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Abstract

Numerical predictions with a differential Reynolds stress closure, which
explicitly takes into account possible states of turbulence on the anisotropy-
invariant map, are presented. The influence of anisotropy of turbulence on
the modeled terms in the governing equations for the Reynolds stresses is ac-
counted for directly. The anisotropy invariant Reynolds stress model (AIRSM)
is implemented and validated in different finite-volume codes. The standard
wall-function approach is employed in order to predict complex wall-bounded
flows undergoing large separation. Despite the use of simple wall functions,
the model performed satisfactory in predicting these flows. The predictions of
the ATRSM were also compared with existing Reynolds stress models and it
was found that the present model results in improved convergence compared
with other models.
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1 Introduction

In order to quantify the anisotropy of turbulence, Lumley and Newman [1] introduced the
anisotropy tensor a;; and its scalar invariants II, and IIL,:
o
aij = 12_]
4q

The tensor a;; isolates the anisotropy from all other flow properties. In isotropic turbulence aj;,
I1,, and IIL, vanish since w;u; = 1/3 e 0;;. If the second invariant II, is plotted as a function
of the third invariant III,, the so-called anisotropy invariant (AI) map of Lumley and Newman
is obtained, as shown in Fig. 1.
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Figure 1: Anisotropy invariant map of a;; and the limiting values of II, and III, for the different
states of the turbulence. All realizable turbulence must exist within the area bounded by the
map.

As found by Lumley [2], all realistic turbulence must lie within the AT map. The boundaries
of the map characterize special states of turbulence. The left and right branches stand for
axisymmetric turbulence. This state is reached if homogeneous isotropic turbulence is subjected
to an axisymmetric contraction (left branch) or an axisymmetric expansion (right branch). The
upper limit defines the two-component turbulence which is reached in the vicinity of solid walls
where the wall-normal component of the fluctuations vanishes much faster than the others.
Furthermore, three special points at the end of the lines surrounding the Al map are important:
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the isotropic turbulence at (0,0), the one-component limit (2/9,2/3) which characterizes the
right limit of the map, and the limiting point on the left branch, which denotes the two-
component isotropic state (—1/36,1/6).

Results of numerical simulations covering the entire map clearly support the statement of
Lumley showing that nearly all states of turbulence are reached in complex turbulent flows
(e.g., separated flow past an airfoil [3]). Consequently, the anisotropy of turbulence has to
be taken into account when modeling turbulent flows based on statistical models to close the
Reynolds-averaged Navier-Stokes equations. This issue was not systematically considered in
the past and may be approached by including the influence of the limiting states in the Al map
on the description of the turbulence dynamics as proposed in [4]. The basic idea is therefore
to look at special states of turbulence in the AI map. Those are given by the boundaries
(lines and points) mentioned above. For these special cases, turbulence closures can be found
more easily than for other states of turbulence which reside within the inner region of the Al
map. Under the assumption that the AI map is narrowﬂ, in a second step the closures for
the points lying within the map are obtained by interpolation between the left, right and top
boundaries and limiting states of turbulence located at the corner points of the map. In a
last step, this procedure is carefully proven by a detailed comparison of the predicted results
with experimental and numerical data (DNS) in order to guarantee reliability of the Al closure
assumptions [H].

The present paper aims at exploiting capabilities of the above mentioned development in
terms of stability, convergence and quality of results. The objective of the present work was
to provide a set of flow predictions for complex flows by taking into account the anisotropy of
turbulence on the AIRSM coefficients. By this way the applicability of the model equations
for the treatment of a range of technically relevant flows is tested. The data predicted for
selected test cases can shed light on the adequacy of representing the dynamics of complex
flows based on constructions formed by interpolation of the statistical properties of turbulence
which reside on the boundaries of the AI map. Keeping this in mind, we considered two test
cases of separated wall-bounded flows.

2 Anisotropy Invariant Model of Turbulence

A detailed description of the ATRSM has been presented in [4]. Therefore, only an outline of
the original model is presented here.
For a viscous incompressible fluid, the equations for the Reynolds stresses w;w; are given by

onm — 9 ou;, __ou, 1[ op op
Upr— (wu;) = -ty —2 — U — — — |uj—— . 2
ot + k@xk<uu]) uuk@xk uu]@xk p {u Oz, +u]8xi (2)
Pij Hi]’
Ou; Ou; 0? w;u;
- iU _2 ? J 1) 3
83% (U UJUk) V&xk 83% + V&xkaxk ’ ( )
Tij €ij D;j

L As mentioned in [T], the AT map is narrow and therefore linear relationships between symmetric second-
order correlation tensors should be more and more reliable as boundaries of the map are approached. This was
demonstrated by comparisons with DNS data as shown in [4]. All DNS databases that are close to boundaries
of the AI map match model approximations almost exactly.
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where U}, denotes the time-averaged Cartesian velocity components and p and v are the density
and kinematic viscosity, respectively. The five terms on the right-hand side represent production
(P;;), velocity pressure-gradient interaction (IL;;), turbulent transport (7;;), viscous dissipation
of wu; (e;;), and viscous diffusion (D;;).

To illuminate qualitatively and not quantitatively (at all circumstances) the dynamics of
the Reynolds stresses, we utilized the closure proposals for €;;, 1I;;, and Tj; elaborated by
Jovanovié [4]. Using the two-point correlation technique and the invariant theory, he suggested
the following approximations for unknown terms in the stress transport equationdd:

1 O*uu; 1
J
€ij > —U + Aa;jen+ < €,0i5 4
7T 4 Oy 0y R R @
R , ———— N —
inhomogeneous ~ anisotropic isotropic

1
I ~ Cenay, +a;;Pss + F <§Psséij — Pl-j) + small transport terms ignored, (5)

——
non-linear part of linear part of
Poisson eqn. Poisson eqn.
0 kQ duiuj
ﬂj ~ Cs - ) (6)
ox k €p 6:5 k

where A, C and F are the scalar functions that depend on the anisotropy invariants of the
Reynolds stresses (II, and III,) and the turbulent Reynolds number R, (to be defined later)
and the model constant C'; was fixed at 0.1.. The homogeneous part of the turbulent dissipation
rate ¢, is defined as follows [4]:

1 82q2
=-v

The first term on the right-hand side of eq. () represents the contribution of inhomogeneity
to €;; and the second term accounts for the influence of the anisotropy of turbulence on partition
of the dissipation tensor into its components. The proposed form for €;; was obtained using
the two-point correlation technique and satisfies the isotropy, the axisymmetry, and the two-
component limit and therefore realizability. Thus it matches the well established behavior of
turbulence properties for very small Reynolds numbers. The construction for A [see eq. ([@)]
was obtained by interpolation between the well established values for A defined at the limiting
states of turbulence on the AI map. The proposed form of A suggests that the anisotropy in
the small-scale structure of turbulence will persist even at very high Reynolds numbers.

The influence of non-linearity in the Poisson equation for the pressure fluctuations on the
intercomponent energy transfer II;; is represented by the first term on the right-hand side of
eq. (H). The second and third terms involved in eq. (H) originate from the linear part of the
above mentioned equation for the pressure fluctuations. They are composed, with the help of
the invariant function F [eq. ([d)], to satisfy the two-component limit (F = 1) and to match
the exact expression for II;; in the rapid distortion limit and for the vanishing anisotropy of
turbulence (F = 3/5).

The approximation (@) for the turbulent transport terms 7}; is only provisional since it does
not recognize the non-Gaussian character of turbulence at large scales and assumes that the
fluctuating velocity field is weakly inhomogeneous.

€

+ €. (7)

2 In the text to follow the equality sign = is used exclusively for exact relations and symbols ~ and = imply
increasing uncertainty of the relations, respectively.
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The proposed forms for €;;, II;; and T;; are the most simple constructions that are possible
to arrange. Direct testing of the above suggested closures against DNS results for homogeneous
turbulence and for wall-bounded and free-shear flows show overall good degree of agreement
and in particular closely match to the simulated results for flows evolving at or close to the
boundaries of the Al map [4].

With the the closure proposals, the transport equations for the Reynolds stresses can be
written as follows:

owu; — O oU ; oU; 1
at J -+ Uka—{[k ( uiuj) ~ —uzuk%; — ujUka—{L‘k +aiszs + JT <§ Pssdi’ — R)
Pij
2 0 (k?O0uu; 1 0% uu;
—2 ii — —€n0ii + O S — L 8
_'_(C .A)€hCL] 36h J + 83% <€h 8:ck ) + 2V8xk8:ck ’ ( )
where the invariant functions are defined as
1 1 1
A :1+5{1—9QH{4HQ}OV—U:1+§JOV—D, (9)
3 18 /1 2
~ —+ — (=1, -1, )| ~1—- -7, 1
7 5 + 5 (2 ) 5j (10)
1
C ~ 4mbfﬂ<§h—HLﬂOM—DQ4RJOV—U (11)
A 1 A
— ~ —0.049R, + =(0.009604 R? +10.208)"2, W ~ 0.626— (12)
Ly 2 Ly

and Ry = gA\/v is the turbulent Reynolds number based on ¢* = w,u, = 2k and the Taylor
microscale A, which is related to ¢, as

¢

€ = 5I/ﬁ . (13)

To complement the system of modeled equations for the Reynolds stresses, the following
approximate form of the transport equation for €, was utilized:

de, — Oep ep Uug OU; € 0 (k:2 8eh> 1 0%,

9en 7, Yn o oy 9 1 ,
ot *on, A9 V% T, 9 rronn

14
€n al‘k ( )

based on the application of the two-point correlation technique and the invariant theory [4]. To
provide a robust performance of the model in predictions of complex flows, a simplified model
for the decay term v was employed:

Y& oc(l = T) + ¥iseT (15)

where 15 ~ 2 corresponds to the two-component turbulence, 15, >~ 1.8—0.4)V to isotropic grid
generated turbulence, and ¢, ~ 0.09 was fixed to satisfy the equilibrium region in wall-bounded
flows (P, = Pss/2 ~ €3).

3 Implementation of AIRSM

From the model description provided in the previous section, it can be seen that the closure
formulations for the unknowns (redistribution and dissipation terms) are simpler than for other
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existing models, e.g., those of Speziale et al. [8] (SSG) and Launder et al. [9 (LRR) having
in mind that the influence of the limiting states on the dynamics of turbulent stresses have
been taken into account even for the region around the point of vanishing anisotropy on the Al
map. As a result, the numerical implementation of the model is straightforward. Unlike most
other Reynolds stress models where the coefficients of the modeled terms are constant, the
novel model applies scalar functions whose values are determined depending on the location of
turbulence within the invariant map during the course of iterative calculations of the transport
equations. In the present formulation, these scalar functions (7, F, etc.) are defined in terms of
the unknown Reynolds stress tensor and the dissipation rate. Therefore, the difficulty in solving
the coupled set of equations for mean and turbulent quantities increases. The difficulty can
be overcome if the implementation of the right-hand side terms in the transport equations (&)
and ([[d)) is carried out carefully. Being implicit source terms, they can be linearized in order
to enhance numerical robustness and convergence rate. The invariant scalar functions are
determined from the values of the anisotropy tensor of the previous iteration. Numerically
produced unphysical values of the invariant functions, especially for J and W, easily caused
the numerical solvers to diverge. Therefore, in order to have a robust working model, it was
ensured that for both of the above-mentioned scalar functions, their numerical values remain
within the bounds 0 to 1. By controlling the values of the invariant functions, it was observed
that the turbulence remained within the invariant map and was not influenced by unphysical
values of the Reynolds stresses or dissipation rate at some nodes during the iterative procedure.
In other words, if the invariant functions are not controlled at every iteration, turbulence can
easily leave the bounds of the invariant map and there is no way to bring it back into the map
again.
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Figure 2: Comparison of convergence rates between the SSG and AIRSM models for the case
of the flow over the NACA 4412 airfoil; (a) mass; (b) kinetic energy of turbulence.

In the dissipation equation, the behavior of the invariant function, i.e. v, is crucial. It has
been shown [] that ¢ has different values at each limiting state of turbulence. This makes
the formation of ¢ difficult. The original model formulation when adopted in the numerical
simulation, caused the computation results to be very sensitive to numerical disturbances.
Therefore, for ¢ a simpler model than in [4] was proposed as indicated by eq. (IH).

Second Symposium ”Simulation of Wing and Nacelle Stall”, June 22nd - 23rd, 2010, Braunschweig, Germany 6



From the basic verification simulations, it has been found that the simplified version of the
model is numerically robust. The convergence rate especially on structured grids was observed
to satisfy requirements for routine engineering calculations in complex geometries such as found
in internal configurations of car engines. A comparison of the convergence rates for the novel
model and the SSG model for the case of the flow over the NACA 4412 airfoil is shown in
Fig. 2l It can be seen that despite the strong non-linearity in the closure proposals (since the
scalar functions depend on the unknowns), the convergence rate of the novel model is very
satisfactory.

The ATRSM model has been implemented into the in-house code FASTEST-3D [I0)] and the
commercial codes ANSYS-CFX and CD-adapco-COMET. The standard log-law approach for
walls is utilized to abridge the mean bulk flow and the no-slip wall. For the dissipation equation,
the equilibrium condition, i.e. P, ~ ¢, is adopted at the wall. For the Reynolds stresses, a
simple zero-gradient wall-function approach, as described by Grotjans [I1], is employed. This
simplified wall treatment, which prescribes that the stress gradients at the solid boundaries
are set to zero in the normal-to-the-wall direction, is very convenient for routine engineering
calculations of complex wall-bounded flows. However, it has to be mentioned that this boundary
condition is unable to predict the high anisotropy of the stress components in the near-wall
region very close to the wall. Regarding the integration down to the wall, we refer to [12, 13,
141, [17, [16].

By applying the above wall-function approach, two different problems of wall-bounded flows
are taken into account. Two standard cases of separated flows, i.e. the flow in an asymmetric
diffuser and past a backward-facing step, are computed. Obi et al. [I8] carried out experiments
for the case of an asymmetric diffuser. This case is fairly reliable since Obi et al.’s data [I§]
were reproduced and extended by Buice and Eaton [19)].

4 Verification of AIRSM

4.1 Asymmetric Diffuser Flow

The turbulent flow in a planar diffuser is a challenging problem since it involves a wide variety of
spatial scales and adverse pressure gradients. Detailed experimental investigations for a planar
diffuser, with the help of a single-component laser Doppler anemometer, were performed by Obi
et al. [I8]. As mentioned earlier, Buice and Eaton [T9] repeated the experiment in an identical
configuration with the help of hot wires and pulsed wires. Adopting the RANS approach,
among others Durbin [21], Taccarino [22], and Apsley and Leschziner [23] computed the flow
and turbulent stresses. Recently, Kaltenbach et al. [24] and Schliiter et al. [25] performed
detailed LES computations in the same configuration. A schematic view of the computational
domain for the plane asymmetric diffuser is presented in Fig. Bl The diffuser length is 21 H,
where H is the inlet height. The expansion ratio of the diffuser is 4.7 and it has a single-sided
deflection wall of 10°. Based on the inlet height and mean flow velocity (Up), the Reynolds
number Re = UyH/v is equal to 2.12 x 10%. In the governing equations, the fluid velocity
and the position are normalized with respect to Uy and H. In order to obtain appropriate
flow conditions at the inlet boundary of the diffuser (at x;/H = —11), a fully developed 1D
channel flow computation needs to be performed. From the results of this 1D computation,
the data (71, Uiy, Ugly, Uzls, Ujls, €) are interpolated on the inlet boundary of the 2D mesh.
At x1/H = 60, the outflow boundary with zero gradient of all variables is prescribed. At
the lower, upper and inclined walls of the diffuser, the log-law of the wall is applied for the
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Figure 3: Schematic view of the plane 2D asymmetric diffuser.

momentum boundary condition. The numerical grid consists of 292 and 96 control volumes
in the x; and x, directions, respectively. The numerical grid is substantially refined near the
lower and upper walls and the region of recirculation. The present grid is considered to be
sufficiently fine since the results on a one-level coarser grid were nearly the same as those of
the present grid. Therefore, no attempts have been made to compute the present case on the
next finer grid level.

Figure Hl(a) presents the predicted streamwise velocity profiles at different stations in the
region of separation. In the core region both the AIRSM and SSG models accurately predict the
mean streamwise velocity. From distributions of the Reynolds stresses shown in Fig. @(b)—(d),
it can be seen that near the throat of the diffuser turbulence changes rapidly. Away from the
near-wall region, both the SSG and ATRSM models capture trends in the experimental results
reasonably, both for the normal and shear stresses. It can be noted that further downstream
in the throat (zy/H > 15), the prediction of turbulent stresses based on the AIRSM model are
slightly better than those of the SSG model.

From the skin-friction coefficients Cy for both the bottom and inclined walls of the diffuser,
as shown in Fig. H it can be seen that all the models deviate from the experimentally measured
values of Cy. It is a well-known fact that the wall functions are responsible for the underpredic-
tion of the skin-friction coefficient (see, e.g. [21]). In the separation region, the AIRSM model
predicts the flow field slightly better than the SSG model, but the differences between both
models are much smaller than the deviations to the experimental data. In the case of the k-¢
model, the separation region is not predicted at all.

4.2 Backward-Facing Step Flow

The turbulent flow over a backward-facing step (see Fig. ) is a widely used benchmark problem
to evaluate the performance of turbulence models for separated flows, because the geometry of
the test case is simple and the separation occurs at the sharp corner. Hence the flow is easier
to predict than a flow for which the separation point is unknown. Moreover, both DNS and
LES data for this flow problem are commonly available in the literature. The present case is
based on the experiment of Driver and Seegmiller [26]. The dimensions of the computational
domain are shown in Fig. B, where H = 0.0127 m. The main domain dimensions in the z,
T2, and z3 directions are 30H, 9H, and 0.1H, respectively. The top wall is either parallel to
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Figure 4: Comparison of (a) predicted mean flow, U, and (b)-(d) Reynolds stress compo-
nents at different stations (z1/H = 5.2-25.2) with the measurements of Obi et al. [I8] in an
asymmetric 2D diffuser.

the bottom wall along which separation develops or is diverging at 6 degrees starting at the
point opposite to the step. The flow is computed in a two-dimensional manner using a 3-D
code. The kinematic viscosity v is equal to 1.5 x 107° m?/s. Based on the centerline velocity,
User = 44.2 m/s at the inlet, and the step height H, the Reynolds number is Rey = 3.75 x 10*.
Inlet profiles for velocities and turbulence quantities are obtained from preliminary calculations
of the flow development in a plane channel of the height H by varying flow conditions at the
channel entrance until the outlet results matched the experimental data for the mean flow and
turbulence statistics at four step heights (4H) upstream of the step corner.

Similar to the case of the diffuser, the normal-to-the-wall gradients of the Reynolds stresses
are set to zero at the lower and upper walls of the step. For the momentum boundary condition
at the wall, the logarithmic law is taken into account. The outlet condition is applied 30 step
heights (30H) downstream of the step.

For both cases, i.e. @ = 0° and o = 6°, a coarse (see Fig.[l) and a fine grid were generated
to check grid independence. The number of grid points are about 4600 and 9600, respectively.
As depicted in Fig. [ the grid is locally refined in the region around the step and especially in
the region of the free shear layer.
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Figure 6: Description of the backward-facing step test case. The experiment was performed by
Driver and Seegmiller [26].

In the present case, the computations were performed with the k-¢, SSG and AIRSM models.
As mentioned above, the computations were carried out on two different grids. It was observed
that the results on the coarse grid are not significantly different from those on the finer grid
(which is about two times finer in the z;-x9 plane). Hence, in the present section only fine grid
results are presented.

First, the mean flow is investigated by plotting the streamlines in the region where the step
is located. From the streamlines shown in Fig. B it can be observed that the reattachment
lengths predicted by the k-e model (5.29H for o = 0° and 6.5H for a = 6° ) are significantly
smaller than the experimentally obtained values of 6.26H and 8.30H for a = 0° and o = 6°,
respectively. On the other hand, the predicted reattachment lengths obtained by the SSG
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Figure 7: Coarse numerical grid and local grid refinement used for the flow over a backward-
facing step at @ = 6°.

model are approximately equal to 5.54H for o = 0° and 6.63H for a = 6° and thus slightly in
better agreement with the experimental values than those of the k-¢ model. This outcome is
consistent with the literature stating that the SSG model acts towards the shortening of the
recirculation zone. Applying the AIRSM model the reattachment lengths are equal to 5.9H
for « = 0° and 7.42H for a = 6°. Thus, in comparison with the SSG model the deviations
to the experiment are approximately halved by the AIRSM model for both configurations.
Furthermore, a secondary vortex is visible in the corner past the step for the AIRSM and the
SSG model but not for the k-e¢ model results.

Another noteworthy feature concerns the back-bending of the mean dividing streamline at
reattachment, which is a traditional outcome of existing Reynolds stress models, see e.g. Lasher
and Taulbee [27] and Hanjali¢ and Jakirlic [28]. As visible in Figs. B(e) and (f), the predictions
using the novel model does not show this deficiency.

Detailed velocity profiles at various locations (z7/H) behind the step are depicted in Fig. @
Away from the near-wall region both the SSG and AIRSM models satisfactorily predict the
mean flow. By carefully observing the region close to the wall in Fig. @ one can see that
the prediction of the ATRSM model at some locations is in slightly better agreement with the
experimental results than the results obtained by the SSG model, but the deviations are small.

Furthermore, two important parameters, C'y and Cp, are determined in order to characterize

the flow separation and reattachment. The pressure coefficient is defined as

_P-PR
sPUZ

Cp (16)

where P, corresponds to the reference pressure at 4H before the step. Hence these two coef-
ficients are predicted from the step onwards and plotted in Fig. From these two plots, one
can infer that both AIRSM and SSG models broadly follow the trends in the experimental data
in character and magnitude but not over the details.

In Figs. [ and the longitudinal, normal, and shear stresses are plotted in order to
estimate the performance of the AIRSM and SSG models. Despite the use of simple wall
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Figure 8: Streamlines predicted by different turbulence models in case of the flow over the
backward-facing step with the wall opposite to the step parallel to the wall (left) or diverging
at a = 6° (right).
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Figure 9: Velocity profiles at stations x1/H = 2, 4, 6.5, 8, 14, 32. From left to right, n =0, 1,
2, 3, 4 and 5; experimental data by Driver and Seegmiller [26].

functions for the Reynolds stresses and the restrictive formulation of the AIRSM model, it
can be seen that the agreement of the experimental results with the numerical predictions
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Figure 10: Distributions of the skin-friction coefficient and the pressure coefficient predicted
by different turbulence models for the backward-facing step flow; experimental data by Driver
and Seegmiller [26].

based on both models considered are reasonable. However, a closer look at the results near
the step corner suggest that predictions obtained with the aid of the AIRSM model match
more closely the experimental data than the predictions obtained with the SSG model. These
small differences are for example visible in the profiles of the streamwise component of the
Reynolds stress tensor shown on top of Figs. [l and [ Especially in the reattachment and
post-reattachment regions both models overpredict the normal stress component wyuy, but for
AIRSM the agreement with the measurements is slightly better than for the SSG model.

5 Conclusion

Numerical predictions of complex turbulent wall-bounded flows were carried out using the
novel Reynolds stress turbulence model based on the application of the two-point correlation
technique and invariant theory. The simplified set of the modeled equations was implemented
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Figure 11: Reynolds stress components predicted by the AIRSM and the SSG models in the
backward-facing step case at a = 0°, Plotted data are extracted at stations z1/H = 2, 4, 6.5,
8, 14, 32 and normalized with the bulk flow velocity U,.s at the inlet of the channel. From left
to right, n =0, 1, 2, 3, 4 and 5; experimental data by Driver and Seegmiller [26].
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Figure 12: Reynolds stress components predicted by the AIRSM and the SSG models in the
backward-facing step case at a = 6°, Plotted data are extracted at stations z1/H = 2, 4, 6.5,
8, 14, 32 and normalized with the bulk flow velocity U,.s at the inlet of the channel. From left
to right, n =0, 1, 2, 3, 4 and 5; experimental data by Driver and Seegmiller [26].
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into the computer programs FASTEST-3D, ANSYS-CFX and CD-adapco-COMET. Numerical
predictions were performed using the standard wall-function approach for the treatment of the
flow close to solid boundaries.

Sample calculations of two standard test cases of wall-bounded flows, namely the flow devel-
oping in an asymmetric diffuser and the backward-facing step flow show improved agreement
between the predicted and experimental results in comparison with the performance of concur-
rent turbulence closures used in engineering practice. For the case of the backward-facing step
flow the predicted reattachment lengths were closer to the experimental findings than the cor-
responding results obtained using other models. It is interesting that the present calculations
show that the turbulence properties are captured quite well in spite of the use of wall func-
tions and follow more or less closely the trends in the experimental data across the entire flow
domain. Furthermore, the convergence rates of the AIRSM model was found to be improved
compared to the SSG model.
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