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Abstract – In this paper, we address the problem of
processing imprecisely known probability density func-
tions by means of Bayesian estimation. The imprecise
knowledge about probability density functions is given
as stochastic uncertainty about their parameters. The
proposed processing of this special density in a Bayesian
estimator is accomplished by reinterpretation of the fil-
ter and prediction equations. Here, the parameters are
treated as a higher order state, which can be processed
by Bayesian estimation techniques. For state estima-
tion, this avoids the need to select specific values for
unknown parameters and, thus, allows the processing of
all potential parameters at once. The proposed approach
further allows the use of imprecisely known model equa-
tions for measurement and state prediction by the same
principle.

Keywords: Bayesian state estimation, Hierarchical
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1 Introduction
In many technical applications, knowledge about the
internal, not directly observable, state of a physical sys-
tem is required. For these problems, the Bayesian es-
timator is a possible approach. Typical examples for
Bayesian state estimation include localization of vehi-
cles, tracking of aircrafts, or speech recognition.

Common approaches to the Bayesian estimation
problem are the Kalman Filter and extensions to it, like
the Extended Kalman Filter or the Unscented Kalman
Filter [1], in which the state estimate is given as a Gaus-
sian density. Another important approach are particle
filters [2], where the state estimate is given as a sam-
ple set. These sample-based methods shine through
their simplicity and the ability to process arbitrary sys-
tem models. Their substantive drawback is the huge
amount of samples needed, in order to obtain a rea-
sonable density representation. Other density repre-
sentations, like Gaussian mixture densities, which are
used in the Hybrid Density Filter [3], or sliced Gaussian

mixture densities used in the Sliced Gaussian Mixture
Filter [4] exist.

Usually, in continuous state space, the density rep-
resentation is parametric, i.e., the estimation algo-
rithms work on parameters defining the density func-
tion. These can be parameters of Gaussian densities,
Gaussian mixture densities, particles, or edgeworth se-
ries, for example.

In general, these parameters describe all occuring
densities, like noise densities and prior densities. Fur-
thermore, the measurement and prediction model equa-
tions can be described by means of parameters. A
problem arising in estimation applications is that the
true parameters, representing the underlying system
and probability density functions, are often hard or
even impossible to find. Therefore, arbitrary values are
chosen. Due to the sensitivity of the estimation result
regarding to these parameters, the quality of the result
depends on these assumptions. This means, by choos-
ing model parameters that differ from the truth, the
resulting state estimation differs from the true system
state to a certain degree.

Different approaches to the problem of (partially) un-
known parameters exist. The most common approach
is state augmentation [5], where the state of the system
is expanded by unknown parameters. Here, the un-
known parameters can be estimated, but only under the
assumption that a proper model of the (time-variant)
parameters is given.

Another solution to this problem is considering every
plausible case, which leads to sets of assumptions and
therefore to sets of probability density functions. Sev-
eral works cope with sets of probabilities. Often, con-
vex sets of probability density functions [6] are utilized.
An example of Bayesian state estimation with convex
sets of probability density functions is [7]. Other ways
of defining sets of probability density functions are the
famous theory of coherent previsions [8], distribution
bands [9], or the class of ε-contaminations, just to name



a few.
Instead of allowing a set of densities, whose elements

are all equally favorable and possible, a distribution
over these densities can express preferences about spe-
cific densities. This is often utilized in robust Bayesian
analysis [10]. In that field, hierarchical Bayesian ap-
proaches [11] are used to process densities, whose pa-
rameters are described by random variables. Another
way to define uncertainty about densities in a Bayesian
framework is by means of Dirichlet processes. An ap-
plication of Dirichlet processes, which is related to the
work presented here, is state estimation of linear sys-
tems under consideration of unknown system or mea-
surement noise [12].

In this paper, we consider a special density repre-
sentation, so-called type-2 densities, which are named
after type-2 fuzzy sets [13]. Here, the parameters of
the densities are described by densities, too. The dif-
ference to usual hierarchical Bayesian approaches lies
in the processing within state estimation, as described
later.

The paper is structured as follows. In Section 2, a
short introduction to Bayesian estimation is given and
the problems herein are discussed. Section 3 intro-
duces this special method of processing type-2 density
functions in a Bayesian estimator. Section 4 illustrates
the formal framework by means of examples. The pa-
per closes with conclusions and an outlook onto future
work.

2 Problem Formulation
In this section, Bayesian state estimation is explained
and the special problem of imprecisely known parame-
ters within the estimation procedure is addressed.

2.1 Bayesian State Estimation

In Bayesian estimation theory, the measurement model
describes the relation between the not directly observ-
able internal state xk and a measurement ŷ

k

ŷ
k

= hk (xk) + vk (1)

at discrete time steps k. The measurement model hk

is time-variant and describes the relation between the
internal state and the measurement. Here, we consider
the special case of an additive stochastic noise term
vk. The system equation describes the evolution of the
system state over one time step k to k+ 1 according to

xk+1 = ak (xk) +wk , (2)

with the additional noise term wk. Note, that through-
out this paper, random variables are bold face (x), vec-
tors are underlined (x), and the state space is denoted
by Ω. Random variables are described by probability
density functions (x ∼ f(x)).

The measurement step, according to the measure-
ment equation (1) is calculated using the well known
Bayes law by

fe(xk) =
fp(xk) · fL(xk)∫

Ω
fp(ξ

k
) · fL(ξ

k
) dξ

k

. (3)

The prior probability density function fp(xk) is pro-
cessed with the likelihood

fL(xk) = fv
(
ŷ

k
− hk(xk)

)
that depends on the measurement noise density fv(xk)
and the measurement equation (1). The resulting esti-
mated density fe(xk) can be further handled in the next
step. Equation (2) is processed using the Chapman-
Kolmogorov equation

f(xk+1) =
∫

Ω

fT (xk+1|xk) · fe(xk) dxk (4)

and the transition density

fT (xk+1|xk) = fw
(
xk+1 − ak(xk)

)
that depends on the system noise wk with probability
density function fw(xk) and the system equation (2).
In this paper, we assume that the filter step (3) and the
prediction step (4) are processed in an alternating way
without loss of generality. This procedure is visualized
in Figure 1 (a).

A problem that arises in Bayesian estimation is the
proper choice of model parameters, especially the char-
acterization of the noise terms and the prior state es-
timate. Usually, they are unknown or cannot be de-
termined exactly due to the lack of knowledge about
the true system. A related problem is the processing of
imprecise system or measurement models. This occurs
when dealing with black box systems, whose behaviour
can only be partially reconstructed by observations, or
only imprecise expert knowledge is available. In this
case, parameters in the measurement or system model
equations remain unspecified or are only imprecisely
known.

2.2 Novelties of the paper

The novelty of this approach is the application of
Bayesian state estimation for densities with uncertain
parameters, i.e., the parameters are described by ran-
dom variables. This results in a hierarchical density
representation that defines densities over parameters of
densities over the state space and allows a new inter-
pretation of the filter and prediction equations of the
Bayesian estimator: Now, these equations are regarded
as generative forward models of the uncertain parame-
ters of the densities. By this means, every possible and
probable parameterization can be processed simultane-
ously by the processing of these models.
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Figure 1: (a) Standard Bayesian estimator, (b)
Bayesian estimator working on uncertain density pa-
rameters that are processed using a generative forward
model according to the standard Bayesian estimator.

3 Bayesian Estimator
with Type-2 Densities

This section describes the Bayesian estimator with
type-2 densities and derives this basic idea step by step.
First, the connection between different types of stochas-
tic uncertainties is explained. Figure 2 depicts the
structure of the different types of stochastic uncertain-
ties that are considered in this work. In Figure 2 (a),
no uncertainty is considered, i.e., all variables over the
state space are deterministic.

Adding stochastic uncertainty about equations and
variables in the state space leads to Figure 2 (b). Here,
knowledge about the state space is represented by ran-
dom variables x, which are distributed according to
their densities f(x). When dealing with continuous
density functions, e.g., in a Bayesian estimator, they
are described by their parameter vectors η ∈ ΨD, as
seen in Figure 2 (c). Similarly to the density param-
eters, the model equations can be parameterized, too.
The parameter space of model parameters is denoted
by ΨE .

The processing of densities according to a filter step
or a prediction step is a mapping of deterministic pa-
rameters in the corresponding parameter spaces. The
filter step in Bayesian estimation (3) maps the param-
eters ηp

k
∈ ΨD from the prior density and the param-

eters ηv
k
∈ ΨD of the measurement noise, considering

the model parameter vector ηh
k
∈ ΨE of (1), to the pa-

rameters ηe
k
∈ ΨD of the estimated density. This map-

ping in parameter space is described by the function
Hk : ΨD ×ΨD ×ΨE → ΨD with

ηe
k

= Hk

(
ηp

k
, ηv

k
, ηh

k

)
. (5)

An example of this mapping are the Kalman filter equa-
tions of mean and covariance for filtering in linear sys-
tems.

The mapping of the parameters for the prediction
step is defined analogously. Here, the parameters of the
estimated density ηe

k
, the density function of the system

noise ηw
k
∈ ΨD, and the model parameters ηa

k
∈ ΨE are

processed according to the mapping Ak : ΨD × ΨD ×
ΨE → ΨD with

ηp
k+1

= Ak

(
ηe

k
, ηw

k
, ηa

k

)
. (6)

Uncertainty

Uncertainty

η ∼f(η)Stochastic values
in parameter space

Approach based on 
type-2 densities

(d)

x
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(a) Deterministic
approach
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^

Figure 2: Different levels of uncertainty. In the bottom
layer, no stochastic uncertainty is considered at all. In
the middle layer, density functions over the state space
are considered. The next higher layer deals with type-2
probability density functions.

The result is the parameter vector of the predicted den-
sity ηp

k+1
∈ ΨD. The deterministic mappings (5) and

(6) define the processing of parameters of density func-
tions resulting in a standard Bayesian estimator over
densities in state space as visualized in Figure 2 (c).

Now, the uncertainty over the parameters can be
added, as depicted in Figure 2 (d). Here, the deter-
ministic parameter vectors η are extended to random
vectors η in the parameter space. The parameter map-
pings are now interpreted as forward models of the pa-
rameters, which are used for stochastic prediction. The
random parameter vector is now regarded as a state
estimate in parameter space, which is mapped through
the model equations for the filter step and the predic-
tion step. Equations (5) and (6) are applied to ran-
dom variables over parameters, leading to the stochas-
tic equations

ηe
k

= Hk

(
ηp

k
,ηv

k
,ηh

k

)
, (7)

ηp
k+1

= Ak

(
ηe

k
,ηw

k
,ηa

k

)
. (8)

This converts the given processing rule to a Bayesian es-
timator working on hierarchical type-2 probability den-
sity functions with imprecise input densities and model
parameters. The output of such an estimator is a type-2
probability density function, too. Thus, a type-2 den-
sity is defined as follows.
Definition: A type-2 density function is a parameter-
ized density function over state space, whose parame-
ters η are described by a density function f(η) and are
processed by special stochastic forward models Hk, Ak.
These model equations are identical to the equations of
the Bayesian state estimator working on the densities
over state space for the filter and prediction step.

For this reason, there is a coupling between the type-
2 densities, the parameterization, and the estimator
working on state space. It is noteworthy that both
equations define stochastic forward models of the pa-



rameter uncertainties. In usual Bayesian state esti-
mation, the measurement equation is processed using
Bayes’ law. Due to the update of the state estimate ac-
cording to the measurement, the posterior density f(η)
over the parameter space has to be updated, too. This
will be explained in the next subsection.

Figure 1 illustrates the conversion to the processing
in parameter space. On the left hand side, in Fig-
ure 1 (a), the standard Bayesian estimator consisting of
filter step and prediction step is visualized. Both pro-
cessing steps exchange information by means of density
functions over the state space f(x). The conversion
of the standard Bayesian estimator is shown in Fig-
ure 1 (b). Here, the information is given as probability
density functions over the parameter space f(η).

Processing of Type-2 Densities
The processing of these models in parameter space ac-
cording to the given forward equations are nonlinear
stochastic prediction problems. They can be formally
stated by the Chapman-Kolmogorov equation

f(ηe
k
) = ck ·

∫
ΨE

∫
ΨD

∫
ΨD

fT
k (ηe

k
|ηp

k
, ηv

k
, ηh

k
) ·w(ηp

k
, ηv

k
, ηh

k
)

·
{
f(ηp

k
) f(ηv

k
) f(ηh

k
)
}

dηp
k

dηv
k

dηh
k
, (9)

f(ηp
k+1

) =
∫

ΨE

∫
ΨD

∫
ΨD

fT
k (ηp

k+1
|ηe

k
, ηw

k
, ηa

k
)

·
{
f(ηe

k
) f(ηw

k
) f(ηa

k
)
}

dηe
k

dηw
k

dηa
k
. (10)

The weighting factor

w(ηp
k
, ηv

k
, ηh

k
) = f(ŷ

k
|ηp

k
, ηv

k
, ηh

k
) =∫

ΨE

f(ŷ
k
|xp

k, η
p
k
, ηv

k
, ηh

k
) · f(xp

k|η
p
k
, ηv

k
, ηh

k
) dxp

k (11)

in (9) affects the posterior probability of the parame-
terization of ηe

k
given the measurement ŷ

k
. This is due

to the normalization in the denominator of the density
over state space in (3), which is equal to w(ηp

k
, ηv

k
, ηh

k
).

Here, in this approach, the density over parameter
space has to be normalized. This is stated by the nor-
malization constant ck, which is omitted here, in order
to keep the equations more comprehensible.

The transition densities for measurement and predic-
tion

fT
k (ηe

k
|ηp

k
, ηv

k
, ηh

k
) = δ(ηe

k
−Hk(ηp

k
, ηv

k
, ηh

k
)) and

fT
k (ηp

k+1
|ηe

k
, ηw

k
, ηa

k
) = δ(ηp

k+1
−Ak(ηe

k
, ηw

k
, ηa

k
))

are defined with the multidimensional Dirac δ distribu-
tion. The parameter densities f(ηp

k
), f(ηv

k
), and f(ηh

k
)

for the filter step and f(ηe
k
), f(ηw

k
), and f(ηa

k
) for the

ηp
k+1

x
e
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p
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Figure 4: Hierarchical model of the parameters η and
the state estimate x for the prediction step.

prediction step over the different input vectors are in-
dependent. This allows simpler density representation
and processing of the equations above. These equations
can be solved by nonlinear estimators, like the one pro-
posed in [4].

Compatibility to Bayesian Approach
The processing of type-2 densities can be regarded
as hierarchical Bayesian approach to state estimation
with uncertain parameters, as depicted in Figure 4.
In the prediction step, the estimated state variable
xe

k is processed according to the transition density
fT

k (xp
k+1|xe

k, . . .) to the predicted state xp
k+1. The den-

sities f(xe
k) and f(xp

k+1) are parameterized according to
the parameter vectors ηe

k
and ηp

k+1
, which are given by

P e
k = f(xe

k|ηe
k
) and P p

k+1 = f(xp
k+1|ηp

k+1
). Note, that

the parameters ηa
k

and ηw
k

of the mapping are omitted
for simplicity and only the prediction step is shown.
The predicted density over state space can be calcu-
lated according to

f(xp
k+1) =

∫
ΨD

∫
Ω

f(xp
k+1, x

e
k, η

e
k
) dxe

k dηe
k

=
∫

ΨD

∫
Ω

f(ηe
k
) · f(xe

k|ηe
k
) · fT

k (xp
k+1|x

e
k) dxe

k dηe
k
,

which is equal to

f(xp
k+1) =

∫
ΨD

∫
ΨD

f(xp
k+1, η

p
k+1

, ηe
k
) dxe

k dηe
k

=
∫

ΨD

∫
ΨD

f(ηe
k
)·fT

k (ηp
k+1
|ηe

k
)·f(xp

k+1|η
p
k+1

) dηe
k

dηp
k+1

.

For known parameterizations, the transition densities
describe the same model: f t

k(xp
k+1|xe

k) describes the
transition of the state estimation, whereas f t

k(ηp
k+1
|ηe

k
)

describes the mapping of the parameters of the state es-
timation, which gives in the same result in state space
by definition of (8). Thus, the principle of type-2 den-
sities is compatible to the hierarchical Bayesian ap-
proach.

For the Bayesian filter step, the additional factor w
(11) has to be introduced.

Additional Parameter Noise Term
The models (7) and (8) are exact, i.e., there is no addi-
tional noise term. However, using an additive stochastic
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noise term can have several advantages. The first one
lies in the fact that by using noise in the parameter
model, this model can be regarded as imprecise, too.
It is the case when the filter and prediction equations
(5) and (6) are not exact, e.g., they implicitly perform
an approximation of the resulting density. Especially
for nonlinear systems, an approximation of the poste-
rior density function is inevitable in most cases. With
this approach, imprecision in the fusion equations can
be described by uncertainty in the parameters of the
result. Thus, the parameter model becomes a model
equation with type-2 stochastic uncertainty. The sec-
ond advantage is simply to obtain smoother density
functions over the parameter space. This allows predic-
tion procedures that make use of system noise, which
can reduce the processing effort considerably, e.g., [3].
The model equations (5) and (6) are then given as

ηe
k

= Hk

(
ηp

k
,ηv

k
,ηh

k

)
+ Vk ,

ηp
k+1

= Ak

(
ηe

k
,ηw

k
,ηa

k

)
+Wk ,

with random noise terms Vk and Wk.
Note, that these models of the density parameters

heavily depend on the parameterization of the proba-
bility density functions in the underlying state space.
By choosing a different density representation or an-
other implementation of a Bayesian estimator that is
incorporated into the parameter mapping, the overall
prediction problems (9) and (10) change because their
transition densities are a stochastic model of equations
(1) and (2).

Different Interpretation of Type-2 Densities
The vector η sets the parameters for the (conditional)
probability density function f(x|η). The parameter
vector η can be regarded as constant, so f(x|η) is a
simple density over the state space Ω. If we build the
joint of state space and parameter space Ω × Ψ, the
density over this joint space is f(x|η) · f(η) = f(x, η),
where f(η) describes our uncertainty about the param-

eter. Now, the uncertainty about the parameters can
be marginalized out according to

f(x) =
∫

Ψ

f(x|η) · f(η) dη . (12)

This leads to a standard density function f(x) over
state space without parameter uncertainty. This den-
sity can be regarded as a mixture of density functions
f(x|η) with weights f(η) for different parameters η,
whereas the number of components depends on the
number of elements in Ψ. Typically, Ψ is a continu-
ous vector space with uncountable elements. Thus, the
density (12) is an infinite mixture [12], as it is named
in the context of Dirichlet processes.

Our aim within this approach is not to reduce the
parameter uncertainty. The parameter uncertainty ex-
presses our lack of knowledge about the system and
marginalizing this uncertainty out would result in a
probably wrong choice of parameters that shall be
avoided here. This approach can also be regarded as a
sensitivity analysis. Here multiple different parameters
are propagated through the model equations simulta-
neously and deviations of the output are observed.

4 Examples
This section illustrates the basic use of the processing
of densities over parameters of densities according to
Bayesian estimation in two simple examples. To keep
the equations as simple as possible, only linear prob-
lems are considered. All examples in this paper were
performed using the Sliced Gaussian Mixture Filter [4].
Here, linear substructures can be employed in order to
reduce the estimation effort considerably.

4.1 Example 1

This first example shows the basic procedure of process-
ing probability density functions with uncertain param-
eters in a Bayesian estimator. In this example, Gaus-
sian densities f(x) = N (x − x̂, σ2) with mean x̂ and
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variance σ2 and the parameter vectors

η =
[
x̂
σ2

]
∈ ΨD

are considered. The measurement model and system
model

ŷk = xk + vk , xk+1 = A · xk +wk

are both linear and depend on scalar values only. The
noise terms vk and wk are zero mean Gaussian dis-
tributed random variables. Hence, the parameters of
the densities are processed according to the Kalman
filter equations.

In the filter step, the prior Gaussian density function
fp(xk) = N

(
xk − x̂p

k, (σ
p
k)2
)

is defined by the param-

eter vector ηp
k

=
[
x̂p

k, (σ
p
k)2
]T . The measurement ŷk

and the measurement variance (σv
k)2 define the Gaus-

sian likelihood with the corresponding parameter vector
ηL

k
. The resulting estimated Gaussian density function

is parameterized by ηe
k

with

x̂e
k =

(σv
k)2 · (σp

k)2

(σv
k)2 + (σp

k)2

(
x̂p

k

(σp
k)2

+
ŷk

(σv
k)2

)
, (13)

(σe
k)2 =

(σv
k)2 · (σp

k)2

(σv
k)2 + (σp

k)2
, (14)

w = N
(
ŷk − x̂p

k, (σ
p
k)2 + (σv

k)2
)
. (15)

Now, consider the mapping Hk of the parameter vec-
tors

ηe
k

= Hk(ηp
k
,ηL

k
) + Vk

using the equations stated above. Vk is a zero mean
Gaussian noise term with small variance. With this
mapping, a nonlinear stochastic prediction step in pa-
rameter space (9) can be constructed resulting in a pos-
terior density f(ηe

k
) over the parameter space of ηe

k
.

Applying this prediction step in parameter space cor-
responds to a filter step of all prior probability density
functions over state space.

The prediction of the linear state space system model
can be accomplished analogously. Originating from the
linear system model, the Kalman filter equations for
the predicted mean and variance are

x̂p
k+1 = A · x̂e

k ,

(σp
k+1)2 = A2 · (σe

k)2 + (σw
k )2 .

This leads to the mapping

ηp
k+1

= Ak(ηe
k
,ηw

k
) +Wk

that defines the forward equation of the random vectors
ηe

k
and ηw

k
to the predicted random vector ηp

k+1
. Wk is

also a zero mean Gaussian distributed random variable.
In this example, a parameter of the Gaussian dis-

tributed random variable vk is not known exactly. We
know that the variance (σv

k)2 of the Gaussian measure-
ment noise vk is time-variant with an unknown be-
haviour over time. We assume that it is uniformly dis-
tributed over the complete experiment over the interval
[ 1
2 , 5]. The variance of the system noise wk is 1

5 . The
type-2 system noise of the measurement step Vk is zero
mean Gaussian distributed with variance 0.005. The
variance of Wk for the prediction step is 0.005, too.
The system is stationary, i.e., A = 1 with the real sys-
tem state 1. The prior density function is assumed to
be fp(x0) = N (x0− (−1), 1), this means the parameter
density is f(η

0
) = δ

(
[−1, 1]T

)
.

Simulation results after 100 consecutive filter and
prediction steps are shown in Figure 3. The density
f(ηp

100
) over the parameter space is shown on the left

hand side. The best possible estimation result with ex-
actly known parameter is marked with a bar, which lies
near the center of the maximum of the density. On the
right hand side, the parameter density is displayed in



state space. Every point η in parameter space corren-
sponds to a density in state space. This state space
density is now drawn for every parameterization η in
relation to its probability f(η) into the same figure.
The points, where the density functions are drawn, were
weighted according to the probability f(η). A contour
plot is used to illustrate the overlappings, and thus,
gives an illustrative representation of the type-2 den-
sity. For comparison purposes, estimation results for
selected parameter values, like the interval borders 0.5
and 5, the median 2.75 and the true, time-variant pa-
rameter, are shown. It can be seen, that the type-2
density fits the different parameters very well and gives
a good estimate for the true estimation result without
any knowledge about the temporal behaviour of this
parameter. The case (σv

k)2 = 0.5 still corresponds to
the type-2 density, although with low probability.

The noise terms Vk and Wk in the model are used
to obtain more smooth estimation results in parame-
ter space. This supports the use of the Sliced Gaus-
sian Mixture Filter, which exploits overlapping smooth
functions. For the assumptions given in the example,
the noise terms can be omitted without affecting the
conclusion of the results.

4.2 Example 2

The second example relates to information processing
in sensor networks. Here, estimation results from in-
dividual sensor nodes are transmitted to neighbouring
nodes, which fuse this information with own measure-
ments and re-transmit the result to other nodes. Be-
cause no history about the fused data is kept, it is not
known, which sensor nodes already incorporated their
information into the fusion result. Hence, it is pos-
sible that some measurements are used several times
and thus, correlations between the fusion results occur.
These correlations are unknown, but have to be consid-
ered when processing these densities.

In this example, estimates from two different infor-
mation sources have to be processed in order to get an
overall fusion result. This is shown in Figure 6. Sen-
sor node 1 transmits its information f1 to both nodes
2 and 3. They fuse their measurements ŷ2 and ŷ3 with
the received information and transmit the densities f2

and f3 to node 4. Node 4 fuses both estimates to the
fusion result f4.

Due to the fact that both estimates f2 and f3 con-
tain the same information from node 1, they are de-
pendent. Node 4 doesn’t know anything about the spe-
cific paths of the densities through the network. Thus,
there exists an unknown correlation between the two
estimates given as scalar random variables x2 and x3,
which are distributed according to x2 ∼ f2(x) and
x3 ∼ f3(x). In this example, the densities are Gaussian
f2(x) = N (x− x̂2, (σ2)2) and f3(x) = N (x− x̂3, (σ3)2).
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Figure 6: Visualization of the sensor network in Ex-
ample 2. Node 1 transmits its information given as
probability density function f1 on two paths to nodes 2
and 3. They fuse their local estimate with the received
one and re-transmit the result to node 4. Sensor node 4
has to fuse both estimates and outputs the final density
f4.

The resulting density f4 of sensor node 4 is Gaussian
again, with the parameters x̂4 and (σ4)2. The map-
pings of the parameters for the estimated means and
variances are given by

x̂4 = x̂2 +

(
(σ2)2 +

√
(σ2)2 · (σ3)2 · ρ4

)
· (x̂3 − x̂2)

(σ2)2 + (σ3)2 + 2
√

(σ2)2 · (σ3)2 · ρ4

,

(σ4)2 =
(σ2)2(σ3)2

(
1− ρ2

4

)
(σ2)2 + (σ3)2 + 2

√
(σ2)2 · (σ3)2 · ρ4

and

w = N
(
x̂3 − x̂2, (σ2)2 + (σ3)2 + 2

√
(σ2)2 · (σ3)2 · ρ4

)
for the fusion step. These equations are processed ac-
cording to the generative parameter model

η
4

= Hk(η
2
, η

3
,ρ4) + Vk

and equation (9). In contrast to Example 1, the pa-
rameter ρ4 ∈ ΨE belongs to the measurement model.
Now, the prior densities are known, whereas the model
parameter is unknown to a certain degree.

Sensor node 4 has no information about correlation,
so it has to assume correlation to a certain degree. The
correlation coefficient ρ4 is assumed to be uniformly
distributed over the interval [−0.5, 0.5].

The measurements and measurement uncertainties of
sensors 1,2 and 3 are 1, −0.2, and 9 with variances 6,
1.2, and 6 respectively. Node 4 receives densities from
the other nodes with the parameters η

2
= [0, 1]T and

η
3

= [5, 3]T . The true fusion result is the Gaussian

density f̃4 with η̃
4
≈ [1.29, 0.86]T , which is calculated

using the information of the three nodes only once. The
parameter uncertainty Vk is again zero mean Gaussian
distributed with a variance of 0.005.

Figure 5 shows the simulation result for this example.
On the left hand side, the parameter density f(η

4
) of

the fusion result is shown. On the right hand side, the
parameter density, the densities from sensor node 2 and



3, f2 and f3, and the true fusion result f̃4 is displayed.
Here, it can be seen clearly that the resulting type-2
density function is in accordance with the true fusion
result.

5 Conclusions and Future Work
In this paper, a method for processing imprecisely
known probability density functions and model param-
eters by means of a Bayesian estimator is stated. The
imprecision about the density functions and model pa-
rameters is given as probability density function over
their parameters. The unique characteristic of this ap-
proach is that for state estimation, the Bayesian filter
step and prediction step are converted to stochastic for-
ward models, which map the parameters of the state
space models and densities onto parameters of the re-
sulting density representation. This allows Bayesian
estimation without exact knowledge about certain pa-
rameters, which are in several cases hard to find.

The advantage of processing imprecise densities also
has a drawback. This approach usually leads to nonlin-
ear prediction problems, which are usually more diffi-
cult to solve than the problems in state space. The pa-
rameter models are usually nonlinear, even when origi-
nating from linear models in state space. Furthermore,
the dimensionality depends on the number of parame-
ters needed, which is usually higher than the dimension
of the state space.

In comparison to usual hierarchical Bayian model-
ing, this approach applies a decomposion of the overall
problem into a state space part and parameter space
part, which allows different esimation techniques and
algorithms for both problems, whereas in hierarchcal
Bayesian processing, the overall problem has to be
solved at once.

Examples show that this approach allows a wide
range of applications, like the processing of unknown
statistical values, as unknown measurement noise or
unknown correlation between density functions, which
shall be fused. In this first work, only simple linear sys-
tems were considered. When coping with nonlinear sys-
tems in state space, the parameter space dimensionality
usually increases with every processing step. Although
promising preliminary results for nonlinear state space
models exist, the reduction of the number of parame-
ters is still an open problem. Instead of only consid-
ering type-2 densities with uncertain parameters, the
concept can be extended to type-n densities, in which
higher order parameters are uncertain, too.
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