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ABSTRACT

This thesis is concerned with the construction and analysis of numerical methods for
stochastic reaction networks, where the term stochastic means that the model contains a
degree of randomness or unpredictability. The dynamics of such reaction networks are
described by using a Markov jump process on large and usually high-dimensional state
spaces, with the corresponding time-dependent probability distribution being the solu-
tion of the chemical master equation (CME). Adding an element of unpredictability in
biological modeling is a relative new development, as only recently it has been recog-
nized that biochemical kinetics, especially those at the intracellular level, are intrinsically
stochastic. The solution of the CME provides the most accurate picture of the dynamics of
such systems, but solving the equation numerically is hampered by the curse of dimension-
ality: the number of degrees of freedom scales exponentially with the number of species
involved in the reaction network.

Consequently, we develop herein an approach that mitigates the effects of the curse of
dimensionality by using wavelet compression. Adaptive wavelet-based numerical meth-
ods are devised for both the time-dependent and stationary CME. Reducing the number
of degrees of freedom via wavelet compression is not the only challenge faced when in-
vestigating biochemical reaction networks via the CME: the metastability of many systems
poses additional difficulties. Another objective of the thesis is to develop efficient numer-
ical tools allowing the approximation of the committor probabilities - statistical objects
that describe the progress of the transitions between subsets of the state space. Used
within the framework of Transition Path Theory, the committor probabilities provide a
detailed insight into the metastable dynamics of biological systems.

In order to exploit the multi-scale nature of many biological systems and achieve fur-
ther reductions in the number of degrees of freedom required to approximate the sta-
tionary CME, an embedding of the adaptive wavelet method within a hybrid strategy is
also explored. With a hybrid approach, significant reductions can be achieved by using
the computationally intensive wavelet method only for the parts of the biochemical reac-
tion networks composed of species with small concentrations and treating the remaining
components in a deterministic setting. The methods are illustrated on multi-dimensional
models with metastable solutions, which are defined on large state spaces.
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CHAPTER

ONE

INTRODUCTION

Motivation

Recent decades have seen a tremendous level of activity in the field of molecular biol-
ogy, where the use of new technologies enabled researchers to continuously expand the
boundaries of knowledge on biological phenomena occurring at the cellular level. The
large amounts of data being collected on individual cellular components and better un-
derstanding of the interactions also triggered the emergence of systems biology as a new
interdisciplinary field that views biological processes as dynamical networks, thus ex-
panding the toolbox of mathematical models and computer simulations available for the
investigation of the complex relationships inside such systems. This in-sillico approach
to molecular biology is playing an increasingly important role alongside conventional
in-vivo methods, as it allows the quantitative assessment of various assumptions and
hypotheses about the structure and internal mechanisms of biological networks, with
significant time and cost savings compared to traditional laboratory methods.

However, while a large list of the “building blocks” of living organisms has already
been assembled and their internal mechanisms are generally well understood (e.g. the
seminal results from [GCC00, ESSL02, Pta04]), the integrated knowledge of how these
pieces work together to influence phenotypic heterogeneity at higher levels is far from
complete. The ultimate goal of systems biology is to enable the engineering of complex be-
havior in living organisms via changes that are robustly propagated either down-stream
or up-stream of the location where they are added (see [Wil09] for a compelling argu-
ment on this subject), but achieving such ambitious goals necessitate further efforts in
developing or adapting the mathematical and computational frameworks to handle the
complexity of biological organization.

An important topic in computational systems biology has been the increasing aware-
ness that stochasticity and discreteness play an important role in biological reaction net-
works at the cellular level [ADA09]. This is supported by experimental results [MA99,
EBE01, EL00], which makes the study of stochastic fluctuations, although a challenging
task due to the complexity of the dynamics involved, almost mandatory, a fact high-
lighted in many recent reviews [TSB04, KEBC05, RO04].
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1. Introduction

Consequently, questions related to the development of models that deliver the high res-
olutions needed to reveal important biological details like the effects of molecular noise
have lately attracted a lot of interest. Any scientific research that has the goal of study-
ing a “real” biological process, involves the question of how accurate the model used to
depict reality should be, or to formulate the problem more precisely, how to construct a
model using the available knowledge so that the discrepancy between the model and the
real process is not too large and the model is simple enough to remain computationally
tractable. Once such a model is constructed, the next question is whether this “exact” de-
scription can be used to investigate processes of genuine interest, or for practical reasons
an “approximate” formulation is needed. Usually, the last choice is the only realistic op-
tion if the goal is to move away from studying the interactions of specific single molecules
and describe instead the more complex behavior of biological systems that involve many
components arranged in biological networks.

In the larger sense, this thesis is concerned with the construction, analysis and appli-
cation of such “approximate” descriptions of complex biological processes. However, in
order to keep things into perspective, it is important to note that the difference between
the “exact” and “approximate” models is usually far less than that between the “exact”
model and the real process, so choosing the appropriate modeling paradigm is of upmost
importance.

Modeling choices

Ideally, describing a complex physical system would be done using some sort of determin-
istic model, meaning that given some past state we can completely characterize the future
by employing some accurate evolution laws that obey the appropriate physics and keep
track of the positions and speed of all the molecules involved, as well as their interactions.

Such molecular dynamics approaches can be very accurate, but the shear complexity of
the interactions means they are usually too expensive from a computational point of view,
especially if the model involves more than single molecules of each type and the dynam-
ics are to be investigated over a longer time interval. A model on this scale is called
microscopic, and employs Brownian dynamics for the movement of the molecules and the
Smoluchowski model for their interactions. Not withstanding the challenges, advances
in computational approaches like the Green’s Function Reaction Dynamics (GFRD) al-
gorithm proposed in [vZtW05], have enabled the application of such models to some
biological systems, and their use will certainly increase in the future, especially in view
of the development of hybrid approaches [HHL11]. However, biological complexity and
the difficulty in formulating useful laws that take all effects into account, currently limit
the use of microscopic models.

Much of the earlier mathematical modeling of cellular processes employed instead a
macroscopic approach, that is, a deterministic model that assumes large population levels,
discards the spatial dimension and is used to study the average behavior. Naturally, such
simplifications can only be made under certain assumptions, namely that in addition
to having large molecular copy-numbers that dampen the effects of molecular noise, the
system is also well-stirred, meaning the molecules are uniformly spread within a container
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of constant volume and the temperature is also constant. The time evolution of such
a system can then be modeled via a system of ordinary differential equations (ODEs)
representing the concentrations of the molecular populations involved, known as the
reaction rate equations (RRE).

However, because biological processes at the cellular level such as gene regulatory
networks, usually exhibit low copy numbers of participating molecules, this means that
some of assumptions made in this classical deterministic setting are no longer valid. In
order to obtain an accurate model for such systems, which is still reasonably simple to
simulate despite the higher resolution, randomness has to be introduced into the mathe-
matical model, while preserving the well-stirred characterization. Therefore, a mesoscopic
model which lies between the very accurate but prohibitively costly microscopic scale and
the coarse but from a computational point of view easily accessible macroscopic scale, has
emerged as the the most popular choice for modeling stochastic effects, as it respects both
the stochastic nature of biological processes and the discreteness of the population num-
bers. The model is based on the assumption that the process driving the evolution of the
system is memoryless, i.e., depends only on the current state of the system and not the
whole system history, with the mathematical formulation provided by a continuous time
discrete space Markov jump process [Gil76].

In the mesoscopic formulation, the effects that are either too complex or too expensive
to simulate are simply summarized in terms of random variables. Then, the future can
no longer be unambiguously determined from the past and is described only in a prob-
abilistic sense. This is suitable for most applications, because the questions being posed
are of a quantitative nature, namely the time-evolution of the population numbers of the
different interacting cellular components. From a computational point of view, realiza-
tions of the Markov jump process can be generated via the Stochastic Simulation Algorithm
(SSA) also known as the Gillespie algorithm (see [Gil76]). Naturally, each run of a given
model will produce a different result, but the probability distribution of the results for a
certain time is determined by the underlying mathematical formulation and can be com-
puted as the solution of the Chemical Master equation (CME). Thus, the CME provides an
“exact” description of the stochastic model. However, the full probability distribution for
the state of a biochemical system over time can only be computed in simple situations,
which limits the direct use of CME. Numerical approximations of the solution are also
not trivial to obtain as the CME is affected by the curse of dimensionality: the number of
degrees of freedom needed for an accurate approximation grows exponentially with any
increase in the number of components of the biochemical system.

As the number of degrees of freedom present in most problems that merit investigation
is tremendous, the usual computational approach in mesoscopic modeling has been based
on Monte Carlo simulations using the SSA algorithm, either the original variant from
[Gil76] or the many modifications that have been proposed since (see e.g., [GB00, Gil01,
CGP05, CGP07]). In theory, the associated Monte Carlo error can be made arbitrarily
small by increasing the number of simulations, but obtaining an accurate approximation
of the probability distribution using stochastic simulations is usually not feasible because
any change in the state of the system requires an update of the state vector. For systems
with multiple time-scales, this can lead to high computational costs.

An alternative is to try to devise methods to solve CME directly, despite the challenges
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1. Introduction

posed by the curse of dimensionality. As both alternatives are computationally expensive,
the question of the usefulness of stochastic modeling arises, and whether the incurred
computational cost is justified. A comparison between the results obtained using the
deterministic and stochastic approaches can thus shed light on why including molecular
noise in the model is important, particularly in the case of gene regulatory networks.

Advantages of stochastic modeling

As stated before, system size is an important factor that contributes to stochasticity and
larger copy numbers of molecules means that the influence of stochastic fluctuations on
the dynamics of the system are less pronounced. This is illustrated in Figure 1.1, by
comparing the deterministic and stochastic solutions of the Michelis-Menten model of
enzyme kinetics (cf. [Hig08]). Plots 1.1a and 1.1b show the time evolution of each of the
species, computed by using the deterministic reaction rate equations and SSA, respec-
tively.
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Figure 1.1.: Stochastic fluctuations in the Michelis-Menten system

The initial number of molecules has been chosen to be in the range of 103, and the differ-
ent scales are due to the fact that while the mesoscopic model delivers molecule numbers,
the macroscopic model outputs concentrations. With the mention that plot 1.1b shows a
number of superimposed independent SSA runs, it is evident that when large numbers
of molecules are present, the stochastic solution looks like a slightly noisy solution of
the corresponding differential equations. However, a 10-fold reduction of the initial copy
numbers leads to an increase in fluctuations and their possible effects, as evident from the
SSA runs plotted in 1.1c. In general, when N denotes the average number of molecules, a
decrease in copy numbers will result in a 1/

√
N scaling of the noise [Wil09]. As a conse-

quence, systems which exhibit low-copy numbers should be treated stochastically, as the
deterministic model fails in such cases to capture the real dynamics.

Among the most important manifestations of stochasticity in cellular processes is the
appearance of multistability. Multistable biological systems are also called toggle switches,
and spend most of their life in two (or more) meta-states, until stochastic noise induces
a sudden transition between these states. Using a well known model of a bistable toggle
switch from [GCC00], which represents a synthetic gene regulatory network composed
of a mutually repressible gene pair, we illustrate in Figure 1.2 how the stochastic model
captures behavior which cannot be observed when using the deterministic model. For
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any given initial conditions, the ODE solution depicted by the red line, will converge to
one or the other stable state and remain there for all time. However, adding noise to the
model via the stochastic description, leads to the observation that if the noise amplitude
is sufficient, the solution will also visit the other stable state. The flexibility to switch
between the stable states can therefore help explain the appearance of different behav-
ior in isogenic cell populations, leading to the conclusion that stochasticity is in fact an
evolutionary trait.
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Figure 1.2.: Deterministic vs. stochastic solutions for a bistable toggle switch [GCC00], illustrating
the effect of noise in multi-stable systems (figure adapted from [Eng08])

Another example where noise can impact the dynamics can be found in genetic oscilla-
tors, which are used by many living organisms as internal clocks for regulating behavior
between day-time and night-time periods. A model of these oscillations can be found
in [VKBL02], and Figure 1.3 showcases the manifestation of the stochastic resonance phe-
nomenon, namely how noise can push the system out of a stable fixed point and start
a new cycle. The occurrence of the oscillations can even be modulated by tuning the
amount of noise. For all parameter sets, the stochastic model is sensitive enough to de-
tect the fluctuations that send the system onto a new cycle, while the deterministic model
is prone to settling into the stable state after the first oscillation for certain parameter
values. These are just some of the effects of stochasticity in gene expression (for a com-
prehensive study on the subject see, e.g. [KEBC05] or the monograph [vK01]), which
motivate a mesoscopic treatment of cellular processes.

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

S
8
    

Time

Figure 1.3.: Model of a circadian oscillator where the stochastic approach exhibits reliable oscilla-
tions while the deterministic model fails (figure adapted from [VKBL02])

State of art

As the CME can provide an accurate picture of the dynamics of intracellular networks
similar to those presented in the previous section, a significant effort has been made in re-
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1. Introduction

cent years towards developing adequate numerical methods for this equation. The meth-
ods usually employ one of several computational approaches, either a discrete Galerkin
method coupled with Rothe’s method ([Eng09a, DHJW08, Jah10, JH08]), a finite state pro-
jection (FSP) algorithm ([MBBS08, MBS08, MK06]), an aggregation approach ([HBS+07]),
sparse grids [HHL08] or adaptive lumping of states [FL09]. Explicit solution formulas
for the special case of the monomolecular CME have also been derived in [JH07]. Sac-
rificing discreteness in the stochastic model is also possible, as stochastic effects can be
modeled via the Chemical Langevin equation (CLE), a stochastic differential equation
which extends the macroscopic model by appending a noise term. The corresponding
probability density then evolves according to the Fokker-Planck equation, and delivers
an approximation to the solution of the master equation [SLE09]. An important distinc-
tion between these stochastic approaches however, is that while the CME is fully discrete
and thus faithful to biological reality, the CLE is instead continuous and molecular quan-
tities are given as real numbers. An in-depth discussion on the relationships between
different models and the conditions under which they can be employed can be found in,
e.g. [Hig08, Gil07, Eng08].

With the CME describing the dynamics of the mesoscopic model and the reaction rate
equations modeling the macroscopic model, there is also the possibility of choosing a
model that fits somewhere between these upper and lower limits, respectively (see e.g.
[FLH08]). This has motivated the idea of substituting non essential parts of the CME
solution with results obtained with cheaper models, thus achieving significant model re-
duction for the price of lower accuracy. The construction of such hybrid models can be
accomplished in many ways, and a number of promising approaches can be found in the
literature ([FL07, HL07, FLH08, HHL08]).

Irrespective of the inner workings of each method, the central idea is always to reduce
the number of degrees of freedom to more computationally manageable levels. Another
possible approach to achieve this goal is through the use of wavelet compression, and the
details of using adaptive wavelet methods for the CME represent the narrower focus of
this thesis.

Focus of the thesis

Generally speaking, the efficiency of all the methods mentioned in the state of the art
section depends on the compression ratio that can be achieved, i.e., the percentage of de-
grees of freedom required to obtain the desired accuracy. In a wavelet basis, the number
of essential degrees of freedom represent only a small fraction of the total number of un-
knowns. This is due to the fact that wavelets decompose an input signal into a hierarchy
of scales, and since smooth signals will contain relatively small amounts of detail infor-
mation, many coefficients of the wavelet representation can be safely discarded with only
a negligible effect on the approximation error. Because the solution of the CME evolves
in time, not only the compression properties are important, but also determining which
elements currently form the essential set. Additionally, it is advantageous to propagate
the solution using an adaptive time-stepping strategy, as many biological systems exhibit
a stiff behavior in an initial phase, and variable step-sizes can yield important savings for
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simulations. The results concerning the construction of an adaptive wavelet method for
the CME with adaptive-time stepping will be discussed at length in Chapter 4.

In some cases the transient behavior of biological systems is not as relevant as their
behavior at equilibrium, which is given as the solution of the stationary CME. Because the
stationary CME is a particular case of the time-dependent problem, the wavelet methods
can also be modified to compute the stationary probability distribution of a biological
system, and the proposed numerical method will be presented step by step in Chapter 5.

Reducing the number of degrees of freedom via wavelet compression is not the only
challenge faced when investigating biochemical reaction networks via the CME: the bi-
modality and metastability of many systems pose additional difficulties. Another ob-
jective of the thesis is to develop numerical tools that allow the efficient computation
of committor probabilities, mathematical objects that are used to model the mechanistic
transitions between certain states of interest. Employed within the framework of Transi-
tion Path Theory [MSVE08, VE06], the committor probabilities provide a detailed insight
into the metastable dynamics of biological systems. This is relevant particularly for gene
regulatory networks as they contain toggle switches (cf. [HBS+07, MBS08]), leading to
metastability in the solution of the CME. Transitions between metastable states are rare
events and their analysis is of fundamental interest to biochemists looking for detailed
insight into the kinetics of the system, such as the actual transition mechanisms involved.
However, the problem of computing statistics for rare events is often not trivial, as using
stochastic simulations in a brute force approach is impractical. This is due to the fact
that the computationally affordable simulation times are usually insufficient to observe
enough relevant events to compute probabilities. In some sense, the application of TPT
can be seen in the context of expanding the knowledge about complex systems at equi-
librium beyond what can be learned from the solution of the stationary CME. Because of
the similarity of computing the stationary probability distribution and committor prob-
ability, it makes sense to apply wavelet compression to the TPT committor problem as
well, with the details to be found also in Chapter 5.

In order to achieve further reductions in the number of degrees of freedom required
to approximate the solution of the stationary CME, we also investigate the embedding
of the adaptive wavelet method within a hybrid strategy. In many real-life applications,
the number of species in the makeup of biochemical systems is far too big even for the
capabilities of adaptive wavelet method. However, one is only interested in the behavior
of a few species which due to their low copy numbers are considered as critical. This leads
in a natural way to the idea of using the computationally intensive wavelet approach only
for the parts of the biochemical system susceptible to stochastic fluctuations, and treat the
rest of the components in a deterministic setting. In Chapter 6, we study the use of the
wavelet method within a hybrid approach first proposed by A. Hellander and P. Lötsdedt
in [HL07], and discuss both the potential and the limitations of this hybrid model.
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CHAPTER

TWO

STOCHASTIC REACTION KINETICS

The kinetics of biological processes can be modeled using a network of reaction channels
R1, . . . , RM that involve reactant and product molecules belonging to a set of d differ-
ent species S1, . . . , Sd with d and M ∈ N+. For example, we might know that when a
molecule from the species S1 encounters a molecule of type S2 and certain microphysical
conditions are met, the two molecules can combine into a new molecule of type S3. Such
an interaction “law” can be easily specified in a natural way by using the notation

R1 : S1 + S2−→S3. (2.1)

Although such reaction channels Rj (j = 1, . . . ,M ) capture the interactions between the
species, they are not sufficient by themselves to describe the full dynamics of the biolog-
ical process. This requires also knowledge of the “rates” at which the reaction channels
fire and some initial conditions.

Such descriptions of biological processes naturally lead to the idea that the mathemati-
cal treatment should take into account that any changes induced by the reaction channels
in the copy numbers of species Si (i = 1, . . . , d) are discrete. As already briefly discussed
in Chapter 1, this intuition of using a discrete characterization is of course entirely cor-
rect, as it reproduces the intrinsic discreteness of nature. The purpose of this chapter is
to review the mathematical formalisms that lead to the discrete stochastic approach to
reaction kinetics.

2.1. Microphysical basis

The information required in most applications is represented by the copy numbers of the
species Si at time t > 0 or at chemical equilibrium, given that the initial amounts are
known. As stated in Chapter 1, ideally this information would be extracted using a full
deterministic model by keeping track of the positions, speed and interactions of all the
participating molecules. However, because this molecular dynamics approach is usually
not feasible, we are forced to stipulate a set of assumptions that simplify the problem,
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2. Stochastic reaction kinetics

namely that the system is in a well-stirred state within a container of constant volume
V and additionally, it is at thermal equilibrium. As these two assumptions are crucial in
allowing the probabilistic modeling of biological processes by converting the position
and velocity components of the molecules into independent random variables, it is useful
to spell them out in more detail.

Assumption 1. A well-stirred system is one in which all the molecules are uniformly distributed
inside a container H with volume V . If for example, we let P1 and P2 denote the positions of
two randomly chosen molecules, with a subregion w of the container H having volume ∆V (cf.
[Wil06]), we have

P(Pi ∈ w) =
∆V

V
, i = 1, 2.

Assumption 2. When a system is in thermal equilibrium, it means that the molecules have a
Maxwell-Boltzmann velocity distribution, i.e., for a randomly selected molecule of mass m, the
probability that its velocity lies in an infinitesimal region d3v about v is given by PMB(v)d

3v

where
PMB(v) =

 m⋆

2πKBT

3/2
exp(−m⋆v2/2KBT ),

with KB denoting the Boltzmann constant, m⋆ the reduced mass of the two reactant molecules,
T the temperature, and we have v = (vx, vy, vz), d3v = dvxdvydvz , v ≡ ||v|| (cf. [Gil92]). A
cursory inspection of the expression for PMB(v) reveals that the velocity component is normally
distributed with mean 0 and variance KBT/m

⋆.

2.2. Derivation of the chemical master equation

As the goal is to determine how the copy numbers of the species S1, . . . , Sd evolve as time
increases, we formally denote the state of the system by

X(t) = [X1(t), X2(t), . . . , Xd(t)] (2.2)

and stipulate the initial condition asX(t0) = x0 ∈ Nd0 (from here on, the boldface notation
x ≡ [x1, . . . , xd] refers to vectors with d elements). The elements Xi(t) of the state vector
(2.2) represent random variables that encode the copy numbers xi of the species Si which
are present within the container of volume V at time t. Each time one of the M reaction
channelsRj fires, the stateX(t) changes. Without knowledge of the spatial movements of
the molecules, the information required to determine the new state is which Rj reaction
fired and when did this event occur. This makes X(t) a stochastic process, as the firing
time and the selection of reaction channel are both random events. Thus, the key in
solving the problem is to specify the reaction channels Rj in terms of probabilities.

Under the Assumptions 1 and 2, namely that the system is well-stirred and at thermal
equilibrium, it has been rigorously shown in [Gil76, Gil92] that for each reaction channel
Rj (j = 1, . . . ,M ), there exists a function αj defined such that

αj(x)dt = the probability, given X(t) = x ∈ Nd0, that a randomly (2.3)

chosen reaction Rj will fire inside the volume V within

the infinitesimal time interval [t, t+ dt), with j = 1, . . . ,M ,
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2.2. Derivation of the chemical master equation

and a vector describing the corresponding state change, with components

µji = change in the molecular count of species Si triggered (2.4)

by the firing of reaction Rj , i = 1, . . . , d and j = 1, . . . ,M .

The function αj is called propensity function and the vector µj is usually referred to as the
stoichiometric vector, and together they completely specify the reaction channel Rj .

For example, in the case of the bimolecular reaction R1 defined in (2.1), the stoichio-
metric vector encodes the decrease of the molecular counts for species S1 and S2 by one
molecule, and the corresponding increase in the copy numbers of S3 by the same number.
Therefore, X(t) changes to X(t) + µ1, with µ1 = [−1, −1, 1], when assuming the whole
system contains only three species.

The derivation of the propensity functions is more involved, using probability laws
and molecular mechanics arguments and has a solid microphysical foundation. A com-
prehensive treatment of the subject can be found in, e.g. [Gil92], but for the sake of a
self-contained exposition we will review the main ideas.

Generally speaking, the propensity functions have the form

αj(x) = cjhj(x) (2.5)

with cj being a specific reaction rate constant, defined such that cjdt is the probability that
some random combination of suitable Rj reactant molecules will interact in the next in-
finitesimal time interval [t, t+dt). We shall now take a closer look at the derivation of the
two terms on the right hand side of (2.5) for the case of bimolecular reactions.

Let G be the event that a randomly selected pair of molecules collides in the infinitesi-
mal time interval [t, t + dt) and further, let Ev denote the event that the chosen pair has
relative speed v. We can use standard probability theory to write

P(G) =

v
P(Ev)P(G|Ev) (2.6)

where P(G|Ev) is the conditional probability that the randomly selected pair will collide
given that it has relative speed v. Owing to Assumption 2, we have that

P(Ev) = PMB(v)d
3v, (2.7)

which we remark is independent of the volume V of the container. For the conditional
probability P(G|Ev) we use Assumption 1 and mechanical and structural arguments to
stipulate that the volume of a suitable subregion w of the container is given by ∆V =

(vdt)πr2, where r is the combined effective radius at which a collision can occur, implying

P(G|Ev) =
∆V

V
=
vdtπr2

V
. (2.8)

The derivation also makes use of the assumption that dt is infinitesimal and the effective
radius is small compared with the dimensions of the container, which allows us to ignore
interactions with other molecules.
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2. Stochastic reaction kinetics

Using (2.6), (2.7) and (2.8) we obtain that

P(G) =

v
PMB(v)

vdtπr2

V
d3v

and after integration

P(G) =
1

V

8KBT

πm⋆

1/2
πr2dt. (2.9)

Equation (2.9) basically means that the probability depends on the radii, the masses of
the combined molecules and is inversely proportional to the volume V of the container.
As it can not be expected that every collision between suitable reactant molecules leads to
a reaction, we also need to compute another conditional probability, namely the collision-
conditioned reaction probability. This depends on the impact energy of the specific reaction
type and is computed as the probability that the energy will exceed a certain barrier ∆ε.
Leaving aside the technical details, it has been shown in [Gil92] that this probability has

the exponential “Arrhenius” form e
− ∆ε

KBT , which does not depend on dt. Using now the
probability multiplication law and (2.9), we conclude that the probability of a randomly
selected combination ofRj reacting molecules to collide and react in the next infinitesimal
time interval [t, t+ dt) has the form cjdt with

cj =
1

V

8KBT

πm⋆

1/2
πr2e

− ∆ε
KBT (2.10)

being independent of dt.

After establishing the formula (2.10) for the computation of the specific probability
rate constant cj , we proceed with the definition of the term hj(x) from (2.5), in order to
complete the characterization of the propensity functions αj(x). The function hj(x) is a
combinatorial term that measures the number of distinct combinations of Rj reactants
when exactly xi molecules of species Si are present. As is the case with the stoichio-
metric vectors µj , the functions hj(x) are based on the structure of the reaction channels
themselves. For the bimolecular reaction R1 used as an example, we have h1(x) = x1x2.
Considering now a generic reaction channel of the form

Rj : nj,1S1 + · · ·+ nj,dSd −→ mj,1S1 + · · ·+mj,dSd, (2.11)

with the i-th entry of the corresponding stoichiometric vector µj given by

µji = mj,i − nj,i

we have

hj(x) =


x1

x1 − nj,1


· . . . ·


xd

xd − nj,d


=

d
i=1

xi!

nj,i!(xi − nj,i)!
. (2.12)

The sum of all the stoichiometric coefficients on the reactants side of (2.11) denoted by
|sj | =

d
i=1 nj,i, specifies the number of reactants and is called reaction order. Usually, in

most reaction networks, only zero, first or second order reactions are considered.

Having defined the propensity functions and stoichiometric vectors, we can now use
the results to describe how the evolution of X(t) is driven by the reaction channels Rj
(j = 1, . . . ,M).
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2.2. Derivation of the chemical master equation

In order to accomplish this task, we first have to establish what is the probability that
given X(t) = x, exactly one reaction of type Rj will occur in the next infinitesimal time
interval [t, t+ dt), i.e., only one randomly selected pair of suitable molecules has collided
and will react accordingly.

From Assumption 1 and (2.3) we know that each of the hj(x) pairs has probability cjdt
of reacting in [t, t+ dt) and 1− cjdt probability of not reacting in the same interval. Con-
sequently, by multiplying the independent probabilities, we obtain that the probability of
a particular combination reacting while the rest will not is equal to

cjdt(1− cjdt)
(hj(x)−1) = cjdt+O


dt2

.

Because the events involving the collision of molecule combinations are disjoint and ex-
clusive, the probability that one combination will react according to Rj is the sum of the
probabilities of the hj(x) pairs, implying

P( exactly one reaction Rj in [t, t+ dt)) = hj(x)

cjdt+O


dt2
 

(2.13)

= cjhj(x)dt+O

dt2

.

After computing the probability (2.13), we also need the probability that given X(t) = x,
no reaction channel fires in the infinitesimal time interval [t, t + dt). The knowledge that
1− cjdt is the probability that a specific pair of molecules does not react according to Rj ,
and we have hj(x) combinations yields

(1− cjdt)
hj(x) = 1− cjhj(x)dt+O


dt2

,

and by taking the sum over all the reaction channels we get

P( no reaction in [t, t+ dt)) = 1−
M
j=1

cjhj(x)dt+O

dt2

. (2.14)

We only need to establish what is the probability that more than one reaction will occur.
This is quickly derived from the observation that because the probability of exactly one
reaction has the form cjdt, this must be of order O


dt2

.

In short, under the assumption of a well-stirred system at thermal equilibrium, we now
have available definitions for the probability that

• exactly one reaction Rj fires in [t, t+ dt) given by (2.13)

• no reactions fire in [t, t+ dt) given by (2.14)

• more than one reaction fires given as O

dt2


and can proceed with the description in terms of these probabilities of the evolution of
X(t) conditioned on X(t0 = 0) = x0 ∈ Nd.

Let P(x, t|x0, t0) be the conditional probability that X(t) = x, given that at time t0 the
system was in state x0. The goal is to determine P(x, t + dt|x0, t0). Intuitively, when
starting in X(t0) = x0, the state X(t + dt) = x can be reached using three mutually
exclusive scenarios: either the system has already reached state X(t) = x and no other
reaction will fire in the infinitesimal interval [t, t+dt), or the system has reached a suitable
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2. Stochastic reaction kinetics

state x − µj and will reach state x at t + dt after exactly one reaction of type Rj fires, or
finally, more than one reaction takes place in the time interval, in which case state x might
not be reached.

Using the above argumentation together with (2.13) and (2.14), we conclude that

P(x, t+ dt|x0, t0) = P(x, t|x0, t0) ·

1−

M
j=1

cjhj(x)dt+O

dt2
 

(2.15)

+
M
j=1

P(x− µj , t|x0, t0) ·

cjhj(x− µj)dt+O


dt2
 

+ O

dt2

.

Subtracting P(x, t|x0, t0) from both sides of (2.15), using (2.5), dividing by dt and passing
to the limit dt→ 0, finally leads to

∂

∂t
P(x, t|x0, t0) =

M
j=1

αj(x− µj)P(x− µj , t|x0, t0) (2.16)

−
M
j=1

αj(x)P(x, t|x0, t0)

which is the Chemical Master equation (CME). This is a difference-differential equation that
describes the probability flow responsible for creating and destroying any given state of
the system under the condition of starting in state x0. The first term accounts for inflow
into state x from neighboring states, while the second term represents the outflow from
state x.

At this stage, we must remark that because (2.16) is an exact consequence of the char-
acterization of reaction channels purported by (2.3), which itself is grounded in sound
microphysical arguments, solving the CME delivers the full picture of the dynamics of
the process X(t).

2.3. Stochastic simulation algorithm

Typically, solving the CME is not a trivial task, even if we assume a reduced state space,
and regard (2.16) as a system of ODEs, one for each state. For example, a rather small
system consisting of only three species where we limit the copy numbers to a maximum
of 100 molecules per species, will contain 1003 states and hence lead to 106 ODEs that
have to be solved in order to compute the solution. Hence, most of the attempts have
concentrated on Monte Carlo simulations using the stochastic simulation algorithm (SSA)
proposed by Gillespie in his seminal paper [Gil76]. The SSA also uses the characterization
of reaction channels given in (2.3), but the key aspect is that it circumvents computing
the probability distribution, computing rather single realizations of the state vector X(t).
Assuming that the initial value X(0) = x0 is given, one time step of a naïve version of
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2.3. Stochastic simulation algorithm

such an algorithm would involve the following steps:

Algorithm 1: Naïve version of stochastic simulation
Step 1: Find the random time t+ dt at which the next reaction event will take place
Step 2: Determine the random index j of reaction channel Rj that will fire
Step 3: Update the value of X(t+ dt) = X(t) + µj and the time t = t+ dt

For an actual implementation however, we would need a way to sample the time to the
next reaction and the appropriate reaction channel index from the underlying probability
distribution. Another direct consequence of (2.3) is the existence of a function p(τ, j|x, t)
which is defined by

p(τ, j|x, t)dτ = probability that the next reaction channel that (2.17)

will fire in the infinitesimal interval [t+ τ, t+ τ + dt)

will be of Rj type, j = 1, . . . ,M.

Using the same arguments as for the derivation of the CME, this probability is equal to the
product between the probability of no reaction in the interval [t, t+τ) and the probability
of the j-th reaction channel firing in the remaining time interval [t+τ, t+τ+dτ), quantities
that have been defined in (2.13) and (2.14), respectively. By denoting now the probability
of no reactions occurring in [t, t+ τ) by P0(τ |x, t) we can write

p(τ, j|x, t)dτ = P0(τ |x, t) · cjhj(x)dτ +O

τ2

. (2.18)

For the purpose of deriving an explicit formula for the quantity P0(τ |x, t), we divide the
interval [t, t+ τ) into N disjoint intervals with length ε = τ

N so that we have

[t+ τ) =

N−1
k=0


t+ k

τ

N
, t+ (k + 1)

τ

N


.

Next, using (2.14) and the multiplication of independent probabilities, we have

P0(τ |x, t) = P0(ε|x, t)N =


1−

M
j=1

cjhj(x)
τ

N
+O


τ2

N2

N
.

Further, letting the number of subintervals N go to infinity and using the limit definition
of the exponential function

e−λ = lim
N→∞


1− λ

N

N
yields that

P0(τ |x, t) = lim
N→∞


1−

M
j=1

cjhj(x)
τ

N
+O


τ2

N2

N
(2.19)

= exp

−

M
j=1

cjhj(x)τ

.
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2. Stochastic reaction kinetics

By using (2.19) in (2.18), dividing by dτ and letting dτ → 0, we finally arrive at an explicit
formula for the function

p(τ, j|x, t) = cjhj(x) exp

−

M
j=1

cjhj(x)τ


(2.20)

= αj(x) exp

−

M
j=1

αj(x)τ

,

which represents a probability density. By denoting the sum of the propensities as

γ(x) =
M
j=1

αj(x), (2.21)

we have  ∞

0

M
j=1

p(τ, j|x, t)dτ =

 ∞

0
γ(x) exp(−γ(x)τ)dτ = 1.

After computing the probability density p(τ, j|x, t) we can revisit Algorithm 1 proposed
earlier and qualify the first two steps as the process of generating two random numbers
τ and j according to this joint probability density. Next, we set up the computational
procedure for drawing the two random numbers. For this purpose, one can use Bayes’
formula,

p(τ, j|x, t) = p1(τ |x, t) · p2(j|τ,x, t) (2.22)

to write p(τ, j|x, t) as the product of two individual density functions. The first one,
p1(τ |x, t) is computed by summing p(τ, j|x, t) over the j random variable

p1(τ |x, t) =
M
j=1

p(τ, j|x, t) (2.23)

=

M
j=1

αj(x) exp

−

M
j=1

αj(x)τ


= γ(x) exp(−γ(x)τ),

while for the second density p2(j|τ,x, t), using (2.22) and (2.23) we obtain

p2(j|τ,x, t) =
p(τ, j|x, t)
p1(τ |x, t)

=
αj(x) · exp(−γ(x)τ)
γ(x) · exp(−γ(x)τ)

=
αj(x)

γ(x)
. (2.24)

Having established the two individual density functions (2.23) and (2.24), drawing the
random numbers necessary can be accomplished in practice by using the inversion gen-
erating method which is based on the observation that the cumulative density function
ranges uniformly over the interval (0, 1).

First, let us remark that p1(τ |x, t) = γ(x) exp(−γ(x)τ) is the density function of a ran-
dom variable with the well-known exponential distribution. For continuous distributions
we have that the cumulative density function is given as

F (x) =

 x

−∞
P (y)dy
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2.3. Stochastic simulation algorithm

where P (y) denotes a density function. Then, if u is a random drawn number from the
uniform distribution (0, 1), by using r = F−1(u) we can generate a random number r
from a continuous distribution with the specified density function. Choosing p1(τ |x, t) as
the density function we have

r1 =

 τ

0
p1(τ |x, t)dτ = 1− exp(−γ(x)τ). (2.25)

Solving the equation for τ and replacing r1 with the statistically equivalent random vari-
able 1− r1 we obtain that τ should be selected according to

τ =
1

γ(x)
ln


1

r1


.

The inversion method can also be used for discrete distributions. In such cases, the cumu-
lative density function is related to the probability density function P (y) by the formula

F (x) =

y≤x

P (y).

To generate a random number jk according to the discrete density function p2(j|τ,x, t),
with j1 < ... < jM , a random number r2 can be drawn from the uniform distribution such
that

F (j − 1) < r2 ≤ F (j).

Using the formula obtained for the density function p2(j|τ,x, t) in (2.24), we obtain

j−1
k=1

αk(x) < r2γ(x) ≤
j

k=1

αk(x).

Thus, we arrive at the “direct method” version of the stochastic simulation algorithm
[Gil76], outlined below:

Algorithm 2: Gillespie’s direct method (SSA)
0. Initialization: Set t0 = 0 and fix initial value X(t0) = x0

while t < Tfinal do
1. Compute all propensities αj(x) and their sum γ(x) =

M
j=1 αj(x)

2. Draw random numbers r1 and r2 from the uniform distribution (0, 1)

3. Let τ = 1
γ(x) ln


1
r1


4. Determine the index j such that the inequality

j−1
k=1

αk(x) < r2γ(x) ≤
j

k=1

αk(x).

holds.
5. Update the state vector X(t+ τ) = X(t) + µj and let t = t+ τ

end
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2.4. Markov jump process and the CME

In the last two sections, we have presented a derivation of the CME endorsed by micro-
physical arguments, and a computational procedure to simulate the dynamics induced
by the underlying stochastic process, one realization at a time. However, as a rigorous
definition of a stochastic process was not given, and moreover, another starting point
for the derivation of the CME is provided by the theory of stochastic processes, we are
motivated in taking a second look from this more abstract perspective.

2.4.1. Probability theory and stochastic processes

First, let us quickly compile the relevant theoretical tools from probability and stochastic
process theory by adapting some definitions from [PS08, Chapter 3].

A probability space (Ω,F ,P) is defined as a triple composed of a sample space of out-
comes Ω = {w1, w2, . . . , }, a σ-algebra F over the subsets of Ω and a probability measure
P : F → [0, 1], which satisfies the requirements P(∅) = 0, P(Ω) = 1 and

P(
∞
k=1

Ak) =
∞
k=1

P(Ak)

for all sequences of pairwise disjoint sets {Ak}∞k=1 ∈ F . Further, let S ̸= ∅ be a finite or
countable state set and G a σ-algebra over S, which together define a measurable space
(S,G).

Then, a random variable X = X(w) on the probability space (Ω,F ,P) can be defined as
a mapping

X : (Ω,F) → (S,G)
between a sample space (Ω,F) and a state space (S,G), both measurable, with the property
that the events {w ∈ Ω : X(w) ∈ A} ∈ F for any A ∈ G. The expectation of the random
variable X is defined by

EX =


Ω
X(w)dP(w)

as the weighted sum over all the possible outcomes that the random variable can take.
Next, let B(U) denote the Borel σ-algebra of a topological space set U , in other words, the
smallest σ-algebra containing all the open sets of U . Every random variable

X : (Ω,F ,P) → (S,B(S))

induces then a probability measure on S,

PX(B) = PX−1(B) = P(w ∈ Ω;X(w) ∈ B), B ∈ B(S)

and we call PX the distribution of X . For the case of S = Rd, we can write

dPX(x) = p(x)dx

and refer to p(x) as the probability density function.

We are now ready to define a stochastic process as a collection of random variables
X := {X(t, w), w ∈ Ω, t ∈ T} with T = {t0 ≤ t1 ≤ . . . .} an ordered set of time points.
Fixing w ∈ Ω we obtain a realization or trajectory X(t) of the process X , and by fixing t
we get a random variable X(w).
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2.4. Markov jump process and the CME

2.4.2. The Markov property

Speaking now in looser terms, we can think about a stochastic process as a system which
evolves probabilistically in time, i.e., in which a certain time-dependent random variable
exists. We can then measure its values {x0,x1, . . . ,xn, . . . .} at certain times {t0 ≤ t1 ≤
. . . . ≤ tn ≤ . . . .} and assume that a joint probability density

p(. . . ;xn, tn;xn−1, tn−1; . . . ;x0, t0) (2.26)

exists, which describes the dynamics of the system completely [Gar09].

Next, we can use (2.26) to define the conditional probability density

p(. . . ;xn, tn; . . . ;xj+1, tj+1 | xj , tj ; . . . ;x0, t0) =
p(. . . ;xn, tn;xn−1, tn−1; . . . ;x0, t0)

p(xj , tj ; . . . ;x0, t0)
(2.27)

with 0 ≤ j < n.

If all such conditional probabilities (2.27) would be available, this would also lead to
a complete description of the dynamics. However, such a description would require a
complete history of the system and thus be too complex. An effective idea to reduce the
complexity is the Markov assumption. This stipulates that the conditional probability is
entirely determined by the current state and not by the past, i.e.,

p(xn, tn|xn−1, tn−1, . . . ;x0, t0) = p(xn, tn|xn−1, tn−1) (2.28)

which is the Markov property (notice that in (2.28) we have used a finite set of measure-
ments to simplify the notation). The Markov property has the important consequence that
we can now express the joint probability density (2.26) in terms of simple conditional
probabilities

p(xn, tn; . . . ;x0, t0) = p(xn, tn|xn−1, tn−1) · p(xn−1, tn−1|xn−2, tn−2) · . . . (2.29)

. . . . · p(x1, t1|x0, t0) · p(x0, t0)

which means that any future state can be described given only an initial condition and the
simple transition probability densities p(xj , tj |xj−1, tj−1), 1 ≤ j ≤ n, thus simplifying the
treatment of processes that exhibit property (2.28). Such processes are called Markov pro-
cesses and are in effect memoryless because the future development of the process depends
only on the current state and not on any of the past states.

The Markov property also has another important consequence. Starting from the ad-
dition law of probability for mutually exclusive events, and by eliminating one of the
variables from the joint probability density by taking the sum over that variable, we have

p(x2, t2|x0, t0) =


p(x2, t2;x1, t1|x0, t0)dx1 (2.30)

for three measurements taken at t0 ≤ t1 ≤ t2. Using the definition (2.27) of the conditional
probability density and the Markov property (2.28) we can write (2.30) as

p(x2, t2|x0, t0) =


p(x2, t2;x1, t1|x0, t0)dx1 (2.31)

=


p(x2, t2|x1, t1;x0, t0) · p(x1, t1|x0, t0)dx1

=


p(x2, t2|x1, t1) · p(x1, t1|x0, t0)dx1
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2. Stochastic reaction kinetics

which is the Chapman-Kolmogorov equation (cf. [Gar09]). In the case of discrete variables
that take only integer values, the Chapman-Kolmogorov equation for discrete state spaces
reads

P(X(t2) = x2|X(t0) = x0) =

x1

P(X(t2) = x2|X(t1) = x1) · P(X(t1) = x1|X(t0) = x0).

(2.32)

Of course, before using consequence (2.29), the question is raised whether any natural
process exists that actually observes the Markov property (2.28) exactly. If we assume a
very fine time scale for observations, the answer is negative, because at the very least
we would need the immediate history to predict the probabilistic future. Fortunately
however, processes that have a relative short memory, meaning that their memory time is
far smaller than the timescale used in recording the measurements, are common. Thus, it
is reasonable to assume that a Markov process approximates such systems with sufficient
accuracy and the popularity of Markovian models in many fields of science is evidence
of this fact.

Another aspect of the current discussion about stochastic processes is whether the state
space is discrete or continuous and whether the time evolution proceeds in a discrete or
continuous way. Considering that the dynamics of biological processes evolve continu-
ously in time and according to the arguments brought forward in Chapter 1, the quanti-
ties of interest take integer values, the focus in our case is predictably on the continuous-
time Markov process with a discrete state space. In case the state space is finite or count-
able, and the time evolution discrete, the term Markov chain is sometimes employed.
Without loss of generality we shall take the finite state space to be S = {1, . . . , N} ⊂ N.
Let us now present the construction of a continuous-time Markov process.

2.4.3. Continuous-time Markov process

The starting point for the construction of the continuous-time object is a discrete-time
Markov chain which we proceed to define as in [PS08, Chapter 3].

Definition 2.1. A random sequence {Xn}n≥0 is a discrete-time Markov chain with initial distri-
bution ρ0 and transition matrix P , if it is a stochastic Markov process on the finite state space S
with initial distribution ρ0 (viewed as a column vector),

(ρ0)i = P(X0 = i), i ∈ S

and transition probability from state i to state j given as

pij = P(Xn+1 = j|Xn = i), i, j ∈ S,

for every n ≥ 0 and P(Xn = i) > 0.

If the transition probabilities are independent of n, then the process is said to be homo-
geneous. The transition probabilities {pij}i,j∈S can be assembled into a transition matrix
P ∈ RN×N , which satisfies

0 ≤ pij ≤ 1, ∀ i, j ∈ S (2.33)
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2.4. Markov jump process and the CME


j∈S

pij = 1. (2.34)

Any matrix that satisfies the above conditions (2.33) and (2.34) is called a stochastic matrix.

Further, using the Chapman-Kolmogorov equation for discrete state spaces (2.32) and
induction on n, it can be shown that the n-step transition probability from state i to state j,
denoted by pnij = P(Xn = j|X0 = i) is equal to (Pn)ij , and computing the probability that
the Markov chain will be in state j at n ≥ 0 will reduce to computing the corresponding
power of the transition matrix. Consequently, for an initial distribution ρ0 we have

P(Xn = j) =

i∈S

P(Xn = j|X0 = i) · P(X0 = i) =

i∈S

(ρ0)i(P
n)ij = (ρ0P

n)j . (2.35)

Thus, if we know the initial distribution and the transition matrix we can determine the
probability distribution at any later time point. Moreover, by using the notation intro-
duced in Definition 2.1 for transition probabilities, we can write the general form of the
Chapman-Kolmogorov equation as

p
(m+n)
ij =


k∈S

p
(m)
ik p

(n)
kj (2.36)

which leads to
Pm+n = PmPn.

We turn now to the task of defining a continuous-time Markov process {X(t)}t∈R with
the same finite state space S as the discrete-time chain. In addition to observing the
Markov property (2.28), we also want the process to be time-homogenous, i.e. to fulfill

P(X(t) = j | X(s) = i) = P(X(t− s) = j | X(0) = i) (2.37)

for any states i, j ∈ S and s ≤ t. Intuitively, the main difference to the discrete-time
setting discussed previously is that transitions can now occur at any time, so we need to
establish how long the process will remain in a state i ∈ S before performing a jump to a
new state j ∈ S.

Let Ti denote the waiting time to the next jump while in state i. It can be shown by
making use of the Markov property and the time-homogeneity requirement (2.37) that

P(Ti > s+ t | Ti > s) = P(Ti > t). (2.38)

Thus, Ti satisfies the memoryless requirement, as (2.38) basically says that the system for-
gets it has already waited for time s. This leads to the conclusion that Ti is exponentially
distributed with a parameter w(i), as the exponential distribution is the only continuous-
time distribution that observes the Markov property (cf. [Ste09, Chapter 9.10]).

We proceed now to study the transition probabilities. First, as Ti ∼ exp(w(i)) and
satisfies (2.38), we infer that

P(Ti < dt) = 1− e−w(i)dt = w(i)dt+O

dt2


when dt → 0. Next, using the notation from Definition 2.1, we write the probability that
the process will jump to state j after leaving state i as

pij = P(X(Ti) = j | X(0) = i).
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2. Stochastic reaction kinetics

The transition probability does not depend on the time spent by the process in i, because
if it would do so, the Markov property will no longer be observed. By defining

w(i, j) = w(i) · pij (2.39)

as the transition intensity from state i to state j, we can write

P(X(t+ dt) = j | X(t) = i) = P(X(dt) = j | X(0) = i) (2.40)

= P(Ti < dt,X(Ti) = j | X(0) = i)

= w(i) · pijdt+O

dt2


= w(i, j)dt+O

dt2


with O

dt2


accounting for the probability of more than one jump in the interval [t, t+dt).
Because of the way we have defined the transition intensities (2.39), we also have for i ∈ S

j ̸=i
w(i, j) =


j ̸=i

w(i) · pij = w(i)

j ̸=i

pij = w(i). (2.41)

Taking (2.41) into account, we can now write the probability that no jump will take place
in [t, t+ dt) as

P(X(t+ dt) = i | X(t) = i) = P(X(dt) = i | X(0) = i) (2.42)

= 1−

j ̸=i

P(X(dt) = j | X(0) = i)

= 1−

j ̸=i

w(i, j)dt+O

dt2


= 1− w(i)dt+O

dt2

.

Using (2.40) and (2.42) we are now ready to give a definition for a time-homogeneous
continuous time Markov process with a finite state space S.

Definition 2.2. A stochastic process {X(t)}t∈R with a finite state space S is a time-homogeneous
continuous time Markov process, if it satisfies

P(X(t+ dt) = j | X(t) = i) = w(i, j)dt+O

dt2


P(X(t+ dt) = i | X(t) = i) = 1− w(i)dt+O

dt2


where j ̸= i and w(i) is given by (2.41).

A classic (and arguably one of the most important) example of a continuous-time
Markov process is the Poisson process, which is an integer valued counting process N(t)

of the number of jumps in the time interval [0, t]. The Poisson process satisfies

P(N(t+ dt) = i+ 1 | N(t) = i) = wdt+O

dt2


P(N(t+ dt) = i | N(t) = i) = 1− wdt+O

dt2


with w > 0 denoting the constant intensity of the process, which no longer depends
on the state. Moreover, we have that the independent increments are exponentially dis-
tributed,

P(N(t)−N(s) = k) =
e−w(t−s) (w(t− s))k

k!
,
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2.4. Markov jump process and the CME

and depend only on t− s making the Poisson process time-homogeneous.

After these preparations, a recipe for the construction of a continuous-time Markov
process {X(t)}t∈R can be formulated (see also [PS08, Chapter 5]). The procedure in-
volves two objects, the first ingredient being an independent and identically distributed
sequence {τn}n≥0 ∼ exp(w) that will provide the transition times, with the second com-
ponent represented by a discrete-time Markov chain {Xn}n≥0 with transition matrix P de-
fined as in (2.33 - 2.34), which provides the values for the states. We remark that {Xn}n≥0

is sometimes called the embedded chain of the stochastic process {X(t)}t∈R. From an al-
gorithmic viewpoint, first we set X(0) = X0 and t0 = 0 and let tn+1 = tn + τn be the
next jump time. Next, we define X(t) = Xn for any t ∈ [tn, tn+1) , ∀n ≥ 0. The process
X(t) thus obtained is called Markov jump process, and we note that the algorithm lightly
sketched above is another formulation of the SSA algorithm presented in Section 2.3.

Next, we present a matrix characterization for the continuous-time Markov process.
Similarly to the discrete case, we can assemble the transition probabilities of a Markov
jump process into a matrix P (t) with elements

pij(t) = P(X(t) = j | X(0) = i). (2.43)

Due to the exponential distribution of the jump times, we also have

P(N(t) = k) =
e−wt (wt)k

k!
. (2.44)

Combining the probability given in (2.44) with the k-step transition matrix of the embed-
ded Markov chain leads to

pij(t) = P(N(t) = k) · P(Xk = j |X0 = i) =
∞
k=0

e−wt(wt)k

k!
(P k)ij .

Hence, in matrix form we have

P (t) = e−wt
∞
k=0

(wt)k

k!
P k = etw(P−I) = etL (2.45)

with L = w(P − I) called the generator of the continuous-time Markov jump process. We
remark that in case the state space is infinite, handling etL requires the operator theory
of semigroups [PS08, Chapter 7.5]. Thus, given an intensity w and the transition matrix
P of the embedded chain we can characterize the Markov jump process. Additionally, the
generator L satisfies

L = lim
t→0

P (t)− I

t
(2.46)

and because P is a stochastic matrix, we have
j∈S

lij = 0 ∀i ∈ S, (2.47)

lij ∈ [0,∞) ∀i, j ∈ S with i ̸= j (2.48)

and lii ≤ 0. (2.49)
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2. Stochastic reaction kinetics

Summarizing (2.47), (2.48) and (2.49), the rows of Lmust sum up to zero, the off-diagonal
elements are non-negative, while the diagonal elements are non-positive.

We are now finally in a position to bring the spotlight on the relationship between the
time-continuous Markov chain, its generator and the CME derived in (2.16). As we have
seen, the generator is built using the stochastic matrix P (t) with elements defined by
(2.43). The intention is to derive a set of differential equations that describe the evolution
of the transition probabilities, or in other words a master equation. Hence, we begin by
taking the time derivative

d

dt
pij(t) = lim

dt→0

pij(t+ dt)− pij(t)

dt
(2.50)

= lim
dt→0

1

dt


P(X(t+ dt) = j | X(0) = i)− P(X(t) = j | X(0) = i)


.

Using now the Chapman-Kolmogorov equation (2.36), we introduce a new variable y in
(2.50) and write

d

dt
pij(t) = lim

dt→0

1

dt


y∈S

P(X(t+ dt) = j | X(t) = y,X(0) = i) (2.51)

·P(X(t) = y | X(0) = i)

−P(X(t) = j | X(0) = i)

.

Further, using (2.40) and (2.42) to expand the first term in (2.51), we have that
y∈S

P(X(t+ dt) = j | X(t) = y,X(0) = i) · P(X(t) = y | X(0) = i)

= P(X(t+ dt) = j | X(t) = j,X(0) = i) · P(X(t) = j | X(0) = i)

+

y ̸=j

P(X(t+ dt) = j | X(t) = y,X(0) = i) · P(X(t) = y | X(0) = i)

= P(X(t+ dt) = j | X(t) = j) · P(X(t) = j | X(0) = i)

+

y ̸=j

P(X(t+ dt) = j | X(t) = y) · P(X(t) = y | X(0) = i)

=

1− w(j)dt


pij(t) +


y ̸=j

w(y, j)dt · piy(t) +O

dt2

.

(2.52)

Inserting (2.52) into (2.51), rearranging the terms and passing to the limit, yields via (2.41)

d

dt
pij(t) = lim

dt→0

1

dt


1− w(j)dt


pij(t)− pij(t)

+

y ̸=j

w(y, j)dt · piy(t) +O

dt2
 

=− w(j)pij(t) +

y ̸=j

w(y, j)piy(t)

=

y ̸=j

w(y, j)piy(t)−

y ̸=j

w(j, y)

pij(t)

(2.53)

which are the forward Kolmogorov equations for the process X(t). Comparing (2.53) with
(2.16), we observe that the chemical master equation is a special case of the forward Kol-
mogorov equation, with the inflow and outflow terms readily recognizable.
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2.5. The CME operator

Equation (2.53) can also be written in matrix form, by defining the matrix L as

Lij =


−w(j), if i = j

w(i, j), if i ̸= j.
(2.54)

Thus, we obtain
d

dt
P (t) = P (t)L. (2.55)

When the state space S is finite, and subject to the initial condition P (0) = I , equation
(2.55) has the formal solution P (t) = etL. Comparing with (2.45), it is clear that by defin-
ing L as in (2.54), we have recovered the generator of the Markov jump process.

Besides the forward Kolmogorov equations, we can also obtain another set of differen-
tial equations called the backward Kolmogorov equations. Using again Chapman-Kolmogorov
equations (2.31) to expand a transition matrix Q(t+ dt) this time as Q(dt)Q(t) and taking
the time derivative of Q(t) at t = 0, we have

d

dt
Q(t) = lim

dt→0

Q(t+ dt)−Q(t)

dt
(2.56)

= lim
dt→0

Q(dt)Q(t)−Q(t)

dt

= lim
dt→0

Q(dt)− I

dt
Q(t)

= L⋆Q(t).

We conclude now this section by referring the readers interested in a more extensive
treatment of stochastic processes to the monographs [CM65, Nor97]. For a viewpoint
closer to the chemical master equation, [vK01, Gar09] are recommended.

2.5. The CME operator

Both guises of the CME introduced so far, either the form (2.16) derived from microphys-
ical arguments, or (2.53) obtained using the Chapman-Kolmogorov equation, are somewhat
unwieldy when it comes to presenting numerical methods, which is the aim of this thesis.
Thus, the goal of this section is to introduce the CME operator, a more useful notation in
the context of computing numerical approximations.

Recall that the goal is to compute the probability distribution

p(t,x) = P(X(t) = x | X(0) = x0) with x,x0 ∈ Nd0, (2.57)

i.e., the probability that at time t there are exactly xi particles of the i-th species, given the
initial copy numbers X(0) = x0. Rewriting (2.16) using (2.57), we get

∂tp(t,x) =

M
j=1


αj(x− µj)p(t,x− µj)− αj(x)p(t,x)


. (2.58)

The propensities αj and stoichiometric vectors µj characterize the reaction channels Rj
(j = 1, . . . ,M ) completely, and it is reasonable to assume that only feasible reactions are
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2. Stochastic reaction kinetics

allowed when modeling biological processes. Therefore, as the inflow term x−µj in (2.58)
may have negative entries and this does not correspond to physical reality, we stipulate

αj(x) = 0 and p(t,x) = 0, ∀ x /∈ Nd0. (2.59)

Further, using the notation introduced in (2.57), the initial condition now reads

p(0,x) = p0(x) =


1, if x = x0

0, else.
(2.60)

We have shown in (2.55) that for a finite state space, the CME can be written as an initial
value problem and the aim is to extend this formulation to the infinite case. Regarding
now the CME (2.16) as a “discrete” PDE, where instead of partial derivatives with respect
to the state x ∈ Nd0 we have shifts, we reformulate the equation as an abstract Cauchy
problem by defining a linear operator between function spaces. Let

l1 = {p : Nd0 → R with

x∈Nd

|p(x)| <∞}

the space of sequences whose series is absolutely convergent, equipped with the norm
||p||1 =


x∈Nd

0
|p(x)|. Consider now the operator A defined as

(Ap(t, ·))(x) =
M
j=1


αj(x− µj)p(t,x− µj)− αj(x)p(t,x)


, (2.61)

with domain
D(A) = {p ∈ l1 | αjp ∈ l1, ∀ j = 1, . . . ,M}. (2.62)

Using (2.61) in (2.58), as well as (2.60), we can now formulate the CME as an abstract
Cauchy problem in the high dimensional sequence space l1(Nd0),

∂tp(t, ·) = Ap(t, ·) (2.63)

p(0, ·) = p0(·).

The CME is a linear equation, and if the operator A is bounded, i.e,

∃ C > 0 such that ||Ap||1 ≤ C||p||1, ∀p ∈ D(A),

the solution of (2.63) is given as

p(t, ·) = etAp0(·), where etA =

∞
k=0

(tA)k

k!
. (2.64)

The boundness condition on A ensures convergence of the series etA in the l1-sequence
norm, leading to well-posedness for (2.63) in such a setting. However, for most applica-
tions of interest, the operator A is unbounded. Therefore, the term etA is no longer defined
and the existence of the solution (2.64) is not clear.

Finding an analytical solution for the CME in the general case is usually impossible,
although we remark that for networks consisting only of monomolecular reactions an
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2.5. The CME operator

analytical form has been derived in [JH07]. Consequently, numerical approximation of
the CME solution is usually the only option. However, as numerical approximations
cannot be computed on an infinite state space, we proceed to define a finite subset of Nd0
by selecting a suitable truncation vector ξ ∈ Nd and considering

Ωξ = {x ∈ Nd0 | x1 < ξ1, . . . , xd < ξd} ⊆ Nd0. (2.65)

We also define the function space

Vξ = {p ∈ l1 | p(x) = 0 if x /∈ Ωξ} ⊆ l1

which is the set of all functions with support constrained to Ωξ. Further, let Pξ : l1 → Vξ
be the projection from l1 into the subset of the truncated functions, defined as


Pξp(t, ·)


(x) =


p(t,x) , if x ∈ Ωξ

0 , else.

We can now define the “truncated” CME operator

Aξ : Vξ → Vξ, Aξ =

M
j=1

A(j)
ξ (2.66)

with


A(j)
ξ p(t, ·)


(x) =


αj(x− µj)p(t,x− µj)− αj(x)p(t,x) if x,x− µj ∈ Ωξ

0 else

denoting the CME operators for individual reaction channels Rj . The truncated counter-
part to (2.63) is thus

∂tpξ(t, ·) = Aξpξ(t, ·) (2.67)

pξ(0, ·) = Pξp0(·)

with pξ(t, ·) ∈ Vξ.

The question whether the solution of the truncated CME (2.67) converges to the solu-
tion of the CME (2.63) on Nd0 as ξ = (ξ1, . . . , ξd) → (∞, . . . ,∞) can be investigated by
employing Trotter-Kato approximation theorems for operator semigroups [EN06, Chap-
ter IV], which provide the following result.

Theorem 2.3. If range(λ0 −A) is dense in l1 for some λ0 > 0 and p0 ∈ D(A), then the CME
(2.63) on the unbounded space Nd0 has a unique solution which depends continuously on the initial
data and furthermore, we have

lim
ξi→∞

∀i=1,...,d

||pξ(t, ·)− p(t, ·)|| = 0.

We note that Theorem 2.3 is a consequence of the Second Trotter-Kato approximation
Theorem [EN06, Chapter IV, 1.9] and the following proof is only a rough sketch.
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2. Stochastic reaction kinetics

Proof. In order to apply the Second Trotter-Kato Theorem, we first need to show that the
semigroups (Tξ(t))t≥0 generated by Aξ satisfy the stability condition, i.e., there exist the
constants M ≥ 1 and ω ∈ R such that

||Tξ(t)||1 ≤Meωt

for all t ≥ 0 and ξ ∈ Nd. In other words, ||Tξ(t)|| has to remain bounded for all t ≥ 0

as ξ → ∞. Without loss of generality, we can choose M = 1 and ω = 0 and show that
||Tξ(t)|| ≤ 1 (the proof of this assertion is given in the subsequent Section 2.5.1). It can also
be shown that the domainD(A) from (2.62) is a dense subspace of l1, and that Aξuξ → Au
as ξ → ∞ for all u ∈ D(A). Then, the Second Trotter-Kato Theorem states that the closure
of the operator A generates a strongly continous semigroup (T (t))t≥0, and that

lim
ξi→∞

∀i=1,...,d

||Tξ(t)p0(·)− T (t)p0(·)|| = lim
ξi→∞

∀i=1,...,d

||pξ(t, ·)− p(t, ·)|| = 0, ∀p0 ∈ D(A).

Because this thesis is concerned with numerical approximations, the discussion re-
volves around the truncated CME introduced in (2.67), and we proceed to expose its
properties.

2.5.1. Properties of the truncated CME

The operator Aξ is defined in (2.66) as a mapping between finite dimensional spaces Vξ,
and as such is isomorphic to a sparse matrix Aξ ∈ RN×N , where N =

d
i=1 ξi. If we

perform a reshaping of the finite state space Ωξ into a column vector indexed on the
states {x(1),x(2), . . . ,x(N)}, we obtain the matrix form of (2.67)

∂tp(t) = Aξp(t) (2.68)

p(0) = p0

with p(t) ∈ RN a vector where the i-th element is given by pi(t) = P(X(t) = x(i)) and

(Aξ)ik =


−
M

j=1 αj

x(i)


for i = k
j∈J αj


x(i)


for x(i) = x(k) − s, J = {all j where µj = s}
0 otherwise.

(2.69)

The set J denotes the indices of those reaction channels Rj which have the property that
when they fire, they induce a jump into the corresponding new state on account of the old
state and their specific stoichiometry. For brevity, we shall hereafter drop the superfluous
parameter ξ, and proceed to use A := Aξ ∈ RN×N . Further, by a slight abuse of notation
we will also use A instead of Aξ, but what is always meant is the truncated operator from
(2.67). Similarly to (2.64), the solution of (2.68) is known to be given by

p(t) = etAp0. (2.70)

We now turn to the investigation of some of the properties induced by the particular
structure of the matrix A ∈ RN×N defined in (2.69). Because of the positivity of the
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propensity functions αj(x) on Nd0 and implicitly on Ωξ, it follows that this matrix has
non-positive diagonal entries, while its off-diagonal elements are non-negative, i.e.,

aii ≤ 0, ∀i = {1, . . . , N} and aik ≥ 0, for i ̸= k. (2.71)

Using (2.59) ensured that the term x−µj from (2.61) does not become negative, but when
considering the truncated state space induced by ξ ∈ Nd, we also need to impose an-
other set of boundary conditions for the case in which the term lies outside the arbitrarily
defined state space Ωξ from (2.65). As the choice of boundary conditions has important
consequences, it warrants a detailed investigation.

Imposing discrete Neumann boundary conditions on the boundaries of Ωξ by setting

αj(x) = 0, if x ∈ Ωξ and x+ µj /∈ Ωξ, (2.72)

leads to the suppression of all reactions that might trigger a jump from a state x ∈ Ωξ into
a state lying outside these boundaries. As a consequence of using (2.72) and considering
the structure of A ∈ RN×N , its elements aik now satisfy the condition

N
i=1

aik = 0, ∀k ∈ {1, . . . , N}, (2.73)

in addition to having the properties given in (2.71). We remark that (2.73) and (2.71)
are exactly the properties satisfied by the elements of the transposed generator of the
continuous-time Markov process with finite state space given by (2.47), (2.48) and (2.49),
i.e., A ≡ LT . This is not a surprise, if we compare the definition of the generator (2.54)
with that of A (2.69) and recall that the propensity functions give the probability of reac-
tion channel Rj (j = 1, . . . ,M ) firing next and triggering a transition to a new state.

Imposing the discrete Neumann boundary conditions (2.72) has several advantages, as
it guarantees that the solution of the CME on the truncated state space remains a probabil-
ity distribution if the initial data is a probability distribution, that a stationary distribution
exists and all non-zero eigenvalues have negative real part. We proceed now to supply
some proof of these assertions.

First, recall the indexing of the states x ∈ Ωξ as {x(i)}i=1,...,N , and assume that for some
particular state i ∈ {1, . . . , N} we have pi(t) = 0 and pk(t) ≥ 0, k ̸= i. Using (2.68) and
taking (2.71) into account, we get that

ṗi(t) = aiipi(t) +

k ̸=i

aikpk(t) ≥ 0,

which means that pi(t) can not become negative, and we have p(t) ≥ 0, ∀t ≥ 0. Further,
because

N
i=1

ṗi(t) = (1TA)p(t) = 0,

we obtain
N

i=1 pi(t) =
N

i=1(p0)i = 1. This means that the solution of the CME on the
truncated state space, obtained when imposing the discrete Neumann boundary condi-
tions (2.72) and assuming p0 ∈ RN is a probability distribution, i.e.,

p0 ≥ 0 and
N
i=1

(p0)i = 1,

33



2. Stochastic reaction kinetics

has only non-negative elements and is also a probability distribution. Thus, discrete Neu-
mann boundary conditions guarantee that the probability mass is preserved.

On the other hand, if we impose discrete Dirichlet boundary conditions by setting

p(t,x) = 0, ∀x ∈ Nd0 \ Ωξ (2.74)

this favorable property is lost. The reason is that imposing (2.74) might lead to

N
i=1

ṗi(t) < 0

and further to
N

i=1 pi(t) ≤ 1 for some time t > 0, so probability mass would “leak out”
of the truncated state space Ωξ. We remark that the truncation error incurred by imposing
discrete Dirichlet boundary conditions has been investigated in [MK06] and is given as
1−

N
i=1 pi(t). For short time intervals, there is no difference between the two boundary

conditions, especially if the probability mass is concentrated in states that are far from the
artificially imposed borders of Ωξ, but for longer times it can be significant. Therefore, we
have chosen to use Neumann boundary conditions (2.72) instead of (2.74).

For a matrix A with the properties (2.71) and (2.73), we also have that ||etA||1 = 1,
∀t ≥ 0. To prove this assertion, let v ∈ RN , with ||v||1 = 1. Further, we define v+ ∈ RN

and v− ∈ RN by

v+j =


vj if vj ≥ 0

0 else
v−j =


vj if vj < 0

0 else
,

such that v = v+ + v− and v+j ≥ 0 and v−j ≤ 0 for all j = 1, . . . , N . Then,
||v||1 = 1T v+ − 1T v− = 1 and we obtain,

||etAv||1 ≤ ||etAv+||1 + ||etAv−||1
= 1T etAv+ − 1T etAv−

= 1T v+ − 1T v− = 1. (2.75)

In (2.75), we have used that

N
i=1

pi(t) = 1T p(t) = 1T etAp0 = 1T p0 + 1T
∞
k=1

(tA)k

k!
p0  

=0

= 1T p0, (2.76)

which yields 1T etAp0 = 1T p0.

Next, let σ(A) denote the spectrum of A. Because of (2.73), we have 1TA = 0, which
yields that 0 ∈ σ(A) with trivial left eigenvector 1T = (1, . . . , 1). Moreover, as the el-
ements of A satisfy (2.71) and (2.73), we can apply Gerschgorin’s Circle Theorem (see
Appendix A for details) to show that all eigenvalues λ ̸= 0, λ ∈ σ(A) have strictly nega-
tive real part, i.e., Re(λ) < 0.

It is often the case that the transient behavior of the truncated CME (2.68) is of minor
importance, with the focus being on the long-time dynamics of the system. This leads
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2.5. The CME operator

to the question of convergence of the solution of (2.68) to the invariant distribution as
t→ ∞.

Using the Perron-Frobenius theorem for primitive matrices it can be shown that under
certain conditions an unique non-negative stationary distribution exists. Before the exis-
tence question is tackled however, we must first answer the question whether the system
is closed or open. For open systems where particles are introduced into the system, there
are many simple examples where we do not have a steady state. For a closed system,
no particles may enter or leave, although they may combine in various ways inside the
container which was considered for the system. Closed systems with a finite number of
discrete states admit a unique steady-state solution if the matrix A is neither decomposable
or of splitting type [vK01, Chapter V.3]. A matrix A with the properties (2.71) and (2.73) is
called decomposable if it can be cast in the form

A =


A11 0

0 A22


where A11 and A22 are matrices with the some properties of A but of smaller size. In such
cases, the state space is decomposed into two subsets which are not connected and we
have no unique steady-state solution. In case A is a splitting matrix, it can be written as

A =

 A11 0 A13

0 A22 A23

0 0 A33


where A11 and A22 share the properties of A and at least some of the elements of A13,
A23 and A33 are non-zero. Again, the state space is decomposed into subsets that are not
fully connected and we have at least two steady state solutions. These concepts can also
be extended to the operator A, with operators of decomposable or splitting type defined
in a similar way (see [vK01, Chapter V.3]).

Next, following a similar result from [JH07] and using the Perron-Frobenius Theorem,
we prove that if A is neither decomposable or of splitting type, an unique steady state solu-
tion exists. First, we give the definition of a primitive matrix.

Definition 2.4. A matrix M ∈ RN×N with elements mij is called

• non-negative (M ≥ 0) if mij ≥ 0, ∀i, j.

• strictly non-negative (M > 0) if mij > 0, ∀i, j

• primitive if M ≥ 0 and Mk > 0 for some k ∈ N.

Considering now the matrix A defined in (2.69), it is obvious that it does not satisfy the
above requirements. However, as the solution of the CME on the truncated state space
is given by p(t) = etAp0 ≥ 0, ∀t > 0, we get that the matrix T (t) = etA ≥ 0, ∀t ≥ 0 is
primitive according to the definition 2.4 if A is neither of splitting or decomposable type.
Next, we state the Perron-Frobenius theorem for primitive matrices [Sen81, Chapter 1].

Theorem 2.5 (Perron-Frobenius). Let M ≥ 0 be a primitive matrix. Then an eigenvalue
µ ∈ σ(M) exists such that,
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2. Stochastic reaction kinetics

(a) µ ∈ R, µ > 0

(b) µ > |λ| for any eigenvalue λ ̸= µ

(c) µ is a simple root for the characteristic polynomial

(d) there are strictly positive right and left eigenvectors v > 0 and w > 0, respectively, such
that

Mv = µv and wTM = µwT

With T (t) = etA ≥ 0, ∀t ≥ 0 and A defined by (2.69), we then have the following

Corollary 2.6. Suppose that T (t⋆) = et
⋆A > 0 , for some t⋆ > 0. Then,

(i) there exists an unique invariant distribution ρ ∈ RN (ρ ≥ 0,
N

i=1 ρi = 1), i.e.,

T (t)ρ = ρ, ∀t ≥ 0

Aρ = 0

(ii) we have
lim
t→∞

p(t) = ρ and lim
t→∞

T (t) = [ρ| . . . |ρ]  
N times

Proof. We have already established that every eigenvalue λ of A ∈ RN×N is either zero or
has strictly negative real part (see Appendix A). Consequently, we have that
1 ∈ σ(T (t)), ∀t ≥ 0 and for any eigenvalue ζ ∈ σ(T (t)), ζ ̸= 1 we have |ζ| < 1 on
account of

|etλ| = |etRe(λ)| < 1, for Re(λ) < 0 and t > 0.

Let ρ̂ be the right eigenvector corresponding to eigenvalue 0 ∈ σ(A). It follows that
Aρ̂ = 0 and also

T (t)ρ̂ =

∞
k=0

(tA)k

k!
ρ̂ = ρ̂+

∞
k=1

(tA)k

k!
ρ̂  

=0

= ρ̂.

Now, under the initial assumption T (t⋆) > 0, we can apply Perron-Frobenius as given
in Theorem 2.5, which leads to the conclusion that the eigenvalue 1 ∈ σ(T (t)) is simple,
such that an unique (up to a constant c > 0) eigenvector ρ = cρ̂ exists, with ρ > 0 andN

i=0 ρi = 1. Moreover, we have that

T (t)ρ = cT (t)ρ̂ = cρ̂ = ρ, ∀t ≥ 0 and Aρ = cAρ̂ = 0

which ends the proof of (i).

To prove (ii), we use the fact that there exists a decomposition of A = SJS−1 with J

the Jordan normal form, i.e., a block diagonal matrix

J =

J1 . . .
Jn


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2.5. The CME operator

where each block Jk of the square matrix J is of the form

Jk =


λk 1

λk
. . .
. . . 1

λk


and S = [s1| . . . |sn] is an invertible matrix. We use now that T (t) = etA = SetJS−1

[EN06, Chapter I], and the fact that J has a block structure and each block can be treated
separately. As the eigenvalue λ1 = 0 ∈ σ(A) is simple, the first Jordan block J1 has only
one entry, and we have

etJ1 = etλ1 = 1.

For the remaining Jordan blocks Jk,

lim
t→∞

etJk = 0, k > 1

(where 0 is an appropriately sized zero matrix) holds, because all the other eigenvalues
λk, k > 1 satisfy Re(λk) < 0 via Corollary A.2 from Appendix A. Hence,

T∞ = lim
t→∞

T (t) = lim
t→0

SetJS−1 = S diag{1, 0, . . . , 0} S−1 = vwT ,

where v and w are the first column vector from S, and first row-vector from S−1 respec-
tively. We know from (i) that ρ is the right eigenvector corresponding to the eigenvalue
ζ = 1, so we have

lim
t→∞

T (t)ρ = ρ = v(wTρ
=C>0

)

which leads to v = 1
C ρ = c1ρ.

Further, we have that the vector 1T = (1, . . . , 1) is the left eigenvector corresponding
to ζ = 1, because

1TT (t) = 1T etA = 1T
∞
k=0

(tA)k

k!
= 1T I+

∞
k=1

1T
(tA)k

k!  
=0

= 1T

where we have used the fact that 1T is also the left eigenvector of A corresponding to
eigenvalue 0 (a consequence of (2.73)). Passing now to the limit, we obtain

lim
t→∞

1TT (t) = 1T = (1T v)wT ,

from which it follows that w = c21 with some constant c2 > 0. Without loss of generality,
we can choose c1 = c2 = 1 such that v = ρ and w = 1, respectively. This leads to

lim
t→∞

T (t) = vwT = ρ1T = [ρ| . . . |ρ]

and additionally, we obtain that

lim
t→∞

p(t) = lim
t→∞

T (t)p0 = ρ1T p0 = ρ.
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2. Stochastic reaction kinetics

Drawing a line, corollary 2.6 shows that under certain conditions, and assuming the
matrix A ∈ RN×N has the properties (2.71) and (2.73), there exists a unique (up to a
constant) right eigenvector ρ to the eigenvalue 0, such that

Aρ = 0.

Further, if ρ is normalized and has only non-negative elements, then it represents the
stationary probability distribution of the system.

Because in the following chapters we prefer to use the operator notation, with A denot-
ing the operator restricted to Ωξ, we also define the stationary distribution as a discrete
function π : Ωξ → R satisfying

Aπ = 0, π(x) ≥ 0,

x∈Ωξ

π(x) = 1. (2.77)

2.5.2. The adjoint CME operator

In the same way that the CME defined with the help of operator A from (2.61) can be con-
sidered a special case of the forward Kolmogorov equations (2.55), it is sometimes useful to
consider the adjoint operator A⋆ which relates in a similar way to the backward Kolmogorov
equations (2.56). The adjoint operator A⋆ is defined such that it satisfies the property

⟨Ap, q⟩ = ⟨p,A⋆q⟩ (2.78)

where ⟨·, ·⟩ represents the Euclidean inner product between two functions p, q ∈ l1(Nd).
Substituting (2.61) in (2.78) we obtain

⟨Ap, q⟩ =

x∈Ωξ


M
j=1


αj(x− µj)p(t,x− µj)− αj(x)p(t,x)


q(t,x)

=

x∈Ωξ


M
j=1

αj(x)

q(t,x+ µj)− q(t,x)


p(t,x)

where we have used that
x∈Ωξ

αj(x− µj)p(t,x− µj)q(t,x) =

x∈Ωξ

αj(x)p(t,x)q(t,x+ µj)

because of (2.59). Thus, we obtain the following representation for the adjoint operator
in terms of the already defined propensity functions αj and stoichiometric vectors µj

(A⋆q(t, ·))(x) =
M
j=1

αj(x)

q(t,x+ µj)− q(t,x)


. (2.79)

The adjoint CME equation takes the now familiar form

∂tq(t, ·) = A⋆q(t, ·) (2.80)

q(0, ·) = q0(·),

38



2.6. Macroscopic equations

and if we consider as before the truncated state space Ωξ, we get that the truncated adjoint
CME operator A⋆

ξ is isomorphic to a sparse matrix A⋆ ∈ RN×N , with the corresponding
matrix form of (2.80) having the formal solution q(t) = etA

⋆
q0, with q(t) ∈ RN .

Finally, we have “detailed balance” if the operator A has the symmetry property, a con-
dition that is rarely fulfilled by biological processes, as this would imply the reversibility
of the underlying stochastic process. In matrix form, “detailed balance” can be expressed
as

diag(π)A = (diag(π)A⋆)T

where π ∈ RN denotes the stationary probability distribution. This relation basically as-
serts the obvious fact that for a reversible process in steady state, the transitions between
each pair of states must balance out.

The adjoint equation (2.80) is mostly used in connection with absorbing states and first-
passage problems [vK01, Chapter XII], and in this thesis will make an appearance in
Chapter 5 where methods for metastability analysis are discussed.

After deriving the CME from two perspectives and introducing the operator notation
that will be central to the discussion in the later chapters, the aim of the next sections is to
place the equation into context by quickly reviewing the main alternatives to the CME.

2.6. Macroscopic equations

In the discrete stochastic formulation we have investigated so far, the definition given
for the propensity functions αj(x) in (2.5), obscured somewhat the fact the propensities
actually depend on the volume V of the space in which the particles are enclosed. How-
ever, the dependence on the volume is immediately clear, if for example, we inspect the
expression (2.10) derived for the specific probability rate constant cj of a bimolecular re-
action. So far, we have simply kept the volume V = 1 fixed, but in order to investigate the
behavior of the system when V → ∞, let us redefine the propensities such that volume
dependency is explicitly stated, as

αj(x) =
kj

Ω|sj |−1

d
i=1


xi

xi − nj,i


. (2.81)

In (2.81), the terms nj,i are the stoichiometric coefficients on the reactants side of (2.11),
|sj | =

d
i=1 nj,i is the reaction order, kj denotes a macroscopic rate constant and Ω is a

scaling factor related to the conversion of the specific probability rate constant cj in the
macroscopic rate constant kj . For example, Ω can be the system volume V , Avogadro’s
constant nA = 6.02214179 · 1023 mol−1, or their product nA · V .

Turning now to the macroscopic formulation of biochemical reaction kinetics, the state of
the system is described by a deterministic process y(t) : R → Rd with y(t) = [y1(t), . . . , yd(t)].
The variables yi(t) ∈ R0 represent the concentrations of the species Si at time t and are
related to the copy numbers of the species from the stochastic formulation by

yi(t) = Xi(t)/(nA · V ).
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2. Stochastic reaction kinetics

Thus, using a vector notation, we have that the states y ∈ Rd+ of the macroscopic model
are related to the states x ∈ Nd0 from the stochastic model via y = x/Ω, with Ω = nA · V .
The time evolution of the deterministic process y(t) is then given by a system of ordinary
differential equations (ODEs)

d

dt
y(t) =

M
j=1

µjα̃j(y(t)), (2.82)

where α̃j(y) = αj(x)/Ω are the Ω-scaled propensities of the reaction channel Rj , and
we remark that the discrete characterization of nature has been replaced by a continuous
point of view. The functions α̃j are functionally similar to the propensity functions αj
from (2.81), and for elementary reactions we have

αj(x) =
kj

Ω|sj |−1

d
i=1


xi

xi − nj,i


= Ω

kj

Ω|sj |

d
i=1


xi

xi − nj,i


(2.83)

= Ωkj

d
i=1

1

Ωnj,i
· xi!

nj,i!(xi − nj,i)!
= Ωkj

d
i=1

1

Ωnj,i · nj,i!

nj,i−1
s=0

(xi − s)

= Ωkj

d
i=1

1

nj,i!

nj,i−1
s=0


yi −

s

Ω


= Ωα̃j(y)

= Ωα̃j(x/Ω).

However, when modeling is based on the law of mass action, the evolution of the deter-
ministic process y(t) is described with the help of the classic reaction rates

aj(y) = kj

d
i=1

y
nj,i

i

nj,i!
(2.84)

instead of the Ω-scaled propensity functions α̃j . For reactions of order zero and one,
where nj,i ∈ {0, 1}, the reaction rates aj(y) and the propensities α̃j(y) coincide. For more
complex reaction channels however, where we have nj,i > 1, the reaction rate aj(y) only
approximates α̃j(y) for large Ω, because

α̃j(y) = kj

d
i=1

1

nj,i!

nj,i−1
s=0


yi −

s

Ω


= kj

d
i=1

y
nj,i

i

nj,i!
+O


Ω−1


. (2.85)

Using (2.83), (2.84) and (2.85), it follows that

1

Ω
αj(x)− aj

 x
Ω


=


0 if nj,i ∈ {0, 1}
O

Ω−2


else

(2.86)

which gives the relation between the volume-dependent propensities (2.81) of the CME
and the classic reaction rates (2.84) of the Reaction Rate Equations (RRE). Further, we note
that (2.82) represents the "concentrations" form of the RRE.

It has been shown by T.G. Kurtz in [Kur72], that in the thermodynamic limit, when
the initial copy numbers of all the species X(0) and Ω approach infinity, and the initial
species concentrations tend to some value

lim
Ω→∞

X(0)

Ω
= y0,
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2.6. Macroscopic equations

the deterministic process y(t) from (2.82) approaches the scaled discrete Markov jump pro-
cess underlying the CME (2.63) for every finite time t, i.e.,

lim
Ω→∞

P


sup
t∈[0,T ]

X(t)

Ω
− y(t)

 > ε

= 0, ∀ε > 0.

This link between the stochastic and deterministic models is best illustrated by showing
that the reaction-rate equations yield an approximation to the expected value
E[X(t)] =


x x · p(t,x) of the stochastic process X(t) at some specific time t. The deriva-

tion below follows that of [Gil00].

Multiplying the CME (2.58) by x and summing over all the states yields


x

x · ∂tp(t,x) =

x

x ·
M
j=1


αj(x− µj)p(t,x− µj)− αj(x)p(t,x)


(2.87)

=
M
j=1

µj

x

αj(x)p(t,x)

=
M
j=1

µjE[αj(x)]

where we have interchanged the sums and used a re-indexing of the term
x

xαj(x− µj)p(t,x− µj) =

x

(x+ µj)αj(x)p(t,x)

because of (2.59). Inserting the definition of the expectation on the left side of (2.87), we
get

d

dt
E[X(t)] =

M
j=1

µjE[αj(X(t))]. (2.88)

However, this is a closed differential equation only if we approximate the expectation of
the propensity by the propensity of the expectation, i.e.,

E[αj(X(t))] =

x

αj(x)p(t,x) ≈ αj


x

xp(t,x)

= αj(E[X(t)]). (2.89)

Under this condition we finally get

d

dt
E[X(t)] ≈

M
j=1

µjαj(E[X(t)]).

In case the propensities αj are linear, in other words the corresponding reaction channels
Rj (j = 1, . . . ,M ) are of order zero or one, the approximation made in (2.89) is exact.
For higher-order reaction channels however, the propensities are no longer linear, and
we can expect the approximation to have a small error only close to the thermodynamic
limit, while for the case when the species have low-copy numbers the error could be
significant.

Therefore, for reaction networks with low-copy numbers or complex propensities, the
CME is clearly the tool of choice for numerical treatment. We must remark, however, that
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2. Stochastic reaction kinetics

when the reaction network can be partitioned into two sets where some of the species
have adequate copy numbers that allow their treatment by a deterministic model, while
the others are present in small numbers and hence are treated stochastically, the compu-
tational complexity can be significantly reduced. Such hybrid models are increasingly
popular, and in Chapter 6 we will discuss the advantages and also the pitfalls of using
them.

2.7. Chemical Langevin equation

In the previous section, we have established a link between the CME and the much
coarser RRE, and shown that the latter is a valid approximation only under certain con-
ditions. Furthermore, a simple examination of the RRE (2.82) reveals that the macroscopic
model is not equipped with the means of capturing stochastic effects which can be pro-
nounced for models on the cellular level, as illustrated in Chapter 1. We now introduce
another formulation, the Chemical Langevin equation (CLE), a stochastic differential equa-
tion that lies between the CME and the RRE. Making sense of the CLE can be done either
from the perspective of the macroscopic model by considering this equation as an exten-
sion of the reaction rate equations via the addition of a term to deal with the inherent
stochasticity, or from the perspective of the CME, whereby we trade discreteness for an
easier numerical treatment.

However, solving the CLE is not the objective of this thesis, and the following dis-
cussion is aimed only at completing the overview of the main directions in simulating
biochemical reaction networks. More details can be found in [vK01, Chapter IX] or the
excellent review [Hig11].

The derivation of the CLE presented here, is again due to Gillespie and has the same
microphysical basis as the CME. However, two rather strong dynamical conditions must
be satisfied in order for the formulation to be valid. The following arguments closely
follow Gillespie’s original paper [Gil00].

As seen in the previous sections 2.3 and 2.4, the SSA algorithm is an exact reproduction
of the Markov jump process. However, this means that every reaction event has to be
considered separately, which is highly inefficient. If we assume now that in a certain time
interval [t, t + τ) we have had more than one firing of some of the reaction channels Rj ,
we could just leap ahead and update the state of the process in one stroke. The problem
with this approach however, is the propensity functions (2.3) which lie at the core of the
derivation of CME and implicitly of the SSA algorithm, depend on the state of the system
X(t) = x at the current time t. Therefore, in order for such a simplification to work, we
must be able to assume that the propensities αj(x) can be “frozen” for the specified time
interval [t, t + τ). The number of times a reaction channel Rj fires can then be counted
with an independent Poisson random variable, denoted by Pj(αj(x), τ). Thus, we arrive
at the tau-leaping method [Gil01], one of the most notable improvements on the original
SSA algorithm, which is given as

X(t+ τ) = x+

M
j=1

µjPj(αj(x), τ). (2.90)
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2.7. Chemical Langevin equation

As stressed above, this approximation of the SSA is only valid if the propensities do not
change too much in the time interval [t, t+τ), so we require that τ should be small enough
for this condition to hold. On the other hand, if the time interval is too small and only
relatively few firings of the reaction channels occur, then we would be better served by
using the original version of SSA [Gil76]. Therefore, a second dynamical condition is that
τ should be large enough, so an appreciable number of reaction channel firings occur in
[t, t+τ), justifying the incurred error by a big increase in the computational efficiency. It is
well known that the mean and variance of a Poisson random variable Pj(αj(x), τ) are both
equal to αj(x)τ . Thus, in order to have a sufficient number of reaction channel Rj firings
in [t, t + τ) we must choose τ such that we have αj(x)τ ≫ 1 for all j ∈ {1, . . . ,M}. A
consequence of choosing τ in such a manner would be that we can approximate a Poisson
random variable with large variance and mean by a normal random variable with the
same variance and mean N (αj(x)τ, αj(x)τ). Using now that a normal random variable
with mean m and variance σ2 can be replaced by

N (m,σ2) = m+ σN (0, 1),

we can reformulate (2.90) as

y(t+ τ) = y(t) + τ

M
j=1

µjαj(y(t)) +
√
τ

M
j=1

µj

αj(y(t))Nj(0, 1), (2.91)

where we have marked the departure from the discrete representation of the state of the
system by replacing the integer-valued X(t) random variable with the continuous ran-
dom variable y(t) and denoted by Nj(0, 1) independent normal random variables. Equa-
tion (2.91) is the Euler-Maruyama method for stochastic differential equations (SDEs)
[KP92], and hence for τ = dt and dt→ 0 it discretizes the SDE

dy(t) =
M
j=1

µjαj(y(t))dt+
M
j=1

µj

αj(y(t))dWj(t) (2.92)

where Wj(t) are independent Wiener processes. The SDE given in (2.92) is the Chemical
Langevin equation, and its solution is a continuous-time Markov process with a continuous
state space. The derivation of the CLE implies that when we are able to approximate the
number of firings of a reaction channels Rj (j = 1, . . . ,M ) via Poisson random variables,
and moreover, approximate these by normal random variables, we have that the Markov
jump process underlying the CME (2.63) can be approximated by a continuous diffusion
process described by the CLE (2.92). We also remark that by ignoring the second term
on the right hand side of (2.92) we recover the macroscopic formulation (2.82). As is the
case with the RRE however, the CLE is only valid under the conditions mentioned above,
namely that τ is both small enough so the propensities do not change too much, and we
have a sufficient number of firings given as αj(x)τ ≫ 1, ∀j = 1, . . . ,M , which are satis-
fied simultaneously only when we have large copy numbers for all the species. In [Gil00],
Gillespie summarized these two conditions as requiring τ to have a “macroscopical in-
finitesimal” character, i.e., the reaction network must posses a domain of macroscopically
infinitesimal time intervals where both dynamical conditions are fulfilled.

Note that the CLE (2.91) describes a continuous Markov process, and numerical simu-
lations with the SDE form (2.92) lead to independent realizations of this process, which
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2. Stochastic reaction kinetics

is comparable to the way SSA simulations provide trajectories of the discrete Markov
jump process underlying the CME. As previously discussed, the solution of the CME
(2.16) gives the time evolution of the probability distribution P(x, t|x0, t0) of the discrete
random variable X(t) (2.2). Taking the same viewpoint and using continuous Markov
process theory, yields that the evolution of the probability distribution P(y, t|y0, t0) of
the continuous random variable y(t) from (2.91) and (2.92) is the solution of the Chemical
Fokker-Planck equation (CFPE) (cf. [Gil07]),

∂

∂t
P(y, t|y0, t0) = −

M
j=1

∇

αj(y)P(y, t|y0, t0)


µj (2.93)

+
1

2

M
j=1

(µj)T∇2

αj(y)P(y, t|y0, t0)


µj .

The CFPE (2.93) is a partial differential equation (PDE), which can be viewed as the
master equation companion to the CLE, and for a derivation the reader is referred to
[Gil00, Gil96].

2.8. A computational comparison

The overall aim of this chapter was to introduce the CME formally and discuss the prop-
erties of the truncated CME operator (2.67) which are relevant in the context of this thesis,
specifically, the well-posedness on finite state spaces and the fact that under certain con-
ditions, an unique stationary distribution exists. Additionally, the frameworks of Markov
jump process, RRE and CLE have been reviewed in order to establish the links between
them and the CME. A graphical overview of some of the connections between the frame-
works (modified from [Gil07]) is given in Figure 2.1.

Figure 2.1.: Connections between frameworks of chemical kinetics. Red and blue strips divide
the frameworks according to the type of solution obtained. Boxes in green indicate frameworks
that provide exact results (CME and SSA), while yellow boxes denote frameworks which deliver
approximate results (CLE, CFPE and RRE). The dashed red arrows show approximate inference
routes between the frameworks, while solid black arrows indicate that frameworks operate with
the same type of processes. We note that not all possible links between the frameworks are dis-
played (figure modified from [Gil07]).
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2.8. A computational comparison

We conclude the chapter with a computational investigation that illustrates how the
different models compare with one another. As a model problem, we use the genetic tog-
gle switch proposed in [GCC00], which was already featured in Figure 1.2 from Chapter
1. This synthetic bistable gene-regulatory network clearly exhibits stochastic behavior,
and for certain parameter sets, the truncated state space is small enough to obtain a ref-
erence solution. Therefore, the model of the toggle switch will be used throughout this
thesis to illustrate the performance of the numerical methods constructed. The toggle
switch consists of a pair of mutually repressing genes, where the two competing species
S1 and S2 each inhibits the transcription of its opponent. The reaction channels are

R1 : ⋆ −→ S1 α1 = c11/(c12 + x22) µ1 = (1, 0)T

R2 : ⋆ −→ S2 α2 = c21/(c22 + x21) µ2 = (0, 1)T

R3 : S1 −→ ⋆ α3 = c3x1 µ3 = (−1, 0)T

R4 : S2 −→ ⋆ α4 = c4x2 µ4 = (0,−1)T

(2.94)

and for the examples presented in this section we have used the parameters (modified
from [Eng06])

c11 = c21 = 103, c12 = c22 = 5.4 · 103 and c3 = c4 = 1.0005 · 10−3. (2.95)

If copies of S2 are present in abundance, then the propensity function for reaction R1

almost vanishes, which inhibits the transcription of new copies of S1. However, over
sufficiently long time intervals, stochastic fluctuations can cause an increase in the copy-
numbers of S1, meaning that the production of S2 will be inhibited instead, and leading
to a switch in the roles of S1 and S2. Reactions R3 and R4 model the decay of the two
competing species.

In the original paper [GCC00] where the toggle switch was proposed, the bistability of
this simple two-gene regulatory network was investigated using the following determin-
istic model with y1(t) and y2(t) denoting the levels of S1 and S2 at time t.

dy1
dt

=
c11

c12 + y22
− c3y1 (2.96)

dy2
dt

=
c21

c22 + y21
− c4y2

Plotting the phase portrait of the ODE system (2.96) together with the null-clines
(dy1/dt = 0 and dy2/dt = 0) reveals the that the system posses two stable steady states at
coordinates (σ11, σ12) ≈ (149, 36) and (σ21, σ22) ≈ (36, 149) as shown in Figure 2.2.

Although the deterministic model (2.96) can be used to reveal the bistability of the re-
action network, it is unable to depict the dynamic switching between the steady states.
This can only be done by using a stochastic description and the results are illustrated in
Figure 2.3. Using the SSA algorithm and the Euler-Maruyama method we can obtain a
trajectory of the Markov jump process underlying the CME as shown in Figure 2.3a, and
a continuous path from the CLE as seen in Figure 2.3b, respectively. As these are indepen-
dent realizations, they can not be compared directly, but we remark that both approaches
capture the stochastic nature of the system, as apposed to the RRE solutions. Superfi-
cially, the CLE appears to deliver a comparable result to the Markov jump process, but
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Figure 2.2.: Phase portrait of the deterministic reaction rate equations (2.96). Each black line
represents a different trajectory of the deterministic process y(t) in the y1y2-plane. The initial
conditions are represented by small black dots and the two steady states are depicted by blue
circles. The null-clines (dy1/dt = 0 and dy2/dt = 0) are depicted by red lines. Depending on the
initial conditions, the deterministic process runs into one of the steady states.

examining a close up of the two independent realizations in Figure 2.3c, it is immediately
clear that CME is the only one that respects the discrete character of biochemical reaction
kinetics. Furthermore, if the molecule counts of the two genes are low, the assumptions
on which the CLE rests are no longer valid, which means that the continuous stochastic
model breaks down because the stochastic terms in (2.92) may involve negative square
roots. This happens also in the case of the toggle switch model presented here, and re-
quires the modification of the equation by taking the square roots of the absolute values
in order to obtain a result (see e.g. [Hig11]).

Consequently, solving the CME represents the best available option when dealing with
gene-regulatory networks or other systems where the RRE and CLE prove to be inade-
quate tools. Unfortunately, the CME is affected by the curse of dimensionality and even on
a truncated state space it represents a massive ODE system that is too large to be tack-
led by standard methods. One possibility to approximate the solution of the CME is to
generate independent realizations of the underlying Markov jump process via the SSA
algorithm detailed in Section 2.3. In Figure 2.4a, such an approximation obtained by av-
eraging 5 · 105 SSA runs is presented, while in Figure 2.4b the CME was solved directly.
The SSA simulations were performed using the original version of the algorithm [Gil76]
and illustrate the difficulties of estimating the probability distribution from independent
realizations. Visually, it is evident that the probability computed using the CME solver is
much smoother then the solution based on the SSA runs. Naturally, computing more re-
alizations would improve the approximation, but this is computationally expensive. We
remark that because of the discrete nature of the solution of the CME, the contour plots
used in Figure 2.4 are somewhat misleading, since the probability distributions shown
are only defined at discrete points x ∈ Nd0. However, as such plots deliver a clear visual-
ization of the solution profile, they will be used throughout this thesis.
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Figure 2.3.: Comparison between the discrete (SSA) and continuous (CLE) stochastic models. Plot
2.3a shows a trajectory of the Markov jump process for one of the species (blue line), obtained
using the SSA algorithm. After spending some time in the vicinity of one of the steady states,
the system switches to the other steady state. The dotted black lines represent two solutions of
the deterministic process with different initial conditions. Plot 2.3b depicts a path of the CLE (red
line) with the dotted black lines again representing two solutions of the RRE. Figure 2.3c shows a
close up of the two independent realizations taken from a time interval when both reside in the
same attraction basin, with the approximate interval being marked by gray rectangles in 2.3a and
2.3b.
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Figure 2.4.: Stationary probability distribution for the toggle switch model (2.94) with parameters
(2.95). Left panel (2.4a): approximation of the probability distribution at t = 2 · 106 (when the
system has reached stationary state) obtained using 5 · 105 SSA trajectories. Right panel (2.4b):
results obtained by approximating the solution of the stationary CME using a dedicated solver.
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2. Stochastic reaction kinetics

Besides the SSA approach, another option is to attempt to solve the truncated CME
directly and some of the existing methods were mentioned in Chapter 1. The method
that lies at the center of this thesis is based on wavelet compression, and we proceed with
a short presentation of wavelet theory in order to set the stage for the construction of the
wavelet-based numerical methods for the CME.
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CHAPTER

THREE

WAVELET BASES

In the preceeding Chapters 1 and 2 we have introduced the stochastic modeling of chem-
ical reaction kinetics and presented arguments that support a computational approach
based on approximating the CME (2.67) directly. Moreover, we have established that the
numerical treatment of the CME takes place by way of necessity on a high-dimensional
state space Ωξ, defined by (2.65). Although finite, the truncated state space Ωξ is still
huge, therefore special techniques are required to reduce the size of the CME problem
to computationally manageable levels and an appealing idea is to use wavelet bases for
this task. Accordingly, we concern ourselves in the present chapter with a brief overview
of the properties and construction methods of some wavelet bases that can be employed
for the numerical treatment of the CME on the truncated state space Ωξ. In doing so, we
will forego the presentation of the more complex definitions from wavelet theory, and re-
strict the exposition to only a few well-known results that are needed to understand how
our wavelet-based algorithms work. The finer points of wavelet theory and analysis, as
well as the definitions presented in this chapter can be found in the monographs [Dau92,
Coh03, Mal09, LMR98] or in the seminal articles [CDF92, Dah97, CDD01, DKU97].

The outline of the chapter is as follows. In Section 3.1 we present some of the ba-
sic properties common to all the wavelet constructions used in this thesis. Section 3.2
treats the concept of multiresolution analysis and presents the specific case of orthonormal
wavelet bases. In Section 3.3 the multiresolution analysis concept is generalized to de-
scribe both the construction of biorthogonal wavelets on the real line and on bounded
intervals. Finally, Section 3.4 deals with the use of wavelet bases on the high-dimensional
state space Ωξ.

3.1. Basic properties

Let us begin with some basic properties shared by all wavelet bases presented in this
chapter. In the following, we shall consider a separable Hilbert space H with inner prod-
uct ⟨·, ·⟩H and induced norm || · ||H. We remark that in the course of the exposition, H will
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3. Wavelet Bases

usually be taken to be the space L2(Ω), with the domain Ω being subject to change. As a
starting point we first consider Ω to be R.

Translation and dilation. Traditionally, the elements of a wavelet basis for L2(R) have
been constructed by applying translations and dilations onto two functions called scaling
function ϕ(m) ∈ L2(R), and mother wavelet ψ(m) ∈ L2(R), respectively. The elements of the
wavelet basis have then the following form,

ϕ
(m)
j0,k

(x) = 2j0/2ϕ(m)(2j0x− k), k ∈ Z (3.1)

ψ
(m)
j,k (x) = 2j/2ψ(m)(2jx− k), j = j0, . . . , jmax − 1. (3.2)

In the above equations (3.1) and (3.2), j refers to the resolution level or scale on which the
basis element resides, and for all practical purposes ranges between a minimal resolution
or “coarsest” scale j0 and a “finest” scale denoted jmax, while k ∈ Z is a translation
parameter that reflects the location of the function on the domain Ω. For wavelets on
the real line, all basis elements have the form (3.1)-(3.2), but as we shall see later, for
wavelets on bounded domains this is no longer the case. Nevertheless, we remark that
the translation and dilation property of the scaling and mother wavelet functions retains its
usefulness also for wavelet bases on bounded domains, as most elements of such bases
can still be constructed in this way. The exception is represented by the elements close to
the boundaries of the domain. Next, using the notation introduced in (3.1)-(3.2) for the
basis elements, we can define an (orthonormal) wavelet basis as the set of functions

Ψ =

ϕ
(m)
j0,k

| k ∈ Z

∪

ψ
(m)
j,k | k ∈ Z, j = j0, . . . , jmax − 1


⊂ L2(R) (3.3)

with j0, jmax ∈ N, and m ∈ N \ {0} denoting the order of the wavelet basis, i.e., all
polynomials with a degree less than m can be represented exactly using this basis.

Local support. This is an important property of wavelet bases, especially in view of nu-
merical realizations, which states that the support of the scaling function and the mother
wavelet lies on a compact interval. This means that all basis elements have compact sup-
port that scales on a dyadic grid, i.e., diam(supp(ψ

(m)
j,k )) ∼ 2−j and diam(supp(ϕ

(m)
j,k )) ∼

2−j , respectively.

Vanishing moments. We have already mentioned this property, although not by name,
having included the parameter m in the definition of the basis elements given in
(3.1)-(3.2). For the mother wavelet ψ(m)(x) of order m, having vanishing moments means
that 

R
xnψ(m)(x)dx = 0

for all n = 0, . . . ,m−1. This is equivalent to saying that all polynomials with a degree less
thanm are exactly represented in the wavelet basis Ψ, by using the scaling functions ϕ(m)

j0,k
.

The mother wavelet ψ̃(m̃)(x) of the dual basis Ψ̃ has the same property, but for an order m̃,
possibly different from m. The dual basis Ψ̃ is defined as the set of dual functions

Ψ̃ =

ϕ̃
(m̃)
j0,k

| k ∈ Z

∪

ψ̃
(m̃)
j,k | k ∈ Z, j = j0, . . . , jmax − 1


⊂ L2(R),

and forms a biorthogonal system with the basis Ψ (see (3.6)).
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3.1. Basic properties

Wavelet Riesz bases. Before defining a Riesz basis for the Hilbert space H, we general-
ize the concept of a wavelet basis as introduced in (3.3), and consider a countable fam-
ily Ψ = {ψλ}λ∈I , with λ denoting a multi-index and I an ordered index set. For any
such countable index set I, let ℓ2(I) be the space of sequences c = {cλ}λ∈I such that
||c||2ℓ2(I) :=


λ∈I |cλ|2 is finite. If the span of the family Ψ is dense in H, and there exist

two constants C1, C2 ≥ 0 such that the norm equivalence

C1||c||2ℓ2(I) ≤


λ

cλψλ

2
H
≤ C2||c||2ℓ2(I) (3.4)

holds for all sequences c = {cλ}λ∈I ∈ ℓ2(I), then Ψ is a Riesz basis. We note that the
constants C1, C2 are called Riesz constants and for the special case of an orthonormal
basis we have C1 = C2 = 1. Moreover, sometimes we shall use the shorthand notation

||c||ℓ2(I) ∼


λ

cλψλ


H

for (3.4). The significance of the Riesz basis property is the following: if Ψ is a Riesz basis
for H, then any f ∈ H has a unique representation as a linear combination of functions
from the family Ψ, i.e.,

f =

λ∈I

cλψλ (3.5)

with the coefficients in the expansion (3.5) being bounded on H. Furthermore, for a Riesz
basis Ψ there exists a unique family of dual functions Ψ̃ = {ψ̃λ}λ∈I , also a Riesz basis with
constants C−1

1 , C−1
2 , which is biorthogonal to Ψ, i.e., satisfies

Ψ, Ψ̃

H
= I, (3.6)

and moreover, we have cλ =

f , ψ̃λ


. Consequently, we have that (3.5) can be reformu-

lated as
f =


λ∈I


f , ψ̃λ


ψλ =


λ∈I


f , ψλ


ψ̃λ. (3.7)

Note that in (3.6) we have used the short-hand notation
Ψ, Ψ̃


:=


ψλi , ψ̃λj


ψλi

∈Ψ,ψ̃λj
∈Ψ̃
,

ψλi , ψ̃λj


= δi,j ,

and if we have biorthogonality for the dual system Ψ and Ψ̃, then this can be used to
show that Ψ is a Riesz basis (see [Coh03, Theorem 2.6.1]). For the orthonormal case we
have of course ψλ = ψ̃λ. The relevance of the Riesz basis property is that it provides a
tight connection from the function norm to the discrete coefficient norm ℓ2, meaning that
small changes in the coefficients trigger small changes in the function and vice-versa (cf.
[Dah97]), which is beneficial in terms of the stability of wavelet representations. Using
the Riesz basis property, we can also distinguish between stability, uniform stability and
stability over all levels, the last being equivalent to the Riesz basis property for Ψ. A
family of vectors is stable if it has the Riesz basis property for its closed linear span, while
a family {ψj,k}j,k is uniformly stable if each set {ψj,k}k is stable with constants that are
independent of j.
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At this point, it might be useful to place these properties into context. Given a function
f ∈ H representing an object of interest and a basis Ψ, the hope is that most features of f
can be captured by using as few of the coefficients c = {cλ}λ∈I from the expansion (3.5)
as possible. As the elements of the wavelet basis Ψ are by construction locally supported,
one advantage of using the wavelet representation (3.5) is that such a basis is better at re-
flecting the local behavior of an arbitrary function. Furthermore, a consequence of having
vanishing moments is that the inner products between basis elements ψλ and sufficiently
smooth functions decay exponentially fast when the scale j tends to infinity (for some
estimates in terms of function smoothness see [Coh03, Chapter 3]). Thus, good spatial
localization and vanishing moments combine to allow a high-accuracy representation of a
function using only a reduced set of coefficients, by simply ignoring all coefficients that
are smaller than a prescribed tolerance. Moreover, due to the Riesz basis property we
have that the expansion in the chosen basis is stable. Last but not least, via the translation
and dilation property, wavelet bases can be used to perform hierarchical decompositions
by representing functions in terms of contributions on different scales. This leads directly
to adaptivity in the sense that wavelet-based numerical approaches can concentrate the
computational effort where it is mostly needed.

3.2. Multiresolution analysis

We proceed now to introduce an essential aspect of wavelet theory that clarifies the pre-
vious statement about hierarchical decomposition, namely the concept of multiresolution
analysis. We adapt the following definition from [Mal09, Chapter 7], and remark that we
treat first the orthonormal case, as our emphasis is on the construction of wavelet bases
belonging to the Daubechies family [Dau92].

Definition 3.1. A multiresolution analysis (MRA) is a sequence {Sj}j∈Z of closed subspaces of
L2(R) with the following properties:

(i) The spaces are nested and dense in L2(R), i.e,

Sj ⊂ Sj+1,∀j ∈ Z and closL2(R)

 
j∈Z

Sj


= L2(R)

(ii) ∀j ∈ Z, f(x) ∈ Sj ⇔ f(2x) ∈ Sj+1

(iii) There is a scaling function ϕ ∈ S0 such that {ϕ(x− k)}k∈Z is a Riesz basis of S0.

(iv) The space Sj is translation invariant, i.e.,

∀j ∈ Z, f(x) ∈ Sj ⇔ f(x− 2jk) ∈ Sj .

(v) The spaces {Sj}j∈Z satisfy 
j∈Z

Sj = {0}.
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3.2. Multiresolution analysis

The nestedness property (i) of the sequence {Sj}j∈Z describes how the spaces Sj pro-
vide increasingly better approximations to a function f and the dense union ensures that
pushing the resolution level j → ∞ means that we can approximate arbitrarily well any
function from L2(R). The approximation of a function at a specific resolution is formally
defined as an orthogonal projection on the space Sj . If we let Pj : L2(R) → Sj denote
such an orthogonal projector onto Sj , then dense union yields

lim
j→+∞

||f − Pjf ||L2(R) = 0.

Conversely, property (v) implies that if we let the resolution level go to 0, then we loose
all the details from the approximation of f in Sj , i.e.,

lim
j→−∞

||Pjf ||L2(R) = 0.

Property (ii) relates the spaces Sj and Sj+1 by stating that a function moves from Sj to
Sj+1 when rescaled on a dyadic grid. Further, for all j ∈ Z, the spaces Sj are generated
by the scaling function ϕ(m) ∈ L2(R) via translations and dilations, such that

Φj = {ϕ(m)
j,k := 2j/2ϕ(m)(2jx− k) | k ∈ Z} (3.8)

is a Riesz basis for Sj = span(Φj).

An important consequence of the nestedness of the spaces Sj is that the scaling function
is refinable, which means that it satisfies

ϕ(m)(x) =

k∈Z

hkϕ
(m)(2x− k), (3.9)

where the coefficients {hk}k∈Z are called masks or filter coefficients. The equation (3.9) is
the refinement equation of the scaling function ϕ(m) ∈ L2(R), and we remark that compact
support for the scaling function translates into finite coefficient filters. For the Daubechies
family of orthonormal wavelet bases we consider here, we have hk ̸= 0 for
k ∈ {0, . . . , 2m − 1}, with m denoting the order of the scaling function. There are no
formulas for computing the scaling functions if m > 1, but the values of ϕ(m) at any level
can be computed with the cascade algorithm, which starting from known values at certain
points, computes the desired values by iteratively applying the refinement equation (3.9).

By construction, the spaces Sj regroup all possible approximations of a function
f ∈ L2(R) at the corresponding resolutions 2−j . Assuming that we have an approxi-
mation at an arbitrary scale j, and we want to switch to an approximation at a finer scale
j + 1, it is advantageous to define a complement space Wj that describes the local differ-
ences between the two approximations in the nested spaces Sj and Sj+1. We have then
the decomposition

Sj+1 = Sj ⊕Wj , (3.10)

which simply means that for any f ∈ Sj+1, there exists an unique u ∈ Sj and v ∈ Wj

such that f = u + v. Basically, the function f is split into a “coarse” part u representing
the average of f , and a “detail” part v. Next, using the mother wavelet ψ(m) we construct a
Riesz basis

Ψj := {ψ(m)
j,k := 2j/2ψ(m)(2jx− k) | k ∈ Z} (3.11)
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for Wj = span(Ψj).

Analogously to the scaling function, the mother wavelet ψ(m) ∈ L2(R) also satisfies a
refinement equation

ψ(m)(x) =

k∈Z

gkϕ
(m)(2x− k) (3.12)

with a different mask {gk}k∈Z. The compact support of wavelets is again equivalent
with the mask having finitely many non-zero elements. For the Daubechies orthonor-
mal wavelets we have gk = (−1)kh1−k ̸= 0, with k = {2− 2m, . . . , 1}.

Now, by applying the decomposition (3.10) recursively, we obtain a hierarchical de-
composition of any space Sj+1 as

Sj+1 = Sj ⊕Wj = Sj0 ⊕Wj0 ⊕Wj0+1 ⊕ · · · ⊕Wj ,

which means that any function f ∈ L2(R) has an expansion in a multi-scale basis,

Ψ = Φj0 ∪

j∈Z

Ψj . (3.13)

However, because numerical computations can only be performed on a bounded interval,
we assume that the support of any function f is finite. Consequently, we can replace j ∈ Z
in (3.13) with j ∈ {j0, . . . , jmax − 1} where jmax denotes the original resolution of the
function f . In doing so, equation (3.13) becomes a more compact version of (3.3). Using
now the orthogonal projectors Pj , it follows naturally that for every f ∈ Sjmax ⊂ L2(R),
we have a representation in terms of contributions on different scales,

f = Pjmaxf = Pj0f +

jmax−1
j=j0

(Pj+1 − Pj)f. (3.14)

The term

Pj0f =

k∈Z

c
(m)
j0,k

ϕ
(m)
j0,k

∈ Sj0 , (3.15)

approximates the function on the coarsest scale , whereas the terms

(Pj+1 − Pj)f =

k∈Z

d
(m)
j,k ψ

(m)
j,k ∈ Wj (3.16)

represent the detail information between successive spaces Sj and Sj+1. A graphical
representation of how multiresolution analysis works is given in Figure 3.1.

Using (3.15) and (3.16) in (3.14) we obtain that every f ∈ Sjmax ⊂ L2(R) has the repre-
sentation

f =

k∈Z

c
(m)
j0,k

ϕ
(m)
j0,k

+

jmax−1
j=j0


k∈Z

d
(m)
j,k ψ

(m)
j,k (3.17)

with the coefficients given as c(m)
j0,k

=

f , ϕ

(m)
j0,k


L2

and d
(m)
j,k =


f , ψ

(m)
j,k


L2

. The for-
mulas for the coefficients are derived from the definitions of the orthogonal projectors.
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Figure 3.1.: Multi-scale decomposition via orthogonal projections using an orthonormal wavelet
basis withm = 1 (Haar). The plots in the first row show successive approximations of the function
f in increasingly coarser spaces Sj , while in the second row the details from the complement
spaces Wj are shown.

However, there is no need to compute the inner products because the coefficients of the
wavelet expansion (3.17) can be efficiently obtained by exploiting the refinement equa-
tions (3.9) and (3.12) which give rise to a change of basis

k

c
(m)
j+1,kϕ

(m)
j+1,k =


k

c
(m)
j,k ϕ

(m)
j,k +


k

d
(m)
j,k ψ

(m)
j,k .

This mapping between the coefficients on different scales {cj+1,k}k →→ {cj,k}k ∪ {dj,k}k,
with

cj,k =

n

hncj+1,n, dj,k =

n

gncj+1,n,

is called a one-step wavelet transform and iterating this basic building block we obtain
the fast wavelet transform (FWT). Conversely, reconstructing a function from its wavelet co-
efficients can be accomplished by using the inverse mapping {cj,k}k∪{dj,k}k →→ {cj+1,k}k
to build the (fast) inverse wavelet transform (FIWT). We remark that both one-step wavelet
transforms between successive levels j and j + 1 perform 2j operations, so the entire
computational effort for the FWT and FIWT respectively, is

jmax

j=j0 2
j = O(N) where

N = 2jmax is the length of the original representation of the function f which we assumed
had finite support (cf. [Coh03]).

As their name implies, the elements of orthonormal wavelet bases satisfy a number of
orthogonality conditions. For all i, j ∈ {j0, . . . , jmax − 1} and k, l ∈ Z, we have

ϕ
(m)
j0,k

, ϕ
(m)
j0,l


L2

= δk,l,

ψ
(m)
j,k , ψ

(m)
i,l


L2

= δj,iδk,l,

ϕ
(m)
j0,k

, ψ
(m)
i,l


L2

= 0, (3.18)

with δk,l denoting the Kronecker symbol. As a parenthesis, we remark that although a
desirable property, the requirements to fulfill orthonormality by satisfying (3.18) are for
some types of wavelet constructions on bounded intervals out of reach, therefore these
constructions which will be discussed shortly satisfy only biorthogonality conditions as
given in (3.6).

The reason why the representation given in (3.17) is more compact than the one in the
canonical basis is because it exploits smoothness. If Pjmaxf is sufficiently smooth, the

55



3. Wavelet Bases

function is already well approximated by coefficients on the coarsest scales, so many of
the coefficients d(m)

j,k for large values of j corresponding to the detail information in the
terms (Pj+1 − Pj)f are close to zero and thus can be dropped without incurring a major
loss in accuracy for the approximation. A mathematically more rigorous estimate of how
fast the wavelet coefficients decay in regions where f is smooth is given for the special
case of the orthonormal wavelet basis with m = 1 in [Coh03, Remark 1.5.1] as

|dj,k| ≤ supx∈Ij,k |f
′(x)|2−3j/2. (3.19)

In (3.19), f is taken to be differentiable with continuous derivative, i.e., f ∈ C1(Ij,k) on the
support Ij,k = supp(ψj,k). Using this result, a characterization of wavelet compression in
terms of the smoothness of f can be given for the case m = 1 as

||f − Pjf ||L2 ≤ C2−j ||f ′(x)||L∞ (3.20)

(cf. [Coh03, Remark 1.5.2]). For the general case f ∈ Cn0 (R) with n ∈ {1, . . . ,m}, we have
that the projection error is bounded for all j ∈ {j0, . . . , jmax} by

||f − Pjf ||L2 ≤ C2−nj ||f (n)(x)||L2 . (3.21)

The estimate (3.21) depends on the smoothness of the function f , the truncation level j
and the order of the wavelet m, as it holds only for n ≤ m (cf. [JU10]). Estimates of the
type (3.21) are called direct or Jackson type estimates and they measure the compression
power of the nested sequences of spaces Sj when j → ∞. We also remark that similar es-
timates have been shown under weaker regularity assumptions (see [Coh03, Chapter 3]).
In practical terms, these estimates give assurances that even if a relatively large number
of coefficients are discarded, the resulting approximation is still reasonably accurate. This
fact is illustrated in Figure 3.2, where we test wavelet compression on a smooth function
f with finite support. We suppose that a wavelet representation of f which contains 1024
coefficients is available. The function is then reconstructed by using 1, 10 , 21 and 63 of
the largest coefficients in absolute value. Each of the four panels is divided in a left plot
showing the original function and its wavelet approximation and a right plot containing
a wavelet scalogram used to visualize the location and magnitude of the wavelet coeffi-
cients. The scalogram is made up of building blocks that represent the scaling coefficients
(level j0∗), and wavelet coefficients on level j0 through jmax − 1. Note that each wavelet
level has twice as many coefficients as the previous “coarser“ level and their magnitude is
color coded according to the adjacent color-bar. For this particular example, an orthonor-
mal Daubechies wavelet basis with m = 2 was used (see Section 3.2.1 for details).

3.2.1. Examples: orthonormal Daubechies wavelets

We present now some examples of orthonormal wavelet bases on L2(R) which will be
used in some of the numerical examples presented later in this thesis. From a historical
point of view, the first wavelet construction can be traced to the dissertation of Alfred
Haar [Haa10]. The Haar wavelet system uses as scaling function ϕ(m)(x) = χ[0,1)(x),
with χI denoting the characteristic function on the interval I . The oscillatory parts of a
function f are represented with the help of the Haar mother wavelet ψ(m)(x) = χ[0,1/2) −
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Figure 3.2.: Wavelet compression of a smooth function using different numbers of the largest
wavelet coefficients. The approximation uses the Daubechies db2 orthonormal wavelet basis. There
are a total of 1024 coefficients in the wavelet expansion of the original function.

χ[1/2,1). The corresponding finite filter coefficients appearing in the refinement equations
(3.9) and (3.12) are h = {1, 1} and g = {1,−1}, respectively. The average spaces Sj
spanned by the corresponding scaling functions Φj contain all piecewise constant func-
tions on the intervals 2−jk + [0, 2j), k ∈ Z and we remark that the order of the Haar
wavelet is m = 1. Because the Haar system is able to represent only piecewise constant
functions exactly, its approximation power is somewhat limited. However, the compres-
sion properties can be arbitrarily improved by selecting a wavelet basis with m > 1,
and the orthonormal wavelet bases we have defined in (3.3), are collectively known as
Daubechies wavelets since their discovery in 1992 by Ingrid Daubechies [Dau92]. How-
ever, for these wavelet bases, the scaling function and the mother wavelet have no ex-
plicit formula and the filter coefficients are found indirectly, see [Dau92] for details. For
the case m = 2, the scaling and mother wavelet functions are shown in Figure 3.3, and
we remark that the compact support of both functions is larger than the compact support
of the Haar system. For the db2 wavelet basis, the scaling function and mother wavelet
are zero outside of the interval [0, 3]. As a rule, increasing the order m of the wavelet,
also increases the compact support and the number of non-zero coefficients in the filter
masks. The filter coefficients for db2 are

h0 =
1 +

√
3

4
√
2
, h1 =

3 +
√
3

4
√
2
, h2 =

3−
√
3

4
√
2
, h3 =

1−
√
3

4
√
2

and gn = (−1)nh1−n.

We remark that the Daubechies wavelet family is widely used, and the masks for the
cases in which m > 2 can be looked up in the literature (see [Dau92, Mal09]).

The orthonormal Daubechies wavelet bases family described by (3.3) can be used suc-
cessfully to solve the CME numerically, and examples in this sense will be presented in
the next chapter. However, these wavelet bases have been defined on R, and for numer-
ical computation we need to represent functions on bounded intervals. There are two

57



3. Wavelet Bases

0 1 2 3
−0.5

0

0.5

1

1.5

(a)
0 1 2 3

−1

0

1

2

(b)

Figure 3.3.: Scaling function (3.3a) and mother wavelet (3.3b) of the Daubechies db2 wavelet (m = 2)

ways to achieve this outcome. Either the target function is extended to R by periodic con-
tinuation and thus the wavelet bases described above can be employed directly, or special
constructions that produce wavelet bases already adapted to the interval are used. Con-
structing compactly supported orthonormal wavelet bases on the interval is possible, and
such a construction is detailed for example in [CDV93]. Another option is to renounce or-
thonormality and use biorthogonal wavelet bases. As some of the algorithms presented
in Chapter 5 will use biorthogonal wavelets on the interval, we proceed to extend the
concept of multiresolution analysis to the biorthogonal case.

3.3. Biorthogonal multiresolution analysis

As seen in the previous section, the construction of wavelet bases for a Hilbert space H
uses the concept of multiresolution analysis. The orthonormal wavelet bases introduced
so far have been defined for the space L2(R), and a similar viewpoint can also be taken
with respect to the biorthogonal multiresolution analysis. Indeed, this was also the set-
ting used in the original construction of biorthogonal wavelets by Cohen, Daubechies
and Feauveau in [CDF92]. However, our purpose for the introduction of biorthogonal
wavelets is to construct bases on bounded domains and such a setting clearly precludes
the use of the techniques based on translation invariance that are employed on R. There-
fore, we adopt a presentation style also used in e.g. [Dah97, DKU97], that generalizes the
multiresolution concept to the task of building wavelets on bounded domains Ω ⊆ R.

Despite the new setting, we remark that most of the basic principles already reviewed
can still be employed. Analogously to the Definition 3.1, the starting point for a biorthog-
onal multiresolution analysis is to consider two sequences of nested subspaces {Sj}j∈Z,
{S̃j}j∈Z dense in L2(Ω),

Sj ⊂ Sj+1, ∀j ∈ Z and closL2(Ω)

 
j∈Z

Sj


= L2(Ω) (3.22)

S̃j ⊂ S̃j+1,∀j ∈ Z and closL2(Ω)

 
j∈Z

S̃j


= L2(Ω). (3.23)

Then, the spaces in (3.22) are generated by the bases Φj := {ϕ(m)
j,k , k ∈ ∆j} such that

we have Sj = span(Φj) and likewise for the spaces in (3.23), we have dual bases Φ̃j =

{ϕ̃(m̃)
j,k , k ∈ ∆j} such that S̃j = span(Φ̃j). We remark that ∆j ⊆ Z denotes the index set of

58



3.3. Biorthogonal multiresolution analysis

the basis elements on level j and for the case Ω = R, ∆j will be an infinite set. The ele-
ments of the bases Φj and Φ̃j are called primal scaling functions, and dual scaling functions
respectively, and for the case Ω = R, are all generated using dilations and translations of
a scaling function ϕ(m) ∈ L2(Ω) and a dual scaling function ϕ̃(m̃) ∈ L2(Ω), both with com-
pact support and approximation order m for the primal basis and m̃ for the dual basis,
respectively. Finally, the sequences {Sj}j∈Z, {S̃j}j∈Z form a biorthogonal multiresolution
of L2(Ω) if the condition

ϕ
(m)
j,k , ϕ̃

(m̃)
j,l


= δk,l, ∀ϕ(m)

j,k ∈ Sj , ∀ϕ̃(m̃)
j,k ∈ S̃j (3.24)

holds. For the case ∆j = Z, we have via biorthogonality (3.24) and compact support, that
the bases Φj are uniformly stable, i.e.,

||c||ℓ2(∆j) ∼ ||

k∈∆j

cj,kϕj,k||L2(Ω), ∀c ∈ l2(∆j),

with a similar relation being satisfied for the dual bases Φ̃j (cf. [Dah97, Remark 5]). For
bounded domains Ω however, the index sets ∆j are finite and furthermore the bases Φj
and Φ̃j are no longer composed only of the translates and dilates of single functions. As
a consequence, the uniform stability requires additional conditions (cf. [Dah97, Remark
7]).

Further, the nestedness of Sj ⊂ Sj+1 implies that the functions ϕj,k are refineable and
filter masks exist such that, viewing the set Φj as a column vector that contains the func-
tions ϕj,k, we have

Φj =MT
j,0Φj+1, j ≥ j0. (3.25)

Note that equation (3.25) is just a more compact notation of the refinement property from
(3.9), and Mj,0 ∈ R|∆j+1|×|∆j | is a refinement matrix with its k-th column containing the
expansion coefficients {hk}k∈∆j

of ϕj,k with respect to functions on the next finer scale
j+1. Because of compact support we have that filter masks have finitely many entries that
are non-zero, and consequently the matrix Mj,0 is sparse. For the case in which ∆j = Z,
and we operate in the translation invariant setting, the matrix Mj,0 is bi-infinite, has a
banded structure, and its size is independent of the level j. For wavelet constructions on
bounded domains, the structure of the refinement matrices Mj,0 is more complicated. In
such cases the refinement matrices feature two non-standard edge blocksML, MR, which
are independent of the refinement level, and away from the edges the matrix is again
banded. The block structure of the refinement matrix is shown in Figure 3.4. The middle

ML

MR

AjMj,0 =

Figure 3.4.: Block structure of refinement matrix Mj,0

block Aj is a circular matrix that depends on the level j. The size of Mj,0 depends now
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on the refinement level j, but the matrices are still sparse and the number on non-zero
elements is uniformly bounded on j. In Figure (3.5a) we visualize the sparsity pattern for
the particular case of the construction of biorthogonal wavelets on [0, 1] from [Pri09].
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Figure 3.5.: Sparsity pattern of the scaling and wavelet refinement matrices Mj,0,Mj,1, M̃j,0, M̃j,1

for the interval wavelet basis from [Pri09] with m = 3, m̃ = 5 and j = 5. The refinement matrices
for the scaling functions are colored blue, while the refinement matrices for wavelets use the red
color.

Obviously, for the dual basis Φ̃j with coefficient filter {h̃k}k∈∆j
we can define a refine-

ment matrix M̃j,0 ∈ R|∆j+1|×|∆j | such that

Φ̃j = M̃T
j,0Φ̃j+1, j ≥ j0. (3.26)

From the biorthogonality condition (3.24) satisfied by the pair of bases Φj and Φ̃j , we
have that the two refinement matrices Mj,0 and M̃j,0 satisfy MT

j,0M̃j,0 = I .

After constructing the biorthogonal bases Φj and Φ̃j we are ready to introduce the next
ingredient of multiscale decompositions, namely a pair of dual wavelet bases. This is
accomplished by defining two complement spaces Wj and W̃j of Sj and S̃j , such that we
have the decompositions

Sj+1 = Sj ⊕Wj , S̃j+1 = S̃j ⊕ W̃j , j ≥ j0. (3.27)

Additionally, the spaces Wj and W̃j must satisfy the following orthogonality conditions

W̃j ⊥ Sj , Wj ⊥ S̃j , j ≥ j0 (3.28)

where by ⊥ we denote orthogonality with respect to the L2(Ω) norm. From (3.27) and
(3.28) we get that the two complement spaces Wj and W̃j are uniquely determined and
constructing the biorthogonal wavelets reduces to finding the bases

Ψj = {ψj,k|k ∈ ∇j}, Ψ̃j = {ψ̃j,k|k ∈ ∇j},
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3.3. Biorthogonal multiresolution analysis

with ∇j = ∆j+1 \ ∆j an appropriate index set. Ψj and Ψ̃j must be Riesz basis for
Wj = span(Ψj) and W̃j = span(Ψ̃j), respectively. Additionally, they must fulfill the
biorthogonality condition 

Ψj , Ψ̃j


= I. (3.29)

The complete biorthogonal bases Ψ and Ψ̃ for the space L2(Ω) are then obtained in the
usual manner, by applying the space decompositions (3.27) recursively, which leads to
the collections

Ψ = {ψλ | λ ∈ I} = Φj0 ∪
∞
j=j0

Ψj and Ψ̃ = {ψ̃λ | λ ∈ I} = Φ̃j0 ∪
∞
j=j0

Ψ̃j ,

where λ = (j, k, l) is a multi-index the aggregates the relevant information, i.e., level,
location and type of basis element (0 for scaling functions on the coarsest level, and 1 for
wavelets on levels j ≥ j0). By I we have denoted the corresponding index set, defined as
I = j0 ×∆j0 × {0} ∪

∞
j=j0

j ×∇j × {1}.

It has been shown in [Dah97] that if the primal and dual scaling bases Φj and Φ̃j have
certain approximation properties, i.e., they allow the reproduction of polynomials of or-
ders m and m̃, respectively and furthermore, biorthogonality, stability and compact sup-
port are also satisfied, then the bases Ψ and Ψ̃ are Riesz basis for the space L2(Ω).

3.3.1. Wavelet bases on the interval

Previously we have glossed over the issue of how exactly the wavelet bases Ψj and Ψ̃j are
to be computed on the interval. For the construction of biorthogonal wavelet basis on R,
Fourier based techniques are available (see [CDF92]). However, in case of bounded do-
mains, this strategy can no longer be used. Most of the works related to the construction
of wavelets on the interval [0, 1] (e.g. [DKU97, Pri09, Dij09]) follow another strategy. The
first step is the construction of the scaling bases which preserve the properties required
to obtain a Riesz basis, as outlined in the previous section. There are several choices
available, but the guiding idea is to preserve as much as possible of the mechanisms that
are used in the translation invariant setting on R. Of course, this is not possible near
the boundaries of the interval, where special scaling functions that preserve the order of
polynomial replication need to be constructed. This has to be done for the primal and the
dual scaling bases, after which the resulting bases must be biorthogonalized as they are
no longer a dual system as a consequence of the modifications operated in the first step.
After constructing these suitable biorthogonal bases Φj and Φ̃j , we can proceed with the
construction of the wavelet bases Ψj and Ψ̃j proper.

Since the basis elements of Ψj are contained in Sj+1 due to (3.27), we have by way of
the refinement property that there exists a matrix Mj,1 ∈ R|∆j+1|×|∇j | such that

Ψj =MT
j,1Φj+1, (3.30)

and analogously for Ψ̃j . The task of wavelet basis construction thus reduces to a matrix
problem in the following way. Given Mj,0 and the composite mapping

Mj = (Mj,0,Mj,1) : l2(∆j)⊕ l2(∇j) → l2(∆j+1)
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we have to determine Mj,1 which is called a stable completion [CDP96], such that Mj is in-

vertible. The inverse of Mj is defined as the matrix Gj =

Gj,0
Gj,1


with Gj,0 ∈ R|∆j |×|∆j+1|

and Gj,1 ∈ R|∇j |×|∆j+1|, and we have

MjGj = GjMj = I.

We can qualify the remark made earlier about the special conditions required for the
bases Φj and Ψj to be uniformly stable as the requirement that for all j

||Mj ||ℓ2 , ||Gj ||ℓ2 = O(1) , (3.31)

i.e., the norms remain uniformly bounded (cf. [Dah97, Remark 7]). We note that Mj and
Gj depend on j, but only in the sense that once their values for a particular j are known,
assembly for any other values can be done with little effort by expanding the middle sec-
tion and using the same edge blocks (see Figure 3.5). However, the problem of computing
the stable completion is non-trivial because we need to preserve sparsity in the matrix Mj

and its inverse Gj . Even if an initial stable completion M̆j,1 is constructed, it might not be
suitable for the purpose, for example would not satisfy biorthogonality. Fortunately, in
[CDP96] a parameterization was given that made possible the modification of an initial
stable completion into one that allows the construction of biorthogonal wavelets on inter-
vals. Given an initial stable completion M̆j , a biorthogonal stable completion is computed
as

Mj,1 = (I −Mj,0M̃
T
j,0)M̆j , (3.32)

and a corresponding result is given also for M̃j,1. The new stable completions then sat-
isfy the matrix equation MjM

T
j = I induced by (3.29), and we also have corresponding

refinement relations

Ψj =MT
j,1Φj+1, Ψ̃j = M̃T

j,1Φ̃j+1. (3.33)

The implementation of the fast wavelet transforms in the setting we have discussed is
trivial, as it involves multiplications of the coefficient vector with the sparse quadratic
multiscale matrices Mj := (Mj,0,Mj,1), M̃j := (M̃j,0, M̃j,1) ∈ R|∆j+1|×|∆j+1|. Because
the multiscale matrices are sparse (see Figure 3.5), the operations retain the usual O(N)

complexity of fast wavelet transforms.

3.3.2. Examples: biorthogonal wavelet bases on the interval

The procedure sketched in the previous section is used by several constructions of wavelet
bases on the bounded interval Ω = [0, 1], e.g. [DKU97, Dij09, Pri09] to name a few. The
reason is that it is usually difficult to build a Riesz basis directly, so starting from a known
primal basis one constructs an initial stable completion which is then refined into another
one that is endowed with the desired properties, for example biorthogonality, or higher
order vanishing moments. We remark that such methods of constructing wavelet bases
can also be interpreted in special cases as the lifting scheme technique developed by Wim
Sweldens (see [Swe98] for details).
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3.3. Biorthogonal multiresolution analysis

In this thesis, we have opted to use the construction given in [Pri09]. There, the compo-
nents of the primal basis that do not need to be modified to preserve the approximation
properties near the boundaries, coincide up to a factor with dilates and translates of the
cardinal B-splines of order m. A B-spline of degree m is defined recursively by

B0(x) = χ[0,1)(x) (3.34)

Bm(x) =


R
Bm−1(x− s)B0(s)ds =

 1

0
Bm−1(x− s)ds

and they were used in [CDF92] in the role of primal scaling function ϕ(m) = Bm to con-
struct biorthogonal B-spline wavelets on L2(R). Besides being refinable and replicating
polynomials up to degree m− 1, B-splines have also the advantage of an explicit formula
and we remark that the filter coefficients for the refinement equations can be looked up
in the literature (see e.g. [Mal09]). With increasing m, the support and smoothness also
increases, and it has been shown in [CDF92] that for any m ∈ N there exists a dual func-
tion ϕ̃(m̃) = B̃m,m̃ with m̃ ≥ m and m + m̃ even, such that the dual scaling function is
also refinable, locally supported and replicates polynomials up to degree m̃ − 1 exactly.
There are no explicit formulas for these so called “dual B-splines” but we can compute
their values using a cascade algorithm as finite filter coefficients are available. In Figure
3.6 we present two examples of scaling functions, wavelets and their duals on L2(R). The
first row depicts the B-spline family with m = 2, m̃ = 2 and in the second row the case
m = 3, m̃ = 5 is shown.
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Figure 3.6.: B-spline scaling and wavelet functions on L2(R) with m = 2, m̃ = 2 (top row) and
m = 3, m̃ = 5 (bottom row).

Like previously stated, modifications are required for those elements of the primal ba-
sis that are located near the boundaries. The construction given in [Pri09] solves this
problem by employing for the primal basis elements of the Schoenberg spline space of or-
der m corresponding to a knot sequence on [0, 1], with boundary knots having multiplic-
ity m. This means that no modifications have to be undertaken for the scaling functions
near the boundaries, while the interior elements are just scaled B-splines.

An example of primal scaling functions ϕj,k used in [Pri09] is shown in Figure 3.7 for
the case m = 3, m̃ = 5, and we remark that the plot contains the left and right bound-
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3. Wavelet Bases

ary scaling functions, with only one member of the set of interior basis functions being
shown. The corresponding primal wavelets, again split into left, right and interior sets
are shown in Figure 3.7b.
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Figure 3.7.: Primal scaling basis (3.7a) and primal wavelet basis (3.7b) on the interval [0, 1] from
[Pri09]. The elements are shown for the case m = 3 and m̃ = 5 on level j = 4. Left and right
boundary elements are displayed in color, while a single representative from the translation-
invariant set of interior elements is shown in black.

In the numerical examples presented in the following chapters, we also use the interval
wavelet basis with m = 2 and m̃ = 2, and the primal wavelets for j = 3 are shown in
Figure 3.8.

Since the actual construction of the refinement matrices Mj,0 and M̃j,0 is quite techni-
cal, we refer the reader to the original source [Pri06, Pri09] for specific details. We note
however, that the coefficients of the j independent edge blocks of the refinement matrices
are provided therein, so using these interval wavelet bases reduces to the implementation
of the corresponding fast wavelet transforms.

3.4. Wavelets on Ωξ

The elements of the wavelet bases defined in this chapter are either functions on R or
on the interval [0, 1]. Consequently, before using these bases for the approximation of
the CME, they need to be transformed to wavelet bases on the bounded, discrete and
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Figure 3.8.: Primal wavelet basis on the interval from [Pri09] with m = 2, m̃ = 2 and level j = 3.

multidimensional domain Ωξ ⊂ Nd0 defined in (2.65). So far we have only treated the uni-
variate setting, and adapting wavelets to tensor product domains can be accomplished in
two ways. Consider a multiscale decomposition

H(Ωξ) = Sj0(Ωξ) ∪
jmax−1
j=j0

Wj(Ωξ),

where Wj = (Sj ⊗ Wj) ⊕ (Wj ⊗ Sj) ⊕ (Wj ⊗ Wj), and a similar decomposition for the
dual approximation spaces. Then, without loss of generality, we consider the case d = 2

and define the multivariate wavelet basis Ψ as being composed of the families

{ϕj0,k1 ⊗ ϕj0,k2}k1,k2∈∆j0
, {ϕj,k1 ⊗ ψj,k2}j≥j0,k1∈∆j ,k2∈∇j

,

{ψj,k1 ⊗ ϕj,k2}j≥j0,k1∈∇j ,k2∈∆j
and {ψj,k1 ⊗ ψj,k2}j≥j0,k1,k2∈∇j

.

Similar families can be analogously defined for the dual basis Ψ̃ [CM97]. Such bases con-
structions Ψ and Ψ̃ are called isotropic as we have only products between basis elements
with the same dyadic level in each direction.

A second choice for the realization of multivariate bases on tensor domains is to take
straightforward tensor products of univariate basis elements, but in this case the dyadic
levels can be different, and again for the case d = 2, the wavelet basis Ψ is given as

Ψ = {ψj1,k2 ⊗ ψj2,k2 | j1, j2 ≥ j0, k1, k2 ∈ ∇j}.

Such bases are then called anisotropic (cf. [CM97]).

The interval wavelet bases can be used in a straightforward way for the bounded in-
tervals defined by the truncation vector ξ from the definition of Ωξ given in (2.65). If the
wavelets are defined on R, the task of obtaining the wavelet representation of a func-
tion on bounded interval reduces to applying periodic continuation at the boundaries, in
effect extending the target function on R.

After the wavelets have been defined on the bounded intervals [a, b], an equidistant
grid xn = a + n(b − a)/2r can be introduced with r ∈ N and n = 0, . . . , 2r − 1 such that
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3. Wavelet Bases

every function on the grid can be identified with a function on the discrete state space
{0, . . . , 2r − 1} via the relation f̃(n) = f(xn). This procedure then defines a wavelet basis
for functions on Ωξ (cf. [JU10]).

In order to avoid any confusion for the reader, it is important to underline the fact that
this is a discrete multi-dimensional wavelet basis built from tensor products of univariate
wavelet bases, themselves discrete. The values of these discrete basis elements can be
computed by using the cascade algorithm which starts from known values and computes
intermediate values by applying the refinement equations iteratively. Considering the
sequence of nested spaces {Sj} from Definition 3.1, we have that j = {j0, . . . , jmax − 1},
and furthermore, Sjmax = Ωξ. Thus, only a finite number of refinements exist, in contrast
to the case of wavelets on R which was used in the presentation of the theory, where
infinitely many refinements are possible (cf. [Jah10]). Moreover, we note that because of
the discrete setting on which we operate, computing the scaling coefficients on the finest
scale is simple, because there is no need to first project the original function onto a set of
discrete points in order to apply the FWT. Thus, the fact that some scaling functions have
no explicit representation presents no problems, as we can take the scaling coefficients on
the finest scale to be the values of the original discrete function. Another point to be made
is that different wavelet bases have different minimal resolution levels j0 and cardinality.
For example, the B-spline 3.5 basis on the interval has a minimal decomposition level
j0 = 4 due to the requirement that boundary elements should not overlap (see [Pri06] for
details).

We conclude now the chapter dedicated to the construction of the wavelet bases, and
proceed to describe the algorithms for the approximation of the CME.
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CHAPTER

FOUR

NUMERICAL METHODS FOR THE CME

In Chapter 2 we have introduced a discrete stochastic formulation of biochemical reaction
kinetics, where the time-evolution of the probability distribution p(t, ·) for a system of
interacting molecular species is governed by the Chemical Master equation (CME) on the
infinite state space Nd0, given in (2.63). We present now the construction of an adaptive
wavelet method for approximating the CME (2.67) on the truncated state Ωξ ⊂ Nd0, which
is equipped with an adaptive time-stepping strategy.

The main idea is to represent the solution of the CME in a thresholded sparse wavelet
basis and propagate only the essential degrees of freedom in each time step, thus mit-
igating the effects of the curse of dimensionality. For the CME, this approach was first
proposed in [Jah10] and then further developed in [JU10], which constitutes the basis of
this chapter.

Conceptually, the adaptive wavelet method for the CME is closely related to simi-
lar methods for solving elliptic and parabolic equations (cf. [CDD01, CDD02, Dah97,
Dah01]). Because wavelets are effective tools for data compression, as demonstrated in
Chapter 3, by exploiting the favorable properties of a suitably chosen wavelet basis, such
methods offer a good compression ratio and considerably reduce the number of degrees
of freedom required to obtain reasonably accurate approximations. This is possible be-
cause for smooth data, the coefficients in the wavelet representation decay rapidly, and
thus only a small subset of essential basis elements is required to represent the solution.
For the CME, refining and propagating these essential basis elements is accomplished by
an iterative procedure that combines Rothe’s method with an adaptive Galerkin method:
the problem is first discretized in time, followed by a projection into a suitably chosen
low-dimensional space. The refinement of the approximation space is then guided by an
a posteriori error analysis of the residual on the full state space.

We proceed now to describe the adaptive wavelet method for the CME in detail. Note
that in order to make the notation simpler, we shall omit the spatial variable from the
solution of the CME (2.67) with the operator Aξ defined by (2.66), and use p(t) instead
of p(t, ·). Moreover, we somewhat abuse our notation and refer to the operator Aξ in the
following sections as A. As a precursory step, we begin by discussing the application of
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4. Numerical Methods for the CME

wavelet compression to the CME solution and motivate the choice of Rothe’s method as
the integration strategy.

4.1. Using wavelet compression on the CME solution

Let H(Ωξ) be the Hilbert space of all discrete functions p : Ωξ −→ R, equipped with the
standard inner product

⟨p, q⟩ =

x∈Ωξ

p(x)q(x) with p, q ∈ H(Ωξ),

and the norm ∥p∥2 =

⟨p, p⟩. Let N = ξ1 · . . . · ξd be the total number of states. Next, let

{ψ(m)
1 , . . . , ψ

(m)
N } be a discrete orthonormal wavelet basis of order m for the space H(Ωξ)

and

p =
N
i=1

β
(m)
i ψ

(m)
i

the representation of the function p in this basis, with the wavelet coefficients given as
β
(m)
i = ⟨p, ψ(m)

i ⟩, i = 1, . . . , N . Because the domain Ωξ ⊂ Nd0 defined in (2.65) is for most
problems of interest high-dimensional, the corresponding multi-dimensional wavelet ba-
sis is built from tensor products of univariate wavelet bases obtained from a multireso-
lution analysis (as detailed in Chapter 3). Recall that there are two possible choices for
constructing such wavelet bases on tensor product domains. Taking simply the tensor
products of elements from one-dimensional wavelet bases leads to the anisotropic con-
struction (cf. [Coh03, Section 2.2]). The anisotropic constructions are characterized by
the fact that the resulting wavelets have different dyadic levels in each direction, and
the construction does not generate a multiresolution analysis on the multi-dimensional do-
main. The second alternative is the isotropic construction [Coh03, Sections 1.4 and 2.12],
which uses tensor products of wavelets with the same dyadic level in each direction, and
generates a multiresolution analysis on Ωξ. Both the anisotropic and isotropic constructions
can be used with our method. We remark that the numerical examples in this section use
isotropic decompositions, if not otherwise specified.

In order to simplify the notation, the elements of the wavelet basis are indexed us-
ing a single index, instead of (multi-)indices for level and position. Assuming sufficient
smoothness of the function p, a higher order (m) implies a faster decay of coefficients and
consequently a better compression rate, because the proportion of coefficients that almost
vanish increases, and a larger number can be discarded without impacting the quality of
the approximation significantly.

Performing now a reordering of the wavelet coefficients in such a way that we have
|β(m)
j1

| ≥ · · · ≥ |β(m)
jN

|, we can write the best n-term approximation of p as

p̃ =
n
i=1

β
(m)
ji

ψ
(m)
ji

.

As the name suggests, p̃ is the best approximation that can be obtained with a linear
combination of n terms from the chosen wavelet basis, with {j1, . . . , jn} denoting the

68



4.1. Using wavelet compression on the CME solution

corresponding indices. A comparison between an original function and its best n-term
approximation is presented in Figure 4.1.

Original
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Figure 4.1.: Comparison between the exact solution p of the CME for the toggle switch model
(2.94) and its best term approximation p̃ using 15% of the total degrees of freedom in Daubechies’
db3 orthonormal wavelet basis. In the right panel the values of the wavelet coefficients βi ordered
according to their absolute value are shown in logarithmic scaling. Only the coefficients on the
left side of the dotted line were used for computing the best term approximation shown in the
middle panel as a contour plot.

If the wavelet basis is orthogonal, the truncation error with respect to the || · ||2 norm is
the same as the 2-norm of the discarded coefficients, i.e.

||p− p̃||2 =

 N
i=n+1

|β(m)
ji

|2.

Therefore, an efficient method for approximating the CME should strive to find a trun-
cation index n, such that the approximation error remains below a certain prescribed
tolerance. As evident from Figure 4.1, the number of degrees of freedom is significantly
reduced by using the sparse wavelet representation, as n ≪ N . However, this strat-
egy can not be applied “as is” to the CME, because finding the best term approximation
would require that all wavelet coefficients (β

(m)
i )Ni=1 are known. This is of course not a

reasonable assumption, as the solution of the CME is unknown. It is possible to find the
best term approximation for the initial probability distribution, but as the profile of the
CME solution changes over time, and wavelets have local support, the set of best n terms
at a later time would also change. Consequently, developing a method to propagate the
set of essential basis elements is a prerequisite to the efficient use of wavelet compression
for approximating the CME solution.

From a computational perspective, it is useful to remark that switching from the orig-
inal representation of the function p in the canonical basis to the wavelet representation
p =

N
i=1 β

(m)
i ψ

(m)
i can be efficiently accomplished via a fast wavelet transform, requir-

ing an O(N) effort. Conversely, reconstructing the function p from its wavelet coefficients
β
(m)
i can be done using a fast inverse wavelet transform, again at O(N) computational

cost. Moreover, we remark at this point that the adaptive wavelet method for the CME is
not restricted to any particular class of wavelets. The majority of the numerical examples
shown in this chapter use Daubechies wavelets [Dau92], with periodic extensions at the
boundaries, but in our implementation of the method also biorthogonal spline wavelets
designed for bounded intervals or again using periodic continuation are available. How-
ever, in order not to complicate the exposition, we will restrict ourselves for the time being
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to orthogonal wavelets, and discuss the biorthogonal case in the subsequent Chapter 5.
The fast wavelet transforms can be regarded as black boxes that, given an input function
or the wavelet coefficient vector return its counterpart. Because the method itself has a
modular design, other wavelet bases besides those already available could be added in
the future.

Usually, the basis elements ψ(m)
i have no explicit formulas, but are defined recursively

via the discrete counterpart of the refinement equations. Sets of the appropriate one di-
mensional wavelet bases are computed in the initialization phase of the method, but the
multi-dimensional basis elements are not explicitly computed. This is because in the
adaptive wavelet method which will be presented in the next sections, only the one di-
mensional basis elements will be used in the computation of the Galerkin matrix given
by (4.3).

4.2. Approximation with fixed step-size

Let {ψ(m)
1 , . . . , ψ

(m)
N } be the discrete wavelet basis for the space H(Ωξ) introduced in the

previous section. Because the polynomial order of the wavelet basis m is selected by the
user and impacts only the compression properties and not the method itself, the super-
script index (m) will be omitted from now on. We denote by

pn =

η
i=1

βiψji ≈ p(tn) (4.1)

the numerical approximation available at time tn = t0 + nh, with h > 0 fixed. Note
that p(tn) represents the exact solution of the CME on the whole truncated state space Ωξ.
Here, {j1, . . . , jη} is a small subset of the full index set {1, . . . , N}, and β = (β1, . . . , βη)

T ∈
Rη is the wavelet coefficient vector of pn. As mentioned, the question is how to propagate
the degrees of freedom required for the representation of the function pn. Two strategies
can be employed for this task, either the method of lines, or Rothe’s method. The basic ideas
behind these approaches are sketched in Figure 4.2.

In case the method of lines is used, the problem is first discretized in space and then
in time. The space discretization is achieved in a straightforward manner, as the initial
index set {j1, . . . , jη} of the essential elements can be easily obtained by performing a
fast wavelet transform of the initial distribution p(0) of the CME and selecting the best η
coefficients such that the truncation error is below a prescribed tolerance,

p(0) ≈ q(0) =

η
i=1

βi(0)ψji .

Then, the CME can be projected into the low-dimensional Galerkin space spanned by the
elements {ψj1 , . . . , ψjη} by imposing the Galerkin condition in (2.67) (cf. [Jah10]), i.e.,

⟨ψji , ∂tq −Aq⟩ = 0 for all i ∈ {1, . . . , η}.

The evolution of the coefficient vector β(t) = (β1(t), . . . , βη(t))
T ∈ Rη corresponding to

the approximation is then given by the differential equation

Γη
d

dt
β(t) =Mβ(t) (4.2)
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time

(a) Method of Lines

time

(b) Rothe’s method

Figure 4.2.: Strategies for integrating the CME. In the left panel, the method of lines is shown (first
space, then time discretization), while in the right panel Rothe’s method is presented (first time,
then space discretization) resulting in a series of stationary problems

where M ∈ Rη×η is the Galerkin matrix defined by

M = (mik)
η
i,k=1, mik = ⟨ψji ,Aψjk⟩ , (4.3)

which is much smaller than the matrix A ∈ RN×N defined in (2.69) and used to repre-
sent the truncated operator A. In case the wavelet basis is orthogonal we have that the
Galerkin “mass” matrix Γη = (⟨ψji , ψjk⟩) ∈ Rη×η is the identity matrix I ∈ Rη×η. In case a
biorthogonal wavelet basis is used, the advantage of having an identity “mass” matrix is
obtained only if a Petrov-Galerkin scheme is employed. Further details of such a scheme
will be provided in Chapter 5, while in the present chapter only the Galerkin scheme will
be discussed. The technical aspects related to the evaluation of the terms of the Galerkin
matrix (4.3) will also be covered in Chapter 5, namely in Section 5.4.

Applying an ODE solver to (4.2) is now possible because the system contains only
η ≪ N degrees of freedom. However, the approximation ||pn − p(tn)||1 deteriorates
quickly as time increases, because the space discretization is fixed. As the elements of the
wavelet basis are localized, and the solution of the CME will most likely occupy a differ-
ent region of the state space Ωξ at a later time, the coefficients corresponding to the basis
elements that have been discarded can become quite large and cannot be neglected any-
more. Owing to these arguments, applying the method of lines and solving (4.2) constitutes
a non-adaptive Galerkin method. Of course, a sequence of initial value problems could be
solved, but this leads to a complicated procedure for adapting the space discretization
during the integration of the CME.

A second strategy is Rothe’s method, in which the system is first discretized in time
and the spatial discretization is then adapted in each time step. Performing the time
discretization first leads to a sequence of stationary problems and adapting the space
discretization is therefore simplified. Examples of employing the adaptive Rothe’s method
([Bor90, Bor91]) to the CME can be found in e.g., [DHJW08] (without the use of wavelets)
and [Jah10] where wavelet compression was first proposed in this context.

Coupling Rothe’s method with a Galerkin ansatz and using an iterative strategy to iden-
tify the essential degrees of freedom similar to the approach from [CDD01] constitutes the
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computational core of the wavelet-based adaptive method for the CME which we present
in this thesis. In our chosen setting, we can employ a variety of time integration meth-
ods. While in [Jah10], where the method was devised, the second order trapezoidal rule
was used and Haar wavelet basis employed, in [JU10] the function pn was propagated
using a fourth-order integrator, namely the 2-stage Gauss-Runge-Kutta method and bet-
ter wavelet bases were applied. Additionally, the method was endowed with adaptive
time-stepping selection, and we proceed now to detail all these improvements. We re-
mark that the results presented in the following sections have been already published in
a slightly different form in [JU10], a co-authored paper.

For linear problems, the 2-stage Gauss-Runge-Kutta method is equivalent to the (2, 2)-
Padé approximation to the exponential function, and its order (order 4) is the highest pos-
sible among all integrators with two stages. Moreover, the method is A-stable, which is
advantageous because the real parts of all eigenvalues of the operator A are non-positive
(as shown in Appendix A) and the CME can be very stiff in the initial phase.

For a given approximation pn, the new approximation un+1 ≈ p(tn+1) is given as the
solution of the linear equation

Q(hA)un+1 = P (hA)pn (4.4)

with

Q(hA) = I − h

2
A+

h2

12
A2, P (hA) = I +

h

2
A+

h2

12
A2. (4.5)

Here and below, I denotes the identity operator/matrix. An equivalent formulation for
the solution of (4.4) is

un+1 = pn +
h

2
(g1 + g2) (4.6)

where (g1, g2) solves I − h
4A −h


1
4 −

√
3
6


A

−h

1
4 +

√
3
6


A I − h

4A

 g1
g2


=


Apn
Apn


. (4.7)

Of course, both linear systems (4.4) or (4.7) contain all degrees of freedom and thus are
usually far too large to be solved either directly of by some iterative scheme.

However, there is no need to solve either (4.4) or (4.7) exactly. It is enough to approxi-
mate the solution un+1 of (4.4) up to a given tolerance that does not significantly increase
the local error of the time integration.

Therefore, we can project (4.4) into a low-dimensional Galerkin space of H(Ωξ) and ap-
proximate un+1 ≈ pn+1. The main difference from the previously discussed non-adaptive
Galerkin method (4.2) is that a refinement of the low-dimensional space is now per-
formed, which adapts the spatial representation of pn+1. As initial candidate for the new
Galerkin space, we choose the space spanned by {ψj1 , . . . , ψjη}, i.e., the approximation
space composed of the essential elements identified in the previous step. A first approxi-
mation

p
(0)
n+1 =

η
i=1

γ
(0)
i ψji , p

(0)
n+1 = pn +

h

2
(g

(0)
1 + g

(0)
2 ), g(0)s =

η
i=1

ζ
(0)
s,i ψji , s ∈ {1, 2} (4.8)
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in such a space is obtained by imposing the Galerkin conditions in (4.7)
ψji , (I − h

4A)g
(0)
1


− h


1
4 −

√
3
6


ψji ,Ag

(0)
2


= ⟨ψji ,Apn⟩

−h

1
4 +

√
3
6


ψji ,Ag

(0)
1


+


ψji , (I − h

4A)g
(0)
2


= ⟨ψji ,Apn⟩

(4.9)

for all i = 1, . . . , η. Using the notation introduced in (4.3) we can rewrite (4.9) as I − h
4M −h


1
4 −

√
3
6


M

−h

1
4 +

√
3
6


M I − h

4M

 ζ
(0)
1

ζ
(0)
2


=


Mβ

Mβ


(4.10)

where ζ(0)s =

ζ
(0)
s,1 , . . . , ζ

(0)
s,η

T
, s ∈ {1, 2}. The new linear system (4.10) has size R2η×2η,

but is still considerably smaller than the problem on the state space Ωξ given in (4.4), and
can be solved either directly, or by using GMRES or some other iterative method. The
first approximation p(0)n+1 to un+1 can then be easily obtained by performing a fast inverse
wavelet transform of the new coefficient vector γ(0) = β + h

2 (ζ
(0)
1 + ζ

(0)
2 ). Because (4.4)

and (4.7) are equivalent, γ(0) also solves the equation

Q(hM)γ(0) = P (hM)β. (4.11)

However, the approximation p(0)n+1 might not be very close to the solution of the full prob-
lem (4.4) as the optimal low-dimensional space representation for pn+1 changes and we
have used instead the space available for pn. In order to guide the expansion of the ap-
proximation space we use a posteriori error analysis of the residual on the full space

r(0) = Q(hA)p
(0)
n+1 − P (hA)pn.

Imposing the Galerkin condition (4.9) means that orthogonality between the residual and
the approximation space is enforced. Hence, any “part” of the residual that is large indi-
cates the specific areas which have been neglected by solving (4.11) instead of (4.4), i.e.,
where we need better coverage in the low-dimensional space in order to improve the ap-
proximation. In practical terms, the values ⟨r(0) , ψk⟩ which denote the k-th coefficient of
the residual in the chosen wavelet basis will encode how much the approximation needs
the basis element ψk. If |⟨r(0) , ψk⟩| is large, then the approximation will probably improve
if ψk is added to the current basis selection, otherwise if the value is small, the gains will
be negligible. If the basis element ψk is already contained in the approximation subspace,
then we have by definition that ⟨r(0) , ψk⟩ = 0, so these elements must be excluded from
the a posteriori analysis.

Now the adaptive wavelet method for the CME proceeds as follows. As a first step,
the basis is enlarged by some number ∆µ of new elements, which leads to a new candi-
date subspace spanned by ψj1 , . . . , ψjη+∆µ . The new elements ψjη+1 , . . . , ψjη+∆µ are those
which have the largest absolute values |⟨r(0) , ψk⟩| for the coefficients of the residual in
the wavelet basis. In practice, either a tolerance is selected, or a fixed number of elements
is added. Next, the Galerkin matrix (4.3) is updated to include the newly selected basis
elements by adding ∆µ new lines and columns corresponding to ψjη+1 , . . . , ψjη+∆µ , as
sketched in Figure 4.3.
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η × η

∆µ× η ∆µ×∆µ

η ×∆µ

Figure 4.3.: Adding ∆µ new elements to the Galerkin matrix M ∈ Rη×η defined in (4.3)

Then, a new approximation p
(1)
n+1 is computed by solving (4.10) with the enlarged

Galerkin matrix M̃ ∈ R(η+∆µ)×(η+∆µ) and enlarged coefficient vector

β̃ = {β1, . . . , βη, 0, . . . , 0  
∆µ

} ∈ Rη+∆µ, (4.12)

leading to a refined coefficient vector γ(1) = β̃+ h
2 (ζ

(1)
1 +ζ

(1)
2 ) solving (4.11). The improved

approximation is then given by p(1)n+1 =
η(1)

i=1 γ
(1)
i ψji with η(1) = η +∆µ terms.

Iterating this basic procedure leads to a sequence of approximations p(0)n+1, p
(1)
n+1, p

(2)
n+1, . . .

belonging to a hierarchy of increasingly larger approximation spaces. The iterative pro-
cess stops at step (ℓ) if the 1-norm of residual ∥r(ℓ)∥1 is smaller than a prescribed tolerance,
with the last approximation p(ℓ)n+1 being accepted for time step tn+1.

One drawback of the procedure described above is the growth of the approximation
space with each iteration step. As a remedy, a thresholding of the current basis can be per-
formed at the end of each step, or alternatively, every few steps. This post-processing step
removes all dispensable basis elements from the representation of p(ℓ)n+1 =

η(ℓ)

i=1 γ
(ℓ)
i ψji

that do not contribute significantly to the accuracy of the approximation. The threshold-
ing is based on the fact that the truncation error, when measured in || · ||2, is the 2-norm
of the discarded coefficients, if an orthogonal wavelet basis is used. For other choices of
wavelet basis, this is usually not the case, but other procedures can be applied to trim
the basis, for example discarding all coefficients with values below a certain thresholding
tolerance. We proceed now to describe the thresholding step in more detail.

If I ⊂ {1, . . . , η(ℓ)} is a subset of the index set, and p
[I]
n+1 =


i∈I γ

(ℓ)
i ψji is the approx-

imation obtained by deleting all terms with i ̸∈ I from the wavelet representation, then
for an orthogonal basis we have

∥p(ℓ)n+1 − p
[I]
n+1∥2 =


i ̸∈I


γ
(ℓ)
i

2
.

In order to reach an accuracy ∥p(ℓ)n+1 − p
[I]
n+1∥2 ≤ toltrunc with a minimal number of

basis elements, we simply arrange the coefficients by magnitude and truncate the small-

est coefficients as long as


i ̸∈I


γ
(ℓ)
i

2
≤ tol2trunc. However, the error of the adaptive

wavelet method is measured with respect to the ∥ · ∥1 rather than ∥ · ∥2, so we choose
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4.2. Approximation with fixed step-size

as toltrunc ≤ c · tol, where c is a factor which accounts for the equivalence of the
norms. The choice c = 1/

√
N is correct, but often too pessimistic. A better choice is

to replace N by the number of states where p(ℓ)n+1 is essentially larger than zero. The
function pn+1 := p

[I]
n+1 obtained after this thresholding procedure is the final result of the

entire time step.

The diagram 4.4 sketches the main steps of the algorithm, and the pseudocode for
one single time step of the adaptive wavelet method with fixed step size is given in
Algorithm 3. We note that the method does not store the sequence of approximations
p
(0)
n+1, p

(1)
n+1, p

(2)
n+1, . . . but only one single approximation p̂n+1 which is overwritten in each

iteration, and proceed to discuss some details that were glossed over in the presentation.

Enlarge basis

∥r(l)∥ > tol

pn
Galerkin
condition

Solve small
linear system

Compute
r(l)

Threshold pn+1

Figure 4.4.: Diagram illustrating the computational core of the adaptive wavelet method

Stopping criterion. As stated before, the iteration stops at some step (l) if the 1-norm
of residual is smaller than a prescribed tolerance. However, it is advantageous to use
as stopping criterion the condition ∥r∥1 < Csafe · tol, where Csafe ≤ 1 is a safety fac-
tor that is chosen based on the following argument. If ∥r∥1 ≤ Csafe · tol, then if we
compare Q(hA)un+1 = P (hA)pn (cf. (4.4)) with the approximation in the current step
Q(hA)p̂n+1 = P (hA)pn + r, we get the error bound

∥un+1 − p̂n+1∥1 ≤ ∥Q(hA)−1P (hA)pn −Q(hA)−1

P (hA)pn + r


∥1 (4.13)

≤ ∥Q(hA)−1r∥1
≤ ∥Q(hA)−1∥1 · Csafe · tol.

As the goal is to achieve ∥un+1−p̂n+1∥1 ≤ tol, we have to chooseCsafe = 1/∥Q(hA)−1∥1.
Based on our numerical experiments, we conjecture that ∥Q(hA)−1∥1 = 1, but unfortu-
nately a rigorous proof is not available. However, since (I − hA/2)−1 is contractive (see
Theorem 1 from [Jah10] for a proof) and Q(hA)−1 is just a higher order perturbation,
choosing Csafe / 1 seems to be reasonable.

Additionally, sometimes it might be more convenient to prescribe a priori a maximum
number of basis elements to be used, instead of just the accuracy of the approximation.
This condition adds a degree of flexibility, because it is difficult to estimate a priori the
needed accuracy for a given problem and besides, memory requirements impose anyway
an upper bound for the maximal number of basis elements that can be used. Therefore,
the number of basis elements µ that are kept after a time step (see step 6 of Algorithm 3) is
chosen by the user, and if the thresholding procedure delivers a bigger value, the smaller
of the two is selected. Moreover, a second parameter µmax which encodes the maximal
number of basis elements during the time-step can be given. In practice, this means that
the stopping criterion in Step 5 of Algorithm 3 is expanded to read “If ∥r∥1 > Cr · tol
and µ̂+∆µ ≤ µmax”.
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Algorithm 3: One step of the adaptive wavelet method

Parameter : step-size h > 0, tolerance tol, safety factor Csafe

Input : index subset {j1, . . . , jη} and coefficients β1, . . . , βη of the
current approximation pn =

η
i=1 βiψji

Galerkin matrix M defined by (4.3)

Output : index subset {k1, . . . , kµ} and coefficients γ1, . . . , γµ of the new
approximation pn+1 =

µ
i=1 γiψki

updated Galerkin matrix

begin
1. Set µ̂ = η.

2. Solve the linear system I − h
4M −h


1
4 −

√
3
6


M

−h

1
4 +

√
3
6


M I − h

4M

 ζ1
ζ2


=


Mβ̂

Mβ̂



and set γ̂ = β̂ + h
2 (ζ1 + ζ2). The vector β̂ is an embedding of β ∈ Rη into Rµ̂ :

β̂ = (β1, . . . , βη, 0, . . . , 0  
µ̂−η

)T

3. Compute the new approximation p̂n+1 =
µ̂

i=1 γ̂iψji by a fast inverse wavelet
transform.

4. Compute the residual r = Q(hA)p̂n+1 − P (hA)pn with Q and P defined by
(4.5).

5. If ∥r∥1 > Cr · tol:

a) Compute χl =
 ⟨ψl , r⟩  for l = 1, . . . , N by a fast wavelet transform.

b) Find the indices jµ̂+1, . . . , jµ̂+∆µ of the ∆µ largest entries of (χ1, . . . , χN ).

c) Add ψjµ̂+1
, . . . , ψjµ̂+∆µ

to the current selection of basis elements.

d) Update the Galerkin matrix by adding new blocks corresponding to the
new basis vectors:

M = (mik)
µ̂+∆µ
i,k=1 , mik = ⟨ψji ,Aψjk⟩ .

e) Set µ̂ →→ µ̂+∆µ.

f) Go to step 2.

6. The result pn+1 =
µ

i=1 γiψki is obtained by discarding all coefficients γi with
i ̸∈ I, where I is the index set of the largest coefficients. The number of
coefficients is chosen in such a way that ∥pn+1 − p̂n+1∥1 ≤ tol (see above).
The corresponding columns and lines are deleted from the Galerkin matrix
M .

end
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4.2. Approximation with fixed step-size

Minimum number of DOFs. If the fixed time step h > 0 is chosen too large, then the
propagation of the approximation often requires more basis elements than representing
the accepted approximation at the end of the time step. In such situations, sometimes a
phenomenon which can be described as over-thresholding appears, i.e., basis elements
that are discarded in the thresholding step need to be selected again in the next time step.
Evidently, this decreases the efficiency of the algorithm as the corresponding entries in the
Galerkin matrix M have to be computed once more. Therefore, it is better to give a lower
bound for the number of DOFs that will be retained in step 6 of Algorithm 3. This has the
effect that even if the thresholding procedure suggests discarding most of the coefficients,
enough are retained to maintain computational efficiency. We remark however, that this
situation mostly arises when choosing unreasonable parameter values.

Preserving positivity. An issue of upmost importance in the context of approximating
the probability distribution representing the solution of CME is preserving the positivity
of the numerical approximation pn+1. The problem is not only related to the spatial dis-
cretization where the oscillatory nature of wavelet bases combined with the thresholding
of elements can lead to negative values for the approximated function, but also affects
the time integration scheme. Even in the case where the spatial representation is exact,
meaning that all the basis elements are used to approximate the function, the numerical
solution could exhibit negative entries if rather large-steps are used. This is because most
Runge-Kutta methods only preserve positivity for sufficiently small time-steps. An ex-
ception is the implicit Euler method applied to ẏ = −Ay where A is a M -matrix. In this
case, the numerical solution is positive for every step-size h > 0 if y0 ≥ 0. Unfortunately,
it is well known that the implicit Euler method has order 1, which is not sufficient for
practical use. Moreover, methods based on other spatial approximations do not always
preserve positivity either, so the issue is not singular to the wavelet method.

Alternative time integration scheme. So far, the adaptive wavelet method was built around
the 4th-order, 2-stage Gauss-Runge-Kutta method which is equivalent to the (2, 2)-Padé
approximation to the exponential function. However, as detailed in (4.7), the algorithm
uses in practice an equivalent formulation because it is not advisable to compute the co-
efficient vector by solving (4.11) directly. This is due to the fact that the matrix M2 which
would then occur in Q(hM) typically has an adverse effect on the condition number of
the linear system given by (4.11). The problem is circumvented by using the equivalent
formulation (4.10). However, the price to be paid is that the linear system thus obtained in
(4.10), has twice as many unknowns as (4.11). If the doubling of the size of the linear sys-
tem obtained by projecting the problem in a low-dimensional approximation space needs
to be avoided, the 2-stage Gauss-Runge-Kutta method could be replaced by another in-
tegration scheme. This is easily achieved, as the algorithm has a modular construction.
Indeed, in [Jah10], the second-order trapezoidal rule was applied to the CME, meaning that
instead of using (4.4), the approximation un+1 ≈ p(tn+1) is given as the solution of the
linear equation


I − h

2
A

un+1 =


I +

h

2
A

pn. (4.14)

Analogously to (4.9), we then project the system (4.14) into a low-dimensional approx-
imation space by imposing the Galerkin condition. Naturally, if another integration
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method is used, a corresponding change must also be applied to the residual compu-
tation. Using (4.14) instead of (4.4), has however the disadvantage of employing only a
method of order 2. To improve on this situation, another alternative is to use a singly di-
agonally implicit Runge-Kutta method (SDIRK) (cf. Section IV.6 in [HW96]). In this case,
only linear systems with the same matrix (I − chA) ∈ Rη×η but different right hand sides
need to be solved. For a 2-stage SDIRK method, we would compute the new approxima-
tion un+1 ≈ pn+1 of the full CME solution p(tn+1) as

un+1 = pn +
h

2
(k1 + k2)

where k1 and k2 are the solutions of
I − chA


k1 = Apn (4.15)

I − chA

k2 = A(pn + h(1− 2c)k1).

If we choose c = 3+
√
3

6 in (4.15), we obtain an A-stable method of order 3, thus less
accurate then the 2-stage Gauss-Runge-Kutta method employed by the standard version
of Algorithm 3. To obtain a SDIRK method of comparable order 4, three stages have
to be used, which leads to the question whether the additional computational effort is
justified compared to the standard approach (4.4). However, it is difficult to say a priori
which method will be more efficient for a particular problem. In our numerical tests, no
significant difference in efficiency was observed, but both methods are available in our
implementation.

4.3. Adaptive step-size control

Up to now, we have only addressed the issue of space adaptivity for the wavelet method,
and glossed over the question of time adaptivity. Solving the CME with a fixed step-size,
however, can prove to be rather inefficient as a short stiff transient phase at the beginning
of the time interval often leads to severe restrictions on the fixed step-size algorithm,
whereas in reality much larger time steps can be taken later on, when the probability
distribution slowly converges towards the stationary distribution.

The aim of this section is to introduce a viable strategy for selecting the step-size adap-
tively. We remark that adaptive in our context means the ability to control the global
step-size and not a fully adaptive scheme where each degree of freedom is propagated
with its own step-size. Although such a local time stepping method could increase per-
formance, it is dependent on advanced knowledge of the problem, and our goal is to
construct a method that is free of such assumptions. The main problem in devising an
adaptive time-stepping strategy lies with the fact that two different types of errors have
to be controlled, the error due to the spatial approximation via wavelet compression and
the time approximation error. Because a classical strategy for adaptive step-size control
based on embedded Runge-Kutta methods could not be applied in our case, a different
approach was developed.

The overall goal is to select the step-size in such a way that the (local) approximation
error remains under or close to the chosen tolerance tol. We must remark however, that

78



4.3. Adaptive step-size control

the error bounds given below only guarantee that the error is smaller than C · tol with
some (moderate) constant C > 1. If the target is to keep the error always under a certain
threshold, a good solution is to introduce an appropriate safety factor.

Constructing the adaptive time-step selection mechanism starts with the following
bound for the local error.

Theorem 4.1 ([JU10]). Let pn be the approximation computed in the n-th time step with tolerance
tol > 0 and let p(t) be the exact solution of the CME

ṗ(t) = Ap(t) for t ∈ [tn, tn+1]
(4.16)

p(tn) = pn

which starts from pn at time tn. Suppose that the representation of p̂n+1 before the truncation
(step 6) is p̂n+1 =

µ̂
i=1 γ̂iψji and let

V = span{ψj1 , . . . , ψjµ̂} ⊂ H(Ωξ)

be the iteratively enlarged approximation space. Note that pn ∈ V because V is the approximation
space before the truncation step. Let q(t) be the solution of the projected CME

q̇(t) = PVAq(t) for t ∈ [tn, tn+1]
(4.17)

q(tn) = pn

where

PV : H(Ωξ) −→ V, PV w =

µ̂
i=1

⟨w, ψji⟩ψji

denotes the orthogonal projection from H(Ωξ) onto V . Then, the local error pn+1 − p(tn+1) is
bounded by

∥pn+1 − p(tn+1)∥1 ≤ tol (4.18)

+
h5

720

(PVA)5pn

1
+O


h6


+

tn+1
tn

∥(PV − I)Aq(s)∥1ds.

Proof. The error is split into the three parts

∥pn+1 − p(tn+1)∥1 ≤ ∥pn+1 − p̂n+1∥1 (4.19)

+ ∥p̂n+1 − q(tn+1)∥1
+ ∥q(tn+1)− p(tn+1)∥1 .

The error bound ∥pn+1 − p̂n+1∥1 ≤ tol follows directly from the definition of pn+1 in
step 6 of Algorithm 3. Recall that steps 2 and 3 in Algorithm 3 are equivalent to applying
the 2-stage Gauss method to the projected CME (4.17).
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The local error of the Gauss method is bounded by

∥p̂n+1 − q(tn+1)∥ ≤ h5

720

(PVA)5pn

1
+O


h6

. (4.20)

To show this, we use that in the equivalent (2, 2)-Padé approximation, the problem can
be formulated as

pn+1 =

I − h

2
A+

h2

12
A2
−1

I +
h

2
A+

h2

12
A2

pn (4.21)

where we have used (4.5) and replaced A with the matrix A ∈ RN×N . Next, from

I =

I − h

2
A+

h2

12
A2
−1

I − h

2
A+

h2

12
A2


=

I − h

2
A+

h2

12
A2
−1

−
h
2
A− h2

12
A2

I − h

2
A+

h2

12
A2
−1

we obtain that
I − h

2
A+

h2

12
A2
−1

= I +
h
2
A− h2

12
A2

I − h

2
A+

h2

12
A2
−1

. (4.22)

Hence, using (4.22) we can now write
I +

h

2
A+

h2

12
A2

I − h

2
A+

h2

12
A2
−1

=

I − h

2
A+

h2

12
A2
−1

I − h

2
A+

h2

12
A2 + hA


= I + hA


I − h

2
A+

h2

12
A2
−1

= I + hA


I +

h
2
A− h2

12
A2

I − h

2
A+

h2

12
A2
−1



= I + hA+ hA
h
2
A− h2

12
A2

I − h

2
A+

h2

12
A2
−1

.

If we multiply the last term in the last line in the above expression with

I =

I − h

2
A+

h2

12
A2

+
h
2
A− h2

12
A2


(4.23)

we get that
I +

h

2
A+

h2

12
A2

I − h

2
A+

h2

12
A2
−1

= I + hA+ hA
h
2
A− h2

12
A2


+hA
h
2
A− h2

12
A2
2

I − h

2
A+

h2

12
A2
−1

.

Performing now the same procedure three more times, i.e., multiplying the last term of
the previously obtained result by (4.23), expanding and grouping together the terms with
the same powers, we finally obtain that

I +
h

2
A+

h2

12
A2

I − h

2
A+

h2

12
A2
−1

= I + hA+
h2

2
A2 +

h3

6
A3 (4.24)

+
h4

24
A4 +

h5

144
A5 +O


h6

.
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Comparing now the expansion of the (2, 2)-Padé approximation to the exponential func-
tion obtained in (4.24) with the exponential series of the same order

pn+1 = exp(hA)pn =

I + hA+

h2

2
A2 +

h3

6
A3 +

h4

24
A4 +

h5

120
A5

pn +O


h6


we arrive at the expression for the local error

exp(hA)pn − pn+1 = exp(hA)pn −

I − h

2
A+

h2

12
A2
−1

I +
h

2
A+

h2

12
A2

pn

= h5
 1

120
− 1

144


A5pn +O


h6


=
h5

720
A5pn +O


h6


which we have used in (4.20).

In order to derive an error bound for the last term in (4.19), we state that p(t) = q(t) −
d(t) and obtain that d(t) satisfies the equation

ḋ(t) = q̇(t)− ṗ(t) (4.25)

= PVAq(t)−Ap(t)
= PVAq(t)−Aq(t) +Ad(t)
= Ad(t) + (PV − I)Aq(t).

Applying the variation-of-constants formula to (4.25) yields

d(t) = d(tn) +

t
tn

exp

(t− s)A


(PV − I)Aq(s)ds

where exp((t − tn)A) denotes the flow of the CME (4.16). Since from (4.16) and (4.17)
we know that d(tn) = q(tn) − p(tn) = 0, and additionally we have from (2.75) that
∥ exp((t− tn)A)∥1 = 1 for all t ≥ tn, it follows that

∥q(tn+1)− p(tn+1)∥1 = ∥d(tn+1)∥1 ≤
tn+1
tn

∥(PV − I)Aq(s)∥1ds.

Substituting these bounds in (4.19) proves the assertion made in (4.18).

We turn now to some computational issues related to the terms appearing in (4.18). First,
the term h5

(PVA)5pn

1
/720 which arises from the time integration of the projected CME

will be treated. Evaluating the expression (PVA)5pn in a straightforward way would
imply five evaluations of A on the current numerical approximation pn, but fortunately,
this can easily be avoided by using the sparse wavelet representation pn =

µ̂
i=1 βiψji .

Then, the corresponding wavelet representation for the desired term is given by

(PVA)5pn =

µ̂
i=1

ζiψji , where (ζ1, . . . , ζµ̂)
T =M5(β1, . . . , βµ̂)

T .
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4. Numerical Methods for the CME

Hence, we have shifted the computation in the low-dimensional space, and only the
relatively small Galerkin matrix M has to be applied five times, not the full operator A.

Next, the integral term in (4.18) which represents the error caused by the spatial ap-
proximation has to be evaluated. The term can be understood in the sense that it describes
how the solution of the projected CME differs from the solution of the full CME. How-
ever, one problem which immediately arises, is that since the function q(t) is not com-
puted within the adaptive wavelet method, an exact evaluation of this term is not avail-
able. Therefore, the term will be substituted with the following first order-approximation
based on the rectangle method

tn+1
tn

∥(PV − I)Aq(s)∥1ds ≈ (tn+1 − tn)∥(PV − I)Aq(tn)∥1 = h∥(PV − I)Apn∥1. (4.26)

With (4.18) and (4.26) the condition ∥p(tn+1) − pn+1∥1 ≈ tol leads to the step-size
selection formula

h = min


tol

∥(PV − I)Apn∥1
, Csafe ·


720 · tol

∥(PVA)5pn∥1

1/5


(4.27)

with an optional safety factor Csafe ≤ 1. However, we are faced now with the difficulty
that the step-size h has to be chosen before the time step pn →→ pn+1 is carried out, but the
space V is only known after the time step. At a particular time tn, only the subspace

W = span{ψj1 , . . . , ψjη} ⊂ V ⊂ H(Ωξ)

which is spanned by the basis elements from the representation pn =
η

i=1 βiψji ≈ p(tn)

is available. For the estimate (4.20), this difference is negligible, because this term esti-
mates the error caused by the time integration. The problem is that simply replacing in
the estimate of the spatial error V withW is far too pessimistic. We can however compute
an estimate for the term ∥(I − PV )Apn∥1 by using a prediction of how many new basis
elements are going to be added in the next time step. Let

Apn =

N
l=1

θlψl (4.28)

be the representation of Apn in the wavelet basis. First, we apply the projection (I −PW )

which removes all terms with index l ∈ {j1, . . . , jη} from (4.28). Next, from the remain-
ing coefficients, the m largest coefficients in absolute value are discarded, because the
corresponding basis elements are most likely of being selected during the enlargement
process. The choice of the parameter m depends on how many basis elements are in
the current active set which has cardinality (η), and on the maximal number of basis ele-
ments (µmax), i.e. m = s · (µmax − η) with some safety factor s ∈ [0, 1]. In the numerical
experiments we present later, we have used the value s = 0.5. When m is chosen large,
then the new step-size h will also be large, but the downside is that this means that more
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4.3. Adaptive step-size control

basis elements will be necessary for the approximation. We summarize now the above
considerations in the following Algorithm 4 dedicated to step-size selection.

Algorithm 4: Adaptive step-size selection

Parameter : error tolerance tol > 0

Input : index subset {j1, . . . , jη} and coefficients β1, . . . , βη of the
current approximation pn =

η
i=1 βiψji

Galerkin matrix M defined by (4.3)

Output : step-size h for the step tn →→ tn+1 = tn + h

begin
1. Compute hspace:

a) Compute Apn and, via a fast wavelet transform, its representation (4.28).

b) Set θl = 0 for all l = j1, . . . , jη.

c) Put m = s · (µmax − η) and set the m largest (in modulus) coefficients
to zero. With a fast inverse wavelet transform, compute ς =


l ̸∈D θlvl

where D is the index set of the discarded terms.

d) Set hspace = tol/∥ς∥1.

2. Compute htime:

a) Compute

(PWA)5pn =

η
i=1

ζiψji , (ζ1, . . . , ζη)
T =M5(β1, . . . , βη)

T .

b) Set htime = Csafe ·


720 · tol
∥(PWA)5pn∥1

1/5

3. Choose h = min

hspace , htime


.

end

Algorithm 4 is started at the beginning of every time step, i.e., before the main body
of Algorithm 3 from Section 4.2. As a final remark, we note that the step-selection strat-
egy fixes the step-size at the beginning of each iteration corresponding to a time-step.
Changing the step-size during the iteration ( steps 2 to 5 from Algorithm 3) by using the
information gathered in the process of enlarging the approximation space was tested, but
ultimately proved unsuccessful. The reason was that the decision which basis elements
are selected for inclusion in the essential subset depends implicitly on the step-size. If
the step-size is changed during the enlargement process, then basis elements that have
been previously selected might no longer be suitable with a new step-size, which leads
to strong oscillations in the step-size, and consequently to a decrease in the efficiency of
the method.
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4. Numerical Methods for the CME

4.4. Numerical examples

In this section we illustrate the potential of the adaptive wavelet method by numerically
solving five model problems from molecular biology and epidemiology. The purpose
of the first two examples is to investigate the accuracy of the method by comparing the
results with reference solutions obtained by other means. The remaining three models are
then used to showcase the ability of the wavelet method to deal with problems having
large state spaces and metastable solution profiles.

4.4.1. Merging Modes

The first model is a toy problem that consists of two species S1 and S2 interacting via the
reaction channels

R1 : S1 −→ S2 α1 = c1x1 µ1 = (−1, 1)T

R2 : S2 −→ S1 α2 = c2x2 µ2 = (1,−1)T

R3 : S1 −→ ⋆ α3 = c3x1 µ3 = (−1, 0)T

R4 : S2 −→ ⋆ α4 = c4x2 µ4 = (0,−1)T

(4.29)

and where the rate constants take the following values c1 = 1.5, c2 = 0.7, c3 = 0.7 and
c4 = 0.2. Although the model and the parameters are not biologically relevant, this
simple example has the advantage that an exact solution of the corresponding CME can be
computed by using the analytical method proposed in [JH07] for monomolecular reaction
systems. Thus, the model allows us to investigate the behavior of the error with respect
to the user-defined tolerance. The same model, but with different parameters has been
used for the same purpose in [Jah10].

We define now the multinomial distribution M(x, N, r), which is a two-dimensional ex-
tension of the well known binomial distribution, as

M(x, N, r) =


N !
rx11
x1!

rx22
x2!

(1− r1 − r2)
N−x1−x2

(N − x1 − x2)!
if x1 + x2 ≤ N

0 otherwise,

for any x = (x1, x2) ∈ N2, N ∈ N and any r = (r1, r2) with r1, r2 ∈ [0, 1] and r1 + r2 ≤ 1.
As initial distribution of the CME problem (2.67),

ρ(x) = 0.5 · M(x, N, r(1)) + 0.5 · M(x, N, r(2)) (4.30)

was chosen, with r(1) = (0.7, 0.1)T , r(2) = (0.1, 0.7)T , and N = 63. Then, the exact CME
solution of the (4.29) model is given by

p(t,x) = 0.5 · M(x, N, s(1)(t)) + 0.5 · M(x, N, s(2)(t)), (4.31)

with

s(i)(t) = exp(tC)r(i), C =


−(c1 + c3) c2

c1 −(c2 + c4)


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Figure 4.5.: Exact solution of the Merging Modes system at t = 0, t = 0.25, t = 0.5 and t = 0.75

(from left to right).

(cf. [JH07]). In Figure 4.5 snapshots of the time evolution of the CME solution are shown,
depicting how the modes of p(t,x) merge into one single peak.

The adaptive wavelet method was applied to the model (4.29) to obtain a numerical ap-
proximation of the CME solution on the time interval [0, 1]. As wavelet basis, an isotropic
tensor product using db2 wavelets was employed, and four independent runs using dif-
ferent tolerances for the 1-norm of the residual were performed. In Figure 4.6a, the error
of the adaptive wavelet method for each of the four tolerances is shown. The errors are
measured in the 1-norm and are obtained by comparing the approximations at the time
steps chosen by the adaptive method with the corresponding explicitly derived solutions.
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Figure 4.6.: Left panel (a): Error of the adaptive wavelet approximation of the Merging Modes
problem (4.29) for tol1 = 10−1 (square), tol2 = 10−2 (circle), tol3 = 10−3(diamond) and
tol4 = 10−4 (cross). The error was computed in the 1-norm by comparing each of the approxi-
mations with the exact solution. Right panel (b): Error of the adaptive wavelet approximation for
tol = 10−1, 10−2, 10−3 and 10−4 using a safety factor Csafe = 0.7 for htime.

The results indicate that for tolerances up to tol = 10−3 the error estimator given
by (4.27) performs well, as the error is almost always below the chosen tolerance. In
case smaller tolerances are used, however, some of the adaptively chosen step-sizes are
slightly too optimistic, which translates into the error crossing the imposed barrier. We
remark that this behavior appears only for tolerances that are going to be used for small
problems. For problems with large state spaces, tolerances of 10−1 or 10−2 are sufficient
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4. Numerical Methods for the CME

to provide an accurate approximation, because the 1-norm scales with the state space.
There is also a simple countermeasure available to mitigate such error behavior, namely
the use of a safety factor Csafe in the second term in (4.27), and the results obtained are
presented in Figure 4.6b. In order to provide a comprehensive picture of the adaptive
wavelet method, we also plot in Figure 4.7 the evolution of the step size and the number
of basis elements used by the four runs without the safety factor.
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Figure 4.7.: Left panel (a): Evolution of the step-size h for the Merging Modes problem without
the safety factor, using tol1 = 10−1 (solid), tol2 = 10−2 (dashed), tol3 = 10−3(dotted) and
tol4 = 10−4 (dash-dot). Right panel (b): Number of basis elements used in each step to compute
the approximation for tol1 = 10−1 (solid), tol2 = 10−2 (dashed), tol3 = 10−3 (dotted) and
tol4 = 10−4 (dash-dot).

4.4.2. Genetic Toggle Switch

In this example, we revisit the genetic toggle switch described by the reaction network
(2.94), but with a different set of parameters, namely

c11 = c21 = 10, c12 = c22 = 30 and c3 = c4 = 0.017. (4.32)

Because the model (2.94) contains reaction channels with non-standard propensities, ex-
plicit solution formulas are no longer available. Fortunately, however, the truncated state
space induced by the choice of parameters given in (4.32), contains only 32 × 32 total
degrees of freedom and thus is small enough such that a “reference” solution can be ob-
tained by solving the CME directly via the MATLAB routine ode15s.

The adaptive wavelet method was then used to obtain approximations of the CME
on the time interval [0, 500] using db3 wavelets. For an initial distribution, a “discrete
Gaussian” centered at ν = (20, 18) and given by

p(0,x) = c0 · exp(−(x− ν)TC(x− ν)), for all x ∈ Ωξ,

C =


10000 0

0 10000


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was selected, with c0 denoting a normalization constant obtained from the condition
x∈Ωξ

p(0,x) = 1. In order to test the accuracy of the adaptive wavelet method for this
small variant of the toggle switch model (2.94), three different runs using the same method
parameters but different tolerances were performed, with results being shown in Figure
4.8. In the left panel 4.8a, the 1-norm error for each of the three tolerances is plotted, and
we remark that the error was computed by comparing the approximations with results
for the same time points provided by MATLAB’s ode15s. Examining Figure 4.8a reveals
that the error lies below the chosen tolerance, which means that the wavelet method pro-
vides in this case a very good approximation of the exact solution at the desired accuracy.
In the right panel 4.8b, the time evolution of the step-size h corresponding to the different
tolerances is shown. The plot supplies proof of the advantage of using adaptive step-size
control, as it is clear that the toggle switch model requires small step sizes only for an ini-
tial stiff transient phase at the beginning of the time interval, while larger time steps can
be used in a subsequent phase without a negative impact on the accuracy. As expected,
the adaptive method selects larger time steps for low tolerances, while higher tolerances
imply the use of smaller step-sizes.
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Figure 4.8.: Left panel (a): Error of the adaptive wavelet approximation of the toggle switch for
tol1 = 0.1 (square), tol2 = 0.01 (diamond) and tol3 = 0.001 (circle). The error was computed
in the 1-norm by comparing each of the approximations with the reference solution. Right panel
(b): Evolution of the step-size h for the toggle switch solved by the adaptive wavelet method with
tol1 = 0.1 (square), tol2 = 0.01 (diamond) and tol3 = 0.001 (circle).

4.4.3. Extended Toggle Switch

After using small test problems to investigate the accuracy of the method, we consider
now a model with a far larger state space. This is another genetic toggle switch, which is
obtained by extending the model from (2.94) by appending two more species and corre-
sponding reaction channels. The resulting model then consists of two mutually repress-
ing gene products, S1 and S2, with each gene expressing a different protein, denoted by
S3 and S4, respectively.
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The interactions between these four species (d = 4) are listed below:

R1 : ⋆ −→ S1 α1 = c11/(c12 + x22) µ1 = (1, 0, 0, 0)T

R2 : ⋆ −→ S2 α2 = c21/(c22 + x21) µ2 = (0, 1, 0, 0)T

R3 : S1 −→ ⋆ α3 = c3x1 µ3 = (−1, 0, 0, 0)T

R4 : S2 −→ ⋆ α4 = c4x2 µ4 = (0,−1, 0, 0)T

R5 : S1 −→ S1 + S3 α5 = c5x1 µ5 = (0, 0, 1, 0)T

R6 : S2 −→ S2 + S4 α6 = c6x2 µ6 = (0, 0, 0, 1)T

R7 : S3 −→ ⋆ α7 = c7x3 µ7 = (0, 0,−1, 0)T

R8 : S4 −→ ⋆ α8 = c8x4 µ8 = (0, 0, 0,−1)T

(4.33)

We remark that reactionsR1 throughR4 are identical to the reaction network of the classic
toggle switch from (2.94), with R7 and R8 modeling the decay of the added species S3 and
S4. The expression of S3 and S4, which involves the genes S1 and S2 respectively, is
described by reactions R5 and R6. The parameters for the reaction channels from (4.33)
are

c11 = c21 = 10, c12 = c22 = 30, c3 = c4 = 0.017, c5 = c6 = c7 = c8 = 0.01, (4.34)

and as initial distribution of the CME problem, a 4D-“discrete Gaussian” with a small
variance, centered on the state ν = (20, 18, 22, 5) is used. This choice closely resembles
a delta peak located at ν. The parameter set from (4.34) leads to a truncated state space
of 32× 32× 32× 32 ≈ 220 total DOFs, which means that the corresponding CME can no
longer be solved by traditional methods. However, we remark that by eliminating from
the model the reactions involving the proteins S3 and S4, i.e., R5 through R8, we obtain
the simplified 2D toggle switch (2.94) presented in Section 4.4.2. Because the solution
of the original 2D-model agrees with the marginal distribution for S1 − S2 of the larger
4D-model, it follows that we can again use MATLAB’s ode15s routine to obtain a sort
of reference solution by solving the CME for (2.94) on the truncated state space Ω32,32

directly, and comparing the result with the marginal of the approximation obtained by
the adaptive wavelet method applied to the extended toggle switch (4.33).

The corresponding CME was approximated on the time interval [0, 500], with the adap-
tive wavelet method being configured to use tol = 0.5 for the 1-norm of the residual.
Although such a tolerance may seem exceedingly large, as the 1-norm scales with the
state space and we have now 220 total DOFs, this choice actually provides enough accu-
racy. As an example, considering an equally distributed error ε, a 1-norm measurement
of ∥ε∥1 = 0.5 corresponds to ∥ε∥∞ = 0.5/220 ≈ 4.77 · 10−7 when the error is measured
in the maximum norm. In the examples studied so far, all of which featured small state
spaces, imposing limits for the number of DOFs in the essential set used in each time
step did not play an important role. For the current model, however, using such limits
brings an increase in computational efficiency. Thus, we have configured the method to
keep a minimum of 5000 of the largest coefficients at the end of each time step, while
the total number of elements that could be used within the algorithm was not allowed to
exceed 6000. Hence, the solution was approximated using only 0.47% of the total number
of 1, 048, 576 degrees of freedom. New basis elements were proposed in batches of 250
elements each and the db3 wavelet basis was chosen to approximate the solution.

Approximations to the CME obtained with the adaptive wavelet method are shown in
Figure 4.13. We remark that as the full distribution is a 4D-object, only plots of the most
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interesting 2D-marginals at a succession of time points are given. The first two columns
depict mesh and contour plots of the 2D-marginal distribution of the two gene products
S1 − S2, while in the third column, a contour plot for the 2D-marginal distribution of
the proteins S3 − S4 is provided. The two marginals clearly illustrate the multi-modal
character of the solution profile at t = 500.

In the left panel (a) of Figure 4.9, the evolution of the step-size h for the wavelet inte-
grator is shown. As was the case with the smaller model from which the current model
is derived, small step-sizes are required in the initial stiff phase, with larger time-steps
being selected as the approximation of the probability distribution approaches the invari-
ant distribution. The middle panel (b) shows the evolution of the 1-norm of the residual,
while the number of basis elements used by the adaptive wavelet method during the
course of the simulation is given in the right panel (c).
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Figure 4.9.: Left panel (a): Evolution of step-size h for the 4D toggle switch. Middle panel (b):
Evolution of the 1-norm (scaled) of the residual for the same problem. Right panel (c): Number of
basis elements used in each step to compute the approximation.

Further, in Figure 4.10, we use the previously discussed feature that the 2D marginal
of the full 4D model can be compared with the solution of the small toggle switch from
Section 4.4.2, and investigate the effects of using higher-order wavelet bases for problems
with large state spaces. In the leftmost panel (a), the marginal distribution for species
S1 − S2 obtained from an wavelet approximation at t = 500 for the 4D toggle switch
using a multivariate Haar basis is shown.
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Figure 4.10.: Comparison between approximations for the 4D toggle switch obtained using Haar
basis (a), Daubechies db3 wavelet basis (b) and Matlab’s ode15s on the simplified 2D problem (c).
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The middle panel displays the results obtained using the same parameters for the wavelet
solver, but this time employing a db3 wavelet basis. The “reference” solution computed
using MATLAB’s ode15s on the simplified 2D model is shown in the right panel. The
results confirm that for problems of a certain size, the Haar wavelet basis used in [Jah10]
can no longer cope, as the number of DOFs required to achieve a similar accuracy to the
higher-order db3 basis would simply be too high. The increase in the size of the active
DOFs set would then drive up the computational cost. Consequently, by providing the
flexibility to choose from wavelets from the Daubechies wavelet familiy (including Haar),
or biorthogonal wavelet bases, the improved wavelet method from [JU10] which was
reviewed in this chapter allows the efficient numerical treatment of non-trivial problems.

4.4.4. Infectious diseases

In the following example, we temporarily leave gene regulatory networks to study the
classic SEIR epidemic model that describes the spread of communicable diseases within
a population (see [Het00] for an in-depth presentation). The SEIR model assumes that
a population is split into four distinct classes (d = 4), namely individuals susceptible of
becoming infected with a disease (S), exposed individuals (E) that are infected but not
yet contagious, infectious individuals (I) and individuals that have recovered (R), and in
the process have acquired immunity to the disease. The sub-populations of the model
interact through seven reaction channels, as follows

R1 : S + I −→ E + I α1 = c1x1x3 µ1 = (−1, 1, 0, 0)T

R2 : E −→ I α2 = c2x2 µ2 = (0,−1, 1, 0)T

R3 : I −→ S α3 = c3x3 µ3 = (1, 0,−1, 0)T

R4 : S −→ ⋆ α4 = c4x1 µ4 = (−1, 0, 0, 0)T

R5 : E −→ ⋆ α5 = c5x2 µ5 = (0,−1, 0, 0)T

R6 : I −→ R α6 = c6x3 µ6 = (0, 0,−1, 1)T

R7 : ⋆ −→ S α7 = c7 µ7 = (1, 0, 0, 0)T

(4.35)

The first reaction R1 models the process through which susceptible individuals become
infected by having contact with infectious ones. Individuals coming in contact with the
disease first enter a latent phase and are assigned to the E sub-population. After an incu-
bation period, they can become infectious themselves via reaction R2 or can die of other
causes, as described by reaction R5. The temporary recovery of infected individuals can
occur via reaction R3, while by reaction R6 the recovery process in which these individ-
uals also acquire immunity to the disease is modeled. Reaction R4 describes the death
of susceptible individuals, whereas reaction R7 represents new arrivals that are prone
to becoming infected. We assume that the arrival of susceptible individuals via reaction
R7 is constant and is independent of the current size of the population. The model is
studied for the case where the disease starts only with a few infected individuals, which
means that a stochastic treatment is mandatory. As we shall see, the solution profile is
multi-modal, as there are two possible scenarios: either the disease quickly spreads to
a large section of the population or disappears at some early stage because the first few
infectious individuals have already died. The parameters chosen for the simulation were

c1 = 0.1, c2 = 0.5, c3 = 1, c4 = c5 = c6 = 0.01, c7 = 0.4,
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and as initial distribution, a ”discrete Gaussian“ centered at ν = (50, 4, 0, 0) was consid-
ered.

In Figure 4.14 we plot snapshots of the evolution of the probability distribution of the
SEIR model obtained by applying the adaptive wavelet method. For the marginal distri-
bution in the S-E plane, both contour and mesh plots are shown (left and middle column,
from top to bottom). The rightmost column shows a contour plot for the marginal distri-
bution in the S-I plane. The time interval chosen was [0, 7], and during the course of the
simulation, the marginal distribution in the S-E plane splits up into two distinct peaks.
The peak located at roughly (50, 0) represents the scenario in which the first few infec-
tious individuals have either died or recovered before their numbers reached a critical
mass that could sustain the epidemic. Consequently, the disease disappears after some
time. In the other scenario, the infection spreads quickly enough during the initial phase.
With an increase in the number of carriers, the system will eventually reach a stage where
the majority of the population is affected by the disease. The peak corresponding to this
scenario is located around (11, 27). The multi-modal character of the system is also evi-
dent in other marginal distributions, i.e., for the S-I species (left column) and for the E-I
species (data not shown).

At this point, we remark that the multi-modal character of the solution, with peaks
located far apart within the state space, poses no significant challenges to the wavelet
method. The solution also exhibits a non-smooth character as it can be noticed in the last
row of Figure 4.14. At the final integration time point t = 7, the solution vanishes close
to the S-axis but does not vanish on the axis itself. Although wavelets are best suited for
the approximation of sufficiently smooth signals, the method is also able to handle such
difficult scenarios, where a certain degree of local non-smoothness is present.

Additionally, in the period from t = 3 to t = 5, the solution profile of the SEIR model is
not parallel to any of the axes. Such behavior would pose challenges to methods where
the solution is represented in terms of global tensor products (e.g., the method proposed
in [JH08]), as they would need many more degrees of freedom to represent such profiles.
The adaptive wavelet method overcomes such issues, as the elements of the multivariate
wavelet bases are tensor products with local support.

The specific solver parameters used for this model are a db3 wavelet basis and a toler-
ance tol = 0.61 for the 1-norm of the residual. The inner iteration was stopped if the
number of degrees of freedom exceeded 6500 and only a maximum of 6000 DOFs were
kept at the end of each time step, which corresponds to the use of only 0.57% of the total
220 degrees of freedom. New basis elements were proposed in batches of 250 elements
each and solving the linear system (4.11) was accomplished using GMRES with restarts
and a tolerance of 5 ·1e−4. The method required 122 steps to simulate the evolution of the
probability distribution for the chosen time interval [0, 7].

4.4.5. Transcription regulation

As a last example, we present a simplified model of transcription regulation which was
first introduced in [Gou05] and is usually referenced in the literature as the Goutsias
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model. Although simplified, the model is biologically interesting as it represents a sub-
system of the λ-phage, and can be used to model the transcription regulation of the CI
protein which is responsible for maintaining the lysogenic cycle of viral reproduction in
E.coli [Pta04, ARM98, Gou05]. Furthermore, this particular model has also been previ-
ously used to test other CME solvers like the Krylov FSP algorithm in [BHMS06]. The
Goutsias model is a six species biochemical system, which is characterized by the follow-
ing reaction channels

R1 : RNA −→ RNA + M α1 = c1x3
R2 : M −→ ⋆ α2 = c2x1
R3 : DNA.D −→ RNA + DNA.D α3 = c3x5
R4 : RNA −→ ⋆ α4 = c4x3
R5 : DNA + D −→ DNA.D α5 = c5x2x4
R6 : DNA.D −→ DNA + D α6 = c6x5
R7 : DNA.D + D −→ DNA.2D α7 = c7x2x5
R8 : DNA.2D −→ DNA.D + D α8 = c8x6
R9 : M + M −→ D α9 = c9(x1(x1 − 1)/2)

R10 : D −→ M + M α10 = c10x2

(4.36)

The model is best explained with the help of the schematic presented in Figure 4.11.
There, we have the protein M (monomer) which is synthesized through the process of
transcription of the gene into RNA (cf. reaction R3) and subsequent translation of RNA
into the protein through reaction R1. Degradation of RNA and the monomer M are mod-
eled by reactionsR4 andR2, respectively. The monomers reversibly dimerize by reactions
R9 and R10 into transcription factors D (dimers), which then can reversibly bind to the
operator sites O1 and O2 (processes modeled by reactions R5 through R8). The gene is la-
beled DNA, while DNA.D denotes the gene with a transcription factor D attached to the
operator site O1. Similarly, DNA.2D denotes the gene with both operator sites occupied
by dimers, and the model assumes that D can bind at O2 only if the site O1 is already
occupied. The gene produces RNA only if site O1 is occupied, while binding of D at O2

represses the transcription (cf. [Gou05]).

Figure 4.11.: Gene regulatory network for a subsystem of λ-phage (figure adapted from [Gou05])

In the description of the reaction system given in (4.36), we have retained the names
used in [Gou05] in order to make the interpretation of the reaction channels easier, but to
keep the propensities in the familiar description used throughout this thesis, we relabel
the species as S1 (M), S2 (D), S3 (RNA) , S4 (DNA), S5 (DNA.D) and S6 (DNA.2D). The
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reaction parameters are the same as those used in the original description by Goutsias
and in [BHMS06], where the model was used for testing the Krylov FSP solver for the
CME.

c1 = 0.043, c2 = 0.0007, c3 = 0.078,

c4 = 0.0039, c5 = (0.012 · 109)/nAV, c6 = 0.4791,

c7 = (0.00012 · 109)/nAV, c8 = 0.8765 · 10−11, c9 = (0.05 · 109)/nAV,
c10 = 0.5

with nA = 6.02214179 · 1023 mol−1 being Avogadro’s number and V ≈ 10−15l the cell
volume.

As initial distribution, a delta peak located at x0 = (m, d, 0, g, 0, 0 )T , with m = 2,
d = 6 and g = 2, which are the biologically relevant parameters also used by Goutsias,
was chosen. Because of the small number of genes, the number of possible configura-
tions for some of the species is rather small, with S4, S5 and S6 each having the possible
configurations {0, 1, 2}. The species S1, S2 and S3 are however endowed with a larger
configuration space. Goutsias studied the model using stochastic simulations and ob-
served how the configuration space for the dimers S2 (D) explodes with increasing times,
with the marginal distribution flattening and exhibiting an increasingly larger support.

Such models can be seen as being particularly challenging for all CME solvers, and dif-
ficulties with integrating the system for large times have also been reported in [BHMS06].
The model poses a challenge to the adaptive wavelet method as well, particularly because
the state space has a combination of large and small directions, leading to a probabil-
ity distribution which is highly non-smooth. The smoothness properties of the solution
profile do not improve significantly with larger times either, also due to the presence of
the small directions. Non withstanding these difficulties, we have applied the adaptive
wavelet method to this model on a state space having 25 × 26 × 24 × 22 × 22 × 22 degrees
of freedom. The time interval for integration was chosen as [0, 300] and the method was
configured to use a tolerance tol = 0.2 for the 1-norm of the residual. In contrast to
the examples previously presented in this chapter, for the Goutsias model an anisotropic
tensor product basis constructed from univariate B-spline 2.2 interval wavelet bases was
chosen to approximate the solution. The switch to the biorthogonal wavelet bases on
the interval also dictated a change to a Petrov-Galerkin scheme in order to preserve the
identity matrices appearing in (4.11). We remark that a Galerkin ansatz could also have
been used, but at the price of the evaluation of an extra Galerkin “mass” matrix, and
that the Petrov-Galerkin scheme will be discussed in the next chapter. With respect to
the other parameters, the maximum number of basis elements was not allowed to exceed
7000 inside the iteration dedicated to the refinement of the approximation space, with a
maximum of 6000 basis elements being retained at the end of each time step. New basis
elements were added in batches of 500 elements.

In Figure 4.15, marginal distributions at times t ≈ 10, t ≈ 100, t ≈ 200 and t = 300 are
shown which clearly illustrate how the number of active states explodes with increasing
times. Integration beyond t = 300 is also possible, but as the maximum number of basis
elements is kept fixed due to efficiency reasons, and the distribution enlarges its footprint,
the adaptive time stepping strategy chooses increasingly small steps, which naturally
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Figure 4.12.: Evolution of the step size h for the Goutsias model and number of basis elements
before/after truncation in each time step.

severely impacts the performance of the method. In Figure 4.12a the evolution of the
time step, while in 4.12b the number of basis elements in each time step before and after
truncation are plotted.

From a numerical point of view, the biggest limiting factor in computing the solution
of the CME for all the non-trivial examples is the presence of huge state spaces with
more than 1, 000, 000 states. However, as it can be clearly seen in the panels of Figures
4.13, 4.14 or 4.15, most of these states are never populated throughout the time evolution
of the corresponding probability distribution, which means that the subset of essential
states is actually smaller. However, this information is of little practical use, because we
only know which states can be ignored a posteriori. As the adaptive wavelet method is
specifically designed to find the essential degrees of freedom, it is particularly suited to
deal with these type of problems.
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Figure 4.13.: Marginal distribution of the 4D toggle switch model (4.33) at different times. Surf
plot (first column) and contour plots (second and third columns) of the approximation obtained
with the adaptive wavelet method.
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96



4.4. Numerical examples

0
20

40
60

0

5

10

0

0.2

0.4

S
2

Time 10.122 s

S
3

Time 10.122 s

S
2

S
3

0 20 40 60
0

2

4

6

8

10

12

14

Time 10.122 s

S
1

S
2

0 10 20 30
0

10

20

30

40

50

60

0
20

40
60

0

5

10

0

0.05

0.1

S
2

Time 100.0836 s

S
3

Time 100.0836 s

S
2

S
3

0 20 40 60
0

2

4

6

8

10

12

14

Time 100.0836 s

S
1

S
2

0 10 20 30
0

10

20

30

40

50

60

0
20

40
60

0

5

10

0

0.02

0.04

S
2

Time 200.0539 s

S
3

Time 200.0539 s

S
2

S
3

0 20 40 60
0

2

4

6

8

10

12

14

Time 200.0539 s

S
1

S
2

0 10 20 30
0

10

20

30

40

50

60

0
20

40
60

0

5

10

0

0.005

0.01

0.015

S
2

Time 300 s

S
3

Time 300 s

S
2

S
3

0 20 40 60
0

2

4

6

8

10

12

14

Time 300 s

S
1

S
2

0 10 20 30
0

10

20

30

40

50

60

Figure 4.15.: Marginal distributions of the 6D Goutsias model (4.36) at different times. Surf plot
(first column) and contour plots (second and third columns) of the approximation obtained with
the adaptive wavelet method.
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CHAPTER

FIVE

INVESTIGATING LONG-TIME DYNAMICS

The adaptive wavelet method presented in Chapter 4 demonstrated the use of wavelet
compression to deal with the curse of dimensionality affecting the time-dependent CME
on a finite, but high-dimensional state space Ωξ ⊂ Nd0. In many applications, however,
the transient behavior is of secondary importance, and the main goal is obtaining a char-
acterization of the long-time dynamics of the system. Useful information in this regard
can be obtained by approximating the invariant or stationary probability distribution,
which is the solution of the stationary CME. While the invariant distribution does provide
an insight into the long-time dynamics, it is not always sufficient by itself to investigate
the qualitative behavior of the underlying Markov jump process at equilibrium. Infor-
mation about the specific transition mechanisms between certain states are particularly
important in biological systems exhibiting metastable dynamics, where rare events induce
transitions between subsets of the state space. However, approximating the stationary
distribution or gathering sufficient information to compute statistical objects related to
the switching behavior are both non-trivial problems. Thus, in the present chapter, we
are motivated to extend the wavelet method to the related tasks of approximating the
stationary CME and the efficient computation of committor probabilities. The committor
probabilities are objects that give a measure of the progress of transitions between two
arbitrarily chosen subsets of the state space. Further, they can be used within the theoret-
ical framework of Transition Path Theory (TPT) [VE06, MSVE08] to give a full statistical
characterization of the switching mechanisms between metastable states.

5.1. Approximating the stationary distribution

5.1.1. Formulation as eigenvalue problem

As the stationary CME is a particular case of the time-dependent CME (2.67), and numer-
ical computations are by necessity again restricted to the truncated state space Ωξ, the
algorithm for the approximation of the stationary distribution uses the computational
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core of the adaptive wavelet method presented in Algorithm 3, and we proceed to detail
the required changes.

Recall that the truncated state space Ωξ contains a total of N = ξ1 · · · · · ξd states, and
Neumann boundary conditions (2.72) are imposed outside the boundaries defined by the
truncation vector ξ. As stated in Chapter 2, when restricted to the state space Ωξ, the CME
operator A is isomorphic to the generator matrix A ∈ RN×N of the underlying Markov
jump process, with

aik ≥ 0 for i ̸= k and
N
i=1

aik = 0

leading to aii = −


i ̸=k aik, i.e., a usually non-symmetric matrix with non-positive diag-
onal elements, non-negative off-diagonal elements and zero columns sum. Assuming the
matrix A is irreducible, we have by the Frobenius-Perron Theorem 2.5 that there exists a
unique (non-negative) stationary distribution

ρ ∈ RN with ρi ≥ 0,

N
i=1

ρi = 1 and Aρ = 0.

Moreover, we have already shown in Chapter 2 that the eigenvalue λ1 = 0 of A is simple,
and all the other eigenvalues have negative real part (see Appendix A). Consequently,
the problem of computing the stationary distribution is equivalent to finding the eigen-
vector corresponding to the eigenvalue λ1 = 0. A plethora of methods are available for
such eigenvalue problems, among them direct methods, Krylov subspace techniques or
single vector iterations [Saa92]. As the distinct eigenvalue λ1 = 0 corresponding to the
stationary distribution ρ ∈ RN has the smallest absolute value of all eigenvalues belong-
ing to the spectrum σ(A), we use for this task the inverse power method with shift, also
known as inverse iteration. The algorithm of the inverse iteration has the following form
[GVL96]:

Algorithm 5: Inverse iteration

Parameter : s close to a distinct eigenvalue of A (in our case s ≈ 0 )

Input : initial guess ρ(0) ∈ RN

matrix A ∈ RN×N

Output : vector ρ(k) converging to eigenvector corresponding to eigenvalue close
to s

for k = 1, 2, . . . , do

solve (A− sI)ρ̂(k) = ρ(k−1) (5.1)

set ρ(k) = ρ̂(k)/||ρ̂(k)||

end

Naturally, Algorithm 5 operates on the entire truncated state space Ωξ and as such con-
tains all the degrees of freedom N =

d
i=1 ξi, making efficient numerical approximation

difficult, if not impossible. Therefore, the idea is to extend the inverse power method by
once again using the favorable properties of a sparse wavelet representation and project-
ing the problem onto a low-dimensional approximation space.
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5.1.2. Adaptive wavelet method for stationary CME

We recast now the problem of approximating the stationary distribution in the familiar
operator notation, i.e., use A to denote the truncated operator and define the stationary
distribution as a discrete function π : Ωξ → R satisfying

Aπ = 0, π(x) ≥ 0,

x∈Ωξ

π(x) = 1. (5.2)

The task is to compute an approximation p(x) =
η

i=1 γiψji(x) ≈ π(x) using a small
subset {ψj1 , . . . , ψjη} of a full wavelet basis {ψ1, . . . , ψN}, which satisfies Ap ≈ 0 and

x∈Ωξ
p(x) = 1. Thus, similarly with the time-dependent CME, we need a procedure

to identify the suitable index subset {j1, . . . , jη}. We use again the recipe from [CDD01],
which means that given an approximation pk =

η
i=1 γ

(k)
i ψji at step k of an iterative

procedure, we employ the residual on the whole state space Ωξ to guide the expan-
sion of the approximation space in order to obtain the refined approximation pk+1 =η+∆µ

i=1 γ
(k+1)
i ψji .

In contrast to the time-dependent problem previously discussed in Chapter 4, how-
ever, we no longer have an initial distribution that allows the computation of the first set
of basis elements for the refinement procedure. Recall that this set was obtained by per-
forming a fast wavelet transform (FWT) of the initial distribution and retaining the best
η-terms from the resulting wavelet coefficient vector γ = (γi)

N
i=1.

Consequently, the choice of wavelet basis plays now a far more important role. In
Chapter 4, the use of an orthogonal wavelet basis Ψ = {ψ1, . . . , ψN} with periodic exten-
sion at the boundaries of the domain Ωξ proved adequate for most numerical examples
studied therein. That was because an initial set of coefficients was available and in each
step this could be refined by the iterative procedure described in Algorithm 3. For the
approximation of the stationary CME, however, we are forced to start with some arbitrary
selection of basis elements and periodic wavelets have the disadvantage that they have
high-amplitude coefficients in the neighborhood of the boundaries defined by the trun-
cation vector ξ. This is because the boundary wavelets have separate components which
no longer have vanishing moments and if the approximated function is non-periodic, as
is the case in our application, the coefficients will behave as if discontinuities are present
[Mal09]. Thus, these high-amplitude coefficients at the borders may cause problems with
the residual-based expansion of the set of essential basis elements, especially for problems
where the profile of the stationary distribution lies close to the boundaries. In our expe-
rience, better results for the approximation of the stationary distribution can be obtained
by employing a boundary adapted wavelet basis that avoids the problems of periodic
wavelets bases mentioned earlier. For the numerical tests that will be presented later,
we have chosen anisotropic tensor products of wavelet bases on the interval. The specific
univariate wavelet bases used are B-spline interval wavelet bases constructed using the
procedure by Primbs from [Pri09], which was previously discussed in Chapter 3. We re-
mark however, that other constructions of interval wavelet bases could also be adapted
for use (e.g. [DKU97, Dij09]).

Let Ψ̃ = {ψ̃1, . . . , ψ̃N} and Ψ = {ψ1, . . . , ψN} be a pair of biorthogonal discrete wavelet
bases on H(Ωξ) constructed using the procedure outlined in Chapter 3. We shall refer to
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Ψ as the primal basis, while Ψ̃ will be called dual basis. Then, the coefficients of a wavelet
representation of a function p =

N
i=1 γiψi are given as γi = ⟨p, ψ̃i⟩. We remark that

the two bases are interchangeable, with the primal and dual basis switching places in the
definitions above, i.e., using instead the primal basis for the decomposition and the dual
basis for the reconstruction.

After establishing the choice of wavelet basis, the next step is projecting (5.1) into a low
dimensional space. The use of a biorthogonal basis means that we have the option of
a Petrov-Galerkin wavelet discretization in space. Using now the operator notation, we
build a linear equation similar to (5.1) but with changed sign,

(sI −A)p̂k = −pk−1. (5.3)

Because Neumann boundary conditions (2.72) have been imposed, and zero is an eigen-
value with trivial left eigenvector 1T = (1, . . . , 1) it follows that (sI − A) is invertible
for all s > 0 and all entries of the inverse are non-negative, because −A ∈ RN×N is a
M -matrix [Jah10]. Further, let us consider the wavelet expansions

p̂k =

N
i=1

γ̂iψi, γ̂i = ⟨p̂k , ψ̃i⟩

pk−1 =

N
i=1

βiψi, βi = ⟨pk−1 , ψ̃i⟩.

Imposing now the Galerkin condition in (5.3) using a subset {ψ̃j1 , . . . , ψ̃jη} of the basis Ψ̃,
i.e.,

⟨ψ̃ji , (sI −A)p̂k⟩ = −⟨ψ̃ji , pk−1⟩,

for all i = 1, . . . , η, we obtain the following algebraic formulation for our problem

(sIη − M̃)γ̂ = −β. (5.4)

In equation (5.4), M̃ ∈ Rη×η is the Petrov-Galerkin matrix defined by

M̃ = (m̃ik)
η
i,k=1, m̃ik =


ψ̃ji ,Aψjk


, (5.5)

and Iη is an η × η identity matrix, which follows from the biorthogonality conditions
satisfied by the wavelet bases Ψ and Ψ̃. Further, β = (β1, . . . , βη)

T is the coefficient vector
of the old approximation pk−1 and is obtained through a fast wavelet transform using
the dual basis Ψ̃, while γ̂ is the new coefficient vector, which after a normalization step
γ = γ̂/||γ̂||, provides the new approximation pk via an inverse wavelet transform using
the primal basis Ψ.

Naturally, simply projecting the inverse iteration onto a low-dimensional approxima-
tion space does not constitute an adaptive numerical scheme, and this basic step for com-
puting the new coefficient vector has to be coupled with residual-based basis refinement
and coefficient thresholding strategies. It is also worth pointing out that simply using a
naïve Galerkin approach instead of (5.3), i.e., projecting the stationary CME (5.2) directly
and trying to solve a linear system of the form M̃γ = 0 is not a good idea. This is because
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generally, the projected problem does not have a solution, as the simple zero eigenvalue
is not preserved by the projection onto the approximation space.

Before detailing the main steps of the adaptive wavelet method for the stationary CME,
let us first comment on the initialization phase of the method. As mentioned earlier, the
choice of an initial set of basis elements is not as straightforward as in the time dependent
case. For an initial approximation, we choose an uniform probability distribution p0 =

c0 · 1, where c0 = 1/
d
i=1 ξi is a normalization constant and 1 = (1, . . . , 1)T . Next, the

question how to select the initial index subset Jη = {j1, . . . , jη} must be addressed. One
idea is to compute a few long-time SSA trajectories, and after discarding the initial phase,
use the data to compute a very coarse approximation of the stationary distribution. As the
result is non-smooth, the next step would be to apply a smoothing procedure in multiple
dimensions, followed by a fast-wavelet transform and selection of the best η-terms. The
problem with such an initialization procedure is that the user must supply a multitude
of problem dependent parameters, like the time interval for the SSA simulations, the
smoothing parameter for computing the initial stationary approximation, the number
of SSA trajectories to be computed, truncation index η, and so on. Moreover, because
smoothing has to be applied, the approximation thus obtained could differ significantly
from the true profile of the stationary distribution.

Therefore, in our numerical tests we have opted for another approach. Let K(ξ) =

I [0,ξ1] ⊗ · · · ⊗ I [0,ξd] where I [0,ξi] = {ki ∈ N0 | 0 ≤ ki ≤ ξi} is the local index interval for
the i-th direction, denote the complete list of multi-indices k(l) := (k

(l)
1 , . . . , k

(l)
d ) assigned

to the states of the multi-dimensional state space Ωξ. Moreover, there exists a bijective
mapping between the single-indices jl used for the enumeration of the wavelet bases and
the multi-indices k(l), with l = 1, . . . , N . Next, let K(ς) = I [0,ς1] ⊗ · · · ⊗ I [0,ςd] be a subset
of the complete multiple-indices set K(ξ), where we have used the truncation vector ς
with 0 < ςi ≪ ξi, and let |K(ς)| = η. The initial index set for the adaptive wavelet
method is then obtained via the mapping {k(1). . . . , k(η)} →→ {j1, . . . , jη}. This approach is
quite natural in the context of using anisotropic tensor products of wavelet bases. Because
of the way the univariate biorthogonal interval wavelet bases are constructed, the first
indices belong to the scaling functions on the minimal resolution level. As such, taking
the combinations of the first few basis elements in each direction translates into using
parts of the nodal basis on an uniform grid covering the state space Ωξ. The approach can
also be modified to use different local indexing intervals for each direction. We remark
that although this initialization step is not optimal, the a posteriori analysis of the residual
usually succeeds in identifying the correct coarse profile for the stationary distribution
after a few iterations, which is then further improved. With the mention that the adaptive
wavelet method for the stationary CME uses the same building blocks that can be found
in Algorithm 3, we can proceed with the sketch of the new specialized Algorithm 6.

In Algorithm 6, steps (1) and (2) can be seen as one step of the inverse iteration in the
low-dimensional space, and consequently they can be performed more than once, obtain-
ing refined values for the wavelet coefficients for the currently active basis. However, as
the critical issue is the expansion of the approximation space, performing more than one
inverse iteration especially in the early stages does not bring significant advantages. The
thresholding step (5) uses the same techniques as those used in step (6) from Algorithm
3 and can be either performed every step, or every few steps.
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Algorithm 6: Adaptive wavelet method for stationary CME

Parameter : parameter s ≈ 0, tolerance tol
∆µ (new basis elements per step), ηmax (maximum allowed DOFs)
initial active set of coefficients Jη = {j1, . . . , jη}

Input : coefficients γ(0) = (γ
(0)
1 , . . . , γ

(0)
η )T via FWT of p0 = c0 · 1 using Ψ̃

Petrov-Galerkin matrix M̃ defined as

M̃ = (m̃ik)
η
i,k=1, m̃ik =


ψ̃ji ,Aψjk


.

Output : approximation pk ≈ π satisfying Apk ≈ 0 and


x∈Ωξ
pk(x) = 1

Set k = 1

while true do
1. Solve the linear system

(sI − M̃)γ̂(k) = −γ(k−1). (5.6)

2. Set γ(k) = γ̂(k)/||γ̂(k)||.

3. Compute approximation p̂k =
η

i=1 γ
(k)
i ψji and normalize.

4. Compute the residual r = Ap̂k.

5. Apply optional thresholding step to γ(k) (analogously to step (6) of Algorithm
3), taking care to delete corresponding lines from the Petrov-Galerkin matrix
M̃ and update the index subset Jη, and value η, respectively. Then, the ap-
proximation for the current step is pk =

η
i=1 γ

(k)
i ψji with updated coefficient

vector γ(k).

6. if ||r||1 > tol and η < ηmax then

a) Compute χl =
⟨ψ̃l , r⟩ for l = 1, . . . , N via fast wavelet transform.

b) Find the new index subset J∆µ = {jη+1, . . . , jη+∆µ} of the ∆µ largest
entries of (χ1, . . . , χN ).

c) Update the Petrov - Galerkin matrix by adding new blocks corresponding
to the newly selected basis elements M̃ ∈ R(η+∆µ)×(η+∆µ).

d) Update active index subset Jη →→ Jη + J∆µ and set η →→ η +∆µ.

e) Update γ(k) with coefficients corresponding to the new index set Jη.

f) Set k →→ k + 1.

else

Exit while loop

end
end
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5.2. Numerical examples

Step (6) implements the expansion of the state space and prepares the Petrov-Galerkin
matrix M̃ and the right hand side of (5.6) for the next step of the adaptive wavelet method.
Another option for substep (6e) is to reinitialize γ(k) = (γ

(0)
1 , . . . , γ

(0)
η )T , i.e., use the co-

efficients computed via the fast wavelet transform of p0 = c0 · 1 corresponding to the
updated index subset.

Before illustrating the adaptive wavelet method for the stationary CME with a few
numerical examples, let us remark that if the we multiply (5.6) by 1/s, the method can
be viewed as using the implicit Euler version of the time-dependent adaptive wavelet
method, with a fixed, very large step size 1/s. Therefore, the stationary and time depen-
dent versions are closely related and the Petrov-Galerkin ansatz can also be employed in
Algorithm 3 in case a biorthogonal basis is used.

5.2. Numerical examples

In the first numerical example to be presented we shall revisit the toggle switch model
with two competing species from (2.94). Due to the moderate size of its state space, this
model allows us to investigate the accuracy of the proposed method. Further, two multi-
dimensional models of toggle switches will be used to test the viability of the concept for
larger state spaces.

5.2.1. Revisiting the 2D toggle switch

The state space of the toggle switch model from (2.94) with parameter set (2.95), is only
28 × 28. Thus, the total number of degrees of freedom N = 65536 is small enough to al-
low the computation of a reference solution by explicitly constructing the corresponding
generator matrix A ∈ RN×N and solving the associated eigenvalue problem Aρ = 0 via
the MATLAB routine eigs.
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Figure 5.1.: Accuracy of the adaptive wavelet method for the stationary CME applied to the toggle
switch model (2.94). Panel 5.1a shows a contour plot of the approximation obtained using the
wavelet method with 3.5% of the total degrees of freedom, panel 5.1b compares the 2-norm errors
of the truncated reference solution and that of the wavelet approximation, while in panel 5.1c we
plot the evolution of the residual for the wavelet method.

We can then use the adaptive wavelet method for the stationary CME on the same prob-
lem, and compare the error of the approximation obtained in each step of the wavelet
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5. Investigating long-time dynamics

method, with the error of a best approximation. The best approximation in obtained by
truncating the reference solution to the same number of coefficients as those used in-
side the wavelet method. The errors were computed in the 2-norm and are displayed in
the Figure 5.1b. The adaptive wavelet method was configured to use anisotropic tensor
products of B-spline 2.2 interval wavelet bases. The iterative procedure described by Al-
gorithm 6 was stopped either if a tolerance in the 1-norm of tol = 1e − 5 was reached
by the residual, or the maximum number of allowed degrees of freedom ηmax = 10000

was exceeded. The results indicate that the 2-norm error of the approximation behaves
similarly with the error of the truncated reference solution, and the wavelet approxima-
tion agrees well with the reference solution even after a few iterations. We remark that in
Figure 5.1a the approximation after only 3 steps of the wavelet method is shown, which
uses 3.5% of the total degrees of freedom.

As additional information, in Figure 5.2 the sets of basis elements used by the wavelet
method are shown in the form of the sparsity pattern of the Petrov-Galerkin “stiffness”
matrix for the full basis. Furthermore, mesh plots of the difference between the wavelet
approximation and the reference solution obtained using MATLAB’s eigs command for
several iterations are shown in Figure 5.3. We remark that the scales of the plots change
as the approximation is refined.
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Figure 5.2.: Wavelet sets used by the adaptive wavelet method for the toggle switch model (2.94),
plotted as sparsity pattern of the Petrov-Galerkin matrix for the full basis.

5.2.2. Multi-dimensional genetic toggle switches

After testing the accuracy, we now apply the adaptive wavelet method to more challeng-
ing examples with larger state spaces, where a reference solution is no longer available.
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5.2. Numerical examples

Figure 5.3.: Difference between the wavelet approximation and the reference solution for the toggle
switch model (2.94), obtained with MATLAB’s eigs command for increasingly refined active set of
basis elements.

The first model is another genetic toggle switch, built around three mutually repressing
gene products, denoted S1, S2 and S3. The inhibition of each of the species by the other
two components of the system is modeled by using non-standard propensities (reactions
R1 through R3), while the other reaction channels are standard degradation reactions.
The reaction channels and corresponding parameter set are summarized below

R1 : ⋆ −→ S1 α1 = c11
(c12+x22)(c13+x

2
3)

µ1 = (1, 0, 0)T

R2 : ⋆ −→ S2 α2 = c21
(c22+x21)(c23+x

2
3)

µ2 = (0, 1, 0)T

R3 : ⋆ −→ S3 α3 = c31
(c32+x21)(c33+x

2
2)

µ3 = (0, 0, 1)T

R4 : S1 −→ ⋆ α4 = c4x1 µ4 = (−1, 0, 0)T

R5 : S2 −→ ⋆ α5 = c5x2 µ5 = (0,−1, 0)T

R6 : S2 −→ ⋆ α6 = c6x2 µ6 = (0, 0,−1)T

(5.7)

c11 = 125000, c21 = 50000, c31 = 250000, ci2 = ci3= 500, i = {1, 2, 3} (5.8)

c4 = 0.005, c5 = 0.002, c6 = 0.01.

The state space for the 3D toggle switch model (5.7) has 27 × 27 × 27 total degrees of
freedom. The stationary CME was solved using again anisotropic tensor products of B-
spline 2.2 interval wavelets with the target tolerance for the 1-norm of the residual being
set to tol = 0.01. Recall that the 1-norm scales with the size of the state space, so the
choice provides sufficient accuracy. The method was configured to use a maximum of
ηmax = 30000 basis elements, and in each step 1500 new coefficients were proposed.
The method stopped before exhausting the maximum number of basis elements allowed,
reporting ||r||1 = 0.007 after using 1.1% of the total degrees of freedom. In the first row
of Figure 5.4 the approximation of the stationary distribution is shown in the form of 2D
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5. Investigating long-time dynamics

marginal plots for S1 − S2 and S2 − S3, respectively (the third 2D marginal which is not
shown has a similar profile) and a 3D visualization of the profile of the multi-dimensional
stationary probability distribution, with three metastable areas clearly identifiable. The
second row contains results obtained by averaging the data from 1000 SSA simulations on
the long time interval [0, 106]. The first 2% of the SSA data from each trajectory has been
discarded before computing an approximation to the stationary distribution by averaging
the remaining trajectory data. The SSA results confirm that the adaptive wavelet method
delivers the correct qualitative description of the dynamics.
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Figure 5.4.: 3D toggle switch model (5.7) with inhibition of each of the species by the other two
species. First row (5.4a, 5.4b and 5.4c), shows results obtained with the wavelet method using
1.1% DOFs, while in the second row (5.4d, 5.4e and 5.4f) plots of the 2D marginals of an SSA-
based approximation of the stationary distribution are shown. The right panel in each row depicts
an iso-volume plot of the approximation to the stationary distribution where only values larger
than ε = 10−7 were used to construct the 3D visualization.

As a further example, a second large multi-dimensional genetic toggle switch (d = 4) is
presented. The model actually contains six species, but we can perform a reduction based
on algebraic arguments. The reduced species will be denoted by Ŝi, i ∈ {1, 3} in the
description of the reaction channels given in (5.9). The first four reactions R1, R2, R3 and
R4, model a reversible process by which two competing species S1 and S3 switch between
their active and inactive state. This can take place for example by the binding of molecules
belonging to other species to the S1 and S3 molecules, but the actual mechanisms are not
explicitly modeled. As there are no degradation reactions for the two species S1 and S3,
and assuming a closed system, their copy numbers remain constant.
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5.2. Numerical examples

R1 : S1 −→ Ŝ1 α1 = c1x1 µ1 = (−1, 0, 0, 0)T

R2 : S3 −→ Ŝ3 α2 = c2x3 µ2 = (0, 0,−1, 0)T

R3 : Ŝ1 −→ S1 α3 = c31(K1−x1)
(c32+x24)

µ3 = (1, 0, 0, 0)T

R4 : Ŝ3 −→ S3 α4 = c41(K3−x3)
(c42+x22)

µ4 = (0, 0, 1, 0)T

R5 : S1 −→ S1 + S2 α5 = c5x1 µ5 = (0, 1, 0, 0)T

R6 : S3 −→ S3 + S4 α6 = c6x3 µ6 = (0, 0, 0, 1)T

R7 : S2 −→ ⋆ α7 = c7x2 µ7 = (0,−1, 0, 0)T

R8 : S4 −→ ⋆ α9 = c8x4 µ8 = (0, 0, 0,−1)T

(5.9)

We can then omit the explicit modeling of the inactive state from the model, because
we have Si + Ŝi = Ki, i ∈ {1, 3}, with K1,K3 ∈ N constants denoting the total num-
ber of molecules of each of the species. The propensities of the reactions R3 and R4 are
then modified by replacing the components of the reduced species with their equivalent
formulation. Further, the two non-standard propensities belonging to reaction channels
R3 and R4 describe how the species S2 and S4 act as inhibitors and repress the activation
of the two competing species, S3 and S1, respectively. Finally, R7 and R8 are standard
degradation reactions for S2 and S4.

S1

S
3

0 20 40 60
0

10

20

30

40

50

60

(a)

S2

S
4

0 10 20 30
0

5

10

15

20

25

30

(b)

0

10

20

30

0

10

20

30

0

0.01

0.02

0.03

0.04

S2S4

(c)

S1

S
3

0 20 40 60
0

10

20

30

40

50

60

(d)

S2

S
4

0 10 20 30
0

5

10

15

20

25

30

(e)

0

10

20

30

0

10

20

30

0

0.01

0.02

0.03

0.04

S2S4

(f)

Figure 5.5.: 4D toggle switch given in (5.9). First row (5.5a, 5.5b and 5.5c), shows results obtained
with the wavelet method using 0.53% DOFs, while in the second row (5.5d, 5.5e and 5.5f) contour
and surf plots of the 2D marginals of an SSA-based approximation to the stationary distribution
are shown.
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5. Investigating long-time dynamics

Using the following parameter set

c1 = c2= 2, c31 = c41= 10, c32 = c42 = 1, (5.10)

c5 = c6 = 1, c7 = c8 = 3, K1 = K3= 63,

leads to a truncated state space Ωξ of size 26×25×26×25 ≈ 4·106 total degrees of freedom,
needed to capture the profile of the stationary distribution. Despite the large state space,
the adaptive wavelet method was applied successfully to this 4D genetic toggle switch
model, and the results are presented in Figure 5.5. Anisotropic tensor products of B-spline
3.5 interval wavelets were used, and the desired tolerance for the residual measured in
the 1-norm was given as tol = 0.7. The method stopped after using 0.53% of the total
number of degrees of freedom. Figure shows a comparison between the approximation
obtained with wavelet compression, and from averaging 1000 long-time SSA trajectories
for the interval [0, 105]. Again, the initial 2% of the data from each SSA trajectory was
discarded before computing the SSA-based approximation of the stationary distribution.

We remark at this point that although the last two examples are not based on biological
models in actual use, they do provide interesting test problems for the application of
wavelet compression to the task of computing committor probabilities, as the stationary
distributions of both models are non-trivial to compute and their profiles exhibit multiple
metastable states.

5.3. Transition Path Theory

Besides obtaining the solution of the stationary CME, computing other statistical proper-
ties of the underlying continuous-time Markov jump process, like characterizations of the
mechanisms by which transitions between meta-states occur, might also prove relevant
in the context of some applications. The transitions between metastable states are rare
events, which are triggered by stochastic noise. This is not surprising, as we have already
established in the previous chapters that the dynamics of biochemical systems are sub-
ject to random perturbations. Although stochastic simulations are capable of accurately
modeling such dynamics, gathering sufficient statistics on the transition events between
certain subsets of the state space using stochastic simulations is rarely practical. An alter-
native and more efficient strategy for solving such problems is given by Transition Path
Theory (TPT) ([VE06, MSVE08]). Providing an elaborate description of TPT is far beyond
the scope of this thesis, and indeed not actually required to understand how the adaptive
wavelet method can be used to efficiently compute committor probabilities. These statistical
objects are central to the theoretical framework of TPT, which uses them to compute the
transition rates between meta-states or the dominant transition pathways, among other
information. Obtaining the committor probabilities means solving large stationary prob-
lems closely related to the stationary CME, and consequently also affected by the curse of
dimensionality. Based on the similarity of the committor problems to the stationary CME,
it is only natural to try to extend the sparse wavelet compression concept to solving such
problems as well. The purpose of the following short description of TPT is only to pro-
vide some context for the numerical results and introduce the notation required in pre-
senting our algorithms. For further details, the reader is referred to the original sources
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5.3. Transition Path Theory

where TPT for Markov jump processes was introduced ([MSVE08, Met08]), which also
form the basis of the next section.

5.3.1. Rare events and committor probabilities

The problem of investigating transition processes between metastable states can be best
explained by making use once again of the toggle switch model from (2.94). In Figure 5.6a
one SSA trajectory of the model is plotted, with the evolution of the copy numbers for
each of the two species belonging to the model shown separately. We denote now by
A = {(x1, x2) : x1 > x2} and B = {(x1, x2) : x1 < x2} two subsets of the truncated state
space Ωξ of the model. Next, an examination of this single SSA trajectory leads to the
observation that only 5 transitions between A and B occur in the time interval [0, 2 · 106],
with the transitions being marked by vertical red lines in Figure 5.6a. Recall now that
any change in the state vector means one step of the SSA algorithm, and from Figure
5.6a it is clear that the system spends most of its time in either one of the two metastable
subsets of Ωξ. As a direct consequence, it is difficult to observe enough transitions as rela-
tively few occur during computationally tractable stochastic simulation times. Moreover,
the stationary distribution depicted in Figure 5.6b, does not represent a good reaction
coordinate for investigating the transitions, where by the term of “good” reaction coor-
dinate we refer to a quantity that can be used to describe the mechanisms by which the
rare events occur. Although the metastable states are clearly visible in the profile of the
stationary distribution, important information about the underlying dynamics of the sys-
tem, like the preferred pathways for the transitions from one meta-state to the other, are
somewhat concealed.
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Figure 5.6.: Investigating rare events with the help of SSA. Left panel: single SSA trajectory of
the toggle switch model (2.94) shown for each of the two species in a separate plot. The transitions
between two metastable sets A and B are marked by red lines. Right panel: Stationary distribution
for the same model, with superimposed representation of the two sets A and B.

Summarizing, in order to efficiently investigate rare events, we need a procedure for
gathering the relevant statistics and a new reaction coordinate that is better suited for
metastability analysis. Both these requirements can be fulfilled by using Transition Path
Theory (TPT). Given a time-continuous Markov jump process on the finite multi - dimen-
sional discrete state space Ωξ, and two non-empty disjoint sets A,B ∈ Ωξ, TPT provides
the means to describe the statistical properties of the transitions between these state space
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subsets by analyzing in detail the associated reactive trajectories, i.e., those trajectories by
which transitions from one set to another occur. By looking at the ensemble of all possible
reactive trajectories, TPT computes then such statistical quantities as the probability distri-
bution of reactive trajectories, or the probability current of reactive trajectories, i.e., what is the
net amount of reactive trajectories going through a given state. It also computes the rate of
reaction between a pair of arbitrarily selected sets and can single out the dominant reaction
pathways used by the random walker to travel between the sets (cf. [Met08, MSVE08]). In
a nutshell, TPT can lead to the full understanding of the discrete reaction mechanisms. A
detailed derivation of TPT for Markov jump processes can be found in [MSVE08], so we
mainly confine the presentation to the key ingredient needed for the computation of the
various TPT objects, the committor probability.

In order to characterize the transition A −→ B, let us first consider an equilibrium path
{X(t)}t∈R of the jump process which oscillates infinitely many times between the set A
and the set B. We are only interested in the segments of the equilibrium path that leave
A and go directly to B, not the ones that return to A before proceeding to the destination
or describe movements in the opposite direction. A schematic of a reactive trajectory
is shown in the left panel of Figure 5.7 (adapted from [MSVE08]), with the right panel
displaying an ensemble of reactive trajectories A −→ B superimposed on the contour
plot of the stationary distribution of the toggle switch model (2.94).
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Figure 5.7.: Schematic representation of a reactive trajectory (left panel, figure adapted from
[MSVE08]) and ensemble of reactive trajectories between two sets A, B for the toggle switch model
(right panel).

Only the pieces involved in direct transitions A −→ B are reactive trajectories, and by
ignoring the other path segments we obtain an ensemble of transition pathways between
the chosen subsets of the state space. We remark that pruning the trajectories of the non-
reactive segments is achieved by defining the times tAn and tBn, representing the last exit
from the non-reactive set and entry into the reactive state space, and the first entry into
the non-reactive set after exiting the reactive set, respectively. All the path segments lying
outside these boundaries are then discarded, leaving us with an ordered sequence of path
segments that give the successive states that were visited in the n-th transition between
A and B. All such finite sequences then build the ensemble of reactive trajectories.

As we are interested in the various statistical properties of this ensemble, objects must
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be defined that quantify these properties. A natural first candidate is the probability dis-
tribution of reactive trajectories, i.e., the probability that when the system is in a state
x ∈ Ωξ, it will first reach B rather than A. Intuitively, this can be expressed as the prob-
ability that the process is arriving from A rather than B, times the probability that it will
reach B instead of A in the future. This leads to the operational definition of the two
key objects of TPT, namely the forward committor probability and the backward committor
probability, respectively.

The discrete forward commitor q+ : Ωξ → R is defined for each state x ∈ Ωξ, as the
probability that the Markov jump process starting in x will first reach B rather than A. By
this definition, the committor probability for all states x ∈ A is q+(x) = 0 and similarly,
for all x ∈ B we have q+(x) = 1. For the other states x ∈ Ωξ \ (A ∪ B), we use that q+(x)
is the first entrance probability of the jump process {X(t), t ≥ 0, X(0) = x} into set B
avoiding set A. Such entrance probabilities are handled by modifying the jump process
such that these states become absorbing [MSVE08], and solving a backward Kolmogorov
equation (2.56) with a modified generator matrix. Recall now that we operate in a setting
characterized by the finite state space Ωξ, and the adjoint CME (2.80) with operator A⋆

given by (2.79) is a special case of the backward Kolmogorov equation (2.56), as previously
discussed in Section 2.5.2. Then, the adjoint operator A⋆ is isomorphic to the large and
sparse generator matrix of the Markov jump process given in (2.54), which by a slight
misuse of notation we shall also denote by A⋆ ∈ RN×N . The purpose of this rather
convoluted argument is to be able to express the discrete forward committor as the solution
of the following set of equations,

(A⋆q+)(x) = 0, for all x ∈ Ωξ \ (A ∪ B)
q+(x) = 0, for all x ∈ A
q+(x) = 1, for all x ∈ B.

(5.11)

We remark that (5.11) is just another way to write the committor problem in terms of the
operator A⋆, instead of the traditional description based on the generator of the Markov
jump process, given in [MSVE08].

Analogously, the discrete backward commitor q− : Ωξ → R for a state x ∈ Ωξ, is defined
as the probability that the process arriving in state x is coming from the set A rather
than from B. For an operational definition we need the generator description of the time-
reversed jump process, which is obtained from the “detailed balance” condition

diag(π)Ã = (diag(π)A⋆)T . (5.12)

Using (5.12), the generator of the time-reversed jump process is

Ã = diag(π−1)(A⋆)T diag(π) = diag(π−1)A diag(π), (5.13)

where, again abusing the notation, A ∈ RN×N denotes the matrix from (2.69) which
is isomorphic to the truncated CME operator, and π ∈ RN the unique (non-negative)
stationary probability of the system.

Next, via similar arguments as those used for the forward committor, we have that the
backward committor q− is the solution of the following system of equations,

(Ãq−)(x) = 0, for all x ∈ Ωξ \ (A ∪ B)
q−(x) = 1, for all x ∈ A
q−(x) = 0, for all x ∈ B.

(5.14)
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Note that as the stationary distribution π usually vanishes in large parts of the state
space Ωξ, it follows that the backward committor (5.14) problem is not defined for states
with π(x) ≈ 0, so the values of q− are only computed for the subset of states where the
corresponding stationary distribution values are non-zero.

We also remark that based on the definition of the forward committor q+, i.e., the prob-
ability of reaching B before A, we could in theory also compute q+ via standard SSA
simulations by starting multiple simulations from each state x ∈ Ωξ and measuring the
number of trajectories that have reached B first. Of course, due to the large number of
simulations needed, this approach is not computationally efficient for large problems and
provides at best only a very coarse approximation for the forward committor probability.

An example of forward and backward committor probabilities, respectively, is presented
in Figure 5.8, again for the specific case of the 2D toggle switch model from (2.94). Tran-
sitions were investigated between the set A = {(148, 38), (148, 39)} and the set B =

{(38, 148), (39, 149)} which are approximately located at the center of the two peaks mark-
ing the metastable sets. Examining Figure 5.8a, it becomes clear why the committor proba-
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Figure 5.8.: Examples of committor probabilities for the 2D toggle switch model

bilities represent a better choice than the stationary distribution for investigating the tran-
sitions between metastable states. Knowing the current state of the system x ∈ Ωξ and
the corresponding value of the commitor q+(x) we can easily give an answer to the ques-
tion how far the transition between A and B has progressed and what will occur next.
Notice that multiple intermediate states along the possible route of a transition can have
the same committor value, which means that the committor can be used to partition the
state space into ensembles of transition states. In the example shown in Figure 5.8a, the
states with q+(x) = 0.5 build the barrier between the two metastable states of the system.
In Figure 5.8b a surf plot of the backward committor is shown. The unusual profile can be
explained by the definition (5.14), which features a point-wise division by the elements
of the stationary distribution vector π ∈ RN . Consequently, the subset of states where the
stationary distribution almost vanishes is neglected when computing the values of q−.
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5.3. Transition Path Theory

5.3.2. TPT objects

Although they can provide useful information by themselves, the committor probabil-
ities are better utilized within the framework of TPT to access various important as-
pects of the system dynamics through specific objects that rely on the committor values.
One such object is the earlier mentioned probability distribution of reactive trajectories,
mR = {mR(x)}x∈Ωξ

∈ RN which is defined for a state x ∈ Ωξ as

mR(x) = q+(x) π(x) q−(x). (5.15)

If x ∈ A ∪ B, we have mR(x) = 0 and therefore mR is not a normalized distribution. In
order to normalize, we take ZAB =


xm

R(x) and obtain

mAB(x) = Z−1
ABq

+(x) π(x) q−(x), (5.16)

which gives the probability of observing the system in state x and in a reactive trajectory,
i.e., on its way from A to B.

The definitions of the other TPT objects also rely on the expressions of the forward and
backward committor functions, and their rigorous derivation can be found in [MSVE08].
We restrict ourselves to only informal definitions for these objects. One such object gives
the amount of discrete probability current transported by the ensemble of reactive trajecto-
ries. For two distinct states x and y, the probability current denoted fxy, is defined with
the help of the transition probability between the two states, weighted by the commit-
tor probabilities such that only relevant contributions to the actual transition A → B are
taken into account and contributions from trajectories returning to A before reaching B
or belonging to transitions in the opposite direction B → A are ignored. The transition
probability between two states of the state space is given by the corresponding entry into
the generator matrix as defined by (2.54). Owing to the arguments made earlier about
using the same notation for the adjoint operator A⋆ restricted to Ωξ and the generator, the
definition of the discrete probability current between two states x and y reads

fABxy =


π(x)q−(x) A⋆

xy q
+(y) if x ̸= y

0 otherwise.
(5.17)

We remark that the probability current can be interpreted as a very large sparse matrix
fAB ∈ RN×N . Furthermore, probability current is conserved, meaning that the amount of
probability flux leaving subset A will enter subset B and this is also true for every state x

along the way. This property leads to the computation of the transition rate between the
sets A and B as

kAB =


x∈A,y∈Ωξ

fABxy =


y∈Ωξ,z∈B
fAByz , (5.18)

As the definition (5.17) for fABxy might also contain “loops”, meaning that a trajectory
could pass through the states x or y more than once, an object called effective current is
also needed. The effective current can be understood as the net amount of trajectories that
perform a jump from x to y and is defined as the original probability current fABxy minus
the contributions made by any loops, namely

f+xy = max{fABxy − fAByx , 0}. (5.19)

115



5. Investigating long-time dynamics

{f+xy}x,y∈Ωξ
then defines a flow network from A to B and can be used to decompose the

ensemble of reactive trajectories into single reaction pathways which are finite sequences

w =

x(k0), . . . ,x(kn)


with x(k0) ∈ A, x(kn) ∈ B and x(k1), . . . ,x(kn−1) ∈ Ωξ \ A ∪ B. By {k0, . . . , kn} we have
denoted a subset of the index set {1, . . . , N} used for an enumeration {x(1), . . . ,x(N)}
of the states belonging to Ωξ. A pathway is simply a more concise representation for
trajectories, as it forms a “tube” through which many trajectories travel depending on
the size of the probability current allowed to pass through each section (x(ki), x(ki+1)) of
the pathway. The flow through a specific pathway w is constrained by its min-current,
given as

c(w) = min
m=(x,y)∈w

{f+xy}. (5.20)

The dynamical bottleneck of a reaction pathway is then defined as the pathway segment
between adjacent states that can transport the smallest amount of effective current, i.e.,

(b1, b2) = argmin
m=(x,y)∈w

{f+xy}. (5.21)

Using the definitions (5.20) and (5.21), it is possible to perform a decomposition of the
ensemble of reactive trajectories by identifying the “dominant” pathways, that is, those
reaction pathways with the maximal min-current c(w), or in other words, the pathways
that incorporate the dynamical bottleneck with the largest throughput. By removing the
effective current transported through the dominant pathway from the network, and re-
peating the process until there are no more pathways to be found between the sets A
and B, a non-unique decomposition of the flow network into individual pathways can
be obtained. This decomposition might be useful to estimate how many pathways are
necessary to carry a certain amount of the effective current. The algorithms for identifying
bottlenecks and computing the dominant pathways come from the context of maximum
flow problems, and further details can be found in [MSVE08]. An illustration of the prob-
ability distribution of reactive trajectories mAB, the effective current f+ and the dominant
pathways for a toggle switch model is provided in Figure 5.9.

Concluding this informal presentation, we note that from a numerical perspective, ap-
plying TPT to investigate a complex system can be viewed as a two-stage process. First,
we need to approximate the solution of the stationary CME (5.2), which is then followed
by approximating the forward q+ and backward q− committors, the solutions of (5.11) and
(5.14), respectively. The second stage is actually a post-processing step, in which the
computed approximations are used to obtain the different TPT objects presented in this
section. As these computations involve algorithms that do not benefit from wavelet com-
pression, our focus is solely on applying the wavelet method to the committor problems
in order to enable TPT analysis for high-dimensional problems, and we proceed now to
supply the specifics.

5.4. Wavelet approximation of the committors

Although similar to the stationary CME, the forward (5.11) and backward (5.14) commit-
tor problems also exhibit traits that require both a new formulation as well as a set of
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Figure 5.9.: Left and middle panel: illustration of discrete probability distribution of reactive
trajectories mAB (contour (5.9a) and mesh plot (5.9b)) for the toggle switch model. Right panel:
visualization of the effective current f+ between the states of a toggle switch. An edge between two
neighboring states (x(ki),x(ki+1)) with positive effective current is shown as a triangle oriented in
the direction of the flux and color coded according to the intensity of the effective current. The
dominant pathway that transports the largest amount of effective current is displayed in the left
and right panels by the black line connecting the two sets A and B identified as a set of boxes.

changes to the adaptive wavelet method itself, before wavelet compression can be ap-
plied. We begin the discussion with the approximation of the forward commitor problem
(5.11). Obtaining q+ means solving a stationary adjoint CME on the truncated state space
Ωξ with additional “boundary conditions”, given by the requirements that q+(x) = 0 for
all states x ∈ A and q+(x) = 1 for all states x ∈ B, respectively. In order to simplify the
presentation of the wavelet-based algorithms for the approximation of the committors,
we first define a new operator A⋆

bc restricted to the state space Ωξ, given as

(A⋆
bcq

+)(x) =


(A⋆q+)(x), if x ∈ Ωξ \ (A ∪ B)

q+(x), if x ∈ (A ∪ B).
(5.22)

The notation (5.22) describes the effects of the “boundary conditions” from (5.11) by re-
stricting the action of the adjoint operator A⋆ to the state space Ωξ \ (A ∪ B), whereas for
the states A∪B, it leaves q+ unchanged. Then, we end up with an equivalent formulation
for the discrete forward committor problem (5.11), namely

A⋆
bcq

+ = χB, (5.23)

with χB denoting the indicator function of the set B. The next step is imposing the
Galerkin condition on the equivalent formulation (5.23), thus projecting the problem
onto a low-dimensional approximation space spanned by a subset {ψj1 , . . . , ψjη} of a full
wavelet basis Ψ = {ψ1, . . . , ψN}. For the committor problems, a Petrov-Galerkin scheme
is no longer required if biorthogonal bases are used, because there is no need to pre-
serve an identity in the low-dimensional setting, a situation we have encountered in the
time-dependent and stationary CME algorithms. As a result, we can adapt the Galerkin
scheme as described in [CDD01] to the task of solving the forward committor problem
(5.23). Let Ψ = {ψ1, . . . , ψN} and Ψ̃ = {ψ̃1, . . . , ψ̃N} be a pair of biorthogonal wavelet
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bases on H(Ωξ), leading to the following wavelet representations

q+ =
N
i=1

γiψi, γi = ⟨q+ , ψ̃i⟩

χB =

N
i=1

βiψ̃i, βi = ⟨χB , ψi⟩.

We are interested in obtaining a numerical approximation q̃+ =
η

i=1 γiψji , and impose
the Galerkin condition in (5.23), yielding

⟨ψji ,A⋆
bcq̃

+⟩ = ⟨ψji , χB⟩, (5.24)

for all i = 1, . . . , η. Thus, we obtain the low dimensional linear system

Gγ = β, (5.25)

where, in the now customary manner, G ∈ Rη×η represents a Galerkin matrix defined as,

G = (gik)
η
i,k=1, gik = ⟨ψji ,A⋆

bcψjk⟩ . (5.26)

The approximation q̃+ is then obtained by a fast inverse wavelet transform of the new
coefficient vector γ ∈ Rη.

Computing the elements of the Galerkin matrix (5.26) is however complicated by the
inclusion of the “boundary conditions” in the definition of the operator A⋆

bc. Before ex-
plaining how this evaluation is achieved, we use the opportunity to comment on the
efficient computation of Galerkin matrix entries. The procedure that we describe next,
is used mutatis mutandis by all the specialized versions of the adaptive wavelet method
discussed in this thesis, as it is independent with respect to the choice of operator.

Two aspects make an efficient evaluation process of the Galerkin terms possible. The
first one is the tensor-product approach used to build the elements of the multi - dimen-
sional wavelet basis. For the sake of simplicity, it is always more convenient to avoid
using multi-indices for the identification of the elements belonging to a wavelet basis Ψ,
by using a suitable enumeration of the basis elements by single-indices. However, every
element ψK of Ψ, with K ∈ {1, . . . , N}, can also be identified via an equivalent multi-
index notation K = (k1, . . . , kd). This leads to the representation

ψK = ψ
(1)
k1

⊗ · · · ⊗ ψ
(d)
kd
, ψK(x) = ψ

(1)
k1

(x1) · . . . · ψ(d)
kd

(xd), (5.27)

where ψ(i)
ki

denotes the appropriate element from the i-th univariate wavelet basis in-
volved in the tensor product. Of course, computing inner products of the type ⟨ψji ,A⋆ψjk⟩,
with ji and jk two arbitrarily selected single-indices from {j1, . . . , jη} ⊂ {1, . . . , N}, can
use the multi-dimensional basis elements ψji and ψjk , respectively. In principle, all we
need to do is to apply the operator A⋆ (or A if the problem requires it) to the basis func-
tion ψjk and compute the inner product between the result and the element ψji . However,
from an efficiency point of view, the adaptive wavelet method would certainly benefit if
the reconstruction of these elements and the computations with the full tensor representa-
tions could be avoided. To achieve this goal, we need to make an assumption commonly

118



5.4. Wavelet approximation of the committors

used in tensor-product approaches for solving the CME (cf. [DHJW08, JH08, Eng09a]
among others), namely that the propensity functions αj(x) given in (2.5), that appear in
the definitions of both the CME operator A (2.61) and the adjoint operator A⋆ (2.79), are
separable and can be factorized as

αj(x) = cjα
(1)
j (x1) · α(2)

j (x2) · . . . · α(d)
j (xd), (5.28)

for all reaction channels Rj (j = 1, . . . ,M ). To illustrate how this works, we can use a
simple example of a bimolecular reaction channel S1 + S2

cj−→ S3 using the standard
propensity as defined in (2.12), i.e., αj(x) = cjx1x2, x ∈ Nd. Applying now the factoriza-
tion (5.28), we have α(1)

j (x1) = x1, α(2)
j (x2) = x2 and α(l)

j (xl) = 1 for all 2 < l ≤ d, where d
is the total number of species contained by the biochemical reaction network. Although
some propensity functions cannot be factorized (e.g. a toggle switch model presented in
[GRdO+11]), the standard propensities and even non-standard examples used in com-
plicated reaction networks (e.g. models (2.94), (5.7) presented in this thesis or models
found in literature [MK06, HHL08, MBS08, JH08, Eng09b, FL09]) can be written in the
form (5.28).

Taken together, the product structure of the propensities and of the wavelet basis el-
ements allows the evaluation of the inner products ⟨ψji ,A⋆ψjk⟩ in the following way.
Without loss of generality, and for the purpose of simplifying the notation, let us first
denote by u := ψji and v := ψjk two elements of a wavelet basis Ψ used to compute the
entry g⋆ik of the Galerkin-type matrix G⋆ (see (5.32)). Then, using the definition of the
adjoint operator A⋆ (2.79), we have

⟨u,A⋆v⟩ =

M
j=1


x∈Ωξ

αj(x)v(x+ µj)u(x) (5.29)

−
M
j=1


x∈Ωξ

αj(x)v(x)u(x)

=

M
j=1

cj


d
i=1

Θ1(i, j, ki, li)−
d
i=1

Θ0(i, j, ki, li)



with

Θ1(i, j, ki, li) =

ξi
xi=0

α
(i)
j (xi)v

(i)
ki
(xi + µji )u

(i)
li
(xi) (5.30)

=

α
(i)
j (·)v(i)ki (·+ µji ), u

(i)
li
(·)


Θ0(i, j, ki, li) =

ξi
xi=0

α
(i)
j (xi)v

(i)
ki
(xi)u

(i)
li
(xi) (5.31)

=

α
(i)
j (·)v(i)ki (·), u

(i)
li
(·)

.

In other words, by computing the inner products ⟨ψji ,A⋆ψjk⟩ in the manner given by
(5.29), we avoid the expensive evaluations with respect to the multi-dimensional state
vector x. These are then replaced with the inner products Θ1 and Θ0 with respect to every
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single direction variable xi, which are easier to compute. We remark at this point that the
variable ξi appearing in the definitions of (5.30) and (5.31) represents the i-th entry of
the truncation vector ξ. Furthermore, we can now easily take advantage of the available
knowledge about the reaction network to increase the efficiency of the computation. By
studying the propensity functions, we can establish whether the j-th reaction channel
(j = 1, . . . ,M ) affects the i-th spatial direction (i = 1, . . . , d). If this is not the case, we
have by definition µji = 0 and α

(i)
j = 1, which leads to Θ1(i, j, ki, li) = Θ0(i, j, ki, li), i.e.,

the inner product for the “shifted” term of the operator is identical the inner product of
the “non-shifted” term. Consequently, many of the terms in the expressions above vanish
and do not need to be explicitly computed, which significantly reduces the computational
workload. When evaluating the scalar products, improvements can also be made by
using a sparse storage scheme for the elements of the univariate wavelet bases, and taking
into consideration the support lengths of specific basis elements or whether the supports
intersect.

After presenting the computation of the Galerkin terms in the general case, we proceed
with the computation of the entries for the specific case of the committor problems. Usu-
ally, the number of the states assigned to the subsets A and B, between which the various
TPT objects are defined, is relatively small in comparison with the total number of states
contained by the truncated state space Ωξ. As a result, the computation of the Galerkin
matrix for the forward committor problem starts by computing the entries of a Galerkin
matrix G⋆ ∈ Rη×η with

G⋆ = (g⋆ik)
η
i,k=1, g⋆ik = ⟨ψji ,A⋆ψjk⟩ , (5.32)

accomplished by using (5.29). Basically, instead of using the operator A⋆
bc from (5.23),

we use the standard adjoint operator A⋆ on the entire state space Ωξ ignoring for now
the special conditions for the states assigned to A and B. After computing G⋆, the next
question is how to replace the entries of the matrix that are affected by the inclusion of
the “boundary conditions” in the definition of the operator A⋆

bc. A first step is to “cut
out”’ these states from the state space Ωξ. To this end, we give a more rigorous definition
for a subset A ⊂ Ωξ as a contiguous set of states forming a hypercube inside the larger
hypercube defined by the truncation vector ξ, i.e.,

A = {x ∈ Ωξ | ς li ≤ xi ≤ ςri , 0 ≤ ς li ≤ ςri ≤ ξi, for all i = 1, . . . , d}. (5.33)

The subset A is thus defined by the intervals [ς li , ς
r
i ] giving the range for the values of

the spatial variables xi in each direction i ∈ {1, . . . , d}. As the states x ∈ Ωξ take in-
teger values, we also have a natural mapping to a set of multi-indeces, i.e., the values
of any state x represent also the values of the corresponding multi-index. Let K(ξ) =

I [0,ξ1] ⊗ · · · ⊗ I [0,ξd] denote the list of all such multi-indices associated with the states
x ∈ Ωξ, with I [0,ξi] = {ki ∈ N | 0 ≤ ki ≤ ξi} the local indices for the i-th direction. Further,
let K(A) = I [ς

l
1,ς

r
1 ] ⊗ · · · ⊗ I [ς

l
d,ς

r
d ] describe the list of multi-indices for the states x ∈ A.

Then, removing from the i-th direction the indices corresponding to the elements in sub-
space A, means that the summations in (5.30) and (5.31) are computed only for the local
index intervals K(ξi, ς

l
i , ς

r
i ) = [0, ς li − 1] ∪ [ςri + 1, ξi] where i ∈ {1, . . . , d}. However, from

a computational point of view, rather than performing the summation using the index
vectors K(ξi, ς

l
i , ς

r
i ), it is easier to perform the operation on the smaller index intervals
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[ς li , ς
r
i ]. Additionally, we can take advantage of the localized support of the elements from

the univariate wavelet bases to improve computational efficiency. Because for many ele-
ments we have supp(ψ

(i)
ki
)∩ [ς li , ς

r
i ] = ∅, the corresponding terms vanish. Note that we use

here supp(ψ
(i)
ki
) in a loose sense, meant to identify the index values corresponding to the

localized support of the discrete basis element. Thus, removing the entries of G⋆ that are
affected by the “cut out” of A and B, means selecting those elements from the index set
{j1, . . . , jη} that belong to basis elements where at least one of the tensor components ful-
fills the condition supp(ψ

(i)
ki
)∩ [ς li , ς

r
i ] ̸= ∅. As the sets A and B are known beforehand, and

the support lengths of the elements from the univariate basis elements as well, we can
compute in a pre-processing step the index subset MA∪B = {m1, . . . ,mν} ⊂ {1, . . . , N}
of the elements satisfying these conditions. Naturally, only some of the elements identi-
fied by the indices in MA∪B are also contained in the active set Jη = {j1, . . . , jη} which is
used for computing the entries of the Galerkin matrix (5.32). Therefore, we only need to
compute the entries of a smaller matrix Gc ∈ Rη̃×η̃, with η̃ ≪ η. For this task we use only
the basis elements whose indices belong to the intersection set Jη̃ = Jη ∩ MA∪B. Then,
the entries of the matrix Gc are given as

Gc = (gcik)
η̃
i,k=1, gcik =


ψji ,A⋆ψjk


. (5.34)

In the expression (5.34) above, we have used the notation ψjk to describe a multi - dimen-
sional basis element ψjk , with its tensor components containing non-zero elements only
for the entries with local indices [ς li , ς

r
i ] ∪ [ϱli, ϱ

r
i ] in the i-th spatial direction. Here, ϱli, ϱ

r
i

are the minimum and maximum values for the spatial variables xi in each direction that
define the set B ⊂ Ωξ, analogously to (5.33).

In practical terms, the computation of the entries of Gc uses the same procedure as
the one detailed in (5.29), but with the modifications that we have discussed above with
respect to the summations in (5.30) and (5.31). Because the matrix Gc is smaller then G⋆,
a final step is to perform an embedding of its values into an appropriately size matrix
Gcη ∈ Rη×η, by computing the corresponding locations in the larger matrix.

After computing the effects of removing the state subsets A and B from the state space
Ωξ, the last step in the computation must fill in the missing values. For x ∈ A ∪ B, we
have defined the operator A⋆

bc as leaving the function q+ unchanged. For the Galerkin
entries, this translates into computing the corresponding “mass” matrix ∆c ∈ Rη̃×η̃ with
entries given by

∆c = (δcik)
η̃
i,k=1, δcik =


ψji , ψjk


. (5.35)

After embedding the entries of the matrix ∆c into an appropriately sized matrix
∆c
η ∈ Rη×η, we can recover the Galerkin matrix (5.26) for the forward committor problem

by simply using the three previously computed matrices G⋆, Gcη and ∆c
η,

G = G⋆ −Gcη +∆c
η. (5.36)

We continue now the exposition with the details related to approximating the solution
q− of the backward committor (5.14) problem using wavelets. Computing q− means solv-
ing a stationary-like CME equation with an operator Ã restricted to the state space Ωξ,
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isomorphic to the generator matrix of the time-reversed process. Additionally we have
the “boundary conditions” q−(x) = 1 for all states x ∈ A and q−(x) = 0 for all states
x ∈ B, respectively. The generator of the time-reversed process (5.13), and implicitly the
operator Ã, features divisions with the values of the stationary distribution π. This means
that for the states where the stationary distribution almost vanishes, computing the en-
tries of the backward committor q− is not possible, a problem illustrated in Figure 5.8b.
Consequently, the affected states must be omitted from the computation of the commit-
tor q−. One possible solution would be to redefine the state space Ωξ such that it includes
only the states x where π(x) > tol, but this would entail first an exhaustive search of
the high-dimensional space, and secondly and even more inconveniently, the simplicity
of the domain would be lost, replaced by a complex multi-dimensional domain that con-
forms to the profile of the stationary distribution. Such a state space would then make the
application of the adaptive wavelet method in its current form impossible. Fortunately,
(5.14) can be replaced by the alternative formulation

(Aρ−)(x) = 0, for all x ∈ Ωξ \ (A ∪ B)
ρ−(x) = π(x), for all x ∈ A
ρ−(x) = 0, for all x ∈ B.

(5.37)

In (5.37), instead of computing q−, we compute ρ− with ρ−(x) = π(x)q−(x) for all x ∈
Ωξ \ (A∪B). The reasons for this simplification are two-fold. First, instead of the operator
Ã, we can use the more convenient CME operator A (2.61), and secondly, the computation
of the backward committor q− by itself is of limited practical interest. Its usefulness is much
more related to its appearance in the operational definitions of the TPT objects (5.16) or
(5.17). However, the TPT objects all feature terms of the type π(x)q−(x), so computing
ρ− instead of q− is advantageous, as it avoids a post-processing step.

In order to have a wavelet “friendly” formulation, we proceed now in a similar way as
in (5.23), and define a new operator Abc as

(Abcρ
−)(x) =


(Aρ−)(x), if x ∈ Ωξ \ (A ∪ B)

ρ−(x), if x ∈ (A ∪ B).
(5.38)

Using the newly introduced notation (5.38) leads to the form of the backward committor
problem to which the wavelet method will be applied, namely

Abcρ
− = χA, (5.39)

where χA is a function defined as

χA(x) =


π(x), x ∈ A
0, x ̸∈ A.

Next, we can project (5.39) onto a low-dimensional space {ψj1 , . . . , ψjη} by imposing the
Galerkin condition in a manner similar to the forward committor case, which yields a low
dimensional linear system featuring the Galerkin matrix T ∈ Rη×η with entries

T = (tik)
η
i,k=1, tik = ⟨ψji ,Abcψjk⟩ . (5.40)

Computing the entries of the Galerkin matrix (5.40) then uses the same method as em-
ployed for the matrix (5.32) related to the forward committor problem, with minimal changes
imposed by the use of operator Abc instead of A⋆

bc.
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One last issue when using wavelet approximation for the committor problems is to
ensure that the values of the numerical approximations for states x ∈ A∪B are consistent
with the definitions of the committors. Let

r = A⋆
bcq̃

+ − χB (5.41)

be the residual of the forward committor problem (5.23). The goal is to have r(x) = 0

for any state x ∈ A ∪ B. As we know that the Galerkin condition (5.24) implies that
the residual is orthogonal to the approximation space, we just need to choose the ele-
ments of the approximation space such that we have χA ∈ span{ψj1 , . . . , ψjη} and χB ∈
span{ψj1 , . . . , ψjη}, respectively. Here, χA and χB are the indicator functions for the sets A
and B. In other words, the approximation space must always contain the basis elements
required to represent the states enclosed by the two subsets. Obtaining the correspond-
ing indices is easily accomplished in a pre-processing step by using wavelet transforms
of two multi-dimensional objects with the same size as Ωξ but non-zero entries only in
the states x ∈ A and x ∈ B, respectively. The indices corresponding to the wavelet co-
efficients that are larger than a prescribed tolerance are then saved in a set RA∪B. The
set RA∪B will then be retained throughout the residual-based refinement process of essen-
tial degrees of freedom in the active index set, with its elements being omitted from the
thresholding procedure. Together with the Galerkin projection, these two building blocks
constitute the computational core of the adaptive wavelet method for the committors. A
sketch of the specialized method is given in Algorithm 7.

Algorithm 7: Adaptive wavelet method for the forward committor problem

Parameter : subsets A and B ⊂ Ωξ with A ∩ B = ∅, tolerance tol
index sets MA∪B and RA∪B (see comments above)
committor type: forward
∆µ (new basis elements per step), ηmax (maximum allowed DOFs)
initial active set of coefficients Jη = {j1, . . . , jη}

Input : coefficient vector β(0) = (β
(0)
1 , . . . , β

(0)
η )T via FWT of χB

Galerkin matrix G defined as in (5.26)
Output : approximation q̃+ ≈ q+

Solve Gγ = β and recover approximation q̃+, compute residual r using (5.41)

while ||r||1 > tol and η < ηmax do
1. Enlarge approximation space by ∆µ elements using a posteriori analysis of r.

2. Solve the linear system
Gγ = β

with enlarged Galerkin matrix G ∈ R(η+∆µ)×(η+∆µ) and vector β ∈ Rη+∆µ.

3. Compute approximation q̃+ =
η+∆µ

i=1 γiψji and new residual r

4. Apply thresholding to coefficient vector γ, taking care to update the Galerkin
matrix G and vector β. Thresholding is only applied to coefficients with in-
dices in (Jη + J∆µ) \ RA∪B.

end
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5. Investigating long-time dynamics

We remark that because many substeps from Algorithm 7, like the enlargement of the
approximation space or the thresholding strategy use the same mechanisms as their coun-
terparts from Algorithms 3 and 6, some details have been omitted from the current de-
scription.

Next, we take a look at the feasibility of our approach by comparing the wavelet ap-
proximation for the forward committor to a reference solution. The model chosen is again
the toggle switch given in (2.94) and using the parameter set (4.32) the corresponding state
space Ω32×32 is sufficiently small, such that (5.23) can be solved directly. In the left panel
of Figure 5.10, the committor function q+ is shown, while in the middle panel we plot the
error between the reference solution and the wavelet approximation computed by succes-
sive steps of the adaptive wavelet method. The right panel 5.10c displays the evolution
of the 1-norm of the residual (5.41) for the wavelet approximation. For this test problem,
we used the sets A = {(18, 3), (18, 4)} and B = {(3, 18), (4, 18)}.

(a) Committor q+
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(c) 1-norm of residual

Figure 5.10.: Comparing the wavelet approximation of the forward committor function q+ for the
model (2.94) with parameter set (4.32) with a reference solution obtained by solving the linear
system (5.23) directly. Both the error and the residual of the wavelet approximation are measured
in the 1-norm.

Drawing a line, the specialized version of the wavelet method for the committors uses
the same numerical recipe as the method for the stationary CME discussed earlier in this
chapter. The main differences are related to the use of a non-standard state space Ωξ/A∪B
which leads to an increase in the complexity of the bookkeeping required to project the
system in the low-dimensional space. We remark that although many of the issues re-
lated to approximating the committor equations have been resolved, additional technical
difficulties remain, for example making the computation of the specific Galerkin matrix
entries more efficient. Moreover, after approximating the committor functions, a post-
processing step must be applied in order to compute the dominant transition pathways
and the corresponding transition rates. For models with large state spaces, this is also
a non-trivial problem that must be solved before utilizing the current method at its full
potential.

Before presenting some examples of using the committor approximations for metasta-
bility analysis, we comment on another newly developed approach for the computation
of committor probabilities. Instead of solving the system of linear equations from (5.23),
an alternative formulation for the committors problem is to express the committors in
terms of the dominant eigenvectors of a modified operator, and based on this reformu-
lation a method for their efficient computation has been recently proposed in [PHSN11].
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5.5. Metastability analysis with TPT

Instead of the master operator description of system dynamics, the authors use a descrip-
tion in terms of the time-discrete transition matrix T (τ) ∈ RN×N , which appears in the
Chapman-Kolmogorov equation

p(kτ) = p(0)T k(τ).

However, they also provide a transformation procedure between the matrix T and the
generator matrix underlying our formulation. The approach then uses a modified tran-
sition matrix and reduces the computation of the committor to finding one largest non-
trivial right eigenvector (cf. [PHSN11]), with the help of the power method [GVL96].
Consequently, we remark that wavelet compression can also be used for the eigenvalue
formulation of the committor problem, by modifying the method designed for the sta-
tionary CME to include the changes related to the computation of the Galerkin entries
detailed in section 5.4.

5.5. Metastability analysis with TPT

We illustrate now the usefulness of approximating the committors by visualizing some
TPT objects for the multi-dimensional genetic toggle switches given in (5.7) and (5.9).
Figure 5.11 depicts a selection of reaction pathways between two of the three metastable
states of the 3D toggle switch model (5.7).

Figure 5.11.: Selection of pathways for the 3D toggle switch model (5.7)
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5. Investigating long-time dynamics

The two sets A and B were defined by the limits

A = {x∈ Ωξ| 36≤ x1 ≤ 37, 2≤ x2 ≤ 3, 2≤ x3 ≤ 3}
B = {x∈ Ωξ| 2 ≤ x1 ≤ 3, 36≤ x2 ≤ 37, 2≤ x3 ≤ 3}

and are identified in Figure 5.11 by blue voxels. Each pathway is color-coded according
to its min-current c(w) (darker colors indicate larger values), and at selected points along
the pathways, pyramids oriented in the direction of the flux and also color-coded with re-
spect to the intensity of the effective current flowing through the corresponding pathway
segments are shown. The size of the pyramid-shaped markers also indicate the intensity
of the effective current, and we note that the featured pathways are only an arbitrary
selection of the full decomposition in single pathways. Showing all the individual path-
ways however, would render the visualization ineffective. Moreover, the normalized
probability distribution of reactive trajectories mAB is shown as a transparent gray iso-
surface, which conforms roughly to the profile of the stationary distribution presented in
Figure 5.4c. Note that compared to the 3D visualization of the stationary distribution pro-
file from Figure 5.4c, a different view point is used. We also remark that for visualization
purposes, in Figure 5.11 results for the model (5.7) using the scaled parameter set

c11 = 4225 · 0.5, c21 = 4225 · 0.2, c31 = 4225 · 1, ci2 = ci3= 65, i = {1, 2, 3} (5.42)

c4 = 0.025 · 0.5, c5 = 0.025 · 0.2, c6 = 0.025 · 1.

are shown. As it can be observed, TPT allows a precise analysis of the underlying dy-
namics of the system. While most of the probability current flows using the direct route
between the two states A and B as indicated by the dark-colored pathways, some of the
pathways also make a detour towards the other metastable state, before continuing to
the set B. However, these pathways have a lower effective current throughput, which is
illustrated by their lighter color and the corresponding smaller size of the markers. Thus,
TPT can potentially be used to identify those degrees of freedom that describe the es-
sential dynamics, and therefore enable the creation of reduced models that discard the
unused DOFs.

As a last example, we show the probability distribution of reactive trajectories and the
dominant pathway, i.e., the pathway which contains the dynamical bottleneck with the
highest intensity, for the 4D toggle switch model from (5.9). Because we are now trying to
visualize a four-dimensional object, the subplots in Figure 5.12 show only 3D marginals
of both the probability distribution of reactive trajectories and the dominant pathway.
The 4th dimension of the pathway segments is visualized by color-coding the pathway
markers using a heat map. The two sets A and B were defined by the limits

A = {x∈ Ωξ| 51≤ x1 ≤ 55, 16≤ x2 ≤ 20, 1≤ x3 ≤ 3, 1 ≤ x4 ≤ 2}
B = {x∈ Ωξ| 1 ≤ x1 ≤ 3, 1 ≤ x2 ≤ 2, 51 ≤ x3 ≤ 55, 16≤ x4 ≤ 20}

and are shown using blue voxels for set A and red voxels for set B, respectively.
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5.5. Metastability analysis with TPT

(a) (b)

(c) (d)

Figure 5.12.: Examples of dominant pathway for the 4D toggle switch model (5.9) visualized using
3D projections: S1 − S2 − S3 (5.12a), S1 − S2 − S4 (5.12b), S1 − S3 − S4 (5.12c) and S2 − S3 − S4

(5.12d).
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CHAPTER

SIX

HYBRID DETERMINISTIC-STOCHASTIC MODELS

The previous Chapters 4 and 5, demonstrated that using wavelet compression is a valid
way of mitigating the effects the curse of dimensionality has on both the time-dependent
CME (2.67), and its stationary version given by (5.2). In order to achieve further reduc-
tions in the numbers of degrees of freedom required to approximate the solution of the
stationary CME, we present in this chapter how the adaptive wavelet method can be
embedded within a hybrid strategy. As is customary with hybrid approaches (see e.g.
[FL07, HL07, FLH08, HHL08]), the main idea is to split the model into stochastic and de-
terministic parts. The part that contains the species with low copy-numbers and hence
more susceptible to stochastic fluctuations is modeled with the computationally expen-
sive CME, while the part that includes the remaining system components with higher
molecular counts is dealt with in a deterministic setting. Then, the stationary solution of
the CME for the full system is approximated by alternately calling the adaptive wavelet
method for the stochastic part, and a Newton method for the deterministic description.
This hybrid approach allows the numerical treatment of systems with larger state spaces
by employing the adaptive wavelet method more efficiently, i.e., only for the critical sub-
parts of the biochemical system, and the potential will be illustrated by a numerical ex-
ample. However, the advantages brought by the reduction in the size of the CME state
space when using hybrid methods must be weighted against the loss of accuracy in-
herent when solving the modified equation. Additionally, biochemical systems do not
always exhibit a clear separation of scales, so partitioning the systems must be handled
with care. We proceed now with the derivation of a hybrid model for the CME first pro-
posed by A. Hellander and P. Lötstedt in [HL07], followed by a presentation of the hybrid
adaptive wavelet method for the stationary CME based on this approach. However, nu-
merical results and the detailed error analysis of the Hellander-Lötstedt hybrid model
by Jahnke [Jah11], showed that this hybrid model cannot always deliver a reasonably ac-
curate and qualitatively correct description of the system dynamics. We conclude the
chapter with two numerical examples, a non-trivial problem where the hybrid model can
be successfully applied, and a second example with a bimodal solution profile where the
approach faces difficulties. Finally, possible refinements to the hybrid adaptive wavelet
method allowing the treatment of problems having multi-modal stationary distributions
are mentioned.
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6. Hybrid deterministic-stochastic models

6.1. Derivation of the Hellander-Lötstedt hybrid model

6.1.1. Splitting the model

The derivation of the hybrid model starts by way of necessity with the partition of the
full model which contains d different species S1, . . . , Sd, into two groups S1, . . . , Sd1 and
Sd1+1, . . . , Sd1+d2 , where d1 < d and d = d1 + d2. The first group S1, . . . , Sd is made
up of a few critical species while the second one encompasses the other species from the
biochemical reaction network that interact with the critical species, but are less prone to
stochastic fluctuations due to their larger copy-numbers. In accordance with this partition
of the species, the state vector x ∈ Nd0 of the full system and the stoichiometric vectors µj

of the reaction channels Rj are also decomposed into

x = (y, z) ∈ Nd0, and µj = (νj , ζj) ∈ Zd for all j ∈ 1, . . . ,M (6.1)

where

y = (y1, . . . , yd1) = (x1, . . . , xd1) ∈ Nd10
z = (z1, . . . , zd2) = (xd1+1, . . . , xd1+d2) ∈ Nd20 .

Moreover, we have νj = (νji )
d1
i=1 = (µji )

d1
i=1 ∈ Zd1 and ζj = (ζjk)

d2
k=1 = (µjk)

d2
k=d1+1 ∈ Zd2 for

every reaction index j = 1, . . . ,M . We also assume that the propensity functions αj(x)
defined in (2.5) are separable, i.e., for every j there exist two functions βj : Nd10 → R and
γj : Nd20 → R such that

αj(x) = αj(y, z) = βj(y)γj(z). (6.2)

The propensities with the general form given by (2.5) naturally satisfy this assumption,
but also non-standard propensities like the ones used to model inhibition by competing
species encountered for example in the model of the Gardner toggle switch listed in (2.94)
(reactions R1 and R2), are amenable to a separation along the lines described by (6.2). We
remark however, that the decomposition of the propensities is not unique in the sense that
the reaction constant cj appearing in the general form (2.5) of the propensity functions can
be inserted either in the definition of the function βj or that of γj .

Substituting the state vector x ∈ Nd0 with its decomposition (6.1) into the CME given in
(2.58), and making use of the assumption (6.2), we have

∂tp(t,y, z) = (Ap)(t,y, z) (6.3)

=
M
j=1


αj(y − νj , z− ζj)p(t,y − νj , z− ζj)− αj(y, z)p(t,y, z)



=

M
j=1


βj(y − νj)γj(z− ζj)p(t,y − νj , z− ζj)− βj(y)γj(z)p(t,y, z)


.

As was already shown in section 2.5, restricting the CME operator (2.61) to a finite state
space Ωξ (2.65), leads to the truncated operator being isomorphic to a large sparse matrix,
which by a slight abuse of notation we also denote by A ∈ RN×N , with N =

d
i=1 ξi and

ξ denoting a suitably chosen truncation vector. Furthermore, in case Neumann boundary
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6.1. Derivation of the Hellander-Lötstedt hybrid model

conditions are imposed and the assumptions detailed in Chapter 2 are satisfied, we have
that if p(0,y, z) is a probability distribution, the solution of the CME will converge to a
stationary distribution ρ = ρ(y, z) with Aρ = 0.

Consequently, we extend now the definition of the truncation of the infinite state space
Nd0 given by (2.65) to the partitioned model by writing Ωξ = Ωξ|y × Ωξ|z , where

Ωξ|y = {y ∈ Nd10 | y < ξ|y , ξ|y = (ξ1, . . . , ξd1)}

Ωξ|z = {z ∈ Nd20 | z < ξ|z , ξ|z = (ξd1+1, . . . , ξd1+d2)}.

Similarly to the conditions imposed in (2.59), we further stipulate that

βj(y) = 0 if y /∈ Ωξ|y , γj(z) = 0 if z /∈ Ωξ|z , p(·,y, z) = 0 if (y, z) /∈ Ωξ|y × Ωξ|z , (6.4)

and analogously to (2.72), impose discrete Neumann boundary conditions, i.e.,

βj(y) = 0 if y + νj /∈ Ωξ|y , γj(z) = 0 if z+ ζj /∈ Ωξ|z . (6.5)

Condition (6.5) leads to the suppression of all reaction channels j ∈ {1, . . . ,M} that could
cause a jump from a state (y, z) ∈ Ωξ|y ×Ωξ|z to a state (y+ νj , z+ ζj) /∈ Ωξ|y ×Ωξ|z lying
outside the truncated state space.

6.1.2. Model reduction by product approximation

The next step in the derivation of the hybrid model is to approximate the solution ρ(y, z)
of the stationary CME via a direct product

ρ(y, z) ≈ (u⊗ q)(y, z) = u(y)q(z) (6.6)

of two stationary marginal distributions u(y) and q(z) which depend only on y and z,
respectively. Naturally, for most cases this product approximation is very coarse.

With the aim of deriving a set of coupled equations for the two marginal distributions,
we impose the conditions

0 =


z∈Ωξ|z

A(u⊗ q)(y, z), for all y ∈ Ωξ|y (6.7)

0 =


y∈Ωξ|y

A(u⊗ q)(y, z), for all z ∈ Ωξ|z (6.8)

For brevity, we shall drop from now on the superfluous indicator of the state space from
the notation and write


z and


y instead of


z∈Ωξ|z

and


y∈Ωξ|y
, respectively.

Expanding now the right-hand side of condition (6.7) by using (6.3) together with the
product ansatz made in (6.6), and grouping the terms depending on z, we have


z

A(u⊗ q)(y, z) =
M
j=1


z

γj(z− ζj)q(z− ζj)

βj(y − νj)u(y − νj) (6.9)

−
M
j=1


z

γj(z)q(z)

βj(y)u(y).
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6. Hybrid deterministic-stochastic models

From the conditions (6.4) and (6.5), and introducing the notation z̃ = z− ζj , we obtain
that 

z

γj(z− ζj)q(z− ζj) =

z̃+ζj

γj(z̃)q(z̃) =

z

γj(z)q(z). (6.10)

Using now relation (6.10) in (6.9) and applying similar arguments also to the second equa-
tion (6.8), yields the desired system of coupled equations for the marginal distributions
u(y) and q(z),

0 =

M
j=1


z

γj(z)q(z)

βj(y − νj)u(y − νj) − βj(y)u(y)


(6.11)

0 =
M
j=1


y

βj(y)u(y)

γj(z− ζj)q(z− ζj) − γj(z)q(z)


. (6.12)

Notice that the product approximation presented above has significantly reduced the full
CME on the truncated space Ωξ = Ωξ|y × Ωξ|z which has a total number of degrees of
freedom given by N =

d1
i=1 (ξ|y)i ·

d2
k=1 (ξ|z)k, to the CME model (6.11)-(6.12) which has

only Ñ =
d1
i=1 (ξ|y)i +

d2
k=1 (ξ|z)k degrees of freedom. Basically, the linear full CME has

now been replaced with two CME-like equations, where the corresponding propensities
are multiplied by factors that depend on the other marginal distribution, i.e.,


z γj(z)q(z)

for (6.11), and


y βj(y)u(y) for (6.12). By fixing u(y) and q(z), we obtain two lower-
dimensional stationary CMEs, which are obviously easier to solve than the full equation.

6.1.3. Hellander-Lötstedt hybrid model

The last step in the derivation of the Hellander-Lötstedt model is to replace the marginal
q(z) from the coupled system of equations (6.11)-(6.12) with an approximation, thus fur-
ther reducing the number of degrees of freedom.

To this end, we make the assumption that we can replace q(z) with the approximate
expectation denoted by

η ≈

z

zq(z). (6.13)

Because the coupling term in (6.11) is actually


z γj(z)q(z), we introduce an approxima-
tion in terms of η, 

z

γj(z)q(z) ≈ γj


z

zq(z)

≈ γj(η), (6.14)

i.e., the expectation of the propensity is approximated by the propensity of the expec-
tation. For the second equation (6.12), we again use conditions (6.4) and (6.5) to obtain
that 

z

z

γj(z− ζj)q(z− ζj)


=

z

(z+ ζj)γj(z)q(z). (6.15)
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6.2. Hybrid algorithm for stationary CME using wavelets

Inserting (6.15) into (6.12), where we have first taken the sum over z, yields

0 =

M
j=1


y

βj(y)u(y)


z

z

γj(z− ζj)q(z− ζj) − γj(z)q(z)


(6.16)

=
M
j=1


y

βj(y)u(y)

ζjγj(η).

Substituting (6.14) into (6.11) and using the result from (6.16), we arrive at the final form
of the coupled system of equations which forms the Hellander-Lötstedt model, given as

0 =
M
j=1


γj(η)


βj(y − νj)u(y − νj) − βj(y)u(y)


:= Ã(η)u(y) (6.17)

0 =
M
j=1


y

βj(y)u(y)

ζjγj(η) := F (η, u(y)). (6.18)

The model presented above was first proposed for the case of the time-dependent CME
in [HL07], using a different derivation. We also remark that similar models have also
appeared in the context of other applications like molecular dynamics (see [Bor91] or
[GJ08]). In the Hellander-Lötstedt approach, the solution consists of two components, on
one hand u(y) which solves a reduced linear CME where the operator Ã(η) has propen-
sities that depend on the values of η, and on the other hand, the vector of approximate
expectations for the non-critical species η, which is the solution of a non-linear equation
that includes factors that depend on the marginal distribution of the critical species u(y).
Compared with the product based model reduction, the number of degrees of freedom
present in this hybrid model is

d1
i=1(ξ|y)i + d2. At this point, we note that the derivation

of the hybrid model for the stationary CME which was presented above follows the argu-
ments for the time-dependent case to be found in [Jah11], where a detailed analysis of the
modeling error for the Hellander-Lötstedt was carried out and an extension to the model
was introduced. We proceed now to give some algorithmic details about the embedding
of the adaptive wavelet method within the hybrid approach (6.17)-(6.18).

6.2. Hybrid algorithm for stationary CME using wavelets

Solving the two subproblems that make up the hybrid model (6.17)-(6.18) is done alter-
nately. For the stochastic part, the adaptive wavelet method for the stationary CME is
used, with the mention that the propensities of the CME operator Ã(η) now depend on η,
therefore the routine that evaluates (Ãq)(y) for all y ∈ Ωξ|y uses the values of η computed
in the previous step. The deterministic section of the approximation is obtained by using
an d2-dimensional Newton method that uses the approximation of the marginal distribu-
tion u(y) computed in a preceding step performed with the wavelet method. Now, we
briefly discuss Newton’s method for multi-dimensional problems [Ste08].

The task is to solve the non-linear subproblem from (6.18), i.e.

F (η, u(y)) = 0.
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6. Hybrid deterministic-stochastic models

Let F : Rd2 × Ωξ|y → Rd2 be given by F (η, u(y)) = (Fi(η, u(y)))i=1:d2 , where

Fi(η, u(y)) =

M
j=1


y

βj(y)u(y)

ζji γj(η),

and η = (ηi)i=1:d2 . Additionally, the marginal distribution u(y) is known. We denote now
the gradient of F (η, u(y)) by DF (η, u(y)) ∈ Rd2×d2 ,

DF (η, u(y)) =


∂F1(η,u(y))

∂η1
· · · ∂F1(η,u(y))

∂ηd2
...

. . .
...

∂Fd2
(η,u(y))

∂η1
· · · ∂Fd2

(η,u(y))

∂ηd2


and by standard arguments, obtain the following recursion for Newton’s method for
multi-dimensional problems,

ηk+1 = ηk − (DF (ηk, u(y)))−1F (ηk, u(y)),∀k ≥ 0. (6.19)

At each step k of the Newton method, we need to compute the vector

vk = (DF (ηk, u(y)))−1F (ηk, u(y)) ∈ Rd2 .

Naturally, we can avoid the need to explicitly compute the matrix (DF (ηk, u(y)))−1, by
solving instead the linear system

DF (ηk, u(y))vk = F (ηk, u(y)).

We remark that as the size of the matrixDF (ηk, u(y)) ∈ Rd2×d2 is usually small, the linear
system can be easily solved. The multi-dimensional Newton method is stopped and con-
vergence to a solution of the problem F (η, u(y)) = 0 is declared when ||F (ηnew, u(y))||2 ≤
tol, with tol a prescribed tolerance, usually chosen as 10−10. We summarize now the
multi-dimensional Newton method used to approximate η, in the following Algorithm 8.

Algorithm 8: Multi-dimensional Newton Method

Parameter : tolerance tol for the largest admissible value of ||F (ηnew, u(y))||2
Input : initial guess η0 ∈ Rd2

current approximation of marginal distribution u(y)
function F (η, u(y))

Output : approximate solution ηnew ∈ Rd2 of F (η, u(y)) = 0

ηnew = η0

while ||F (ηnew, u(y))||2 > tol do
ηold = ηnew

compute DF (ηold, u(y))
solve the linear system DF (ηold, u(y))v = F (ηold, u(y))

update ηnew = ηold − v

end

134



6.3. Numerical example: lac Operon

Combining the multi-dimensional Newton method with the adaptive wavelet solver
for the stationary CME can now be easily accomplished by employing the two solvers
alternately and the pseudocode for the hybrid method is listed in Algorithm 9.

Algorithm 9: Hybrid algorithm

Parameter : tolerance tolstochastic for wavelet solver
tolerance tolNewton for Newton method
Maximal number of basis elements to be used maxbasis

Input : vector η(0) ∈ Rd2 for initial step of hybrid method
initial index subset {j1, . . . , jδ} for adaptive wavelet method (AWM)

Output : approximate solutions η and u(y) of hybrid model (6.17)-(6.18)

Set k = 1

while size current basis < maxbasis do

Solve Ã(η(k−1))u(k) = 0 with AWM(tolstochastic) =⇒ obtain u(k)

Solve F (η(k), u(k)) = 0 with Newton(tolNewton) =⇒ obtain η(k)

Set k = k + 1

end

Consequently, employing Algorithm 9 leads to a sequence of approximations for the
two subproblems

η(0) −→ u(1) −→ η(1) −→ u(2) −→ . . . ,

and we remark that, also it is possible to start with an approximation u(0) of the marginal
distribution for the critical species and then compute η(1), we prefer to use as starting
point an initial guess η(0) ∈ Rd2 supplied by the user. For example, an easy way to obtain
good values for η(0) would be to perform a few runs of the SSA algorithm on the full
model. Furthermore, if the deterministic subproblem is linear with respect to η, then the
Newton method will yield the exact result in only one step.

6.3. Numerical example: lac Operon

We illustrate now the potential of the hybrid wavelet method for the stationary CME by
using a classic example of prokaryotic gene regulation - the lac operon. The source of
this stochastic lac operon model, together with most of the parameter values, is [Wil06].
The biological relevance of this example is derived from the fact that operons, which
are clusters of coregulated genes which can be turned on and off together, provide a
mechanism for bacteria to quickly adapt to environments where nutrient availability may
vary greatly [Ral08]. The lac operon can be found in E.coli and encompasses the genes
required for lactose metabolism [JM61].

The stochastic model from [Wil06] contains 11 species and 16 reaction channels and is
best explained with the help of the schematic in Figure 6.1. The lac operon contains three
genes, denoted by z, y and a, that encode three enzymes Z, Y and A, which act together in
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Figure 6.1.: lac operon structure and control mechanisms (Figure adapted from [Wil06]).

the process of lactose transport and conversion to glucose for use as food source within
the E.coli cell. However, these enzymes are only required if lactose is present in abun-
dance in the environment, so their transcription is regulated by the presence of lactose
itself. The structure of the operon is such that the three genes are adjacent, and located
downstream of a promoter that marks the binding site for the enzyme RNA polymerase.
After binding, the RNAP transcribes all the genes into a single mRNA molecule. Up-
stream of the operon in the DNA strand, there is also a separate inhibitor gene which
encodes a protein that represses transcription of the operon genes by binding to the DNA
just downstream of the promoter site for RNAP binding. Under normal conditions, i.e.,
in the absence of lactose, the transcription of the genes is turned off, as the inhibitor binds
downstream of the promoter site. However, when lactose is present in the environment,
the inhibitor binds preferentially to the lactose molecules, and thus transcription is turned
on (cf. [Wil06, Ral08]).

As previously stated, the original model contains 11 different species, involved in 16
reaction channels. We slightly modify the model by adding another reaction channel
(R17) that constantly supplies Lactose, which is different from the original model from
[Wil06] where Lactose is inserted in a single burst. Additionally, a reduction of three
species is performed based on the observation that copy numbers respect the following
algebraic relations

I.dna = 1

Op + I.Op + Rnap.Op = K1 = 1

Rnap + Rnap.Op = K2 = 100.

Consequently, the propensities can be modified, and the resulting model becomes 8D,
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6.3. Numerical example: lac Operon

with only six of species being treated stochastically and the remaining two handled de-
terministically. The reaction channels of the reduced model are listed below, with table
6.1 providing the correspondence between the original name and the new labeling, in
addition to the choice of numerical treatment for each of the species.

R1 : ⋆ −→ S1 α1 = c1 Inhibitor Transcription
R2 : S1 −→ S1 + S2 α2 = c2x1 Inhibitor Translation
R3 : S2 + S6 −→ S7 α3 = c3x2x6 Lactose Inhibitor Binding
R4 : S7 −→ S2 + S6 α4 = c4x7 Lactose Inhibitor Dissociation
R5 : S2 + S3 −→ ⋆ α5 = c5x2x3 Inhibitor Binding
R6 : ⋆ −→ S2 + S3 α6 = c6(1− x3)(1− x8) Inhibitor Dissociation
R7 : S3 −→ S8 α7 = c7x3(K2 − x8) Rnap Binding
R8 : S8 −→ S3 α8 = c8x8 Rnap Dissociation
R9 : S8 −→ S3 + S4 α9 = c9x8 Transcription
R10 : S4 −→ S4 + S5 α10 = c10x4 Translation
R11 : S6 + S5 −→ S5 α11 = c11x6x5 Conversion
R12 : S1 −→ ⋆ α12 = c12x1 Inhibitor Rna degradation
R13 : S2 −→ ⋆ α13 = c13x2 Inhibitor Degradation
R14 : S7 −→ S6 α14 = c14x7 Lactose Inhibitor Degradation
R15 : S4 −→ ⋆ α15 = c15x4 Rna Degradation
R16 : S5 −→ ⋆ α16 = c16x5 Z Degradation
R17 : ⋆ −→ S6 α17 = c17 Lactose Production

c1 = 0.02, c2 = 0.1, c3 = 0.005, c4 = 0.1, c5 = 1,

c6 = 0.01, c7 = 0.1, c8 = 0.01, c9 = 0.03, c10 = 0.1,

c11 = 1e− 5, c12 = 0.01, c13 = c14 = 0.002, c15 = 0.01, c16 = 0.001,

c17 = 10, K2 = 100

Species Name Initial
amount

Treatment Description

I.dna 1 reduced inhibitor gene
S1 I.Rna 0 stochastic associated mRNA
S2 I 50 stochastic repressor protein
S3 Op 1 stochastic lac operon

Rnap 100 reduced RNAP complex
S4 Rna 0 stochastic mRNA
S5 Z 0 stochastic enzyme
S6 Lactose 20 deterministic lactose molecule
S7 I.Lactose 0 deterministic complex

I.Op 0 reduced complex
S8 Rnap.Op 0 stochastic complex

Table 6.1.: lac operon species

Even after performing the reductions and assigning S6 and S7 to the set of species
that are handled deterministically, the state space for the reduced CME of the lac operon
model has more than 23 × 23 × 21 × 24 × 29 × 21 ≈ 2 · 106 degrees of freedom. We
remark that the choice of the species that are treated deterministically is made relying on
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6. Hybrid deterministic-stochastic models

an analysis of a few stochastic simulations via Gillespie’s SSA algorithm, which reveal a
clear separation of scales.

A comparison between the marginal distributions obtained using the hybrid method
and marginal distributions computed by averaging the data from 107 SSA runs on the
interval [0, 106], is presented in Figure 6.2, and shows that for this model, the dynamics
for the critical species are well approximated by the hybrid method. The initial amounts
used in the SSA algorithm are given in Table 6.1, and we note that the first 1% of the SSA
data was discarded before computing the approximations of the marginal distributions.
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Figure 6.2.: Numerical results for the lac operon hybrid model. First row shows marginal dis-
tributions obtained with the hybrid wavelet method using a total of 1.4% of the total number of
degrees of freedom, while the second row depicts marginal distributions obtained by averaging
107 SSA simulations.

The parameters used in the stochastic part of the hybrid solver were a multivariate
anisotropic Haar basis, tolstochastic = 0.01 and maxbasis = 30000. The choice of the Haar
wavelet system was dictated by the small directions present in the reduced stochastic
model. The solver reached the maximum number of DOFs allowed without reporting a
1-norm of the residual smaller than tolstochastic, and in Figure 6.2 the results obtained
with the hybrid wavelet method using 1.4% of the total number of degrees of freedom
are shown. For the deterministic part, η(0) = {4000, 100} was chosen as initial approxi-
mation and tolNewton was set to 1e − 10. We remark however that as the deterministic
subproblem is linear with respect to η, Newton’s method yields the exact result after one
single step.
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6.4. Discussion about the modeling error of the hybrid model

As previously stated, the hybrid model can not be applied with the same success to every
model. A detailed analysis of the modeling error of the Hellander-Lötstedt model can
be found in [Jah11], and the results presented therein explain why for some classes of
models where the solution exhibits a multi-modal profile, the hybrid model (6.17)-(6.18)
no longer provides the correct qualitative description of the underlying dynamics. This
assertion can be checked by applying the hybrid model to a small test case, namely the
toggle switch model from (2.94) with a different set of initial parameters

c11 = c21 = 10, c12 = c22 = 30 and c3 = c4 = 0.017. (6.20)

The parameter set (6.20) leads to a 2D system with a state space of Ω32×32 where we
treat one of the species stochastically and the other deterministically. As the system is
symmetric, the precise assignment of the species to the two groups does not matter, and
S1 is placed in the stochastic group, with S2 assigned to the deterministic set. Because
of the small size of the system, we can eliminate the errors that might be caused by the
wavelet discretization, and solve the stochastic part exactly. In (6.21) we summarize the
partition of the system, namely the form of the propensity functions βj and γj for each
reaction.

R1 : ⋆ −→ S1 β1 = 1 γ1 = c11/(c12 + η2)

R2 : ⋆ −→ S2 β2 = c21/(c22 + x21) γ2 = 1

R3 : S1 −→ ⋆ β3 = c3x1 γ3 = 1

R4 : S2 −→ ⋆ β4 = 1 γ4 = c4η

(6.21)

The corresponding stoichiometric vectors for the two parts are ν = (1,−1)T and ζ =

(1,−1)T , respectively. We can now apply the hybrid method presented in Algorithm 9,
and the results are presented in Figure 6.3.

Two different runs of the hybrid algorithm were performed, one with the initial guess
η(0) = 5.5 , while the other was launched with η(0) = 5.7. As it can be seen in the
left panels, the approximation for the marginal distribution u converges to one of the
steady states, and no longer approximates the true dynamics that were obtained by com-
puting the marginal from the exact CME solution of the full system. Consequently, the
hybrid model is ill-suited for such problems. A solution would be to couple the adaptive
wavelet method to the refined hybrid model proposed in [Jah11] based on conditional ex-
pectations, which proved capable of dealing with such bimodal solution profiles, and this
represents one of the future aims in the development of the adaptive wavelet method.
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Figure 6.3.: Results of the application of the hybrid method to the toggle switch model (2.94)
with parameter set (6.20). In the first row, the results obtained with an initial guess η(0) = 5.7

are plotted (marginal distribution for S1 obtained from full CME solution in blue, and marginal
distribution from hybrid method in red), while in the second row, η(0) = 5.5 was chosen.
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CHAPTER

SEVEN

CONCLUSIONS AND OUTLOOK

In this thesis the adaptive wavelet method for the CME proposed in [Jah10], was fur-
ther refined to include a better fourth-order time integrator instead of the second-order
trapezoidal rule used initially, and far more importantly, the use of a larger spectrum of
wavelet bases significantly improved the performance of the original method. Moreover,
the method has now gained also adaptivity in time, alongside its spatial adaptivity, via
an adaptive time-stepping strategy that markedly improved its computational efficiency.
This is because in most cases the time evolution of a system starts with a fast (stiff) tran-
sient phase that requires small steps, before slowly converging to the stationary distri-
bution, at which point larger step-sizes are possible. The biggest obstacle in endowing
the method with adaptive time-step control, was to successfully balance the two errors
caused by the spatial approximation using wavelet compression on one hand, and the
error caused by time integration on the other. The results obtained in this respect have
been disseminated in a journal article [JU10] and a conference proceedings [UJ09]. In con-
clusion, the adaptive wavelet method for the time-dependent CME problem has gained
new features that make it a feaseable alternative to other approaches aimed at solving the
CME directly.

Another direction that was investigated herein is related to obtaining approximations
of the stationary CME. For this task the computational core of the adaptive wavelet
method has been combined with the inverse power method with shift to produce a sta-
tionary solver that shows promising results when applied to non-trivial problems, as seen
in Chapter 5. However, further improvements are necessary, particularly with respect to
the selection of an initial set of active basis elements. Another open problem is the ab-
sence of a theoretical result concerning the convergence of the method. Although our
numerical tests suggest that the method performs as designed, a rigorous proof is still
not available, mostly because the CME operator is neither symmetric nor elliptic, such
that the norm equivalences usually at hand for applications of adaptive wavelet methods
for PDEs (e.g. [CDD01]) can not be used.

A further result that was discussed at length in Chapter 5 was the development of a
numerical method for approximating the solution of the discrete committor problems.
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7. Conclusions and Outlook

Although improvements still need to be made before the method can be used in real-life
applications, the technical difficulties related to the approximation of the committors us-
ing wavelets have largely been resolved. Steps have also been made in the direction of
developing the necessary visualization protocols that are indispensable to the valorifica-
tion of the information provided by the committors in high-dimensions.

By far the most promising research goal that remains to be investigated is the coupling
of the adaptive wavelet method with the hybrid method recently proposed in [Jah11].
The embedding of the wavelet-based stationary CME solver in a hybrid strategy has been
explored in Chapter 6, and the results showed the potential of the approach on one hand,
but also highlighted the need for an enhanced hybrid model if the solver is to be succesf-
fuly applied to model problems with metastable solution profiles.

Although not explicitly discussed in the thesis, work on parallelizing the software
codes has begun. The computation of the Galerkin matrices which appear in all the al-
gorithms discussed so far, is accomplished in parallel by splitting the workload between
several processors. As the evaluation of the entries in the Galerkin matrix is the most com-
putationally expensive part of the adaptive wavelet method, parallelization has brought
important benefits with regard to running times. However, the potential for paralleliza-
tion has not been exhausted, and future work in this direction could lead to substantial
progress.

142



APPENDIX

A

PROPERTIES OF THE TRUNCATED CME

This appendix provides some details that were glossed over in (2.5). We begin by recalling
that the truncated CME operator (2.67) is isomorphic to a large sparse matrix A ∈ RN×N

with non-positive diagonal, non-negative off-diagonal entries and the property that the
sum over each of its columns is zero. The following arguments are adapted from [And83,
Section 12].

Theorem A.1 (Gerschgorin circle theorem). Let M ∈ RN×N a complex matrix with entries
mij . For i ∈ {1, . . . , N} let

Ri =

N
i=1
j ̸=i

|mij |

be the sum of the off-diagonal entries in column j. Further, let D(mii, Ri) denote the Gerschgorin
circle centered on mii with radius Ri. Then, every eigenvalue of M lies within at least one of the
Gerschgorin circles D(mii, Ri), i = {1, . . . , N}.

Proof. Let λ be an eigenvalue of M and v = (vi) the corresponding eigenvector, such that

Mv = λv. (A.1)

Let i ∈ {1, . . . , N} be chosen such that |vi| = maxj |vj |, i.e., i is selected so that vi is the
largest entry in absolute value of v. Then vi > 0 otherwise, v = 0. Next, we write the j-th
line of the system (A.1)

N
j=1

mijvj = λvi.

By splitting the above sum 
j ̸=i

mijvj = (λ−mii)vi

we obtain that
|λ−mii| ≤

1

|vi|

j ̸=i

|mij ||vj | ≤

j ̸=i

|mij |

where the last part of the inequality is derived from the fact that |vj |
|vi| ≤ 1, ∀j ̸= i.
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A. Properties of the truncated CME

Corollary A.2. Let A ∈ RN×N be a matrix with elements satisfying (2.71) and (2.73), and
denote by σ(A) its spectrum. Then,

1. 0 ∈ σ(A)

2. If λ ̸= 0, λ ∈ σ(A), we have Re(λ) < 0.

Proof. The first assertion is trivial, as from (2.73), we have that 1TA = 0 leading to 1T =

(1, . . . , 1) being a left eigenvector of A with eigenvalue 0. The proof of the second point
also starts from (2.73). By splitting the sum we have that

−aii =

j ̸=i

aij =

j ̸=i

|aij | = Ri.

Applying now (A.1) we get

R2
i ≥ |λ− aii|2 = |λ+Ri|2 = (Re(λ) +Ri)

2 + Im(λ)2.

Hence, Re(λ) ≤ 0. Moreover, if Re(λ) = 0 we have that Im(λ) = 0, which concludes the
proof.
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