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Abstract. A series of direct numerical simulation has been made of turbulent flow over
hydrophobic surfaces, which are characterized by streamwise periodic micro-grooves. By
assuming that the size of micro-grooves is much smaller than the typical length-scale of near-
wall turbulent structures, the dynamical boundary condition is expressed by a mobility tensor,
which relates the slip velocity and the surface shear stress. Based on the derived mathematical
relationship between the friction drag and different dynamical contributions, it is shown how
the turbulence contribution can be extracted and analyzed.

1. Background

Previous studies have shown that a hydrophobic surface has considerable potential for friction
drag reduction. In general, a hydrophobic slip effect can be achieved by fabricating nano- or
micro-scale structured cavities on the surface. Small gas bubbles are trapped inside the cavities,
over which a liquid flow experiences almost zero shear stress, while the no-slip condition holds
at the top of the protrusion of the structured surface. When the Reynolds number is sufficiently
small so that the flow remains laminar, analytical expressions for [ over alternating slip and
no-slip boundary conditions with different variational patterns have been obtained for the case
of the Stokes limit by e.g., Philip (1972) and Lauga & Stone (2003).

Considering that most engineering flows are turbulent and that friction drag generally
becomes larger there, application of a hydrophobic surface to turbulent flow is of great interest.
Usually, the typical length-scale of the structured surface is much smaller than that of a flow,
so that the velocity boundary condition over a hydrophobic surface is modeled as follows:

where [ is the so-called slip length, which relates the slip velocity at the wall, u,,, with the
wall-normal gradient of u,, at the wall (subscript w). Several numerical simulations by Min &
Kim (2004) and Fukagata et al. (2006) show that, in turbulent flows, slip in the streamwise
direction leads to a drag reduction effect similar to that in laminar flows, while slip in the
spanwise direction causes increased friction drag due to modification of the near-wall turbulent
structures. These studies imply that a hydrophobic surface would cause not only slip in the
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Figure 1. Computational domain and coordinate system

streamwise direction which directly results in drag reduction, but also modification of the
turbulence dynamics providing a secondary effect on the skin friction drag. Although recent
simulations study different geometric patterns of alternating slip and no-slip boundary conditions
in turbulent flows (Martell et al. (2009)), their effect on the turbulence dynamics have not been
investigated in detail.

In the present study, we systematically change the geometric pattern of no-slip and slip
boundary conditions in order to investigate this effect on the turbulent skin friction drag. In
order to quantify the two different contributions, which arise from the finite slip velocity and the
modified turbulence, to the skin friction drag, we extend the so-called FIK identity (Fukagata
et al. (2002)) to a hydrophobic surface. Through the present analysis, we aim at obtaining
general knowledge on spatially varying slip patterns which diminish the turbulent friction drag.

2. Mathematical relationship between the bulk mean velocity and different
dynamical contributions

2.1. No-slip surface

Fukagata et al. (2002) derived a general mathematical relationship between the skin friction
coefficient, Cy, and different dynamical contributions in wall-bounded flows. Throughout this
paper, the streamwise, wall-normal and spanwise coordinates are denoted as z, y and z,
respectively, as shown in Fig. 1. The averaged streamwise momentum equation for a fully
developed channel flow is given by:

0— op a<1au

- - P Py 2
8w+8y Re Oy uv), 2)

where all quantities are normalized by the bulk mean velocity U, and the channel half depth ™.
An asterisk denotes a dimensional quantity. A variable with an over-bar represents an averaged
quantity in homogeneous directions, i.e., x, z and also time ¢, while a variable with a prime
deviation from an averaged quantity. The Reynolds number is defined as Re = U;¢*/v*. By
applying triple integration to the above equation and taking into account no-slip conditions at
top and bottom walls, the following identity can be obtained:
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where p* and 7, are the fluid density and the wall shear stress, respectively. The first term
on the right-hand-side corresponds to laminar drag and is constant once the flow rate is fixed,
whereas the second term represents additional drag due to turbulence. The Reynolds shear
stress w/v/ which is weighted by y implies that the Reynolds stress near the wall contributes
more to the skin friction drag than that in the central region of the channel.

2.2. Hydrophobic surface

When discussing the skin friction drag reduction, C'y is usually compared under a constant flow
rate. However, this turns out to be not convenient to analyze a flow over a hydrophobic surface
due to the presence of a slip velocity at the wall. A typical mean velocity profile between two
parallel hydrophobic surfaces is illustrated in Fig 2. Due to a non-zero streamwise slip velocity
Uy = Uy, the total bulk mean velocity Uy is given by Uy = U,, + U,, where we refer to U, as
the relative bulk mean velocity. From the viewpoint of turbulence dynamics, U, (or the wall
shear stress) plays an essential role. Hence, we consider a flow field under a constant pressure
gradient instead of a constant flow rate, so as to keep the wall shear stress constant regardless
of the boundary condition at the hydrophobic surface.

YA

Figure 2. A conceptual mean velocity profile between two parallel hydrophobic surfaces.

When the mean pressure gradient is kept constant, the increase in mass flow rate is a measure
for the effectiveness of a certain hydrophobic surface. The FIK identity (3) results in the following
relationship between U, and the weighted integral of the Reynolds shear stress:

Re 1 [Rer yt ———
+ T _ - IS Ve S o 4
U, 3 5 /—ReT Re. wTTdy T (4)

Here, the friction Reynolds number is defined as Re, = ukdé*/v*, where uf is the friction
velocity. The superscript + denotes a quantity normalized by viscous wall units. The first
term corresponds to the bulk mean velocity for the laminar flow over a no-slip surface, while the
second term represents suppression of the bulk mean velocity due to turbulence. Consequently,
the total bulk mean velocity U, ™ can be represented as:

Ub+ — Uw++Ur+
Re, 1 [Rer o ———
_ + T _ = AL e
= i 2/RETReTuvdy (5)
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In deriving the above equation, we use the relationships of U) = [} (dut/oy"), and
(Ou™/Oyt)w = 1, where I} is the effective slip length. In a laminar flow, the third term,
i.e., the turbulent contribution, is absent so that U, can be enhanced only by increasing the slip
length 7. In a turbulent flow, however, the third term becomes dominant. Therefore, we expect
an additional effect of hydrophobic surfaces on friction drag in turbulent flows.

3. Numerical Procedures

3.1. Numerical method

We consider a fully developed turbulent channel flow between two parallel plates as shown in
Fig. 1. Periodic boundary conditions are imposed in the z and z directions. The governing
equations for the velocity field are given by the Navier-Stokes and continuity equations:

u; | Ouju;)  Op 1 Ouf

(‘3t + 8$j B 8%2 + Re 833j8$j’ (6)
aui .
. = O (7)

Here, all quantities are normalized by the friction velocity w} and the channel half width ¢*.

As discussed in Sec. 1, a hydrophobic surface is characterized by alternating slip and no-
slip surfaces caused by micro-scale structured cavities on the surface. Since resolving such
small structures is quite expensive, the dynamical effect of a hydrophobic surface is modeled by
introducing a generalized slip boundary condition. Such a strategy is valid, when the typical
length-scale of surface structure is sufficiently smaller than that of the near-wall turbulence.
Actually, the recent experimental results show that significant drag reduction is obtained when
the roughness periodicity is less than five in wall units (Daniello et al. (2009)).

As for the surface-normal direction, a non-permeable condition is imposed so that

up =0 at y=1and — 1. (8)
The slip boundary conditions along the wall can be generally expressed as:
Uy = M’iijjv (9)

where 7,5 = 1 or 3 and M;; is a mobility tensor, which relates the local tangential shear stress
and the slip velocity. The mobility tensor for a given surface geometry is derived in Sec. 3.2.

3.2. Mobility tensor at a hydrophobic surface

In simple geometry, analytical solutions for Stokes flow exist. For periodic grooves parallel to
the streamsiwe direction as shown in Fig. 3, the exact expression for the effective slip length [,
(Philip (1972)) is given by:

% = ;log [cos {g(l - gbs)H ; (10)

where ¢s = a/L is the solid fraction, while a and L are the width of solid-liquid interface and the
roughness periodicity, respectively. In the limit of vanishing solid fraction, i.e., ¢s — 0, Eq. (10)
is approximated by le ~ L (Ybert et al. (2007)). In order for the present slip model to be
valid, L should be smaller than the viscous layer thickness, and therefore [~ should not exceed
five approximately. It should be also noted that, in the case of periodic grooves perpendicular
to the flow direction, the slip length reduces by half from the value given by Eq. (10) (Lauga &
Stone (2003)).
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Figure 3. Schematic of a liquid phase over a hydrophobic wall.

Figure 4. micro-grooved surface with an inclination angle 8 with respect to the direction of a
mean pressure gradient

If we consider micro-grooves tilted at a certain angle 6 with respect to the direction of a mean
pressure gradient (or free stream) as shown in Fig. 4, we can derive a relationship between the
slip velocity u,, and the shear stress 7, at a hydrophobic surface for an arbitrary value of 6.

The unit vector parallel to the micro-grooves is denoted ¢;, while the normal vector n;. They

are respectively written as:
cosd —sinf
tj_( sinﬁ)’ nj_( cos 0 ) (11)

We assume that the effective slip lengths in the directions of ¢; and n; are given by l; and [,,,
respectively. In addition, it is also assumed that the flow near the hydrophobic surface, i.e.,
within the viscous sublayer, can be approximated by a Stokes flow. This allows us to estimate
the slip velocity by linear superposition of the shear stresses in the two orthogonal directions ¢;
and n; as follows:

U = U (Twi - ti)tj + ln(Twi - ni)nj. (12)
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free slip

Figure 5. Schematic of a hydrophobic surface with the maximum inclination angle 6,4, with
respect to the direction of a mean pressure gradient

Substituting Eq. (11) into the above equation, we obtain:

Uw1
Uw3

= 14(Tw1 cos O + Ty3sin ) ( :?I?z )

+ lp(—Tw18in0 + 73 cos ) ( —C(s)lsneﬁ )

_ l; cos® 0 + 1, sin? 6 l;sinf cosf — 1, sinf cos b Twl (13)
o l;sinfcosf — [, sin 6 cos 0 l;sin 0 + 1, cos? Tw3

The above equation can be simplified to Eq. (9), where M;; is the mobility tensor given by:

(14)

Moo — Iy cos? 0 + 1, sin? 0 l;sinfcosf — [, sin 6 cos 6
W\ Iysinfcos@ — 1, sinf cos 0 lysin? 6 + 1, cos? 6 ’

which relates the slip velocity and the shear stress at a hydrophobic surface.

3.3. Numerical scheme and test conditions

Equations (6)-(7) are solved by a pseudo-spectral method (essentially the same as that of Kasagi
et al. (1992)), where Fourier expansion is employed in the z and z directions, while Chebyshev
polynomials in the y direction. For time advancement, the second-order Adams-Bashforth
and Crank-Nicolson methods are used for the convection and diffusion terms, respectively.
All calculations are conducted under a constant pressure gradient with the friction Reynolds
number of Re; = u2d*/v* = 150. The computational domain size is 2.57¢ and 70 in the z and
z directions, respectively.

We consider a spatially varing pattern of micro-grooves as shown in Fig. 5. The geometric
pattern is characterized by a single sinusoidal wave in the streamwise direction, while the width
and depth of cavities are kept constant. Since the liquid in the vicinity of the hydrophobic
surface tends to flow along the direction with the least resistance, i.e., parallel to the local micro-
grooves, it is expected that such a geometry reproduces a spanwise slip velocity oscillating in
the x direction, which might resemble the introduction of a spanwise wall velocity that is known



13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 022028 doi:10.1088/1742-6596/318/2/022028

Table 1. Contributions from the different dynamical contributions in Eq. (5) to the bulk mean
velocity
Omaz no-slip 0 ©/8 27/8 3m/8 4n/8 b5mw/8 67/8 Tw/8
(1) 1 0.0 5.0 4.9 4.7 4.5 4.1 3.7 3.3 2.9
(2) Re;/3 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
(3) nydy -34.9  -35.7 -35.8 -35.8 -35.8 -35.8 -36.1 -36.0 -36.4
(1)+(2)+(3) 153 193 191 190 186 183 17.6 17.3 16.5
U:‘(DNS) 15.1 19.0 19.0 188 185 182 176 17.1 16.5

to cause significant drag reduction by suppressing near-wall turbulence (Viotti et al. (2009);
Quadrio et al. (2009)). The steamwise oscillation period is set to be L = 1178, which is close
to a optimal wavelength reported in Viotti et al. (2009). The maximum angle 6,4, of parallel
grooves with respect to the flow direction is systematically changed as 6,4, = (n/8)m, where
n = 0—7. Here, the case with n = 0 corresponds to the streamwise parallel grooves. The effective
slip length in the tangential direction of the micro grooves is set to be I;- = 5, whereas that in
the normal direction is given by I} = I/ /2 = 2.5 in accordance with the analytical solution of
the Stokes flow (Lauga & Stone (2003)). The generalized slip condition given by Eq. (8, 9) is
implemented by taking into account the spatial change of 8 in the streamwise direction.

4. Results

In Table 1, the contributions from the different dynamical effects in Eq. (5) to the bulk mean
velocity are summarized. In all cases, the bulk mean velocity estimated by the sum of three
terms on the right-hand-side of Eq. (5) agrees well with that obtained by DNS within deviation
of 2%. This fact ensures that the flow fields reach fully developed states and validates the
identity (5). We also note that the second term, i.e., the laminar contribution, is identical in all
cases, since the friction Reynolds number is kept constant.

For a no-slip surface, only the second and third terms have non-zero values due to the absence
of the surface slip. It is found that the third term, i.e. the turbulence contribution, has large
magnitude, so that the resultant bulk mean velocity is significantly reduced from that for the
laminar flow. This suggests a possibility of achieving significant increase of the bulk mean
velocity by modifying turbulence. Compared with a no-slip surface, the bulk mean velocity
over a hydrophobic surface with streamwise parallel grooves i.e., 04, = 0 is increased by
AUbJr ~ 4.0. This increase in the bulk mean velocity is attributed to the changes in the first
and second terms in Eq. (5). For the straight streamwise grooves, I} = [, = 5.0 according to
Eq. (14), and this can be confirmed in Table 1. The third term of Eq. (5), i.e., the turbulent
contribution, is found to be enhanced over a hydrophobic surface. For the straight grooves, the
spanwise effect slip length is given by I} = [;f /2 = 2.5. Tt is known that the spanwise slip causes
drag increase by enhancing near-wall vortical motions (Min & Kim (2004)). The enhancement
of the turbulence contribution in the present study also agrees fairly well with the theoretical
prediction by Fukagata et al. (2006).

For a hydrophobic surface with streamwise oscillating grooves, the first term, i.e., I, is
gradually decreased with increasing 6,,,,. This is mainly because the spatial average of Mj; in
Eq. (14) is decreased with increasing €,4,. In contrast, the negative value of the third term,
i.e., the turbulent contribution, is gradually enhanced with increasing 6,,,, and thus increasing
spanwise slip length. In the present study, the suppression of turbulence due to the introduction
of a spanwise wall velocity which sinusoidally varies in streamwise direction is not observed.
Since both the first and third terms of Eq. (5) are decreased with increasing 6,4z, the resultant
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Figure 6. Instantaneous velocity at a hydrophobic surface with spatially oscillating micro-
grooves at Oqe = 37/8. a) streamwise and b) spanwise velocity components

bulk mean velocity is monotonically decreased with increasing 6,4

In Fig. 6, an instantaneous velocity field at a hydrophobic surface with streamwise oscillating
micro-grooves at Oy,q, = 37/8 is shown. It is confirmed that a spanwise velocity oscillating in
the streamwise direction is induced by the spatial pattern of micro-grooves. However, the typical
amplitude of the spanwise slip velocity is about w™ = 1.0 (see, Fig. 6 b), where the black lines
represent wt = 0), and this is much smaller than that used in the previous studies (Viotti et
al.  (2009); Quadrio et al. (2009)). As a result, the near-wall streaks are hardly altered by
the spanwise surface velocity as shown in Fig. 6 a). This would be a primary reason why the
turbulent contribution term is not affected by the present hydrophobic surface. It should be
also noted that the spanwise velocity at a hydrophobic surface is characterized by superposition
of a spatially-periodic coherent component and a random fluctuation, while the spanwise wall
velocity employed in the mentioned previous studies has only a coherent component. With
increasing 6,42, M22 in Eq. (14) is increased, so that the effect spanwise slip becomes larger.
Considering the fact that the spanwise slip contributes to drag increase, it is also possible that
this compensates the drag reduction effect of the streamwise oscillating slip velocity.

5. Conclusions

In order to extract different dynamical contributions to turbulent skin friction at a hydrophobic
surface, we extend the so-called FIK identity (Fukagata et al. (2002)) originally developed for
a no-slip surface. By keeping the pressure gradient constant, a simple identity for the resultant
bulk mean velocity is derived. The present identity indicates that the bulk mean velocity over a
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hydrophobic surface is determined by three dynamical effects, i.e., the effective slip length, the
laminar and turbulent contributions. In the present study, this identity is applied to hydrophobic
surfaces with streamwise oscillating micro-grooves. It is found that the bulk mean velocity is
increased mainly due to increase in the effective slip length, while the turbulent contribution is
almost unchanged by the spatial pattern of micro-grooves. Further research will be carried out
with the goal to indentify whether surface geometries for hydrophobic surfaces can be designed
in such a way that they lead to significant suppression of the turbulence contribution to the skin
friction drag.
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