KIT | KIT-Bibliothek | Impressum | Datenschutz

Probabilistic Instantaneous Model-Based Signal Processing applied to Localization and Tracking

Beutler, F.; Huber, M. F.; Hanebeck, Uwe D.

In this paper, a probabilistic approach for estimating time and space-variant parameters of a system, based on sequentially received discrete-time signal values, is presented. The system description is the solution of a linear partial differential equation (PDE). The PDE describes for example the wave propagation of an acoustic wave in a localization system. The solution of the PDE is given by a time-variant and space-variant impulse response. This impulse response is characterized by the time and space-variant parameters in order to track an object, which emits for example an acoustic signal. For estimating the position of the object in an instantaneous way a Bayesian approach has to be used, which considers the dynamic behavior of the parameters in a system model and uncertainties in a stochastic manner by means of probability density functions. Hence, the new approach provides a probabilistic instantaneous model-based signal processing, where the sequentially measured signal values are processed directly and known reference signal sequences are interpreted as part of a time-variant nonlinear measurement equation.

DOI: 10.1016/j.robot.2008.10.013
Zitationen: 2
Zugehörige Institution(en) am KIT Fakultät für Informatik – Institut für Anthropomatik (IFA)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2009
Sprache Englisch
Identifikator ISSN: 0921-8890
KITopen-ID: 1000029769
Erschienen in Robotics and Autonomous Systems
Verlag Elsevier
Band 57
Heft 3
Seiten 249-258
Bemerkung zur Veröffentlichung Selected papers from 2006 IEEE International Conference on Multisensor Fusion and Integration (MFI 2006)
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page