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Abstract An approach to improve orbital state vectors by1 Introduction

orbit error estimates derived from residual phase pattiaerns

synthetic aperture radar interferograms is presentednFor Spaceborne repeat-pass synthetic aperture radar imwherfer
dividual interferograms, an error representation by twe paetry (INSAR) is a key technique for large-area deformation
rameters is motivated: the baseline error in cross-rande ammonitoring. Relative displacements of the ground occur-
the rate of change of the baseline error in range. For theiing between two radar acquisitions are measured at pixel
estimation, two alternatives are proposed: a least squaréscations of two-dimensional SAR interferograms. These
approach that requires prior unwrapping and a less relimeasurements can be biased by errors originating from a
able gridsearch method handling the wrapped phase. In bothultitude of different sources. Each error source havisg it
cases, reliability is enhanced by mutual control of errer esown characteristics, signals with different spatial or pem
timates in an overdetermined network of linearly depen+al properties are superposed to the signal of interestriwhe
dent interferometric combinations of images. Thus, systemground deformation is the signal of interest, it is the aim of
atic biases, e. g., due to unwrapping errors, can be detectéSAR processing to estimate and consecutively eliminate
and iteratively eliminated. Regularising the solution by aor mitigate all other signal contributions.

minimum-norm condition results in quasi-absolute orbiter  Inaccuracies in the satellite orbits affect interferogsam
rors that refer to particular images. For the 31 images of én the form of an almost linear signal and scale the height
sample ENVISAT dataset, orbit corrections with a mutualambiguity. Whereas this latter effect is usually negligibl
consistency on the millimetre level have been inferred fromand orbit errors may be disregarded for localised phenom-
163 interferograms. The method itself qualifies by reliabil ena, their effect can be considerable if the deformation
and rigorous geometric modelling of the orbital error signaregime covers a larger area. A common approach to sepa-
but does not consider interfering large scale deformation e rate the signal components from each other is to identify the
fects. However, a separation may be feasible in a combineskbital contribution by its long spatial wavelength. Whase
processing with persistent scatterer approaches or by terthis discrimination is efficient for a large number of appli-
poral filtering of the estimates. cations, it does not apply in the presence of a large-scale
deformation signal like tectonic movement or tides that has
similar spatial characteristics. In this case, part of thlod
mation may be misinterpreted as orbit error.

Keywords INSAR - Baseline Error Orbit Error- Network
Adjustment Outlier Test Data Snooping
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modifications from the fringe count along the edges of armates. Offering a mechanism to detect outliers due to un-
interferogram. Following their approaches, orbit cori@té  wrapping, the network approach provides a notable gain in
can be estimated from phase differences or gradients thatliability, whereas an increased processing load is redui
have been measured between defined pixel locations. In Sect.4, the method fromBahr and Hansse(2010 is
When deriving orbit errors from residual fringe patternsevaluated for its capability to detect unwrapping errots: F
in the interferometric phase, only relative orbit corrent  ther considerations address the optimality of stochastit-m
can be inferred, adjusting the trajectories of the two acquielling.
sitions with reference to each other. Hence, orbit errar est ~ Even with the correction approaches listed above, the es-
mation from one interferogram alone is equivalent to the estimation of large-scale deformation signals is cumbersome
timation of baseline errors, where the interferometricebas as both orbit errors and gradient atmospheric propagation
line is defined as the difference vector of the sensor posidelays can induce signals with similar spatial characteris
tions of master and slave acquisition. A lot of research ha#ics. However, it is not the aim of this contribution to taek|
been pursued in this domain with different parameterisatio the separability of the orbital error signal from other sig-
of the three-dimensional, time-dependent baseline véwtor Nal components. It is rather intended to provide a reliable
its across-track and radial componeBiall et a) 1993  method to eliminate the orbital contribution with as little
Werner et 311993 Zhang et al2009. Even though these Uuser-interaction as possible. Nevertheless, some thsught
approaches perform well in mitigating the effect of orbitalare also offered in Sech on the mutual bias of orbit cor-
errors, little attention has been paid on an optimal paramgection, deformation and the atmospheric signal contiobut
terisation of the baseline to avoid physically unlikelyiest and its mitigation.
mates.
The present contribution starts with a brief review on
quality of orbit products and a sensitivity analysis of the

baseline with respect to _the interferqmetric phase. Baseﬁj1 order to motivate an effective correction methodology
thererpoq, a retprets (Zlntatlon ?f tt;]aszlmel_e frors by two tp_?ﬁis section is dedicated to a both quantitative and qualita
rameters 1S motivated, namely Ihe baseline component ify o analysis of satellite orbit errors and their effectsion

cross-range and the rate of change of the component %rferograms. After reviewing available quality inforroet

range direction. In Sec8, a least squares approadbagir on orbit products of past and current SAR missions, the mu-

and Hansser2010) is proposed to estimate the baseline Mal sensitivity of the interferometric phase and orbibesr

ror from the unwrapped interferometric phase. To overcomE

2 Orbit errors

the requirement of unwrappable interferograms, also an aS Zzzlysed. Finally, an appropriate parameterisationds p
ternative method is presented that can handle the wrapp 8 '
phase but is considered less reliable. It is similar to the pe
odogram approach, where the dominant fringe frequency i5 1 Accuracy of orbit products
determined by Fourier analysis to deduce baseline compo-
nents Gingh et al 1997 Monti Guarnieri et 812000 Bing  Precise orbits of SAR satellites are determined by space
et al 2009. By contrast, it does not imply linearity of the geodetic techniques. Earlier missions like the European Re
orbital error signal and accounts for variations in the topomote Sensing Satellites (ERS-1/2) made use of Satellite
graphic height, involving rigorous geometric modelling. | aser Ranging (SLR), supported by radar altimetry mea-
A crucial issue in baseline error estimation is to ensuresurements. At Delft University of Technology, a root mean
reliability, since interferograms with suboptimal coheze  square (RMS) error of 4 cm for the radial component of ERS
may be contaminated by unwrapping errors. A promisingrbit solutions could be attaine®¢ornbos and Scharrpo
approach to cross-check the error estimate of the baselirB05. The accuracy of the along- and across-track com-
between two acquisitions is to exploit linear combinationgponents is definitely worse, which is suggested by differ-
of interferograms with different perpendicular and tempo-ences of the order of 15 cm for solutions based on different
ral baselines. This concept can be regarded as setting upgeavity models $charroo and Visse1998. For the like-
network of interferograms that connect the available insagewise SLR-tracked Environmental Satellite (ENVISAT), the
on redundant paths in this spatio-temporal baseline-spacBORIS system (Doppler Orbitography and Radioposition-
Thus, quasi-absolute orbit errors can be inferred thaeeith ing Integrated by Satellite) provides complementary mea-
refer to a global master or are, more conveniently, definedurements. The accuracy of the best orbit products is esti-
by a minimum-norm conditionohlhase et al2003 Biggs  mated to be 3 cm in the radial component and 10 cm in 3D
et al 2007 Bahr and Hansser2010. Furthermore, incon- (Otten and Dow2005. More recent missions rely primarily
sistencies that are due to interferogram-specific filtesireg  on the Global Positioning System (GPS) for orbit determi-
adjusted, enhancing the precision of the baseline error eshation, supported by SLR. For TerraSAR-X, the RMS orbit
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accuracy has been assessed to be at the 2 cm Mveh (

et al 2009. Comparing the GPS orbits of the Advanced
Land Observing Satellite (ALOS) to SLR solutions yielded
RMS deviations of overlapping arcs between 2 and 15 cm
(Nakamura et a007), assumedly in 3D.

It must be stressed that these quality indicators have to
be interpreted with care, since a rigorously independédnt va
idation is not possible. Subsequent arcs or solutions from
different analysis centres rely at least partially on theesa
data. In addition, systematic errors in atmospheric anckfor
models may affect all measurements in the same way, even
when different techniques are involved. Furthermore, gllob
quality measures are not necessarily stationary in time and
space. There may be local quality variations due to an in-
homogeneous distribution of SLR tracking stations. An in-Fig. 1: Decomposition of the interferometric baseline in a
creased solar activity or bad atmospheric conditions can efplane perpendicular to the flight direction. The representa
tail less accurate solutions. In some cases, accuracysasseons by its horizontal and vertical componeBf @ndBy) or
ments only consider selected epochs which are not necess#flength and orientation anglB @nda) are unambiguous,
ily representative for the whole mission. whereas the description by parallel (range) and perpendicu

More conservative quality estimates are less optimisticlar (Cross-range) componer(andB,) depends on range.
Yoon et al(2009 assess the precise scientific TerraSAR-xS0 do the look anglé and the local incidence angc
orbits to be "definitely better than 10 cm”. For some arc
overlaps of ALOS orbits, deviations exceed 30 diaka-
mura et al 2007). Official requirement specifications for
ALOS range up to 1 mEuropean Space Agencg007).
Radarsat-2 orbits have a nominab 3accuracy of even By(t,0) = Bx(t)sin8 — By(t) cos®

range and perpendicular compon@&nt in cross-range di-
rection, respectivelyHanssen2001):

15 m" — B{t)sin(6— a(t))

This illustrates that even though accuracies of orbit prod- . 2)
ucts from recent missions are estimated to be on the cerﬁi(t’ 0) = Bn(t)cost +By(t)sin®
timetre level, possible deviations from the true trajegtofr = B(t)cog0 —aft)).

several decimetres may occur. For Radarsat, the expectable

i The baseline can be related to the interferometric phase
accuracy is even worse.

by the following approximation:

an

OtR) =~ (Rul®) -Ret) =~ TBILR,  (3)

2.2 Parameterisation

) . ) ) whereA is the radar wavelengtiRy =: R andRs are the
Orbit products describe the satellite’s trajectory by estat respective range measurements of master and slave. In order
vectors, which subsume positions and velocities at distingg assess the sensitivity of an interferogram to baseline er
epochs. The interferometric baseline is represented by thgys the residual phastp ~ —41 4B, is now considered as
difference vector of the sensor positioRsfrom two acqui- a function of an error baselirB that is superposed to the

sitions, referred to as master (M) and slave (S): interferometric baseline. Taylor series expansion in agim

§(t) — Rs(t) — Ru(t). (1) timet and look angléd(R) yields with Eq. @):

It is decomposable into its horizontal (across-track)nglo  do(t,8) =
track and vertical (radial) componer,(t), Ba(t) and 1 .
By(t), respectively. Considering only the two-dimensional+dB (to, 6o)d6 + EdBH(to, 6o) dt?

(Bn, By)-plane, there are alternative ways of baseline decom- . 1

position (see Figl). The baseline can equivalently be de- +dB, (to, &) dtd6 — 5 dB (to, 6o) 62+ - ) (4)
scribed by its lengthB = |§| and its orientation angle. A
third representation consists of its parallel comporigrin

41 .
5 (dBH (to, 6o) + dB(to, o) dt

The zero-order term can be ignored; a constant phase change
to the whole interferogram does not affect its interpretati

1 MDA Corporation, http://www.radarsat2.info/about/  SINCE INSAR is a relative technique. The first-order terms
mission.asp, accessed on 10 Feb 2011. are characterised by the baseline error comporejtsind
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clusion, it would be a tolerable loss to constrdB” to zero,
given the little effect this parameter has on the phase.

- m Figure3b displays the approximation error that is made
by ignoring errors inBy. It further compares the perfor-
mance of adB | -only parameterisation to alternative para-

(@)dBj=26cm  (c)dBj=177" (e)dB; =21m I metric models, the most common of which is a polynomial

in range:

F n
C k
p(R) =3 aR". (6)
K=1
k ™ ltcan be seen from the figure that tthB | -parameterisation

performs three times better than the common approach of a
"linear phase rampp: (R). A third approximation model to

Fig. 2: Error signals induced into the interferometric phas be pointed outin this contextis a polynomial in look angle:

by errors in different baseline components, assunming n

5.7 cm and a mean look angle of 2(ERS). The decom- Pn(6) = 5 a6 . (7

position intoB; and B, is defined by the line of sight to k=1

the centre of the scene of 100100 kn? size. &, b) The  As d8/dR s not constant, the performance of the approx-

effect of an error inB| is negligible compared to an error imation by p,(6) is different from that byp,(R). Applica-

of the same amount iB, . (c, d) An analogous conclusion tion requires an individual computation 6{R) for every

can be drawn foB, andB. (e, f) ErrorsinBj andB, must  range pixel, but this is still easier to implement than the

be disproportionately large to yield a distinctinterfeinc ~ parameterisation by baseline components. The linear model

signal Bahr and Hansse2010 p1(6) performs even slightly better thaiB, , whereas the

difference between the two is considered negligible. Two-

_ o . _ . parametric models likg(R), p2(6) or (dBy, dB,) would

dB,, which result in linear fringes in azimuth and range, reqyce the approximation error even more but have the dis-

respectively (see Figa-d). By rule of thumb, a rough es- 5qyantage that they may distort a possible large-scale-defo

timate of the baseline error can be obtained by multiplyingyation signal more seriously. It has to be carefully inves-

the number of fringes in azimuth or range by the respectivggated from case to case if the increased accuracy of two-

(b)dB, =26cm  (d)dB, =1.7™"  (f)dB; =67

conversion factors: parametric models outweighs this deficiency.
_ To support the choice of an adequate model, Talikts
A A : . .
dBj o= — AL dB on=— SAD’ (5)  the maximum approximation error for different sensors and

modes, assuming an error baseline of constant ledigth
whereAt is the total acquisition time and@ is the range 1 dm. All numbers can be adapted to bigger or smaller base-
of look angles, respectively, for the whole scene. Indigidu line errors, since the phase error scales linearly d&hThis
computations of these numbers for some missions are listaghn be seen from Eg4) under consideration of EcR).
in Tablel. For the orbital error signal in range can be concluded that
With the objective to mitigate the effect of baseline er-in case of usual orbit errors below 1 dnpgR)-correction is
rors as far as possible, a suitable parameterisation is rgufficient. For higher errors, one of the other one-parametr
quired. In the following, a number of options will be eval- models should be considered. This applies especially to
uated, considering the error signalg(t) in azimuth and Radarsat-2 and even more to Radarsat-1, where the orbit
do(R) in range separately. data are generally more inaccurate. Also for the planned
Starting with the signal in range, Fi@ashows how the mission Sentinel-1, where the swath width in tméerfer-
maximum bias of the interferometric measurement due to aometric Wide Svath Mode is designed to be 250 km, it is ad-
error baselingl B of constant lengtllB depends on its ori- visable to rely on eithep;(0) or thedB , -parameterisation.
entation. The extrema at a mean look argglplus multiples  In the present article, theéB | -approach is preferred for its
of 90° suggest a further consideration of the representatiomore generic nature. For the reasons just given, models in-
by dBy (6p) anddB, (6p). Estimating both parameters from volving more than one parameter to describe the dependence
the residual phase of an interferogram may yield geomewf phase on range are not considered practical.
rically unrealistic estimates. As errors B) induce only a The error signal in azimuth is a direct translation of vari-
small signal in the phase (see F2g), small large-scale vari- - ations indB) into the interferometric phase. A constant rate
ations in the atmospheric propagation delay can conversebf changedB| induces a perfectly linear error signal (see
cause estimates faiB; on the metre level. In a reverse con- Fig. 2c). Generally, any phase pattedy(t) could result
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Table 1: Baseline errom?,Hyz,T anddB, »; inducing exactly one fringe in azimuth or range, respebtjevaluated for dif-
ferent sensordisatis the mean height of the platform. Sensor parameters fctH@mominaI specifications where available.
Note that these numbers do not apply precisely on any ingalidata productB », anddB >, may vary slightly as the

case arises
Sensor Mode A Hsat ) Binc Scene dB| oy dB. o
[cm] [km] [ [’ [km]x[km] [mm/s] [cm]

ALOS PALSAR FBS 7 23.6 692 32...36 36...41 70x 70 11.4 185
ENVISAT ASAR 1S2 5.6 800 17...23 19...26 100x 100 1.9 26
ERS-1/2 5.7 790 17...23 20...27 100x 100 1.9 26
Radarsat-1/2 S3 56 798 26...32 30...36 100x 100 1.8 31
Sentinel-1 IWS 5.6 693 22...37 25...42 170x 250 1.1 11
TerraSAR-X strip003 3.1 514 18...21 20...23 50x 32 2.2 29
TerraSAR-X strip010 31 514 33...35 36...39 50x 32 2.2 39
TerraSAR-X strip014 3.1 514 39...41 43...46 50x 32 2.2 48

(a) Orbital Error Signal (b) Approximation Error
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Fig. 3: Characteristics of a simulated orbital error sigamad performance of an approximation thereof. The simulatare
based on an error baselinedB = 1 dm length with varying orientation with respect to theihontal. Sensor height and
field of view for a full ERS scene have been assumed. The plottege errors are defined as maximum minus minimum
bias of the interferometric measurement and scale almusdly withdB. Qualitatively, the results are conferable to other
sensors. For a quantitative evaluation, please refer tie Pala Range error of the orbital error signal itself with respect t
zero phaseh Approximation error of the orbital error signal for differgparametric models as explained in the text

Table 2: Maximum residual range error due to approximatf@namrbital error signal in range direction, induced by awoer
baseline of 1 dm length for different sensors and parametadels. See also Figb. pg stands for the uncorrected error

signal itself, see FigBa

Sensor Mode Maximum Residual Range Error [mm]
Po | Pi(R) m(6) (dBi) | p2(R)  po(6) (dB,dB,)

ALOS PALSAR FBS 7 6.4 0.17 0.05 0.06| 0.01 0.00 0
ENVISAT ASAR IS2 10.7 0.58 0.15 0.17| 0.07 0.00 0
ERS-1/2 10.8 0.58 0.15 0.18| 0.07 0.00 0
Radarsat-1/2 S3 9.0 0.35 0.11 0.12| 0.03 0.00 0
Sentinel-1 IWS 25.3 291 0.89 1.15| 0.58 0.03 0
TerraSAR-X strip003 5.4 0.14 0.04 0.04| 0.01 0.00 0
TerraSAR-X strip010 4.0 0.07 0.02 0.02| 0.00 0.00 0
TerraSAR-X strip014 3.3 0.05 0.01 0.01| 0.00 0.00 0
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from arbitrarily varying baseline errodB (t). However, as
orbital trajectories have the nature to be very smooth @jrve
it is unlikely that errors in these curves undergo compyetel
random variations. Therefore, a linearly varying errotia t
parallel baseline componentis considered an approprate p
rameterisation of the baseline error for the short acqorsit
time of a single radar scene. The benefit of higher order
polynomials is questionable, because nonlinear compenent
would rather be dominated by atmospheric effects, yield-
ing unrealistically high estimates. Nevertheless, if |oiaga
takes are processed as a single frame, a quadratic polyno-
mial in dB; (t) may be considerable.

It can be concluded that for a wide majority of applica-
tions, baseline errors are appropriately parametriseﬂﬂgy
anddB, . This representation will be adopted for the follow-
ing considerations.

Fig. 4: Virtual acquisition geometry for non-parallel dsbi
that can be assumed in case of zero-Doppler focussed data
3 Methodology

To estimate orbit errors fom acquisitions, a network of Ponents of the orbit positions of master and slave yields:
n > m interferograms is set up in the domains®f and
time (for an example see Fi@). Starting point is the resid- E{dg} = — Am (T'M B Xy -+ P - EadXam
ual interferometric phase, where "residual” refers to the a A ' ’
sumption that the orbital effect is the only remaining signa + TPm- €vdxym — T's- €ndxns )
after removal of reference and topographic phase from the —Ts Balxas— Ts By dXv,s) + @,
interferograms. In a first step, two baseline error parame-
tersb = (dBy, dB,) per interferogram are inferred from the e e, (t,8) and P’s(t, 8) are unit vectors describing the
residual phases of selected pix@ls=(...,d@, ...), where jine of sight. 8y (t), Ba(t) and y(t) are unit vectors in hor-
unwrapping is only required for the first of two approacheszontal, along-track and vertical direction, forming a ifee
that are described in the following. Secondly, network misrgme (see Figd). As long as only one interferogram on its
closures in the @baseline error parameters = (..., dBjx,  own is considered, this frame can be conventionally defined
dB, k ...) of all interferograms are adjusted. The resultingyy the master orbit. Note that all coefficients in E@). &re
2macquisition-related orbit erroxs = (... dX)i,dX1 i, ...)  also calculable in case of variable but known topography.
are defined by a minimum-norm condition and can be usegtor small squint angles, as they occur in spaceborne SAR, it
to correct the orbit trajectories at hand for re-processing  fg|lows from Tu- €a~0andTs- €, ~ 0 that the interfer-
ometric phase is not sensitive to orbit errors in alongkrac
direction. Consequently, these components are not consid-
ered any further.

Moreover, the coefficients in Eq9) that correspond to

) ) ) . dxy anddx, are almost identical for master and slave due to
The estimation of orbit errors from the unwrapped re&dua{he very small divergence betwe@iy and P's. This makes

interferometric phase@ by the method ofeast squares is the joint estimation of individual orbit errors for both ntess

based on the observation equation: and slave an ill-posed problem. Considering one interfero-

gram on its own, only a baseline erdB = dXs— dXu
_ 4m can be robustly estimated. In this case, it must be decided if

Etde) = vy (Ru—Rs)+ @ ®) the estimated error is attributed to inaccuracies in theenas
orbit, the slave orbit or to errors in both of them. In the fol-

@ is a constant phase shift that has to be introduced ttowing, the error is attributed in equal proportions to reast

account for the inferior precision of range measuremenénd slave in order to avoid an arbitrary discrimination of on

compared with phase measurement. Linearising this relatioof the two acquisitions. Additionally allowing for a linear

with respect to the horizontal, along-track and verticaheo temporal variation of the baseline components, the altered

3.1 Baseline error estimation from the unwrapped phase
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model reads: constant linear
ar ? n T” components components
E{dg} == | M1 5.8, (dB,+tdBy)
4 T +$’ (10) D
+¥‘~’e’v(d8\,+td8\,)} s 745, (00) —
5 1
dB |
o~
Considering the_residual interferometric phagés= B %us, (60) T8, -
(...,d@,...) of n, pixels that are regularly arranged on a o - R 0,5 (01)
. . . . dBy, 0B [
grid spanning the whole interferogram, baseline pararaete h
bT = (dBy, dBy, dBy, dBy) can be estimated in a functional
model of the following kind: Fig. 5: Relative estimation quality of constant and linear
components of the baseline error, visualised by error el-
E{o} =Acb+ 1, (11)  lipses. The grey area represents the sensor's field of view.

whereA;, is the design matrix and™ = (1,1,...,1). The The orientation angles of the eIhps@a and 6, respec-

. . . , . tively, can be computed from the eigenspaces of the corre-
stochastic model is generically defined by some covariance . . . . .
matrix: sponding covariance matrix. It follows that the estimabil-
' ity of dB, (6p) anddBy(61) is good, whereadB (6) and

D{g} = ggQ% (12) dB, (6y) are only weakly determined

the choice of which will be discussed in detail in Sett.

Similar approaches have been proposed by other aglirection. This basically confirms the previously drawn-con
thors.Small et al(1993 used relation10) to estimatedBy,, ~ clusions identifyingdB; anddB, as the components with
dB, and @, attributing baseline errors to the master or-the most significant effect on the interferometric phase.
bit only. In Werner et a(1993, the parameter set was ex-  Even though the complementary componedis and
tended bydB, as a fourth unknowrkohlhase et a(2003  dB, are theoretically estimable, the estimates would be too
avoided the arbitrary choice to decide in what proportiongveakly determined to be considered reliable. This can be
baseline errors are attributed to master and slave by evaeen from Fig2e, f, where a relatively huge error i
uating relation 9) in the network context (see Seet4). induces only a very faint error signal in the phase. Con-
Using phase differences as basic observations instead of uversely, a faint atmospheric signal that matches by chance
wrapped phase values, they estimadegli(tj) anddx,;(tj)  this phase pattern, would result in unrealistically higt-es
per imagei for two distinct azimuth times; and derived mates ofdBy in the order of metres. Analogous considera-
rates of change by differencing. Whereas the shift paramdions apply todB, . Therefore, it is preferable to constrain
ter gy cancels out in their approach, it is not straightforwardthese two components to zero. This is achieved by confining
to consider phase differences deduced from common phasgee parameter space from four paramekbets two parame-
observations in the stochastic model. Therefore, the ptesetersbj = (dB,dB, ):
contribution rather relies on the original unwrapped pkase

as observations. E{@} = ApT by (16)
As @ is of no further interest, it can be eliminated from
Eq. (12), yielding (Teunissen2000: with:
E{p} = Apb (13) L _( O sinB) O —cogy) a7
_ ~ \cog6y) O sin6p) 0 '
with:
Ap = (I _ 1(1TQ511)711TQ51) Ap. (14) The mean look angléy = (6+ 61)/2, which is required

for the decomposition into parallel and perpendicular com-
ponent here, is heuristically defined by the averaged orien-
tations of the error ellipses in Fig. These can be com-
puted from the eigenvalues of{f)}. Least squares adjust-

The relative estimation quality of the parametetis given
by their covariance matrix:

D{b} = g§(Af Q,"Ap) (15) mentyields:

and can be visualised qualitatively by the error ellipses i,/ — = 1~ _\"1_~—

Fig. 5. These are strongly elongated, showing that the bas;B-g o (TAme ApT ) TAQy 0 (18)
line is determined best perpendicular to the look diregtion | .\~ .o Ao/~ 15 —T) ¢

whereas its rate of change has maximum precision in IooP{bg} = 09Q6 = %% (TAb Qp AbT ) (19)
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with: in view of other INSAR processing steps. Whereasitid-
v; Q’lvgo search approach_does not prqvi@e any intrinsip qulallit)./ mea-
e (20)  sures for the estimates, heuristic, peak-to-noise rééokt-
Ny —u dicators can be defined.

A noteworthy drawback of the approach is that the esti-
mates turn out to be unreliable in some cases, in particular
when|y|(bg) has more than one distinct local maximum.

~2
0=

whereu = 3 is the number of unknownslB, dB; andg).
vy are the residuals:

Vo = A_\bTTE)g — Q. (21)

The selection of an appropriate set of phase observatior)3$3 Network adjustment
@ needs to be addressed. Theoretically, all available pixels’

could be considereq in EqLY). However,. in many intgrfer- Given a set ofm SAR images, the relative orbit error be-
ograms no.t every pixel can supply a re_llable phase '_nformaﬁ/veen two acquisitions and j can be estimated either di-
tion. In regions of poor coherence, the interferometricggha rectly from interferogranij or indirectly from some appro-

is practically meaningless and cannot be exploited. On thﬁriate linear combination of other interferograms. Though

other hand, it is not advisable to simply exclude poorly Co'mathematically equivalent, both approaches generally do

herent pixels below a fixed coherence threshold, since thig, yield identical results. This is due to individual filtet-

can lead tho mf:omt:geneogs SFI)at'?l dlstlrllbutlonls of Obs,erﬁngs for the particular interferograms or data-adaptilre fi
vations. Thus, oga error signals of smailer scale SUper,'mtering. Additionally, different interferometric combitians
posed on the orbital signal can act as leverage Observat'orfﬁvolve more or less propitious premises for phase unwrap-

dom'”a“”g th_e estlm.ates. To avoid suph an effgct, a hor,ncbing. Thus, adjusting orbit errors that have been reduhylant
geneous distribution is enforced by defining a grid on the Nestimated from linearly dependent interferometric corabin

terferogram and selecting from every grid cell only the pixe jj g can enhance the precision of the estimates by mitigat-

with the r_ug_hest coherence. o ) ing "processing noise”, even though there is no redundancy
For similar reasons, no mutual weighting is applied 10, its strict sense.

';]he phase Obszr.v?t.'snf’ co?stra_lmr:?gh@,gi)hm L An ";f' ‘ Furthermore and even more important, this approach
omogeneous distribution ol WeIghts has the same efiec %Sfovides a mechanism to detect blunders, potentially tesul

inhomogeneously distributed observations. ing from unwrapping errors. But even if explicit unwrapping
is circumvented by estimating baseline errors directlyrfro
the wrapped phase, inconsistencies may occur due to noisy
interferograms or unmodelled nuisance signals. As the grid

osfarch estimator is nonlinear, it is not guaranteed that est
unwrapped interferograms only. If reliable unwrapping igmates obtained from gquivalent linear combinations of in-

cumbersome or even impossible, an alternagiiesearch ~ terferograms are identical.

approach can be pursued. It consists in minimising an objec- P€signing a network withm images, not alm(m— 1)

tive function of the wrapped phase, incrementally seagshin POSSIPI€ interferometric combinations are appropriatefo

the parameter space spanneijﬂ_anddBL. b|_t error estlmatlon, as the exploitable mformaﬂon dg@sa

From Eq. (6) follows E{¢ — A,T bg} = 0. By anal- with increasing temporal anpl perpendu;ular baseline. But
ogy to the ensemble coherence fré@rretti et al2003), a  €Ven after disregarding too incoherent interferogramss, th

3.2 Baseline error estimation from the wrapped phase

So far, the presented method estimates baseline errors fr

coherence measure is defined as a functiobpf (dB; network design is a trade-off between computational load
dB)): and reliability. To ensure a good mutual control, every im-
age should be connected to at least three other images. This
I’lq, ) _ . .. . . .
V(be) = 1 el((p}/vfab‘jﬂbe)’ 22) is & minimum requirement for ogtller d(_atectlon, because an
Ne & outlier in one out of only two adjacent interferograms can-

not be localised. For the following considerations it is-fur
where@" is the wrapped interferometric phase amyg is  ther assumed that all images are related to each other by
the jth row of Ap. Considering &< |y| <l and E|y|} =1, linear combinations of interferograms, i. e., the netwoek d
the estimate®g are defined as the set of parameters thasign (Fig.6) can be visualised by a connected graph. If the
maximisesy|. Alternatively,y can also be interpreted as a network falls apart into two or more disjoint parts, each of
discrete Fourier transform of the two-dimensional sigffal ~ these parts can be treated separately.
to the (:IBH, dB, )-domain, wherebg is constituted of the Before adjusting individual baseline errors in a network,
dominant frequencies. The required computational load ig# has to be ensured that these parameters refer to a ho-
higher than for the least squares method, but still nedégib mogeneous reference in several respects. The Frenet frame
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(Bh(t), a(t), y(t)) must be uniformly defined by the or- Whereas there is no physical justification for these con-
bit of a dedicated, arbitrarily chosen common reference additions, they involve less arbitrary choices than any akier
quisition. This acquisition also defines a uniform time ecal tive datum definition. They are expected to yield minimally

t to be applied in Eq.10). A consistent decomposition of biased estimates if the number of imagess large and or-

the baseline into parallel and perpendicular component hasit errors are random. As the number of interferograms

to be assured by a common mean look arigleNote that is generally larger tham, the estimation has(8 — m+ 1)

it is not required to coregister all images to a single masteidegrees of freedom and is thus overdetermined. The regu-
since the link between the interferograms is establishad vilarised normal equation system yielding a minimum-norm

the orbits. solution reads:
The adjustment of misclosures between baseline errors . =~ - T~
by, = (dBy dB, k), k=1...n, yields a consistent set of <A QAG > <X> _ <A Qy y> 27)
orbit errorsx! = (dx) i, dx1 ), i=1...m. If interferogramk G 0 k 0
is constituted of master acquisitiom@nd slave acquisition  \yith a 2x 2mmatrix:
(i,j € {1...m}), the functional model reads{k} = Ax, or
more specifically: G= (|2 Iy - |2) (28)
: and Lagrangian multipliers. Orbit error estimateg are ob-
: X tained from solving Eq.Z7). The corresponding covariance
E{ | box =[0-1,01,0 ; (23)  matrix §2Qsx is a submatrix of:

Xj o TA-1p ~T\ 1
_ X\ _ 22 (Qsx Qs _ 2 (A Q°AG
o{ (1)} -4 (age)-8("E"S) e

with 2n "observed” baseline error parametgrsa 2h x 2m . . )
with a variance factor:

design matribA and 2norbit error parameters |, isa 2x 2

identity matrix. The associated weighting scheme is defined viQ,lv

i - &= 52— (30)
by the stochastic model: 0 2(n—m+1)
D{y} = ¢§Qy = G diag(. ... 65\Qo.- -}, (24)

estimated from the residuals= AX —y. The rescaling by
subsuming individual covariance matrices from Ef9)( 602 accounts only for the processing noise due to which the
Note that existing correlations between linearly depehderbaseline estimates of equivalent linear combinations -of in
interferograms are negated here, as their modelling is naérferograms are not precisely identical.
straightforward. Contributions of individual interfen@gms An equivalent result could alternatively be obtained by
are considered as independent observations. means of the pseudo inverse or a singular value decompo-
The estimation of interferogram-specific variance fac-sition ofATQ}le. The here proposed approach originates

tors a&k enables a weighting scheme that allocates highefrom free adjustment of geodetic network®¢h, 1999 and
weights to interferograms whose residual phase pattemas its strengths in the enhanced flexibility of datum defini-
closely resembles orbit error signals. Thus, interferogra tion. In some cases it is desirable to consider in 26) ¢nly
with strong atmospheric signals that do not match possible subset of acquisitions. For instance, if the network is ex-
orbital error patterns are downweighted, mitigating their  tended after an initial adjustment by new, recently acquire
fluence on the estimates. Such a weighting scheme is nothages, these should be disregarded in B6) {o avoid a
possible if the baseline estimates have been obtained frogystematic shift of all estimates. This can be implemenyed b
the wrapped phase as described in S&&.In this case, the zeroing the corresponding coefficientsGn(Koch, 1999.
most evident choice is to assume equal weights for all inter- - The potential of the regularisation approach is illustlate
ferograms and define the mutual weightingi@j anddB, by the following example: Fan= 3 images, the zero-mean-
by the fringe equivalents from Ecb) conditions reads_, & = 0, andG = (12 12 I2). If a fourth

5 (dBH on)? 0 image with a Iarge orbit error is later addgd to the net-
D{y}=¢g Ih® < 0 (B, )2> ; (25)  work and the adjustment is re-performed with zero-mean

. o o conditions comprising all four images (i. &5_; % = 0,
where® is the Kronecker product. As the estimation of ab-g _ (121215 15)), the orbit error estimates would experi-
solute orbit errorsy requires a datum definition, two zero- gnce a significant shift also for the initial three imagegrev
mean conditions are introduced: if all misclosures are zero. This effect can be avoided by
E)A(k _ g (d)?,k) _o (26) excluding the fourth image from the zero-mean condition:
K=1 K

£ \d% k 52 X=0.Then,G = (121212 0).
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3.4 Quality control If T,i exceeds a dedicated threshold deduced from the
t-distribution, thath observation is rejected, and the param-

In order to detect outliers, Baardak968 data-snoopingis  eters are re-estimated from the remaining ones. This proce-

applied. The underlying idea of this procedure is to statisdure is repeated until all test statistics fall below thesr-

tically test observations individually on agreement wlie t  old. It has to be taken care that this iterative rejectionsdoe

mathematical model and to reject outliers iteratively lunti not yield an unbalanced spatial distribution of observatjo

all tests pass. Baarda’s approach requires that the stochaghich could entail leverage effects as addressed in Sect.

tic model of the observations is entirely known. This is notConsequently, only a limited number of observations should

the case in Eqs1@) and @4), where a fine-tuning by global be rejected. Possibly, robust estimation approackesk,

scaling faCtOI’STOZ andcg, respectively, is allowed for. In this 1999 would be more effective in this case to find a more ap-

context appropriate data-adaptive tests arerthest Pope  propriate balance between quality and spatial distriloudio

1979 or the equivalert:test Heck 1981, Jager etal2009, the observations. However, a successful application skthe

following the 7- or the more commotidistribution, respec-  concepts would require further and thorough research to en-

tively. Here, thet-test is applied within the framework of sure a reliable result.

iterative data snooping. Outlier detection on the network level follows the same
There are two levels of data screening. Firstly, it can bescheme, testing the contribution of every interferogkam

tested how well individual unwrapped phase observationgividually. The alternative hypothesis reads:

match the orbital phase trend. Thus, isolated outliers that

are limited to single pixels can be |dent|f|ed and rejectedE{be,k} — A+ Oy, (34)

In the subsequent network adjustment, it can be evaluated if

contributions of particular interferograms are biasedair n

This second level of data screening is primarily designe

to detect unwrapping errors, which often apply to severa < L .
pping bRl ters, modelling the assumed bias in terms of baseline er-

spatially neighbouring pixels at a time. Then, erroneousl Provided that interf akiis th v interf
unwrapped pixels mask each other, and errors cannot be d[??—rs' rovided that interferograins the only interierogram

tected by single outlier statistics on the observationlleve atcontributes erroneous bgselflne error estimates teethe
Considering further that phase observations are always re\{vork, the best estimate Tl is (Jager et 212006:

ative, it is not straightforward for two equally sized regso i

in an interferogram to determlne, Whlch one of Fhe two is(], = — (Q;&*QQ,&AKQXRAIQ;Q) Q;lVlo (35)
unwrapped correctly and which one is not. Quality control

on the network level is an effective way to detect these er-

rors and thus one of the basic motivations for the networR/Nerévi = Akk —Dbe . comprises the two elementswthat
approach. concern interferogram The significance ofl can be eval-

Starting on the observation level, the test statigicfor uated by a generalised t-test for two parametggér et al

theith phase observation equals its Studentised residual. A&000:
suming normally distributed observations apdbeing the

avhereAk is the line-block ofA corresponding to interfero-
ramk and (] = (OB, 0B k) are two nuisance param-

only outlying phase value, it follows tadistribution Jager VIQQéDk

t al 20006): Tek=———F=—~F2n-m) (36)
et al 9: 2¢5

Vi
Tpi = == ~thy—u-1, BD  with:
0o,/€l Qu,8
To-1 TA-1F

wheresg; is a unit vector of zeros with a one at thk posi- @ = v Qy VA Qi Tk (37)
tion. Qy, is the cofactor matrix of the residualg = (vy,): 2(n—m)
Qu, = Qg —ApT QA (32) If the highesfTs exceeds a dedicated threshold, this time

deduced from the Fisher distribution, it can be checkeden th
first place if there is an unwrapping error in interferogtam
that can be corrected manually. Otherwise, its contriloliso
rejected, and the procedure is repeated until all tesstti

Assuming that there is indeed a blunder in itieobserva-
tion, the variance factor estimafg would be biased. Thus,
the factor in Eq. 81) is estimated from all residuals except

theith one: fall below the threshold. Rejection must not be pursued too
VIO lv, vpQ,eel Qg extensively, guaranteeing that the contrik_)ution of ev_er _i
53 _ o< ¢ QTlequ,Q,;la (33) terferogram is controlled by at least one linear combimatio

np—u—1 : of other interferograms in the network.
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Fig. 6: Network of 163 interferometric combinations of 31 HISAT images that has been used to test the estimation of
orbit errors. Vertices represent images (acquisitionb widicatedorbit numbers), and edges stand for interferograms. The
adjusted orbit errors after data snooping are represemnteedbarrows for the least squares approach dhde arrows for

the gridsearch method, respectively. These visualise matgand orientation of the fringe gradient, where the neina
orbital fringes in the interferogram can be deduced fron¢gend in thdower right corner. The conversion is based on the
relation that one fringe in azimuth is equivalent to a basedirror OdeH = 1.7 mm/s and one fringe in range corresponds to
dB, =26 cm. These factors apply specifically on the test data ecdumt for the actual extent of the scene, which is why
they deviate from the numbers in TallleThe 31dashed lines represent interferograms that are identified and rejected a
outliers when the gridsearch method is used

4 Application INSAR processing has been performed with the Delft
Object-Oriented Radar Interferometric Software DORIS
(Kampes et al2004) using precise orbits from the French
Centre National d’Etudes Spatiales (CNES). Topographic
The proposed approach for estimating orbit errors has beqgpignt variations, which are below 200 m, have been ac-
tested on a set of 31 ENVISAT acquisitions from a scengounted for with a 3"-DEM product from the Shuttle Radar
in Western Australia (track 203, frame 4221) between DeTopography Mission (SRTM). To maximise coherence, all
cember 2003 and April 2008. The region has a semi-arighterferograms have been multilooked by a factor 25 in
climate, the land use being dominated by dryland croppingzimuth and 5 in range, yielding pixels of approximately
and some salt lakes. These conditions go along with a googho x 100 n? size. Adaptive phase filteringpldstein and
interferometric coherence, which was the reason to choosgerner 1998 has been applied to facilitate unwrapping,
this test area. A network of 163 interferograms has been sgfhich has been carried out using the Statistical-Cost Net-
up with a maximum perpendicular baseline of 743 m andyork-Flow Algorithm for Phase Unwrapping (SNAPHU:
a maximum temporal baseline of 560 days (see B)glt  chen and Zebker2001). Subdividing the interferograms
was aimed to include as many interferograms as possiblgytg 1260 tiles of 30x 30 pixels, only the most coherent

the only requirement being that unwrapping is reliably feapixe| from each tile contributes to the estimation to guaran
sible. Three sample interferograms are pictured in Fig.
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— empirical relation noise as a function of coherence would allocate
° m‘ different weights to the individual pixels. This has to be
avoided to prevent leverage effects that could result from
an inhomogeneous spatial distribution of weights. Admit-
ting thus only models with homogeneous variances, the only
matter to be settled is the question if correlations shoeld b
assumed or not. As the atmospheric propagation delay defi-

covariance [rad?]

0 10 dizsct)am%o[knjo 50 _nitely is gspatially c_orrelatefj effect, it suggests itsalf to _
ignore this stochastic behaviour. However, the charatteri
s — Eﬁgiéical gf the associated covariances is very different fpr indiaid
= interferogramskilanssen2001). The consequential need to
= individually tailor covariance models is opposed to the re-
g quirement of a generally applicable methodology. Hence,
é 1 the covariance of two pixels is assumed to be an isotropic
5 N function of their spatial distanag for which the most sim-
9 0 ~ plistic choice would be:
1478615788 0 10 20 30 40 50
distance [km] c, r=0
15 \ empirical CO(r,C) N { , > 0’ (38)
. —==model
%10 wherec > 0. This model, implying uncorrelated observa-
Pl tions, does not even require adaption, because the parame-
§ 5 ter c is arbitrary due to the a posteriori estimation&ﬁ in
§ ~ Eq. (20). But it does not reflect realistic conditions either.
0 \' ) If a more sophisticated model is supposed to be applied, a
‘ 2230172406 0 10 20 30 40 50 two-dimensional covarianceT function can be estim_ate_d from
distance [km] the power spectrum of an interferogram by application of

. . . . an inverse Fourier transformatiod&nssen2001). This re-
Fig. 7: Sample interferograms and their associated co- . : . . .

; . . . quires second order stationarity of the underlying stotihas
variance functions. The interferograms covering the whole

scene of 100x 100 kn? have already been corrected for PrOCESS: of which the interferogram is a realisation in this
y context. To fulfil this requirement, the assumed contrituti

reference phase and topographic phase. The empirical co; . .
. . : of orbital errors can be removed from the interferograms by
variance functions have been fitted by the double exponen- . . L -
. subtraction of a linear trend, which is a sufficiently good ap
tial modelCe(r) from Eq. 39) . )
proximation for this purpose.

To avoid a bias due to decorrelation noise, the power
tee a spatially homogeneous distribution of observatidns. spectrum is low-pass filtered beforehand. Circular averag-
small number of tiles has been disregarded due to lack dfg finally yields a one-dimensional covariance functios. A
pixels with a coherence estimate above 0.25. the thus obtained function is only defined for spatial wave-

lengths below half the size of the interferogram, it is gxtra

] ] olated by fitting a double exponential analytical model:
4.1 Stochastic modelling

Ce(r;cy,C0,a) = cle*ﬂﬁ + o€ 3. (39)

The choice of an appropriate covariance matrix for the phase
observationgg in Eq. (12) has several implications: It de- This model has been chosen, because it matches well
fines the mutual weighting between the contributions of inthe empirical covariance functions and more sophisticated
dividual pixels, it directly affects the quality measure®.,  better-fitting models do not qualify by a better performance
standard deviations, of the estimated orbit errors andaihis The empirical choice of 1 km as correlation length of the
important prerequisite for outlier detection. As orbites  first exponential function can be motivated with the transi-
are the only effect that is considered in the functional nhodetion between different atmospheric scaling regimes at 2 km
of Eq. (16), all other contributions like deformation, atmo- distance KHanssen2003). (e "/(*™ has decayed by 90 %
sphere and noise are absorbed in the stochastic model aatt =2 km.)
would thus have to be accounted for. There is still a number of deficiencies left. As the

This requirement is in conflict with a number of con- spectral method does not account for wavelengths that ex-
straints. Allowing the phase variances to account for decorceed the extent of the interferogram, the resulting covari-
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ance functions are significantly biased for about 20 interhas only little effect on the estimates, the median dewiatio
ferograms containing distinct nonlinear atmosphericdeen being 0.05 fringes. For a few acquisitions, the estimated or
(e. g., ifg. 22301-24806, see Fig. Some interferograms bit errors differ significantly, showing deviations up t@l0.
(like 14786-15788in Figr) expose distinct anisotropic fea- fringes. Hence, it can be concluded that in spite of the good
tures, which have been disregarded in the modelling to keeprecision (i. e., standard deviation) of the estimatedtanbi
the approach simple. rors better than 0.05 fringes, the factual accuracy may be at
The factual benefit of the double exponential covariancehe level of a few tenths of fringes in some cases.
modelCe(r) compared to the simpler model without covari-  The estimated standard deviations are throughout
ance<Co(r) will be evaluated in the following. smaller if uncorrelated observationSy(r)) are assumed,
whereas the quality indicators from correlated obsermatio
(Ce(r)) are probably more realistic. Although the double ex-
ponential covariance modég(r) is still a crude approxima-
tion of the true stochastic behaviour of the interferoncetri

Astthtehtrue ?rbllterrors are ;Jtnhkn.ownti I |stnot,f\|ea3|btlse':({|éva phase with some unresolved deficiencies, it is supposed to
uate the actualaccuracy ot their estimates. INever S be a closer approximation of reality than the simple model

parameters’ plausibility can be checked roughly, and thei (r
mutual consistency can be inferred from misclosures in the

network. Whereas least squares and gridsearch estimates ca Asall mterferogra_ms have peen processed with care, the
easily be compared with each other, it is not straightfodvar presence of unwrapping errors in the dataset can basiaally b

to assess the innovation of both estimators with respect tFXdUded' However, regardless the choice of the covariance

L .~ function, there are interferograms that do not pass the out-
the common approach of removing linear ramps. A direc

. . . . lier test in Eq. 86) at a significance level af = 0.001. This
numerical comparison fails due to the different parameteri. . S .
. . is probably due to remaining deficiencies of the stochastic
sations and their effect on the phase.

. . . model addressed in Sedtl If data snooping is applied, not
Table 3 summarises the adjustment results. Assumin : .

. : - ore than two interferograms are rejected before all tests
uncorrelated observationg(r)), baseline errors up B

_ : " . pass while the change of the estimated orbit errors is be-
=3.4 m”?’s (2.0 fringes) ardh, = 95 cm (3.6 fringes) have low 0.02 fringes and thus negligible (see Tall)e Hence,
been estimated by the least squares (Isq.) method. These (I- . : .

ta snooping can not be considered useless, since the con-

mensions are hardly explainable by orbit errors and suggeSf. - L .
Y €xp y ) 99 tributions of the majority of interferograms are accepte.
that large-scale variations of the atmospheric delay etk i

the baseline error estimates. This is plausible, as the nor(f?p?b.lmy o detect unwrapping errors will be analysed in
detail in the next subsection.

linear signal in interferogram 22301-24806 proves that gra S , .
dients in the atmospheric propagation delay of two fringes Considering the least squares solution as an unbiased
over half a scene (50 km) are possible (see BigThe net- reference, the estimates obtained by ghielsearch method

work adjustment yields absolute orbit errors up to 2.7 mm/&re distinctly unreliable in some cases. Fg. shows that
in | (1.6 fringes in azimuth) and 65 cmin (2.5 fringes in there are high deviations of up to 5.7 fringes. These occur

range). The maximum residuals of 0.3 mm/sIBH and 2 cm frequgntly in the presence of a nonlinear large-scale atmo-
in B, are much smaller than iBahr and Hansse2010), spher_|c _S|gnal and go along with the presence of more than
where the same dataset has been analysed with a similar n@pe distinct local maximumin the search space (seeghig.

work design. This can be explained by a range timing errofi€nce, the ratio between the highest local maximgand

in the annotations of image 10277 of QU3 (12 pixels) that j[he. second-highestlloc.:ql maximqmqan t?e considergd an
could be reliably identified and corrected. indicator for the reliability of the estimation. From Figa

In Table3, baseline errors (and analogously orbit errorsan be seen that the probability of a biased estimate is high
Yo < 1.5.

residuals and estimated biases) are also quantified in terrisr/

of the total number of fringes that they induce into an inter- ~ The internal consistency of the estimates obtained by
ferogram: the gridsearch method is poor, which is suggested by the

high residuals in Tabl&. Applying data snooping with a
significance level ofo = 0.001, as many as 31 interfero-
grams are rejected before all tests pass. With standard de-
viations of orbit errors below 0.05 fringes, the consisienc
The conversion to fringes follows Eb)( wheredBH’Z,T =  of the revised network is of a similar quality as the least
1.7 mm/s anddB, »; = 26 cm are applicable for the data squares solution (see Tal®. However, the estimates for

at hand. An analogous conversion is applied to the mutualome acquisitions deviate on the one-fringe level (seeg-ig.
deviations of different approaches in TaldleThe compari- and Table5), which can be explained by non-equivalent ob-
son there reveals that the choice of the covariance functigjective functions of the two approaches. Hence, biased con-

4.2 Performance

. (40)

‘ dB,
dBL,Zr[
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Table 3: Results of network adjustment for the least squ@sg9 approach using the covariance functi@g&) or Ce(r),
respectively, and thgridsearch method. Given are the median and the maximum of the absdliev of observed baseline
errorsdB, adjusted orbit errord, residuals/g and estimated biasésB as well as their minimum and maximum standard
deviationsdBy, combines the effects idBH anddB, by converting them to fringes (fr.) following Eg4Q). d%, vg, and
ﬁBfr have analogous meanings

dBH dBL dBfr dXH d)’iL difr VBH VB, VB, OBsr
(" fem] [fr] | [™" [em]  [fr] | ["] [em]  [fr] | [fr]
med 0.64 16.3 1.11] 055 18.6 1.12| 0.03 0.3 0.02
Isq. max 3.43 94.8 4.78| 2.68 65.2 4.08/ 0.30 2.0 0.22| 0.26
Co(r) Omin 0.01 0.2 0.01] 0.01 0.1 0.01
Omax | 0.12 1.8 0.10| 0.03 0.4 0.02
med 0.65 17.1 1.02] 0.50 18.9 1.10| 0.04 0.4 0.04
Isq. max 3.12 91.6 4.43| 231 65.0 3.83] 0.47 3.5 0.33] 0.35
Ce(r) Omin 0.01 0.1 0.01| o0.01 0.2 0.01
Omax | 0.16 2.3 0.13| 0.06 0.8 0.05
med 0.76 189 1.23] 0.58 19.9 1.10| 0.13 3.1 0.27
grid- max 559 120.2 7.16| 393 722 4.09| 3.84 88.1 5.64| 6.72
search | Omin 0.82 125 0.68| 0.22 3.3 0.18
Omax | 0.82 12,5 0.68| 0.41 6.2 0.34
grid- med 0.68 17.3 1.16] 0.60 20.2 1.24| 0.04 0.5 0.04
search | max 3.77 819 497 297 716 4.48] 0.19 2.7 0.16] 0.25
& data- | Omin 0.07 1.1 0.06| 0.02 0.3 0.02
snooping | Omax | 0.07 1.1 0.06| 0.05 0.8 0.05

Table 4: Comparison of orbit error estimates obtained byest squares (Isg.) approach, using the covariance moglels

or Ce(r), respectively, and thgridsearch method. All three estimators have been evaluated with atttbwi application of
data snooping, for which the number of rejected interfegiotg is indicated in each case. For every pairing of appreache
both the maximum and the median deviation between the estihuabit error parameters is given, converted to fringes by
analogy to Eq.40): d%q = |dX)/dB) ar| + [dR, /dB 2r]

. without data snooping with data snooping
maximum - .
median Isq. Isq. grid- Isq. Isq. grid-
Co(r) | Ce(r) | search| Cy(r) | Ce(r) | search

[ rejectedinterferograms [ 0 [ 0 | o [ 2 | 1 [ 31 |
without | Isq.,Co(r) 0.39 091 | 0.02 0.39 1.25
data- Isq.,Ce(r) 0.05 1.15 | 040 0.02 1.30
snooping | gridsearch 0.19 0.20 0.92 1.16 1.44
with Isq.,Co(r) 0.00 0.05 0.9 040 1.25
data- 1sq.,Ce(r) 0.05 0.00 0.20 | 0.05 1.31
snooping | gridsearch 0.09 0.14 0.12 | 0.09 0.13

tributions of particular interferograms estimated by thdg  the chosen stochastic model. Subsequently, the perfoenanc
search method can not be reliably identified by data snoopn detecting simulated unwrapping errors is tested.

Ing. The applicability of the respective statistical distribu-
tions in Egs. 81) and @36) is evaluated by Pearson’s chi-
square goodness-of-fit tesreyszig 1979. Doing so, the
test statistics are binned intd = 15 intervals. Then, the

4.3 Detectability of outliers number of testsy; in each interval is compared to the the-
oretical number of testh; o that is supposed to be in that

Two statistical tests have been proposed to detect unwragseryal if the associated statistical distribution apgliFi-

ping errors. On the observation levé indicates if individ-  najly, the goodness-of-fit test is based on the difference of
ual phase observations deviate significantly from the estihese numbers:

mated orbital error signal. On the network level, largelesca
unwrapping errors can be detected with In the following

it is evaluated for both tests, if the associated statistiisa
tributions do indeed apply to the test statistics in contdxt

No(hi—hig? ,
T.=§ W00 2 41
X2 i:E hi o XN-1 (41)

)
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(a) Deviation ofgridsearch from least squares estimates (b) \y|(dBH ,dB, ) for interferogram 24806-28313

Fig. 8: (a) Absolute deviations of the baseline error parameters iddaby thegirdsearch method from the least squares
estimates (from uncorrelated observations). By analodytto40), the deviations in the respective components have been
normalised to their fringe equivalent and subsequentlyrsathup per interferogram. They are plotted as a function of
the ratioy; /y2 between the highest and the second-highest local maximuheisearch spa¢¢|(dB||,dBl). The highest
deviation has been observed in interferogram 24806—28B8& ®bservations from which are visualised in the subfrgb)e.
Coherence measufy of interferogram 24806—28313 computed for incrementaliyad baseline error vaIuedIiF”, dB,).

The interval between the white grid lines corresponds tofonge according to Eq.5). Thegridsearch-solution is defined

by the highest value d#¥|, from which the least squares solution has a distance ofingels — 2.2 in azimutl"dB”) and 3.6

in range @B, ). Note that the least squares solution does not necessairilgide with a local maximum in the search space,
which is due to the differing objective functions of the twaiimators

To evaluate the tesf, on the observation level, . has
been computed for all 163 interferograms after iteratively
rejecting a small number of outliers. This is necessary to
guarantee that the samples are not contaminated by blun-
ders. Even for a small level of significanae= 0.1 %, the
t-distribution can be validated for only 73 % of the interfero
grams if uncorrelated observations are assur@g(t)). For
the double exponential mod@(r), the validation succeeds
for only 22 %. These results indicate that both models ar&ig. 9: Simulation of unwrapping errors, exemplarily
incapable to adequatly describe the stochastic behaviour demonstrated on interferogram 14786-15788. All phase ob-
the observations for the general case. Nevertheless, the pservations in a quadratically confined area in the lowertrigh
formance of this test is only of secondary importance if onlycorner are shifted by 72 The fringe equivalent of the in-

a limited number of distinct blunders is rejected. Moderateduced error signal according to EetQj is 0.4 fringes for
biases in a small number of pixels do not distort the orbithe left and 0.8 fringes for the right example

error estimates significantly due to the high number of ob-

servations. More crucial is the teg on the network level,

for which the goodness-of-fit test passes for any Signiﬁ"janccontaminated by unwrapping errors with incrementally var-
level below 9 % Co(r)) or 11 % Ce(r)), respectively. This  jeq magnitudes. The respective numbers of case studies, in
is a promising result, confirming the validity of this test which an unwrapping error of a specified magnitude is de-

To assess the sensitivity dg with respect to large- tected are listed in Tabl It turns out that the more sophis-
scale unwrapping errors, such errors have been simulatéitated covariance mod€kL(r) promotes the detectability of
as demonstrated in Fi§. 163 case studies have been car-outliers, as the success rate is significantly higher farsrr
ried out, in each of which one of the 163 interferograms isbelow 0.3 fringes compared @(r). The finding that errors
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Table 5: Results of reprocessing with corrected orbits foifable 6: Number of interferograms that do not pass the out-
four sample interferograms. For the least squares (Is@.) adier testTg if they are contaminated by a simulated unwrap-
the gridsearch approach, the corrected interferogranmtend t ping error as demonstrated in Fig.

difference with respect to the uncorrected interferogreen a
pictured. The corrections have been estimated by network simulated covariance model
adjustment after data snooping, assuming uncorrelated ob- error Co(r) Ce(r)

: : ¢ [fringes]
servations Co(r)) in case of the least squares estimator. 0.05 > L% | 42 (26%)

They are given here in fringes in azimuth and fringes in 0.10 3 @w) | 8  (52%)
range, respectively, following Eg5). The last row shows 015 27 (17%)| 109 (67 %)
the difference between the two approaches. Whereas the es- 020 | 67  (41%)| 119 (73 %)

0.25 || 107 (66%)| 129 (79 %)

timates for the orbital error signals seem reasonable_ fbr bo 030 || 135 (83%)| 141 (87 %)
approaches, the results differ for a small number of interfe 0.40 || 146  (90%) | 149 (91 %)
ograms. Note that for the great majority of interferograms 0.50 || 156 (96 %) | 156 (96 %)
the difference is insignificant, as it is the case for 17291— 0.60 || 162 (99%)| 160 (98 %)

0.70 || 163 (100 %)| 162 (99 %)

24305 (see Figo) 0.80 || 163 (100 %)| 163 (100 %)

Master 09275 17291

Slave 10277 | 24305 . . .

B, 212m| 361m 4.4 Sequential versus comprehensive adjustment

Btemp 70d

N The organisation of the adjustment in two steps, firstly es-

:J:;ZE timating individual baseline parameters to be adjusted sub
sequently in the network, makes the procedure conveniently
modularisable and reproducible. A more rigorous approach
would be a comprehensive formulation of the functional re-
lationship, i. e.,

Isq.

Go(r) E{(...,o,..) T} = f(x), (42)
involving an adjustment in only one step. Thus, it could be
accounted for different look directioidy and T s of master
and slave, respectively, as it has been proposédtbhyhase
et al(2003. For the two-step approach, they are simply av-

grid- eraged in Eq. X0). But as the look directions are almost

search collinear in spaceborne SAR, the bias due to averaging is
small enough to be negligible.
A second advantage of a comprehensive approach would
_ . be that the mutual weighting of the contributions of diffetre
diff. -0.3/0.0 | 0.0/0.0 | -0.61-0.4) -0.7/0.0 interferograms by&&k and the estimation of a global vari-
- ance Ievelﬁg could be unbiasedly performed in one step by
applying variance component estimatidoth, 1999. The

benefit has been evaluated, revealing no significant change
in the estimates. Whereas the resulting covariance infor-

mation differs significantly, it does not improve the pesfor
above 0.5 fringes still remain undetected appears trogblinmance in outlier detection.

butis relativised by the circumstance that the interfesiots
in question are associated with small weights in the network

mitigating their influence on the estimates. 5 Separability of signal components

Recapitulatory can be stated that the effort of adapting a
stochastic modeTe(r) with correlated observations has in- The proposed method is based on the assumption that be-
deed some benefit in the detection of outliers, even thougsides orbit errors there are no other systematic components
it is not rigorously adequate in all respects. But also tire pe in the residual interferometric phase, which is generatiy n
formance of the mode&ly(r) with uncorrelated observations true. Consequently, unmodelled contributions of ground de
is acceptable. formation or atmospheric propagation delay may leak into
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the estimates, and the subsequent elimination of orbital er Another conceivable application scenario for the pro-
rors can bias the respective signal of interest. This mechgosed method involves Permanent or Persistent Scatterer
nism is unavoidable, but it can be mitigated by exploiting(PS) approaches, for which a number of different process-
the spatio-temporal characteristic of the orbital errgr- si ing chains have been develop&e(retti et a/2001 Hooper
nal. This signal always affects a radar scene as a whole amd al 2007 Ketelaar 2009. These are designed to deduce
changes arbitrarily from one acquisition to the next, révea deformation estimates for temporally stable point scatger
ing a large spatial wavelength and an uncorrelated temporahd generally involve an initial estimate of orbit errors to
behaviour. support an optimal identification of PS. At this stage, the
Compared to the revisit intervals of SAR satellites, theh.ere proposed methqd could get inV(.)I-ved. Additionally, t.he
' bias due to deformation could be mitigated by subtracting
e the estimated deformation signal from the original interfe
ence on subsequent acquisitions as completely uncomelate . . o .
. . ograms and iteratively re-estimating orbit errors.
In the spatial domain, the spectrum of effects ranges from
turbulent mixing on small scales over vertical stratifioati
due to topographic variations to large-scale gradientsrof t
perature, pressure or ionospheric electron content. The tu

. . 6 Conclusions
bulent component remains practically unaffected by artorbi

errgrthcorrf(:ctlf nf dtjet.tf(.) It? differing Sp?t"”}: CQ aract:xtsst d bA reliable method to improve orbital state vectors has been
and the efiect of stratification can eventually be capiute proposed and evaluated. It involves estimation of relative

co:relaftllont_wmlm the top?graph;:] helg?tt. Only phafiﬂgrad"bit errors, i. e., baseline errors, from the phase of sefecte
ents reflecting large-scale weatner patterns are not Spara ;. o« in individual interferograms and their subsequeht a
from orbital effects without complementary measurementf

r weather models. However. if not pr. tion delay b ustment in a network, yielding quasi-absolute orbit esror
or weather models. However, It not propagation delay bu,, particular acquisitions. The approach is based on tire st
deformation is the dedicated signal of interest, it is atcep

ble i part of the at heri tribution is mistak ble parameterisation of baseline errorsctB,ﬂ anddB , in-
2rb(iat ;rf;r ot the atmospheric contribution 1S mistaken a%/olving rigorous geometric modelling. The mutual consis-

tency of estimated orbit errors obtained from a sample EN-

As to deformation phenomena, it can be stated that IoVISAT dataset is better than 0.05 fringes or on the millime-
calised signals remain basically unaffected by the orbit ertre level in terms of baseline errors, respectively. Forlqua
ror correction. This does not apply to large-scale groundty control on the network level, iterative data snooping ha
movements, where the separation from orbit errors is ngtroven its capability to detect and reject outliers.
possible without additional measurements or assumptions. For the estimation of baseline errors from the interfero-
If available, ground velocities can be constrained at $etec metric phase, two alternatives are proposeteast squares
points by independent geodetic measuremehntsidgren  estimator supplementarily provides statistical inforimat
et al 2009. Otherwise, the temporal correlation of defor- which can be useful for an optimal weighting scheme and
mation can be exploited, which is a distinction comparedyuality control. However, it requires prior phase unwrap-
to orbit errors and atmospheric effecEe(retti et al 2005 ping. This is not the case for tlyeidsearch approach, which
Hooper et 312007). However, this self-evident assumption has the drawback of occasionally unreliable estimates.
has proven invalid in some cases where temporally corre- The most outstanding distinction of the presented
lated spatial trends have been observed in INSAR time Sgnethod is the mutual controllability of baseline estimates
ries that can not be explained by deformatiblogper etal  enhancing resistance to outliers or blunders. A further im-
2007, Ketelaar2009. provement compared to many existing approaches is the nu-

If temporal correlation properties are nevertheless supnerically stable parameterisation b8, anddB,. Topo-
posed to be exploited to mitigate the bias of deformadraphic variations are fuII.y. accoupted for, Qnd the bias dye
tion estimates, it suggests itself to high-pass filter the erl® deformation may be mitigated in a combined processing
ror estimates before correcting the orbits and subsequent/Vith PS approaches.
analysing deformation. Thus, no prior assumptions have Potential improvements of the method would involve
to be made on the spatial characteristic of the deforma2 relaxation of the requirement that the observation pix-
tion signal, since the temporal filtering is performed in the€ls need to be homogeneously distributed, which might be
very domain in which the potential contamination takesachievable by robust estimation techniques. Furthernadire,
place. Of course, a most appropriate approach would be tfféochastic models analysed so far are still far from optimal
joint estimation of orbit errors and deformation in an all- several respects. Nevertheless, it is questionable if ¢ne b

comprehensive model, which is beyond the scope of thigfit from developing an even more adequate model would
work. outweigh the effort involved.
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