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Abstract An approach to improve orbital state vectors by
orbit error estimates derived from residual phase patternsin
synthetic aperture radar interferograms is presented. Forin-
dividual interferograms, an error representation by two pa-
rameters is motivated: the baseline error in cross-range and
the rate of change of the baseline error in range. For their
estimation, two alternatives are proposed: a least squares
approach that requires prior unwrapping and a less reli-
able gridsearch method handling the wrapped phase. In both
cases, reliability is enhanced by mutual control of error es-
timates in an overdetermined network of linearly depen-
dent interferometric combinations of images. Thus, system-
atic biases, e. g., due to unwrapping errors, can be detected
and iteratively eliminated. Regularising the solution by a
minimum-norm condition results in quasi-absolute orbit er-
rors that refer to particular images. For the 31 images of a
sample ENVISAT dataset, orbit corrections with a mutual
consistency on the millimetre level have been inferred from
163 interferograms. The method itself qualifies by reliability
and rigorous geometric modelling of the orbital error signal
but does not consider interfering large scale deformation ef-
fects. However, a separation may be feasible in a combined
processing with persistent scatterer approaches or by tem-
poral filtering of the estimates.

Keywords InSAR · Baseline Error· Orbit Error· Network
Adjustment· Outlier Test· Data Snooping

H. Bähr
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1 Introduction

Spaceborne repeat-pass synthetic aperture radar interferom-
etry (InSAR) is a key technique for large-area deformation
monitoring. Relative displacements of the ground occur-
ring between two radar acquisitions are measured at pixel
locations of two-dimensional SAR interferograms. These
measurements can be biased by errors originating from a
multitude of different sources. Each error source having its
own characteristics, signals with different spatial or tempo-
ral properties are superposed to the signal of interest. When
ground deformation is the signal of interest, it is the aim of
InSAR processing to estimate and consecutively eliminate
or mitigate all other signal contributions.

Inaccuracies in the satellite orbits affect interferograms
in the form of an almost linear signal and scale the height
ambiguity. Whereas this latter effect is usually negligible
and orbit errors may be disregarded for localised phenom-
ena, their effect can be considerable if the deformation
regime covers a larger area. A common approach to sepa-
rate the signal components from each other is to identify the
orbital contribution by its long spatial wavelength. Whereas
this discrimination is efficient for a large number of appli-
cations, it does not apply in the presence of a large-scale
deformation signal like tectonic movement or tides that has
similar spatial characteristics. In this case, part of the defor-
mation may be misinterpreted as orbit error.

The most popular method to account for orbit errors is
the subtraction of an estimated linear trend (or phase ramp)
from the interferogram. This is easy to implement but in-
volves a minor bias, since the orbital error signal is not rig-
orously linear. This flaw is overcome by more sophisticated
methods that do not correct the interferometric phase for the
effect of orbit errors but rather modify the satellite trajecto-
ries so that the error signal dissolves.Massonnet and Feigl
(1998) as well asKohlhase et al(2003) deduce the required

http://www.springerlink.com/content/125216v751312705/?MUD=MP
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modifications from the fringe count along the edges of an
interferogram. Following their approaches, orbit corrections
can be estimated from phase differences or gradients that
have been measured between defined pixel locations.

When deriving orbit errors from residual fringe patterns
in the interferometric phase, only relative orbit corrections
can be inferred, adjusting the trajectories of the two acqui-
sitions with reference to each other. Hence, orbit error esti-
mation from one interferogram alone is equivalent to the es-
timation of baseline errors, where the interferometric base-
line is defined as the difference vector of the sensor posi-
tions of master and slave acquisition. A lot of research has
been pursued in this domain with different parameterisations
of the three-dimensional, time-dependent baseline vectorin
its across-track and radial component (Small et al, 1993;
Werner et al, 1993; Zhang et al, 2009). Even though these
approaches perform well in mitigating the effect of orbital
errors, little attention has been paid on an optimal parame-
terisation of the baseline to avoid physically unlikely esti-
mates.

The present contribution starts with a brief review on
quality of orbit products and a sensitivity analysis of the
baseline with respect to the interferometric phase. Based
thereupon, a representation of baseline errors by two pa-
rameters is motivated, namely the baseline component in
cross-range and the rate of change of the component in
range direction. In Sect.3, a least squares approach (Bähr
and Hanssen, 2010) is proposed to estimate the baseline er-
ror from the unwrapped interferometric phase. To overcome
the requirement of unwrappable interferograms, also an al-
ternative method is presented that can handle the wrapped
phase but is considered less reliable. It is similar to the peri-
odogram approach, where the dominant fringe frequency is
determined by Fourier analysis to deduce baseline compo-
nents (Singh et al, 1997; Monti Guarnieri et al, 2000; Bing
et al, 2006). By contrast, it does not imply linearity of the
orbital error signal and accounts for variations in the topo-
graphic height, involving rigorous geometric modelling.

A crucial issue in baseline error estimation is to ensure
reliability, since interferograms with suboptimal coherence
may be contaminated by unwrapping errors. A promising
approach to cross-check the error estimate of the baseline
between two acquisitions is to exploit linear combinations
of interferograms with different perpendicular and tempo-
ral baselines. This concept can be regarded as setting up a
network of interferograms that connect the available images
on redundant paths in this spatio-temporal baseline-space.
Thus, quasi-absolute orbit errors can be inferred that either
refer to a global master or are, more conveniently, defined
by a minimum-norm condition (Kohlhase et al, 2003; Biggs
et al, 2007; Bähr and Hanssen, 2010). Furthermore, incon-
sistencies that are due to interferogram-specific filteringare
adjusted, enhancing the precision of the baseline error esti-

mates. Offering a mechanism to detect outliers due to un-
wrapping, the network approach provides a notable gain in
reliability, whereas an increased processing load is required.
In Sect.4, the method fromBähr and Hanssen(2010) is
evaluated for its capability to detect unwrapping errors. Fur-
ther considerations address the optimality of stochastic mod-
elling.

Even with the correction approaches listed above, the es-
timation of large-scale deformation signals is cumbersome,
as both orbit errors and gradient atmospheric propagation
delays can induce signals with similar spatial characteris-
tics. However, it is not the aim of this contribution to tackle
the separability of the orbital error signal from other sig-
nal components. It is rather intended to provide a reliable
method to eliminate the orbital contribution with as little
user-interaction as possible. Nevertheless, some thoughts
are also offered in Sect.5 on the mutual bias of orbit cor-
rection, deformation and the atmospheric signal contribution
and its mitigation.

2 Orbit errors

In order to motivate an effective correction methodology,
this section is dedicated to a both quantitative and qualita-
tive analysis of satellite orbit errors and their effects onin-
terferograms. After reviewing available quality information
on orbit products of past and current SAR missions, the mu-
tual sensitivity of the interferometric phase and orbit errors
is analysed. Finally, an appropriate parameterisation is pro-
posed.

2.1 Accuracy of orbit products

Precise orbits of SAR satellites are determined by space
geodetic techniques. Earlier missions like the European Re-
mote Sensing Satellites (ERS-1/2) made use of Satellite
Laser Ranging (SLR), supported by radar altimetry mea-
surements. At Delft University of Technology, a root mean
square (RMS) error of 4 cm for the radial component of ERS
orbit solutions could be attained (Doornbos and Scharroo,
2005). The accuracy of the along- and across-track com-
ponents is definitely worse, which is suggested by differ-
ences of the order of 15 cm for solutions based on different
gravity models (Scharroo and Visser, 1998). For the like-
wise SLR-tracked Environmental Satellite (ENVISAT), the
DORIS system (Doppler Orbitography and Radioposition-
ing Integrated by Satellite) provides complementary mea-
surements. The accuracy of the best orbit products is esti-
mated to be 3 cm in the radial component and 10 cm in 3D
(Otten and Dow, 2005). More recent missions rely primarily
on the Global Positioning System (GPS) for orbit determi-
nation, supported by SLR. For TerraSAR-X, the RMS orbit
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accuracy has been assessed to be at the 2 cm level (Yoon
et al, 2009). Comparing the GPS orbits of the Advanced
Land Observing Satellite (ALOS) to SLR solutions yielded
RMS deviations of overlapping arcs between 2 and 15 cm
(Nakamura et al, 2007), assumedly in 3D.

It must be stressed that these quality indicators have to
be interpreted with care, since a rigorously independent val-
idation is not possible. Subsequent arcs or solutions from
different analysis centres rely at least partially on the same
data. In addition, systematic errors in atmospheric and force
models may affect all measurements in the same way, even
when different techniques are involved. Furthermore, global
quality measures are not necessarily stationary in time and
space. There may be local quality variations due to an in-
homogeneous distribution of SLR tracking stations. An in-
creased solar activity or bad atmospheric conditions can en-
tail less accurate solutions. In some cases, accuracy assess-
ments only consider selected epochs which are not necessar-
ily representative for the whole mission.

More conservative quality estimates are less optimistic.
Yoon et al(2009) assess the precise scientific TerraSAR-X
orbits to be ”definitely better than 10 cm”. For some arc
overlaps of ALOS orbits, deviations exceed 30 cm (Naka-
mura et al, 2007). Official requirement specifications for
ALOS range up to 1 m (European Space Agency, 2007).
Radarsat-2 orbits have a nominal 3σ accuracy of even
15 m1.

This illustrates that even though accuracies of orbit prod-
ucts from recent missions are estimated to be on the cen-
timetre level, possible deviations from the true trajectory of
several decimetres may occur. For Radarsat, the expectable
accuracy is even worse.

2.2 Parameterisation

Orbit products describe the satellite’s trajectory by state
vectors, which subsume positions and velocities at distinct
epochs. The interferometric baseline is represented by the
difference vector of the sensor positions#»x from two acqui-
sitions, referred to as master (M) and slave (S):

#»

B(t) = #»x S(t)−
#»x M(t). (1)

It is decomposable into its horizontal (across-track), along-
track and vertical (radial) componentBh(t), Ba(t) and
Bv(t), respectively. Considering only the two-dimensional
(Bh,Bv)-plane, there are alternative ways of baseline decom-
position (see Fig.1). The baseline can equivalently be de-
scribed by its lengthB = |

#»

B | and its orientation angleα. A
third representation consists of its parallel componentB‖ in

1 MDA Corporation, http://www.radarsat2.info/about/

mission.asp, accessed on 10 Feb 2011.

Fig. 1: Decomposition of the interferometric baseline in a
plane perpendicular to the flight direction. The representa-
tions by its horizontal and vertical component (Bh andBv) or
its length and orientation angle (B andα) are unambiguous,
whereas the description by parallel (range) and perpendicu-
lar (cross-range) component (B‖ andB⊥) depends on range.
So do the look angleθ and the local incidence angleθinc

range and perpendicular componentB⊥ in cross-range di-
rection, respectively (Hanssen, 2001):

B‖(t,θ ) = Bh(t)sinθ −Bv(t)cosθ

= B(t)sin(θ −α(t))

B⊥(t,θ ) = Bh(t)cosθ +Bv(t)sinθ
= B(t)cos(θ −α(t)).

(2)

The baseline can be related to the interferometric phase
by the following approximation:

φ(t,R) =−
4π
λ

(

RM(t)−RS(t)
)

≈−
4π
λ

B‖(t,R), (3)

whereλ is the radar wavelength.RM =: R andRS are the
respective range measurements of master and slave. In order
to assess the sensitivity of an interferogram to baseline er-
rors, the residual phasedφ ≈− 4π

λ dB‖ is now considered as

a function of an error baselined
#»

B that is superposed to the
interferometric baseline. Taylor series expansion in azimuth
time t and look angleθ (R) yields with Eq. (2):

dφ(t,θ ) =−
4π
λ

(

dB‖(t0,θ0)+ dḂ‖(t0,θ0)dt

+ dB⊥(t0,θ0)dθ +
1
2

dB̈‖(t0,θ0)dt2

+ dḂ⊥(t0,θ0)dt dθ −
1
2

dB‖(t0,θ0)dθ 2+ · · ·
)

. (4)

The zero-order term can be ignored; a constant phase change
to the whole interferogram does not affect its interpretation,
since InSAR is a relative technique. The first-order terms
are characterised by the baseline error componentsdḂ‖ and
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(a) dB‖ = 26cm

(b) dB⊥ = 26cm

(c) dḂ‖ = 1.7 mm
s

(d) dḂ⊥ = 1.7 mm
s

(e) dB‖ = 21m

(f) dḂ⊥ = 6.7 cm
s

π

−π

Fig. 2: Error signals induced into the interferometric phase
by errors in different baseline components, assumingλ =
5.7 cm and a mean look angle of 20◦ (ERS). The decom-
position intoB‖ and B⊥ is defined by the line of sight to
the centre of the scene of 100× 100 km2 size. (a, b) The
effect of an error inB‖ is negligible compared to an error
of the same amount inB⊥. (c, d) An analogous conclusion
can be drawn foṙB⊥ andḂ‖. (e, f) Errors inB‖ andḂ⊥ must
be disproportionately large to yield a distinct interferometric
signal (Bähr and Hanssen, 2010)

dB⊥, which result in linear fringes in azimuth and range,
respectively (see Fig.2a-d). By rule of thumb, a rough es-
timate of the baseline error can be obtained by multiplying
the number of fringes in azimuth or range by the respective
conversion factors:

dḂ‖,2π =−
λ

2∆ t
, dB⊥,2π =−

λ
2∆θ

, (5)

where∆ t is the total acquisition time and∆θ is the range
of look angles, respectively, for the whole scene. Individual
computations of these numbers for some missions are listed
in Table1.

With the objective to mitigate the effect of baseline er-
rors as far as possible, a suitable parameterisation is re-
quired. In the following, a number of options will be eval-
uated, considering the error signalsdφ(t) in azimuth and
dφ(R) in range separately.

Starting with the signal in range, Fig.3ashows how the
maximum bias of the interferometric measurement due to an
error baselined

#»

B of constant lengthdB depends on its ori-
entation. The extrema at a mean look angleθ0 plus multiples
of 90◦ suggest a further consideration of the representation
by dB‖(θ0) anddB⊥(θ0). Estimating both parameters from
the residual phase of an interferogram may yield geomet-
rically unrealistic estimates. As errors inB‖ induce only a
small signal in the phase (see Fig.2a), small large-scale vari-
ations in the atmospheric propagation delay can conversely
cause estimates fordB‖ on the metre level. In a reverse con-

clusion, it would be a tolerable loss to constraindB‖ to zero,
given the little effect this parameter has on the phase.

Figure3b displays the approximation error that is made
by ignoring errors inB‖. It further compares the perfor-
mance of adB⊥-only parameterisation to alternative para-
metric models, the most common of which is a polynomial
in range:

pn(R) =
n

∑
k=1

akRk. (6)

It can be seen from the figure that thedB⊥-parameterisation
performs three times better than the common approach of a
”linear phase ramp”p1(R). A third approximation model to
be pointed out in this context is a polynomial in look angle:

pn(θ ) =
n

∑
k=1

akθ k. (7)

As ∂θ/∂R is not constant, the performance of the approx-
imation by pn(θ ) is different from that bypn(R). Applica-
tion requires an individual computation ofθ (R) for every
range pixel, but this is still easier to implement than the
parameterisation by baseline components. The linear model
p1(θ ) performs even slightly better thandB⊥, whereas the
difference between the two is considered negligible. Two-
parametric models likep2(R), p2(θ ) or (dB‖, dB⊥) would
reduce the approximation error even more but have the dis-
advantage that they may distort a possible large-scale defor-
mation signal more seriously. It has to be carefully inves-
tigated from case to case if the increased accuracy of two-
parametric models outweighs this deficiency.

To support the choice of an adequate model, Table2 lists
the maximum approximation error for different sensors and
modes, assuming an error baseline of constant lengthdB =
1 dm. All numbers can be adapted to bigger or smaller base-
line errors, since the phase error scales linearly withdB. This
can be seen from Eq. (4) under consideration of Eq. (2).

For the orbital error signal in range can be concluded that
in case of usual orbit errors below 1 dm ap1(R)-correction is
sufficient. For higher errors, one of the other one-parametric
models should be considered. This applies especially to
Radarsat-2 and even more to Radarsat-1, where the orbit
data are generally more inaccurate. Also for the planned
mission Sentinel-1, where the swath width in theInterfer-
ometric Wide Swath Mode is designed to be 250 km, it is ad-
visable to rely on eitherp1(θ ) or thedB⊥-parameterisation.
In the present article, thedB⊥-approach is preferred for its
more generic nature. For the reasons just given, models in-
volving more than one parameter to describe the dependence
of phase on range are not considered practical.

The error signal in azimuth is a direct translation of vari-
ations indB‖ into the interferometric phase. A constant rate
of changedḂ‖ induces a perfectly linear error signal (see
Fig. 2c). Generally, any phase patterndφ(t) could result
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Table 1: Baseline errorsdḂ‖,2π anddB⊥,2π inducing exactly one fringe in azimuth or range, respectively, evaluated for dif-
ferent sensors.Hsat is the mean height of the platform. Sensor parameters followthe nominal specifications where available.
Note that these numbers do not apply precisely on any individual data product.dḂ‖,2π anddB⊥,2π may vary slightly as the
case arises

Sensor Mode λ Hsat θ θinc Scene dḂ‖,2π dB⊥,2π
[cm] [km] [◦] [◦] [km]×[km] [mm/s] [cm]

ALOS PALSAR FBS 7 23.6 692 32. . . 36 36. . . 41 70× 70 11.4 185
ENVISAT ASAR IS2 5.6 800 17. . . 23 19. . . 26 100× 100 1.9 26
ERS-1/2 5.7 790 17. . . 23 20. . . 27 100× 100 1.9 26
Radarsat-1/2 S3 5.6 798 26. . . 32 30. . . 36 100× 100 1.8 31
Sentinel-1 IWS 5.6 693 22. . . 37 25. . . 42 170× 250 1.1 11
TerraSAR-X strip003 3.1 514 18. . . 21 20. . . 23 50× 32 2.2 29
TerraSAR-X strip010 3.1 514 33. . . 35 36. . . 39 50× 32 2.2 39
TerraSAR-X strip014 3.1 514 39. . . 41 43. . . 46 50× 32 2.2 48

Fig. 3: Characteristics of a simulated orbital error signaland performance of an approximation thereof. The simulations are
based on an error baseline ofdB = 1 dm length with varying orientation with respect to the horizontal. Sensor height and
field of view for a full ERS scene have been assumed. The plotted range errors are defined as maximum minus minimum
bias of the interferometric measurement and scale almost linearly withdB. Qualitatively, the results are conferable to other
sensors. For a quantitative evaluation, please refer to Table 2. a Range error of the orbital error signal itself with respect to
zero phase.b Approximation error of the orbital error signal for different parametric models as explained in the text

Table 2: Maximum residual range error due to approximation of an orbital error signal in range direction, induced by an error
baseline of 1 dm length for different sensors and parametricmodels. See also Fig.3b. p0 stands for the uncorrected error
signal itself, see Fig.3a

Sensor Mode Maximum Residual Range Error [mm]
p0 p1(R) p1(θ ) (dB⊥) p2(R) p2(θ ) (dB‖,dB⊥)

ALOS PALSAR FBS 7 6.4 0.17 0.05 0.06 0.01 0.00 0
ENVISAT ASAR IS2 10.7 0.58 0.15 0.17 0.07 0.00 0
ERS-1/2 10.8 0.58 0.15 0.18 0.07 0.00 0
Radarsat-1/2 S3 9.0 0.35 0.11 0.12 0.03 0.00 0
Sentinel-1 IWS 25.3 2.91 0.89 1.15 0.58 0.03 0
TerraSAR-X strip003 5.4 0.14 0.04 0.04 0.01 0.00 0
TerraSAR-X strip010 4.0 0.07 0.02 0.02 0.00 0.00 0
TerraSAR-X strip014 3.3 0.05 0.01 0.01 0.00 0.00 0
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from arbitrarily varying baseline errorsdB‖(t). However, as
orbital trajectories have the nature to be very smooth curves,
it is unlikely that errors in these curves undergo completely
random variations. Therefore, a linearly varying error in the
parallel baseline component is considered an appropriate pa-
rameterisation of the baseline error for the short acquisition
time of a single radar scene. The benefit of higher order
polynomials is questionable, because nonlinear components
would rather be dominated by atmospheric effects, yield-
ing unrealistically high estimates. Nevertheless, if longdata
takes are processed as a single frame, a quadratic polyno-
mial in dB‖(t) may be considerable.

It can be concluded that for a wide majority of applica-
tions, baseline errors are appropriately parametrised bydḂ‖

anddB⊥. This representation will be adopted for the follow-
ing considerations.

3 Methodology

To estimate orbit errors form acquisitions, a network of
n ≥ m interferograms is set up in the domains ofB⊥ and
time (for an example see Fig.6). Starting point is the resid-
ual interferometric phase, where ”residual” refers to the as-
sumption that the orbital effect is the only remaining signal
after removal of reference and topographic phase from the
interferograms. In a first step, two baseline error parame-
tersbT

θ = (dḂ‖, dB⊥) per interferogram are inferred from the
residual phases of selected pixelsφ T = (. . . ,dφi, . . . ), where
unwrapping is only required for the first of two approaches
that are described in the following. Secondly, network mis-
closures in the 2n baseline error parametersyT = (. . . ,dḂ‖,k,
dB⊥,k, . . . ) of all interferograms are adjusted. The resulting
2m acquisition-related orbit errorsxT = (. . . ,dẋ‖,i, dx⊥,i, . . . )
are defined by a minimum-norm condition and can be used
to correct the orbit trajectories at hand for re-processing.

3.1 Baseline error estimation from the unwrapped phase

The estimation of orbit errors from the unwrapped residual
interferometric phasedφ by the method ofleast squares is
based on the observation equation:

E{dφ}=−
4π
λ

(RM −RS)+φ0. (8)

φ0 is a constant phase shift that has to be introduced to
account for the inferior precision of range measurement
compared with phase measurement. Linearising this relation
with respect to the horizontal, along-track and vertical com-

Fig. 4: Virtual acquisition geometry for non-parallel orbits
that can be assumed in case of zero-Doppler focussed data

ponents of the orbit positions of master and slave yields:

E{dφ}=−
4π
λ

(

#»r M · #»e h dxh,M + #»r M · #»e a dxa,M

+ #»r M · #»e v dxv,M − #»r S ·
#»e h dxh,S

− #»r S ·
#»e a dxa,S −

#»r S ·
#»e v dxv,S

)

+φ0,

(9)

where#»r M(t,θ ) and #»r S(t,θ ) are unit vectors describing the
line of sight.#»e h(t),

#»e a(t) and #»e v(t) are unit vectors in hor-
izontal, along-track and vertical direction, forming a Frenet
frame (see Fig.4). As long as only one interferogram on its
own is considered, this frame can be conventionally defined
by the master orbit. Note that all coefficients in Eq. (9) are
also calculable in case of variable but known topography.
For small squint angles, as they occur in spaceborne SAR, it
follows from #»r M · #»e a ≈ 0 and#»r S ·

#»e a ≈ 0 that the interfer-
ometric phase is not sensitive to orbit errors in along-track
direction. Consequently, these components are not consid-
ered any further.

Moreover, the coefficients in Eq. (9) that correspond to
dxh anddxv are almost identical for master and slave due to
the very small divergence between#»r M and #»r S. This makes
the joint estimation of individual orbit errors for both master
and slave an ill-posed problem. Considering one interfero-
gram on its own, only a baseline errord

#»

B = d #»x S − d #»x M

can be robustly estimated. In this case, it must be decided if
the estimated error is attributed to inaccuracies in the master
orbit, the slave orbit or to errors in both of them. In the fol-
lowing, the error is attributed in equal proportions to master
and slave in order to avoid an arbitrary discrimination of one
of the two acquisitions. Additionally allowing for a linear
temporal variation of the baseline components, the altered
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model reads:

E{dφ}=
4π
λ

[ #»r M + #»r S

2
· #»e h (dBh + t dḂh)

+
#»r M + #»r S

2
· #»e v (dBv + t dḂv)

]

+φ0.

(10)

Considering the residual interferometric phasesφT =

(. . . ,dφi, . . . ) of nφ pixels that are regularly arranged on a
grid spanning the whole interferogram, baseline parameters
bT = (dBh, dḂh, dBv, dḂv) can be estimated in a functional
model of the following kind:

E{φ}= Abb+1φ0, (11)

whereAb is the design matrix and1T = (1,1, . . . ,1). The
stochastic model is generically defined by some covariance
matrix:

D{φ}= σ2
0Qφ , (12)

the choice of which will be discussed in detail in Sect.4.1.
Similar approaches have been proposed by other au-

thors.Small et al(1993) used relation (10) to estimatedBh,
dḂh and φ0, attributing baseline errors to the master or-
bit only. In Werner et al(1993), the parameter set was ex-
tended bydBv as a fourth unknown.Kohlhase et al(2003)
avoided the arbitrary choice to decide in what proportions
baseline errors are attributed to master and slave by eval-
uating relation (9) in the network context (see Sect.4.4).
Using phase differences as basic observations instead of un-
wrapped phase values, they estimateddxh,i(t j) anddxv,i(t j)

per imagei for two distinct azimuth timest j and derived
rates of change by differencing. Whereas the shift parame-
ter φ0 cancels out in their approach, it is not straightforward
to consider phase differences deduced from common phase
observations in the stochastic model. Therefore, the present
contribution rather relies on the original unwrapped phases
as observations.

As φ0 is of no further interest, it can be eliminated from
Eq. (11), yielding (Teunissen, 2000):

E{φ}= Ābb (13)

with:

Āb =
(

I −1(1T Q−1
φ 1)−11T Q−1

φ

)

Ab. (14)

The relative estimation quality of the parametersb̂ is given
by their covariance matrix:

D{b̂}= σ2
0 (Ā

T
b Q−1

φ Āb)
−1 (15)

and can be visualised qualitatively by the error ellipses in
Fig. 5. These are strongly elongated, showing that the base-
line is determined best perpendicular to the look direction,
whereas its rate of change has maximum precision in look

Fig. 5: Relative estimation quality of constant and linear
components of the baseline error, visualised by error el-
lipses. The grey area represents the sensor’s field of view.
The orientation angles of the ellipses̄θ0 and θ̄1, respec-
tively, can be computed from the eigenspaces of the corre-
sponding covariance matrix. It follows that the estimabil-
ity of dB⊥(θ̄0) anddḂ‖(θ̄1) is good, whereasdB‖(θ̄0) and
dḂ⊥(θ̄1) are only weakly determined

direction. This basically confirms the previously drawn con-
clusions identifyingdḂ‖ anddB⊥ as the components with
the most significant effect on the interferometric phase.

Even though the complementary componentsdB‖ and
dḂ⊥ are theoretically estimable, the estimates would be too
weakly determined to be considered reliable. This can be
seen from Fig.2e, f, where a relatively huge error inB‖

induces only a very faint error signal in the phase. Con-
versely, a faint atmospheric signal that matches by chance
this phase pattern, would result in unrealistically high esti-
mates ofdB‖ in the order of metres. Analogous considera-
tions apply todḂ⊥. Therefore, it is preferable to constrain
these two components to zero. This is achieved by confining
the parameter space from four parametersb to two parame-
tersbT

θ = (dḂ‖,dB⊥):

E{φ}= ĀbTT bθ (16)

with:

T =

(

0 sin(θ0) 0 −cos(θ0)
cos(θ0) 0 sin(θ0) 0

)

. (17)

The mean look angleθ0 =(θ̄0+ θ̄1)/2, which is required
for the decomposition into parallel and perpendicular com-
ponent here, is heuristically defined by the averaged orien-
tations of the error ellipses in Fig.5. These can be com-
puted from the eigenvalues of D{b̂}. Least squares adjust-
ment yields:

b̂θ =
(

TĀT
b Q−1

φ ĀbTT
)−1

TĀT
b Q−1

φ φ (18)

D{b̂θ}= σ̂2
0Qθ = σ̂2

0

(

TĀT
b Q−1

φ ĀbTT
)−1

(19)
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with:

σ̂2
0 =

vT
φ Q−1

φ vφ

nφ − u
, (20)

whereu = 3 is the number of unknowns (dḂ‖, dB⊥ andφ0).
vφ are the residuals:

vφ = ĀbTT b̂θ −φ . (21)

The selection of an appropriate set of phase observations
φ needs to be addressed. Theoretically, all available pixels
could be considered in Eq. (16). However, in many interfer-
ograms not every pixel can supply a reliable phase informa-
tion. In regions of poor coherence, the interferometric phase
is practically meaningless and cannot be exploited. On the
other hand, it is not advisable to simply exclude poorly co-
herent pixels below a fixed coherence threshold, since this
can lead to inhomogeneous spatial distributions of obser-
vations. Thus, local error signals of smaller scale superim-
posed on the orbital signal can act as leverage observations,
dominating the estimates. To avoid such an effect, a homo-
geneous distribution is enforced by defining a grid on the in-
terferogram and selecting from every grid cell only the pixel
with the highest coherence.

For similar reasons, no mutual weighting is applied to
the phase observations, constraining diag(Qφ ) ∝ 1. An in-
homogeneous distribution of weights has the same effect as
inhomogeneously distributed observations.

3.2 Baseline error estimation from the wrapped phase

So far, the presented method estimates baseline errors from
unwrapped interferograms only. If reliable unwrapping is
cumbersome or even impossible, an alternativegridsearch
approach can be pursued. It consists in minimising an objec-
tive function of the wrapped phase, incrementally searching
the parameter space spanned bydḂ‖ anddB⊥.

From Eq. (16) follows E{φ − ĀbTT bθ} = 0. By anal-
ogy to the ensemble coherence fromFerretti et al(2001), a
coherence measure is defined as a function ofbT

θ = (dḂ‖,
dB⊥):

γ(bθ ) =
1

nφ

nφ

∑
j=1

ei(φW
j −āb, jTT bθ ), (22)

whereφW is the wrapped interferometric phase andāb, j is
the jth row of Āb. Considering 0≤ |γ| ≤ 1 and E{|γ|} = 1,
the estimateŝbθ are defined as the set of parameters that
maximises|γ|. Alternatively,γ can also be interpreted as a
discrete Fourier transform of the two-dimensional signaleiφ

to the (dḂ‖, dB⊥)-domain, wherêbθ is constituted of the
dominant frequencies. The required computational load is
higher than for the least squares method, but still negligible

in view of other InSAR processing steps. Whereas thegrid-
search approach does not provide any intrinsic quality mea-
sures for the estimates, heuristic, peak-to-noise ratio-like in-
dicators can be defined.

A noteworthy drawback of the approach is that the esti-
mates turn out to be unreliable in some cases, in particular
when|γ|(bθ ) has more than one distinct local maximum.

3.3 Network adjustment

Given a set ofm SAR images, the relative orbit error be-
tween two acquisitionsi and j can be estimated either di-
rectly from interferogrami j or indirectly from some appro-
priate linear combination of other interferograms. Though
mathematically equivalent, both approaches generally do
not yield identical results. This is due to individual filterset-
tings for the particular interferograms or data-adaptive fil-
tering. Additionally, different interferometric combinations
involve more or less propitious premises for phase unwrap-
ping. Thus, adjusting orbit errors that have been redundantly
estimated from linearly dependent interferometric combina-
tions can enhance the precision of the estimates by mitigat-
ing ”processing noise”, even though there is no redundancy
in its strict sense.

Furthermore and even more important, this approach
provides a mechanism to detect blunders, potentially result-
ing from unwrapping errors. But even if explicit unwrapping
is circumvented by estimating baseline errors directly from
the wrapped phase, inconsistencies may occur due to noisy
interferograms or unmodelled nuisance signals. As the grid-
search estimator is nonlinear, it is not guaranteed that esti-
mates obtained from equivalent linear combinations of in-
terferograms are identical.

Designing a network withm images, not allm(m− 1)
possible interferometric combinations are appropriate for or-
bit error estimation, as the exploitable information degrades
with increasing temporal and perpendicular baseline. But
even after disregarding too incoherent interferograms, the
network design is a trade-off between computational load
and reliability. To ensure a good mutual control, every im-
age should be connected to at least three other images. This
is a minimum requirement for outlier detection, because an
outlier in one out of only two adjacent interferograms can-
not be localised. For the following considerations it is fur-
ther assumed that all images are related to each other by
linear combinations of interferograms, i. e., the network de-
sign (Fig.6) can be visualised by a connected graph. If the
network falls apart into two or more disjoint parts, each of
these parts can be treated separately.

Before adjusting individual baseline errors in a network,
it has to be ensured that these parameters refer to a ho-
mogeneous reference in several respects. The Frenet frame
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( #»e h(t),
#»e a(t), #»e v(t)) must be uniformly defined by the or-

bit of a dedicated, arbitrarily chosen common reference ac-
quisition. This acquisition also defines a uniform time scale
t to be applied in Eq. (10). A consistent decomposition of
the baseline into parallel and perpendicular component has
to be assured by a common mean look angleθ0. Note that
it is not required to coregister all images to a single master,
since the link between the interferograms is established via
the orbits.

The adjustment of misclosures between baseline errors
bT

θ ,k = (dḂ‖,k, dB⊥,k), k = 1. . .n, yields a consistent set of

orbit errorsxT
i = (dẋ‖,i, dx⊥,i), i = 1. . .m. If interferogramk

is constituted of master acquisitioni and slave acquisitionj
(i, j ∈ {1. . .m}), the functional model reads E{y} = Ax, or
more specifically:

E























...
b̂θ ,k

...























=





· · · · · · · · · · · · · · ·

0 −I2 0 I2 0
· · · · · · · · · · · · · · ·























...
xi
...

x j
...



















(23)

with 2n ”observed” baseline error parametersy, a 2n×2m
design matrixA and 2m orbit error parametersx. I2 is a 2×2
identity matrix. The associated weighting scheme is defined
by the stochastic model:

D{y}= ς2
0Qy = ς2

0 diag{. . . , σ̂2
0,kQθ ,k, . . .}, (24)

subsuming individual covariance matrices from Eq. (19).
Note that existing correlations between linearly dependent
interferograms are negated here, as their modelling is not
straightforward. Contributions of individual interferograms
are considered as independent observations.

The estimation of interferogram-specific variance fac-
tors σ2

0,k enables a weighting scheme that allocates higher
weights to interferograms whose residual phase pattern
closely resembles orbit error signals. Thus, interferograms
with strong atmospheric signals that do not match possible
orbital error patterns are downweighted, mitigating theirin-
fluence on the estimates. Such a weighting scheme is not
possible if the baseline estimates have been obtained from
the wrapped phase as described in Sect.3.2. In this case, the
most evident choice is to assume equal weights for all inter-
ferograms and define the mutual weighting ofdḂ‖ anddB⊥

by the fringe equivalents from Eq. (5):

D{y}= ς2
0 In ⊗

(

(dḂ‖,2π)
2 0

0 (dB⊥,2π)
2

)

, (25)

where⊗ is the Kronecker product. As the estimation of ab-
solute orbit errorsxk requires a datum definition, two zero-
mean conditions are introduced:

m

∑
k=1

x̂k =
m

∑
k=1

(

d ˆ̇x‖,k
dx̂⊥,k

)

= 0. (26)

Whereas there is no physical justification for these con-
ditions, they involve less arbitrary choices than any alterna-
tive datum definition. They are expected to yield minimally
biased estimates if the number of imagesm is large and or-
bit errors are random. As the number of interferogramsn
is generally larger thanm, the estimation has 2(n−m+ 1)
degrees of freedom and is thus overdetermined. The regu-
larised normal equation system yielding a minimum-norm
solution reads:
(

AT Q−1
y A GT

G 0

)(

x̂
k

)

=

(

AT Q−1
y y

0

)

(27)

with a 2×2m matrix:

G =
(

I2 I2 · · · I2
)

(28)

and Lagrangian multipliersk. Orbit error estimateŝx are ob-
tained from solving Eq. (27). The corresponding covariance
matrix ς̂2

0Qx̂x̂ is a submatrix of:

D

{(

x̂
k

)}

= ς̂2
0

(

Qx̂x̂ Qx̂k

Qkx̂ Qkk

)

= ς̂2
0

(

AT Q−1
y A GT

G 0

)−1

(29)

with a variance factor:

ς̂2
0 =

vT Q−1
y v

2(n−m+1)
(30)

estimated from the residualsv = Ax̂− y. The rescaling by
ς̂2

0 accounts only for the processing noise due to which the
baseline estimates of equivalent linear combinations of in-
terferograms are not precisely identical.

An equivalent result could alternatively be obtained by
means of the pseudo inverse or a singular value decompo-
sition of AT Q−1

y A. The here proposed approach originates
from free adjustment of geodetic networks (Koch, 1999) and
has its strengths in the enhanced flexibility of datum defini-
tion. In some cases it is desirable to consider in Eq. (26) only
a subset of acquisitions. For instance, if the network is ex-
tended after an initial adjustment by new, recently acquired
images, these should be disregarded in Eq. (26) to avoid a
systematic shift of all estimates. This can be implemented by
zeroing the corresponding coefficients inG (Koch, 1999).

The potential of the regularisation approach is illustrated
by the following example: Form= 3 images, the zero-mean-
conditions read∑3

k=1 x̂k = 0, andG = ( I2 I2 I2 ). If a fourth
image with a large orbit error is later added to the net-
work and the adjustment is re-performed with zero-mean
conditions comprising all four images (i. e.,∑4

k=1 x̂k = 0,
G = ( I2 I2 I2 I2 )), the orbit error estimates would experi-
ence a significant shift also for the initial three images, even
if all misclosures are zero. This effect can be avoided by
excluding the fourth image from the zero-mean condition:
∑3

k=1 x̂k = 0. Then,G = ( I2 I2 I2 0).
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3.4 Quality control

In order to detect outliers, Baarda’s (1968) data-snooping is
applied. The underlying idea of this procedure is to statis-
tically test observations individually on agreement with the
mathematical model and to reject outliers iteratively until
all tests pass. Baarda’s approach requires that the stochas-
tic model of the observations is entirely known. This is not
the case in Eqs. (12) and (24), where a fine-tuning by global
scaling factorsσ2

0 andς2
0 , respectively, is allowed for. In this

context appropriate data-adaptive tests are theτ-test (Pope,
1976) or the equivalentt-test (Heck, 1981; Jäger et al, 2006),
following theτ- or the more commont-distribution, respec-
tively. Here, thet-test is applied within the framework of
iterative data snooping.

There are two levels of data screening. Firstly, it can be
tested how well individual unwrapped phase observations
match the orbital phase trend. Thus, isolated outliers that
are limited to single pixels can be identified and rejected.
In the subsequent network adjustment, it can be evaluated if
contributions of particular interferograms are biased or not.
This second level of data screening is primarily designed
to detect unwrapping errors, which often apply to several
spatially neighbouring pixels at a time. Then, erroneously
unwrapped pixels mask each other, and errors cannot be de-
tected by single outlier statistics on the observation level.
Considering further that phase observations are always rel-
ative, it is not straightforward for two equally sized regions
in an interferogram to determine, which one of the two is
unwrapped correctly and which one is not. Quality control
on the network level is an effective way to detect these er-
rors and thus one of the basic motivations for the network
approach.

Starting on the observation level, the test statisticTφ ,i for
theith phase observation equals its Studentised residual. As-
suming normally distributed observations andφi being the
only outlying phase value, it follows at-distribution (Jäger
et al, 2006):

Tφ ,i =
vφ ,i

σ̄0

√

eT
i Qvφ ei

∼ tnφ−u−1, (31)

whereei is a unit vector of zeros with a one at theith posi-
tion. Qvφ is the cofactor matrix of the residualsvφ = (vφ ,i):

Qvφ = Qφ − ĀbTT Qx̂x̂TĀT
b . (32)

Assuming that there is indeed a blunder in theith observa-
tion, the variance factor estimatêσ2

0 would be biased. Thus,
the factor in Eq. (31) is estimated from all residuals except
theith one:

σ̄2
0 =

vT
φ Q−1

φ vφ −
vT

φ Q−1
φ eieT

i Q−1
φ vφ

eT
i Q−1

φ Qvφ Q−1
φ ei

nφ − u−1
. (33)

If Tφ ,i exceeds a dedicated threshold deduced from the
t-distribution, theith observation is rejected, and the param-
eters are re-estimated from the remaining ones. This proce-
dure is repeated until all test statistics fall below the thresh-
old. It has to be taken care that this iterative rejection does
not yield an unbalanced spatial distribution of observations,
which could entail leverage effects as addressed in Sect.3.1.
Consequently, only a limited number of observations should
be rejected. Possibly, robust estimation approaches (Koch,
1999) would be more effective in this case to find a more ap-
propriate balance between quality and spatial distribution of
the observations. However, a successful application of these
concepts would require further and thorough research to en-
sure a reliable result.

Outlier detection on the network level follows the same
scheme, testing the contribution of every interferogramk in-
dividually. The alternative hypothesis reads:

E{bθ ,k}= Akx+∇k, (34)

whereAk is the line-block ofA corresponding to interfero-
gramk and∇T

k = (∇Ḃ‖,k,∇B⊥,k) are two nuisance param-
eters, modelling the assumed bias in terms of baseline er-
rors. Provided that interferogramk is the only interferogram
that contributes erroneous baseline error estimates to thenet-
work, the best estimate for∇k is (Jäger et al, 2006):

∇̂k =−
(

Q−1
y,k −Q−1

y,k AkQx̂x̂AT
k Q−1

y,k

)−1
Q−1

y,k vk, (35)

wherevk = Akx̂− b̂θ ,k comprises the two elements ofv that
concern interferogramk. The significance of̂∇k can be eval-
uated by a generalised t-test for two parameters (Jäger et al,
2006):

TB,k =−
vT

k Q−1
y,k ∇̂k

2ς̄2
0

∼ F2,2(n−m) (36)

with:

ς̄2
0 =

vT Q−1
y v+ vT

k Q−1
y,k ∇̂k

2(n−m)
. (37)

If the highestTB exceeds a dedicated threshold, this time
deduced from the Fisher distribution, it can be checked in the
first place if there is an unwrapping error in interferogramk
that can be corrected manually. Otherwise, its contribution is
rejected, and the procedure is repeated until all test statistics
fall below the threshold. Rejection must not be pursued too
extensively, guaranteeing that the contribution of every in-
terferogram is controlled by at least one linear combination
of other interferograms in the network.



Reliable estimation of orbit errors in spaceborne SAR interferometry 11

Fig. 6: Network of 163 interferometric combinations of 31 ENVISAT images that has been used to test the estimation of
orbit errors. Vertices represent images (acquisitions with indicatedorbit numbers), and edges stand for interferograms. The
adjusted orbit errors after data snooping are represented by red arrows for the least squares approach andblue arrows for
the gridsearch method, respectively. These visualise magnitude and orientation of the fringe gradient, where the number of
orbital fringes in the interferogram can be deduced from thelegend in thelower right corner. The conversion is based on the
relation that one fringe in azimuth is equivalent to a baseline error ofdḂ‖ = 1.7 mm/s and one fringe in range corresponds to
dB⊥ = 26 cm. These factors apply specifically on the test data and account for the actual extent of the scene, which is why
they deviate from the numbers in Table1. The 31dashed lines represent interferograms that are identified and rejected as
outliers when the gridsearch method is used

4 Application

The proposed approach for estimating orbit errors has been
tested on a set of 31 ENVISAT acquisitions from a scene
in Western Australia (track 203, frame 4221) between De-
cember 2003 and April 2008. The region has a semi-arid
climate, the land use being dominated by dryland cropping
and some salt lakes. These conditions go along with a good
interferometric coherence, which was the reason to choose
this test area. A network of 163 interferograms has been set
up with a maximum perpendicular baseline of 743 m and
a maximum temporal baseline of 560 days (see Fig.6). It
was aimed to include as many interferograms as possible,
the only requirement being that unwrapping is reliably fea-
sible. Three sample interferograms are pictured in Fig.7.

InSAR processing has been performed with the Delft
Object-Oriented Radar Interferometric Software DORIS
(Kampes et al, 2004) using precise orbits from the French
Centre National d’Etudes Spatiales (CNES). Topographic
height variations, which are below 200 m, have been ac-
counted for with a 3”-DEM product from the Shuttle Radar
Topography Mission (SRTM). To maximise coherence, all
interferograms have been multilooked by a factor 25 in
azimuth and 5 in range, yielding pixels of approximately
100× 100 m2 size. Adaptive phase filtering (Goldstein and
Werner, 1998) has been applied to facilitate unwrapping,
which has been carried out using the Statistical-Cost Net-
work-Flow Algorithm for Phase Unwrapping (SNAPHU;
Chen and Zebker, 2001). Subdividing the interferograms
into 1260 tiles of 30× 30 pixels, only the most coherent
pixel from each tile contributes to the estimation to guaran-
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Fig. 7: Sample interferograms and their associated co-
variance functions. The interferograms covering the whole
scene of 100× 100 km2 have already been corrected for
reference phase and topographic phase. The empirical co-
variance functions have been fitted by the double exponen-
tial modelCe(r) from Eq. (39)

tee a spatially homogeneous distribution of observations.A
small number of tiles has been disregarded due to lack of
pixels with a coherence estimate above 0.25.

4.1 Stochastic modelling

The choice of an appropriate covariance matrix for the phase
observationsφi in Eq. (12) has several implications: It de-
fines the mutual weighting between the contributions of in-
dividual pixels, it directly affects the quality measures,i. e.,
standard deviations, of the estimated orbit errors and it isan
important prerequisite for outlier detection. As orbit errors
are the only effect that is considered in the functional model
of Eq. (16), all other contributions like deformation, atmo-
sphere and noise are absorbed in the stochastic model and
would thus have to be accounted for.

This requirement is in conflict with a number of con-
straints. Allowing the phase variances to account for decor-

relation noise as a function of coherence would allocate
different weights to the individual pixels. This has to be
avoided to prevent leverage effects that could result from
an inhomogeneous spatial distribution of weights. Admit-
ting thus only models with homogeneous variances, the only
matter to be settled is the question if correlations should be
assumed or not. As the atmospheric propagation delay defi-
nitely is a spatially correlated effect, it suggests itselfnot to
ignore this stochastic behaviour. However, the characteristic
of the associated covariances is very different for individual
interferograms (Hanssen, 2001). The consequential need to
individually tailor covariance models is opposed to the re-
quirement of a generally applicable methodology. Hence,
the covariance of two pixels is assumed to be an isotropic
function of their spatial distancer, for which the most sim-
plistic choice would be:

C0(r;c) =

{

c , r = 0

0 , r > 0
, (38)

wherec > 0. This model, implying uncorrelated observa-
tions, does not even require adaption, because the parame-
ter c is arbitrary due to the a posteriori estimation ofσ̂2

0 in
Eq. (20). But it does not reflect realistic conditions either.
If a more sophisticated model is supposed to be applied, a
two-dimensional covariance function can be estimated from
the power spectrum of an interferogram by application of
an inverse Fourier transformation (Hanssen, 2001). This re-
quires second order stationarity of the underlying stochastic
process, of which the interferogram is a realisation in this
context. To fulfil this requirement, the assumed contribution
of orbital errors can be removed from the interferograms by
subtraction of a linear trend, which is a sufficiently good ap-
proximation for this purpose.

To avoid a bias due to decorrelation noise, the power
spectrum is low-pass filtered beforehand. Circular averag-
ing finally yields a one-dimensional covariance function. As
the thus obtained function is only defined for spatial wave-
lengths below half the size of the interferogram, it is extrap-
olated by fitting a double exponential analytical model:

Ce(r;c1,c2,a) = c1e−
r

1km + c2e−
r
a . (39)

This model has been chosen, because it matches well
the empirical covariance functions and more sophisticated,
better-fitting models do not qualify by a better performance.
The empirical choice of 1 km as correlation length of the
first exponential function can be motivated with the transi-
tion between different atmospheric scaling regimes at 2 km
distance (Hanssen, 2001). (e−r/(1km) has decayed by 90 %
at r = 2 km.)

There is still a number of deficiencies left. As the
spectral method does not account for wavelengths that ex-
ceed the extent of the interferogram, the resulting covari-
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ance functions are significantly biased for about 20 inter-
ferograms containing distinct nonlinear atmospheric trends
(e. g., ifg. 22301–24806, see Fig.7). Some interferograms
(like 14786–15788 in Fig.7) expose distinct anisotropic fea-
tures, which have been disregarded in the modelling to keep
the approach simple.

The factual benefit of the double exponential covariance
modelCe(r) compared to the simpler model without covari-
ancesC0(r) will be evaluated in the following.

4.2 Performance

As the true orbit errors are unknown, it is not feasible to eval-
uate the actual accuracy of their estimates. Nevertheless,the
parameters’ plausibility can be checked roughly, and their
mutual consistency can be inferred from misclosures in the
network. Whereas least squares and gridsearch estimates can
easily be compared with each other, it is not straightforward
to assess the innovation of both estimators with respect to
the common approach of removing linear ramps. A direct
numerical comparison fails due to the different parameteri-
sations and their effect on the phase.

Table 3 summarises the adjustment results. Assuming
uncorrelated observations (C0(r)), baseline errors up todḂ‖

= 3.4 mm/s (2.0 fringes) anddB⊥ = 95 cm (3.6 fringes) have
been estimated by the least squares (lsq.) method. These di-
mensions are hardly explainable by orbit errors and suggest
that large-scale variations of the atmospheric delay leak into
the baseline error estimates. This is plausible, as the non-
linear signal in interferogram 22301–24806 proves that gra-
dients in the atmospheric propagation delay of two fringes
over half a scene (50 km) are possible (see Fig.7). The net-
work adjustment yields absolute orbit errors up to 2.7 mm/s
in ẋ‖ (1.6 fringes in azimuth) and 65 cm inx⊥ (2.5 fringes in
range). The maximum residuals of 0.3 mm/s indḂ‖ and 2 cm
in B⊥ are much smaller than inBähr and Hanssen(2010),
where the same dataset has been analysed with a similar net-
work design. This can be explained by a range timing error
in the annotations of image 10277 of 0.3µs (12 pixels) that
could be reliably identified and corrected.

In Table3, baseline errors (and analogously orbit errors,
residuals and estimated biases) are also quantified in terms
of the total number of fringes that they induce into an inter-
ferogram:

dBfr :=

∣

∣

∣

∣

∣

dḂ‖

dḂ‖,2π

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

dB⊥

dB⊥,2π

∣

∣

∣

∣

. (40)

The conversion to fringes follows Eq. (5), wheredḂ‖,2π =
1.7 mm/s anddB⊥,2π = 26 cm are applicable for the data
at hand. An analogous conversion is applied to the mutual
deviations of different approaches in Table4. The compari-
son there reveals that the choice of the covariance function

has only little effect on the estimates, the median deviation
being 0.05 fringes. For a few acquisitions, the estimated or-
bit errors differ significantly, showing deviations up to 0.40
fringes. Hence, it can be concluded that in spite of the good
precision (i. e., standard deviation) of the estimated orbit er-
rors better than 0.05 fringes, the factual accuracy may be at
the level of a few tenths of fringes in some cases.

The estimated standard deviations are throughout
smaller if uncorrelated observations (C0(r)) are assumed,
whereas the quality indicators from correlated observations
(Ce(r)) are probably more realistic. Although the double ex-
ponential covariance modelCe(r) is still a crude approxima-
tion of the true stochastic behaviour of the interferometric
phase with some unresolved deficiencies, it is supposed to
be a closer approximation of reality than the simple model
C0(r).

As all interferograms have been processed with care, the
presence of unwrapping errors in the dataset can basically be
excluded. However, regardless the choice of the covariance
function, there are interferograms that do not pass the out-
lier test in Eq. (36) at a significance level ofα = 0.001. This
is probably due to remaining deficiencies of the stochastic
model addressed in Sect.4.1. If data snooping is applied, not
more than two interferograms are rejected before all tests
pass while the change of the estimated orbit errors is be-
low 0.02 fringes and thus negligible (see Table4). Hence,
data snooping can not be considered useless, since the con-
tributions of the majority of interferograms are accepted.Its
capability to detect unwrapping errors will be analysed in
detail in the next subsection.

Considering the least squares solution as an unbiased
reference, the estimates obtained by thegridsearch method
are distinctly unreliable in some cases. Fig.8a shows that
there are high deviations of up to 5.7 fringes. These occur
frequently in the presence of a nonlinear large-scale atmo-
spheric signal and go along with the presence of more than
one distinct local maximum in the search space (see Fig.8b).
Hence, the ratio between the highest local maximumγ1 and
the second-highest local maximumγ2 can be considered an
indicator for the reliability of the estimation. From Fig.8a
can be seen that the probability of a biased estimate is high
if γ1/γ2 < 1.5.

The internal consistency of the estimates obtained by
the gridsearch method is poor, which is suggested by the
high residuals in Table3. Applying data snooping with a
significance level ofα = 0.001, as many as 31 interfero-
grams are rejected before all tests pass. With standard de-
viations of orbit errors below 0.05 fringes, the consistency
of the revised network is of a similar quality as the least
squares solution (see Table3). However, the estimates for
some acquisitions deviate on the one-fringe level (see Fig.6
and Table5), which can be explained by non-equivalent ob-
jective functions of the two approaches. Hence, biased con-
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Table 3: Results of network adjustment for the least squares(lsq.) approach using the covariance functionsC0(r) or Ce(r),
respectively, and thegridsearch method. Given are the median and the maximum of the absolute values of observed baseline
errorsdB̂, adjusted orbit errorsdx̂, residualsvB and estimated biaseŝ∇B as well as their minimum and maximum standard
deviations.dB̂fr combines the effects ind ˆ̇B‖ anddB̂⊥ by converting them to fringes (fr.) following Eq. (40). dx̂fr , vBfr and

∇̂Bfr have analogous meanings

d ˆ̇B‖ dB̂⊥ dB̂fr d ˆ̇x‖ dx̂⊥ dx̂fr vḂ‖
vB⊥

vBfr ∇̂Bfr

[ mm
s ] [cm] [fr.] [ mm

s ] [cm] [fr.] [ mm
s ] [cm] [fr.] [fr.]

med 0.64 16.3 1.11 0.55 18.6 1.12 0.03 0.3 0.02
lsq. max 3.43 94.8 4.78 2.68 65.2 4.08 0.30 2.0 0.22 0.26

C0(r) σ̂min 0.01 0.2 0.01 0.01 0.1 0.01
σ̂max 0.12 1.8 0.10 0.03 0.4 0.02
med 0.65 17.1 1.02 0.50 18.9 1.10 0.04 0.4 0.04

lsq. max 3.12 91.6 4.43 2.31 65.0 3.83 0.47 3.5 0.33 0.35
Ce(r) σ̂min 0.01 0.1 0.01 0.01 0.2 0.01

σ̂max 0.16 2.3 0.13 0.06 0.8 0.05
med 0.76 18.9 1.23 0.58 19.9 1.10 0.13 3.1 0.27

grid- max 5.59 120.2 7.16 3.93 72.2 4.09 3.84 88.1 5.64 6.72
search σ̂min 0.82 12.5 0.68 0.22 3.3 0.18

σ̂max 0.82 12.5 0.68 0.41 6.2 0.34
grid- med 0.68 17.3 1.16 0.60 20.2 1.24 0.04 0.5 0.04

search max 3.77 81.9 4.97 2.97 71.6 4.48 0.19 2.7 0.16 0.25
& data- σ̂min 0.07 1.1 0.06 0.02 0.3 0.02

snooping σ̂max 0.07 1.1 0.06 0.05 0.8 0.05

Table 4: Comparison of orbit error estimates obtained by theleast squares (lsq.) approach, using the covariance modelsC0(r)
or Ce(r), respectively, and thegridsearch method. All three estimators have been evaluated with and without application of
data snooping, for which the number of rejected interferograms is indicated in each case. For every pairing of approaches,
both the maximum and the median deviation between the estimated orbit error parameters is given, converted to fringes by
analogy to Eq. (40): dx̂fr = |d ˆ̇x‖/dḂ‖,2π |+ |dx̂⊥/dB⊥,2π |

`
`
`
`
`
`
`
`
`
`

median
maximum

without data snooping with data snooping
lsq. lsq. grid- lsq. lsq. grid-

C0(r) Ce(r) search C0(r) Ce(r) search

rejected interferograms 0 0 0 2 1 31

without lsq.,C0(r) 0.39 0.91 0.02 0.39 1.25
data- lsq.,Ce(r) 0.05 1.15 0.40 0.02 1.30

snooping gridsearch 0.19 0.20 0.92 1.16 1.44
with lsq.,C0(r) 0.00 0.05 0.19 0.40 1.25
data- lsq.,Ce(r) 0.05 0.00 0.20 0.05 1.31

snooping gridsearch 0.09 0.14 0.12 0.09 0.13

tributions of particular interferograms estimated by the grid-
search method can not be reliably identified by data snoop-
ing.

4.3 Detectability of outliers

Two statistical tests have been proposed to detect unwrap-
ping errors. On the observation level,Tφ indicates if individ-
ual phase observations deviate significantly from the esti-
mated orbital error signal. On the network level, large-scale
unwrapping errors can be detected withTB. In the following
it is evaluated for both tests, if the associated statistical dis-
tributions do indeed apply to the test statistics in contextof

the chosen stochastic model. Subsequently, the performance
in detecting simulated unwrapping errors is tested.

The applicability of the respective statistical distribu-
tions in Eqs. (31) and (36) is evaluated by Pearson’s chi-
square goodness-of-fit test (Kreyszig, 1979). Doing so, the
test statistics are binned intoN = 15 intervals. Then, the
number of testshi in each interval is compared to the the-
oretical number of testshi,0 that is supposed to be in that
interval if the associated statistical distribution applies. Fi-
nally, the goodness-of-fit test is based on the difference of
these numbers:

Tχ2 =
N

∑
i=1

(hi − hi,0)
2

hi,0
∼ χ2

N−1. (41)
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(a) Deviation ofgridsearch from least squares estimates (b) |γ |(dḂ‖,dB⊥) for interferogram 24806–28313

Fig. 8: (a) Absolute deviations of the baseline error parameters obtained by thegirdsearch method from the least squares
estimates (from uncorrelated observations). By analogy toEq. (40), the deviations in the respective components have been
normalised to their fringe equivalent and subsequently summed up per interferogram. They are plotted as a function of
the ratioγ1/γ2 between the highest and the second-highest local maximum in the search space|γ|(dḂ‖,dB⊥). The highest
deviation has been observed in interferogram 24806–28313,the observations from which are visualised in the subframe.(b)
Coherence measure|γ| of interferogram 24806–28313 computed for incrementally varied baseline error values (dḂ‖, dB⊥).
The interval between the white grid lines corresponds to onefringe according to Eq. (5). Thegridsearch-solution is defined
by the highest value of|γ|, from which the least squares solution has a distance of 5.7 fringes – 2.2 in azimuth (dḂ‖) and 3.6
in range (dB⊥). Note that the least squares solution does not necessarilycoincide with a local maximum in the search space,
which is due to the differing objective functions of the two estimators

To evaluate the testTφ on the observation level,Tχ2 has
been computed for all 163 interferograms after iteratively
rejecting a small number of outliers. This is necessary to
guarantee that the samples are not contaminated by blun-
ders. Even for a small level of significanceα = 0.1 %, the
t-distribution can be validated for only 73 % of the interfero-
grams if uncorrelated observations are assumed (C0(r)). For
the double exponential modelCe(r), the validation succeeds
for only 22 %. These results indicate that both models are
incapable to adequatly describe the stochastic behaviour of
the observations for the general case. Nevertheless, the per-
formance of this test is only of secondary importance if only
a limited number of distinct blunders is rejected. Moderate
biases in a small number of pixels do not distort the orbit
error estimates significantly due to the high number of ob-
servations. More crucial is the testTB on the network level,
for which the goodness-of-fit test passes for any significance
level below 9 % (C0(r)) or 11 % (Ce(r)), respectively. This
is a promising result, confirming the validity of this test

To assess the sensitivity ofTB with respect to large-
scale unwrapping errors, such errors have been simulated
as demonstrated in Fig.9. 163 case studies have been car-
ried out, in each of which one of the 163 interferograms is

Fig. 9: Simulation of unwrapping errors, exemplarily
demonstrated on interferogram 14786–15788. All phase ob-
servations in a quadratically confined area in the lower right
corner are shifted by 2π . The fringe equivalent of the in-
duced error signal according to Eq. (40) is 0.4 fringes for
the left and 0.8 fringes for the right example

contaminated by unwrapping errors with incrementally var-
ied magnitudes. The respective numbers of case studies, in
which an unwrapping error of a specified magnitude is de-
tected are listed in Table6. It turns out that the more sophis-
ticated covariance modelCe(r) promotes the detectability of
outliers, as the success rate is significantly higher for errors
below 0.3 fringes compared toC0(r). The finding that errors
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Table 5: Results of reprocessing with corrected orbits for
four sample interferograms. For the least squares (lsq.) and
the gridsearch approach, the corrected interferogram and the
difference with respect to the uncorrected interferogram are
pictured. The corrections have been estimated by network
adjustment after data snooping, assuming uncorrelated ob-
servations (C0(r)) in case of the least squares estimator.
They are given here in fringes in azimuth and fringes in
range, respectively, following Eq. (5). The last row shows
the difference between the two approaches. Whereas the es-
timates for the orbital error signals seem reasonable for both
approaches, the results differ for a small number of interfer-
ograms. Note that for the great majority of interferograms
the difference is insignificant, as it is the case for 17291–
24305 (see Fig.6)

Master 09275 17291 19295 24806
Slave 10277 24305 20297 28814
B⊥ 212 m -361 m -736 m -96 m
Btemp 70 d 490 d 70 d 280 d

uncor-
rected

lsq.
C0(r)

-1.7/3.1 1.0/0.6 -0.6/-0.3 0.6/1.1

grid-
search -2.0/3.0 1.0/0.6 -1.2/-0.7 -0.2/1.1

diff. -0.3/0.0 0.0/0.0 -0.6/-0.4 -0.7/0.0

above 0.5 fringes still remain undetected appears troubling
but is relativised by the circumstance that the interferograms
in question are associated with small weights in the network,
mitigating their influence on the estimates.

Recapitulatory can be stated that the effort of adapting a
stochastic modelCe(r) with correlated observations has in-
deed some benefit in the detection of outliers, even though
it is not rigorously adequate in all respects. But also the per-
formance of the modelC0(r) with uncorrelated observations
is acceptable.

Table 6: Number of interferograms that do not pass the out-
lier testTB if they are contaminated by a simulated unwrap-
ping error as demonstrated in Fig.9

simulated covariance model
error

[fringes]
C0(r) Ce(r)

0.05 2 (1 %) 42 (26 %)
0.10 3 (2 %) 85 (52 %)
0.15 27 (17 %) 109 (67 %)
0.20 67 (41 %) 119 (73 %)
0.25 107 (66 %) 129 (79 %)
0.30 135 (83 %) 141 (87 %)
0.40 146 (90 %) 149 (91 %)
0.50 156 (96 %) 156 (96 %)
0.60 162 (99 %) 160 (98 %)
0.70 163 (100 %) 162 (99 %)
0.80 163 (100 %) 163 (100 %)

4.4 Sequential versus comprehensive adjustment

The organisation of the adjustment in two steps, firstly es-
timating individual baseline parameters to be adjusted sub-
sequently in the network, makes the procedure conveniently
modularisable and reproducible. A more rigorous approach
would be a comprehensive formulation of the functional re-
lationship, i. e.,

E{(. . . ,φT
k , . . .)

T }= f (x), (42)

involving an adjustment in only one step. Thus, it could be
accounted for different look directions#»r M and#»r S of master
and slave, respectively, as it has been proposed byKohlhase
et al(2003). For the two-step approach, they are simply av-
eraged in Eq. (10). But as the look directions are almost
collinear in spaceborne SAR, the bias due to averaging is
small enough to be negligible.

A second advantage of a comprehensive approach would
be that the mutual weighting of the contributions of different
interferograms bŷσ2

0,k and the estimation of a global vari-

ance levelς̂2
0 could be unbiasedly performed in one step by

applying variance component estimation (Koch, 1999). The
benefit has been evaluated, revealing no significant change
in the estimates. Whereas the resulting covariance infor-
mation differs significantly, it does not improve the perfor-
mance in outlier detection.

5 Separability of signal components

The proposed method is based on the assumption that be-
sides orbit errors there are no other systematic components
in the residual interferometric phase, which is generally not
true. Consequently, unmodelled contributions of ground de-
formation or atmospheric propagation delay may leak into
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the estimates, and the subsequent elimination of orbital er-
rors can bias the respective signal of interest. This mecha-
nism is unavoidable, but it can be mitigated by exploiting
the spatio-temporal characteristic of the orbital error sig-
nal. This signal always affects a radar scene as a whole and
changes arbitrarily from one acquisition to the next, reveal-
ing a large spatial wavelength and an uncorrelated temporal
behaviour.

Compared to the revisit intervals of SAR satellites, the
atmospheric state changes fast enough to consider its influ-
ence on subsequent acquisitions as completely uncorrelated.
In the spatial domain, the spectrum of effects ranges from
turbulent mixing on small scales over vertical stratification
due to topographic variations to large-scale gradients of tem-
perature, pressure or ionospheric electron content. The tur-
bulent component remains practically unaffected by an orbit
error correction due to its differing spatial characteristics,
and the effect of stratification can eventually be captured by
correlation with the topographic height. Only phase gradi-
ents reflecting large-scale weather patterns are not separable
from orbital effects without complementary measurements
or weather models. However, if not propagation delay but
deformation is the dedicated signal of interest, it is accept-
able if part of the atmospheric contribution is mistaken as
orbit error.

As to deformation phenomena, it can be stated that lo-
calised signals remain basically unaffected by the orbit er-
ror correction. This does not apply to large-scale ground
movements, where the separation from orbit errors is not
possible without additional measurements or assumptions.
If available, ground velocities can be constrained at selected
points by independent geodetic measurements (Lundgren
et al, 2009). Otherwise, the temporal correlation of defor-
mation can be exploited, which is a distinction compared
to orbit errors and atmospheric effects (Ferretti et al, 2001;
Hooper et al, 2007). However, this self-evident assumption
has proven invalid in some cases where temporally corre-
lated spatial trends have been observed in InSAR time se-
ries that can not be explained by deformation (Hooper et al,
2007; Ketelaar, 2009).

If temporal correlation properties are nevertheless sup-
posed to be exploited to mitigate the bias of deforma-
tion estimates, it suggests itself to high-pass filter the er-
ror estimates before correcting the orbits and subsequently
analysing deformation. Thus, no prior assumptions have
to be made on the spatial characteristic of the deforma-
tion signal, since the temporal filtering is performed in the
very domain in which the potential contamination takes
place. Of course, a most appropriate approach would be the
joint estimation of orbit errors and deformation in an all-
comprehensive model, which is beyond the scope of this
work.

Another conceivable application scenario for the pro-
posed method involves Permanent or Persistent Scatterer
(PS) approaches, for which a number of different process-
ing chains have been developed (Ferretti et al, 2001; Hooper
et al, 2007; Ketelaar, 2009). These are designed to deduce
deformation estimates for temporally stable point scatterers
and generally involve an initial estimate of orbit errors to
support an optimal identification of PS. At this stage, the
here proposed method could get involved. Additionally, the
bias due to deformation could be mitigated by subtracting
the estimated deformation signal from the original interfer-
ograms and iteratively re-estimating orbit errors.

6 Conclusions

A reliable method to improve orbital state vectors has been
proposed and evaluated. It involves estimation of relativeor-
bit errors, i. e., baseline errors, from the phase of selected
pixels in individual interferograms and their subsequent ad-
justment in a network, yielding quasi-absolute orbit errors
for particular acquisitions. The approach is based on the sta-
ble parameterisation of baseline errors bydḂ‖ anddB⊥, in-
volving rigorous geometric modelling. The mutual consis-
tency of estimated orbit errors obtained from a sample EN-
VISAT dataset is better than 0.05 fringes or on the millime-
tre level in terms of baseline errors, respectively. For qual-
ity control on the network level, iterative data snooping has
proven its capability to detect and reject outliers.

For the estimation of baseline errors from the interfero-
metric phase, two alternatives are proposed. Aleast squares
estimator supplementarily provides statistical information,
which can be useful for an optimal weighting scheme and
quality control. However, it requires prior phase unwrap-
ping. This is not the case for thegridsearch approach, which
has the drawback of occasionally unreliable estimates.

The most outstanding distinction of the presented
method is the mutual controllability of baseline estimates,
enhancing resistance to outliers or blunders. A further im-
provement compared to many existing approaches is the nu-
merically stable parameterisation bydḂ‖ and dB⊥. Topo-
graphic variations are fully accounted for, and the bias due
to deformation may be mitigated in a combined processing
with PS approaches.

Potential improvements of the method would involve
a relaxation of the requirement that the observation pix-
els need to be homogeneously distributed, which might be
achievable by robust estimation techniques. Furthermore,all
stochastic models analysed so far are still far from optimalin
several respects. Nevertheless, it is questionable if the ben-
efit from developing an even more adequate model would
outweigh the effort involved.
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