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ABSTRACT

The self-control of turbulence in wall-bounded flows is
considered in pipes of non-circular cross-sections which act
to restructure fluctuations towards the limiting state where
these must be entirely suppressed. Direct numerical simula-
tions of turbulence in pipes of polygon-shaped cross-sections
with straight and profiled sides were performed at a Reynolds
numberReτ ≃ 300 based on the wall shear velocity and the
hydraulic diameter. Using the lattice Boltzmann numericalal-
gorithm, turbulence was resolved with up to about 540×106

grid points (8192×257×256 in thex1, x2 andx3 directions).
The first exploratory results show a decrease in the viscous
drag around corners, resulting in a reduction of the skin-
friction coefficient compared with expectations based on the
well-established concept of hydraulic diameter and the useof
the Blasius correlation. These findings support the conjecture
that turbulence might be completely suppressed if the pipe
cross-section is a polygon consisting of a sufficient number
of profiled sides of the same length which intersect at right-
angles at the corners.

INTRODUCTION

In previous studies carried out by the authors and as-
sociates (Jovanović and Hillerbrand, 2005; Jovanović etal.,
2006; Lammers et al., 2006; Frohnapfel et al., 2007), the
unified theory of skin-friction reduction in turbulent wall-
bounded flows was proposed along with the results of its va-
lidity using available databases of direct numerical simula-
tions. The starting point in reasoning about the chief mech-
anism involved in turbulent drag reduction by high poly-
mers, surfactant additives, rigid fibers and riblets including
the closely related phenomena observed in strongly acceler-
ated and supersonic flows relied on the role played by the av-

erage total energy dissipationΦ:
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The two terms in (1) correspond to direct (I) and turbulent dis-
sipation (II) and their overall contribution toΦ can be evalu-
ated from the work done against the wall shear stress,τw, per
unit mass of the working fluid,ρV , whereAw is the wetted
surface area andUm is the bulk velocity. An order of magni-
tude analysis shows that, in turbulent flows at large Reynolds
numbers, the largest contribution toΦ is due to turbulent dis-
sipation,ε, which reaches a maximum at the wall and decays
away from the wall region. Therefore, a large turbulent drag
reduction can be expected if the turbulent dissipation at the
wall is minimized, leading to minimization ofΦ.

By projecting the dynamics of turbulence from the real
space into the functional space formed by two scalar invari-
ants, IIa = ai ja ji and IIIa = ai ja jkaki, of the anisotropy tensor,
ai j = uiu j/q2−1/3δi j (uiu j andq2 denote the Reynolds stress
tensor and its trace, respectively), Jovanović and Hillerbrand
(2005) showed that the turbulent dissipation rate must van-
ish at the wall,εw → 0 asx2 → 0, if the velocity fluctuations
in the near-wall region satisfy local axisymmetry with invari-
ance to rotation about the axis aligned with the mean flow
direction so that the streamwise intensity,u2

1, is much larger
than in the other two directions along which the intensitiesare
same,u2

2 = u2
3. This deduction is well supported by available

databases from direct numerical simulations and is in close
agreement with results of direct numerical simulations with
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forced boundary conditions which display a high drag reduc-
tion when turbulence in the viscous sublayer is manipulated
to tend towards the one-component limit in an axisymmetric
fashion (Frohnapfel et al., 2007).

THE CROSS-SECTION GEOMETRY
In order to elucidate the surface topology which pro-

motes a large viscous drag reduction, we shall first examine
the statistical features of turbulence in a fully developedflow
through a straight duct of square cross-section shown in figure
1 (center). It is well known (Schlichting, 1968) that secondary
flows appear near duct corners known as Prandtl’s vortices of
the second kind, which cannot develop if the flow assumes
the laminar state. These counter-rotating vortices are formed
due to interaction of the high-speed fluid, originating fromthe
core region, as it is transported towards the duct corners where
it is forced to split sidewise along both walls.

The flow development along the wall normal bisector
shown in figure 1 (center-bottom-right) is weakly influenced
by side walls and the turbulence statistics resemble trends
observed in the plane channel flow. The trajectory in the
anisotropy-invariant map shows that the data correspond-
ing to the region of the viscous sublayer lie along the two-
component state (2C) mid-way between the two-component
isotropic state (2C-iso) and the one-component state (1C).
Away from the wall region, the trajectory shows a pronounced
tendency for turbulence to approach the axisymmetric state,
which is reached at the duct centerline. In the viscous sub-
layer, the velocity fluctuations normal to the wall are sup-
pressed,u2 ≈ 0, so that fluid motions are constrained to planes
parallel to it (x1,x3) having only streamwise,u1, and span-
wise,u3, velocity components. Such a flow structure allows
the development of turbulent dissipation which reaches a max-
imum at the wall and decay away from it following the local
equilibrium between the turbulence production and turbulent
dissipation. As a consequence of spatial variation of turbu-
lence statistics, the mean velocity profile is almost uniform in
the core region and exhibits a steep gradient at the wall (see
figure 1, center-top-left).

The evolution of turbulence along corner bisectors shown
in figure 1 (center-top-right) is strongly influenced by side
walls forcing normal and spanwise velocity components to
develop in the same fashion. Both of these velocity com-
ponents are suppressed near walls and the trajectory in the
anisotropy-invariant map shows that turbulence is axisymmet-
ric along the entire corner bisector starting from the wall at the
one-component limit (1C) up to the duct centerline where tur-
bulence is almost isotropic. The structure of the viscous sub-
layer is altered in such a way that turbulent dissipation cannot
develop at the wall and is reduced significantly away from it
compared with the corresponding distribution along the wall
normal bisector. As a result of such spatial development of
turbulence, the mean velocity profile shows a tendency for
flow relaminarization with a significant reduction in the slope
at the wall (see figure 1, center-top-left). The distribution of
the wall shear stress shown in figure 1 (center-bottom-left)re-
flects these trends and displays consequential changes in the
turbulence structure along various cross-sections of the duct.

The variation of turbulence statistics along two different
bisectors of the duct flow provides useful hints on how tur-

bulence anisotropy, dissipation rate, mean flow and the wall
shear stress can be altered rationally. This immediately sug-
gests that if we intend to achieve a large viscous drag reduc-
tion, the cross-section geometry has to be composed of a large
number of corner bisectors in order to ensure that axisymme-
try in turbulence prevails not only near the wall but also across
the entire flow domain.

As an initial guess, polygon-shaped cross-sections,
shown in figure 1 (left), consisting of a large number of
straight sides between corners, might be considered. For a
large number of corners, such configurations asymptotically
approach the circle and we may argue, in the context of
the previous discussion, that the mechanism responsible for
the remarkable stability of circular pipe flows at very large
Reynolds numbers is due to increased anisotropy in the dis-
turbances induced by the surface curvature. Some supporting
evidence may be added in respect to the above issue: (i) exam-
ination of the transport equations for the Reynolds stresses and
anisotropy-invariant mapping of turbulence in circular pipe
flows using DNS databases reveal higher anisotropy in the
viscous sublayer compared with plane channel flows (Pash-
trapanska, 2004); (ii) experiments performed in circular pipes
confirmed an increase in the transition Reynolds number with
increasing surface curvature, e.g. decreasing the pipe diame-
ter (Haddad, 2009); (iii) analysis of the experimental and nu-
merical data shows that the turbulent Reynolds number,Rλ , in

pipe flows (Rλ ≈ 1.996Re1/2
τ + 0.108) is lower than in plane

channel flows (Rλ ≈ 2.971Re1/2
τ − 6.618), which implies a

reduction in the spectral separation,L/ηK , due to the surface
curvature effect (Jovanović and Pashtrapanska, 2004).

For a finite number of corner bisectors, simple polygon
configurations with straight sides between corners are not ap-
propriate since these configurations do not ensure axisymme-
try of turbulence near the wall. In order to force axisymmetry,
polygons with profiled side walls intercepting at right-angles
are suggested, as shown in figure 1 (right), as the simplest
means to obtain the desired turbulence structure which pro-
motes high drag reduction.

COMPUTATIONAL DOMAIN AND NUMERICAL
METHOD
Computational domain

The simulated flow configurations and the coordinate
system employed are shown in figure 2.

For wall-bounded flows the velocity scaleuτ is related to
the streamwise pressure gradient∂P/∂x1 through the mean
momentum equationuτ = [0.25(Dh/ρ)(∂P/∂x1)]

1/2, where
Dh is the hydraulic diameter defined in terms of the cross-
section area,A, and the wetted perimeter,O, asDh = 4A/O.
For our simulations the Reynolds numberReτ , based onuτ
and the hydraulic diameterDh, was fixed to the valueReτ =
Dhuτ/ν = D+

h ≃ 300.
For the geometries shown in figure 2, the flow is homo-

geneous in the streamwise direction so that periodic bound-
ary conditions were used in this direction. Using an equidis-
tant cartesian grid with 8192×257×256 points in thex1,
x2 and x3 directions, the non-dimensional grid spacing was
∆x+

i = 1.17. The estimated value of the Kolmogorov length
scale,η+

K = (0.25Reτ uτ/Um)1/4, obtained from the average
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Figure 1. The structure of turbulence in a square duct flow (center) and in pipes of non-circular cross-sections (left andright). (a)
Along wall-normal bisectors, the turbulence structure hasthe form common for wall-bounded flows. (b) Along corner bisectors,
turbulence approaches the ideal trajectory in the anisotropy-invariant map, resulting in a significant reduction in the dissipation (ε)
and spectral transfer with formation of quasi-deterministic highly elongated streaks induced by secondary motions.(c),(d) Close to
corners, reduced spectral transfer results in a noticeablereduction in the wall shear stress. (e)-(h

′
) Possible, polygonal or similar,

flow configurations of pipe cross-sections with a finite number of corner bisectors: in such configurations, turbulence might be
self-suppressed whenever secondary motions start to appear.
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Figure 2. Computational domain with coordinate system,
(a), and simulated cross-section configurations,(b).

dissipation rate across the entire flow domain per unit mass
of the working fluid wasη+

K ≈ 1.5. The grid resolution
∆x+

i ≃ 0.78η+
K was therefore fine enough to resolve all dis-

sipation and obtain reliable results for first- and second-order
turbulence statistics.

Numerical method
The choice of the numerical method was motivated by

the demand for an algorithm with small computing costs per
grid point and time step. In this respect, the lattice Boltz-
mann method (LBM) was a logical and attractive choice. The
method utilizes the fact that information on the velocity~U
and the pressurep of a viscous fluid can be obtained by solv-
ing a kinetic equation for a one-particle distribution function
f instead of Navier-Stokes equations directly. The function
f̃ = f̃ (~ξ ,~r,t) depends on the molecular velocity~ξ , the posi-
tion in space~r and the timẽt. The hydrodynamic quantities
are obtained from the moments of the distribution function.
A very popular kinetic model is described by the Boltzmann
equation together with the so-called Bhatnagar-Gross-Krook
(BGK) ansatz for the collision operator

(
∂t̃ +

~ξ ·~∇~r + ~F ·~∇~ξ
)

f̃ (~ξ ,~r, t̃) = −
f̃ (~ξ ,~r, t̃)− f̃ eq(~ξ ,~r, t̃)

λ
,

(2)
where ~F is the external force. The functioñf eq corresponds
to the equilibrium (Maxwell-Boltzmann) distribution andλ
is a relaxation time. This equation is discretized in time and
space. Additionally, a finite set of velocities~ci for ~ξ has to
be defined. As a result of discretization, the following non-
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dimensional equation is obtained:

fi(~x+~ci,t +1)− fi(~x,t) = −ω( fi(~x,t)

− f eq
i (ρ, ~U +

~E
2ρ ,~x,t))

(
fi(~x,t)− f eq

i (~x,t)
)

+3tp
2−ω

2
~ci · ~E , (3)

where fi is the distribution function of the velocity~ci. The
force density~E is given by the pressure gradient according to
~E = ~∇p, wherebyE1 is the only remaining component in our
case. The macroscopic behavior of equation (3) is obtained
by a Chapman-Enskog procedure together with a Taylor ex-
pansion of the Maxwell-Boltzmann equilibrium distribution
for small velocity (small Mach number). For this equilibrium
distribution

f eq
i = tpρ

{

1+
ciα Uα

c2
s

+
UαUβ

2c2
s

(
ciα ciβ

c2
s

−δαβ

)}

(4)

it can be shown that the Mach number must be|u/cs| ≪ 1 in
order to satisfy the incompressible Navier-Stokes equations.
The parameterstp andp = ‖~ci‖

2 depend on the discretization
of the molecular velocity space. For the present simulations,
a three-dimensional model with 19 velocities~ci, i = 0, . . . ,18
(D3Q19) was employed. The D3Q19 model has the parame-
terst0 = 1/3, t1 = 1/18 andt2 = 1/36. Our implementation of
LBM was validated against the well-resolved pseudo-spectral
simulation of a plane channel flow atReτ ≈ 180 . Results
of lattice Boltzmann simulation reported by Lammers et al.
(2006) confirm that profiles of the mean velocity, root-mean-
square velocity fluctuations, turbulent shear stress and the bal-
ance of the turbulence kinetic energy equation agree closely
with the results of Kim et al. (1987).

RESULTS
Turbulent flow through a pipe of square cross-
section

In order to produce the desired componentality of the ve-
locity fluctuations by cross-section geometry which leads to
the realization of axisymmetric turbulence in the near-wall re-
gion, the authors first performed simulation of turbulence in
a pipe of square cross-section. It was expected that in such
a configuration turbulence will reach the axisymmetric state
along corner bisectors and tend towards the one-component
state at the wall. By evaluating the turbulence statistics in the
region between the wall normal and corner bisectors, it was
possible to confirm the results of the theoretical considera-
tions and show that the axisymmetric state of wall turbulence
leads to a large reduction in the wall shear stress in the region
around corners.

Figure 3 shows distributions of the mean flow, all com-
ponents of the Reynolds stress tensor and the turbulence
anisotropy across one of the eight octants of a square cross-
section. These results provide a demonstration for desired
modifications of turbulence induced by the presence of the
side walls which intersect at right-angles. Distributionsof

the Reynolds stresses reveal that turbulence reaches the ax-
isymmetric state in the close vicinity of the corners with in-
variance to rotation for 90◦ about the axis aligned with the
mean flow direction. At corners turbulent stresses satisfy the
relations which hold for such a form of axisymmetric turbu-
lence:u2

1 > u2
2 = u2

3 and| u1u2 |=| u1u3 |. Trajectories in the
anisotropy-invariant map reflect these trends and confirm that
anisotropy increases as corners are approached so that turbu-
lence along the corner bisector follows the right-hand bound-
ary of the anisotropy map which represents axisymmetric tur-
bulence with the one-component state located at the wall. Ap-
proaching corners, slopes of the turbulent stresses and of the
mean flow continuously decrease at the wall. This trend sup-
ports the expectation that a decrease in the turbulent dissipa-
tion rate at the wall,εw, leads to a lower value of the integral
(1) and therefore a decrease in the wall shear stress,τw.

Turbulent flow through pipes of the polygon
cross-sections

In reasoning about the cross-section configurations
which would notably increase the anisotropy of turbulence
along the entire wetted perimeter, which would than prevail
across the whole flow domain, polygon cross-section geome-
tries composed of profiled sides intersecting at right-angles at
the corners are suggested. For such configurations with large
number of corners simulation is, however, very demanding
owing to the fine resolution needed to capture the evolution
of the flow structures near corners. These structures are ex-
pected to have a significant impact on the viscous drag. Us-
ing the very efficient lattice-Boltzmann algorithm which cur-
rently operates extremely well exclusively on the equidistant
grids, cross-section configurations with only few corners can
be simulated with reasonable effort. Therefore, an attempt
was made to obtain first exploratory results by conducting two
simulations of turbulence development in pipes of octagon
cross-sections having straight and profiled sides. By study-
ing differences in the flow development through such pipes,
it is possible to extract effects expected to prevail for a large
number of corners.

Figure 4. Discretisized cross-section geometries of turbulent
pipe flow: octagon with straight sides (left) and octagon with
profiled sides (right).

The simulated cross-section geometries are shown in fig-
ure 4. Owing to uniform discretization of the flow domain us-
ing equidistant cartesian grids, the wall boundaries are smooth
within the grid resolution,∆x+

i = 1.17, and symmetry be-
tween various orthants of the octagon cross-sections is pre-
served within an equivalent degree of approximation.
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Figure 3. The structure of turbulence in a pipe flow of square cross-section atRem = DhUm/ν ≃ 4362. The profiles of the mean
velocity, Reynolds stresses and turbulence anisotropy in the region between the normal,(a), and corner bisectors,(d). Arrows
indicate the maximum value of turbulence anisotropy. Thesedata are non-dimensionalized by the wall friction velocitycalculated
from the pressure gradient along the pipe and plotted versusthe normalized distance starting from the pipe centerline up to the wall,
s+ = suτ/ν .

Comparisons of the flow development in pipes of oc-
tagon cross-sections with straight and profiled sides are shown
in figure 5. These results display essential differences in the
flow development in the region around corners which are ex-
pected to play a major role in turbulent drag reduction and
potentially also in self-stabilization of the laminar boundary
layer development at large Reynolds numbers.

The computed trajectories in the anisotropy-invariant
maps reveal that anisotropy increases along the profiled sides
of the octagon cross-section and reaches at the corners almost
the one-component limit. This trend in turbulence anisotropy
is reflected in distributions of the mean velocity which dis-
play a continuous reduction of the wall shear stress as corners
are approached. These results correspond to a Reynolds num-
ber ofRem = DhUm/ν ≃ 4386 and a skin friction coefficient
of c f = τw/(0.5U2

b ρ) = 2(Reτ/Rem)2 = 9.35× 10−3. This
value of c f is 3.9% lower than the prediction based on the

well-known Blasius correlationc f = 0.0791Re−1/4
m .

Across the octagon cross-section with straight sides there

is no noticeable increase in anisotropy as observed in the
cross-section with profiled sides and consequently no trendin
reduction of the wall shear stress at and near corners. These
results correspond to a Reynolds number ofRem ≃ 4277 and
a skin friction coefficient ofc f ≃ 9.838× 10−3. For this
cross-section configuration, the value ofc f obtained is slightly
higher than that deduced from the Blasius correlation.

CONCLUSIONS
An attempt was made, on purely theoretical grounds, to

derive the cross-section geometry of a fully developed pipe
flow which forces near-wall turbulence to approach the limit-
ing state where it must be completely suppressed. Following
invariant analysis of turbulence, a cross-section geometry was
suggested in the form of polygon with profiled sides intersect-
ing at right-angles at the corners. A description is provided of
the manner in which the proposed geometry alters near-wall
turbulence leading to a significant turbulent drag reduction.

In order to support the proposed concept of flow control,
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Figure 5. The structure of turbulence in pipes with octagon shape cross-sections. Comparisons of trajectories in the anisotropy-
invariant maps and profiles of mean velocity in the region between the wall normal bisector and the corner bisector for an octagon
with straight sides against an octagon with profiled sides. Arrows indicate the maximum level of the turbulence anisotropy.

direct numerical simulations of turbulence in pipes of non-
circular cross-sections were performed using the lattice Boltz-
mann numerical method. First exploratory results confirmed
that the chief mechanism responsible for the turbulent drag
reduction is related to the ability of the profiled surface toin-
crease the anisotropy in the velocity fluctuations very close to
the wall. It is hoped that further simulation work followingthe
concept outlined in this paper will bring additional evidence
in closer accord with the theoretical expectations.
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Jovanović, J., Pashtrapanska, M., Frohnapfel, B., Durst,
F., Koskinen, J., and Koskinen, K., 2006, ”On the mechanism
responsible for turbulent drag reduction by dilute addition of
high polymers: theory, experiments simulations and predic-
tions”, Journal of Fluids Engineering, Vol. 128, pp. 626- 633.

Kim, J., Moin, P., and Moser, R., 1987, ”Turbulence
statistics in fully developed channel flow at low Reynolds
number”, Journal of Fluid Mechanics, Vol. 177, pp.133- 166.
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