gated by a coherent state pulse.

9One could also envision a situation where the two pulses are launched from different positions such that
they arrive simultaneously at the side-coupled cavity irrespective of their group-velocity mismatch. This
scenario is not addressed in this chapter.
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Figure 5.3: Time evolution of the normalized intensity for the coherent state’s part
(“mean field”) and the “added” single-photon wave function (“fluctuations”) in a single-
photon-added coherent state.
The system parameters are ∆ = 0.05J , J ′ = J , and Γ = 0 (lossless case) for a coupled-
resonator waveguide with 299 cavities. The side-coupled cavity couples to site x0 = 150
(indicated by the white dashed line). The wavenumbers are kMF

0 = 0.6π and kFL
0 = 0.5π

(xc = 100 and s = 7). A change of the coherent state’s initial field strength from
(a) α(0) = 1 to (b) α(0) = 7 demonstrates how the tunable scattering potential for the
fluctuations, which is controlled by the time evolution of the mean field, can be exploited
to gate a single photon.

As can be seen from Fig. 5.3(b), the single photon is not transmitted completely. In order
to realize full transmission while the coherent state part is completely reflected, a larger
initial detuning between fluctuation and mean field would be required. However, for the
underlying system, the cosine-dispersion relation of the tight-binding waveguide provides
certain constraints on the detunings between both pulses and between the pulses and the
side-coupled resonator. Due to the nonlinear nature of the cosine-dispersion relation a larger
detuning would result in spatial walk-off effects between the two pulses as a consequence of
group-velocity dispersion. Such limitations can in principle be overcome via tailored and/or
tunable dispersion relations such as those in Photonic Crystal waveguides (cf. Sec. 1.2.2) or
in dispersion-engineered superconducting circuitry in the microwave domain [19, 20].

The robustness of the gating mechanism is analyzed by repeating the above simulations
for different values of the decay rate Γ of the side-coupled cavity (cf. Hamiltonian (5.8)). In
order to quantify the effect of dissipation, I compute the normalized overlap for both the
coherent state part and the single added photon in the lossless case (Γ = 0). According to
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Figure 5.4: Fidelities as defined in Eq. (5.26) as a function of the decay rate Γ of the
side-coupled cavity.
As a reference, the field distributions after scattering are used for the two lossless cases
as shown in Fig. 5.3. Dashed lines correspond to fluctuations and solid lines represent
mean fields. Black curves represent the case α(0) = 1 (cf. Fig. 5.3(a)) and blue curves
denote the case α(0) = 7 (cf. Fig. 5.3(b)). The dashed green line indicates the value of
the nonlinearity ∆ = 0.05J .

Eq. (1.92), the quantity

Fζρ(t) =

∣∣∣
∑

x ζ
∗
x(t)ρx(t)

∣∣∣
√
Nζ(t)Nρ(t)

(5.26)

serves as a measure of the fidelity. In this definition, ζx and ρx signify, respectively, the
wave function coefficients of the reference states, i. e., for Γ = 0, and for finite values of Γ.
Nζ and Nρ are the initial norms of both states. For the coherent state part, one has to set
ζ, ρ = α, whereas for the added single photon ζ, ρ = ϕ. Equation (5.26) is evaluated at
time t = 95J−1, which is when the scattering is completed but before the wave packets reach
the system’s boundaries.

In Fig. 5.4, I display the fidelities as defined in Eq. (5.26) for both the coherent state part
and the single added photon as a function of the decay rate Γ of the side-coupled cavity.
As expected, the performance of the demonstrated single-photon gate becomes worse as the
decay rate is increased. However, this decay rate has to be compared to other scales in
the system such as the nonlinearity ∆ = 0.05J . As can be seen from Fig. 5.4, the fidelities
only slightly drop for decay rates comparable to the nonlinearity, i.e., Γ ∼ ∆. Only Γ� ∆
seriously affects the fidelities. Thus, the investigated gating mechanism shows a certain
degree of robustness against photon loss.
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5.3.3 Comment on a Possible Realization in an Optomechanical Setup

Although the previous investigations and the underlying Hamiltonian (5.1) refer to “usual”
Kerr-nonlinear systems, e. g., χ(3)-nonlinearities (cf. Sec. 1.3.2), one can also think of a re-
alization in the context of optomechanics. As shown in Sec. 1.3.2, optomechanical systems
in the limit of weak phonon–photon interactions and when the mechanical degrees of free-
dom are in contact with a thermal reservoir effectively behave like Kerr-nonlinear systems.
Adapted to the geometry of a tight-binding waveguide of mechanically inactive resonators
with a side-coupled optomechanical cavity, a Hamiltonian similar to Eq. (1.83) can be for-
mulated, leading to

H =
∑

x

ω0a
†
xax−J

∑

x

(a†x+1ax+a†xax+1)−J̄ ′(a†x0c+ax0c†)+
(
Ω0 −∆

)
c†c−∆c†c†cc−i

Γ

2
c†c .

(5.27)
Now, instead of a χ(3)-nonlinearity, the optomechanical nonlinearity g and the mechan-

ical frequency of the side-coupled resonator ν constitute the nonlinearity ∆ = g2/ν ≥ 0
(cf. Sec. 1.3.2). When compared to Eq. (5.1), the sign of the nonlinear term −∆c†c†cc is
always negative, leading to the effective photon–photon interaction being attractive. Fur-
thermore, the side-coupled resonator’s optical eigenfrequency experiences a polaron shift,
which can be neglected in the case of a weak optomechanical nonlinearity. Then, the small-
est energy scale in the original Hamiltonian (1.71) is set by g. Specifically, the elimination of
the phononic degrees of freedom in Sec. 1.3.2 suggests κ = g/ν � 1. In addition, the optical
eigenfrequencies usually exceed the mechanical frequencies by orders of magnitude so that
ν � ω0,Ω0. The side coupling strength J̄ ′ is “renormalized” according to Eq. (1.84), i. e.,

J̄ ′ = χ(κ)J ′ (5.28)

in which J ′ is the “bare” side-coupling strength and

χ(κ) = e
−κ2

(
Bν(β)+ 1

2

)
, (5.29a)

Bν(β) =
1

eβν − 1
. (5.29b)

Since only the side-coupled resonator is assumed to exhibit an optomechanical nonlinearity,
only one factor of χ appears in Eq. (5.28) (cf. Eq. (1.84)). Note that in the case of a tight-
binding waveguide consisting of optomechanically active resonators, the renormalization of
the hopping terms can result in a reduction of the bandwidth10 of the waveguide’s dispersion
relation. However, this issue is not discussed in this thesis.

In order to get a feeling of how the hopping terms are modified due to phonon–photon
coupling, I give one example for the numerical value of χ(κ) by using (SI units, angular
frequencies) g = 1 kHz, ν = 10 MHz, and T = 300 K, which represent moderate values when

10The “bare” bandwidth of the tight-binding waveguide is 4J .
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compared to state-of-the art experiments (for instance, see Refs. [94, 174] and references
therein). These parameters yield χ ' 0.96. Even though the nonlinearity ∆ can also be cal-
culated from these numbers, its value needs to be compared to the waveguide’s inter-cavity
hopping term J , which determines the bandwidth of the dispersion relation and represents
the “fundamental scale” in the system. Furthermore, for the gating of a single photon as
demonstrated in Fig. 5.3, the actual value of ∆ is not important since it can be compen-
sated by higher mean-field intensities11. In other words, the effective scattering potential
experienced by the fluctuations depends on the product of the coherent state’s intensity in
the side-coupled cavity and the nonlinearity (cf. Hamiltonian (5.8)).

Setting ω0 = Ω0, shifting the middle of the waveguide band to zero, and neglecting the
polaron shift, the effective Hamiltonian experienced by a single photon in a photon-added
coherent state reads (cf. Eq. (5.8))

Heff = −J
∑

x

(a†x+1ax + a†xax+1)− J̄ ′(a†x0c+ ax0c
†)− 4∆|γ(t)|2c†c − i

Γ

2
c†c . (5.30)

The only formal difference to Hamiltonian (5.8) is the minus sign in front of the scatter-
ing potential. Since in the optomechanical case, ∆ is always positive, the shift which is
induced by the mean-field intensity is always to lower energies in the cosine-dispersion rela-
tion. This corresponds to a negative nonlinearity in the analytical scattering solutions for
coherent states (cf. Sec. 5.3.1). However, due to the symmetry of the cosine-dispersion rela-
tion, the results presented in Fig. 5.3 remain valid for the optomechanical case if the carrier
wavenumber of the mean field is changed according to kMF

0 = 0.6π → 0.4π. The wavenum-
ber of the fluctuations need not be changed because kFL

0 = 0.5π is in the middle of the
waveguide band (cf. Fig. 5.1). Here, J̄ ′ = χJ ′ = J can either be approximately realized by
assuming a weakly modified side-coupling strength and J ′ = J or by different “bare” hopping
terms which become equal after a modification due to phonon–photon coupling. However,
in Sec. 5.3.2, I only assumed J ′ = J for simplicity. This is not a crucial requirement of the
gating mechanism. Altogether, the results presented in this chapter are applicable to a wide
range of physical systems including optomechanical waveguide–cavity arrays in the certain
limit discussed above and in Sec. 1.3.2.

5.4 Conclusion, Outlook, and Critical Discussion

In conclusion, I investigated the transport properties of coherent states and single-photon-
added coherent states in a tight-binding waveguide with a side-coupled Kerr-nonlinear res-
onator. Interesting effects such as self-induced transparency and bistability occur on the
level of coherent states. The analysis of single-photon-added coherent states revealed that

11However, if the intensities are too high, nonlinear effects up to ionization processes and material destruction
become important.
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the coherent state part effectively separates from the single-photon part, allowing for a tun-
able scattering potential. Given appropriately chosen initial states, this allows one to split
off individual photons from composite pulses. Such a mechanism could be exploited for the
gating of single photons, which is useful for solid-state based quantum optical functional
elements. Due to the general and prototypical character of the model system I investigated,
physical realizations can be envisioned in various fields. In addition to the realization in
the context of a resonator with a classical χ(3)-nonlinearity, I specifically commented on a
possible realization in the field of optomechanics.

Future work might include the investigation of the dynamics of Fock states. This is in
very close analogy to the system of a two-level atom in a waveguide (cf. Chap. 3) and was
already studied for a slightly different model system in Ref. [74]. Similar to the case of
a two-level atom, unusual correlations such as photon–photon bound states [117, 118] and
interaction-induced radiation trapping by virtue of atom–photon bound states (cf. Chap. 3
and Refs. [61, 62]) can become important. However, whereas a single two-level atom is a
saturable absorber which cannot absorb two photons at once, Kerr nonlinearities are usually
rather weak. The effect of a single Kerr-nonlinear resonator on the dynamics of, say, two
photons should therefore be almost negligible. Nonetheless, considerable effects could be
achieved by side-coupling a chain of nonlinear resonators to the waveguide. Such a system is
in close analogy to Jaynes-Cummings-Hubbard systems [15, 64, 65, 68, 157, 169]. Similar to
the emergence of polariton branches, the existence of an “impurity band” which is induced
by the Kerr nonlinearity could be discussed.

A “natural” extension to the dynamics of a single-photon-added coherent state is the case
of a two-photon-added coherent state. However, such an extension is non-trivial since some
terms which vanish for the case of a single photon in Eq. (5.6d) contribute in the case of
two photons. Furthermore, if it were possible to deduce an effective, time-dependent, two-
photon Hamiltonian in analogy to Eq. (5.7), it would contain interaction terms. Even more
problematic is the extension to the case of a two-level atom in a waveguide since the atomic
degree of freedom is not bosonic and can therefore not be transformed to a displaced basis
which enabled the discussion in Sec. 5.3.2.

The approach presented in this chapter could be criticized with regard to the following
points. Even though the approximations leading to the effective, particle-number conserving
Hamiltonian (5.8) were motivated on a qualitative level in the spirit of the rotating-wave
approximation, I did not give a controlled approximation in the sense that I quantitatively
defined the range of validity. The approximations performed were led by the idea of arriving
at an effective Hamiltonian which conserves the total number of excitations so that a numer-
ical approach becomes possible (cf. Chap. 2). Furthermore, as already mentioned above, an
analysis by virtue of single-photon-added coherent states is not general or readily applicable
to the multi-particle case.

With regard to the physical description, dissipation was only included in a simple manner,
i. e., I only considered a “leaky” cavity. However, also the waveguide itself suffers from
dissipation and, furthermore, the effect of dephasing was completely neglected in this chapter.
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The discussion on a possible realization in the context of an optomechanical system
(cf. Sec. 5.3.3) relies on the validity of the approximation performed in Sec. 1.3.2. Even
though the idea of replacing all phononic operators by their free thermodynamic expectation
values is reasonable if the mechanical degrees of freedom are not subject to a special state
preparation, a rigorous quantitative statement on the validity of such an approximation was
not given. Again, this approximation was driven by the goal of arriving at an effective
Hamiltonian which conserves the total number of excitations.
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6 Chapter 6

Spontaneous Emission of a
Single-Photon Emitter in a Structured
Continuum of Modes

In this chapter, I investigate spontaneous emission of a single two-level atom embedded in
a structured continuum of electromagnetic modes. Quantities such as the population of the
atom’s excited state as a function of time, output spectra as well as atom–field and field–
field correlation functions are determined. I explicitly consider dissipation and dephasing
of the atom. In addition, lossy field modes and the effect of an open waveguide are taken
into account. Specifically, I study a one-dimensional model of coupled resonators for which
two regimes of radiation dynamics are identified, i. e., the “Purcell regime”, in which the time
evolution of the atomic degree of freedom does not strongly depend on its past, and the regime
of non-Markovian dynamics, in which memory-induced back-action effects cause anomalous
spontaneous emission.

6.1 Introduction

Spontaneous emission—the decay of an excited atom into the electromagnetic vacuum with-
out external trigger—has many fascinating aspects and is both a long-standing fundamental
problem in theoretical physics and of paramount importance in applied modern optical tech-
nologies. Historically, the first theoretical description of spontaneous emission can be dated
back to Einstein’s work on the quantum theory of radiation almost one century ago [175].
He coined the term “A coefficient”, which became an essential component of modern laser
theories [104]. Einstein’s A coefficient is related to the atomic lifetime for which a theory
was developed by Weisskopf and Wigner [176]. In these early descriptions, spontaneous
emission is the exponential decay of the occupation of an excited atomic level and therefore
characterized completely by the atomic lifetime.
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Although this lifetime depends both on atomic and photonic properties, the features of the
electromagnetic vacuum, i. e., its dispersion relation, enter the description just as external
parameters. For a long time, there was no theoretical concept on how to qualitatively alter
the exponential decay although a control of the decay rate could already be demonstrated by
Purcell in the forties [177]. Moreover, there were several theoretical and experimental studies
on the issue of spontaneous emission in the vicinity of metallic surfaces (for instance, see
Refs. [178–180]). However, all these effects primarily cause a renormalization of the lifetime.
Hence, the emission spectra exhibit a Lorentzian lineshape.

At first sight, one might call it pedantic to recheck the early theories of the exponential
spontaneous decay since they are successfully applied in various situations. Nonetheless, the
Wigner-Weisskopf theory relies on the approximation that the density of electromagnetic
states is a slowly varying, featureless function of frequency in the vicinity of the atomic
transition energy. This is especially true for vacuum or homogeneous bulk media where the
dispersion relation is linear in the photon momentum and has no cutoff. With the advent
of modern nanophotonics, new classes of optical materials, e. g., Photonic Crystals, were
developed, which can be used to tailor the photonic dispersion relation almost arbitrarily
at will (cf. Sec. 1.2.2). Given the rich band structure of these materials, especially the
possibility of a photonic band gap, one has to carefully reexamine the applicability of the
Wigner-Weisskopf theory and variations thereof.

E. Yablonovitch proposed structured dielectrics as a means to inhibit spontaneous emission
in 1987 [181]. From the nineties on, S. John et al. demonstrated in a series of papers
[182–189] that the problem of spontaneous emission in photonic band gap media can only
be accounted for accurately if the description goes beyond the well-established Wigner-
Weisskopf theory. In particular, rapid variations in the density of electromagnetic states can
lead to non-Markovian dynamics, i. e., the time evolution of the atomic degree of freedom
strongly depends on its past—the atom “develops a memory”. Moreover, the existence
of band gaps results in a special class of dressed eigenstates—atom–photon bound states.
These polaritonic states result in a fractional decay in the long-time limit. In other words,
the atom does not decay completely to its ground state and is surrounded by a spatially
confined fraction of localized light.

From a theoretical point of view, topics such as non-Markovianity and atom–photon bound
states are of great interest in their own right. Besides this, the ultimate control of sponta-
neous emission is a goal which would boost the progress in many fields of quantum optics.
In the related problem of resonance fluorescence, bound atom–photon states might be an ap-
proach to realize an optical memory device [185] or to achieve all-optical switching [190, 191].

To date, non-Markovian radiation dynamics was investigated theoretically in a number
of different contexts. The works of S. John et al. use analytical models for the photonic
density of states. The authors of Ref. [192] provide an alternative, approximate numerical
treatment, albeit with a simplified model of the dispersion relation. P. Kristensen et al. ap-
plied the method presented in Ref. [188] to the case of the three-dimensional inverse opal
structure [193]. Non-Markovian dynamics was observed experimentally in the context of cav-

98



6.2 Fundamentals

ity quantum electrodynamics [194]. However, signatures of non-Markovianity in nanoscopic
systems where a single emitter is coupled to a continuum of modes (and not just to a single
mode of a cavity) are still to be expected. To the best of my knowledge, the first ex-
perimental demonstration of non-Markovian dynamics in Photonic Crystals was given by
U. Hoeppe et al. [195], who used a woodpile Photonic Crystal of macroscopic size in the
microwave domain.

In this chapter, I apply the computational scheme I described in Chap. 2 to the problem
of spontaneous emission in an effectively one-dimensional system. The outline is as follows.
In Sec. 6.2, I review the theoretical foundations and the relevant physical quantities which
are important for the investigation of spontaneous emission of a single two-level emitter in
a structured continuum. Then, in Sec. 6.3, I present a study of the dynamics of sponta-
neous emission in a one-dimensional model of coupled resonators under the assumption of a
momentum-independent atom–photon coupling. With the help of correlation functions and
spatially resolved output spectra, I show how one can distinguish the “Purcell regime”, in
which the time evolution of the atomic degree of freedom does not strongly depend on its
own past, from the regime of non-Markovian dynamics. In addition, the influence of non-
radiative damping and dephasing of the emitter, an open waveguide, and lossy field modes
are investigated. I conclude the chapter in Sec. 6.4.

6.2 Fundamentals

In this subsection, I present the theoretical description relevant to the problem of spon-
taneous emission of a single two-level atom in a structured continuum. This includes the
formulation of the Hamiltonian, a suitable initial condition, and a formal solution of the
problem. Furthermore, I adapt the quantities as defined in Sec. 1.3.3 for the purpose of this
chapter.

6.2.1 Theoretical Formulation

Throughout this chapter, I study the radiation dynamics of a single two-level system which
is coupled to a multi-mode radiation field via a dipole-allowed transition. In the dipole
and rotating-wave approximation, the generic Hamiltonian for such a system is given by a
Hamiltonian of the form (cf. Eq. (2.4) and Chaps. 1–2 for details)

H =
∑

nk

ωnka
†
nkank +

Ω

2
σz +

∑

nk

(
Vnkankσ

+ + V ∗nka
†
nkσ

−
)
. (6.1)

The corresponding real-space formulation according to Eq. (2.5) reads

H =
∑

nrr′

Jnrr′a
†
nr anr′ +

Ω

2
σz +

∑

nr

(
Gnranrσ

+ +G∗nra
†
nrσ
−
)
. (6.2)
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As discussed in detail in Chaps. 1 and 2, these two Hamiltonians are equivalent and connected
via a Fourier lattice transform (cf. Eqs. (2.6)–(2.8b)).

In the following, I use the initial condition of an excited atom and the radiation field being
in its vacuum state (cf. Eq. (2.27)), i. e.,

|Ψ(0)〉 = |0, ↑〉 . (6.3)

Since a single two-level system is a single-photon source and the Hamiltonians (6.1) and (6.2)
conserve the total number of excitations, the problem of spontaneous emission is a single-
particle problem. Hence, the total state vector of the combined system of atom and field
modes can be written in the general form

|Ψ(t)〉 =
∑

nk

gnk(t)a†nk|0, ↓〉+ e(t)
∣∣0, ↑

〉
, (6.4)

where gnk(t) are the wave function amplitudes (in k-space) of the radiation field and e(t) is
the probability amplitude of finding the atom in its excited state. Correspondingly,

|Ψ(t)〉 =
∑

nr

ϕnr(t)a
†
nr|0, ↓〉+ e(t)

∣∣0, ↑
〉

(6.5)

is the form of the state vector after a Fourier lattice transform was applied (cf. Chap. 2 for
details).

6.2.2 Formal Solution

In the interaction picture, the solution of the time-dependent Schrödinger equation with
Hamiltonian (6.1) and state (6.4) can be written as [184, 188]

d

dt
e(t) = −

t∫

0

dt′K(t− t′)e(t′) . (6.6)

In this integro-differential equation,

K(τ) = θ(τ)
∑

nk

∣∣Vnk
∣∣2 e−i(εnk−Ω)τ (6.7)

is a time-delay Green’s function (memory kernel) which accounts for all back-action effects
on the atomic excitation due to the surrounding medium. The kernel can be calculated
analytically for a few simplified situations (cf. Sec. 6.3.2).

However, already at this stage, one can see from Eq. (6.6) that true exponential decay
occurs if and only if K(τ) = (Γ/2) δ(τ). If the memory kernel decays on a time scale which
is faster than all other time scales in the problem, one expects the emission dynamics to
be approximately exponential. Here, θ(τ) and δ(τ) are the Heaviside and the Dirac delta
function, respectively. The spontaneous emission decay rate is Γ.
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6.2.3 Physical Quantities

All relevant physical quantities which describe the radiation dynamics can be calculated from
the state vector |Ψ(t)〉. Here, I briefly review and adapt these quantities as introduced in
Chap. 1. Section 1.3.3 provides further details. In Sec. 6.3, the band indices are suppressed
for the single-band model.

Occupation Numbers and Correlation Functions

The occupation of the excited atomic state as a function of time according to Eq. (1.86) is
determined via

〈σ+σ−〉(t) =
1

2

(
〈σz〉(t) + 1

)
, (6.8)

for which 0 ≤ 〈σ+σ−〉(t) ≤ 1 holds.

According to Eq. (1.87), field–field correlation functions are defined as

Cff
nr n′r′(t, t

′) = 〈a†nr(t)an′r′(t′)〉 . (6.9)

In this chapter, I only investigate temporal field–field correlation functions for n = n′ and
r = r′ = R0. Since the problem of spontaneous emission is a single-particle problem, higher
order correlation functions such as g(2) are identical to zero. By the same token, atom–field
correlation functions are obtained via (cf. Eq. (1.89))

Caf
nr(t, t

′) = 〈σ+(t)anr(t
′)〉 . (6.10)

In this chapter, I only consider atom–field correlations in the unit cell of the atom.

Output Spectrum

In line with Eq. (1.88), the contribution to the output spectrum of band n recorded in unit
cell r reads

Snr(ω) =

∞∫

−∞

dτeiωτ 〈a†nr(t+ τ)anr(t)〉

=

∞∫

−∞

dτeiωτCff
nrnr(t+ τ, t) . (6.11)

Using the general form (6.5) for the state vector yields

Cff
nr nr(t+ τ, t) = ϕ∗nr(t+ τ) · ϕnr(t) (6.12)
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with which one arrives at

Snr(ω) =

∞∫

−∞

dτeiωτϕ∗nr(t+ τ)ϕnr(t)

=

∣∣∣∣∣∣∣

∞∫

−∞

dτeiωτϕnr(τ)

∣∣∣∣∣∣∣

2

=
∣∣ϕ̃nr(ω)

∣∣2 . (6.13)

Here, I applied the Wiener-Khintchine theorem in order to relate the Fourier transform of
the temporal cross correlation function of a field to its power spectrum [99]. This procedure
is only valid for a stationary process. However, as already mentioned in Sec. 1.3.3, Snr(ω)
actually still depends on one time argument and is the spectrogram rather than the spectrum.
Strictly speaking, spontaneous emission does not represent a stationary process. Nonetheless,
in the single-particle case, Eq. (6.13) is just given by the Fourier transform of the photonic
wave function, Snr(ω) = |ϕ̃nr(ω)|2, which is a reasonable definition for a spectrum.

6.2.4 Comments on a Semiclassical Treatment

Radiation dynamics can in principle also be studied in a semiclassical approach according to
the Maxwell-Bloch equations [107]. Here, I briefly comment on the peculiarities occurring
in the context of spontaneous emission of a single-photon emitter as studied in this chapter.

In a semiclassical theory, an ensemble of two-level systems is effectively described as a single
spin whose equations of motion are given by the optical Bloch equations [107]. In turn, they
are driven by the classical electromagnetic field which propagates according to Maxwell’s
equations. The central approximation in the Maxwell-Bloch theory is a factorization of
radiation field and atomic operators, i. e.,

〈σ+ak〉 ≈ 〈σ+〉〈ak〉 . (6.14)

In other words, atom–field correlations are neglected. The calculations presented in the
preceding sections, however, confirm non-zero correlators (6.10) and, for a Fock state of the
form (6.4), the expectation values do not factorize. In this chapter, I do not describe the
dynamics of the two-level system in terms of a reduced density matrix for the atom. Hence,
I do not refer to the usual picture of the Bloch sphere. Since I treat the electromagnetic
field modes as part of the system rather than as passive reservoir degrees of freedom, the
expectation values

〈σ+〉 = 〈σ−〉 = 〈a†k〉 = 〈ak〉 = 0 (6.15)

vanish for a Fock state of the form (6.4).
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6.3 Emission Dynamic in a One-Dimensional System

In this section, I investigate spontaneous emission in the context of a one-dimensional model
continuum of modes. This model—a two-level atom in a tight-binding waveguide—exhibits
atom–photon bound states (cf. Chap. 3) which can lead to non-Markovian behavior [184,
188].

6.3.1 Formulation

The Hamiltonian for a one-dimensional lattice with nearest-neighbor coupling J and a local
atom–photon coupling V reads (cf. Chaps. 2–4 and Eq. (6.2))

H = −J
∑

x

(
a†x+1ax + a†xax+1

)
+

Ω

2
σz + V

(
σ+ax0 + a†x0σ

−
)
, (6.16)

where Ω is the transition energy of the two-level system. The photonic dispersion relation of
the tight-binding lattice is εk = −2J cos(k), where k ∈ [−π, π] (cf. Fig. 6.1). Dimensionless
units according to Appendix A are employed throughout this section.

6.3.2 Density of States and Memory Kernel

For the evaluation of the time-delay Green’s function, I rewrite Eq. (6.7) according to

K(τ) = θ(τ)
∑

k

∣∣Vk
∣∣2 e−i(εk−Ω)τ

=

∞∫

−∞

dω θ(τ)
∑

k

V 2

N
e−i(ε−Ω)τδ(ω − εk)

= θ(τ)V 2eiΩτ

∞∫

−∞

dω N (ω)e−iωτ , (6.17)

where I used the definition N (ω) = 1
N

∑
k δ(ω − εk) of the density of states1. Here, the

atom–photon coupling in momentum space is Vk = V/
√
N , where N is the number of unit

cells. The density of states as shown in Fig. 6.1 can be calculated analytically [93], yielding

N (ω) =
1

2πJ

θ(ω + 2J)θ(2J − ω)√
1−

(
ω/2J

)2 . (6.18)

1This definition should be understood in the limit where k is quasi-continuous and the sum can be replaced
by an integral (cf. Ref. [93]).

103



6 Spontaneous Emission of a Single-Photon Emitter in a Structured Continuum of Modes

-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

k [π]

ǫ k
[J
]

N
(ω

)

Figure 6.1: Cosine dispersion εk = −2J cos(k) and corresponding density of
states N (ω).

Inserting Eq. (6.18) into Eq. (6.17) results in (cf. Appendix E)

K(τ) = θ(τ)V 2eiΩτJ0(2Jτ) , (6.19)

where J0 signifies the zeroth order Bessel function of first kind. The asymptotic behavior of
the Bessel function for Jτ � 1 is

K(τ) ≈ θ(τ)
V 2

√
πJτ

eiΩτ cos(2Jτ − π

4
) . (6.20)

Hence, the memory kernel can decay very slowly with respect to time, indicating long-time
correlations between atom and field.

An important scale in the system described by Hamiltonian (6.16) is the bandwidth 4J
of the dispersion relation. If J exceeds all other scales in the system (such as V and Ω), the
band edges at energies ±2J become unimportant. In that case, one expects the system to
behave like a system with a one-dimensional linear dispersion relation without cutoff. The
memory kernel corresponding to a dispersion relation εk = c|k| with photon velocity c takes
the form (cf. Appendix E)

K(τ) =
V 2

c
δ(τ) . (6.21)

This kernel represents an exponential decay with a rate Γ = 2V 2/c. In order to relate this
result to the scales of the tight-binding system, one has to identify the velocity scale c.
To this end, I consider the magnitude of the group velocity vg of the cosine dispersion2 at
k = ±π/2, i. e., |vg| = |2J sin(π/2)| = 2J . The cosine-dispersion relation yields the best
approximation to a linear dispersion relation at k = ±π/2. Hence, I identify c→ 2J so that

2For simplicity, I assume a so-called right-handed dispersion relation with J > 0. However, the argument
could also be modified for J < 0.

104



6.3 Emission Dynamic in a One-Dimensional System

0 50 100 150 200 250

0.20

0.40

0.60

0.80

1.00
m

t
[
J−1

]

〈σ
+
σ
−
〉 Ω = 2.70J

Ω = 2.24J
Ω = 2.10J
Ω = 2.00J
Ω = 1.96J
Ω = 1.80J
Ω = 1.50J
Ω = 1.00J
Ω = 0.70J
Ω = 0.00J

Figure 6.2: Time evolution of the occupation of the excited atomic level 〈σ+σ−〉 for
an atom–photon coupling strength V = 0.2J and different atomic transition energies Ω.
For energies deep inside the band (solid black, blue and red line) the emission dynamics is
exponential. When approaching the upper band edge, memory effects become more and
more pronounced, resulting in self-induced Rabi oscillations and a fractional long-time
excitation of the atom.

the decay rate becomes Γ = V 2/J . The proportionality Γ ∝ V 2 is also consistent with a
perturbative treatment according to Fermi’s golden rule.

When the memory kernel is of the form (6.21) or it has the property that it decays on
a time scale much smaller than all other time scales in the system, exponential or nearly
exponential decay is observed. Such kind of Markovian dynamics gives rise to the Purcell
effect [177], i. e., a modification of the spontaneous emission rate. In the following, I refer to
the regime in which K(τ) ≈ (Γ/2) δ(τ) holds as the “Purcell regime”.

6.3.3 Emission Dynamics in the Lossless Case

Before I systematically investigate the influence of several loss mechanisms on the emission
dynamics, I focus on the lossless case. In the following, I apply the numerical scheme outlined
in Chap. 2 to a system of N = 999 lattice sites. The atom couples to site x0 = 500, which
is in the middle of the chain.

Influence of the Atomic Transition Energy and the Atom–Photon Coupling Strength

Figure 6.2 displays the time evolution of the excited atomic state for an atom–photon cou-
pling strength V = 0.2J and different atomic transition energies Ω below (|Ω| < 2J) and
above (|Ω| > 2J) the band edges (cf. Fig. 6.1). For an atomic transition energy in the middle
of the band (Ω = 0) and weak coupling (V � J), the emission dynamics is characterized by
an exponential decay with a rate Γ = V 2/J (Fig. 6.3(a)). As the distance to a band edge is
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Figure 6.3: Time evolution of the occupation of the excited atomic level 〈σ+σ−〉 for
different atom–photon coupling strengths V .
(a) The atomic transition energy Ω = 0 is in the middle of the band. As long as the
coupling strength V is small compared to the energy scale J , an exponential decay with
a rate Γ = V 2/J is a good description (black, blue and red curves). The values of Γ
were obtained by an exponential fit. With larger V , the influence of the dispersion
relation’s band edges gives rise to a qualitative modification of the exponential decay
(wobbles in green and orange curves). In that case, an exponential fit is not a valid
description. (b) The atomic transition energy Ω = 2.1J lies above the upper band edge.
Here, the short-time dynamics can still be understood as the onset of an exponential
decay. However, the photon is reabsorbed due to strong Bragg scattering so that the
atom develops a memory, resulting in self-induced Rabi oscillations whose frequencies
depend on the coupling strength V .

slowly decreased, e. g., Ω = 0.7J and Ω = J in Fig. 6.2, the decay rate increases because the
density of states increases (cf. Fig. 6.1). In this regime, the dynamics can be explained in
terms of the Purcell effect, which is purely Markovian. However, if one further approaches
the band edge (Ω = 1.5J and Ω = 1.8J in Fig. 6.2), the occupation of the excited atomic
level becomes non-exponential until a finite atomic excitation remains in the long-time limit
(Ω = 1.96J until Ω = 2.7J in Fig. 6.2). This non-Markovian behavior can be traced back
to the excitation of a polaritonic atom–photon bound state (cf. Chap. 3). The deeper the
atomic transition energy lies inside the band gap, the higher is the fractional excitation and
the faster are the oscillations of the latter. In addition to this, the following intuitive pictorial
description can be useful [39]. The excited atom emits a photon which is back-reflected to
the atom due to Bragg scattering. It gets reabsorbed and the emission process starts again
so that the atom “develops a memory” of its previous state.

As mentioned before, V determines the spontaneous emission rate in the “Purcell regime”

106
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(Fig. 6.3(a)). The influence of the coupling strength in the non-Markovian regime is shown
in Fig. 6.3(b). An increase of the atom–photon coupling V results in faster oscillations,
which can be qualitatively understood in terms of self-induced vacuum Rabi oscillations
whose frequencies depend on V . Since it takes a while for the photon to be reabsorbed, the
short-time dynamics can still be understood as the onset of an exponential decay. Therefore,
the occupation of the excited atomic level decays faster as V is increased, corresponding to
an enhancement of the decay rate Γ.

Spectra

To complement the picture of the radiation dynamics in the lossless case, I investigate the
output spectrum (cf. Eq. (6.13)). Figure 6.4(a) displays the spectrum recorded in the unit
cell of the atom for a fixed coupling strength V = 0.3J and different atomic transition
energies Ω inside the photonic band. As long as Ω is sufficiently far detuned from the band
edges, the spectrum has a Lorentzian lineshape with a width determined by the rate Γ ∝ V 2.
In this “Purcell regime”, the natural atomic lineshape is simply renormalized with respect to
vacuum. However, the shape of a spectrum and its features are always a combination of the
emitter and the dispersion relation of the modes it is coupled to. For instance, this becomes
clear for transition energies near a band edge, e. g., for Ω = 1.5J and Ω = 1.8J in Fig. 6.4(a).
The line shape gradually becomes asymmetric and exhibits a tail in the direction of the band
edge until it finally reaches the energy of the polaritonic atom–photon bound state outside
the band. Since this bound state represents a single discrete level, the contribution to the
spectrum is a delta function [93]. It can be resolved up to the spectral resolution given by
2π/Ttot, where Ttot is the total recording time. In order to obtain smooth spectra, I increased
the system size to N = 9999 lattice sites and the total simulation time by a factor of 10.

At first sight, it seems to be astonishing that one is able to record spectral information
from the band gap of the corresponding infinite system. However, the emission spectrum is
position dependent. In Figs. 6.4(a) and 6.4(b), the spectrum is recorded in the unit cell of the
atom, i. e., in the direct vicinity of the spatially confined atom–photon bound state. Hence,
the spectral components of the photonic wave packet which undergoes self-induced Rabi
oscillations can be resolved. When the distance between detector and emitter is increased,
the spectral components originating from the band gap diminish (Fig. 6.5). Nonetheless, an
asymmetry in the lineshape remains, which is the signature for the underlying non-Markovian
emission dynamics.

Field–Field and Atom–Field Correlations

To conclude the dynamics in the lossless case, I study the relevant temporal field–field and
atom–field correlation functions (6.9) and (6.10). Figure 6.6(a) displays the magnitude of
the temporal correlation function between the atom and the atom’s unit cell for parameters
from the “Purcell regime”. In that case, a decay on a scale determined by the lifetime
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Figure 6.4: Output spectrum recorded in the unit cell of the atom for a coupling
strength V = 0.3J and different atomic transition energies Ω.
(a) The atomic transition energies Ω are all inside the photonic band. In the “Pur-
cell regime”, the lineshape is Lorentzian, whereas it becomes asymmetric in the non-
Markovian regime close to the band edge. The spectral components of the atom–photon
bound state give delta peaks near the upper and lower band edges (±2J). In (b), the
atomic transition energies are in- and outside the photonic band. Because of the different
scale when compared to (a), in-band contributions are not visible in this plot.
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Figure 6.5: Output spectrum for V = 0.3J and Ω = 1.8J recorded for different dis-
tances ∆x between atom and detector.
While the spectral information of the atom–photon bound state strongly contributes to
the emission spectrum in the emitter’s unit cell (black curve), only the spectral infor-
mation from within the band remains for a larger distance from the atom (red curve).
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Figure 6.6: Magnitude of the temporal atom–field (|Caf
x0(t, t′)|) and field–field

(|Cff
x0x0(t, t′)|) correlation functions according to Eqs. (6.10) and (6.9) in the unit cell x0

of the atom.
In (a) and (b), V = 0.3J and Ω = 0 are parameters from the “Purcell regime”. The
correlation functions decay on a time scale set by Γ−1 = J/V 2 (dashed line). Hence, the
emission dynamics is Markovian. Note the different color scale compared to (c) and (d).
In (c) and (d), the parameters V = 0.3J and Ω = 2.0J are from the non-Markovian
regime. The emission dynamics is characterized by long-time correlations which last
much longer than the scale set by Γ−1. This renders an effective treatment of the field’s
degrees of freedom by means of a Born-Markov approximation invalid.
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Γ−1 = J/V 2 is observed. This means that the emitted photonic wave packet can leave the
atom’s unit cell without being significantly back-reflected. Under such circumstances, the
photonic dispersion relation can be regarded as a featureless reservoir of bosonic modes.
Here, an approximative treatment in the spirit of a Born-Markov approximation would be
valid since the temporal correlations of the photonic operators decay sufficiently fast [104]
(Fig. 6.6(b)). In contrast to this, the situation differs dramatically for parameters from
the non-Markovian regime. Both the atom–field (Fig. 6.6(c)) and the field–field correlators
(Fig. 6.6(d)) are characterized by persistent temporal correlations.

6.3.4 Influence of an Open Waveguide

In realistic nanophotonic structures, photons may be irreversibly lost once they reach the
system’s boundaries. In the following, I choose a system with N = 149 lattice sites and
the atomic unit cell to be at x0 = 75. Absorbing boundaries according to Sec. 1.3.4 are
employed and the profile of the imaginary on-site potential is symmetric with respect to the
atom’s unit cell x0. I vary the distance ∆x from the beginning of the absorbing regions
to the emitter’s unit cell. This approximately mimics the effect of different lengths of an
open waveguide, i. e., a tight-binding chain without reflections from the boundaries. The
imaginary on-site terms used for the absorbing boundaries (cf. Eq. (1.101)) are chosen such
that the absorption rate γx grows linearly with a slope of 0.053J towards the ends of the
waveguide. As confirmed by numerical experiments, this choice practically avoids artificial
back reflections from the on-site potentials. Of course, there are spatial profiles for the
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Figure 6.7: Time evolution of the occupation of the excited atomic level 〈σ+σ−〉 for
different distances ∆x of the emitter’s lattice site to the beginning of the absorbing
boundaries (V = 0.3J and Ω = 1.98J).
When compared to the dynamics of the ideal system (dashed curve), only a few unit cells
are sufficient for the observation of non-Markovian dynamics. Note that ∆x is measured
in units of the lattice constant.
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Figure 6.8: Time evolution of the occupation of the excited atomic level under the
influence of atomic dissipation and dephasing.
(a) When compared to the ideal case (dashed curve), dissipation of T1-type superimposes
the non-Markovian dynamics with an exponential decay (V = 0.2J and Ω = 2.0J).
(b) Dephasing of T2-type destroys the correlations between atom and field, leading to a
suppression of non-Markovian dynamics (V = 0.2J and Ω = 2.4J). I used 1000 samples
in the simulation for the stochastic time evolution.

absorbing potentials which are more efficient [37]. For the scope of this chapter, the simple
linear profile is sufficient.

Figure 6.7 displays the time evolution of the occupation of the excited atomic level for
different distances ∆x of the emitter’s unit cell to the beginning of the absorbing boundaries.
For small distances, Bragg backscattering of the photonic wave packet emitted by the atom
is reduced. Thus, 〈σ+σ−〉 eventually decays to zero. However, only a few unit cells are
needed in order to observe non-Markovian dynamics.

6.3.5 Influence of Atomic Dissipation, Dephasing, and Lossy Field Modes

Radiative and non-radiative damping also results in irreversible photon loss, which reduces
the probability of the photonic wave packet to contribute to the emitter’s self-induced Rabi
oscillations. Figure 6.8(a) displays the occupation of the atom’s excited state with respect
to different non-radiative losses of T1-type. Non-radiative damping results in an exponential
decay which is superimposed with the coherent time evolution. Although dephasing—the
randomization of the phase between the atom’s ground and excited state—does not cause
photon loss, it can destroy atom–field correlations, leading to a suppression of non-Markovian
dynamics (Fig. 6.8(b)).

Finally, the degrees of freedom of the radiation field themselves can be subject to irre-
versible losses such as Rayleigh scattering into a continuum of radiative modes. I therefore
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Figure 6.9: Time evolution of the occupation of the excited atomic level for different
relaxation times T1 of the waveguide’s lattice sites (V = 0.2J and Ω = 2.1J) (the dashed
line represents the lossless case).

investigate the influence of T1-relaxation of all lattice sites, i. e., I consider a waveguide with
losses. The time evolution of the atom’s excited state population is displayed in Fig. 6.9.

6.4 Conclusion, Outlook, and Critical Discussion

In conclusion, I investigated spontaneous emission of a single-photon emitter embedded in
a structured, one-dimensional continuum of modes. Specifically, I considered a single two-
level atom in a one-dimensional tight-binding waveguide. Loss mechanisms such as atomic
dissipation, dephasing, an open waveguide, and lossy field modes were taken into account
phenomenologically by means of the quantum jump approach (cf. Sec. 1.3.4).

I demonstrated that the one-dimensional single-band model already exhibits all relevant
physical features for the occurrence of non-Markovian dynamics. In Sec. 6.3, I identified
the two distinct regimes of radiation dynamics. While the dynamics in the “Purcell regime”
can be described by spontaneous emission rates, i. e., by an exponential decay of the excited
atom, significantly different behavior occurs in the regime of non-Markovian dynamics. These
findings were related to and explained by quantities such as (spatially dependent) spectra
and correlation functions. Atomic dissipation of T1-type, absorbing boundaries, and lossy
field modes mainly result in a superimposed exponential decay. Dephasing of T2-type affects
atom–field correlations which are necessary in order to induce non-Markovianity. Hence, if
subject to loss mechanisms, the atom eventually decays to its ground state.

Future investigations might include the study of three-dimensional structures such as a
woodpile Photonic Crystal (cf. Refs. [7, 8, 195] and Sec. 1.2.2) or Photonic Crystal slab
waveguides [196, 197]. Since the underlying equations of motion for the description of a single
photon are linear, various frequency ranges could in principle be considered. However, the
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influence of finite temperatures might not be disregarded in all cases so that a proper coupling
to a bath of finite temperature can become important. Furthermore, from a theoretical point
of view, it would be highly desirable to precompute parameters such as T1 and T2 by means
of effective microscopic theories. In addition, a more sophisticated model of the emitter
beyond the two-level description can become important for state-of-the art single-photon
emitters.

Since spontaneous emission in photonic band gap media is an extensive field of research,
several issues were not addressed in this chapter. First of all, I did not compare the param-
eters I chose in Sec. 6.3 to experimental values. Even though there exist various systems
amenable to experimental investigations in the context of cavity quantum electrodynamics
(for instance, see Ref. [198]), these parameters cannot be transferred directly to problems
where an emitter is coupled to a continuum of modes rather than to a discrete level only. In
such systems, an additional energy scale becomes important—the bandwidth of the wave-
guide’s dispersion relation. Although, for instance, coupled-resonator optical waveguides are
experimentally well-characterized [11–13], I am not aware of an overall characterization of
such a system consisting of waveguide and emitter.

Besides this, the controlled excitation of a single emitter, followed by the emission and
coherent propagation of a single-photon wave packet is challenging. Even though the develop-
ment of single-photon sources is a field of research with rapid progress [199–201], experiments
with conventional sources of electromagnetic radiation are easier to control. In the context
of spontaneous emission, there is no difference between a two-level atom and a classical
harmonic oscillator since the equations of motion employed in this chapter are linear and
describe a single-particle problem3. This allows for the study of spontaneous emission in
systems such as a macroscopic woodpile Photonic Crystal in the microwave domain [195].

Furthermore, I did not relate the findings of this chapter to the description employed in
Ref. [195]. By the same token, I did not comment on the Lamb shift, nor did I explicitly
calculate the time-delay Green’s function in Sec. 6.3. These issues are beyond the scope of
this chapter since the main emphasis here was to study radiation dynamics by means of a
wave-function based method in the time domain as outlined in Chap. 2.

3If the rotating-wave approximation was not applied, the problem would not be restricted to the single-
particle sector of the Hilbert space.
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7 Chapter 7

Magnon Collisions and Magnon
Readout in One-Dimensional Spin
Chains

The dynamics of two magnons in a Heisenberg spin chain under the influence of a non-
uniform, external magnetic field is investigated by means of a numerical wave-function based
approach. The problem is formulated in terms of hard-core bosons with nearest-neighbor
interaction by virtue of a Holstein-Primakoff transformation. The external magnetic field is
localized in space such that it supports exactly one single-particle bound state. I demonstrate
how a single spin wave can be utilized to probe the existence of a localized bound state.
Specifically, I determine parameters for the efficient interaction-induced extraction of the
bound magnon. This mechanism represents the readout of a single magnon1.

7.1 Introduction

The Heisenberg model is one of the corner stones in the theoretical description of magnetism
[203] and has become indispensable in the field of condensed matter physics in general.
Besides the applicability in the context of ferromagnetism in conventional bulk materials,
the success of the Heisenberg model can (at least partly) be attributed to the wide range
of analogous physical realizations whose properties resemble those of a Heisenberg model
even though “true” magnetic interactions are absent. For example, ultra-cold atoms trapped
in optical lattices can be designed to emulate the dynamics of quantum spin systems [29],
providing the advantage of single-site addressability and optical readout. Furthermore, mo-

1The work presented in this chapter was mainly carried out during my stay at the RMIT University Mel-
bourne where I collaborated with Dr. Jared Cole. I thank Andrew Greentree and Melissa Makin for
helpful discussions and I acknowledge financial support for my stay abroad by the Karlsruhe House of
Young Scientists (KHYS). Parts of this chapter are in preparation for publication [202].
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tivated by soliton solutions obtained in the continuum limit of the classical Heisenberg model
[204, 205], spin waves actually share many properties with light pulses in optical waveguides
[26]. Moreover, the field of quantum communication represents another subfield of solid-
state based quantum technology where the Heisenberg model and variations thereof play a
central role [27]. In addition, atom–cavity arrays are believed to be another route towards
a large-scale realization of so-called quantum simulators [18] that mimic the dynamics of a
spin chain in certain limits [65, 206].

As demonstrated in Ref. [26], a time-dependent external magnetic field allows one to
deterministically transfer a single magnon in a one-dimensional Heisenberg spin chain by
storing it in the ground state of the moving potential. In this chapter, I investigate a related
aspect of such kind of systems. The analysis sheds light on the dynamics of interacting
magnons in the discrete one-dimensional Heisenberg model under the influence of a static
external potential. The results are obtained by means of the wave-function based numerical
framework outlined in Chap. 2 and Appendix C.

This chapter is organized as follows. I begin by reviewing the theoretical foundations
relevant to this chapter in Sec. 7.2. This includes the formulation of a Heisenberg Hamilto-
nian and its transformation to a form which is suitable for the subsequent considerations.
In Sec. 7.3, I introduce the exact two-body eigenstates and energies of a one-dimensional
S = 1/2-Heisenberg spin chain in the absence of an external magnetic field. I identify the
two classes of states—two-body scattering states and propagating pairs of bound magnons.
Then, in Sec. 7.4, I present the setup central to this chapter. An external potential, e. g., a
static external magnetic field, is introduced and its single-particle bound states are discussed.
I explain the initial state consisting of a spin wave impinging on a magnon which is stored
in the ground state of the external potential. The spin wave’s initial momentum is related
to the bound state energy of the potential and adjusted in such a way that the transfer of
the initial excitation to propagating magnon–magnon pairs is efficient. This extraction of
excitation from the potential is then investigated numerically in Sec. 7.5, where I also de-
termine the single-particle transport properties. The underlying physical mechanism allows
for an interaction-induced readout of a bound magnon. Finally, I conclude the chapter in
Sec. 7.6 and give a short outlook on possible future work.

7.2 Fundamentals

In this section, I formulate the Hamiltonian of a one-dimensional Heisenberg spin chain
under the influence of an external magnetic field. I then transform the Hamiltonian to a
system of interacting bosons by means of a Holstein-Primakoff transformation. The resulting
Hamiltonian is exact in the single- and two-excitation subspace.
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7.2 Fundamentals

7.2.1 The Hamiltonian

The Heisenberg-Hamiltonian of a one-dimensional spin chain in the presence of an external
magnetic field B(r) reads2

H = −
∑

i 6=j
JijSi · Sj −

∑

i

B(ri) · Si , (7.1)

where Si = (Sxi , S
y
i , S

z
i ) is a spin operators for a spin S on lattice site i and Jij denotes the

exchange coupling between sites i and j. Throughout this chapter, I assume that there exists
a background field which imparts a uniform Zeeman shift across the chain in such a way that
thermal effects can be neglected.3 I introduce ladder operators according to S±i = Sxi ± iSyi
and assume nearest-neighbor hopping, i. e., Jij = J(δi,j+1 + δi,j−1). Then, the Hamiltonian
(in units of J) becomes

h =
H

J
= −

∑

i

(
S+
i S
−
i+1 + S−i S

+
i+1 + 2Szi S

z
i+1 + ViS

z
i

)
, (7.2)

where Vi is the magnetic field (in units of J) at lattice site i. For the remainder, lengths are
measured in units of the lattice constant a ≡ 1 (cf. Appendix A). Because the spin operators
obey the algebra

[
Szi , S

±
j

]
= ±δijS±i , (7.3a)

[
S+
i , S

−
j

]
= 2δijS

z
i , (7.3b)

they are neither bosonic nor fermionic. However, the Hamiltonian (7.2) can be transformed
to a system of bosons or fermions by means of a Holstein-Primakoff [203, 207] or a Jordan-
Wigner transformation [208, 209], respectively. The latter is only applicable for a system
with S = 1/2, whereas the Holstein-Primakoff transformation is exact for arbitrary spin S.

7.2.2 Holstein-Primakoff Transformation

Following Ref. [203], I set

Szi = S − ni , (7.4a)

S+
i =

√
2Sφ(ni)ai , (7.4b)

S−i =
√

2Sa†iφ(ni) , (7.4c)

2To be precise, the magnetic moment (which is proportional to the spin operator) couples to the magnetic
field. Here, units are chosen such that all prefactors (such as the Bohr magneton and the Landé factor)
are absorbed into the coefficients of the Hamiltonian.

3A uniform background field in z-direction just adds additional on-site terms to the Hamiltonian which do
not affect the dynamics. The strength of the background field is chosen such that the Boltzmann factor
for a given temperature is much smaller than unity.
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where ni = a†iai is the usual number operator, a†i (ai) are bosonic creation (annihilation)
operators, and

φ(ni) =

√
1− ni

2S
(7.5)

is a nonlinear operator function. The original spin algebra thus results in a system of
interacting bosons (magnons). The nonlinearity in Eq. (7.5) usually renders an analytical
and a numerical solution to the general many-body problem intractable. A common strategy
is to formally expand Eq. (7.5) in orders of the normal-ordered number operator [203], i. e.,

φ(ni) = 1−
(

1−
√

1− 1

2S

)
ni +O

(
: n2

i :
)
, (7.6)

where : . : denotes normal ordering. Usually, the so-called low-temperature approximation
〈ni〉/2S � 1 is applied and only a few lower order terms of Eq. (7.6) are taken into account.

In the following, I restrict the investigations to the dynamics of at most two magnons in
the system. Hence, terminating the expansion in Eq. (7.6) after the first order results in an
exact Hamiltonian for the single- and two-excitation subspace. Furthermore, I focus on a
chain of S = 1/2-spins. By neglecting all constant energy terms and on-site terms I arrive
at

h = −
∑

i

(
a†iai+1 + a†iai−1 + Via

†
iai + nini+1 + nini−1

−a†i+1niai − a
†
i−1niai − a

†
i+1ni+1ai − a

†
i−1ni−1ai

)
, (7.7)

which can be recast into4

h = −
∑

i

[(
a†i+1ai + a†iai+1

)(
2− ni − ni+1

)
+ 2nini+1 + Vini

]
. (7.8)

This Hamiltonian describes hard-core bosons with nearest-neighbor interaction in the pres-
ence of an external potential.

For S = 1/2, the Hamiltonian (7.2) can alternatively be mapped onto a system of fermions
on a one-dimensional tight-binding chain with nearest-neighbor interactions. However, the
underlying Jordan-Wigner transformation is nonlocal, which is inconvenient in the context
of the time-evolution of two-magnon wave packets. In this chapter, I therefore focus on the
Holstein-Primakoff approach.

4I perform an index shift and exploit the identities a†i+1niai = a†i+1aini − a†i+1ai and a†ini+1ai+1 =

a†iai+1ni+1 − a
†
iai+1.
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Figure 7.1: Eigenenergies of the two-particle scattering states (solid black lines) and
the propagating magnon–magnon bound states (dashed red line).
The black lines correspond to selected, equidistant values of the relative momentum p
(cf. Eq. (7.11)). The energies of the scattering states and the propagating magnon–
magnon bound states never cross.

7.3 Exact Two-Body Eigenstates in the Absence of an External
Potential

In the absence of an external potential (Vi = 0), the two-excitation eigenstates for the eigen-
problem (h− ε)|Ψ〉 = 0 can be calculated analytically (cf. Refs. [210, 211] and Appendix F).

The wave function for an eigenstate |Ψ〉 =
∑

x1x2
Φx1x2a

†
x1a
†
x2 |0〉 can be decomposed into

a center-of-mass wave function (coordinate c = (x1 + x2)/2, momentum K) and a wave
function in the relative coordinate (r = x1 − x2), i. e., Φx1x2 = eiKcΨr.

To form a complete basis of the two-excitation subspace, two classes of solutions need to
be considered. For both classes, Ψ0 = 0 holds because the Hamiltonian describes hard-core
bosons. There exist scattering states described by

Ψr = Ψ−r = eip|r| + ei∆Kpe−ip|r| ∀ r 6= 0 , (7.9)

where ∆Kp is the scattering phase shift given by

ei∆Kp = − εK + 2eip

εK + 2e−ip
(7.10)

and εK = −2 cos(K/2) is the dispersion relation of the center-of-mass. The relative momen-
tum is denoted by p. The eigenenergy of this two-particle state reads (cf. Fig. 7.1)

ε = εKp = εK · 2 cos(p) . (7.11)
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Magnon–magnon bound states exist with a relative wave function of the form

Ψr = Ψ−r = α|r| ∀ r 6= 0 , (7.12)

where α = −εK/2. Here, the eigenenergy is (cf. Fig. 7.1)

ε = εbound
K = −2− 1

2
ε2K . (7.13)

In the single-excitation subspace, the eigenstates are plane waves with a momentum k
and the eigenenergy is given by the dispersion relation5 of the tight-binding lattice, i. e.,
ε = ωk = −2 cos(k).

Note that by ignoring the nearest-neighbor interaction terms in Hamiltonian (7.8), the
magnon–magnon bound states disappear from the spectrum. Conversely, ignoring those
hopping terms which depend on the occupation number (last line in Eq. (7.7)) results in
modified wave functions for which Ψ0 6= 0 is allowed. Such a system does not describe hard-
core bosons anymore. Still, modified magnon–magnon bound states exist in that hypothetical
situation. Similar calculations can be found in Refs. [155, 156, 212].

7.4 Setup

In the absence of an external potential, the Hamiltonian (7.8) already exhibits an interesting
interaction-induced effect—the existence of bound magnon–magnon pairs. However, there
is no mechanism of transferring excitation from the scattering states to the bound states
or vice versa. Therefore, I introduce localized single-particle bound states by virtue of an
external potential, e. g., an external magnetic field. I exploit the discrete levels introduced
by the potential to connect the hitherto separated classes of states. In the following, I shift
the energy of the free dispersion relations such that the lowest energy (in the absence of a
potential) is zero, i. e., I set ωk → ωk + 2, εKp → εKp + 4 and εbound

K → εbound
K + 4 in the

previous expressions.

7.4.1 Bound States of the Pöschl-Teller Potential

In principle, the effects I investigate in the following do not depend on the actual spatial
profile of the external potential as long as the potential is such that it supports at least one
bound state. I therefore choose a potential for which the analytical bound-state solution is
available in the continuum limit6. One smooth potential of such kind is the Pöschl-Teller

5To avoid confusion with the two-body eigenenergies, the single-particle dispersion relation is denoted by ωk
(instead of εk as in previous chapters).

6The continuum limit corresponds to the limit in which the lattice constant goes to zero while the number
of lattice points goes to infinity, whilst keeping the length of the system constant. In this limit, the
tight-binding dispersion relation becomes (leading order in the lattice constant) ωk = −2 cos(k) + 2 =
−2(1 − 1

2
k2 + . . . ) + 2 → k2. This is the dispersion relation of a massive particle with mass m = 1/2.

Note that dimensionless units according to Appendix A are employed, masking the lattice constant.

120



7.4 Setup

potential [213–215] with

V (x) = −B0sech2

(
x− x′
w

)
, (7.14)

where B0 is the depth, w the width, and x′ the center of the potential.
According to Ref. [215] and adapted to the notation and parameters of this chapter, the

bound state energies read

EBS
n = − 1

4w2

[
−(1 + 2n) +

√
1 + 4B0w2

]2
. (7.15)

The bound states are labeled by n = 0, 1, 2, . . . , nmax. Since EBS
n < 0 has to hold, there is

only a finite number of supported bound states. To facilitate the discussion in the following, I
restrict the discussion to the case where the potential supports exactly one bound state. The
condition EBS

nmax
= 0 with nmax = 1 yields w =

√
2/B0. In the discrete system, the Pöschl-

Teller potential is only defined at the lattice sites, i. e., Vx = −B0sech2(
√
B0/2 (x − x′)).

For the remainder of this chapter, I choose a finite system with N lattice sites where the
potential is located at site x′ = N/2 (N is even).

7.4.2 Initial States

In all discussions below, I choose the initial state of the system to be a two-particle state
which is a symmetrized product of single-particle wave functions according to

∣∣Ψ
〉

=
∑

x1x2

Φx1x2a
†
x1a
†
x2 |0〉 , (7.16a)

Φx1x2 =
1√
2

(
ϕx1χx2 + ϕx2χx1

)
. (7.16b)

Here,

ϕx ∝ e−
(x−x0)

2

2s2 eik0x (7.17)

is a single-particle Gaussian wave function—a spin wave—with initial center x0, width s,
and carrier momentum k0. The ground-state wave function of the Pöschl-Teller potential is
denoted by χx and is obtained by means of an exact numerical diagonalization of the finite
system in the single-excitation subspace. The incoming spin wave is launched from the left
hand side of the potential with a carrier momentum k0 > 0. A schematic sketch of the setup
with two excitations is depicted in Fig. 7.2.

The goal in the following is to extract as much excitation as possible from the “stored”
ground state wave function and to transfer it to propagating two-particle magnon–magnon
bound states. To this end, the overlap of the initial state with the potential target states in
the Hilbert space needs to be maximized. Alternatively, the situation where the stored
excitation is transferred to the two-particle scattering states could also be investigated.
However, this issue is not addressed in this chapter.
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x'x0

k0

Figure 7.2: Schematic sketch of the setup.
The Pöschl-Teller potential (indicated by the dashed violet curve, centered around lattice
site x′) is initialized with the single-particle ground state wave function (red curve). A
spin wave in the form of a Gaussian wave packet (black curve, carrier wavenumber k0,
centered around x0) is launched towards the potential.

7.4.3 Parameters for Maximized Overlap

In a first step, I obtain a relation between the single-particle input momentum k0 and the
two-particle center-of-mass output momentum K as a function of the bound-state energy
b < 0 of the potential. To this end, I consider global energy conservation. For the transfer of
the initial excitation to magnon–magnon bound states (cf. Eq. (7.13)), energy conservation
yields

ωk0 + b = εbound
K , (7.18a)

−2 cos(k0) + 2 + b = −2− 1

2

(
−2 cos(

K

2
)

)2

+ 4 , (7.18b)

which results in

K = 2 arccos


±

√
cos(k0)− b

2


 . (7.19)

Note that condition (7.19) is only defined when |
√

cos(k0)− b/2| ≤ 1, which is already a
weak constraint for possible combinations of ground state energies and input momenta.

Similarly, the transfer of excitation to the scattering states (cf. Eq. (7.11)) requires

ωk0 + b = εKp , (7.20a)

−2 cos(k0) + 2 + b = −4 cos(
K

2
) cos(p) + 4 , (7.20b)

so that

K = 2 arccos


 1

2 cos(p)

(
cos(k0) + 1− b

2

)
 . (7.21)
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Note that Eq. (7.21) depends on the relative momentum p of the two-body scattering states
to which the excitation is transferred.

In order to maximize the overlap of the initial state with the target states, I enforce the
magnitudes of the center-of-mass momenta before and after scattering to be equal, i. e.,

∣∣k0 + 0
∣∣ =

∣∣K
∣∣ . (7.22)

Then, I arrive at

k0 = 2 arcsin



√
− b

2


 (7.23)

for the transfer of the initial excitation to magnon–magnon bound states (cf. Eq. (7.19)),
whereas I need to choose

k0 = 2 arccos

[
1

2

(
cos(p)±

√
b+ cos2(p)

)]
(7.24)

in the case of the scattering states (cf. Eq. (7.21)). In Eqs. (7.23) and (7.24), I only accounted
for positive initial momenta k0 so that the initial wave packet is a right-moving spin wave.
These equations determine the initial momentum of the incoming spin wave as a function
of the bound state energy of the potential. Note that −2 ≤ b < 0 holds according to condi-
tion (7.23). As an estimate, the bound state energy can be approximated by EBS

0 = −B0/2,
which is only exact in the continuum limit [215]. In the numerical simulations, I use the
exact ground state energy b of the potential in the finite system (cf. Fig. 7.3).

As mentioned before, I focus on the transfer of the initial excitation to the magnon–
magnon bound states. I therefore use Eq. (7.23) to initialize the momentum of the incoming
spin wave. In order to be sure that the overlap with the scattering states does not seriously
affect the transfer to bound magnon–magnon pairs, I equate Eqs. (7.23) and (7.24), yielding

cos(p) =
1

2
√

2

4 + b√
2 + b

. (7.25)

Here, a real-valued solution for the relative momentum p exists only for b = 0, i. e., in the
absence of a potential. Hence, the conditions (7.23) and (7.24) are incompatible. After
scattering, all excitation is therefore either transferred to magnon–magnon bound states or
remains in the form of a scattered spin wave and a localized excitation in the potential.

7.5 Dynamics

In the following, I study the wave packet dynamics with the help of the numerical framework
developed in the context of few-photon transport (cf. Chap. 2, Appendix C, and Refs. [61, 62,
108]). All simulations are performed for a system with N = 400 lattice sites and the initial
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Figure 7.3: Ground state energy of the Pöschl-Teller potential as a function of the
potential depth B0 (w =

√
2/B0).

The solid black line corresponds to values obtained by an exact numerical diagonalization
of the discrete system with N = 400 lattice sites. The dashed blue line refers to the
analytical result for the continuum case where b = −B0/2. Deviations occur when the
potential is narrow, i. e., its width is comparable to or smaller than the lattice spacing
(which is unity here). The green dashed line shows the lower bound for allowed bound
state energies as imposed by constraint (7.23).

condition (7.16) with parameters as described in Secs. 7.4.2 and 7.4.3. I choose x0 = 36 as
the initial center of the spin wave. A width of s = 12 ensures that the wave packet’s width in
momentum space only covers a small spectral window when compared to the full bandwidth
of the single-particle cosine-dispersion relation (which is 4 in units of J).

7.5.1 Single-Particle Transmittance

So far, I only discussed the effect of the external potential in terms of the existence of an ad-
ditional discrete level—the bound state. However, the potential also affects the two-particle
eigenstates discussed in Sec. 7.3. In general, incoming plane waves are partly reflected and
partly transmitted. In order to better understand the two-particle dynamics, I first obtain
the transmission characteristics for a single spin wave impinging on the empty Pöschl-Teller
potential. Interestingly, the Pöschl-Teller potential belongs to a class of reflectionless po-
tentials [216]. However, the property of unity transmittance only exists in the continuous
system for waves with special constraints. Since the present system is discrete and I do not
impose any special restriction on the incoming spin wave (besides being a Gaussian wave
packet with a certain carrier momentum), the potential causes non-zero reflection.

Figure 7.4 displays the transmittance Tk0(B0) through the potential. The quantity Tk0(B0)
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Figure 7.4: Single-particle transmittance through the Pöschl-Teller potential obtained
from a time-dependent transport simulation for an initial Gaussian spin wave.
The pulse parameters are s = 12 and x0 = 36 and the carrier momentum k0 and the
potential depth B0 are varied. The dashed line corresponds to pairs of B0 and k0 for
which constraint (7.23) holds.

is defined as the sum of all occupation numbers on the right hand side of the system at a
time after the wave packet passed the potential, i. e., Tk0(B0) =

∑N
i=N/2+1〈ni〉. Here, the

potential depth B0 and the input momentum k0 are varied independently. Note that the
parameter for the potential’s width is w =

√
2/B0. The dashed line in the color plot signifies

pairs of B0 and k0 for which constraint (7.23) holds. All following two-particle simulations
correspond to such pairs of B0 and k0. Hence, B0 is the only free parameter left (according
to Eq. (7.23), k0 depends on the ground state energy b which is a function of B0).

7.5.2 Interaction-Induced Extraction of the Bound-State and Transfer to
Propagating Magnon–Magnon Bound States

Now, I discuss the physical mechanism central to this chapter—the interaction-induced ex-
traction of excitation from the potential and its transfer to propagating magnon–magnon
bound states. To quantify the efficiency of extraction, it is advantageous to transform to
the number basis of the single-particle energy eigenstates (which are obtained by means of

exact numerical diagonalization). Let u
(λ)
x be the (real space) wave function of the single-

particle energy eigenstate with eigenenergy λ in the presence of the external potential, i. e.,

h
∣∣λ
〉

= λ
∣∣λ
〉

and 〈0| ax
∣∣λ
〉

= u
(λ)
x . Then, by employing the change of basis a†λ =

∑
x u

(λ)
x a†x,

125



7 Magnon Collisions and Magnon Readout in One-Dimensional Spin Chains

the quantity

〈nλ〉 = 〈a†λaλ〉 =
∑

xx′

u
(λ)
x′
∗
u(λ)
x 〈a†xax′〉 (7.26)

is the occupation of the single-particle state
∣∣λ
〉
. Consequently, the amount of extracted

excitation is given by

η = 〈nλ0〉(t = 0)− 〈nλ0〉(t = tend)

= 1− 〈nλ0〉(t = tend) . (7.27)

At the beginning of the simulation, the potential is initialized in its bound state
∣∣λ0 = b

〉
so

that 〈nλ0〉(t = 0) = 1. The time at the end of the simulation is denoted by tend, which is long
enough after the incoming spin wave scattered at the potential, but before the boundaries
of the computational domain corrupt the results (cf. Chap. 2).

Figure 7.5 displays the amount of extracted excitation from the potential as a function
of the potential depth B0. The actual shape of the curve is a result of the interplay of the
incoming spin wave’s reflected and transmitted parts (cf. Fig. 7.4) and the non-zero group-
velocity dispersion which affects the shape of the wave packet. Those regions in parameter
space where the potential induces either unity transmittance or reflectance belong to the
nonlinear regime of the cosine dispersion. In other words, the group-velocity dispersion
causes the wave packet to spread out rapidly so that its maximum is significantly decreased
when arriving at the potential. This causes an inefficient extraction of the bound state
(cf.B0 < 0.82 andB0 > 3.14 in Figs. 7.4 and 7.5). Conversely, under the constraints imposed,
those regions in parameters space where the influence of the cosine dispersion’s nonlinearity
is minimal (around k0 = π/2) are subject to both significant reflection and transmission,
resulting only in a moderate extraction efficiency. In between these two regimes, the maxima
of the extraction efficiency can be found at B0 = 0.82 and B0 = 3.14. At these points, a
single spin wave is either almost completely transmitted or reflected (cf. Fig. 7.4) whilst
the influence of the nonlinear dispersion relation is moderate. In all cases, the extraction
efficiency is smaller than unity, which is a consequence of the fact that the wave packets
experience a finite dwell time, i. e., a finite interaction time with the “stored” bound state in
the potential.

Figure 7.6 displays space-time plots of the wave packet dynamics in real space forB0 = 0.82.
In order to demonstrate the importance of the interaction terms of Hamiltonian (7.8), the
dynamics of an interaction-free tight-binding chain is also plotted for comparison. In the
latter case, the two excitations pass each other without any effect besides wave interference.
In the absence of the interaction, the spin wave passes through the potential as if it was
empty. The delay induced by the interaction terms, i. e., the presence of a magnon in the
potential, can be interpreted as a signature for an occupied potential, effectively enabling a
readout. The slopes of the “rays” leaving the potential region after scattering clearly indi-
cate that the excitation is transferred to states with different group velocities. In addition,
I display a series of “snapshots” of the transport process in Fig. 7.7.
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Figure 7.5: Amount of extracted excitation according to Eq. (7.27).
Under the constraints imposed, B0 ' 0.82 represents an optimal set of parameters.
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Figure 7.6: Space-time plot of the occupation numbers in real space (B0 = 0.82).
In the left panel, the dynamics according to Hamiltonian (7.8) is shown, whereas the
right panel corresponds to the system of an interaction-free tight-binding chain. Note the
different slopes of the “rays” after scattering, corresponding to different group velocities.
The magnon–magnon interaction induces a delay for the transmitted spin wave when
compared to the interaction-free case. In the latter, the dynamics of the spin wave is
not affected by the existence of a bound state. Thus, the delay can be interpreted as an
interaction-induced signature of the single-magnon readout.
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Figure 7.7: Expectation values of the occupation numbers in real space at different
instances of time (B0 = 0.82).
The solid black line denotes the wave packet dynamics for the full Hamiltonian (7.8),
whereas the dashed blue line refers to an interaction-free system of a tight-binding chain
(curves partially on top of each other). The delay induced by the interaction terms, i. e.,
the presence of excitation in the potential, can be utilized to decide whether or not a
magnon was stored in the potential, which represents the readout of a single magnon.
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7.6 Conclusion, Outlook, and Critical Discussion

In conclusion, I numerically analyzed the interaction-induced readout of a single magnon
stored in a potential. In essence, the localized bound state was probed with an impinging
spin wave whose parameters were adjusted in such a way that the initial excitation can be
transferred efficiently to propagating pairs of bound magnons. Specifically, I related the spin
wave’s initial momentum to the bound state energy. The width of the potential was chosen
such that it supports exactly one bound state. I furthermore determined and discussed the
extraction efficiency as a function of the potential depth. In addition, I illustrated the wave
packet dynamics in real space by monitoring the time evolution of the occupation numbers.

A variety of extensions and modifications to the work presented in this chapter can be
envisioned for future investigations. In particular, as the efficiency of the readout with a
single spin wave is less than unity, one can imagine a sequence of probe pulses to overcome
this limitation. In analogy to optics, by controlling the actual shape of the readout pulse,
it should be possible to gain further control over the extraction efficiency. In the spirit of
Ref. [26], time-dependent external fields add a novel twist to the dynamics of interacting
magnons and could open up a variety of interesting physical mechanisms. Furthermore,
engineered hopping amplitudes would allow for a perfect state transfer [27] and minimize the
effect of group-velocity dispersion. In general, more complicated scenarios involve more than
two excitations for which higher-order terms in the expansion of the operator function (7.5)
need to be taken into account. Moreover, a more realistic description of spin chain systems
needs to address the issue of decoherence, i. e., relaxation and dephasing of individual spins.

Admittedly, the realization of an integrated quantum-optical circuitry with magnons still
has to be regarded as a visionary long-term goal and a lot of issues remain to be investigated.
The study presented in this chapter did not consider a specific realization of a spin chain
and was, therefore, generic in nature. However, it remains an open question whether the
parameter regime studied here (for instance, B0 in units of J and w in units of the lattice
constant) is feasible in the context of magnon extraction. Since the potential was localized at
the length scale comparable to the lattice constant, control of the external field on a spatial
scale below the lattice constant is required. In addition, I implicitly assumed the hopping
parameters to be independent of the applied external field, which is actually only valid as
long as the orbitals entering the overlap integral which determines J do not strongly depend
on the magnetic field. Besides this, I did not comment on the actual preparation of the initial
state. The preparation of the single-excitation ground state in the Pöschl-Teller potential as
well as the controlled excitation of a single spin wave with definite carrier momentum was
not discussed. Furthermore, I did not investigate the extraction effect in the case of multiple
bound states in the potential. Moreover, the transfer of excitation to the scattering states
rather than to the magnon–magnon bound states was not addressed in this chapter.
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8 Chapter 8

Summary, Conclusion, and Outlook

Having presented the results of my studies in the preceding chapters, I would like to briefly
summarize my findings, conclude the thesis, and give an outlook on possible future studies
in the field of waveguide quantum optics.

8.1 Summary

The aim of the present thesis was to investigate problems of waveguide quantum optics
within a wave-function based framework.

To this end, I first introduced the theoretical foundations of electrodynamics in media and
quantum optics in Chap. 1. This included Maxwell’s macroscopic equations, their canoni-
cal quantization in a suitable gauge, and examples for effectively one-dimensional photonic
continua. Moreover, I discussed states of the electromagnetic field, their dynamics as well as
mechanisms of light–matter interaction and the physical observables relevant in the context
of this thesis. In addition to that, I introduced the quantum jump approach to account for
open systems.

In Chap. 2, I presented a discrete real-space formulation of the Hamiltonians as well as the
numerical framework central to this thesis—a wave-function based time-evolution scheme.

Before I turned to the main results of this thesis, I gave an introduction to the topic of
waveguide quantum optics in Chap. 3. Specifically, I reviewed the field on the basis of existing
theoretical works on a one-dimensional waveguide coupled to a single or a few emitters. I
then introduced the Hamiltonian of a tight-binding waveguide coupled to a single two-level
atom and I discussed its properties in terms of single-particle eigenstates, as well as single-
and two-photon transport. For the latter, I explicitly pointed out that the interplay of the
few-photon nonlinearity provided by the two-level atom and spatially localized atom–photon
bound states can lead to the effect of interaction-induced radiation trapping. Furthermore,
I presented a numerical study on the existence of photon–photon bound states. To complete
the introduction, I provided a brief overview of related works in which I have been involved
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but which are beyond the scope of this thesis.

In Chap. 4, I studied the Hong-Ou-Mandel effect in the context of two photons impinging
from different ends of a waveguide towards a single scatterer. From the coincidence prob-
ability of finding one photon on each end of the waveguide after scattering—i. e., from the
Hong-Ou-Mandel dip—one can identify effective photon–photon interactions as they are me-
diated by a two-level atom. In addition to that, I studied the influence of atomic dissipation
and dephasing on the Hong-Ou-Mandel dip, which can be regarded as a possible approach
for using the Hong-Ou-Mandel to probe the influences of the environment.

In Chap. 5, I investigated the transport properties of coherent and single-photon-added
coherent states in a waveguide with a side-coupled Kerr-nonlinear resonator. On the level
of coherent states, nonlinear effects such as self-induced transparency and bistability can
occur. I discussed how the pulse propagation of a single-photon-added coherent state can be
understood as a single-photon Fock state in an “alternative vacuum” provided by a coherent
state. In essence, this led to a time-dependent scattering potential on the single-photon level.
I explicitly demonstrated that this scattering potential is controlled by the coherent state
part of the composite pulse and allows for the gating of single photons.

After that, I turned to the problem of an initially excited atom in an empty one-dimensional,
structured continuum (Chap. 6). I investigated the dynamics of spontaneous emission of a
single two-level atom in a tight-binding waveguide. I identified the regimes of Markovian
and non-Markovian dynamics with the help of the time evolution of the atom’s excited state,
output spectra as well as atom–field and field–field correlation functions. In addition to that,
I accounted for several loss mechanisms such as atomic dissipation and dephasing, lossy field
modes, and an open waveguide.

In Chap. 7, I reformulated the problem of two magnons propagating in a Heisenberg
spin chain under the influence of a non-uniform, external magnetic field such that it became
amenable to the numerical wave-function based approach employed in this thesis. In essence,
a Holstein-Primakoff transformation led to a system of hard-core bosons with nearest-
neighbor interaction. I furthermore adjusted the external magnetic field such that it forms a
potential which supports exactly one single-particle bound state. I then demonstrated how
an impinging spin wave can extract a magnon which was stored in the ground state of the
external potential to form a propagating two-magnon bound state. This interaction-induced
extraction of the stored magnon can, loosely speaking, be interpreted as a readout.

8.2 Conclusion and Outlook

In conclusion, I investigated the dynamics of bosonic excitations in a one-dimensional con-
tinuum of modes—a waveguide. In particular, such a waveguide was coupled to a smaller
subsystem, e. g., a two-level atom or a nonlinear cavity, or exposed to an external poten-
tial (cf. Chap. 7). In these systems, the dynamics of few-boson states or composite pulses
(cf. Chap. 5) qualitatively differs from the single-particle case. For these problems, which
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can be analyzed in a Hilbert space of only a few particles (or, as in Chap. 5, in the basis
of coherent states and single photons), a time-dependent wave-function based approach was
proven to be well-suited.

A number of open questions leading to possible future studies can be envisioned. The
Hamiltonians studied in this thesis can be regarded as simplified but not oversimplified
model systems. A more sophisticated and detailed description could be realized with respect
to the following points.

Towards a More Detailed Physical Description

In this thesis, the waveguide was modeled as a spin-independent, single-band tight-binding
chain, leading to a cosine-dispersion relation. By including more than just nearest-neighbor
hopping terms (or, alternatively, discretizing a given dispersion relation directly in momen-
tum space) more complicated multi-band dispersion relations can be realized (cf. the studies
by J.-C. Blancon [50, 158] in Sec. 3.4). However, this refinement most likely leads to quan-
titative but not qualitative differences when compared to a tight-binding chain.

Alternatively, the level of detail in the description of the subsystems coupled to the wave-
guide could be increased. For instance, in the case of atoms, one could think of going beyond
the two- or three-level description towards multi-level atoms. Since quantum interference ef-
fects can already dramatically influence the single-particle dynamics in the case of three-level
systems (cf. the studies by C. Martens in Sec. 3.4), the inclusion of more levels may pro-
vide even more possibilities of gaining control over the transport. Moreover, going beyond
the description of atoms in terms of single-electron systems would not only allow for the
investigation of effective interactions (or correlations) between photons, but, vice versa, also
include the question of how photons may be exploited to generate an entangled or correlated
state of matter.

Besides the refinement of what one usually refers to as being “the system”, the influence of
the environment (“the reservoir”) plays a crucial role in nearly all solid-state based quantum-
optical systems. In this thesis, a first approach towards that direction was given by the
quantum jump approach by means of which I was able to account for (purely Markovian) T1-
and T2-relaxations at zero temperature. The overall spirit here was to regard the influence
of any external source of dissipation and dephasing as being detrimental to the coherent
dynamics of the system. While being true for the problems studied in this thesis, this only
represents a limited point of view. In fact, the coupling to an environment can generate so-
called“decoherence-free subspaces”[217], i. e., mixed steady states of system and environment
which are immune to dissipation and dephasing. Moreover, the influence of an environment
may even be exploited as a source for the generation of entanglement [218].

Irrespective of extensions to the coherent (and incoherent) system dynamics, different ini-
tial states could be analyzed. Throughout this thesis, all wave packets exhibited a Gaussian
envelope. However, one could imagine specially shaped and/or chirped pulses to gain coher-
ent control over the dynamics of the subsystem coupled to the waveguide. In the microwave
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domain, pulses of single-photon Fock states can be generated and coupled into networks of
waveguiding structures in a controlled way [219]. In contrast to this, many quantum-optical
experiments in an integrated setup in the optical domain still rely on (low-intensity) coher-
ent states. Therefore, the nonlinear dynamics of coherent states is very important (cf. the
studies by J. Werra [161] in Sec. 3.4).

Apart from that, the capability of accounting for Hamiltonians which are explicitly time-
dependent would allow for the investigation of systems under the influence of an external
driving field. To account for such non-equilibrium situations, the existing Krylov time in-
tegrator would have to be modified and/or replaced by a variation which does not rely on
time-independent Hamiltonians. Possible applications include, for instance, the coherent
control of atoms by the spatio-temporal profile of an external pulse or the (adiabatic) guid-
ing of excitations in a moving potential as an extension to the investigations of Chap. 7 in
the spirit of Ref. [26].

Extensions and Modifications of the Wave-Function Based Scheme

The above ideas are intertwined with and rely on the further development of the wave-
function based scheme as introduced in Chap. 2 and Appendix C.

Certainly, one of the strengths of the numerical method is that the state vector’s coefficients
from the Hilbert space of waveguide and subsystem are fully accessible, which—at least in
principle—allows for the calculation of arbitrary observables as a function of time. This
strong point is at the same time a severe limitation since the dimension of the Hilbert
space grows exponentially with the number of excitations (cf. Chap. 2). The employed
method is numerically exact in the sense that the Hilbert space is not truncated. The
exponential increase of the degrees of freedom with the excitation number, however, can
only be reduced by working in a truncated but optimized basis. Loosely speaking, one could
truncate the Hilbert space based on the level of entanglement between single-particle states
by virtue of a Schmidt decomposition [220]. This might be especially suited for the problem
of an interaction-free waveguide with only a single scatterer. Away from the scatterer, the
dynamics of few-particle wave packets is just determined by the dynamics of independent
product states of single-particle states. Only the local scatterer induces a non-separability
on states that were initially separable.

So far, the “wave function” in the numerical scheme was given by the state vector, which
evolved in time according to the Schrödinger equation. In a broader sense, one could also
envision the state vector to be replaced by a density matrix since a master equation of
Lindblad type can be recast into Schrödinger form by rearranging the entries of the density
matrix into a vector [221, 222]. Of course, when compared to a pure state of dimension N ,
a density matrix has already N2 degrees of freedom1. Still, in the subspace of only a few
excitations, the calculations should be feasible. The advantage of such an approach would be

1At this qualitative level, I disregard the fact that not all of the N2 entries of the density matrix are
independent of each other.
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the possibility to directly account for the dynamics of open systems in a single run without
the need of a stochastic quantum jump formalism.

Closing Remarks

Clearly, a lot of important and interesting issues in the field of waveguide quantum optics
have already been addressed and answered over the course of the last few years (cf. Sec. 3.2).
Nonetheless, even more tasks still need to be accomplished in order to reach a maturity which
is nearly comparable to, say, classical (computational) nanophotonics. Most importantly,
an extensive and continuous dialogue with experimental groups needs to be established.
Otherwise, waveguide quantum optics will remain to be a predominantly theoretical field of
research.
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A Appendix A

Dimensionless Units

Maxwell’s Equations and the Schrödinger equation are transformed to dimensionless units.

A.1 Maxwell’s Equations in Dimensionless Units

Maxwell’s macroscopic equations (1.1) have the property that they do not contain a fun-
damental length scale. Furthermore, for the linear constitutive relations (1.2), the field
strengths can be changed arbitrarily. These features can be exploited to rescale Maxwell’s
equations to dimensionless units. By introducing a length scale `0 and a field strength E0,
a rescaling according to

H̃ =
1√
ε0
µ0
E0

H , (A.1a)

Ẽ =
E

E0
, (A.1b)

r̃ =
r

`0
, (A.1c)

t̃ =
c

`0
t , (A.1d)

yields Maxwell’s equations in dimensionless units, i. e.,

∇× Ẽ = − ∂

∂t
B̃ , (A.2a)

∇× H̃ =
∂

∂t
D̃ , (A.2b)

∇ · D̃ = 0 , (A.2c)

∇ · B̃ = 0 , (A.2d)
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in which D̃ = D/D0 and B̃ = B/B0 with D0 = ε0E0 and B0 =
√
µ0ε0E0. The constitutive

relations in dimensionless units read

D̃ = εẼ , (A.3a)

B̃ = H̃ . (A.3b)

In these units, the speed of light is unity. In the main chapters, the tilde is dropped after
the introduction of dimensionless units.

A.2 The Schrödinger Equation in Dimensionless Units

The Schrödinger equation

i~
∂

∂t
|Ψ〉 = H|Ψ〉 (A.4)

is a linear differential equation. Introducing an energy scale J and applying the rescaling

t̃ =
J

~
t , (A.5a)

H̃ =
H

J
, (A.5b)

yields the dimensionless Schrödinger equation

i
∂

∂t̃
|Ψ〉 = H̃|Ψ〉 . (A.6)

These units are equivalent to setting ~ ≡ 1. In the main chapters, the tilde is dropped and
time is measured in units of J−1. In the case of a tight-binding waveguide, J corresponds to
the hopping amplitude. The information about length scales is contained in the Hamiltonian
and depends on the actual system. For the case of a one-dimensional lattice, the lattice
constant a serves as a fundamental length scale, which is equivalent to setting a = 1. Thus,
wavenumbers have the unit 1/a = 1. Since ~ ≡ 1, the terms “momentum” and “wavenumber”
as well as “energy” and “frequency” are used interchangeably.
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Feynman Disentangling of Operators

Following Ref. [93], the derivation leading from Eq. (1.81) to Eq. (1.82) is presented. The
procedure is known as “Feynman Disentangling of Operators”.

The concept of what is called Feynman disentangling of operators in the literature can be
found in Ref. [93] and was, for instance, applied in Ref. [95]. The goal is to calculate the

thermodynamic expectation value of the phononic displacement operator Xλ′ = e−κλ′ (b
†
λ′−bλ′ )

with respect to the free phononic Hamiltonian (cf. Eq. (1.81)). Specifically, the expression

tr
(

e−βHpXλ′(κλ′)
)

=

∞∑

n1=0

· · ·
∞∑

nN=0

〈n1 . . . nN |e−β
∑N
λ=1(ν−µ) b†

λ
b
λ e−κλ′ (b

†
λ′−bλ′ )|n1 . . . nN 〉

(B.1)
has to be calculated. For simplicity, all N phonon frequencies are assumed to be equal, i. e.,
νi = ν. Equation (B.1) factorizes into the free partition function Z0 = 1/(1 − e−β(ν−µ)),
except for mode λ′, yielding

tr
(

e−βHpXλ′(κλ′)
)

= ZN−1
0

∞∑

n=0

[
e−β(ν−µ)

]n
〈n|e−κ(b†−b)|n〉 , (B.2)

where the indices are suppressed. A crucial step is the evaluation of the matrix element

〈n|e−κ(b†−b)|n〉 = e−
κ2

2 〈n|e−κb†eκb|n〉 , (B.3)

in which the Baker-Hausdorff formula was applied. The action of the exponential on a
number state can be written as

eαb |n〉 =
∞∑

l=0

αl

l!
bl |n〉 =

n∑

l=0

αl

l!

√
n!

(n− l)!
∣∣n− l

〉
, (B.4)
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which allows one to calculate the overlap needed in Eq. (B.3), yielding

〈n|e−κ(b†−b)|n〉 = e−
κ2

2

n∑

l=0

n∑

l′=0

κl

l!

(−κ)l
′

l′!

n!√
(n− l)!(n− l′)!

〈n− l′|n− l〉

= e−
κ2

2

n∑

l=0

(−1)lκ2l

(l!)2

n!

(n− l)!

= e−
κ2

2

n∑

l=0

(−κ2)l

(l!)2

(
n

l

)

= e−
κ2

2 Ln(κ2) . (B.5)

The Ln denote Laguerre polynomials. Coming back to Eq. (B.2), an expression of the form

∞∑

n=0

znLn(x) =
e−xz/(1−z)

1− z , (B.6)

where the generating function of the Laguerre polynomials was used, has to be calculated.
Finally, Eq. (B.2) takes the form

tr
(

e−βHpX(κ)
)

= ZN−1
0 e−κ

2(gν−µ(β)+ 1
2

)eβ(ν−µ)Bν−µ(β)

with which the thermodynamic expectation value becomes

χ(κ) =
tr
(
X (κ)e−β(Hp−µN)

)

tr
(

e−β(Hp−µN)
)

= e−κ
2(Bν−µ(β)+ 1

2 . (B.7)

Bν−µ(β) = 1/(eβ(ν−µ) − 1) is the Bose-Einstein distribution function.
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C Appendix C

Numerical Details and Parameters of
the Simulations

I provide numerical details on the computational methods employed in the main chapters.
Specifically, I describe the time evolution in the context of linear and nonlinear Schrödinger
equations.

C.1 General Remarks

This appendix is organized as follows. In Sec. C.2, I summarize and explain the key elements
of the numerical time evolution of Fock States in the context of linear Schrödinger equations.
The corresponding in-house code is written in C++ and used for all simulations presented in
Chaps. 3–4 and 6–7. In Sec. C.3, I briefly give the details of the numerical time evolution
employed in Chap. 5.

Note that neither mathematical proofs of convergence nor the improvement of numerical
algorithms on the level of numerical mathematics are the focus of this thesis. I therefore
merely combined existing and well-tested “low-level” routines. The corresponding references
are provided at the end of each subsection.

C.2 Time Evolution in the Context of Linear Schrödinger
Equations

In this subsection, I describe the action of a Hamilton operator on basis states, I briefly review
the Krylov-subspace based time evolution, and I comment on the realization of stochastic
quantum jumps. Parts of this subsection are also discussed in Ref. [63].
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C.2.1 Action of the Hamiltonian on the Basis States

The current version of the in-house code is capable of simulating three excitations at max-
imum. In Chaps. 3–4 and 6–7, however, only two excitations at most are investigated. I
therefore restrict the discussion to one- and two-particle states only.

Basis States

The wave function coefficients in the Fock basis are stored in a linear array. For a single-
particle state, I use the basis vectors

|e(1)
i 〉 = a†i |0〉 . (C.1)

The expansion coefficients c
(1)
i of a single-particle state with N sites,

|Ψ(1)〉 =

N∑

i=1

c
(1)
i |e

(1)
i 〉 , (C.2)

can be addressed in a one-dimensional array via the mapping

i→ S = i . (C.3)

In the case of two excitations, I use

|e(2)
ij 〉 = a†ia

†
j |0〉 i ≥ j (C.4)

as basis vectors. These basis vectors are not normalized to unity, which has to be taken
into account when the action of the Hamiltonian is calculated. The restriction i ≥ j is a

consequence of the particles being identical. The expansion coefficients c
(2)
ij of a two-particle

state,

|Ψ(2)〉 =
N∑

i≥j

N∑

j=1

c
(2)
ij |e

(2)
ij 〉 , (C.5)

can be addressed in a one-dimensional array via

(i, j)→ S = j +
(
i− 1

)
· i

2
. (C.6)

The size of the array is N
2 ·
(
N + 1

)
(cf. Sec. 2.3.1).
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Action of Operators on the Basis States

In order to implement the action of a Hamilton operator as described in Chap. 2, the action
of the different terms which can occur needs to be considered. The action of a hopping
term a†iaj on a state can be determined as follows.

• Determine how many excitations Ni and Nj exist at site i and j, respectively.

• Stop if Nj = 0 since such states do not contribute. Decrease the number of excitations
of site j by 1 and increase it for site i by 1. (In case of a two-level atom, one needs to
additionally account for the fact that double occupation is prohibited.)

• Multiply the new state with
√

(Ni + 1) ·Nj .

On-site terms are just a special type of hopping terms. In the single-particle case, a hopping
term just swaps two entries in the array of the expansion coefficients. For two particles, each
tuple (x1, x2) describes the situation of one particle being at site x1 and another particle
being at site x2 ≤ x1. Hence, for each component (x1, x2), one first needs to determine the
set of target states {(x′1, x′2)} which in principle contribute to the hopping. They fulfill

x1 = j ≥ x2 ∧ x′1 = i ≥ x′2 ∧ x′2 = x2 ,
x1 = j ≥ x2 ∧ x′1 = x2 ∧ x′2 = i < x2 ,
x2 = j ≥ x2 ∧ x′1 = i ≥ x′2 ∧ x′2 = x1 ≤ x′1 ,
x2 = j ≥ x2 ∧ x′1 = x1 ∧ x′2 = i < x′1 .

(C.7)

Another type of terms which occurs in the Hamiltonians presented in Chap. 2 is a two-
body interaction term a†ia

†
jakal . Since it has two annihilation operators, it yields zero when

applied to a single-particle state. The action on a two-particle state can be determined as
follows.

• Determine how many excitations Ni, Nj , Nk, and Nl exist at site i, j, k, and l.

• Stop if Nk = 0 or Nl = 0 since these states do not contribute. Decrease the number of
excitations of sites k and l by 1. Increase it for site i and j by 1.

• Multiply the new state with
√

(Ni + 1) · (Nj + 1) ·Nk ·Nl.

Again, staring from a tuple (x1, x2), one needs to determine the set of target states {(x′1, x′2)}
which contribute to the interaction. The target states obey

x1 = k, x2 = l, x′1 = i, x′2 = j : k ≥ l, i ≥ j ,
x1 = l, x2 = k, x′1 = i, x′2 = j : l > k, i ≥ j ,
x1 = k, x2 = l, x′1 = j, x′2 = i : k ≥ l, j > i ,
x1 = l, x2 = k, x′1 = j, x′2 = i : l > k, j > i .

(C.8)
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C.2.2 Krylov-Subspace Based Time Evolution

The core of the numerical scheme is the time evolution of states, i. e.,

|Ψ(t)〉 = e−iH·(t−t0)|Ψ(t0)〉 . (C.9)

The state vector is propagated from its initial state at t0 to time t, using n sufficiently small,
equidistant time steps ∆t, i. e.,

t− t0 → n ·∆t . (C.10)

A proper choice of the time step ∆t is discussed later (cf. Eq. (C.15)).
Here, I only give a brief description of how the action of the operator exponential e−iH·(t−t0)

on a state |Ψ〉 can be calculated. See Refs. [109–111] for further details. For many prac-
tical purposes, the explicit calculation of the operator exponential in the eigenbasis of the
Hamiltonian is either very inconvenient or even impossible. The calculation of the matrix

e−iH·(t−t0) = Ue−iHdiag·(t−t0)U † (C.11)

relies on the diagonalization of the Hamiltonian H, i. e., Hdiag = U †HU . Diagonalizing the
full Hamiltonian can become very inefficient or even impossible once the degrees of freedom
exceed the memory available.

Luckily, the Krylov-subspace method only relies on the action of a Hamiltonian on given
basis states and does not explicitly require the Hamiltonian matrix. In other words, at no
point does one need to store the full Hamiltonian matrix and its action on basis states can
be implemented implicitly. The main idea is to project the “big” d×d matrix H̃ = −iH onto
the smaller d× l-dimensional Krylov subspace. The latter can be constructed by successive
application of the matrix H̃ on the state to be propagated Ψ0, i. e.,

Kl = span
{

Ψ0, H̃ ·Ψ0, H̃
2 ·Ψ0, . . . , H̃

l−1 ·Ψ0

}
. (C.12)

Here, only the action of H̃ on Ψ0 is required. The Krylov subspace Kl can be transformed to
an orthonormal basis {Vl} (for instance, by using the Arnoldi algorithm [109]). The system
matrix H̃ can be projected onto the Krylov subspace with the help of the matrix V , which
contains the Vl as column vectors. Specifically,

Hl = V †H̃V (C.13)

results in an upper (l+ 1)× l-dimensional Hessenberg matrix Hl. The entries of the matrix
Hl are obtained during the Arnoldi algorithm.

Finally, the time evolution of the state Ψ0 can be approximated by [109]

e∆tH̃Ψ0 ≈ ‖Ψ‖2Vle∆tHle1 . (C.14)

Here, ∆t is the time step, ‖Ψ‖2 denotes the 2-norm of vector Ψ0, and e1 signifies the first
unit vector of Vl which allows one the projection back to the“big” Hilbert space. The explicit
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C.2 Time Evolution in the Context of Linear Schrödinger Equations

calculation of the matrix exponential e∆tHl is less problematic since Hl is a dense but small
matrix when compared to H̃ and a Padé approximation [223] is usually applied.

Rigorous error bounds for approximation (C.14) are deduced in Ref. [109]. The maximal
error accumulated for a time step ∆t and a Krylov subspace of dimension l is

∥∥∥∥e∆tH̃Ψ−
∥∥Ψ
∥∥

2
Vle

∆tHle1

∥∥∥∥
2

≤ 2
∥∥Ψ
∥∥

2

e∆t‖H̃‖2

l!

(
‖H̃‖2∆t

)l
. (C.15)

Here, ‖H̃‖2 denotes the 2-norm of the matrix H̃. Equation (C.15) states that the numer-
ical error can be controlled by both the dimension of the Krylov subspace l and the time
step ∆t. Hence, one can trade off memory consumption (determined by the Krylov subspace
dimension) against CPU time (determined by the time step). See Sec. C.2.5 for the choices
of l and ∆t used in this thesis.

C.2.3 Stochastic Quantum Jumps

The deterministic part of the time evolution is carried out according to the scheme described
in Sec. C.2.2. In case the dynamics of open systems is taken into account, the decision
whether or not a quantum jump occurs is made after each time step ∆t. The general
procedure is discussed in Sec. 1.3.4 and Refs. [105, 106].

In order to draw random numbers, an open source library which generates uniformly
distributed random numbers is used (see Sec. C.2.4). If there are k competing jumps with
jump probabilities p1, p2, . . . , pk, the method of linear search [103] is utilized to select one
jump. This method works as follows.

• Subdivide the interval [0, 1] into k sub-intervals I1, I2, . . . , Ik of lengths p1, p2, . . . , pk.

• Draw a uniformly distributed random number.

• Search for the interval which contains the random number.

• Select the jump corresponding to this interval.

According to Eq. (1.97), the jump probability is proportional to the ratio of the time step
and the time scale which determines the flow of probability out of the system, e. g., the T1-
time in case of a lossy two-level atom (cf. Sec. 1.3.4). The time step needs to be adjusted such
that the jump probability is much smaller than unity [106]. Loosely speaking, the time step
then needs to be smaller than any decay time to the environment. On the other hand, the
resulting jump probability still needs to be larger than the resolution of the random number
generator. A thorough discussion of the statistical error of the quantum jump approach can
be found in Ref. [106]. See Sec. C.2.5 for the choices of the time step and the number of
samples used in this thesis.
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C Numerical Details and Parameters of the Simulations

C.2.4 Software Packages and Parameters

I use the open-source software package Expokit [224] for the Krylov-subspace based time
evolution. Specifically, the FORTRAN routines are linked to the C++-code. Expokit takes

• the Krylov subspace dimension l,

• the time step ∆t,

• the degree of the symmetric Padé approximation m,

• and the maximal error per time step according to Eq. (C.15)

as input parameters which control the numerical error. In case the desired tolerance cannot
be realized, Expokit automatically decreases the time step.

I use boost/random.hpp as a random number generator from the open-source C++ library
boost [225] (version 1.42). Various low-level linear algebra operations are performed with
the help of the free libraries BLAS [226] and LAPACK [227]. In order to import configuration
files, I utilize the software package TinyXML [228], which is an XML parser. The results of
each simulation are stored using the HDF5 format [229] (version 1.8.4). MATLAB is used for
the post-processing. For instance, Fourier transforms (cf. Chap. 6) are carried out using the
MATLAB [230] routine fft, which is based on the library FFTW [231].

C.2.5 Parameters Used in this Thesis

For all simulations in Chaps. 3–4 and 6–7, I set the Krylov subspace dimension to l = 33,
the degree of the symmetric Padé approximation to m = 6, and the maximal error per time
step to 10−14. This choice of parameters is based on numerical experiments, i. e., empirical
convergence studies.

The actual number of samples used in the stochastic time evolution is also based on
numerical experiments and is specified in the main chapters where needed. The time step in
the quantum jump approach coincides with the time step which is given as an input to the
Expokit routine. Table C.1 lists the time steps1 for the simulations presented in Chaps. 3–4
and 6–7. I provide all other parameters, e. g., system sizes, directly in the main chapters.

C.3 Time Evolution in the Context of Nonlinear Schrödinger
Equations

When compared to linear Schrödinger equations, I performed much less simulations in the
context of nonlinear Schrödinger equations in this thesis. Only the problem investigated in
Chap. 5 requires the numerical solution of a Schrödinger equation with a local nonlinearity.

1The time step is given in dimensionless units as stated in the corresponding main chapters and Appendix A.
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C.3 Time Evolution in the Context of Nonlinear Schrödinger Equations

Simulation
as shown in

time step ∆t Simulation
as shown in

time step ∆t

Fig. 3.2 0.2 Fig. 4.4 0.2
Fig. 4.5 0.2 Fig. 4.6 0.2
Fig. 4.7 0.1 Fig. 4.8 0.1
Fig. 6.2 0.1 Fig. 6.3 0.1
Fig. 6.4 0.1 Fig. 6.5 0.1
Fig. 6.6 0.1 Fig. 6.7 0.1
Fig. 6.8 0.1 Fig. 6.9 0.1
Fig. 7.4 0.1 Fig. 7.5 0.1
Fig. 7.6 0.1 Fig. 7.7 0.1

Table C.1: Time Steps ∆t used in the simulations of Chaps. 3–4 and 6–7.

For these simulations, I employed the solver ode45 of MATLAB (version 7.11.1 [230]), which is
a Runge-Kutta solver. See the MATLAB manual for further details.

The routine takes

• RelTol, the relative error tolerance which applies to all components of the solution
vector, and

• AbsTol, the absolute error tolerances which apply to the individual components of the
solution vector,

as input parameters which control the numerical accuracy.

C.3.1 Parameters Used in this Thesis

For all simulations in Chap. 5, i. e., for all results as presented in Figs. 5.3 and 5.4, I set
RelTol = AbsTol = 10−12. The wave function coefficients are saved after each time step
of ∆t = 0.1. This time step does not influence the numerical accuracy since it may be
adjusted internally to meet the desired constraints as imposed by RelTol and AbsTol.
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D Appendix D

Single-Particle Scattering Solutions
and Beam-Splitter Constraint

I present the single-particle scattering solutions for a local on-site potential and a two-level
atom in a tight-binding waveguide, respectively. Specifically, reflection and transmission
amplitudes are used to deduce the beam-splitter constraints employed in Chap. 4 and the
first-order Taylor expansion of the reflectance is discussed.

D.1 General Form of the Scattering Equation

In this section, I motivate the general form of the single-particle scattering equation for a
system of a tight-binding waveguide and a local scatterer. The waveguide is described by
the Hamiltonian (cf. Eq. (4.6))

Hleads =
∑

x

ω0a
†
xax − J

∑

x

(
a†x+1ax + a†xax+1

)
. (D.1)

The scatterer whose free dynamics is governed by the Hamiltonian Himp couples locally at
site x0 to the waveguide. The coupling Hamiltonian is of the form

Hcoup = V
(
a†x0b+ ax0b

†
)
, (D.2)

where V is the coupling strength and b and b† describe annihilation and creation operators
of the scatterer. Independent of the actual realization of the scatterer, these operators can
be assumed to be bosonic since only the single-particle sector is considered here1. The
Hamiltonian of the free scatterer, Himp, only depends on the operators b and b†.

1In the single-excitation subspace, there is no difference between bosonic, fermionic, or spin excitations.
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D Single-Particle Scattering Solutions and Beam-Splitter Constraint

A general single-particle eigenstate is of the form

|Ψ〉 =
∑

x

a†xϕx|0〉+ ψb†|0〉 . (D.3)

In order to derive the scattering states, I use the ansatz2

ϕx =





eikx + rke
−ikx x < x0

ϕx0 x = x0

tke
ikx x > x0

. (D.4)

For the scatterers investigated in Chap. 4, i. e., a local on-site potential and a local two-level
system, the eigenproblem

(
Hleads +Himp +Hcoup − E

)
|Ψ〉 = 0 (D.5)

leads to a discrete scattering equation of the form

0 =
(
ω0 − E

)
ϕx − J

(
ϕx+1 + ϕx−1

)
+ δxx0G(E)ϕx0 . (D.6)

Evaluating Eq. (D.6) at x = x0 − 1, x0, x0 + 1, x0 + 2 yields 1 + rk = tk, ϕx0 = tk, and the
eigenenergy is E = ω0 − 2J cos(k). The reflection amplitude takes the form

rk = −e−2ik
J2 −

(
ω0 − E +G(E)− Jeik

)(
ω0 − E − Je−ik

)

J2 −
(
ω0 − E +G(E)− Jeik

)(
ω0 − E − Jeik

) . (D.7)

The function G(E) depends on the actual realization of the scatterer.

D.2 Local On-Site Potential

For a local on-site potential, the Hamiltonian of the scatterer reads Himp = ga†x0ax0 , where
g is the strength of the potential. Furthermore, Hcoup = 0 since the scatterer is part of the
tight-binding chain. For convenience, I set the zero of the free waveguide’s energy in the
middle of the band, i. e., ω0 = 0. Then, the discrete scattering equation (D.6) becomes

0 = −Eϕx − J
(
ϕx+1 + ϕx−1

)
+ gϕx0δxx0 . (D.8)

Here, G(E) = g so that the reflection amplitude is

rk = − g

g − 2iJ sin(k)
. (D.9)

2This ansatz would be inappropriate in the context of bound states.
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D.3 Local Two-Level System

The corresponding transmission amplitude reads

tk = − 2J

2J + ig/ sin(k)
. (D.10)

The reflectance |rk|2 and transmittance |tk|2,

|rk|2 =
g2

g2 + 4J2 sin2(k)
, (D.11a)

|tk|2 =
4J2 sin2(k)

g2 + 4J2 sin2(k)
, (D.11b)

can be combined to deduce the beam-splitter condition |rk|2 = |tk|2 which is extensively used
in Chap. 4. Here, the beam-splitter constraint reads

g = ±2
∣∣J
∣∣ ∣∣sin(k)

∣∣ . (D.12)

In Chap. 4, the example of J > 0 and k = π/2 is investigated, which results in g = ±2J .

The derivative of the reflectance with respect to the wavenumber is

∂|rk|2
∂k

=
1

g2
|rk|4

(
−8J2 sin(k) cos(k)

)
. (D.13)

Hence, the reflectance does not change to first order around k = π/2.

D.3 Local Two-Level System

For a two-level atom embedded in the waveguide, the Hamiltonian of the free scatterer is
Hscatt = (Ω/2) σz and the coupling Hamiltonian is Hcoup = V (a†x0σ

−+ax0σ
+) (cf. Secs. 1.3.2

and 2.2.1). The derivation of the scattering states can be found in Ref. [120]. Adapted to
the notation used in this thesis, the discrete scattering equation reads

0 = −Eϕx − J
(
ϕx+1 + ϕx−1

)
+

V 2

E − Ω
ϕx0δxx0 , (D.14)

where I set ω = 0 for convenience. Here, G(E) = V 2

E−Ω so that the reflection and transmission
amplitudes are

rk =
V 2

2iJ sin(k)(−Ω− 2J cos(k))− V 2
, (D.15a)

tk =
2J sin(k)(−Ω− 2J cos(k))

2J sin(k)(−Ω− 2J cos(k)) + iV 2
. (D.15b)
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D Single-Particle Scattering Solutions and Beam-Splitter Constraint

The corresponding reflectance and transmittance are

|rk|2 =
V 4

V 4 + 4J2 sin2(k)(−2J cos(k)− Ω)2
, (D.16a)

|tk|2 =
4J2 sin2(k)(−2J cos(k)− Ω)2

V 4 + 4J2 sin2(k)(−2J cos(k)− Ω)2
. (D.16b)

The beam-splitter condition |rk|2 = |tk|2 yields

V = ±
√∣∣2J sin(ka)(−2J cos(k)− Ω)

∣∣ . (D.17)

In Chap. 4, the example of J > 0 and k = 3π/4 is investigated, which results in

V = ±
√√

2J |
√

2J − Ω|.
Here, the derivative of the reflectance with respect to the wavenumber reads

∂|rk|2
∂k

=
1

V 8
|rk|4 · 8J3 sin(k) cos(2k) . (D.18)

This expression is non-zero for k = 3π/4, i. e., the reflectance does change to first order for
wavenumbers around around k = 3π/4.
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E Appendix E

Density of States and Memory Kernel

In this appendix, I derive Eqs. (6.19) and (6.21) of Chap. 6. I calculate the memory kernel
for a two-level atom coupled to a one-dimensional cosine band in the case of constant atom–
photon coupling. Furthermore, I present the density of states for a one-dimensional linear
dispersion relation without cutoff and the corresponding memory kernel.

E.1 Memory Kernel for the One-Dimensional Cosine Band and
Constant Atom–Photon Coupling

Equation (6.19) is obtained by inserting the density of states for the one-dimensional cosine
band (cf. Eq. (6.18)),

N (ω) =
1

2πJ

θ(ω + 2J)θ(2J − ω)√
1−

(
ω/2J

)2 , (E.1)

into Eq. (6.17), yielding

K(τ) = θ(τ)
V 2

2πJ
eiΩτ

2J∫

−2J

dω
e−iωτ

√
1−

(
ω
2J

)2

= θ(τ)
V 2

π
eiΩτ

1∫

−1

dξ
e−i2Jτξ

√
1− ξ2

= θ(τ)V 2eiΩτJ0(2Jτ) , (E.2)

where J0 is the zeroth order Bessel function of first kind.
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E Density of States and Memory Kernel

E.2 Density of States for a One-Dimensional Liner Dispersion
Relation Without Cutoff

Consider a one-dimensional dispersion relation without cutoff of the form

εk = c|k| , (E.3)

where c is the photon’s velocity. The corresponding density of states reads

N (ω) =

∞∫

−∞

dkδ(ω − c|k|)

=

0∫

−∞

dk

c
δ(
ω

c
+ k) +

∞∫

0

dk

c
δ(
ω

c
− k)

=
1

c

(
θ(−ω

c
) + θ(

ω

c
)

)

=
1

c
. (E.4)

E.3 Memory Kernel for a One-Dimensional Liner Dispersion
Relation Without Cutoff and Constant Atom–Photon
Coupling

Inserting expression (E.4) into Eq. (6.17) yields the memory kernel (6.21), i. e.,

K(τ) = θ(τ)V 2eiΩτ

∞∫

−∞

dω
1

c
e−iωτ

= θ(τ)V 2eiΩτ 1

c
δ(τ)

=
V 2

c
δ(τ) . (E.5)

This memory kernel describes an exponential decay with a rate Γ = 2V 2/c (cf. Sec. 6.3.2).
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F Appendix F

Two-Body Eigenstates in a
One-Dimensional Heisenberg Spin
Chain

In this Appendix, I derive the exact two-body eigenstates of Hamiltonian (7.7) in the absence
of an external potential.

F.1 Eigenproblem and Reduction to an Effective Single-Particle
Problem

In order to solve the eigenproblem (h− ε)
∣∣Ψ
〉

= 0 with
∣∣Ψ
〉

=
∑

x1x2
Φx1x2a

†
x1a
†
x2 |0〉, the ac-

tion of the different terms in the Hamiltonian (7.7) on the basis states needs to be calculated,
i. e.,

a†xaya
†
x1a
†
x2 |0〉 =

(
δx2ya

†
xa
†
x1 + δx1ya

†
xa
†
x2

)
|0〉 , (F.1a)

a†i+1a
†
iaiaia

†
x1a
†
x2 |0〉 = 2δx1iδx2ia

†
i+1a

†
i |0〉 , (F.1b)

a†i−1a
†
iaiaia

†
x1a
†
x2 |0〉 = 2δx1iδx2ia

†
i−1a

†
i |0〉 , (F.1c)

a†i+1a
†
i+1ai+1aia

†
x1a
†
x2 |0〉 =

(
δx1iδx2i+1 + δx2iδx1i+1

)
a†i+1a

†
i+1 |0〉 , (F.1d)

a†i−1a
†
i−1ai−1aia

†
x1a
†
x2 |0〉 =

(
δx1iδx2i−1 + δx2iδx1i−1

)
a†i−1a

†
i−1 |0〉 , (F.1e)

a†xaxa
†
yaya

†
x1a
†
x2 |0〉 =

(
δx1iδx2i+1 + δx1i+1δx2i

)
a†xa
†
y |0〉 . (F.1f)
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F Two-Body Eigenstates in a One-Dimensional Heisenberg Spin Chain

Using Eqs. (F.1), the eigenproblem yields

0 = −
(
Φx1+1x2 + Φx1−1x2 + Φx1x2+1 + Φx1x2−1

)

− εΦx1x2

− 2
(
δx1x2−1 + δx1−1x2

)
Φx1x2 (F.2)

+ 2
(
δx11x2Φx1−1x2 + δx1+1x2Φx1+1x2

)

+ δx1x2
(
Φx1−1x2 + Φx1x2−1 + Φx1x2+1 + Φx1+1x2

)

for the wave function coefficients. The introduction of a center-of-mass coordinate
c ≡ (x1 + x2)/2 and a relative coordinate r ≡ x1 − x2 transforms Eq. (F.2) to

0 = −
(

Φ̃c+ 1
2
r+1 + Φ̃c− 1

2
r−1 + Φ̃c+ 1

2
r−1 + Φ̃c− 1

2
r+1

)

− εΦ̃cr

− 2
(
δr1 + δr−1

)
Φ̃cr (F.3)

+ 2

(
δr1Φ̃c− 1

2
0 + δr−1Φ̃c+ 1

2
0

)

+ δr0

(
Φ̃c− 1

2
−1 + Φ̃c− 1

2
1 + Φ̃c+ 1

2
−1 + Φ̃c+ 1

2
1

)
,

where Φ̃cr denote the wave function coefficients in the new coordinates. Next, I separate the
center-of-mass motion in order to arrive at an effective single-particle problem. The ansatz

Φ̃cr = eiKc ·Ψr Ψr = Ψ−r (F.4)

yields the single-particle problem

0 = − εK
(
Ψr+1 + Ψr−1

)

+ εΨr

+ 2Ψ1

(
δr1 + δr−1

)
(F.5)

− 2Ψ0

(
δr1e−iK

2 + δr−1eiK
2

)

+ 2Ψ1εKδr0 ,

where εK = −2 cos(K/2).

F.1.1 Scattering States

For the scattering states, I utilize the ansatz

Ψr = eip|r| + ei∆Kpe−ip|r| = Ψ−r ∀ r ≥ 1 , (F.6)
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F.1 Eigenproblem and Reduction to an Effective Single-Particle Problem

where δKp denotes the scattering phase shift. Evaluating Eq. (F.5) for r = 2, 1, 0 results in

ε = εK · 2 cos(p) , (F.7a)

Ψ0 = 0 , (F.7b)

ei∆Kp = − εK + 2eip

εK + 2e−ip
. (F.7c)

F.1.2 Magnon–Magnon Bound States

By the same token,
Ψr = α|r| = Ψ−r ∀ r ≥ 1 (F.8)

serves as an ansatz for the bound-state solution. From Eq. (F.5), I find

ε = εK ·
α2 + 1

α
= −2− 1

2
ε2K , (F.9a)

α = −1

2
εK , (F.9b)

Ψ0 = 0 . (F.9c)
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