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ABSTRACT

This thesis is concerned with the construction and analysis of numerical methods for
stochastic reaction networks, where the term stochastic means that the model contains a
degree of randomness or unpredictability. The dynamics of such reaction networks are
described by using a Markov jump process on large and usually high-dimensional state
spaces, with the corresponding time-dependent probability distribution being the solu-
tion of the chemical master equation (CME). Adding an element of unpredictability in
biological modeling is a relative new development, as only recently it has been recog-
nized that biochemical kinetics, especially those at the intracellular level, are intrinsically
stochastic. The solution of the CME provides the most accurate picture of the dynamics of
such systems, but solving the equation numerically is hampered by the curse of dimension-
ality: the number of degrees of freedom scales exponentially with the number of species
involved in the reaction network.

Consequently, we develop herein an approach that mitigates the effects of the curse of
dimensionality by using wavelet compression. Adaptive wavelet-based numerical meth-
ods are devised for both the time-dependent and stationary CME. Reducing the number
of degrees of freedom via wavelet compression is not the only challenge faced when in-
vestigating biochemical reaction networks via the CME: the metastability of many systems
poses additional difficulties. Another objective of the thesis is to develop efficient numer-
ical tools allowing the approximation of the committor probabilities - statistical objects
that describe the progress of the transitions between subsets of the state space. Used
within the framework of Transition Path Theory, the committor probabilities provide a
detailed insight into the metastable dynamics of biological systems.

In order to exploit the multi-scale nature of many biological systems and achieve fur-
ther reductions in the number of degrees of freedom required to approximate the sta-
tionary CME, an embedding of the adaptive wavelet method within a hybrid strategy is
also explored. With a hybrid approach, significant reductions can be achieved by using
the computationally intensive wavelet method only for the parts of the biochemical reac-
tion networks composed of species with small concentrations and treating the remaining
components in a deterministic setting. The methods are illustrated on multi-dimensional
models with metastable solutions, which are defined on large state spaces.
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CHAPTER
ONE

INTRODUCTION

Motivation

Recent decades have seen a tremendous level of activity in the field of molecular biol-
ogy, where the use of new technologies enabled researchers to continuously expand the
boundaries of knowledge on biological phenomena occurring at the cellular level. The
large amounts of data being collected on individual cellular components and better un-
derstanding of the interactions also triggered the emergence of systems biology as a new
interdisciplinary field that views biological processes as dynamical networks, thus ex-
panding the toolbox of mathematical models and computer simulations available for the
investigation of the complex relationships inside such systems. This in-sillico approach
to molecular biology is playing an increasingly important role alongside conventional
in-vivo methods, as it allows the quantitative assessment of various assumptions and
hypotheses about the structure and internal mechanisms of biological networks, with
significant time and cost savings compared to traditional laboratory methods.

However, while a large list of the “building blocks” of living organisms has already
been assembled and their internal mechanisms are generally well understood (e.g. the
seminal results from [GCCO00, ESSL02, Pta04]), the integrated knowledge of how these
pieces work together to influence phenotypic heterogeneity at higher levels is far from
complete. The ultimate goal of systems biology is to enable the engineering of complex be-
havior in living organisms via changes that are robustly propagated either down-stream
or up-stream of the location where they are added (see [Wil09] for a compelling argu-
ment on this subject), but achieving such ambitious goals necessitate further efforts in
developing or adapting the mathematical and computational frameworks to handle the
complexity of biological organization.

An important topic in computational systems biology has been the increasing aware-
ness that stochasticity and discreteness play an important role in biological reaction net-
works at the cellular level [ADAQ9]. This is supported by experimental results [MA99,
EBEO1, EL00], which makes the study of stochastic fluctuations, although a challenging
task due to the complexity of the dynamics involved, almost mandatory, a fact high-
lighted in many recent reviews [TSB04, KEBC05, RO04].
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Consequently, questions related to the development of models that deliver the high res-
olutions needed to reveal important biological details like the effects of molecular noise
have lately attracted a lot of interest. Any scientific research that has the goal of study-
ing a “real” biological process, involves the question of how accurate the model used to
depict reality should be, or to formulate the problem more precisely, how to construct a
model using the available knowledge so that the discrepancy between the model and the
real process is not too large and the model is simple enough to remain computationally
tractable. Once such a model is constructed, the next question is whether this “exact” de-
scription can be used to investigate processes of genuine interest, or for practical reasons
an “approximate” formulation is needed. Usually, the last choice is the only realistic op-
tion if the goal is to move away from studying the interactions of specific single molecules
and describe instead the more complex behavior of biological systems that involve many
components arranged in biological networks.

In the larger sense, this thesis is concerned with the construction, analysis and appli-
cation of such “approximate” descriptions of complex biological processes. However, in
order to keep things into perspective, it is important to note that the difference between
the “exact” and “approximate” models is usually far less than that between the “exact”
model and the real process, so choosing the appropriate modeling paradigm is of upmost
importance.

Modeling choices

Ideally, describing a complex physical system would be done using some sort of determin-
istic model, meaning that given some past state we can completely characterize the future
by employing some accurate evolution laws that obey the appropriate physics and keep
track of the positions and speed of all the molecules involved, as well as their interactions.

Such molecular dynamics approaches can be very accurate, but the shear complexity of
the interactions means they are usually too expensive from a computational point of view,
especially if the model involves more than single molecules of each type and the dynam-
ics are to be investigated over a longer time interval. A model on this scale is called
microscopic, and employs Brownian dynamics for the movement of the molecules and the
Smoluchowski model for their interactions. Not withstanding the challenges, advances
in computational approaches like the Green’s Function Reaction Dynamics (GFRD) al-
gorithm proposed in [vZtWO05], have enabled the application of such models to some
biological systems, and their use will certainly increase in the future, especially in view
of the development of hybrid approaches [HHL11]. However, biological complexity and
the difficulty in formulating useful laws that take all effects into account, currently limit
the use of microscopic models.

Much of the earlier mathematical modeling of cellular processes employed instead a
macroscopic approach, that is, a deterministic model that assumes large population levels,
discards the spatial dimension and is used to study the average behavior. Naturally, such
simplifications can only be made under certain assumptions, namely that in addition
to having large molecular copy-numbers that dampen the effects of molecular noise, the
system is also well-stirred, meaning the molecules are uniformly spread within a container



of constant volume and the temperature is also constant. The time evolution of such
a system can then be modeled via a system of ordinary differential equations (ODEs)
representing the concentrations of the molecular populations involved, known as the
reaction rate equations (RRE).

However, because biological processes at the cellular level such as gene regulatory
networks, usually exhibit low copy numbers of participating molecules, this means that
some of assumptions made in this classical deterministic setting are no longer valid. In
order to obtain an accurate model for such systems, which is still reasonably simple to
simulate despite the higher resolution, randomness has to be introduced into the mathe-
matical model, while preserving the well-stirred characterization. Therefore, a mesoscopic
model which lies between the very accurate but prohibitively costly microscopic scale and
the coarse but from a computational point of view easily accessible macroscopic scale, has
emerged as the the most popular choice for modeling stochastic effects, as it respects both
the stochastic nature of biological processes and the discreteness of the population num-
bers. The model is based on the assumption that the process driving the evolution of the
system is memoryless, i.e., depends only on the current state of the system and not the
whole system history, with the mathematical formulation provided by a continuous time
discrete space Markov jump process [Gil76].

In the mesoscopic formulation, the effects that are either too complex or too expensive
to simulate are simply summarized in terms of random variables. Then, the future can
no longer be unambiguously determined from the past and is described only in a prob-
abilistic sense. This is suitable for most applications, because the questions being posed
are of a quantitative nature, namely the time-evolution of the population numbers of the
different interacting cellular components. From a computational point of view, realiza-
tions of the Markov jump process can be generated via the Stochastic Simulation Algorithm
(SSA) also known as the Gillespie algorithm (see [Gil76]). Naturally, each run of a given
model will produce a different result, but the probability distribution of the results for a
certain time is determined by the underlying mathematical formulation and can be com-
puted as the solution of the Chemical Master equation (CME). Thus, the CME provides an
“exact” description of the stochastic model. However, the full probability distribution for
the state of a biochemical system over time can only be computed in simple situations,
which limits the direct use of CME. Numerical approximations of the solution are also
not trivial to obtain as the CME is affected by the curse of dimensionality: the number of
degrees of freedom needed for an accurate approximation grows exponentially with any
increase in the number of components of the biochemical system.

As the number of degrees of freedom present in most problems that merit investigation
is tremendous, the usual computational approach in mesoscopic modeling has been based
on Monte Carlo simulations using the SSA algorithm, either the original variant from
[Gil76] or the many modifications that have been proposed since (see e.g., [GB00, Gil01,
CGP05, CGP07]). In theory, the associated Monte Carlo error can be made arbitrarily
small by increasing the number of simulations, but obtaining an accurate approximation
of the probability distribution using stochastic simulations is usually not feasible because
any change in the state of the system requires an update of the state vector. For systems
with multiple time-scales, this can lead to high computational costs.

An alternative is to try to devise methods to solve CME directly, despite the challenges



1. Introduction

posed by the curse of dimensionality. As both alternatives are computationally expensive,
the question of the usefulness of stochastic modeling arises, and whether the incurred
computational cost is justified. A comparison between the results obtained using the
deterministic and stochastic approaches can thus shed light on why including molecular
noise in the model is important, particularly in the case of gene regulatory networks.

Advantages of stochastic modeling

As stated before, system size is an important factor that contributes to stochasticity and
larger copy numbers of molecules means that the influence of stochastic fluctuations on
the dynamics of the system are less pronounced. This is illustrated in Figure 1.1, by
comparing the deterministic and stochastic solutions of the Michelis-Menten model of
enzyme kinetics (cf. [Hig08]). Plots 1.1a and 1.1b show the time evolution of each of the
species, computed by using the deterministic reaction rate equations and SSA, respec-

tively.
-7
20210 1200 120
1000 100
515
= ﬂ 800 g 80 7
£ 3 3
£ 10 & 600 & 60
[3) [<] []
s = 400 = 40
O 5
200 20
0 0 0
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Time Time Time
(a) Deterministic (b) Stochastic, large numbers (c) Stochastic, small numbers

Figure 1.1.: Stochastic fluctuations in the Michelis-Menten system

The initial number of molecules has been chosen to be in the range of 102, and the differ-
ent scales are due to the fact that while the mesoscopic model delivers molecule numbers,
the macroscopic model outputs concentrations. With the mention that plot 1.1b shows a
number of superimposed independent SSA runs, it is evident that when large numbers
of molecules are present, the stochastic solution looks like a slightly noisy solution of
the corresponding differential equations. However, a 10-fold reduction of the initial copy
numbers leads to an increase in fluctuations and their possible effects, as evident from the
SSA runs plotted in 1.1c. In general, when N denotes the average number of molecules, a
decrease in copy numbers will result in a 1/v/N scaling of the noise [Wil09]. As a conse-
quence, systems which exhibit low-copy numbers should be treated stochastically, as the
deterministic model fails in such cases to capture the real dynamics.

Among the most important manifestations of stochasticity in cellular processes is the
appearance of multistability. Multistable biological systems are also called toggle switches,
and spend most of their life in two (or more) meta-states, until stochastic noise induces
a sudden transition between these states. Using a well known model of a bistable toggle
switch from [GCCO00], which represents a synthetic gene regulatory network composed
of a mutually repressible gene pair, we illustrate in Figure 1.2 how the stochastic model
captures behavior which cannot be observed when using the deterministic model. For



any given initial conditions, the ODE solution depicted by the red line, will converge to
one or the other stable state and remain there for all time. However, adding noise to the
model via the stochastic description, leads to the observation that if the noise amplitude
is sufficient, the solution will also visit the other stable state. The flexibility to switch
between the stable states can therefore help explain the appearance of different behav-
ior in isogenic cell populations, leading to the conclusion that stochasticity is in fact an
evolutionary trait.

200

5
Time x10°

Figure 1.2.: Deterministic vs. stochastic solutions for a bistable toggle switch [GCCO00], illustrating
the effect of noise in multi-stable systems (figure adapted from [Eng08])

Another example where noise can impact the dynamics can be found in genetic oscilla-
tors, which are used by many living organisms as internal clocks for regulating behavior
between day-time and night-time periods. A model of these oscillations can be found
in [VKBLO02], and Figure 1.3 showcases the manifestation of the stochastic resonance phe-
nomenon, namely how noise can push the system out of a stable fixed point and start
a new cycle. The occurrence of the oscillations can even be modulated by tuning the
amount of noise. For all parameter sets, the stochastic model is sensitive enough to de-
tect the fluctuations that send the system onto a new cycle, while the deterministic model
is prone to settling into the stable state after the first oscillation for certain parameter
values. These are just some of the effects of stochasticity in gene expression (for a com-
prehensive study on the subject see, e.g. [KEBCO05] or the monograph [vK01]), which
motivate a mesoscopic treatment of cellular processes.
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Figure 1.3.: Model of a circadian oscillator where the stochastic approach exhibits reliable oscilla-
tions while the deterministic model fails (figure adapted from [VKBLO02])

State of art

As the CME can provide an accurate picture of the dynamics of intracellular networks
similar to those presented in the previous section, a significant effort has been made in re-
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cent years towards developing adequate numerical methods for this equation. The meth-
ods usually employ one of several computational approaches, either a discrete Galerkin
method coupled with Rothe’s method ([Eng09a, DHJWO08, Jah10, JHO8]), a finite state pro-
jection (FSP) algorithm ([MBBS08, MBS08, MK06]), an aggregation approach ([HBS'07]),
sparse grids [HHLO8] or adaptive lumping of states [FL09]. Explicit solution formulas
for the special case of the monomolecular CME have also been derived in [JHO7]. Sac-
rificing discreteness in the stochastic model is also possible, as stochastic effects can be
modeled via the Chemical Langevin equation (CLE), a stochastic differential equation
which extends the macroscopic model by appending a noise term. The corresponding
probability density then evolves according to the Fokker-Planck equation, and delivers
an approximation to the solution of the master equation [SLE09]. An important distinc-
tion between these stochastic approaches however, is that while the CME is fully discrete
and thus faithful to biological reality, the CLE is instead continuous and molecular quan-
tities are given as real numbers. An in-depth discussion on the relationships between
different models and the conditions under which they can be employed can be found in,
e.g. [Hig08, Gil07, Eng08].

With the CME describing the dynamics of the mesoscopic model and the reaction rate
equations modeling the macroscopic model, there is also the possibility of choosing a
model that fits somewhere between these upper and lower limits, respectively (see e.g.
[FLHO8]). This has motivated the idea of substituting non essential parts of the CME
solution with results obtained with cheaper models, thus achieving significant model re-
duction for the price of lower accuracy. The construction of such hybrid models can be
accomplished in many ways, and a number of promising approaches can be found in the
literature ([FLO7, HLO7, FLHO8, HHLOS]).

Irrespective of the inner workings of each method, the central idea is always to reduce
the number of degrees of freedom to more computationally manageable levels. Another
possible approach to achieve this goal is through the use of wavelet compression, and the
details of using adaptive wavelet methods for the CME represent the narrower focus of
this thesis.

Focus of the thesis

Generally speaking, the efficiency of all the methods mentioned in the state of the art
section depends on the compression ratio that can be achieved, i.e., the percentage of de-
grees of freedom required to obtain the desired accuracy. In a wavelet basis, the number
of essential degrees of freedom represent only a small fraction of the total number of un-
knowns. This is due to the fact that wavelets decompose an input signal into a hierarchy
of scales, and since smooth signals will contain relatively small amounts of detail infor-
mation, many coefficients of the wavelet representation can be safely discarded with only
a negligible effect on the approximation error. Because the solution of the CME evolves
in time, not only the compression properties are important, but also determining which
elements currently form the essential set. Additionally, it is advantageous to propagate
the solution using an adaptive time-stepping strategy, as many biological systems exhibit
a stiff behavior in an initial phase, and variable step-sizes can yield important savings for
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simulations. The results concerning the construction of an adaptive wavelet method for
the CME with adaptive-time stepping will be discussed at length in Chapter 4.

In some cases the transient behavior of biological systems is not as relevant as their
behavior at equilibrium, which is given as the solution of the stationary CME. Because the
stationary CME is a particular case of the time-dependent problem, the wavelet methods
can also be modified to compute the stationary probability distribution of a biological
system, and the proposed numerical method will be presented step by step in Chapter 5.

Reducing the number of degrees of freedom via wavelet compression is not the only
challenge faced when investigating biochemical reaction networks via the CME: the bi-
modality and metastability of many systems pose additional difficulties. Another ob-
jective of the thesis is to develop numerical tools that allow the efficient computation
of committor probabilities, mathematical objects that are used to model the mechanistic
transitions between certain states of interest. Employed within the framework of Transi-
tion Path Theory [MSVE08, VE06], the committor probabilities provide a detailed insight
into the metastable dynamics of biological systems. This is relevant particularly for gene
regulatory networks as they contain toggle switches (cf. [HHBS*07, MBS08]), leading to
metastability in the solution of the CME. Transitions between metastable states are rare
events and their analysis is of fundamental interest to biochemists looking for detailed
insight into the kinetics of the system, such as the actual transition mechanisms involved.
However, the problem of computing statistics for rare events is often not trivial, as using
stochastic simulations in a brute force approach is impractical. This is due to the fact
that the computationally affordable simulation times are usually insufficient to observe
enough relevant events to compute probabilities. In some sense, the application of TPT
can be seen in the context of expanding the knowledge about complex systems at equi-
librium beyond what can be learned from the solution of the stationary CME. Because of
the similarity of computing the stationary probability distribution and committor prob-
ability, it makes sense to apply wavelet compression to the TPT committor problem as
well, with the details to be found also in Chapter 5.

In order to achieve further reductions in the number of degrees of freedom required
to approximate the solution of the stationary CME, we also investigate the embedding
of the adaptive wavelet method within a hybrid strategy. In many real-life applications,
the number of species in the makeup of biochemical systems is far too big even for the
capabilities of adaptive wavelet method. However, one is only interested in the behavior
of a few species which due to their low copy numbers are considered as critical. This leads
in a natural way to the idea of using the computationally intensive wavelet approach only
for the parts of the biochemical system susceptible to stochastic fluctuations, and treat the
rest of the components in a deterministic setting. In Chapter 6, we study the use of the
wavelet method within a hybrid approach first proposed by A. Hellander and P. Lotsdedt
in [HLO07], and discuss both the potential and the limitations of this hybrid model.

11






CHAPTER
TWO

STOCHASTIC REACTION KINETICS

The kinetics of biological processes can be modeled using a network of reaction channels
Ry, ..., Ry that involve reactant and product molecules belonging to a set of d differ-
ent species S, ...,S; with d and M € N*. For example, we might know that when a
molecule from the species S; encounters a molecule of type S, and certain microphysical
conditions are met, the two molecules can combine into a new molecule of type S3. Such
an interaction “law” can be easily specified in a natural way by using the notation

Ry : S+ S5—S5. (2.1)

Although such reaction channels R; (j = 1,..., M) capture the interactions between the
species, they are not sufficient by themselves to describe the full dynamics of the biolog-
ical process. This requires also knowledge of the “rates” at which the reaction channels
fire and some initial conditions.

Such descriptions of biological processes naturally lead to the idea that the mathemati-
cal treatment should take into account that any changes induced by the reaction channels
in the copy numbers of species S; (i = 1, ..., d) are discrete. As already briefly discussed
in Chapter 1, this intuition of using a discrete characterization is of course entirely cor-
rect, as it reproduces the intrinsic discreteness of nature. The purpose of this chapter is
to review the mathematical formalisms that lead to the discrete stochastic approach to
reaction kinetics.

2.1. Microphysical basis

The information required in most applications is represented by the copy numbers of the
species S; at time ¢ > 0 or at chemical equilibrium, given that the initial amounts are
known. As stated in Chapter 1, ideally this information would be extracted using a full
deterministic model by keeping track of the positions, speed and interactions of all the
participating molecules. However, because this molecular dynamics approach is usually
not feasible, we are forced to stipulate a set of assumptions that simplify the problem,

13



2. Stochastic reaction kinetics

namely that the system is in a well-stirred state within a container of constant volume
V' and additionally, it is at thermal equilibrium. As these two assumptions are crucial in
allowing the probabilistic modeling of biological processes by converting the position
and velocity components of the molecules into independent random variables, it is useful
to spell them out in more detail.

Assumption 1. A well-stirred system is one in which all the molecules are uniformly distributed
inside a container H with volume V. If for example, we let P, and P, denote the positions of
two randomly chosen molecules, with a subregion w of the container H having volume AV (cf.
[Wil06]), we have

PP ew)=—, i=1,2.

Assumption 2. When a system is in thermal equilibrium, it means that the molecules have a
Maxwell-Boltzmann velocity distribution, i.e., for a randomly selected molecule of mass m, the
probability that its velocity lies in an infinitesimal region d>v about v is given by Pyp(v)d®v

where
m*

27TKBT
with Kp denoting the Boltzmann constant, m* the reduced mass of the two reactant molecules,
T the temperature, and we have v = (v, vy, V), v = dvydvydv,, v = ||v]| (cf. [Gil92]). A
cursory inspection of the expression for Pyrp(v) reveals that the velocity component is normally
distributed with mean 0 and variance KT /m*.

Pyp(v) = ( )3/2 exp(—m*v? /2K pT),

2.2. Derivation of the chemical master equation

As the goal is to determine how the copy numbers of the species 51, . . ., Sy evolve as time
increases, we formally denote the state of the system by

X(t) = [X:(t), Xa(t), ..., Xa(0) 22)

and stipulate the initial condition as X (ty) = xo € N¢ (from here on, the boldface notation
x = [x1,...,x4] refers to vectors with d elements). The elements X;(t) of the state vector
(2.2) represent random variables that encode the copy numbers z; of the species .S; which
are present within the container of volume V' at time ¢. Each time one of the M reaction
channels R; fires, the state X (¢) changes. Without knowledge of the spatial movements of
the molecules, the information required to determine the new state is which R; reaction
fired and when did this event occur. This makes X () a stochastic process, as the firing
time and the selection of reaction channel are both random events. Thus, the key in
solving the problem is to specify the reaction channels R; in terms of probabilities.

Under the Assumptions 1 and 2, namely that the system is well-stirred and at thermal
equilibrium, it has been rigorously shown in [Gil76, Gil92] that for each reaction channel
R; (j =1,..., M), there exists a function o; defined such that

a;(x)dt = the probability, given X (t) = x € Ng, that a randomly (2.3)
chosen reaction R; will fire inside the volume V' within

the infinitesimal time interval [¢,¢ + dt), withj =1,..., M,

14



2.2. Derivation of the chemical master equation

and a vector describing the corresponding state change, with components

,ug = change in the molecular count of species S; triggered (2.4)

by the firing of reaction R;,i =1,...,dand j =1,..., M.

The function «; is called propensity function and the vector 17 is usually referred to as the
stoichiometric vector, and together they completely specify the reaction channel R;.

For example, in the case of the bimolecular reaction R; defined in (2.1), the stoichio-
metric vector encodes the decrease of the molecular counts for species S; and S; by one
molecule, and the corresponding increase in the copy numbers of S3 by the same number.
Therefore, X (t) changes to X (t) + u!, with u* = [-1, —1, 1], when assuming the whole
system contains only three species.

The derivation of the propensity functions is more involved, using probability laws
and molecular mechanics arguments and has a solid microphysical foundation. A com-
prehensive treatment of the subject can be found in, e.g. [Gil92], but for the sake of a
self-contained exposition we will review the main ideas.

Generally speaking, the propensity functions have the form
Qg (X) = thj (X) (25)

with ¢; being a specific reaction rate constant, defined such that c;dt is the probability that
some random combination of suitable R; reactant molecules will interact in the next in-
finitesimal time interval [¢, ¢ 4 dt). We shall now take a closer look at the derivation of the
two terms on the right hand side of (2.5) for the case of bimolecular reactions.

Let G be the event that a randomly selected pair of molecules collides in the infinitesi-
mal time interval [t,t + dt) and further, let £, denote the event that the chosen pair has
relative speed v. We can use standard probability theory to write

P(G) = / P(E\)P(G|E,) 2.6)

where P(G|Ey) is the conditional probability that the randomly selected pair will collide
given that it has relative speed v. Owing to Assumption 2, we have that

P(Ev) = PMB(V)d3V7 (27)

which we remark is independent of the volume V' of the container. For the conditional
probability P(G|E,) we use Assumption 1 and mechanical and structural arguments to
stipulate that the volume of a suitable subregion w of the container is given by AV =
(vdt)Tr?, where r is the combined effective radius at which a collision can occur, implying

g B vdtmr?

P(G|Ey) =
ClB) = 5 =25

(2.8)
The derivation also makes use of the assumption that dt is infinitesimal and the effective

radius is small compared with the dimensions of the container, which allows us to ignore
interactions with other molecules.
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2. Stochastic reaction kinetics

Using (2.6), (2.7) and (2.8) we obtain that

2
P(G) = / PMB(V)“‘ZZ” By

and after integration
1

B(G) =
Equation (2.9) basically means that the probability depends on the radii, the masses of
the combined molecules and is inversely proportional to the volume V' of the container.
As it can not be expected that every collision between suitable reactant molecules leads to
a reaction, we also need to compute another conditional probability, namely the collision-
conditioned reaction probability. This depends on the impact energy of the specific reaction
type and is computed as the probability that the energy will exceed a certain barrier Ae.
Leaving aside the technical details, it has been shown in [Gil92] that this probability has

1/2
8KBT) / rdt.
mm*

2.9)

the exponential “Arrhenius” form 67%, which does not depend on dt. Using now the
probability multiplication law and (2.9), we conclude that the probability of a randomly
selected combination of R; reacting molecules to collide and react in the next infinitesimal
time interval [¢, ¢ + dt) has the form c;dt with

1 /8K pTH1/2 __Ae
cj:V(S B ) nrle” KpT (2.10)

Tmx*

being independent of dt.

After establishing the formula (2.10) for the computation of the specific probability
rate constant c;, we proceed with the definition of the term h;(x) from (2.5), in order to
complete the characterization of the propensity functions «;(x). The function h;(x) is a
combinatorial term that measures the number of distinct combinations of R; reactants
when exactly x; molecules of species S; are present. As is the case with the stoichio-
metric vectors 7, the functions h;(x) are based on the structure of the reaction channels
themselves. For the bimolecular reaction R; used as an example, we have h;(x) = z22.
Considering now a generic reaction channel of the form

Rj:nj1S1+ - +njaSa — mj1S1 + -+ +mjaSa, (2.11)
with the i-th entry of the corresponding stoichiometric vector 1/ given by
My = Mg =g

we have

d
1 T4 x;!
hi(x) = :”— 212
i) <561 - nj,1> (xd - ”j,d> oy gt — nga)! 212)

The sum of all the stoichiometric coefficients on the reactants side of (2.11) denoted by
|s;| = 2%, n;, specifies the number of reactants and is called reaction order. Usually, in
most reaction networks, only zero, first or second order reactions are considered.

Having defined the propensity functions and stoichiometric vectors, we can now use
the results to describe how the evolution of X(¢) is driven by the reaction channels R;
G=1,...,M).
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2.2. Derivation of the chemical master equation

In order to accomplish this task, we first have to establish what is the probability that
given X (t) = x, exactly one reaction of type R; will occur in the next infinitesimal time
interval [¢,t + dt), i.e., only one randomly selected pair of suitable molecules has collided
and will react accordingly.

From Assumption 1 and (2.3) we know that each of the h;(x) pairs has probability c;dt
of reacting in [t,t + dt) and 1 — c;dt probability of not reacting in the same interval. Con-
sequently, by multiplying the independent probabilities, we obtain that the probability of
a particular combination reacting while the rest will not is equal to

cjdt(1 — c;dt) "= = cidt + O(dt?) .

Because the events involving the collision of molecule combinations are disjoint and ex-
clusive, the probability that one combination will react according to R; is the sum of the
probabilities of the h;(x) pairs, implying

P( exactly one reaction R; in [t,t + dt)) = hj(x)(c;dt + O(dt?)) (2.13)

= c¢hj(x)dt + O(dt?) .
After computing the probability (2.13), we also need the probability that given X (¢) = x,
no reaction channel fires in the infinitesimal time interval [¢, ¢ + dt). The knowledge that

1 — c;dt is the probability that a specific pair of molecules does not react according to R;,
and we have h;(x) combinations yields

(1 — ¢;dt)"i™) =1 — ¢;h;(x)dt + O(dt?),

and by taking the sum over all the reaction channels we get

M
P(no reactionin [t,t +dt)) = 1— Z cjhj(x)dt + O(dt?) . (2.14)
j=1
We only need to establish what is the probability that more than one reaction will occur.

This is quickly derived from the observation that because the probability of exactly one
reaction has the form c;dt, this must be of order O(dt?).

In short, under the assumption of a well-stirred system at thermal equilibrium, we now
have available definitions for the probability that

e exactly one reaction R; fires in [¢,t + dt) given by (2.13)
e no reactions fire in [t, ¢ + dt) given by (2.14)
e more than one reaction fires given as O(dt?)

and can proceed with the description in terms of these probabilities of the evolution of
X (t) conditioned on X (ty = 0) = x¢ € N%.

Let P(x, t|xg, to) be the conditional probability that X (¢) = x, given that at time ¢, the
system was in state xo. The goal is to determine P(x,t + dt|x, ). Intuitively, when
starting in X (t9p) = xo, the state X (¢ + dt) = x can be reached using three mutually
exclusive scenarios: either the system has already reached state X () = x and no other
reaction will fire in the infinitesimal interval [¢, t+dt), or the system has reached a suitable
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2. Stochastic reaction kinetics

state x — p/ and will reach state x at ¢ + dt after exactly one reaction of type R; fires, or
finally, more than one reaction takes place in the time interval, in which case state x might
not be reached.

Using the above argumentation together with (2.13) and (2.14), we conclude that

M
P(x,t+ dt[xo,t0) = P(x,tlxo,t0) (1 - c;h;(x)dt + O(dt?)) (2.15)
7j=1
M . .
+ ZIP’(X — 1 tx0, to) - (cjhj(x — p!)dt + O(dtQ) )
j=1
+0(dt?).

Subtracting IP(x, t|xo, o) from both sides of (2.15), using (2.5), dividing by dt and passing
to the limit d¢t — 0, finally leads to

%P(x,ﬂxo,to Zozj x — 1 )P(x — 1!, t|x0, to) (2.16)

M
Z P(x, t[xo, to)

which is the Chemical Master equation (CME). This is a difference-differential equation that
describes the probability flow responsible for creating and destroying any given state of
the system under the condition of starting in state x¢. The first term accounts for inflow
into state x from neighboring states, while the second term represents the outflow from
state x.

At this stage, we must remark that because (2.16) is an exact consequence of the char-
acterization of reaction channels purported by (2.3), which itself is grounded in sound
microphysical arguments, solving the CME delivers the full picture of the dynamics of
the process X (t).

2.3. Stochastic simulation algorithm

Typically, solving the CME is not a trivial task, even if we assume a reduced state space,
and regard (2.16) as a system of ODEs, one for each state. For example, a rather small
system consisting of only three species where we limit the copy numbers to a maximum
of 100 molecules per species, will contain 100° states and hence lead to 10 ODEs that
have to be solved in order to compute the solution. Hence, most of the attempts have
concentrated on Monte Carlo simulations using the stochastic simulation algorithm (SSA)
proposed by Gillespie in his seminal paper [Gil76]. The SSA also uses the characterization
of reaction channels given in (2.3), but the key aspect is that it circumvents computing
the probability distribution, computing rather single realizations of the state vector X ().
Assuming that the initial value X (0) = xo is given, one time step of a naive version of
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2.3. Stochastic simulation algorithm

such an algorithm would involve the following steps:

Algorithm 1: Naive version of stochastic simulation

Step 1: Find the random time ¢ + dt at which the next reaction event will take place
Step 2: Determine the random index j of reaction channel R; that will fire
Step 3: Update the value of X (t + dt) = X(t) + p/ and the time t =t + dt

For an actual implementation however, we would need a way to sample the time to the
next reaction and the appropriate reaction channel index from the underlying probability
distribution. Another direct consequence of (2.3) is the existence of a function p(r, j|x, t)
which is defined by

p(7,j|x,t)dr = probability that the next reaction channel that (2.17)
will fire in the infinitesimal interval [t + 7,¢ + 7 + dt)
will be of R; type, j =1,..., M.

Using the same arguments as for the derivation of the CME, this probability is equal to the
product between the probability of no reaction in the interval [t, t 4+ 7) and the probability
of the j-th reaction channel firing in the remaining time interval [t+7, {+7+d7), quantities
that have been defined in (2.13) and (2.14), respectively. By denoting now the probability
of no reactions occurring in [¢,t + 7) by Py(7|x, t) we can write

p(T, jlx, t)dr = Po(7|x,t) - ¢jh;(x)dT + (’)(7’2) ) (2.18)

For the purpose of deriving an explicit formula for the quantity Py(7|x,t), we divide the
interval [t, ¢ + 7) into IV disjoint intervals with length ¢ = £ so that we have

N-1

t+7) = ka [t+kﬁ,t+(k+1)ﬁ>.

Next, using (2.14) and the multiplication of independent probabilities, we have

M T 7'2 N
Po(7|x,t) = Po(e|x, 1) = (1 — Zthj(X)N + O<J\72> > )
j=1

Further, letting the number of subintervals NV go to infinity and using the limit definition
of the exponential function

N
yields that
. M T 72 N
Po(7|x,t) = ]\}gnoo (1 — ;th]‘(X)N + O(W) > (2.19)
M
= exp ( - Z cjhj(x)7'>.
j=1
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2. Stochastic reaction kinetics

By using (2.19) in (2.18), dividing by d7 and letting dr — 0, we finally arrive at an explicit
formula for the function
M

p(7,jlx,t) = cjhj(x)exp ( — ) cihy (X)T> (2:20)
j=1

M
= aj(exp (~ D a(x)7),
j=1

which represents a probability density. By denoting the sum of the propensities as

M
Y(x) =) a;(x), 2.21)

j=1

we have

[e. 9] M (e 9]
/0 ZP(T,j!X,t)dT = /0 ~v(x) exp(—vy(x)7)dr = 1.
j=1

After computing the probability density p(7, j|x,t) we can revisit Algorithm 1 proposed
earlier and qualify the first two steps as the process of generating two random numbers
7 and j according to this joint probability density. Next, we set up the computational
procedure for drawing the two random numbers. For this purpose, one can use Bayes’
formula,

p(ij‘Xat) :pl(T’X7 t) 'p2<j’T,X,t) (222)

to write p(7, j|x,t) as the product of two individual density functions. The first one,
p1(7|x,t) is computed by summing p(r, j|x,t) over the j random variable

M
pi(rlx,t) = > p(r,jlx,1t) (2.23)
j=1

M M
= Y amen (=Y axr)
=1 i=1

= 7(x) exp(—y(x)7),
while for the second density p2(j|7, x, t), using (2.22) and (2.23) we obtain
p(ryglx,t) _ o) - exp(—y()7) _ a(x)
it t)  y(x)-exp(—y(x)T)  y(x)
Having established the two individual density functions (2.23) and (2.24), drawing the
random numbers necessary can be accomplished in practice by using the inversion gen-

erating method which is based on the observation that the cumulative density function
ranges uniformly over the interval (0, 1).

p2(jlT, x,t) (2.24)

First, let us remark that p; (7|x,t) = v(x) exp(—v(x)7) is the density function of a ran-
dom variable with the well-known exponential distribution. For continuous distributions
we have that the cumulative density function is given as
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2.3. Stochastic simulation algorithm

where P(y) denotes a density function. Then, if u is a random drawn number from the
uniform distribution (0,1), by using r = F~!(u) we can generate a random number r
from a continuous distribution with the specified density function. Choosing p; (7|x, ) as
the density function we have

r = /OT p1(7]x,t)dT = 1 — exp(—(x)7). (2.25)

Solving the equation for 7 and replacing  with the statistically equivalent random vari-
able 1 — r; we obtain that 7 should be selected according to

1 1
T = mln (m)

The inversion method can also be used for discrete distributions. In such cases, the cumu-
lative density function is related to the probability density function P(y) by the formula

F(z) = ) Py

y<z

To generate a random number j;, according to the discrete density function pa(j|7,x, 1),
with j; < ... < ju, arandom number 72 can be drawn from the uniform distribution such
that

F(j—1) <rs < F(j).

Using the formula obtained for the density function ps(j|7,x, t) in (2.24), we obtain

Jj—1 J
Z%(X) <ryy(x) < Z@k(x)
k=1 k=1

Thus, we arrive at the “direct method” version of the stochastic simulation algorithm
[Gil76], outlined below:

Algorithm 2: Gillespie’s direct method (SSA)
0. Initialization: Set ¢ty = 0 and fix initial value X (o) = xq
while ¢ < T4 do
1. Compute all propensities «;(x) and their sum y(x) = Z]J‘/il a;(x)
2. Draw random numbers r; and r9 from the uniform distribution (0, 1)
3.Lett = —In (i)

7(x) 1
4. Determine the index j such that the inequality

Jj—1 J
Zak(x) < roy(x) < Zak(x).
k=1 k=1

holds.
5. Update the state vector X (t +7) = X (t) + p/ and lett =t + 7
end
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2. Stochastic reaction kinetics

2.4. Markov jump process and the CME

In the last two sections, we have presented a derivation of the CME endorsed by micro-
physical arguments, and a computational procedure to simulate the dynamics induced
by the underlying stochastic process, one realization at a time. However, as a rigorous
definition of a stochastic process was not given, and moreover, another starting point
for the derivation of the CME is provided by the theory of stochastic processes, we are
motivated in taking a second look from this more abstract perspective.

2.4.1. Probability theory and stochastic processes

First, let us quickly compile the relevant theoretical tools from probability and stochastic
process theory by adapting some definitions from [PS08, Chapter 3].

A probability space (2, F,P) is defined as a triple composed of a sample space of out-
comes Q = {wy,wo,..., }, ac-algebra F over the subsets of {2 and a probability measure
P : F — [0,1], which satisfies the requirements P(()) = 0, P(Q) = 1 and

Pl Ar) =D P(Ay)
k=1 k=1

for all sequences of pairwise disjoint sets {A;}7°, € F. Further, let S # () be a finite or
countable state set and G a o-algebra over S, which together define a measurable space
(S,9).

Then, a random variable X = X (w) on the probability space (2, F,P) can be defined as
a mapping

X:(,F)—(S,6)

between a sample space (2, F) and a state space (S, G), both measurable, with the property
that the events {w € Q : X(w) € A} € F for any A € G. The expectation of the random
variable X is defined by

IEX:/QX(w)dIP’(w)

as the weighted sum over all the possible outcomes that the random variable can take.
Next, let B(U) denote the Borel o-algebra of a topological space set U, in other words, the
smallest o-algebra containing all the open sets of U. Every random variable

X (Q,F,P) = (S,B(5))
induces then a probability measure on 5,
Px(B) =PX '(B) =P(w € Q; X(w) € B), B € B(S)
and we call Py the distribution of X. For the case of S = R?, we can write
dPx (x) = p(x)dx
and refer to p(x) as the probability density function.

We are now ready to define a stochastic process as a collection of random variables
X = {X(t,w),w € Q,t € T} with T = {tg < t; < ....} an ordered set of time points.
Fixing w € Q we obtain a realization or trajectory X (¢) of the process X, and by fixing ¢
we get a random variable X (w).
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2.4. Markov jump process and the CME

2.4.2. The Markov property

Speaking now in looser terms, we can think about a stochastic process as a system which
evolves probabilistically in time, i.e., in which a certain time-dependent random variable

exists. We can then measure its values {xg,X1,...,Xy,....} at certain times {ty < t; <
... <t, <....} and assume that a joint probability density
Pl X, b X1, tn—1; - - - ; X0, t0) (2.26)

exists, which describes the dynamics of the system completely [Gar09].
Next, we can use (2.26) to define the conditional probability density

p( o ;Xﬂntn;xn—lvt’n—l; cc ;X07t0)
p(x,t55 .. .5 %0, o)

Pl Xnstng X501, ti1 | X5, 555 X0, to) =
(2.27)
with 0 < j < n.

If all such conditional probabilities (2.27) would be available, this would also lead to
a complete description of the dynamics. However, such a description would require a
complete history of the system and thus be too complex. An effective idea to reduce the
complexity is the Markov assumption. This stipulates that the conditional probability is
entirely determined by the current state and not by the past, i.e.,

P(Xny tn|Xn—1,tn—1,---;X0,t0) = P(Xn, tn|Xn—1,tn-1) (2.28)
which is the Markov property (notice that in (2.28) we have used a finite set of measure-
ments to simplify the notation). The Markov property has the important consequence that
we can now express the joint probability density (2.26) in terms of simple conditional
probabilities

p(Xn> lns ... ;X0, tO) = p(Xm tn|Xn717 tnfl) 'p(anla th—1 ’Xn727 tn72) Tl (229)
e -p(Xl, t1|X0, to) : p(Xo, to)

which means that any future state can be described given only an initial condition and the
simple transition probability densities p(x;,t;|x;j—1,tj-1), 1 < j < n, thus simplifying the
treatment of processes that exhibit property (2.28). Such processes are called Markov pro-
cesses and are in effect memoryless because the future development of the process depends
only on the current state and not on any of the past states.

The Markov property also has another important consequence. Starting from the ad-
dition law of probability for mutually exclusive events, and by eliminating one of the
variables from the joint probability density by taking the sum over that variable, we have

p(x2,t2|x0,t0) = /p(X27t2;X1,t1|Xo,to)dX1 (2.30)

for three measurements taken at ¢y < ¢; < 5. Using the definition (2.27) of the conditional
probability density and the Markov property (2.28) we can write (2.30) as

p(x2, tolx0, o) = / p(32, t2; X1, 1[0, fo)dxy (2.31)
= /p(thz!Xl,tl;Xo,to) - p(x1, t1]X0, to)dx1

= /p(XQ,t2|X1,t1) - p(x1, t1]x0, to)dxy
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2. Stochastic reaction kinetics

which is the Chapman-Kolmogorov equation (cf. [Gar09]). In the case of discrete variables
that take only integer values, the Chapman-Kolmogorov equation for discrete state spaces
reads

P(X(tg) = Xg’X t() = X() ZP tQ = XQ‘X(tl) = X1) ]P(X(tl) = Xl‘X(tO) = Xo).
(2.32)

Of course, before using consequence (2.29), the question is raised whether any natural
process exists that actually observes the Markov property (2.28) exactly. If we assume a
very fine time scale for observations, the answer is negative, because at the very least
we would need the immediate history to predict the probabilistic future. Fortunately
however, processes that have a relative short memory, meaning that their memory time is
far smaller than the timescale used in recording the measurements, are common. Thus, it
is reasonable to assume that a Markov process approximates such systems with sufficient
accuracy and the popularity of Markovian models in many fields of science is evidence
of this fact.

Another aspect of the current discussion about stochastic processes is whether the state
space is discrete or continuous and whether the time evolution proceeds in a discrete or
continuous way. Considering that the dynamics of biological processes evolve continu-
ously in time and according to the arguments brought forward in Chapter 1, the quanti-
ties of interest take integer values, the focus in our case is predictably on the continuous-
time Markov process with a discrete state space. In case the state space is finite or count-
able, and the time evolution discrete, the term Markov chain is sometimes employed.
Without loss of generality we shall take the finite state space to be S = {1,...,N} C N.
Let us now present the construction of a continuous-time Markov process.

2.4.3. Continuous-time Markov process

The starting point for the construction of the continuous-time object is a discrete-time
Markov chain which we proceed to define as in [PS08, Chapter 3].

Definition 2.1.