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A Lévy Processes 161

A.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.2 Stable Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.3 Characteristic Function of the CTS Subordinator . . . . . . . . . . . . . . . 167

B Brownian Subordination 172

B.1 Univariate Subordination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

B.2 Inverted Parameter Conversion of MNTS Class . . . . . . . . . . . . . . . . 174

C Optimization Problems 176

C.1 Dow Jones Industrial Average Weights . . . . . . . . . . . . . . . . . . . . . 176

C.2 Efficient Frontier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C.3 Global Stationary Portfolio Optimization . . . . . . . . . . . . . . . . . . . 178

D Goodness of Fit Tests 179

D.1 Kolmogorov-Smirnov Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

D.2 Anderson-Darling Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

D.3 Cramér-von Mises Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

D.4 Squared Anderson-Darling Test . . . . . . . . . . . . . . . . . . . . . . . . . 182

D.5 Critical Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

iv



List of Figures

5.1 Kernel densities of standardized empirical DJIA index returns, compared

to fitted NTS and Normal densities. . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Quantile-quantile plots of standardized empirical returns. . . . . . . . . . . 107

5.3 Kernel density of EWPF returns in comparison with NTS and Normal dis-

tribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Quantile-quantile plots for empirical EWPF returns based on Normal and

NTS distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5 Comparison of VaR and AVaR sequences for the EWPF. . . . . . . . . . . . 114

5.6 Efficient frontiers for risk measure significance level α = 0.01 under Gaus-

sian vs. MVNTS assumption. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.7 Kernel densities of the in-sample test. . . . . . . . . . . . . . . . . . . . . . 122

5.8 Kernel densities of the out-of-sample test. . . . . . . . . . . . . . . . . . . . 122

6.1 Sequence of EWPF VaRα and AVaRα predictions of MVNTS ARMA-

GARCH and Normal ARMA-GARCH, α = 0.01. . . . . . . . . . . . . . . . 137

v



List of Tables

5.1 Considered stocks with ticker symbols and index position. . . . . . . . . . . 86

5.2 Parameter estimates (stdNTS) for standardized index returns. . . . . . . . . 91
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Chapter 1

Introduction

1.1 Historical Background and Motivation

As early as 1900, Louis Bachelier [Bach00] already conceived a stochastic concept, which

should become the well-known Brownian motion. It was later elaborated with mathemat-

ical rigor by Einstein and Wiener during the first half of the past century. This important

class of stochastic processes in continuous time together with the corresponding normal

distribution established itself in the following years as a cornerstone of the most successful

models in several different areas of modern quantitative finance. These include, for in-

stance, Markowitz’ pioneering model for portfolio selection and asset allocation [Mark52],

the famous Capital Asset Pricing Model (CAPM) of Sharpe [Shar64], Treynor, Lintner

and Mossin, Ross’ Arbitrage Pricing Theory (APT) [Ross76]. Black and Scholes [BlSc73]

as well as Merton [Mert73] in their seminal works on option pricing, draw upon the geo-

metric Brownian motion as a central assumption about stochastic stock price dynamics.

With the Black-Scholes formula laying the foundation for the whole new field of financial

engineering emerging from it, geometric Brownian motion as a basic building block spreads

to related fields of research as different as term structure modeling or credit risk.

However, already in the early 1960ies a countermovement under Mandelbrot and his stu-

dent Fama against the prevailing normal distribution hypothesis started to form. In their

1



2 CHAPTER 1. INTRODUCTION

investigations, repeatedly occurring violent fluctuations of observable prices for several

different tradable goods, such as cotton, led them to the conclusion of strictly rejecting

the Normal assumption for these price processes1. Instead, they found strong evidence

for these distributions obeying a power law on the one hand and a present time-scaling

property of the price processes on the other. Besides, with this latter characterizing prop-

erty it was possible to convey the term fractal to the world of stochastic processes. Most

unfortunately, their substantial work gained only little recognition if not even experienced

harsh criticism over the following years.

Usually, financial data is present in terms of continuously compounded log-returns rt =

ln(Pt) − ln(Pt−1) or the respective annualized log-returns rt = 1
∆t(ln(Pt) − ln(Pt−∆t))

2,

derived from corresponding price series Pt. Today, it is a widely recognized fact that

financial data exhibit certain features opposing normal distributions or Brownian motion.

In the following, some of these stylized facts of financial markets are listed, where one

has to clearly distinguish between the cross-sectional and longitudinal perspective. Cross-

sections are connected to distributions whereas the longitudinal viewpoint corresponds to

process trajectories. Among these stylized facts are to be mentioned, in particular with

regard to the cross-sectional perspective or corresponding distributional properties,

• Heavy-Tailedness or Excess Kurtosis: Empirical return distributions have more pro-

nounced tails in addition to a more peaked center compared to the Gaussian as-

sumption.

• Asymmetry or Skewness: Whilst normal distributions are always symmetric around

their mean, observable returns mostly exhibit asymmetry in favor of large negative

return deviations.

Whereas concerning the longitudinal view, one observes,

1See e.g. Mandelbrot [Mand63], [Mand67], Mandelbrot and Taylor [MaTa67] as well as Fama and
Mandelbrot [Fama63].

2Its advantages and disadvantages in comparison to the simply compounded return rates rt =
Pt−Pt−1

Pt−1

are discussed in [Broo08, p. 6 ff.].
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• Volatility Clustering: In reality, large price movements in one period tend to be

followed by equally large price movements in the next period. In the same man-

ner, after calm periods one is more likely to observe only moderate price change in

the following time step. Therefore, in this sense volatility is clustered on the time

scale. The ARCH3 and GARCH4 time series framework has been designed in order

to incorporate and represent precisely these effects. This explicit consideration of

non-constant volatility is able to account for a certain amount of excess kurtosis

present in observed empirical asset returns. However, there remains a part which

cannot be attributed to the effect of clustered volatility when using normal distribu-

tions for standardized innovations in this time series model. To compensate for this

discrepancy, process innovations itself have to possess heavy tail properties.

• Price Jumps: Financial tick data is available on a rather high-frequency scale today,

but is still collected in discrete time. This makes it difficult to tell whether large and

sudden moves in asset prices correspond to actual jumps in the chosen continuous-

time modeling or are merely due to discrete sampling. Nevertheless, it is proven

evidently that empirical observations cannot be implied by diffusion processes with

continuous trajectories alone but necessarily require the incorporation of jumps in

the employed underlying models.

To develop the theory adequate to his observed phenomena and conceived principles,

Mandelbrot recalls the work of the French mathematician Paul Lévy and others, who laid

the foundations for the class of stochastic processes in continuous time named after him,

compiled in his classic book [Lé48]. Mandelbrot realized that his field of study directly

corresponds to the subset of self-similar non-Gaussian Lévy processes. Like the Brownian

motion, which itself is a self-similar Lévy processes with Gaussian laws however, this

class maintains the two central assumptions of independent and identically distributed

(i.i.d) increments and the time-scaling property. But at the same time, it remedies the

drawbacks with regard to unrealistic symmetry and mesokurtosis. Both these properties

3Autoregressive Conditional Heteroscedasticity, see Engle [Engl82].
4Generalized Autoregressive Conditional Heteroscedasticity, see Bollerslev [Boll86].



4 CHAPTER 1. INTRODUCTION

appear to be particularly desirable as they reflect the Generalized Central Limit Theorem

(GCLT). Considered separately, the i.i.d. property of increments, which is common to

all general Lévy processes, is consistent to the efficient market hypothesis (EMH)5. The

EMH states that the uniform and independent inflow of new information into the market is

immediately incorporated into quoted prices. Finally, this class seemingly being adequate

for capturing the mentioned observable phenomena, later came to be known as Stable

Paretian or α-stable models. Since then, the approach experienced extensive developments

and applications by researchers like Zolotarev, Samorodnitsky and Rachev, only to mention

a few.

However, their advantage of improved flexibility and adaptability came at the price of

some practical difficulties. The major problems when dealing with α-stable distributions

are twofold. Firstly, there is in general no analytical representation of the probability

density function available6. Secondly, depending on the value of the tail index α ∈ (0, 2),

distributional moments become infinite. More precisely, moments of fractional order d only

exist for d < α. These facts impede for example estimation and computation of practical

probabilities on the one hand, while on the other infinite variance and possibly non-existent

expectation is evoking scepticism among practitioners.

Therefore, the next advance was aimed at eradicating the problematic behavior while

preserving the already achieved advantages by modifying the extreme tails of α-stable

distributions. One rather indirect approach for this is to reduce the intensity of large

jumps by multiplying the Lévy density function of an α-stable process with a decreasing

tempering function of sufficiently fast decay. By this operation, the result is still a Lévy

process with associated infinitely divisible distributions. It allows for possible skewness

while the tail behavior have been changed from heavy to semi-heavy, characterized by ex-

ponential decay with excess kurtosis instead of polynomial decay. This in turn ensures by

now the existence of conventional moments for arbitrary orders. Moreover, possibly even

exponential moments exist for a range of orders. This existence is particularly required

for various different applications such as option pricing. Of course, this approach was not

5See Fama [Fama70].
6The only exceptions are α = 1 and α = 1

2
.
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able to generate closed-form probability densities, which still requires a cumbersome han-

dling by means of the characteristic function. In addition, the property of self-similarity

corresponding to time-scaling vanishes. At last, by finite first and second moment and

independent increments of the Lévy process, these models fall under the sphere of influ-

ence of the conventional central limit theorem. Hence, the process distributions lose their

asymmetry and excess kurtosis over time and weakly converge to a Gaussian one. This is

not necessarily a drawback but can rather be seen as an advantage, as return distributions

tend to become more tame when measured over longer periods compared to very erratic

behavior of high-frequency return data.

In summary, the advantages outweigh the difficulties, in particular when compared to the

preceding α-stable model. Moreover, by their less extreme nature though not ignoring

the stylized facts of the distributions under study, the present variety of one-dimensional

tempered stable models7 are additionally able to achieve a better statistical fit than the

α-stable models. This makes them a suitable and promising candidate for multivariate

extensions in the area of non-Gaussian modeling.

Apart from only a few exceptions, most of the areas in quantitative finance are concerned

with the multidimensional modeling of price dynamics and risk, such as for example portfo-

lio optimization or the valuation of derivatives on multiple assets. This drives the research

into both realistic but yet reasonably manageable models for a high number of involved

dimensions. One of the new main challenges in a multivariate perspective lies in the ac-

curate capturing of present empirical dependence structures. The realistic description of

dependence structures prove indispensable when e.g. assessing the potential of beneficial

diversification in portfolio optimization or joint default events in credit risk. Although one

general formulation of multivariate tempered stable models has already been introduced

by Rosiński [Rosi07], its use is rather confined to merely theoretical aspects. This is mainly

due to the lack of parsimonious parameterizations of the spectral measure and the corre-

sponding tempering function. Approaches which are based on the explicit tempering of a

multivariate α-stable Lévy density prove to be ineligible for this reason.

7These entail for example process classes like the CTS, NTS, MTS, KR or RDTS where more detailed
explanations are given in the following chapters.
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Only for one of the univariate classes of tempered stable models mentioned above, namely

the normal tempered stable model, besides the definition by tempering and tilting a stable

Lévy measure, an alternative way for construction via the method of Brownian subordi-

nation is available. Brownian subordination embodies a highly versatile tool for creating

stochastic processes with semi-heavy-tailed distributions. It basically consists of a Brow-

nian motion whose deterministic physical time flow is replaced by a new virtual process

time. This virtual process time, called the subordinator, is driven by another Lévy process

fulfilling a certain regularity condition. The outcome emerging from the subordination is a

Lévy process again. Moreover, a range of advantages concerning various different aspects

such as derivation of characteristic functions, moments or alternative representations of

processes, random variables and their corresponding distributions are facilitated by this

construction technique. Finally, one has to note that this approach enjoys a consider-

able level of acceptance, in particular among practitioners, since they do not have to give

up their familiar opinion of Brownian motion for price dynamics. It is merely necessary

to supplement this Gaussian framework by the assumption of a stochastic flow of vir-

tual trading time replacing the conventional deterministic and linearly evolving physical

time. Incidentally, this phenomenon of slowed and accelerated, even jumping, clocks on

the trading floor, in a metaphorical sense, is confirmed by the subjective perception of

many professional traders in the market8. This statement makes the theoretical modeling

approach more plausible and demonstrates that subordination is not merely a technical

convention but a very natural consequence of the attempt to incorporate present market

realities into the development of models.

The most central innovation, however, is contained in the fact that the approach of Brow-

nian subordination can be transferred to a multivariate setting while all of the men-

tioned advantages are preserved. This transition is accomplished by simply employing a

n-dimensional Brownian motion instead of a merely univariate version of this basic stochas-

tic process. At first sight, one might fear that the coupling of two stochastic processes in

the course of subordination is creating a ’doubly’ stochastic process of very intractable

8see Geman et al. [GeMY01].
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nature which would require an arsenal of advanced and excessively technical calculation

methods. This apprehension turns out to be unfounded, however. Instead, the exact oppo-

site is the case as will be demonstrated in the course of the thesis. One has to emphasize

that just this creates the actual utility with regard to practical applications of the chosen

method in comparison to other alternative definitions of genuine tempered stable modeling

approaches. In particular, it realizes a sufficiently flexible model setting in the multivari-

ate case with a parsimonious parametrization involved while at the same time offering

considerable level of analytic tractability. When considering the past decades from the

beginning of quantitative financial modeling up to this day, this can truly be identified as

one of the main factors which significantly decides over the success or failure of a mathe-

matical model, at least with regard to practical relevance and adoption by potentials users

in practice. Although the normal tempered stable process and corresponding distribution

is far more complex and costly to handle than a Gaussian alternative, also not allowing

for a closed form solution for most of the given problems, the essence is obvious and very

similar. Because even as with the evidence becoming more and more overwhelming, con-

vincing the majority of market participants of the inherent non-Gaussian nature of asset

price dynamics, the normal distribution and Brownian motion retained their dominant role

in the subsequent period. This was basically due to their capability of enabling analytical

calculations like no other more realistic model, an advantage which began to crumble when

computing power became affordable at a reasonable price9.

In order to further clarify the objective and aim of the research comprised in this thesis,

the following alternative approaches which are in close relationship to the multivariate

normal tempered stable framework should be briefly touched upon here. This rounds out

the purposeful overview and motivation presented at this point.

The concept of Brownian subordination or Gaussian mixture models, respectively, as a

means to construct semi-heavy-tailed distributions and processes, has already been ex-

plored to some extent in the recent past. Among these are the variance gamma and the

normal inverse Gaussian model with the generalized hyperbolic model embedding the for-

9A similar argumentation can be found in Greiner [Grei11]
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mer two instances, although their multivariate extensions have not been studied in depth

yet. Some efforts in this direction were made, but none of them could prevail on a broad

range though. The current goal of this research is to generalize a genuine tempered stable

process, whereas these former attempts do not fall under this specific category. This aim is

motivated first and foremost by the already demonstrated flexible and precise adaptabil-

ity of its univariate NTS counterparts to empirical financial data and appears the most

promising for this reason.

Finally, another important concept in the context of multivariate modeling are copula

functions. They are able to couple marginal distributions together with its inherent de-

pendence structure to a multidimensional joint distribution. The main advantage lies in

the given possibility of separating the marginal laws from their dependence structure, the

latter represented in the copula function. In the opposite direction, the coupling via cop-

ula functions can be carried out with virtually arbitrary marginal distributions under very

general conditions as there are very little restricting requirements for the inputs to be sat-

isfied. Moreover, copula functions are able to reflect a wide range of possible dependence

structures, for example non-linear and asymmetric cases, which then become incorporated

in the resulting joint distribution. Therefore, they appear to be very appropriate for ad-

dressing multivariate problems which exhibit complex dependencies. On the other hand,

their accurate estimation is not an easy task, especially when a parametrization with a

suitable degree of freedom is chosen and the number of considered dimensions increases.

In our focus, the main disadvantage, however, is that the coupling is only applicable for

distributions and not for processes in general. More precisely, the copula is not preserving

the infinite divisibility of distributions to be combined in this procedure. To overcome this

drawback, Cont [CoTa04, ch. 5] is presenting copulas for creating multidimensional Lévy

densities, they however lack the possibility for their direct estimation based on observ-

able variables. Further textbooks on the topic have been written by Nelsen [Nels06] or

Cherubini et al. [ChLV05], related publications are those of Embrechts et al. [EmLM03]

and Demarta and McNeil [DeMc05].
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1.2 Outline

The present thesis is organized as follows. While the objective was stated with an overview

over the current status of related research in this chapter 1, chapter 2 continues with a brief

introduction to Lévy processes as well as to further methods and theory concerning sub-

ordination. In chapter 3 follows a comprehensive treatment of univariate normal tempered

stable models with an emphasis on the Brownian subordination perspective. Chapter 4

subsequently addresses the generalization of this concept to the case of multiple dimen-

sions. It comprises the definition and thorough study of various forms of representation

as well as central properties of the multivariate normal tempered stable process and re-

lated distributions. Their presentation is supplemented by necessary techniques for their

manipulation. The primary theoretical contribution is to be found in this part. Chapter

5 is dedicated to a first practical application of the multivariate NTS in a simple model

for joint stock and index returns. The emphasis lies on the development of an efficient

estimation method which is then carried out based on empirical historical DJIA return

data. A period of turbulent market conditions as part of the recent financial crisis is con-

tained in this considered data set. Afterwards, the model adaptability is put to a test by

means of several statistical goodness of fit tests. Based on the estimated model a portfo-

lio optimization is conducted whose emerging strategies are subsequently compared with

regard to their empirical performance in in-sample and out-of-sample tests. In chapter 6,

the abilities of normal tempered stable distributions are further examined by its integra-

tion into a multivariate ARMA-GARCH time series framework of non-constant volatility.

After the estimation of the entire econometric model the suitability assessment in this con-

text is substantiated by two backtests on empirical data. It is followed by the derivation

of optimal, now dynamic, portfolio strategies based on the estimated econometric model

with respect to different criteria. In the remainder of this chapter, these strategies un-

dergo empirical sample tests and performance evaluations similar to the lines of chapter 5.

Chapter 7 concludes with a summary and interpretation of the main findings and results.

It moreover points at directions of future research and possible further improvements.



Chapter 2

Lévy Processes and Tempered

Stable Models

2.1 Lévy Processes

Lévy processes constitute a rather rich and flexible class of stochastic processes in con-

tinuous time. Paul Lévy developed the concept shortly after Norbert Wiener formalized

the present notion of Brownian motion in the class of processes named after him. While

Wiener based his processes on trajectories with continuous paths, although nowhere dif-

ferentiable, Lévy maintained the basic principle of independent and identically distributed

increments, but more generally allowing for jumps and discontinuities in their trajectories.

This generalized principle is able to generate very flexible stochastic processes for a broad

range of application fields but still offering a considerable degree of tractability. The men-

tioned flexibility of Lévy processes is reflected by the fact that by an arbitrary combination

of a Gaussian diffusion, a deterministic linear trend and a variably designed jump compo-

nent with finite or unbounded variation, numerous types of present stochastic processes

can be covered. With the precise specification of these three components comprised in the

so-called Lévy triplet each instance of a Lévy process is entirely and uniquely defined1.

1Further details will be given in appendix A.1.

10
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Apart from fundamental Poisson and compound Poisson processes the Brownian motion

is contained in this class of processes, with the latter still, despite some countermovement

has started to form in the recent past2, representing a standard model in the area of finan-

cial modeling. Lévy processes, in recognition of their significance in the modern theory of

stochastic processes, have already been well studied in the past. For an extensive overview

over their theoretical and practical properties, we refer to a series of various existing text-

books on the topic, such as those by Bertoin [Bert05], Sato [Sato99], Applebaum [Appl05],

Schoutens [Scho03], Kyprianou [Kypr06] or Barndorff-Nielsen [BNMR01].

2.2 Subordination

Besides offering the opportunity of defining a particular Lévy process by means of each

single elements of the Lévy triplet, primarily the Lévy measure controlling the behavior

of the involved jump component, Lévy subordination makes available a versatile approach

for creating new instances of Lévy processes. In fact, subordination describes a stochastic

time change of an existing stochastic process by a subordinator. The following presentation

is based on the exposition of Sato [Sato99, p. 179 ff.] and Bertoin [Bert05, p. 71 ff.]

2.2.1 Subordinators

Univariate Lévy processes S(t), t≥0
3 on R with almost surely non-decreasing trajectories are

called subordinators. This property of their dynamics is closely related to the idea of time

flow in the natural world4. According to Cont and Tankov [CoTa04, p. 88], this property

possesses four different characterizations over the following equivalent conditions:

• Sample paths of S(t) are almost surely non-decreasing: t > u⇒ St ≥ Su a.s.

• St ≥ 0 a.s. for some t > 0.

2We therefore refer to the exposition in chapter 1.
3For preventing the notation from becoming overly complicated, the time range of the processes will be

omitted from now on. If not explicitly indicated otherwise, S(t) denotes a stochastic process S(t),t≥0.
4With the difference that the time flow is assumed to be deterministic in the real world.
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• St ≥ 0 a.s. for every t > 0.

• The Lévy triplet (A, ν,m(0)) of S(t) has no diffusion component (A = 0) and a non-

negative additional deterministic linear trend5 m(0) ≥ 0. Moreover, the Lévy measure

ν which has to be concentrated on the positive real line R++, i.e. ν((−∞, 0]) = 0, is

of finite variation:
∫∞

0 min{s, 1}ν(ds) <∞.

2.2.2 Time-changed Stochastic Processes

When a subordinator S(t) of the preceding section 2.2.1 is used for replacing the usual

deterministic time index s of a stochastic process Y(s), Y is said to be subordinated by S.

This creates a new stochastic process X(t)

X(t) = YS(t)
, (2.1)

where S(t) represents the course of a virtual process time s for Y(s), embedded in the

deterministic physical time flow t. One has to be aware that the process Y(s) is not restricted

to one dimension and can therefore generally be defined on Rn.

As long as Y(s) is a general Lévy process itself, the outcome X(t) of the subordination

again satisfies the conditions of a Lévy process. It can be represented either in terms of

its set of characteristic functions φXt for Xt, obeying a specific structure induced by the

general properties of a Lévy process, or the corresponding entire Lévy triplet (A, ν,m)

of the process. In more detail, the characteristic exponent function (CEF) ψX of a Lévy

process X(t) is able to describe the characteristic function (CF) of the distribution of the

process variable Xt for each t > 0, while being time-independent itself. The characteristic

function of Xt is given by

φXt(z) = E(exp(izTXt)) = exp(t · ψX(z))⇔ ψX(z) = t−1 lnφXt(z) ∀ t > 0 ,

5A detailed description of several common conventions for compensating the jump component specified
by the Lévy measure ν together with connected types of linear trend components m(i), i = 0, 1, 2 is given
in appendix A.1.
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for possibly multivariate arguments z ∈ Rn. A similar result holds true for the moment-

generating function MXt , t > 0, possibly defined only on a restricted feasible subset G of

Rn

MXt(u) = E(exp(uTXt)) = exp(t · lX(u)) , u ∈ G

which can be stated in terms of the corresponding Laplace exponent function

lS(u) = t−1 lnMSt(u) ∀ t > 0. But while the characteristic function φXt and the charac-

teristic exponent function ψX generally exist on the whole domain Rn, the same is not

true in general for the moment-generating function MXt and the associated Laplace expo-

nent function lX , as the former one is closely linked to the existence of exponential orders

of Xt.

An eminently desirable property of Lévy subordination is that the CEF and therefore

also the CF of the subordination outcome X(t) describing the distributional properties

of the associated Xt can be easily obtained by means of the CEF of the process Y and

the Laplace exponent function of the subordinator S. This is reflected in the following

expression

ψX(z) = lS(ψY (z)) (2.2)

φXt(z) = exp(t · ψX(z)) = exp(t · lS(ψY (z))) = MS(ψY (z)) , z ∈ Rn (2.3)

At this point, it is important to note that although the Laplace exponent function lS might

only be defined on a restricted domain G, its expression can nevertheless be considered

to be valid for the required entire range of ψY . This is due to arguments of analytic

continuation6, see for example Cont and Tankov [CoTa04, p. 121].

For this considered most general case, the Lévy triplet7 (AX , νX ,m
(1)
X ) of X(t) can be de-

rived from the Lévy triplet (A, ν,m(1)) of Y(s) and the constrained one of the subordinator

6Note that complex arguments u of lS(u) do not pose a problem in any case. Analytic continuation
becomes relevant in the connection with <(u) /∈ G.

7The convention connected to m(1) compensates small jumps of magnitude less than 1. By the defining
properties, this particular convention is always valid, making m(1) a universal trend specification.
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(AS , νS ,m
(0)
S ) = (0, ρ, b) satisfying the above requirements, by

AX = bA , (2.4)

νX(B) = bν(B) +

∫ ∞
0

PYs(B)ρ(ds) , ∀B ∈ B(Rn) , (2.5)

m
(1)
X = bm(1) +

∫ ∞
0

ρ(ds)

∫
|y|≤1

yPYs(dy) . (2.6)

PYs(B) = P (Ys ∈ B) is the probability measure of the process variable Ys at time s on

the Borelian σ-algebra B(Rn) of Rn.

Both general schemes presented here will be put to use for particular cases in the forth-

coming sections and in chapter 4.

2.2.3 Brownian Subordination

Since the above general setting demonstrates the potential possibilities while not being

very constructive at the same time, a less comprehensive situation should be considered in

this section. For this purpose, the subordination object or subordinant Y(s) is chosen to be a,

possibly multivariate, Brownian motionB(s). In a consistently multivariate perspective, the

Brownian motion is entirely described by a real vector γ ∈ Rn and a n×n covariance matrix

Σ, Σ therefore having to be positive semi-definite. While γ specifies the deterministic drift

over time, Σ is responsible for the diffusion behavior.

At a later stage the characteristic function φBs of Bs

φBs(z) = exp(s · (iγTz − 1

2
zTΣz)︸ ︷︷ ︸

ψB(z)

) , z ∈ Rn (2.7)

is required, where ψB denotes the time-independent characteristic exponent function of

B(s). Moreover, the Lévy triplet is given by (A, ν,m(1)) or (A, ν,m(0)), respectively, with

A = Σ
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ν(B) = 0 , ∀B ∈ B(Rn)

m(1) = m(0) = γ

The Lévy triplet demonstrates that the Brownian motion as a purely Gaussian process in-

corporates, besides a deterministic trend and a diffusion component, no jumps. Therefore,

both representations m(1) and m(0) are identical. For the further processing in the context

of Brownian subordination it is of relevance that Bs at time s is normally distributed,

Bs ∼ N n(sγ, sΣ), with n-dimensional multivariate density function

fBs(x) =
1

(2π)
n
2 |sΣ|

1
2

exp

(
−1

2
(x− sγ)T(sΣ)−1(x− sγ)

)
, (2.8)

as long as Σ is strictly positive definite.

The Brownian motion still serves as the standard model for price dynamics in many fields

of mathematical finance, which is, above all, due to its analytical tractability. This enabled,

inter alia, the development of a widely applicable stochastic differential calculus, see for

example Karatzas and Shreve [KaSh00] or Øksendal [Økse07]. It provides the theoreti-

cal foundation on which modern financial engineering is built upon. For these particular

reasons, Brownian motion has become the most well-established and accepted stochastic

model among practitioners in the financial industry, although its inappropriateness for

describing empirical market behavior has been sufficiently proven to this date8.

Many of the later considered applications of Brownian subordination do not necessarily

require the handling of the Lévy triplet or the characteristic function, respectively. These

elaborate procedures can often be circumvented by concerning the following decomposi-

tions, which make the Brownian subordination an attractive approach from an analytical

point of view

Y(t) = BS(t)
(2.9)

8The central arguments with associated references are given in chapter 1.
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= S(t)γ + ZS(t)
, Z(s) ≡ BM(0,Σ)

= S(t)γ + chol(Σ)WS(t)
, W(s) ≡ BM(0, I)

= S(t)γ + diag(σ)chol(P)WS(t)
.

In this notation, I is the identity matrix of dimension n, BM(· , ·) denotes a Brownian

motion with the corresponding parameter values, while chol(·) and diag(·) stands for the

Cholesky decomposition or the diagonal matrix generated by a n-dimensional vector, re-

spectively. In the last equation, the covariance matrix is decomposed into its contained

vector of variances σ and the correlation matrix P, Σ = diag(σ)Pdiag(σ).

Brownian subordination provides a powerful means for representing, illustrating and un-

derstanding general Lévy processes in an arbitrary number of dimensions on the one hand.

As it was shown by Clark [Clar73], every such Lévy process can be constructed by subor-

dinating a Brownian motion with a particular Lévy subordinator of the type presented in

section 2.2.1. Hence, every Lévy process can be understood as a well-established Brownian

motion, but with the only specialty of elapsing in a virtual process time embodied by a

stochastic subordinator. Nevertheless, with this additional assumption regarding the mod-

ified time flow9, it is still possible to essentially maintain the Brownian motion in this way,

even when having to strongly reject Gaussianity for observable prices. On the other hand,

decomposing general Lévy processes in such a manner will yield reasonable subordinator

processes in only very few instances.

The other way around, subordination will be used in the next section as a constructive

tool for defining a particular class of Lévy processes. This particular approach will enable

the use of all the helpful features subordination is offering to the modeler.

9As the time flow is ruled by a Lévy process of some regularity, this does not even appear to be overly
artificial.



2.3. TEMPERING STABLE PROCESSES 17

2.3 Tempering Stable Processes

2.3.1 The α-stable Process

The class of α-stable processes is comprising the set of all self-similar Lévy processes10.

These α-stable processes, as being purely non-Gaussian Lévy processes, are essentially

specified by their Lévy density ν(x), given in the univariate case by

ν(x) =
c+

|x|α+1
1>0(x) +

c−
|x|α+1

1<0(x) , (2.10)

with parameters α ∈ (0, 2), c+, c− ≥ 0, and the linear trend component m(1) ∈ R. The

polynomial decay of the Lévy density function ν(x) is then responsible for the problematic

non-existence of moments of fractional order greater or equal than α. For a complete

treatment of α-stable processes and distributions it can be referred to Samorodnitsky

and Taqqu [SaTa00] and Rachev and Mittnik [RaMF05] with the area of finance in view.

This particular feature, in addition to the fact that no closed-form expression for the

related probability density function exists, renders its practical handling quite burdensome.

Further required details on α-stable processes including the characteristic function of their

distributions are given in appendix A.2.

2.3.2 Tempered Stable Processes

To remedy at least some of these disadvantages, one might extenuate the above polynomial

tails of the α-stable Lévy density by the multiplication of an exponentially decreasing tem-

pering function, which in turn is primarily being responsible for generating finite moments

of all orders. This approach introduced by Koponen [Kopo95] as truncated Lévy flights,

Boyarchenko and Levendorskĭi [BoLe00] as KoBoL and finally by Carr et al. [CGMY02]

as CGMY, has been generally termed as Tempered Stable processes in the literature. Since

then, a broad range of various types of tempered stable processes, characterized by their in-

dividual classes of tempering functions, have been proposed. Rosiński [Rosi07] and Bianchi

10Less generally speaking, the Brownian motion connected to the stability index α = 2 also possesses
the property of self-similarity but is usually excluded from the actual class of α-stable processes.
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et al. [BRKF10a] have both individually developed separate frameworks for generalizing

the concept of tempering stable or infinitely divisible distributions, respectively.

One of the most basic instances of TS processes is the Classical Tempered Stable (CTS)

process11, whose details shall be presented in the following example for demonstrating

the general approach. It employs, as already Koponen did in his pioneering work, an

exponential tempering function. Moreover, a suitable subordinator will be derived from

the CTS process for later use.

ν(x) =
c+ exp(−λ+|x|)

|x|α+1
1>0(x) +

c− exp(−λ−|x|)
|x|α+1

1<0(x) , (2.11)

where 1>0(x) represents the indicator function for strictly positive real numbers. The ad-

ditional parameters λ+, λ− > 0 serve to control the exponential tempering on the positive

and negative area of the real support, respectively.

11Incidentally, CTS lies at the core of the aforementioned KoBoL and CGMY models.



Chapter 3

Univariate Normal Tempered

Stable Processes

Besides the Classical Tempered Stable class, univariate Normal Tempered Stable (NTS)

processes suggested by Barndorff-Nielsen and Levendorskĭi [BNLe01] were one of the first

implementations of the tempered stable principle. Moreover, amongst the broad variety of

tempered stable processes existing at the present time, normal tempered stable models are

the only ones whose initial definition resort to Brownian subordination and its numerous

advantages.

3.1 The Subordinator

In order to lead to a suitable subordinator, the Lévy density of a CTS from equation (2.11)

has to be concentrated on the positive real line first

ν(x) =
C exp(−λx)

xα+1
· 1>0(x) , (3.1)

by just eliminating the negative branch of the support. The parameters C and λ both

have to be strictly positive, i.e. C, λ > 0. The parameter α is the index of stability of the

19
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α-stable process, where α ∈ (0, 2)1. For α ∈ [1, 2) however, the jumps are not of finite

variation, contradicting the requirements of a valid subordinator, which is why they have

to be excluded from the range of feasible parameter values. On the other side, for α < 0

the total mass of the Lévy measure on either large jumps and small jumps is bounded,

the latter is due to exponential tempering. Although an existing Lévy process would be

specified, it is only of finite activity, however. This corresponds to a compound Poisson

process, which moves by discrete jumps only, a behavior considered unrealistic for the

virtual trading time in view.

To complete the specification of its entire Lévy triplet, it is furthermore necessary to

state that no Gaussian diffusion component is present (A = 0). As the Lévy density in

equation (3.1) implies a process of finite variation, it is appropriate to choose the valid

uncompensated version of the jump process. This choice enables a direct view on the effects

of the linear trend component m(0) on the properties of the trajectories. In order obtain a

parsimonious parametrization for the subordinator, m(0) is set to zero.

The kind of process defined so far implies the following characteristic function for the

distribution of their process variables St

φSt(z) = exp(t · ψS(z)) (3.2)

ψS(z) = CΓ(−α) [(λ− iz)α − λα] , (3.3)

where Γ(·) denotes the conventional Gamma function. This CF and CEF can be obtained

from applying the Lévy-Khintchine formula2 to the Lévy triplet of the preliminary subor-

dinator specified so far. The Lévy-Khintchine formula provides a universal link between

the representation of a Lévy process by means of its Lévy triplet and will be recurrently

employed for many of the subsequent calculations. Note however that the CEF only cor-

responds to the expression in above equation (3.3) if one excludes α = 0 from the feasible

1In the definition of an α-stable Lévy density, see equation (2.10), α ≥ 2 does not yield a valid Lévy
process, as the Lévy density is no longer square-integrable around 0.

2For a definition of the Lévy-Khintchine formula and further details see appendix A.1. The derivation
of CF and CEF in the case of general CTS processes is performed in appendix A.3.
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parameter range, which therefore should be the case for the further presentation.

At this stage, a useful implicit method for calculating distributional moments from char-

acteristic functions is going to be introduced, which will be further drawn upon in the

forthcoming sections. First of all it should be noted that the necessary existence of all

moments of order k in this case can be inferred from the following existence criterion3

∫
R
|x|kν(x)dx

!
<∞ ,

which is based on the Lévy density function ν(x).

Then, cumulants of St are reflected by the derivatives of CEF ψS(z) of corresponding k-th

order at the point z = 0 in the following way

c
(k)
St

=
1

ik
∂k lnφSt(z)

∂zk

∣∣∣∣
z=0

=
t

in
∂kψS(z)

∂zk

∣∣∣∣
z=0

. (3.4)

With the corresponding derivatives of the subordinators CEF

∂kψS(z)

∂zk
= ikCΓ(n− α)

[
(λ− iz)α−n

]
, k ≥ 1 , (3.5)

we have that

c
(k)
St

= t ·
[
CΓ(n− α)λα−n

]
, n ≥ 1 .

From this sequence of cumulants, any moment of integer order k ∈ N can be easily cal-

culated, which should be omitted for a general general case here. Only the case of k = 1,

which is indeed of use for the further presentation, should be considered explicitly here.

Although general cumulants are aggregations of moments of different orders, c
(1)
St

immedi-

ately corresponds to the first moment and expectation E(St)

c
(1)
St

= E(St) = t · CΓ(1− α)λα−1 .

3see Cont and Tankov [CoTa04, ch. 3]
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To avoid later redundancies concerning the generated processes4, one furthermore re-

stricts the set of feasible subordinators to those possessing a unit rate of expectation, i.e.

E(St) = 1. This can be achieved by adjusting the value of parameter C appropriately

E(St) = t · CΓ(1− α)λα−1 !
= 1

⇒ C
!

= C̃ =
λ1−α

Γ(1− α)
.

This chosen way of ensuring the required expectation rate of 1 leaves the two parameters

α ∈ (0, 1), λ > 0 remaining. Because the parameter values of α of the CTS subordinator,

in contrast to the former initial α-stable process, is restricted to (0, 1), we change to a new

parameter a = 2α for the polynomial decay of the stable Lévy density involved, resulting

in a to be within the original boundaries a ∈ (0, 2) of the α-stable Lévy density. Moreover,

this should also help to clearly distinguish the difference between a conventional CTS

process and the new subclass of CTS processes used for subordination defined here, which

i.a. have a restricted range for the values of the stability index.

In summarizing, the elaborated subordinator based on the general CTS process has the

following properties and representations. First of all, the subordinator St is a purely non-

Gaussian Lévy process with infinite activity but finite variation. Because of the latter fact,

it can be represented with the Lévy density ρS(s) of an uncompensated jump component

ρS(s) =
C̃ exp(−λs)

s1+a
2

· 1>0(s) =
λ1−a

2

Γ(1− a
2 )
· exp(−λs)

s1+a
2

· 1>0(s) . (3.6)

As no additional linear trend component is added, the Lévy triplet (AS , ρS , bS) of the

process S(t) therefore is simply

(AS , ρS , bS) = (0, ρS , 0) .

4By redundancies we refer to the fact that, as will be shown later, it would be possible to create the
same subordination process in a number of ways. This is achieved by varying C in a particular ratio to the
parameter values of the Brownian motion.
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The Lévy triplet, besides its use for the derivation and verification of some important

properties of the CTS subordination process, will mainly be further utilized for determining

central characteristics of the subordination result in section 3.5.

Applying the Lévy-Khintchine formula to the above Lévy triplet yields the characteristic

exponent function in a straightforward way5

ψS(z) = C̃Γ
(
−a

2

) [
(λ− iz)

a
2 − λ

a
2

]
=

λ1−a
2

Γ
(
1− a

2

)Γ
(
−a

2

) [
(λ− iz)

a
2 − λ

a
2

]

=
2λ

a

[
1−

(
1− iz

λ

)a
2

]
, z ∈ R .

Hence, the actual characteristic functions φSt of St for t > 0 follows by

φSt(z) = exp(t · ψS(z)) = exp

[
t · 2λ

a

[
1−

(
1− iz

λ

)a
2

]]
. (3.7)

As the Lévy density of the jumps, being the only non-trivial component of the pure-jump

process, is concentrated on the positive real line only, as well as therefore the probability

mass of St at any time t > 0, valid arguments u of the moment-generating function MSt

are not bounded towards −∞. For the specified CTS subordinator, it actually holds that

G = (−∞, λ]. The associated Laplace exponent function can be directly obtained from

the CEF

lS(u) = ψS(−iu) =
2λ

a

[
1−

(
1− u

λ

)a
2

]
, u ∈ G ,

whose analytical expression is allowed to be extended to purely imaginary arguments for

u ∈ F. This, after all, yields the MGF

MSt(u) = exp [t · lS(u)] = φSt(−iu)

= exp

[
2λt

a

[
1−

(
1− u

λ

)a
2

]]
, u ∈ G .

5Single steps of the calculation are performed in Cont and Tankov [CoTa04, p. 121]
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In fact, it has to be again noted that the actual G is not of any relevance for later

subordination purposes.

After discussing the process dynamics by means of the Lévy triplet, the distributional

properties of St for all points in physical time t > 0 should be presented here in form of

distributional moments. Again, their calculation can be performed by the entire sequence

of cumulants for different orders, obtained by the method presented in equation (3.4)

c
(k)
St

=
1

ik
· ∂

k ln(φSt(z))

∂zk

∣∣∣∣
z=0

=
t

ik
· ∂

k · ψS(z)

∂zk

∣∣∣∣
z=0

, k ∈ N

= tλ1−k
k−1∏
j=1

(
j − a

2

)
, d = 1, 2, . . .

The existing moments of all orders of St, t > 0 ensures the required smoothness of ψSt(z)

around 0. Note at this point that, like as for every Lévy process, the cumulants are evolving

strictly linear in t. Corresponding central statistics are in a further step directly concluded

from these cumulants by

E(St) = c
(1)
St

= t (3.8)

V ar(St) = c
(2)
St

=
t

λ

(
1− a

2

)
(3.9)

s(St) =
c

(3)
St[

c
(2)
St

]3/2
=
t
(
1− a

2

) (
2− a

2

)
λ3/2

λ2t3/2
(
1− a

2

)3/2 =

(
2− a

2

)
√
λt
√

1− a
2

(3.10)

e(St) =
c

(4)
St[
c

(2)
St

]2 =
t
(
1− a

2

) (
2− a

2

) (
3− a

2

)
λ2

λ3t2
(
1− a

2

)2 =

(
2− a

2

) (
3− a

2

)
λt ·

(
1− a

2

) (3.11)

Expectation E(St) as a measure of location and the variance V ar(St) as a measure of

dispersion, both grow strictly linear in time t, therefore being unbounded. In contrast,

the skewness s(St) and excess kurtosis e(St), as being rescaled central moments of St,

embody scale independent measures of asymmetry and heavy-tailedness, respectively, and
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both converge to 0 as t → ∞. This behavior corresponds to the more general fact that

every Lévy process with finite moment of first an second order is under the rule of the

Central Limit Theorem. As these conditions are fulfilled for the CTS subordinator under

consideration, its distributions do more and more converge to those of a corresponding

univariate Brownian motion.

This already gives an adequate impression of the stochastic progress of the virtual time

St at the point t measured in physical time. The first four cumulants and their associ-

ated central statistics illustrate how the two process parameters (a, λ), each responsible

for polynomial or exponential decay of the Lévy density function, respectively, affect the

distribution of the subordinator. The probability density function (PDF) fSt of the ran-

dom variable St, which would provide a more thorough understanding of the distribution

characteristics cannot be given in an analytical expression, however. The reason for this

is that the inversion of the characteristic function based on a one-dimensional Fourier

transformation possesses no closed-form solution. Various numerical techniques designed

for obtaining at least point-wise numerical approximations of function values of fSt(x) will

be presented in the context of a direct application in section 5.3.

An important remark concerning the connection to two other well established Lévy pro-

cesses follows here. The defined CTS subordinator includes the Inverse Gaussian (IG)

process for a = 1 ∈ (0, 2). This particular process has already been employed as a subordi-

nating process for the univariate and multivariate Brownian motion in the past, yielding

the Normal Inverse Gaussian (NIG) model. Another major instance is the Gamma process

obtained in the limiting case a → 0, which in the same way has been employed to create

the Variance Gamma (VG) model.6. The reason for excluding the case a = 0 from the

CTS subordinator lies in the fact that, although the parameterized term for the Lévy

density in equation (2.11) remains valid for the Gamma process, the further processing of

this Lévy density function with the Lévy-Khintchine formula towards the characteristic

functions yields a different expression compared to the one in equation (3.7) for the CTS

with a ∈ (0, 2). Recall that a = 0 represents the lowest a for which the Lévy density in

6An extensive overview over the development of Variance Gamma and Normal Inverse Gaussian models
as well as their applications to finance and other fields are given in section 3.8.
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equation (3.6) still implies a process of infinite activity, while a < 0 produces compound

Poisson-like processes with inappropriate properties with regard to the modeling of virtual

time flows. Both Inverse Gaussian and Gamma distributions belong to the general class

of hyperbolic distributions, making it possible to state their probability density function

in closed form. However, as already pointed out, this is not given in general for the case

a ∈ (0, 2)\{1} in the definition of the considered CTS subordinator process.

3.2 The Subordination Object: Univariate Brownian Mo-

tion

As object Y(s) for the subordination, the Brownian motion B(s) is chosen. The univariate

Brownian motion considered here comprises two individual scalar parameters γ ∈ R and

σ2 > 0. Brownian motions are the only purely Gaussian processes in the entire set of

Lévy processes, their Lévy triplet (AB, νB,mB) only incorporate a diffusion component

AB = σ2, no jump component νB(x) = 0 and a universal7 linear deterministic trend

component mB = γ.

This results in all Bs , s > 0 being normally distributed, Bs ∼ N (sγ, sσ2). For purposes

of later subordination, the corresponding probability density function

fB(s;x) =
1

σ
√

2sπ
exp

(
−(x− sγ)2

2sσ2

)

and characteristic function8

φBs(z) = exp

(
s(iγz − 1

2
σ2z2)

)

ψB(z) = s−1 lnφBt(z) = iγz − 1

2
σ2z2 , z ∈ R

7As no jump component is present, all compensation conventions are admissible and yield the same
external trend coefficient mB = m

(0)
B = m

(1)
B = m

(2)
B , which is noted here for the sake of completeness.

8Both PDF and CF of a normally distributed random variable can for example be found in Feller
[Fell68], [Fell71].
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are of closer relevance.

3.3 Construction

The univariate Normal Tempered Stable (NTS) process X(t) in the univariate case is de-

fined by replacing the physical time t of a univariate Brownian motion B(s) with drift

parameter γ ∈ R and diffusion parameter σ2 > 0 from the above section 3.2 by a stochas-

tic time flow according to the CTS subordinator S(t) with parameters a ∈ (0, 2) and λ > 0

from section 3.1. In fact, this is implemented by means of the familiar subordination

scheme presented equations (2.1) and (2.9)

X(t) = BS(t)
+ ∆t = δ · t+ γS(t) + σWS(t)

, W(s) ≡ BM(0, 1) ,

which is generalized in the sense of incorporating an additional deterministic linear trend

in physical time, ∆t. The processes B(s) and S(t) are mutually independent and ∆t is

completely specified by its associated coefficient δ ∈ R in the above equation.

Moreover, W(s) denotes a standard Wiener process on time scale s ∈ R+, which is equiva-

lent to a Brownian motion with standardized parameters, BM(0, 1). Because the focus is

still on the entire process instead of only single distributions, the stochastic time index S(t)

cannot be separated from the Brownian motion yet, as it will be the case for distributions

in a further section 3.7. This separation will prove to be useful for the moments of Xt,

especially for the multivariate case still to follow in chapter 4 and in particular for related

distributions.

For the ease of subsequent operations, the deterministic drift coefficient is set to δ = (µ−γ),

determined by γ coming from the Brownian motion and an additional implicit parameter

µ ∈ R. This particular construction yields

X(t) = δ · t+ γS(t) + σWS(t)
= (µ− γ) · t+ γS(t) + σWS(t)

= µt+ γ(S(t) − t) + σWS(t)
. (3.12)
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The main advantage is that (S(t) − t) is becoming a driftless process governed by γ.

Equation (3.12) defines the univariate Normal Tempered Stable (NTS) process X(t) with

parameter tuple (a, λ, γ, σ2, µ).

3.4 Characteristic Functions of the NTS Process

Determining the characteristic exponent function as a central means of representation for

the created univariate NTS process does not necessarily require its entire Lévy triplet and

the further processing by means of the Lévy-Khintchine formula.

Instead, one particular advantage of constructing the NTS process via generalized subor-

dination lies in the availability of simple formula for characteristic exponent functions and

characteristic functions of Xt

ψX(z) = lS(ψB(z)) + ψ∆(z) (3.13)

φXt(z) = MSt(ψB(z)) · φ∆t(z) = exp(t · ψX(z)) (3.14)

similar to equations (2.2) and (2.3). This proves particularly helpful, when for further

issues only distributional properties of the subordination outcome is of relevance while

detailed information of the process dynamics in form of the entire Lévy triplet is not

required. Filling in the corresponding components from sections 3.1 and 3.2 into equations

(3.13) and (3.14) leads to

ψX(z) =
2λ

a

[
1−

(
1− 1

λ
(iγz − 1

2
σ2z2)

)2
]

+ i(µ− γ)z , z ∈ R (3.15)

φXt(z) = exp

[
t ·

[
2λ

a

[
1−

(
1− 1

λ
(iγz − 1

2
σ2z2)

)2
]

+ i(µ− γ)z

]]
, z ∈ R . (3.16)
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3.5 Lévy Triplet of the NTS Process

Nevertheless, besides the distributional properties obtained from the characteristic func-

tions in the above section 3.4, the knowledge of the entire Lévy triplet of X(t) gives

additional valuable insights in the structure and certain aspects of the process behavior,

therefore it should be covered in this treatise. Special applications, for example in the area

of stochastic calculus and financial option pricing, necessarily require this detailed kind of

representation.

The basic methods for determining the entire Lévy triplet of a subordinated Lévy process

given in equations (2.4) – (2.6) and are now carried out for this more specific context.

The Lévy triplet (AX , νX ,m
(2)
X ) of the resulting Lévy process X(t) contains the coefficient

of the Gaussian diffusion component

AX = m
(0)
S ·AB = 0 · σ2 = 0 .

Hence, as well as the subordinator S(t) constitutes a purely non-Gaussian process so does

X(t). An existing diffusion component of the subordination object would only be conveyed

to the subordination result by a deterministic trend of the subordinator not being present

in this case.

Recall from equation (2.5), the most general form of the determining formula for the jump

measure νX in the univariate case

νX(ξ) = bS · νB(ξ) +

∫ ∞
0

PBs(ξ)ρ(ds) , ∀ ξ ∈ B(R) ,

is given in terms of masses νX(ξ) of appropriate subsets ξ ∈ B(R) of R. A similar situation is

present for the Brownian motion and the subordinator, therefore allowing the probability

measure PBs to be replaced by its likewise well-defined Gaussian density function fBs ,

while ρ(ds) becomes ρS(s)ds. Details on the following derivation are additionally given in
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appendix B.1, p. 172.

νX(x) =
νX(dx)

dx
= m

(0)
S νB(x) +

∫ ∞
0

fB(s;x)ρS(s)ds

= 0 +

∫ ∞
0

1√
2πσ
√
s

exp

(
−(x− γs)2

2σ2s

)
· λ1−a

2

Γ(1− a
2 )

exp(−λs)
s
a
2

+1

=

√
2λ1−a

2

(
γ2 + 2σ2λ

)a+1
4

√
πσΓ(1− a

2 )
exp

(xγ
σ2

) Ka+1
2

(
|x|
√
γ2+2σ2λ

σ2

)
|x|

a+1
2

. (3.17)

Kd denotes the modified Bessel function of the second kind and of order d. Note that

this Bessel function now embodies the tempering function of a re-emerging α-stable Lévy

density. A more detailed discussion of the present structure of the Lévy density function

νX(x) follows below.

As Xt possesses finite moments of every order k, especially for k = 1 corresponding to the

expectation, the jump component can be considered as evolving under full compensation of

either small and large jumps. Moreover, ∆t is contributing an additional trend to the pure

subordination component BSt , which has to be incorporated in the following expression

for the corresponding external trend coefficient m
(2)
X

m
(2)
X = m

(0)
S ·m

(2)
B +

∫ ∞
0

[∫
R
xfB(s;x)dx

]
ρS(s)ds+ (µ− γ)

= 0 +

∫ ∞
0

E(Bs)ρS(s)ds+ (µ− γ)

=

∫ ∞
0

γs
λ1−a

2

Γ(1− a
2 )

exp(−λs)
s1+a

2

ds+ (µ− γ)

=
γλ1−a

2

Γ(1− a
2 )

∫ ∞
0

exp(−λs)s−
a
2 ds+ (µ− γ)

=
γλ1−a

2

Γ(1− a
2 )

∫ ∞
0

exp(−t)
(

1

λ

)−a
2

t−
a
2

1

λ
dt+ (µ− γ) | t := γs
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=
γλ1−a

2

Γ(1− a
2 )
λ
a
2
−1

∫ ∞
0

exp(−t)t−
a
2 dt+ (µ− γ)

=
γλ1−a

2

Γ(1− a
2 )
λ
a
2
−1Γ(1− a

2
) + (µ− γ) = µ .

The possible trend representation by m
(2)
X in this case has the advantage of containing the

entire drift of the process. This provides the opportunity of verifying the above result by

comparing m
(2)
X to the expectation E(Xt) of Xt in equation (3.20).

The correspondence to an alternative means of defining the univariate NTS process will

further be treated in section 3.7.4. This definition is based on an explicit specification

of the Lévy density beforehand, which is constructed by exponential tilting of the Lévy

density of a symmetric Modified Tempered Stable (MTS) process.

A further method for a cross-check of this result would be to convert the preceding Lévy

triplet, which has emerged from the subordination, to the corresponding CEF of X(t), by

application of the Lévy-Khintchine formula in its appropriate version for the case of full

compensation

ψX(z) = im
(2)
X z − 1

2
A2z2 +

∫
R\{0}

(exp(izx)− 1− x)νX(x)dx

= iµz +

∫
R\{0}

(exp(izx)− 1− x)

√
2λ1−a

2

(
µ2 + 2σ2λ

)a+1
4

√
πσΓ(1− a

2 )
exp

(xµ
σ2

)

·
Ka+1

2

(
|x|
√
µ2+2σ2λ

σ2

)
|x|

a+1
2

dx (3.18)

!
=

2λ

a

[
1−

(
1− 1

λ
(iγz − 1

2
σ2z2)

)a
2

]
+ i(µ− γ)z . (3.19)

For the above result to be valid, the expression in equation (3.18) has to be equivalent to

the characteristic exponent function given in equation (3.19). An actual implementation
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of this calculation is waived here. After substituting Ka+1
2

by its integral representation

the remaining procedure can be completed by following the steps given in Kim [Kim05, p.

30 ff.].

3.6 Cumulants and Moments

This section deals with the derivation of time-dependent moments of the process variable

Xt. This is achieved by determining the cumulants from derivatives of k-th order of the

characteristic exponent function associated with the process X(t). Thereafter, all informa-

tion related to moments and other central statistics can be extracted from this sequence

of cumulants.

In the following equations the first four derivatives of the characteristic exponent function9

of the process X(t) with parameter vector (a, λ, γ, σ2, µ) after its scalar argument z are

presented.

∂ψX(z)

∂z
= (iγ − σ2z)

[
1− 1

λ
(iγz − 1

2
σ2z2)

]a
2
−1

+ i(µ− γ)

∂2ψX(z)

∂z2
=− σ2

[
1− 1

λ
(iγz − 1

2
σ2z2)

]a
2
−1

+
1

λ
(1− a

2
)(iγ − σ2z)2

[
1− 1

λ
(iγz − 1

2
σ2z2)

]a
2
−2

∂3ψX(z)

∂z3
=− 3 · σ

2

λ

(
1− a

2

)
(iγ − σ2z) ·

[
1− 1

λ
(iγz − 1

2
σ2z2)

]a
2
−2

+
1

λ2
(1− a

2
)(2− a

2
)(iγ − σ2z)3 ·

[
1− 1

λ
(iγz − 1

2
σ2z2)

]a
2
−3

∂4ψX(z)

∂z4
= 3

σ4

λ
(1− a

2
)

[
1− 1

λ
(iγz − 1

2
σ2z2)

]a
2
−2

− 6
σ2

λ2
(1− a

2
)(2− a

2
)(iγ − σ2z)2

[
1− 1

λ
(iγz − 1

2
σ2z2)

]a
2
−3

9see equation (3.15)
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+
1

λ3
(1− a

2
)(2− a

2
)(3− a

2
)(iγ − σ2z)4

[
1− 1

λ
(iγz − 1

2
σ2z2)

]a
2
−4

The actual cumulants are obtained from the corresponding derivatives of the now time-

dependent characteristic exponent (CE) or cumulant generating function (CGF) ΨXt(z) of

the random variable Xt, which is emerging from the time-independent CEF of the process

X(t) by ΨXt(z) = ψX(z) · t. The possibility of isolating a specific time-independent term

CEF, which implies the characteristic functions of every Xt, t > 0, is a distinguishing

feature of the inherent structure of Lévy processes, compounded by i.i.d. increments. It

holds that

c
(1)
Xt

=
1

i

∂ΨXt(0)

∂z
=
t

i

∂ψX(0)

∂z
= µt

c
(2)
Xt

=
1

i2
∂2ΨXt(0)

∂z2
=

t

i2
∂2ψX(0)

∂z2
=

[
σ2 +

γ2

λ
(1− a

2
)

]
· t

c
(3)
Xt

=
1

i3
∂3ΨXt(0)

∂z3
=

t

i3
∂3ψX(0)

∂z3
=

[
3
σ2γ

λ
(1− a

2
) +

γ3

λ2
(1− a

2
)(2− a

2
)

]
· t

c
(4)
Xt

=
1

i4
∂4ΨXt(0)

∂z4
=

t

i4
∂4ψX(0)

∂z4

=

[
3
σ4

λ
(1− a

2
) + 6

σ2γ2

λ2
(1− a

2
)(2− a

2
) +

γ4

λ3
(1− a

2
)(2− a

2
)(3− a

2
)

]
· t .

As raw moments are more difficult to interpret and still obscure a clear view on the specific

features of the distribution of Xt, various standard indicators are presented here instead

E(Xt) = c
(1)
Xt

= µt (3.20)

V ar(Xt) = c
(2)
Xt

=

[
σ2 +

1

λ
(1− a

2
)γ2

]
· t (3.21)
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s(Xt) =
c

(3)
Xt[

c
(2)
Xt

]3/2
=

[
3σ

2γ
λ (1− a

2 ) + γ3

λ2
(1− a

2 )(2− a
2 )
]

[
σ2 + γ2

λ (1− a
2 )
]3/2

· 1√
t

(3.22)

e(Xt) =
c

(4)
Xt[
c

(2)
Xt

]2 =

[
3σ

4

λ (1− a
2 ) + 6σ

2γ2

λ2
(1− a

2 )(2− a
2 ) + γ4

λ3
(1− a

2 )(2− a
2 )(3− a

2 )
]

[
σ2 + γ2

λ (1− a
2 )
]2 · 1

t

(3.23)

One notes again that both skewness s(Xt) and excess kurtosis e(Xt) converge to 0 when

the physical process time t→∞. This, in the wider sense, is implied by the fact that, as

Lévy processes in addition to i.i.d. increments are having their first two integer moments

finite, the central limits theorem applies. In consequence, the standardized process ran-

dom variable Xt−E(Xt)√
V ar(Xt)

converges in distribution to a standard Gaussian one for t → ∞.

Therefore, in contrast to self-similar α-stable Lévy processes with infinite moments k ≥ α,

α ∈ (0, 2), Xt becomes more Gaussian-like in the course of process time. In other words,

the univariate NTS process lies in the domain of attraction of the 2-stable self-similar

Brownian motion again. For more details on self-similar α-stable processes and distribu-

tions, respectively, see Samorodnitsky and Taqqu [SaTa00] or Zolotarev [Zolo86]. However,

this vanishing of skewness and excess kurtosis over time is not a disadvantage with regard

to its appropriateness for modeling of stock returns per se, although already Mandelbrot

and his followers10 in their seminal work have strongly rejected the Gaussian hypothesis

for those stock returns. Early studies11 indicate that the distribution of such stock re-

turns become more and more symmetric and mesokurtic when measured over longer time

intervals compared to short measurement horizons.

Constructing the process via Brownian subordination implies that the distribution of Xt

is a s-mixture or a weighted overlay of normal distributions Bs, weighted with the mixing

distribution of St, respectively. This has two main effects on the central statistics to be

10See for example Mandelbrot [Mand63], [Mand67], Mandelbrot and Taylor [MaTa67] as well as Fama
[Fama63], [Fama65].

11See for example Upton and Shannon [UpSh79].
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mentioned here: First, the variance is a composition of the form

V ar(Xt) = E(St) · V ar(B1) + V ar(St) · E2(B1) ,

which will become significant later on for a specific standardization procedure. Secondly,

the parameter γ controls the offset rate in the overlay and is therefore responsible for

adding possible skewness to the distribution

• symmetric for γ = 0,

• left-skewed for γ < 0,

• right-skewed for γ > 0,

which can moreover be deduced from equation (3.22).

3.7 The Univariate NTS Distribution

Whilst e.g. for option pricing in continuous time the detailed dynamics of the stochastic

process is indispensable, for many other applications in the area of finance such as different

topics in financial econometrics and portfolio management it is, by contrast, sufficient to

solely focus on distributional properties of the NTS model. Thus, in this section the Normal

Tempered Stable distribution, based on a specific marginal12 distribution Xt of the NTS

process is defined.

The Normal Tempered Stable (NTS) distribution is defined as the distribution of the

process variableXt of a NTS processX(t) in section 3.3 with parameters (a, λ, γ, σ2, µ) after

unit time (t = 1), i.e. X1. This distribution will be further denoted as NTS(a, λ, γ, σ2, µ),

12While still dealing with merely univariate processes, the term ’marginal’ refers to a timely cross-
section Xt of the process X(t), whereas the entire process embodies in a formal sense the whole family of
Fτ -measurable random variables Xτ , τ ≥ 0 on a filtered probability space (Ω,Fτ , P ). When being focused
on multivariate distributions at a later stage, ’marginal’ will be used again in its more common meaning
as a projection on one single dimension.
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a ∈ (0, 2), λ, σ2 > 0 and γ, µ ∈ R, with parameter set in accordance with the corresponding

NTS process.

When focusing on the distribution only, the subordination scheme in equation (3.12) can

be further extended and at the same time simplified to

X = µ+ γ(S1 − 1) + σ ·W(S1)

= µ+ γ(S − 1) + σ ·
√
S ·W . (3.24)

Note that for the case when dealing with the random variable S1, the time index will be

further omitted, becoming S in this notation. Again, W(s) is denoting a standard Wiener

process BM(0, 1), whereas W ∼ N (0, 1) stands for a standard normal distribution. Due to

the self-similarity of the Wiener process with stability index α = 2, the stochastic subordi-

nator S1 can be dissolved from the time index, resulting in a factor S1/α =
√
S. Hence, the

subordination construction can be reduced to a multiplication of two independent random

variables S and W . Although this useful relation is not of any practical importance as yet,

it will, however, turn out to be exceedingly helpful in the multivariate case in chapter 4

when approaching calculation of moments and for several other tasks involved with the

theoretical handling and practical application of such distributions.

In the univariate case so far, characteristic functions and distributional moments can be

directly obtained by setting t = 1 in the corresponding equations (3.16), (3.20) – (3.23)

for the marginal process distributions Xt in the preceding sections.

In the following sections 3.7.1 and 3.7.2 some important properties of this NTS distribution

together with their formal verification are derived.

3.7.1 Convolution

Here, the properties of the NTS distribution concerning their convolution are studied in

greater detail. For this purpose, one considers two such independently NTS distributed
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random variables X(1) and X(2)

X(1) ∼ NTS(a1, λ1, γ1, σ
2
1, µ1)

X(2) ∼ NTS(a2, λ2, γ2, σ
2
2, µ2) .

If one moreover defines the sum Y = X(1) +X(2), it holds for the characteristic function13

φY of Y in general

φY (z) = φX(1)+X(2)(z) = φX(1)(z) · φX(2)(z) ⇒ ΨY (z) = ΨX(1)+X(2)(z) = ΨX(1)(z) + ΨX(2)(z)

and for the NTS distribution in particular

ΨY (z) = ΨX(1)+X(2)(z) =
2λ1

a1

[
1−

(
1− 1

λ1
(iγ1z −

1

2
σ2

1z
2)

)a1
2

]
+ i(µ1 − γ1)z

+
2λ2

a2

[
1−

(
1− 1

λ2
(iγ2z −

1

2
σ2

2z
2)

)a2
2

]
+ i(µ2 − γ2)z

The above expression can be consolidated into a characteristic exponent of NTS structure

if and only if the parameter values a1, a2 are equal (a1 = a2 = a) and the parameter

values of λ, γ, σ2 each have a fixed ratio

λ1

λ2
=
γ1

γ2
=
σ2

1

σ2
2

=
1

κ
,

yielding

ΨY (z) =
2λ1

a

[
1−

(
1− 1

λ1
(iγ1z −

1

2
σ2

1z
2)

)a
2

]
+ i(µ1 − γ1)z

+
2κλ1

a

[
1−

(
1− 1

κλ1
(iκγ1z −

1

2
κσ2

1z
2)

)a
2

]
+ i(µ2 − κγ1)z

13Note at this point, that the characteristic exponent function (CEF) is only valid for Lévy processes
while it gets replaced by the characteristic exponent (CE) or the cumulant generating function (CGF)
ΨY (z) = lnφY (z) for the corresponding infinitely-divisible (ID) distributions.



38 CHAPTER 3. UNIVARIATE NORMAL TEMPERED STABLE PROCESSES

= (1 + κ)
2λ1

a

[
1−

(
1− 1

λ1
(iγ1z −

1

2
σ2

1z
2)

)a
2

]
+ i(µ1 + µ2 − (1 + κ)γ1)z .

Substituting the matching terms in the last equation gives rise to the new NTS parameters

associated with the convolution Y . Summarizing the above operations verifies a partial

closedness of the NTS distribution under convolutions in the sense that the convolution of

two distributions NTS(a, λ, γ, σ2, µ1) and NTS(a, κλ, κγ, κσ2, µ2), κ > 0 leads to another

NTS(a, (1 + κ)λ, (1 + κ)γ, (1 + κ)σ2, (µ1 + µ2)) distribution.

To give an illustrative interpretation of this relationship, one has to note that the restriction

on the parameter values is equivalent with both respective NTS processes underlying the

above distributions having a Lévy density of the same shape. In other words, the second

Lévy measure emerges from first one by multiplying each mass involved by a positive

factor κ > 0, which can be interpreted as a simple mass scaling. This manipulation in turn

causes a scaling of the jump intensities of the whole jump spectrum with factor κ.

3.7.2 Linear Transformation

Another important manipulation in conjunction with univariate NTS distributions is the

linear transformation. For this purpose, one considers a NTS distributed random variable

X ∼ NTS(a, λ, γ, σ2, µ) and two coefficients α 6= 0, β ∈ R, which define a second random

variable Y = αX + β. From the universal linear transformation formula14

φY (z) = φαX+β(z) = exp(iβz) · φX(αz) ⇒ ΨY (z) = ΨαX+β(z) = iβz + ΨX(αz)

we get by inserting the corresponding items from equation (3.16)

ΨY (z) = izβ + i(µ− γ)αz +
2λ

a

[
1−

(
1− 1

λ
(iγαz − 1

2
σ2(αz)2)

)a
2

]

= iz((αµ+ β)− αγ) +
2λ

a

[
1−

(
1− 1

λ
(iαγz − 1

2
(ασ)2z2)

)a
2

]
.

14see e.g. Lukacs [Luka70]
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Subsequently, similar to the approach in the preceding section, matching terms in the above

equation are consolidated into new parameter values according to the proper structure of

NTS cumulant generating functions. Thus, one easily recognizes that the resulting random

variable Y is again NTS distributed, Y ∼ NTS(a, λ, γ̃, σ̃2, µ̃), with modified parameters

γ̃ = αγ , σ̃2 = α2σ2 (3.25)

µ̃ = αµ+ β (3.26)

while parameter values of (a, λ) stay unaffected by the linear transformation.

From the differentiated effects of such a linear transformation on the single distribution

parameters one is able to conclude the following interpretation concerning the underlying

NTS process. First of all, it is easily concluded that the dynamics of the subordinator

involved remains unaltered. Secondly, the support of the corresponding Brownian motion

is stretched by the coefficient α. Note that this is not equivalent to a time scaling of the

Brownian motion with factor α2, as the Brownian motion involved here is not a driftless

one in general. At last, the additional external trend

δ̃ = (µ̃− γ̃) = αµ+ β − αγ = α(µ− γ) + β = αδ + β

is likewise linearly transformed with coefficients α and β. Linear transformations constitute

a helpful tool for certain applications in chapter 5, e.g. for performing linear standardiza-

tions of univariate NTS distributions.

Concerning a possible time scaling of the underlying process, one has to finally remark

the following relation. Such a time scaling is only achieved with admissible convolutions

presented in section 3.7.1, which are equivalent to a corresponding mass scaling of the Lévy

measure. By looking at the possible manipulations of parameter values made available by

either feasible convolution and linear transformation, it becomes obvious that a change in

NTS process speed cannot be achieved by linear transformations and vice versa.
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3.7.3 Standardized Univariate NTS Distributions

Especially when modeling situations, where the considered data is assumed to have zero

mean and unit variance, it is suitable to have a standardized version of the univariate NTS

distribution at hand with fewer parameters involved.

In practical modeling situations it is very often recommended to remove the individual

scales inherent in the modeled data. A simple manipulation to achieve this is a linear trans-

formation such that first and second moments are set to zero and one, respectively15. The

aim is to, while keeping the information of the once present inherent scales, be able to use

a distribution for the standardized situation with a reduced number of parameters. This

approach can be seen in analogy to e.g. the normal distribution, where standardization

leads from a once 2-parameter distribution class to a unique instance. Hence, standard-

ization eliminates two free parameters, one for first and second moment, each, where both

are constituting the scale of the distribution.

In principle, the following three basic approaches are available for performing such a

standardization or restriction of the class of univariate NTS distributions to those instances

with zero mean and unit variance, respectively:

1.) Linear transformation: X undergoes a linear transformation, the effects on the param-

eters can be described by equations (3.25) – (3.26).

2.) Mass scaling: Besides adjusting the external trend of the underlying process by µ = 0,

the jump intensities of all jump sizes of the underlying NTS process are uniformly

rescaled in order to achieve a unit variance of the distribution X ≡ X1 in t = 1.

3.) Parameter manipulation: This constitutes a rather arbitrary way of establishing re-

striction dependencies between selected parameters or groups of parameters in order

to obtain standardized distributions, thereby reducing the number of free dimensions

in the parameter set.

15This operation is commonly comprehended as linear standardization and will be referred to in a later
context.
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While the first two approaches are based on natural manipulations, the latter is rather

arbitrary and can be designed with regard to a good level of tractability in mind. In

particular, the third approach will be carried out as the two former ones would prove

to be rather complicated with regard to the evolving parametrization. In general it is

expedient to focus on the class of emerging standardized distributions and their associated

parametrization than on the actual process of standardization itself.

Thus considering a purely parameter-based technique as the most promising approach, an

obvious first step is to set E(X) = 0 by choosing µ = µ̃ = 0. This makes sense, as this

parameter µ is directly linked to the expectation of X. For the variance, however, no such

single parameter is available. In fact, according to equation (3.21), it holds that

V ar(X) = σ2 +
2− a

2λ
γ2 (3.27)

for the variance of a NTS(a, λ, γ, σ2, µ) distributed random variable X. Recall that, as can

be clearly recognized from the above equation, there are two distinct sources of variance.

One is the diffusion rate σ2 of the subordinated Brownian motion, the other one is its

squared trend rate γ2, multiplied by the variance of the employed CTS subordinator given

by equation (3.9).

Looking at equation (3.27), the simplest way of standardizing the variance by adjusting

only one single other parameter appears to be to set

σ = σ̃ =

√
1− 2− a

2λ
γ2 .

In order to ensure a feasible implied Brownian motion B(s), i.e. σ̃ > 0,

|γ| <
√

2λ

2− a
(3.28)

has to hold. Descriptively, this means that the amount of variance caused by the stochastic

trend driven by γ and the subordinators stochastic dynamics, which has to be properly

less than 1, is supplemented by an appropriate quantity of additional diffusion rate σ̃2.
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Note that not every instance in the NTS class is linked to a corresponding standard NTS

distribution by this standardization procedure. Cases where such a standardization is not

feasible are characterized by violation of the restriction in equation (3.28).

For further tasks to be accomplished, it makes sense to recognize these specific values of

parameters as functions of the remaining free distribution parameters (a, λ, γ)16

µ̃(a, λ, γ) = 0

σ̃(a, λ, γ) =

√
1− 2− a

2λ
γ2 .

This immediately leads to the definition of the standard Normal Tempered Stable (stdNTS)

distribution, by

stdNTS(a, λ, γ) ≡ NTS
(
a, λ, γ, σ̃2(a, λ, γ), µ̃(a, λ, γ)

)
≡ NTS

(
a, λ, γ, 1− 2− a

2λ
γ2, 0

)
, (3.29)

where again a ∈ (0, 2), λ > 0 and γ ∈ R in the limits given by eq. (3.28).

As basically all consequences of this procedure or definition of stdNTS could be derived

in a straightforward manner by inserting the relations laid down in equation (3.29), only

the most central aspects shall be presented here. In particular, the characteristic function

of a standard NTS random variable X̃ ∼ stdNTS(a, λ, γ) is simply determined by

φX̃(z) = exp

[
2λ

a

[
1−

(
1− 1

λ
(iγz +

1

2
σ̃2(a, λ, γ)z2)

)a
2

]
+ i(µ̃(a, λ, γ)− γ)z

]

= exp

[
2λ

a

[
1−

(
1− 1

λ
(iγz +

1

2
(1− γ2

λ
(1− a

2
))z2)

)a
2

]
− iγz

]
.

16As long as they obey the restriction in eq. (3.28).
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The first four standardized central moments of X̃ are

E(X̃) = µ̃(a, λ, γ) = 0

V ar(X̃) = σ̃2(a, λ, γ) +
γ2

λ
(1− a

2
) = 1− γ2

λ
(1− a

2
) +

γ2

λ
(1− a

2
) = 1 = c2(X̃)

s(X̃1) =
c3(X̃1)

c2(X̃1)︸ ︷︷ ︸
=1

3/2
=

[
3
σ̃2(a, λ, γ)γ

λ
(1− a

2
) +

γ3

λ2
(1− a

2
)(2− a

2
)

]

=

[
3(1− γ2

λ
(1− a

2
))
γ

λ
(1− a

2
) +

γ3

λ2
(1− a

2
)(2− a

2
)

]

= 3
γ

λ
(1− a

2
)− 3

γ3

λ2
(1− a

2
)2 +

γ3

λ2
(1− a

2
)(2− a

2
)

= 3
γ

λ
(1− a

2
) +

γ3

λ2
(1− a

2
)(a− 1) =

γ

λ
(1− a

2
)

[
3 +

γ2

λ
(a− 1)

]

e(X̃) =
c4(X̃)

c2(X̃)︸ ︷︷ ︸
=1

2
= 3

σ̃4(a, λ, γ)

λ
(1− a

2
) + 6

σ̃(a, λ, γ)2γ2

λ2
(1− a

2
)(2− a

2
)

+
γ4

λ3
(1− a

2
)(2− a

2
)(3− a

2
)

= 3
1

λ
(1− γ2

λ
(1− a

2
))2(1− a

2
) + 6

γ2

λ2
(1− γ2

λ
(1− a

2
))(1− a

2
)(2− a

2
)

+
γ4

λ3
(1− a

2
)(2− a

2
)(3− a

2
) ,

the first two reflecting the standardization procedure just carried out.
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3.7.4 Alternative Representation and Parameter Correspondence

For the sake of completeness, an alternative way for defining a NTS process and distribu-

tion is presented here. Without giving all the details involved, the existing correspondence

on the level of parameterizations in both directions, is mainly pointed out. Another useful

effect of this bidirectional relationship is the equivalence of these two definitions becoming

clearly recognizable thereby.

While the NTS-framework developed so far is based on a process introduced by Barndorff-

Nielsen and Levendorskĭi [BNLe01], also employing Brownian motion as a construction

tool for the NTS process17, Kim et al. [KRCB08] hit upon a complemental possibility of

defining this purely non-Gaussian Lévy process in an equivalent way. For this purpose,

they used exponential tilting of the Lévy measure of a symmetric Modified Tempered Stable

(MTS) process. The MTS process being a Lévy process comprised in Rosiński’s [Rosi07]

class of tempered stable Lévy processes was first proposed by Kim [Kim05] and has been

further elaborated by Kim et. al. [KRCB08].

The general MTS(α,H+,H−, θ+, θ−, η) model refers to a purely non-Gaussian Lévy pro-

cess specified by the Lévy measure18

ν(dx) = νMTS(x)dx

=

H+θ
α+1
2

+ Kα+1
2

(θ+x)

x
α+1
2

· 1x>0 +
H−θ

α+1
2
− Kα+1

2
(θ−|x|)

|x|
α+1
2

· 1x<0

 dx , (3.30)

with α ∈ (0, 2), H+,H−, θ+, θ− > 0. The deterministic linear trend component is specified

by a parameter η ∈ R.

As the input for the tilting procedures serves a symmetric version of the MTS process

(sMTS) with H+ = H− = H > 0 and θ+ = θ− = θ > 0. The corresponding Lévy density

function νsMTS(x) is multiplied with an additional exponential function controlled by a

17Barndorff-Nielsen and Levendorskĭi only consider the restricted subordination component BS(t)
with-

out a general additional deterministic drift term.
18see Kim [Kim05, p. 26].
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parameter β. This directly results in a new density function

νT ilt(x) = exp(βx)νsMTS(x)

= exp(βx)Hθ
α+1
2 Kα+1

2
(θ|x|)|x|−

α+1
2 1x 6=0 , (3.31)

while maintaining the original trend component η when compensating jumps of the entire

jump spectrum. In order to be a valid Lévy density, the following condition has to be

satisfied ∫
|x|>1

exp(βx)νsMTS(x)dx <∞ ,

which requires the parameter β to be restricted to |β| < θ due to the present structure of

νsMTS(x) given in equation (3.30).

The above expression in equation (3.31) closely resembles the one familiar from equation

(3.17) for the Lévy density function of the initially defined NTS process. Furthermore, this

process additionally possesses a deterministic linear trend specified by coefficient η ≡ m(2).

Processing these two non-trivial components of the Lévy triplet in the Lévy-Khintchine

formula19 leads to the following characteristic exponent function of X(t)

ψX(z) = izη +

∫
R\{0}

(exp(izx)− 1− izx) exp(βx)Hθ
α+1
2 Kα+1

2
(θ|x|)|x|−

α+1
2 dx

= izη − iz2
(1−α)

2
√
πHΓ

(
1− α

2

) [
β
(
θ2 − β2

)α
2
−1
]

+ 2−
(α+1)

2
√
πHΓ

(α
2

) [(
θ2 − (β + iz)2

)α
2 − (θ2 − β2)

α
2

]
(3.32)

Note that performing the above calculation requires steps similar to the ones suggested in

appendix A.3 or in Kim [Kim05, p. 30 ff.] and is almost the only available possibility of

obtaining the central characteristic exponent function.

This is due to the fact that this version of the NTS process is explicitly defined by its

19see appendix A.1, eq. (A.2).
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Lévy density function, developed by tilting the symmetric MTS Lévy density function by

multiplying an additional exponential function, as performed in above equation (3.31).

Thus far, there is no such convenient determination formula available as is the case for a

Lévy subordination scheme20, where only simple substitutions of arguments were required

to be performed. Nevertheless, another representation based on the Esscher transform

ψX(z) = ψsMTS(z−iβ)−ψsMTS(−iβ)︸ ︷︷ ︸
=lsMTS(β)

+iz

mX −msMTS︸ ︷︷ ︸
=0

−
∫
R
y(exp(βy)− 1)νsMTS(y)dy

 ,
(3.33)

becomes available here21. This is again only mentioned for the sake of completeness as the

calculations involved in solving the above integral in equation (3.33) remain burdensome.

As a matter of course, the obtained result is equivalent to the expression equation (3.32),

however.

From this complete representation of the Lévy process underlying the distribution in both

definitions, one is able to derive the following parameter correspondence, which is the main

purpose of this section. First, the parameters of the tilt approach to the NTS distribution

in terms of the parameter values of the subordination approach are given.

α = a

H =

√
2λ1−a

2 σa√
πΓ(1− a

2 )

θ =

√( γ
σ2

)2
+

2λ

σ2
=

√( γ
σ

)2
+ 2λ

σ
=

√
γ2 + 2σ2λ

σ2

β =
γ

σ2

η = µ

Some of the above relations can be found in Rachev et al. [RKBF11].

20See equations (3.13) and (3.14).
21See Kim et. al. [KRCB08] and the reference therein.
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Consequentially, the relations in the opposite direction are as follows.

a = α

λ = 2−
(a+1)

2

[
H
√
πΓ
(

1− a

2

)] (
θ2 − β2

)a
2

γ = 2
1−a
2

[
H
√
πΓ
(

1− a

2

)]
β
(
θ2 − β2

)a
2
−1

σ = 2
1−a
4

[
H
√
πΓ
(

1− a

2

)] 1
2 (
θ2 − β2

)a
4
− 1

2

µ = η

Further details concerning this derivation are given in appendix B.2.

These two parameter transformations in both directions together with appropriate param-

eter ranges show that every NTS distribution has a valid representation in both definitions,

which is a way to verify the equivalence of the two approaches compared in this context.

3.8 Motivation and Literature Review

The reason for having presented the conventional univariate normal tempered stable model

in such extensive detail at this point is threefold. Firstly, the basic principle of various of

the above methods such as for linear transformation or for the standardization procedure

are maintained in the multivariate case, while the univariate perspective serves to illustrate

its inherent mode of operation. Secondly, for later estimation and analysis of portfolios

under the assumption of multivariate normal tempered stable models, one exploits the later

to be proven fact, that linear combinations of dimensions likewise result in an univariate

NTS distribution. Thirdly, besides linear combinations also marginal distributions of the

multivariate NTS model turn out to be univariate NTS as well. Hence, most of the aspects

presented and illustrated in this part possess significant further relevance in addition to

their immediate application in the multivariate analysis.
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In the recent past, Brownian subordination has become a popular approach for explic-

itly constructing univariate tempered stable (TS) processes and other alternative one-

dimensional Lévy processes with semi-heavy tails. The reason for this appreciation is that

the outcome of Brownian subordination has particular advantages with regard to its ana-

lytical tractability compared to those classes of purely non-Gaussian Lévy processes which

are defined by an explicit tempering function for the α-stable Lévy measure. The latter

group encompasses the yet familiar classes of Classical Tempered Stable (CTS) and Nor-

mal Tempered Stable (NTS) processes. Furthermore this group includes the more recent

developments such as the Modified Tempered Stable (MTS), the Rapidly Decreasing Tem-

pered Stable (RDTS) as well as the Kim-Rachev Tempered Stable (KR) Lévy processes. A

comprehensive overview with respect to the distributional properties can be found in the

book of Rachev et al. [RKBF11, ch. 3.1], for the processes itself one refers to the original

publications to be discussed below.

Among the first implementations of the concept of tempering stable distributions and

processes were the Truncated Lévy Flight by Koponen [Kopo95], the KoBoL model by

Boyarchenko and Levendorskĭi [BoLe00] and the CGMY model by Carr et al. [CGMY02],

which are closely related and the separate Normal Tempered Stable model introduced by

Barndorff-Nielsen and Levendorskĭi [BNLe01]. The models of the former group, of which

the KoBoL model represents the most flexible one, have been unified under the term Clas-

sical Tempered Stable during the last decade. Since then, a greater variety of tempered

stable models defined by the explicit specification of their associated tempering function

emerged. One of them is the Kim-Rachev tempered stable model initiated by Kim et al.

[KRBF08b], [KRBF08a], where [KRBF08b] moreover demonstrates the estimation meth-

ods involved and formulates a risk-neutral market model based on the KR process. In

addition, [KRBF08a] covers a first application of the KR distribution for the innovations

of a GARCH time series model and compares the results to alternative tempered stable

distributions. Their individual estimates are assessed later on with regard to their perfor-

mance in a back-test for their asset return forecasting capability. A comparing overview

over its properties in relation to the full group of tempered stable classes presented here,
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together with auxiliary methods for determining the distribution and risk measures, can

be found in Kim et al. [KRBF09]. The possibilities for simulating KR random variables

for an application in financial Monte Carlo techniques is finally studied by Bianchi et al.

in [BRKF10b].

It is important to note at this point that among the tempered stable models covered in this

summary, only KR and CTS are contained in Rosiński’s categorization22, while MTS, NTS

and RDTS are not. His attempt of characterizing possibly multivariate tempered stable

models is based on a completely monotonic tempering function for the α-stable spectral

measure. To remedy this bothering incompleteness, Bianchi et al. [BRKF10a] initiated a

modified category of tempered stable model classes termed Tempered Infinitely Divisible

(TID) models, which has no overlap with the Rosiński definition and is able to capture

MTS and RDTS, while NTS still fits none of the two categories. This last representative

in the universe of tempered stable model classes was brought up by Barndorff-Nielsen

and Levendorskĭi [BNLe01] and plays a central role in this study. Although NTS is not

contained in any of the two formal definitions of tempered models so far, it clearly exposes

characteristics of tempered stable Lévy processes, which can be observed in equation (3.17)

in section 3.5. Therefore, it is located at the interface of tempered stable models presented

above and Lévy models based on Brownian subordination, whose historical development

and interrelations are presented below, as it possesses features of both sides.

The MTS was first described by Kim [Kim05] in his PhD thesis. Its further development is

achieved by Kim et al. in [KRCB08], where a change of measure theorem and a connection

to the NTS by exponentially tilted Lévy measures is substantiated. An application in

the context of GARCH models for financial econometrics in [KRBM+11] as well as to

option pricing presented in this same publication is thoroughly studied in [KRBF08a] and

[KRCB09]. Moreover, [KRBF08a] finds empirical evidence for improvements compared to

the application of α-stable distributions.

The last important class of tempered stable models is the Rapidly Decreasing Tempered

Stable process mentioned by Kim et al. in [KRBF10]. In particular, besides the discussion

22See Rosiński [Rosi07].
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of possibilities for simulation, the paper points to the excellent suitability of RDTS for

option pricing. The reason for this is the existence of exponential moments up to some

fractional order k, a fact which is not shared by other alternative TS instances. RDTS-

GARCH models for forecasting volatile markets are recently studied by Kim et al. in

[KRBM+11].

Finally, a concise overview of the central properties of the five mentioned tempered stable

model types together with helpful approximation techniques for distributions and risk

measures based on some transformation of their characteristic function is given by Kim et

al. in [KRBF09] as well as in a recently published first textbook on the general topic by

Rachev et al. [RKBF11].

Basically, there are two other central classes of Lévy processes with semi-heavy tails created

by Brownian subordination in the univariate case. This is the Variance Gamma (VG)

process on the one hand and the Normal Inverse Gaussian (NIG) process on the other

hand, together with their associated distributions. In the case of the variance gamma

process, the subordinator is similar to the one from CTS class in section 3.1. The only

difference is in the choice of a = 0, which was excluded from the range of valid parameter

values in the course of NTS construction. Nonetheless, a = 0 implies a feasible Lévy

density in equation (3.1), which in turn generates a subordinator contained in the class

of Gamma processes, which explains the term ’variance gamma’. The VG processes were

initially defined and developed by Madan and Seneta [MaSe87] and further studied by

Madan et al. [MaCC98].

When choosing a = 1 for the CTS subordinator, a process of the Inverse Gaussian (IG)

class evolves. Using this process as an input for the Brownian subordination leads to the

class of Normal Inverse Gaussian processes, where the term ’normal’ again indicates its

origin from Brownian subordination in combination with an IG subordinator. In contrast

to the limiting case of VG processes, every NIG process constitutes a particular instance

within the class of NTS processes. Hence, the univariate NTS process developed in this

chapter is an attempt to unite both processes in a significantly extended and more flexible

framework while maintaining a reasonable degree of analytical tractability, for example
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regarding estimation techniques. NIG has its origins in the work of Barndorff-Nielsen

[Barn97], [Barn98] and Rydberg [Rydb97]. After the turn of the millenium, authors in the

field of electrical and communications engineering began to utilize the ideas and concepts

of NIG processes in their research, such as Salberg et al. [SSØH01] and Hansen and Øig̊ard

[HaØi01].

Moreover, the Gamma and the Inverse Gaussian processes are distributed according to

laws which for their part are contained in class of Generalized Inverse Gaussian (GIG)

distributions. This not true for every other instance of the CTS subordinator since GIG

distributions offer the advantage of allowing for an explicit representation of their proba-

bility density function. With this desirable property at hand, every Brownian subordina-

tion obeying an GIG distributed subordinator possesses a closed-form distribution itself23.

The set of these subordination results is termed Generalized Hyperbolic (GH) model and

obviously embeds the VG and NIG. Due to this beneficial property of the GIG with re-

gard to analytical tractability one is able to construct efficient methods for financial and

econometric analysis. Practical implementations have already been delivered by a num-

ber of authors, among them Eberlein [Eber01], Eberlein et al. [EbKP98] and Eberlein

and Raible [EbRa01] as well as Rydberg [Rydb99]. The less general VG and NIG models

have been applied by Madan et al. [MaCC98], Madan and Seneta [MaSe90] and Carr and

Madan [CaMa98] concerning the VG or Rydberg [Rydb97] and Barndorff-Nielsen [Barn97],

[Barn98] for the NIG, respectively.

23For comprehension of this statement it is helpful to recall that the Brownian subordination is a mean-
variance mixture or superimposition of Normal distributions with the PDF serving as a weighting density.



Chapter 4

The Multivariate Normal

Tempered Stable Model

While a detailed study of the univariate Normal Tempered Stable process and distribution

and their various alternative representations was given in the preceding chapter, the task

of generalizing the framework to an arbitrary number of dimensions is addressed in this

chapter. With this in mind, the representation of the NTS model by Brownian subordi-

nation appears to be the most appropriate for conveying the inherent structure of the

NTS process to a multivariate setting. As will become clear in the subsequent sections of

this chapter, Brownian subordination possesses a number of advantages over a definition

via exponentially tilted multivariate tempered stable Lévy measures, above all concerning

analytical tractability.

4.1 The Multivariate Normal Tempered Stable Process

In order to make a transition from a univariate to a multivariate NTS environment while

maintaining an ideally simple structure one further relies on the already familiar CTS

subordinator from section 3.1. This subordinator then serves as a stochastic time change

to each single component of a now multivariate Brownian motion with possible dependence

52
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between these dimensions. This setting will be termed Type I in contrast to a more flexible

approach, where each dimension of the Brownian motion possesses his own independent

CTS subordinator, termed Type II. Type II processes, although offering improved flexibility

compared to Type I processes, come at the cost of loosing analytical tractability for most

of the related manipulations. In addition, their characteristic exponent functions can no

longer be stated in closed form. For this reason it is to this day still an open question

whether they constitute Lévy processes with associated distributions of the corresponding

process variables being therefore infinitely divisible at all1. Hence, if not explicitly stated

otherwise, it is referred to as multivariate models of Type I in the further text.

4.1.1 The Multivariate Subordination Object

In contrast to the subordination object for the univariate case, namely a one-dimensional

Brownian motion, it is now being replaced by its general form in n dimensions. For later

incorporation into various determination formulas, the Brownian motion B(s) has to be

represented as a multivariate n-dimensional Lévy process which is purely Gaussian, i.e. it

contains, besides a diffusion and a trend component, no jumps. Hence, all three different

compensation rules2 are valid which implies the corresponding m
(0)
B , m

(1)
B and m

(2)
B to be

all existent and having the same value. This external linear trend component is further

denoted by m
(1)
B = γ, now being an arbitrary real n-dimensional vector, i.e. γ ∈ Rn.

Thus, the only remaining non-trivial component of the Lévy triplet (AB, νB,m
(1)
B ) of the

multivariate Brownian motion, as the jump component νB ≡ 0, is the diffusion part AB.

It is made up by a feasible (n × n) covariance matrix3 Σ, controlling the dispersion as

well as the correlation between single process dimensions. The complete Lévy triplet is

ultimately given by (AB, νB,m
(1)
B ) = (Σ, 0, γ).

The characteristic exponent function can again be derived4 from this Lévy triplet and the

1This remark is made by Eberlein and Madan in [EbMa10].
2This includes an uncompensated jump component, associated to m(0). Recall from appendix A.1 that

the rule of compensating only jumps of small magnitude (m(1)) is the only universally valid one, while the
rule of compensating the entire jump spectrum is associated to the variable m(2).

3Therefore having to be positive semi-definite.
4References for the multivariate versions of Brownian motion and Normal distributions are e.g. the
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Lévy-Khintchine formula, yielding

ψB(z) = iγTz − 1

2
zTΣz = i〈γ, z〉 − 1

2
zTΣz , z ∈ Rn ,

and furthermore the characteristic function of the multivariate random variable Bs by the

structure of the Lévy process

φBs(z) = exp

[
s ·
(
iγTz − 1

2
zTΣz

)]
, z ∈ Rn .

Note that Bs is n-dimensional Normal distributed, Bs ∼ N n(sγ, sΣB), therefore also the

argument z ∈ Rn is becoming an n-dimensional real vector now. The multivariate Normal

probability density function (PDF) of Bs has closed form

fB(s;x) =
1

(2sπ)
n
2 |Σ|

1
2

· exp

(
− 1

2s
(x− sγ)TΣ−1(x− sγ)

)
, x ∈ Rn , (4.1)

and will serve as an input for several determination formulas in the context of the con-

sidered Brownian subordination. Note however that above equation (4.1) is only valid

for non-degenerate Brownian motions with strictly positive definite Σ, that is why this

condition should be assumed to be satisfied.

4.1.2 Process Construction

A n-dimensional multivariate Normal Tempered stable (MVNTS) process X(t) is defined

by subordinating a n-dimensional multivariate Brownian motion B(s) from section 4.1.1

by a familiar CTS subordinator S(t) from section 3.1, making up the actual subordination

part Y(t). S(t) and B(s) are independent. Furthermore, an additional deterministic linear

trend process ∆t = δ · t, δ ∈ Rn is incorporated, giving

X(t) = (X
(1)
(t) , X

(2)
(t) , . . . , X

(n)
(t) )T = Y(t) + ∆(t) = BS(t)

+ δ · t . (4.2)

textbooks of Mörters and Peres [MöPe10] or Anderson [Ande03], respectively, where the following repre-
sentations could be taken from.
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As in the univariate case, δ is set to be

δ = µ− γ ,

and is controlled by the free parameter µ ∈ Rn. This is again chosen in order to obtain a

parametrization for the external trend which is directly linked to the expectation, a fact

to be illustrated later.

Therefore, the above equation (4.2) defines a process specified by the parameters α ∈ (0, 2),

λ > 0 of the CTS subordinator, γ ∈ Rn and Σ ∈ Rn×n, with Σ being positive definite5, of

the subordination object. Finally, µ ∈ Rn determines the external trend in combination

with γ. This process, which is further denoted by MVNTS(α, λ, γ,Σ, µ) is again a Lévy

process, which can be justified by the subordinative combination of a Gaussian Lévy

process and a proper Lévy subordinator.

Equation (4.2) can be extended to the following decomposition, where the stochastic trend

γ and the entire variance-covariance structure is extracted from the Brownian motion. This

is done by a linear mapping Rn → Rn with the lower triangle Cholesky factor of Σ, denoted

by chol(Σ).

X(t) = BS(t)
+ δ · t = γS(t) + ZS(t)

+ (µ− γ)t , Z(s) ≡ BM(0,Σ)

= µt+ γ(S(t) − t) + chol(Σ)WS(t)
, W(s) ≡ BM(0, I) . (4.3)

There, Z(t) denotes a centered Brownian motion with covariance matrix Σ, whereas W(t)

is a n-dimensional process with each dimension being an independent standard Wiener

process.

An even more powerful representation with regard to future tasks can be achieved when

further decomposing the covariance matrix Σ into its inherent vector of standard deviations

5For the sake of further computability, we exclude degenerated positive semi-definite matrices Σ, al-
though they would also generate feasible processes Y(t).
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σ ∈ Rn++ and correlation matrix6 P

Σ = diag(σ)Pdiag(σ) , (4.4)

resulting in

X(t) = µt+ γ(S(t) − t) + chol(Σ)WS(t)

= µt+ γ(S(t) − t) + diag(σ)chol(P)WS(t)
,

where the factors in the last product can be commutated arbitrarily. Hence, using this

decomposition another possible parametrization of the MVNTS process can be established,

which is MVNTS(a, λ, γ, σ,P, µ). It will primarily ease the standardization procedure of

associated MVNTS distributions introduced in section 4.2.1.

4.1.3 Lévy Triplet

For gaining an understanding of the properties of the MVNTS process X(t) which goes

beyond those properties of its distributions of Xt, one has to consider the associated Lévy

triplet (AX , νX ,mX) in full extent. Only this Lévy triplet is able to fully reflect the in-

stantaneous process dynamics in continuous time, which, in consequence, is responsible

for the properties of the set of characteristic functions and distributions of Xt. The other

way round, it is impossible in general to reconstruct the detailed representation of the pro-

cess dynamics contained in the Lévy triplet from e.g. the characteristic exponent function

ψX(z), containing all the involved characteristic functions φXt(z), and the i.i.d.-property

of increments in the context of a Lévy process.

With bS = m
(0)
S , one is able to determine each single component of the Lévy triplet

(AY , νY ,m
(2)
Y ) of the subordination part Y(t) by applying the universal subordination for-

6Remark: P is the capital Rho from the Greek alphabet and is not to be confused with a probability
measure P .
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mula given by equations (2.4) – (2.6)

AY = bS ·AB = 0 · Σ = 0 (4.5)

νY (y) = bS · νB(y) +

∫ ∞
0

fB(s; y)ρS(s)ds =

∫ ∞
0

fB(s; y)ρS(s)ds (4.6)

m
(2)
Y = bS ·m(2)

B +

∫ ∞
0

E(Bs)ρS(s)ds , E(Bs) = γs

=

∫ ∞
0

γsρS(s)ds . (4.7)

The diffusion component of Y(t) is AY = 0 and thus also AX = 0 as no further diffusion

component is added to Y(t) by ∆t. The calculations for the jump and the trend component

are carried out in the following paragraphs.

4.1.3.1 Lévy Measure

As the Lévy measure νY is absolutely continuous by [CoTa04, th. 4.3, p. 113 f.], its associ-

ated density νY (y) is existing and given by the term in the above equation (4.6). Solving

the integral involves the following steps.

νY (y) =

∫ ∞
0

fB(s; y)ρS(s)ds

=

∫ ∞
0

1

(2π)
n
2 |sΣ|

1
2

· exp

(
−1

2
(y − sγ)T(sΣ)−1(y − sγ)

)
· λ

1−a
2 exp(−λs)

Γ(1− a
2 )s

a
2

+1
ds

=

∫ ∞
0

1

(2π)
n
2 [sn |Σ|]

1
2

· exp

(
−1

2
(y − sγ)T

1

s
Σ−1(y − sγ)

)
· λ

1−a
2 exp(−λs)

Γ(1− a
2 )s

a
2

+1
ds

=
λ1−a

2

(2π)
n
2 |Σ|

1
2 Γ(1− a

2 )

∫ ∞
0

exp

(
−1

2
(y − sγ)T

1

s
Σ−1(y − sγ)− λs

)
· s

a+n
2

+1ds
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=

∫ ∞
0

exp

(
− 1

2s

[
yTΣ−1y − yTΣ−1γs− γTΣ−1ys+ γTΣ−1γs2

]
− λs

)
· s

a+n
2

+1ds

· λ1−a
2

(2π)
n
2 |Σ|

1
2 Γ(1− a

2 )
.

Note that for the sake of compact presentation, the covariance matrix Σ = diag(σ)Pdiag(σ)

is employed here instead of its decomposed representation.

Due to the term γTΣ−1ys being a scalar it is identical to its transpose

(
γTΣ−1ys

)T
= yT

(
Σ−1

)T
γs = yTΣ−1γs .

Moreover, Σ is symmetric as well as its inverse Σ−1 ⇒
(
Σ−1

)T
= Σ−1, which is used in

the following to aggregate the present cross terms.

νY (y) =

∫ ∞
0

exp

(
− 1

2s

[
yTΣ−1y − 2yTΣ−1γs+ γTΣ−1γs2

]
− λs

)
· s

a+n
2

+1ds

· λ1−a
2

(2π)
n
2 |Σ|

1
2 Γ(1− a

2 )

=

∫ ∞
0

exp

(
−
(

1

2
γTΣ−1γ + λ

)
s−

(
1

2
yTΣ−1y

)
· 1

s

)
· s

a+n
2

+1ds

· λ1−a
2

(2π)
n
2 |Σ|

1
2 Γ(1− a

2 )
exp

(
xTΣ−1γ

)
(4.8)

The substitution t =
(

1
2γ

TΣ−1γ + λ
)
s delivers

∫ ∞
0

exp

(
−
(

1

2
γTΣ−1γ + λ

)
s−

(
1

2
yTΣ−1y

)
· 1

s

)
· s

a+n
2

+1ds

=

∫ ∞
0

exp

(
−t−

(
1

2
yTΣ−1y

)(
1

2
γTΣ−1γ + λ

)
· 1

t

)
·

(
t

1
2γ

TΣ−1γ + λ

)−a+n
2

+1
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·
(

1

2
γTΣ−1γ + λ

)−1

dt

=

(
1

2
γTΣ−1γ + λ

)a+n
2
∫ ∞

0
exp

(
−t−

(
1

4

(
yTΣ−1y

)(
γTΣ−1γ

)
+

1

2
λyTΣ−1y

)
· 1

t

)

· t−
a+n
2

+1dt .

The integral resembles the integral representation of the modified Bessel function Kp(z)

of the second kind and order p with7

z2

4
=

1

4

(
yTΣ−1y

)(
γTΣ−1γ

)
+

1

2
λyTΣ−1y ⇒ z =

(
yTΣ−1y

) 1
2
√

(γTΣ−1γ) + 2λ

and

p+ 1 =
a+ n

2
+ 1⇒ p =

a+ n

2

Then,

∫ ∞
0

exp

(
−t−

(
1

4

(
yTΣ−1y

)(
γTΣ−1γ

)
+

1

2
λyTΣ−1y

)
· 1

t

)
· t−

a+n
2

+1dt

= 2
a+d
2

+1

[(
xTΣ−1x

) 1
2
√

(γTΣ−1γ) + 2λ

]−a+n
2

·Ka+n
2

((
yTΣ−1y

) 1
2
√

(γTΣ−1γ) + 2λ

)
.

Inserting these particular results into equation (4.8) gives

νY (y) =
λ1−a

2

(2π)
n
2 |Σ|

1
2 Γ(1− a

2 )
exp

(
yTΣ−1γ

)(1

2
γTΣ−1γ + λ

)a+n
2

2
a+n
2

+1

·
[(
yTΣ−1y

) 1
2
√

(γTΣ−1γ) + 2λ

]−a+n
2

· Ka+n
2

((
yTΣ−1y

) 1
2
√

(γTΣ−1γ) + 2λ

)

7For an extensive treatment of Bessel functions and a description of their properties, see Bell [Bell68].
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=
2λ1−a

2

(2π)
n
2 |Σ|

1
2 Γ(1− a

2 )
exp

(
yTΣ−1γ

)(
γTΣ−1γ + 2λ

)a+n
2
(
yTΣ−1y

)−a+n
4

·
(√

(γTΣ−1γ) + 2λ

)−a+n
2

· Ka+n
2

((
yTΣ−1y

) 1
2
√

(γTΣ−1γ) + 2λ

)
,

and finally

νY (y) =
2λ1−a

2

(2π)
n
2 |Σ|

1
2 Γ(1− a

2 )
exp

(
yTΣ−1γ

)(
γTΣ−1γ + 2λ

)a+n
4

·
Ka+n

2

((
yTΣ−1y

) 1
2
√

(γTΣ−1γ) + 2λ
)

(yTΣ−1y)
a+n
4

.

As was true for the diffusion component, ∆(t) is contributing no additional jumps, the

Lévy density function νX(x) of the entire MVNTS process X(t) is therefore equal to the

one of Y(t), νY (x).

4.1.3.2 Trend Component

Solving the equation for the remaining trend component is done by the following manip-

ulations

m
(2)
Y =

∫ ∞
0

γsρS(s)ds =

∫ ∞
0

γs
λ1−a

2 exp(−λs)
Γ(1− a

2 )s
a
2

+1
ds = γ

λ1−a
2

Γ(1− a
2 )

∫ ∞
0

exp(−λs)s−
a
2 ds

= γ
λ1−a

2

Γ(1− a
2 )

∫ ∞
0

exp(−t)
(
λ−1t

)−a
2 λ−1dt (Substitution: t = λs)

= γ
λ1−a

2

Γ(1− a
2 )
λ
a
2
−1

∫ ∞
0

exp(−t)t−
a
2 dt = γ

λ1−a
2

Γ(1− a
2 )
λ
a
2
−1Γ

(
1− a

2

)
= γ

When looking at the structure given in equation 4.3, this result seems to appear rather

natural. In this case, ∆(t) has to be explicitly incorporated, which evokes a non-trivial
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effect on the trend component. Ultimately, it can be concluded that

m
(2)
X = m

(2)
Y + (µ− γ) = γ + (µ− γ) = µ .

Again, this last result could be verified by comparing it to the multivariate expectation

of Xt in equation (4.13) and the fact that m
(2)
X due to full compensation encompasses the

entire drift of the process X(t). With this last remaining trend component, the derivation

of the entire Lévy triplet of X(t) is completed.

4.1.4 Characteristic Exponent Function

When only the distributional properties of the MVNTS process are of relevance, the en-

tire situation is sufficiently captured by the characteristic functions φXt(z). These can be

derived in a simple fashion for every point in time t, t > 0 from the time-independent char-

acteristic exponent function ψX(z), being time-independent and universal for the whole

process X(t). This characteristic exponent function can either be generally derived from

the entire Lévy triplet (aX , νX ,mX) associated with the MVNTS process X(t) by carrying

out the multivariate Lévy-Khintchine formula

ψX(z) = izTm
(2)
X −

1

2
zTAXz +

∫
Rn\{0}

(exp(izTx)− 1− izTx)νX(x)dx , z ∈ Rn

or, in the context of subordinations, by means of the universal subordination formula pre-

sented in equation (2.3). While the former approach is rather burdensome in the presence

of n dimensions, an alternative and straightforward approach is available. It only requires

some simple input items which are present in closed-form representations

ψX(z) = lS(ψB(z)) + ψ∆(z) , z ∈ Rn

=
2λ

a

[
1−

(
1− 1

λ

(
iγTz − 1

2
zTΣz

))a
2

]
+ i(µ− γ)Tz .
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The following transition to the, then time-dependent, characteristic function of the indi-

vidual distribution of a MVNTS process random variable Xt is simply made by

φXt(z) = exp [t · ψX(z)] = exp [ΨXt(z)] (4.9)

= exp

[
t ·

(
2λ

a

[
1−

(
1− 1

λ

(
iγTz − 1

2
zTΣz

))a
2

]
+ i(µ− γ)Tz

)]
, z ∈ Rn .

(4.10)

The corresponding moment generating function MXt(u) is not necessarily required for

further issues. For the sake of completeness it is mentioned here that

MXt(u) = φXt(−iu) , u ∈ G = (−∞, λ]n

on this feasible domain G.

The characteristic function could be an initial point for the determination of probability

density and cumulated distribution functions8 of Xt, t > 0 of the MVNTS process variable

X(t). For general distributions, this can be universally achieved by appropriate CF inversion

theorems9. However, these inversion theorems, as for not being analytically solvable in

the considered setting, require numerical integration methods in an arbitrary number of

dimensions n. Hence, an alternative approach for tackling this task will be presented in

section 4.2.1.3 which aims at reducing the complexity of the calculations and thereby

enabling efficient numerical approximations.

4.1.5 Moments

As was argued in the preceding section, the probability distributions of process variables

Xt in form of their corresponding PDF or CDF, cannot be stated in a closed solution and

the analytic expression of the characteristic functions offers little illustrative insight with

regard to the actual shape of the distribution. Thus, at this point the first four cumulants

8Further abbreviated by PDF and CDF, respectively.
9see e.g. Shephard [Shep91a], [Shep91b]
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of the distribution together with the related statistical measures should be given. They

try to fill the gap and should at least allow for a rough impression of the joint distribution,

namely of the shape of marginals and their dependence structure, when no closed form

representation is available.

Before this is practically done, one has to mention the following. When considering a

multivariate environment, it is helpful to distinguish between moments or cumulants,

respectively, of marginal distributions and those of the joint distribution. For the latter,

moments and cumulants of k-th order form tensors, their definitions as well as a detailed

description can be found in e.g. Bilodeau and Brenner [BiBr99] or McCullagh [McCu87].

With regard to the calculation of cumulants in particular, one notices that the method

remains unalteredly based on derivatives of the cumulant generating function around 0.

But as cumulants and even raw moments are influenced by several distributional features

simultaneously, one would be interested in finding a multivariate analogy to the statistics

skewness and kurtosis. Henze and Klar in [HeKl02] give an overview over present definitions

for these two statistics for multivariate distributions of n-dimensional random vectors.

However, by their scalar nature they are obviously not able to fully represent the features

of the multivariate distribution in a complete fashion. Nevertheless, they can be used as

an indicator for deviation of Gaussianity of the distribution.

Note furthermore, that the multivariate central moment of second order (k = 2) is the

familiar covariance matrix which captures the dispersion of each dimension in addition

to the linear dependence structure. For the critical features of multivariate financial data,

however, like asymmetry, heavy-tails and non-linear dependence structures, corresponding

tensors for k ≥ 3 would be required, which are less straightforward to obtain and to display

in a compact way manner.

Therefore, the presentation of moments is reasonably restricted to k < 3 in the joint

multivariate case. Due to this restriction, the conventional derivatives technique10 can be

moreover circumvented by relying on a suitable extended decomposition of the random

vector based on the subordination scheme in equation (4.3). For fixed t > 0, this equation

10The method is presented in Lukacs [Luka70].
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can be transformed into

Xt = µt+ γ(St − t) + diag(σ)chol(P)WSt , W(s) ≡ BM(0, I)

= µt+ γ(St − t) + diag(σ)chol(P)
√
StW , W ∼ N n(0, I) (4.11)

= µt+ γ(St − t) +
√
StZ , Z ∼ N n(0,Σ) . (4.12)

In essence, when considering static distributions instead of the dynamic process perspec-

tive, the stochastic time index St can be once again dissolved from the subordinated

Brownian motion, which is self-similar11 with scale coefficient α = 1
2 , and turned into a

factor
√
St. In this context, W denotes a n-dimensional Normal distributed random vari-

able W ∼ N n(0, I) with standardized marginals and pairwise independence between any

two dimensions. At last, the expression in equation (4.12) with unseparated covariance is

further utilized here for purpose of compact display.

The case k = 1 corresponds to the conventional vector of expectation

E(Xt) = E
[
µt+ γ(St − t) +

√
StZ

]

= µt+ γE(St − t) + E(
√
StZ)

= µt+ γ [E(St)− t] + E(
√
St) · E(Z)

= µt+ γ [t− t] + E(
√
St) · 0 = µt (4.13)

calculated by exploiting the linearity the expectation operator.

For k = 2, as already mentioned above, we face the matrix Cov(Xt) of pairwise covariances

of dimensions of Xt, containing the elements Cov(X
(k)
t , X

(l)
t ). They can be determined by

applying the familiar manipulation rules for covariances combined with the fact that St

11The property of self-similarity of stable Lévy processes is explained in appendix A.2.
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and Z are independent.

Cov(X
(k)
t , X

(l)
t ) = Cov(µkt+ γk(St − t) +

√
StZk, µlt+ γl(St − t) +

√
StZl)

= Cov(γkSt +
√
StZk, γlSt +

√
StZl)

= Cov(γkSt, γlSt)︸ ︷︷ ︸
À

+Cov(γkSt,
√
StZl)︸ ︷︷ ︸

Á

+Cov(
√
StZk, γlSt)︸ ︷︷ ︸

Â

+ Cov(
√
StZk,

√
StZl)︸ ︷︷ ︸

Ã

For the four above terms À – Ã we get

ad À : Cov(γkSt, γlSt) = γkγlV ar(St) = γkγl
1

λ
(1− a

2
) · t

ad Á : Cov(γkSt,
√
StZl) = γk

[
E(S

3/2
t Zl)− E(St)E(

√
StZl)

]

= γk

E(S
3/2
t )E(Zl)︸ ︷︷ ︸

=0

−E(St)E(
√
St)E(Zl)︸ ︷︷ ︸

=0

 = 0

ad Â : Cov(
√
StZk, γlSt) = 0 (symmetric to Á)

ad Ã : Cov(
√
StZk,

√
StZl) = E(StZkZl)− E(

√
StZk)E(

√
StZl)

= E(St)︸ ︷︷ ︸
=t

E(ZkZl)− E(
√
St)E(Zk)︸ ︷︷ ︸

=0

E(
√
St)E(Zl)︸ ︷︷ ︸

=0

= t · E(ZkZl) , E(ZkZl) = Cov(Zk, Zl) + E(Zk)E(Zl)︸ ︷︷ ︸
=0

= t · Cov(Zk, Zl) = t · ςk,l ,

with Σ = (ςk,l)k,l=1,...,n and σk =
√
ςk,k , k = 1, . . . , n, respectively.
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To sum up the results of the above calculations, we have that

E(Xt) = µ · t

V ar(X
(k)
t ) = Cov(X

(k)
t , X

(k)
t ) = t ·

[
1

λ
γ2
k(1− a

2
) + ςk,k

]
(4.14)

Cov(X
(k)
t , X

(l)
t ) = t · 1

λ
γkγl(1−

a

2
) + t · ςk,l .

In matrix notation, the covariance matrix Cov(Xt) can be displayed in a more compact

manner as

Cov(Xt) =
(
Cov(X

(k)
t , X

(l)
t )
)
k,l=1,...,n

= t

[
1

λ
(1− a

2
)γγT + Σ

]
(4.15)

If one abstains from the joint distribution ofXt and focuses on the marginal distributions of

X
(k)
t only, it is useful to note that they obey a univariate NTS distribution with parameter

tuple (a, λ, γk, ςk,k, µk). This becomes apparent by looking at the subordination scheme in

equation (4.11) and further recalling the fact that every dimension of B(s) is subordinated

by the same process St. Thus, their univariate moments up to order k = 4 and associated

statistics such as mean, variance, skewness and excess kurtosis follow from the above

parameter values and equations (3.22) – (3.23).

4.2 The Multivariate Normal Tempered Stable Distribu-

tions

For creating the multivariate Normal Tempered Stable distribution, the convention al-

ready familiar from the univariate setting is followed again. Recall from section that for

defining the actual NTS distribution, the NTS process variable X1 after a unit time inter-

val was employed. In the same manner, we first consider a n-dimensional random vector

Y = (Y1, Y2, . . . , Yn)T being generated by a multivariate MVNTS process X(t) with proper



4.2. THE MULTIVARIATE NORMAL TEMPERED STABLE DISTRIBUTIONS 67

tuple of corresponding parameter values (a, λ, γ, σ,P, µ)12 at time t = 1, i.e. Y
d∼ X1

13.

Then, the distributional properties of Y can be obtained by setting t = 1 in equations

(4.10) and (4.13) – (4.15). Besides the characteristic function, we have in particular

E(Y ) = µ

Cov(Y ) =

[
2− a

2λ
γγT + Σ

]
=

2− a
2λ

γγT + diag(σ)Pdiag(σ) .

The subsequent procedure might appear rather counterintuitive at first sight, that is why

we deliver the following motivation beforehand. In contrast to the commonly chosen ap-

proach of starting with the definition of a more general class of distributions first and

afterwards turning to a standardized version by setting certain constraints onto the pa-

rameter set involved, we decide to proceed just the other way round. Specifically, we first

define a multivariate standard Normal Tempered Stable distribution before we expand the

definition by translating and rescaling this standardized distribution by means of a simple

linear transformation. The reason for this seemingly unconventional approach will become

evident when turning to parameter estimation and further application in the framework

of an ARMA-GARCH time series model in chapters 5 and 6.

4.2.1 The Multivariate Standard Normal Tempered Stable Distribution

With this in mind, an analogous approach as for the univariate NTS distribution is per-

formed for Y , where the external deterministic trend component controlled by µ and the

diffusion component of the Brownian motion specified by σ2 were adjusted, ceteris paribus,

in order to meet the required conditions of a standardized distribution.

12Feasible ranges of parameter values were also given in section 4.1.2.
13 d∼ indicates equivalence in distribution.
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4.2.1.1 Construction

This corresponds to setting

µ = µ̃ := (0, . . . , 0)T ,

which centers the distribution of Y around 0. The next task concerns ensuring that

marginal distributions Yk, k = 1, . . . , n of Y have unit variance. In order to do so in a

systematical way the current values of a, λ, γ are initially assumed to be arbitrary but

constant, while only the diffusion matrix Σ belonging to the Brownian motion is set as a

design variable. There, the advantage of factorizing the covariance matrix Σ into its inher-

ent correlations P and standard deviations σ, Σ = diag(σ)Pdiag(σ), σ ∈ Rn++, P a feasible

(n × n)-matrix, performed in section 4.1.2, equation (4.4), ultimately becomes apparent.

In other words, the scale is separated from the scale-independent correlation structure for

the Brownian motion B. Otherwise it would be a rather difficult task to properly choose

Σ̃ in an unequivocal way, such that Cov(Y ) retains only values of 1 on its diagonal, as it

still offers a high number of degrees of freedom and the property of positive definiteness

has to be maintained during this operation.

A proposition for achieving this in a unique way is the possibility of now being able to

adjust the single components of σ in an appropriate manner while keeping P constant. To

be more precise, σ is set to σ̃ = (σ̃1, σ̃2, . . . , σ̃n) with

σ̃k =

√
1− 2− a

2λ
γ2
k , k = 1, . . . , n , (4.16)

For having σ̃k well-defined in (4.16), again

|γk| <
√

2λ

2− a
(4.17)

has to hold for every k = 1, . . . , n, in order to ensure

2− a
2λ

γ2
k

!
∈ (0, 1) .
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With furthermore t = 1, the random variable X̃ is subsequently constructed by inserting

the corresponding (µ̃, σ̃) into equation (4.11)

X̃ = µ̃+ γ(S1 − 1) + diag(σ̃)
√
S1V

= γ(S − 1) + diag(σ̃)
√
SV

= γ(S − 1) + diag(σ̃)
√
Schol(P)W (4.18)

V ∼ N n(0,P) , W ∼ N n(0, I) ,

where the time index of S1 will be omitted from now on in this context. In (4.18), P has

to be a valid (n×n) correlation matrix and γ ∈ Rn. Again, S is the previous subordinator

from the CTS class with parameters (a, λ)14. Finally, X̃ is said to be multivariate standard

Normal Tempered Stable distributed, which is denoted by stdMV NTS(a, λ, γ,P).

4.2.1.2 Moments and Characteristic Function

Consequentially, considering the specified parameter values (µ̃, σ̃) to be included in the

parameter tuple of a corresponding MVNTS process, in addition to t = 1, equations

(4.13) – (4.15) exemplarily states the central moments of first and second order of X̃ ∼

stdMV NTS(a, λ, γ,P)

E(X̃) = (0, . . . , 0)T (4.19)

V ar(X̃) = (1, . . . , 1)T (4.20)

Cov(X̃) = (Cov(X̃j , X̃k))j,k=1,...,n = diag(σ̃)Pdiag(σ̃) +
2− a

2λ
γγT , (4.21)

14see section 3.1.
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where the expressions for skewness and excess kurtosis could likewise be obtained from

equation (3.22) and (3.23), however.

The same applies to the characteristic function in equation (4.10), yielding

φXt(z) = exp

(
2λ

a

[
1−

(
1− 1

λ

(
iγTz − 1

2
zTdiag(σ̃)Pdiag(σ̃)z

))a
2

]
− iγTz

)
, z ∈ Rn

σ̃ =

[√
1− 2− a

2λ
γ2
k

]T
k=1,...,n

.

4.2.1.3 PDF and CDF

Although the characteristic function of the multivariate standard NTS is known in closed

form, it possesses only very limited utility for the task of determining probability density

function (PDF) fX̃(x) and cumulative distribution function (CDF) FX̃(x) of stdMVNTS

distributions, both of which have no closed form themselves. As inversion formulas of the

characteristic function, here only the equation for the PDF15,

fX̃(x) =
1

(2π)n

∫
Rn
e(−izTx)φX̃(z)dz (4.22)

are moreover hard to evaluate numerically in n dimensions, a different approach is chosen

here. Thereby, one exploits the fact that, caused by the construction through subordina-

tion, X̃ is a mixture of multivariate Normal distributions composed by the distribution of

subordinator S.

By this superimposition we have that both the multivariate PDF and CDF of X̃ can be

expressed as

fX̃(x) =

∫ ∞
0

fB̄(s;x)fS(s)ds (4.23)

15See e.g. Shephard [Shep91a], [Shep91b]. The corresponding formula for the multivariate CDF can be
found therein.
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FX̃(x) = P (X̃1 ≤ x1, . . . , X̃n ≤ xn) =

∫ ∞
0

GB̄(s;x)fS(s)ds , (4.24)

respectively. The PDF of S denoted by fS serves as the weighting density for the above

overlay. It is generated by the one-dimensional inversion of its characteristic function φS(z)

with the Fourier transform

fS(s) =
1

2π

∫ ∞
−∞

exp(−izs)φS(z)dz , (4.25)

which does not possess an analytical solution either. The term GB̄(s;x) stands for the

CDF in point x of a n-dimensional Normal distribution generated by the shifted Brownian

motion B̄(s) = B(s) − γ at the time s

GB̄(s;x) =

∫ x1−(s−1)γ1√
sσ̃1

−∞
. . .

∫ xn−(s−1)γn√
sσ̃n

−∞
fZ(z1, . . . , zn)dz1 . . . dzn , (4.26)

derived from the PDF fZ of a corresponding multivariate standard Normal distribution

with correlation matrix equal to P. The shifting of the Brownian motion is due to µ = µ̃ = 0

in the case of stdMVNTS distributions.

In the same way, fB̄(s;x) denotes a multivariate Normal density function of B̄s, finally

resulting in the PDF of the stdMVNTS distributed random vector X̃

fX̃(x) = Ma,λ,γ,P

∫
R

exp(−izs)φS(z)

∫ ∞
0

s−
n
2 exp

(
− 1

2s
(x− γs+ γ))TL(x− γs+ γ)

)
dsdz

with

Ma,λ,γ,P = (2π)−(1+n
2

) ·

[
|P| ·

n∏
k=1

(
1− 2− a

2λ
γ2
k

)]− 1
2

L = diag(σ̃)−1P−1diag(σ̃)−1 .

This approach for the PDF enjoys the advantage of not having to numerically solve a

n-dimensional integral involved with the inversion procedure of the characteristic function

in equation (4.22). Instead, one is able to superimpose fB̄(s;x), available in analytical
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form with a weighting density function given by fS(s), whereas the latter one is without

explicit representation. In case of the CDF in equation (4.24), even GB̄(s;x) has no closed

form solution but efficient algorithms contained in commercial software packages deliver

precise numerical evaluations.

The determination of PDF and CDF was demonstrated for the restricted example of

stdMVNTS distributions, although the same principle would apply for more general mul-

tivariate NTS distributions as well. Anticipating the application of multivariate NTS dis-

tributions in the context of portfolio analysis performed in chapter 5, one has to note that

the handling of actual n-dimensional multivariate NTS distributions is totally avoided by

only having to consider linear combinations for the intended purpose. Therefore, direct

evaluation of neither PDF nor CDF of multivariate NTS distributions is necessary for this

matter.

4.2.2 Linear Rescaling and MVNTS Distribution

In order to being no longer restricted to such multivariate distributions with standardized

marginals only, one proceeds to one of several conceivable definitions of a general version

of the MVNTS distribution with arbitrary first and second moment of their marginals.

As has already been indicated, a definition of a general MVNTS distribution exhibiting

useful properties, though not being overly intuitive, is obtained by linear rescaling of the

above stdMVNTS distribution. An alternative suggestion for this definition is proposed

and discussed subsequently.

A general multivariate Normal Tempered Stable (MVNTS) distributed random vector X

is thus defined by a n-dimensional multivariate standard NTS distributed random vector

X̃ ∼ stdMV NTS(a, λ, γ,P) and the following simple linear transformation with coefficient

vectors c and d,

X = diag(c)X̃ + d (4.27)

where d = (d1, d2, . . . , dn)T ∈ Rn, c = (c1, c2, . . . , cn)T, ck > 0, k = 1, 2, . . . , n. This

distribution is further denoted by X ∼MVNTS(a, λ, γ,P, c, d).
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Note that only a component-wise linear transformation is used in above equation (4.27)

instead of a general one. Thus, one directly obtains the basic statistics of the the MVNTS

distributed random vector X

E(X) = E(X̃) + d = d

Cov(Xj , Xk) = cjck

(
2− a

2λ
γjγk + σ̃j σ̃kρj,k

)
, j, k = 1, 2, . . . , n

with familiar

σ̃k =

√
1− 2− a

2λ
γ2
k , k = 1, 2, . . . , n

and compact matrix notation

Cov(X) = diag(c)Cov(X̃)diag(c)

= diag(c)

[
2− a

2λ
γγT + diag(σ̃)Pdiag(σ̃)

]
diag(c)

V ar(X) = (c2
1, c

2
2, . . . , c

2
n)T .

With the same argument of simple linear transformations, also skewness and excess kurto-

sis of the marginals associated with this MVNTS distribution could be determined. This

would be achieved by the properties of these two particular univariate statistical mea-

sures with regard to one-dimensional linear transformations. At this point, only the main

idea is illustrated while details of the computation and their results are omitted, however.

Finally, it is trivial to recognize that a stdMV NTS(a, λ, γ,P) distribution is equivalent

to a MVNTS(a, λ, γ,P,1,0) distribution with 1 = (1, . . . , 1)T and 0 = (0, . . . , 0)T. This

embedding of stdMVNTS in the set of MVNTS distributions will turn out to be useful in

later applications.

Since every representation or parametrization, respectively, has its individual advantages
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and shortcomings, the above definition via rescaling of standardized MVNTS is no excep-

tion, a complementing and more intuitive approach together with its inherent parametriza-

tion for the class of MVNTS should be presented. It is based on the idea of skipping

the obscuring intermediate step via stdMVNTS. In doing so, the above random vector16

Y ≡ Y1 of a MVNTS process Y(t) with parameters (a, λ, γ, σ,P, µ) at time t = 1 is said to

be MNTS(a, λ, γ, σ,P, µ) distributed, Y ∼ MNTS(a, λ, γ, σ,P, µ). Associated moments,

other statistical measures and the characteristic function immediately follow by inserting

these parameters together with t = 1 into equations (4.13) – (4.15) and (4.10), respectively.

While the first principal definition and parametrization possesses advantages concerning

the expression of moments as well as with regard to tractability for later parameter esti-

mation and application in the context of portfolio analysis, the second one allows better

interpretability of its incorporated building blocks in addition to improved presentability

of the characteristic function. Furthermore, it will turn out to be more convenient for

theoretical considerations.

In order to verify the equivalence of both classes, X ∼ MVNTS(a, λ, γ,P, c, d) and

Y ∼MNTS(a, λ, γ, σ,P, µ), we derive their parameter correspondence in the following.

In other words, we give the MNTS parameter tuple (a∗, λ∗, γ∗, σ∗,P∗, µ∗) of a random

variable X ∼ MVNTS(a, λ, γ,P, c, d). Comparing the characteristic function of X, ob-

tained by the universal linear transformation property of characteristic functions

φX(z) = φdiag(c)X̃+d(z) = φX̃(diag(c)Tz) · exp(idTz) = exp(ΨX(z)) , z ∈ Rn

ΨX(z) = idTz +
2λ

a

[
1−

(
1− 1

λ
(iγTdiag(c)z − 1

2
(diag(c)z)T Sdiag(c)z)

)a
2

]
− iγTdiag(c)z

S = diag

[√1− 1

λ

(
1− a

2

)
γ2
k

]
k=1,...,n

Pdiag

[√1− 1

λ

(
1− a

2

)
γ2
k

]
k=1,...,n

 ,

16See introduction of section 4.2.
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with the structure of the MNTS characteristic function17, we get

γ∗ = diag(c)γ (4.28)

σ∗ = diag(c)σ̃ = diag(c)

[√
1− 1

λ

(
1− a

2

)
γ2
k

]
k=1,...,n

(4.29)

µ∗ = d , (4.30)

through a consolidation of appropriate terms into new corresponding MNTS parameter

values. The parameters (a∗, λ∗) of the former subordinator dynamics as well as the corre-

lation matrix P∗ of the employed Brownian motion however remain unaltered during this

parameter conversion18.

Its inverse19 is embodied by the following relation

c =

[√
2− a∗

2λ∗
(γ∗k)2 + (σ∗k)

2

]
k=1,...,n

γ =

[(
2− a∗

2λ∗
+

(σ∗k)
2

(γ∗k)2

)−1/2
]
k=1,...,n

=

[
γ∗k ·

√
2λ∗

(2− a∗)(γ∗k)2 + 2λ∗(σ∗k)
2

]T
k=1,...,n

with trivially a = a∗, λ = λ∗, P = P∗ and d = µ∗. As both the parameter conversion and

its inverse are bijective on their respective parameter spaces, the sets of existing MVNTS

and MNTS distributions are congruent and differ only in their individual parametrization.

This relation will prove essential on different occasions in subsequent chapters.

4.2.3 Linear Transformation

In this section, general linear transformations of all stdMVNTS, MVNTS and MNTS dis-

tributions are covered in full detail. The reason for this meticulous attention is that they

constitute an essential tool for the operations performed in the context of parameter esti-

17The MNTS-CF is furthermore obtained by setting t = 1 in equation (4.10).
18MVNTS → MNTS
19That is MNTS → MVNTS. Details on the derivation can be found in appendix B.2.
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mation and portfolio analysis in the forthcoming chapters. The effects of linear mappings

are to be stated in terms of associated parameter values, from which e.g. moments and

characteristic functions can be immediately resolved afterwards. In particular, as none of

these three distributions offer the advantage of a closed form probability density function,

the characteristic function has to serve as the only analytic representation available for

performing the necessary calculations.

For all of the three considered distributions a general linear mapping Rn → Rm of a

multivariate n-dimensional random variable X ∈ Rn is applied

V = AX + b ,

specified by a (m× n)-matrix A possessing full rank and a translation vector b ∈ Rm.

In a first step a basic difficulty connected with the treatment of general linear transfor-

mations will be exemplified by means of MNTS distributions, where it can be observed

most clearly. For this purpose, consider a m-dimensional random vector U created by

Y ∼MNTS(a, λ, γ, σ,P, µ) and the above mapping

U = AY + b .

Its characteristic function is given by

φU (z) = φAY+b(z) = exp(ibTz) · φY (ATz) = exp(ΨU (z)) , z ∈ Rm

ΨU (z) = ibTz +
2λ

a

[
1−

(
1− 1

λ
(iγTATz − 1

2
(ATz)Tdiag(σ)Pdiag(σ)TATz)

)a
2

]

+ i(µ− γ)TATz

=
2λ

a

[
1−

(
1− 1

λ
(i(Aγ)Tz − 1

2
(zTAdiag(σ)P(Adiag(σ))Tz))

)a
2

]
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+ i(Aµ+ b−Aγ)Tz .

The calculations in the above equation result from applying the universal linear trans-

formation formula for characteristic functions20 to the specific context, which will like-

wise be done for the two remaining distributions. Finally, exploiting the present similari-

ties of terms in corresponding expression (4.10) leads to the conclusion that U follows a

MNTS(aU , λU , γU , σU ,PU , µU ) distribution again. The extraction of

aU = a , λU = λ , γU = Aγ , µU = Aµ+ b

is straightforward, whereas the handling of the generated Brownian covariance structure

Σ
(B)
U = Adiag(σ)P(Adiag(σ))T

proves to be more difficult. However, the only necessity is to accommodate this covariance

matrix into the conventional parametrization for the MNTS distribution. This is achieved

by decomposing Σ
(B)
U into its associated vector of standard deviations σU and the separated

correlation matrix PU by the diagonal factorization

Σ
(B)
U = diag(σU )PUdiag(σU )

σ
(k)
U = Σ

(B)
U,(k,k)

P
(i,j)
U = Σ

(B)
U,(i,j) ·

[
σ

(i)
U σ

(j)
U

]−1
.

Because of this unwieldy parameter representation, we restrict the further study of std-

MVNTS and MVNTS to only simple linear transformations instead of considering the most

general case. These simple linear transformations provide the central tool for performing

linear standardizations in the following chapters, which is why they represent the subclass

of the highest relevance with respect to our interests, nevertheless. Another central use of

20can be found e.g. in Rotar [Rota99, p. 361].
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these simple linear combination to be anticipatorily mentioned at this point will be in the

context of applying multivariate Normal Tempered Stable distributions for the innovation

process in ARMA-GARCH time series models in chapter 6.

Before doing so, the basic findings concerning general linear transformations valid for all

distributions of multivariate NTS type can be summarized as follows:

• Parameters (a, λ) associated with the CTS subordinator dynamics remain unaffected.

• The underlying implicit Brownian motion in the subordination is strictly linearly

transformed by the mapping matrix A. This results in the respective mappings Aγ

and AΣ(B)AT of its specifying parameters.

• The external drift component is subject to the entire affine linear transformation.

This principle means of influencing the single constituting components of multivariate

NTS distributions is reflected in each of the now following cases of the restricted simple

linear transformation.

For this purpose we furthermore consider a simple linear transformation T : Rn → Rn of

a n-dimensional random vector X

V = T (X) = diag(β)X + θ ,

specified by a vector β ∈ Rn++ and a vector θ ∈ Rn. This kind of mapping is characterized

by the peculiarity that each vector component ofX is separately transformed by vi = βixi+

θi, i = 1, . . . , n, which results in a high degree of tractability. This kind of transformation

is meant by linear rescaling of X.

Starting with the MVNTS, we have that the random vector V = T (X) created from a mul-

tivariate n-dimensional MVNTS distributed random vector X ∼MVNTS(a, λ, γ,P, c, d)

possesses the characteristic function as follows

φV (z) = φX(diag(β)z) · exp(iθTz) = exp(ΨV (z)) , z ∈ Rn
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= exp

[
2λ

a

(
1−

(
1− 1

λ

(
i(diag(c)γ)Tdiag(β)z − 1

2
(diag(β)z)Tdiag(c)diag(σ̃(a,λ,γ))

· Pdiag(σ̃(a,λ,γ))diag(c)diag(β)z
) )a2)

+ i(d− diag(c)γ)Tdiag(β)z + iθTz

]

with

σ̃(a,λ,γ),k =

√
1− (2− a)

2λ
γ2
k , k = 1, . . . , n

which results in

φV (z) = exp

[
2λ

a

(
1−

(
1− 1

λ

(
i(diag(β)diag(c)γ)Tz − 1

2
zTdiag(β)diag(c)diag(σ̃(a,λ,γ))

· Pdiag(β)diag(c)diag(σ̃(a,λ,γ))z
) )a2)

+ i (diag(β)d+ θ − (diag(β)diag(c)γ))T z

]

When again exploiting the present structural similarities to the characteristic functions of

MVNTS and MNTS, respectively, we find that V obeys a

• MVNTS(a∗, λ∗, γ∗,P∗, c∗, d∗) distribution with

a∗ = a , λ∗ = λ , γ∗ = γ , P∗ = P (4.31)

c∗ = diag(β)c (4.32)

d∗ = diag(β)d+ θ , (4.33)

or a

• MNTS(a∗, λ∗, γ∗∗, σ∗,P∗, µ∗) distribution with

γ∗∗ = diag(β)diag(c)γ
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σ∗ = (σ∗1, . . . , σ
∗
n)T = diag(β)diag(c)σ̃(a,λ,γ) with σ∗k =

√
1− (2− a)

2λ
γ2
kckβk

µ∗ = diag(β)d+ θ = d∗ ,

where the latter representations could also be obtained by means of the parameter corre-

spondence from section 4.2.2, p. 74 f. . Here, one notices in particular how the MVNTS

distributions benefit from the extraction of their scales, which are already explicitly re-

flected in their parametrization. This, in turn, enables a rather compact description of the

results.

When subsequently treating the stdMVNTS distribution, one can build on the above re-

sults and on the fact that by its specific construction a stdMNTS distribution is included in

the general class of MVNTS distributions with c = (1, . . . , 1)T = 1 and d = (0, . . . , 0)T = 0.

To elaborate on this in greater detail, a multivariate n-dimensional standard NTS dis-

tributed random vector X̃ ∼ stdMV NTS(a, λ, γ,P) ≡ MVNTS(a, λ, γ,P,1,0) together

with a transformation U = T (X̃) are considered

U = T (X̃) = diag(β)X̃ + θ .

By the above argument and the relations given in equations (4.32) and (4.33) it is straight-

forward to conclude that U is again MVNTS distributed V ∼ MVNTS(a, λ, γ,P, c∗, d∗)

with

c∗ = diag(β)1 = β

d∗ = diag(β)0 + θ = θ .

As a concluding remark, it should be stated that the class of multivariate NTS distributions

is closed under linear transformations, which of course is independent of the choice of

particular parametrization MVNTS or MNTS. This closedness in combination with the

possibility of simple representation of the results, especially concerning linear rescalings,
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enables the application of MVNTS distributions as innovation processes for of ARMA-

GARCH time series models to be studied in chapter 6.

4.2.4 Linear Combinations

In this section, linear combinations of dimensions of multivariate Normal Tempered Sta-

ble distributions are presented. They constitute another specific subclass of general lin-

ear transformations covered in the section above and are a central manipulation tool for

portfolio analysis to be treated in the forthcoming chapters. But unlike general linear

transformations do, linear combinations in the context of MVNTS distributions possess

a thoroughly desirable property which will provide convenient tractability. This fact can

be attributed on the one hand to the simple structure of linear combinations, but on the

other even more so to the particular properties of the MVNTS distributions due to its

foresighted construction approach via Brownian subordination.

For a non-trivial vector ω ∈ Rn, one obtains a linear combination Z of dimensions of

a n-dimensional MVNTS distributed random vector X ∼ MVNTS(a, λ, γ,P, c, d) with

weighting ω through

Z = ωTX =

n∑
k=1

ωkXk .

By the definition of MVNTS via Brownian subordination and subsequent linear rescaling

presented in sections 4.2.1 and 4.2.2, it holds true that

Z = ωT
(

diag(c)X̃ + d
)

= ωTdiag(c)X̃ + ωTd

=
n∑
k=1

ωkdk +
n∑
k=1

ωkckX̃k

= ωTdiag(c)
[
(S − 1)γ +

√
Sdiag(σ̃)chol(P)W

]
+ ωTd
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=
n∑
k=1

ωkdk +
n∑
k=1

ωkck

(
γk(S − 1) + σ̃k

√
SVk

)
with

σ̃ =

[√
1− 2− a

2λ
γ2
k

]T
k=1,...,n

and

W ∼ N n(0, I) , V ∼ N n(0,P)

Hence,

Z = ωTd+ ωTdiag(c)γ(S − 1) + diag(c)diag(σ̃)chol(P)
√
SωTW (4.34)

=
n∑
k=1

ωkdk +

(
n∑
k=1

ωkckγk

)
(S − 1) +

√
S

(
n∑
k=1

ωkckσ̃kVk

)
, (4.35)

where X̃ denotes a corresponding multivariate stdMV NTS(a, λ, γ,P) distributed random

vector. The last expression in equation (4.34) and (4.35), respectively, are made up of a

weighted sum of possibly correlated Normal distributions, which in turn, by the familiar

property of Normal distributions, results in a univariate Normal distribution. With the

conventional computation rules for Gaussian random variables, we obtain the the following

expression

Z = m+ g(S − 1) + s
√
SU , U ∼ N (0, 1) (4.36)

where

m = ωTd =

n∑
k=1

ωkdk (4.37)

g = ωTdiag(c)γ =

n∑
k=1

ωkckγk (4.38)
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s =
√
ωTdiag(c)diag(σ̃)Pdiag(σ̃)diag(c)ω , P = (ρj,k)j,k=1,...,n

=

√√√√ n∑
j=1

n∑
k=1

ωjωkcjckσ̃j σ̃kρj,k =

√√√√ n∑
j=1

n∑
k=1

ωjωkcjck

√
1− (2− a)

2λ
γ2
j

√
1− (2− a)

2λ
γ2
kρj,k ,

(4.39)

which closely resembles the defining subordination scheme for univariate NTS distributions

in equation (3.24), section 3.7. Therefore, the univariate random variable Z turns out

to be distributed according to a univariate Normal Tempered Stable distribution with

the above parameter values again, hence Z ∼ NTS(a, λ, g, s2,m). Note that the above

sum representations (4.39) attempt to clearly illustrate the composition of the emerging

parameter values on the one hand, while on the other the more compact linear algebra

notation is aimed at efficient implementation of the necessary calculation in a matrix-

oriented programming environment like Matlabr.

The reason for the existence of this useful property, is the fact that MVNTS distribu-

tions are constructed via Brownian subordination, which has already been stressed before.

To be more specific, linear combinations are basically concerned with the summation of

Normal distributions while the subordinator itself remains unaffected. In other words, it

makes no difference whether linear combinations of a subordinated Brownian motion are

considered or if the linear combination of the Brownian motion is subordinated directly,

instead. At this point, it is worth mentioning another beneficial relation with regard to

MVNTS parameter estimation to be carried out at a later stage. As the one-dimensional

subordinator S is not influenced by the linear combination, the parameter values (a, λ)

associated with its dynamics are directly passed from the multivariate MVNTS on to the

univariate NTS. Hence, this operation preserves the pair (a, λ) of a MVNTS distribution

which can furthermore be obtained from any non-trivial linear combination by applying a

suitable NTS estimation procedure.



Chapter 5

Unconditional Models

This chapter is intended to provide a first field of application of the multivariate Nor-

mal Tempered Stable distribution within the scope of financial data modeling. In order

to emphasize relevant further concepts yet to be presented, these mainly include parame-

ter estimation as well as numerical approximations of probability density and cumulated

distribution functions of MVNTS distributions, a deliberately naive and simple model

framework is chosen at first. After these specific methods were introduced, the MVNTS

distribution will be applied within the context of a successful state-of-the-art model for

financial time series data in the next chapter.

In the remainder of this chapter, the above mentioned methods are utilized to fit the

specified model to a set of empirical data taken from the Dow Jones Industrial Average

Index. Furthermore, the goodness of fit of the estimated model will be assessed by a range

of various powerful statistical standard tests designed for this purpose. In a last step, an

optimal portfolio strategy based on the newly developed model is going to be be derived,

whose performance is subsequently compared to a common widespread approach by means

of an empirical backtest.

84
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5.1 Model Specification

In contrast to the continuously compounded return rates usually employed in financial

modeling, we utilize simply compounded rates

rt =
∆Pt
Pt−1

=
Pt − Pt−1

Pt−1
(5.1)

instead, which should be subject of the subsequent modeling task. The reason lies in the

advantages this choice of modeling variable entails for determining portfolio returns at a

later stage of this chapter1.

In the following, a comparatively simple model for the joint dynamics of asset prices is

suggested. Actually, one assumes the simply compounded index and joint stock returns

(5.1) in each 1-day-period to be serially independent and identically distributed (i.i.d.)

random vectors Rt according to the multivariate Normal tempered stable distribution

introduced in section 4.2.2. This formulation is further referred to as the Stationary Model

of constant volatility and basically embodies a white noise process for the daily returns2

Rt
i.i.d.∼ MVNTS(a, λ, γ,P, c, d) , t ∈ N .

5.2 Empirical Data Set

The empirical study of a stationary model for asset returns is based on daily return data

of 29 stocks included in the Dow Jones Industrial Average (DJIA) index in addition to

the daily returns of the index itself. These time series of historical observations cover the

time interval between September 25, 1997 and October 30, 2009. Hence, the entire data

set consists of in total 3405 daily records for each of the 29 encompassed stocks. The DJIA

component listing given in table 5.1 is that of October 25, 2010 and k denotes the position

1By the arguments of Brooks in [Broo08, p. 7].
2Note however, that this is in general not equivalent to a random walk for the prices, only aggregated

log-returns would follow random walk processes.
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k Company Name Ticker

1 3M Co. MMM
2 Alcoa Inc. AA
3 American Express Co. AXP
4 AT&T Inc. T
5 Bank of America Corp. BAC
6 Boeing Co. BA
7 Caterpillar Inc. CAT
8 Chevron Corp. CVX
9 Cisco Systems Inc. CSCO
10 Coca-Cola Co. KO
11 E.I. DuPont de Nemours & Co. DD
12 Exxon Mobil Corp. XOM
13 General Electric Co. GE
14 Hewlett-Packard Co. HPQ
15 Home Depot Inc. HD

k Company Name Ticker

16 Intel Corp. INTC
17 International Business Machines Corp. IBM
18 Johnson & Johnson JNJ
19 JPMorgan Chase & Co. JPM
20 McDonald’s Corp. MCD
21 Merck & Co. Inc. MRK
22 Microsoft Corp. MSFT
23 Pfizer Inc. PFE
24 Procter & Gamble Co. PG
25 Travelers Cos. Inc. TRV
26 United Technologies Corp. UTX
27 Verizon Communications Inc. VZ
28 Wal-Mart Stores Inc. WMT
29 Walt Disney Co. DIS

Table 5.1: Considered stocks with ticker symbols and index position.

in the data set3. One separate time series of the same length contains the associated DJIA

index returns over the above sample period. The origin of this data is the OptionMetrics

Ivy DataBase provided by Wharton Research Data Services.

5.3 Parameter Estimation

The basic tool for tackling the task of parameter estimation of the unconditional distri-

bution MVNTS(a, λ, γ,P, c, d), which in turn entirely specifies the stated model for the

stock returns, will be a maximum likelihood (ML) approach. As a simultaneous estima-

tion of all involved parameter values proves impossible by aspects of computational time

consumed and robustness of resulting estimates, a decomposition and following sequential

procedure for solving this problem is proposed here. Besides the multivariate model for

the joint returns of the stocks, a univariate model for the index returns is separately con-

sidered in the first instance. By the particular construction approach it is then possible

to easily incorporate the index returns as a further dimension into the multivariate NTS

model for the 29 stocks afterwards.

3Of the 30 stocks currently comprised in the DJIA , Kraft Food Inc. (KFT) is left out of consideration
because of incomplete return data history available to the author.
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5.3.1 Sample Period

For implementation of the actual parameter estimation only historical daily return records

from a 10-year-period, beginning January 2, 1999 and ending December 31, 2008, are

considered. Hence, N = 2514 returns are contained in the sample period. It has to be taken

into account, that the recent financial crisis, peaking in the collapse of U.S. investment

bank Lehman Brothers on September 15, 2008, with its highly volatile market conditions,

is included in the estimation period.

5.3.2 Index Model

At first, we turn to the one-dimensional NTS model for the DJIA index returns R(ind)

R
(ind)
t

i.i.d.∼ NTS(a(ind), λ(ind), γ(ind), σ
2
(ind), µ(ind)) , t ∈ N ,

and their time series of empirical realizations {r(ind)
t }, t = 1, . . . , 2514. Although this kind

of parametrization was not explicitly introduced for the univariate NTS in chapter 3,

the approach of removing the scales and modeling the standardized situation only, fa-

miliar from the multivariate setting, should be employed for the index data, also. This

simplifies the subsequent estimation procedure on the one hand, on the other hand this

decomposition will facilitate the conflation of index and stock returns in one joint model,

which is required for later portfolio optimization in section 5.5.2. The empirical returns

have arithmetic sample mean r̄(ind) = 6.2227 · 10−5 and sample standard deviation4

Std∗(r(ind)) =
√
V ar∗(r(ind)) = 0.0127. Both values represent unbiased estimates for

the expectation E(R(ind)) and the standard deviation Std(R(ind)) =
√
V ar(R(ind)) of the

index returns R(ind), respectively, and moreover reflect the inherent scales of the data.

As already indicated above, the principle of removing the scale and then modeling the

emerging standardized distribution can be directly transferred from the multivariate case,

although for the univariate case the NTS was not defined in the same way as the MVNTS

4Recall that the sample version of variance and standard deviation operate with a denominator of
(N − 1) instead of N in order to ensure unbiasedness.
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finally was. Of course it is obvious that the information contained in the removed scale

has to be further carried along when reducing NTS to stdNTS.

Before actually performing the linear standardization, it is important to point out the

following relation. One has to prove first, that the set of linearly standardized NTS dis-

tributions is congruent to the set of univariate stdNTS distributions presented in section

4.2. This verification involves two steps:

1.) Linearly standardized NTS distributions are entirely contained in the set of univariate

stdNTS distributions.

2.) Univariate stdNTS distributions for their part constitute a subset of univariate and

linearly standardized univariate NTS distributions.

The direction referred to by 1.) is proven by considering a random variable

X ∼ NTS(a, λ, γ, σ2, µ) with expectation E(X) = µ and standard deviation5

Std(X) =
√
V ar(X) =

√
σ2 +

2− a
2λ

γ2 .

The corresponding linearly standardized random variable X̃ = b̄X + d̄ is consequently

attained by setting

X̃ =
X − E(X)

Std(X)
=

1

Std(X)
X − E(X)

Std(X)

b̄ =
1

Std(X)
=

(
σ2 +

2− a
2λ

γ2

)−1/2

d̄ = − E(X)

Std(X)
= −µb̄ = −µ

(
σ2 +

2− a
2λ

γ2

)−1/2

.

By the rules of univariate linear transformations developed in section 3.7.2 we

have that X̃ is again NTS distributed with parameter vector (ã, λ̃, γ̃, σ̃2, µ̃), i.e.

5See equation (3.21).
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X̃ ∼ NTS(ã, λ̃, γ̃, σ̃2, µ̃), and

ã = a , λ̃ = λ

γ̃ = b̄γ =

(
σ2 +

2− a
2λ

γ2

)−1/2

=

(
σ2

γ2
+

2− a
2λ

)−1/2

σ̃2 = σ2b̄2 = σ2

(
σ2 +

2− a
2λ

γ2

)−1

=

(
1 +

2− a
2λ

γ2

σ2

)−1

=

(
2λσ2 + (2− a)γ2

2λσ2

)−1

(5.2)

µ̃ = b̄µ+ d̄ = b̄µ− µb̄ = 0 . (5.3)

Furthermore, it remains to be shown that this NTS distribution matches the struc-

ture of a particular stdNTS(a∗, λ∗, γ∗) distribution in NTS(a∗, λ∗, γ∗,
[
σ̄(a∗,λ∗,γ∗)

]2
, µ̄)

parametrization. In above equation (5.3), the condition

µ̄
!

= 0 = µ̃

is shown to be directly satisfied. The term σ̄(a∗,λ∗,γ∗) implied by the stdNTS parameters

a∗ = ã = a , λ∗ = λ̃ = λ

γ∗ = γ̃ =

(
σ2

γ2
+

2− a
2λ

)−1/2

has to be equal to the expression in (5.2), which is finally proven by below calculations

resulting in equation (5.4).

[
σ̄(a∗,λ∗,γ∗)

]2
= 1− 2− a∗

2λ∗
(γ∗)2 = 1− 2− a∗

2λ∗

(
σ2

γ2
+

2− a
2λ

)−1

= 1−
(

2λσ2

(2− a)γ2
+ 1

)−1

= 1−
(

2λσ2 + (2− a)γ2

(2− a)γ2

)−1
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= 1− (2− a)γ2

2λσ2 + (2− a)γ2
=

2λσ2 + (2− a)γ2 − (2− a)γ2

2λσ2 + (2− a)γ2

=
2λσ2

2λσ2 + (2− a)γ2
(5.4)

But as values of parameter γ for stdNTS distributions have to meet a certain restriction

reflected by equation (3.28), its validity in the considered case is finally verified by

|γ∗|
!
<

√
2λ∗

2− a∗
⇔ (γ∗)2 !

<
2λ∗

2− a∗
=

(
2− a

2λ

)−1

2− a
2λ

> 0⇒ (γ∗)−2 =
σ2

γ2︸︷︷︸
>0

+
2− a

2λ

︸ ︷︷ ︸
>0

>
2− a

2λ

⇒ (γ∗)2 =

(
σ2

γ2
+

2− a
2λ

)−1

=
[
(γ∗)−2

]−1
<

(
2− a

2λ

)−1

.

Thus, every linearly standardized NTS random variable X obeys a particular stdNTS

distribution whose parameter values were explicitly derived above.

The part constituted by 2.) remains to be considered. An explicit verification like the one

for the opposite direction carried out above would become more difficult here, wherefore an

indirect approach is implemented instead. In doing so, one has to show that each arbitrarily

rescaled stdNTS distribution is again contained in the class of NTS distributions. This

statement is indeed true as every stdNTS distribution has an alternative representation

in terms of NTS parameters and the class of NTS distributions is furthermore closed

under the involved linear transformations6. Hence, by 1.) and 2.) the equivalence of the

set of linearly standardized NTS distributions and the set of stdNTS distributions is

finally verified. In conclusion, this explains why the assumption of stdNTS distributions

for the linearly standardized index returns R̃(ind) is admissible when the initial R(ind) are

assumed to be univariate NTS distributed. The likewise linearly standardized historical

6This closure has been pointed out in section 3.7.2.
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index returns in question are created by

r̃(ind) =
r(ind) − r̄(ind)

Std∗(r(ind))
,

where the employed coefficients r̄(ind) and Std∗(r(ind)) are simply the unbiased estimates

of the scale parameters E(R(ind)) and Std(R(ind)) obtained above.

The associated stdNTS parameters (ã(ind), λ̃(ind), γ̃(ind)) for R̃(ind) are estimated simulta-

neously by the maximum likelihood method, yielding point estimates and corresponding

95% confidence intervals (CI) given in table 5.2. The procedure relies on a heuristic search

on the feasible region for parameter values, an approach which will be repeatedly applied

in a similar form in the forthcoming sections. The required inversion formulas for the prob-

ability density function together with efficient techniques for their numerical evaluation7

by Fast Fourier Transformations are comprehensively covered in the forthcoming section

5.3.3.1.

â(ind) λ̂(ind) γ̂(ind)

estimate 1.1584 0.1812 -0.0296

lower CI boundary 0.8791 0.0521 -0.0765

upper CI boundary 1.4376 0.3104 0.0173

Table 5.2: Parameter estimates (stdNTS) for standardized index returns.

Supplementarily, it is noted that by using the above point estimates in combination with

the estimates of mean and standard deviation the modeled R
(ind)
t follow an estimated

NTS(â, λ̂, η̂, σ̂2, µ̂) distribution with

σ̂ = b̄ · σ̃(â,λ̂,γ̂) = Std(r(ind)) ·

√
1− 2− â

2λ̂
γ̂2 = 0.01267

η̂ = b̄ · γ̂(ind) = Std(r(ind)) · γ̂(ind) = −3.7592 · 10−4

µ̂ = b̄ · µ̃+ d̄ = d̄ = r̄(ind) = 6.2227 · 10−5 .

7The numerical evaluation becomes necessary by the fact that closed-form solutions are not available
as has been explained in section 4.2.1.3 previously.
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This consequently results from the application of the calculation rules developed for linear

transformations in section (3.7.2) and the constructive definition of the stdNTS distri-

bution. The above parameter values indicate that the distribution is concentrated on a

rather limited range around 0 which constitutes another reason for performing the required

parameter estimations only after the observations have been previously standardized.

5.3.3 CF Inversion

5.3.3.1 Probability Density Function

The method of maximum likelihood parameter estimation requires evaluation of the NTS

probability density function. As the PDF in case of the univariate NTS distribution cannot

be expressed as an analytical function, so does the efficient point-wise numerical approx-

imation of the PDF pose one of the main challenges and necessary preconditions for

practical handling of tempered stable distributions. The same applies to cumulative dis-

tribution functions of the univariate NTS, which become relevant in the further steps of

the analysis when quantiles and other risk measures have to be determined.

Treating the PDF fX(x) first, the following inversion relation8 to the characteristic func-

tion φX(z) has to be solved,

fX(x) =
1

2π

∫ ∞
−∞

exp(−izx)φX(z)dz , ∀x ∈ R . (5.5)

The above complex integral embodies the familiar continuous Fourier transform so fX

corresponds to the representation of φX on the frequency domain x ∈ R. For a single

point x ∈ R, the entire range of numerical integration techniques for the above integral

in equation (5.5) would be available. All of these approaches, however, do not prove very

suitable as only one single point x can be treated at the same time. To remedy this situ-

ation, Bailey and Swarztrauber [BaSw94] suggested the following solution, encompassing

three particular steps:

8Similar to equations (4.22) and (4.25).
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• The integration in equation (5.5) is discretized, the integrand is converted to a simple

step function.

• The discretization grid {zj}j=0,1,...,m for the approximative evaluation on z ∈ R

as well as a set of frequencies {xk}k=0,1,...,m are set in a way that the expression

resembles a discrete Fourier transform of {φX(zj)}. It is central to note here that

this discrete Fourier transform (DFT) involved is the same for every xk.

• For the DFT an efficient FFT9 algorithm is available which reduces the computa-

tional complexity from O(m2) to O(m logm).

This approach is going to be presented here in full detail as it will provide the basic

structure for the numerical inversion of the characteristic function in order to obtain the

CDF. Following Bailey and Swarztrauber [BaSw94], the complex exponent function in the

analytic inversion term10 is discretized to a simple step function

∫ ∞
−∞

exp(−ixz)φ(z)dz ≈
m−1∑
j=0

exp(−ixkzj)φ(zj)∆z =: Ik (5.6)

on a grid {xk} at first. The discretization is performed on a grid {zj} = {sz + j∆z, j =

0, 1, . . . ,m} and a set of corresponding evaluation frequencies {xk} = {sx + ∆x, k =

0, 1, . . . ,m}. These two sets are each specified by a respective start value sz, sx and step

size ∆z,∆x for m steps. Incorporating this grid specification into equation (5.6) leads to

Ik =
m−1∑
j=0

exp(−i(sx + k∆x)(sz + j∆z))φ(sz + j∆z)∆z

= ∆z

m−1∑
j=0

exp(−i(sxsz + sx∆zj + ∆xszk + ∆x∆zkj))φ(sz + j∆z)

= ∆z exp(−isxsz) exp(−i∆xszk)

m−1∑
j=0

exp(−i∆x∆zkj) exp(−isx∆zj)φ(sz + j∆z) .

(5.7)

9abbrv.: Fast Fourier Transformation
10see equation (5.5)
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Recall that the discrete Fourier transform (DFT) of a complex vector p ∈ Cm is defined

as the likewise complex vector D ∈ Cm with

Dk =
m−1∑
j=0

e−2πi· jk
m · pj , k = 0, 1, . . . ,m− 1 . (5.8)

Provided m ∈ 2N, i.e. m is a power of two, the Fast Fourier Transformation algorithm as a

means of efficient computation of the DFT D can be applied. On this account it is desired

to arrange the grids in a way that the expression in equation (5.7) adopts the structure of

the DFT in equation (5.8) while meeting the prerequisites for the FFT. This is basically

achieved by setting

∆x∆z =
2π

m
⇒ ∆x =

2π

m∆z
, (5.9)

when assuming that ∆z and m ∈ 2N have arbitrary but fixed values, yielding

Ik = ∆z exp(−isxsz) exp(−i 2π

m∆z
szk)

m−1∑
j=0

exp(−i2πkj
m

) exp(−isx∆zj)φ(sz + j∆z)

= ∆z exp(−isxsz) exp(−i2π
m

sz
∆z

k)Dk

[
[exp(−isx∆zj)φ(sz + j∆z)]j=0,1,...,m−1

]
.

Note that the above relation (5.9) enables a representation of the summation as a DFT of

a slightly modified vector of characteristic function values, evaluated on the z-grid. Finally,

a reasonable but more or less arbitrary choice for the starting points of the grids

sz = −∆z ·
m

2
= −m∆z

2
(5.10)

sx = −∆x ·
m

2
= − π

∆z
(5.11)

position them almost centered around the origo. This completes the grid specification and

leads to

Ik = ∆z exp(−iπ sz
∆z

) exp(−i2π
m

sz
∆z

k)Dk

[
[exp(−iπj)φ(sz + j∆z)]j=0,1,...,m−1

]
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= ∆z exp(−iπm
2

) exp(−iπk)Dk

[[
(−1)jφ(∆z(j −

m

2
))
]
j=0,1,...,m−1

]

= ∆z exp(−iπk)Dk

[[
(−1)jφ(∆z(j −

m

2
))
]
j=0,1,...,m−1

]
, k = 0, 1, . . . ,m− 1 .

By applying the above conventions for grid construction one finds that with a fixed m

controlling the general level of approximation precision or computation expenditure, re-

spectively, the step size of the z-grid is the only remaining free determination variable for

both grids

∆z , sz = −∆z ·
m

2
= −m∆z

2
(z-grid)

∆x =
2π

m∆z
, sx = −∆x ·

m

2
= − π

∆z
(x-grid) .

These implied parameters together with ∆z are responsible for how large approximation

errors can grow11 on the one hand and how dense and wide-ranging the returned approx-

imate values of fX(x) are on the other.

5.3.3.2 Cumulative Distribution Function

For the univariate CDF, various alternative inversion formulas of the characteristic func-

tion are present to this date. One developed by Kim et al. is

FX(x) =
exρ

π
<
(∫ ∞

0
e−ixz

φX(z + iρ)

c(ρ− iz)
dz

)
, x ∈ R , (5.12)

11The precision of this technique is mainly determined by a combination of either the range m∆z, which
should therefore be as large as possible, and the step size sz, which should be as small as possible for
reasonable results. Because with fixed m this cannot be achieved simultaneously, finding a good value for
∆z is a question of adequately balancing these two aspects.
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which is presented in [KRBF09] together with an appropriate FFT discretization. The

variable c admits

c =

 1 ∃ ρ > 0 : |φX(z)| <∞ ∀{z ∈ C : =(z) = ρ}

−1 ∃ ρ < 0 : |φX(z)| <∞ ∀{z ∈ C : =(z) = ρ}
.

The last condition basically boils down to the question whether the moment generating

MX(u) of X possesses a non-degenerate domain G from which a constant ρ can be chosen.

At the same time, this already illustrates the central shortcoming of this approach. While

the characteristic function of X is generally defined on the whole real line R, this cannot be

assumed for MX(u). Therefore, before applying the above method a feasible value ρ ∈ G

or G itself, respectively, has to be determined.

In order to remedy this weakness and to eliminate the obstructive threshold for applica-

tion, an alternative inversion approach is presented here, which will be furthermore con-

ditioned for efficient tractability with FFT tools. As X is a continuous random variable,

the inversion formula of Gil-Pelaez [GilP51]

FX(x) =
1

2
− 1

π

∫ ∞
0

=[e−ixzφX(z)]

z
dz =

1

2
− 1

π
· =
[∫ ∞

0

e−ixzφX(z)

z
dz

]

valid for continuity points applies for all x ∈ R in the considered case. For the numerical

approximation

∫ ∞
0

exp(−ixz)φ(z)

z
dz ≈

m−1∑
j=0

exp(−ixkzj)
φ(zj)

zj
∆z =: Ik

one has to pay attention to the fact that the integrand now exhibits a singularity around

0. In the same manner as previously in the Bailey and Swarztrauber approach, a z- and

x-grid is specified by the grid coefficients m, sz,∆z, sx,∆x

Ik = ∆z exp(−isxsz) exp(−i∆xszk)

m−1∑
j=0

exp(−i∆x∆zkj) exp(−isx∆zj)
φ(sz + j∆z)

(sz + j∆z)
.

(5.13)

Again, the necessary condition for a conversion of the sum into a discrete Fourier transform
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is ∆x = 2π
m∆z

for a pre-specified fixed m ∈ 2N. By insertion into equation (5.13), this yields

Ik = ∆z exp(−isxsz) exp(−i2π
m

sz
∆z

k)
m−1∑
j=0

exp(−i2πkj
m

) exp(−isx∆zj)
φ(sz + j∆z)

(sz + j∆z)

= ∆z exp(−isxsz) exp(−i2π
m

sz
∆z

k)Dk

[[
exp(−isx∆zj)

φ(sz + j∆z)

(sz + j∆z)

]
j=0,1,...,m−1

]
(5.14)

Without any up-front information concerning the location of the distribution of X it seems

appropriate to position the x-grid around the origo, which is done by a proper choice of sx.

Although sx could be set as in equation (5.11), it has proven to deliver rather imprecise

results for the Gil-Pelaez formula near x = 0 however. An improved alternative is the

construction of an absolute symmetric x-grid where by the even number of steps m no xk

coincides with 0.

sx = −∆x

(
m

2
− 1

2

)
= − 2π

m∆z

(
m− 1

2

)
= −π(m− 1)

m∆z
.

After the x-grid is entirely specified by the above coefficients, only sz remains for deter-

mination. As a singularity is present in z = 0, sz = 0 fails to be a valid choice. When ∆z

is reasonably small, approximations of the first order of the integrand become sufficiently

precise, so sz = ∆z
2 is as close as possible to the true result, ceteris paribus. Inserting sx

and sz into equation (5.14) leads to

Ik = ∆z exp(i
π(m− 1)sz

m∆z
) exp(−i2π

m

sz
∆z

k)Dk

[[
exp(i

π(m− 1)

m∆z
∆zj)

φ(sz + j∆z)

(sz + j∆z)

]
j=0,1,...,m−1

]

= ∆z exp(iπ
(m− 1)sz
m∆z

) exp(−i2π
m

sz
∆z

k)Dk

[[
exp(i

π(m− 1)

m
)
φ(sz + j∆z)

(sz + j∆z)

]
j=0,1,...,m−1

]

= ∆z exp(iπ
(m− 1)

2m∆z
) exp(−i π

m
k)Dk

[exp(i
π(m− 1)

m
)
φ(∆z(j + 1

2))

∆z(j + 1
2)

]
j=0,1,...,m−1

 .
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This expression provides a possibility for an efficient approximation of the CDF FX(x)

of X at a given set of points x, when using the FFT method for the required DFT Dk.

Aggregating the above steps finally gives

FX

(
π(2k −m+ 1)

m∆z

)
=

1

2
− 1

π
· =

(
∆z exp(iπ

(m− 1)sz
m∆z

) exp(−i2π
m

sz
∆z

k)

· Dk

[[
exp(i

π(m− 1)

m
)
φ(sz + j∆z)

(sz + j∆z)

]
j=0,1,...,m−1

])
,

k = 0, 1, . . . ,m− 1 .

In order to give an impression of the possible precision of the method, the implied grid

coefficients for fixed m and a chosen ∆z according to the above conventions are summarized

below

∆z , sz =
∆z

2
(z-grid)

∆x =
2π

m∆z
, sx = −∆x ·

(
m

2
− 1

2

)
= −π(m− 1)

m∆z
(x-grid) .

One has to repeatedly stress the basic improvement of this adaptation of the Gil-Pelaez

inversion theorem to a DFT scheme in comparison to the one in equation (5.12) here. It lies

in the fact that this approach does not rely on an arbitrary choice of a value ρ coming from

an existing domain G of MX(u), which is not easy to ensure. The main application of CDFs

is related to quantiles, alternative risk measures and statistical goodness of fit testing,

which is why this approximation scheme is of exceptional relevance in the forthcoming

sections. Finally, one has to mention another alternative approach for symmetric α-stable

distributions in this context suggested by Zieliński [Ziel01], which is likewise based on the

Gil-Pelaez inversion formula.
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5.3.4 Stock Model

When considering the MVNTS distribution for joint stock returns R with parameter tu-

ple (a, λ, γ,P, c, d), it is again made use of the fact that MVNTS results from a simply

rescaled stdMVNTS. This particular feature, besides the properties of linear combinations

of MVNTS distributions, enables the following decomposition of the estimation procedure.

Such a decomposition proves to be necessary as a simultaneous estimation of the entire

parameter set is not tractable in any way. The high dimensionality together with the given

fact that only numerical approximations of univariate PDFs are available would render

this direct approach rather non-robust. Therefore, the decomposition basically aims at de-

segregating the problem into single one-dimensional estimations on standardized data in

order to reduce the number of variables to be simultaneously estimated as far as possible.

For improved clarity the decomposition and subsequent estimation of the

MVNTS(a, λ, γ,P, c, d) distribution assumed for the multivariate random vector R

is presented in the following four separate steps, where N = 2514 denotes the number of

daily samples recorded for n = 29 stocks for this purpose.

1.) Subordinator dynamics:

The parameters (a, λ) specifying the originally underlying subordinator dynamics in

the MVNTS distribution offer the advantage of being maintained under both linear

combinations and simple linear transformations. By this argument the univariate ran-

dom variable Q

Q =
(ωTR)− E(ωTR)√

V ar(ωTR)
,

where ω denotes a non-trivial vector in Rn, is stdNTS(a, λ, g) distributed. The linear

combination with ω converts the initial MVNTS assumption in a univariate NTS as-

sumption and, furthermore, the subsequent linear standardization implies the stdNTS

assumption for Q, where the last transition is justified by the arguments given in the

above section 5.3.2. Afterwards, the values in the parameter set are estimated on the



100 CHAPTER 5. UNCONDITIONAL MODELS

correspondingly transformed empirical data

q =
(ωTr)− ωTr̄

Std(ωTr)
.

One has to note, however, that the specific choice of ω will slightly influence the

parameter estimates (â, λ̂, ĝ)12. For this reason and in order to ensure that the index

return model can be incorporated later on into this model for joint stock returns,

it would be appropriate to employ the index returns R(ind) = ωT
DJIAR, which are

obtained by the DJIA weighting ωDJIA
13. This implies that (â, λ̂) for the joint stock

model are equal to the ones estimated on the standardized index return observations

given in table 5.2. Another natural choice for ω would be an equally weighted vector

of total mass one. In the end, both results only differ by a very small extent.

2.) Multivariate linear standardization:

After (a, λ) was estimated as described above, the estimate of (c, d) is determined in

this step. Fortunately the parameters (c, d) are directly linked to the inherent scales

of the MVNTS distribution or rather the expectation and standard deviations of their

marginal distributions, respectively. Hence, (ĉ, d̂) can be simply determined by the

following familiar unbiased estimators

d̂ = r̄ =
(
r̄(1), r̄(2), . . . , r̄(29)

)T

ĉ =
√
V ar(r) =

1√
N − 1


√√√√ N∑

t=1

(r
(1)
t − r̄(1))2, . . . ,

√√√√ N∑
t=1

(r
(29)
t − r̄(29))2

T

,

with resulting numerical values given in table 5.3.

12This is rather a practical issue concerning the appropriateness of the distributional assumption and
the randomness in the sample than a theoretical one.

13Although the weights in the DJIA vary slightly over time this approach still seems admissible here.
An exemplary weighting ωDJIA can be found in appendix C.1.
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k d̂k ĉk

1 4.146 · 10−4 0.0164

2 2.542 · 10−4 0.0275

3 1.461 · 10−4 0.0245

4 1.176 · 10−4 0.0207

5 2.146 · 10−4 0.0262

6 3.962 · 10−4 0.0212

7 5.950 · 10−4 0.0217

8 5.183 · 10−4 0.0180

9 3.285 · 10−4 0.0308

10 5.467 · 10−5 0.0162

11 2.017 · 10−5 0.0193

12 5.565 · 10−4 0.0179

13 1.124 · 10−5 0.0203

14 5.439 · 10−4 0.0277

15 1.101 · 10−4 0.0239

k d̂k ĉk

16 1.962 · 10−4 0.0295

17 2.059 · 10−4 0.0203

18 3.239 · 10−4 0.0147

19 3.368 · 10−4 0.0270

20 4.231 · 10−4 0.0182

21 1.881 · 10−7 0.0203

22 9.823 · 10−5 0.0228

23 −5.574 · 10−5 0.0190

24 3.415 · 10−4 0.0164

25 4.659 · 10−4 0.0227

26 5.352 · 10−4 0.0200

27 1.622 · 10−4 0.0196

28 3.475 · 10−4 0.0191

29 1.924 · 10−4 0.0226

Table 5.3: Estimates (ĉ, d̂) of empirical stock returns.

One further removes these inherent scales of a MVNTS distribution by a simple lin-

ear transformation of the random vector, where the necessary coefficients can be

directly obtained from (c, d) or their corresponding estimates, respectively, avail-

able at this point. Based on the initial assumption of Rt ∼ MVNTS(a, λ, γ,P, c, d)

with already determined estimates (â, λ̂, ĉ, d̂) this leads to the assumption of

R̃ ∼ stdMV NTS((â, λ̂, γ,P) ≡MVNTS((â, λ̂, γ,P,1,0) for

R̃ = diag(ĉ−1)(R− d̂) , ĉ−1 =
(
ĉ−1

1 , . . . , ĉ−1
n

)T
r̃t = diag(ĉ−1)(rt − d̂) , t = 1, . . . , N .

Note that we do not have to deal with the explicit equivalence of the linearly stan-

dardized MVNTS and the stdMVNTS here as was necessary for the univariate index

returns in section 5.3.2. The reason for this is that such a linear standardization of

any MVNTS distribution just sets its parameter values (c, d) to (1,0) which directly

corresponds to a stdMVNTS distribution in MVNTS parametrization. This is straight-

forward by the construction of MVNTS via rescaled stdMVNTS and does not require
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further calculations.

3.) Estimation of γ:

Unaffected by the still unknown P, each single dimension R̃k, k = 1, . . . , n, or

marginal distribution of the multivariate stdMVNTS distributed R̃ obeys a univariate

stdNTS(a, λ, γk) distribution, which is again due to the Brownian subordination14.

By this relation, the single dimensions γk of γ can be estimated by the maximum

likelihood method on the corresponding dimensions of standardized empirical stock

return data r̃(k) under fixed parameter values (â, λ̂). The results together with their

95% confidence intervals (CI) are given in the table 5.4.

k γ̂k lower CI bound. upper CI bound.

1 0.0578 0.0131 0.1025

2 0.0357 -0.0105 0.0819

3 0.0170 -0.0279 0.0619

4 0.0193 -0.0251 0.0637

5 0.0147 -0.0354 0.0648

6 0.0022 -0.0431 0.0475

7 0.0185 -0.0264 0.0633

8 -0.0254 -0.0728 0.0219

9 0.0088 -0.0366 0.0543

10 0.0310 -0.0146 0.0767

11 0.0697 0.0249 0.1145

12 -0.0314 -0.0784 0.0155

13 0.0333 -0.0129 0.0794

14 0.0341 -0.0111 0.0793

15 0.0588 0.0137 0.1039

k γ̂k lower CI bound. upper CI bound.

16 0.0162 -0.0279 0.0604

17 0.0153 -0.0309 0.0615

18 0.0512 0.0057 0.0966

19 0.0676 0.0219 0.1132

20 0.0268 -0.0181 0.0718

21 -0.0269 -0.0741 0.0204

22 0.0427 -0.0027 0.0880

23 0.0255 -0.0193 0.0703

24 0.0017 -0.0480 0.0513

25 0.0678 0.0209 0.1148

26 0.0148 -0.0313 0.0609

27 0.0411 -0.0038 0.0860

28 0.0637 0.0193 0.1081

29 0.0395 -0.0066 0.0855

Table 5.4: Estimate for γ (stdMVNTS) of standardized stock returns.

4.) Calibration of P:

As the realizations of the subordinator S(t) and the Brownian motion B(s) cannot be

observed themselves, there is no possibility for a direct estimation of the correlation

matrix P of the Brownian motion B(s) at hand. Rather, one has to calibrate P under the

given estimates of the remaining parameter values such that the implied correlation in

R̃ matches the correlation of the standardized empirical stock return data in r̃. Recall

from equation (4.21) that the correlation matrix of a MVNTS distributed random

14See section 4.2.1.
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vectorR, which is equal to the covariance matrix of the associated linearly standardized

stdMVNTS random vector R̃ is

Corr(R) = Cov(R̃) = diag(σ̃(a,λ,γ))Pdiag(σ̃(a,λ,γ)) +
2− a

2λ
γγT

σ̃(a,λ,γ) =

[√
1− 2− a

2λ
γ2
k

]T
k=1,2,...,n

.

In order to match the theoretical correlation with its empirical counterpart while

considering the current estimates (â, λ̂, γ̂, ĉ, d̂) the following relation has to hold

Corr(r) = Cov(r̃)
!

= diag(σ̃(â,λ̂,γ̂))P̂diag(σ̃(â,λ̂,γ̂)) +
2− â

2λ̂
γ̂γ̂T

from which the appropriately calibrated P̂ is finally resolved

⇒ P̂ = diag
(
σ̃−1

(â,λ̂,γ̂)

)[
Cov(r̃)− 2− â

2λ̂
γ̂γ̂T

]
diag

(
σ̃−1

(â,λ̂,γ̂)

)
(5.15)

σ̃−1

(â,λ̂,γ̂)
=

[(
1− 2− a

2λ
γ2
k

)−1/2
]T
k=1,2,...,n

.

The numerical evaluation of the above expression on the underlying empirical data set

leads to the calibrated Brownian correlation matrix in table 5.5.

After having performed these steps, we have arrived at being able to entirely specify the

estimated MVNTS parameters for the joint unconditional distribution of stock returns as

well as the stdMVNTS parameters for their standardized counterpart. Moreover, this is

synonymous to the complete specification of the stated simple stationary model defined in

section 5.1. After assessing the adequacy of its obtained statistical fit in the next section

this model will be put to a practical application in the field of portfolio analysis and

optimization, where it is made use of its risk prediction capabilities.
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5.4 Goodness of Fit Tests

For assessing the goodness of fit (GoF) of the estimated distributions associated with the

above simple models for both index and joint stock returns a number of different methods

will be applied in this section. Basic theory on formal statistical goodness of fit tests are

provided in many standard textbooks on the topic. Moreover, an additional overview is

given in appendix D. Since in case of the fitted index return model we have to deal with

only univariate data, even graphical measures besides the conventional statistical test pro-

cedures are become available. For the multivariate model of joint stock returns however,

only formal goodness-of-fit measures such as the Kolmogorov-Smirnov (KS) distance and

Anderson-Darling (AD) statistics are applicable. One has to be well aware of the fact

that these standard tests are only able to consider the marginal distributions of the fitted

MVNTS, whereas the adequacy of the modeled dependencies structure between single di-

mensions of the multivariate distribution cannot be validated. The difficulty here basically

lies in the comparably high number of considered model dimensions. Otherwise, the task

of assessing the multivariate dependence structure could be addressed by the entire set

of χ2 tests on the joint distribution of pairwise projections (Rj , Rk), j = 1, . . . , n, k > j.

However, this approach likewise does not prove to be very tractable either, as n(n−1)
2 = 406

existing pairs have to be considered. An opportunity of at least gaining a particular and

informal revision is to perform these 1-dimensional GoF tests for linear combinations of

MVNTS components with arbitrary but suitable weights. There, the resulting theoretical

distribution implied by the estimated MVNTS is tested against the empirical counterpart

of the linear combination.

5.4.1 Index Model

Starting with the index model and a visual examination first, figure 5.1 displays a graph of

the standardized empirical index return kernel density. This density is furthermore com-

pared to the probability density functions of the fitted stdNTS15 vs. a standard Normal

15Its associated parameter values were given in table 5.2.
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distribution. The plot clearly demonstrates how the NTS, in contrast to the standard Nor-

mal distribution, is able to follow the kernel densities peaked form with heavier weights

in the border areas of the distribution support. Skewness is not perceptibly present in

this data set of historical index returns. Hence, although the standard Normal distribu-

tion in contrast to the more flexible stdNTS is not able to account for asymmetry, this

particular aspect is not responsible for its inferior fitting ability, which is rather due to

the aforementioned inferior adaptation to peakedness and tail features.

−8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4
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0.7

 

 
Empirical Dist.
Standard Normal
Standard NTS

Figure 5.1: Kernel densities of standardized empirical DJIA index returns, compared to
fitted NTS and Normal densities.

The second means of graphical inspection are the two separate quantile-quantile plots

shown in figure 5.2. In accordance to the density graphs, these plots confirm the NTS

ability to better fit the empirical data than the Normal distribution, which is true both

in the peaked center and the particularly pronounced tails of the distribution. The Q-Q

plots furthermore allow for a more detailed inspection of the tails than the kernel densities

in regions of low observation frequencies.

Although these graphical approaches already strongly suggest superiority of the NTS with
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(b) Quantile-quantile plot of standardized empiri-
cal returns vs. standard NTS distribution assump-
tion.

Figure 5.2: Quantile-quantile plots of standardized empirical returns.

regard to its adaptability over the Normal distribution, this finding is further substan-

tiated by the following results of conducted formal tests, them having the advantage of

an unambiguous interpretation of the output16. The NTS distribution fitted to the index

return distributions generate the test statistics presented in table 5.6 together with their

corresponding p-values.

KS AD AD2

statistics 0.0133 0.1051 0.3957

p-value 0.7618 0.0769 0.8530

Table 5.6: Results Goodness-of-fit tests of NTS for empirical index returns.

While the Kolmogorov-Smirnov test (KS) pays more attention to the center of the dis-

tribution, both the conventional Anderson-Darling test (AD) as well as the quadratic

Anderson-Darling test (AD2) are designed for detecting deviations in the tails. Thus, from

the presented p-values one is able to conclude that the NTS constitutes a very convincing

model for both the center and especially the tails of the distribution.

16Which is present in form of p-values.
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5.4.2 Joint Stock Model

The same tests can furthermore be carried out for each of the 29 stocks and their marginal

distributions separately, for which the following results in table 5.7 are achieved. They

confirm with only few exceptions a rather good fit of the NTS for the marginal distributions

of joint stock returns. One is able to observe that in over 75% of the cases the stock

generates sufficiently small values of KS, AD and AD2, respectively, whose associated

p-values are given in table 5.8. As the distributions of these statistics, which are necessary

for converting the obtained statistics into corresponding p-values, depend on the sample

size N = 2514 and cannot be stated in closed form, one has to resort to a simulative

approach [MaMa04]17.

k KS AD AD2

1 0.0177 0.0502 0.6589

2 0.0158 0.0650 0.8388

3 0.0226 0.0487 1.3246

4 0.0164 0.0650 0.9362

5 0.0712 0.1525 22.7916

6 0.0269 0.0669 3.6305

7 0.0297 0.0737 3.9486

8 0.0308 0.1718 4.0562

9 0.0149 0.0594 0.5124

10 0.0156 0.0400 0.5913

11 0.0141 0.0498 0.7722

12 0.0285 0.0790 2.6815

13 0.0203 0.0560 0.6578

14 0.0123 0.0390 0.4716

15 0.0130 0.2639 0.6362

k KS AD AD2

16 0.0190 0.0507 1.7242

17 0.0142 0.0522 0.3491

18 0.0155 0.1499 0.5271

19 0.0374 0.0799 4.9703

20 0.0321 0.0772 4.2806

21 0.0119 0.2241 0.5309

22 0.0208 0.0584 0.9170

23 0.0232 0.0508 1.8334

24 0.0306 2.1532 4.4743

25 0.0265 0.0878 1.5562

26 0.0130 0.4183 0.7881

27 0.0172 0.0438 1.2699

28 0.0185 0.0445 1.1662

29 0.0157 0.0456 0.4414

Table 5.7: Goodness-of-fit statistics DJIA stocks (MVNTS).

5.5 Portfolio Analysis and Optimization

Before addressing the task of static portfolio optimization in the estimated stationary

model, risk and performance of a portfolio with a specific natural composition is inves-

tigated in further detail. Besides the consideration of diversification effects under a ho-

17The asymptotic distributions (N → ∞) for both AD and AD2 statistics were already stated in the
original publication of Anderson and Darling [AnDa52].
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k KS AD AD2

1 0.4067 0.5797 0.5940

2 0.5504 0.2669 0.4538

3 0.1520 0.6241 0.2246

4 0.5044 0.2669 0.3926

5 0.0000 0.0351 0.0000

6 0.0522 0.2438 0.0133

7 0.0229 0.1824 0.0093

8 0.0165 0.0274 0.0082

9 0.6284 0.3557 0.7341

10 0.5669 0.8730 0.6562

11 0.6911 0.5914 0.5014

12 0.0330 0.1506 0.0399

13 0.2501 0.4271 0.5949

14 0.8378 0.8954 0.7758

15 0.7847 0.0114 0.6142

k KS AD AD2

16 0.3221 0.5653 0.1310

17 0.6856 0.5232 0.8971

18 0.5799 0.0363 0.7193

19 0.0017 0.1462 0.0030

20 0.0110 0.1602 0.0064

21 0.8629 0.0160 0.7154

22 0.2250 0.3753 0.4039

23 0.1314 0.5624 0.1137

24 0.0175 0.0002 0.0052

25 0.0577 0.1156 0.1637

26 0.7858 0.0046 0.4897

27 0.4428 0.7717 0.2424

28 0.3495 0.7511 0.2808

29 0.5629 0.7180 0.8068

Table 5.8: Goodness-of-fit p-values DJIA stocks (MVNTS).

mogeneous mixture of single stocks, the adequacy of dependence modeling of MVNTS

distributions for empirical return data will also be assessed. This supplements the GoF

tests for the marginal stock return distributions presented in the previous section.

5.5.1 Equal Weights Portfolio

When simply selecting an equally weighted portfolio (EWPF) composed of the 29 stocks,

the resulting portfolio return can be determined by a linear combination with weight vector

ω and

ω =

(
1

n
, . . . ,

1

n

)T

=

(
1

29
, . . . ,

1

29

)T

ωT1 =

n∑
j=1

ωj = 1 . (5.17)

As was indicated at the beginning of this chapter, the return representation by simply

compounded rates has the advantage that portfolio returns can be determined by

Rewpf = ωTR , r
(ewpf)
t = ωTrt , t = 1, . . . , N (5.18)
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with ω reflecting the portfolio weights. Moreover, ω has to satisfy the conditions of an

affine combination, i.e. equation (5.17) has to hold true. Affine combinations embody a

restriction of general linear combinations in that the sum of involved weights equals one.

This corresponds to the situation that exactly the amount of reference capital or basis

for the return calculation is indeed invested without any upward or downward deviations.

Equation (5.18) covers both the series of realized EWPF returns r
(ewpf)
t generated from

the historical stock return data set contained in r, as well as the distribution assumption

of i.i.d. EWPF returns reflected by the random variable Rewpf . The latter one is implied

by the estimated model in section 5.3.4 and the calculation rules valid for general linear

combinations developed in section 4.2.4. In other words, from the now present model

assumption of R ∼ MVNTS(â, λ̂, γ̂, P̂, ĉ, d̂) follows that Rewpf is a univariate random

variable distributed according to NTS(a(ewpf), λ(ewpf), g(ewpf), s(ewpf),m(ewpf)) with

(a(ewpf), λ(ewpf)) = (â, λ̂) = (1.1584, 0.1812)

g(ewpf) = ωTdiag(ĉ)γ̂ = 5.9466 · 10−4

s(ewpf) =

√√√√ωTdiag(ĉ)diag

(√
1− 2− â

2λ̂
γ̂2

)
P̂diag

(√
1− 2− â

2λ̂
γ̂2

)
diag(ĉ)ω

= 0.0133

m(ewpf) = ωTd̂ = 2.7085 · 10−4 .

Note however that the vector of parameter values for Rewpf are not obtained by direct

estimation on the series r
(ewpf)
t but arise from the MVNTS distribution for joint stock

returns. Hence, the uncertainties in (a(ewpf), λ(ewpf), g(ewpf), s(ewpf),m(ewpf)) are subject

to the randomness of the sampling as well as to possible misspecification of the MVNTS

model.

As the portfolio return distribution comes from a homogeneously diversified linear com-
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bination of MVNTS dimensions, its shape will be considerably influenced by present de-

pendencies between the single stocks. For this reason, a good fit of the implied theoretical

distribution of Rewpf to the corresponding empirical data r(ewpf) would not only confirm

a good fit of the marginal distributions of the single stocks contained in this stationary

model, but would even more substantially serve as an indicator for an adequately captured

dependence structure. Of course it must be clearly stated that this consistency check, as

being based on one single weighting only, is thus not able to assess the modeled depen-

dencies in a systematical way or to full extent.

Diagram 5.3 illustrates, as was already displayed for the index returns before, the kernel

density of the historical EWPF returns. This kernel density is moreover compared to the

theoretical probability densities of the assumed NTS distribution of Rewpf and an implied

Normal distribution. The parameter values of the latter were determined by the unbiased

estimates of means and covariance matrix of R, which entirely describe a multivariate Nor-

mal distribution for the joint stock returns. These estimates were further processed by the

familiar summation rules for correlated Gaussian random variables. The NTS assumption

achieves an apparently precise fit in the center as well as at the tails of the distribution,

although a slight difference in the skews must be noticed around the distribution center

in 0. This nevertheless promising impression is further substantiated by the associated

quantile-quantile plots in figure 5.4 which constitute a second possibility of visual valida-

tion. There, the NTS assumption does not cause any remarkable or systematic deviation

from the diagonal, which would exceed the randomness of the sample. On the other hand,

as was already demonstrated for the case of the index returns, the Normal assumption

fails to capture both the peakedness (see fig. 5.3) and the heavy-tailedness (see fig. 5.4(a))

of the empirical EWPF return distribution. However, this result is presumably less due to

an insufficient representation of the dependence structure but it is rather suspected that,

as was previously indicated by the example of index returns, the Normal assumption is

already inappropriate for a characterization of the marginal return distributions.

Now, the findings of the graphical diagnosis above are supplemented by the three familiar

GoF statistics. But in contrast to the interpretation of these graphical results, one has
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Figure 5.3: Kernel density of EWPF returns in comparison with NTS and Normal distri-
bution.
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(a) Quantile-quantile plot of empirical EWPF re-
turns vs. Normal distribution assumption.
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Figure 5.4: Quantile-quantile plots for empirical EWPF returns based on Normal and NTS
distributions.
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to admit that none of the KS, AD and AD2 statistics together with their respective

p-values given in table 5.9 are able to fully support the MVNTS assumption, whereas a

strong rejection of the assumption can not be justified at a reasonable significance level

either. In particular, the poor KS statistic is due to the aforementioned slight offset of

the densities in the center of the distribution, as was illustrated in figure 5.3. It is still an

open question whether the deviations are primarily caused by deficits in represention of

either the marginal distributions or the dependence structure.

KS AD AD2

statistics 0.0255 0.0613 1.3018

p-value 0.0750 0.3218 0.2318

Table 5.9: GoF results for EWPF.

To highlight the capabilities of the estimated model with regard to risk quantification

and risk prediction, sequences of the widespread risk measures Value-at-Risk (VaR) and

Average Value-at-Risk (AVaR)18 for the EWPF are given in figure 5.5. These two risk

measures are numerically evaluated for respective significance levels α19 ranging between

0.1 and 5%. When comparing these sequences to their empirical equivalents for both risk

measures20, the MVNTS-based prediction clearly outperforms its Gaussian-based coun-

terparts. This is especially true for low significance levels α in case of VaR as well as AVaR

in general. Although this determination and comparison of risk measures is not declared

as such, it is another confirming test, in the broader sense, of model adequacy concerning

the tail quantiles and probabilities in particular.

5.5.2 Portfolio Optimization

This study of risk assessment and quantification is continued with the transition from the

rather naive EWPF to portfolios with optimized weights. In a first step, this optimization

18For a definition of VaR and AVaR see for example [RaSF08, p. 182] and [RaSF08, p. 208], respectively,
just to name a few. The latter one is also known in the literature as Expected Shortfall or Conditional
Value-at-Risk.

19In alternative definitions, the above risk measures are specified by the confidence level p = 1 − α in
the established literature.

20Their empirical definitions and calculation methods can be found in [RMFF+07, p. 312] and [RaSF08,
p. 214]
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Figure 5.5: Comparison of VaR and AVaR sequences for the EWPF.

is carried out with respect to VaR and AVaR subject to several levels of expected return21.

The following two diagrams contained in figure 5.6 show the resulting efficient frontiers

from this optimization for the employed risk measure VaR and AVaR, respectively. They

are generated under either the Normal or the Normal Tempered Stable model22 for joint

stock returns.

Although the efficient frontier does not imply a unique allocation decision yet, it repre-

sents the set of dominating23 portfolio compositions available in the modeled stock market.

Both diagrams demonstrate how the risk present in the market is underestimated under

the Gaussian assumption. The MVNTS model in contrast has proven its superior ability

to fit the empirical data under several criteria in section 5.4, thus generating more realistic

representations of market risk. They surpass those obtained under the Gaussian model on

average by around 30%. Therefore, using the Gaussian model instead of the MVNTS would

even lead to two pitfalls at the same time. On the one hand, potential for beneficial diver-

sification can not be fully exploited, as not being adequately modeled. Moreover, the risk

21See appendix C.2 for the precise formulation of the optimization problem.
22The explicit mention of the fact that the model refers to multivariate distributions should be occasion-

ally dropped from now on for the sake of straightforward description. Hence, NTS becomes an abbreviation
for Normal Tempered Stable models, univariate as well as multivariate ones, in general, including the mul-
tivariate case of the former MVNTS.

23As long as a usually risk-averse investor is assumed, who prefers higher returns over lower returns and
lower risks over higher risks, with regard to the employed risk measures.
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(b) Efficient frontiers with respect to AVaR.

Figure 5.6: Efficient frontiers for risk measure significance level α = 0.01 under Gaussian
vs. MVNTS assumption.

contained in the thereby constructed sub-optimal portfolio is additionally underestimated.

When moving on to a global portfolio optimization, it is necessary to aggregate the associ-

ated risk and return into a one-dimensional objective function. This task is accomplished

by three different performance ratios to be considered in this study, given in table 5.10

24. The Sharpe ratio is solely defined in terms of distribution moments, i.e. no explicit

distributional assumption has to be made while only estimates for means and covariances

are required. But the Sharpe ratio, being a performance measure developed in the 1960ies,

suffers from the shortcomings of its utilized risk measure, the standard deviation. For this

reason, the two alternative performance measures VaR ratio and STAR ratio should be

preferred for portfolio optimization and later backtesting. Their risk measures incorporate

a stronger emphasis on downside risk, asymmetry and heavy tailed distributions. While

AVaR is even contained in the class of coherent risk measures25, VaR is not. In the fol-

lowing, their significance levels are set to α = 0.01 again, in order to focus on the more

extreme risks in the course of optimization.

For the forthcoming optimization, the following aspects have to be noted:

1.) Instead of conventional portfolio returns Rp = ωTR considered so far, one gives way

24Their definitions follow Rachev et al. [RaSF08].
25Coherence is a desired property of risk measures, see Artzner et al. [ADEH99] as well as Acerbi and

Tasche [AcTa02] for further details.
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definition numerator denominator

Sharpe ratio
E(Rp)−E(Rb)√
V ar(Rp−Rb)

mean of pf. excess return standard deviation of portfolio excess return

VaRα ratio
E(Rp)−E(Rb)

V aRα(Rp−Rb)
mean of pf. excess return VaR of pf. excess return, significance level α

STARα ratio
E(Rp)−E(Rb)

AV aRα(Rp−Rb)
mean of pf. excess return AVaR of pf. excess return, significance level α

Table 5.10: Comparison of employed performance ratios in the portfolio optimization.

to excess returns (Rp − Rb). They become the basis for both the numerator and the

individual denominator in the respective instances of the performance ratio.

2.) The DJIA index serves as benchmark return Rb. In order to be able to determine the

distribution of the difference Rp−Rb, one has to include Rb as an additional dimension

into the distribution of joint returns. This is required both for the case of the Gaussian

and the MVNTS assumption26.

3.) For the estimation of the correlation structure, it appears essential to base it on a

1-year period of most recent return data, while the other parameters are still based on

the 10-year period.

In order to keep a sufficiently large time interval for purposes of later out-of-sample back-

testing available, the 10-years sample period used for model estimation is relocated to the

beginning of the data set, i.e. now ranging from October 1, 1997 to September 30, 2007.

This excludes most events which happened during the financial crisis from the sample

period. The results of the portfolio optimization27, carried out in a heuristic fashion, are

given in table 5.11.

Furthermore, the corresponding optimal weights ω∗ can be found in table 5.12. These

portfolio weights will be referred to as static strategies under respective optimization

criteria, i.e. theoretical performance ratios, and model assumptions for R in the further

context.

26This subsequently possible incorporation is facilitated by the consistent choice of (â, λ̂) for stocks and
the index in section 5.3.4, which then solely requires a re-estimation of joint correlations between each
stock and the index.

27The corresponding optimization problem can be found in appendix C.3.
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ratio reward risk measure

Sharpe ratio maximizing PF 0.1293 0.0287 % 0.2222 %

Normal Model
VaR ratio maximizing PF 0.0589 0.0287 % 0.4882 %

STAR ratio maximizing PF 0.0510 0.0287 % 0.5635 %

NTS Model
VaR ratio maximizing PF 0.0919 0.0254 % 0.2766 %

STAR ratio maximizing PF 0.0783 0.0254 % 0.3246 %

Table 5.11: Output of portfolio optimization under various ratio criteria.

Normal Model NTS Model

k

Sharpe ratio
maximizing

portfolio

ω∗Sharpe

VaR ratio
maximizing

portfolio

ω∗V aR,Normal

STAR ratio
maximizing

portfolio

ω∗STAR,Normal

VaR ratio
maximizing

portfolio

ω∗V aR,NTS

STAR ratio
maximizing

portfolio

ω∗STAR,NTS

1 0.0799 0.0799 0.0799 0.0814 0.0811
2 0.0373 0.0373 0.0373 0.0417 0.0417
3 0.0579 0.0579 0.0579 0.0526 0.0534
4 0.0310 0.0310 0.0310 0.0260 0.0254
5 0.0303 0.0303 0.0303 0.0179 0.0181
6 0.0362 0.0362 0.0362 0.0337 0.0340
7 0.0599 0.0599 0.0599 0.0514 0.0513
8 0.0201 0.0201 0.0201 0.0260 0.0257
9 0.0191 0.0191 0.0191 0.0048 0.0046
10 0.0053 0.0053 0.0053 0.0220 0.0220
11 0.0074 0.0074 0.0074 0.0289 0.0291
12 0.0685 0.0685 0.0685 0.0383 0.0382
13 0.0277 0.0277 0.0277 0.0330 0.0335
14 0.0356 0.0356 0.0356 0.0361 0.0368
15 0.0265 0.0265 0.0265 0.0278 0.0272
16 0.0138 0.0138 0.0138 0.0189 0.0183
17 0.0698 0.0698 0.0698 0.0717 0.0714
18 0.0660 0.0660 0.0660 0.0698 0.0701
19 0.0264 0.0264 0.0264 0.0366 0.0365
20 0.0295 0.0295 0.0295 0.0292 0.0293
21 0.0350 0.0350 0.0350 0.0273 0.0271
22 0.0324 0.0324 0.0324 0.0375 0.0376
23 -0.0103 -0.0103 -0.0103 -0.0022 -0.0017
24 0.0632 0.0632 0.0632 0.0526 0.0517
25 0.0056 0.0056 0.0056 0.0152 0.0160
26 0.0704 0.0704 0.0704 0.0541 0.0534
27 -0.0004 -0.0004 -0.0004 0.0061 0.0058
28 0.0388 0.0388 0.0388 0.0397 0.0406
29 0.0173 0.0173 0.0173 0.0219 0.0219

Sum 1 1 1 1 1

Table 5.12: Optimal portfolio weights ω∗ for different optimization criteria.
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5.5.3 In-Sample and Out-of-Sample Tests

Now, beyond the perspective of formal GoF tests and supporting graphical assessments

performed in sections 5.4 and 5.5.1, two of the above optimal static strategies are com-

pared against each other with regard to their performance on empirical return data. For a

justified selection of two significant candidates from the five available strategies, one has

to consider the following. The Sharpe ratio of a particular allocation is independent of the

actual choice of either the Normal or the MVNTS assumption in the theoretical context.

This is because the mean vector as well as the covariance matrix obtained from the respec-

tive estimation procedure are identical under both assumptions and coincide with their

empirical counterparts. Moreover, as the multivariate Normal distribution is entirely spec-

ified by the mean vector and the covariance matrix, the VaR and STAR ratio, although

not identical, deliver the same optimal strategy ω∗ under this assumption, however. This is

confirmed numerically in table 5.12. Hence, ω∗Sharpe serves as the representative of conven-

tional portfolio construction. From the strategies under MVNTS assumption, ω∗STAR,NTS

is chosen, as its associated risk measure considers the shape of distribution beyond VaR,

whereas the two strategies do not differ substantially anyway.

The in-sample test compares a number of different indicators reflecting rewards and risks

of hypothetical excess return realizations obtained from strategies ω∗Sharpe and ω∗STAR,NTS ,

denoted with rSharpep and rSTAR,NTSp , respectively. The sample period under consideration

is October 1, 1997 to September 30, 2007, which consists of 2514 return samples. The

same is done in the out-of-sample test, with the only difference that the sample period

changes to October 1, 2007 through September 30, 2009 with 515 return samples contained.

Besides the empirical performance ratios, various other figures of both risk and reward are

represented in tables 5.13 and 5.14. The empirical benchmark return is still taken from

the DJIA index on respective corresponding time intervals.

On the reward side, sample mean and maximum are included. Cumulated returns28 apply

for a static investment according to two different allocation weights. The VaRα and AVaRα

for significance level α = 0.01 of the returns instead of the losses represent the upper

28Returns again refer to excess returns rp − rb in this section.
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in-sample test

rSharpep − rb rSTAR,NTSp − rb

Rewards

sample mean 0.0287 % 0.0254 %

maximum return 1.1290 % 1.1389 %

cumulative return 104.63 % 88.35 %

empirical VaR returns (1 %) 0.6673 % 0.6301 %

empirical AVaR returns (1 %) 0.7899 % 0.7664 %

Risks
(Uncertainty)

sample standard deviation 0.2222 % 0.2081 %

maximum return −
minimum return

2.4089 % 2.1617 %

empirical VaR returns (1 %) +
empirical VaR (1 %)

1.2094 % 1.0999 %

Risks (Loss)
Maximum Loss 1.1899 % 1.228 %

empirical VaR (1 %) 0.6047 % 0.5500 %

empirical AVaR (1 %) 0.7448 % 0.6797 %

Performance
Measure

empirical Sharpe ratio 0.1293 0.1221

empirical VaR ratio 0.0475 0.0462

empirical STAR ratio 0.0386 0.0374

empirical Rachev ratio 1.0609 1.1277

Table 5.13: In-sample test results of empirical excess returns.

out-of-sample test

rSharpep − rb rSTAR,NTSp − rb

Rewards

sample mean 0.0468 % 0.0491 %

maximum return 2.4010 % 2.3958 %

cumulative return 26.25 % 27.76 %

empirical VaR returns (1 %) 1.1122 % 1.0573 %

empirical AVaR returns (1 %) 1.8032 % 1.6559 %

Risks
(Uncertainty)

sample standard deviation 0.3622 % 0.3438 %

maximum return −
minimum return

3.7523 % 3.6663 %

empirical VaR returns (1 %) +
empirical VaR (1 %)

2.0166 % 1.8943 %

Risks (Loss)
Maximum Loss 1.3512 % 1.2705 %

empirical VaR (1 %) 0.9044 % 0.8370 %

empirical AVaR (1 %) 1.1720 % 1.1227 %

Performance
Measure

empirical Sharpe ratio 0.1292 0.1428

empirical VaR ratio 0.0518 0.0589

empirical STAR ratio 0.0399 0.0437

empirical Rachev ratio 1.5386 1.4749

Table 5.14: Out-of-sample test results of empirical excess returns.
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(1−α)-quantile and the conditional expectation of returns exceeding the (1−α)-quantile,

respectively29. While for the in-sample test, the Sharpe-optimal strategy ω∗Sharpe shows

advantages considering all five reward figures, the NTS STAR-optimal strategy ω∗STAR,NTS

shows at least a higher mean and cumulative return in the out-of-sample test. For clarity of

presentation, the first strategy will further be denoted by A, the latter by B, respectively.

Subsequently, the reward potential is opposed by the risk and uncertainties one has to bear

in exchange. On the side of uncertainties, meaning the possibilities for random return

fluctuation in both negative and positive direction, we find that the sample standard

deviation, the range of realized excess returns as well as the distance between α-quantile

and (1 − α)-quantile is consistently lower for strategy B than for A. This result is true

for both in-sample- and out-of-sample perspective. When turning to actual risks, i.e. the

potential for negative returns only, the statement remains the same. There, for maximum

loss30 as well as for the conventional VaR and AVaR, strategy B generates lower risk figures

than A throughout all risk figures for both in- and out-of-sample tests. So far, although

strategy A offers advantages on the reward side, one clearly has to accept a higher level

of risk in return.

Higher risk is not unfavorable a priori, however. Performance ratios aggregate these re-

wards and risks into one single measure. There, the results are well distinguished between

the in-sample and out-of-sample case. While the covered in-sample period leaves out the

peak of the global financial crisis, these events are included in the out-of-sample period. For

Sharpe, VaR and STAR ratio, strategy A dominates in the in-sample test while strategy

B does so in the out-of-sample test. Among the performance ratios, only Rachev ratio31

indicates an opposite result in both cases.

Therefore, it seems that an optimal allocation decision based on the first two distributional

moments maximized with respect to the Sharpe ratio (strategyA) is able to deliver superior

results when applied to periods of moderate and constant market volatilities over time.

29For this reason, these two measures can be determined by calculating the conventional VaR and AVaR
for returns with opposite sign.

30or minimal return
31For a definition and first applications see Biglova et al. [BORS04].
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Strategy B instead, based on the MVNTS distribution as an assumption and optimized

with respect to a performance measure focused on extreme negative tail events, shows

significant advantages in generalizing the information of the sample period to an out-of-

sample period.

Finally, diagrams 5.7 and 5.8 try to reinforce the above conclusions about the derived risk

and reward quantities by visual features of the empirical portfolio excess return. In contrast

to the different scalar performance measures which, by design, are only able to represent

one isolated feature of the excess return distribution, whereas these aspects are displayed

simultaneously in the kernel density plots. For the in-sample backtest one observes a higher

peak of the excess return distribution generated by strategy B (STAR NTS-optimal alloca-

tion weights) compared to strategy A (Sharpe-optimal allocation weights). In addition, the

distribution of strategy A is slightly skewed to the left while the distribution of strategy B

is almost symmetric. In figure 5.7(b), which only shows the distribution of the left tail from

the 1%-quantile downward, one notices further that strategy A has more pronounced left

tails and therefore carrying a higher associated risk of facing severe losses. In the overall

picture 5.8(a) of the out-of-sample backtest, the distributions of A and B closely resemble

each other in symmetry and peakedness, the slight skewness of distribution A from the

in-sample backtest has vanished. But also in the out-of-sample test, comprising market

returns with substantially increased volatilities, excess returns of A show fatter tails and

higher risks, as was already true for the in-sample test. While AVaR only measures the first

moment of the negative’s tail distribution, the whole shape of the negative tail becomes

apparent in diagram 5.8(b), which is indispensable for a comprehensive risk assessment.
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Figure 5.7: Kernel densities of the in-sample test.
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Chapter 6

ARMA-GARCH Models

6.1 Basic Theory and Definitions

While the former model in chapter 5 is based on the rather simple and unrealistic as-

sumption of i.i.d. returns, this assumption is replaced by an advanced time series model

for conditional mean and variance. In this context, the classical ARMA model constitutes

a linear time series model for the conditional mean with constant conditional volatil-

ity. ARMA models can be furthermore combined with ARCH and GARCH components,

which explicitly take volatility clustering into account. The innovative idea behind ARMA-

GARCH models is to model the linear autocorrelation of the squared process variables. By

this approach, the model requires only one single source of risk for the standardized inno-

vations, which simultaneously drives the return process and the current level of volatility.

This offers the advantage of parsimonious parametrization combined with the availability

of efficient estimation methods.

For the scope to be considered here, an ARMA(1,1)-GARCH(1,1) model appears to be

sufficiently flexible while maintaining a considerable level of analytical tractability with

regard to parameter estimation. To be more precise, the ARMA(1,1)-GARCH(1,1) model

123
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for the joint daily asset returns Rt =
(
R

(1)
t , . . . , R

(n)
t

)
at time t is formulated as follows

R
(k)
t+1 = Ck + bkR

(k)
t + ηkσk,tξk,t + σk,t+1ξk,t+1 (6.1)

σ2
t+1,k = αk + θkσ

2
k,tξ

2
k,t + βkσ

2
k,t , k = 1, . . . , n (6.2)

Note that the return of each single asset is driven by a merely univariate ARMA(1,1)-

GARCH(1,1) model. Therefore, the conditional mean and variance of the day-ahead return

R
(k)
t+1 of one particular asset component k solely depends on its own history of realizations

up to time t. The only source of dependence between R
(k)
t for different k is the dependence

structure of the vector of standardized innovations

ξt = (ξ1,t, . . . , ξn,t)
T i.i.d.∼ stdMV NTS(a, λ, γ,P) .

For a comprehensive survey of GARCH models with non-Gaussian innovations in the

multivariate case and in the context of financial modeling in particular, see Aas et al.

[AaHHD06] and the references therein.

6.2 Empirical Estimation and GoF Tests

6.2.1 Index Returns

In a preparing step, the ARMA-GARCH model is applied to the one-dimensional DJIA in-

dex returns, i.e. n = 1 in equations (6.1) and (6.2). The subsequent estimation of model co-

efficients and distribution parameters is based on the sample period from October 20, 1998

to September 26, 2008. This period encompasses a 10-year return history with N = 2500

daily records in total. The reason for choosing September 26, 2008 as the end date of the

sample period, is the market crash that occurred on the next trading day, September 29,

2008. On that particular day the DJIA index lost 6.98% in value, triggered by the collapse

of U.S. investment bank Lehman Brothers, which has happened two weeks before.
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Tables 6.1 and 6.2 show the ARMA and GARCH coefficients, respectively, obtained by

efficient ML estimation based on the assumption of a t-distributed random variable for

the innovations ξt. This assumption makes standard estimation procedures available while

heavy tails are sufficiently taken into account.

Ĉind b̂ind η̂ind

1.1936 · 10−4 0.7425 -0.7826

Table 6.1: Estimates of ARMA coefficients for index returns under t-assumption.

α̂ind θ̂ind β̂ind

5.1670 · 10−7 0.0634 0.9350

Table 6.2: Estimates of GARCH coefficients for index returns under t-assumption.

With the estimated ARMA-GARCH coefficients and the corresponding sequence of con-

ditional volatilities {σ̂ind,t}t=1,...,N , one is moreover able to generate the time series of

estimated standardized residuals {ξ̂ind,t}t=1,...,N . By the assumptions implied in equations

(6.1) and (6.2), these standardized residuals should be free of autocorrelation. Therefore,

the univariate stdMVNTS distribution parameters of ξind can be estimated by using the

methods described in section 5.3.2. The result of this estimation is contained in table 6.3.

âind λ̂ind γ̂ind

0.0100 3.2007 -0.1886

Table 6.3: Parameter estimates (stdNTS) for standardized index residuals.

Moreover, the results of the GoF test of the estimated stdNTS distribution with respect to

the standardized index residuals can be found in table 6.4. In this table, the realized values

of KS, AD and AD2 together with their corresponding p-values are presented. They can

be compared to the opposing GoF results obtained for a Gaussian ARMA-GARCH with

normally distributed innovations in table 6.5. Note that the Gaussian ARMA-GARCH

model has different coefficient estimates from the ones presented in tables 6.1 and 6.2.

This is due to the transition to the alternative assumption of a normal distribution for the

innovations. Although none of the three evaluated statistics can seriously be rated a clear
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indication for the adequacy of the stdNTS assumption for the process innovations, only

the AD test is able to formally reject this hypothesis at a 1% significance level, however. In

contrast, all three GoF tests clearly reject the Gaussian hypothesis at this significance level.

With regard to the index residuals of an ARMA-GARCH model, the stdNTS distribution

seems nevertheless superior to the normal distribution. The remarkably high value λ̂ind of

approximately 3.2 of the tempering coefficient λ in combination with a rather small value

of âind close to zero leads to the conclusion that the tails of the considered distribution

are located between those of an NTS and the Gaussian alternative.

statistics value p-value

KS 0.0285 0.0335

AD 0.3146 0.0080

AD2 2.5957 0.0442

Table 6.4: GoF results for standardized index residuals (stdNTS).

statistics value p-value

KS 0.0379 0.0015

AD 62.9629 0.0000

AD2 4.3241 0.0061

Table 6.5: GoF results for standardized index residuals (Normal).

6.2.2 Stock Returns

The promising results obtained for the index returns in favor of normal tempered stable

distributions should now be further substantiated. The model for the joint stock returns

is composed of the univariate ARMA-GARCH time series models for each single stock ac-

cording to equations (6.1) and (6.2). Similar to the treatment of index returns, two different

model versions are considered. The model termed MVNTS ARMA-GARCH employs the

assumption of univariate t-distributions for heavy-tailed process innovations to efficiently

determine estimates of the process coefficients. These estimates are subsequently used for

generating the time series of standardized residuals {ξ̂k,t}, k = 1, . . . , n , t = 1, . . . , N . The

standardized residuals of the components k are further aggregated into the n-dimensional

time series {ξ̂t}, t = 1, . . . , N . Due to the previous filtering of the empirical return ob-
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servations, autocorrelation of first and second order {ξ̂t} should have been eliminated by

this procedure. This enables the assumption of {ξ̂t} being independently sampled from

identical stdMV NTS(a, λ, γ,P) distributions. However, the second model termed Normal

ARMA-GARCH basically involves similar procedural steps. In contrast to the MVNTS

ARMA-GARCH, it entirely relies on the Gaussian assumption for the distribution of in-

novations. This is both true for the estimation of the ARMA-GARCH coefficients as well

as for the innovation distribution itself.

The estimates of the MVNTS ARMA-GARCH coefficients are given in table 6.6. The

estimation is performed for the 29 selected DJIA stocks contained in table 5.1. It is fur-

thermore based on the same observation period as employed in section 6.2.1. Although

the MVNTS ARMA-GARCH model will be compared to the Normal ARMA-GARCH

model in the course of GoF tests, explicit estimation results for the latter are omitted

here. This is justified by the focus on interpretable results only. Finally, one has to note

that the estimated coefficients differ substantially when comparing different stocks. This,

in turn, indicates that each stock possesses its individual characteristics with regard to

return dynamics.

The parameter estimation of the corresponding stdMVNTS distribution is carried out by

performing the procedure developed in section 5.3.4. As was explained, the parameters

(a, λ) related to the subordinator dynamics are simultaneously estimated, based on linear

combinations of the joint residuals ξ̂t =
(
ξ̂1,t, . . . , ξ̂29,t

)T
with a weighting ω. The most

reliable and meaningful outcome is generated when using an equally weighted portfolio,

i.e.

ω = ωewpf =

(
1

29
, . . . ,

1

29

)T

. (6.3)

This choice leads to the estimates

â = 0.01

λ̂ = 2.6925 .

Having these common fixed values for every dimension k = 1, . . . , 29, one is able to se-
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k Ĉk b̂k η̂k α̂k θ̂k β̂k

1 5.9275 · 10−5 0.8072 -0.8332 2.0000 · 10−7 0.0224 0.9771

2 4.8087 · 10−4 -0.6776 0.7125 1.8860 · 10−6 0.0368 0.9611

3 1.0424 · 10−4 0.7871 -0.8431 7.4933 · 10−7 0.0558 0.9442

4 7.8242 · 10−4 -0.9325 0.9259 5.4533 · 10−7 0.0387 0.9608

5 4.6341 · 10−5 0.9170 -0.9372 1.3748 · 10−6 0.0882 0.9118

6 8.4114 · 10−4 -0.1499 0.1001 3.4631 · 10−6 0.0476 0.9440

7 1.2915 · 10−3 -0.6808 0.7062 9.9813 · 10−7 0.0159 0.9816

8 3.6463 · 10−4 0.5662 -0.6236 4.6748 · 10−6 0.0671 0.9139

9 2.2367 · 10−4 0.6591 -0.6988 4.3463 · 10−7 0.0244 0.9751

10 2.5916 · 10−4 -0.6091 0.6319 2.3288 · 10−7 0.0322 0.9674

11 2.5215 · 10−4 -0.5519 0.5615 9.3181 · 10−7 0.0356 0.9618

12 1.5038 · 10−3 -0.9560 0.9480 3.1502 · 10−6 0.0573 0.9294

13 3.6220 · 10−5 0.8588 -0.8859 2.8945 · 10−7 0.0317 0.9683

14 1.8906 · 10−4 0.7415 -0.7853 6.6811 · 10−7 0.0306 0.9693

15 1.0384 · 10−4 -0.9580 0.9693 1.5445 · 10−6 0.0418 0.9557

16 1.4604 · 10−4 0.6982 -0.7167 9.7592 · 10−7 0.0278 0.9708

17 4.3450 · 10−4 -0.3269 0.2926 5.6013 · 10−7 0.0308 0.9678

18 3.2311 · 10−4 -0.4373 0.4699 5.8986 · 10−7 0.0547 0.9443

19 7.7352 · 10−5 0.8244 -0.8458 1.0110 · 10−6 0.0592 0.9408

20 9.8250 · 10−5 0.8353 -0.8554 1.6811 · 10−6 0.0323 0.9620

21 2.7484 · 10−4 0.0154 0.0069 5.3944 · 10−6 0.0474 0.9371

22 6.4453 · 10−5 -0.1247 0.0771 5.7350 · 10−7 0.0431 0.9569

23 −1.6279 · 10−4 -0.5710 0.6154 2.8998 · 10−6 0.0632 0.9298

24 2.1816 · 10−4 0.5807 -0.6493 9.1479 · 10−7 0.0436 0.9516

25 1.9488 · 10−4 0.1880 -0.2210 4.6307 · 10−6 0.0863 0.9075

26 1.5361 · 10−4 0.7831 -0.8328 1.2956 · 10−6 0.0486 0.9480

27 2.3897 · 10−4 -0.8822 0.8526 9.8393 · 10−7 0.0542 0.9447

28 4.8395 · 10−6 0.9350 -0.9592 2.5855 · 10−7 0.0277 0.9719

29 4.3704 · 10−5 0.8718 -0.8996 8.2264 · 10−7 0.0245 0.9728

Table 6.6: Estimated coefficients for the MVNTS ARMA-GARCH stock model.
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quentially estimate the single components γk of γ. The current estimates are given in table

6.7, together with their corresponding 95% confidence intervals.

k γ̂k lower c.i. bound upper c.i. bound

1 0.0799 -0.0364 0.1961

2 0.1569 0.0204 0.2935

3 0.1493 0.0158 0.2828

4 0.1121 -0.0240 0.2483

5 -0.0306 -0.0839 0.0226

6 0.0541 -0.0831 0.1912

7 0.0620 -0.0670 0.1910

8 -0.1331 -0.2883 0.0220

9 0.0946 -0.0460 0.2352

10 0.1553 0.0427 0.2679

11 0.2217 0.0906 0.3528

12 -0.1668 -0.3122 -0.0213

13 0.1547 0.0194 0.2901

14 0.0832 -0.0367 0.2031

15 0.1258 0.0983 0.1533

k γ̂k lower c.i. bound upper c.i. bound

16 -0.0377 -0.1833 0.1079

17 -0.0207 -0.1438 0.1024

18 0.1434 0.0108 0.2761

19 0.1440 0.0154 0.2725

20 0.1038 -0.0331 0.2407

21 -0.0001 -0.0002 0.0001

22 0.0477 0.0476 0.0477

23 -0.0314 -0.1648 0.1021

24 0.0208 -0.0649 0.1065

25 0.1020 -0.0074 0.2114

26 0.0872 -0.0219 0.1963

27 0.0945 -0.0494 0.2385

28 0.1977 0.0520 0.3433

29 0.1156 0.0119 0.2193

Table 6.7: Estimate γ̂ of the MVNTS ARMA-GARCH stock model.

In a final step, together with the previous estimates (â, λ̂, γ̂) the calibration of P̂ can be

carried out according to equation (5.15). Similar to the stationary model in chapter 5, the

calibration of P̂ completes the specification of the entire MVNTS ARMA-GARCH model

for the joint stock return dynamics Rt. Table 6.8 contains the calibrated correlation matrix

P̂ of the underlying multivariate Brownian motion.

Statistical GoF tests constitute a difficult task when more than two dimensions are in-

volved1. The most problematic aspect of multidimensional tests such as the χ2 test, is the

non-robustness of their results. This moreover impedes their capability of clearly distin-

guishing distributions with a sufficiently adequate model fit from those possessing a poor

model fit, in particular with regard to the distribution tails. Therefore, one is restricted

to one-dimensional GoF tests of the marginal distributions, while the adequacy of the

dependence structure cannot be formally assessed in this context. Tables 6.9 and 6.10

contain the three familiar univariate GoF statistics for the 29 marginal distributions of

1For detailed explanations see sections 5.4.2.
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the MVNTS ARMA-GARCH and the Normal ARMA-GARCH model, respectively2.

k KS p-value KS AD p-value AD AD2 p-value AD2

1 0.0220 0.1761 3.6931 0.0001 2.2950 0.0636

2 0.0106 0.9372 0.0757 0.1689 0.4101 0.8386

3 0.0103 0.9517 0.5806 0.0023 0.2104 0.9873

4 0.0120 0.8629 0.0992 0.0873 0.2596 0.9650

5 0.0138 0.7223 332.2412 0.00000 0.6390 0.6117

6 0.0125 0.8243 0.6922 0.0017 0.6655 0.5882

7 0.0118 0.8716 2.7883 0.0001 0.4132 0.8355

8 0.0298 0.0234 0.0744 0.1776 2.2398 0.0681

9 0.0137 0.7333 2.0703 0.0002 0.8501 0.4462

10 0.0148 0.6384 6.8903 0.0000 0.7453 0.5220

11 0.0137 0.7312 0.4811 0.0034 0.6238 0.6256

12 0.0240 0.1098 0.0565 0.4158 1.3874 0.2059

13 0.0104 0.9466 0.4899 0.0033 0.4773 0.7700

14 0.0203 0.2501 8.4180 0.0000 2.3844 0.0571

15 0.0121 0.8501 49.2358 0.0000 0.5655 0.6811

16 0.0176 0.4156 1.4522 0.0004 0.9664 0.3754

17 0.0168 0.4792 5.3703 0.0000 1.2180 0.2609

18 0.0150 0.6189 0.5546 0.0026 0.6922 0.5652

19 0.0124 0.8354 0.0776 0.1578 0.3172 0.9246

20 0.0131 0.7800 0.1652 0.0297 0.7150 0.5462

21 0.0266 0.0565 8.3511 0.0000 4.8909 0.0033

22 0.0206 0.2345 1279.1789 0.0000 1.4880 0.1794

23 0.0154 0.5872 2.8938 0.0001 0.6472 0.6044

24 0.0160 0.5393 372.7506 0.0000 1.1690 0.2797

25 0.0173 0.4415 9.0923 0.0000 1.2094 0.2641

26 0.0094 0.9782 48854.8877 0.0000 0.5521 0.6943

27 0.0149 0.6319 0.0591 0.3619 0.5951 0.6526

28 0.0237 0.1173 0.0552 0.4453 1.2846 0.2374

29 0.0157 0.5661 8.7223 0.0000 0.8085 0.4749

Table 6.9: GoF tests for residuals of the MVNTS ARMA-GARCH stock model.

First of all it can be observed that the KS test does not reject the stdNTS hypothesis for the

marginal standardized innovations at the 1% significance level for any of the incorporated

stocks. Quite contrary, it rather delivers remarkably high p-values in most of the cases.

This result is further substantiated by the output of the squared AD test, where the

null hypothesis is only rejected for stock k = 21 at the given significance level. Most

other p-values range between 0.5 up to 0.98, however. The stock k = 21 seems to be

exceptional for the following reason. Under the alternative Normal ARMA-GARCH model

2The symbol∞ indicates the occurrence of a numerical overflow during the calculation, due to extremely
high values. The corresponding p-value is practically zero.



132 CHAPTER 6. ARMA-GARCH MODELS

k KS p-value KS AD p-value AD AD2 p-value AD2

1 0.0499 0.0000 8.3390 · 103 0.0000 13.7287 0.0000

2 0.0355 0.0035 1.7528 0.0003 5.2295 0.0000

3 0.0431 0.0001 2.3091 · 102 0.0000 5.8110 0.0000

4 0.0351 0.0041 3.9956 0.0001 4.4903 0.0051

5 0.0364 0.0025 1.2148 · 1011 0.0000 6.1758 0.0000

6 0.0365 0.0025 1.9087 · 103 0.0000 6.2636 0.0000

7 0.0399 0.0006 1.8699 · 105 0.0000 7.1843 0.0000

8 0.0217 0.1868 2.4727 · 10−1 0.0131 1.4414 0.1912

9 0.0386 0.0011 3.7963 · 104 0.0000 6.3495 0.0000

10 0.0500 0.0000 1.3099 · 106 0.0000 9.5867 0.0000

11 0.0407 0.0005 4.6706 · 101 0.0000 7.2222 0.0000

12 0.0221 0.1729 4.1480 · 10−1 0.0046 2.8307 0.0334

13 0.0344 0.0051 1.8085 · 102 0.0000 4.9505 0.0031

14 0.0554 0.0000 ∞ 0.0000 ∞ 0.0000

15 0.0381 0.0013 1.4554 · 1010 0.0000 6.9869 0.0000

16 0.0307 0.0174 1.0433 · 104 0.0000 4.9986 0.0029

17 0.0478 0.0000 2.1225 · 105 0.0000 10.3437 0.0000

18 0.0474 0.0000 1.5220 · 102 0.0000 8.5022 0.0000

19 0.0421 0.0002 2.5201 0.0001 5.7134 0.0000

20 0.0416 0.0003 4.4951 0.0000 6.7040 0.0000

21 0.0690 0.0000 1.3151 · 1023 0.0000 25.9682 0.0000

22 0.0512 0.0000 2.8644 · 1011 0.0000 13.3420 0.0000

23 0.0352 0.0040 9.4186 · 104 0.0000 6.9954 0.0000

24 0.0482 0.0000 5.2377 · 1014 0.0000 12.7904 0.0000

25 0.0518 0.0000 4.1476 · 106 0.0000 11.3507 0.0000

26 0.0471 0.0000 2.1642 · 1020 0.0000 7.8455 0.0000

27 0.0286 0.0332 1.0800 0.0007 3.8150 0.0108

28 0.0266 0.0567 2.8377 · 10−1 0.0099 4.0093 0.0087

29 0.0471 0.0000 ∞ 0.0000 ∞ 0.0000

Table 6.10: GoF tests for residuals of the Normal ARMA-GARCH stock model.

its associated p-values for all three GoF tests likewise are virtually zero up to at least

four significant digits. Therefore, the characteristics of this stock are not ascertainable

by neither the MVNTS nor the Normal model. The supremum-type AD test, however,

rejects the above marginal null hypothesis of stdNTS for almost each of the stocks. This

raises reasonable doubt concerning the overall appropriateness of this type of AD test for

the situation under study. One reason for this apparently overly strict behavior in the

formal sense might be explained by its membership in the class of supremum-type tests.

Hence, the AD statistics sensitively reacts to outliers inevitably contained in data sets

of large size. Nevertheless, AD seems to detect one distinct feature of the distributional

fit which does not match the obtained standardized residuals. Again by definition of AD,
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this feature is supposedly related to the weak extreme tails of the empirical frequency

distribution. This suspected assumption is due to the fact that the ARMA-GARCH model

now accounts for a considerable proportion of unconditional volatility and excess kurtosis.

Recall that in the stationary model without ARMA-GARCH effect presented in chapter

5, the MVNTS distribution proved excellent fitting capabilities confirmed by all three

GoF tests. Following these arguments, it may seem reasonable to not assign any major

relevance to the case of supremum-type AD test for the time being. Instead, one relies on

the significant verification of the marginal MVNTS fit indicated by KS and AD2, although

this aspect should further on be kept in mind. Even more so, the poor AD results appears

negligible in the first instance since additional backtests performed in section 6.3.2 formally

prove the MVNTS ARMA-GARCH to be a valid model for the DJIA stock return series

in an out-of-sample period of high market volatility.

Finally considering the Normal ARMA-GARCH model, not the slightest evidence of agree-

ment with empirical data can be found. With only a small number of stocks excepted, all

three GoF tests simultaneously reject the Gaussian hypothesis for corresponding stan-

dardized residuals at a given significance level of 1%. This provides further support for

the acknowledged fact that ARMA-GARCH time series models are not able to capture

the entire amount of excess kurtosis and skewness when employing normal distributions

for their standardized innovations.

Since the KS test covers the center of the distributions and the squared AD test assigns

significant emphasis on the tails, the stdMVNTS proves to be a reasonable distributional

assumption in the context of the ARMA-GARCH model. So far, this is at least true when

only marginal distributions are considered. An alternative comparison of Normal and

MVNTS ARMA-GARCH from a risk measurement perspective is presented in section

6.3.1, which moreover incorporates an implicit assessment the dependence structure.

Before turning to the analysis of equally-weighted portfolios and the application of the

multivariate ARMA-GARCH time series models with regard to risk prediction, the day-

ahead forecasts for VaR and AVaR on September 26, 2008 are illustrated in table 6.11.

Although various empirical backtests are left to the forthcoming section 6.3.2, the sig-
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nificant differences between the predictions under the MVNTS ARMA-GARCH and the

Normal ARMA-GARCH model become clearly apparent in this comparison.

VaR 1% AVaR 1%

k Normal MVNTS Normal MVNTS

1 0.0387 0.0378 0.0446 0.0457

2 0.0702 0.0750 0.0804 0.0900

3 0.1212 0.1221 0.1391 0.1462

4 0.0510 0.0548 0.0584 0.0661

5 0.1975 0.2333 0.2255 0.2810

6 0.0569 0.0605 0.0653 0.0728

7 0.0500 0.0545 0.0575 0.0659

8 0.0543 0.0613 0.0622 0.0743

9 0.0623 0.0625 0.0713 0.0751

10 0.0361 0.0380 0.0414 0.0457

11 0.0522 0.0534 0.0599 0.0640

12 0.0527 0.0593 0.0602 0.0719

13 0.0782 0.0776 0.0896 0.0934

14 0.0465 0.0534 0.0533 0.0643

15 0.0722 0.0766 0.0829 0.0923

VaR 1% AVaR 1%

k Normal MVNTS Normal MVNTS

16 0.0570 0.0593 0.0652 0.0716

17 0.0463 0.0453 0.0532 0.0548

18 0.0273 0.0278 0.0313 0.0333

19 0.1821 0.1895 0.2089 0.2269

20 0.0389 0.0409 0.0446 0.0494

21 0.0452 0.0522 0.0517 0.0630

22 0.0547 0.0584 0.0627 0.0701

23 0.0557 0.0600 0.0636 0.0722

24 0.0319 0.0348 0.0366 0.0420

25 0.1097 0.1197 0.1258 0.1442

26 0.0528 0.0521 0.0610 0.0630

27 0.0532 0.0579 0.0610 0.0696

28 0.0404 0.0422 0.0462 0.0505

29 0.0524 0.0471 0.0601 0.0566

Table 6.11: Comparison of day-ahead VaR and AVaR forecasts for each of the stocks on
September 26, 2008.

6.3 Portfolio Analysis

6.3.1 Risk Prediction

In order to adapt the model to currently available information in the best possible manner,

one considers an ARMA-GARCH model with continuous re-estimation. This model variant

offers improved flexibility as conditional mean and variance are not solely influenced by

past realizations of the standardized innovations, which is sampled from a distribution with

fixed parameter values. In fact, the coefficients of the ARMA-GARCH structure, processing

the information contained in past realizations, are adjusted to newly available information

every day. This has the advantage of not only being able to process current realizations

in a fixed structure of equations reflecting the general characteristics of observed price

dynamics, but to make this structure itself subject to constant change. Besides the ARMA-

GARCH coefficients, this adaptation also affects the parameters of the distribution of

innovations.
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Formally, the ARMA coefficients Ck,t, bk,t, ηk,t as well as the GARCH coefficients αk,t, θk,t

and βk,t in equations (6.1) and (6.2) are supplemented by an additional time index t to

indicate that their estimation is based on a sample period [t− τ, t] of length τ . The same

is true for the parameter set (at, λt, γt,Pt) of the stdMVNTS distribution of joint stan-

dardized innovations. Note that, in contrast to ξt,k and σ2
k,t, this time-dependency is not

implied by the dynamic structure of equations (6.1) and (6.2) but rather an exogenously

imposed assumption concerning the model inputs.

As was pointed out in section 4.2.2, the MVNTS distribution possesses a particular ad-

vantage with regard to its parametrization. According to equations (6.1) and (6.2), the

conditional mean of the return Rt+1 under the information Ft up to time t is3

E(Rt+1|Ft) =
[
E
(
Ck,t + bk,tR

(k)
t + ηk,tσk,tξk,t + σk,t+1ξk,t+1|Ft

)]T
k=1,...,n

=
[
Ck,t + bk,tR

(k)
t + ηk,tσk,tξk,t + σk,t+1 · E (ξk,t+1|Ft)

]T
k=1,...,n

=
[
Ck,t + bk,tR

(k)
t + ηk,tσk,tξk,t

]T
k=1,...,n

.

The corresponding vector of conditional variances is

V ar(Rt+1|Ft) =
[
V ar

(
Ck,t + bk,tR

(k)
t + ηk,tσk,tξk,t + σk,t+1ξk,t+1|Ft

)]T
k=1,...,n

=
[
σ2
k,t+1 · V ar (ξk,t+1|Ft)

]T
k=1,...,n

=
[
σ2
k,t+1

]T
k=1,...,n

.

Therefore, equation (6.1) can be interpreted as a simple rescaling of the random vector of

standardized innovations ξt+1 = (ξ1,t+1, . . . , ξn,t+1)T ∼ stdMV NTS(at, λt, γt,Pt), leading

to the conclusion that the day-ahead joint stock return is MVNTS distributed according

3Note that σt+1,k is Ft-measurable.
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to

Rt+1|Ft ∼MVNTS

(
at, λt, γt,Pt, [σk,t+1]Tk=1,...,n ,

[
Ck,t + bk,tR

(k)
t + ηk,tσk,tξk,t

]T
k=1,...,n

)

This is basically due to the fact that the parameters (c, d) of a MVNTS distribution are

directly linked to the mean and standard deviations or the coefficient vectors of a simple

linear transformation, respectively.

In the following, an equally-weighted portfolio (EWPF) comprising the n = 29 stocks is

considered. The associated portfolio return Rewpft+1 is generated by the linear combination

of dependent stock returns Rk,t+1

Rewpft+1 = ωT
ewpfRt+1 ,

using the weight vector ωewpf from equation (6.3). When applying the beneficial property

of MVNTS distributions concerning linear combinations4, one is able to conclude from

equations (4.37) – (4.39) that Rewpft+1 ∼ NTS(at, λt, gt, s
2
t ,mt) where

gt = ωT
ewpfdiag(σt+1)γt

mt = ωT
ewpf

[
Ck,t + bk,tR

(k)
t + ηk,tσk,tξk,t

]T
k=1,...,n

st =
[
ωT
ewpfdiag(σt+1)diag(St)Ptdiag(St)diag(σt+1)ωewpf

] 1
2

and

St =

[√
1− 2− a

2λ
γ2
k,t

]T
k=1,...,n

σt+1 = [αk,t + θk,tσk,tξk,t + βk,tσk,t]
T
k=1,...,n .

4See section 4.2.4.
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Figure 6.1 illustrates the development of the day-ahead predictions of VaR and AVaR

of the EWPF return Rewpft+1 for a significance level of 1%. In this figure, the respective

predictions are obtained from the time-adaptive versions of MVNTS ARMA-GARCH

and Normal ARMA-GARCH and their dynamic parameter estimates. Both models use a

historical sample period of 10 years, which enables predictions in the time interval between

September 1, 2007 and September 25, 2009 on the available data set.
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Figure 6.1: Sequence of EWPF VaRα and AVaRα predictions of MVNTS ARMA-GARCH
and Normal ARMA-GARCH, α = 0.01.

With the entire sequence of estimated ARMA-GARCH model parameters for t = 1, . . . , N ,

a further analysis of the market crash on September 29, 2008 is carried out. On that day,

the EWPF would have generated a loss of 7.87 %. The daily probabilities for an event with

equal or even greater losses under the MVNTS ARMA-GARCH model and the Normal

ARMA-GARCH model with time adapted parameters and coefficients are compiled in

table 6.12. Given that standardized innovations are independent over time, the respective

probabilities are converted into expected time intervals between crashes of this magnitude.

While the frequency of roughly 10 years implied by the MVNTS ARMA-GARCH model

appears to be in conformity with observable reality, the corresponding statement of the

Normal ARMA-GARCH can reasonably be doubted.
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Event probability Exp. waiting time

Normal ARMA-GARCH 0.0048 % 82.2743 years

MVNTS ARMA-GARCH 0.0539 % 7.3688 years

Table 6.12: Daily market crash probabilities and corresponding waiting times.

1%-VaR 1%-AVaR 0.5%-VaR 0.5%-AVaR

Normal ARMA-GARCH 0.0469 0.0537 0.0519 0.0583

MVNTS ARMA-GARCH 0.0496 0.0597 0.0567 0.066

Table 6.13: EWPF VaRα and AVaRα predictions of MVNTS ARMA-GARCH and Normal
ARMA-GARCH, α = 0.01, α = 0.005.

6.3.2 ARMA-GARCH Backtests

Various formal backtests concerning the adequateness of an estimated ARMA-GARCH

model and its distributional assumption for the implied standardized residuals are based on

the number of quantile violations. For each time step contained in a backtesting period, the

realized value of the standardized residual is compared to upper and lower α-quantiles of

the assumed distribution of standardized innovation. A violation occurs when the residual

is not within the interval between upper and lower quantile. A model is rejected when

violations occur too often or too rarely in the course of time, based on certain formal

criteria. On average, 2α violations should occur as a reference value when the model is

correct. A violation on the downside can be interpreted as a realized return falling below

the negative VaR for significance level α. Two such tests are the Christoffersen test5 and

the Berkowitz test6, which both implement the basic approach of likelihood ratio tests.

The results of their different variants are presented in tables 6.14 and 6.15. Specifically,

MVNTS ARMA-GARCH models with dynamic parameter values are employed to generate

distribution forecasts of EWPF returns for the time horizon of one day. These dynamic

forecasts are compared to the EWPF return realizations in the 2-year backtesting period

from September 18, 2007 until September 16, 2009. The individual test variants are in

5See Christoffersen in [Chri98].
6See Berkowitz in [Berk01].
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case of the Christoffersen test

• unconditional coverage (LRuc)

• test for serial independence (LRind1)

• test for conditional coverage (LRcc)

and in the case of the Berkowitz test

• lower tail test (LRtail)

• test for serial independence (LRind2) .

All likelihood ratios (LR) can be easily converted into corresponding p-values, since they

are asymptotically χ2-distributed. The coverage and the tail tests are based on quantiles

for α = 0.01 and α = 0.005, as indicated in the respective results table.

Christofferson tests

LRuc (p-value) LRind1 (p-value) LRcc (p-value)

Normal ARMA-GARCH 5.3222 (0.0211) 0.4919 (0.4831) 5.8141 (0.0546)

MVNTS ARMA-GARCH 2.5482 (0.1104) 0.3280 (0.5669) 2.8762 (0.2374)

Berkowitz tests

LRtail (p-value) LRind2 (p-value)

Normal ARMA-GARCH 7.1044 (0.0287) 7.0075 (0.0081)

MVNTS ARMA-GARCH 2.7303 (0.2553) 6.0850 (0.0136)

Table 6.14: Christoffersen and Berkowitz backtests for α = 0.01.

Before turning to the interpretation of the results, it has to be emphasized at this point

that these tests do not only concern the ARMA-GARCH structure and the marginal

distribution but explicitly incorporate the dependence structure of the stdMVNTS distri-

bution assumption for joint innovations, since EWPF returns or linear combinations are

considered.
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Christofferson tests

LRuc (p-value) LRind1 (p-value) LRcc (p-value)

Normal ARMA-GARCH 10.0375 (0.0015) 0.3280 (0.5669) 10.3654 (0.0056)

MVNTS ARMA-GARCH 0.0866 (0.7686) 0.0360 (0.8495) 0.1226 (0.9406)

Berkowitz tests

LRtail (p-value) LRind2 (p-value)

Normal ARMA-GARCH 9.9465 (0.0069) 7.0075 (0.0081)

MVNTS ARMA-GARCH 0.0980 (0.9522) 6.0850 (0.0136)

Table 6.15: Christoffersen and Berkowitz backtests for α = 0.005.

For α = 0.01, Normal and MVNTS ARMA-GARCH models show the same performance

in the Christoffersen tests. None of them can be rejected for significance levels below 10%.

In the Berkowitz tail test under the same conditions, the Normal ARMA-GARCH model

is rejected at the significance level of 1%, while the MVNTS ARMA-GARCH model is not.

When α is set to a value of 0.005, the tests assign increased relevance to more extreme

events. The Christoffersen tests for conditional and unconditional coverage as well as the

Berkowitz tail test reject the Normal ARMA-GARCH model at significance level of 1%.

The MVNTS ARMA-GARCH model passes7 these three tests with resulting p-values

ranging between 0.06 and 0.16. Therefore, the shortcomings of Normal ARMA-GARCH

models become clearly evident when extreme risks are to be quantified. For this reason

Normal ARMA-GARCH models do not seem to be suitable for implementing sustainable

risk management principles. A MVNTS ARMA-GARCH model should be the preferred

choice for performing these tasks, instead.

The assumption of independence is not doubted in the Christoffersen test, whose results

are naturally not affected by different values of α. The Berkowitz test rejects the hypothesis

of independent draws at a significance level of 1% for the Normal ARMA-GARCH model

while this is not possible for the MVNTS ARMA-GARCH model. However, one has to

consider the substantial differences between the Christoffersen and the Berkowitz test

concerning their results with regard to the independence hypothesis.

7In the sense that they cannot be rejected at the respective significance levels.
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6.4 Literature Review

At this point, a comprehensive summary of similar multivariate Brownian subordination

approaches present in the literature to this date should be given.

Øig̊ard et al. [ØHHG05] recently defined a simple multivariate extension of the NIG model

based on Brownian subordination by maintaining the univariate IG subordinator and only

replace the original univariate Brownian motion by its multivariate counterpart. Moreover,

these authors present an efficient expectation maximization (EM) algorithm for the max-

imum likelihood (ML) estimation of the parameter values based on a method developed

by Karlis [Karl02]. Aas et al. [AaHHD06] apply the multivariate NIG (MNIG) to financial

econometrics involving GARCH time series models. With their estimated model they are

able to show the superiority of this multivariate distribution assumption over the Gaussian

alternative in the context of optimal portfolios and in-sample performance evaluations.

One has to remark however, that MNIG was not one of the first multivariate Brownian

subordination-based models, however. Previously, a series of multivariate skewed-t distri-

butions in different specifications were introduced by Azzalini and Capitanio [AzCa03],

Bauwens and Laurent [BaLa05] and Dokov et al. [DoSR08], where the latter article em-

phasizes on the practical computation of the common risk measures Value-at-Risk and

Average Value-at-Risk and the construction of the distribution via Brownian subordina-

tion by means of employing an Inverse Gamma subordination process. In the work of

the former authors it has to be primarily criticized that their versions of the multivariate

skewed-t distribution fail when data exhibits asymmetric tails, a feature which can be

captured by the MNIG instead8. This shortcoming, however, was remedied by the further

development and sophistication achieved by Dokov et al. Moreover, while the multivariate

skewed-t distribution possesses polynomial decay of the distribution tails, this decay is of

exponential type in the case of the MNIG distribution, a feature which appears to be more

consistent with empirical observations of asset returns.

The principal advantage of the MNIG and the multivariate skewed-t model lies in the fact

8see Aas et al. [AaHHD06].
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that both are embedded in the more general class of multivariate generalized hyperbolic

distributions discovered by Barndorff-Nielsen [Barn77], which is due to utilizing a specific

subordinator from the generalized inverse Gaussian class. In particular, as a result, both

MNIG and the skewed-t approach allow for closed form probability density functions.

One of the latest attempts in this particular direction is made by Eberlein and Madan

[EbMa10]. In their setting of Brownian subordination, they establish a multivariate Brow-

nian subordination with the distinguishing innovation that each dimension is driven by

a separate independent Gamma process for the virtual time flow. By this construction a

rather advanced and flexible multivariate extension of the familiar Variance Gamma model

is obtained, which is denoted by MVVG. The drawback one has to accept by the choice

of separate independent subordinators, is that the characteristic function as the central

means of representation of many non-Gaussian processes is not available in closed form.

This considerably complicates the theoretical handling as well as the practical application

of the model. Moreover, one cannot ensure that the resulting distributions maintain the

property of infinite divisibility. One of their most noteworthy findings lies in the universal

fact that even in their flexible setting the achieved correlation structure of the distribution

is rather limited. In other words, one would not be able to calibrate the MVVG to a more

extreme correlation structure, where a Gaussian model is able to incorporate any given

covariance matrix. However, for capturing realistic empirical correlation patterns, the ca-

pabilities of the MVVG seem to be sufficient in this respect. In an application to portfolio

optimization the MVVG nevertheless delivers superior performance results compared to

the Gaussian alternative as it is able to better capture the present dependence structures

of higher order which go beyond simple correlation.



Chapter 7

Conclusion and Outlook

7.1 Conclusion

Adequate statistical modeling of multidimensional asset price processes constitutes one

of the principal tasks in several areas of modern quantitative finance. One of the most

critical aspects are asymmetry and features of heavy-tailedness of return distributions.

Moreover, volatility clustering is observed on the time scale. These phenomena are widely

acknowledged as stylized facts of financial market data.

Basic concepts and definitions are briefly reviewed in chapter 2. This review encompasses

the theory of multivariate Lévy processes, the time-change of Lévy processes as well as a

compact overview with respect to univariate tempered stable processes.

In order to prepare a transition to multivariate extensions in chapter 4, univariate normal

tempered stable (NTS) models are thoroughly treated in chapter 3. The presentation is

oriented towards a consistent formulation of the associated processes and distributions

within the Brownian subordination perspective. This includes a detailed derivation of

various process and distribution characteristics. It is achieved by the application of general

calculation methods for Lévy processes to the specific setting of a Brownian subordination

with a CTS process for the virtual time. The focus is on a clear and transparent description

of the procedure. This should ease the application of the methods when turning to the

143
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more complex case of n > 2 dimensions. A supplementing result is the correspondence in

terms of parameters between the two existing definitions of the NTS model. This particular

relation proves only to be present in the one-dimensional case, however.

Chapter 4 introduces the multivariate normal tempered stable (MVNTS) process. Its def-

inition is likewise based on the construction technique of Brownian subordination in a

multivariate setting. Subsequently, the Lévy triplet as the fundamental means of process

specification, is derived. This is accompanied by associated multivariate characteristic

functions and distributional moments. Based on the evaluation of the process after a unit

time interval, the corresponding MVNTS distribution is defined. Particular care was taken

to design a parametrization that implies a reasonable degree of tractability with respect

to practical application. In this context, it proves beneficial to consider a class of dis-

tributions with zero mean and unit variances first, before proceeding to a version with

arbitrary moments, which is created by a simple linear rescaling. Moreover, properties of

various kinds of transformations such as linear mappings and linear combinations are de-

rived. These two aforementioned operations prove to be particulary relevant in the further

empirical analysis. In addition to the advantages offered by the specific parametrization,

the general construction approach of Brownian subordination enables the circumvention

of many complex calculations involved with the derivation of joint moments, characteristic

functions as well as probability density and cumulative distribution functions.

The empirical assessment of model performance and adaptability is subdivided into several

individual parts. In order to implement a first application of the MVNTS distribution, a

simple i.i.d. model for the unconditional joint daily returns of the DJIA index and the

stocks contained therein is stated in chapter 5. Subsequently, a full estimation procedure

for the entire parameter set of the MVNTS distribution is developed. It is shown that

there exists a particular possibility for decomposing the estimation problem into several

sequential steps. Each step is only concerned with a certain parameter subset, where not

more than three parameters have to be estimated simultaneously by means of maximum

likelihood. This decomposition ensures improved stability and makes the method feasible

even for a higher number of dimensions. It can basically be attributed to the specific choice
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of the definition and associated parametrization. By close connection to the underlying

Brownian motion, calibration of the dependence structure can be easily achieved.

With this procedure at hand, an unconditional model of the DJIA index returns and

the joint stock returns are estimated. The estimation is based on an empirical 10-years

sampling interval from 1999 through 2008. Assessing the goodness of fit of marginal dis-

tributions, the model generates sufficiently high p-values in the application of the KS and

both conventional and squared AD tests. Since KS and AD tests assign different weights

to the center and the tails of the distribution, the statistical fit is evaluated on the en-

tire support. These formal test results are further substantiated by graphical inspections,

where an alternative Gaussian model proves to be insufficient. A result of the same quality

was obtained when putting the modeled n-dimensional MVNTS dependence structure to

a test, which was particulary realized by creating an equally-weighted portfolio (EWPF).

However, one has to note a slight offset in the center of the distributions, indicating an

imperfectly captured dependence structure.

Furthermore, the chapter presents a new numerical inversion scheme of the characteristic

function for generating approximations of the CDF. This approach is based on the Gil-

Pelaez inversion theorem. Compared to the conventional CDF inversion, this method does

not rely on the existence of exponential moments and proves to be universally applicable.

This advantage in MVNTS fitting precision can be exploited to construct optimal portfo-

lios in a static context. Besides the comparison of efficient frontiers VaR and AVaR, various

alternative performance ratios are placed in opposition to each other. They result in rather

different portfolio weights. Two representative static strategies were subsequently exposed

to an in-sample as well as an out-of-sample evaluation. The in-sample period comprises

a pre-crisis time interval from October 1997 to September 2007, while the out-of-sample

period from October 2007 through September 2009 contains market conditions with ex-

tremely high volatilities. In both periods, the Sharpe ratio-optimal strategy carries higher

risks while on the other hand offering a higher reward potential compared to an oppos-

ing STARR-optimal strategy derived under MVNTS assumption. When aggregating risk

and reward into a single performance ratio, the conventional ratios consistently favor the
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Sharpe ratio-optimized strategy in the in-sample analysis, while in the more decisive out-

of-sample analysis the STARR-optimal strategy is consistently preferred.

The study of portfolios involves linear combinations of asset returns. It is shown that linear

combinations of MVNTS dimensions result in a univariate NTS distributed random vari-

able. Moreover, by the specifically designed estimation procedure based on the properties

of the parametrization, it is possible to merge two specified MVNTS models into a joint

model. The latter property proves to be essential for employing the DJIA index returns

as the benchmark in the course of portfolio optimization.

The second part of the empirical study addresses the application of the MVNTS distri-

bution in the context of an advanced multivariate ARMA-GARCH time series model for

DJIA returns. Chapter 6 compares the MVNTS assumption to the multivariate Gaussian

assumption for the distribution of ARMA-GARCH innovations. Statistical goodness of fit

tests indicate a clear superiority of the MVNTS assumption over the alternative model with

Gaussian innovations. This becomes more evident when comparing the 1-day predictions

of VaR and AVaR of continuously updated ARMA-GARCH models over a time interval of

2 years. One has to stress the fact that these results were obtained during the crisis period

between 2007 and 2009, where Gaussian ARMA-GARCH innovations are not able to ad-

equately capture the dynamics of volatile market conditions. Although the differences are

not as significant as in the unconditional framework, the subsequent Christoffersen and

Berkowitz tests for various criteria tend to favor the MVNTS assumption.

In summary, two goals were accomplished in the present thesis. First, one defined a versa-

tile stochastic model in an arbitrary number of dimensions. A comprehensive description of

its representations and properties together with a toolbox for basic manipulations is pro-

vided. The particular construction approach in combination with an expediently designed

parametrization results in a remarkably tractable model. This enables efficient estimation

method as well as eased implementation of portfolio optimization. On the other hand, this

tractability is available in spite of a considerable level of flexibility and fitting capability.

The superior adaptability becomes evident in particular during volatile market periods.
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Moreover, the MVNTS model is one of the first multivariate extensions which genuinely

implement the common principle of tempered stable models. Many of its highly desirable

properties would vanish when merely defining a multivariate distribution from tempered

stable marginal distributions, combined by means of a copula. In addition, it was demon-

strated that previous approaches, like the multivariate versions of variance gamma and

normal inverse Gaussian processes, are embedded in the MVNTS model.

Finally, the MVNTS model might possess the potential of gaining a respectable level of

acceptance. The reason for this is that the widespread assumption of Brownian motions

does not have to be completely disregarded. Only the idea of a linearly and deterministi-

cally evolving trading time has to be replaced by a stochastic process of virtual trading

time, while the Brownian motion can be basically maintained.

7.2 Outlook

This section concludes the thesis by identifying areas of further research.

For situations where NTS distributions might turn out to be inadequate, one can still make

use of the natural dependence structure inherently contained in the MVNTS distribution.

For this purpose, the associated MVNTS copula can be isolated. The parametrization of

this copula is closely related to the parametrization of a stdMVNTS. Since the MVNTS

is generated by a mixture model of elliptical distributions, the MVNTS copula is capable

of representing asymmetric dependence structures. This property proves relevant, as in

financial market data one can observe that the dependence of lower tails is significantly

stronger than the dependence of upper tails1. Therefore, a model using the MVNTS copula

is more likely to be universally valid for market up-swings as well as market downturns.

An improved flexibility of the MVNTS dependence structure could be achieved when

appointing an individual but mutually independent CTS subordinator to each dimension

of the multivariate Brownian motion. However, this would entail the vanishing of the

considerable level of tractability that accompanied the original model definition. As has

1See McNeil et al. [McFE05].
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been pointed out, both the joint multivariate distribution as well as the distribution of

linear combinations do not possess a closed-form characteristic function. This in turn

makes it hard to tell whether this subordination generates Lévy processes or infinitely

divisible distributions at all.
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Appendix A

Lévy Processes

A.1 Definitions

General Lévy processes in contrast to the ubiquitous Brownian motions are considered to

be the more advanced types in the area of continuous-time stochastic processes. Although

their representation sometimes appear rather involved and discouraging, every single in-

stance contained in this class is constructed by implementing the same simple principle,

which namely is the serial independence and identical distribution of increments.

Following the presentation in Sato [Sato99, p. 3 f.], a possibly multivariate Lévy process

X(t),t>0 on Rn is defined by the conditions

• X0 = 0 P -almost surely.

• Independent increments: For every strictly increasing sequence 0 ≤ t0 < t1 < . . . <

tn, the random variables Xt0 , Xt1−Xt0 , Xt2−Xt1 , . . . , Xtn−Xtn−1 are independent.

• Stationary increments: The law of Xt+h −Xt does not depend on t and is the same

as the law of Xh. This is also known as temporal homogeneity.

• Stochastic continuity: ∀ε > 0, lim
h→0

P (|Xt+h −Xt| ≥ ε) = 0

Stochastic continuity should not be mistaken, however, with the continuity of process

paths.
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• Although not imposed by every author, a common additional condition is that tra-

jectories are càdlàg1. It can be shown that every Lévy process has a unique modi-

fication which then possesses the càdlàg property. In other words, there is Ω0 ∈ F

with P (Ω0) = 1 such that, for every ω ∈ Ω0, Xt(ω) is right-continuous in t ≥ 0 and

has left limits in t > 0.

As this kind of definition via conditions required to be met is not very illustrative at all,

one resorted to a more constructive perspective by means of the yet to follow Lévy-Itō

decomposition. With the help of this decomposition one is able to explicitly state the

entire set of Lévy processes according to the above conditions.

An extensive treatment of the basic theory on Lévy processes this section draws upon,

can be found in the textbooks of Sato [Sato99], Bertoin [Bert05] or Applebaum [Appl05].

Books which already have an orientation towards applications of various kinds are the

ones recently written by Schoutens [Scho03], Schoutens and Cariboni [ScCa09] as well as

the book from Kyprianou [Kypr06].

Only the aspects most relevant to the course of this work are explicitly recapitulated at

this point. First, it should be emphasized that a general multivariate Lévy process X(t),t>0

is a superimposition of three independent components:

• Diffusion component: Arithmetic Brownian motion without trend and a covariance

matrix A controlling the diffusion behavior.

• External trend: Their trajectories are simply Rn-valued linear functions of time t

which are specified by a vector m ∈ Rn.

• Jump component: The most central but complex item in the aggregation. Its jump

behavior is determined by a random measure2 ν on Rn\{0} of Radon type which

satisfies the two conditions

∫
|x|≤1

|x|2ν(dx) <∞ ,

∫
|x|≥1

ν(dx) <∞ . (A.1)

1French: continue à droite, limitée à gauche; right-continuous with left limits
2For details on how random measures of Poisson and general type determine a pure jump process, see

Applebaum [Appl05, p. 103].
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Therefore, each Lévy process can be uniquely represented by its associated Lévy triplet

(A, ν,m) where each item in the triplet specifies one of the above components.

Conditions similar to those in equation (A.1) characterize different types of involved jump

components.

1.) finite variation:

∫
|x|≤1

|x|ν(dx) <∞

2.) finite activity:

∫
|x|≤1

ν(dx) <∞

3.) existing expectation:

∫
Rn
|x|ν(dx) <∞

The characteristic function φXt(z) of the random process vector Xt of a multivariate Lévy

process X(t),t>0 with Lévy triplet (A, ν,m) at time t is determined by the Lévy-Khintchine

formula3

φXt(z) = E(exp(izTXt))

= exp

itmTz − t

2
zTΣz + t

∫
Rn\{0}

exp(izTx)− 1− izT x1|x|<1︸ ︷︷ ︸
=:ϑ(x)

 ν(dx)

 .
(A.2)

Due to its generation by a Lévy process with accordingly defined increments, the distri-

bution of Xt is moreover infinitely divisible (ID). This constitutes a universal relation as

every Lévy process is linked to one particular ID distribution and vice versa. Note that

for general Lévy jump measures fulfilling the condition in equation (A.1) but possessing

infinite variation, the integral in the Lévy-Khintchine formula in equation (A.2) would

not exist without the compensation term ϑ(x) = x1|x|<1. Its meaning becomes clear when

considering the Lévy-Itō decomposition4. The central result is a formal decomposition

rather similar to the qualitative motivation in enumeration on p. 162. Accordingly, a Lévy

3See e.g. Bertoin [Bert05, p. 13 f.].
4See, for instance, Applebaum [Appl05, p. 112 ff.] and Kyprianou [Kypr06, p. 33 ff.].
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process X(t) with triplet (A, ν,m) can be divided into the following three independent

sub-processes: X(t) = X
(1)
(t) +X

(2)
(t) +X

(3)
(t)

• X(1)
(t) : Arithmetic Brownian motion with drift m and covariance structure of the

diffusion parameter contained in matrix A.

• X(2)
(t) : Compound Poisson process determined by the measure ν on the domain of

’large’ jumps {x ∈ Rn : |x| ≥ 1}.

• X(3)
(t) : Square-integrable pure jump martingale with an almost surely countable num-

ber of jumps on each finite time interval which are of magnitude less than 1 termed

’small’ jumps. This martingale is generated by the assumption of ν on domain

{x ∈ Rn : |x| < 1} is driving a compensated5 jump process.

Finally, the compensation term in eq. (A.2) is a direct result of compensated nature ofX
(3)
(t) .

The following arguments play a crucial role for different ways of representing particular

types of Lévy processes. First note that the expression in the Lévy-Khintchine formula and

the associated Lévy-Itō decomposition exist for any kind of Lévy processes whose measure

ν has to satisfy the existence conditions in (A.1). If, however, the Lévy process meets one

of the additional conditions below, one can switch to a representation of simpler fashion

compared to the general case:

i) Bounded variation:

∫
|x|≤1

|x|ν(dx) <∞

Compensation is not essential for the process to exist, not even for small jumps of

magnitude less than one. Since the compensation of small jumps6 driven by ν would

by its regularity merely create an existing deterministic linear trend with bounded

gradient. This linear trend could also be separated from the process of small jumps

and incorporated in the previous trend component. Consequently, when ν implies

finite variation, the process composed by the triplet (A, ν,m(1)) under conventional

compensation of small jumps is equivalent to a process with (A, ν,m(0)), where ν

5Compensation of Poisson and general random measures is defined and explained e.g. in Cont and
Tankov [CoTa04, p. 59 f.].

6This is termed as the usual compensation convention as it is universally applicable.
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controls an uncompensated jump process encompassing the entire spectrum of jump

sizes. This jump process exists without any required compensation. Note the fact

that ultimately m(0) denotes the case where ν is treated without compensation. The

following equivalence to the usual and universally admissible convention characterized

by m(1) and the compensation of small jumps holds

ϑ(0)(x) = 0 (degenerated compensation function)

m(0) = m(1) −
∫
|x|<1

izTxν(dx) ,

where the letter equation reflects the necessary external trend when it is switched to

the convention of uncompensated jumps.

ii) Finite first moment: E(Xt) <∞ ∀ t > 0⇔
∫
Rn\{0}

|x|ν(dx) <∞

By the characteristics of ν it would even be admissible to compensate the entire

jump spectrum, corresponding to the compensation function for the Lévy-Khintchine

formula

ϑ(2)(x) = x .

This convention also leads to an existing internal compensation trend with bounded

gradient vector while the external trend denoted by m(2) again indicates the particular

type of compensation convention. Hence, by similar arguments as in i.), a random

measure ν satisfying above condition generates two equivalent Lévy processes for

(A, ν,m(1)) and (A, ν,m(2)), if and only if

m(2) = m(1) +

∫
|x|≥1

izTxν(dx) .

This case of |x|-integrable ν constitutes a convenient subcase as the admissible m(2) is

directly reflecting the entire drift present in the process. The jump component became

a martingale by the applied full compensation, so m(2) is solely responsible for the

evolution of the expectation E(Xt) of X(t) over time t.
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By these explanations it was illustrated how different compensation and representation

conventions can be equivalently converted into each other when certain existence and

regularity requirements are met, and, in consequence, how these conversions may lead to

favorable representations of the situation at hand. In particular m(2) has the advantage

of containing the complete information about the mean, whereas m(0) with ϑ(x) = 0 is

very often able to contribute an expression of simple analytical tractability in the Lévy-

Khinchine formula (A.2).

A.2 Stable Processes

The class of α-stable processes entirely comprise the set of self-similar Lévy processes 7. Be-

sides these, only Brownian motions possess the self-similarity property for Lévy processes

with corresponding similarity index of H = 1/2 in particular. The α-stable process X(t),t≥0

in the univariate case is characterized by its purely non-Gaussian character reflected in

the full Lévy triplet (0, νX ,m
(1)
X ) with

νX(x) =
C+

x1+α
1x>0 +

C−
|x|1+α

1x<0

and α ∈ (0, 2), C+, C− > 0, exhibiting polynomial decay8. Processing the Lévy triplet

and the Lévy triplet in particular with the Lévy-Khintchine formula from equation (A.2)

results in the characteristic function of the α-stable random variable

φXt(z) = exp

(
iztm+ t

∫
R\{0}

(
exp(−izx)− 1− izx1|x|<1

) [ C+

x1+α
1x>0 +

C−
|x|1+α

1x<0

]
dx

)

(A.3)

=


exp

(
iµzt− t|σz|α

(
1− iβsgn(z) tan πα

2

))
, α 6= 1

exp
(
iµzt− tσ|z|

(
1 + iβ 2

π sgn(z) ln |z|
))
, α = 1

(A.4)

7For a proof see Samorodnitsky and Taqqu [SaTa00, p. 351 f.].
8See for example Rachev et al. [KRBF10].
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which can be found in Rachev and Mittnik [RaMi00]. Note that it proves to be very

useful to switch from the original parametrization in terms of (α,C+, C−,m) to the one

employed in equation (A.4) using (α, β, σ, µ), β ∈ (−1, 1) for the level of asymmetry, σ > 0

for the scale and µ ∈ R for the location of the distribution. The correspondence of both

parameterizations is derived in Sato [Sato99, p. 80 ff.] for the general multivariate case and

is furthermore illustrated by Nolan [Nola12, ch. 3]. The distinction of the cases α 6= 1 and

α = 1 is finally caused by a series representation necessary for the integration in equation

(A.3), where the α-stable Lévy density is in square brackets. This fact is stressed here

since one encounters the same structures and implications when later turning to CTS and

NTS.

A.3 Characteristic Function of the CTS Subordinator

This section is intended to give an outline of the integration techniques involved with

the transition from a CTS-Lévy density to its characteristic function by means of the

Lévy-Khintchine formula. The actual benefit of this demonstration will turn out to be

twofold:

• The analytic solution of the integral relies on a series representation of the exponen-

tial function and a subsequent aggregation of the outcome in a binomial series. This

procedure will be reused for both the univariate as well as the multivariate NTS

process.

• The results for the CTS are required to determine the corresponding input of the

CTS subordinator for insertion into the subordination formulas.

The following calculations are guided by the directions given in Kim [Kim05, p. 18 ff.] and

Cont and Tankov [CoTa04, p. 121 f.]. Since a CTS Lévy density function νCTS(x) with

parameters (α,C+, C−, λ+, λ−,m) satisfies the condition

∫
|x|≥1

|x|νCTS(x)dx <∞ ,
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full compensation of the jump component, linked to the comprehension of m as external

drift coefficient m(2), is admissible. This requires the solutions of integrals of the form

I =

∫ ∞
0

(exp(izx)− 1− izx)νCTS(x) =

∫ ∞
0

(exp(izx)− 1− izx)
exp(−λx)

x1+α
dx

in the Lévy-Khintchine formula. The Taylor series expansion of the first exponential func-

tion yields

I =

∫ ∞
0

( ∞∑
n=0

(izx)n

n!
− 1− izx

)
(exp(−λx)x−α−1)dx .

After eliminating the first two series terms

I =

∫ ∞
0

( ∞∑
n=2

(izx)n

n!

)
(exp(−λx)x−α−1)dx ,

one is able to interchange summation und integration under some weak regularity condi-

tion, which is satisfied here.

I =
∞∑
n=2

(iz)n

n!

∫ ∞
0

exp−λxxn−α−1dx

With the substitution λx = t ⇒ x = 1
λ t , dt = λdx ⇒ dx = 1

λdt and the integral

representation of the Gamma function

Γ(1− α) =

∫ ∞
0

1

xα
exp(−x)dx =

∫ ∞
0

x−α exp(−x)dx
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one ultimately obtains

I =

∞∑
n=2

(iz)n

n!

∫ ∞
0

exp−t( 1

λ
t)n−α−1 1

λ
dt

=
∞∑
n=2

(iz)n

n!
λα−n

∫ ∞
0

tn−α−1 exp(−t)dt

=

∞∑
n=2

(iz)n

n!
λα−nΓ(n− α) ,

where by the functional equation x ·Γ(x) = Γ(1+x) for the Gamma function the following

power series becomes clearly recognizable

I = λαΓ(2− α)

[
1

2!

(
iz

λ

)2

+
(2− α)

3!

(
iz

λ

)3

+
(2− α)(3− α)

4!

(
iz

λ

)4

+
(2− α)(3− α)(4− α)

5!

(
iz

λ

)5

+
(2− α)(3− α)(4− α)(5− α)

6!

(
iz

λ

)6

+ . . .

]

For α ∈ R\{0, 1}, the bracketed expression resembles the power series

(1 + x)α =

∞∑
n=0

(
α

n

)
xn , α, x ∈ C\N0 (binomial series)

Hence, after performing the transformation step

I = λα
Γ(2− α)

α(α− 1)

[
1

2!

(
− iz
λ

)2

+
α(α− 1)(α− 2)

3!

(
− iz
λ

)3

+
α(α− 1)(α− 2)(α− 3)

4!

(
− iz
λ

)4

+
α(α− 1)(α− 2)(α− 3)(α− 4)

5!

(
− iz
λ

)5

+ . . .

]
(A.5)
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a binomial series from the third term onwards appears

I = λαΓ(−α)

[(
1− iz

λ

)α
− 1− α

(
− iz
λ

)]
= Γ(−α)

[
(λ− iz)α − λα + izαλα−1

]
.

As indicated above, the two particular cases α = 0 and α = 1 cannot be captured with the

binomial series and must be considered separately from the expression in equation (A.5)

on:

• α = 1:

I = λ
∞∑
n=2

1

n!

(
iz

λ

)n
Γ(n− 1) = λ

∞∑
n=2

1

n!

(
iz

λ

)n
(n− 2)!

= λ

∞∑
n=2

(
iz

λ

)n (n− 2)!

n!
= λ

∞∑
n=2

(
iz

λ

)n 1

n(n− 1)

For the sake of clarity and compact display, the simple substitution u = iz
λ with its

associated derivatives of the sum term is considered.

f(u) :=

∞∑
n=2

un
1

n(n− 1)

f ′(u) =
∞∑
n=2

un−1 1

n− 1

f ′′(u) =

∞∑
n=2

un−2 =

∞∑
n=0

un =
1

1− u

Note that the convergence radius of the last series is not of relevance. Integration

yields

f ′(x) =

∫
f ′′(x)dx =

∫
1

1− x
dx = − ln(1− x) + C1 .
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The substitution y = 1− u once again enables the reversal of the chain rule:

f(x) =

∫
f ′(x)dx =

∫
− ln(1− x) + C1dx = (1− x) ln(1− x)− (1− x) + C1x+ C2

which draws on the familiar relation

∫
ln(y)dy = y ln(y)− y .

This solution of the differential equation of second order is adapted to its boundary

conditions by the technique of coefficient comparison:

f ′(x = 0) = 0
!

= C1 ⇒ C1 = 0

f(x = 0) = 0
!

= C2 − 1⇒ C2 = 1 .

This results in

f(x) = (1− x) ln(1− x) + x

which finally yields

I = λf

(
iz

λ

)
= (λ− iz) ln

(
1− iz

λ

)
+ iz .

Although the involved calculations are not absolutely identical, this gives an impres-

sion why the expression of the α-stable characteristic function is different for the

particular case of α = 1 only.

• α = 0: The required calculations in this case exhibit a rather similar structure and

suitable operations as for the case α = 1 above. Therefore, the explicit derivation is

omitted here as α = 0 is not included in the parameter range of the CTS anyway.

Nevertheless, one should note that the value of α = 0 is characteristic for the Gamma

process, which constitutes a central instance of Lévy processes. For example, it serves

as the subordinator for the Brownian motion in the construction of the Variance

Gamma (VG) process.
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Brownian Subordination

B.1 Univariate Subordination

The detailed proof of equation (3.17) follows the outline of Cont and Tankov given in

[CoTa04, p. 118].

νX(x) =

∫ ∞
0

1√
2πσ
√
s

exp

(
−(x− µs)2

2σ2s

)
︸ ︷︷ ︸

time-dependent normal density

· λ1−a
2

Γ(1− a
2 )

exp(−λs)
s
a
2

+1︸ ︷︷ ︸
Lévy density of subordinator

ds

=
λ1−a

2

√
2πσΓ(1− a

2 )

∫ ∞
0

exp

(
−(x− µs)2

2σ2s
− λs

)
s−( 3

2
+a

2
)ds

=
λ1−a

2

√
2πσΓ(1− a

2 )

∫ ∞
0

exp

(
x2 + 2xµs− µ2σ2

2σ2s
− λs

)
s−( 3

2
+a

2
)ds

=
λ1−a

2

√
2πσΓ(1− a

2 )
exp

(xµ
σ2

)∫ ∞
0

exp

(
−
(
µ2

2σ2
+ λ

)
s− x2

2σ2
· 1

s

)
s−(a

2
+ 3

2
)ds .

Integral representation of the modified Bessel function of the second kind of order p:

Kp(y) = 2−(p+1)yp
∫ ∞

0
exp(−t−y

2

4t
)t−(p+1)dt⇔

∫ ∞
0

exp(−t−y
2

4t
)t−(p+1)dt = 2p+1y−pKp(y)

172
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Inserting the suitable substitution

t =

(
µ2

2σ2
+ λ

)
s⇒ s =

t(
µ2

2σ2 + λ
) ⇒ 1

s
=

(
µ2

2σ2 + λ
)

t

dt =

(
µ2

2σ2
+ λ

)
ds⇒ ds =

dt(
µ2

2σ2 + λ
)

yields

νX(x) =

∫ ∞
0

exp

(
−t− x2

2σ2

(
µ2

2σ2
+ λ

)
1

t

)(
µ2

2σ2
+ λ

)a
2

+ 3
2

t−(a
2

+ 3
2

)

(
µ2

2σ2
+ λ

)−1

dt

· λ1−a
2

√
2πσΓ(1− a

2 )
exp

(xµ
σ2

)

=

∫ ∞
0

exp

(
−t− x2µ2 + 2σ2x2λ

4σ4

1

t

)
t−(a

2
+ 3

2
)dt

· λ1−a
2

√
2πσΓ(1− a

2 )
exp

(xµ
σ2

)( µ2

2σ2
+ λ

)a+1
2

.

Resolving the resemblancies in the above expressions

p+ 1 =
a

2
+

3

2
⇒ p =

a+ 1

2

y2 =
x2µ2 + 2σ2x2λ

σ4
⇒ y =

|x|
√
µ2 + 2σ2λ

σ2

subsequently leads to

νX(x) =
λ1−a

2

√
2πσΓ(1− a

2 )
exp

(xµ
σ2

)( µ2

2σ2
+ λ

)a+1
2

2
a
2

+ 3
2

(
|x|
√
µ2 + 2σ2λ

σ2

)−a+1
2

·Ka+1
2

(
|x|
√
µ2 + 2σ2λ

σ2

)
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=
2λ1−a

2

√
2πσΓ(1− a

2 )
exp

(xµ
σ2

)(µ2 + 2σ2λ

σ2

)a+1
2

(
|x|
√
µ2 + 2σ2λ

σ2

)−a+1
2

·Ka+1
2

(
|x|
√
µ2 + 2σ2λ

σ2

)

=
2λ1−a

2

√
2πσΓ(1− a

2 )
exp

(xµ
σ2

)(√µ2 + 2σ2λ

|x|

)a+1
2

Ka+1
2

(
|x|
√
µ2 + 2σ2λ

σ2

)
.

Aggregating the remaining terms gives the final result

νX(x) =

√
2λ1−a

2

(
µ2 + 2σ2λ

)a+1
4

√
πσΓ(1− a

2 )
exp

(xµ
σ2

) Ka+1
2

(
|x|
√
µ2+2σ2λ

σ2

)
|x|

a+1
2

.

Barndorff-Nielsen and Shephard are discussing a similar approach in [BNSh02] including

an explicit solution on p. 9, whereas the original publication of Barndorff-Nielsen and

Levendorskĭi [BNLe01, p. 7 ff.] for univariate NTS processes only contains the characteris-

tic exponent of the process law instead of presenting its entire Lévy triplet. Nevertheless,

Barndorff-Nielsen and Levendorskĭi demonstrate another more involved determination pro-

cedure for this characteristic exponent than the simple subordination formula in equations

(3.13) and (3.15).

B.2 Inverted Parameter Conversion of MNTS Class

In this section it will be explicitly shown that every particular instance of the MNTS

distribution with parameters (a, λ, γ, σ,P, µ) has an corresponding formulation in terms of

the MVNTS distribution with parameter tuple (a∗, λ∗, γ∗,P∗, c∗, d∗). This is achieved by

inverting the parameter correspondence for the opposite direction given in section 4.2.2.

Recall from equations (4.28) – (4.30) that

a = a∗ , λ = λ∗ , P = P∗ , µ = d∗
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γ = [c∗k · γ∗k ]Tk=1,...,n (B.1)

σ =

[
c∗ ·

√
1− 1

λ∗

(
1− a

2

)
(γ∗k)2

]T
k=1,...,n

. (B.2)

Inverting the relations in the first row is trivial and directly yields

a∗ = a , λ∗ = λ , P∗ = P , d∗ = µ .

The remaining parameter values have to be simultaneously resolved from the other two

rows in the above equations (B.1) and (B.2) which can be achieved by performing the

following two steps:

• As c∗ is directly linked to the vector of standard deviations inherent in the MNTS,

one can immediately conclude that

c∗ =

[√
2− a

2λ
γ2
k + σ2

k

]T
k=1,...,n

=

√(2− a)γ2
k + 2λσ2

k

2λ

T

k=1,...,n

,

where the configuration of the last expression is useful for the subsequent verification

of the validity condition on the MVNTS parameter set.

• Moreover, by the relation of the distinct values and meanings of γ in the MVNTS

and the MNTS distribution via c, one is able to deduce

γ∗ =
[
γk · (c∗k)−1

]T
k=1,...,n

=

[
γk ·

√
2λ

(2− a)γ2
k + 2λσ2

k

]T
k=1,...,n

.

In order to verify the validity of γ∗ created by the above equation it is sufficient to

check

(γ∗)2 =
2λγ2

(2− a)γ2 + 2λσ2
=

(
(2− a)γ2 + 2λσ2

2λγ2

)−1

=

(
(2− a)

2λ
+
σ2

γ2

)−1

≤
(

(2− a)

2λ

)−1

.
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Optimization Problems

C.1 Dow Jones Industrial Average Weights

Table C.1 presents the component weighting of stocks contained in the Dow Jones Indus-

trial Average (DJIA) index as of October 25, 2010.

Ticker symbol weight in %

MMM 6.163

AA 0.873

AXP 2.664

T 1.923

BAC 0.757

BA 4.858

CAT 5.359

CVX 5.754

CSCO 1.601

KO 4.136

DD 3.234

XOM 4.488

GE 1.089

HPQ 2.907

HD 2.129

Ticker symbol weight in %

INTC 1.347

IBM 9.481

JNJ 4.338

JPM 2.513

KFT 2.201

MCD 5.336

MRK 2.537

MSFT 1.708

PFE 1.195

PG 4.308

TRV 3.769

UTX 5.085

VZ 2.193

WMT 3.658

DIS 2.404

Table C.1: Component weighting of the DJIA index on October 25, 2010
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C.2 Efficient Frontier

Efficient frontiers concerning V aRα(Rp) and AV aRα(Rp) of a portfolio return Rp under

a fixed level of α is obtained by solving the respective optimization problems for a series

of minimal expected returns µ
(b)
k , k = 1, 2, . . . ,m.

min
ω∈Rn

V aRα(Rp)

s.t.

Rp = ωTR =
n∑
j=1

ωjRj

E(Rp) ≥ µ(b)
k

n∑
j=1

ωj = 1

ωj ≥ −C , j = 1, . . . , n

min
ω∈Rn

AV aRα(Rp)

s.t.

Rp = ωTR =
n∑
j=1

ωjRj

E(Rp) ≥ µ(b)
k

n∑
j=1

ωj = 1

ωj ≥ −C , j = 1, . . . , n

The constraint in the last row of each optimization problem represents a particular short

selling restriction. None of the involved stocks are allowed to be shortened by an amount

of more than C ·100% of the total portfolio capital invested. For the optimizations carried

out in the text, this restriction has not been active however.

Furthermore, there are two distinct assumptions for the distribution of joint stock

returns R:

1.) Normal model: R = (R1, . . . , Rn)T ∼ N n(µ,Σ)

2.) Normal Tempered Stable model: R = (R1, . . . , Rn)T ∼MVNTS(a, λ, γ,P, c, d)
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C.3 Global Stationary Portfolio Optimization

A unique optimal static allocation is derived by solving the following optimization problem.

max
ω∈Rn

E(Rp −Rb)
Υ(Rp −Rb)

s.t.

Rp = ωTR =

n∑
j=1

ωjRj

n∑
j=1

ωj = 1

ωj ≥ −C

The optimization problem is varied by alternative choices of the operator Υ(R) in the

denominator of the objective function, which is nothing but the performance ratio. The

different choices of Υ(R) comprise

• Υ(R) = Std(R) =
√
V ar(R) ⇒ Sharpe-Ratio

• Υ(R) = V aRα(R) ⇒ VaR-Ratio

• Υ(R) = AV aRα(R) ⇒ STAR-Ratio

Each of the operators can be combined with the two model assumptions for the joint

distribution of stock and index returns (RT, Rb) = (RT, R(ind))

1.) Normal model: (RT, R(ind)) = (R1, . . . , Rn+1) ∼ N n(µ,Σ)

2.) Normal Tempered Stable model:

(RT, R(ind)) = (R1, . . . , Rn+1) ∼MVNTS(a, λ, γ,P, c, d)

As was the case for the efficient frontiers no short-selling restriction (C = ∞) has been

activated here.



Appendix D

Goodness of Fit Tests

After having estimated values for the parameters of a specified model, there are several

techniques available for assessing the goodness of model fit onto the empirical data. This

model fit diagnosis should also assist in identifying and locating possible misspecifications

and deficiencies with regard to flexibility and adaptability. For addressing this task, graph-

ical techniques for a visual inspection are recommended, such as kernel density plots and

quantile-quantile plots which allow for a particular detection of potential weaknesses.

The methods for objectively testing statistical hypotheses concerning the nature of the

data generating process the empirical observations were sampled from, presented in the

following sections have in common that they, without exception, rely on the distance

between the theoretical cumulative distribution function (CDF) and the empirical dis-

tribution function (EDF). Therefore, they are usually termed as empirical distribution

function-based tests, where Fn(x) denotes the EDF for sample size n and F0(x) indicates

the theoretical equivalent of the null hypothesis. Their presentation is following Büning

and Trenkler [BüTr94, p. 69 ff., p. 83 f.] and Chernobai et al. [ChRF07, p. 207 ff.]. Note

however that this is solely done for the case of univariate distributions.
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D.1 Kolmogorov-Smirnov Test

The statistics of the Kolmogorov-Smirnov (KS) test measures the largest vertical distance

between Fn(x) and F0(x). In other words, KS is represented mathematically as

KS =
√
n sup
x∈R
|F0(x)− Fn(x)| . (D.1)

Although its distribution is independent of F0 as long as F0 is assumed to be continuous,

it cannot be stated in closed form. Therefore, critical values for the test statistics as well

as corresponding p–values have to be obtained via Monte Carlo simulation or alternative

numerical approximation approaches whose results can be found in statistical tables as well

as contained in commercial standard software packages. With the sample order statistics

x(j) and consequentially z(j) = F0(x(j)) the KS statistics can be directly obtained by

KS =
√
nmax

(
sup

j=1,...,n

(
j

n
− z(j)

)
, sup
j=1,...,n

(
z(j) −

j − 1

n

))
(D.2)

from the empirical data set {xj}j=1,...,n.

D.2 Anderson-Darling Test

Like the KS test, Anderson-Darling (AD) tests are an alternative goodness of fit (GoF)

test of supremum type. Their test statistic is formulated as

AD =
√
n sup
x∈R

∣∣∣∣∣ F0(x)− Fn(x)√
F0(x)(1− F0(x))

∣∣∣∣∣ , (D.3)

with computing formula

AD =
√
nmax

 sup
j=1,...,n

 j
n − z(j)√
z(j)(1− z(j))

 , sup
j=1,...,n

 z(j) − j−1
n√

z(j)(1− z(j))

 . (D.4)

Another central test of supremum type in the literature is the Kuiper test whose explicit
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presentation is omitted here. In comparison to the KS test, the AD test is employing

an additional weighting function for the distances in order to emphasize deviations in

the tails. This makes the AD test in particular suitable for testing hypotheses of heavy-

tailedness, whereas the KS statistics, by its equal weighting, is foremost able to capture

vertical deviations in the center of the distribution where discrepancies between EDF and

CDF are most likely to have the largest spread.

D.3 Cramér-von Mises Test

With respect to the above supremum type GoF tests the general class of Cramér-von

Mises (CM) tests implement a contrasting principle. They do not only measure a single

supremum of the vertical distance between EDF and CDF but consider a weighted average

of all squared vertical distances on R

W 2
H = n

∫ ∞
−∞

(Fn(x)− F0(x))2H(F0(x))dF0(x)

containing a specific weighting function H(t) ≥ 0.

Besides the entire class of CM tests, a particular Cramér-von Mises test exists, defined by

the choice of H(t) = 1. In this case, the test statistic W 2 can be explicitly computed from

empirical data by

W 2 =
n

3
+

1

n

n∑
j=1

(1− 2j)z(j) +
n∑
j=1

z2
(j) .

The general Cramér-von Mises class of GoF tests forms the basis for another variant of

Anderson-Darling tests described in the following section.
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D.4 Squared Anderson-Darling Test

The choice of H(t) = 1
t(t−1) , which aims at assigning significant weight to the tails, results

in the Squared Anderson-Darling (AD2) test with statistics

AD2 = n

∫ ∞
−∞

(Fn(x)− F0(x))2

F0(x)(1− F0(x))
dF0(x)

and its computational equivalent on empirical data

AD2 = −n+
1

n

n∑
j=1

(1− 2j) ln z(j) −
1

n

n∑
j=1

(1 + 2(n− j)) ln(1− z(j)) .

The distributions of both AD and AD2 only depend on the sample size n, where already

Anderson and Darling in their original research [AnDa52] were able to derive their asymp-

totical distributions for n → ∞. Crawford Moss et al. [CMTT90], based on the work of

Lewis [Lewi61], provide tables for small sample sizes. Additionally, one has to point out the

simulative approach of Marsaglia and Marsaglia [MaMa04], who kindly provide their soft-

ware tool for computation, which processes arbitrary values of n. As a concluding remark,

one has to note that by their specific design towards the screening of the tail properties,

both Anderson-Darling tests belong to the most powerful tests for rejecting Normality in

the presence of heavy-tailed data.

D.5 Critical Remarks

In practical applications as well as in many commercial software packages sightly modi-

fied definitions of KS and AD are widespread. This modification basically contains the

omission of the leading factor
√
n in equations (D.1) – (D.4), respectively. For reasons of

consistency and comparability this convention is used throughout this study in chapters

5 and 6.

Nevertheless, a substantial drawback of this modification has to be mentioned at this

point. The laws of given expressions in equation (D.2) and (D.4) converge for n → ∞ to
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a non-trivial distribution, respectively. For sufficiently large n, this limiting distribution

can then be used for accurate approximations of p-values for KS and AD statistics. This

important property vanishes for the modified versions without factor
√
n, however. Their

laws converge to a meaningless Dirac measure in point 0 instead.
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