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A central goal of flow control is to minimize the energy consumption in turbulent
flows and nowadays the best results in terms of drag reduction are obtained with the
addition of long-chain polymers. This has been found to be associated with increased
anisotropy of turbulence in the near-wall region. Other drag reduction mechanisms
are analysed in this respect and it is shown that close to the wall highly anisotropic
states of turbulence are commonly found. These findings are supported by results of
direct numerical simulations which display high drag reduction effects of over 30%
when only a few points inside the viscous sublayer are forced towards high anisotropy.

1. Introduction
The question of how wall-bounded flows can be controlled with reasonable cost

is of fundamental and practical importance since it is directly related to viscous
drag and heat transfer processes. The most effective flow control with respect to
minimizing the viscous drag is achieved by the addition of long-chain polymers. With
a polymer concentration of only a few p.p.m., drag reductions (DR) of up to 80% can
be achieved. Recently, it was shown that the drag reducing mechanism of polymers
can be related to highly anisotropic states of near-wall turbulence (Jovanović et al.
2006). In this work we analyse available data sets from direct numerical simulations
(DNS) for other DR phenomena in this respect and show that these techniques
have a common feature. This common mechanism of drag reduction is validated in
a channel flow simulation with forced boundary conditions in the near-wall region.
The identification of a common mechanism for drag reduction can serve as a design
criterion in the development of new flow control techniques. In spite of existing
mechanisms that lead to high DR, new developments are needed since each of the
existing techniques has a limited application area, e.g. for environmental reasons flow
additives cannot be used in outer flows.

2. Anisotropy-invariant mapping of wall turbulence
The level of anisotropy of turbulence can be quantified, following the analysis of

Lumley & Newman (1977), by introducing the anisotropy tensor

aij =
uiuj

q2
− 1

3
δij (2.1)
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Figure 1. Anisotropy-invariant map showing the limiting states of turbulence. The arrows
represent the turbulent fluctuations that correspond to each of the limiting states.

(where q2 = usus) and its scalar invariants

IIa = aijaji, (2.2)

IIIa = aijajkaki . (2.3)

A plot of IIa versus IIIa for axisymmetric turbulence,

IIa = 3
2

(
4
3
|IIIa|

)2/3
, (2.4)

and two-component turbulence,

IIa = 2
9

+ 2IIIa, (2.5)

defines the anisotropy-invariant map according to Lumley (1978). This plot, shown in
figure 1, bounds all physically realizable turbulence. The two curves shown represent
axisymmetric turbulence. The right-hand curve corresponds to turbulence strained
by axisymmetric expansion and the left-hand curve corresponds to straining by
axisymmetric contraction. Two-component turbulence resides along the straight line.
Such turbulence exists in the region of the viscous sublayer in wall-bounded turbulent
flows. The limiting states of turbulence are located at the corner points on the
right- and left-hand sides of the anisotropy-invariant map and correspond to one-
component turbulence and isotropic two-component turbulence, respectively. In these
limiting states, turbulence must satisfy the two-component limit and axisymmetry at
large and small scales as discussed by Jovanović & Hillerbrand (2005).

The influence of the Reynolds number on the anisotropy of turbulence in a plane
channel flow is shown in figure 2, where Reb refers to the Reynolds number based on
bulk velocity, channel half-width δ and kinematic viscosity ν of the working fluid and
Reτ = uτδ/ν where uτ is the wall shear velocity. Data that correspond to the region of
the viscous sublayer, 0 � x+

2 < 5 (where x+
2 represents the normalized distance from

the wall x+
2 = x2uτ/ν), lie along the two-component limit. Away from the near-wall

region, x+
2 � 8, the trend in the data indicates a tendency towards the right boundary
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Figure 2. Trajectories of turbulent channel flow at (a) moderate (Moser, Kim & Mansour
1999) and (b) low (Kuroda, Kasagi & Hirata 1990) Reynolds numbers.

of the anisotropy-invariant map, which corresponds to the axisymmetric state with
the streamwise intensity larger than the intensities in the other two directions. There
is a noticeable trend in these data. As the Reynolds number decreases towards
the critical value valid for transition from the laminar to the turbulent state, the
anisotropy increases near the wall and data on the two-component limit tend towards
the one-component state of turbulence. Away from the near-wall region, turbulence
tends towards the axisymmetric state with the streamwise intensity larger than in the

other two directions, u2
1 > u2

2 = u2
3. Since in axisymmetric turbulence there is no shear

stress −u1u2, it is natural to expect that in the limit when Re → (Re)crit there will be
no traditional mechanism of energy production, Pk = −u1u2∂U 1/∂x2, which ensures
self-maintenance of turbulence in wall-bounded flows.

3. Polymer drag reduction
It was reported previously (Jovanović et al. 2006) that polymer drag reduction

is accompanied by increasing anisotropy in the near-wall region. The experimental
results obtained for measurements in the viscous sublayer were in close agreement
with those obtained by analysing the DNS data of Dimitropoulos, Sureshkumar &
Beris (1998) in the anisotropy-invariant map, as shown in figure 3. The trajectory
for a channel flow without additives is plotted in (a). The trajectories in (b) and
(c) correspond to turbulent flow fields at the same Reynolds number in which DR
of 15% and 44% was achieved by the addition of polymers. It can clearly be seen
that the anisotropy of near-wall turbulence (x2 → 0) is shifted to higher values
as drag reduction increases. This trend of increased anisotropy corresponds to the
one observed in turbulent channel flows without additives for decreasing Reynolds
numbers (see figure 2).

A conceptual sketch of the interaction between polymer and turbulence (Jovanović
et al. 2006) is given in figure 4. Under very special circumstances when the polymer
concentration and its relaxation time are appropriately matched to the properties of
the turbulence, turbulence in the near-wall region forces rolled-up chains of polymer



460 B. Frohnapfel, P. Lammers, J. Jovanović and F. Durst
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Figure 3. Anisotropy-invariant mapping of turbulence in a fully developed channel flow with
DR from direct numerical simulations of Dimitropoulos et al. (1998) at Reb = 1840. The trend
in the data at the wall (x2 → 0) demonstrates that DR increases as turbulence approaches the
one-component limit.
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Figure 4. Conceptual sketch for the interaction of polymer and turbulence. When the
polymer is stretched in the mean flow direction, it forces the smallest scales of turbulence to
restructure. This change is reflected in the anisotropy-invariant map as a movement towards the
one-component limit for the near-wall turbulence since this is the stage where two-component
turbulence and axisymmetric turbulence can be achieved simultaneously (in pipe and channel
flows).

partially to unroll and stretch in the mean flow direction. In the most extreme case,
polymer chains form a filament structure with a length-scale arrangement which is
almost axisymmetric around the axis aligned with the mean flow. This process forces
turbulence at small scales to restructure and satisfy constraints of local axisymmetry.
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Figure 5. Anisotropy-invariant mapping of a turbulent channel flow with (a) rigid fibres and
(b) surfactant additives in comparison with a fully developed turbulent channel flow without
additives at the same Reynolds number Reb � 6000.

In the near-wall region where turbulence is two-component and therefore located
on the upper line of the anisotropy-invariant map, the axisymmetric state with the
dominant streamwise component on the axis of rotational invariance can only be
reached by approaching the one-component limit (IIa = 2/3) where axisymmetry and
two-componentality are simultaneously fulfilled.

The above-mentioned conceptual mechanism is based on the assumption that the
interaction between polymer and turbulence takes place in the dissipation range of
the spectrum so that only the smallest turbulence scales interact with the polymer.
This interaction level at the Kolmogorov scale was verified in Jovanović et al. by the
theoretical prediction of optimum polymer concentration and optimum molecular
weight of the polymer to obtain maximum DR.

4. Is there a general mechanism of drag reduction?
The analysis of polymer DR has shown that high DR in wall-bounded flows can

be obtained by forcing the velocity fluctuations near the wall towards axisymmetry.
It is of great interest for the design of passive and active flow control techniques
to investigate whether the same trend can be found in other drag-reduced flows.
Therefore, the DNS databases of different drag-reduced flows are analysed in this
respect.

Fibres and surfactants are also additives that can lead to high DR. DNS results are
available through the work of Paschkewitz et al. (2004) and Kawaguchi et al. (2005).
The analysis of their results in the anisotropy-invariant map is shown in figure 5. The
trajectories are plotted in comparison with that for a turbulent channel flow without
additives at the same Reynolds number. As for polymer DR, a substantial increase
in the anisotropy in the near-wall region is found for the drag-reduced flows.

In passive flow control, surface modifications known as riblets have been extensively
investigated. The highest DR was obtained with a geometry of very thin riblets
suggested by Bechert et al. (2000). In Lammers, Jovanović & Durst (2006) the lattice-
Boltzmann method was used to simulate a channel flow with this kind of wall
configuration. In contrast to the flows with additives, surface structures introduce
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Figure 6. Anisotropy-invariant mapping of the flow (a) on top of a riblet and (b) between
two riblets at Reb = 2800.

variances in the spanwise direction so that the flow field can be analysed along
different cross-sectional areas (aligned in the flow direction and perpendicular to the
walls). The trajectories for the flow above a riblet and for the flow between two riblets
are presented in figure 6. The trajectory on top of the riblet resembles very closely that
of a plain turbulent channel flow at the same Reynolds number whereas the trajectory
between two riblets shows a significant increase in the anisotropy near the wall. The
resulting DR is significantly lower than that obtained with long-chain polymers since
the one-component limit can only be approached locally and not along the entire
surface of the wall.

DR is also observed for highly accelerated and supersonic flows. Spalart (1986)
and Foysi, Sarkar & Friedrich (2004) provided DNS data sets for these flows. Highly
accelerated flows are known to relaminarize if the acceleration parameter K:

K =
ν

U 2
∞

dU∞

dx
, (4.1)

exceeds a critical value in the order of Kcrit � 3.7 × 10−6 (Spalart 1986). The
trajectories of highly accelerated boundary layer flows approaching the critical value
of K are shown in figure 7. With increasing acceleration parameter a shift in the wall
points (x2 → 0) towards the one-component limit is observed.

In supersonic flows, the skin friction coefficient normalized with the corresponding
value valid for subsonic flow cf /cfMa=0

decreases with increasing Mach number; Ma,
as pointed out by Hinze (1975). From the simulations of Foysi et al. (2004), DNS
data sets are available for Mach numbers 0.3, 1.5, 3.0 and 3.5. The analysis of these
data sets is shown in figure 8. It can clearly be seen that the marked wall points
assume more anisotropic states as the Mach number is increased.

The analysis presented of different DR mechanisms in the anisotropy-invariant
map suggests that a common feature exists. In order to achieve high DR, near-wall
turbulence is shifted in the direction of the one-component limit at the wall, which
is formally equivalent to forcing the small scales of turbulence to fulfil conditions of
local axisymmetry.
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Figure 7. Anisotropy-invariant mapping of highly accelerated boundary layers at different
acceleration parameters. The severe acceleration results in a decrease of the Reynolds number
Reθ based on the momentum thickness.
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Figure 8. Anisotropy-invariant mapping of supersonic flows. As the Mach number (and also
the bulk Reynolds number) is increased, the wall points show a shift towards the one-com-
ponent limit.

5. Channel flow with forced boundary conditions
To demonstrate the effect of increasing anisotropy in the near-wall region on

drag reduction, direct numerical simulations of a turbulent channel flow with forced
boundary conditions were carried out. A set of five simulations was performed using a
fourth-order finite–volume method on a staggered grid as described in Verstappen &
Veldman (2003). In one simulation at Reτ = δuτ/ν = 180 no forcing was applied to the
flow. For the other simulations the flow rate and thus also the bulk Reynolds number
Reb were kept constant but at the first, first two, first three and first four points (located
at x2/H = 0.0004, 0.012, 0.020, 0.028 which corresponds to x+

2 = 0.7, 2.2, 3.6, 5.1
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Figure 9. (a) Mean flow and (b) Reynolds stresses in a virtual channel flow at Reb = 2800
where an increasing number of points in the viscous sublayer are forced towards an axisym-
metric state. The quantities are normalized with the corresponding wall shear velocity uτ of
each simulation.

in the unforced channel flow) the boundary conditions were modified in such a way
as to force near-wall turbulence to tend towards an axisymmetric state by imposing
that spanwise velocity fluctuations (u3) follow the normal fluctuations (u2).

The applied forcing yielded decreasing values of Reτ . The resulting mean flow
velocity profile and the Reynolds stresses (normalized with the respective uτ of each
flow case) are shown in figure 9. It can be seen that U+

1 increases significantly as the
forcing is applied to more points inside the viscous sublayer, which is equivalent to a
decrease in uτ and thus a reduced wall shear stress τw . Since τw and Reτ are related
by

τw = ρ

(
νReτ

δ

)2

, (5.1)

and since the fluid properties ρ, ν and the channel height H = 2δ were kept constant,
the drag reduction DR obtained is given by

DR = 1 −
(

Reτ

(Reτ )180

)2

, (5.2)

resulting in DR = 12%, 20%, 27% and 32% respectively.
The resulting trajectories in the anisotropy-invariant map are all very similar, with

the wall point located at the one-component limit (as it was forced to). Figure 10(a)
shows the trajectory for the case where four points in the viscous sublayer were
forced towards an axisymmetric state which resulted in DR = 32%. In figure 10(b),
an enlarged region of the anisotropy-invariant map is shown in which the trajectories
for the five simulations are plotted. The part of the trajectory shown corresponds to
the region of x+

2 ≈ 40 for the unforced channel flow. There is a clear trend in the
data towards the right branch of the map, which represents the axisymmetric state
with the dominant fluctuations on the axis of invariance. This trend implies that the
forcing inside the viscous sublayer, x+

2 � 5, has introduced a general shift towards
the right branch of the anisotropy-invariant map.
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Figure 10. (a) Anisotropy-invariant mapping of turbulent channel flow at Reb = 2800 where
four points in the viscous sublayer are forced towards an axisymmetric state. (b) An enlargement
of (a) showing part of the trajectories in the anisotropy-invariant map for simulations at the
same bulk Reynolds number but with different boundary conditions.

6. Conclusions
The analysis of DR in the terminology of anisotropy invariants provides a

suggestion for how turbulence needs to be modified in order to achieve energy
savings. In all of the examples of drag-reduced flows discussed, it is seen that the
anisotropy of turbulence increases towards the one-component limit in the near-wall
region. The same trend is observed if the Reynolds number in turbulent flows is
reduced. The one-component limit is the only point in the anisotropy-invariant map
where two-componentality (which has to hold at the wall) and axisymmetry with
the dominant fluctuation on the axis of rotational invariance can simultaneously be
fulfilled.

The conclusion to be drawn from the analysis for the design of active and
passive flow control techniques presented is that near-wall fluctuations need to
be predominantly one-component in the mean flow direction in order to achieve
high values of DR and energy savings. The direct numerical simulations presented
demonstrate that in this way very effective flow control can be exerted in which little
effort is needed to achieve significant energy savings.
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