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ABSTRACT

The self-control of turbulence in wall-bounded flows is
considered in pipes of non-circular cross-sections whitth a
to restructure fluctuations towards the limiting state weher
these must be entirely suppressed. Direct numerical simula
tions of turbulence in pipes of polygon-shaped cross-gesti
with straight and profiled sides were performed at a Reynolds
numberRe; ~ 300 based on the wall shear velocity and the
hydraulic diameter. Using the lattice Boltzmann numeréal
gorithm, turbulence was resolved with up to about 54(0P
grid points (8192 257x 256 in thexy, xo andxz directions).
The first exploratory results show a decrease in the viscous
drag around corners, resulting in a reduction of the skin-
friction coefficient compared with expectations based a@n th
well-established concept of hydraulic diameter and theofise
the Blasius correlation. These findings support the comject
that turbulence might be completely suppressed if the pipe
cross-section is a polygon consisting of a sufficient number
of profiled sides of the same length which intersect at right-
angles at the corners.

INTRODUCTION

In previous studies carried out by the authors and as-
sociates (Jovanovic and Hillerbrand, 2005; Jovanovialet
2006; Lammers et al., 2006; Frohnapfel et al., 2007), the
unified theory of skin-friction reduction in turbulent wall
bounded flows was proposed along with the results of its va-
lidity using available databases of direct numerical sanul
tions. The starting point in reasoning about the chief mech-
anism involved in turbulent drag reduction by high poly-
mers, surfactant additives, rigid fibers and riblets incigd
the closely related phenomena observed in strongly aeceler
ated and supersonic flows relied on the role played by the av-
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The two terms in (1) correspond to direct (1) and turbulest di
sipation (Il) and their overall contribution @ can be evalu-
ated from the work done against the wall shear streggper
unit mass of the working fluidpV, whereAy, is the wetted
surface area andm is the bulk velocity. An order of magni-
tude analysis shows that, in turbulent flows at large Reymold
numbers, the largest contribution®is due to turbulent dis-
sipation,&, which reaches a maximum at the wall and decays
away from the wall region. Therefore, a large turbulent drag
reduction can be expected if the turbulent dissipation at th
wall is minimized, leading to minimization @b.

By projecting the dynamics of turbulence from the real
space into the functional space formed by two scalar invari-
ants, Ik = aa;ji and llla = gjajka, of the anisotropy tensor,
ajj = Uiuj/q? — 1/3& (iuj andg? denote the Reynolds stress
tensor and its trace, respectively), Jovanovic and Hiitend
(2005) showed that the turbulent dissipation rate must van-
ish at the wall gy — 0 asx, — O, if the velocity fluctuations
in the near-wall region satisfy local axisymmetry with iriva
ance to rotation about the axis aligned with the mean flow
direction so that the streamwise intens'u&, is much larger
than in the other two directions along which the intensities
same u% = u3 This deduction is well supported by available
databases from direct numerical simulations and is in close
agreement with results of direct numerical simulationshwit



forced boundary conditions which display a high drag reduc-
tion when turbulence in the viscous sublayer is manipulated
to tend towards the one-component limit in an axisymmetric
fashion (Frohnapfel et al., 2007).

THE CROSS-SECTION GEOMETRY

In order to elucidate the surface topology which pro-
motes a large viscous drag reduction, we shall first examine
the statistical features of turbulence in a fully develofied/
through a straight duct of square cross-section shown ingigu
1 (center). Itis well known (Schlichting, 1968) that secand
flows appear near duct corners known as Prandtl’s vortices of
the second kind, which cannot develop if the flow assumes
the laminar state. These counter-rotating vortices araédr
due to interaction of the high-speed fluid, originating friira
core region, as it is transported towards the duct corneesavh
it is forced to split sidewise along both walls.

The flow development along the wall normal bisector
shown in figure 1 (center-bottom-right) is weakly influenced
by side walls and the turbulence statistics resemble trends
observed in the plane channel flow. The trajectory in the
anisotropy-invariant map shows that the data correspond-
ing to the region of the viscous sublayer lie along the two-
component state (2C) mid-way between the two-component
isotropic state (2C-iso) and the one-component state (1C).
Away from the wall region, the trajectory shows a pronounced
tendency for turbulence to approach the axisymmetric state
which is reached at the duct centerline. In the viscous sub-
layer, the velocity fluctuations normal to the wall are sup-
pressedy, ~ 0, so that fluid motions are constrained to planes
parallel to it(xq,x3) having only streamwisey;, and span-
wise, uz, velocity components. Such a flow structure allows
the development of turbulent dissipation which reachesya ma
imum at the wall and decay away from it following the local
equilibrium between the turbulence production and tunfiule
dissipation. As a consequence of spatial variation of turbu
lence statistics, the mean velocity profile is almost umifan
the core region and exhibits a steep gradient at the wall (see
figure 1, center-top-left).

The evolution of turbulence along corner bisectors shown
in figure 1 (center-top-right) is strongly influenced by side
walls forcing normal and spanwise velocity components to
develop in the same fashion. Both of these velocity com-
ponents are suppressed near walls and the trajectory in the
anisotropy-invariant map shows that turbulence is axisgtam
ric along the entire corner bisector starting from the wthe
one-component limit (1C) up to the duct centerline where tur
bulence is almost isotropic. The structure of the viscotls su
layer is altered in such a way that turbulent dissipatiomoan
develop at the wall and is reduced significantly away from it
compared with the corresponding distribution along thd wal
normal bisector. As a result of such spatial development of
turbulence, the mean velocity profile shows a tendency for
flow relaminarization with a significant reduction in theto
at the wall (see figure 1, center-top-left). The distribotaf
the wall shear stress shown in figure 1 (center-bottom-ieft)
flects these trends and displays consequential changes in th
turbulence structure along various cross-sections of tice d

The variation of turbulence statistics along two different
bisectors of the duct flow provides useful hints on how tur-

2

bulence anisotropy, dissipation rate, mean flow and the wall
shear stress can be altered rationally. This immediatejy su
gests that if we intend to achieve a large viscous drag reduc-
tion, the cross-section geometry has to be composed ofa larg
number of corner bisectors in order to ensure that axisymme-
try in turbulence prevails not only near the wall but alsaasr

the entire flow domain.

As an initial guess, polygon-shaped cross-sections,
shown in figure 1 (left), consisting of a large number of
straight sides between corners, might be considered. For a
large number of corners, such configurations asymptogicall
approach the circle and we may argue, in the context of
the previous discussion, that the mechanism responsible fo
the remarkable stability of circular pipe flows at very large
Reynolds numbers is due to increased anisotropy in the dis-
turbances induced by the surface curvature. Some supgortin
evidence may be added in respect to the above issue: (i) exam-
ination of the transport equations for the Reynolds stseard
anisotropy-invariant mapping of turbulence in circulapei
flows using DNS databases reveal higher anisotropy in the
viscous sublayer compared with plane channel flows (Pash-
trapanska, 2004); (ii) experiments performed in circuipep
confirmed an increase in the transition Reynolds number with
increasing surface curvature, e.g. decreasing the pipeedia
ter (Haddad, 2009); (iii) analysis of the experimental and n
merical data shows that the turbulent Reynolds nuni®erin

pipe flows R, ~ 1.996Re%/2 -+ 0.108) is lower than in plane

channel flows Ry ~ 2.971Re%/2 —6.618), which implies a
reduction in the spectral separatidr/nk, due to the surface
curvature effect (Jovanovi¢ and Pashtrapanska, 2004).

For a finite number of corner bisectors, simple polygon
configurations with straight sides between corners aremot a
propriate since these configurations do not ensure axisymme
try of turbulence near the wall. In order to force axisymmetr
polygons with profiled side walls intercepting at right-&s
are suggested, as shown in figure 1 (right), as the simplest
means to obtain the desired turbulence structure which pro-
motes high drag reduction.

COMPUTATIONAL DOMAIN AND NUMERICAL
METHOD
Computational domain

The simulated flow configurations and the coordinate
system employed are shown in figure 2.

For wall-bounded flows the velocity scalg is related to
the streamwise pressure gradiéfR/dx; through the mean
momentum equation; = [0.25(Dy/p)(dP/dx1)]*/2, where
Dy, is the hydraulic diameter defined in terms of the cross-
section aread, and the wetted perimeted, asDy, = 4A/O.

For our simulations the Reynolds numiRe;, based oru;
and the hydraulic diametdy,, was fixed to the valu&e; =
Dhuz/v = D}l ~ 300.

For the geometries shown in figure 2, the flow is homo-
geneous in the streamwise direction so that periodic bound-
ary conditions were used in this direction. Using an equidis
tant cartesian grid with 8192257x 256 points in thexy,

X and x3 directions, the non-dimensional grid spacing was
Axi+ = 1.17. The estimated value of the Kolmogorov length

scale,n¢ = (0.25Rerur /Um)Y/4, obtained from the average
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The structure of turbulence in a square duct flowtgg and in pipes of non-circular cross-sections (left aglat). (a)

Along wall-normal bisectors, the turbulence structure t@sform common for wall-bounded flows. (b) Along corner bises,
turbulence approaches the ideal trajectory in the aniggtimvariant map, resulting in a significant reduction ie tlissipation £)
and spectral transfer with formation of quasi-determioisighly elongated streaks induced by secondary motion&dj Close to
corners, reduced spectral transfer results in a noticeablgction in the wall shear stress. (ej}(Rossible, polygonal or similar,
flow configurations of pipe cross-sections with a finite numdfecorner bisectors: in such configurations, turbulencghinbe

self-suppressed whenever secondary motions start torappea
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Figure 2. Computational domain with coordinate system,
(a), and simulated cross-section configuratidipg,

dissipation rate across the entire flow domain per unit mass
of the working fluid wasnk* ~ 1.5. The grid resolution
Ax" ~ 0.78n¢ was therefore fine enough to resolve all dis-
sipation and obtain reliable results for first- and secordo
turbulence statistics.

Numerical method

The choice of the numerical method was motivated by
the demand for an algorithm with small computing costs per
grid point and time step. In this respect, the lattice Boltz-
mann method (LBM) was a logical and attractive choice. The
method utilizes the fact that information on the velodity
and the pressurp of a viscous fluid can be obtained by solv-
ing a kinetic equation for a one-particle distribution ftion
f instead of Navier-Stokes equations directly. The function
f = f(&,7,t) depends on the molecular velocy the posi-
tion in spacer and the time. The hydrodynamic quantities
are obtained from the moments of the distribution function.
A very popular kinetic model is described by the Boltzmann
equation together with the so-called Bhatnagar-Gros®kro
(BGK) ansatz for the collision operator
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where.Z is the external force. The functioff? corresponds
to the equilibrium (Maxwell-Boltzmann) distribution and

is a relaxation time. This equation is discretized in timd an
space. Additionally, a finite set of velociti&s for f has to
be defined. As a result of discretization, the following non-
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dimensional equation is obtained:
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where f; is the distribution function of the velocit§. The
force density? is given by the pressure gradient according to
&= Iflp, wherebyé#; is the only remaining component in our
case. The macroscopic behavior of equation (3) is obtained
by a Chapman-Enskog procedure together with a Taylor ex-
pansion of the Maxwell-Boltzmann equilibrium distributio
for small velocity (small Mach number). For this equililamu
distribution
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it can be shown that the Mach number mustiyées| < 1 in
order to satisfy the incompressible Navier-Stokes eqnatio
The parameters, and p = ||¢||2 depend on the discretization
of the molecular velocity space. For the present simulation
a three-dimensional model with 19 velocitigsi =0,...,18
(D3Q19) was employed. The D3Q19 model has the parame-
terstp=1/3,t1 = 1/18 andp = 1/36. Our implementation of
LBM was validated against the well-resolved pseudo-spectr
simulation of a plane channel flow &e; ~ 180 . Results

of lattice Boltzmann simulation reported by Lammers et al.
(2006) confirm that profiles of the mean velocity, root-mean-
square velocity fluctuations, turbulent shear stress amtah
ance of the turbulence kinetic energy equation agree glosel
with the results of Kim et al. (1987).

RESULTS
Turbulent flow through a pipe of square cross-
section

In order to produce the desired componentality of the ve-
locity fluctuations by cross-section geometry which leauls t
the realization of axisymmetric turbulence in the neartveal
gion, the authors first performed simulation of turbulente i

a pipe of square cross-section. It was expected that in such

a configuration turbulence will reach the axisymmetricestat

along corner bisectors and tend towards the one-component

state at the wall. By evaluating the turbulence statistidhée
region between the wall normal and corner bisectors, it was
possible to confirm the results of the theoretical considera
tions and show that the axisymmetric state of wall turbutenc
leads to a large reduction in the wall shear stress in themegi
around corners.

Figure 3 shows distributions of the mean flow, all com-

the Reynolds stresses reveal that turbulence reaches the ax
isymmetric state in the close vicinity of the corners with in
variance to rotation for 90about the axis aligned with the
mean flow direction. At corners turbulent stresses satfsfy t
relations which hold for such a form of axisymmetric turbu-

lence:u? > ug = u3 and| U0z |=| U7U3 |. Trajectories in the
anisotropy-invariant map reflect these trends and confian th
anisotropy increases as corners are approached so that turb
lence along the corner bisector follows the right-hand ldeun
ary of the anisotropy map which represents axisymmetric tur
bulence with the one-component state located at the wal. Ap
proaching corners, slopes of the turbulent stresses arfteof t
mean flow continuously decrease at the wall. This trend sup-
ports the expectation that a decrease in the turbulenfpaissi
tion rate at the wallgy, leads to a lower value of the integral
(1) and therefore a decrease in the wall shear strgss,

Turbulent flow through pipes of the polygon
cross-sections

In reasoning about the cross-section configurations
which would notably increase the anisotropy of turbulence
along the entire wetted perimeter, which would than prevalil
across the whole flow domain, polygon cross-section geome-
tries composed of profiled sides intersecting at right-emgt
the corners are suggested. For such configurations with larg
number of corners simulation is, however, very demanding
owing to the fine resolution needed to capture the evolution
of the flow structures near corners. These structures are ex-
pected to have a significant impact on the viscous drag. Us-
ing the very efficient lattice-Boltzmann algorithm whichreu
rently operates extremely well exclusively on the equadist
grids, cross-section configurations with only few corneas c
be simulated with reasonable effort. Therefore, an attempt
was made to obtain first exploratory results by conductirg tw
simulations of turbulence development in pipes of octagon
cross-sections having straight and profiled sides. By study
ing differences in the flow development through such pipes,
it is possible to extract effects expected to prevail forrgda
number of corners.

Figure 4. Discretisized cross-section geometries of feriiu
pipe flow: octagon with straight sides (left) and octagorhwit
profiled sides (right).

The simulated cross-section geometries are shown in fig-

ponents of the Reynolds stress tensor and the turbulence ure 4. Owing to uniform discretization of the flow domain us-
anisotropy across one of the eight octants of a square cross- ing equidistant cartesian grids, the wall boundaries a@osim

section. These results provide a demonstration for desired
modifications of turbulence induced by the presence of the
side walls which intersect at right-angles. Distributiarfs

within the grid resolutionAx™ = 1.17, and symmetry be-
tween various orthants of the octagon cross-sections is pre
served within an equivalent degree of approximation.
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Figure 3. The structure of turbulence in a pipe flow of squaoss:section aRey = DpUm/v ~ 4362. The profiles of the mean
velocity, Reynolds stresses and turbulence anisotropfi@rrégion between the normdh), and corner bisectorgd). Arrows
indicate the maximum value of turbulence anisotropy. Thizga are non-dimensionalized by the wall friction velocigjculated
from the pressure gradient along the pipe and plotted vénsusormalized distance starting from the pipe centerlmeothe wall,

st =sug/v.

Comparisons of the flow development in pipes of oc-
tagon cross-sections with straight and profiled sides anensh
in figure 5. These results display essential differenceén t
flow development in the region around corners which are ex-
pected to play a major role in turbulent drag reduction and
potentially also in self-stabilization of the laminar balamny
layer development at large Reynolds numbers.

The computed trajectories in the anisotropy-invariant
maps reveal that anisotropy increases along the profilex sid
of the octagon cross-section and reaches at the cornerstalmo
the one-component limit. This trend in turbulence anismtro
is reflected in distributions of the mean velocity which dis-
play a continuous reduction of the wall shear stress as torne
are approached. These results correspond to a Reynolds num-
ber of Rem = DpUm/Vv ~ 4386 and a skin friction coefficient
of ¢t = Tw/(0.5U2p) = 2(Rer/Rem)? = 9.35x 1073, This
value ofcs is 3.9% lower than the prediction based on the
well-known Blasius correlations = O.O79]Re§1l/4 .

Across the octagon cross-section with straight sides there
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is no noticeable increase in anisotropy as observed in the
cross-section with profiled sides and consequently no firend
reduction of the wall shear stress at and near corners. These
results correspond to a Reynolds numbeRef, ~ 4277 and

a skin friction coefficient ofc; ~ 9.838x 1073. For this
cross-section configuration, the valuecgfobtained is slightly
higher than that deduced from the Blasius correlation.

CONCLUSIONS

An attempt was made, on purely theoretical grounds, to
derive the cross-section geometry of a fully developed pipe
flow which forces near-wall turbulence to approach the limit
ing state where it must be completely suppressed. Following
invariant analysis of turbulence, a cross-section gegnvedss
suggested in the form of polygon with profiled sides intetrsec
ing at right-angles at the corners. A description is prodidé
the manner in which the proposed geometry alters near-wall
turbulence leading to a significant turbulent drag reductio

In order to support the proposed concept of flow control,
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Figure 5. The structure of turbulence in pipes with octaguaps cross-sections. Comparisons of trajectories in tisetaopy-
invariant maps and profiles of mean velocity in the regiomieen the wall normal bisector and the corner bisector forciagon
with straight sides against an octagon with profiled sidesows indicate the maximum level of the turbulence anigotro

direct numerical simulations of turbulence in pipes of non-
circular cross-sections were performed using the lattimézB
mann numerical method. First exploratory results confirmed
that the chief mechanism responsible for the turbulent drag
reduction is related to the ability of the profiled surfacénto
crease the anisotropy in the velocity fluctuations veryetos
the wall. Itis hoped that further simulation work followitige
concept outlined in this paper will bring additional eviden

in closer accord with the theoretical expectations.
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