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The hierarchical Tucker format is a way to decompose a high-dimensional tensor recursively into
sums of products of lower-dimensional tensors. The number of degrees of freedom in such a rep-
resentation is typically many orders of magnitude lower than the number of entries of the original
tensor. This makes the hierarchical Tucker format a promising approach to solve ordinary differential
equations for high-dimensional tensors. In order to propagate the approximation in time, we derive
differential equations for the parameters of the hierarchical Tucker format from the Dirac-Frenkel
variational principle. Moreover, we prove an a posteriori error bound for the dynamical approxi-
mation in the hierarchical Tucker format by extending previous results of Koch and Lubich for the
non-hierarchical Tucker format.
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1 Introduction

Differential equations on high-dimensional state spaces arise in many different fields and applications. Typical
examples are the Black-Scholes equation for basket options in mathematical finance, the chemical master equa-
tion used in systems biology to model the stochastic dynamics of a gene regulatory network, or the Schrödinger
equation which describes the dynamics of the particles within a molecule according to the laws of quantum me-
chanics. Solving such problems numerically is notoriously difficult due to the fact that for standard discretiza-
tions the number of unknowns grows exponentially with respect to the dimension (“curse of dimensionality”).
Hence, in high-dimensional approximations the main challenge is to compress the problem in such a way that
the reduced equation can be solved numerically and nevertheless provides an acceptable approximation to the
solution of the full problem.

If a multivariate function on a hyper-rectangle is discretized by an equidistant grid, the function values at the grid
points can be regarded as the entries of a high-dimensional tensor. Hence, the approximation of high-dimensional
functions and tensors is closely related, and for N1, ..., Nd ∈ N we will consider tensors Y ∈ RN1×...×Nd as
functions Y = Y (i1, ..., id) with ik ∈ {1, ..., Nk}. For a straightforward, entry-wise representation of Y , all∏d
k=1 Nk values have to be stored. This number can be significantly reduced if Y can be approximated by a

sum of products of univariate functions. Many such representations have been proposed, and an overview over
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D-76133 Karlsruhe, Germany, {arnold,jahnke}@kit.edu. Corresponding author: Tobias Jahnke, phone: ++49 721 608 47982,
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Approximation in hierarchical Tucker format

the literature is given in [7]. A particularly useful and popular representation is the orthogonal Tucker format

Y (i1, ..., id) ≈ Ỹ (i1, ..., id) =
r1∑
j1=1

. . .

rd∑
jd=1

a(j1, ..., jd)
d∏
k=1

Ukjk(ik), (1)

cf. [7, Section 4]. Here, a ∈ Rr1×...×rd is the core tensor of coefficients, and for every direction k ∈ {1, ..., d},
Uk1 , ..., U

k
rk

is a set of univariate basis functions which satisfy the orthonormality conditions

Nk∑
ik=1

Ukj (ik)Ukm(ik) = δj,m :=
{

1 if j = m
0 else

for all j,m ∈ {1, ..., rk}. From the perspective of linear algebra, every Ukj : {1, ..., Nk} → R can be interpreted
as a vector. Hence, (1) is a high-dimensional generalization of the well-known singular value decomposition,
and Ỹ is a low-rank-approximation of Y (i1, ..., id), cf. [8]. For the representation (1) of Ỹ only

d∏
k=1

rk +
d∑
k=1

rk Nk.

degrees of freedom have to be stored, which is a significant improvement if rk � Nk for all k. Unfortunately,
the fact that all possible combinations appear in the right-hand side of (1) causes again an exponential growth
of the data (unless rk decreases to 1 when k → ∞). For example, if r1 = ... = rd = r, then the core tensor
a(j1, ..., jd) has rd entries.

The hierarchical Tucker format avoids the disadvantageous growth of degrees of freedom by using the approach
(1) in a recursive way. This idea has first been used in quantum chemistry to solve high-dimensional Schrödinger
equations [13, 10, 12] and later been investigated from a mathematical point of view in [2, 1, 11]. For example,
with univariate functions U{k}jk

: {1, ..., Nk} → R and coefficients B{1,2}m,j1,j2
,B{3,4}l,j3,j4

∈ R, one can define bivariate
functions

U{1,2}m (i1, i2) =
r1∑
j1=1

r2∑
j2=1
B{1,2}m,j1,j2

U
{1}
j1

(i1)U{2}j2
(i2)

U
{3,4}
l (i3, i4) =

r3∑
j3=1

r4∑
j4=1
B{3,4}l,j3,j4

U
{3}
j3

(i3)U{4}j4
(i4),

and then construct a four-dimensional tensor via

Y (i1, i2, i3, i4) =
r{1,2}∑
m=1

r{3,4}∑
l=1
B{1,2,3,4}m,l U{1,2}m (i1, i2)U{3,4}l (i3, i4)

for some B{1,2,3,4}m,l ∈ R. A formal definition of the hierarchical Tucker format will be given in Section 2. Due to
the recursive definition, the hierarchical version is technically more involved than the standard Tucker format,
but as we will discuss in Section 2, this avoids the exponential growth of the degrees of freedom.

The problem how a given tensor can be approximated in the hierarchical Tucker format up to a prescribed
error tolerance has been studied in [1]. In the context of high-dimensional differential equations, however,
an approximation for the unknown solution is sought after, and for time-dependent differential problems the
question arises how an approximation in the hierarchical Tucker format can be propagated in time. For the non-
hierarchical Tucker format, equations of motion for the core tensor and the basis functions have been derived in
[9, 6] from the Dirac-Frenkel variational principle, and error bounds for the dynamical low-rank approximation
in the non-hierarchical Tucker format have been proven in [6]. The main contribution of our article is to extend
these results to the hierarchical Tucker format.

In Section 2 we introduce our notation, define the hierarchical Tucker format and discuss some of its properties.
In Section 3, the hierarchical Tucker format is applied to approximate high-dimensional initial-value problems. In
particular, differential equations for the parts of the representation are derived from the Dirac-Frenkel variational
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Approximation in hierarchical Tucker format

principle. The last three sections are devoted to the analysis of the accuracy of this approximation. The analysis
is based on matricizations of tensors which enable a compact representation of certain projections defined in
Section 4. The second important ingredient for the error analysis are curvature bounds which are proven in
Section 5. Finally, an a posteriori error bound for the approximation of high-dimensional differential equations
in the hierarchical Tucker format is proven in Section 6.

2 Hierarchical low-rank representation of tensors:
The H-Tucker format

A tensor T ∈ RN1×...×Nd is a d-dimensional array with
∏d
j=1 Nj entries. Defining the index sets

Ij = {1, ..., Nj}, j ∈ {1, ..., d}

leads to the natural interpretation of tensors as multivariate functions

T : I1 × ...× Id → R, T = T (i1, ..., id).

This interpretation is advantageous as it simplifies the construction of high-dimensional tensors as products of
low-dimensional ones which are considered as functions that only depend on a subset µ = {µ1, ..., µm} ⊆ {1, ..., d}
of directions, i.e.

T : Iµ → R with Iµ = Iµ1 × ...× Iµm .

In order to define the multiplication of two tensors U : Iµ → R and V : Iν → R for µ, ν ⊆ {1, ..., d}, both tensors
are interpreted as functions Ũ and Ṽ in all variables κ = {κ1, ..., κk} = µ ∪ ν. For example, if U = U(i2, i4, i7)
and V = V (i2, i5), then we let Ũ(i2, i4, i5, i7) = U(i2, i4, i7) for all i5 ∈ I5 and Ṽ (i2, i4, i5, i7) = V (i2, i5) for all
i4 ∈ I4 and i7 ∈ I7. Then, the product U · V is to be understood as the pointwise product of Ũ and Ṽ , i.e.

(U · V ) : Iκ → R, (U · V )(iκ1 , ..., iκk) = Ũ(iκ1 , ..., iκk)Ṽ (iκ1 , ..., iκk).

Besides multiplication of tensors, a second operation will be important in this article. Let µ = {µ1, ..., µm} and
ν = {ν1, ..., νn} be subsets of {1, ..., d}, let again κ = {κ1, ..., κk} = µ∪ν, and let λ = {λ1, ..., λm} = (µ∪ν)\(µ∩ν)
be the indices which occur either in µ or in ν. Then, with the convention that R∅ = R, we define

〈·, ·〉 : RNµ1×...×Nµm × RNν1×...×Nνn → RNλ1×...×Nλl
(2)

〈U, V 〉(iλ1 , ..., iλl) =
(κ1∈µ∩ν)∑
iκ1∈Iκ1

. . .

(κk∈µ∩ν)∑
iκk∈Iκk

(U · V )(iκ1 , ..., iκk)

where the symbol
∑(κj∈µ∩ν)
iκj∈Iκj

means that the sum is taken only if κj ∈ µ ∩ ν. Hence, after multiplying the two
tensors we take the sum over all common directions of the two tensors. For example, in case of the tensors
U = U(i2, i3, i5, i9) and V = V (i2, i4, i5), Definition (2) simply reduces to

〈U, V 〉(i3, i4, i9) =
∑
i2∈Iκ2

∑
i5∈Iκ5

U(i2, i3, i5, i9)V (i2, i4, i5) =
Nκ2∑
i2=1

Nκ5∑
i5=1

U(i2, i3, i5, i9)V (i2, i4, i5).

The result is a tensor which depends on all directions which are not common directions of U and V . Hence,
if U and V depend on exactly the same directions (i.e. µ ∩ ν = µ = ν), then 〈U, V 〉 ∈ R∅ = R is a real
number, and it can be verified that 〈·, ·〉 defines a scalar product in this case. If both U = U(ij) and V = V (ij)
are one-dimensional tensors with respect to the same direction, then this scalar product coincides with the
Euclidean scalar product of the two vectors (U(1), ..., U(Nj)) and (V (1), ..., V (Nj)). This is why we have chosen
the symbol 〈·, ·〉.
The numerical evaluation of 〈U, V 〉 can be simplified if U and V are products of tensors. If, for example,
U = U(i2, i5) = U{2}(i2)U{5}(i5) and V = V (i2, i5) = V {2}(i2)V {5}(i5), then by Definition (2)

〈U, V 〉 =
∑
i2∈Iκ2

∑
i5∈Iκ5

U{2}(i2)V {2}(i2)U{5}(i5)V {5}(i5) = 〈U{2}, V {2}〉 · 〈U{5}, V {5}〉. (3)
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Approximation in hierarchical Tucker format

This will be frequently used in the proofs below.
The following definitions provide the framework of a hierarchical tensor structure.
Definition 1 (dimension tree). A dimension tree T is a binary tree which represents a recursive decomposition of
the set {1, ..., d}. Every node N ∈ T is a selection of directions, N ⊆ {1, ..., d}, where N0 = root(T ) = {1, ..., d}
is called the root of the tree. Apart from the root, every node N ∈ T is linked by an edge with exactly one father
N̂ ⊃ N . Conversely, every node is either linked with two successors (child nodes) (N1,N2) = succ(N ), or it
does not have any successors at all. The successors of N have the properties that

N1 ∪N2 = N and N1 ∩N2 = ∅.

N is an interior node if
N ∈ I(T ) :=

{
Ñ ∈ T : Ñ has successors

}
,

and N is called a leaf of the dimension tree T if

N ∈ L(T ) :=
{
Ñ ∈ T : Ñ has no successors

}
= {{1}, ..., {d}} = T \ I(T )

Figure 1 shows an example of a dimension tree with inner nodes N0, N1 and leaves N2, N11, N12.

N 0

N 1

N 2

N 11

N 12

Figure 1: Dimension tree T

nodes of the tree:
• N0 = {1, 2, 3} = root(T )

• N1 = {1, 2}

• N2 = {3}

• N12 = {1}

• N11 = {2}

successors:
• (N1,N2) = succ(N0)

• (N11,N12) = succ(N1)

Definition 2 (hierarchical Tucker format). Let T be a dimension tree with root N0 and let (rN )N∈T be a family
of non-negative integers with rN0 = 1. Y is a tensor in the hierarchical Tucker format if and only if there exist
transfer tensors

BN ∈ RrN×rN1×rN2 for all N ∈ I(T ) with (N1,N2) = succ(N )

and univariate functions

U `i : Iω → R for all ` = {ω} ∈ L(T ), ω ∈ {1, ..., d}, i = 1, ..., r`
such that Y can be represented by

Y =
rN1∑
j=1

rN2∑
l=1
BN0

1,j,l U
N1
j · UN2

l , (N1,N2) = succ(N0)

with N -frames
UNi : IN → R for all N ∈ T \ {N0}, i = 1, · · · , rN

defined by the recursion

UNi =
rN1∑
j=1

rN2∑
l=1
BNi,j,l U

N1
j · UN2

l for all N ∈ I(T ) , (N1,N2) = succ(N ).

The family (rN )N∈T is called the hierarchical representation rank of Y . The set of all tensors in the hier-
archical Tucker format with hierarchical representation rank (rN )N∈T is denoted by Y ∈ H-Tucker ((rN )N∈T ).
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Remarks.
1. Since the transfer tensors in Definition 2 are always three-dimensional objects, we do not interpret these

particular tensors as multivariate functions.
2. Every tensor Y ∈ H-Tucker ((rN )N∈T ) can be reconstructed from the transfer tensors

(
BN
)
N∈I(T ) and

the functions U `i via the above recursion. TheN -frames at the interior nodes can be considered as auxiliary
variables which are only used to reconstruct the full tensor Y if necessary.

3. Definitions 1 and 2 have been adapted from Definitions 3.3 and 3.6 in [1]. At this point, it is not yet
assumed that the N -frames are linearly independent. For the approximation of time-dependent problems,
however, we will later have to assume that the N -frames at every node N ∈ T \ {N0} are an orthonormal
basis, and that the above representation is not redundant, cf. Assumptions 1 and 2 below.

4. A special case of the hierarchical Tucker format is the so-called tensor train format which has been
investigated, e.g., in [3].

At this point, a comparison with the standard (non-hierarchical) Tucker format is helpful. For the hierarchical
Tucker format, an equation similar to (1) can be obtained, but due to the recursive definition of the N -frames,
the corresponding formula is much more complicated. The crucial difference is the fact that the number of
terms in the linear combination can be considerably lower. In fact, the total number of degrees of freedom in
the hierarchical Tucker format is at most ∑

N∈I(T )
(N1,N2)=succ(N )

rN rN1rN2 +
d∑
k=1

r{k} Nk

because every Y ∈ H-Tucker ((rN )N∈T ) is defined by the r` basis functions at the leaves ` = {k} with k = 1, ..., d
and by the entries of all transfer tensors, cf. Lemma 3.7 in [1].
Lemma 1 (orthonormality of transfer tensors). Let Y ∈ H-Tucker ((rN )N∈T ) be a tensor represented by((
BN
)
N∈I(T ) ,

(
U `
)
`∈L(T )

)
. Then, the following statements are equivalent:

(a) The N -frames
(
UN

)
N∈T\{N0}

are orthonormal with respect to mapping (2), i.e.〈
UNi , U

N
j

〉
= δi,j

holds for all N ∈ T \ {N0} and i, j ∈ {1, ..., rN }.
(b) For all N ∈ I(T ) \ {N0}, (N1,N2) = succ(N ) and i1, i2 ∈ {1, . . . , rN } the equation

rN1∑
j=1

rN2∑
l=1
BNi1,j,l B

N
i2,j,l = δi1,i2 (4)

holds and the `-frames
(
U `
)
`∈L(T ) are orthonormal with respect to mapping (2), i.e.〈

U `i , U
`
j

〉
= δi,j

holds for all ` ∈ L(T ), i, j ∈ {1, ..., r`}.

Proof. Let N ∈ I(T ) be a node in the interior of the dimension tree, (N1,N2) = succ(N ) and i1, i2 ∈
{1, ..., rN }. If (a) holds, then it follows from Definition 2 that

〈
UNi1 , UNi2

〉
=

rN1∑
j1=1

rN2∑
l1=1

rN1∑
j2=1

rN2∑
l2=1
BNi1,j1,l1 B

N
i2,j2,l2

〈
UN1
j1
· UN2

l1
, UN1

j2
· UN2

l2

〉

=
rN1∑
j1=1

rN2∑
l1=1

rN1∑
j2=1

rN2∑
l2=1
BNi1,j1,l1 B

N
i2,j2,l2

〈
UN1
j1

, UN1
j2

〉 〈
UN2
l1

, UN2
l2

〉
(5)

=
rN1∑
j=1

rN2∑
l=1
BNi1,j,l B

N
i2,j,l
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which proves (a) ⇒ (b). Now assume that (b) holds, and that N1,N2 ∈ L(T ). Then, Equation (5) yields that
rN1∑
j=1

rN2∑
l=1
BNi1,j,l B

N
i2,j,l = δi1,i2

for the father N of N1 and N2, and by induction over the levels of the tree we obtain (b) ⇒ (a). �

Assumption 1. For every tensor Y in the hierarchical Tucker format we assume the N -frames
(
UN

)
N∈T\N0

to be orthonormal with respect to mapping (2), i.e.〈
UNi , U

N
j

〉
= δi,j for all N ∈ I(T ) \ {N0}, i, j ∈ {1, ..., rN }.

Since for any Y ∈ H-Tucker ((rN )N∈T ) we can find a representation with orthonormal N -frames, Assumption
1 is not a restriction; see [1, Algorithm 3] for an orthonormalization algorithm. It will be shown in Lemma 4
that when the tensor Y approximates the time-dependent solution of a high-dimensional differential equation,
the differential equations for the N -frames preserve the orthonormality for all times.

An important consequence of Assumption 1 is that for N ∈ I(T ) with (N1,N2) = succ(N ), we have

〈
UN1
k , UNi

〉
=

rN1∑
j=1

rN2∑
l=1
BNi,j,l 〈U

N1
k , UN1

j 〉 U
N2
l =

rN2∑
l=1
BNi,k,l U

N2
l

for any k ∈ {1, ..., rN1} and hence
rN1∑
k=1

UN1
k

〈
UN1
k , UNi

〉
=

rN1∑
k=1

rN2∑
l=1
BNi,k,l U

N1
k · UN2

l = UNi .

Substituting this into the recursive representation of Y yields
rN1∑
k=1

UN1
k

〈
UN1
k , Y

〉
= Y (6)

for all N1 ∈ T \ {N0}. These and similar formulas will be frequently used henceforth.

Lemma 2 (minimal representation rank). Let Y ∈ H-Tucker ((rN )N∈T ) be a tensor in the hierarchical Tucker
format represented by

((
BN
)
N∈I(T ) ,

(
U `
)
`∈L(T )

)
. Assume that the tensors〈

Y , UN1
〉
, ...,

〈
Y , UNrN

〉
are linearly independent for all N ∈ T \ {N0}. Then, Y has minimal representation rank, which means that
there exists no other family of non-negative integers (r∗N )N∈T and no node N ∗ ∈ T with

r∗N ≤ rN for all N ∈ T and r∗N∗ < rN∗ , (7)

such that Y ∈ H-Tucker
(
(r∗N )N∈T

)
.

Proof. Suppose that Y can also be represented by
((
B̃N
)
N∈I(T )

,
(
ŨN

)
N∈L(T )

)
and that the hierarchical

representation rank (r∗N )N∈T of this representation has the properties (7). According to (6) we have

Y =
r∗N∗∑
i∗=1

ŨN
∗

i∗

〈
Y , ŨN

∗

i∗

〉
=
rN∗∑
i=1

UN
∗

i

〈
Y , UN

∗

i

〉
.

Substituting the first representation into the second yields

Y =
rN∗∑
i=1

UN
∗

i

r∗N∗∑
i∗=1

〈
UN

∗

i , ŨN
∗

i∗

〉 〈
Y , ŨN

∗

i∗

〉

6
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and hence

〈Y , UN
∗

i 〉 =
r∗N∗∑
i∗=1

〈
UN

∗

i , ŨN
∗

i∗

〉 〈
Y , ŨN

∗

i∗

〉
.

This is a contradiction to the assumption that 〈Y , UN
∗

1 〉, ..., 〈Y , UN
∗

rN∗
〉 are linearly independent. �

Remark. It can be shown that the converse assertion is also true.

Assumption 2. For every tensor Y in the hierarchical Tucker format and for every N \ {N0} we assume〈
Y , UN1

〉
, ...,

〈
Y , UNrN

〉
to be linearly independent.

As shown in Section 4, under Assumption 2 the set H-Tucker ((rN )N∈T ) becomes a manifold, which is essential
in our approach. Furthermore we will use the term ’hierarchical rank’ instead of ’hierarchical representation
rank’ and denote the N -frames as basis functions. Assumption 2 and Remark 2 motivate the following
definition.

Definition 3 (Single-hole operator). Let Y ∈ H-Tucker ((rN )N∈T ) be a tensor in the hierarchical Tucker
format, which is represented by the tuple

((
BN
)
N∈I(T ) ,

(
U `
)
`∈L(T )

)
, N ∈ T \ {N0} and i ∈ {1, ..., rN }. The

Single-hole operator S is defined as
S(Y,N , i) :=

〈
Y , UNi

〉
.

This is a generalization of the single-hole functions defined in Section II.3.3 in [9].
Remark. With the Single-hole operator (6) reads

Y =
rN∑
i=1
S(Y,N , i) · UNi (8)

for all Y ∈ H-Tucker ((rN )N∈T ) ,N ∈ T \ {N0}.

Definition 4. For Y ∈ H-Tucker ((rN )N∈T ) ,N ∈ T \ {N0} and X ∈ RN1×...×Nd the orthogonal projection of
X onto the space spanned by UN1 , ..., UNrN is denoted by

PNX =
rN∑
i=1

〈
X , UNi

〉
UNi .

The orthogonal projection onto the orthogonal complement is given by P⊥NX = X − PNX.

3 Solving high-dimensional initial value problems via hierarchical tensor
approximation

In this section we show how the hierarchical Tucker format can be used to approximate the time-dependent
solution Yex(t) ∈ RN1×...×Nd of a high-dimensional ordinary differential equation

Ẏex = AYex , t ≥0 , A : RN1×...×Nd → RN1×...×Nd (9)

with a given initial value Yex(0) ∈ RN1×...×Nd and a linear operator A mapping tensors to tensors. Such
problems arise, e.g., when the method of lines is applied to a high-dimensional partial differential equation. The
exact solution Yex(t) of (9) is a time-dependent, d-dimensional tensor with

∏d
µ=1 Nµ entries. Hence, classical

numerical schemes for ordinary differential equations cannot be applied if d � 3 due to the huge number of
unknowns. Therefore, we are looking for an approximation Y ≈ Yex which lies on the manifold

M := H-Tucker ((rN )N∈T )

7
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at any time. For this purpose, the variational principle of Dirac-Frenkel is applied: Starting with an approxi-
mation of the initial value on the manifold, the right-hand side AY is projected onto TYM, the tangent space
ofM at Y (t), for every t ≥ 0; see Figure 2 for an illustration.

P(Y)A Y 

A Y 

Y 

T  M 

M 

Y 

Figure 2: Orthogonal projection on the tangent space

With P (Y ) denoting the orthogonal projector on the tangent space TYM the differential equation for Y (t) ∈M
takes the form

Ẏ = P (Y )AY ∈ TYM, t ≥ 0, Y (0) ∈M (10)
or equivalently 〈

AY − Ẏ , δY
〉

= 0 ∀δY ∈ TYM.

In contrast to the original problem (9), the new differential equation (10) is nonlinear, but the great advantage
of (10) is the fact that for the propagation of Y (t) only the transfer tensors BN (t) and the basis functions U `i (t)
for the time-dependent representation of Y (t) have to be computed. In order to make use of this advantage,
however, (10) has to be replaced by differential equations for BN (t) and U `i (t) instead of Y (t). This is the goal
of this section.

Since every point Y on the manifold is determined by
((
BN
)
N∈I(T ) ,

(
U `
)
`∈L(T )

)
, the transfer tensors and the

basis functions on the leaves of the dimension tree can be considered as the parameters of the manifold. Let Ψ
be the mapping which maps the parameters of the manifold to the corresponding tensor, i.e.

Ψ : ×
N∈I(T )

N (N1,N2)=succ(N )

RrN×rN1×rN2 × ×
{j}∈L(T )

RNj×r{j} → RN1×...×Nd

Ψ
((
B̃N
)
N∈I(T )

,
(
Ũ `
)
`∈L(T )

)
= Ỹ .

Ỹ is constructed according to Definition 2. Then, each element δY of the tangent space TYM can be written
as

δY =
rN1∑
j=1

rN2∑
l=1

∂Ψ
∂B̃N0

1,j,l

∣∣∣∣∣
B̃N=BN∀N∈I(T )
Ũ`=U`∀`∈L(T )

δBN0
1,j,l (11)

+
∑

N∈I(T )\{N0}

(N1,N2)=succ(N )

rN∑
i=1

rN1∑
j=1

rN2∑
l=1

∂Ψ
∂B̃Ni,j,l

∣∣∣∣∣
B̃N=BN∀N∈I(T )
Ũ`=U`∀`∈L(T )

δBNi,j,l

+
∑

`∈L(T )

r∑̀
i=1

∂Ψ
∂Ũ `i

∣∣∣∣∣
B̃N=BN∀N∈I(T )
Ũ`=U`∀`∈L(T )

δU `i ,

8
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where the tuple
((
δBN

)
N∈I(T ) ,

(
δU `

)
`∈L(T )

)
represents all possible variations of the transfer tensors and the

basis functions on the leaves of the dimension tree. Since Ψ is linear in each argument, we find with

∂Ψ
∂B̃N0

1,j,l

∣∣∣∣∣
B̃N=BN∀N∈I(T )
Ũ`=U`∀`∈L(T )

= UN1
j · UN2

l , (N1,N2) = succ(N0), (12)

∂Ψ
∂B̃Ni,j,l

∣∣∣∣∣
B̃N=BN∀N∈I(T )
Ũ`=U`∀`∈L(T )

= S(Y,N , i) · UN1
j · UN2

l , (N1,N2) = succ(N ) (13)

and ∂Ψ
∂Ũ `i

∣∣∣∣∣
B̃N=BN∀N∈I(T )
Ũ`=U`∀`∈L(T )

= S(Y, `, i) (14)

expressions for every partial derivative in (11). Therefore, the tangent space can be written as

TYM =
{
δY ∈ RN1×...×Nd : there exists a tuple

((
δBN

)
N∈I(T ) ,

(
δU `

)
`∈L(T )

)
such that (11), (12), (13) and (14) hold

}
.

Remark. The restriction of mapping Ψ to transfer tensors and basis functions which fulfill Assumptions 1
and 2 does not influence the tangent space since the restricted set is a dense and open subset of the domain,
cf. Section 3.2 in [11].

We are now ready to formulate the differential equations for the transfer tensors and the basis functions at the
leaves. In view of the recursive definition of H-Tucker ((rN )N∈T ), it does not come at a surprise that these
differential equations are defined recursively, too. Shortly before the submission of our work we noticed that
the same result has also been obtained in a recent preprint, cf. [11].

Theorem 3 (equations of motion). Let Y ∈ H-Tucker ((rN )N∈T ) be a tensor in the hierarchical Tucker format,
let
(
BN
)
N∈I(T ) the corresponding transfer tensors, and let

(
U `
)
`∈L(T ) the corresponding basis functions on the

leaves of the dimension tree. Furthermore we define for every N ∈ T \ {N0} the symmetric stiffness matrix

MN =
(
mNij

)rN
i,j=1 ∈ RrN×rN with entries mNij = 〈S(Y,N , i) , S(Y,N , j)〉 (15)

and its inverse
WN =

(
wNij
)rN
i,j=1 =

(
MN

)−1
. (16)

Then, the differential equation

Ẏ = P (Y )AY, t ≥ 0

is equivalent to

Ẏ =
rN1∑
j=1

rN2∑
l=1
ḂN0

1,j,l U
N1
j · UN2

l +
rN1∑
j=1

rN2∑
l=1
BN0

1,j,l U̇
N1
j · UN2

l +
rN1∑
j=1

rN2∑
l=1
BN0

1,j,l U
N1
j · U̇N2

l (17)

with (N1,N2) = succ(N0). The time derivatives of the basis functions on an interior node of the dimension tree
satisfy the recursion

U̇Ni =
rN1∑
j=1

rN2∑
l=1
ḂNi,j,l U

N1
j · UN2

l +
rN1∑
j=1

rN2∑
l=1
BNi,j,l U̇

N1
j · UN2

l +
rN1∑
j=1

rN2∑
l=1
BNi,j,l U

N1
j · U̇N2

l (18)

9
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for all N ∈ I(T ) \ {N0} with (N1,N2) = succ(N ). On the leaves of the dimension tree we have

U̇ `i =
r∑̀
i′=1

w`i′,i P⊥` 〈 AY , S(Y, `, i′)〉, ` ∈ L(T ), i = 1, . . . , r`. (19)

The transfer tensors evolve according to the differential equations

ḂN0
1,j,l =

〈
AY , UN1

j · UN2
l

〉
and

ḂNi,j,l =
rN∑
i′=1

wNi,i′
〈
AY , S(Y,N , i′) · P⊥N

(
UN1
j · UN2

l

)〉
, (N1,N2) = succ(N ).

We remark that the crucial terms are U̇ `i for ` ∈ L(T ) and ḂNi,j,l. If these objects are known, all U̇Ni with
N ∈ I(T ) \ {N0} can be computed recursively via (18). Hence, the time derivatives of the N -frames at the
interior nodes can be considered as auxiliary variables.

Before the proof of Theorem 3, we show that the solution of the equations of motion preserve the orthonormality
of the basis functions.

Lemma 4 (Gauge-conditions). Let
((
BN (t)

)
N∈I(T ) ,

(
U `(t)

)
`∈L(T )

)
be the solution of the equations of motion

of Theorem 3, and let
((
ḂN (t)

)
N∈I(T ) ,

(
U̇ `(t)

)
`∈L(T )

)
be the corresponding time derivatives. Then the Gauge-

condition 〈
U̇Ni (t) , UNj (t)

〉
= 0

is satisfied for all N ∈ T \ {N0} and i, j ∈ {1, ..., rN }. Furthermore, the orthonormality of the basis functions〈
UNi (t) , UNj (t)

〉
= δi,j (20)

is preserved for all t ≥ 0 if (20) holds for t = 0.

Proof of Lemma 4. For all N ∈ I(T ) \ {N0}, (N1,N2) = succ(N ) and i1, i2 ∈ {1, ..., rN } the equations

rN1∑
j=1

rN2∑
l=1
ḂNi1,j,l(t) B

N
i2,j,l(t) =

rN1∑
j=1

rN2∑
l=1
BNi2,j,l(t)

rN∑
i=1

wNi1,i

〈
AY,S(Y,N , i) · P⊥N

(
UN1
j (t) · UN2

l (t)
)〉

=
rN∑
i=1

wNi1,i

〈
AY,S(Y,N , i) · P⊥N

rN1∑
j=1

rN2∑
l=1
BNi2,j,l(t) U

N1
j (t) · UN2

l (t)

〉
= 0

hold. Furthermore, we have

〈U̇ `i1(t) , U `i2(t)〉 =
〈

r∑̀
i=1

w`i,i1 P
⊥
` 〈 AY,S(Y, `, i)〉 , U `i2(t)

〉
= 0

for all ` ∈ L(T ), i1, i2 ∈ {1, ..., r`}. Now suppose that〈
U̇N1
j1

(t) , UN1
j2

(t)
〉

= 0 and
〈
∂tU

N2
l1

(t) , UN2
l2

(t)
〉

= 0

for an interior node N ∈ I(T ) \ {N0}, (N1,N2) = succ(N ) for all j1, j2 ∈ {1, ..., rN1} and l1, l2 ∈ {1, ..., rN2}.

10
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Then with (??) we deduce

〈U̇Ni1 (t) , UNi2 (t)〉 =
rN1∑
j1=1

rN2∑
l1=1

rN1∑
j2=1

rN2∑
l2=1
ḂNi1,j1,l1(t) BNi2,j2,l2(t)〈UN1

j1
(t) · UN2

l1
(t) , UN1

j2
(t) · UN2

l2
(t)〉

+
rN1∑
j1=1

rN2∑
l1=1

rN1∑
j2=1

rN2∑
l2=1
BNi1,j1,l1(t) BNi2,j2,l2(t)〈U̇N1

j1
(t) · UN2

l1
(t) , UN1

j2
(t) · UN2

l2
(t)〉

+
rN1∑
j1=1

rN2∑
l1=1

rN1∑
j2=1

rN2∑
l2=1
BNi1,j1,l1(t) BNi2,j2,l2(t)〈UN1

j1
(t) · U̇N2

l1
(t) , UN1

j2
(t) · UN2

l2
(t)〉

= 0

for all i1, i2 ∈ {1, ..., rN }. Hence, the Gauge-conditions are satisfied, and the equations

〈UNi (t) , UNj (t)〉 = 〈UNi (0) , UNj (0)〉+
∫ t

0

〈
U̇Ni (s) , UNj (s)

〉
+
〈
UNi (s) , U̇Nj (s)

〉
ds = δi,j

show the preservation of the orthonormality. �

Proof of Theorem 3. In order to prove the theorem it has to be shown that the variational equation

〈AY − Ẏ , δY 〉 = 0

is satisfied for every variation δY ∈ TYM.

(i) We start with the variation
δY = δBN0

1,j,l U
N1
j · UN2

l (21)

for an arbitrary δBN0 ∈ RrN1×rN2 , j ∈ {1, ..., rN1}, l ∈ {1, ..., rN2}. Together with (17) this yields

〈Ẏ , δY 〉 =
〈 rN1∑
j′=1

rN2∑
l′=1
ḂN0

1,j,l U
N1
j′ · U

N2
l′ , δBN0

1,j,l U
N1
j · UN2

l

〉

+
〈 rN1∑
j′=1

rN2∑
l′=1
BN0

1,j,l U̇
N1
j′ · U

N2
l′ , δBN0

1,j,l U
N1
j · UN2

l

〉

+
〈 rN1∑
j′=1

rN2∑
l′=1
BN0

1,j,l U
N1
j′ · U̇

N2
l′ , δBN0

1,j,l U
N1
j · UN2

l

〉
= δBN0

1,j,l Ḃ
N0
1,j,l

= δBN0
1,j,l

〈
AY , UN1

j · UN2
l

〉
=
〈
AY , δBN0

1,j,l U
N1
j · UN2

l

〉
= 〈AY, δY 〉.

This proves that 〈
AY − Ẏ , δY

〉
= 0 for all δY = δBN0

1,j,l U
N1
j · UN2

l .

(ii) Next, we assume N ∈ I(T ) \ {N0}, (N1,N2) = succ(N ) and choose the variation

δY = δBNi,j,l S(Y,N , i) · UN1
j · UN2

l (22)

for an arbitrary δBN ∈ RrN×rN1×rN2 , i ∈ {1, ..., rN }, j ∈ {1, ..., rN1}, l ∈ {1, ..., rN2}. Deriving both sides of (8)

11
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with respect to t gives that

〈Ẏ , δY 〉 =
〈
rN∑
i′=1
Ṡ(Y,N , i′) · UNi′ , δBNi,j,l S(Y,N , i) · UN1

j · UN2
l

〉

+
〈
rN∑
i′=1
S(Y,N , i′) · U̇Ni′ , δBNi,j,l S(Y,N , i) · UN1

j · UN2
l

〉

=
rN∑
i′=1

δBNi,j,l〈 Ṡ(Y,N , i′)︸ ︷︷ ︸
=〈AY,UN

i′
〉

, S(Y,N , i)〉
〈
UNi′ , U

N1
j · UN2

l

〉
︸ ︷︷ ︸

=BN
i′,j,l

+
rN∑
i′=1

δBNi,j,l 〈S(Y,N , i′) , S(Y,N , i)〉︸ ︷︷ ︸
=mN

i′,i

〈U̇Ni′ , U
N1
j · UN2

l 〉︸ ︷︷ ︸
=(ḂN )i′,j,l

=
rN∑
i′=1

δBNi,j,l 〈AY , S(Y,N , i) · UNi′ 〉 BNi′,j,l

+
rN∑
i′′=1

δBNi,j,l 〈AY , S(Y,N , i′′) · P⊥N
(
UN1
j · UN2

l

)
〉
rN∑
i′=1

mNi′,i w
N
i′,i′′︸ ︷︷ ︸

=δi,i′′

=
rN∑
i′=1

δBNi,j,l 〈AY , S(Y,N , i) · UNi′ 〉 BNi′,j,l (23)

+δBNi,j,l 〈AY , S(Y,N , i) · P⊥N
(
UN1
j · UN2

l

)
〉.

On the other hand

〈AY , δY 〉 = 〈AY , δBNi,j,l S(Y,N , i) · UN1
j · UN2

j 〉

= δBNi,j,l 〈AY , S(Y,N , i) · PN
(
UN1
j · UN2

j

)
︸ ︷︷ ︸
=
∑rN

i′=1
BN
i′,j,l

UN
i′

〉

+δBNi,j,l 〈AY , S(Y,N , i) · P⊥N
(
UN1
j · UN2

j

)
〉

=
rN∑
i′=1

(δBNi,j,l 〈AY , S(Y,N , i) · UNi′ 〉 BNi′,j,l (24)

+δBNi,j,l 〈AY , S(Y,N , i) · P⊥N
(
UN1
j · UN2

j

)
〉

holds. Since (23) is equal to (24), it follows that〈
AY − Ẏ , δY

〉
= 0 for all δY = δBNi,j,l S(Y,N , i) · UN1

j · UN2
j .

(iii) Finally, let ` ∈ L(T ) and consider the variation

δY = S(Y, `, i) · δU `i (25)

12
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for an arbitrary δU `i : I` → R, i ∈ {1, ..., r`}. Similar as before, the time derivative of (8) yields

〈
Ẏ , δY

〉
=
〈

r∑̀
i′=1
Ṡ(Y, `, i′) · U `i′ , S(Y, `, i) · δU `i

〉

+
〈

r∑̀
i′=1
S(Y, `, i′) · ∂tU `i′ , S(Y, `, i) · δU `i

〉

=
r∑̀
i′=1
〈Ṡ(Y, `, i′)︸ ︷︷ ︸
〈AY,U`

i′
〉

, S(Y, `, i)〉 〈U `i′ , δU `i 〉

+
r∑̀
i′=1
〈S(Y, `, i′) , S(Y, `, i)〉︸ ︷︷ ︸

=m`
i′,i

〈
U̇ `i′ , δU

`
i

〉

=
r∑̀
i′=1
〈AY , S(Y, `, i) · U `i′〉 〈U `i′ , δU `i 〉

+
r∑̀
i′=1

m`
i′,i

〈
r∑̀

i′′=1
w`i′,i′′P⊥` 〈AY , S(Y, `, i′′)〉 , δU `i

〉

=
r∑̀
i′=1
〈AY , S(Y, `, i) · U `i′〉 〈U `i′ , δU `i 〉

+
r∑̀

i′′=1
〈P⊥` AY , S(Y, `, i′′) · δU `i 〉

r∑̀
i′=1

m`
i′,i w

`
i′,i′′︸ ︷︷ ︸

=δi,i′′

=
r∑̀
i′=1
〈AY , S(Y, `, i) · U `i′〉 〈U `i′ , δU `i 〉 (26)

+〈AY , S(Y, `, i) · P⊥` δU `i 〉.

On the other hand

〈AY , δY 〉 = 〈AY , S(Y, `, i) · δU `i 〉
= 〈AY , S(Y, `, i) · P` δU `i︸ ︷︷ ︸

=
∑r`

i′=1
〈U`
i′
,δU`

i
〉U`
i′

〉

+〈AY , S(Y, `, i) · P⊥` δU `i 〉

=
r∑̀
i′=1
〈AY , S(Y, `, i) · U `i′〉 〈U `i′ , δU `i 〉 (27)

+〈AY , S(Y, `, i) · P⊥` δU `i 〉

holds. Since (26) is equal to (27), it follows that〈
AY − Ẏ , δY

〉
= 0 for all δY = S(Y, `, i) · δU `i .

The superposition of the variations (21), (22) and (25) span the whole tangent space and therefore

〈AY − Ẏ , δY 〉 = 0 for all variations δY ∈ TYM.

�

Corollary 5. Let B ∈ RN1×...×Nd be an arbitrary tensor, let Y ∈M and let P (Y )B be the orthogonal projection
of B onto the tangent space TYM defined by

〈P (Y )B −B , δY 〉 = 0 for all δY ∈ TYM.

Then, formally replacing ∂tY by P (Y )B and AY by B in Theorem 3 yields a recursive representation of P (Y )B.

13
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4 Matrix representation of tensors

Since the solution Yex of the original differential equation (9) does, in general, not evolve on the approximation
manifold M = H-Tucker ((rN )N∈T ), the solution Y of the projected problem only yields an approximation
Y ≈ Yex. For the error analysis of this approximation, the matricization of a tensor is a useful concept. Such
a matricization turns a tensor into a matrix with the same entries, just as the command reshape( ...) in
Matlab. For any N ∈ T the set NC := {1, ..., d} \ N is called the complement node of N . Then, the
matricization

Y (N ,NC) ∈ Rπ(N )×π(NC), π(N ) =
∏
k∈N

Nk, π(NC) =
∏
k∈NC

Nk

of a tensor Y ∈ RN1×...×Nd rearranges the elements of the tensor in such a way that all the different directions
in N range over the rows whereas all the directions in NC range over the columns of the matricization. There
are many different ways to do this, but it does not really matter which mapping is used. The only condition we
impose is that Y (N ,NC) =

(
Y (NC ,N ))T . For the inverse mapping the notation

Y =
(
Y (N ,NC)

)
(N ,NC)

will be used. A special case of a matricization is the vectorization

Y (N0,{}) ∈ RN1·...·Nd

which reshapes a tensor to a vector. The corresponding inverse mapping is denoted by

Y =
(
Y (N0,{})

)
(N0,{})

.

For Y ∈ H-Tucker ((rN )N∈T ) and N ∈ I(T )\{N0}, let the single-hole matrix

SN :=
(

(S(Y,N , 1))(NC ,{}) ∣∣ . . .
∣∣ (S(Y,N , rN ))(NC ,{})

)
∈ Rπ(NC)×rN

be the matrix whose j-th column is the vectorization of S(Y,N , j). Similarly, the orthonormal basis matrix
is defined by

UN :=
((
UN1

)(N ,{}) ∣∣ . . .
∣∣ (UNrN )(N ,{})

)
∈ Rπ(N )×rN .

Assumptions 1 implies that (UN )TUN = I, and it follows from (8) that

Y (N ,Nc) = UN (SN )T , SN =
(
Y (N ,Nc)

)T
UN .

Hence, the singular values of the matricization Y (N ,NC) coincide with the singular values of the single-hole
matrix SN . The projection onto the space spanned by the columns of UN and on the orthogonal complement
will be denoted by

PN := UN
(
UN
)T and

(
PN

)⊥ := I − UN
(
UN
)T
,

respectively. In addition we define for (N1,N2) = succ(N ) the binary matrix operator

UN1 � UN2 → Rπ(N )×(rN1rN2 )

UN1 � UN2 =
(
v11|v12| . . . |v1rN2

|v21| . . . |v2rN2
| . . . | . . . |vrN1rN2

)
, vjk =

(
UN1
j · UN2

k

)(N ,{})
.

After these preparations, the results of [11] can now be adapted to show that H-Tucker ((rN )N∈T ) is indeed a
manifold.

Lemma 6. The set

H-Tucker ((rN )N∈T ) =
{
X ∈ RN1×...×Nd : rank

(
X(N ,NC)

)
= rN for all N ∈ T \ {N0}

}
is a smooth submanifold of RN1×...×Nd .
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Proof. In [11, Theorem 4.11] it has been shown that

M̂ :=
{
X ∈ RN1×...×Nd : rank

(
X(N ,NC)

)
= rN for all N ∈ T \ {N0}

}
is a smooth submanifold of RN1×...×Nd . Hence, it only has to be shown that H-Tucker ((rN )N∈T ) = M̂.
Let Y ∈ H-Tucker ((rN )N∈T ) be represented by

((
BN
)
N∈I(T ) ,

(
U `
)
`∈L(T )

)
. By Assumption 2, the sequence

〈Y,UN1 〉, ..., 〈Y, UNrN 〉 is linearly independent for all T \ {N0} , which means that

rank
(
SN
)

= rank
(
Y (N ,NC)

)
= rN for all N ∈ T \ {N0}

and therefore H-Tucker ((rN )N∈T ) ⊆ M̂. Conversely, for every Ŷ ∈ M̂ Proposition 3.6 in [11] ensures the
existence of

((
BN
)
N∈I(T ) ,

(
U `
)
`∈L(T )

)
such that the equation

Ŷ =
rN1∑
j=1

rN2∑
l=1
BN0

1,j,l U
N1
j · UN2

l , (N1,N2) = succ(N0)

and the recursion

UNi =
rN1∑
j=1

rN2∑
l=1
BNi,j,l U

N1
j · UN2

l

hold for all N ∈ I(T ), i ∈ {1, ..., rN } and (N1,N2) = succ(N ). The rank of the single-hole matrix SN =(
X(N ,NC))T UN equals rN for all N ∈ T \ {N0}, which means that the sequence 〈X,UN1 〉, ..., 〈X,UNrN 〉 is
linearly independent for all N ∈ T \ {N0} and therefore M̂ ⊆ H-Tucker ((rN )N∈T ) . �

One of the main ingredients for the error analysis is a compact representation of the projection of a tensor on
the tangent space of the manifold, i.e. an explicit representation which is not based on a recursion. Such a
compact representation can be obtained in matrix-vector notation. As a preparatory step, we reformulate the
results of Corollary 5 in matrix-vector notation.

Corollary 7. Let Y ∈ H-Tucker ((rN )N∈T ) be a tensor in the hierarchical Tucker format represented by the
transfer tensors

(
BN
)
N∈I(T ) and by the basis functions

(
U `
)
`∈L(T ) on the leaves of the dimension tree. If B ∈

RN1×...×Nd is an arbitrary tensor, then under the conditions of Corollary 5 there exists a tuple((
δBN

)
N∈I(T ) , (δU

`)`∈L(T )

)
such that for (N1,N2) = succ(N0)

P (Y )B =
rN1∑
j=1

rN2∑
l=1

δBN0
1,j,lU

N1
j · UN2

l +
rN1∑
j=1

rN2∑
l=1
BN0

1,j,lδU
N1
j · UN2

l +
rN1∑
j=1

rN2∑
l=1
BN0

1,j,lU
N1
j · δUN2

l

with

δBN0
1,j,l =

((
UN1
j · UN2

l

)(N0,{})
)T

B(N0,{}).

For all N ∈ I(T )\{N0} with (N1,N2) = succ(N ), δUN is defined by the recursion

δUNi =
rN1∑
j=1

rN2∑
l=1

δBNi,j,lU
N1
j · UN2

l +
rN1∑
j=1

rN2∑
l=1
BNi,j,l

(
δUN1

)
j
· UN2

l +
rN1∑
j=1

rN2∑
l=1
BNi,j,lU

N1
j · δUN2

l

with (
δBN1,j,l ... δBNrN ,j,l

)
=
((

UN1
j · UN2

l

)(N ,{})
)T

(PN )⊥ B(N ,NC)
(
SN

+
)T

δU` = (P `)⊥ B(`,`C)
(
S`

+
)T

.

Here and below, M+ is the pseudoinverse of a matrix M , i.e. M+ = (MTM)−1MT if M has full column rank.
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Proof. The equation for δBN0 can be deduced directly from Corollary 5. For N ∈ I(T )\{N0} and (N1,N2) =
succ(N ), Corollary 5 states that

δBNi,j,l =
rN∑
i′=1

〈
B , S(Y,N , i′) · P⊥N

(
UN1
j · UN2

l

)〉
wNi,i′

=
rN∑
i′=1

〈
P⊥N

(
UN1
j · UN2

l

)
, 〈B , S(Y,N , i′)〉

〉
wNi,i′

=
rN∑
i′=1

〈
UN1
j · UN2

l , P⊥N 〈B , S(Y,N , i′)〉
〉
wNi,i′

for all j ∈ {1, ..., rN1}, l ∈ {1, ..., rN2}. Since WN defined in (16) satisfies(
SN
)
WN =

(
SN
) ((

SN
)T SN

)−1
=
(
SN

+
)T

(28)

we obtain (
δBN1,j,l ... δBNrN ,j,l

)
=
((

UN1
j · UN2

l

)(N ,{})
)T

(PN )⊥ B(N ,NC)
(
SN

+
)T

.

Last, for ` ∈ L(T ) and i = 1, . . . , r` we recall from Corollary 5 that

δU `i =
r∑̀
i′=1
P⊥` 〈 B,S(Y, `, i′)〉 w`i′,i,

and substituting (28) with N = ` yields

δU` = (P `)⊥ B(`,`C)
(
S`

+
)T

.

�

With Corollary 7 we are now able to derive a compact representation for the projection of a tensor on the
tangent space of the manifold.
Corollary 8. Under the assumptions of Corollary 7, the projection of a tensor B ∈ RN1×...Nd on the tangent
space TYM can be written as

P (Y )B =
((

UN
0
1 � UN

0
2

)(
UN

0
1 � UN

0
2

)T
B(N0,{})

)
(N0,{})

+
∑

N∈I(T )\{N0}

(N1,N2)=succ(N )

((
UN1 � UN2

) (
UN1 � UN2

)T (
PN

)⊥
B(N ,NC)

(
SNSN+)T)

(N ,NC)

+
∑

`∈L(T )

((
P `
)⊥
B(`,`C)

(
S`S`+)T)

(`,`C)
,

where (N 0
1 ,N 0

2 ) = succ(N0).

Proof. By resolving the recursion in Corollary 5 and 7, respectively, we obtain the equation

P (Y )B =
rN0

1∑
j=1

rN0
2∑

l=1
U
N 0

1
j · UN

0
2

l δBN0
1,j,l (29)

+
∑

N∈I(T )\{N0}

(N1,N2)=succ(N )

rN1∑
j=1

rN2∑
l=1

UN1
j · UN2

l ·
rN∑
i=1

δBNi,j,l S(Y,N , i) (30)

+
∑

`∈L(T )

r∑̀
i=1

δU `i · S(Y, `, i), (31)
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see also equations (11), (12), (13) and (14) in Section 3. A closer inspection of the first term (29) shows that
rN1∑
j=1

rN2∑
l=1

UN1
j · UN2

l δBN0
1,j,l =

rN1∑
j=1

rN2∑
l=1

UN1
j · UN2

l

((
UN1
j · UN2

l

)(N0,{})
)T

B(N0,{})

=

rN1∑
j=1

rN2∑
l=1

(
UN1
j · UN2

l

)(N0,{})
((

UN1
j · UN2

l

)(N0,{})
)T

B(N0,{})


(N0,{})

=
((

UN1 � UN2
) (

UN1 � UN2
)T
B(N0,{})

)
(N0,{})

.

For the second term (30), we obtain

∑
N∈I(T )\{N0}

(N1,N2)=succ(N )

rN1∑
j=1

rN2∑
l=1

UN1
j · UN2

l ·
rN∑
i=1

δBNi,j,l S(Y,N , i)

=
∑

N∈I(T )\{N0}

(N1,N2)=succ(N )

rN1∑
j=1

rN2∑
l=1

(
UN1
j · UN2

l

)(N ,{}) rN∑
i=1

δBNi,j,l
(
S(Y,N , i)(NC ,{})

)T
(N ,NC)

=
∑

N∈I(T )\{N0}

(N1,N2)=succ(N )

rN1∑
j=1

rN2∑
l=1

((
UN1
j · UN2

l

)(N ,{})
) (

δBN1,j,l . . . δBNrN ,j,l
) (

SN
)T

(N ,NC)

=
∑

N∈I(T )\{N0}

(N1,N2)=succ(N )

rN1∑
j=1

rN2∑
l=1

((
UN1
j · UN2

l

)(N ,{})
) ((

UN1
j · UN2

l

)(N ,{})
)T (

PN
)⊥
B(N ,NC)

(
SN+)T (SN )T


(N ,NC)

=
∑

N∈I(T )\{N0}

(N1,N2)=succ(N )

((
UN1 � UN2

) (
UN1 � UN2

)T (
PN

)⊥
B(N ,NC)

(
SNSN+)T)

(N ,NC)
.

Finally, the last term (31) can be reformulated as∑
`∈L(T )

r∑̀
i=1

δU `i · S(Y, `, i) =
∑

`∈L(T )

(
r∑̀
i=1

(
δU `i

)(`,{}) (S(Y, `, i)(`C ,{})
)T)

(`,`C)

=
∑

`∈L(T )

(
δU`

(
S`
)T)

(`,`C)

=
∑

`∈L(T )

((
P `
)⊥
B(`,`C)

(
S`+)T (S`)T)

(`,`C)

=
∑

`∈L(T )

((
P `
)⊥
B(`,`C)

(
S`S`+)T)

(`,`C)
.

This proves the assertion. �

5 Curvature bounds

In this section estimates for the curvature of the manifold are proven. These estimates, formulated in Lemma 10
below, will play a crucial role in the error analysis of the variational approximation in Section 6. Similar results
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have been obtained for the dynamical low-rank approximation of matrices or tensors, respectively, in [5, 6]. Our
general strategy follows the ideas developed there, but extending the results of [5, 6] to the hierarchical Tucker
format is a considerable challenge due to the recursive definition of the equations of motion.

In the following σi(M) denotes the i-th singular value (in descending order) of a matrix M ∈ Rn×m with
n,m ≥ i. Moreover, we will use the Frobenius norm ‖Y ‖F =

√
〈Y , Y 〉 of tensors Y ∈ RN1×...×Nd . By

construction the Frobenius norm of a tensor equals the matrix Frobenius norm of a corresponding matricization,
i. e. ‖Y ‖F =

∥∥Y (N ,NC)
∥∥
F
for all N ∈ T \ {N0}.

Lemma 9. If Y, Ỹ ∈ H-Tucker ((rN )N∈T ) are tensors in the hierarchical Tucker format fulfilling

σrN (Y (N ,NC)) ≥ ρ > 0 and ‖Y − Ỹ ‖F = δ

for some N ∈ T \ {N0}, then
σrN (Ỹ (N ,NC)) ≥ ρ− δ.

If in addition ρ > δ, then the pseudoinverse S̃N+ of the single-hole-matrix S̃N of Ỹ is bounded by

‖S̃N
+
‖2 ≤

1
ρ− δ

.

Proof. The estimates

δ = ‖Ỹ − Y ‖F = ‖Ỹ (N ,NC) − Y (N ,NC)‖F
≥ ‖Ỹ (N ,NC) − Y (N ,NC)‖2

≥
∣∣∣ σrN (Ỹ (N ,NC)

)
− σrN

(
Y (N ,NC)

) ∣∣∣ (32)

hold for all N ∈ T \ {N0}. The inequality (32) is shown with Theorem 7.4.51 in [4]. Then

σrN

(
Ỹ (N ,NC)

)
≥ σrN

(
Y (N ,NC)

)
−
∣∣∣ σrN (Ỹ (N ,NC)

)
− σrN

(
Y (N ,NC)

) ∣∣∣ ≥ ρ− δ.
For ρ > δ the pseudoinverse can be bounded by∥∥∥S̃N+

∥∥∥
2

=
(
σrN

(
S̃N
))−1

=
(
σrN

(
Ỹ (N ,NC)

))−1
≤ (ρ− δ)−1.

�

Lemma 10 (curvature bounds). Let Ỹ , Y ∈ H-Tucker ((rN )N∈T ) be tensors in the hierarchical Tucker format,
and let (ρN )N∈T\{N0} and (cN )N∈T\{N0} be families of positive real values such that

σrN (Y (N ,NC)) ≥ ρN > 0 and δ := ‖Y − Ỹ ‖F ≤ cN ρN (33)

for all N ∈ T \ {N0}. Furthermore let c̃ > 0 be a constant fulfilling the inequalities∑
N∈T\{N0}

8cN (c̃ (1− c̃− cN ))−1 ≤ 1 and c̃+ cN < 1.

Then the bounds

‖(P (Y )− P (Ỹ )) B‖F ≤
∑

N∈T\{N0}

8 (ρN (1− c̃− cN ))−1 ‖Y − Ỹ ‖F ‖B‖F , (34)

∥∥∥P⊥(Y ) (Ỹ − Y )
∥∥∥
F
≤

∑
N∈T\{N0}

8 (ρN (1− c̃− cN )(1− c̃ ))−1 ‖Y − Ỹ ‖2
F . (35)

hold for every tensor B ∈ RN1×...×Nd .
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Proof. Since the proof is rather long and technical, it is divided into several parts.
Part 1: For the moment we assume that there are

X(τ) ∈ H-Tucker ((rN )N∈T ) and Z(τ)⊥TYM

such that
Y + τ(Ỹ − Y ) = X(τ) + Z(τ) (36)

for all 0 ≤ τ ≤ 1. Below we will prove that this assumption is indeed true. In the following ∆ denotes the
projection of the difference from Y to Ỹ on the tangent space TYM

∆ := P (Y )(Ỹ − Y ) ∈ TYM.

Obviously ‖∆‖F ≤ ‖Ỹ − Y ‖F = δ holds. The projection of (36) on the tangent space leads to the equation

P (Y )(X(τ)− Y ) = τ∆, (37)

and differentiating with respect to τ gives

P (Y )(Ẋ(τ)) = ∆.

The derivative Ẋ(τ) belongs to the tangent space of X(τ), therefore

P (X(τ))Ẋ(τ) = Ẋ(τ)

is satisfied, which leads to

Ẋ(τ) = P (X(τ))Ẋ(τ) + ∆− P (Y )Ẋ(τ)︸ ︷︷ ︸
=0

= ∆ + (P (X(τ))− P (Y ))Ẋ(τ). (38)

In the course of the proof it turns out that

‖P (X(τ))− P (Y )‖ ≤ c̃ < 1 (39)

for all 0 ≤ τ ≤ 1. Together with (38) this yields

‖Ẋ(τ)‖F ≤ ‖∆‖F + ‖P (X(τ))− P (Y )‖F ‖Ẋ(τ)‖F ≤ δ + c̃ ‖Ẋ(τ)‖F

and hence

‖Ẋ(τ)‖F ≤ δ(1− c̃ )−1. (40)

Since the operator (I − (P (X(τ))− P (Y ))) is invertible, we can apply the implicit function theorem to (38)
in order to prove for each τ ∈ [0, 1] the existence of a function F such that F (X(τ)) = Ẋ(τ) is satisfied in
a neighborhood of X(τ) and since each mapping F is bounded due to (40), there exists a solution X(τ) for
all τ ∈ [0, 1]. The existence of a solution of the differential algebraic equation (38) implies the existence of
decomposition (36), since integrating (38) leads to (37) and setting

Z(τ) = τ P⊥(Y )(Ỹ − Y )− P⊥(Y )X(τ)

shows the existence of the decomposition stated above.

Part 2: In this part of the proof, we prove a number of auxiliary inequalities for later use. Since X(0) = Y by
construction, the fundamental theorem of calculus and (40) reveal the estimate

‖X(τ)− Y ‖F ≤ τ sup
s∈[0,τ ]

‖Ẋ(s)‖F ≤ δ(1− c̃ )−1

because τ ≤ 1. Let UN (τ) and SN (τ) be the orthonormal basis matrix and the single-hole-matrix of X(τ), i.e.
(X(τ))(N ,NC) = UN (τ)SN (τ)T . Under Assumption (33), Lemma 9 can be applied and provides the bound

‖SN (τ)+‖2 ≤
1

ρN − (1− c̃)−1δ
≤ 1

ρN − (1− c̃)−1cN ρN
= 1− c̃

ρN (1− c̃− cN ) (41)
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for all 0 ≤ τ ≤ 1 for the pseudoinverse SN (τ). Next, a bound for ‖U̇NSN (τ)T ‖F is shown. Since PN (τ)⊥ =
I − UN (τ)UN (τ)T by definition, it follows from

UN (τ)TUN (τ) = I and UN (τ)T U̇N (τ) = 0 (42)

that

U̇N (τ)SN (τ)T = PN (τ)⊥
(
U̇N (τ)SN (τ)T + UN (τ)ṠN (τ)T

)
= PN (τ)⊥Ẋ(N ,NC)(τ).

With ‖PN (τ)⊥‖2 ≤ 1 and (40), we thus obtain

‖U̇NSN (τ)T ‖F ≤ ‖PN (τ)⊥‖2 · ‖Ẋ(N ,NC)(τ)‖F ≤ δ(1− c̃ )−1.

Combining this with (41) yields

‖U̇N (τ)‖F ≤ ‖U̇N (τ)SN (τ)T ‖F ‖SN (τ)+‖2 ≤ δ(1− c̃ )−1 1− c̃
ρN (1− c̃− cN ) = δ

ρN (1− c̃− cN ) .

With this inequality, the derivative of PN (τ)⊥ = I − UN (τ)UN (τ)T can be bounded by∥∥ṖN (τ)⊥
∥∥
F
≤ 2δ
ρN (1− c̃− cN ) .

A bound for the derivative of the single-hole-matrix SN (τ) of X(τ) can be derived from the orthonormality (42)
and (40) via ∥∥ṠN (τ)T

∥∥
F

=
∥∥UN (τ)T U̇N (τ)SN (τ)T + UN (τ)TUN (τ)ṠN (τ)T

∥∥
F

=
∥∥∥UN (τ)T Ẋ(N ,NC)(τ)

∥∥∥
F

≤ δ(1− c̃ )−1. (43)

Next, we want to estimate the derivative of SN (τ)SN (τ)+, which can be written as

d

dτ

[
SN (τ)SN (τ)+] = d

dτ

[
SN (τ)

(
SN (τ)TSN (τ)

)−1 SN (τ)T
]

= T1(τ) + T2(τ) + TT1 (τ)

with T1(τ) = ṠN (τ)SN (τ)+

T2(τ) = SN (τ) d
dτ

[(
SN (τ)TSN (τ)

)−1] SN (τ)T .

It follows from (41) and (43) that

‖T1‖F ≤ ‖SN (τ)+‖2 · ‖ṠN (τ)‖F ≤
1− c̃

ρN (1− c̃− cN ) δ(1− c̃ )−1 = δ

ρN (1− c̃− cN ) .

In order to bound T2 we substitute

d

dτ

[(
SN (τ)TSN (τ)

)−1] = −
(
SN (τ)TSN (τ)

)−1 d

dτ

[
SN (τ)TSN (τ)

] (
SN (τ)TSN (τ)

)−1

and obtain

T2(τ) = −
(
SN (τ)+)T d

dτ

[
SN (τ)TSN (τ)

]
SN (τ)+ = −TT1 (τ)SN (τ)SN (τ)+ −

(
SN (τ)+)T SN (τ)TT1(τ).

Since ‖SN (τ)SN (τ)+‖2 = 1, this gives the bound ‖T2(τ)‖F ≤ 2‖T1(τ)‖F and in total∥∥∥∥ ddτ [(SN (τ)SN (τ)+)T
]∥∥∥∥
F

≤ 4‖T1(τ)‖F ≤
4δ

ρN (1− c̃− cN ) .

Part 3: As a first step towards an error bound for ‖(P (Ỹ )− P (Y )) B‖F we use

(
P (Ỹ )− P (Y )

)
B =

(
(P (X(1))− P (X(0))

)
B =

∫ 1

0

d

dτ
[P (X(τ)) B] dτ (44)
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and replace P (X(τ)) B by the representation from Corollary 8. This yields

‖(P (Ỹ )− P (Y )) B‖F

≤ max
τ∈[0,1]

∥∥∥∥ ddτ
[(

UN
0
1 (τ)� UN

0
2 (τ)

)(
UN

0
1 (τ)� UN

0
2 (τ)

)T
B(N0,{})

]∥∥∥∥
F

(45)

+
∑

N∈I(T )\{N0}

(N1,N2)=succ(N )

max
τ∈[0,1]

∥∥∥∥ ddτ
[(

UN1(τ)� UN2(τ)
) (

UN1(τ)� UN2(τ)
)T
PN (τ)⊥ B(N ,NC)

(
SN (τ)SN+(τ)

)T]∥∥∥∥
F

(46)

+
∑

`∈L(T )

max
τ∈[0,1]

∥∥∥∥ ddτ
[
P `(τ)⊥ B(`,`C)

(
S`(τ)S`+(τ)

)T]∥∥∥∥
F

, (47)

where (N 0
1 ,N 0

2 ) = succ(N0).

Part 4: Now for each of the three terms (45),(46),(47), a suitable bound has to be derived. Assuming N to be
an interior node with successors (N1,N2) = succ(N ) allows us to bound∥∥∥∥ ddτ [(UN1(τ)� UN2(τ)

) (
UN1(τ)� UN2(τ)

)T ]∥∥∥∥
2
≤ 2

∥∥∥∥ ddτ [UN1(τ)� UN2(τ)
]∥∥∥∥

2

≤ 2
∥∥U̇N1(τ)� UN2(τ)‖2 + 2 ‖UN1(τ)� U̇N2(τ)

∥∥
2

≤ 2
∥∥U̇N1(τ)‖2 + 2 ‖U̇N2(τ)

∥∥
2

≤ 2δ
ρN1(1− c̃− cN1) + 2δ

ρN2(1− c̃− cN2) .

Hence, the inequality∥∥∥∥ ddτ
[(

UN
0
1 (τ)� UN

0
2 (τ)

)(
UN

0
1 (τ)� UN

0
2 (τ)

)T
B(N0,{})

]∥∥∥∥
F

≤ 2δ
ρN 0

1
(1− c̃− cN 0

1
)‖B‖F+ 2δ

ρN 0
2
(1− c̃− cN 0

2
)‖B‖F

(48)
holds for all tensors B ∈ RN1×...×Nd .

Next, we consider (46). Assuming N 6= N0 allows us to deduce the estimate∥∥∥∥ ddτ [(UN1(τ)� UN2(τ))(UN1(τ)� UN2(τ))TPN (τ)⊥B(N ,NC) (SN (τ)SN (τ)+)T ]∥∥∥∥
F

≤
∥∥∥∥ ddτ [(UN1(τ)� UN2(τ))(UN1(τ)� UN2(τ))T

]∥∥∥∥
2
‖B‖F

∥∥∥(SN (τ)SN (τ)+)T∥∥∥
2

+
∥∥(UN1(τ)� UN2(τ))(UN1(τ)� UN2(τ))T

∥∥
2

∥∥∥∥ ddτ [PN (τ)⊥
]∥∥∥∥
F

‖B‖F
∥∥∥(SN (τ)SN (τ)+)T∥∥∥

2

+
∥∥(UN1(τ)� UN2(τ))(UN1(τ)� UN2(τ))T

∥∥
2 ‖B‖F

∥∥∥∥ ddτ [(SN (τ)SN (τ)+)T ]∥∥∥∥
2

≤ 2δ
ρN1(1− c̃− cN1) ‖B‖F + 2δ

ρN2(1− c̃− cN2) ‖B‖F + 6δ
ρN (1− c̃− cN ) ‖B‖F . (49)

Finally, let ` be a leaf of the dimension tree. Then, for the term in (47) we obtain the estimate∥∥∥∥ ddτ [P `(τ)⊥B(`,`C) (S`(τ)S`(τ)+)]∥∥∥∥
F

≤
∥∥∥∥ ddτ [P `(τ)⊥

]∥∥∥∥
F

‖B‖F
∥∥∥(S`(τ)S`(τ)+)T∥∥∥

2

+ ‖B‖F
∥∥∥∥ ddτ [(S`(τ)S`(τ)+)T ]∥∥∥∥

2

≤ 6δ
ρ`(1− c̃− c`)

‖B‖F . (50)
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Part 5: Substituting (48),(49),(50) into (45),(46),(47) yields the first assertion (34):

‖(P (Ỹ )− P (Y )) B‖F ≤
2δ

ρN 0
1
(1− c̃− cN 0

1
) ‖B‖F + 2δ

ρN 0
2
(1− c̃− cN 0

2
) ‖B‖F

+
∑

N∈I(T )\{N0}

(N1,N2)=succ(N )

2δ
ρN1(1− c̃− cN1) ‖B‖F + 2δ

ρN2(1− c̃− cN2) ‖B‖F + 6δ
ρN (1− c̃− cN ) ‖B‖F

+
∑

`∈L(T )

6δ
ρ`(1− c̃− c`)

‖B‖F

=
∑

N∈T\{N0}

8δ
ρN (1− c̃− cN ) ‖B‖F ,

where (N 0
1 ,N 0

2 ) = succ(N0). The proof of the second assertion (35) is much shorter. With P (X(τ))Ẋ(τ) = Ẋ(τ)
we obtain

P⊥(Y ) (Ỹ − Y ) =
∫ 1

0
(I − P (Y )) Ẋ(τ) dτ =

∫ 1

0
(P (X(τ))− P (Y )) Ẋ(τ) dτ,

and with (34) and (40) the error bound∥∥∥P⊥(Y ) (Ỹ − Y )
∥∥∥
F
≤ max
τ∈[0,1]

‖(P (X(τ))− P (Y ))‖F ·
∥∥Ẋ(τ)

∥∥
F

≤
∑

N∈T\{N0}

8δ
ρN (1− c̃− cN ) δ(1− c̃ )−1

=
∑

N∈T\{N0}

8δ2

ρN (1− c̃− cN )(1− c̃ )

follows.

Part 6: Finally, we can prove inequality (39) which had been used in part 1 of the proof. Assume (39) does
not hold. SinceM is a smooth manifold, there exist 0 < τ∗ < 1 and a tensor B∗ ∈ RN1×...×Nd such that

‖P (X(s))− P (Y )‖ ≤ c̃ < 1
and ‖ (P (X(τ∗))− P (Y ))B∗‖F = c̃ ‖B∗‖F (51)

hold for all s ∈ [0, τ∗]. Under these conditions all the estimates of the proof remain valid for τ ∈ [0, τ∗].
However, in (44) we take the integral over the interval [0, τ∗] instead of [0, 1] and obtain with similar arguments
the estimate

‖ (P (X(τ∗))− P (Y ))B‖F ≤ τ∗
∑

N∈T\{N0}

8δ
ρN (1− c̃− cN ) ‖B‖F

for any tensor B ∈ RN1×...×Nd . This results in a contradiction to (51) since

‖ (P (X(τ∗))− P (Y ))B∗‖F ≤ τ∗
∑

N∈T\{N0}

8δ
ρN (1− c̃− cN ) ‖B

∗‖F ≤ τ∗ c̃ ‖B∗‖F < c̃ ‖B∗‖F .

�

In order to simplify the previous theorem, we assume cN = c for all N ∈ T \ {N0} and maximize this constant
under the constraints of Lemma 10, i.e.∑

N∈T\{N0}

8cN (c̃ (1− c̃− cN ))−1 ≤ 1 and c̃+ cN < 1.
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Let |T | denote the number of nodes in the dimension tree. Then, the maximum will be attained in

c̃ = −8(|T | − 1) +
√

64(|T | − 1)2 + 8(|T | − 1) and c = −c̃2 + c̃

8(|T | − 1) + c̃
.

Since c̃→ 1
2 for |T | → ∞, we let

c̃ = 1
2 and c = (32|T | − 30)−1

and obtain the next corollary.

Corollary 11 (curvature bounds). Let Ỹ , Y ∈ H-Tucker ((rN )N∈T ) be tensors in the hierarchical Tucker format
and ρ > 0 such that

σrN (Y (N ,NC)) ≥ ρ > 0 and ‖Y − Ỹ ‖F ≤ (32|T | − 30)−1ρ

is satisfied for all N ∈ T \ {N0}. Then

‖(P (Y )− P (Ỹ )) B‖F ≤ (16|T | − 15) ρ−1 ‖Y − Ỹ ‖F ‖B‖F (52)∥∥∥P⊥(Y ) (Ỹ − Y )
∥∥∥
F
≤ (32|T | − 30) ρ−1 ‖Y − Ỹ ‖2

F (53)

for any tensor B ∈ RN1×...×Nd .

Proof. Inserting c = cN = (32|T | − 30)−1 for all N ∈ T \ {N0} and c̃ = 1
2 in the bounds (34) and (35) of

Lemma 10 leads to the assertion. �

6 A posteriori error analysis

We are finally ready to analyze the accuracy of the variational approximation Y (t) ∈ H-Tucker ((rN )N∈T ) to
the solution of (9). The a posteriori error bound presented in Theorem 12 is the main result of this article.

Let Yex(t) ∈ RN1×...×Nd be the solution of the differential equation (9), i.e. Ẏex = AYex for all t ∈ [0, tend] with
initial value Yex(0) ∈ RN1×...×Nd . Let Y (t) ∈ M = TYM be the variational approximation defined by (10),
i.e. Ẏ = P (Y )AY . For simplicity, it is assumed that Yex(0) ∈ M and that Y (0) = Yex(0). (Otherwise, an
additional error term for the initial error has to be included in Theorem 12.) Moreover, let X(t) ∈ M be the
best approximation of Yex(t) onM defined by

‖X(t)− Yex(t)‖F = min
X(t)∈M

!

for all t ∈ [0, tend]. Since by definition and by the triangle inequality we have

‖X(t)− Yex(t)‖F ≤ ‖Y (t)− Yex(t)‖F ≤ ‖Y (t)−X(t)‖F + ‖X(t)− Yex(t)‖F ,

it makes sense to prove a result which bounds the error ‖Y (t) − X(t)‖F in terms of ‖X(t) − Yex(t)‖F . The
following assumptions are made for all t ∈ [0, tend].

(A1) X(t) is continuously differentiable.

(A2) There is a constant µ > 0 such that ‖AYex(t)‖F ≤ µ, ‖AX(t)‖F ≤ µ and ‖AY (t)‖F ≤ µ.

(A3) There exist constants L, λ > 0 such that the Lipschitz conditions

‖AYex(t)−AX(t)‖F ≤ L ‖Yex(t)−X(t)‖F
and 〈AY (t)−AX(t) , Y (t)−X(t)〉 ≤ λ ‖Y (t)−X(t)‖2

F

are fulfilled.
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(A4) The singular values of the matricizations of the best approximation are bounded from below by

σrN

(
X(N ,NC)(t)

)
≥ ρ > 0 for all N ∈ T \ {N0}.

(A5) The distance from the best approximation X(t) to the exact solution Yex(t) is bounded by

‖X(t)− Yex(t)‖F ≤ (32|T | − 30)−1 ρ.

Similar assumptions have been made in [6] where the approximation error of the non-hierarchical Tucker format
has been analyzed.

Theorem 12 (A posteriori error estimate). Under the above assumptions the difference between the variational
approximation and the best approximation is bounded by

‖Y (t)−X(t)‖F ≤ (L+ 2µβ)
∫ t

0
‖Yex(s)−X(s)‖F e(5µβ+λ)(t−s) ds. (54)

as long as the right-hand side of (54) is bounded by 1
2β where β = (16|T | − 15)ρ−1.

We remark that Theorem 12 can be extended to nonlinear differential equations in a straightforward way.

Proof of Theorem 12. Because of X(t) being the best approximation, the deviation Yex(t)−X(t) is orthog-
onal to the tangent space TXM,

P (X(t)) (Yex(t)−X(t)) = 0

differentiating yields

0 = d

dt

[
P (X(t)) (Yex(t)−X(t))

]
= (P ′(X(t)) · (Yex(t)−X(t))) Ẋ(t) + P (X(t))

(
Ẏex(t)− Ẋ(t)

)
.

With Ẋ(t) = P (X(t)) Ẋ(t) we obtain

Ẋ(t) = P (X(t)) Ẏex(t) +D(t) with D(t) = P ′(X(t)) · (Yex(t)−X(t))Ẋ(t). (55)

Next, we derive an estimate for D(t). For an arbitrary tensor B ∈ RN1×...Nd the bound (52) yields

‖(P ′(X(t)) ·B) Ẋ(t)‖F =
∥∥∥∥ ddt [P (X(t)) B]

∥∥∥∥
F

= lim
h→0

1
h
‖(P (X(t+ h))− P (X(t)) B‖F

≤ lim
h→0

1
h
β ‖X(t+ h)−X(t)‖F ‖B‖F

= β
∥∥Ẋ(t)

∥∥
F
‖B‖F ,

and for B := Yex(t)−X(t) this yields

‖D(t)‖F ≤ β
∥∥Ẋ(t)

∥∥
F
‖Yex(t)−X(t)‖F . (56)

In the following we let δ(t) := ‖Yex(t)−X(t)‖F and ε(t) := ‖Y (t)−X(t)‖F . Inserting (55) into (56) leads to

‖D(t)‖F ≤ βδ(t)
(∥∥P (X(t)) Ẏex(t)

∥∥
F

+ ‖D(t)‖F
)
.

With Assumption (A5), i.e. ‖δ(t)‖F ≤ 1
2β , we obtain the estimate

‖D(t)‖F ≤ βδ(t)
∥∥P (X(t)) Ẏex(t)

∥∥
F

+ 1
2 ‖D(t)‖F ,
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and with Assumption (A2)

‖D(t)‖F ≤ 2βδ(t)
∥∥P (X(t)) Ẏex(t)

∥∥
F
≤ 2β δ(t) µ.

Subtracting (55) from Ẏ (t) = P (Y (t)) AY (t) gives

Ẏ (t)− Ẋ(t) = P (Y (t)) AY (t)− P (X(t)) AYex(t)−D(t)
= (P (Y (t))− P (X(t))) AX(t) + P (X(t)) (AX(t)−AYex(t)) (57)

(AY (t)−AX(t))− P⊥(Y (t))(AY (t)−AX(t))−D(t).

Next, we want to find an estimate for the inner product 〈Ẏ (t) − Ẋ(t) , Y (t) − X(t)〉. For this purpose we
consider the single terms on the right hand side of (57) and, via Corollary 11, obtain the following estimates:

1.
〈(
P (Y (t))− P (X(t))

)
AX , Y (t)−X(t)

〉
≤

∥∥(P (Y (t))− P (X(t))
)
AX(t)

∥∥
F
‖Y (t)−X(t)‖F

≤ β‖Y (t)−X(t)‖2
F ‖AX(t)‖F

≤ µβ ε2(t),

2.
〈
P (X(t))

(
AX(t)−AYex(t)

)
, Y (t)−X(t)

〉
≤ ‖AX(t)−AYex(t)‖F ‖Y (t)−X(t)‖F
≤ L ‖X(t)− Yex(t)‖F ‖Y (t)−X(t)‖F
= L δ(t) ε(t),

3.
〈
AY (t)−AX(t) , Y (t)−X(t)

〉
≤ λ ‖Y (t)−X(t)‖2

F = λ ε2(t),

4.
〈
P⊥(Y (t))

(
AY (t)−AX(t)

)
, Y (t)−X(t)

〉
=

〈
AY (t)−AX(t) , P⊥(Y (t))

(
Y (t)−X(t)

)〉
≤ ‖AY (t)−AX(t)‖F

∥∥P⊥(Y (t))
(
Y (t)−X(t)

)∥∥
F

≤
(
‖AY (t)‖F + ‖AX(t)‖F

)
2β‖Y (t)−X(t)‖2

F

≤ 4µβε2(t),

5. 〈D(t) , Y (t)−X(t)〉 ≤ ‖D(t)‖F ‖Y (t)−X(t)‖F ≤ 2βµ δ(t) ε(t).

With these inequalities, we obtain

ε(t) ε̇(t) = ‖Y (t)−X(t)‖F
d

dt
‖Y (t)−X(t)‖F

= 1
2
d

dt
‖Y (t)−X(t)‖2

F

= 〈Ẏ (t)− Ẋ(t) , Y (t)−X(t)〉
≤ µβ ε2(t) + L δ(t) ε(t) + λε2(t) + 4µβε2(t) + 2β δ(t) µ ε(t)

and hence
ε̇(t) ≤ (5µβ + λ) ε(t) + (L+ 2µβ) δ(t).

Finally Gronwall’s inequality leads to the assertion

ε(t) ≤ (L+ 2µβ)
∫ t

0
δ(t) e(5µβ+λ)(t−s) ds.

�
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