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Flow control with the goal of reducing the skin friction drag on the fluid-solid interface
is an active fundamental research area, motivated by its potential for significant energy
savings and reduced emissions in the transport sector. Customarily, the performance of
drag reduction techniques in internal flows is evaluated under two alternative flow con-
ditions, i.e. at constant mass flow rate or constant pressure gradient. Successful control
leads to reduction of drag and pumping power within the former approach, whereas
the latter leads to an increase of the mass flow rate and pumping power. In practical
applications, however, money and time define the flow control challenge: a compromise
between the energy expenditure (money) and the corresponding convenience (flow rate)
achieved with that amount of energy has to be reached so as to accomplish a goal which
in general depends on the specific application. Based on this idea, we derive two di-
mensionless parameters which quantify the total energy consumption and the required
time (convenience) for transporting a given volume of fluid through a given duct. Perfor-
mances of existing drag reduction strategies as well as the influence of wall roughness are
re-evaluated within the present framework; how to achieve the (application-dependent)
optimum balance between energy consumption and convenience is addressed. It is also
shown that these considerations can be extended to external flows.

1. Introduction

Global issues such as depletion of energy resources and deterioration of natural envi-
ronment face the modern society with the task of saving energy without compromising
quality of life. Flow control opens up new possibilities to design and improve thermal-
fluid systems. In particular, turbulent skin-friction drag reduction, which is the focus of
the present paper, could have tremendous impacts on economy and ecology through in-
novation of energy-efficient fluid transport systems such as pipelines, high-speed vehicles,
and so forth, where consideration of energy and of its costs are becoming increasingly
important in flow control.
Up to now, various drag-reducing techniques, applied to the canonical turbulent chan-

nel or pipe flows, have been explored either through Direct Numerical Simulation (DNS)
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of the Navier–Stokes equations, or by laboratory experiments. In DNS, their control per-
formance has been evaluated while keeping constant in time either the flow rate (CFR) or
– less often – the pressure gradient (CPG). Several examples of the former approach exist,
starting from Jung et al. (1992) and Choi et al. (1994), whereas the CPG approach is for
example exemplified in Quadrio & Ricco (2011). The laboratory counterpart of such sim-
ulations is a set-up in which the flow rate is constantly measured and adjusted to remain
at a fixed value, or – alternatively – in which a constant pressure overhead drives the
flow. A pump with a characteristic operating curve would correspond to neither of these
states, with flow rate and prevalence both changing as the operating point is changed.
Imposing a constraint on either the flow rate or the pressure gradient is advantageous

from the standpoint of the mathematical formulation of the flow control problem. Taking
advantage of the CFR condition, for example, Fukagata et al. (2002) have derived a
mathematical relationship between the wall friction and various dynamical contributions,
later extended by Marusic et al. (2007) to the CPG condition. More recently, Bewley
(2009) and Fukagata et al. (2009) proved for straight ducts that under CFR the total
energy consumption (sum of pumping and control energy) is minimized when the flow
becomes laminar, indicating that the ultimate goal in drag reduction control for energy
saving is the complete relaminarization of the flow. For arbitrary-shaped ducts, where
secondary flow may be generated, Fukagata et al. (2009) demonstrated that Stokes flow
minimizes total power consumption.
Under the CFR condition, a successful drag-reducing technique effectively reduces

friction drag, which immediately translates into a reduction of the pumping energy. Since
by definition active control requires additional energy, recent investigations are shifting
their emphasis from the raw drag reduction rate R to the net energy saving rate S, which
corresponds to the reduction rate of the total energy consumption, and also the gain G,
defined as the ratio between the reduction of pumping energy and the control energy
input. Typical values of R, S and G achieved by existing active controls are summarized
by Kasagi et al. (2009). Similarly, Hœpffner & Fukagata (2009) propose to evaluate flow
control performance under CFR by using a power plane, in which the ordinate represents
the total energy consumption, whereas the abscissa is the difference between the pumping
and control energy. One important drawback of imposing the CFR constraint, however,
is that the wall shear stress, which is a dominant factor in near-wall turbulence dynamics,
is changed due to the applied control, so that it is difficult to extract the essential effects
of a control input itself due to superimposed Reynolds number effects. When the CPG
condition is used, on the other hand, friction drag is indeed unchanged by design, and
’drag reduction’ manifests itself through an increase of the flow rate, which implies an
increase in the power required to drive the flow.
From the industrial standpoint, the interest for drag-reduction strategies is accompa-

nied by difficulties of transferring techniques developed in academic research to practical
applications. Spalart & McLean (2011) have recently highlighted the need for the flow
control community to be aware of energy issues when proposing active techniques, and
advocated the importance of taking into account the combined effects of different factors
on the overall efficiency (or cost) of a system. In the present problem, two factors play
pivotal roles: flow rate and pressure gradient. The flow rate, kept constant in the CFR
approach, is an essential consequence of using a duct to transport a given amount of
fluid through the duct over a certain distance, and we term it convenience. The pressure
gradient, kept constant in the CPG approach, bears a direct relationship to the energy

consumption required to achieve that convenience. In real-life applications using flow
control, minimizing energy consumption for a given flow rate (the CFR approach) and
maximizing convenience for a fixed energy consumption (the CPG approach) are only
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Figure 1. Duct with constant cross-sectional area in the streamwise direction x.

two of the many possible strategies conceivable to balance the two intervening factors.
In general, the designer of a fluidic system would consider both convenience and energy
requirements, the relative value and cost of which will depend on the specific applica-
tion. The optimal use of a control technique is the one that achieves maximum value at
minimum cost, as determined by the designer.
The aim of the present paper is thus to develop a conceptual framework where an un-

equivocal assessment of (non necessarily active) flow control techniques against whatever
application-dependent value-for-money considerations will be possible. A new evaluation
plane is proposed in which both quantities, i.e. energy consumption and convenience, are
simultaneously and explicitly considered. This new plane can be viewed as an improved
version of the familiar Cf − Re plane, which describes in a dimensionless way how the
flow rate and the pressure gradient required to achieve that flow rate are related. In
the new plane, an analogous non-dimensional description relates the flow rate and the
energy expenditure required to achieve that flow rate, possibly including control energy.
Re-evaluating existing drag-reduction data by taking advantage of this plane will give us
new insight on their performance and on the way we have to go for flow control techniques
to become reality in applications.

2. Internal flows

2.1. Dimensional analysis

We shall consider a given fluid volume V ∗

f which has to be transported through a duct of
streamwise length L∗, as shown in Fig. 1, by means of a pressure gradient. (The asterisk
represents dimensional quantities throughout this paper.) The flow is assumed to be fully
developed. The cross sectional area A∗ and the wetted perimeter C∗ of the duct do not
vary along the streamwise direction x. The total wetted area is given by C∗L∗. The
hydraulic diameter D∗ is defined as D∗ = 4A∗/C∗.
According to the streamwise force balance, the time-averaged pressure gradient −Π∗

and the wall-shear-stress τ∗w are related as:

−Π∗A∗ = τ∗wC
∗. (2.1)

The time-averaged pumping power P ∗

p per unit wetted area is given by:

P ∗

p = −Π
A∗

C∗
U∗

b = τ∗wU
∗

b . (2.2)

Here, U∗

b is the bulk mean velocity, i.e. the time- and volume-averaged streamwise ve-
locity. Strictly speaking, Eq. (2.2) holds only if either the spatial average of the pressure
gradient or the volume average of the streamwise velocity is not time-dependent. For
other cases additional terms arise, which are however negligibly small unless the pressure
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Figure 2. Pumping energy E∗

p versus the inverse of the bulk mean velocity U∗

b , which reflects
the time needed to pump a given amount of fluid through a duct with a given cross section and
length. Starting from the non-controlled flow state N , successful flow control under CFR shifts
it to A, whereas successful flow control under CPG shifts it to B. Control at constant power
input (CPI, see text) shifts N to C.

gradient is actively varied, so that the correlation between the spatial average of the
pressure gradient and the bulk mean velocity becomes significant.
The operating time T ∗ required to transport the fluid volume V ∗

f across the duct is
given by T ∗ = V ∗

f /(A
∗U∗

b ), so that the pumping energy E∗

p per unit wetted area can be
written as:

E∗

p = P ∗

p T
∗ = τ∗w

V ∗

f

A∗
. (2.3)

The dimensionless friction coefficient Cf is defined as:

Cf =
τ∗w

1

2
ρ∗U∗

b
2
, (2.4)

where ρ∗ is the fluid density. Substituting Eq. (2.4) into Eq. (2.3), and denoting with
M∗ = ρ∗V ∗

f the total mass of the transported fluid, yields:

E∗

p =
M∗U∗

b
2Cf

2A∗
, (2.5)

In order to evaluate control performance in terms of energy consumption and conve-
nience, we start from the plot sketched in Fig. 2, where the vertical axis is pumping
energy E∗

p (and thus degree of energetic cost), and the horizontal axis is 1/U∗

b , which
represents the time for a fluid to travel over a unit length (and thus the degree of conve-
nience). In a laminar flow Cf ∝ U∗

b
−1 so that E∗

p ∝ U∗

b , which is plotted as a dashed line
in Fig. 2. In non-controlled turbulent flows, several empirical formulas exist that relate
Cf to U∗

b . For example, the Blasius correlation (Schlichting 1979) can be employed, from

which Cf ∝ U∗

b
−1/4 and E∗

p ∝ U∗

b
7/4, which is depicted by a solid line in Fig. 2. The ob-

jective of turbulence control is to achieve a flow state located in the region left/below the
solid line. This plot naturally emphasizes that reduced energy consumption can easily be
achieved when one is willing to sacrifice convenience, i.e. wait longer for a certain amount
of fluid to arrive, and that high convenience, i.e. extremely fast transport, increases the
energy requirements significantly.
Suppose control is applied to the non-controlled flow state labeled as N in Fig. 2. When

the bulk mean velocity is kept constant (CFR), the control shifts N along the vertical
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Figure 3. Total energy E∗

t versus the inverse of the bulk mean velocity U∗

b . The vertical shifts
from A and B in Fig.2 to A′ and B′ correspond to the energy E∗

c required by the control
technique.

arrow to, say, A. The reduction of E∗

p , i.e. the distance |NA| between points N and A,
is equivalent to drag reduction rate R. On the other hand, under the CPG condition,
Eqns. (2.3) and (2.1) indicate that E∗

p also remains constant. Therefore, successful control
shifts N along the horizontal arrow to B. (E∗

p is pumping energy per unit fluid volume:
with drag reduction under CPG, pumping power is increased, but operation time is
decreased, being inversely proportional to the flow rate. Energy, which is pumping power
multiplied by operation time, is constant.)

The dash-dotted line connecting the origin and flow state N represents the locus of
points where the pumping power, i.e. the pumping energy divided by the operating time,
remains constant. A shift to point C along the arrow in Fig. 2 therefore corresponds to a
controlled state that requires the same power input as the non-controlled state (constant
power input, CPI), while providing at the same time larger flow rate and smaller pumping
energy.

If the flow control technique is of the active type and thus requires energy to operate,
its energy input E∗

c must enter the picture. In order to account for E∗

c , Fig. 2 with
just pumping energy E∗

p is replaced by Fig. 3, where the total energy E∗

t = E∗

p + E∗

c

is used on the vertical axis. The paths for a controlled flow state under constant flow
rate and constant pressure gradient are shown by the arrows NA′ and NB′. The solid
and broken lines for non-controlled turbulent and laminar flows are the same as those
in Fig. 2, since E∗

t = E∗

p . The additional control energy input E∗

c is reflected in Fig. 2
by the shift of points A and B in the vertical direction to A′ and B′, respectively. Of
course, the two E∗

c shown in Fig. 3 are not generally identical. In this plot the distance
|NA|, corresponds to the conventional drag reduction rate R under CFR, while |NA′|
reflects the net energy savings S and the ratio |NA| / |A′A| the energy gain G. In a similar
manner, |NB| explains the decrease in Cf achieved under CPG owing to the increase in
flow rate, whereas |B′B′′| quantifies the portion of that increase that is due to successful
flow control and |NB| − |B′B′′| is the remaining portion due to the increase in pumping
energy.

According to Bewley (2009) and Fukagata et al. (2009), the total energy consumption
at a given flow rate is minimized when the flow becomes laminar. Therefore, no flow
state can be located below the laminar curve, i.e., in the grey region in Fig. 3. We also
note that, in analogy to Fig. 2, a line connecting the origin in Fig. 3 and any point along
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Figure 4. An energy-convenience plane with isolines of typical cost functions F represented by
dotted lines; a) F = E∗

t , b) F = 1/U∗

b , c) F = (E∗

t )
2 + (1/U∗

b )
2. An admissible region defined

by (E∗

t )max and (1/U∗

b )max affordable in the application is depicted by a square bounded by
a dashed line. The flow state N is optimal for uncontrolled flow, while the laminar state X
provides the minimum achievable value of the cost function by flow control.

the non-controlled curve represents flow states with the same total power consumption
(CPI).
By looking at the plane depicted in Fig. 3, it becomes readily evident that several paths

are possible to move the flow state from the non-controlled point N towards the laminar
curve. The three particular ones considered so far, i.e. the CFR, CPG and CPI straight
lines, are not the only ones, and not necessarily the best ones: only application-specific
considerations allow the designer to favor one particular strategy. However, the energy-
convenience plane is a natural workspace where the chosen strategy can be represented
in terms of an application-dependent cost function F = F(E∗

t , U
∗

b ) to be minimized.
Three energy-convenience maps with typical cost functions are shown in Fig. 4 a) -

c). The dotted lines represent the isolines of each cost function. The minimization is
first constrained by the maximum affordable energy expenditure (E∗

t )max and by the
maximum affordable inconvenience (1/U∗

b )max. This avoids a trivial solution such as
U∗

b = 0 or E∗

t = ∞ when the cost function includes only one of the two competing
factors, i.e., E∗

t and U∗

b . These constraints yield the admissible region bounded by a
dashed line in Fig. 4, and the optimal flow state should exist either inside the region or
on its boundary.
First, we consider the case where F = E∗

t as shown in Fig. 4 a). When control is
not applied, only the flow states on the uncontrolled turbulent curve are realizable. In
this case, point N shown in Fig. 4 a) provides the minimum value of F , and is therefore
optimal. The downward arrow from pointN shows the local gradient of F , indicating that
a control strategy changing the flow state in this direction is most effective to decrease
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the objective function. This particular choice of F corresponds to the CFR condition.
Since flow states below the laminar curve cannot be realized, the lower-bound of F is
obtained at point X on the laminar curve.

Similarly, when F = 1/U∗

b , the optimal flow state without control is given by the
intersection point N of the turbulent curve and the upper boundary of the admissible
region as shown in Fig. 4 b). In this case, the local gradient of F indicates that enhancing
U∗

b under the constant E∗

t is the optimal strategy. If the applied control is passive or E∗

c

in active control is negligibly small, E∗

t is equivalent to E∗

p , so that the optimal control
strategy results in the CPG condition. Again, the minimum F is achieved at point X on
the boundary of the admissible region.

As a less obvious example, Fig. 4 c) shows isolines of F = (E∗

t )
2 + (1/U∗

b )
2, where

the energy saving and the convenience are considered to be equally important. The
optimal flow state N without control, as well as the optimal state X with control, are
located inside the admissible region; the local gradient of F is always pointing towards the
origin, indicating that the control under the CPI condition is locally the optimal strategy.
However, this example also highlights that the minimum of F at X is reached along a
non-trivial curve that does not correspond to the global CPI constraint. In general, the
possible maximum reduction of the cost function is given by F(N) − F(X), and the
performance η of a control that leads to a certain flow state Y shown in Fig. 4 c) can
be expressed with respect to its potential, by computing the ratio between the realized
reduction of F and the maximum possible reduction, i.e.

η =
F(N)−F(Y )

F(N)−F(X)
.

2.2. Non-dimensional analysis

The E∗

t − U∗

b
−1 plane described above is useful to evaluate energy saving and conve-

nience achieved in a given flow system by flow control; however, it is not universal, since
the variables on both axes are dimensional. Its practical value is largely increased by
introducing a non-dimensional version through appropriate hydrodynamic quantities.

The horizontal axis can be easily made dimensionless by using ν∗/(U∗

bD
∗) = Re−1

D ,
where ReD is the diameter-based Reynolds number and ν∗ is the fluid kinematic viscosity.
To deal with the vertical axis, we first introduce an effective wall friction τew

∗ based on
the total power consumption P ∗

t = P ∗

p + P ∗

c :

τew
∗ =

P ∗

t

U∗

b

= τ∗w +
P ∗

c

U∗

b

.

The effective friction τew
∗ reduces to the conventional friction τ∗w in absence of active

flow control; its higher values in actively controlled flows reflect the energetic cost of the
control. Employing Eq. (2.5), the total energy consumption E∗

t is obtained by simply
replacing Cf with Ce

f as:

E∗

t =
M∗U∗

b
2Ce

f

2A∗
, (2.6)

where Ce
f is the effective friction coefficient defined in analogy to (2.4) as:

Ce
f =

τew
∗

1

2
ρ∗U∗

b
2
. (2.7)
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Thus, the vertical axis may be interpreted as an effective friction coefficient:

Ce
f =

2A∗E∗

t

M∗U∗

b
2
. (2.8)

and the plane described in Fig. 3 becomes analogous to the conventional Cf −Re plane,
with the added benefit of including the energetic cost of the control.
However, like in the usual Cf − Re plane, the above form is still not suitable for the

present purpose, since the measure of convenience, i.e., U∗

b , appears explicitly in the
denominator of Ce

f . In order to avoid this, multiplication of Eq.(2.8) with Re2D results in:

Ce
fRe2D =

2A∗E∗

t

M∗(ν∗/D∗)2
. (2.9)

This way, E∗

t is non-dimensionalized by the fluid viscosity and geometrical properties of
the duct only.
Fig. 5(a-c) graphically illustrates the transformation from the well established Cf −Re

plane to the non-dimensional version of the E∗

t − U∗

b
−1 plane, through the intermediate

step of the CfRe2−Re−1 plane. Plotted in Fig. 5 are also a number of existing datasets,
for which information about raw and net drag reduction are available. The Colebrook-
White correlation (Colebrook 1939) for two different wall roughnesses is also shown. Since
most of the drag reduction results correspond to channel flows, the bulk Reynolds number
of a channel flow, Rem, based on the full channel height and U∗

b , is used. For data obtained
in pipe flows (Colebrook 1939; Virk et al. 1974; Lee et al. 1974) the Reynolds number is
corrected based on the ratio between the Dean correlation for a turbulent channel flow
(Dean 1978) and Prandtl’s universal law of friction for smooth pipes (Schlichting 1979),
to obtain a collapse of the corresponding correlations in the laminar and the turbulent
regime.
Note first that the vertical axis of Fig. 5b) corresponds to the square of the von

Karman number: Ka2 = CfRe2m. Historically, the Prandtl–von Karman plot, i.e. 1/
√
f

vs. Re
√
f = Ka with f = Cf , has often been used to describe the relation between

pressure drop and flow rate in a fluid system operated under CPG. The Virk asymptote
for maximum drag reduction with polymer additives (Virk et al. 1974) is for example
given in these coordinates. Except for proportionality constants, the Prandtl–von Karman
plot corresponds to U+

b = U∗

b /uτ versus Reτ = uτH
∗/2ν∗ for a duct with fixed geometric

properties; this indicates that the energy input (given by the pressure gradient and thus
the wall friction velocity uτ =

√

τ∗w/ρ
∗) is used to obtain the values on both axes. In

contrast, the dimensionless energy–convenience plane proposed here effectively decouples
energy and flow rate on the two axes, and is therefore inherently superior in the context
of flow control.
The final plane, i.e. that depicted in Fig. 5c), accounts for the total energy consumption

through Ce
f . The curves representing laminar and turbulent flow states remain unchanged

from Fig. 5b) to Fig. 5c), since E∗

t = E∗

p and Ce
f = Cf ; however, points corresponding to

active flow control techniques are shifted upwards to account for the additional energy
requirement.
In Fig. 5 any point located below the solid line representing the non-controlled turbu-

lent state corresponds to a case of successful flow control. The comparison between a)
and b) with c) reveals that the term “successful” depends on whether drag reduction or
energy saving is defined as the goal of the applied control. As an example, spanwise wall
oscillations (Quadrio & Ricco 2004) and streamwise traveling waves of spanwise motion
(Quadrio et al. 2009) can yield, for certain choices of parameters, large reductions of
drag but negative net energy savings. These points are located below the turbulent line
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Figure 5. Friction coefficient versus Reynolds number (a) including a number of avail-
able literature data (Colebrook 1939; Virk et al. 1974; Lee et al. 1974; Delfos et al. 2011;
Grüneberger & Hage 2011; Garcia-Mayoral & Jiménez 2011; Frohnapfel et al. 2007; Itoh et al.
2006; Quadrio & Ricco 2004; Quadrio et al. 2009; Iwamoto et al. 2002; Min et al. 2006) and its
evolution towards a nondimensional form of the suggested energy savings versus convenience
plane (c) of Fig. 3 where (b) corresponds to the nondimensional form of Fig. 2.

in part a) and b) and above the turbulent line in part c) of the figure. In Fig. 5a) and
b) one point is located below the dashed line representing the laminar flow state, and
corresponds to the result of Min et al. (2006), where sublaminar drag is realized by the
introduction of an upstream traveling wave of blowing and suction. As in Fig. 3, val-
ues below the laminar line are not allowed in Fig. 5c), and the point is shifted upwards
accordingly when the energy used for the generation of the wave is taken into account.
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Figure 6. Expanded energy-convenience map for the region of low Reynolds numbers (linear
scale).

The influence of wall-roughness can be evaluated in a similar manner: Assume that
a certain amount of fluid has to be transported through a given duct with a given
total power input. The intersection points of the objective function with the curves for
different wall roughnesses indicate which additional cost (energy consumption) and time
requirements arise due to a rougher surface in the duct, or which decrease in cost and
improvement in time performance can be obtained by using a smoother surface.
Except for additives, data included in the plot are clustered at lower Reynolds number

(where DNS and experiments are more easily carried out) and quite close to the turbulent
line. In order to better reevaluate these results, a zoom of the energy-convenience map
centered at the low Reynolds numbers is shown in Fig. 6 with linear scale. With increasing
convenience, i.e., the Reynolds number, the curve for the uncontrolled turbulent flow
rapidly rises. This corresponds to an increase in the required pumping energy to drive
the turbulent flow. Such a trend is difficult to extract from the conventional Cf − Re
plot, where Cf monotonically (although gradually) decreases with increasingRe. It is also
evident that the amount of energy saved by active control at higher Reynolds number is
much larger than that at low Reynolds number. This is because the energy consumption
shown in the ordinate is proportional to not only Ce

f itself, but also Re2. In particular,
the control technique based on streamwise-traveling waves of spanwise wall velocity are
observed to yield significant energy savings at relatively high values of Re.

3. External flows

The above discussion for internal flows can readily be extended to external flows, as
long as we limit ourselves to considering friction drag. In order to demonstrate the idea,
a solid body moving through a quiescent fluid (an airplane, for example) is simplified
to a flat plate which moves from point A to point B at zero angle of attack, where
the distance between the two points is denoted as L∗. The traveling speed of the flat
plate is U∗

∞
, while the streamwise length and total area of the flat plate are given by ℓ∗

and S∗, respectively (see Fig. 7). Since pressure drag does not arise on such an airfoil
with infinitesimal thickness, the force F ∗ acting on the moving plate is attributed to the
friction drag only, which is given by

F ∗ =

∫

S∗

τ ′∗w ds, (3.1)
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U
∞

* U
∞

*

wall friction τ
w

*

plate length l*

fluid-contacting
area  S*

Figure 7. Schematic of a flat plate moving at speed U∗

∞ at zero angle of attack.

where τ ′∗w is the wall shear stress, which varies along the plate. By defining a local friction
coefficient as:

C′

f =
τ ′∗w

1

2
ρ∗U∗

∞

2
. (3.2)

the propulsion energy E′∗

p per unit of fluid-contacting area required for the plate to travel
a unit distance can be written as:

E′∗

p =
1

S∗

∫

S∗

τ ′∗w ds = τ ′∗w =
1

2
ρ∗U∗

∞

2C′

f . (3.3)

where the over-bar denotes the spatial average over the plate.
Following the discussion for internal flows, convenience is defined as the traveling time

per unit distance, i.e. 1/U∗

∞
, so that the corresponding dimensionless parameter is 1/Reℓ,

where the Reynolds number of a flat plate is defined as Reℓ = U∗

∞
ℓ∗/ν∗. Similarly, the

dimensionless parameter for energy consumption is defined as:

C′

fRe2ℓ =
E′∗

p

1

2
ρ∗U∗

∞

2

(

U∗

∞
ℓ∗

ν∗

)2

=
E′∗

p ℓ∗2

1

2
ρ∗ν∗2

(3.4)

Therefore, the CfRe2-Re−1 plane introduced for internal flows in the previous subsection
can also be used for external flows. In order to take into account the energy consumption
for control, we again introduce the equivalent wall friction τ ′ew

∗

as:

τ ′ew
∗ = E′∗

t = E′∗

p + E∗

c = τ ′∗w + E∗

c . (3.5)

Hence, by replacing τ ′∗w with τ ′ew
∗

in Eq. (3.2), we can easily extend the Ce
fRe2−Re−1

plane to external flows.

4. Concluding discussion

The optimization problem of flow control involves an interplay between energy saving
and convenience, or – more generally – money and time. Starting from this observation,
a methodology for assessing flow control techniques for skin-friction drag reduction is
proposed. We derive two dimensionless parameters, i.e., Ce

fRe2 and Re−1, which express
the cost of the total energy consumption and the convenience for transporting a fluid
through a duct with a certain cross-sectional geometry. Any controlled flow state can be
represented in the two-dimensional plane composed by these two dimensionless quantities,
without the need of imposing a constraint on the flow condition. The theoretical lower
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bound of the total energy consumption under a constant flow rate derived by Bewley
(2009) and Fukagata et al. (2009) is naturally integrated into the plot.
The suggested “energy-convenience plane”, which can also be used for external flows,

extends the comparison of flow control techniques beyond the constant flow rate approach
often used in literature up to now (Hœpffner & Fukagata 2009; Kasagi et al. 2009), and
allows the inclusion of application-specific cost functions such that the control perfor-
mance can be judged in respect to a specific application. Practically, the overall cost
should account for not only the energy consumption for pumping and control, but also
fabrication, implementation and maintenance of sensors, actuators, polymers, surface
structures and so forth. Since the vertical axis in the energy-convenience plane is defined
as the energy consumption per unit fluid volume, additional initial and maintenance
costs per unit fluid volume can be considered in a straightforward manner.The presented
framework allows designers to easily include the energetic costs due to fluid transport
into a budget and thus decide which target flow state provides the best economical choice
for a specific application.
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