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Abstract — In practical applications, state estimation re-
quires the consideration of stochastic and systematic errors.
If both error types are present, an exact probabilistic de-
scription of the state estimate is not possible, so that com-
mon Bayesian estimators have to be questioned. This pa-
per introduces a theoretical concept, which allows for in-
corporating unknown but bounded errors into a Bayesian
inference scheme by utilizing sets of densities. In order to
derive a tractable estimator, the Kalman filter is applied to
ellipsoidal sets of means, which are used to bound additive
systematic errors. Also, an extension to nonlinear system
and observation models with ellipsoidal error bounds is pre-
sented. The derived estimator is motivated by means of two
example applications.
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1 Introduction

Obtaining insight to unkown quantities through indirect
measurements appears to be a key problem in many techni-
cal applications. In general, the available information about
the underlying system and the observations are corrupted
by disturbances (e.g., noise), so that only an imprecise de-
scription of the inaccessible states is attainable. For random
errors with known probability distributions, the Bayesian in-
ference scheme embodies a theoretical solution for state es-
timation. In the case of linear systems and Gaussian noise
terms, a well-known closed-form solution to the estimation
problem is provided by the Kalman filter [1], where the state
estimate is represented by conditional mean and covariance
matrix. For nonlinear systems, the extended Kalman filter
[2] has turned out to be a well-accepted approach. Bayesian
inference models have in common that appropriate esti-
mates are only guaranteed, when the probability distribu-
tions of the noise terms are known and the system is not
additionally affected by other disturbances. Otherwise, the
assumption, that the state is to be characterized by a unique
probability density, cannot be maintained.

In order to cope with imprecisely known probabilities, a
generic Bayesian estimator for sets of probability densities
has been proposed in [3]. Here, the state estimate is given
by a convex set of densities, the so-called credal state. Also,
the requirement of credal uniqueness of the transition and
likelihood densities has been relaxed to allow convex sets
of transition and likelihood densities, respectively. While
a purely stochastic description of a system implies a lack
of precision, the incapability of specifying an appropriate
probability distribution expresses a lack of knowledge. Due
to incorrect assumptions, incomplete prior knowledge or un-
known, possibly non-stochastic disturbances, uncertainty is
overlaid by ignorance. Therefore, every distribution in the
credal set is to be regarded as a seriously possible candidate
for the true unknown probability distribution. A justifica-
tion for demanding convexity of these sets is primarily given
by Levi’s epistemology [4, 5]: Since we are not capable of
deciding, which distribution in the set is the true one, the
probability judgement will remain the same, when adding
all weighted averages to the set, i.e., taking the convex hull.
Especially against the background of decision theory, this
can easily be accepted [6]. When considering (linear) utility
functions, an arbitrary set of distributions and its convex hull
yield the same pattern of preferences. In this regard, a non-
convex set of distributions is called generator set, whose
convex hull yields the probability assessment of the state
estimate then.

Besides Bayesian estimation, set-membership ap-
proaches [7, 8, 9] have been proposed, where no stochastic
model of the system unknowns is used.  With set-
membership estimation, the unknown quantities are
assumed to belong to bounded sets. The set of all possible
states is computed through the system model and inter-
sected with the set of states, which are consistent with the
observations.

An approach for combining stochastic and set-theoretic
estimation has been introduced by [10], where sets with
stochastically uncertain bounds are used. In this paper, we
suggest to use sets of densities instead.



In general, the effect of stochastic errors can be compen-
sated by repeating measurements. In contrast, systematic
errors cannot be described statistically and are often diffi-
cult to deal with, especially when they are not constant over
time. One has to decide between a possible high technical
effort to remove these errors or accepting them. In some
situations, the consideration of systematic errors might even
not be avoidable. In this paper, stochastic and unknown but
bounded systematic errors are considered simultaneously.
Due to the systematic errors, a unique probabilistic descrip-
tion of the state estimate is not achievable anymore. There-
fore, sets of densities need to be processed and the concept
proposed in [3] will be applied. The generic estimator is
explained in Section 2. In view of practical applicability,
Sections 3 and 4 present a generalization of the Kalman fil-
tering scheme for linear and nonlinear system models, re-
spectively. This set-valued Kalman filter is a further devel-
opment of the filter proposed in [11], where only the prior
knowledge is modeled as a set. Two promising applications
are presented exemplary in Section 5. Section 6 concludes
this paper with an outlook to prospective investigations.

2 Estimation Considering Stochastic
and Systematic Errors

At first, we elucidate the basic concept of state estimation
with stochastic and systematic errors and focus on a proba-
bilistic discrete-time nonlinear dynamic system model

Tpy1 = Ty, Uy Wy, dy,)

where underlined letters denote vectors and random vari-
ables are written in boldface letters. The system function g,
maps the inaccessible n-dimensional state, which is charac-
terized by the random vector x;, to the state z, ,, at time
step k + 1. Furthermore, the system function depends on
the system noise w,, with probabilitiy density f;” and on an
unknown systematic error d;, € D, C R™. 4, denotes the
input value. The outcome of a measurement j, is given by
a nonlinear observation model

Qk = ﬁk(ﬁk,ﬂk,ﬁk)

with respect to the state x, the measurement noise v, and
an unknown error ¢;, € & C R™. We require the noise
variables w,,, v, and the initial state x, to be stochastically
independent. A Bayesian estimator allows for recursively
computing an estimate for the state x,,.

The time update or prediction step can be expressed in
terms of probability density functions by the Chapman-
Kolmogorov equation

fkpﬂ@kﬂ) = /Rn fkT@kH|£kaﬂkvdk)fke@k)d@c )

where
fkT @kﬂ |2, Ty di)

:/5(£k+1 _Qk(gk’@kvwkadk))fkw(wk)dwk

n

is the transition density. § denotes the n-dimensional Dirac
delta function. Since d,, is not known, we have to consider
the entire set of possible transition densities

FL = {1 @ leg iy, dy) | dy € Dy}

each of which is a seriously potential candidate for the true
state transition density. Thus, we are obliged to propagate
the entire set elementwise and we obtain a set F)_ , of
predicted densities.

In the filtering step, an observation g X is incorporated into
a prior density £ in order to obtain an improved estimated
density f;, i.e.,

_ Ji @k@k’ﬁk)fkp@k)
fRn Ji (Qk@k&k)fkp (zy) dzy, ’

where fi (g, |, ) denotes the likelihood

£, 2y ex) = /

Again, this function is not unique, since we only know
e, € &k. Therefore, the filtering step is performed for ev-
ery f(§, |-, ex), ex € & and, if £ is not unique either, for
every f¥ € JF7}. This elementwise filtering yields a set F7,
of estimated densities, which can then processed element-
wise with the set of transition densities or likelihoods in the
following prediction or filtering step, respectively.

T (@)

(8, — hu(@p, i en)) £ (vg) duy, -

n

Commonly, additive perturbation terms are considered.
The system and observation model are then of the form

Ty = Ty, ) +wy, +dy,
and
¥, = hp(zp) + v + e
In this case, the state transition simplifies to
fkT(QkH@ka@kadk) = fkw@kﬂ — a2y, ) — dy.)
which leads to the set
.7-'5 = {fkw@kﬂ — ay (2, Uy) — dy) | dy € Dk}

of transition densities. F then only contains translations
of f. Analogously, we obtain the set

Fi = {fkv@k. — hy(zy) — ) |Qk € 5k}

of translated likelihoods in the filtering step. Such a set can
be interpreted as a density with imprecisely known mean
and can therefore be parameterized by the set of possible
means.



For linear equations
Tpy1 = Az, +Bru, = Apz, + By, (@k +Qk) >
U, =y, to, =Hezy, +uy,
where the known input and measurement values i, and
are affected by (zero-mean) Gaussian white noise terms w,,
v,;,, the Kalman filter is usually utilized. Then, only the first

two moments need to be propagated. The predicted mean
and covariance matrix are obtained by

= Ardy + Briy, (1)
and
Cli = ArCiAL + By CYBy
which yield the predicted Gaussian density fk‘ll =

N(&p 4, Cy, ) of the state. The filtering step gives the
estimated conditional mean

i = (1- KyHp)l + Ky g, 2
and the covariance
p =C; —KH,C}
with Kalman gain
K, = CPH} (C} + H,CPH) ™' .
The estimated density is then given by f¢ = N (&}, C5). If

input and measurement are affected by both stochastic and
systematic perturbations

Ek:Qk‘FQk +dk7
gk:gk—i_gk—’_gk’

then obviously only the means are biased by systematic er-
rors. Since these errors are unknown, the means are not
unique anymore. With

Uy ={y +dy | dy € Di}
Vi = {Qk —ex | e Egk} ;
equations (1) and (2) become
AP = Ap X @ Brly, 3)
and
Ay = (I - KpyHp) XY © K Vi “)

respectively, where & is the set of conditional means. The
operator @ denotes the Minkowski sum, which is the ele-
mentwise summation. In the following sections, we derive
a tractable estimator by parameterizing these sets properly.

3 Kalman Filter for Ellipsoidal Sets

In the case of linear dynamical systems perturbed by addi-
tive white Gaussian noise and unknown but bounded dis-
turbances, we will employ a generalization of the Kalman
filtering scheme. The unknown systematic errors will each
be characterized by an enclosing ellipsoidal set

E@X)={zeR"|[(z-&'X (z-2) <1}

with midpoint ¢ € R™ and symmetric positive definite ma-
trix X € R™*"™, As revealed below, the latter requirement
may be weakened by allowing for singular matrices, so that
the ellipsoids may become degenerate. Some preparatory
work will be required, before establishing the ellipsoidal
estimation concept.

A more general definition of an ellipsoidal set is obtained
by utilizing support functions p(-,C) : R* — R with

p(L,C) =sup (L, z) ,
zelC

where C C R denotes a closed convex set and (-, - ) is the
scalar product. The principal property of support functions
is stated in the next lemma [8, 9].

Lemma 1 For a closed convex set C C R", the inclusion
x € C holds, if and only if the inequality

(Lz) <p(l,C) VIeR"

is satisfied.

An ellipsoidal set £(¢,X) is a closed convex set, whose
support function is given by

p(LE@X)) = (L&) + (LXD)* .

According to its support function, an ellipsoid can now be
defined by

£@X) ={z e R"|La) < L&) + L XD ML eR"}

with midpoint ¢ and symmetric nonnegative definite matrix
X. If the shape matrix X is singular, some semiaxes of
the ellipsoid are zero and thus the volume is equal to zero,
too. For instance, such a degenerate ellipsoid is given by a
disc in three-dimensional space. The example presented in
Section 5.2 will confirm the necessity of considering degen-
erate ellipsoids. Herein, scalar distance measurements are
deployed to confront a two-dimensional localization prob-
lem. Therefore, the error bound of a single measurement is
a degenerate ellipsoid, a line, in the two-dimensional space.

The next lemma summarizes further important properties
of support functions.

Lemma 2 Support functions fulfill the following two asser-
tions.

e LetC C R" be a closed convex setand lety = A x+b
be an affine transformation. For x € C, we obtain the
inequality

(Ly) =, Az+b) < p(,AC+b) VIER".

o The support function of the Minkowski sum of two
closed convex sets C1,Co C R"™ is given by

p(l,C1 @ C2) = p(1,C1) + p(1,Ca) .



Remark 1 An affine transformation y = A x + b applied to
every element

z € £(¢,X)
yields the ellipsoid
AE(E,X)+b=E(Ae+b AXAT).
Assuming that the set X}] of estimated means and the er-
ror bound U}, of input values are closed and convex, we are

able to express equation (3), the prediction step, in terms of
support functions, i.e.,

p (L2 ) = p (L Ax XE © B Uy)

4)
= p(LA-k XIS) + p(LBkuk:) .
Analogously, equation (4) can be rewritten as
p (L&) = p (L, (T - KpHy) XY © Ky V) ©)

=p(,(T-KH)XP) + p(LKi Vi) »

where X} and Y, are closed convex sets of predicted states
and measurements, respectively. Equations (5) and (6) state
that the resulting sets of conditional means X 1 and AP
are convex as well, so linear prediction and filtering pre-
serve convexity. The justification for demanding the sets to
be convex is constituted by the following idea: The sets of
means are intended to bound maximal possible systematic
errors, so if d; and d, are two possible biases, then every
d, = ad; + (1 — a)dy, a € [0, 1] is obviously bounded by
d, and d,. Hence, d,, should be also regarded as possible
bias.

In general, equations (5) and (6) do not imply that a spe-
cific representation of sets will be preserved. For instance,
the Minkowski sum of ellipsoids does not usually yield an
ellipsoid. However, especially for ellipsoidal sets, there ex-
ists a simple approach to obtain an enclosing ellipsoid of the
Minkowski sum, as stated in the following theorem.

Theorem 1
Let £(¢;,X1) and £(&y, X2) be two ellipsoids. The inclu-
sion
E(21,Xy) B E(Ly, X2) € E(& + &9, X(p))
holds for every matrix
X(p) =1 +p X1+ (1+p)Xo
withp > 0. £(¢&, + &y, X(p)) is a properly defined ellipsoid

and an outer approximation of the Minkowski sum.

PROOF. This assertion can be proven by means of support
functions. For a thorough proof refer to [9]. ]

Theorem 1 provides a parametric family of outer approxi-
mations, for which the equality

E(8y,X1) @ E(2y, Xa) = [ {E(&1 + &, X(p)) | p >0}

holds. An appropriate enclosing ellipsoid can be chosen in
view of different optimality criteria. Typically, the parame-
ter p is determined such that the volume of £(¢; + &, X(p))

becomes minimal or the trace of X(p), i.e., the sum of
squares of the semiaxes, is minimized.

Theorem 2
The parametric family of outer approximations given by
Theorem 1 contains the following optimal ellipsoids.

1. The minimum volume ellipsoid enclosing £(¢,,X1) ®
E(&y, X2) is constituted by (& + &4, X(p*)), where
p* > 0 denotes the unique solution of the equation

n
1 n
Z b\ = 7
—~Xi+p plp+1)
and 0 < A\ < ... <\, < o are the roots of
det(X1 — )\Xg) =0.

2. The trace of X(p) is minimal for
4 trace(Xy)
trace(Xs)

Then, the enclosing ellipsoid (¢, + ¢y, X(pT)) fea-
tures minimal sum of squares of semiaxes.

. ()

D= D=

Calculating the minimal volume enclosing ellipsoid requires
to solve the algebraic equation (7), which can turn out to be a
laborious task. In contrast, considering the trace as optimal-
ity criterion provides an easy way to compute an outer ap-
proximation, since the required parameter is directly given
by equation (8). Furthermore, the trace appears to be an ade-
quate criterion, because the maximal length of the semiaxes
is a bound of the maximal presumed systematic error.

With this spadework, we are now in a position to de-
pict the generalized Kalman filtering scheme for ellipsoidal
sets allowing for simultaneous treatment of stochastic and
systematic disturbances.

3.1 Prediction Step

Consider a linear system
gi'ﬁ‘l == Ak ZZ + Bk(gk +wk +dk) )

where the state z7 is characterized by an ellipsoidal set of
means X7 = &£(¢),,X%) and covariance matrix C{. The
input value @, is corrupted by zero-mean white Gaussian
noise w,, with covariance C}’ and an unknown systematic
error dj,, which is bounded by the ellipsoid £(0, Uy,). Both
perturbations can be combined to a set of translated Gaus-
sian densities, which is characterized by the set of means
U, = E(ly, Uy) and covariance matrix C}’. The Kalman
prediction step consists of calculating the enclosing ellip-
soid
A Xy & Bl = Xl?—&-l - 5@£+17X£+1)

of predicted conditional means and of determining the co-
variance matrix C}) 41- According to Remark 1 and Theo-
rem 1, the midpoint of the outer approximation is

D o ~e N
Cryr = Ak +Br iy



and the matrix X}, is given by
Xipr = (1+p DAXGAL + (1+p)BUBL . (9)

where p may be chosen by means of Theorem 2. The co-
variance matrix is obtained in a known manner by

CRi1 = AxCiAL + BLCi'By, . (10)
Finally, £(¢y, 1, X} ;) and C}_ ; are the result of the pre-
diction step.
3.2 Filtering Step
The obervation model of the form
U, =Hiz, + v, + e
is affected by additive Gaussian white noise v, and a sys-
tematic error e;,. The random variable v,, is zero-mean with
covariance matrix Cj. Furthermore, the error ¢, is con-
tained in the ellipsoid £(0, Yj,). Therefore, (§, — ¢;,) lies
in the ellipsoid Vi, = & @k’Yk)' This set of corrupted
measurements is now fused elementwise with the ellipsoid
XP = E(zf, XY) of predicted states, i.e.,
Xy = (I —-KpHp) XY & Kk
with Kalman gain
K; = CRH} (C} + HyCPH) 1. (D)
In analogy to the prediction step, the outer approximation
&(&r,X$) D A% has the midpoint
& = (- KiHp)e} + Ky,
and matrix
F=0+p HI - KHy)XP(I - KyHy)"
+(1+p)Kp YKy
where p is chosen appropriately. Since the covariance ma-
trix is independent of the means, we have

¢ = CP — K,H,CP . (13)

The result of the filtering step is given by the ellipsoid of
means £ (¢, X§) and covariace matrix C.

12)

3.3 Discussion

For linear dynamic systems with linear observation mod-
els, we have proposed a concept for incorporating stochas-
tic and systematic errors simultaneously. The influence of
unknown systematic disturbances is expressed in terms of
sets of means. In comparison with the stochastic Kalman
filter, only one additional parameter has to be considered,
when utilizing ellipsoidal bounds for the systematic error.
Whereas the midpoints and the covariance matrices are
computed by the well-known Kalman equations for mean
and covariance, respectively, the shape matrices of the ellip-
soids are obtained by equations (9) and (12). Prediction and
filtering step involve the computation of Minkowski sums,
which yield the set of conditional means, i.e., the credal
state of the system. Since the Minkowski sum is not ellip-
soidal anymore, an enclosing ellipsoid is determined. When

considering the trace as an optimality criterion for the ellip-
soidal approximation of the Minkowski sum, the additional
computational demand compared to the standard Kalman
filter is low.

It is worth recalling that the ellipsoids of means represent
sets of translated Gaussian densities with the same covari-
ance matrix. Such a set of densities itself is not convex and
therefore to be regarded as a generator set. The presented
estimator is a further development of the set-valued filter
proposed in [11], where only the state is modeled by a set,
but likelihood and transition densities are supposed to be
unique.

4 Extended Kalman Filter for
Ellipsoidal Sets

A common approach to cope with nonlinear state transition
and observation models is the extended Kalman filter (EKF).
Here, the standard Kalman filter is applied to linear approxi-
mations of the nonlinear functions, where the linearizations
are obtained by first-order Taylor series expansions about
the current mean. Since we have relaxed the requirement
of credal uniqueness, i.e., we have a credal set of condi-
tional means, a linearization of the system model cannot be
achieved in exact the same manner. Thus, we aspire to find
a linear approximation over the entire set of means. For this
purpose, we will deploy the approach proposed in [12].

The linear mapping is calculated to minimize the sum of
squared errors between the function values of the nonlin-
ear function and those of the linearization at appropriately
chosen points. In [12], it is suggested to select 4n + 1 ap-
proximation points for a n-dimensional ellipsoid, which lie
equidistantly on the principal axes of the ellipsoid, as de-
picted in Figure 1. Subsequently, prediction and filtering
step will be discussed in detail.

Figure 1: Approximation points of an ellipsoidal set.

4.1 Prediction Step
The system model will be approximated by an affine map-
ping, i.e.,

LTpy1 = Qk(£k7ﬂk) ~ Akﬁk + By Up +Qg . (14)



Let QZ’(I), e QZ’(N) denote the approximation points of

the ellipsoid £(¢&;,, X$,) of filtered states. The input cor-
rupted by an unknown systematic error lies in the ellipsoidal
set £(&,, Ug), whose approximation points are given by

g,(:), .. (M) . Then,
d}(jvj) = ay (xz (1)7u](cj)) A $

fori = 1,...,N, j = 1,..., M, are the errors between
the nonlinear mapping and its linear approximation at this
points. The mappings Ay, By, and the base point af are
computed to satisfy

Bku() al ,

N, M
[Ak7Bk7ak] = argAH]}Bln Z w;jl [dl(jd)]T[dl(j,J)] ,
©Bral i,j=1

with weighting factors w; ;. The solution of this weighted
least squares problem [13] is given by

Ay
_ -1 _
BE = (Fka IFE) Fkalfk )
(a)"
where Fy, f;, and Q are defined by
e(l) QZ’(U £27(2) ge,(N)
R I O WM | as)
1 1 1 1
e() (1) () (ay]"
f, = [Qk(ik’ ) a2y )}
and Qk = diag(wl,l, ce ,OJNJ\/[).

The midpoint of the ellipsoid £(¢&}, , ,, X}, ;) of predicted
means is obtained by applying the nonlinear function to the
midpoints, i.e.,

Chpr = ax(Ch, ) -
With the previously determined matrices Ay and By, the
shape matrix X} 1 and the covariance (o4 41 are computed
by means of equatlon (9) and (10), respectively.

4.2 Filtering Step

In order to compute a linear approximation for the nonlinear
observation model

y, = hi(zy,) ~ Hyzy + by,

we only need to consider the ellpsoidal set (¢}, X)) of
predicted states. Let

o) = hy (") ~He gl — b

denote the error between the nonlinearity and its lin-

earization at the approximation points z xp (1 ) xi (M) of

E(cy, X}). Again, the matrix Hj, and the Vector h are cho-
sen to be the solution of the welghted least squares problem

CUdCys

[H;, hy] = arg i, z; Wi

For

and

T
ge = [m@®) - mE™)]

Hj and @2 are given by

iy

where Q = diag(w, . ..,wy) is a weighting matrix.
With the aid of this linearization, the predicted states can

now be fused with the set of measurements €(g, , Yi). The

ellipsoid £(&y, X¢) of filtered means has the midpoint

& =2 + K (3, - (@) -
where K, is the Kalman gain (11). The shape matrix X is

computed from equation (12) and the covariance matrix Cj,
is given by (13).

] = (GnglGE)il G:Q; g

4.3 Discussion

The presented approach allows for considering both system-
atic and stochastic errors in a nonlinear estimation scenario.
In compliance with Section 3, the unknown systematic error
can be incorporated as a bias in the mean, which is enclosed
by an ellipsoidal set. The difficulty of nonlinear estimation
is the necessity of propagating the entire densities. A pro-
posal to overcome this issue is to linearize the transition and
observation model, such that only the first two moments
need to be propagated. The linearization in this section is
obtained by the least squares fitting method, in contrast to
calculate Jacobians with the conventional EKF.

The approximation accuracy strongly depends on the
state and input dimensions and on the number of approx-
imation points. For high-dimensional systems, especially
matrix (15) is large and the least squares calculation may
become cumbersome. In that case it might be favorable to
use less approximation points at the cost of lower accuracy.

S Examples

In this section, two example situations are presented, where
set-valued estimation seems promising. In the first example,
sets of densities are employed in order to reduce the model
complexity. In the second example, the ellipsoidal Kalman
filter is used to cope with unknown systematic errors.

5.1 Radar Altimeter

In [14], terrain aided positioning for improving the posi-
tion estimate of air vehicles is used. For this, precise esti-
mates of ground clearance, i.e., the distance between aircraft
and ground, which is measured by radar, has to be known.
By flying over a tree-covered area, echos from the ground
or echos from trees occur, which can be misinterpreted as
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(a) Set of prior state estimates.
[170 m, 230 m].

The set of means is given by
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(b) Set of state estimates after 20 measurements. The set of means is
given by [173.3 m, 194.6 m].

Figure 2: Fusion result of example in Section 5.1. Figures show the set of estimated densities for the ground clearance.
The minimum (red, dashed), the center (blue), and the maximum (green, dashed) elements of the set are shown. The true

value is 180 m.

ground clearance. The approach in [14] is to model the
likelihood as a Gaussian mixture

fia) =m - N(@ = p1,07) + (1 = 7) - N(x — 2, 03) ,

with different means p1, o and variances 0%, 3. When
using this model, it is necessary to give a proper probabil-
ity 7 of receiving an echo from ground. This probability
is difficult to determine a priori, especially over different
terrains.

Instead of a mixture, a set of translated densities is used
in the proposed approach. This set of Gaussian densities is
given by

F'={N(zy —d,0)|d€ D} ,

with a translation within the set D. Measurements g, at
discrete time steps are related to the system state by

Uk =xp+vp+d,

with vj zero-mean Gaussian noise with variance 02 =
10 m?. The parameter d describes the inability to decide
from where the echo came from, here we assume, d € D =
[—10 m, 10 m]. The true, but unknown, ground clearance is

180 m and the prior set of densities is set to
FP = {N(zo—200m —d”,02) | d® € [-30 m,30 m]} .

In Fig. 2, simulation results are visualized. Fig. 2(a)
shows a set of prior densities. Note, that only the densi-
ties with minimum, maximum, and central mean are dis-
played. After several measurements, the width of the in-
terval of means, which is a one-dimensional ellipsoid, con-
verges against the width of D and the stochastic uncertainty
is reduced. The estimated set after 20 measurement steps is
shown in Fig. 2(b). As can be seen clearly, the true ground
clearance of 180 m is within the set.

5.2 Localization of Mobile Robot

In this example, a vehicle moving on a 2D-plane is modeled.
The motion model is given by

1 1
x x cos(pr + we,,
o] = [e] s w7 [0 0T
Lrt1 Lk sin(pr, + we,)

with input vector 4, = [vg,¢r]T and zero-mean Gaus-
sian noise terms w,, and w,,. The robot takes distance
measurements to landmarks P; for localization, which is

descibed by the measurement model

=k~ P+ (@~ P2 4o

In this example, the standard Extended Kalman Filter is
compared to the Extended Kalman Filter for ellipsoidal sets.
Besides the random noise, the system is affected by system-
atic, deterministic errors in the measurement ¢ and in the
system input ¢;. Both errors are additive, where the mea-
surements are each influenced by an offset of 0.1 and ev-
ery system input is biased by the vector [0.05, (7/360)/2].
For simulation, they are assumed to lie within the ellip-
soids &(yx,0.025) and E(iy,,diag(0.01,7/360)), respec-
tively. For the standard EKF, they are ignored. The un-
known prior state is modeled as a credal set with the ellip-
soid £(eh, XP) with & = [-0.4,0.3]T and X}, = I. The

standard EKF is initialized with the true position @5 .

Simulation results are depicted in Fig. 3. The true trajec-
tory (blue), the estimation result of the standard Extended
Kalman Filter (red, dashed), and the fusion result of the
Extended Kalman Filter for ellipsoidal sets (green, dash-
dotted) are shown. It can be seen that the ellipsoids of the
means contain the fusion result of the standard EKF.



Figure 3: Localization example of Section 5.2. The Ex-
tended Kalman Filter for ellipsoidal Sets (green, dash-
dotted) and the standard Extended Kalman Filter (red,
dashed) are compared to the true trajectory (blue).

6 Conclusions and Future Work

Using a Bayesian estimator will not yield reliable results,
if besides random noise further unknown disturbances are
present. The dynamics and observations are then influenced
by unknown biases, which can vary over time. This paper
introduced a theoretical framework for modelling stochas-
tic and systematic errors simultaneously. This is achieved
by characterizing a random variable by a set of probability
densities instead of a single density. For additive stochastic
and systematic errors, these sets contain translations of one
density and can be parameterized by sets of means.

In the case of linear transition and observation models,
the Kalman filtering scheme was utilized and, by using el-
lipsoidal error bounds, an efficient estimator was obtained.
Sets of Gaussian densities allows the following interpreta-
tion [11]: The covariance characterizes the possible disper-
sion about a single estimated state, whereas the set of means
accounts for a possible deviation of the estimated state.

For nonlinear systems, a method for linearization was
proposed in order to apply an extended Kalman filter. Es-
pecially for high-dimensional systems, the herein used ap-
proximation points may represent the nonlinearities insuf-
ficiently. Therefore, nonlinear set-valued state estimation
will be the focus of further research. In addition, it seems
promising to enclose linearization errors by sets when ap-
plying an extended Kalman filter.

Of course, incorporating systematic error bounds does not
yield better estimation results, but allows insight into the
sensitivity towards non-stochastic disturbances.
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