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1

Introduction

During the phase of the deregulation of the American airline industry in the late 70s and
early 80s, established carriers were severely threatened by low-cost competitors entering
the market. These offered aggressive low prices by highly utilizing their resources and
by eliminating service features. The legacy carriers were losing market share, but could
not match prices profitably because of their higher cost structures.

At the time, flights were only about half booked. As with all services, empty seats
cannot be stored and perish at departure. In the airline industry, compared to the
high fixed costs variable costs are negligible. American Airlines realized that with
these characteristics empty seats had a marginal cost close to zero and could be sold
at highly discounted prices.

The successful response of American Airlines was to engage in price discrimination by
selling discount tickets to fill empty seats and match the aggressive prices. While at-
tracting price-sensitive customers, the discounted tickets were restricted such that they
did not appeal to the less price-sensitive business travels that continued to purchase
full-fare tickets.

However, price-sensitive leisure travels usually book far in advance. Additionally, the
discount tickets had an advance-purchase requirement. Hence, with price-sensitive
demand arriving before high-value clients, the number of discount sales had to be
limited to ensure no high-value demand was displaced. American at the time already
had a computerized reservation system in place which they utilized in order to forecast
demand and optimize the availability of discount tickets. Revenue Management (RM)
was born and Bob Crandall, former chairman of American Airlines, is usually credited
with its invention today.
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American Airlines was able to match or undercut competitors’ prices. Within months,
the low-cost pioneer People Express that had experienced an unseen upsurge and was
operating profitable was at the verge of bankruptcy. Don Burr, former CEO, attributes
the failure to react to RM policies adequately for the downfall of the company (Cross,
1997).

In light of the success of American Airlines competing low-cost competition, all major
American carriers followed and established RM policies. Smith et al. (1992) estimate
that by utilizing RM policies American Airlines generated additional $1.4 billion in
revenues over a three-year period. Today, RM practices are a crucial factor for airlines
worldwide (Pölt, 2002). Gains are estimated to be around 4-5%, which is comparable
to an airline’s profit in a good year (Talluri and Van Ryzin, 2004b).

RM has since seen much attention by researchers and practitioners and has grown to a
mature business practice with sophisticated systems in place. While airlines have long
remained the innovators in the field, many other industries today have introduced and
elaborated RM practices. Examples are hotels, restaurants, car rentals companies, TV
stations selling airtime, or energy suppliers.

One crucial assumption of RM models is the limited and fixed capacity in the short
term. If capacity was flexible in the short term, all profitable demand could be accepted
and there would be no need to restrict availability by RM measures. However, the
assumption is overly restrictive in certain industries like the airline business, where a
company sells several interchangeable capacities at the same time and only the overall
capacity is fixed. An airline offers a number of flights and operates a whole fleet of
aircraft. While the fleet and its overall capacity unquestionably is fixed in the short
term, different planes with different capacities are usually available. Hence, the capacity
of a single flight might be changed even shortly before departure. Realized demand and
better forecasts closer to departure allow to better match demand and capacity. Cost
savings flying with a smaller aircraft might well exceed additional revenues from selling
seats at bargain prices. Similarly, bus companies operate a flexible fleet and car rental
companies drive cars from one station to another to meet demand more effectively.

Other applications undoubtedly face a fixed capacity. A theater is not able to offer
more seats when demand is high. But even for hotels, one might argue that a customer
might be accommodated with a room from a competitor or a different hotel of the
same chain. When a hotel engages in overbooking and sells more rooms than there are
available in order to balance cancellations, this is usual practice to compensate booked
customers that cannot be accommodated (Ivanov, 2006, Zhechev and Todorov, 2010).

In practice, airlines have been swapping aircraft between flights for a long time — a
practice called Demand-Driven Re-Fleeting or Inclose Re-Fleeting. Berge and Hopper-
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stad (1993) report manual processes at KLM and Australian. Pastor (1999) describes
the (manual) process at Continental that is supported by simulations of different de-
mand scenarios that help assess the benefits of swapping assigned equipment. At ANA,
Oba (2007) reports that an automated system evaluates and proposes swaps to a rev-
enue manager who then decides and executes the change. The only fully automated
process is outlined in Zhao et al. (2007) at United Airlines. Zhao et al. (2007) report
yearly benefits of $5-$10 million by swaps within a limited part of the fleet. Oba (2007)
reports $1.2 million per year at ANA.

While research has evolved and provided manifold extensions to basic RM models and
important insights, the assumption of fixed capacities has remained unquestioned with
few exceptions. Berge and Hopperstad (1993) provide a first analysis of systematic
changes of capacities in simulation studies. Their results show a revenue potential of 1-
5% increases. They apply a process that can be seen as industry practice today: After
an initial equipment allocation, the booking process starts assuming fixed capacities.
At certain planning points, the assignments are re-optimized restricted by the received
bookings and using the updated demand forecasts. The process then continues with
the updated capacities. A more recent study applying similar methods and using real-
world data is the work by Frank et al. (2006). They find revenue gains of up to 2%.

The process formalized by Berge and Hopperstad (1993) allows to automate the evalua-
tion and execution of equipment changes. However, in their framework RM optimizers
do not anticipate possible changes in the future and still assume the current capacity
as being fixed. Hence, depending on the final capacity allocation, controls might be
overly or insufficiently restrictive in regards to low-value demand. Consequently, the
benefits are strongly dependent on the time span between the re-optimization points
of the assignments.

Few researchers have developed models to overcome this limitation and to anticipate
possible swaps when optimizing RM controls. De Boer (2004) extends the popular
EMSR-b heuristic. Wang and Regan (2006) develop a dynamic capacity control model.
Both works build on given probabilities for the assignment of a certain capacity. The
specification of adequate probabilities is itself challenging and problematic. Both works
approximate the probabilities by the demand probabilities. Given two flights and two
planes, the probability to assign the larger capacity to a flight is the probability of
its demand exceeding the other flight’s demand. Different valuations of the demand
and additional costs of a swap (i.e. mainly changed fixed costs of the assignment) are
ignored limiting the application to flights with the same origin and destination. Even
then, valuing the demand equally is questionable because customers value the same
flight at various times differently.
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Only Wang and Meng (2008) propose a heuristic that is able to handle various de-
mand structures with different valuations of flights. They extend a linear program
used regularly by heuristics in capacity control settings. However, their model is not
capable of including any costs that occur when changing the initial assignment either.
Applications are hence again limited to flights with the same origin and destination.

Our motivation is to overcome the limitations of the current research and to provide
optimization models that anticipate possible future changes of the capacity and that
allow for different demand structures. Also allowing costs associated with a change,
our models are not limited to flights with the same origin and destination or at least a
similar cost structure.

Additionally, none of the existing publications analyze the proposed frameworks in
comparison to an optimal policy1. Our models are used to derive optimal policies and
numerical structures found are used to find efficient algorithms and when developing
heuristic approaches. In simulations, we compare the benefits of the policies derived
through heuristics and the optimal policies.

Traditionally, RM has focused on so called capacity control models that ration supply
for various products based on the same scarce capacity. Especially during the last
decade with the gain of importance of low-cost carriers and the use of RM in new
industries a different approach has attracted increasing attention: dynamic pricing. In
a dynamic pricing setting, usually a single identical product is sold without artificial
product versioning in order to segment demand. The price of the product is set dy-
namically over the booking horizon. Demand is stipulated by setting a lower price
or discouraged by a higher price in order to match demand and capacity. The same
restrictions normally apply to tickets sold by low-cost carriers regardless of the price
the customer pays. In other industries, e.g. fashion retailing, versioning of the product
is impossible once an order has been manufactured making capacity control policies
inapplicable.

To be able to apply a dynamic pricing policy, naturally, the company must have flex-
ibility in setting the price (Talluri and Van Ryzin, 2004b). If e.g. competition limits
the ability to set prices freely, a company is more likely to apply a capacity control
approach. The requirement for price flexibility also subsumes the ability to change
prices dynamically in time at a reasonable or negligible cost. Before the Internet, set-
ting individual prices was possible but usually expensive (e.g. customized mailings
or frequent relabeling). Today, especially using the Internet as the main distribution
channel, setting prices dynamically is possible at virtually no cost, which explains the

1An optimal policy does not describe an ex-post optimal strategy, but we speak of an optimal
policy if it maximizes the expected revenues. Refer to chapter 3 for more details on optimal policies.
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increased acceptance and importance of dynamic pricing in the market. Given the
choice, i.e. when all requirements are met for capacity control or dynamic pricing, the
later is preferable (Talluri and Van Ryzin, 2004b).

Although, there has been a significant number of works dealing with dynamic pric-
ing problems, still the vast majority of the RM literature concentrates on capacity
control settings. The publications listed above dealing with possible changes of the
limited capacity exclusively cover capacity control problems. Hence, another ambition
of this work is to analyze the benefits of systematically considering changing capacity
assignments in a dynamic pricing environment.

In the airline industry, dynamic pricing is applied mainly by low-cost carriers while
legacy carriers sustain their established capacity control systems. While traditional
carriers usually operate a heterogeneous fleet with a number of different aircraft types
to meet requirements of various routes and their network structure, low-cost carriers
often concentrate on a common fleet with few or even a single type. One extreme
example is Ryanair that operates a completely homogeneous fleet of 275 Boeing 737-
800 (Ryanair, 2011a). Their point-to-point network does not comprise connecting
flights and flights are not meant to feed the demand for other legs. Not the fleet is
chosen according to the requirements of the network, but the fleet characteristics are
considered when analyzing potential new routes.

Even though capacity changes are not possible operating a common fleet, we are con-
vinced that considering possible swaps in a dynamic pricing setting is worthwhile.
There are other industries often applying dynamic pricing that have a limited flexibil-
ity in their capacities, e.g. train or bus companies. In Germany train transport has
been liberalized and new competitors have only recently announced to soon enter the
market (Schubert and Mrusek, 2009). Bus transportation still is heavily restricted,
but legislation has pronounced its intention to liberalize the market (FOCUS Online,
2011). Increased competition will stipulate RM activity in these markets. American
bus and train companies have been applying RM successfully for years. Additionally,
even in the airline industry, we believe that dynamic pricing will continue to gain im-
portance in practice and low-cost carriers might refrain from their single-type policies
converging to more service orientated carriers.

The growth experienced by low-cost carriers in Europe has started to decline in re-
cent years because the market starts to saturate (Binggeli and Pompeo, 2005). The
North American market has seen similar signs of maturity. Attracting more demand
is difficult because the no-frills services do not appeal to less price-sensitive segments.
Adding cost-efficient service features is one option to attract different demand seg-
ments. Growth by offering new routes is also challenging because few short-haul routes
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remain that have not been tapped by low-cost airlines and still yield profitable de-
mand. In fact, low-cost carriers have increasingly been adding longer flights to their
network. Offering long-distance routes, however, challenges the traditional low-cost
business model that builds upon a high utilization of aircraft with short-haul traffic.
Geographic expansion is additionally limited by fleet characteristics that determine
efficient ranges and loads. To grow further, carriers might need to add different air-
craft and might be forced to offer connections with short flights feeding long-distance
capacities. Customers will perceive the increased number of destinations by allowing
connections as an increased service level (Dunn and Dunning-Mitchell, 2011).

Hence, we expect the European market to experience some degree of assimilation in
the near future. Low-cost carriers will need to move towards traditional airlines and
to offer an increased level of service. They might offer long-distance destinations and
abandon their point-to-point network and common-fleet strategy in order to facilitate
future growth. Legacy airlines on the other side have already experienced the pressure
imposed by low-cost competition and continue to react by cutting cost and offering
bargain prices. Large carriers have established low-cost subsidiaries and integrate their
offers and networks (airliners.de, 2011). An increasing number of network carriers to-
day charges separately for service features such as additional baggage or credit card
payment. The trend already becomes evident looking at airlines that offer low fares
by cutting costs but at the same time offer higher service levels than usual low-cost
carriers. Examples of these hybrid carriers are Air Berlin or JetBlue. Air Berlin,
Germany’s second-largest airline, offers long-distance flights, connecting itineraries, a
loyalty program, and free snacks and drinks. Air Berlin is also a designated Oneworld
alliance member and offers code-shared flights (Oneworld, 2011). Many low-cost air-
lines have started to sell tickets through Global Distribution Systems (GDS), which
they had avoided in the past to save transaction fees. Other examples are Air Asia X or
Tiger Airways in Asia that offer long-distance destinations. Other carriers like Ryanair
ponder over similar offers (Clark, 2009). Table 1.1 highlights strategy differences for a
number of exemplary low-cost airlines.

In the meantime, an option to facilitate operating different capacities in order match
demand and supply more flexible while continuously exploiting the synergies of a nearly
homogeneous fleet are crew-compatible fleet families such as the Airbus A320 or Boeing
737 families. Pilots are licensed to operate any plane of the family with a single
type rating saving training and simulator costs and reducing standby requirements.
Additionally, costs of spare parts and maintenance are reduced and the airline might
be able to negotiate larger discounts when purchasing aircraft.
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Table 1.1: Comparison of major LCC characteristics (updated from Belobaba (2009a))

Southwest JetBlue AirTran easyJet Ryanair

Single aircraft type or ! % % % !

single family of aircraft
Point-to-point ticketing, % % % ! !

no connecting hubs
No labor unions, % ! % % !

lower wage rates
Single cabin service, ! ! % ! !

no premium class
No seat assignments ! % % ! !

Reduced frills for on-board % % % ! !

service (vs. legacy)
No frequent-flyer % % % ! !

loyalty program
Avoid global distribution % % % % !

systems (GDS)

1.1 Contribution

The main contribution of this work are two dynamic-programming models that allow
to set prices of several products simultaneously that use scarce capacities that might
be interchanged. One model considers two flights only, while the second extends the
scope to an arbitrary number of flight legs. We derive structures that allow for efficient
calculations of optimal policies to maximize expected revenues. Costs of allocating the
capacities are considered as well as differences of the flights regarding their demand,
willingness-to-pay, and feasible price points.

Additionally, we develop two heuristics to consider capacity changes in a dynamic pric-
ing environment. One conveys straightforward from common practice when applying
capacity control strategies. Possible changes are not anticipated in the price policy
and the capacity allocation is periodically re-optimized. The other extends a heuristic
often applied in dynamic pricing that approximates the problem by its deterministic
counterpart. Possible equipment changes do influence price policies derived with the
second heuristic. Both heuristics allow for different demand structures and different
allocation costs.

We simulate the booking process of an airline in different scenarios and test the different
policies against each other. We analyze the benefits of swapping aircraft assignments
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without and with prices reflecting possible future changes and the influence of various
parameters.

1.2 Outline

Revenue Management refers to strategies and tactics that apply price discrimination
policies. In chapter 2 we briefly introduce the principles and economic effects of price
discrimination in general. In the following chapter we outline the theory and method-
ology of Markov Decision Processes which are the theoretic basis for the developed
models.

Revenue Management itself is introduced in chapter 4. We start by outlining the
general principles, processes, and controls. Then, static and dynamic capacity control
models are described in detail before a one-leg dynamic pricing model is developed and
structures are derived.

Chapter 5 introduces the airline planning process. The fleet assignment problem is con-
sidered in more detail in order to outline the concept, existing models, and algorithms
of Demand-Driven Re-Fleeting.

The main contribution is presented in chapter 6. We develop a two-leg Demand-
Driven Re-Fleeting model in a dynamic pricing context and then generalize the model
to an arbitrary number of flights. Subsequently, two heuristics are developed. In
simulation studies the benefits of applying Demand-Driven Re-Fleeting are analyzed
and the policies derived from the heuristics are compared to the optimal policies.

We conclude with chapter 7 by summarizing the results. We additionally provide
future research opportunities and other examples than the airline industry where the
developed models and heuristics might be valuable.



2

Price Discrimination

In this chapter, we introduce the basic principles of price discrimination and their
economic effects. Price discrimination describes a pricing policy whereby a company
charges different prices to different consumer groups for the same product under the
same circumstances (Fehl, 1981, Cole, 2008). Many authors narrow the definition to
price differences not justified by a proportional difference in cost (e.g. Armstrong and
Vickers, 2001).

Discrimination is usually motivated by profit maximization and achieved by the par-
tial transfer of the consumer surplus to the producer’s profit. Other motives might
be to squeeze out competition or to enter a new market. Various policies can be ap-
plied including volume discounts, peak-load pricing, price-skimming and other forms
of intertemporal pricing, bundling, price matching, or two-part pricing.

A producer engaging in price discrimination is usually only interested in his own bene-
fits and consumers perceive the pricing strategy as benefiting only the producer. How-
ever, price discrimination in general might also bear positive welfare effects, e.g. if the
overall output is increased or capacities can be utilized more efficiently.

We start by presenting general requirements to engage in discrimination in the next
section. We then describe two different classifications of discrimination. Practical
implications and problems are outlined, before we discuss the possibilities and effects
in a competitive environment. A section briefly covering overall welfare effects and
legislative limitations concludes the chapter.
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2.1 Requirements

To introduce a discriminating pricing policy, the producer must have near monopoly
control over the supply of the product or service. Under perfect competition, a purely
price taking producer cannot discriminate prices. If the producer offers a premium price
above the market’s equilibrium, he loses all demand to his competitors. At a discounted
price he does not maximize profits. However, price discrimination policies are still
possible and found in practice under competition (c.f. e.g. Stole, 2007, Armstrong and
Vickers, 2001). Competition might restrict the producer to set prices freely and limit
him to a certain interval not to lose demand. This can also be valid for a monopolist
facing the risk of potential competition. In a competitive environment discrimination
might also be completely unprofitable even if the means to discriminate were available
to the producer (see discussion below).

In order to convert the consumer surplus into the producer’s profit, the demand function
needs to show a negative slope. Also, the demand function must be stable to the
introduction of price discrimination. Ott (1959) gives an example, where demand is
dependent on the number of prices set. The demand function becomes steeper, the
more segments are established. In the example, discrimination is not profitable and
the monopolist maximizes profits by offering only the monopoly price.

The market segments in which different prices are charged need to be mutually in-
dependent. Customers’ preferences and demand prices need to be different in the
markets. The more heterogeneous customer behavior and preferences are, the more
potential there is to exploit this heterogeneity (Talluri and Van Ryzin, 2004b). Arbi-
trage sales or demand change-over from one segment to the other must be impossible
or unprofitable. In the case of personalized services, resales are inherently not possible.
In other cases, contractual or other measures need to prevent resales. Examples are
high changing fees for a personalized airline ticket or digital rights management that
restricts usage to the consumer’s computer.

The producer needs to have the means to identify and target the consumers in each
segment separately. He must also be able to gather all information needed for the
pricing decision, e.g. to estimate the price elasticities in the submarkets. Institutional
or legal restrictions might constrain the manufacturer’s ability to engage in price dis-
crimination.
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2.2 History and Classification

Discriminating prices have a long history and first publications date back to the late
19th century. Noteworthy, the first works studied price discrimination in the trans-
portation service industry: railway tariffs (Dupuit, 1849, Lardner, 1850). Pigou (1920)
established the theoretic economic foundation in his compulsory work. He classifies
three types of price discrimination:

• First degree or perfect price discrimination is defined as the complete transfer of
the consumer surplus to the producer by charging different prices for each unit
of the product. The price for each unit is the maximum price the client is willing
to accept. Hence, no consumer surplus remains and the marginal revenue curve
coincides with the demand function. For example air cargo rates are usually
individually negotiated with freight forwarders.

• In second degree price discrimination, the producer groups demand into several
segments by individual preferences and charges each group a different price. The
demand prices are not overlapping, and hence, the groups can be ordered by
their demand prices. In the first group all clients with a demand price higher
than f1 are charged f1. The second group consists of all buyers with a demand
price f such that f1 > f ≥ f2 and f2 is charged and so forth. An example
for second degree discrimination is the pricing policy for Microsoft Windows.
Various versions are sold appealing to different consumer groups with varying
demand prices.

• In third degree discrimination, demand is clustered into groups by certain criteria,
e.g. regional factors or by marketing channel. The demand prices within the
groups can be overlapping. Of two customers in different groups with identical
willingness-to-pay one might be able to purchase while the other is declined.
Discounted student or senior fares are used to distinguish the lower-price segment
from the less elastic segments.

Figure 2.1 gives an example of how a monopolist decides on his price and output in
the case of linear demand and cost functions. In 2.1(a), he does not discriminate
prices. Then his optimal output is located at the intersection of marginal cost (MC)
and marginal revenue (MR). The shaded triangle shows the consumer surplus. In
2.1(b), the supplier applies second degree discrimination and groups demand into three
segments. The total output increases and part of the consumer surplus is transferred
to the supplier. The marginal revenue increases step-wise between the segments.
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Figure 2.1(c) shows the situation when the monopolist enters first degree discrimina-
tion. He charges a different price for each unit and always charges the maximal price the
customer is willing to accept. Hence, the consumer surplus is completely transferred to
the producer’s revenue. Note that the output in this case is equal to the output under
perfect competition at the intersection of marginal cost and the competitive price. In
comparison, only the producer’s profit increases. First degree discrimination is the
limiting case of second degree discrimination with one segment for each unit.
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Figure 2.1: Monopoly prices and output quantities with and without price discrimina-
tion. The gray shaded areas mark the consumer surplus.

To illustrate the difference between second and third degree discrimination, assume we
have a market with four buyers as given in Table 2.1. The supplier wants to sell four
units and each buyer has a demand of one unit only. For second degree discrimination
we segment by the demand price. We get two segments: client A and B are charged
$100 and client C and D are charged $250. Total revenue earned is $700 and a consumer
surplus of $300 remains.

If the producer segments by region, i.e. he applies third degree discrimination, he
charges client A and C $100 and B and D $150 each. The revenue decreases to $500
and the consumer surplus is now $500.

Table 2.1: Market Segmentation Example

Buyer Demand Price Region

A $100 West
B $150 East
C $250 West
D $500 East
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Weber (1956) constitutes another classification, which is non-overlapping with the clas-
sification by Pigou. He distinguishes agglomerative and deglomerative discrimination.
While in the former separate markets are exogenously given, in the latter the manu-
facturer artificially splits one market into different segments. Deglomerative discrimi-
nation occurs in first, second, or third degree discrimination as outlined above. Third
degree discrimination, on the other hand, can be either agglomerative or deglomera-
tive. The distinction by Weber is important because the way prices and outputs are
determined differ.

In agglomerative discrimination, the producer sets prices and his output completely
separately. Each market’s output is found at the intersection of marginal revenue and
marginal cost as in a simple monopoly (see Figures 2.2(a) and 2.2(b)). Production
cost and hence marginal cost are equal for both markets. Assuming linear demand
functions, the total output is the same if the monopolist aggregated both markets to
one (see Figure 2.2(c)). The less elastic market will be charged a higher price, while the
price decreases in the market with more elastic demand. If both markets have the same
elasticity, discrimination will not change prices or outputs. In the case of non-linear
demand functions, in a monopolistic setting, the effect of discrimination on output and
prices depends on the concavity or convexity of the demand (Varian, 1989).
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Figure 2.2: Agglomerative price discrimination. In comparison to a non-discriminating
policy, the price is lowered on the more elastic market and raised on the less elastic
market while the total output remains equal.

In practice, however, Weber’s classification is blurred and can rather be seen as dif-
ferent phases of the discrimination process (Fehl, 1981). Usually, a monopolist seeks
to split a market to enter discrimination based on differences of the willingness-to-pay,
i.e. he is engaging in deglomerative discrimination. In practice, he needs to rely on
some operative criteria that constitute the segments. Now, the prices actually need
to be based upon agglomerative discrimination as the markets are already set by the
previous phase. For that reason, especially in the English literature, usually third
degree discrimination is used synonymously with agglomerative discrimination while
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deglomerative discrimination is limited to first and second degree discrimination.

2.3 Practical Implications

While Pigou assumes the number and constitution of segments are previously deter-
mined, the major challenge in deglomerative discrimination is indeed to find the op-
timal number and composition. Ott (1959) and Lovell (1978) extend their models to
endogenously determine the number of segments. They include costs of segmentation
in their optimization models. These costs include the cost of information, the cost to
target segments independently, and the cost to keep them separate. For each segment
detailed information is required to identify the customers and to estimate their aggre-
gated demand function. If resales are not inherently infeasible, the markets costly need
to be separated and kept apart e.g. by versioning. Because the increase in revenue by
adding another segment is declining in the number of segments, if there are segmen-
tation cost, the trade-off between costs and benefits needs to determine the optimal
number of submarkets. Figure 2.3 illustrates the cost-side and benefit-side approaches
to find the optimum.
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Direct Cost
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Figure 2.3: Costs and benefits of segmentation. The optimal level of segmentation
can be found using either costs including opportunity costs or using benefits including
economies of scale. Reprinted from Cui and Choudhury (2002).

A big portion of the consumer surplus is attained with a relatively small number of
segments. Given linear demand, n− 1/n portions of the consumer surplus are gained
by establishing n submarkets. As a result, discrimination is usually performed with
a limited number of segments in practice. For that reason and practical limitations
gathering information and targeting individual buyers, first degree discrimination was
long seen as rather academic and of limited importance in practice. Additionally, Ott
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(1959) argues that even if first degree discrimination was optimal and practicable,
then, the monopolist faces a bilateral monopoly. Therefore, the monopolist will not
voluntarily weaken his position by entering the bilateral monopoly and negotiating
prices separately with each customer.

Since more than a decade now, e-commerce has greatly improved companies’ ability to
discriminate prices. In the past, targeting individual customers e.g. by personalized
physical catalogues was costly. Price updates were intricate to realize and to commu-
nicate. Today, offering individual prices through an online platform as well as price
updates can be realized at negligible cost. First degree discrimination has become fea-
sible, and hence has gained increased attention. Prices can also be updated frequently.
Brynjolfsson and Smith (2000) find that online retailers adjust prices much more often
and in much finer increments than conventional retailers. Airlines and hotels today ad-
just fares in near real-time. E-commerce eased not only the means to discriminate, but
also the collection of required information. Through a combination of log-in data and
loyalty programs, tremendous data are being collected. Using data-mining techniques,
individual preferences can be deducted and used to discriminate.

If individual consumers cannot be identified and classified, one way facilitating dis-
crimination in practice is self-selection. Self-selection describes the situation in which
individuals are given the incentive to select themselves into a segment. The product or
service is altered in a way that each variation appeals to one customer segment and the
change to another variant, i.e. segment, is discouraged. Discrimination by self-selection
needs to be distinguished from true product differentiation. The differences in cost for
each variation do not justify the price differences. An example is selling a product with
a slightly modified look under a different brand name for a different price. Airlines sell
tickets with different restrictions in the same compartment for different prices.

2.4 Discrimination in a competitive environment

Normally, a monopolist benefits from a discriminatory policy in terms of profits. In a
competitive environment, the basic principles of discriminatory prices remain the same
as outlined above. However, effects on prices and thus benefits for the supplier and
the consumers and on the overall welfare are ambiguous. Generally, if the demand is
symmetric in the sense that companies rank segments equally by their price elasticities,
the consequences are similar (Corts, 1998). In particular, discrimination leads to higher
prices for the less elastic market and respectively lower prices on the more elastic
market. In such an environment, companies benefit from discrimination. Examples
for symmetric rankings are student fares or airline ticket restrictions tailored to leisure
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travelers. Both segments are usually conceived as low-price groups.

If firms conceive the segments differently, one might price aggressively in a market
another company considers high-value provoking competitive responses. In that case,
discrimination might lead to all-out competition characterized by lower prices for all
consumers (Corts, 1998). Companies then would be better off applying a uniform
pricing strategy. However, if a company can increase profits by discrimination given
fixed competitors’ pricing policies, firms will be locked-in in a prisoner’s dilemma where
discrimination is a dominant strategy.

Ulph and Vulkan (2000, 2001) distinguish two major effects: the enhanced surplus ex-
traction effect arises because firms can charge prices closer to the customers’ reservation
prices which positively affects revenues and profits. The intensified competition effect
contrarily effects profits and originates from the fact that firms compete for consumers
in every segment that each constitutes a single market. They analyze competitive ef-
fects under first and second degree discrimination (in their second paper in conjunction
with mass customization). The results agree with Corts (1998). In many situations,
especially when tastes are similar and buyers are not extremely loyal, the latter ef-
fect dominates the former and discrimination is not advantageous for the companies.
Armstrong and Vickers (2001) get similar results for third degree discrimination.

Varian (2004) criticizes that Ulph and Vulkan (2000, 2001) assume full information
about the consumers at the firms’ disposal. He argues that a long-time supplier knows
the customers’ preferences and habits better than a potential competitor. Hence, the
long-time supplier can offer superior personalized products and services than a com-
petitor could. Then, the intensified competition effect is reduced and the enhanced
surplus extraction effect might prevail.

For a detailed survey of price discrimination under competition the reader is referred
to Stole (2007).

2.5 Welfare effects and legislation

As outlined in some remarks, overall welfare effects of discrimination are ambiguous.
A necessary condition for increased welfare is an enlarged output (Varian, 1985). Es-
pecially when a monopolist serves markets that he would not supply under uniform
pricing, social welfare benefits by cross-subsidization. Popular examples are sales of
medicine in developing countries or subsidized train routes. This effect is well known
as the output enhancing effect. In many cases the effect dominates the welfare loss by
quality distortion for versioning. However, even when there is a positive output effect,
the optimal allocation is deteriorated. In other cases overall welfare is reduced. For a
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more comprehensive discussion of welfare implications we refer to Varian (1985, 2000).

Especially in the context of revenue management or peak-load pricing, another positive
effect is the efficient utilization of capacities. A demand shift away from peak times
is encouraged by lower prices in off-peak periods. Hence, overall, less capacity suffices
to satisfy demand allowing for lower average prices and possibly reducing negative
external effects necessary to build up or maintain capacities.

In numerous countries price discrimination is restricted by legislation. In the United
States, the Robinson-Patman Act1 enacted in 1936 prohibits volume discounts not
justified by cost reductions. Other forms of discriminatory prices are illegal if the motive
is to reduce competition. In the European Union, applying dissimilar conditions to
equivalent transactions with other trading parties, thereby placing them at a competitive
disadvantage2 is prohibited. Legal intervention against price discrimination is often
criticized for restraining the freedom of contract and competition in favor of small and
medium sized companies (Fehl, 1981).

1U.S. Code, Title 15: Commerce and Trade, Chapter 1: Monopolies and Combinations in Restraint
of Trade, Section 13

2Consolidated versions of the Treaty on European Union and the Treaty on the Functioning of the
European Union, Article 102 (c), March 30, 2010
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Markov Decision Processes

This chapter provides a brief introduction to the theory and methodology used in
the subsequent chapters. We focus on finite-horizon, discrete-time Markov Decision
Processes (MDPs) that are sufficient for our applications. For a comprehensive review
of MDPs in general, the reader is referred to White (1993), Puterman (1994), or Hu and
Yue (2008). Hinderer (1970) and Schäl (1975) provide insights to a general framework
of MDPs.

In complex business environments, a decision maker is often faced with situations
that require sequential decisions rather than a single decision that influence the overall
outcome. Often one decision influences the subsequent state of the system and decision
options available in the future. The decision maker is able to influence the subsequent
development of the system by choosing actions. Hence, the decision maker tries to find
a sequence of actions such that the outcome of the process is optimal in regards to a
certain predefined criterion. These sequential decision problems are the subject of the
dynamic programming theory.

Stochastic decision processes are used to model systems that do not evolve determin-
istically, but rather are subject to a probabilistic influence. A special case are Markov
Decision Processes introduced by Bellman (1957). They feature the Markov property,
i.e. the future state of the system does not depend on the entire history of states and
actions of the process, but only the last observed state and the current action influence
the evolution of the system. We focus on a special case, namely MDPs in discrete time
with a finite planning horizon. We limit our discussion to finite state and action spaces
and do not consider discounting.
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3.1 Model and Notation

A stochastic system is observed at discrete points in time t = T, T − 1, . . . , 0 over the
finite planning horizon T . Note that we count time backwards and the process starts
in t = T . At the beginning of each time epoch, the system state it ∈ It is observed
and a decision maker selects one action at ∈ At(it) from a set of feasible actions.
The set of admissible actions At(it) depends on the state of the system and the time
of the decision. The decision maker receives a one-stage reward rt(it, at) before the
system then evolves stochastically to the subsequent state it−1 ∈ It−1. The reward rt
and the probability pt(it, at, it−1) for an evolution to a subsequent state depend on the
current state and the action selected. The decision maker thus can influence the future
evolution of the system by selecting an appropriate action. At the end of the planning
horizon t = 0 the decision maker receives a terminal reward V0(i0) depending on the
final state i0 ∈ I0 of the system.

Such a system is modeled by a MDP with a finite planning horizon, which is the tuple
(T, I, A, p, r, V0) with

(i) the planning horizon T ∈ N,

(ii) the non-empty, finite state space It ⊆ I at each time t = T, . . . , 0,

(iii) the set of actions A and the non-empty, finite set of admissible actions At(i) ⊆ A

in each state i ∈ It at t = T, . . . , 1. We additionally define Dt := {(i, a) ∈ It×A :
a ∈ At(i)}.

(iv) The transition law pt : Dt× It−1 → [0, 1] specifies the counting densities pt(i, a, ·)
for a transition to j ∈ It−1.

(v) The one-stage reward is given by the functions rt : Dt → R, t = T, . . . , 1 and

(vi) the terminal reward by the function V0 : I0 → R.

To account for our needs in later chapters, we model an inhomogeneous system with
the transition probabilities and one-stage rewards being dependent on time. Note that
an inhomogeneous system can be easily transformed into a homogeneous system by
adding a time dimension to the state space. Also, we model the state space It and the
set of admissible actions At(i) in state i dependent on time. In later applications this
becomes necessary to accurately model the constraints. Where sufficient, we assume
the state space and the set of admissible actions to be independent of time.

A map ft : It → A satisfying ft(i) ∈ At(i) for all i ∈ It is called a decision rule.
Applying decision rule ft means that at time t given state i, the action ft(i) is chosen.
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Let Γt denote the set of all decision rules at time t. A sequence of decision rules φ =
(fT , fT−1, . . . , f1) with ft ∈ Γt for t = T, . . . , 1 is called a policy or strategy. It specifies
the decision rule to use at each decision time. We denote the set of all (deterministic
Markovian) policies by Φ = ×t=T,...,1Γt.

Let Jt be the state of the system at time t = T, . . . , 0. Then, given a policy φ ∈ Φ, the
sequence of states forms a stochastic process {Jt, t = T, . . . , 0} which is well defined
and is indeed a Markov chain (Hinderer, 1970). The probability for a realization
jT , jT−1, . . . , j0 is given by the product measure on I := ×t=T,...,0It

Pφ(JT = jT , JT−1 = jT−1, . . . , J0 = j0) =

P (JT = jT ) · pT (jT , fT (jT ), jT−1) · pT−1(jT−1, fT−1(jT−1), jT−2) · . . . · p1(j1, f1(j1), j0)

under policy φ. Let Eφ denote the expectation with respect to Pφ. Usually, the
initial state jT of a process will be fixed. We then use the conditional expectation
Eφ(·|JT = jT ).

At each time t = T, T − 1, . . . , 1 the decision maker receives a reward rt(Jt, ft(Jt)) and
at the end of the planning horizon a terminal reward V0(J0). All rewards depend on
the realization of the process and as such are random variables under any policy. To
compare different policies and finally to find an optimal strategy, we first need to define
a performance measure. In later chapters we apply the expected total reward criterion,
which is introduced in the next section.

3.2 Decision Criteria

The decision maker tries to find the best strategy in regards to his objective. In
general our objective will be to maximize the total reward which is discussed in detail
below. Where suitable, costs can be modeled as negative rewards. Other possible
criteria include the maximization of the discounted total reward, the maximization of
utility, or to maximize the probability to achieve a particular target. For details on
other objectives we refer the interested reader to White (1993) and Bouakiz and Kebir
(1995).

The total reward RT := ∑T
t=1 r(jt, at) + V0(j0) depends on the realization of the pro-

cess jT , jT−1, . . . , j0, which can in part be influenced by the decision maker by ap-
plying a policy φ ∈ Φ, i.e. by choosing appropriate actions aT , aT−1, . . . , a1 in states
jT , jT−1, . . . , j1. Applying φ, the total reward

RT
φ =

T∑
t=1

r(JT , fT (JT )) + V0(J0)
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is itself a random variable. We can compare two policies by their conditional expecta-
tion of the total reward Eφ(RT

φ |JT = jT ) =: VT,φ(jT ).

For t = T, . . . , 1, the value function

Vt(jt) := max
φ∈Φ

Vt,φ(jt) = max
φ∈Φ

Eφ(Rt
φ|Jt = jt) , jt ∈ It

is the maximum total expected reward until the end of the planning horizon starting
in state jt. A policy φ∗ ∈ Φ is called optimal if VT (jT ) = VT,φ∗(jT ) for all jT ∈ IT .

Since we assume a finite state and action space, there exists a deterministic Markovian
policy that is optimal (Puterman, 1994, Proposition 4.4.3).

In the next section we show how such an optimal policy can be obtained.

3.3 Backward Induction

To determine the value functions and to obtain an optimal policy, instead of enu-
merating and evaluating all strategies, we use the more efficient method of backward
induction. We make use of the following Theorem (Büning et al., 2000, Theorem 9.2.):

Theorem 3.3.1 (Optimality Equation).
For t = 1, . . . , T − 1, T

(i) Vt is the unique solution of the equation

Vt(i) = max
a∈At(i)

rt(i, a) +
∑

j∈It−1

pt(i, a, j)Vt−1(j)

 , i ∈ It. (3.1)

(ii) Every policy φ = (fT , fT−1, . . . , f1) formed by actions ft(i) maximizing the right-
hand side of (3.1) is optimal.

(3.1) is also known as the Bellman Equation. If there are t periods left, the maximal
reward is the sum of the one-stage reward of the action that maximizes the right-hand
side of (3.1) and the expected remaining reward using an optimal policy. Optimal
actions hence balance short- and long-term rewards. A maximizing action needs not
to be unique. Often we will therefore add rules such as to use the largest maximizing
argument in case of more than one optimal action.

To obtain an optimal policy, initially using the terminal value V0, we determine an
action maximizing the right-hand side of (3.1) iteratively for each t = 1, . . . , T using
Algorithm 3.3.1.

Often only the total expected reward for a fixed initial state VT (iT ), iT ∈ IT and an
optimal policy are of interest to the decision maker. Then, to save memory, only the
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Algorithm 3.3.1 Algorithm to determine an optimal policy and all expected values.
Input: MDP (T, I, A, p, r, V0)
Output: Optimal policy (f∗T , f∗T−1, . . . , f

∗
1)

Expected values (VT , VT−1, . . . , V0)
1. t = 0
2. while t < T

3. t = t+ 1
4. I ′ = It

5. while I ′ 6= ∅
6. Take an element i ∈ I ′

7. Vt(i) = maxa∈At(i)
{
rt(i, a) +∑

j∈It−1 pt(i, a, j)Vt−1(j)
}

8. f∗t = arg maxa∈At(i)
{
rt(i, a) +∑

j∈It−1 pt(i, a, j)Vt−1(j)
}

9. I ′ = I ′ \ {i}

values of (3.1) of the current and the last iteration need to be saved. Algorithm 3.3.2
provides such an implementation with reduced memory requirements.

The algorithms provided both iterate the decision times, all states at the time, and all
feasible actions for each state. Depending on the length of the planning horizon and
the size of the state and action spaces, finding an optimal policy is computationally
demanding. Many applications yield structures that allow to develop more efficient
algorithms. We provide an overview of these structured policies in the next section.

3.4 Structured Policies

Many applications yield structures that convey to optimal decision rules and can be
used to efficiently calculate and store optimal policies for an application. Some policies
can even be completely characterized using few parameters. We start with a simple
example of an application with such a structured optimal policy.

Example: Selling an asset (A stop problem) At times t = T, . . . , 1 a seller
receives an offer xt for an asset, which is a realization of a random variable Xt ∈
{0, . . . ,M}. Let XT , . . . , X1 be independently identically distributed with P (Xt =
x) = q(x). The seller can accept or reject the offer. In case he accepts the offer, he
receives xt and the process stops. If he declines the offer, he cannot come back to the
offer at a later time and the sales process continues in the next period t − 1. At the
end of the sales period, if the asset has not been sold, he receives nothing and the sales
process is stopped.



CHAPTER 3. MARKOV DECISION PROCESSES 32

Algorithm 3.3.2 Algorithm to determine an optimal policy and the total expected
value.

Input: MDP (T, I, A, p, r, V0)
Output: Optimal policy (f∗T , f∗T−1, . . . , f

∗
1)

Total expected value VT
1. t = 0
2. I ′ = I0

3. while I ′ 6= ∅
4. Take an element i ∈ I ′

5. V ′′(i) = V0(i)
6. I ′ = I ′ \ {i}
7. while t < T

8. I ′ = It

9. while I ′ 6= ∅
10. Take an element i ∈ I ′

11. V ′(i) = V ′′(i)
12. I ′ = I ′ \ {i}
13. I ′ = It

14. t = t+ 1
15. I ′′ = It

16. while I ′′ 6= ∅
17. Take an element i ∈ I ′′

18. V ′′(i) = maxa∈At(i)
{
rt(i, a) +∑

j∈I′ pt(i, a, j)V ′(j)
}

19. f∗t = arg maxa∈At(i)
{
rt(i, a) +∑

j∈I′ pt(i, a, j)V ′(j)
}

20. I ′′ = I ′′ \ {i}
21. I ′ = It

22. while I ′ 6= ∅
23. Take an element i ∈ I ′

24. VT (i) = V ′′(i)
25. I ′ = I ′ \ {i}
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Let the state of the system It = {0, . . . ,M} ∪ {∞} represent the current offer at t.
A state it = ∞ denotes the case, when the asset has been sold. The action space is
A = {0, 1}, where a = 1 describes the acceptance of the current offer while declining
an offer is represented by a = 0. In case the asset has been sold, an action does not
have an impact at all. Hence, in all states, At(it) = A.

Considering Vt(∞) = 0 for all t = T, . . . , 1 and the boundary condition V0 ≡ 0, we
reduce the optimality equation (3.1) to

Vt(i) = max(i,
M∑
x=0

q(x)Vt−1(x)) (3.2)

for t = T, . . . , 1.

The optimal policy (fT , fT−1, . . . , f1) built from decision rules

ft(i) =

 0 i < i∗t

1 i ≥ i∗t

with i∗t = ∑M
x=0 q(x)Vt−1(x) is obvious from (3.2). We can further calculate the critical

values i∗t efficiently by

i∗t =

 0 t = 1∑M
x=0 q(x) max(x, i∗t−1) t = T, . . . , 2 .

In the example, the optimal decision rule at each time can be characterized by only
one parameter. Instead of storing a table for each decision time with the state and
the respective optimal action, only the critical values need to be saved. Further, the
threshold increases in time, which is an intuitive result since the decision maker reduces
his minimum price as the sales horizon elapses. Exploiting the structure, an algorithm
can efficiently calculate the optimal policy by recursively calculating the critical values
i∗t , t = T, . . . , 2. The example is discussed in more detail in Büning et al. (2000), where
several other simple examples are presented.

The example shows how a structured policy can greatly reduce memory requirements
to store an optimal policy and the computational effort to calculate it. In addition,
a structured policy is easily understood and implemented by end users which again
increases the acceptance of the strategy. Finding structured optimal policies that can
be computed efficiently and which are intuitive and exercisable in practice is one of the
central challenges of dynamic optimization. Powell (2007) highlights the importance
of identifying structured optimal policies as one of the most dramatic success stories
from the study of Markov decision processes.

In general, applications are more complex and even if models yield structured opti-
mal policies, to find these and to prove their optimality is difficult and technically
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demanding. In order to show structures, we usually need to prove that the value func-
tion is monotone or concave. Additionally, optimal policies normally cannot be stated
explicitly as in the example and need to be calculated numerically for each application.

Policies (fT , fT−1, . . . , f1) with decision rules of the form

ft(i) =

 a1 i < i∗t

a2 i ≥ i∗t

are called threshold or control-limit policies. a1, a2 ∈ At(i) are distinct actions which
are optimal depending on if the state i ∈ It is above or below the critical value i∗t . If we
know a threshold policy is optimal, the problem of finding an optimal policy reduces
to finding the threshold value at each decision time. Note that we implicitly assumed
that the states can be completely ordered. Usually, the states have an intuitive inter-
pretation providing a natural order, e.g. the monetary interpretation in the example
described above or when the state represents a stock level as in our later applications.

Threshold policies are a special type of monotone policies. A monotone policy features
decision rules that are non-increasing or non-decreasing in the system state. An op-
timal monotone policy might greatly reduce computational effort because during the
numerical evaluation of the maximum in (3.1), some actions might not need to be
considered at all. Examples of monotone decision rules can be found in chapter 4.

In chapter 6, we develop models with a multidimensional state space. A threshold
policy in that case conveys to a switching curve, i.e. the threshold value in one di-
mension is a function of the other dimensions of the current state. The state space is
separated into domains where a certain action is optimal. Figure 3.1 depicts two exam-
ples of switching curves. Note that switching curves need not necessarily be monotone
functions.
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Figure 3.1: Examples of switching curves. Switching curves divide the state space into
multiple domains with a certain action being optimal within a domain.



4

Revenue Management

In this chapter, we introduce the basic concept of Revenue Management (RM). We start
by presenting definitions and briefly outlining the history and development in the next
section. We then discuss assumptions and requirements and sketch the general RM
process. In section 4.4 interrelations and problems with collecting data and forecasting
are outlined. Section 4.5 and section 4.6 supply a detailed discussion of the respective
approaches and optimizations models applied. We build on these basic models in the
subsequent chapters to develop more advanced models and heuristics.

4.1 Definition and History

Revenue Management refers to strategies and tactics used to predict and influence con-
sumer demand in order to maximize revenue from constrained resources (Rosenberg,
2010). A simpler, more vivid, and popular definition originates from American Air-
lines in 1987: Selling the right seats to the right customers at the right prices (Smith
et al., 1992). Today, some authors extend it by at the right time and through the right
distribution channel (Pölt, 2002). RM is also known as Yield Management. Note that
the definitions subsume the two main control strategies capacity control and dynamic
pricing, which are introduced in the following sections, as well as other approaches
such as overbooking. Contrarily, Revenue Management is often used only to describe
capacity control problems (e.g. Phillips, 2005).

Before deregulation of the U.S. airline industry, market entry, routes, schedules, and
fares were tightly regulated by the Civil Aeronautics Board (CAB). Hence, to optimize
revenue, airlines were only able to engage in overbooking strategies to countervail losses
by no-shows. No-shows are booked passengers that do not appear for boarding and
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thus leaving seats empty on a flight. In 1961, the twelve largest American airlines
faced no-shows of up to 10% of the total demand (Rothstein, 1971). In the early
sixties, airlines started to overbook flights, i.e. to sell tickets in excess of the actual
capacities. Airlines must balance the revenue gain from filling empty seats against the
risk of denied boardings when more booked passengers show up for the flight than seats
are available. Customers denied boarding need to be compensated and transferred to
other flights. Denied boarding costs also include goodwill losses involved.

When the U.S. Congress passed the Airline Deregulation Act in 1978, restrictions on
the domestic market were gradually phased out until 1983. Especially People Express,
a no-frills carrier founded in 1981, entered the market with aggressive low prices. With
fares up to 70% below those of the established carriers, it initially focused on untapped
price-sensitive markets and showed a tremendous growth over the next years. The low
fares imposed a major thread to the legacy airlines. Matching prices would not cover
their cost, while only with low prices customers could be retained. The solution was
price discrimination in the form of restricted discounted tickets matching the low prices.
In early 1985, American Airlines introduced their Ultimate Super Saver fares that were
subject to an advance-purchase restriction of two weeks and required a stay over a Sat-
urday night. The fares did not appeal to the high-value business segment, but allowed
to target the price-sensitive leisure market. The number of available discounted tickets
was limited to ensure to be able to satisfy all high-value demand. Within one year,
People Express was at the verge of bankruptcy and was eventually sold to Continental
Airlines. In the light of the great success of American Airlines competing the low-cost
competition, all major U.S. carriers introduced discounted fares and controls were in-
creasingly computerized. Revenue Management was born and has since evolved to a
highly sophisticated disciplinary today used by airlines worldwide. The impact of RM
is huge: in 1992 American Airlines estimated an increase of revenue of $1.4 billion over
three years (Vinod, 2009). Pölt (2002) states that today, to any airline, RM is a crucial
factor and airlines would not survive without it. RM has been adopted by many other
industries, such as car rentals, hotels, broadcasting media, freight, theaters, retail,
or manufacturing. Airlines, for many years, have remained the innovators regarding
strategies and systems. Today, research is also partially driven by other industries’
particular needs.

4.2 Requirements and general assumptions

To apply RM, services or products need to show the following characteristics, some of
which are direct requirements for price discrimination (c.f. chapter 2):
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• Heterogeneous Demand. Demand needs to be heterogeneous in terms of the
willingness-to-pay and preferences on product features. Various demand groups
need to be distinguishable into different segments. In the airline industry, differ-
ent market segments, mainly leisure and business travel, clearly show different
preferences and price sensitivities.

• Arbitrage Prevention. Resale must be impossible or uneconomical in order to
prevent arbitrage sales. Airlines usually apply high fees for changing discounted
tickets and tickets are personalized.

• Advance Purchases. Customers need to be able to purchase tickets in advance.
The need for RM arises because customers with different valuations of the product
arrive sequentially in time. High-value demand usually arrives later than demand
for lower fare classes. The problem is to accept as many passengers early in the
booking period to fully utilize the available capacity, but at the same time only
as many such that high-value demand is not displaced. If tickets cannot be
purchased in advance or customers do not arrive sequentially in the order of their
willingness-to-pay, RM is useless or unnecessary.

• Perishable Product. The product must be perishable or storable only at signifi-
cant cost. If products are storable at reasonable prices, other means to balance
demand variations are more effective and efficient, e.g. producing and storing
seasonal goods. Likewise, demand must not be storable and cannot be satisfied
at a later time.

• Limited Capacity. The available capacity is limited and replenishment is impos-
sible or costly in the short run. If short-term capacity upgrades are possible at
modest cost, capacities do not need to be reserved for high-value demand and
all profitable demand can be satisfied. Then, only the question of setting prices
remains. While other forms of intertemporal pricing might be reasonable to con-
sider, the dynamic nature of a RM strategy in regards to the observed remaining
inventory is unnecessary and useless.

The fleet composition of an airline is a long-term decision and cannot be changed
quickly because of long delivery times. However, the common assumption of a
fixed capacitiy allocated to a specific product or resource is too strict in many
applications. Short-term capacity adjustments are possible by changing the as-
signment of an aircraft from one flight to another. The main contribution of this
work are optimization models and heuristics to obtain pricing strategies under
the weaker assumption of the overall capacity being fixed, i.e. when the network
capacity is fixed rather than the capacity assigned to each leg. These approaches
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are introduced in chapter 6. In this chapter we introduce basic RM models and
retain the assumption of a fixed capacity on a product or leg basis.

• Stochastic Demand. If demand varies stochastically over time and capacities
cannot be adjusted in the short term, demand needs to be managed to match
capacity. Otherwise the capacity could be adjusted to match demand in the long
run.

At first glance, RM approaches might be considered even if demand is determinis-
tic but fluctuating. However, similarly to the capacity requirement, the dynamic
nature of a RM strategy is then unnecessary. Other forms of price discrimination,
e.g. peak-load pricing, should be considered instead.

• Marginal Costs. Marginal costs are nil or negligible. In the light of the capacity
requirement, fixed or quasi-fixed costs are usually high with low variable costs.
For example, the costs of an additional passenger, i.e. e.g. airport fees or an
additional menu, are marginal in comparison to the total costs of flying the air-
plane. Then, maximizing revenue approximately maximizes profits. If marginal
costs are significant, contribution rather than revenue needs to be optimized.
RM models in manufacturing usually optimize contribution (e.g. Wiggershaus,
2008). Hence, negligible marginal costs are not a necessary requirement. How-
ever, products or services with insignificant marginal costs that fulfill the other
requirements naturally lend themselves to RM policies.

• Market Acceptance. The market needs to accept the pricing policy. Deutsche
Bahn, the state-owned German railway operator, changed its traditional single-
price policy late 2002 and introduced discounted fares with advance-purchase
requirements and high fees to change reservations. At the same time, it stopped
offering a 50% discount card which had been used by frequent travelers. Cus-
tomers initially did not accept the new policies and the number of passengers
declined by 10.6 % during the first months. Under public pressure Deutsche
Bahn had to change its prices again after only seven months (DER SPIEGEL,
2003). The discount card has again been offered since and change fees were cut
by 2/3. The advance-purchase discounts have been maintained and slowly have
become accepted. The example shows that introducing RM strategies must be
done carefully in order not to discourage clients.
Similarly, if price is a signal for quality, e.g. for luxury goods, discriminating poli-
cies without versioning are likely to have a negative impact on sales and revenues
(Talluri and Van Ryzin, 2004b).

For a successful application of RM policies, in addition to the product requirements
listed above, technological and managerial support are essential. Managers need confi-
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dence in science and new technologies to accept automated decision systems. At least
the pricing and the RM department are affected by and need to collaborate on the RM
process. Sales and marketing departments also need to support systems and decisions.
Technology needs to be in place to gather data, to accurately forecast demand, and
to automatically apply controls. Online sales or sales through distribution systems
naturally qualify for RM. If technical systems are not in place, to install these might
itself be a challenging and costly proposition.

Additionally to the requirements in regards to the service or product, throughout the
remainder, we adhere to the following common assumptions:

• Myopic customers. We will assume costumers do not behave strategically. They
purchase as soon as the price is below their reservation price, i.e. their valuation
of the product. Customers do not optimize the buying decision, e.g. postpone the
purchase in the hope of lower prices. Considering strategic clients often makes
models intractable.

Depending on the application, the assumption is also less harmful than it might
seem. Often, especially when shopping for non-durable goods, consumers are
spontaneous buyers and also have too little information to act strategically. The
future price of an airline ticket depends on current bookings and the remaining
inventory for sale, the time left for sales, and the strategy of the airline that
reflects its expectations of future demand. In general, a consumer does not have
any information about current bookings or the airline’s expectations.1 Hence,
the customer cannot foresee future prices and act strategically. With high-value
demand arriving late, ticket prices usually increase towards the departure of
a flight. Then, a customer does not benefit from postponing his purchase in
the hope for lower prices. If necessary, an airline can further take measures to
prevent strategical behaviour e.g. by pursuing and communicating a strategy
that prohibits decreasing prices.

Additionally, the demand forecasts, while assuming myopic customers, still in-
directly include previous buying strategies. The forecasts are based on past
purchases that reflect the strategic behavior. For example, if consumers wait for
markdowns, the forecasts of the reservation prices are lower towards the end of
the season.

1Today, some airlines do reveal limited information about their inventories towards the end of the
sales process, i.e. they post a price together with the number of seats left for sale or left for sale
at the current price. However, the airline voluntarily releases the information only to encourage an
immediate consumer response. The airline would refrain from publishing inventories if it did not
expect to benefit from it.
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Hence, models assuming myopic buyers are widely used in practice. For references
concerning models considering strategic buyers we refer to Talluri and Van Ryzin
(2004b).

• Infinite Market. We do not consider durable goods and hence assume that pur-
chase probabilities are independent of past purchases. The assumption is reason-
able because the market size is large compared to the offered capacity. Although
one buyer is unlikely to purchase the same ticket again, the overall demand prob-
abilities remain unchanged.

• Monopolistic environment. The observed demand is assumed to depend only
on the offered price at a time and not on competitive actions. Similarly to the
assumption of myopic customers, forecasts based on historical data indirectly
include competitive strategies. Shugan (2002) suggests that assuming a monop-
olistic environment might be better than adopting complex competitive models.
The later assume that competitors have followed and continue to follow optimal
strategies which are reflected in the empirical data. The assumption is ques-
tionable in practice as well and the increased complexity is not offset by better
results. If competitors change their strategies, either model is likely to perform
poorly.

In the travel industry, depending on the origin and destination, routes may be
highly competitive while others show little competition (Cole, 2008). However,
even in a competitive environment, the market is inherently inhomogeneous if
e.g. departure times or service levels differ. Hence, monopolistic models seem
reasonable and gain important insights. They are widely found in practice. Nev-
ertheless, recent studies analyze competitive effects in simplified frameworks and
deduct important strategical insights (e.g. Isler and Imhof, 2008, Gallego and Hu,
2009, Talluri and Martínez de Albéniz, 2010).

4.3 Revenue Management Process

Talluri and Van Ryzin (2004b) in general distinguish quantity-based and price-based
RM. Legacy carriers usually apply quantity-based capacity controls, i.e. they ration
the availability of various predefined discounted fares. These booking classes or fare
classes are well differentiated by restrictions such as advance-purchase requirements in
order to encourage self-selection. The practice of restricting fares in such manner is
called fencing. Contrarily, low-cost carriers often follow a price-based approach called
dynamic pricing. They offer a single product with equal restrictions. The price for
a ticket changes dynamically in time depending on the realized demand, the time
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until departure, and updated expectations. Either strategy can be combined with
overbooking.

Quantity- and price-based RM share a common conceptual process that is visualized in
Figure 4.1. The following steps are continuously repeated (c.f. Talluri and Van Ryzin,
2004b):

• Data Collection. To be able to understand factors that influence demand and
to forecast the demand historical data is needed. Ticketing data collected at
airports and from distribution systems is readily available allowing airlines to
also include competitive data in their models. As the booking process evolves to
departure, data on realized demand is collected and included in the forecasts.

• Forecasting. The parameters of the demand model need to be forecasted. A
major issue is that the input data is constrained. Only data on realized sales and
not on rejected requests is available. However, unconstrained demand needs to
be forecasted. Forecasts are updated repeatedly throughout the booking process.

• Optimization. Based on the forecasted demand booking limits or prices are op-
timized. As demand realizes and forecasts are updated, the controls are periodi-
cally re-optimized.

• Booking Control. The optimized controls are then applied to the arriving de-
mand. This includes updating availability and prices through various distribution
channels.

Data
Collection

Booking
Control

Revenue

Fore-
casting

Optimi-
zation

Management

Figure 4.1: Revenue Management Process.

4.4 Data collection and Forecasting

Booking controls are optimized using forecasts that are based on the collected data.
Hence, the forecasting quality greatly influences the quality of the resulting policy.
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Lee (1990) estimates that a 10% increase in forecast accuracy yields revenue increases
of up to 3%. A deep discussion of forecasting methods is beyond the scope of this
work and we only sketch problems below and provide references for further reading.
In the remainder we assume forecasts of all input data to the optimization models are
available.

Most problems are not unique to RM applications and vast literature exists on methods
that can be applied. Talluri and Van Ryzin (2004b) provide an introduction focused
on RM and further references. A more detailed summary of current methods at the
time is presented by Zeni (2001a). Surveys by McGill and Van Ryzin (1999) and Boyd
and Bilegan (2003) provide further references.

In general, demand, cancellations, and no-shows must be forecasted. The actual pa-
rameters to be forecasted differ greatly depending on the RM approach and the actual
models in use. Also, the level of granularity varies for different models. For example,
static models require the estimation of the total demand per fare class. Contrarily,
dynamic models need forecasts of the demand in each time period over the booking
horizon. Depending on the parameters and the needed granularity, the sheer amount
of values needed might present a problem. The number of forecasts is multiplied by the
number of updates for each value. Lufthansa produces several million forecast values
per day (Pölt, 2002). The amount of input data requires sophisticated data processing
technologies. Somewhat surprisingly in regards to the law of large numbers, Weath-
erford et al. (2001) find that disaggregated forecasts strongly outperform aggregated
forecasts in the hotel industry. The required brake-down process deteriorates the ac-
curacy gain of forecasting aggregated values. The results are found to be similar for
airlines in Weatherford and Kimes (2003).

Historical data is available from various sources such as distribution systems, airports,
passenger records, shopping data, or accounting data (Mishra et al., 2005). Choosing
sources and possibly combining data from various sources is a major issue. In general,
historic data must be relevant for future predictions. Changes to the product, the econ-
omy, or the competitive environment need to be considered. Events and seasonalities
likewise need to be included in the forecasts. Outliners need to be eliminated. Usually,
a user interface allows analysts to adjust data according to external factors and some
systems directly link data to external factors (Talluri and Van Ryzin, 2004b).

While historical data on bookings is readily available the data does not reflect demand.
Sales are constrained by capacities and booking controls. If censored sales data is used
as demand, forecasts tend to be lower than the actual demand. As a result, not enough
capacity is reserved for high-value customers and revenue is lost. Subsequent forecasts
are based on even more censored data which amplifies the revenue dilution. The pat-
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tern repeats itself and is known as spiral-down effect. Cooper et al. (2006) model and
analyze the effect and provide conditions for it to occur. The censored data can be
unconstrained using statistical methods. A comprehensive discussion of unconstraining
methods can be found in Zeni (2001a). Zeni (2001b) gives a short overview of differ-
ent methods and their performance. He finds Expectation-Maximization algorithms
to outperform other approaches. Another simulation study by Weatherford and Pölt
(2002) yields the same results. The authors estimate the revenue gain of sophisticated
methods to be in the range of 2% to 12%. More recently, customer-choice-based ap-
proaches have been developed and show good performances in tests with real-world
constrained data (Sasse and Beleliev, 2010, Cote, 2010).

4.5 Capacity Control

In this section, basic capacity control models are introduced. These are RM models
that control demand by rationing the supply in a revenue optimal manner. In contrast
to dynamic pricing models (c.f. chapter 4.6), capacity control models assume given
prices for different products or booking classes. Typically, in airline settings, these are
determined by a separate pricing department before the sales process starts. Then,
during the sales process, only the availability of the different products is controlled
applying a RM system.

We first present common assumptions that we adhere to throughout the remainder. We
then introduce different forms of booking controls before we describe different models
in detail and present optimal policies and structures. A brief review of more advanced
models relaxing some of the assumptions concludes the section.

For capacity control models, we adhere to the following common assumptions:

• There are no cancellations, no-shows, or go-shows. Each accepted reservation
cannot be rejected later without significant costs. Consequently, overbooking is
not considered.

• A denied passenger request is lost to the airline. Rejected demand cannot be
recaptured on other flights and customers only request a certain booking class.
They do not purchase a lower (buy-down) or higher (sell-up) fare class if the
requested class is closed. Hence, demand for different fare classes is mutually
independent and independent of any controls applied.

• Demand for different legs is mutually independent. Hence, we consider leg-based
rather than network models. Network models are often intractable in practice and
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single-leg models are still widely used. Additionally, many heuristics decompose
the network problem into a collection of single-leg problems.

• Group arrivals can be partially accepted.

• The decision maker is risk-neutral. Hence, the expected revenues are maximized.
Optimization based on expectations seems reasonable in the light of the num-
ber of departures every day. The decision process is repeated independently for
each flight and every day of departure. Because of the large number of problem
instances, the impact of a single actual realization is low and long-term average
revenues are maximized using a risk-neutral approach.

4.5.1 Booking Controls

Booking Limits

A booking limit is the maximum number of units of the capacity available for sale
to a class at a specific point in time. Partitioned booking limits divide the capacity
into exclusive blocks that are only available to the respective class. For example, if
a capacity of 30 is allocated to two classes, class 1 might have a booking limit of 20.
Class 2 then has a booking limit of 10. We assume a higher fare in class 1. If all
seats reserved for a class have been sold, further purchases are not possible, even if the
requested class yields higher revenues than other open fare classes. In the example, if
20 seats of class 1 and less than 10 tickets of class 2 have been sold, a request for class
1 is declined even though the fare is higher than the fare of class 2.

To avoid suboptimal allocations in such manner, nested booking limits reserve capacity
for classes with higher fares. A nested booking limit is the maximum number of units
available for sale to the class and all classes with lower fares. The booking limit of the
class with the highest fare is equal to the total capacity. In the described situation,
requests for class 1 are accepted as long as seats are available. At the same time, a
maximum of 10 seats is sold to class 2.

Protection Levels

A protection level describes the number of capacity units that are reserved for a book-
ing class. The concept of partitioned and nested booking limits conveys directly to
protection levels. Partitioned protection levels simply equal the booking limits. A
nested protection level is the number of seats reserved for a class and all classes with
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a higher fare. The nested protection level yj for class j is

yj = C − bj+1 ,

where C is the total capacity and bj+1 is the booking limit of the next class with a
lower fare. The protection level of the lowest fare class, i.e. the capacity reserved for
all classes altogether, is equal to the total capacity (yn = C).

Bid Prices

A bid price is a control threshold. Only requests yielding revenues higher than the
bid price are accepted. The major difference to booking limits or protection levels is
obviously the revenue orientation, while the former are based on capacity units. Bid
prices cannot allocate capacity in a partitioned way. All requests with higher fares are
accepted. Talluri and Van Ryzin (2004b) note that bid prices need to be dependent
on the remaining capacity to guarantee that sales do not exceed the capacity. A single
static bid price might result in sales exceeding the available capacity. If the bid price
is a function of the current capacity, an optimal policy is equivalent to a policy using
booking limits or protection levels. Figure 4.2 illustrates the equivalence of the different
controls.

In practice, the price of a booking class might change over time (Curry, 1990). Then,
bid-price controls are preferable because the same booking class can be rejected or
accepted depending on the current fare. Protection levels and booking limits are op-
timized using an average fare of the booking class. When a class is open, all requests
are accepted regardless of the actual fare.

4.5.2 Static Models

Static models assume that the arrival process can be divided into non-overlapping time
periods by fare class. During a time interval, only demand for one fare class is observed.
Hence, demand for each fare class can be viewed as aggregated demand. Usually,
demand is assumed to arrive sequentially ordered by fare, i.e. low-fare demand arrives
before high-fare demand. This simplification is usually justified by advance-purchase
requirements on discount fares and is widely used in practice.

Littlewood’s Model

The first single-resource capacity control model was developed by Littlewood (1972)
(McGill and Van Ryzin, 1999, Littlewood, 2005). He assumes two classes with fares
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x

Figure 4.2: The relationships between booking limits bj, protection levels yj, and bid
prices π(x) dependent on a remaining capacity x. Reprinted from Talluri and Van Ryzin
(2004b).

f1 > f2 ≥ 0 and demand Dj ∈ N0, j = 1, 2. P (D1 ≥ y1) denotes the probability
that class 1 demand exceeds the protection level y1, i.e. the maximum risk that a
high-yield customer needs to be declined because of having accepted too many class 2
clients. Assessed with the fare of class 1 it yields the expected value f1P (D1 ≥ y1) of
increasing the protection level by one unit to y1 + 1. The expected value of increasing
the optimal protection level y∗1 by another unit needs to be offset by the collected fare
f2. Hence, the optimal protection level y∗1 needs to satisfy

f2 < f1P (D1 ≥ y∗1)

and
f2 ≥ f1P (D1 ≥ y∗1 + 1) .

This is known as Littlewood’s Rule. Note that in a nested control setting, we implicitly
assumed that the lower fare class sells out. If it did not sell out, because high-fare
demand has access to all available seats, the displacement cost would be lower than f2.

Static n-class Model

Curry (1990), Wollmer (1992), and Brumelle and McGill (1993) independently ex-
tended Littlewood’s model to n > 2 classes. Curry (1990) and Brumelle and McGill
(1993) assume continuous demand. We will briefly sketch the model by Wollmer (1992)
below. He uses discrete demand distributions. Li and Oum (2002) show the equiva-
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lence of the optimality conditions of the three models. A short overview of all three
models is given in Lautenbacher and Stidham (1999).

Let Dj ∈ N0, j = 1, . . . , n be the demand for class j. According to the assumptions,
Dj, j = 1, . . . , n are distributed mutually independent and independent of the controls
applied. W.l.o.g. we assume fares f1 > f2 > . . . > fn ≥ 0. We define a Markov
Decision Process (n, S,A, p, r, V0) with

(i) the horizon n ∈ N, n > 2. We count time backwards, and hence, based on the
assumption of demand arriving in order from low-fare to high-fare, demand of
class j materializes in period j. At j = 0 all remaining units perish, i.e. the flight
departs and empty seats cannot be sold any longer.

(ii) The state space is S = {0, . . . , C}, where C is the total capacity available. The
state c ∈ S refers to the remaining capacity at the current period.

(iii) The action space is A = {0, . . . , C}. a ∈ A specifies the maximum number of
clients to accept. In state c ∈ S, the set of feasible actions A(c) = {0, . . . , c} is
limited by the remaining capacity.

(iv) The transition law is

pj(c, a, c′) =


P (Dj = d) c′ = c− d, d < a,

P (Dj ≥ a) c′ = c− a,
0 otherwise,

for j = 1, . . . , n with c, c′ ∈ S, a ∈ A(c).

(v) The one-stage reward function is

rj(c, a) = fj

[
aP (Dj ≥ a) +

a−1∑
d=0

dP (Dj = d)
]

=
a−1∑
d=0

fjP (Dj ≥ d+ 1)

for j = 1, . . . , n with c ∈ S, a ∈ A(c).

(vi) The terminal reward function is V0 ≡ 0.

For any function u, we define ∆u(x) := u(x) − u(x − 1). Where necessary, we use a
subscript to indicate the variable.

The value function for j = 1, . . . , n and c ∈ S is given by

Vj(c) = max
0≤a≤c

{
a−1∑
d=0

[
fjP (Dj ≥ d+ 1) + P (Dj = d)Vj−1(c− d)

]
(4.1)

+P (Dj ≥ a)Vj−1(c− a)
}
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= max
0≤a≤c

{
Vj−1(c− a) +

a−1∑
d=0

[
fjP (Dj ≥ d+ 1) (4.2)

+ ∆Vj−1(c− d)P (Dj ≤ d)
]}

= max
0≤a≤c

{
a−1∑
d=0

[
[fj −∆Vj−1(c− d)]P (Dj > d)

]
+ Vj−1(c)

}
(4.3)

= max
0≤a≤c

{
a−1∑
d=0

[
[fj −∆Vj−1(c− d)]P (Dj > d)

]}
+ Vj−1(c) . (4.4)

We explicitly state (4.2) to highlight the equivalence to the model in Wollmer (1992).
As the maximum is taken over a finite set for each j and c, there is an action a

maximizing the inner expression. We refer to these a as being optimal. The value
function shows structures as stated in the following Proposition:

Proposition 4.5.1. The function Vj defined in (4.1) has the following properties:

(i) Vj(c) is concave in c for all j = 1, . . . , n.

(ii) ∆Vj(c) is non-decreasing in j for all c ∈ S, c > 0.

Proof. We only give proof of (ii). For a proof of (i), we refer to Wollmer (1992),
Theorem 2. Fix 0 < c ≤ C and let a∗ ∈ A(c − 1) be optimal in (c − 1) ∈ S at stage
j ∈ {2, . . . , n}. Then, using (i),

∆Vj(c) ≥
a∗−1∑
d=0

[
[fj −∆Vj−1(c− d)]P (Dj > d)

]
+ Vj−1(c)

−
a∗−1∑
d=0

[
[fj −∆Vj−1(c− 1− d)]P (Dj > d)

]
− Vj−1(c− 1)

⇔ ∆Vj(c)−∆Vj−1(c) ≥
a∗−1∑
d=0

[
[∆Vj−1(c− 1− d)−∆Vj−1(c− d)]P (Dj > d)

]
≥ 0 ,

which completes the proof.

It is easy to see that Vj(c) ≥ 0 for all c ∈ S, j = 0, . . . , n. Using Proposition 4.5.1 (i),
an optimal policy τ ∗ = (a∗1, . . . , a∗n) is given by

a∗j(c) = min {a ∈ {0, . . . , c} : fj < ∆Vj−1(c− a)} , for j = 1, . . . , n, c ∈ S

with min ∅ := c. τ ∗ can be rewritten as a threshold policy:

Theorem 4.5.2. There exists an optimal policy τ ∗ = (a∗1, . . . , a∗n) such that

a∗j(c) =

 c− y∗j−1 , c ≥ y∗j−1,

0 , otherwise,
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for j = 1, . . . , n, c ∈ S with the optimal protection levels

y∗j := max {c ∈ {0, . . . , C} : fj+1 < ∆Vj(c)} , for j = 1, . . . , n− 1 ,

where max ∅ := 0, y∗0 := 0, and, by convention, y∗n := C.

Note that the optimal protection levels are not dependent on the current capacity.
Figure 4.3 illustrates an example of optimal controls.

∆V1(c)

f2

c
22 300

c
12 a*2(22)

Figure 4.3: Example of different booking controls. Assume the total capacity of C = 30.
The resulting optimal protection levels are y∗1 = 12 and y∗2 = 30. Then, the booking
limits are b∗1 = 30 and b∗2 = C − y∗1 = 18. At a current capacity of c = 22, 8 seats have
been sold. We accept class 2 requests up to a∗2(c) = c− y∗1 = 10.

Proposition 4.5.1 (ii) and the assumption of increasing fares f1 > . . . > fn imply a
nested structure:

Corollary 4.5.3. The optimal protection levels y∗j are increasing in j.

EMSR Heuristics

The most popular capacity control heuristics are the expected marginal seat revenue
heuristics version a (EMSR-a) (Belobaba, 1987a,b, 1989) and the slightly modified ver-
sion b (EMSR-b) (Belobaba and Weatherford, 1996). Both are based on Littlewood’s
rule and extend it to n > 2 fare classes. The heuristics are widely found in practice,
although computing optimal controls is not difficult. This is mainly due to their early
implementation into RM systems at a time, when research lagged behind practice and
computational power was highly expensive. The heuristics are easy to implement and
run quickly, while their performance is usually quite close to the optimum (Wollmer,
1992, Robinson, 1995).

EMSR-a The EMSR-a computes protection levels by adding up protection levels
generated using Littlewood’s rule relative to all higher-fare classes. At stage j ∈
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{2, . . . n}, one computes protection levels y∗j−1,i, i = j − 1, . . . , 1 such that

fj < fiP (Di ≥ y∗j−1,i)

and
fj ≥ fiP (Di ≥ y∗j−1,i + 1) .

To obtain the protection level for all higher classes, i.e. the number of units to protect
at stage j, the individual protection levels are added up:

yaj−1 =
j−1∑
i=1

y∗j−1,i .

EMSR-a was shortly believed to be optimal, but except for the highest fare class,
EMSR-a does not yield optimal controls. Counter examples can be found e.g. in
Wollmer (1992), Brumelle and McGill (1993), or Talluri and Van Ryzin (2004b). Con-
trols are usually lower than the optimal controls because the statistical averaging ef-
fect is ignored. In general, however, controls can be overly or insufficiently protective
(Brumelle and McGill, 1993). Although the controls gained by EMSR-a differ signifi-
cantly from the optimal ones, revenue performance is usually quite close to the optimum
(Wollmer, 1992, Robinson, 1995). EMSR-a performs significantly worse, when there is
a large number of booking classes with fares close to each other (Talluri and Van Ryzin,
2004b).

EMSR-b The EMSR-b is also based upon Littlewood’s rule, but instead of summing
protection levels, demand of all higher fare classes is aggregated. The aggregated de-
mand is treated as an artificial booking class with its fare computed from the weighted
average fare of the aggregated classes. Hence, at stage j ∈ {2, . . . n}, future demand is
aggregated to

S̄j−1 =
j−1∑
i=1

Di .

The demand S̄j−1 and the fare

f̄j−1 =
∑j−1
k=1 fkE(Dk)∑j−1
k=1E(Dk)

of the artificial class are then used to determine its protection level by

fj < f̄j−1P (S̄j−1 ≥ ybj−1)

and
fj ≥ f̄j−1P (S̄j−1 ≥ ybj−1 + 1) .

E(Dk) denotes the expectation of the demand Dk for class k.
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The heuristic ignores effects of protection levels at future stages. Hence, revenue from
all future demand accepted is approximated by the revenue from total future demand.
However, it is likely that not all future demand will be accepted because of applied
booking controls. EMSR-b is more common in practice and implemented more fre-
quently than EMSR-a. Talluri and Van Ryzin (2004b) state that it usually performs
better than EMSR-a, although they cite a study by Pölt (1999) with real-life data in
which neither heuristic is found to be dominating the other.

Extensions to the static model

Pfeifer (1989) and Brumelle et al. (1990) consider the two class static model relaxing
the assumption of independent demand. This includes generally correlated demand
of the fares and correlation due to booking controls resulting in sell-ups, i.e. low-fare
customers purchasing a full fare ticket when the discount class is closed. Bodily and
Weatherford (1995) develop a heuristic for n > 2 classes with dependent demand and
extend the two class model to integrate overbooking.

Belobaba and Weatherford (1996) provide a version of EMSR-b to include up-sell ef-
fects. Hopperstad (2000) finds that their model ignores up-sell effects in the underlying
demand distribution and suggests an iterative approach to find the true demand dis-
tribution. Gallego et al. (2009) generalize the model in Brumelle et al. (1990). They
also adapt the EMSR-b heuristic to include customer choice for n > 2 fare classes.
In simulations the proposed model outperforms previous models for legs with high de-
mand. For modest load factors the revenue gain is insignificant. Walczak et al. (2010)
use data transformation to incorporate customer choice using the traditional EBSR-b
heuristic.

Robinson (1995) relaxes the assumption of arrivals in increasing fare order and derives
optimal policies.

Barz and Waldmann (2007) adapt the classic model to a risk-averse decision maker
that maximizes expected utility. Weatherford (2004) develops an expected marginal
seat utility heuristic based on EMSR for risk-averse decision makers. The heuristic is
also discussed in Barz and Waldmann (2007) and Barz (2007).

Van Ryzin and McGill (2000) develop a heuristic that requires no separate forecasting or
uncensoring and no cyclical reoptimization using an adaptive stochastic approximation
method.

Curry (1990) considers network effects on optimal controls. Williamson (1992) provides
a detailed overview of network effects on RM and a good literature review at the
time. She develops and investigates the prorated EMSR scheme based on EMSR-a and
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network adjusted revenues. A more recent detailed overview of network methodologies
and controls is given in Talluri and Van Ryzin (2004b).

Belobaba (1987a) extends EMSR-a to include overbooking. A detailed and more recent
discussion of cancellations and overbooking in a static context is presented in Chi
(1995).

4.5.3 Dynamic Models

Dynamic capacity control models relax the assumption on the arrival process and allow
requests to arrive in an arbitrary order. Hence, demand cannot be aggregated by fare
class as in static models. All other assumptions are retained. Additionally, to make
the models tractable, demand is assumed to be Markovian, i.e. the number of arrivals
in a time window follows a Poisson distribution. This assumption is often criticized
because it restricts the variance to equal the mean. Greater levels of variability as
often found in practice cannot be captured. However, Walczak (2006) uses a compound
Poisson process to amplify variance within the existing framework. We will retain the
assumption of demand being Poisson-distributed throughout the remainder.

For convenience, time is usually finely discretized such that the probability of more
than one request arriving in each epoch is negligible. One exception is the model
by Lautenbacher and Stidham (1999). Throughout the text, we will adhere to the
assumption of at most one customer arriving during each time epoch. Note that these
periods need not be of equal length. At the beginning of the booking horizon, when
few request arrive, periods of several days might be used. Close to departure epochs
might represent time intervals of less than one hour.

Because of the use of disaggregated demand and possibly short time epochs, forecasting
is more challenging for dynamic models than for static models. Hence, the availability
of adequate forecasts is a major decisive factor for the model choice.

Dynamic n-class Model

We briefly outline the model and structural results as introduced by Lee and Hersh
(1993). Note that this model differs from many other texts, which assume the class of
the arriving request to be known before making the decision to decline or accept the
request (e.g. Lautenbacher and Stidham, 1999, Barz, 2007). Both ways of modeling
yield equivalent results in terms of optimal policies. For further discussion on the
equivalence of the two approaches, we refer to Talluri and Van Ryzin (2004b) or Barz
(2007). As a result, in our formulation, the decision variable is a vector constituted
of the accept or deny decisions for each booking class. Contrarily, models assuming
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known request classes only need scalar decision variables denoting the decision for the
arriving booking class.

Again, we assume ordered fares f1 > f2 > · · · > fn ≥ 0 w.l.o.g. We denote a booking
class by j = 1, . . . , n. Let λjt be the probability for a request of class j at time t. We
define a MDP (T, S,A, p, r, V0) with

(i) the planning horizon T ∈ N. The length of the booking period is divided into
periods with at most one customer arriving. Note that we count time backwards
starting the booking period at t = T . The booking period ends at t = 0 with the
departure.

(ii) The state space is S = {0, . . . , C}, where C is the total capacity available. The
state c ∈ S refers to the remaining capacity at the current period.

(iii) The action space is A = {0, 1}n. For a ∈ A, a(j) specifies the accept (a(j) = 1)
or deny (a(j) = 0) decision for fare class j. In states c ∈ S, c > 0, the set of
feasible actions is A(c) = A. In state c = 0, no capacity remains and no further
requests can be accepted. Hence, A(0) = {(0, . . . , 0)′}.

(iv) The time-dependent transition law is

pt(c, a, c′) =


∑n
j=1 a(j)λjt c′ = c− 1,

1−∑n
j=1 a(j)λjt c′ = c,

0 otherwise,

for t = T, . . . , 1 with c, c′ ∈ S, a ∈ A(c).

(v) The one-stage reward function is

rt(c, a) =
n∑
j=1

a(j)λjtfj

for t = T, . . . , 1 with c ∈ S, a ∈ A(c).

(vi) The terminal reward function is V0 ≡ 0.

The value function for t = T, . . . , 1 and c > 0 ∈ S is given by

Vt(c) = max
a∈{0,1}n


n∑
j=1

[
a(j)λjt [fj + Vt−1(c− 1)]

]
+
1−

n∑
j=1

a(j)λjt

Vt−1(c)

 . (4.5)

For c = 0 the only feasible action (0, . . . , 0)′ is trivially optimal. Hence, with V0 ≡ 0,
Vt(0) = 0 for all t = T, . . . , 1.
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(4.5) can be rewritten as

Vt(c) = Vt−1(c) +
n∑
j=1

max
a(j)∈{0,1}

{
a(j)λjt [fj −∆Vt−1(c)]

}
. (4.6)

The basic model has important characteristics and structures that we briefly present
in the remainder of the section.

Proposition 4.5.4. The value function Vt has the following properties:

(i) Vt(c) is concave in c for all t = T, . . . , 0.

(ii) ∆Vt(c) is non-decreasing in t for all c ∈ S, c > 0.

Proof. For a proof we refer to Lee and Hersh (1993) Theorem 1 and Theorem 2.

As a consequence of Proposition 4.5.4, there exists a set of critical time-dependent
capacities {c∗t,j}, such that a request of fare j at time t is accepted, if and only if
c ≥ c∗t,j. Hence, an optimal policy can again be stated through nested protection
levels. In contrast to static models, the controls are now dependent on time.

Theorem 4.5.5. There exists an optimal policy τ ∗ = (a∗T , . . . , a∗1) such that

a∗t (j, c) =

 1 , c ≥ y∗t,j−1,

0 , otherwise,

for j = 1, . . . , n, t = T, . . . , 1, c ∈ S with the optimal protection levels

y∗t,j := max {c ∈ {0, . . . , C} : fj+1 < ∆Vt−1(c)} , for j = 1, . . . , n− 1, t = T, . . . 1 ,

where max ∅ := 0, y∗t,0 := 0 for all t, and, by convention, y∗t,n = C for all t.

The protection levels are monotone in time and in the booking classes as stated in the
following corollary which follows from Proposition 4.5.4 and Theorem 4.5.4:

Corollary 4.5.6. The optimal protection levels y∗t,j are

(i) non-decreasing in booking class j for fixed t = T, . . . , 1.

(ii) non-decreasing in time t for fixed booking class j = 1, . . . , n.
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Extensions to the dynamic model

Lee and Hersh (1993) formulate a dynamic program that considers groups arrivals
which cannot be accepted partially. Note that Brumelle and Walczak (2003) provide
a counterexample to their claim of a decreasing incremental value of a number of
seats in time for a fixed available capacity. Van Slyke and Young (2000) formulate
a stochastic knapsack problem for a capacity control application allowing inseparable
group bookings.

Talluri and Van Ryzin (2004a) provide a dynamic model incorporating customer choice.
Talluri and Van Ryzin (1998) consider network models. A more detailed introduction
is presented in Talluri and Van Ryzin (2004b). Barz (2007) considers a risk-averse
decision maker maximizing expected utility. Chi (1995) and Subramanian et al. (1999)
consider overbooking, cancellations, and no-shows.

4.6 Dynamic Pricing

Dynamic pricing (DP) is another approach to optimize expected revenues. The obvious
difference to capacity control problems is that the decision variable to manage demand
is the price itself. However, the distinction is not sharp because closing a booking class
can be considered rising the price of a ticket. The substantial difference is that de-
mand is explicitly modeled dependent on price. Additionally, versioning or fencing, i.e.
restricting different booking classes to encourage self-selection, is usually not applied
when an airline uses DP. Instead, the same restrictions apply to all tickets.

To adopt DP, the company needs to have flexibility in price, e.g. a monopolist is able
to influence demand by varying the price. Under perfect competition, a single company
cannot influence prices. To optimize revenues the company can only adopt capacity
control strategies. Additionally, price changes need to be possible quickly and at a
reasonable or even negligible price.

Legacy airlines traditionally commit to prices in advance to the booking process. Hence,
they are not flexible in price and apply capacity control models rather than dynamic
pricing. Contrarily, many low-cost carriers (LCC) distribute tickets only online and
have the ability to quickly adapt prices at virtually no cost. Many LCCs optimize
revenues using DP models and sell tickets at changing prices throughout the booking
horizon. Other industries such as fashion apparel might not be flexible in quantity but
have flexibility in price. Then, DP naturally lends itself to maximize revenues.

The practice of dynamic pricing is probably as old as commerce itself. Merchants have
always adapted prices in response to demand and vast literature on dynamically set-
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ting prices exists from an economic, marketing, and operations research perspective.
However, earlier publications often cover medium- to long-term price changes in the
product life cycle. Only during the last decades, when technological advances facili-
tated frequent and inexpensive price changes, sophisticated decision support models
have emerged for tactical dynamic pricing. Retailers have been the innovators in ap-
plying DP, initially in the form of markdowns. Today, other industries such as travel,
e-commerce, and even manufacturing apply DP models and promote scientific and
practical sophistication (Coy, 2000, Talluri and Van Ryzin, 2004b).

As mentioned, many early publications consider strategical pricing decisions, often
in conjunction with production or replenishment decisions (e.g. Zabel, 1972, refer to
Rajan et al. (1992) for a compact literature overview). Contrarily, consistent with the
RM assumptions, we assume the capacity to be fixed and for now do not consider
an option to increase the capacity in the short term. One early work on perishable
products with a limited capacity was published by Kincaid and Darling (1963). In their
model, prices are set continuously to maximize expected revenues. Time and the set
of allowable prices are continuous and arrivals are assumed to follow a homogeneous
Poisson process. Customers’ reservation prices are assumed mutually independent and
to follow a known time-dependent distribution. They derive optimality criteria and
provide an optimal policy in closed form for an exponential demand function. Gallego
and Van Ryzin (1994) formulate an equivalent problem and extend the closed-form
optimal policy to a more general exponential family. They further extend the model to
arrivals that follow an inhomogeneous or compound Poisson process. Additionally, they
consider discrete sets of allowable prices and overbooking. They provide upper bounds
and develop asymptotically optimal heuristic policies. Zhao and Zheng (2000) allow for
inhomogeneous Poisson arrivals and derive a sufficient condition for a time-monotone
optimal policy.

Our model formulation is similar to that in Bitran and Mondschein (1997). We also
divide the booking horizon into discrete time periods with at most one arrival. In our
formulation, however, time periods need not be of equal length. Arrivals are assumed
to follow an inhomogeneous Poisson process. Additionally, we assume a discrete set of
allowable prices that might arise from a strategical decision such as using specific price
points.

We adhere to some common assumptions that are similar to those in section 4.5:

• There are no cancellations, no-shows, or go-shows. Each accepted reservation
cannot be rejected later without significant costs. Overbooking is not considered.
Below some references are presented that do consider overbooking.

• A denied passenger request cannot be recaptured on other flights and is lost to
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the airline.

• Group arrivals are not considered, i.e. groups can be partially accepted.

• Demand for different legs is mutually independent. In that case, the multi-
product problem reduces to a set of independent single-product problems. Hence,
we consider leg-based rather than network models. Single-leg models are im-
portant components for many network heuristics as network models are often
intractable in practice.

• The decision maker is risk-neutral. Hence, the expected revenues are maximized.
Optimization based on expectations seems reasonable in the light of the daily
repeated decision process for numerous departures.

• Demand is assumed to be distributed according to a Poisson distribution. Time
is discretized finely such that the probability of two or more arrivals in a time
period is negligible.

DP models require a demand model that captures how the price influences demand.
Throughout the remainder, we assume a given willingness-to-pay (WTP) function for
potential buyers. The WTP is expressed through a time-dependent distribution of
the reservation price Rt, i.e. the maximum price a customer is willing to accept.
We assume the reservation prices to be mutually independent and independent of an
arrival. qt(f) := P (Rt ≥ f) denotes the purchase probability when a customer arrives
and fare f ≥ 0 is offered. With rational consumers, the purchase probability for a price
is at least as high as the purchase probability for a higher price. Hence, we assume
qt(f) ≥ qt(f ′) for f < f ′.

We now discuss the basic DP model for a single-leg flight. The results are used in the
subsequent chapters.

Let P = {f0, f1, . . . , fk} with f0 > f1 > · · · > fk ≥ 0 be the discrete set of allowable
prices. The set must contain the nullprice f0 with qt(f0) = 0 for all t. The nullprice is
used if all requests are to be rejected, e.g. when there is no more remaining capacity
and no more tickets can be sold. We define a MDP (T, S,A, p, r, V0) with

(i) the planning horizon T ∈ N. The length of the booking period is divided into
periods with at most one customer arriving. The probability for an arrival is
denoted by λt, where t denotes the time left to sell any capacity. Because of
the assumption of an infinite market, the arrival probabilities are mutually inde-
pendent. Note that time is counted backwards and the booking period starts at
t = T . The flight departs at t = 0 and the last decision is made at t = 1.
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(ii) The state space is S = {0, . . . , C}, where C denotes the total capacity available.
The state c ∈ S refers to the remaining capacity at the current period.

(iii) The action space is A = P. At each decision point, one price is selected from the
set of feasible actions A(c) = P for c > 0. In state c = 0, no capacity remains
and no further requests can be accepted. Hence, A(0) = {f0}.

(iv) The time-dependent transition law is

pt(c, a, c′) =


λtqt(a) c′ = c− 1,
1− λtqt(a) c′ = c,

0 otherwise,

for t = T, . . . , 1 with c, c′ ∈ S, a ∈ A(c).

(v) The one-stage reward function is

rt(c, a) = λtqt(a)a

for t = T, . . . , 1 with c ∈ S, a ∈ A(c).

(vi) The terminal reward function is V0 ≡ 0.

The value Vt(c) denotes the maximum aggregated expected revenue of the remaining
time periods t, t− 1, . . . , 1. The value function in each period t+ 1 and for remaining
capacity c ∈ S is given by the optimality equation

Vt+1(c) = max
a∈A(c)

{
λtqt(a)[a+ Vt(c− 1)] + [1− λtqt(a)]Vt(c)

}
. (4.7)

The following lemma will be of use when deriving structures of Vt:

Lemma 4.6.1. Let g : X → R+, X = {0, . . . , n} be non-decreasing and concave and
pa ∈ [0, 1] with pa > pa′ if a′ > a. Let D(x) be a finite set of admissible a with at least
one a′ ∈ D(x) with pa′ = 0. Further, let D(x+ 1) = D(x). Then,

(i) the largest maximizer ψ(x) ∈ D(x) of the function

Lag(x) := pa[a+ g(x− 1)] + (1− pa)g(x) , x > 0

is non-increasing in x.

(ii) The function h : X → R with

h(x) = max
a∈D(x)

{pa[a+ g(x− 1)] + (1− pa)g(x)} , x > 0

and h(0) = 0 is non-decreasing and concave in x.
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Proof.

(i) Let x ∈ X \ {0}, a∗ = ψ(x), and a > a∗. Then

La∗g(x) > Lag(x)

and thus

La∗g(x+ 1)− Lag(x+ 1) = La∗g(x) + pa∗∆g(x) + (1− pa∗)∆g(x+ 1)

−Lag(x)− pa∆g(x)− (1− pa)∆g(x+ 1)

> (pa∗ − pa)(∆g(x)−∆g(x+ 1))

≥ 0 .

Hence, all actions a > a∗ are not optimal in x+ 1 and ψ(x+ 1) ≤ a∗ = ψ(x).

(ii) For x = 1,

∆h(x) = max
a∈D(x)

{pa[a+ g(x− 1)] + (1− pa)g(x)}

= max
a∈D(x)

{pa[a−∆g(x− 1)]}+ g(x)

≥ g(x) ,

where we used that pa′ = 0 for at least one a′ ∈ D(x).

Now, let x ∈ X, x > 1 and a∗ = ψ(x − 1). Then using the monotonicity and
concavity of g

∆h(x) ≥ La∗g(x)− La∗g(x− 1)

= pa∗∆g(x− 1) + (1− pa∗)∆g(x)

≥ 0 .

Thus, h is non-decreasing in x.

For x = 2, let a∗ = ψ(x). Then, using that pa′ = 0 for at least one a′ ∈ D(x),

∆h(x)−∆h(x− 1)

≤ pa∗∆g(x− 1) + (1− pa∗)∆g(x)− g(x− 1)

≤ pa∗∆g(x− 1) + (1− pa∗)∆g(x)−∆g(x− 1)

= (1− pa∗)(∆g(x)−∆g(x− 1))

≤ 0 ,

where we used g(x) ≥ 0 and the concavity of g.
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Now, let x ∈ X, x > 2, a∗ = ψ(x), and a∗∗ = ψ(x− 2), then

∆h(x)−∆h(x− 1)

≤ La∗g(x)− La∗g(x− 1)− La∗∗g(x− 1) + La∗∗g(x− 2)

= pa∗∆g(x− 1) + (1− pa∗)∆g(x)− pa∗∗∆g(x− 2)− (1− pa∗∗)∆g(x− 1)

= (1− pa∗)(∆g(x)−∆g(x− 1)) + pa∗∗(∆g(x− 1)−∆g(x− 2))

≤ 0 ,

where we have used that g is concave in the last inequality. Thus, h is concave.

Using Lemma 4.6.1, we derive structures in the capacity:

Theorem 4.6.2. In the DP model with the value function specified in (4.7)

(i) Vt(c) is non-decreasing and concave in c for any given t ∈ {T, . . . , 0}.

(ii) For a fixed t, the largest fare ψt(c) maximizing the function

a 7→ λtqt(a)[a+ Vt−1(c− 1)] + [1− λtqt(a)]Vt−1(c)

is non-increasing in c.

Proof. Using Lemma 4.6.1, the proof is trivial: Let Vt(c) be positive, non-decreasing,
and concave for some t. Then, applying Lemma 4.6.1 (ii), Vt+1(c) is non-decreasing
and concave. We easily show that Vt+1(c) ≥ 0 using that Lf0Vt(c) = Vt(c) and V0 ≡ 0.
At the start of induction, at t = 0, the claim is true because V0 ≡ 0. Hence, (i) is
true. (ii) follows immediately from Lemma 4.6.1 (i) when considering that the largest
feasible price is the nullprice that is also the only admissible action for c = 0.

Theorem 4.6.2 is frequently used throughout the remainder. It is also of interest when
determining the optimal initial inventory, i.e. when assigning aircraft to flights during
fleet assignment (c.f. chapter 5.4). In applications where the cost of the capacity is
linear or convex, the expected profit is a concave function of the initial capacity. The
maximum expected profit is attained where the marginal expected revenue equals the
marginal cost (subject to discretization).
Fixed cost do not affect the location of the optimum. Clearly, fixed cost need to be
offset by the expected profit. Otherwise it is optimal not to offer any capacity at all.

We now consider structures in the time t that are used to prove structures of the
optimal policy in time.

Theorem 4.6.3. In the DP model with the value function specified in (4.7)
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(i) Vt(c) is non-decreasing in t for a fixed c ∈ S.

(ii) Vt(c)− Vt(c− 1) is non-decreasing in t for a fixed c ∈ S, c > 0.

Proof. Vt(0) ≡ 0 because the only feasible action is the nullprice f0. For c > 0,

Vt+1(c) = max
a∈A(c)

{λt+1qt+1(a)[a+ Vt(c− 1)] + [1− λt+1qt+1(a)]Vt(c)}

= max
a∈A(c)

{λt+1qt+1(a)[a−∆Vt(c)]}+ Vt(c)

⇔ Vt+1(c)− Vt(c) = max
a∈A(c)

{λt+1qt+1(a)[a−∆Vt(c)]}

≥ λt+1qt+1(f0)[f0 −∆Vt(c)]

= 0 .

Hence, (i) is true. To show (ii), we first consider c = 1. Then, using (i),

Vt(1)− Vt(0)− Vt−1(1) + Vt−1(0) = Vt(1)− Vt−1(1) ≥ 0 .

Now, for c > 1, let a∗ = ψt(c − 1) be the optimal action for capacity c − 1 at time t.
Then

Vt(c)− Vt(c− 1)− Vt−1(c) + Vt−1(c− 1)

≥ λtqt(a∗)[a∗ + Vt−1(c− 1)] + [1− λtqt(a∗)]Vt−1(c)

−λtqt(a∗)[a∗ + Vt−1(c− 2)]− [1− λtqt(a∗)]Vt−1(c− 1)

−Vt−1(c) + Vt−1(c− 1)

= −λtqt(a∗)[∆Vt−1(c)−∆Vt−1(c− 1)]

≥ 0 ,

where we have used that Vt−1 is concave in c in the last inequality.

Before we continue with finding a lower bound of the largest optimal action, we present
the following lemma providing an upper bound for ∆Vt.

Lemma 4.6.4. For all t = T, . . . , 0 and all c ∈ S, the increase of the value function

∆Vt(c) ≤ f0 .

Proof. The proof follows by induction. Because V0 ≡ 0 and f0 ≥ 0, the assertion holds
for t = 0. Now, suppose there exists an a ∈ A(c) \ {f0} such that a ≥ ∆Vt(c). Then,
using Theorem 4.6.3 (i),

∆Vt+1(c) = Vt+1(c)− Vt+1(c− 1)

≤ Vt+1(c)− Vt(c− 1)
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= max
a∈A(c)

{λt+1qt+1(a)[a−∆Vt(c)]}+ ∆Vt(c)

≤ max
a∈A(c)

{a−∆Vt(c)}+ ∆Vt(c)

= f0 .

If a < ∆Vt(c) for all a ∈ A(c) \ {f0}. Then, because f0 ∈ A(c),

∆Vt+1(c) = Vt+1(c)− Vt+1(c− 1)

≤ Vt+1(c)− Vt(c− 1)

= max
a∈A(c)

{λt+1qt+1(a)[a−∆Vt(c)]}+ ∆Vt(c)

= ∆Vt(c)

≤ f0 ,

which concludes the proof.

Next, we prove that ∆Vt(c) is a lower bound for the optimal action at t + 1 in state
c ∈ S. Note that during backward induction, at stage t + 1, ∆Vt(c) is known. The
bound is non-decreasing in time t (Theorem 4.6.3) and non-increasing in the capacity
c (Theorem 4.6.2).

Theorem 4.6.5. Let c ∈ S and t = T − 1, T − 2, . . . , 0. Further, let ψt+1(c) ∈ A(c) be
the largest argument maximizing the function

a 7→ λt+1qt+1(a)[a+ Vt(c− 1)] + [1− λt+1qt+1(a)]Vt(c) .

Then, f0 ≥ ψt+1(c) ≥ min{f0,∆Vt(c)}.

Proof. Fix c ∈ S and let a ∈ A(c) \ {f0} such that a ≤ ∆Vt(c). Then

LaVt(c) = λt+1qt+1(a)[a−∆Vt(c)] + Vt(c) ≤ Vt(c) = Lf0Vt(c) ,

which entails f0 ≥ ψt+1(c) ≥ min{f0,∆Vt(c)}. If a > ∆Vt(c) holds for all a ∈ A(c), the
result is trivial.

In certain settings, the optimal pricing policy is monotone in time. We provide a
sufficient condition by transferring the results in Zhao and Zheng (2000) to our setting.
For a, a′ ∈P, a > a′, we define

qt(a, a′) :=

 qt(a)/qt(a′) if qt(a′) 6= 0,
1 if qt(a′) = 0.

Note that qt(a′) = 0 implies qt(a) = 0 for a > a′.
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Theorem 4.6.6. If qt(a, a′) is non-decreasing in t for a, a′ ∈P, a > a′, then, for fixed
c ∈ S, the largest maximizer ψt(c) of the function

a 7→ λtqt(a)[a+ Vt−1(c− 1)] + [1− λtqt(a)]Vt−1(c)

is non-decreasing in t.

Proof. Let a∗ = ψt(c) be the largest optimal action in state c ∈ S at t and let a ∈
P, a < a∗. Let qt(a∗) 6= qt(a), which is equivalent to qt(a∗) < qt(a). Further, let
qt+1(a∗) 6= qt+1(a). Then

La∗Vt−1(c)− LaVt−1(c)

= λtqt(a∗)[a∗ −∆Vt−1(c)]− λtqt(a)[a−∆Vt−1(c)] ≥ 0

⇔ ∆Vt−1(c) ≥ qt(a)a− qt(a∗)a∗
qt(a)− qt(a∗)

= a− [qt(a∗)/qt(a)]a∗
1− [qt(a∗)/qt(a)]

= a∗ − a∗ − a
1− [qt(a∗)/qt(a)]

Using the monotonicity of ∆Vt(c), we get

∆Vt(c) ≥ ∆Vt−1(c)

≥ a∗ − a∗ − a
1− [qt(a∗)/qt(a)]

≥ a∗ − a∗ − a
1− [qt+1(a∗)/qt+1(a)] ,

which implies La∗Vt(c)− LaVt(c) ≥ 0.

Now let qt+1(a∗) = qt+1(a). Then

La∗Vt(c)− LaVt(c)

= λt+1qt+1(a∗)[a∗ −∆Vt(c)]− λt+1qt+1(a)[a−∆Vt(c)]

= λt+1qt+1(a∗)[a∗ − a]

≥ 0 .

Note that qt(a∗) = qt(a) implies qt+1(a∗) = qt+1(a), and hence, the same argument
works.

The assumption that qt(a, a′) is non-decreasing in t for a, a′ ∈ P, a > a′ has the in-
terpretation that an arriving customer is more likely willing to pay a premium over a
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price a′ the more time remains for sales. That might be a valid assumption in applica-
tions such as retailing, where early buyers accept paying a premium for exclusiveness.
Later in the sales period, products become less popular and are often marked-down.
However, the opposite is usually true in the airline industry. The closer to departure,
the more time-sensitive customers are. A business traveler might purchase a ticket
on short-notice to attend an appointment. That traveler is certainly willing to pay a
premium to purchase a ticket in comparison to a leisure customer that books well in
advance and is less time-sensitive. Hence, in the airline industry, the assumption is usu-
ally not valid. However, many authors assume that probabilities are constant in time.
The case of constant probabilities is subsumed in the assumption of non-decreasing
qt(a, a′). Then, optimal prices are non-decreasing in time.

In general, the monotonicity in time does not hold. We give an example where the
optimal price actually decreases in time. We consider only the last two decision times
t = 1, 2 remaining in a booking process. Earlier decisions and sales do not influence
the strategy and hence are not considered. The flight departs at t = 0. The sales
probabilities are given in Table 4.1. These combine the arrival probabilities with the
willingness-to-pay of the arriving customers. Assuming V0 ≡ 0, i.e. not considering
overbooking, the expected values and the optimal actions are presented in Table 4.2.
For any positive capacity c, the optimal price in period t = 1 is ψ∗1(c) = 20 and
decreases to ψ∗2(c) = 10 at t = 2. Note that the example does not depend on the

Table 4.1: Example of an optimal policy with decreasing prices in time. Sales Proba-
bilities.

Price t = 1 t = 2

10 0.4 0.2
20 0.3 0.05

exact value of the sales probability for f = 10 in t = 1 within the interval [0, 0.6].

Algorithm 4.6.1 provides a pseudo-code implementation to calculate an optimal pric-
ing policy using backward induction. The structures expressed in Theorem 4.6.2 and
Theorem 4.6.5 are exploited to exclude suboptimal actions and increase efficiency. The
monotonicity in time (Theorem 4.6.6) is not used because it does not hold in general.
Note that Algorithm 4.6.1 returns the expected values of all decision times, i.e. the
total expected revenue of the remaining sales period. To find an optimal policy and
the expected value only at the beginning of the booking process, only the values of
the current and the previous iteration need to be saved. Hence, the algorithm can be
further optimized to reduce memory requirements, if only the policy and the initial
expected values are of interest (c.f. chapter 3).
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Algorithm 4.6.1 Algorithm to determine an optimal DP policy.
Input: Fares f0 > f1 > . . . > fk ≥ 0,

arrival probabilities (λT , λT−1, . . . , λ1),
purchase probabilities (qT , qT−1, . . . , q1),
total initial capacity C,
length of the booking horizon T

Output: Optimal policy (a∗T , a∗T−1, . . . , a
∗
1),

Expected values (VT , VT−1, . . . , V0)
1. t = 0
2. c = 0
3. while c ≤ C

4. Vt(c) = 0
5. c = c+ 1
6. while t < T

7. t = t+ 1
8. Vt(0) = 0
9. a∗t (0) = f0

10. c = 1
11. while c ≤ C

12. i = k

13. while fi < ∆Vt−1(c) and i > 0
14. (∗ Using lower bound on price (Theorem 4.6.5) ∗)
15. i = i− 1
16. a∗t (c) = fi

17. Vt(c) = λtqt(fi)[fi + Vt−1(c− 1)] + [1− λtqt(fi)]Vt−1(c)
18. while i > 0 and fi−1 ≤ a∗t (c− 1)
19. (∗ Using upper bound on price (Theorem 4.6.2) ∗)
20. i = i− 1
21. LfiVt−1(c) = λtqt(fi)[fi+Vt−1(c−1)]+[1−λtqt(fi)]Vt−1(c)
22. if LfiVt−1(c) ≥ Vt(c)
23. Vt(c) = LfiVt−1(c)
24. a∗t (c) = fi

25. c = c+ 1
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Table 4.2: Example of an optimal policy with decreasing prices in time. Values and
optimal prices.

t=1 t=2

Capacity c Capacity c
Price f 0 1 > 1 0 1 > 1

10 - 4 4 - 6.8 8
20 - 6 6 - 6.7 7
f0 0 0 0 0 6 6

Maximum 0 6 6 0 6.8 8
Optimal Price ψ∗ f0 20 20 f0 10 10

Extensions and related literature

Smith and Achabal (1998) study pricing for a single product when the demand depends
on the price and the inventory level. They assume a known and constant demand
intensity. Especially in a retail setting, demand dependency on inventory levels is
a reasonable assumption. Chatwin (2000) considers multiple products with demand
dependent on price and inventory. He restricts prices to a discrete set of allowable
prices. He extends his results to time-dependent demand, policies dependent on time
and inventory, and to allow for replenishment.

Feng and Gallego (1995) assume two fixed prices for a product and determine the
optimal time to switch. Feng and Xiao (1999) extend the model to a risk-sensitive
decision maker. Feng and Xiao (2000b) consider multiple predetermined prices and
derive optimal switching times when a monotone pricing policy (i.e. only mark-ups
or mark-downs) is required. Feng and Xiao (2000a) generalize these results to non-
monotone policies. Feng and Gallego (2000) consider fares and arrival intensities that
may depend on the time and the inventory.

Bitran and Mondschein (1997) study periodic pricing where prices can be set only
at a finite set of decision times. They include a constraint to only allow prices de-
creasing in time as often used in retailing. In numerical studies, they find that the
markdown constraint does not significantly decrease the overall revenue. The model is
extended by Bitran et al. (1998) to consider different locations with separate demands
and inventories. The same price is required at each location.

Gallego and Van Ryzin (1997) extend the results in Gallego and Van Ryzin (1994) to
consider network problems. In both works, bounds and heuristics based on the deter-
ministic problem are developed and the models are extended to include cancellations
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and overbooking. Maglaras and Meissner (2006) provide a common general formula-
tion of the dynamic pricing and capacity control problems. They consider multiple
products sharing a common resource. They provide and numerically analyze several
heuristics. Bitran et al. (2005) study optimal dynamic pricing in a multi-product set-
ting with demand substitution due to price differences and stock-outs. They deploy a
demand model called Walrasian Choice model that allows to model customer choice
in conjunction with the substitution effects as well as facilitating a ranking among
products.

Zhang and Cooper (2005) study a choice model to consider parallel flights that serve
the same route at different times during the day. Customers make their choice between
the flights depending on the set of all prices. To deal with the curse of dimensionality
they analyze various pooling heuristics.

Gallego and Hu (2009) formulate a stochastic dynamic pricing game with multiple
competitors selling substitutable perishable products. The probabilities of choosing
the substitutes are based on a multinomial logit model. They derive asymptotically
optimal heuristics based on the corresponding deterministic differential game. In a
discrete-time version of a similar setting, Lin and Sibdari (2009) show the existence
of a Nash equilibrium and characterize the price and the expected revenue when all
real-time capacities are known to all competitors. They also propose a heuristic to
apply when only the initial inventories of the competitors are known.

Using a Bayesian learning approach, Bitran and Wadhwa (1996) extend the model by
Bitran and Mondschein (1997) to demand learning. They assume uncertainty in one
parameter of the reservation-price distribution. They also consider non-homogeneous
arrivals and a time-dependent willingness-to-pay. Additionally, they present and test
an expected value heuristic. Besbes and Zeevi (2006) develop a two-step learning
procedure for the multi-product pricing problem. First, prices are varied in a short
learning phase. Then, with a non-parametric estimation of the demand function, using
a deterministic heuristic, a fixed-price policy is adopted for the remainder of the sales
horizon. Lin (2006) employs Bayesian learning to the arrival process. He assumes that
the arrivals follow a Poisson process with an unknown parameter. Gallego and Talebian
(2010) propose a demand learning process for multiple versions of one product and
assume unknown arrival rates and valuations. They also provide a compact literature
overview on demand learning and pricing.

Li and Zhuang (2009) model a single-leg dynamic pricing problem with homogeneous
arrival rates and a constant willingness-to-pay function. They model a risk-sensitive
decision maker and show that the monotone structures of the expected values and the
optimal prices in time and capacity are preserved for exponential atemporal and general
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additive utility functions. Optimal prices decrease with the degree of risk-aversion for
additive and atemporal exponential utility functions. Levin et al. (2008) take another
approach to incorporate risk into the decision. They augment the objective function
with a penalty term for the probability to fall below a certain revenue level. They
show that after the minimum revenue target has been reached, the risk-neutral and
risk-averse policies coincide. They propose and numerically study a fixed-price heuristic
as well as a heuristic allowing only a fixed number of price changes.

For more detailed surveys with additional references on specific problems in dynamic
pricing we refer the reader to Bitran and Caldentey (2003) and Elmaghraby and Ke-
skinocak (2003).



5

Demand-Driven Re-Fleeting

In this chapter, we introduce the concept of Demand-Driven Re-Fleeting. In order to
explain the benefits we first outline the typical planning process of an airline and the
timing of the various planning steps. The fleet assignment problem and its complexity
are explained in more detail in section 5.2. In the next section we present the general
idea of Demand-Driven Re-Fleeting and summarize the existing literature. We conclude
by presenting an algorithm that facilitates finding swapping opportunities without
affecting other flights of the network.

5.1 Airline Planning Process

The planning process of an airline comprises several complex problems that are usually
solved sequentially as depicted in Figure 5.1. Among the most important long-term
strategic decisions is the fleet planning that determines the composition of the fleet in
the future. The airline decides which and how many new aircraft to purchase and which
of the current aircraft to retire. The planning is based on traffic forecasts and market
requirements that determine the needed technical and performance characteristics such
as capacity and range of an aircraft. Economic and financial impacts need to be assessed
as well as environmental and marketing aspects. Mainly due to the long delivery times,
the fleet planning problem is solved years in advance to operations. It is a continuous
process that greatly influences an airline’s options to serve different markets and that
influences its financial position and future crew and maintenance costs.

Subsequently, routes, frequencies, and times are fixed in schedule design planning usu-
ally more than one year prior to the start of the schedule. This step is again split into
consecutive problems that involve strategic decisions on which markets (i.e. origins and
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destinations) to serve and what times and frequencies to offer in order to satisfy cus-
tomer needs. The offered schedule is a major determinant of demand and market share
and hence the overall competitive position. The schedule is restricted by the available
fleet in range, capacities, and airport requirements, although there is a feedback loop
with fleet planning. Strategic considerations concerning routes and frequencies mainly
drive fleet planning decisions.

During the next planning step, the fleet assignment, aircraft types are assigned to the
legs in the schedule. Based on demand and revenue forecasts and cost estimates ca-
pacities are assigned to match demand in the most profitable way. Capacities for all
scheduled legs are fixed. The fleet assignment greatly impacts profits as too small air-
craft result in lost customers that cannot be accommodated (spill). Potential revenue
and market share is lost due to insufficient capacities. In contrast, an assignment with
excess capacity results in spoilage, i.e. empty seats. The larger airplane could possibly
be used more efficiently on other flights with higher demand and exhibits higher oper-
ating cost than needed to satisfy the available demand. The fleet assignment problem
is described in more detail in section 5.2.

The capacities determined are an important input to RM systems. Standard RM
problems as described in chapter 4 assume a fixed and exogenously given initial capacity
that is sold in a revenue maximizing way by selecting prices or booking limits. As
the supply of seats is fixed, the demand is influenced by price or rationed by booking
controls. The booking process typically starts about one year to departure and requires
a finalized fleet assignment.

Crew and maintenance planning take place parallel to the sales process several weeks
before departure. Legal and contractual requirements such as rest times or union
agreements need to be satisfied. Often, crew plans must be finalized several weeks
in advance to departures. Maintenance requirements are tightly regulated and some
airlines adopt additional standards.

The planning steps are highly interdependent but need to be decided on different time
scales. Each planning step is restricted by all preceding decisions made. The dis-
posable fleet restricts the schedule design and the fleet assignment. RM and crew and
maintenance planning require the fleeted schedule as an input. However, strategic deci-
sions on routes and the schedule influence fleet planning. RM influences the realization
of demand and hence the optimal fleet assignment at the time of departure. Fleet
assignment planning also shows feedback loops with crew and maintenance planning.

Problems in regards to an integration arise because of the different time scales of the
planning steps and the different optimization models used. The early planning steps
need to be completed at times when demand is still highly uncertain. According to



CHAPTER 5. DEMAND-DRIVEN RE-FLEETING 72

1 Year Departure 

Fleet Planning

Schedule Design
Route Planning

Frequency Planning
Timetable Design

Fleet Assignment

Revenue Management

Maintenance Planning

Strategic Operational

Crew Planning

Figure 5.1: A typical sequential airline planning process.

Swan (2002) variations of 20%-50% of the mean are typical during the fleet assignment.
Closer to departure, forecasts become more accurate and more granular. Because
capacities need to be fixed based on highly volatile forecasts, airlines have concentrated
on managing demand through RM to finely match it with the roughly planned supply.

Forecasts for the fleet assignment are highly aggregated and averaged over typical time
periods such as an average day. Different fares paid are mostly averaged as well. RM
systems require much more granular demand forecasts and consider different prices
paid by customers. Often, different departments of an airline are responsible for the
different planning steps. Data from different sources is used and often not shared
between different planners. Only recently, planning systems have been introduced that
allow to exchange data and integrate different forecasts (c.f. e.g. Lufthansa Systems,
2010).

As a result of the stochastic nature of the demand and early forecasts used, even with
sophisticated RM systems in place today, overall load factors are only in the range of
78%-82% (Lufthansa, 2011, Ryanair, 2011b). Lowering the capacity is not an option
as even with low load factors significant spill still exists (Berge and Hopperstad, 1993).

The fleet assignment problem is described in more detail in section 5.2. RM techniques
have been discussed in chapter 4. For further details on the other planning steps, the
reader is referred to Belobaba (2009b).
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5.2 Fleet Assignment

After the schedule has been fixed, fleet types are allocated to specific flight legs during
the fleet assignment (FAM). Fleet types (e.g. Airbus A319, Boeing 737-800) rather
than individual aircraft (tails) are assigned and capacities on each leg are fixed for
subsequent planning steps. Individual planes are assigned in later planning phases
under consideration of maintenance requirements.

For our purposes, we restrict ourselves to a brief description of the basic leg-based fleet
assignment model as proposed by Subramanian et al. (1994) and Hane et al. (1995).
Earlier models such as the ones by Abara (1989) or Daskin and Panayotopoulos (1989)
are limited and have become obsolete today. More complex models consider recapture
of spilled passengers (e.g. Lohatepanont, 2002, Lohatepanont and Barnhart, 2004),
changes to the original schedule (Desaulniers et al., 1997, Rexing et al., 2000, Bélanger
et al., 2006), or the integration of maintenance routing (Clarke et al., 1996, Barnhart
et al., 1998, Haouari et al., 2009), crew planning (Barnhart et al., 2002b, Gao et al.,
2009), or both (Sandhu and Klabjan, 2007, Papadakos, 2009). For a comprehensive
review of the fleet assignment problem we refer to Lohatepanont (2002) or Grothklags
(2006). The later work also contains an extensive discussion of solution algorithms.

The fleet assignment problem is usually modeled as a time-space network flow prob-
lem based on a multi-commodity flow problem. Each node corresponds to a specific
departure or arrival at a certain airport. The associated departure times are simply
those of the scheduled flights. The time of an arrival node is the ready time, i.e. the
time when an aircraft is again ready for take-off after landing, disembarking, cleaning,
fueling, boarding, etc. Flight legs are represented by flight arcs that connect nodes at
different airports. Ground arcs model airplanes on ground and connect nodes at the
same airport. A special type of ground arcs are overnight arcs that connect the last
with the first arrival or departure of the planning horizon at each station. Overnight
arcs guarantee that the same number of planes of each type originates and ends at
each station to facilitate repeating a rolling plan. Figure 5.2 shows an exemplary flight
network with only two stations.

Note that in the basic network illustrated flight durations and turn times (i.e. the time
to prepare the aircraft for the next take-off) are assumed to be equal for all fleet types.
In practice, flight and turn times vary by fleet type which can be modeled by separate
copies of the network for each type. The length of the flight arcs are adapted to the
type-specific flight and turn times. There are more nodes in the network, and hence,
more restrictions are needed and the problem becomes less tractable with the number
of copies.
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Berlin (TXL) flight arc

ground arc
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Figure 5.2: Example of a time-expanded flight network for two airports. The flight
arcs are copied for each fleet type.

We additionally assume that any leg can be flown with any fleet type. In practice,
separate problems are solved for short- and long-distance flights. Hence, the assumption
is not critical.

Let L denote the set of all scheduled flight legs, F the set of the available fleet types,
and V the set of all nodes. Further, let G be the set of all ground arcs and let CL ⊆ L

and CG ⊆ G be the subsets of legs and ground arcs that cross the end of the planning
interval, i.e. start before the end and arrive after the beginning of the period. Hence,
CL and CG can be used to count all aircraft used. The total number of aircraft of type
k ∈ F is denoted Nk. The set of flight and ground arcs beginning and ending at node
v ∈ V is denoted I(v) and O(v), respectively.

The binary decision variable xik describes the decision to fly leg i ∈ L with fleet type
k ∈ F (xik = 1) or not (xik = 0). The variable yik counts the number of aircraft of type
k ∈ F on ground arc i ∈ G. The basic FAM is then solved using the following mixed
integer program:

(MIP 5.2.1)

min
∑
i∈L

∑
k∈F

cikxik (5.1)
∑
k∈F

xik = 1 for all i ∈ L (5.2)
∑
i∈CL

xik +
∑
j∈CG

yjk ≤ Nk for all k ∈ F (5.3)

∑
i∈I(v)∩L

xik +
∑

i∈I(v)∩G
yik =

∑
i∈O(v)∩L

xik +
∑

i∈O(v)∩G
yik for all v ∈ V, k ∈ F (5.4)

xik ∈ {0, 1} for all i ∈ L, k ∈ F (5.5)

yik ≥ 0 for all i ∈ G, k ∈ F (5.6)

The objective (5.1) minimizes costs. The coefficients cij denote the costs of flying leg
i ∈ L with type k ∈ F. These costs not only include the operating costs, but also
the costs of spilled passengers when the capacity is not sufficient. Part of the spilled
passengers might be recaptured on other flights of the airline. These recaptured profits
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should be excluded from the spill cost estimates. However, the basic model does not
explicitly model passenger flows (i.e. spill and recapture rates). Hence, spill costs and
recaptured profits can only be roughly approximated.

Alternatively, profit maximization might be used as the objective (e.g. Berge and Hop-
perstad, 1993). Profit coefficients need to be estimated for each leg and fleet type
including the revenue generated and the costs of flying. In either model, the demand is
assumed to be homogeneous and an average fare is used. If spilled passengers are valued
using the average fare, both objectives yield the same optimal assignment. However,
spill costs per passenger might often include an added loss of goodwill. In general,
revenues and spill costs are hard to estimate, especially in regards of RM systems in
place that deliberately spill certain passengers.

The cover constraints (5.2) in conjunction with the binary constraints (5.5) guarantee
that each leg is served by exactly one type. The count constraints (5.3) ensure that
the total number of aircraft is not exceeded while the balance constraints (5.4) require
that the number of aircraft arriving and departing at each node is equal.

While solutions are usually integral, MIP 5.2.1 does not ensure the integrality of the
number of aircraft on the ground arcs yik. With (5.4) and (5.5), a non-integer solution
can only be attained if there are spare planes available, i.e. aircraft that are not
needed to fly the schedule and remain unutilized on ground. The constraints (5.4) and
(5.5) require that all ground arcs at one station are either integral or have the same
non-integral residue. The possible residues at different stations need to add up to an
integer because of the count constraints (5.3) and the implicitly assumed integrality
of Nk, k ∈ F. Hence, a non-integral solution can easily be transferred into a feasible
assignment by rearranging spare aircraft and we only ensure non-negativity by (5.6).
If an integral solution is required, constraining one ground arc per station (e.g. all
overnight arcs) suffices because then the balance and binary constraints (5.4) and (5.5)
ensure the integrality of all other ground arcs as well (c.f. e.g. Gopalan and Talluri,
1998).

The constraints in (5.2), (5.3), and (5.4) are the most basic and most important con-
straints to find a feasible solution for the given schedule. Where necessary, other con-
straints might be added such as crew and maintenance requirements, noise constraints,
and gate restrictions at the airport (Belobaba, 2009b).

Through preprocessing techniques and efficient algorithms Subramanian et al. (1994)
and Hane et al. (1995) solve large real-world problems in reasonable time. These include
the creation of subproblems based on aircraft type characteristics such as range (e.g.
a wide-body aircraft sub-network), the consolidation of nodes, and the elimination of
decision variables and flight and ground arcs. Belobaba (2009b) provides an example
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with 2,044 legs and 9 fleet types that is solved in about 16 minutes. Still, the basic
fleet assignment problem and its feasibility problem (i.e. if a feasible solution exists)
are NP-complete for more than 2 fleet types (Gu et al., 1994, Grothklags, 2006).

One shortcoming of the basic FAM problem is the lack of integration with other plan-
ning steps despite their interdependencies. The references provided above include ap-
proaches to integrate these. Other shortcomings of the basic FAM are mainly due
to the complexity that gives rise to approximations. Network effects, i.e. dependent
leg demand and itinerary fares, are not considered. Spilled and recaptured demand is
often ignored and can at best only be approximated. More complex network models
such as the works by Barnhart et al. (2002a) and Jacobs et al. (2008) explicitly model
the passenger flow through the network, i.e. booked passengers on each itinerary. The
benefits are found to be significant in implementations at American Eagle Airlines and
United Airlines.

A further shortcoming is the aggregation of the demand with the use of average fares on
a leg or itinerary basis. Especially with sophisticated RM systems in place that protect
capacity for high-value demand by spilling low-value demand, revenue and spill cost
estimates based on average fares might be greatly distorted. Itinerary fares are usually
prorated to legs equally or based on relative distance. However, capacity decisions
only of those legs with scare capacities impact the total expected revenue from the
itinerary. As long as legs show large capacity buffers relative to the demand, these
do not influence revenue. Hence, proration models that allocate fares only to scare
resources outperform traditional models (e.g. Barnhart et al., 2009).

The FAM planning horizon is usually one day because most airlines operate the same
schedule Monday through Friday. These are often adjusted for weekends or schedules
are considered separately from working days. Hence, the demand is assumed to be
static, although in reality, the demand varies significantly by day and also by sea-
son. Airlines accept this shortcoming because they prefer uniform daily schedules for
operational reasons (e.g. for crew, maintenance, or gate planning).

5.3 Demand-Driven Re-Fleeting

Changing the initial fleet assignment in response to demand is the concept of Demand-
Driven Re-Fleeting (DDR), which is also known as Demand-Driven Dispatch (DDD
or D3), or Dynamic Capacity Management (DCM). During the booking process, as
demand realizes and forecasts improve, certain assignments are changed. Changes
are heavily restricted by crew and maintenance plans. Plans are bound to fulfill all
maintenance requirements for each individual aircraft. Union agreements and legal con-
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straints in many countries require settled crew schedules several weeks prior operations.
Changes are both difficult and expensive. The introduction of cockpit-compatible fleet
families (e.g. Airbus A319, A320, A321) has facilitated re-fleeting options without
changing crew planning. Crews are certified to operate all aircraft in a family with a
single type rating. Hence, planes with different capacities can be exchanged to better
match demand without influencing crew planning. In spite of these restrictions, parts of
an assignment can be revised as departure approaches to improve capacity utilization.
This flexibility is exploited by engaging in systematic Demand-Driven Re-Fleeting.

To illustrate the idea, assume flight A and B depart from the same airport at about the
same time and have the same pricing and cost structures. Thus, flight A is assigned
a larger capacity if its expected demand is higher than that of flight B during the
fleet assignment (see Figure 5.3(a)). As demand realizes, more information becomes
available on the total demand of both flights. At some point during the booking
process the fleet assignment is reevaluated and now flight B has the larger expected
(unconstrained) demand. More expected revenue can be realized if the planes are
switched and more demand can be accommodated (see Figure 5.3(b)).

A320      A319

A320   A319

Flight A             Flight B

136                   120

(a) Initial Assignment and unconstrained
expected demand

A320      A319

A319   A320

Flight A             Flight B

136                   154

(b) Updated Assignment and uncon-
strained expected demand

Figure 5.3: Example of Demand-Driven Re-Fleeting. The swap is induced by the
updated demands on each leg.

While both, fleet assignment problems and Revenue Management, have drawn much
attention from researchers and practitioners, literature on DDR is limited and has
largely focused on recovery strategies from operational disruptions. The first scientific
analysis of systematic changes in response to demand is the work of Berge and Hopper-
stad (1993). Their study shows a potential of 1%-5% in profits due to spill reductions
and the use of smaller aircraft. Their results are affirmed by a more recent study by
Frank et al. (2006) based on real-world data.

In both studies, booking limits are derived using the EMSR heuristic (c.f. section 4.5.2)
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after an initial fleet assignment. At certain planning points during the booking pro-
cess, forecasts are updated including the current bookings-in-hand. A fleet assignment
problem (FAM) limited to the sub-network of exchangeable crew-compatible fleets is
solved and booking policies are updated with the new capacity assignments. A feasible
assignment is restricted to accommodate all current bookings. This process is repeated
until the fleet assignment needs to be finalized. Frank et al. (2006) analyze various
times for the latest assignment. Berge and Hopperstad (1993) do not restrict the latest
assignment time. The process is depicted in Figure 5.3.

Forecaster
Fleet

Assignment
Optimizer
(EMSR)

Pricing

Historical
data

Bookings

Figure 5.4: Demand-Driven Re-Fleeting process as proposed by Berge and Hopperstad
(1993).

Simulation results show that the profit improvements are substantially dependent on
the time spans between the planning points (c.f. section 6.3.1). Hence, the assignment
needs to be reevaluated frequently. To reduce computational costs, Berge and Hop-
perstad (1993) propose two heuristics as alternatives to the FAM program described
in section 5.2. An efficient and more effective algorithm is presented in Talluri (1996)
which is described in detail in section 5.4.

Several practitioners have reported on implementations of DDR during the last two
decades. Early approaches comprised a completely manual process for reviewing as-
signments close to departure supported by reservations and RM systems and their
forecasts (e.g. at KLM and Australian Airlines as reported in Berge and Hopperstad
(1993)). Pastor (1999) reports that at Continental Airlines, 60 and 14 days before
departure, swaps are optimized and benefits are simulated to support manual reviews
and decisions. Today, the process as proposed by Berge and Hopperstad (1993) rep-
resents the industry practice. However, the degree of manual interaction varies from
manual decisions to a fully automated process (Oba, 2007, Zhao et al., 2007). Also,
many airlines limit re-fleeting to cockpit-compatible families. All reports agree in that
DDR yields substantial profit benefits due to lower operating cost, higher utilization,
and revenue increases (lower spill) (see also Jacobs et al., 2001).

Despite the revenue improvements, the aforementioned approaches to DDR make use
of traditional RM techniques. These assume the currently assigned capacity as de-
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terministic. Hence, the effect of possible changes on the RM policies are neglected
and the benefits of DDR are not completely exploited. A RM policy not capturing a
possible upgrade or downgrade of capacity will be overly restrictive towards low-value
demand or insufficiently restrictive, respectively. De Boer (2004) extends the EMSR-b
heuristic to an uncertain capacity. He roughly approximates fleet assignment proba-
bilities, i.e. probabilities that specific capacities are assigned to a flight. Using these
approximated probabilities, the probability Qj(b) that the aggregated demand of all
higher fare classes j − 1, . . . , 1 exceeds the reserved capacity is calculated conditioned
on the applied booking limit b. Similarly to EMSR-b, the booking limit bdj for class j
is then determined by

bdj = min{0 ≤ b ≤ C : fj < f̄j−1Qj(b)} (5.7)

with min ∅ := C. Note that the booking limits are bound by the currently assigned
capacity C to guarantee a feasible solution. Further, (5.7) relaxes the integrality of the
controls. The minimum is taken to break ties of different solutions.

Similarly, Wang and Regan (2006) develop a dynamic capacity control problem as de-
scribed in section 4.5.3 when the capacity is uncertain. Consistent with De Boer (2004),
their simulation studies show a revenue potential of up to 1.6% when incorporating the
possible change into the RM policy.

The works by De Boer (2004) and Wang and Regan (2006) both assume a given set of
flights that are subject to swaps that do not affect other assignments in the network.
Such a set can be found efficiently using the algorithm introduced in section 5.4. Both
approaches suffer from the requirement to approximate the probabilities for various
fleet assignments. By assuming equal fares and assignment costs for all flights under
consideration, the task is greatly simplified. Then, instead of evaluating profits, de-
mand distributions can be used to calculate the probabilities. The simplification limits
an application to flights serving the same markets with close departure times. Even
then, the assumption of equal fares remains questionable.

The only DDR model that anticipates possible future equipment changes in the control
policy and that incorporates assignment costs is the work by Wang and Meng (2008).
They study a dynamic network capacity control problem in continuous time deriving
a threshold policy that determines times to open or close a booking class. A set of
feasible network assignments is needed as an input and is determined in a preceding
optimization step subject to the basic constraints and possibly additional airline specific
constraints such as allowing swaps only within cockpit-compatible fleet families. As
bookings are accepted those assignments that become infeasible are removed from
the set. Their solution procedure includes several steps involving feasibility checks of
the fleet assignments. These are NP-complete problems and can be computationally
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demanding. Hence, they propose a heuristic and do not further analyze their exact
model. Unfortunately, the heuristic proposed is again limited to assignments involving
equal costs which greatly restrains the scope of practical applications.

5.4 Fleet Assignment Swaps

If an assigned type is to be changed only for a certain leg in the schedule, aircraft can
be swapped against each other with other legs while maintaining other assignments in
the schedule. Berge and Hopperstad (1993) and Talluri (1996) provide algorithms that
find swapping opportunities and preserve the cover (5.2), count (5.3), and balance (5.4)
constraints in the schedule. We outline the later approach below because, in contrast
to the former, the algorithm finds an opportunity if one exists (Talluri, 1996, Claim 1).

A change might become necessary during the planning phase if a planner makes manual
corrections to the schedule or because of locked rotations, i.e. when the schedule does
not allow for an acceptable maintenance routing. After the planning phase, operational
disruptions such as delays or breakdowns might make a swap necessary.

The same algorithms can be used for Demand-Driven Re-Fleeting. If a manual re-
fleeting process is adopted by an airline, the planner might use the algorithm to find an
appropriate sequence of legs for the equipment swap. Models intended for an automated
re-fleeting process such as the models proposed by De Boer (2004) or Wang and Regan
(2006) assume a given set of legs that are subject to a possible swap. Following that
idea, we will assume such a set as given in chapter 6. Using the described algorithm
such a set of flights can be identified and then controlled applying DDR models.

Figure 5.5 illustrates examples of swapping opportunities. Note that the flight network
might be reduced by consolidating nodes with feasible connections. Ground arcs are
then only used to accurately model possible turns, e.g. when departures are timed
such that some arriving flights can turn to all departures and others only to certain
later departures. Figure 5.5 shows such a compact flight network facilitating shorter
algorithm runs. Legs in the schedule apart from the shown sub-networks are not
affected by an equipment change and the assignment constraints are maintained.

Depending on the objective, different costs are used to weight flight and ground arcs.
If the number of legs affected is to be minimized, unit costs are applied. To minimize
costs, swapping costs are added to differences of the assignment costs to the initial
fleet assignment. If negative costs occur, the initial assignment is not optimal. In that
case, adding a constant such that all costs are positive prevents cycles. To find a set of
legs subject to a possible swap for Demand-Driven Re-Fleeting, demand correlations
might be used. The correlations have to be rescaled such that all weights are positive.
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Type A

Type B

(a)

Type A

Type B

(b)

Figure 5.5: Examples of two types of swapping opportunities. The dashed and solid
arcs are assigned the same type. The assignments might be swapped without affecting
other legs in the network. Reprinted from Talluri (1996).

A penalty for the number of equipment changes can be added when using assignment
costs or correlations.

The fleeted schedule and the cost matrix are used in Algorithm 5.4.1 to find an optimal
swapping opportunity if one exists.

Algorithm 5.4.1 Algorithm to find a same-day swap opportunity (Talluri, 1996).
Input: Fleeted flight network,

cost matrix,
leg l currently assigned type A,
fleet type B to be assigned to leg l

Output: Set of legs with assignments to be swapped
1. Remove all overnight arcs and all arcs not assigned either type A

or type B from the fleeted flight network.
2. Reverse the direction of all arcs with an assignment of type B in

the flight network.
3. Find a path from the head to the tail of leg l using a shortest-path

algorithm with the provided cost matrix.

Algorithm 5.4.1 is restricted to swapping two types of airplanes. Swaps involving three
or more types can be handled by re-solving the FAM problem for part of the flight
network. Yet, Algorithm 5.4.1 can be applied sequentially to find an approximate
solution. Talluri (1996) also provides details on how to implement the algorithm in
case of diverse turn times and in case swaps are not restricted to retain overnight
allocations.

In the algorithm, the shortest-path routine can be replaced by a procedure to rank a
number of shortest paths (e.g. Martins and Pascoal, 2003). These can then be presented
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to a planner as alternatives in a manual re-fleeting process.

Instead of solving a FAM instance reduced to a subset of legs the proposed algorithm
builds on finding a shortest path in a directed network. For this problem, many efficient
algorithms have been developed. The well-known algorithm by Dijkstra (1959) runs
in O(v2) for a network with v nodes and has been improved several times since. A
comprehensive review of efficient algorithms is given in Schultes (2008). In case of unit
costs the run time decreases to O(m) for m arcs (Ahuja et al., 1993).



6

Demand-Driven Re-Fleeting and
Dynamic Pricing

In this chapter, we introduce dynamic pricing (DP) models incorporating Demand-
Driven Re-Fleeting (DDR). As before, we adhere to the general assumptions listed
in section 4.2. While we still consider the capacity as limited and fixed in the short
term, we now refer to the overall network capacity rather than the capacity for each
leg. Hence, capacities for individual legs might be changed by swapping aircraft with
another leg.
Additionally, we make the following common assumptions:

• There are no cancellations, no-shows, or go-shows. Each accepted reservation
cannot be rejected later without significant cost. Consequently, overbooking is
not considered.

• Group arrivals can be partially accepted.

• Demand for different legs is mutually independent. The price offered for one leg
does not affect the demand for other legs. Then, the network problem naturally
reduces to separate leg instances. Hence, we only consider those legs in the
network that are affected by a possible swap of aircraft.

• The decision maker is risk-neutral. Hence, the expected revenues are maximized.
Optimization based on expectations seems reasonable in the light of the daily
repeated decision process for numerous departures.

• The aggregated demand for all legs, i.e. the arrivals for any flight, is assumed
to be distributed according to a Poisson distribution. Time is discretized finely
such that the probability of more than one arrival in a time period is negligible.
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• Operational, legal, or contractual requirements restrict changes to the fleet assign-
ment to the time period until T̄ > 0 periods before departure. The assignment
then needs to be finalized.

Our motivation is primarily to provide DP models that incorporate the re-fleeting
decisions and that consider the possibility of changing aircraft in the pricing policy.
In numerical studies we analyze the impact on revenues of DDR and the additional
benefits of incorporating the possible swap into the pricing policy.

Additionally, we want to overcome the limitations found in existing capacity control
models that develop single-leg policies conditioned on exogenously given probabilities
for certain capacities (De Boer, 2004, Wang and Regan, 2006). The approach inherently
yields some serious drawbacks for practical applications. The probabilities for each leg
and capacity need to be estimated which is a challenging task itself. Hence, both
works simplify by assuming equal fare, demand, and cost structures for legs involved
in a swap. These simplifications limit the application to flights with the same origin
and destination and with close departure times. However, even then, the assumption of
equal fares and demands is questionable. Customers value flights differently at different
times. We provide models that are capable of considering different demand structures
and fares.

If fleet assignments are changed, the assignment costs usually change. These costs,
which are assumed to be sunk in traditional RM models, need to be taken into account
when evaluating a possible swap. The models proposed are capable of considering
differences in assignment costs as well as other swapping costs that might arise (e.g.
additional crew costs).

We take an approach of accounting for possible changes in the strategy while limiting
the number of possible changes to one swap of the assignment. The idea is to start the
booking process with the lower capacity for all flight legs. There is an option to assign
the larger aircraft to one set of the flight legs that share an equal assignment. Once
the option has been executed, no further changes are possible and the assignment is
finalized. While this seems to be quite restrictive at first, it is reasonable to assume.
As long as the possible swap is being considered in the pricing strategy, the actual
decision can be postponed. Only when no further bookings could be accepted without
executing the option, a decision needs to be made which is naturally final. To prove
the point, consider two flights without overbooking. Assume one of the flights has no
capacity left and the option is executed allocating the extra capacity to that flight. If
we accept only one further booking request, the smaller capacity is not sufficient to
satisfy the bookings-in-hand. Without overbooking, we now cannot switch back the
assignment, it is final.
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We start by modeling two legs subject to a swap in section 6.1. We derive structural
results and use them to develop an efficient algorithm to find an optimal pricing policy.
The model is extended in section 6.2 to sequences of several legs to overcome limitations
of the two-leg model. Heuristic approaches are developed in section 6.3. We conclude by
analyzing the performance of the various strategies in simulation studies in section 6.4.
The benefits of applying DDR in general and the gain by considering a possible future
swap in the pricing policies are assessed.

6.1 Two-leg model

We consider two aircraft with capacities C1 and C2, respectively, and w.l.o.g., we
assume C2 > C1. The planes are assigned to legs that are considered for an equipment
swap. We assume that the swap does not affect the aircraft routings on other legs. For
example, take two flights between the same origin and destination with close departure
and arrival times as illustrated in Figure 6.1. Another application could be connections
to two different hubs or bases where the aircraft can be switched back with backup
aircraft or complementary swaps.

A319

FRA

LHR

Flight A             Flight B

A320

Figure 6.1: Example of a sub-network with two legs (Flight A and B) that are eligible
for a swap with the same origin and destination.

We define a Markov Decision Process (T, S,A, p, r, V0) as follows:

(i) The planning horizon is T ∈ N which is the length of the booking period divided
into periods with at most one customer arriving. Note that the periods need not
be of the same length. Time is counted backwards and t = T, T −1, . . . , 0 denotes
the number of periods until departure, i.e. the remaining periods for ticket sales.

(ii) The joint state space is

S = {0, . . . , C1} × {0, . . . , C1} × {1}
∪ {0, . . . , C2} × {0, . . . , C1} × {0}
∪ {0, . . . , C1} × {0, . . . , C2} × {0} .
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For s = (s1, s2, s3) ∈ S, s1 denotes the (remaining) capacity available on flight
1. s2 is defined analogously for fight 2. If the option to assign the larger aircraft
is still available s3 = 1 and s3 = 0, if it has been executed, i.e. the capacity
difference d := C2 − C1 has already been added to one of the flights.

The assignment needs to be finalized the latest at t = T̄ . Hence, St = S for
t = T, T − 1, . . . , T̄ and

St = S \ {0, . . . , C1} × {0, . . . , C1} × {1}

for t = T̄ − 1, T̄ − 2, . . . , 0.

(iii) The action space is A = {(a1, a2, a3) : a1 ∈ P1, a2 ∈ P2, a3 ∈ {( 0
0 ) , ( 1

0 ) , ( 0
1 )}},

where Pi = {f i0, f i1, . . . , f iki}, ki ∈ N, i ∈ {1, 2}, is the set of allowable prices for
flight i including the nullprice f i0. The decision to execute the option on flight i is
a3(i) = 1, and a3(1) = a3(2) = 0 denotes the decision not to execute the option.

For all t = T, T − 1, . . . , 1 in state s ∈ St with s3 = 0 the sets of feasible actions
At(s) ⊆ A are

At(0, 0, 0) = {f 1
0} × {f 2

0} × {( 0
0 )},

At(0, s2, 0) = {f 1
0} × P2 × {( 0

0 )}, s2 > 0,
At(s1, 0, 0) = P1 × {f 2

0} × {( 0
0 )}, s1 > 0,

At(s1, s2, 0) = P1 × P2 × {( 0
0 )}, s1, s2 > 0.

For t = T, T − 1, . . . , T̄ + 1 in state s ∈ St with s3 = 1, we additionally have

At(0, 0, 1) = A1 := {f 1
0} ×P2 × {( 0

1 )} ∪ P1 × {f 2
0} × {( 1

0 )} ∪ {f 1
0} × {f 2

0} × {( 0
0 )},

At(0, s2, 1) = A2 := P1 ×P2 × {( 1
0 )} ∪ {f 1

0} × P2 × {( 0
0 ) , ( 0

1 )}, s2 > 0,
At(s1, 0, 1) = A3 := P1 ×P2 × {( 0

1 )} ∪ P1 × {f 2
0} × {( 0

0 ) , ( 1
0 )}, s1 > 0,

At(s1, s2, 1) = A4 := P1 ×P2 × {( 0
0 ) , ( 1

0 ) , ( 0
1 )}, s1, s2 > 0.

Finally, the assignment must be decided the latest at t = T̄ . Thus, in state s ∈ ST̄
with s3 = 1, the sets of feasible actions are

AT̄ (0, 0, 1) = A1 \ {f 1
0} × {f 2

0} × {( 0
0 )} ,

AT̄ (0, s2, 1) = A2 \ {f 1
0} × P2 × {( 0

0 )} , s2 > 0,
AT̄ (s1, 0, 1) = A3 \ P1 × {f 2

0} × {( 0
0 )} , s1 > 0,

AT̄ (s1, s2, 1) = A4 \ P1 × P2 × {( 0
0 )} , s1, s2 > 0.
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(iv) The transition law in t = T, T − 1, . . . , 1 for s ∈ St, s′ ∈ St−1, a ∈ At(s) is

pt(s, a, s′) =



λt · pit · qit(ai) s′1 = s1 − δ1(i) + d · a3(1),
s′2 = s2 − δ2(i) + d · a3(2),
s′3 = s3 − a3(1)− a3(2),

i ∈ {1, 2},

1−
2∑
i=1

λt · pit · qit(ai) s′1 = s1 + d · a3(1),
s′2 = s2 + d · a3(2),

s′3 = s3 − a3(1)− a3(2),
0 otherwise.

Here, λt denotes the combined probability for an arrival in period t. The thinning
probability for flight i = 1, 2 is given by pit and qit(ai) denotes the related purchase
probability given price ai ≥ 0. δi(j) is the indicator function with δi(j) = 1, if
i = j and otherwise δi(j) = 0.

(v) The reward function for t = T, T − 1, . . . , 1 is

rt(s, a) =
2∑
i=1

λt · pit · qit(ai) · ai − kid · a3(i) , s ∈ St, a ∈ At(s) ,

where kid denotes the additional cost of flying the larger airplane on flight i, i.e.
the cost for d additional seats on flight i. For at least one i ∈ {1, 2}, kid = 0 (see
discussion below).

(vi) The terminal reward function is V0 ≡ 0. We do not consider overbooking and do
not incur any terminal cost.

Defining s̃1 := s1 + d · a3(1), s̃2 := s2 + d · a3(2), and s̃3 := 1 − a3(1) − a3(2), the
optimality equation at t = T, T − 1 . . . , 1 for all states s = (s1, s2, s3) ∈ St can then be
written as

Vt(s) = max
a∈At(s)

{ 2∑
i=1

λt · pit · qit(ai)[ai + Vt−1(s̃1 − δ1(i), s̃2 − δ2(i), s̃3)] (6.1)

+
[
1−

2∑
i=1

λt · pit · qit(ai)
]
Vt−1(s̃1, s̃2, s̃3)−

2∑
i=1

kid · a3(i)
}

.

Usually, in RM models, costs are ignored. Variable costs are considered marginal and
thus need not be considered. Fixed costs are considered sunk as the service needs to
be provided in any case. In the airline business, a scheduled flight takes place even
with very few bookings. Hence, every additional seat sold yields a contribution toward
the fixed flight costs while it perishes if not sold. The same is true e.g. in fashion
retailing. Once an order has been placed and has been produced fixed costs are sunk.
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The fixed costs themselves are just a constant in the objective function to maximize
profits. Hence, maximizing revenue approximately maximizes profits.

In our model, we do need to consider one cost component. As in regular RM models, we
do not consider variable or fixed costs in general. However, we do need to consider the
change in fixed costs by changing the assignment and other swapping costs incurred,
e.g. additional crew costs.

We assume the plane with the smaller capacity is cheaper to fly for a fixed flight and
there are just enough planes to serve all legs considered. If the updated total demand
forecast including the bookings-in-hand at the time of the assignment decision can be
satisfied using the plane with the smaller capacity for both flights, one of the legs still
needs to be served with the larger aircraft. In that case, we simply take the most cost
efficient allocation. Let us assume fixed cost K1 for that fleet assignment. If planes
are swapped, we incur assignment cost K2 ≥ K1. Apart from lost demand (spill), the
expected gain in revenue needs to offset the difference in cost K2 −K1 for the change
to be justified. Thus, this difference in fixed costs needs to be considered in our model.
We do so in the one-stage reward function rt, where kid is subtracted of the total value
when an assignment decision is made. As we only consider the difference to the most
cost efficient allocation, kid = 0 for flight i that is assigned the larger airplane in that
assignment. For an allocation of the additional capacity, i.e. the larger airplane, to the
other flight i′, we incur cost ki′d = K2 −K1 ≥ 0.
Assignment costs need not be considered in the terminal reward function as we assume
T̄ > 0 to be the latest time in the booking period when the assignment must be
finalized.

Note that the consideration of changes in costs allows to consider not only flights that
have the same destination (kid = 0, i = 1, 2), but also flights serving different markets.

To simplify notation, we define operators and sets before we continue with structural
results:
For all t = T, T − 1, . . . , 1, s = (s1, s2, s3) ∈ St, a = (a1, a2, a3) ∈ At(s), i = 1, 2 let

Y (s, a) := (s1 + a3(1)d, s2 + a3(2)d, s3 − a3(1)− a3(2)) ,

Y i(s, a) :=

 Y ((s1 − δ1(i), s2 − δ2(i), s3), a) si + a3(i)d > 0 ,
Y (s, a) si + a3(i)d = 0 ,

At(s|a1, a2) := {a3 ∈ {( 0
0 ) , ( 1

0 ) , ( 0
1 )} : (a1, a2, a3) ∈ At(s)} ,

At(s|a3) := {(a1, a2) ∈P1 ×P2 : (a1, a2, a3) ∈ At(s)} ,

A1
t (s) := {a1 ∈P1 : (a1, a2, (0, 0)′) ∈ At(s), a2 ∈P2} ,

A2
t (s) := {a2 ∈P2 : (a1, a2, (0, 0)′) ∈ At(s), a1 ∈P1} ,
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Dt := {(s, a) : s ∈ St, a ∈ At(s)} ,

and, for si > 0,

∆siVt(s) := Vt(s1, s2, s3)− Vt(s1 − δ1(i), s2 − δ2(i), s3) .

Further, for all v : St−1 → R and a ∈ At(s) let

Qtv(s, a) :=
2∑
i=1

λtp
i
tq
i
t(ai)

[
ai + v(Y i(s, a))

]

+
(

1−
2∑
i=1

λtp
i
tq
i
t(ai)

)
v(Y (s, a))−

2∑
i=1

kida3(i) ,

Ltv(s|a1, a2) := max
a′∈At(s|a1,a2)

{
Qtv(s, (a1, a2, a

′))
}
,

Ltv(s|a3) := max
a′∈At(s|a3)

{
Qtv(s, (a′1, a′2, a3))

}
.

We now derive structures of the model that are exploited later in an algorithm to find
an optimal policy and in the heuristic approaches.

Theorem 6.1.1 (Decomposition of the value function).
For the MDP with the value function defined in (6.1),

(i) at time t = T, . . . , 1, in all states s = (s1, s2, 0) ∈ St, the process decomposes into
two independent single-leg processes with the value functions

V i
t (si) := max

ai∈Pi

{
λtp

i
tq
i
t(ai)[ai + V i

t−1(si − 1)] + [1− λtpitqit(ai)]V i
t−1(si)

}
for si > 0 and i ∈ {1, 2}. The boundary conditions without overbooking are
V i
t (0) = V i

t−1(0) and V i
0 ≡ 0.

The value function of the original process is then the sum of the two single-leg
value functions:

Vt(s1, s2, 0) = V 1
t (s1) + V 2

t (s2) .

(ii) Further, for t = T, . . . , T̄ , s = (s1, s2, 1) ∈ St, and a3 ∈ {( 1
0 ) , ( 0

1 )},

LtVt−1(s|a3) =
2∑
i=1

V i
t (si + a3(i)d)− a3(i)kid .

(iii) For t = T, . . . , T̄ + 1, s = (s1, s2, 1) ∈ St,

LtVt−1(s|(0, 0)′) =
2∑
i=1
si 6=0

(
max

ai∈Ait(s)
λtp

i
tq
i
t(ai)[ai −∆siVt−1(s)]

)
+ Vt−1(s) .

Proof.
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(i) We prove by induction on t. For t = 0, let s0 = (s1, s2, 0) ∈ S0. Since V0 ≡ 0,
the assertion holds. Therefore, let Vt(s) = V 1

t (s1) + V 2
t (s2) hold for some t =

T − 1, T − 2, . . . , 0 and st = (s1, s2, 0) ∈ St. Then, in s = (s1, s2, 0) ∈ St+1, since
s3 = 0, only actions a = (a1, a2, a3) ∈ At+1(s) with a3 = (0, 0)′, and additionally,
ai = f i0 for i = 1, 2 with si = 0. We get

Vt+1(s) = max
a∈At+1(s)


2∑
i=1
si 6=0

λt+1p
i
t+1q

i
t+1(ai)[ai + Vt(Y i(s, a))]

+

1−
2∑
i=1
si 6=0

λt+1p
i
t+1q

i
t+1(ai)

Vt(Y (s, a))


= max

a∈At+1(s)


2∑
i=1
si 6=0

λt+1p
i
t+1q

i
t+1(ai)[ai + V 1

t (s1 − δ1(i)) + V 2
t (s2 − δ2(i))]

+

1−
2∑
i=1
si 6=0

λt+1p
i
t+1q

i
t+1(ai)

 [V 1
t (s1) + V 2

t (s2)]


= max

a∈At+1(s)


2∑
i=1
si 6=0

λt+1p
i
t+1q

i
t+1(ai)[ai −∆V i

t (si)] + V 1
t (s1) + V 2

t (s2)


=

2∑
i=1
si 6=0

max
ai∈Ait+1(s)

{
λt+1p

i
t+1q

i
t+1(ai)[ai −∆V i

t (si)]
}

+ V 1
t (s1) + V 2

t (s2)

= V 1
t+1(s1) + V 2

t+1(s2) ,

which completes the proof for (i). (ii) follows straightforward applying (i).

(iii) For t = T − 1, T − 2, . . . , T̄ , let a3 = (0, 0)′ and s = (s1, s2, 1) ∈ St+1. Then,

Lt+1Vt(s|a3)

= max
(a1,a2)∈At+1(s|a3)


2∑
i=1
si 6=0

λt+1p
i
t+1q

i
t+1(ai)[ai −∆siVt(s1, s2, 1)]

+ Vt(s1, s2, 1)

=
2∑
i=1
si 6=0

max
ai∈Ait+1(s)

{
λt+1p

i
t+1q

i
t+1(ai)[ai −∆siVt(s1, s2, 1)]

}
+ Vt(s1, s2, 1) .

Theorem 6.1.1 (i) allows to use the one-dimensional process with the optimality equa-
tion (4.7), adjusted for the thinned probabilities, for each leg separately in states where
s3 = 0, i.e. when the option has been executed. Also in states with s3 = 1, if the
optimal assignment action a∗3 ∈ {(0, 1)′, (1, 0)′} is fixed to execute the option, the one-
dimensional processes can be used to calculate the value and the optimal pricing actions
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by applying (ii). Additionally, using (iii), when the assignment action a∗3 = (0, 0)′ is
fixed, i.e. the option is not executed, to derive the optimal prices, instead of maximiz-
ing over one two-dimensional set, we can maximize over two one-dimensional action
sets. These structures greatly reduce computational effort to find an optimal policy
and the expected revenue and allow for parallel computation of the policy for each leg.
Theorem 6.1.1 is not only used to develop an efficient algorithm to find an optimal
pricing policy, but also to develop a limited lookahead policy heuristic in section 6.3.4.

Theorem 6.1.2 (Monotonicity of the value function).
For the MDP with the value function defined in (6.1),

(i) for fixed t = T, T − 1, . . . , 0, Vt(s) is non-decreasing in s1 for fixed s2 and in s2

for fixed s1.

(ii) Vt(s1, s2, 1)−Vt(s1, s2, 0) ≥ 0, for all t = T, T−1, . . . , T̄ , and s1, s2 with (s1, s2, 1) ∈
St and (s1, s2, 0) ∈ St.

(iii) Vt(s) is non-decreasing in t.

Proof.

(i) The proof follows by induction on t. Since V0 ≡ 0, the assertion holds for t = 0.
Therefore, let (i) hold for some t = T − 1, T − 2, . . . , 0.
Let s = (s1, s2, s3) ∈ St+1 with s1 ≥ 1, and let a∗ = (a∗1, a∗2, a∗3) ∈ At+1(s1 −
1, s2, s3) be optimal in s′ = (s1 − 1, s2, s3) ∈ St+1. Then a∗ ∈ At+1(s), too, and
we get

∆s1Vt+1(s) ≥
2∑
i=1

λt+1p
i
t+1q

i
t+1(a∗i )∆s1Vt(Y i(s, a∗))

+
[
1−

2∑
i=1

λt+1p
i
t+1q

i
t+1(a∗i )

]
∆s1Vt(Y (s, a∗))

≥ 0 ,

which completes the proof for s1. The monotonicity in s2 follows analogically.

(ii) To prove (ii), let t = T, T − 1, . . . , T̄ . Fix s′ = (s1, s2, 1) ∈ St. Then s =
(s1, s2, 0) ∈ St, too. Further, let a∗ = (a∗1, a∗2, (0, 0)′) ∈ At(s) be optimal in s and
suppose k1

d = 0. Using a∗∗ = (a∗1, a∗2, (1, 0)′) ∈ At(s′), and additionally, exploiting
the monotonicity of Vt−1 in s1 after an assignment, we finally get

Vt(s′)− Vt(s)
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≥
2∑
i=1

λtp
i
tq
i
t(a∗i )

[
Vt−1(Y i(s′, a∗∗))− Vt−1(Y i(s, a∗))

]

+
[
1−

2∑
i=1

λtp
i
tq
i
t(a∗i )

]
[Vt−1(Y (s′, a∗∗))− Vt−1(Y (s, a∗))]

≥ 0 ,

which confirms (ii) for k1
d = 0. If k1

d > 0, then, by assumption, k2
d = 0 and a

similar argument works.

(iii) We split the proof into two parts:

a. First, we assume s3 = 0. We use Theorem 4.6.3 and Theorem 6.1.1 to derive

Vt+1(s1, s2, 0)− Vt(s1, s2, 0)

= V 1
t+1(s1) + V 2

t+1(s2)− V 1
t (s1)− V 2

t (s2)

≥ 0 .

b. Now, we consider s = (s1, s2, s3) with s3 = 1 and t = T − 1, T − 2, . . . , T̄ .
Thus, a = (f 1

0 , f
2
0 , (0, 0)′) ∈ At+1(s). We get

Vt+1(s1, s2, 1)− Vt(s1, s2, 1)

≥ Qt+1Vt((s1, s2, 1), a)− Vt(s1, s2, 1)

= 0 ,

which completes the proof.

Theorem 6.1.2 shows some intuitive attributes of the value function. More available
capacity results in higher or equal expected revenue. (ii) further states that the value
of the option is not negative. The option might well be worthless though. In the case
when there is no demand exceeding the minimal capacity C1 for either flight, the extra
seats do not have a positive value. Also, the more time remains to sell units of capacity,
the higher the expected revenue. The monotonicity of the value function is frequently
used in subsequent proofs.

Lemma 6.1.3.
For the MDP with the value function defined in (6.1), for t = T, . . . , T̄ ,

(i) Vt(s1, s2, 1) ≥ Vt(s1 + d, s2, 0)− k1
d.

(ii) Vt(s1, s2, 1) ≥ Vt(s1, s2 + d, 0)− k2
d.

Proof. Let t = T, . . . , T̄ and fix s = (s1, s2, 1) ∈ St. Then there exists an action
a = (a1, a2, (1, 0)′) ∈ At(s) and

Vt(s) ≥ LtVt−1(s|(1, 0)′)
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= Vt(s1 + d, s2, 0)− k1
d .

(ii) can be shown analogically.

Lemma 6.1.3 provides lower bounds of the value function in states where s3 = 1, i.e.
when the capacity option is available. Applying Theorem 6.1.1, the bounds can be
computed using the single-leg value functions V 1

t and V 2
t . We use the results in proofs

throughout the remainder.

Theorem 6.1.4 (Optimal assignment actions).
For the MDP with the value function defined in (6.1), for any t = T, . . . , T̄ +1, in state
s = (s1, s2, s3) ∈ St, an action a∗ = (a∗1, a∗2, a∗3) ∈ At(s) is optimal with

(i) a∗3 ∈ {( 0
0 ) , ( 0

1 )}, if s1 > 0.

(ii) a∗3 ∈ {( 0
0 ) , ( 1

0 )}, if s2 > 0.

(iii) a∗3 = ( 0
0 ), if s1 > 0, s2 > 0.

(iv) a∗3 ∈ {( 1
0 ) , ( 0

1 )}, if s = (0, 0, 1).

Proof.

(i) Let t = T, . . . , T̄ + 1. Fix s = (s1, s2, 1) ∈ St with s1 > 0. Assume (a∗1, a∗2) ∈
At(s|(1, 0)′) maximizes LtVt−1(s|(1, 0)′). Note that (a∗1, a∗2, (0, 0)′) ∈ At(s) is also
admissible in s. Using Lemma 6.1.3, we then get

LtVt−1(s|(0, 0)′)− LtVt−1(s|(1, 0)′)

≥
2∑
i=1

λtp
i
tq
i
t(a∗i )

[
Vt−1(Y i(s, (0, 0)′))− Vt−1(Y i(s, (1, 0)′)

]

+
[
1−

2∑
i=1

λtp
i
tq
i
t(a∗i )

] [
Vt−1(Y (s, (0, 0)′))− Vt−1(Y (s, (1, 0)′))

]
+k1

d

≥
2∑
i=1

λtp
i
tq
i
t(a∗i )

[
Vt−1(Y i(s, (1, 0)′))− k1

d − Vt−1(Y i(s, (1, 0)′))
]

+
[
1−

2∑
i=1

λtp
i
tq
i
t(a∗i )

] [
Vt−1(Y (s, (1, 0)′))− k1

d − Vt−1(Y (s, (1, 0)′))
]

+k1
d

= 0 .

In states s′ = (s1, s2, 0) ∈ St only actions a ∈ At(s′) are feasible with the assign-
ment action a3 = (0, 0)′ and the result is trivial.

(ii) can be shown analogically and (iii) follows straightforward from (i) and (ii).
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(iv) In s = (0, 0, 1) ∈ ST̄ , suppose (a∗1, a∗2, (1, 0)′) ∈ AT̄ (s) to be optimal at time t = T̄ .
Then, using Theorem 6.1.1 (ii) and Theorem 4.6.3 (i),

LT̄+1VT̄ (s|(1, 0)′)

= V 1
T̄+1(d) + V 2

T̄+1(0)− k1
d

≥ V 1
T̄ (d) + V 2

T̄ (0)− k1
d

= VT̄ (s)

= LT̄+1VT̄ (s|(0, 0)′) .

Hence, applying (1, 0)′ results in a value at least as high as when applying (0, 0)′

in s at time t = T̄ + 1. Repeating the same argument with T̄ + 1 in place of T̄ ,
the result follows by induction.

A similar argument works if (a∗1, a∗2, (0, 1)′) ∈ AT̄ (s) is optimal in s at time t =
T̄ .

Theorem 6.1.4 reduces the set of actions to maximize over tremendously, which can be
exploited to find an optimal policy efficiently. In states s = (s1, s2, s3), where s3 = 1
and s1 = 0 or s2 = 0, one assignment action is at most as good as the others and
thus needs not be included in the maximization. For the majority of states, where
s1, s2 > 0, Theorem 6.1.4 can be used to fix the assignment action a∗3 = (0, 0)′. Then,
in conjunction with Theorem 6.1.1 (iii), the maximization can be separated for each
leg, which results in a maximization over two one-dimensional sets of prices instead
of having to consider the complete three-dimensional set of feasible actions. Applying
(iv), at any time t = T, . . . , T̄ + 1, given state s = (0, 0, 1), we always assign the option
to one of the flights.

Theorem 6.1.5 (Monotonicity of the assignment action at t = T̄ ).
In s = (s1, s2, 1) ∈ ST̄ ,

LT̄VT̄−1(s|(1, 0)′)− LT̄VT̄−1(s|(0, 1)′)

is non-increasing in s1 for fixed s2 and non-decreasing in s2 for fixed s1.

Proof. Let s = (s1, s2, 1), s′ = (s1 + 1, s2, 1) ∈ ST̄ . Note that using Theorem 6.1.1 (ii)

LT̄VT̄−1((s1 + 1, s2, 1)|(1, 0)′)− LT̄VT̄−1((s1 + 1, s2, 1)|(0, 1)′)

= LT̄VT̄−1((s1, s2, 1)|(1, 0)′)− LT̄VT̄−1((s1, s2, 1)|(0, 1)′)

+V 1
T̄ (s1 + 1 + d)− V 1

T̄ (s1 + d)− V 1
T̄ (s1 + 1) + V 1

T̄ (s1)

Using the concavity of V 1
T̄
(Theorem 4.6.2), the monotonicity in s1 follows. A similar

argumentation works for s2.
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The results in Theorem 6.1.5 can be exploited to find an optimal policy in t = T̄

for states with s3 = 1, i.e. when the capacity option is still available and has to be
executed. If in a state (s1, s2, 1) ∈ ST̄ , an assignment of the additional capacity to flight
2 is optimal, then it is also optimal for s′ = (s′1, s′2, 1) ∈ ST̄ with s′1 ≥ s1 and s′2 ≤ s2.
Similarly, optimal actions assigning the capacity to flight 1 can be found. Figure 6.2
visualizes the structure yielding a switching curve for the assignment action.
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Figure 6.2: Example of a switching curve policy for the assignment action at time
t = T̄ (c.f. Theorem 6.1.5).

Note that although the results in Theorem 6.1.5 hold for any t = T, . . . , T̄ , we use them
only in t = T̄ because for t = T, . . . , T̄ + 1, from Theorem 6.1.4 follows that action
a3 = ( 1

0 ) (a3 = ( 0
1 )) needs not be considered in states s = (s1 + 1, s2, 1) (respectively

s = (s1, s2 + 1, 1)).

Next, in order to prove the concavity of the value function, we first define

s∗1(s2) := min
{
s1 ∈ {0, . . . , C1} : VT̄ (s1, s2, 1) = V 1

T̄ (s1) + V 2
T̄ (s2 + d)− k2

d

}
,

s∗2(s1) := min
{
s2 ∈ {0, . . . , C1} : VT̄ (s1, s2, 1) = V 1

T̄ (s1 + d) + V 2
T̄ (s2)− k1

d

}
,

where min ∅ :=∞.

Additionally, we apply the results of the following two Lemmata:

Lemma 6.1.6.
For the MDP with the value function defined in (6.1), s∗1 is non-decreasing in s2 and
s∗2 is non-decreasing in s1.
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Proof.
Fix s = (s1, s2, 1) with s1 < s∗1(s2). Then a∗3 = ( 1

0 ) is optimal. Applying Theorem 6.1.5
yields that a∗3 = ( 1

0 ) is optimal for s′ = (s1, s2 + 1, 1) as well.
The monotonicity of s∗2 can be shown analogically.

Lemma 6.1.7.
In t = T, T − 1, . . . , T̄ , in s = (s1, s2, 1) ∈ St with t − T̄ < s1 < s∗1(s2 − t + T̄ − 1) or
s1 ≥ s∗1(s2) + t− T̄ + 1 for fixed s2 > t− T̄ ,

∆s1Vt(s1, s2, 1)−∆s1Vt(s1, s2 − 1, 1) = ∆s2Vt(s1, s2, 1)−∆s2Vt(s1 − 1, s2, 1) = 0 .

The same holds for t− T̄ < s2 < s∗2(s1 − t+ T̄ − 1) or s2 ≥ s∗2(s1) + t− T̄ + 1 for fixed
s1 > t− T̄ .

Proof. The proof follows by induction on t. For t = T̄ and s1 ≥ s∗1(s2) + 1 we get

∆s1VT̄ (s1, s2, 1)−∆s1VT̄ (s1, s2 − 1, 1)

= VT̄ (s1, s2, 1)− VT̄ (s1 − 1, s2, 1)− VT̄ (s1, s2 − 1, 1) + VT̄ (s1 − 1, s2 − 1, 1)

= V 1
T̄ (s1) + V 2

T̄ (s2 + d)− k2
d − V 1

T̄ (s1 − 1)− V 2
T̄ (s2 + d) + k2

d

− V 1
T̄ (s1)− V 2

T̄ (s2 − 1 + d) + k2
d + V 1

T̄ (s1 − 1) + V 2
T̄ (s2 − 1 + d)− k2

d

= 0 .

Similarly one proves the assertion for t = T̄ and 0 < s1 < s∗1(s2 − 1). Hence, let the
assertion hold for some t = T−1, T−2, . . . , T̄ . Additionally, for some j ∈ N, 1 < k ≤ j,
let e(k) be the j-vector with e(k) = 1 and e(i) = 0 for all 1 < i ≤ j, i 6= k.

In t + 1, since s1 ≥ s∗1(s2) + t − T̄ + 2 > 0 and s2 > t − T̄ + 1 > 0 an action
a = (a1, a2, a3) is optimal with a3 = (0, 0)′ by applying Theorem 6.1.4. Note that
additionally Ait+1(s) = Ait+1(s− e(j)) for all s ∈ St+1 and i 6= j. Then

∆s1Vt+1(s1, s2, 1)−∆s1Vt+1(s1, s2 − 1, 1)

=
2∑
i=1

(
max

ai∈Ait+1(s)
λt+1p

i
t+1q

i
t+1(ai)[ai −∆siVt(s)]

)
+ Vt(s)

−
2∑
i=1

(
max

ai∈Ait+1(s−e(1))
λt+1p

i
t+1q

i
t+1(ai)[ai −∆siVt(s− e(1))]

)
− Vt(s− e(1))

−
2∑
i=1

(
max

ai∈Ait+1(s−e(2))
λt+1p

i
t+1q

i
t+1(ai)[ai −∆siVt(s− e(2))]

)
− Vt(s− e(2))

+
2∑
i=1

(
max

ai∈Ait+1(s−e(1)−e(2))
λt+1p

i
t+1q

i
t+1(ai)[ai −∆siVt(s− e(1)− e(2))]

)
+ Vt(s− e(1)− e(2))

= 0 .
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For t − T̄ + 1 < s1 < s∗1(s2 − t + T̄ − 2) and s2 > t − T̄ + 1 a similar argumentation
works. The proof works analogically for ∆s2Vt(s1, s2, 1)−∆s2Vt(s1 − 1, s2, 1).

Hence, on certain domains, the opportunity costs ∆siVt of one seat on flight i = 1, 2
are independent of the number of available seats on the other flight. We use the results
to prove the concavity of the value function on these domains in the next Theorem.

Theorem 6.1.8 (Concavity of the value function).
The value function Vt defined in (6.1)

(i) is concave componentwise in s1 and s2 for all t = T, T − 1, . . . , 0 and s =
(s1, s2, s3) ∈ St with s3 = 0 being fixed.

(ii) For t = T, T−1, . . . , T̄ , in s = (s1, s2, s3) ∈ St with t−T̄ < s1 < s∗1(s2−t+T̄−1)−2
or s1 ≥ s∗1(s2) + t− T̄ + 1, Vt is concave in s1 for fixed s2 > t− T̄ and s3 = 1.

(iii) For t = T, T−1, . . . , T̄ , in s = (s1, s2, s3) ∈ St with t−T̄ < s2 < s∗2(s1−t+T̄−1)−2
or s2 ≥ s∗2(s1) + t− T̄ + 1, Vt is concave in s2 for fixed s1 > t− T̄ and s3 = 1.

Proof.

(i) Let (s1, s2, 0) ∈ St be fixed. Then, by applying Theorem 6.1.1,

Vt(s1, s2, 0) = V 1
t (s1) + V 2

t (s2) ,

where V 1
t (s1) is concave. Hence, Vt(s1, s2, 0) is concave in s1.

The concavity in s2 can be shown analogically.

(ii) The proof follows by induction on t. For t = T̄ the concavity in s1 follows from
the definition of s∗1 and the concavity of V 1

T̄
(Theorem 4.6.2 in conjunction with

Theorem 6.1.1).

Thus, let the assertion hold for some t = T − 1, T − 2, . . . , T̄ . Again, for some
j ∈ N, 1 < k ≤ j, let e(k) denote the j-vector with e(k) = 1 and e(i) = 0 for all
1 < i ≤ j, i 6= k.

In t + 1, let s = (s1, s2, 1), s′ = s + e(1), s′′ = s + 2e(1) ∈ St+1. Since t + 1 > T̄ ,
s, s′, s′′ ∈ St, too. Note that, since s1 ≥ s∗1(s2)+t− T̄ +2 > 0 or s1 > t− T̄ +1 > 0
and s2 > t− T̄ + 1 > 0, actions a = (·, ·, a3) are optimal in s, s′, s′′ at t + 1 with
a3 = (0, 0)′ by applying Theorem 6.1.4.

Assume a∗1 ∈ A1
t+1(s′′) maximizes

a1 → λt+1p
1
t+1q

1
t+1(a1)[a1 −∆s1Vt(s′′)]
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and a∗∗1 ∈ A1
t+1(s) maximizes

a1 → λt+1p
1
t+1q

1
t+1(a1)[a1 −∆s1Vt(s)] .

Then, a∗1, a∗∗1 ∈ A1
t+1(s′), too. Making use of Lemma 6.1.7,

∆s1Vt+1(s1 + 2, s2, 1)−∆s1Vt+1(s1 + 1, s2, 1)

=
2∑
i=1

(
max

ai∈Ait+1(s′′)
λt+1p

i
t+1q

i
t+1(ai)[ai −∆siVt(s′′)]

)
+ Vt(s′′)

−
2∑
i=1

(
max

ai∈Ait+1(s′)
λt+1p

i
t+1q

i
t+1(ai)[ai −∆siVt(s′)]

)
− Vt(s′)

−
2∑
i=1

(
max

ai∈Ait+1(s′)
λt+1p

i
t+1q

i
t+1(ai)[ai −∆siVt(s′)]

)
− Vt(s′)

+
2∑
i=1

(
max

ai∈Ait+1(s)
λt+1p

i
t+1q

i
t+1(ai)[ai −∆siVt(s)]

)
+ Vt(s)

≤ λt+1p
1
t+1q

1
t+1(a∗1)

[
∆s1Vt(s′)−∆s1Vt(s′′)

]
+ ∆s1Vt(s′′)

+λt+1p
1
t+1q

1
t+1(a∗∗1 )

[
∆s1Vt(s′)−∆s1Vt(s)

]
−∆s1Vt(s′)

=
(

1− λt+1p
1
t+1q

1
t+1(a∗1)

)[
∆s1Vt(s′′)−∆s1Vt(s′)

]
+λt+1p

1
t+1q

1
t+1(a∗∗1 )

[
∆s1Vt(s′)−∆s1Vt(s)

]
≤ 0 ,

which concludes the proof. (iii) can be shown analogically.

Using the concavity of the value function we derive monotone structures of the pricing
actions in the remainder.

Theorem 6.1.9 (Monotonicity of the price actions before the final assignment).
In t = T − 1, T − 2, . . . , T̄ and s = (s1, s2, 1) ∈ St with si > 0, i = 1, 2, suppose Vt(s) to
be concave in si for fixed sj, j = 1, 2, j 6= i. Then the largest maximizer ψit+1(s) of the
function

ai 7→ λt+1p
i
t+1q

i
t+1(ai)[ai −∆siVt(s)] (6.2)

is non-increasing in si.

Proof. The proof follows straightforward from Lemma 4.6.1.

Theorem 6.1.9 provides an upper bound of the optimal fare before the assignment has
been finalized. In t = T, T − 1, . . . , T̄ + 1, for state s ∈ St with s1, s2 > 0, s3 = 1, from
Theorem 6.1.4 follows that an action a = (a1, a2, (0, 0)′) ∈ At(s) is optimal. The same
applies in state s′ = s+ e(i) ∈ St. Then, applying Theorem 6.1.1, the maximizing fare
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in either state can be derived by finding the maximizing argument of (6.2), which is
non-increasing in si on concave intervals of Vt−1.

Next, we show that after finalization of the assignment, i.e. in states s ∈ St with s3 = 0,
the largest maximizing fare for a flight is non-increasing in the remaining capacity of
that flight.

Theorem 6.1.10 (Monotonicity of the price actions after the final assignment).
For a fixed t = T, T − 1, . . . , 1, i = 1, 2, and s = (s1, s2, 0) ∈ St, the largest fare ψit+1(s)
maximizing the function

ai 7→ λtp
i
tq
i
t(ai)[ai −∆V i

t−1(si)]

is non-increasing in si.

Proof. The proof follows straightforward from Theorem 6.1.1 and Theorem 4.6.2.

Additionally, in t = T̄ , only actions a = (a1, a2, a3) with a3 ∈ {( 1
0 ) , ( 0

1 )} are admissible.
On the intervals s1 ≥ s∗1(s2) and s1 < s∗1(s2) − 1 (respectively s2 ≥ s∗2(s1) and s2 <

s∗2(s1) − 1), the optimal assignment does not change when the capacity is increased
by the definition and monotonicity of s∗1 and s∗2. Then, applying Theorem 6.1.1 and
Theorem 6.1.10, the optimal price of each flight a∗i = ψit(si) is non-increasing in si, i =
1, 2, which is stated in the following corollary:

Corollary 6.1.11 (Monotonicity of the price actions at t = T̄ ).
At t = T̄ , in s = (s1, s2, 1) ∈ St,

(i) the largest optimal price a∗1 = ψ1
t (s) is non-increasing in s1 on the intervals

[0, . . . , s∗1(s2)− 1] and [s∗1(s2), . . . , C1] for fixed s2.

(ii) The largest optimal price a∗2 = ψ2
t (s) is non-increasing in s2 on the intervals

[0, . . . , s∗2(s1)− 1] and [s∗2(s1), . . . , C1] for fixed s1.

When calculating an optimal pricing policy using backward induction, all states, i.e.
all possible remaining capacities, need to be iterated. On the respective domains, the
monotonicity structures can be exploited and used as an upper bound when increasing
the remaining capacities in each iteration. Then we can additionally use the following
lower bound of the optimal actions.

Theorem 6.1.12 (Lower bound of price action).
Assume t = T − 1, T − 2, . . . , T̄ and s = (s1, s2, 1) ∈ St with s1, s2 > 0. Let ψit+1(s) ∈
Ait+1(s), i ∈ {1, 2} be the largest price maximizing the function

ai → λt+1p
i
t+1q

i
t+1(ai)[ai −∆siVt(s)] .

Then, min{∆siVt(s), f i0} ≤ ψit+1(s) ≤ f i0.
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Proof. Fix s = (s1, s2, 1) ∈ St with s1, s2 > 0. Then s ∈ St+1, too. Let a ∈
Ait+1(s)\{f i0} such that a ≤ ∆siVt(s). Then

λt+1p
i
t+1q

i
t+1(a)[a−∆siVt(s)]

≤ 0

= λt+1p
i
t+1q

i
t+1(f i0)[f i0 −∆siVt(s)] ,

which implies that a is not the largest maximizer ψit+1(s).

Thus, ψit+1(s) ≥ min{∆siVt(s), f i0}. On the other hand, if a > ∆siVt(s) holds for all
a ∈ Ait+1(s), the result is trivial.

During backward induction, when calculation optimal prices at t+1, ∆siVt(s) is known
and can be used as a lower bound reducing the number of actions that need to be
considered.

We use the structures found to reduce the complexity and the computational effort to
find an optimal policy. A pseudo-code implementation that exploits these structures is
presented in Algorithm B.1.1. It is more efficient than the general backward induction
that iterates and evaluates every feasible action in each state at every point in time.

6.2 Extension to Sequences

We now extend the results from section 6.1 to consider more legs. While the number
of legs considered is arbitrary, we still focus on two types of airplanes with different
capacities C1 and C2. We again assume, w.l.o.g., C2 > C1 and define d := C2 − C1.
The legs considered are divided into two disjunct sets M and N . All legs in one set
will be assigned the same aircraft. A swap of equipment now involves several legs, i.e.
swapping the larger aircraft from legs in set M to N or vice versa. Let m := |M |
and n := |N |. We assume the sets to contain the flight indices in increasing order,
i.e. M = {1, . . . ,m}, N = {m + 1, . . . ,m + n}. The number of legs in each set is
independent of the number of flights in the other set. The costs of assigning the larger
capacity to set M are given by k1

d, the costs for set N by k2
d. As before, we consider

only the additional costs compared to the most cost efficient allocation. Hence, kid = 0
for at least one i = 1, 2. The final assignment has again to be decided the latest at
T̄ > 0.

The model in chapter 6.1 is suitable for but limited to legs between two stations,
where an initial change and a swap back can take place, e.g. at two base airports. The
extended model can be applied to any two or more legs that are to be considered under
DDR regardless of their origins and destinations.
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For one or more legs to be considered, two sequences are created that allow a swap such
that other legs in the network remain unaffected. The algorithm provided in section 5.4
might be applied. Usually, the two sequences have their origin and destination in
common. The start and end of the sequences might even be the same airport. One
example is two sequences, each one containing two legs to a destination and back to
the base (illustrated in Figure 6.3(a)). Another example is depicted in Figure 6.3(b),
where one set contains only one leg connecting two hubs. The second sequence also
starts and ends at these hubs, but consists of two legs connecting a third airport.

A           C           D

LHR

MUC

B

FRA

(a)

A           B

LHR

MUC

C

FRA

(b)

Figure 6.3: Example of two flight sequences that are eligible for a swap with the same
origin and destination.

However, the model is not even limited to sets with connected sequences of legs. We
only require that all legs in one set share an equal assignment while other flights
of the network remain unaffected by an equipment change. More complex swapping
opportunities as depicted in Figure 5.5(b) might be considered, where legs in one set
are not linked to each other.

We adhere to the same assumptions and notation as in the last section. Where needed
the notation is adapted to the multi-leg case. We define a Markov Decision Process
(T, S,A, p, r, V0) as follows:

(i) The planning horizon is T ∈ N. The time horizon is again divided into time
epochs in which at most one customer for any leg arrives. Of course, the larger
the number of legs, the smaller each time epoch becomes. The time periods need
not be of equal length. Time is counted backwards and t = T, T−1, . . . , 0 denotes
the number of periods remaining for ticket sales.

(ii) The joint state space is

S = {0, . . . , C1}m × {0, . . . , C1}n × {1}
∪ {0, . . . , C2}m × {0, . . . , C1}n × {0}
∪ {0, . . . , C1}m × {0, . . . , C2}n × {0} .

For (s1, . . . , sm+n+1) ∈ S, si denotes the (remaining) capacity available on flight
i ∈M ∪N . If the option to assign the larger aircraft is still available sm+n+1 = 1
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and sm+n+1 = 0, if it has been executed.
The assignment needs to be finalized the latest at t = T̄ . Hence, St = S for
t = T, T − 1, . . . , T̄ and

St = S \ {0, . . . , C1}m × {0, . . . , C1}n × {1}

for t = T̄ − 1, T̄ − 2, . . . , 0.

(iii) The action space is A = {(a1, a2, . . . , am, am+1, . . . , am+n, am+n+1) : ak ∈ Pk :
k ∈ {1, . . . ,m+n}, am+n+1 ∈ {( 0

0 ) , ( 1
0 ) , ( 0

1 )}}, where Pi = {f i0, f i1, . . . , f iki}, ki ∈
N, i ∈M ∪N , is the set of allowable prices for flight i including the nullprice f i0.
The decision to execute the option on set M is am+n+1(1) = 1, i.e. all legs i ∈M
are assigned the larger aircraft. am+n+1(2) = 1 is the decision to execute the
option on legs i ∈ N , while am+n+1 = (0, 0)′ denotes the decision not to execute
the option.

For s ∈ S, a3 ∈ {( 0
0 ) , ( 1

0 ) , ( 0
1 )} we define

P̄k(s, a3) :=


{fk0 } sk = 0, k ∈M,a3(1) = 0,
{fk0 } sk = 0, k ∈ N, a3(2) = 0,
Pk otherwise,

to conveniently define the set of feasible actions At(s) ∈ A in state s ∈ St:

For t = T, T − 1, . . . , 1 and in state s ∈ St with sm+n+1 = 0 the feasible actions
are given by

At(s) = P̄1(s, ( 0
0 ))× P̄2(s, ( 0

0 ))× · · · × P̄m+n(s, ( 0
0 ))× {( 0

0 )} .

For t = T, T − 1, . . . , T̄ + 1 in state s ∈ St with sm+n+1 = 1, we get

At(s) = P̄1(s, ( 0
0 ))× P̄2(s, ( 0

0 ))× · · · × P̄m+n(s, ( 0
0 ))× {( 0

0 )}
∪ P̄1(s, ( 1

0 ))× P̄2(s, ( 1
0 ))× · · · × P̄m+n(s, ( 1

0 ))× {( 1
0 )}

∪ P̄1(s, ( 0
1 ))× P̄2(s, ( 0

1 ))× · · · × P̄m+n(s, ( 0
1 ))× {( 0

1 )} .

Finally, in t = T̄ and for sm+n+1 = 1, we have to make a decision on the assign-
ment. Hence, the feasible actions are

At(s) = P̄1(s, ( 1
0 ))× P̄2(s, ( 1

0 ))× · · · × P̄m+n(s, ( 1
0 ))× {( 1

0 )}
∪ P̄1(s, ( 0

1 ))× P̄2(s, ( 0
1 ))× · · · × P̄m+n(s, ( 0

1 ))× {( 0
1 )} .
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(iv) The transition law in t = T, T − 1, . . . , 1 for s ∈ St, s′ ∈ St−1, a ∈ At(s) is

pt(s, a, s′) =



λt · pit · qit(ai) s′k = sk − δk(i) + d · am+n+1(1), k ∈M,

s′j = sj − δj(i) + d · am+n+1(2), j ∈ N,
s′m+n+1 = sm+n+1 − am+n+1(1)− am+n+1(2),

i ∈M ∪N,

1−
∑

i∈M∪N
λt · pit · qit(ai) s′k = sk + d · am+n+1(1), k ∈M,

s′j = sj + d · am+n+1(2), j ∈ N,
s′m+n+1 = sm+n+1 − am+n+1(1)− am+n+1(2),

0 otherwise.

As before, λt denotes the combined probability for an arrival in period t for any
flight. The thinning probability for flight i ∈ M ∪ N is given by pit and qit(ai)
denotes the related purchase probability given price ai ≥ 0. δi(j) denotes the
indicator function.

(v) The reward function for t = T, T − 1, . . . , 1 is

rt(s, a) =
∑

i∈M∪N
λt · pit · qit(ai) · ai −

2∑
j=1

kjd · am+n+1(j) , s ∈ St, a ∈ At(s) ,

where kid, i = 1, 2 denote the additional costs of flying the larger airplane on set
M or N , respectively. As we only consider the additional costs in regards to the
most efficient allocation, for at least one i ∈ {1, 2}, kid = 0.

(vi) The terminal reward function is V0 ≡ 0. We do not consider overbooking and do
not incur any terminal cost.

Next, we adjust the operators and sets to the multi-leg model. For all t = T, T−1, . . . , 1,
s = (s1, . . . , sm, sm+1, . . . , sm+n+1) ∈ St, a = (a1, . . . , am, am+1, . . . , am+n+1) ∈ At(s),
and i ∈M ∪N , let

Y (s, a) := (s1 + am+n+1(1)d, . . . , sm + am+n+1(1)d, sm+1 + am+n+1(2)d, . . . ,

sm+n + am+n+1(2)d, sm+n+1 − am+n+1(1)− am+n+1(2)) ,

Y i(s, a) :=



Y ((s1 − δ1(i), . . . , sm − δm(i), sm+1 − δm+1(i), i ∈M,

. . . , sm+n − δm+n(i), sm+n+1), a) si + a3(1)d > 0,
Y ((s1 − δ1(i), . . . , sm − δm(i), sm+1 − δm+1(i), i ∈ N,

. . . , sm+n − δm+n(i), sm+n+1), a) si + a3(2)d > 0,
Y (s, a) otherwise,

At(s|a1, . . . , am+n) := {am+n+1 ∈ {( 0
0 ) , ( 1

0 ) , ( 0
1 )} : (a1, . . . , am+n, am+n+1) ∈ At(s)} ,
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At(s|am+n+1) := {(a1, . . . , am+n) ∈P1×· · ·×Pm+n : (a1, . . . , am+n, am+n+1) ∈ At(s)} ,

Ait(s) := {a′ ∈Pi : (a1, . . . , ai−1, a
′, ai+1, . . . , am+n, (0, 0)′) ∈ At(s), aj ∈Pj, j ∈M∪N, j 6= i} ,

and, for si > 0,
∆siVt(s) := Vt(s)− Vt(s− e(i)) .

With the adapted sets and operators we further get

Dt := {(s, a) : s ∈ St, a ∈ At(s)} ,

and, for all functions v : St−1 → R, with a ∈ At(s), let

Qtv(s, a) :=
∑

i∈M∪N
λtp

i
tq
i
t(ai)

[
ai + v(Y i(s, a))

]

+
(

1−
∑

i∈M∪N
λtp

i
tq
i
t(ai)

)
v(Y (s, a))−

2∑
i=1

kidam+n+1(i) ,

Ltv(s|a1, . . . , am+n) := max
a′∈At(s|a1,...,am+n)

{
Qtv(s, (a1, . . . , am+n, a

′))
}
,

Ltv(s|am+n+1) := max
a′∈At(s|am+n+1)

{
Qtv(s, (a′, am+n+1))

}
.

With these definitions, the optimality equation can simply be written as

Vt(s) = max
a∈At(s)

{
QtVt−1(s, a)

}
. (6.3)

We now establish structural results for the multi-leg case. Part of the results in sec-
tion 6.1 can be extended to the multi-leg case straightforward, while others need to
include more aspects. To facilitate a compact presentation of the results, we state
those proofs in Appendix A, in which the arguments follow the same ideas as in the
preceding section.

Theorem 6.2.1 (Decomposition of the value function).
For the MDP with the value function defined in (6.3),

(i) at time t = T, . . . , 1, in all states s = (s1, . . . , sm+n, 0) ∈ St, the process decom-
poses into m+ n independent single-leg processes with the value functions

V i
t (si) = max

ai∈Pi

{
λtp

i
tq
i
t(ai)[ai + V i

t−1(si − 1)] + [1− λtpitqit(ai)]V i
t−1(si)

}
for si > 0 and i ∈ M ∪ N . The boundary conditions are V i

t (0) = V i
t−1(0) and

V i
0 ≡ 0. The value function of the original process is the sum of the single-leg

value functions:
Vt(s) =

∑
i∈M∪N

V i
t (si) .
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(ii) Further, for t = T, . . . , T̄ , s = (s1, . . . , sm+n, 1) ∈ St, and am+n+1 ∈ {( 1
0 ) , ( 0

1 )},

LtVt−1(s|am+n+1)

=
∑
j∈M

V j
t (sj + am+n+1(1)d) +

∑
l∈N

V l
t (sl + am+n+1(2)d)−

2∑
i=1

kidam+n+1(i) .

(iii) For t = T, . . . , T̄ + 1, s = (s1, . . . , sm+n, 1) ∈ St,

Lt−1Vt(s|(0, 0)′)

=
∑

i∈M∪N
si 6=0

(
max

ai∈Ait(s)
λtp

i
tq
i
t(ai)[ai −∆siVt−1(s)]

)
+ Vt−1(s) .

Theorem 6.2.1 results from conveying Theorem 6.1.1 to the case with multiple legs.
The effect of reducing computational requirements to find an optimal policy is even
greater with the increased number of legs considered. Applying (i), the single-leg
processes can be used in case the capacity option has been executed, i.e. in states
with sm+n+1 = 0. Similarly, if the optimal assignment action can be predetermined to
be a∗m+n+1 ∈ {(0, 1)′, (1, 0)′} before the maximization, the single-leg processes might
be applied using (ii). (iii) will be important later, when we show that in case of
remaining capacity si > 0 for every flight i ∈ M ∪N , an action with am+n+1 = (0, 0)′

is always optimal. Then, to determine the optimal prices, instead of maximizing over
the complete multidimensional set, we can separate the maximizations.

Theorem 6.2.2 (Monotonicity of the value function).
For the MDP with the value function defined in (6.3),

(i) for fixed t = T, T − 1, . . . , 0, Vt(s) is non-decreasing componentwise in si for all
i ∈M ∪N .

(ii) With s = (s1, . . . , sm+n, 1), s′ = (s1, . . . , sm+n, 0) ∈ St, Vt(s) − Vt(s′) ≥ 0, for all
t = T, T − 1, . . . , T̄ .

(iii) For fixed s ∈ St ∩ St+1, Vt(s) is non-decreasing in t.

(i) and (iii) show that the intuitive results hold that the expected revenue increases the
more seats are available for sale and the more time remains to sell them. Theorem 6.2.2
(ii) states that the option price is not negative. The option might well be worthless
though. In case we do not expect a demand exceeding the minimal capacity C1 for any
flight, the extra seats do not have a positive value. Then, the more cost efficient fleet
assignment is used with no additional assignment costs (k1

d = 0 or k2
d = 0, respectively).
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Lemma 6.2.3.
For the MDP with the value function defined in (6.3), for t = T, . . . , T̄ ,

(i) Vt(s1, . . . , sm+n, 1) ≥ Vt(s1 + d, . . . , sm + d, sm+1, . . . , sm+n, 0)− k1
d.

(ii) Vt(s1, . . . , sm+n, 1) ≥ Vt(s1, . . . , sm, sm+1 + d, . . . , sm+n + d, 0)− k2
d.

Using Lemma 6.2.3, we next develop conditions, when we can omit certain actions
when maximizing over the set of feasible actions.

Theorem 6.2.4 (Optimal assignment action).
For the MDP with the value function defined in (6.3), for any t = T, . . . , T̄ +1, in state
s ∈ St, an action a∗ ∈ At(s) is optimal with

(i) a∗m+n+1 ∈ {( 0
0 ) , ( 0

1 )}, if si > 0 for all i ∈M .

(ii) a∗m+n+1 ∈ {( 0
0 ) , ( 1

0 )}, if si > 0 for all i ∈ N .

(iii) a∗m+n+1 = ( 0
0 ), if si > 0 for all i ∈M ∪N .

(iv) a∗m+n+1 ∈ {( 1
0 ) , ( 0

1 )}, if si = 0 for all i ∈M ∪N and sm+n+1 = 1.

In case of remaining capacities si > 0 for every flight i ∈ M ∪ N , we can apply (iii)
in conjunction with Theorem 6.2.1 (iii) to determine the optimal prices separately for
the flights instead of maximizing over the complete multidimensional set. When no
capacity remains on any leg, an assignment is always optimal applying (iv). (i) and (ii)
state conditions, when one assignment action can be excluded from the maximization
because it is at most as good as the other two possibilities.

In contrast to the two-leg model, in the multi-leg case, we cannot always reduce the set
of assignment actions to evaluate during backward induction. In states with at least
one si = 0, i ∈ M , at least one sj = 0, j ∈ N , and at least one other si′ > 0, i′ ∈ M
and at least one sj′ > 0, j′ ∈ N , all three assignment actions need to be evaluated in
the maximization.

Theorem 6.2.5 (Monotonicity of the assignment action).
In s ∈ St, t = T, T − 1, . . . , T̄ with sm+n+1 = 1,

LtVt−1(s|(1, 0)′)− LtVt−1(s|(0, 1)′)

is componentwise non-increasing in si for all i ∈ M and non-decreasing in sj for all
j ∈ N .
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Proof. For some i ∈ M , fix s, s′ := s+ e(i) ∈ St, t = T, T − 1, . . . , T̄ with sm+n+1 = 1.
Using Theorem 6.2.1 (ii)

LtVt−1(s′|(1, 0′))− LtVt−1(s′|(0, 1′))

= LtVt−1(s|(1, 0′))− LtVt−1(s|(0, 1′))

+ V i
t (si + 1 + d)− V i

t (si + d)− V i
t (si + 1) + V i

t (si) .

Now, using the concavity of V i
t (Theorem 4.6.2), the monotonicity in si follows. A

similar argumentation works for sj, j ∈ N .

In the two-leg case, although the results in Theorem 6.1.5 hold for any t = T, T −
1, . . . , T̄ , we limited the application to t = T̄ . At other times, applying Theorem 6.1.4
yields that an action with a3 = ( 1

0 ) (a3 = ( 0
1 )) needs not be considered in states

s = (s1 + 1, s2, 1) (respectively s = (s1, s2 + 1, 1)).

Contrarily, in the multi-leg model, in states with at least one si = 0, i ∈M , at least one
sj = 0, j ∈ N , and at least one other si′ > 0, i′ ∈ M and at least one sj′ > 0, j′ ∈ N ,
all three assignment actions need to be considered during backward induction. Then,
the monotonicity of the assignment action stated in Theorem 6.2.5 can be exploited to
reduce the set of assignment actions that need to be evaluated.

We continue providing upper and lower bounds on the pricing actions, which can be
extended straightforward from the two-leg case.

Theorem 6.2.6 (Lower bounds of the price actions).
Assume t = T − 1, T − 2, . . . , T̄ and s ∈ St with si > 0 for all i ∈ M ∪ N and
sm+n+1 = 1. Let ψit+1(s) ∈ Ait+1(s) be the largest price maximizing the function

ai → λt+1p
i
t+1q

i
t+1(ai)[ai −∆siVt(s)] .

Then, min{∆siVt(s), f i0} ≤ ψit+1(s) ≤ f i0.

Theorem 6.2.6 together with Theorem 6.2.1 (iii) and 6.2.4 (iii) provides lower bounds
on the pricing actions, if si > 0 for all i ∈M ∪N . Note that ∆siVt(s) is known in t+ 1
and can be exploited during backward induction as a lower bound.

Next, we show that after the finalization of the assignment, i.e. in states s ∈ St with
sm+n+1 = 0, the largest maximizing fare for a flight is non-increasing in the remaining
capacity of that flight.

Theorem 6.2.7 (Monotonicity of the price actions after the final assignment).
For a fixed t = T, T − 1, . . . , 1, i ∈ M ∪N , and s =∈ St with sm+n+1 = 0, the largest
fare ψit+1(s) maximizing the function

ai 7→ λtp
i
tq
i
t(ai)[ai −∆V i

t−1(si)]
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is non-increasing in si.

To show the monotonicity of the prices when the option is still available (sm+n+1 = 1),
analogically to the two-leg case, for i ∈M and j ∈ N , we define

s∗i (s) := min
{
s̄i ∈ {0, . . . , C1} : VT̄ (s1, . . . , si−1, s̄i, si+1, . . . , sm+n, 1)

= LT̄VT̄−1((s1, . . . , si−1, s̄i, si+1, . . . , sm+n, 1)|(0, 1)′)
}
,

s∗j(s) := min
{
s̄j ∈ {0, . . . , C1} : VT̄ (s1, . . . , sj−1, s̄j, sj+1, . . . , sm+n, 1)

= LT̄VT̄−1((s1, . . . , sj−1, s̄j, sj+1, . . . , sm+n, 1)|(1, 0)′)
}
,

where min ∅ :=∞.

The monotonicity results for s∗i , i ∈M ∪N need to be extended from the two-leg case
to include capacities of flights in the same set.

Lemma 6.2.8.
For the MDP with the value function defined in (6.3),

(i) s∗i , i ∈M is non-decreasing in sj, j ∈ N .

(ii) s∗j , j ∈ N is non-decreasing in si, i ∈M .

(iii) s∗i , i ∈M is non-increasing in sj, j ∈M, j 6= i.

(iv) s∗j , j ∈ N is non-increasing in si, i ∈ N, i 6= j.

Proof.

(i) For some i ∈ M, j ∈ N , fix s ∈ ST̄ with si < s∗i (s) and sm+n+1 = 1. Then an
action a∗ with a∗m+n+1 = ( 1

0 ) is optimal. In s′ = s+ e(j), an action a∗∗ is optimal
with a∗∗m+n+1 = ( 1

0 ) by applying Theorem 6.2.5.

(ii) can be shown analogously.

(iii) For some i, j ∈ M, i 6= j , fix s ∈ ST̄ with si ≥ s∗i (s) and sm+n+1 = 1. Then an
action a∗ with a∗m+n+1 = ( 0

1 ) is optimal. In s′ = s+ e(j), an action a∗∗ is optimal
with a∗∗m+n+1 = ( 0

1 ) by applying Theorem 6.2.5.

(iv) can be shown analogously.

Using the monotonicity properties in Lemma 6.2.8 in conjunction with Theorem 6.2.1
and Theorem 6.2.7, we can additionally derive monotonicity structures of the pricing
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actions at t = T̄ . In state s ∈ ST̄ with sm+n+1 = 1, only actions a ∈ AT̄ (s) are feasible
with am+n+1 ∈ {( 1

0 ) , ( 0
1 )}. For some i ∈M , for si ≥ s∗i (s) the optimal assignment does

not change when capacity si′ , i′ ∈M increases or sj, j ∈ N decreases. For si < s∗i (s) the
optimal assignment does not change when capacity si′ , i′ ∈ M decreases or sj, j ∈ N
increases. Then, on these domains, the largest optimal price of each flight a∗i = ψit(si)
is independent of the capacities on other flights and is non-increasing in si. Analogical
properties hold for flights j ∈ N .

Corollary 6.2.9 (Monotonicity of the price actions at t = T̄ ).
For s, s′ ∈ ST̄ , sm+n+1 = s′m+n+1 = 1,

(i) for some i ∈ M , if s′i ≥ si ≥ s∗i (s), s′k ≥ sk for k ∈ M,k 6= i, and s′j ≤ sj for
j ∈ N , the largest optimal prices

ψiT̄ (si) ≥ ψiT̄ (s′i) .

If further s′i = si, then ψiT̄ (si) = ψi
T̄

(s′i).

(ii) For some i ∈ M , if s′i ≤ si < s∗i (s), s′k ≤ sk for k ∈ M,k 6= i, and s′j ≥ sj for
j ∈ N , the largest optimal prices

ψiT̄ (si) ≤ ψiT̄ (s′i) .

If further s′i = si, then ψiT̄ (si) = ψi
T̄

(s′i).

(iii) For some j ∈ N , if s′j ≥ sj ≥ s∗j(s), s′k ≥ sk for k ∈ N, k 6= j, and s′i ≤ si for
i ∈M , the largest optimal prices

ψj
T̄

(sj) ≥ ψj
T̄

(s′j) .

If further s′j = sj, then ψjT̄ (sj) = ψj
T̄

(s′j).

(iv) For some j ∈ N , if s′j ≤ sj < s∗j(s), s′k ≤ sk for k ∈ N, k 6= j, and s′i ≥ si for
i ∈M , the largest optimal prices

ψj
T̄

(sj) ≤ ψj
T̄

(s′j) .

If further s′j = sj, then ψjT̄ (sj) = ψj
T̄

(s′j).

Before an assignment, on domains where Vt is concave in one component, we can exploit
the monotonicity of the price actions to find upper bounds for the prices at t+ 1.

Theorem 6.2.10 (Monotonicity of the price actions before the final assignment).
For i ∈ M ∪ N, t = T − 1, T − 2, . . . , T̄ , and s ∈ St with si > 0 and sm+n+1 = 1,
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suppose Vt(s) to be concave in si for fixed sj > 0, j ∈ M ∪N, j 6= i. Then, the largest
maximizer ψit+1(s) of the function

ai 7→ λt+1p
i
t+1q

i
t+1(ai)[ai −∆siVt(s)]

is non-increasing in si.

However, the concavity does not hold in general on certain intervals as in the two-leg
model. Hence, we need to check for concavity in the actual implementation to make
use of Theorem 6.2.10.

6.3 Heuristic Approaches

A major drawback of the model formulation in the previous section is the curse of
dimensionality. The sizes of the state and action spaces increase rapidly with the
number of legs considered. Hence, when more than a few legs are involved in a possible
swap and need to be considered simultaneously, computational power might limit the
ability to apply the model developed in practice. In this section, we provide heuristics
that efficiently compute approximately optimal pricing policies. We start by adapting
a common capacity control heuristic to a dynamic pricing setting. The general idea of a
limited lookahead policy is introduced in section 6.3.2. We then outline a deterministic
approximation commonly used in dynamic pricing problems and extend it to include
swapping opportunities. Using the developed deterministic approximation, we present
a heuristic that approximates the opportunity cost and applies the concept of a limited
lookahead policy.

6.3.1 Period Re-Evaluation of the Fleet Assignment

The most evident approach for a heuristic is to convey the ideas by Berge and Hop-
perstad (1993) as described in section 5.3 to a dynamic pricing setting. Hence, the
single-leg processes developed in section 4.6 are used to find a pricing policy with a
given initial fleet assignment. The assignment is re-evaluated at certain planning points
during the booking horizon. An adaption of the basic MIP 5.2.1 is used for the opti-
mization. Received bookings at the time constrain feasible solutions of the assignment
problem. Other restrictions such as only considering crew-compatible fleets might be
imposed as well. Prices are then set by the single-leg processes using the updated
capacities. This process is repeated until the assignment needs to be finalized. After
the finalization, the single-leg processes are applied to derive a pricing policy for the
remaining time until departure. Figure 6.4 depicts the process.
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Figure 6.4: Process of Demand-Driven Re-Fleeting Heuristic 1.

Note that simulation studies show that the magnitude of the revenue gain by applying
the heuristic is greatly dependent on the time between two planning points when the
fleet assignment is re-evaluated. Figure 6.5 depicts the influence for the base-case
scenario of the simulation studies in the next section. The full gain can only be exploited
when the assignment is revised frequently. Hence, in the remainder, we assume that
at the start of every time period, regardless of an arrival of a customer, the fleet
assignment is optimized and prices are then set using the updated assignment. The
frequent re-optimization might be computational demanding depending on the size of
the network considered and the restrictions applied.
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Figure 6.5: Influence of the time distance between re-optimization points. The relative
revenue gain by applying Heuristic 1 over a policy without DDR decreases with the
distance between two planning points.

The heuristic has been reported to be implemented at several airlines in capacity control
settings (e.g. Oba, 2007, Zhao et al., 2007). The applied controls and optimization
techniques differ while the general process remains unaffected. Hence, the heuristic
can be regarded as industry practice today. However, at many airlines, to varying
degrees, the process incorporates manual interaction and must be regarded as decision
support rather than an automated procedure to set prices.



CHAPTER 6. DEMAND-DRIVEN RE-FLEETING AND DYNAMIC PRICING 112

6.3.2 Limited Lookahead Policies

In dynamic programming, to reduce the computational effort and memory requirements
of finding and storing an optimal policy, a stochastic program might be solved only
for the current and possibly several subsequent steps. The value functions of further
stages are then approximated by a suitable heuristic. A policy derived in such way is
called limited lookahead policy (Bertsekas, 1995, chapter 6.3.2).

We speak of a one-step lookahead policy, when the value function of the next step is
approximated. We do not fix a decision rule for each decision time at the start of the
process, but rather choose an action a at the beginning of each time period t only for
the current state it ∈ It. We choose a by replacing the value function Vt−1 in (3.1) by
its approximation Ṽt−1. Hence, an action a is chosen that attains the maximum of

max
a∈At(it)

rt(it, a) +
∑

j∈Ĩt−1

pt(it, a, j)Ṽt−1(j)

 , (6.4)

where Ĩt−1 := {j ∈ It−1 : pt(it, a, j) > 0, a ∈ At(it)} ⊆ It−1 is the subset of states in It−1

that can be reached from it. Ṽt−1 needs to be approximated only for states j ∈ Ĩt−1.

A k-step lookahead policy is derived similarly. Analogously to Ĩt−1, let Ĩt−h, h = 2, . . . , k
be the subset of states in It−h that can be reached from it in k steps. Define Ĩt := {it}.
Now, Vt−k is approximated by Ṽt−k using a suitable heuristic for all j ∈ Ĩt−k. Then, for
τ = t, t− 1, . . . , t− k + 1, the approximated value function is the unique solution to

Ṽτ (i) = max
a∈Aτ (i)

rτ (i, a) +
∑

j∈Ĩτ−1

pτ (i, a, j)Ṽτ−1(j)

 , i ∈ Ĩτ . (6.5)

At each time τ = t, t− 1, . . . , t−k+ 1, we find an action aτ maximizing the right-hand
side of (6.5) by backward induction replacing (3.1) by (6.5) in Algorithm 3.3.1.

The quality of the policy is obviously greatly dependent on the heuristic used. We
develop a suitable heuristic for considering swaps in dynamic pricing problems in the
next section. Another influence on the quality is the number of stages approximated.
If the approximation of the value function improves in time, the policy approaches the
optimal policy the more steps are evaluated before the remaining periods are approxi-
mated.

To find a near-optimal policy, more important than the approximation of the actual
value function is the quality of the resulting relative values (Bertsekas, 1995, p. 267).
For a k-step lookahead policy, if for any j, j′ ∈ Ĩt−k, j 6= j′, the approximation

Ṽt−k(j)− Ṽt−k(j′) ≈ Vt−k(j)− Vt−k(j′)
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is reasonably good, so is the resulting policy. This is quite intuitive considering the
example of the single-leg model presented in section 4.6. Reformulating (4.7) yields

Vt+1(c) = max
a∈A(c)

{λtqt(a)[a−∆Vt(c)]}+ Vt(c) .

If ∆Vt(c) = ∆Ṽt(c), the one-step lookahead policy is actually optimal irrespective of
how well the actual values Vt(c) and Vt(c− 1) are approximated. We make use of this
fact in the next section, where we actually aim to find a good approximation of the
opportunity cost ∆Vt(c).

6.3.3 Dynamic Pricing Linear Program

To develop a heuristic to approximate the opportunity cost in a dynamic pricing prob-
lem allowing for swapping aircraft assignments, we start by developing a linear program
for the single-leg dynamic pricing problem introduced in section 4.6. To avoid technical
complications and facilitate a quick solution by standard optimization techniques, we
make the following relaxations to the original problem:

• The capacity is assumed to be a continuous quantity, and accordingly, we also
assume demand to be continuous.

• We follow an approach known as deterministic linear programming in the RM
literature (c.f. e.g. Williamson, 1992). A linear program is used to approximate
the value function where all random variables are replaced by their expectations.
Hence, we use the expected demand in each period that depends on the offered
fare. The approximation based on the deterministic linear programming model
should not be mistaken for the solution of a value function using a linear program
(c.f. Nickel et al., 2011, chapter 8.3.5).

• Further, we allow a convex combination of prices in each period instead of only a
single price chosen from a discrete set. The convex combination can be interpreted
as to use each price for a fraction of the period determined by the convex weights.

We adhere to the notation introduced in section 4.6. As decision variables we use the
convex weights βτ (f), τ = 1, . . . , t corresponding to each allowable fare f ∈ P. To
approximate the value function Ṽt(c) at time t with remaining capacity c, i.e. state c,
we solve the following linear program:

(LP 6.3.1)

max
t∑

τ=1

∑
f∈P

βτ (f)λτqτ (f)f (6.6)
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t∑
τ=1

∑
f∈P

βτ (f)λτqτ (f) ≤ c (6.7)

∑
f∈P

βτ (f) = 1 for all τ = 1, . . . , t (6.8)

βτ (f) ≥ 0 for all τ = 1, . . . , t, f ∈P (6.9)

(6.6) maximizes the total expected revenue using a convex combination of the allowable
prices in each time period. (6.7) guarantees that expected sales do not exceed the
currently remaining capacity. Note that because f0 ∈ P and qτ (f0) = 0 for all τ =
1, . . . , t the constraint can always be fulfilled. (6.8) and (6.9) restrict the decision
variables βτ to a convex combination in each period.

By allowing a convex combination of the prices in each period the program is linear
in the decision variables. If instead, we had a fare from the discrete set of prices
P as the decision variable in each period, the problem would neither be continuous
nor necessarily convex. The linear program presented is similar to that developed in
Talluri and Van Ryzin (2004b, chapter 5.2.1.3). However, they use a demand rate as
the decision variable by applying the inverse demand function.

Relaxing the problem to continuous decision variables not only facilitates to solve the
problem efficiently and quickly by standard means, but also we are able to use the
shadow price of restriction (6.7) as an approximation of the opportunity cost ∆Vt(c)
of the original problem in state c.

Similarly, we develop a linear program to approximate the opportunity cost of the dy-
namic pricing model allowing for Demand-Driven Re-Fleeting developed in section 6.2.
We again apply a deterministic linear programming model and replace the random
demands by their expectations. As before, we relax the problem to continuous ca-
pacities. Consistently, we also assume the additional capacity d to be continuous. We
further assume that it can be split between the flight legs in setM and N , respectively.
W.l.o.g., let k1

d = 0 and k2
d ≥ 0. The cost k2

d of assigning the additional capacity to set
N incurs only for the portion allocated to the set. We denote these seats xN .

Now, for each leg i ∈M ∪N , we use a convex combination βiτ (f) of the allowable prices
f ∈Pi as the decision variable in each time period τ = 1, . . . , t. At decision time t in
state s = (s1, s2, . . . , sm+n, 1) ∈ St we use the linear program

(LP 6.3.2)

max
t∑

τ=1

∑
i∈M∪N

∑
f∈Pi

βiτ (f)λτpτi qτi (f)f − (k2
d/d)xN (6.10)

t∑
τ=1

∑
f∈Pi

βiτ (f)λτpτi qτi (f) ≤ si + d− xN for all i ∈M (6.11)
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t∑
τ=1

∑
f∈Pi

βiτ (f)λτpτi qτi (f) ≤ si + xN for all i ∈ N (6.12)

∑
f∈Pi

βiτ (f) = 1 for all i ∈M ∪N, τ = 1, . . . , t (6.13)

βiτ (f) ≥ 0 for all i ∈M ∪N, f ∈Pi, (6.14)

τ = 1, . . . , t

0 ≤ xN ≤ d (6.15)

to approximate the value function Vt(s).

The expected total revenue reduced by the cost of allocating xN to all legs i ∈ N is
maximized in (6.10). Note that the objective does not reflect the expected profit earned
as total assignment costs are not considered. Expected future sales are limited to the
remaining capacity by (6.11) and (6.12). The current capacity is augmented by the
additional (partial) capacity d − xN and xN allocated to sets M and N , respectively.
Again, the constraint can always be fulfilled because f i0 ∈ Pi and qτi (f i0) = 0 for
all i ∈ M ∪ N, τ = 1, . . . , t. (6.13) and (6.14) restrict the decision variables to a
convex combination in each period, while (6.15) constrains the additional capacity to
the maximum available additional capacity d.

Note that we aim to approximate the opportunity cost only in states s ∈ St with
sm+n+1 = 1, i.e. when the final assignment has not been decided. To approximate the
opportunity cost ∆Vt(s) of the original problem, we use the shadow prices of (6.11)
and (6.12) for the respective flights.

LP 6.3.2 is used in the next section in conjunction with a one-step lookahead policy
to derive a dynamic pricing heuristic that allows for swapping assignments of flights.
Allocation costs that are incurred when swapping assignments can be included.

6.3.4 Demand-Driven Re-Fleeting Dynamic Pricing Heuristic

We implement a one-step lookahead policy using LP 6.3.2. While the fleet assignment
has not been finalized, at the start of each time period, we approximate the opportunity
cost of each flight by the shadow prices of (6.11) and (6.12), respectively. We then
maximize

ai → λtp
i
tq
i
t(ai)[ai −∆siṼt−1(s)]

for each flight i ∈ M ∪ N separately according to Theorem 6.1.1 (iii). ∆siṼt−1(s)
denotes the approximated opportunity cost. At the latest time for the final assignment,
or before, if received bookings for any flight reach the capacity of the smaller aircraft,
the fleet assignment is finalized. After the finalization, the single-leg pricing policies for
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each flight are applied with the updated capacities. Figure 6.6 illustrates the process.
A pseudo-code implementation is presented in Algorithm B.2.1.

Forecaster
Historical

data

Bookings

Optimizer with
LLP using
LP 6.3.2 to 

approximate ∆siVt-1

Bookings

Finalize 
Assign-
ment

Optimizer
(Single-leg DP)

Figure 6.6: Process of Demand-Driven Re-Fleeting Heuristic 2.

6.4 Numerical Studies

In this section, we present simulation studies to analyze the performance of the pricing
models and heuristics introduced in the preceding sections. Relevant parameters are
varied in different settings to analyze their effects on the performance.

To our knowledge, no simulation study has been published applying Demand-Driven
Re-Fleeting in a dynamic pricing environment. Similarities are expected to simulations
conducted in capacity control settings, e.g. Berge and Hopperstad (1993), Frank et al.
(2006), or Wang and Meng (2008). However, the mentioned publications all discuss
heuristic strategies. The heuristics used follow a similar idea as the one developed in
section 6.3.1, and hence, comparable results are expected.

We start by briefly describing the simulation environment in the next section. The
general setup is outlined in section 6.4.2, before the various scenarios and the corre-
sponding results are presented in detail in section 6.4.3. We summarize the results and
conclude with section 6.4.4.
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6.4.1 Simulation Environment

The simulation environment is implemented in Java and the simulations were run on
a high performance computer cluster. A more realistic setting with larger capacities
was sacrificed for a smaller example with shorter run times in order to facilitate a high
number of individual simulations in each scenario. A comparison of a realistic large-
scale problem and a down-scaled setting yielded comparable results. In each scenario
20,000 simulations were conducted to achieve significant results.

The simulation implements the simple dynamic pricing model without DDR as intro-
duced in section 4.6 (labeled No DCM or No DDR), the DDR model developed in
section 6.2 (labeled Exact), and the heuristics described in section 6.3. Heuristic 1
describes the practice of repeatedly resolving the fleet assignment (see section 6.3.1),
while the newly developed heuristic outlined in section 6.3.4 is labeled Heuristic 2. To
permit a direct comparison, the arrival sequences for each run can either be generated
or read from file. Where applicable, we use the same arrival sequences to evaluate
different strategies.

The arrivals are generated from an inhomogeneous Bernoulli Process. While any func-
tion can be used as an intensity function for the arrival process, we focus on triangular
shaped intensity functions. The parameters are described in the next section. The ar-
rival process describes the arrivals combined for all flights. These arrivals are thinned
into separate arrival processes for each flight, i.e. each arrival is attributed to a specific
flight based on given thinning probabilities. Although the program also allows for dy-
namically changing thinning probabilities, constant probabilities in time are used for
the presented scenarios.

The willingness-to-pay for each flight can be specified separately and any function
qt : {T, . . . , 1} ×P → [0, 1] is applicable. For our studies we implement

qt(p) = min
{

1, e
−(p−βt) ln 2

(εt−1)βt

}
, (6.16)

where βt is the base price, i.e. the highest price any arriving customer is willing to
accept, and εt is a shape parameter at time t.

(6.16) is also used for the well-known Passenger O&D Simulator (PODS) (Belobaba,
2006). Belobaba (2006) states that ε = 1.2 for leisure and ε = 3 for business customers.
Business and leisure demand can be accounted for by choosing an increasing base
price βt and shape parameter εt over time. However, we do not distinguish leisure
and business demand and use a constant base price and shape parameter. Hence, all
demand regardless of the arrival time is valued equally. Accounting for different values
of the demand allows to arbitrarily influence the results. High-value demand arriving
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after the final assignment results in a low gain by applying DDR. The gain increases
when shifting high-value demand further away from departure. The influence of the
percentage of the aggregated demand expected before the latest possible assignment,
and hence its value in comparison to demand arriving later during the booking process,
is analyzed by varying the latest time for the finalization of the assignment.

The flight legs are defined by a willingness-to-pay function and the set of allowed prices
including the nullprice. They are grouped into disjunct sets M and N as described in
section 6.2. All legs in one set are assigned the same capacity and are thus affected
equally by a possible change of equipment. Assignment costs need to be defined for
each set. We restrict our examples to two flights, each in one set. To apply DDR
strategies, also the latest time for an assignment (LAT) needs to be defined. The
assignment needs to be finalized at that time and no further changes are admissible
after the LAT.

To get a differentiated picture of how the various parameters influence the value of
DDR, we omit estimation errors from the simulations. The presented strategies are
based on the true probabilities for arrivals and the acceptance of the offered price. The
quality of the forecast greatly affects any efforts of applying RM. Hence, we try to
separate the influences of forecasting and of applying DDR. We also follow a conser-
vative approach and do not assume auto-correlation of the arrivals. Auto-correlated
arrivals facilitate more precise forecasts the more arrivals have realized. As a result,
only the randomness of the arrivals contributes to the value of applying DDR, i.e. the
bookings-in-hand reduce the amount of demand that needs to be forecasted and the
assignment is based on more realistic data.

Note also that the initial fleet assignment is based on the expectations of the dynamic
pricing process. It is thus based on the same data as the pricing, which is usually not
the case in practice (see section 4.4 for more details). Just recently, new IT solutions
have been developed to help to make data available throughout different departments
responsible for the different planning steps and thus to allow to base planning on the
same data available at the time (Lufthansa Systems, 2010).

The availability and use of more accurate data in terms of the demand estimation
and the granularity is one of the advantages of applying DDR. Thus, both, forecasting
errors and a fleet assignment based on less precise data are expected to increase the
performance relative to dynamic pricing strategies without DDR. The same holds for
auto-correlated arrivals. In our simulations, intentionally, only the realized and thus
certain demand contributes to the value of DDR. Including forecasting errors allows to
arbitrarily influence results.

Many other scenarios than the ones described below were tested and analyzed. How-
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ever, we restrict our outline to relevant scenarios to gain insights into the potential
revenue improvement and the sensitivity to the parameters.

6.4.2 General Settings

In different scenarios various parameters are varied from a base-case setting. In each
scenario we analyze two flight legs that qualify for an equipment swap. The smaller
available capacity is 10 in every scenario. The larger capacity varies between 120% and
180% of the smaller capacity. The flights are intentionally set up equally in terms of
the arrival process, willingness-to-pay, possible pricing actions, and capacity costs. For
a change of equipment to be profitable, the valued demand for flights in one set has to
offset the capacity costs for that set and the valued demand for flights in the other set
that exceeds the smaller capacity. Thus, to not arbitrarily influence the outcome of the
simulations, the inputs influencing the offset are kept equal for both sets. We do not
include assignment costs assuming two legs of approximately the same cost structure.

The set of allowable prices is P = {f0, 260, 255, 250, . . . , 15, 10} for each flight. The
lowest price action is 10, the largest price allowed below the nullprice f0 is 260. The
set contains all prices in between with an increment of 5. The willingness-to-pay is set
up according to (6.16). The base price is βt = 40 for all time periods t. The influence
of the price sensitivity of the customers arriving is analyzed by varying εt in different
scenarios between 1.2 and 3.0. In each scenario, the shape parameter is held constant
over time. The purchase probability of an arriving customer is independent of the
probability for an arrival.

The intensity function of the arrival process is a scaled triangular function with an
added constant in each scenario. The abscissae of the feet are given as a percentage of
the length of the booking horizon. The feet are located outside the booking period at
−0.3% and 2.9%. The peak is varied in the scenarios from 50% to 100% of the booking
period. The constant added to the triangular function is 0.45. The peak probability
for an arrival is 0.7. The process is thinned with equal probabilities of 0.5 into arrivals
for each flight. The arrival intensity for the base case with a peak at 50% is plotted
against the time to departure (TTD) in Figure 6.7.

The latest time for an assignment (LAT) is also given as a percentage of the booking
time. The times tested span between full flexibility, when an assignment must be made
just before departure, and a finalization of the assignment midway through the booking
period.

The length of the booking period is determined by the demand factor, i.e. the expected
overall demand relative to the accumulated capacities. The demand factors considered
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Figure 6.7: Arrival and thinning probabilities in the base-case scenario.

range from 0.7 to 1.3. Given the capacities and the arrival process described above,
the horizon is chosen such that the demand factor results as specified.

Table 6.2 provides an overview of the analyzed scenarios. The base-case parameters are
highlighted. Note that the coefficient of variation of the arrivals is virtually constant
close to 24% when parameters are varied except for the demand factor. Hence, the
variation is rather low in regards to values of 20% to 50% in practice for the airline
industry (Berge and Hopperstad, 1993, Swan, 2002). In case of the demand factor,
the coefficient of variation decreases with higher values because of the longer booking
period.

Table 6.2: Scenario Overview

Demand Factor Capacity Difference Arrivals Peak Price Sensitivity (ε) LAT

0.7 20% 50% 1.2 50%
0.8 30% 60% 1.5 60%
0.9 40% 70% 1.8 70%
1.0 50% 80% 2.1 80%
1.1 60% 90% 2.4 90%
1.2 70% 100% 2.7 100%
1.3 80% 3.0

In an additional scenario with a slightly different setup, the influence of the variation of
the arrivals is analyzed. To hold all other parameters constant, especially the demand
factor, in this special scenario, the horizon is given and varied between 30 and 100
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time periods. The capacities are determined by the length of the booking period, the
specified difference of the capacities, and the demand factor. The resulting coefficient
of variation for each flight ranges from 22% to 37% which is a realistic range in practice.

6.4.3 Simulation Results

We first present the results of the base-case scenario before varying individual parame-
ters and analyzing their influence on the performance of the various strategies. The base
case is set up with a difference of the two available capacities of 20% (C1 = 10, C2 = 12).
We assume an overall demand factor of 1.0. Hence, the number of expected arrivals is
in between the two capacities for both flights alike. Retaining a conservative setting,
the fights show a low variation of the demand compared to flights observed in practice.
The coefficient of variation is 24% for both flights. The peak of the probability for
an arrival is located half-way through the booking period. Changes to the assignment
are allowed up to 90% of the period. Approximately 90% of the total demand then
arrives before the LAT. The price sensitivity is constant with εt = 1.5. Hence, we
assume a reasonably price-sensitive market. The average results are summarized in
Table 6.3. The exact model adds an extra revenue of almost 2%. The performance of
either heuristic is quite reasonable at around 1.4-1.5%. Even without DDR, the load
factor is high at 88%. Applying any DDR strategy increases the load factor. Note that
Heuristic 2 achieves the highest load factor, however, also the lowest revenue increase.
The exact model yields the highest increase in revenues with a roughly equal load fac-
tor as Heuristic 1 suggesting that average ticket prices are the highest when applying
the exact model.

Table 6.3: Revenue increase and load factor results.

No DDR Heuristic 1 Heuristic 2 Exact

Average Revenue Increase (%) 1.53% 1.42% 1.87%
Average Load Factor (%) 87.5% 89.4% 91.6% 90.2%

Figure 6.8 depicts the 95% confidence intervals of the revenue gains. Because the
intervals of the two heuristics overlap, we applied one-sided Welch’s t tests to verify
that the differences of the results are statistical significant. Note that the high number
of simulations runs results in tight confidence intervals within a range of about 0.1%
in length.

For each scenario, confidence intervals were plotted and statistical tests were run. All
results presented below are statistically significant unless they are very close such that
results can be regarded as equally good anyhow. To facilitate a compact presentation
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Figure 6.8: 95% confidence intervals of the relative revenue increases in the base-case
scenario. The results from applying the DDR strategies are plotted relative to the
pricing policy without DDR.

of the results, we omit details on confidence intervals and tests in the remainder.

To gain an understanding of the prices set applying the different strategies, in Fig-
ure 6.9, Figure 6.10, and Figure 6.11, the strategies are plotted over time for a fixed
state with 9 received bookings for each flight. For a comparison, the strategies without
DDR are also plotted with the larger and the smaller plane assigned to the respective
flight. The prices set applying the exact model stay between the prices set not applying
DDR until the very end of the booking process (Figure 6.9). Contrarily, the prices set
by Heuristic 1 always coincide with the prices assigning the larger or smaller capacity
because the prices are determined by the single-leg processes. This is clearly illus-
trated in Figure 6.10. Just before the assignment needs to be finalized, the capacities
are swapped and the pricing curve switches to the alternative single-leg prices without
DDR. Figure 6.11 depicts the prices determined by Heuristic 2. Note that, in contrast
to the other strategies, the prices are not bound by the prices of the simple single-leg
processes. Figure 6.11(a) shows that, 7 periods to departure, the price for flight M0
drops below the single-leg price with the larger plane assigned.

For one exemplary realization, Figure 6.12 depicts the arrivals with their willingness-to-
pay and the development of the different pricing strategies in respect to the bookings.
The graph highlights the difference of the prices set. Even though the reservation
prices of the arrivals in the mid range of the booking period are fairly high, all DDR
strategies greatly outperform the traditional pricing strategy without DDR. The final
assignment is switched from the initial assignment because of the strong demand for
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Figure 6.9: Example of a pricing strategy applying the dynamic programming model.
The prices are plotted over time for a fixed state with 9 bookings in hand on each
flight. Additionally, the single-leg policies are plotted with the larger and smaller
capacity assigned to the respective leg.
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Figure 6.10: Example of a pricing strategy applying Heuristic 1. The prices are plotted
over time for a fixed state with 9 bookings in hand on each flight. Additionally, the
single-leg policies are plotted with the larger and smaller capacity assigned to the
respective leg.

flight N0. The customer arriving 10 periods to departure purchases the ticket offered
at the second highest price set by the DDR strategies. With the initial assignment
only one seat is left at the time of the arrival and the price set applying the traditional
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Figure 6.11: Example of a pricing strategy applying Heuristic 2. The prices are plotted
over time for a fixed state with 9 bookings in hand on each flight. Additionally, the
single-leg policies are plotted with the larger and smaller capacity assigned to the
respective leg.

model is too high. The customer is lost.

Demand Factor

To analyze the influence of the magnitude of the demand in relation to the available
capacities, the demand factor is varied between 0.7 and 1.3. The demand factor is the
total demand for both flights relative to the accumulated capacities. Figure 6.13 depicts
the mean relative increase in revenue by applying DDR strategies. A perspicuous
result is that the value of applying DDR is the highest for a reasonably good match
of demand and capacity. As demand and capacity depart from each other the revenue
gain decreases. The revenue gain drops faster for lower demand factors than for higher
values. In case of strong demand, when capacities are scarce, assigning the larger
capacity to the flight with the higher value of the demand yields the best results. On
the opposite, when even the smaller capacity is ample to satisfy demand for either leg,
the most cost efficient assignment is preferable.1 Then, only in very few instances,
the demand deviates strongly enough from the expectation such that switching an
assignment is profitable and the overall average results converge to those achieved
without a DDR strategy.

1In the presented setting, in case of a very high or low demand factor, the final assignment does
not impact results as the flights are set up equally in terms of assignment costs and demand.
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Figure 6.12: Example of a realization of the booking process. For each arrival the
respective willingness-to-pay is plotted. The different pricing strategies are plotted for
the received bookings at the time.
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Figure 6.13: Mean relative revenue increases for varying demand factors. The results
from applying the DDR strategies are plotted relative to the pricing policy without
DDR.
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The difference of the performance of the various strategies increase with the demand
factor. While the exact model outperforms both heuristics for settings with a strong
demand, the heuristics show a sound performance for a demand factor below one.
Also, the heuristics perform approximately equally in situations with low demand and
approach the results of the exact model. In case of a stronger demand, Heuristic
1 performs substantially better than Heuristic 2. Note that capacities are typically
abundant in relation to demand in the airline industry (Wang and Meng, 2008). How-
ever, even in case of the lowest simulated demand factor and the pessimistic simulation
setting, applying any DDR strategy yields a substantial gain in revenue of around
0.85% compared to applying simple single-leg dynamic pricing.

Capacity Difference

An increased difference of the two capacities results in a larger revenue gain by ap-
plying DDR strategies. The relative increase for various capacity settings is plotted in
Figure 6.14. The result is quite intuitive as the expectation of the number of arrivals
increases as well because the demand factor is fixed at one. Hence, the smaller capacity
is less sufficient to satisfy the expected demand than in settings with a smaller differ-
ence of the capacities. Swapping capacities facilitates to assign the larger aircraft to
the flight with the stronger demand yielding higher revenues than a fixed assignment.
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Figure 6.14: Mean relative revenue increases for varying capacities. The results from
applying the DDR strategies are plotted relative to the pricing policy without DDR.

The exact model outperforms both heuristics tested and the improvement increases
with the capacity difference. Although Heuristic 2 achieves better results in most
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settings than Heuristic 1, the difference is not steady and cannot be regarded as sys-
tematic.

Arrivals Peak

Varying the peak of the arrival intensity function does not have a large influence on the
performance of any DDR strategy as illustrated in Figure 6.15. Note that the overall
portion of demand expected to arrive before the final assignment (LAT) is roughly
constant at 88% and the value of the demand arriving before the final assignment is
hardly affected by shifting the peak. The exact model performs best and, except for one
outliner, Heuristic 1 outperforms Heuristic 2. The results for the different strategies are
approximately aligned to each other indicating that the peak of the arrival probability
does not have any considerable influence on the revenue gain.
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Figure 6.15: Mean relative revenue increases for varying arrival probabilities. The
results from applying the DDR strategies are plotted relative to the pricing policy
without DDR. The location of the peak of the intensity function is plotted on the
abscissa as a percentage of the booking period.

Price Sensitivity

The influence of the price sensitivity of the demand was analyzed by varying the shape
parameter εt from 1.2 to 3.0. According to Belobaba (2006), the former is typical
for leisure customers while the later reflects the less sensitive business demand. Figure
6.16(a) shows how willingness-to-pay functions change with different shape parameters.
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Note that the shape parameter is assumed constant over the booking period in each
scenario. The base price is βt = 40 in every scenario.
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Figure 6.16: Mean relative revenue increases for varying price sensitivities of the de-
mand. The results from applying the DDR strategies are plotted relative to the pricing
policy without DDR.

Figure 6.16(b) depicts the mean results in the different scenarios. The mean revenue
gain increases with the price sensitivity of the market. The increase peaks at over 2.5%
for a shape parameter of εt = 1.2 showing the significant potential of applying DDR
in price-sensitive markets. In markets with a low sensitivity the gain diminishes. The
trend continues down to 0.25% in the scenario with εt = 3.0.

The advantage of applying the exact model in comparison to the heuristics is statisti-
cally significant for scenarios with price-sensitive demand and ranges up to 0.5 points.
In these scenarios, Heuristic 1 steadily performs slightly better than Heuristic 2. For
large values of the shape parameter in the range of 2.1 to 3.0, the results from the
different strategies almost coincide.

Latest Assignment Time

As Figure 6.17 illustrates, the simulation results verify the intuitive expectation that the
gain in revenue of applying DDR strategies increases the later during the booking period
the assignment needs to be finalized. Note that the percentage of demand expected
to arrive before the latest assignment time (LAT) is slightly below the specified LAT,
which is given as the percentage of the length of the booking period. Interestingly, even
when the assignment needs to be fixed half-way through the booking horizon, DDR
strategies still yield an increase of around 1%.
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Figure 6.17: Mean relative revenue increases for varying LAT. The results from apply-
ing the DDR strategies are plotted relative to the pricing policy without DDR.

The exact model shows the best performance in all settings. The gap between the
heuristics and the exact model increases as the LAT approaches the departure time.
Heuristic 1 performs continuously just above the results by applying Heuristic 2.

Arrivals Variation

In a last scenario, to test the influence of the variation of the demand, a slightly
different setup is used. To keep the important parameters constant, especially the
demand factor, the length of the booking period and the capacities are varied. Also,
the probability for an arrival in each period is set constantly at λt = 0.4. In Figure 6.18,
the revenue increase is plotted against the coefficient of variation (CV) ranging from
20% to 37%. These values are typical for the airline industry.

As expected, a higher variation of the arrivals results in a higher value of applying DDR.
The initial assignment is based purely on the expected number of arrivals. Hence, with
a higher variation, in more instances, the actual realization differs from the expecta-
tion and re-assigning the capacities might yield an increase in revenues. Berge and
Hopperstad (1993) and Swan (2002) state that coefficients of variation of up to 50%
are typical for the airline industry. Hence, even for a medium variation, the gains are
substantial and range up to 2.5%. Both heuristics perform comparably slightly below
the exact model.
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Figure 6.18: Mean relative revenue increases for varying variations of the number of
arrivals. The results from applying the DDR strategies are plotted relative to the
pricing policy without DDR. The coefficient of variation is plotted on the abscissa.

6.4.4 Summarized Results

Overall, DDR strategies yield a high revenue potential. The simulation setting is
conservative as auto-correlation of the arrivals and forecasting errors are excluded.
Also, the initial fleet assignment is based on the same data as the dynamic pricing
process. In practice, the two planning problems are usually separated and solved
based on different data. The fleet assignment is solved before the booking process
starts when less precise and less granular data is available. Still, the base case shows
an increase in revenue of almost 2% when applying the exact model and around 1.5%
when using a heuristic strategy. In light of the transaction volumes typical for airlines,
applying the exact model might be worthwhile. In favor of the heuristics is their easy
implementation with efficient solvers being widely available. Less space is required to
calculate and store the strategies, which is especially important when considering a
larger number of flights. Also, other aspects such as robust planning or an improved
objective function might be incorporated more easily than in the exact model.

The highest improvement of over 3% shows the scenario with a large difference of the
two capacities. Although a difference of 80% is not realistic in an airline setting, other
industries, e.g. train or bus transport, might exhibit alternative capacities of such
magnitude.

The scenarios with a highly price-sensitive demand show strong improvements while
the gain of DDR strategies diminishes when demand is not price-sensitive. Dynamic
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pricing in the airline industry is today usually applied in low-price markets. Hence,
the demand is highly price-sensitive and DDR yields substantial additional revenue.
Demand in other transport industries is usually also quite price-sensitive (e.g. Cole,
2008).

Apart from the scenarios with a highly price-sensitive demand or a large difference of
the capacities, the scenarios with a high variation of the arrivals and with a required
assignment late during the booking process show a high potential by applying DDR.
DDR is worthwhile even when the time of the latest assignment is highly restricted
and assignments must be finalized after about half of the demand has realized.

For a low demand factor, the heuristics yield revenue gains comparable to the exact
model. In the airline industry, demand below the available capacity is typical (Wang
and Meng, 2008). Hence, airlines could achieve good results applying one of the heuris-
tics developed. The performance decreases with a larger gap of the expected arrivals
in comparison to the available capacities.

In many settings, Heuristic 1 and Heuristic 2 perform approximately equally. Results
by applying Heuristic 1 are more stable and in many cases slightly better than the
results by Heuristic 2. Hence, Heuristic 1 is preferable based on the simulation results
presented. However, the differences are not steadily considerable and substantial. Be-
fore a final recommendation on the heuristics is possible, more tests preferably based
on real-world data need to be performed. Depending on the RM processes and systems
in place, Heuristic 2 might also be easier to implement into current processes. More
advanced systems can incorporate network effects, i.e. primarily mutually dependent
demand for legs in a flight network. Often, the network problem is approximated by
a decomposition into single-resource problems that are solved separately. Then, the
opportunity costs for each leg need to incorporate network effects and are often approx-
imated through (deterministic) linear programs that are very similar to the one used
by Heuristic 2. These might be easily adapted to consider possible future equipment
swaps. For a detailed introduction on network RM problems we refer the reader to
Talluri and Van Ryzin (2004b).



7

Conclusion

We developed two models that allow to simultaneously optimize dynamic prices and
the allocation of two scarce interchangeable capacities. The first model is limited to
two flights or products while the second allows an arbitrary number of flights. Different
demand and fare structures can be accounted for and additional costs that incur when
capacities are swapped can be specified. The two models overcome the limitations of
currently available methods that either assume an equal cost structure of the products
or do not anticipate possible future changes when optimizing booking controls. Some
models further assume equal fare and demand structures. The extended model can
be applied to two sequences of flights such that other flights in the network are not
affected by an equipment change.

We further presented two heuristics that might be used to find near optimal policies.
Especially when the number of flights considered for a swap is large, the dynamic
programming models might suffer from the curse of dimensionality. In that case the
heuristics become valuable to reduce the computational effort. Additionally, the heuris-
tics might be easier to implement into current systems.

We presented simulations to show the benefits of systematic equipment changes in
general and to analyze the influences of different parameters found in practice. The
policies determined by applying the two heuristics showed an acceptable performance
with results within 1% below the revenue when applying the optimal policies. The
dynamic programming models might be applied to fully exploit the benefits of Demand-
Driven Re-Fleeting.

The airline industry is the origin of Revenue Management and consistently most pub-
lications concentrate on an airline setting. We followed this custom and also focused
on the passenger airline case. However, Demand-Driven Re-Fleeting might be ben-
eficial in other industries as well. Other transport segments also face overall limited
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capacities that are interchangeable between different products offered at a time. Bus or
train companies might change assigned capacities on a short-term basis. Cargo airlines
might apply the models to decide whether to fly a dedicated carrier or to use cargo
space on passenger flights.

7.1 Summary

We introduced the concept and basic economic theory of price discrimination in general.
We then briefly discussed the theory of Markov Decision Processes limited to the scope
needed for the models in the subsequent chapters.

The history and evolution of Revenue Management and comprehensive requirements
were outlined, before the general process was described and the individual steps were
discussed in more detail. Briefly, the traditional concepts in Revenue Management, i.e.
static and dynamic capacity control models, and structural results were presented.

A single-leg dynamic pricing model was developed and structures were shown. For a
fixed point in time, the value function was shown to be non-decreasing and concave in
the capacity remaining for sale. Using these results we further proved the monotonicity
of the pricing policy. The optimal price decreases the more capacity is available. We
confirmed the intuitive result that the total expected revenue increases with the time
left for sales given a fixed capacity. The opportunity costs of selling one seat also
increase with the time left. The opportunity costs arise from future sales possibilities
that diminish close to departure. They provide a lower bound of the optimal price.

In general the pricing policy is not monotone in time which we showed by a counter-
example. We provided a sufficient condition dependent on the purchase probabilities
for optimal prices that are monotone in time. In applications like the fashion industry,
where customers are willing to pay a premium to acquire the product early during the
sales period, e.g. for exclusiveness, the condition is valid. Contrarily, in the airline
industry, price-sensitive clients book further in advance and travelers accept to pay a
premium price for bookings close to departure.

We introduced the airline planning process and explained the potential benefits of
Demand-Driven Re-Fleeting. The general concept and existing frameworks were out-
lined and shortcomings were discussed. During the fleet assignment the allocation of
available aircraft is optimized applying a mixed integer program. We presented an
algorithm that finds opportunities for an equipment swap that does affect the rest of
the network given a fleeted schedule.

To facilitate the simultaneous optimization of prices and the allocation of capacities,
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we developed a two-leg dynamic programming model. During the fleet assignment, two
plane types are assigned to the legs and the overall capacity is fixed. Depending on the
realization of the bookings, the decision is made which of the two aircraft to operate
on which leg. We showed that the problem decomposes into the single-leg processes
when the assignment has been finalized or the decision to allocate the capacities is
fixed in advance. Further, the optimization of the prices is separable in case the
decision is postponed. We proved that postponing the decision is optimal when sales
on both flights do not exceed the smaller capacity. Additionally, we provided conditions
under which certain assignment options can be excluded from the maximization when
calculating an optimal policy. The intuitive results of an increasing value with more
capacity remaining and with the time to departure were confirmed. The flexibility
to change assignments has a positive value or might be worthless depending on the
updated demand forecasts and the bookings-in-hand.

At the latest time, when the allocation has to be decided, e.g. for compliance with
union agreements, the optimal assignment decision follows a switching curve. The
result facilitates a more efficient calculation of an optimal policy. We specified concave
domains of the value function where the optimal prices are monotone in the capacity
left for sale.

All of the results were then used to develop an efficient algorithm that determines an
optimal policy. The algorithm was presented in pseudo-code. In order to broaden
the scope of possible applications, the model was extended to an arbitrary number
of flights. The flights need to be separable into two disjunct sets such that all legs
in one set share an assigned capacity. While applications of the two-leg model are
limited to flights to destinations where a swap can be reversed, e.g. hub airports, the
extended model can be applied to any two sequences of flights. Most structures of the
two-leg model convey to the extended model. These were presented and differences
were discussed.

Because the presented dynamic programming models might suffer from the curse of
dimensionality and heuristics enjoy a wide acceptance in the industry, we additionally
developed two heuristics. The first heuristic that follows the ideas of Berge and Hop-
perstad (1993) periodically re-optimizes the fleet assignment throughout the booking
horizon. Product prices are optimized without considering possible future swaps of air-
craft. The second heuristic builds upon a limited lookahead policy and does anticipate
changes of the assigned capacities. A linear program relaxing the integrality of the
capacities approximates the opportunity costs of selling one seat. The approximations
are then used to optimize the prices.

To assess the overall benefits of Demand-Driven Re-Fleeting and to compare the per-
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formance of the various policies derived through the exact models and the heuristics,
we simulated a booking process using different scenarios. We followed a conservative
approach and did not assume improving forecasts in time. Auto-correlation of arrivals,
dependent purchase probabilities, and forecasting errors might further improve the
benefits. We found that applying Demand-Driven Re-Fleeting yields revenue increases
of up to 3%. The influence of various parameters was analyzed. In our simulations,
benefits peaked for a demand factor such that the assigned capacities slightly exceeded
the aggregated demand. A larger gap of the two capacities, a required final assignment
close to departure, and a large variation of the arrivals improved revenue gains. The
benefits of accounting for possible future changes when optimizing prices increased
with the price-sensitivity of the demand.

7.2 Future Research

Before applying the suggested models in practice, an ex-post analysis using real-world
data should substantiate the results of our simulations based on an artificial data set.
We excluded forecasting errors and auto-correlated arrivals. Further, reservation prices
were assumed to be mutually independent. Fleet assignment optimization and Revenue
Management both heavily rely on forecasts with a good accuracy. We expect benefits of
applying Demand-Driven Re-Fleeting to increase when forecasts improve substantially
close to departure. Other influences can only be assessed meaningfully in real-world
setups that we lacked the data to simulate. For example, the flights were set up equally
to demonstrate benefits without influencing results.

Deciding on two alternative capacity assignments should usually provide sufficient flex-
ibility in practice. However, the scope might be extended to a pool of capacities that
are subsequently assigned to products with an equal assignment.

Cancellations and no-shows necessitate airlines to consider overbooking in practice.
Hence, future research might extend the provided models to include overbooking and
cancellations.

If demand for different products is not mutually independent, network effects need
to be considered. Often, network problems are decomposed into separate single-leg
problems. Then, opportunity costs incurred throughout the network are approximated
by a suitable heuristic. The linear program used by Heuristic 2 is similar to a program
commonly used to approximate network opportunity costs. Hence, Heuristic 2 might
be easily extended to a network setting.
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Additional Proofs

A.1 Proof of Theorem 6.2.1

Proof.

(i) We prove by induction on t. Since V0 ≡ 0 and V i
0 ≡ 0 for all i ∈ M ∪ N , the

assertion holds for t = 0. Therefore let Vt(s1, . . . , sm+n, 0) = ∑
i∈M∪N V

i
t (si) hold

for some t = T − 1, T − 2, . . . , 0. Then, in s = (s1, . . . , sm+n, 0) ∈ St+1, since
sm+n+1 = 0, only actions a ∈ At+1(s) with am+n+1 = (0, 0)′ and, additionally,
ai = f i0 for i = M ∪N with si = 0.We then get

Vt+1(s) = max
a∈At+1(s)


∑

i∈M∪N
si 6=0

λt+1p
i
t+1q

i
t+1(ai)[ai + Vt(Y i(s, a))]

+

1−
∑

i∈M∪N
si 6=0

λt+1p
i
t+1q

i
t+1(ai)

Vt(Y (s, a))


= max

a∈At+1(s)
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i∈M∪N
si 6=0

λt+1p
i
t+1q

i
t+1(ai)

ai +
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j∈M∪N
V j
t (sj − δj(i))



+

1−
∑

i∈M∪N
si 6=0

λt+1p
i
t+1q

i
t+1(ai)


 ∑
j∈M∪N

V j
t (sj)
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= max
a∈At+1(s)


∑

i∈M∪N
si 6=0

λt+1p
i
t+1q

i
t+1(ai)

ai +
∑

j∈M∪N
V j
t (sj − δj(i))−

∑
j∈M∪N

V j
t (sj)︸ ︷︷ ︸

=0 for i 6=j



+
∑

j∈M∪N
V j
t (sj)


= max

a∈At+1(s)


∑

i∈M∪N
si 6=0

λt+1p
i
t+1q

i
t+1(ai)[ai −∆siV

i
t (si)] +

∑
i∈M∪N

V i
t (si)


=

∑
i∈M∪N
si 6=0

max
ai∈Ait+1(s)

{
λt+1p

i
t+1q

i
t+1(ai)[ai −∆siV

i
t (si)] + V i

t (si)
}

=
∑

i∈M∪N
V i
t+1(si)

The proof for (ii) follows straightforward applying (i).

(iii) For t = T − 1, T − 2, . . . , T̄ , let s = (s1, . . . , sm+n, 1) ∈ St+1. Then,

Lt+1Vt(s|(0, 0)′)

= max
a∈At+1(s|(0,0)′)


∑

i∈M∪N
si 6=0

λt+1p
i
t+1q

i
t+1(ai)[ai −∆siVt(s)]

+ Vt(s)

=
∑

i∈M∪N
si 6=0

max
ai∈Ait+1(s)

{
λt+1p

i
t+1q

i
t+1(ai)[ai −∆siVt(s)]

}
+ Vt(s) ,

which completes the proof.

A.2 Proof of Theorem 6.2.2

Proof.

(i) The proof follows by induction on t. Since V0 ≡ 0, the assertion holds for t = 0.
Therefore, let (i) hold for some t = T − 1, T − 2, . . . , 0.
Fix s, s′ = s− e(k) ∈ St+1 with sk > 0 for some k ∈M ∪N . Let a∗ ∈ At+1(s′) be
optimal in s′. Then a∗ ∈ At+1(s), too. We get

∆skVt+1(s) ≥
∑

i∈M∪N
λt+1p

i
t+1q

i
t+1(a∗i )

[
Vt(Y i(s, a∗))− Vt(Y i(s′, a∗))

]
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+
[
1−

∑
i∈M∪N

λt+1p
i
t+1q

i
t+1(a∗i )

]
[Vt(Y (s, a∗))− Vt(Y (s′, a∗))]

=
∑

i∈M∪N
λt+1p

i
t+1q

i
t+1(a∗i )

[
∆skVt(Y i(s, a∗))

]

+
[
1−

∑
i∈M∪N

λt+1p
i
t+1q

i
t+1(a∗i )

]
[∆skVt(Y (s, a∗))]

≥ 0 ,

which completes the proof.

(ii) To prove (ii), let t = T, T − 1, . . . , T̄ . Fix s = (s1, . . . , sm+n, 1), s′ = s − e(m +
n + 1) ∈ St. Further, suppose a∗∗ ∈ At(s′) is optimal in s′. Note that a∗∗m+n+1 =
(0, 0)′. Suppose k1

d = 0, then by using a∗ = (a∗∗1 , . . . , a∗∗m+n, (1, 0)′) ∈ At(s), and,
additionally, exploiting the monotonicity of Vt−1 after an assignment, we finally
get

Vt(s)− Vt(s′)

≥
∑

i∈M∪N
λtp

i
tq
i
t(a∗∗i )

[
Vt−1(Y i(s, a∗))− Vt−1(Y i(s′, a∗∗))

]

+
[
1−

∑
i∈M∪N

λtp
i
tq
i
t(a∗∗i )

] [
Vt−1(Y (s, a∗))− Vt−1(Y (s′, a∗∗))

]
≥ 0 ,

which verifies (ii) for k1
d = 0. If k1

d > 0, then, by assumption, k2
d = 0 and a similar

argument works using a∗ = (a∗∗1 , . . . , a∗∗m+n, (0, 1)′) ∈ At(s).

(iii) We split the proof into two parts:

a. First, fix s ∈ St ∩ St+1 and suppose sm+n+1 = 0. Using Theorem 4.6.3 and
6.2.2.

Vt+1(s)− Vt(s)

=
∑

i∈M∪N
V i
t+1(si)−

∑
j∈M∪N

V j
t (sj)

=
∑

i∈M∪N
∆tV

i
t+1(si)

≥ 0 .

b. Now, consider s ∈ St ∩ St+1 with sm+n+1 = 1. Note that this implies t =
T − 1, T − 2, . . . , T̄ . Then a = (f 1

0 , . . . , f
m+n
0 , (0, 0)′) ∈ At+1(s). We get

Vt+1(s)− Vt(s)

≥ Qt+1Vt(s, a)− Vt(s)

= 0 .
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A.3 Proof of Lemma 6.2.3

Proof. Let t = T, . . . , T̄ and fix s ∈ St with sm+n+1 = 1. Then there exists an action
a ∈ At(s) with am+n+1 = (1, 0)′ and

Vt(s) ≥ LtVt−1(s|(1, 0)′)

= Vt(s1 + d, . . . , sm + d, sm+1, . . . , sm+n, 0)− k1
d .

(ii) can be shown analogously.

A.4 Proof of Theorem 6.2.4

Proof.

(i) Let t = T, . . . , T̄ + 1. Fix s ∈ St with si > 0 for all i ∈ M and sm+n+1 = 1.
Assume a∗ = (a∗1, . . . , a∗m+n) ∈ At(s|(1, 0)′) maximizes LtVt−1(s|(1, 0)′). Note that
(a∗1, . . . , a∗m+n, (0, 0)′) ∈ At(s) is also admissible in s. Using Lemma 6.2.3, we then
get

LtVt−1(s|(0, 0)′)− LtVt−1(s|(1, 0)′)

≥
∑

i∈M∪N
λtp

i
tq
i
t(a∗i )

[
Vt−1(Y i(s|(0, 0)′))− Vt−1(Y i(s|(1, 0)′)

]

+
[
1−

∑
i∈M∪N

λtp
i
tq
i
t(a∗i )

] [
Vt−1(Y (s|(0, 0)′))− Vt−1(Y (s|(1, 0)′))

]
+k1

d

≥
∑

i∈M∪N
λtp

i
tq
i
t(a∗i )

[
Vt−1(Y i(s|(1, 0)′))− k1

d − Vt−1(Y i(s|(1, 0)′))
]

+
[
1−

∑
i∈M∪N

λtp
i
tq
i
t(a∗i )

] [
Vt−1(Y (s|(1, 0)′))− k1

d − Vt−1(Y (s|(1, 0)′))
]

+k1
d

= 0 .

In states s′ ∈ St with sm+n+1 = 0 only actions a ∈ At(s′) are feasible with the
assignment action am+n+1 = (0, 0)′ and the result is trivial.

(ii) can be shown analogously and (iii) follows straightforward from (i) and (ii).

(iv) In s = (0, . . . , 0, 1) ∈ ST̄ , assume a∗ := (a∗1, . . . , a∗m+n, (1, 0)′) ∈ AT̄ (s) to be
optimal in s. Then, using Theorem 6.2.1 (ii) and Theorem 6.2.2 (iii),

LT̄+1VT̄ (s|(1, 0)′) = VT̄+1(Y (s, a∗)− k1
d
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≥ VT̄ (Y (s, a∗)− k1
d

= VT̄ (s)

= LT̄+1VT̄ (s|(0, 0)′) .

Hence, applying (1, 0)′ results in a value at least as high as when applying (0, 0)′

in s at time t = T̄ + 1. Repeating the same argument with T̄ + 1 in place of T̄ ,
the result follows by induction.

A similar proof works if (a∗1, . . . , a∗m+n, (0, 1)′) ∈ AT̄ (s) is optimal in s at time
t = T̄ .

A.5 Proof of Theorem 6.2.6

Proof. Fix s ∈ St with si > 0 for all i ∈ M ∪N and sm+n+1 = 1. Then s ∈ St+1, too.
Let a ∈ Ait+1(s)\{f i0} such that a ≤ ∆siVt(s). Then

λt+1p
i
t+1q

i
t+1(ai)(a)[a−∆siVt(s)]

≤ 0

= λt+1p
i
t+1q

i
t+1(f i0)[f i0 −∆siVt(s)] ,

which implies that a is not the largest maximizer ψit+1(s). Thus, ψit+1(s) ≥ min{∆siVt(s), f i0}.

On the other hand, if a > ∆siVt(s) holds for all a ∈ Ait+1(s), the result is trivial.

A.6 Proof of Theorem 6.2.7

Proof. The proof follows straightforward from Theorem 6.2.1 and Theorem 4.6.2.

A.7 Proof of Theorem 6.2.10

Proof. The proof follows straightforward from Lemma 4.6.1.
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Additional Algorithms

B.1 Two-leg Dynamic Pricing

Algorithm B.1.1 Algorithm to determine an optimal policy for 2 legs subject to swap
Input: Sets of feasible actions Ait(s), i = 1, 2, t ∈ {T, . . . , 1}, s ∈ St,

single-leg policies and values a∗i,t, V i
t , i = 1, 2, t ∈ {T, . . . , 1},

arrival probabilities (λT , λT−1, . . . , λ1),
thinning probabilities pit, i = 1, 2, t ∈ {T, . . . , 1},
purchase probabilities (qT , qT−1, . . . , q1),
total capacities C1, C2,
costs of swap k1

d, k
2
d,

length of booking horizon T ,
latest time for final fleet assignment T̄

Output: Optimal policy (a∗T , a∗T−1, . . . , a
∗
1),

Expected values (VT , VT−1, . . . , V0)
1. d = C2 − C1

2. t = 0
3. (∗ Use single-leg processes if s3 = 0 (Theorem 6.1.1) ∗)
4. while t ≤ T

5. s1 = 0
6. while s1 ≤ C2

7. s2 = 0
8. while s2 ≤ C1

9. a∗t (s1, s2, 0) = (a∗1,t(s1), a∗2,t(s2), (0, 0)′)
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Algorithm B.1.1 (continued)
10. Vt(s1, s2, 0) = V 1

t (s1) + V 2
t (s2)

11. s2 = s2 + 1
12. s1 = s1 + 1
13. s1 = 0
14. while s1 ≤ C1

15. s2 = C1 + 1
16. while s2 ≤ C2

17. a∗t (s1, s2, 0) = (a∗1,t(s1), a∗2,t(s2), (0, 0)′)
18. Vt(s1, s2, 0) = V 1

t (s1) + V 2
t (s2)

19. s2 = s2 + 1
20. s1 = s1 + 1
21. t = t+ 1
22. (∗ In t = T̄ an assignment is necessary when s3 = 1 ∗)
23. s1 = 0
24. while s1 ≤ C1

25. s2 = 0
26. while s2 ≤ C1

27. (∗ Monotonicity assignment actions (Theorem 6.1.5) ∗)
28. if s1 > 0 and a∗t (s1 − 1, s2, 1)(3) = (0, 1)′

29. a∗t (s1, s2, 1) = (a∗1,t(s1), a∗2,t(s2 + d), (0, 1)′)
30. Vt(s1, s2, 1) = V 1

t (s1) + V 2
t (s2 + d)− k2

d

31. else if s2 > 0 and a∗t (s1, s2 − 1, 1)(3) = (1, 0)′

32. a∗t (s1, s2, 1) = (a∗1,t(s1 + d), a∗2,t(s2), (1, 0)′)
33. Vt(s1, s2, 1) = V 1

t (s1 + d) + V 2
t (s2)− k1

d

34. else
35. if V 1

t (s1 + d) + V 2
t (s2)− k1

d ≥ V 1
t (s1) + V 2

t (s2 + d)− k2
d

36. a∗t (s1, s2, 1) = (a∗1,t(s1 + d), a∗2,t(s2), (1, 0)′)
37. Vt(s1, s2, 1) = V 1

t (s1 + d) + V 2
t (s2)− k1

d

38. else
39. a∗t (s1, s2, 1) = (a∗1,t(s1), a∗2,t(s2 + d), (0, 1)′)
40. Vt(s1, s2, 1) = V 1

t (s1) + V 2
t (s2 + d)− k2

d

41. s2 = s2 + 1
42. s1 = s1 + 1
43. t = T̄ + 1
44. while t ≤ T

45. (∗ In s = (0, 0, 1) an assignment is optimal (Theorem 6.1.4) ∗)
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Algorithm B.1.1 (continued)
46. if V 1

t (d)− k1
d ≥ V 2

t (d)− k2
d

47. a∗t (0, 0, 1) = (a∗1,t(d), f 2
0 , (1, 0)′)

48. Vt(0, 0, 1) = V 1
t (d)− k1

d

49. else
50. a∗t (0, 0, 1) = (f 1

0 , a
∗
2,t(d), (0, 1)′)

51. Vt(0, 0, 1) = V 2
t (d)− k2

d

52. (∗ (0, s2, 1) with s2 > 0 ∗)
53. s2 = 1
54. while s2 ≤ C1

55. ã2 = f 2
0

56. ṽ2 = 0
57. foreach f ∈ A2

t (0, s2, 1) \ {f 2
0}

58. (∗ Bounds on price (Theorem 6.1.9 and 6.1.12) ∗)
59. if on concave domain of Vt−1 in s2

60. u = a∗t (0, s2 − 1, 1)(2)
61. else
62. u = f 2

0

63. if f < ∆s2Vt−1(0, s2, 1) or f > u

64. continue
65. ṽc = λtp

2
t q

2
t (f)[f −∆s2Vt−1(0, s2, 1)]

66. if ṽc ≥ ṽ2

67. ṽ2 = ṽc

68. ã2 = f

69. if V 1
t (d) + V 2

t (s2)− k1
d ≥ ṽ2 + Vt−1(0, s2, 1)

70. a∗t (0, s2, 1) = (a∗1,t(d), a∗2,t(s2), (1, 0)′)
71. Vt(0, s2, 1) = V 1

t (d) + V 2
t (s2)− k1

d

72. else
73. a∗t (0, s2, 1) = (f 1

0 , ã
2, (0, 0)′)

74. Vt(0, s2, 1) = ṽ2 + Vt−1(0, s2, 1)
75. s2 = s2 + 1
76. (∗ (s1, 0, 1) with s1 > 0 ∗)
77. s1 = 1
78. while s1 ≤ C1

79. ã1 = f 1
0

80. ṽ1 = 0
81. foreach f ∈ A1

t (s1, 0, 1) \ {f 1
0}
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Algorithm B.1.1 (continued)
82. (∗ Bounds on price (Theorem 6.1.9 and 6.1.12) ∗)
83. if on concave domain of Vt−1 in s1

84. u = a∗t (s1 − 1, 0, 1)(1)
85. else
86. u = f 1

0

87. if f < ∆s1Vt−1(s1, 0, 1) or f > u

88. continue
89. ṽc = λtp

1
t q

1
t (f)[f −∆s1Vt−1(s1, 0, 1)]

90. if ṽc ≥ ṽ1

91. ṽ1 = ṽc

92. ã1 = f

93. if V 1
t (s1) + V 2

t (d)− k2
d ≥ ṽ1 + Vt−1(s1, 0, 1)

94. a∗t (s1, 0, 1) = (a∗1,t(s1), a∗2,t(d), (0, 1)′)
95. Vt(s1, 0, 1) = V 1

t (s1) + V 2
t (d)− k2

d

96. else
97. a∗t (s1, 0, 1) = (ã1, f 2

0 , (0, 0)′)
98. Vt(s1, 0, 1) = ṽ1 + Vt−1(s1, 0, 1)
99. s1 = s1 + 1
100. (∗ s1, s2 > 0 ∗)
101. s1 = 1
102. while s1 ≤ C1

103. s2 = 1
104. while s2 ≤ C1

105. ã1 = f 1
0

106. ṽ1 = 0
107. foreach f ∈ A1

t (s) \ {f 1
0}

108. (∗ Bounds on price (Theorem 6.1.9 and 6.1.12) ∗)
109. if on concave domain of Vt−1 in s1

110. u = a∗t (s1 − 1, s2, 1)(1)
111. else
112. u = f 1

0

113. if f < ∆s1Vt−1(s1, s2, 1) or f > u

114. continue
115. ṽc = λtp

1
t q

1
t (f)[f −∆s1Vt−1(s1, s2, 1)]

116. if ṽc ≥ ṽ1

117. ṽ1 = ṽc

118. ã1 = f
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Algorithm B.1.1 (continued)
119. ã2 = f 2

0

120. ṽ2 = 0
121. foreach f ∈ A2

t (s) \ {f 2
0}

122. (∗ Use lower and upper bound on price (Theorem 6.1.9
and 6.1.12) ∗)

123. if on concave domain of Vt−1 in s2

124. u = a∗t (s1, s2 − 1, 1)(2)
125. else
126. u = f 2

0

127. if f < ∆s2Vt−1(s1, s2, 1) or f > u

128. continue
129. ṽc = λtp

2
t q

2
t (f)[f −∆s2Vt−1(s1, s2, 1)]

130. if ṽc ≥ ṽ2

131. ṽ2 = ṽc

132. ã2 = f

133. a∗t (s1, s2, 1) = (ã1, ã2, (0, 0)′)
134. Vt(s1, s2, 1) = ṽ1 + ṽ2 + Vt−1(s1, s2, 1)
135. s2 = s2 + 1
136. s1 = s1 + 1
137. t = t+ 1
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B.2 Demand-Driven Re-Fleeting Heuristic

Algorithm B.2.1 Heuristic 2
Input: Flight sets M , N ,

sets of feasible actions Ait(s), i ∈M ∪N, t ∈ {T, . . . , 1}, s ∈ St,
single-leg policies and values a∗i,t, V i

t , i ∈M ∪N, t ∈ {T, . . . , 1},
arrival probabilities (λT , λT−1, . . . , λ1),
thinning probabilities pit, i ∈M ∪N, t ∈ {T, . . . , 1},
purchase probabilities (qT , qT−1, . . . , q1),
total capacities C1, C2,
length of booking horizon T ,
latest time for final fleet assignment T̄

Output: Bookings received and final fleet assignment
1. t = T

2. d = C2 − C1

3. foreach i ∈M ∪N
4. si = C1

5. sm+n+1 = 1
6. while t > T̄

7. Solve LP 6.3.2 for t′ = t− 1 and s = (s1, s2, . . . , sm+n+1)
8. foreach i ∈M
9. Set ∆siṼt−1 to shadow price of (6.11)
10. foreach i ∈ N
11. Set ∆siṼt−1 to shadow price of (6.12)
12. foreach i ∈M ∪N
13. ahi = arg maxai∈Ait(s){λtp

i
tq
i
t(ai)[ai −∆siṼt−1]}

14. Publish offer ah = (ah1 , ah2 , . . . , ahm+n)
15. if customer arrives for flight i ∈M ∪N and accepts offer ahi
16. si = si − 1
17. if si = 0
18. (∗ Initial capacity has been sold out for one flight ∗)
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Algorithm B.2.1 (continued)
19. t = t− 1
20. break
21. t = t− 1
22. if ∑i∈M V i

t (si+d)+∑i∈N V
i
t (si)−k1

d ≥
∑
i∈M V i

t (si)+∑i∈N V
i
t (si+

d)− k2
d

23. foreach i ∈M
24. si = si + d

25. else
26. foreach i ∈ N
27. si = si + d

28. sm+n+1 = 0
29. Continue with single-leg processes (Algorithm 4.6.1)
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