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Abstract

In the present thesis, ground-based measurements with Fourier transform infrared (FTIR) spectrome-

ters are evaluated and compared with calculations by atmospheric models of different architecture. The

species of primary interest are the chlorine and fluorine reservoir gases hydrogen chloride (HCl), chlorine

nitrate (ClONO2), and hydrogen fluoride (HF). Their source gases are mainly anthropogenic chlorofluo-

rocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and halons, which are so-called ozone-depleting

substances. Because of this property, their emission was restricted in the Montreal Protocol in 1987 and

its amendments and adjustments, leading to a subsequent phase-out. As a result of these reductions in

the source gas emissions, the stratospheric inorganic chlorine content decreases with time since the late

1990s. This decline is confirmed by the FTIR measurements of HCl and ClONO2 total column abun-

dances reported in the present thesis, at nearly all of the 17 measurement sites taking part in this study

and belonging to the Network for the Detection of Atmospheric Composition Change (NDACC). The

calculations of five atmospheric chemistry models (i.e., the Bremen 2-D model, KASIMA, SLIMCAT,

EMAC, and SOCOL) reproduce this decrease. The main reason for including HF in this comparison

study of models and measurements is that this substance is an indicator of anthropogenic influences.

Besides, it is often used as a tracer due to its high stability and a resulting long stratospheric lifetime.

Although the emission of fluorine is not explicitly prohibited because it practically does not deplete

stratospheric ozone, HF is expected to be also influenced by the Montreal protocol and its amendments

because some of its source gases are restricted. However, CFC substitutes (e.g., hydrofluorocarbons)

are allowed to contain fluorine so that the HF total column abundance is expected to have reached its

peak value later than the two chlorine species. This can also be confirmed with the here-presented FTIR

measurements and reproduced by the atmospheric models. In addition to the overall temporal evolution

and absolute total column abundances of the three species, also the mean seasonal cycle of models and

measurements at the 17 NDACC sites is compared.

Trends from the above-described model and measurement time series are calculated by fitting a linear

function combined with a (third- or first-order) Fourier series accounting for the seasonal cycle of the

species to the available data between 2000 and 2009. The error bars for the trends are determined with

a bootstrap method. The influence of the type of fitting function, of time series length, the time period

used, and sampling on the resulting trend and its confidence intervals is investigated. Furthermore, by

multiple linear regression, the effect on the trend of including time series representing the 11-year solar

variation and the quasi-biennial oscillation in the fitting function is studied.



The trends of HCl and ClONO2 from models and measurements for the period 2000–2009 amount to

roughly about -1 and -2%/yr, respectively, while HF increases by about 1%/yr during this period. How-

ever, there are differences between the measured trends and those simulated by the models. In the HCl

and ClONO2 measurements, the calculated trends exhibit a dependence on hemisphere, with a stronger

decrease in the northern than in the southern hemisphere. Analogously, the measured HF increase is

stronger in the southern than in the northern hemisphere. These differences can be attributed to the time

required for transport from the emission sources of the organic chlorine and fluorine species, which are

mostly located in the northern hemisphere, to the southern hemisphere. This results in later peaks of

stratospheric inorganic chlorine and fluorine in the southern than in the northern hemisphere. The mod-

els obviously do not include this effect. Furthermore, the ClONO2 trends from the FTIR measurements

depend on latitude, with the strongest decreases at high and low latitudes, which is reproduced only by

some of the models. Trends for the time range 2004–2009 show no significant trend or even a decrease of

HF at many northern hemisphere sites. This confirms the stabilisation of the HF total column abundance

in the northern hemisphere during the last few years.

The second part of the present thesis investigates the difference between the trends of HCl and ClONO2

that was found before for example in the Kiruna data by Mikuteit (2008) and Kohlhepp et al. (2011).

Also in the analyses described above, the ClONO2 total column abundance decreases stronger than the

HCl abundance in the FTIR total column measurements at most of the included NDACC sites, and also

in the model results. In the reactions forming HCl and ClONO2, methane (CH4) and nitrous oxide

(N2O) are involved, the latter only indirectly via NO2. This is why sensitivity studies with the EMAC

(ECHAM/MESSy Atmospheric Chemistry) model are conducted by analysing trends between 2000 and

2050 from a long-term simulation where CH4 and N2O increase according to the A1B scenario from

IPCC (2007), and from two other simulations where once CH4 and once N2O were kept fixed on their

value of the year 2000. These studies reveal a strong influence of the considerable CH4 increase during

2000–2050 in the reference simulation on chlorine partitioning into HCl and ClONO2. Although the

stratospheric temperature decrease with time present in all three simulations is expected to result in an

enhancement of ClONO2 production, HCl is strongly favoured if CH4 increases at the rate projected

by the A1B scenario. Examination of FTIR trends of HCl and ClONO2 during a period of constant

atmospheric CH4 abundance (about 1999 to 2006 in the troposphere) leads to the conclusion that some

of the observed changes in the measured chlorine trends above Kiruna may indeed be attributable to

CH4. In contrast, at the Jungfraujoch, the CH4 influence may be ruled out by the peak in stratospheric

inorganic chlorine occurring at the end of the 1990s.



Kurzfassung

Im Rahmen der vorliegenden Arbeit werden bodengebundene Messungen mit Fourier-Transformations-

Infrarot-(FTIR-)Spektrometern durchgeführt und untersucht und mit den Ergebnissen verschiedener At-

mosphärenmodelle verglichen. Das Augenmerk liegt hierbei auf Gesamtsäulengehalten der Chlor- bzw.

Fluor-Reservoir-Spezies Chlorwasserstoff (HCl), Chlornitrat (ClONO2) und Fluorwasserstoff (HF). De-

ren Hauptquellen sind anthropogene Fluorchlorkohlenwasserstoffe (FCKW), teilhalogenierte FCKW

und Halone, also bromhaltige Halogenverbindungen. Da Chlor eine wichtige Rolle in der globalen

Zerstörung der stratosphärischen Ozonschicht spielt, wurde die Emission der wichtigsten seiner auch

als ODS (ozone-depleting substances) bezeichneten Vorläufergase im Jahre 1987 im Rahmen eines in-

ternationalen Abkommens zunächst eingeschränkt und im Folgenden vollständig verboten. Dieses so-

genannte Montrealer Protokoll und seine nachfolgenden Ergänzungen führten schließlich zu einer Ver-

ringerung des stratosphärischen Chlorgehalts seit etwa Ende der 1990er Jahre. Die im Rahmen dieser

Arbeit durchgeführten Auswertungen von Zeitreihen bodengebundener FTIR-Messungen von HCl und

ClONO2 an 17 Stationen des globalen Messnetzwerks NDACC (Network for the Detection of Atmo-

spheric Composition Change) bestätigen diese Abnahme. Auch die fünf globalen Atmosphärenmodelle,

von denen ebenfalls Ergebnisse vorliegen (das Bremer 2-D-Modell, KASIMA, SLIMCAT, EMAC und

SOCOL) reproduzieren diesen Verlauf. Im Gegensatz zu Chlor ist Fluor nicht an der Ozonzerstörung

beteiligt und deshalb seine Emission im Montrealer Protokoll nicht explizit verboten. Trotzdem wird

erwartet, dass HF ebenfalls durch diese internationalen Abkommen beeinflusst wird, weil die verbote-

nen ODS auch zu seinen Hauptquellen zählen. Ein weiterer Grund für das Interesse an der zeitlichen

Entwicklung von HF ist, dass es wegen seiner hohen Stabilität in der Stratosphäre häufig als sogenannter

Tracer verwendet wird. Da Fluor auch beispielsweise in FCKW-Ersatzstoffen enthalten ist (z.B. in teil-

halogenierten Fluorkohlenwasserstoffen), wird erwartet, dass der atmosphärische HF-Gehalt erst einige

Jahre nach dem der beiden untersuchten Chlorspezies abzunehmen beginnt.

Im Rahmen des oben beschriebenen Vergleichs von Modell- und Messdaten wird nicht nur die generelle

zeitliche Entwicklung der drei Spezies verglichen, sondern auch quantitativ die resultierenden Gesamt-

säulengehalte und zudem die mittleren Jahresgänge an den 17 NDACC-Stationen. Der Schwerpunkt liegt

jedoch auf der Bestimmung von Trends zwischen den Jahren 2000 und 2009. Diese werden durch Anpas-

sung einer linearen Funktion berechnet, die mit einer Fourierreihe erster oder dritter Ordnung kombiniert

wird, um den Jahresgang zu repräsentieren. Die Konfidenzintervalle werden mit Hilfe einer sogenannten

Bootstrap-Methode ermittelt. Es wird gezeigt, inwieweit die Wahl der angepassten Funktion bzw. des

betrachteten Zeitraums und die Länge des Zeitraums das Trendergebnis beeinflussen. Ebenso werden die



Auswirkungen des unregelmäßigen Samplings der Messdaten auf den resultierenden Trend untersucht.

Mit Hilfe einer multiplen linearen Regression wird überprüft, wie stark das Trendergebnis von länger-

fristigen Schwankungen atmosphärischer Parameter abhängt, die sich möglicherweise in den Zeitreihen

der beobachteten Gase widerspiegeln. Hierzu werden Zeitreihen, die den 11-jährigen Sonnenzyklus bzw.

die quasi-zweijährige Oszillation (QBO) repräsentieren, in die Anpassungsfunktion miteinbezogen.

Die für HCl und ClONO2 aus den Modell- und Messergebnissen der Gesamtsäulengehalte ermittelten

Trends für den Zeitraum 2000–2009 betragen rund -1 bzw. -2%/Jahr, wohingegen HF noch mit etwa

1%/Jahr zunimmt. Teilweise bestehen jedoch deutliche Unterschiede zwischen den gemessenen und

simulierten Trends. So zeigen die FTIR-Messungen eine stärkere Abnahme der beiden Chlorspezies auf

der Nord- als auf der Südhemisphäre, während analog dazu der HF-Gehalt auf der Südhemisphäre stärker

ansteigt. Dies liegt vermutlich an der unterschiedlichen geographischen Verteilung der ODS-Quellen

mit Schwerpunkt in den nördlichen mittleren Breiten, die aber von den Modellen offensichtlich nicht

berücksichtigt wird. Die ClONO2-Trends aus den Messungen zeigen zusätzlich eine Abhängigkeit von

der geographischen Breite, mit stärkeren relativen Abnahmen in höheren und niedrigen als in mittleren

Breiten. Dieser Effekt ist jedoch nur in manchen der Modelle wiederzufinden. Trends von HF aus den

FTIR-Messungen zwischen 2004 und 2009 zeigen eine Stabilisierung des Gesamtsäulengehalts in den

letzten Jahren.

Der zweite Schwerpunkt der Arbeit liegt auf Untersuchungen der unterschiedlich starken Abnahme

von HCl und ClONO2. Sowohl in den Messungen als auch den Modellen nimmt der ClONO2-Gesamt-

säulengehalt an den meisten der betrachteten Stationen stärker ab als der von HCl. Die Produktion von

HCl ist direkt mit der Methan-(CH4-)Konzentration und die von ClONO2 indirekt mit Distickstoffoxid

(N2O) gekoppelt. Aus diesem Grund werden Sensitivitätsstudien mit dem EMAC-Modell analysiert,

bei denen einmal die CH4- und einmal die N2O-Konzentration am Boden konstant gehalten wird. Die

Ergebnisse dieser Simulationen werden mit denen einer Referenzsimulation verglichen, in der CH4 und

N2O dem A1B-Szenario aus IPCC (2007) entsprechend zunehmen. Das Ergebnis dieser Studien ist ein

deutlicher Hinweis auf einen starken Einfluss des atmosphärischen CH4-Gehalts auf die Partitionierung

zwischen HCl und ClONO2. Je mehr CH4 zur Verfügung steht, umso stärker wird die HCl- gegenüber

der ClONO2-Bildung bevorzugt, was zu einer schwächeren Abnahme des HCl-Gesamtsäulengehalts mit

der Zeit führt. Der starke CH4-Anstieg überkompensiert zudem die Tatsache, dass sich als Folge ab-

nehmender stratosphärischer Temperaturen die Reaktionsgeschwindigkeiten verändern, was eine Ver-

stärkung der ClONO2-Produktion erwarten ließe. Die Stabilisierung des troposphärischen CH4-Volu-

menmischungsverhältnisses zwischen 1999 und 2006 zusammen mit seiner Zunahme vorher und nachher

eröffnet die außergewöhnliche Möglichkeit, den Einfluss des CH4-Trends auf die Chlor-Partitionierung

in der realen Atmosphäre zu untersuchen. Die Trends der Gesamtsäulengehalte über der Station Kiruna

scheinen den aus den Studien mit EMAC erwarteten Zusammenhang zu bestätigen, während er am

Jungfraujoch vermutlich vom etwa zeitgleich mit dem Trendwendepunkt in der CH4-Zeitreihe erreichten

Maximum des anorganischen stratosphärischen Chlors überdeckt wird.
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1 Introduction

The focus of this thesis is on the analysis of time series of hydrogen chloride (HCl), chlorine nitrate

(ClONO2), and hydrogen fluoride (HF) from measurements and model results. The main reason for the

broad scientific interest in atmospheric chlorine species is their involvement in stratospheric ozone de-

pletion. The stratospheric ozone layer essentially protects life on earth from harmful ultra-violet (UV)

radiation, thus mankind has a strong interest in preserving it. Crutzen (1970) and Molina and Rowland

(1974) were among the first to investigate catalytic cycles of ozone destruction involving nitrogen ox-

ides and chlorine, respectively. In the following years, measurements confirmed an efficiency increase

of these catalytic cycles, which was attributed especially to the increasing emission of anthropogenic

chlorine source gases (e.g., Chubachi, 1984; Farman et al., 1985; Rosenfield et al., 2005; McLinden and

Fioletov, 2011). These species were therefore also called ozone-depleting substances (ODS). Strato-

spheric ozone depletion due to anthropogenic ODSs manifests itself on the one hand in a global decrease

of the ozone content, and on the other hand in the so-called ozone hole occurring in the polar regions in

spring (Seinfeld and Pandis, 1998). This ozone hole is characterised by a temporary, very strong decrease

in lower stratospheric ozone, especially above Antarctica, resulting mainly from heterogeneous chlorine

activation on the surface of polar stratospheric clouds (PSCs).

Since these discoveries, not only stratospheric ozone was monitored very closely, but also total strato-

spheric inorganic chlorine (Cly = HCl + ClONO2 + ClO + 2 Cl2O2 + OClO + 2 Cl2 + Cl + HOCl + BrCl)

and its anthropogenic organic source gases, mainly chlorofluorocarbons (CFCs), hydrochlorofluorocar-

bons (HCFCs), carbon tetrachloride (CCl4), methyl chloride (CH3Cl), methyl chloroform (CH3CCl3),

and halons. In order to improve the international cooperation and the global coverage of these obser-

vations, the Network for the Detection of Stratospheric Change (NDSC) was founded in the beginning

of the 1990s that was later renamed to Network for the Detection of Atmospheric Composition Change

(NDACC). Moreover, in 1987, the “Montreal Protocol on Substances That Deplete the Ozone Layer”

was signed and subsequently ratified by many countries, who therein agreed on a regulation of ODS

emissions. More precisely, the most effective restrictions and a subsequent phase-out were decided upon

in amendments and adjustments to this protocol, as can be seen in Figure 1.1. As a result of these in-

ternational agreements, the tropospheric content of the anthropogenic chlorine source gases reached its

maximum in the beginning of the 1990s. The stratospheric inorganic chlorine abundance peaked a few

years later, towards the end of the 1990s, due to the time lag resulting from the transport from the tro-

posphere to the stratosphere (WMO, 2003, 2007, 2011). In studies performed in the 1980s and early

1990s, before the Montreal Protocol regulations took effect, an increase of HCl was reported, e.g. by

1



1 Introduction

Figure 1.1: Effect of the Montreal Protocol as seen in the long-term changes in equivalent effective stratospheric

chlorine (EESC). Projections are shown for different amendments and adjustments to the Protocol. The

figure was taken from WMO (2011).

Zander et al. (1987), Rinsland et al. (1991), Wallace and Livingston (1991), and Wallace et al. (1997).

A few years later, for example Considine et al. (1999), Newchurch et al. (2003), Rinsland et al. (2003),

Froidevaux et al. (2006), and Lary et al. (2007) were able to confirm the expected stabilisation of strato-

spheric HCl and total Cly. Under normal, non-activated conditions, HCl and ClONO2 constitute the

major part of stratospheric inorganic chlorine. It is the shorter-lived, highly-reactive ClOx species (i.e.

Cl + ClO + 2 Cl2O2) that efficiently decompose ozone. However, from the temporal development of the

HCl and ClONO2 abundances, it is possible to infer the evolution of total inorganic chlorine and to draw

conclusions on the effectiveness of the Montreal Protocol and its amendments and adjustments. One of

the major topics of the present thesis is to determine whether the expected decrease of the atmospheric

inorganic chlorine burden since the end of the 1990s can be confirmed with measurements from a global

network of ground-based Fourier transform spectrometers.

In addition to chlorine, the inorganic fluorine (Fy = HF + 2 COF2 + COFCl) content is important to

be monitored via the total column abundance of HF, which constitutes about 80% of total Fy in 40 km

altitude, for example (Duchatelet, 2011, and references therein). Although fluorine would in principle

also be able to destroy ozone in catalytic cycles (analogously to chlorine), it is practically not involved

in stratospheric ozone depletion because, after being released from its organic source gases, it rapidly

reacts to form HF, which is very stable. This is the reason why fluorine is not explicitly restricted in

the Montreal Protocol and its amendments. It is therefore allowed to be contained in substitutes of the

2



restricted anthropogenic chlorine and bromine source gases, e.g., in hydrofluorocarbons (HFCs), so that

the atmospheric fluorine abundance is expected to start decreasing later than the chlorine content. A

stabilisation of the HF total column abundance above the Jungfraujoch was found around 2003–2004 by

Zander et al. (2008), for example. Due to its chemical stability, HF is often used as a dynamic tracer

(e.g., Chipperfield et al., 1997).

Before reliable climate projections can be performed with an atmospheric model, it is essential to

verify that the model is able to reproduce the past. This must be done by comparison with measurements.

For this reason, the measurements performed and analysed within this work are compared with the results

of five different global atmospheric chemistry models. The main purpose thereby is to get an overview on

the overall ability of the models to reproduce the measured total column abundances, seasonal cycles, and

trends. Only the results for the three above-mentioned species are available, from only one simulation of

each model, so that it is impossible to conduct detailed analyses on the reasons for differences between

the models or between models and measurements.

Moreover, atmospheric chemistry models may also be used to explain features detected in the mea-

surements, such as the difference in the strengths of the HCl and ClONO2 trends that was described e.g.

by Mikuteit (2008), in the SPARC-CCMVal (2010) report or by Kohlhepp et al. (2011) before. A model

allows to conduct experiments with atmospheric composition that are not possible in the real atmosphere.

In the framework of this thesis, a global comparison of the temporal evolution of the species HCl,

ClONO2, and HF from ground-based measurements and models at 17 sites is performed. Furthermore,

the reason for the difference between the trends of HCl and ClONO2 is investigated with the help of a

three-dimensional chemistry climate model. Chapter 2 contains meteorological, chemical, and physical

basics necessary for the discussion of the results in the later chapters. The function principle of a Fourier

transform spectrometer and the data retrieval from its spectra are explained in Chapter 3. The trend

determination method is discussed in Chapter 4, along with sensitivity studies of the resulting trend. In

the following chapter (5), the comparison of the measurement and model data of the three species is

presented, including analyses of the absolute total column abundances, the mean seasonal cycles, and

the trends. Moreover, in Chapter 6, sensitivity studies with the EMAC model are discussed that were

performed in order to find an explanation for the difference in the strengths of the HCl and ClONO2

trends. A summary is made and final conclusions are drawn in Chapter 7.

3
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2 Meteorological, chemical, and physical basis

This chapter contains some basic information on the atmospheric structure and its tropospheric and

stratospheric circulation patterns (Section 2.1). Furthermore, in Section 2.2, important chemical reactions

in the stratosphere are discussed, with a focus on ozone depletion and the involvement of the species HCl,

ClONO2, and HF, which are investigated in the present thesis. The third part of this chapter (Section 2.3)

describes the absorption of radiation by atmospheric trace gases which constitutes the essential physical

basis for the solar absorption measurements with FTIR instruments that were performed and analysed

within this work.

2.1 Overview on the atmospheric structure and circulation patterns

Solar irradiation is the primary reason and driver for many important properties of earth and its atmo-

sphere. Without energy from the sun, no life on earth would be possible, nor would there be any weather

(Petty, 2004). In the following, the resulting vertical temperature structure and global circulation patterns

will be explained, after a short description of the composition of the atmosphere.

Composition and vertical structure of the atmosphere

The earth’s atmosphere mainly consists of nitrogen (N2, about 78.08%), molecular oxygen (O2, about

20.95%), argon (Ar, about 0.93%), water (vapour) (H2O, very variable), and carbon dioxide (CO2, about

0.04%) (Kraus, 2004). Besides, many other gaseous, liquid or solid compounds are contained. In this

thesis, the main focus is on the three trace species hydrogen chloride (HCl), chlorine nitrate (ClONO2),

and hydrogen fluoride (HF). Their peak mixing ratios are in the order of 10−9 (i.e., parts per billion,

ppb). Despite these small numbers, they have a strong impact especially on the atmospheric ozone (O3)

mixing ratio (see Section 2.2). Ozone in turn has a remarkable influence on the vertical atmospheric

temperature profile, according to which the atmosphere can be separated into various layers exhibiting

different properties and circulation patterns (Figure 2.1). In the lowermost layer, i.e., the troposphere,

temperature decreases with height. This results from the absorption of solar irradiation occurring primar-

ily at the earth’s surface, the radiative transfer processes in the air, and the strong vertical mixing in this

layer (Kraus, 2004). The troposphere is the layer where the weather as we know it happens, with clouds

and precipitation, especially due to its high water content (Kraus, 2004). On average, at about 8 km in

polar latitudes and 15 km in the tropics, temperature stabilises. This thin intermediate layer is called the

tropopause. Above, the stratosphere begins, reaching up to about 50 km above sea level. This is the layer

5



2 Meteorological, chemical, and physical basis

Figure 2.1: Schematic sketch of the average temperature distribution in the different layers of the atmosphere,

from the troposphere to the thermosphere (Picture taken with permission from Pidwirny (2006, at

http://www.physicalgeography.net/fundamentals/chapter7.html)).

which is most important for the investigations in the present PhD thesis because it is where the primar-

ily investigated species reach their largest volume mixing ratios. In contrast, stratospheric water vapour

has a much smaller volume mixing ratio than in the troposphere so that clouds rarely occur, except for

example so-called polar stratospheric clouds (PSCs; see Section 2.2). The stratosphere is characterised

by a constant temperature in the lower part, and its increase with height above. This results from the

absorption of solar ultra-violet (UV) radiation by stratospheric ozone and molecular oxygen (O2) within

the so-called stratospheric ozone layer. The O3 mixing ratio peaks in about 30–40 km altitude. A pho-

tochemical equilibrium is reached between ozone destruction by UV radiation or reaction with atomic

oxygen and ozone production by the reaction of molecular oxygen with atomic oxygen that had been

produced by photolysis before. In addition, catalytic processes are involved. The most important of

these reactions are explained in more detail in Section 2.2. The temperature increases from the lower

stratosphere until about 50 km altitude, where it stabilises slightly below 0◦C, before starting to decrease

with height. This intermediate layer with constant temperature is called the stratopause. In the layer

above, the mesosphere, temperature decreases with height until the mesopause at about 85 km altitude.

The mesopause is close to the turbopause (at about 90–110 km) which marks an important change in the
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2.1 Overview on the atmospheric structure and circulation patterns

Figure 2.2: Annual average radiation budget at the top of the atmosphere as a func-

tion of latitude (Picture taken with permission from Pidwirny (2006, at

http://www.physicalgeography.net/fundamentals/chapter7.html)).

overall chemical composition of the atmosphere. Up to here, the volume mixing ratios of the most abun-

dant species are more or less constant, but above, they are unmixed due to gravitational effects (Kraus,

2004). For this reason, the part of the atmosphere below the turbopause is also called homosphere, while

the part above then is the heterosphere. The layer between the mesopause in 85 km, and about 800 km al-

titude is the thermosphere, or ionosphere. The latter name results from the many ions being produced by

solar radiation there. The ionosphere is very important for radio signals which are reflected at different

layers, depending on their wavelength (Kraus, 2004). In the thermosphere, temperature increases again

with height. However, the air density is so low there that temperature could not be measured with the

instruments used at the surface. It can only be defined from the mean kinetic energy of the molecules at

these altitudes. In the exosphere, above 800 km and until about 60000 km, the non-ionised particles are

able to escape to space, while the ionised ones are attracted by the earth’s magnetic field and therefore

do not leave the atmosphere. This is why the outer part of the exosphere is also called magnetosphere,

and the border to space is the magnetopause.

Atmospheric circulation patterns

The sun’s energy reaches earth with maximum intensity between 0.2 and 5 µm wavelength, correspond-

ing roughly to the emission of a black body with 6000 K, which is approximately the temperature of the

sun’s photosphere (Kraus, 2004; Petty, 2004). A radiative equilibrium is reached with the thermal emis-

sion of the earth-atmosphere system back to space, otherwise the earth would continuously heat up. An

illustration of the annual average radiation budget at the top of the atmosphere as a function of latitude

can be found in Figure 2.2 or for example also in Petty (2004, p.4). More solar energy is absorbed at lower

7



2 Meteorological, chemical, and physical basis

Figure 2.3: Average lower atmospheric global circulation (Picture taken with permission from Pidwirny (2006, at

http://www.physicalgeography.net/fundamentals/chapter7.html)).

latitudes than closer to the poles, and only slightly more energy in form of longwave radiation is emitted

to space from the tropical than from the polar regions. This leads to an overall negative radiative budget

in high and a positive budget in low latitudes. It is obvious that compensation mechanisms are necessary

to prevent the tropics from heating up and the poles from cooling down (Petty, 2004). This is the purpose

of the global atmospheric and oceanic circulations. However, the energy exchange in the atmosphere is

not possible through one direct cell with ascending air over the tropical region and subsidence above the

poles because the earth is rotating. This results in a compensating rotation of the air masses aiming at the

conservation of angular momentum (Kraus, 2004). This effect can be expressed as an additional force

acting on the air parcels which only exists in a rotating coordinate system, the so-called Coriolis force.

Also the ocean currents are affected by this force, of course. However, in this thesis, the focus is on the

atmosphere. The tropospheric part of the atmospheric general circulation pattern is presented in many

textbooks, for example Seinfeld and Pandis (1998, p.12) or Ahrens (1994, p.285), and in Figure 2.3. In a

very generalised view, there are three major cells on each hemisphere. Two of them are so-called direct

cells, driven mainly by diabatic heating and cooling, the tropical one (also called the Hadley cell), and

the polar one. The first one originates primarily from the ascent of air parcels above the equator, or rather

the region with the largest energy input and therefore strongest heating of the surface. In this region, the

pressure is relatively low in the lower troposphere. It is also called the inter-tropical convergence zone

(ITCZ). The air that ascended above the ITCZ moves towards the poles in order to transport energy there,

but as already mentioned above, due to the Coriolis force this is not possible directly. Instead, the air de-

scends at only about 30◦latitude, creating the subtropical surface high. The second direct one of the three

8



2.1 Overview on the atmospheric structure and circulation patterns

cells, the polar cell, is driven mostly by air cooling and descending above the poles, creating the polar

high. The cell in midlatitudes, between roughly 30 and 60◦latitude, is an indirect cell, forced by the other

two via mass conservation. It is called the Ferrel cell. The major part of the energy exchange between

tropics and poles happens in the midlatitudes. Due to the Coriolis force, this can only be achieved with

large-scale waves and eddies, associated with high and low pressure systems. The lower tropospheric

mean flow in these regions is westerly, i.e., directed from west to east. Close to the earth’s surface, it

is more south-westerly due to friction. A low pressure range results on average at very roughly about

60◦latitude. The easterly winds in the high latitude regions are necessary for the overall momentum con-

servation of the earth-atmosphere system. In the Hadley cell, a lower tropospheric transport towards the

equator results, basically from mass conservation. These so-called trade winds are also affected by the

Coriolis force and are therefore more north-easterly winds in the northern hemisphere and south-easterly

winds in the southern hemisphere. However, the overview presented above on the general circulation

of the atmosphere is only a schematic explanation of a very complex system that is highly non-linear,

i.e., many factors influence each other, and it is often impossible to distinguish between cause and effect

(Kraus, 2004).

The global circulation pattern in the middle atmosphere (i.e., the stratosphere and mesosphere) differs

from the tropospheric one. A schematic illustration of the stratospheric and mesospheric circulation is

given by Dunkerton (1978) which can also be found in Graedel and Crutzen (1994, p.65), for example.

The dominant feature in the stratosphere is the so-called Brewer-Dobson circulation. It describes an

ascent of air above the tropics and a descent above the poles. This circulation is driven by planetary wave

activity which is stronger in winter than in summer, resulting in a stronger Brewer-Dobson circulation

in the winter hemisphere (Müller, 2012). Furthermore, the planetary wave activity is in general stronger

in the northern hemisphere than it is in the southern hemisphere due to the different distribution of

topography and land-sea thermal contrasts (Müller, 2012, and references therein). The Brewer-Dobson

circulation leads to an accumulation of O3 in the extra-tropical lower stratosphere during winter and

spring because its lifetime is long enough at these altitudes to be transported towards higher latitudes.

From the explanations above, it follows that this build-up is greater in the northern than in the southern

hemisphere (Müller, 2012, and references therein). At higher altitudes, the mesospheric circulation

transports air from the summer to the winter pole. This circulation is believed to be driven mainly by

inertia-gravity waves which propagate upward (Plumb, 2002). They are selectively dissipated in the

stratosphere, leading to a mean transport from the pole to the equator in the summer hemisphere, and a

mean poleward transport in the winter hemisphere.

The general movement of stratospheric air masses towards the winter pole results in the formation of

the so-called stratospheric polar vortex, as the air masses are deflected by the Coriolis force. This leads

to relatively strong westerly winds so that to a certain degree the stratospheric air above the winter pole

is isolated from the rest of the stratosphere. As a result, the air inside cools down even stronger, thereby

enabling the formation of polar stratospheric clouds (please see Section 2.2). The Antarctic polar vortex
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2 Meteorological, chemical, and physical basis

is stronger and longer-lived than the Arctic one which is mainly a result of the stronger planetary wave

activity in the northern hemisphere that disturbs the vortex.

2.2 Stratospheric ozone chemistry

In this section, some aspects of stratospheric chemistry are presented, with a certain focus on the role

of chlorine and fluorine species as some of them are the topic of the present thesis. Seinfeld and Pandis

(1998) describe ozone (O3) as the most important trace constituent of the stratosphere. In Section 2.1,

the influence of the stratospheric ozone layer on the temperature distribution in the stratosphere was ex-

plained. The photochemical ozone production and destruction processes essentially protect life on earth

via the absorption of short-wave solar irradiation which is harmful due to its high energy content. In ad-

dition, catalytic reactions are involved in maintaining the natural ozone equilibrium. In the following, the

processes involved in the production and destruction of the stratospheric ozone layer shall be explained,

with a focus on the role of chlorine.

For about 40 years after its publication, the photochemical mechanism suggested by Chapman (1930)

was thought to be able to explain the existence and properties of the ozone layer (Seinfeld and Pandis,

1998). This so-called Chapman cycle starts with the photolysis of molecular oxygen by solar radiation

of wavelengths less than 242 nm,

O2 +hν → O+O [2.1]

The produced atomic oxygen quickly reacts with molecular oxygen to form ozone, in the presence of a

third molecule M (usually N2 or O2):

O+O2 +M→ O3 +M [2.2]

This reaction is practically the only one which produces ozone in the atmosphere (Seinfeld and Pandis,

1998). By the following two processes, ozone molecules are destroyed:

O3 +hν → O2 +O [2.3]

O3 +O→ O2 +O2 [2.4]

For the photolysis reaction [2.3], sunlight with wavelengths shorter than 1140 nm is necessary. However,

measurements showed that the ozone concentrations calculated from this Chapman cycle are about a

factor of 2 too high (Seinfeld and Pandis, 1998).

The investigation on the reasons for this discrepancy led to the discovery of additional, catalytic cycles

that can be summarised as (e.g., Müller, 2012)

X+O3→ XO+O2 [2.5]

XO+O→ X+O2 [2.6]

Net: O3 +O→ O2 +O2

10



2.2 Stratospheric ozone chemistry

where X represents a free radical catalyst, i.e., H, OH, NO, Cl, or Br. The relevance of the catalytic

cycles involving NOx (= NO + NO2) and ClOx (= Cl + ClO) and their anthropogenic efficiency increase

was discussed by Crutzen (1970) and Molina and Rowland (1974) in the 1970s, respectively. For these

investigations on the formation and decomposition of ozone, Paul Crutzen, Mario Molina and Sherwood

Rowland were awarded the Nobel prize in chemistry in 1995. For more information on the HOx and

NOx cycles, please see for example Seinfeld and Pandis (1998) or Crutzen (1970). In the following, only

ClOx will be discussed in more detail due to its relevance for the present thesis.

The major natural source of stratospheric inorganic chlorine is methyl chloride (CH3Cl), which is

emitted mainly by marine algae or tropical biomass burning. In addition, volcanic eruptions may en-

hance the stratospheric chlorine content (Graedel and Crutzen, 1994). CH3Cl accounts for about 16%

of the total stratospheric chlorine abundance today (Müller, 2012, and references therein). However, in

addition to these natural sources, anthropogenic species such as chlorofluorocarbons (CFCs), hydrochlo-

rofluorocarbons (HCFCs), and halons (bromine-containing halocarbons) contribute to the stratospheric

chlorine loading. Due to their high stability and non-reactivity in the troposphere, they are able to reach

the stratosphere, mostly through the tropical tropopause. In the stratosphere, they are decomposed mainly

by photolysis in the 185 to 210 nm spectral window between O2 and O3 absorption (Seinfeld and Pandis,

1998). For the two most abundant CFCs, i.e., CFC-11 (CFCl3) and CFC-12 (CF2Cl2), the photolysis

reactions are

CFCl3 +hν → CFCl2 +Cl [2.7]

CF2Cl2 +hν → CF2Cl+Cl [2.8]

The CFCl2 and CF2Cl radicals rapidly perform other reactions, resulting in the release of the remain-

ing chlorine atoms (Seinfeld and Pandis, 1998). All these additional chlorine atoms released by the

above-mentioned anthropogenic species lead to an increase in the efficiency of the catalytic ClOx ozone-

destroying cycles, thereby disturbing the natural equilibrium of the ozone layer. Of course, this is analo-

gously the case for anthropogenic emissions of NOx or its precursors (mainly N2O), for example.

After the release of Cl atoms, the ozone-depleting catalytic chlorine cycle can take place:

Cl+O3→ ClO+O2 [2.9]

ClO+O→ Cl+O2 [2.10]

This ClOx cycle can be interrupted by conversion of the reactive forms of chlorine (i.e., Cl and ClO) into

so-called reservoir forms, i.e., HCl and ClONO2. These reservoir species do not destroy ozone. For the

NOx cycle, such a reservoir species would be nitric acid (HNO3), for example. HCl and ClONO2 are

formed mainly by the reactions

Cl+CH4→ HCl+CH3 [2.11]

ClO+NO2 +M→ ClONO2 +M [2.12]
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Figure 2.4: Examples for volume mixing ratio profiles of HCl (left) and ClONO2 (right) between ground and

120 km height, above Kiruna. These profiles stem from a long-term model simulation by the Whole

Atmosphere Community Climate Model (WACCM) and were provided by J. Hannigan (NCAR). They

are used as a priori profiles for the inversion of the FTIR spectra (see Section 3.2).

The production of HCl can ultimately lead to the removal of the chlorine atom from the stratosphere

because HCl is relatively stable there and can be transported back to the troposphere, where it is washed

out by precipitation (Seinfeld and Pandis, 1998). The storage in the form of ClONO2 is only temporary,

it can be photolysed again:

ClONO2 +hν → ClO+NO2 [2.13]

→ Cl+NO3 [2.14]

Thereby, for wavelengths λ < 308 nm, the quantum yield is equal to about 0.4 for reaction [2.13] and

0.6 for reaction [2.14], while for λ > 364 nm, it is 1 for reaction [2.14] (Seinfeld and Pandis, 1998).

However, ClONO2 is especially important because it stores two ozone-destroying catalysts, ClO and

NO2 (Seinfeld and Pandis, 1998). Examples for the volume mixing ratio profiles of HCl and ClONO2

are shown in Figure 2.4, for about 67.8◦N and 20.4◦E, corresponding to the geographical position of

the Kiruna site. They represent mean profiles determined from a long-term simulation by the Whole

Atmosphere Community Climate Model (WACCM) that were provided by J. Hannigan (NCAR) and

are used as a priori profiles for the inversion of the FTIR spectra (see Section 3.2). Especially the

ClONO2 mixing ratio depends not only on height, but also on latitude. This results from the photolysis

reactions [2.13] and [2.14] which are more efficient in the lower latitudes than closer to the poles because

they depend on solar irradiation and thus lead to a relatively lower ClONO2 mixing ratio above the

tropical region.

However, species from the catalytic HOx, NOx, BrOx, and ClOx cycles described by reactions [2.5]

and [2.6] can also react with each other, thereby coupling the cycles. For more information, please see

for example Seinfeld and Pandis (1998) or von Hobe and Stroh (2012).
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Apart from a more or less continuous decrease in stratospheric ozone especially above about 25 km

(Graedel and Crutzen, 1994) as a result of the processes described above, another phenomenon can

be attributed to the increased emissions of anthropogenic ozone-depleting substances. Since about the

early 1980s, very low total column ozone abundances have been measured nearly every spring above

the Antarctic region. This feature is commonly referred to as the Antarctic ozone hole. It results from

heterogeneous processes on polar stratospheric clouds (PSCs) transforming the chlorine reservoir species

into active chlorine, thereby leading to a much larger than usual mixing ratio of the latter. The two most

important reactions involved in this so-called heterogeneous chlorine activation are (Müller, 2012)

HCl+ClONO2
het−→ Cl2 +HNO3 [2.15]

HCl+HOCl het−→ Cl2 +H2O [2.16]

These reactions are quite slow in the gas phase, but substantially faster on the surface of liquid or solid

particles. If stratospheric temperatures drop below about 190–195 K, PSCs consisting of NAT (nitric

acid trihydrate) particles or STS (supercooled ternary solutions) can form (Seinfeld and Pandis, 1998).

Ice particle PSCs exist at slightly lower temperatures only. The chlorine molecules (Cl2) produced in

reactions [2.15] and [2.16] on the surface of these PSCs and released into the gas phase are stable as

long as it is dark during polar night, but as soon as enough sunlight is available in spring, they can be

photolysed. Reaction [2.15] furthermore produces HNO3 which remains on the PSC in the following,

resulting in a removal of NOx from the gas phase (Graedel and Crutzen, 1994). Thereby, it hinders

chlorine deactivation because as long as HNO3 is in the gas phase, it can be photolysed so that ClONO2

could be produced (Seinfeld and Pandis, 1998). However, essentially no oxygen atoms are available in

the polar winter stratosphere so that instead of the above-described ClOx cycle, the so-called ClO dimer

cycle is the most important process responsible for the ozone hole (Molina and Molina, 1987):

ClO+ClO+M↔ ClOOCl+M [2.17]

ClOOCl+hν → Cl+ClOO [2.18]

ClOO+M→ Cl+O2 +M [2.19]

2 [Cl+O3→ ClO+O2] [2.9]

Net: 2O3→ 3O2

Besides, there is one more major process involving ClO and BrO (please see for example Seinfeld and

Pandis, 1998; von Hobe and Stroh, 2012).

A temporary ozone depletion in springtime has been measured in the Arctic, too, but due to different

dynamical conditions there, it is overall usually much weaker than in the Antarctic. The Arctic strato-

spheric polar vortex is more variable, warmer, and weaker than the Antarctic one, resulting in a shorter

PSC period, for example (please see also Section 2.1 for differences between the Arctic and Antarctic

vortex). The polar ozone hole occurs between about 12 and 24 km height (in contrast to the region where
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the ClOx cycle is most effective, between 35 and 45 km), thereby corresponding very well to the altitude

range of PSC occurrence (about 10–25 km) (Seinfeld and Pandis, 1998).

This extensive chlorine activation is stopped only by the break-up of the polar vortex and increasing

stratospheric temperatures leading to the dissociation of the PSCs. As a result, NOx becomes avail-

able again, and quickly, ClONO2 is produced by reaction [2.12], which has a larger rate coefficient at

stratospheric temperatures than reaction [2.11] producing HCl. However, the ClONO2 molecules may

be photolysed again (reactions [2.13] and [2.14]) so that the thereby again released chlorine atoms may

react with CH4 to form HCl, which is more stable than ClONO2. This effect of a pronounced peak in the

ClONO2 time series followed by a broader, flatter maximum in the HCl abundance can often be observed

very nicely in the Arctic. In contrast, in the Antarctic, the recovery of HCl and ClONO2 at the end of

the winter usually takes place at about the same time and same strength. One of the reasons for that is

the usually stronger so-called denitrification in the Antarctic than in the Arctic stratosphere. This means

that due to the long persistence of the PSCs, subsidence of the NAT particles may occur, thereby perma-

nently removing NOx from the respective heights. In addition, ClONO2 production may be limited by

O3 availability (reaction [2.9]), which is also usually a larger problem in the Antarctic than in the Arctic

at the end of the winter due to the stronger Antarctic ozone depletion.

Above, the connection of HCl and ClONO2 with stratospheric ozone depletion was discussed exten-

sively in order to point out the importance of observing the temporal evolution of their atmospheric

abundance. The third species which the present thesis focuses on, HF, also contains a halogen atom that

would in principle be able to deplete ozone, too. However, fluorine is not involved in stratospheric ozone

depletion because the reaction of the freed fluorine atoms with CH4, forming the reservoir species HF,

Figure 2.5: Exemplary volume mixing ratio profile of HF between ground and 120 km height, above Kiruna.

This profile stems from a nudged model simulation called PEP8 by the KASIMA model (Karlsruhe

Simulation Model of the Middle Atmosphere) and is used as a priori profile for the inversion of the

FTIR spectra (see Section 3.2).
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is very fast. HF in turn is very stable. As a result, only a minor part of fluorine will ever get the oppor-

tunity to react with O3 to FO (von Hobe and Stroh, 2012). Due to its high stability, HF is often used

as a dynamic tracer (see e.g., Chipperfield et al., 1997). As the most important source gases of HF are

mainly anthropogenic CFCs, HCFCs, and halons, it is also an indicator of the anthropogenic influence

on atmospheric composition and chemistry. A profile of HF from a nudged model run with KASIMA

(Karlsruhe Simulation Model of the Middle Atmosphere) in the framework of a research contract (PEP

virtual institute, Pole-Equator-Pole, run PEP8) is shown in Figure 2.5. It is the one used as a priori for

the inversion of the FTIR spectra (see Section 3.2).

2.3 Absorption of radiation by atmospheric trace gases

The determination of total column abundances or profiles of atmospheric trace gases with an FTIR spec-

trometer is based on the fact that the gas molecules absorb infrared (IR) radiation from the sun (so-called

solar absorption measurement) or that they emit IR radiation themselves (atmospheric emission mea-

surement). In solar absorption geometry, which was used for the data analysed in the present thesis,

the FTIR instrument basically measures the intensity of the direct solar irradiation reaching the ground

(as a function of wavelength). In the following, some basic radiation laws are explained, and finally, a

general expression for radiative transfer in the infrared spectral region when considering only absorption

is discussed.

The temperature (T ) dependency of the radiance B emitted by a black body at a certain wavelength λ

is described by Planck’s law (e.g., Tipler, 1994; Petty, 2004)

Bλ (T ) =
2hc2λ−5

exp( hc
λkBT )−1

[2.20]

with

h = 6.626 · 10−34 J s Planck’s constant

c = 2.998 · 108 m s−1 speed of light

kB = 1.381 · 10−23 J K−1 Boltzmann’s constant

By substitution for λ = c/ν or λ = 1/ν̄ , the Planck function may be expressed in terms of frequency ν

in Hz or ν̄ in cm−1, respectively. The wavelength at which this energy emission per unit time reaches its

maximum can be calculated using Wien’s displacement law (Tipler, 1994; Petty, 2004)

λmax =
C
T

[2.21]

with the constant C amounting to 2898 µm K.

Integration of the Planck curve (Equation 2.20) over solid angle Ω and wavelength λ yields the total

radiance emitted by a black body

E(T ) =
∫ ∫

Bλ (T ) dΩ dλ [2.22]
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If additionally the emissivity ε giving the fraction of energy emitted by a real (grey) body as compared

to a black body with the same temperature is considered, the Stefan-Boltzmann law results (e.g., Ahrens,

1994; Tipler, 1994)

E(T ) = εσT 4 [2.23]

with the Stefan-Boltzmann constant σ = 5.6703 · 10−8 W m−2 K−4. According to Kirchhoff’s law, the

emissivity corresponds to the absorptivity.

The temperature of the sun’s photosphere amounts to about 6000 K. Following Wien’s displacement

law (Equation 2.21), it therefore emits its maximum energy at a wavelength of about 0.48 µm (Petty,

2004). However, although the sun’s photosphere can be regarded approximately as a black body, the radi-

ation reaching the earth’s surface is weaker than expected from the corresponding Planck curve, resulting

from absorption by atmospheric trace gases at certain wavelengths, and from scattering (negligible in the

IR spectral region). Examples for this so-called atmospheric transmission spectrum are shown in many

textbooks, e.g. in Petty (2004, p.173), Liou (1980, p.39).

A general form of the differential equation of radiative transfer in the atmosphere for the long-wave

spectral region is (Paltridge and Platt, 1976)

dNλ =−κaλ ρNλ ds+κaλ ρBλ (T ) ds [2.24]

with

Nλ radiation with wavelength λ

s distance

κaλ mass absorption coefficient

ρ density

The formal solution to this equation is (Paltridge and Platt, 1976)

Ns,λ = N0λ exp[−τaλ (0,s)]+
s∫

0

κaλ ρBλ (T (s
′)) exp[−τaλ (s

′,s)] ds′ [2.25]

where the optical depth τaλ (s′,s) is defined as the integral over the volume absorption coefficient κaλ ρ:

τaλ (s
′,s) =

s∫
s′

κaλ ρ ds′′ [2.26]

When interpreting Equation 2.25 with respect to the atmosphere, we can see that the radiation Nλ at

location s is described by the incoming solar radiation N0λ which is partly absorbed on its way through the

atmosphere (first term), and the emission of all atmospheric layers in between, which is described by the

Planck function corresponding to their temperature (second term). This atmospheric infrared radiation

is of course also partly absorbed on its way to the location s. As mentioned above, the incoming solar
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radiation at the top of the atmosphere (N0λ ) can be expressed by the Planck function of Tsun ≈ 6000 K,

Bλ (Tsun).

For this description of radiative transfer, some simplifications have been made. First of all, scattering

can be neglected completely in the long-wave spectral region (Brasseur and Solomon, 1986). In addition,

local thermodynamic equilibrium was assumed. For practical purposes, the dependency on solar zenith

angle which is contained in ds′ needs to be expressed explicitly.

The measurements analysed in the present thesis have been performed in solar absorption geometry, as

already mentioned above. In this case, also the second term in Equation 2.25 can be neglected because the

atmospheric infrared emission is quite weak compared to the intensity of the direct solar beam (Mikuteit,

2008; Kramer, 2007). So the remaining part of the equation describing the radiation intensity measured

by solar IR absorption measurements at the ground is

Nλ = Bλ (Tsun) exp [−τaλ (0,s)] = Bλ (Tsun) exp

− s∫
0

κaλ ρ ds′′

 [2.27]

The mass absorption coefficient κaλ and as a result also the atmospheric optical depth τaλ is a very com-

plex quantity to determine because it must describe the combined absorption of all atmospheric species

at the wavelength of interest. Every species absorbs (and emits) radiation at certain discrete frequencies

which are determined by the allowed energy levels of the molecules (von Clarmann, 2003). In the mid-

infrared region, it is the transition between different rotational-vibrational states of the molecules that

manifests itself in the absorption lines of the spectrum, in contrast to mostly pure rotational transitions in

the microwave and sub-microwave spectral regions, and to electron transfer at shorter wavelengths (von

Clarmann, 2003). However, it is not trivial to predict the spectral positions and strengths of absorption

lines or bands to the required precision because molecules usually are neither rigid rotors nor harmonic

oscillators. Therefore, laboratory measurements must be used in connection with theoretical calcula-

tions. It can be seen from Equation 2.27 if the exact positions and the strength of the absorption lines

are known, the abundance of the molecules present between the observer at the ground and the top of

the atmosphere along the line-of-sight can be calculated from the measured transmission spectrum. This

retrieval procedure is described in more detail in Section 3.2.
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3 FTIR measurements

This chapter intends to give an overview on the function principle and properties of a Fourier transform

spectrometer (Section 3.1), and on the following analysis of the measured spectra (Section 3.2). Thereby,

a special focus is on the setups and data analysis methods used at the Kiruna and Izaña sites in Northern

Sweden and on Tenerife Island, respectively, which are operated by the Institute for Meteorology and

Climate Research (IMK-ASF) at the Karlsruhe Institute of Technology (KIT). The spectrum analysis

is presented in more detail only for the three species primarily investigated in this work, i.e., hydrogen

chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF).

3.1 Spectrum acquisition

This section shortly and generally describes the acquisition of atmospheric spectra with a Fourier trans-

form spectrometer (FTS). The instruments used for the present work all measure in the infrared (IR)

spectral region so that in the following, the expression FTIR (Fourier transform infrared) spectrometer

is used as an equivalent to FTS, although FTS is the more general expression. In the first part of this

section, the basic principles of Fourier spectrometry are presented, i.e., the Michelson interferometer and

the Fourier transformation (Section 3.1.1), while the second part (Section 3.1.2) describes properties of

a real FTIR spectrometer.

3.1.1 Function principle of a Fourier transform spectrometer

The core of an FTS is its Michelson interferometer. It was initially designed for the exact measurement

of absolute wavelengths (Beer, 1992). A Michelson interferometer is based on the principle of amplitude

division. A schematic sketch of such an interferometer can be found in many physics textbooks, for

example Griffiths and de Haseth (1986), Beer (1992), Tipler (1994), or Meschede (2002). Basically,

the incoming light is separated by a beamsplitter into two beams. These are reflected each by a mirror

or a retro-reflector and thereby redirected to the beamsplitter again, which then acts as a recombiner.

Because the incoming light beam is never perfectly non-divergent, the detector sees interference fringes

in the final beam. If the light source is monochromatic, its wavelength can be determined by moving one

mirror and counting the number of modulation periods seen by the detector for a certain path difference

between the two beams (Beer, 1992).

Figure 3.1 shows the principle setup of an FTS, including the Michelson interferometer. The moving

retro-reflector in this system is also called the scanner. It moves at a constant (known) velocity or shortly

stops at equally spaced points (Griffiths and de Haseth, 1986). The detector then records the intensity of
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Figure 3.1: Principle setup of an FTIR spectrometer. Picture taken with permission from Gisi et al. (2011).

the recombined beam as a function of optical path difference. Thereby, the very high optical frequency

ν̄ = 1/λ (in cm−1) of the incoming light is converted down to an electrical frequency f in Hz that is

measurable by a detector (Griffiths and de Haseth, 1986; Beer, 1992):

f = 2ν̄V [3.1]

with the velocity of the scanner V . It is very important to note that this frequency transformation is linear.

For a monochromatic source with incoming intensity 2F , the intensity I reaching the detector for a

certain path difference x between the two beams can be expressed as (Beer, 1992)

I(x) = F [1+ cos(2πν̄x)] [3.2]

However, the source we want to analyse (i.e., the sun) is not monochromatic, so we have to integrate

over all wavelengths in order to describe the detected signal correctly (Beer, 1992)

I(x) =
∞∫

0

F(ν̄)[1+ cos(2πν̄x)]dν̄ [3.3]

=

∞∫
0

F(ν̄)dν̄ +

∞∫
0

F(ν̄)cos(2πν̄x)dν̄ = IDC(x)+ IAC(x) [3.4]
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So F(ν̄) obviously describes the spectrum we are interested in. The first term in Equation 3.4, called

IDC(x) here, is a constant, while the second one, IAC(x), is the part of the recorded intensity that is usually

referred to as the interferogram (Griffiths and de Haseth, 1986). It will be discussed in the following.

Because a physical frequency ν̄ must be larger than or equal to 0, we can change the lower limit of the

integral to −∞ without changing its value. Now it is obvious that the interferogram IAC(x) corresponds

to the cosine Fourier transform of the incoming spectrum F(ν̄). This means the following is also true:

F(ν̄) =

∞∫
−∞

IAC(x)cos(2πν̄x)dx [3.5]

Obviously, this Fourier transformation which is necessary to determine the spectrum from the interfero-

gram is responsible for the name of the measurement principle.

As described above, the Michelson interferometer is used to determine the wavelength(s) of the in-

coming radiation. On the other hand, if the wavelength of a monochromatic source is known very well,

such a source can be used to determine the exact position of the moving retro-reflector as a function of

time. To know this is of course essential for the frequency transformation (Equation 3.1), and therefore, a

monochromatic laser beam (at Kiruna it is a HeNe laser with λ = 632.8 nm) is coupled into the spectrom-

eter. From the interference in the recombined beam and its change with time, the velocity and precise

position of the scanner can be calculated. The laser interferogram is recorded by separate detectors.

In the present work, ground-based solar absorption measurements with an FTIR spectrometer are

presented. So the quantity of interest is the intensity of solar irradiation at the ground (as a function of

wavelength) or rather its weakening due to absorption by different atmospheric species. That means the

direct solar beam is used as the radiation source. In order to accomplish that, a so-called sun tracker is

necessary with mirrors that move according to the calculated position of the sun. However, the position

at which the sun is seen also depends on the actual refractive index (and thereby pressure) so that it can

differ from the calculated one. In order to adapt the sun tracker to this, a camera is used to correct the

position of the tracking mirrors so that always the radiation from the centre of the solar disc is directed

into the spectrometer (see also Figure 3.1). This is a new and improved concept introduced by Gisi et al.

(2011) and used at the Kiruna site since September 2010. Before, a quadrant diode regulated the mirror

position, as is still done at many other ground-based FTIR sites.

3.1.2 Properties and error sources of a real FTIR spectrometer

In the previous section, it was explained that a Fourier transformation is needed to convert the detected

intensity as a function of path difference into the desired spectrum of the radiation source. However, a

real FTS of course cannot determine I(x) continuously, only for a limited number of discrete x values with

equal distance δx, because the sampling frequency is limited. In order to know this δx very precisely,

it is essential to determine the exact velocity and position of the moving mirror or retro-reflector (the

scanner). This can be achieved with an additional monochromatic laser beam coupled into the system,

as described in Section 3.1.1. Because the interferogram is not infinitely long, the spectrum can only be
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determined for discrete and equally-spaced values of the frequency in cm−1, δ ν̄ . In complex notation,

the discretised Fourier transformation pair can be written as (Beer, 1992)

IAC(mδx) =
N

∑
k=0

F(kδ ν̄)exp(2πikδ ν̄mδx) [3.6]

F(nδ ν̄) =
1
N

N

∑
j=0

IAC( jδx)exp(−2πinδ ν̄ jδx) [3.7]

Due to the discrete sampling of the interferogram, the spectrum must not contain frequencies larger

than the so-called Nyquist frequency which is defined as

ν̄ny =
1

2δx
[3.8]

So obviously, the smaller the spacing δx of the interferogram, the larger is the detectable spectral interval.

Frequencies beyond ν̄ny are folded back onto other frequencies in the resulting spectrum. To avoid this

unwanted effect called aliasing, optical and electronic filters are needed in the system (Beer, 1992).

As mentioned above, the finite spectral resolution of an FTS basically results from the finite maximum

optical path difference (L). The measured interferogram IAC(x) can be regarded as part of an infinite

interferogram I∞(x) that was multiplied by a boxcar function B(x) which is equal to 1 between x = 0 and

L, and 0 everywhere else. For the Fourier transform F(ν̄) of the interferogram, this multiplication of

I∞(x) and B(x) corresponds to a convolution of their Fourier transforms. The Fourier transform J(ν̄) of

B(x) is a sinc function (Beer, 1992):

J(ν̄) =
sin(2πν̄L)

2πν̄L
= sinc(2πν̄L) [3.9]

The effect of this sinc function is to smear out the fine structure in the spectrum. The spectral resolution

of the FTS is therefore often defined as the full width at half maximum (FWHM) of the sinc function,

corresponding to about 0.6034/L (Beer, 1992). So obviously, the resolution is inversely proportional

to the maximum optical path difference of the spectrometer. The sinc function in Equation 3.9 is also

called the instrumental line shape (ILS). As a result of misalignment of the spectrometer, phase-shifts,

or a strong modulation of the signal (see below), for example, the real ILS may be asymmetric or ex-

hibit a reduced amplitude compared to the ideal ILS. This must be considered in the analysis of the

spectrum. Therefore, the ILS must be regularly monitored. Within the Network for the Detection of

Atmospheric Composition Change (NDACC), from which data were used in the present thesis, this is

done by analysing measurements with similar gas cells filled with HBr, for example with the software

LINEFIT (Hase et al., 1999). In order to dampen the side oscillations of the ILS and thereby their influ-

ence on the spectrum, a so-called numerical apodisation can be applied. This means the interferogram

is multiplied with a triangular or trigonometric function (Mikuteit, 2008), corresponding to a convolu-

tion of the Fourier transforms, as already mentioned above. Thereby, the side lobes of the ILS can be
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suppressed. Such an apodisation always leads to a widening of the ILS and thereby to a reduction of

the spectral resolution (Beer, 1992). No apodisation is necessary for the high-resolution spectra used in

this work because the atmospheric lines are wider or of about the same width as the resolution of the

spectrometer so that the side lobes of the ILS are smeared out.

One of the most important parts of the spectrometer is the beamsplitter. The measured spectrum is

very sensitive to its properties. It consists of a substrate with the beam splitting layer on top, where the

substrate of course must not be absorbing in the wavelength region to be detected. For the mid-infrared

(MIR) spectral region, potassium bromide (KBr) may be used as substrate, while for obtaining near-

infrared (NIR) spectra, calcium fluoride (CaF2) is useful. An ideal beamsplitter separates the incoming

beam into two beams of equal intensity and does not absorb any of the radiation to be measured.

By optical dispersion, a wavelength-dependent phase shift can be introduced in the resulting spectrum.

It can already be seen in the interferogram which is not symmetric around ZPD (zero path difference) in

this case. The phase shift generally results from a difference in optical thickness between the two beams.

Due to the dependency of the refractive index on wavelength, also the induced phase shift varies with

wavelength (Beer, 1992). Phase dispersion may also result from frequency-dependent electrical phase

shifts occurring in the detector signal chain (Beer, 1992).

In addition to the phase shift, the modulation efficiency which describes the fraction of the incoming

radiation that reaches the detector is another measure for the quality of the spectrometer system (Hase

et al., 1999; Hase, 2000). A reduction in modulation efficiency also results from optical dispersion, or

from absorption by the beamsplitter material.

Optical interference between the surfaces of transmissive elements results in a sinusoidal modulation

of the spectral continuum (Beer, 1992). In order to minimise this effect called channeling, wedged optical

elements are used.

The instrument itself emits infrared radiation according to its temperature, following Planck’s law

(see Section 2.3). It is obvious that this self-emission background might be a problem for spectroscopic

work in the infrared spectral region. However, in the case of solar absorption measurements, the radiation

emitted by the spectrometer is negligible compared to the incoming solar intensity (Hase, 2000; Mikuteit,

2008).

In order to measure a spectrum in the infrared region, a cooled detector is advantageous (Griffiths

and de Haseth, 1986; Beer, 1992). For the MIR spectral region, an MCT (mercury-cadmium-telluride,

HgCdTe) detector is used to cover the long wavelength range (about 500 to 1380 cm−1) and an InSb

(indium-antimonide) detector for the shorter wavelengths (about 1800 to 4300 cm−1) at the sites Kiruna

and Izaña. They are cooled down by liquid nitrogen to about -196◦C (77 K). The MCT detector exhibits

a nonlinear behaviour with respect to its response to different wavelengths, leading to a wavelength-

dependent baseline of the spectrum. This effect must be corrected for, which is done by using saturated

lines to manually determine the respective wavelength-dependent offset in each spectrum, and then sub-

tracting it. The signal-to-noise ratio can be improved by using optical bandpass filters. Similar sets of
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filters are used at all 17 NDACC sites taking part in the comparison study of FTIR and model time series

presented in Chapter 5.

For the analyses reported in this thesis, measurements of different FTIR instruments were used. They

were basically built by two companies, Bruker and Bomem. The Bruker 120HR and 125HR instruments

only differ with respect to data acquisition electronics, leading to a higher and thus better signal-to-noise

ratio in the 125HR spectrometer (see, e.g., Kohlhepp et al., 2012). The Bruker 120M instrument is

the mobile and therefore smaller version which is more difficult to align and less stable than the other

two Bruker instruments mentioned above. This may lead to a slightly worse performance of the 120M.

However, this would affect mostly the retrieved profiles and not the total column abundances used in

the present work. So overall, the results from the different Bruker instruments are expected to agree

very well. A comparison between total column abundances retrieved from spectra of a Bruker 125HR

and a Bomem DA8 was conducted for example by Batchelor et al. (2010) at the Eureka site (in Canada;

please see Section 5.1.1). It revealed a maximum difference of 3.5% between the two instruments for the

three species investigated in the present work, i.e., HCl, ClONO2, and HF. A table listing which site uses

which instrument can be found in the appendix to this thesis.
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3.2 Retrieval of the gases

From the solar absorption spectra obtained with an FTIR instrument as described in Section 3.1, total

column abundances or even vertical profiles of various atmospheric species can be determined as long

as the atmospheric absorption properties in the analysed wavelength interval are known. The very basic

physical principles were discussed in Section 2.3. For most of the absorption lines and their proper-

ties necessary for the present work, the information from the HITRAN (high-resolution transmission)

spectral database was used which is updated every few years (e.g., Rothman et al., 1992, 1998, 2003,

2005).

For the determination of the species abundances from the measured solar spectra, a radiative trans-

fer model in connection with an iterative retrieval procedure is applied. Thereby, a-priori profiles of

the species and measured (or modelled) temperature and pressure profiles are used to calculate a first-

guess spectrum (forward calculation). The calculated spectrum is then compared with the measured one.

According to the differences between the measured and simulated spectrum, the respective gas concen-

trations from the a-priori profiles are changed, and a new spectrum is calculated. In the end, this iterative

inversion procedure results in a best guess for the profile of the species. However, it is not straightfor-

ward to obtain information on the profile shape from the spectrum as it requires interpreting the pressure

broadening of the individual lines. For some gases, for example chlorine nitrate, this is nearly impossible

due to the weakness and complexity of its absorption features. Not all retrieval codes used for the inter-

pretation of FTIR spectra are able to extract this profile information anyway. For the FTIR measurements

at the 17 NDACC sites described and discussed mainly in Chapter 5, the codes applied are SFIT1 and

SFIT2 (e.g., Rinsland et al., 1998), GFIT (e.g., Washenfelder et al., 2006), and PROFFIT (Hase, 2000).

Amongst them, only SFIT2 and PROFFIT perform a profile fit, while SFIT1 and GFIT only scale the

a-priori profiles. Intercomparisons between SFIT2 and PROFFIT were reported by Hase et al. (2004)

and Duchatelet et al. (2010). In the analyses performed in the present thesis, however, no profiles of

the species are used at all, only the total column abundances. The retrieval of the species abundances

is usually only performed in small spectral intervals, the so-called microwindows. The major advantage

of this is that only a few other interfering species have to be considered, which results in fewer possible

error sources.

Because the present thesis was produced at the Institute for Meteorology and Climate Research (IMK-

ASF) at the Karlsruhe Institute of Technology which runs two of the 17 sites taking part in the comparison

study described in Chapter 5 (i.e., Kiruna and Izaña), the retrieval method for these sites and the species

hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) is described in more

detail. For more information on the measurements and retrieval parameters at the other sites, please refer

to Tables A.1 to A.2 in the appendix of this thesis or to Kohlhepp et al. (2012, and references therein).

The retrieval code used at Kiruna and Izaña for the mid-infrared measurements is PROFFIT (for PROFile

FIT) which includes the radiative transfer algorithm PROFFWD. The temperature and pressure profiles

PROFFIT needs for the inversion of the spectra are taken from the National Center for Environmental
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Prediction (NCEP) (Lait et al., 2005). The standard procedure followed with PROFFIT is to first retrieve

the main absorbers H2O, N2O, CH4, O3, and HNO3 from the spectra. If some of these act as interfering

species in microwindows used for the retrieval of less strongly absorbing species, the information on their

actual concentration is used for these retrievals, making the fitting procedure quicker and more reliable.

Errors induced in the interferograms and spectra by instrumental properties or problems discussed in

Section 3.1.2 may of course affect the results for the retrieved species. In addition, uncertainties are

introduced for example by the used spectral line parameters and the temperature and pressure profiles.

Another error source is for example the solar zenith angle which needs to be known very accurately in

order to correctly determine the air mass passed by the solar beam on its way through the atmosphere

(Hase, 2000; Gisi et al., 2011). This implies exact knowledge of the measurement time. More detailed

and quantitative discussions of the error sources in FTIR measurements are given especially in Hase

(2000), and specifically for the species dealt with in the present thesis also in Mikuteit (2008).

Figure 3.2 shows the height dependency of the sensitivity of the retrieval for the three species at

Kiruna, describing the change in the total column abundance resulting from a partial column change. It

can be seen from this figure that the sensitivity of the FTIR instrument for all species is not very strong

in the troposphere, while it is nearly ideal (equal to 1) in the stratosphere where the volume mixing ratios

peak (please see Section 2.2 for exemplary profiles of HCl, ClONO2, and HF).

Figure 3.2: Height dependency of the sensitivity of the retrieval as defined by Vigouroux et al. (2008) for HF (blue

line), HCl (red line), and ClONO2 (green line). This total column sensitivity describes the change

in the retrieved total column, ∆colretr, which results from a partial column change ∆colinp(h) applied

at altitude h. The resulting sensitivity is given by sens(h) = ∆colretr/∆colinp(h). The curves shown

represent mean values each calculated from six arbitrary spectra with different solar elevation angles

ranging from about 2 to 38◦. The figure was taken from Kohlhepp et al. (2011).
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In the following, a short overview is given on the microwindows used for the retrieval of HCl, ClONO2,

and HF, and their properties and errors, at Izaña and Kiruna, with a focus on the latter site.

3.2.1 Hydrogen chloride (HCl)

For the retrieval of the HCl time series at Kiruna and Izaña presented in this thesis, the following 12

microwindows were used:

2727.73–2727.82 cm−1, 2775.73–2775.79 cm−1, 2819.52–2819.61 cm−1,

2821.52–2821.62 cm−1, 2843.60–2843.65 cm−1, 2904.09–2904.14 cm−1,

2923.65–2923.78 cm−1, 2925.80–2926.00 cm−1, 2942.70–2942.75 cm−1,

2961.04–2961.09 cm−1, 2963.25–2963.32 cm−1, 2995.76–2995.79 cm−1

Compared to the use of less microwindows, the vertical resolution is thereby improved (Mikuteit, 2008).

The main other absorbers in these microwindows that therefore need to be considered in the retrieval are

H2O, O3, and CH4. In addition, also N2O, NO2, and OCS are included. The two HCl isotopologues

H35Cl and H37Cl are retrieved separately, by applying a so-called inter-species constraint. Their relative

atmospheric abundances are approximately 76 and 24%, respectively (Meier et al., 2004). Figure 3.3

shows the atmospheric transmission in the spectral region around the most important HCl microwindow

and the signatures of HCl and the interfering species CH4 in this case, as calculated by PROFFWD for

23 March 2003.

Figure 3.3: Atmospheric transmission around one of the HCl microwindows which contains a signature of CH4 as

interfering species, calculated by PROFFWD for 23 March 2003.
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The overall statistical measurement uncertainty for HCl in the FTIR measurements at Kiruna (calcu-

lated after Rodgers, 2000) amounts to about 1.2% (Kohlhepp et al., 2011).

3.2.2 Chlorine nitrate (ClONO2)

ClONO2 is not easy to measure with an FTIR spectrometer due to its weak absorption lines. The retrieval

is even more difficult at lower latitudes (e.g., at Izaña), where the total column abundances are relatively

small, than at higher latitudes (e.g., at Kiruna), where they are slightly larger. The microwindows used

at Kiruna and Izaña for the presented results are:

779.000–779.800 cm−1, 780.000–780.300 cm−1, 780.300–781.300 cm−1

The interfering species that need to be considered in this case are H2O, CO2, O3, HNO3, and C2H2.

The targeted ClONO2 absorption line is at about ν̄ = 780.22 cm−1, i.e., in the middle one of the three

microwindows. The first and the last microwindow are included in the retrieval in order to improve

the results for the interfering species. The atmospheric transmission in the spectral region around the

targeted ClONO2 line is shown in Figure 3.4, calculated by PROFFWD for 23 March 2003.

Figure 3.4: Atmospheric transmission in the spectral region around the main ClONO2 microwindow which con-

tains signatures of H2O, CO2, and O3 as interfering species, calculated by PROFFWD for 23 March

2003.

At some of the other sites taking part in the study reported in Chapter 5, the method of Reisinger et al.

(1995) is applied for the ClONO2 retrieval, which is qualitatively similar to the approach for Kiruna

and Izaña described above. Reisinger et al. (1995) suggested to at first fit the strongest absorbers in a
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relatively large microwindow around the ClONO2 absorption line and then retrieve ClONO2 in a more

narrow window by considering the just obtained information concerning the actual abundances of the

interfering species (see also Mikuteit, 2008).

An average estimate of the error (calculated after Rodgers, 2000) for the measurements of ClONO2

total column abundances at Kiruna is 29% (Kohlhepp et al., 2011), with a smaller value in winter and

spring, when the total column abundance is larger, and a larger one in summer, when strong photolysis

leads to a low total column abundance of ClONO2.

3.2.3 Hydrogen fluoride (HF)

The microwindows used for the retrieval of HF at Kiruna and Izaña are:

4000.900–4001.050 cm−1, 4038.850–4039.080 cm−1

As interfering species, H2O, O3, and CH4 need to be considered in the analysis with PROFFIT. As an

example, the atmospheric transmission in the spectral region around the second microwindow is shown

in Figure 3.5, as calculated by PROFFWD for 23 March 2003. The statistical measurement error cal-

culated after Rodgers (2000) for HF at Kiruna amounts to approximately 1.5% (Kohlhepp et al., 2011).

Figure 3.5: Atmospheric transmission in the spectral region around one of the HF microwindows which contains

signatures of H2O and CH4 as interfering species, calculated by PROFFWD for 23 March 2003.
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4 Trend analysis method and sensitivity studies

A major part of the work presented in this PhD thesis consists in the determination of trends from time

series of atmospheric species originating either from measurements or from model calculations. In this

context, the term “trend determination” means that a function is fitted to the data which consists at least

of a linear part. In addition, it may contain periodic terms (see below). The trend found in the time series

is then basically represented by the slope of the linear part. Of course, this implies the assumption that

the investigated quantity exhibits an approximately linear behaviour during the considered time period.

The total column abundances of the three atmospheric species primarily investigated here exhibit

a non-negligible seasonal cycle, with increasing amplitude towards the poles. A Fourier series was

therefore included in the fitting function in order to account for this seasonal variation. In an analysis

of time series of total and partial column abundances of atmospheric gases, Gardiner et al. (2008) found

that a third-order Fourier series marks the best balance between representing the time series and avoiding

to over-fit the data. The function that was fitted to the data using a least squares method thus reads

f (t)= p1 (1+ p2t)

{
1+

3

∑
i=1

[qi cos(2iπt)+ ri sin(2iπt)]

}
[4.1]

where t is the time in years relative to 1st January 2000. The fitting parameters in the linear part of

the function are called p1 and p2, where the latter corresponds to the trend. The parameters scaling the

Fourier terms are qi and ri, with i = 1, ...,3 in this case. However, for some of the measurement time

series analysed in Sections 4.2.1 and 5.3, only a first-order Fourier series was used because the third-order

results are not reliable. Specifically, this concerns time series with large regular gaps due to polar night

or because the data are based on campaign instead of continuous measurements. Including a third-order

Fourier series in the fitting function of those time series may lead to large unphysical oscillations so that

the trend result cannot be trusted then either. A first-order series is not able to represent the seasonal cycle

as well as a third-order series, for example if the minimum is broader than the maximum, and/or both

are not exactly half a year apart, or something similar. This results in larger root mean square differences

between data and fit in the first-order case, and finally in a larger uncertainty for the trend. The trend

results in this work are reported as percentage of the value of the linear fit on 1st January 2000.

In Section 4.1, a description of the error estimation method is given, followed by an extensive discus-

sion on factors influencing the trend results obtained in this work (Section 4.2).
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4.1 Error estimation with a bootstrap resampling method

The approach employed in this work to determine the confidence intervals for the obtained trend results

is a so-called bootstrap method. According to Efron and Tibshirani (1991), this name refers to the use

of the original data set (the one being analysed) to generate new data sets. These numerical statistical

methods were first introduced by Efron (1979), at a time when increasing computer power enabled the

design of alternatives to classical statistical methods.

In general, a typical application of the bootstrap method can be described as follows (Efron, 2003): A

data set representing a sample of an underlying unknown probability model is given. We are interested in

some statistic of the unknown probability model and try to estimate it from the data set we have. But of

course this estimate has an uncertainty, which can be assessed with the bootstrap method. This requires

the (parametric) model (if any) applied to the data set to be correct (Davison and Kuonen, 2002). In

addition, it is usually assumed that the residuals are independent and identically distributed (i.i.d.) (e.g.,

Efron and Tibshirani, 1986; Gatz and Smith, 1995). If this assumption is not valid, modifications of the

bootstrap method can be used, for example the block bootstrap or the sieve bootstrap (e.g., Bühlmann,

2002; Goncalves and White, 2005). In general, an important reason why the bootstrap method is widely

used is because it does not need any assumption on the underlying distribution to be made, which is

often not known. For more detailed descriptions of the bootstrap method and its different types please

see for example also Efron (1979), Efron and Tibshirani (1986), Efron and Tibshirani (1991), Davison

and Hinkley (1997), Davison and Kuonen (2002), or Efron (2003).

The bootstrap resampling scheme applied in the present work was for example described by Davison

and Kuonen (2002) who called it “resampling residuals”. E.g., Gardiner et al. (2008) applied it to time

series of total and partial column abundances of atmospheric gases, very similar to the analyses presented

here. The algorithm starts by determining the residuals of the least squares fit of function (4.1) to the

data. A so-called bootstrap sample that has the same size as the original data set is drawn randomly (with

replacement) from these residuals and added to the fit function values. To this new artificial time series,

the same function as before is fitted. These procedures of resampling the residuals between the “real”

data and the initial fit, creating a new data set, and fitting function (4.1) to it, are repeated many times, at

least about 1000 times (Efron and Tibshirani, 1986). In the present work, the number of these bootstrap

loops was actually 5000, thereby following Gardiner et al. (2008). So the algorithm produces 5001

different sets of the fitting parameters in function (4.1) which are used then to evaluate the uncertainty

of the parameters of the initial fit, one of which is the trend estimate. This can for example be done by

calculating the standard deviation. In this work, the 97.5 and 2.5 percentiles of the 5001 trend values

are determined in order to estimate the 95% confidence interval. From this interval, a mean deviation is

calculated.

Apart from Gardiner et al. (2008) who validated this particular bootstrap method for measurements

of atmospheric species by FTIR spectrometers, it was also already used for such data by e.g. Mikuteit

(2008), Vigouroux et al. (2008), Duchatelet et al. (2010), Kohlhepp et al. (2011), and Kohlhepp et al.
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(2012). Overall, bootstrap methods are widely used to determine uncertainties, also for many other types

of measurements and model results.

4.2 Limitations of the trend determination

The trend results and their uncertainties determined by fitting function (4.1) and by the above-described

bootstrap method (Section 4.1), respectively, are sensitive to a variety of factors. The influence of some

of them is evaluated in this section. Among the investigated factors are the sensitivity with respect to

the architecture of the fitting function, to the time of year chosen for the analysis, time series length,

and sampling (Section 4.2.1). For this investigation, FTIR measurement time series of HCl, ClONO2,

and HF from 17 sites belonging to the Network for the Detection of Atmospheric Composition Change

(NDACC) are used, and additionally the corresponding results from the two chemistry-transport models

(CTMs) KASIMA and SLIMCAT. These data sets are described in Section 5.1. The dependency of the

trend results on including time series of the quasi-biennial oscillation (QBO) and the 11-year solar cycle

in the fitting function is investigated in Section 4.2.2. This analysis is conducted only for measurements

from the three sites Jungfraujoch, Kiruna, and Izaña.

4.2.1 Dependency on time series length, the fitting function, and sampling

The length of a time series necessary to significantly determine a certain trend depends on the size of

this trend and on the standard deviation and the autocorrelation of the data (Weatherhead et al., 1998).

The measurement time series analysed in the present work are about 16 years long, or shorter, and

the expected trends amount to about ±1%/yr. The autocorrelation is difficult to determine because the

time series are irregularly sampled, and some of them contain gaps of several months. This is why we

determine the influence of different factors on the resulting trend directly. The data used in this section

are the FTIR daily mean time series which are described and further analysed in Chapter 5. The analyses

reported in this section (4.2.1) have been published already by Kohlhepp et al. (2012).

Dependency on the time period and time series length

The three different time periods chosen for the investigation of the trend dependency on the time period

and time series length are 1996–2009, 2000–2009, and 2004–2009. It would not be possible to determine

a reliable linear trend for the two chlorine species if data recorded before 1996 were included because

the stratospheric inorganic chlorine loading reached its maximum around this time (e.g., Rinsland et al.,

2003; Newchurch et al., 2003; Froidevaux et al., 2006; Lary et al., 2007). Anyway, not many of the sites

included in the study of Kohlhepp et al. (2012) began measuring before 1996. More than half of the

sites measured from 1996 on. The longer the time series, the smaller the trend uncertainty is expected

to be. Most of the measurement sites started operation between 1996 and 2000 (see also Table 5.1) so

that for the time range 2000–2009, a very good comparison and overview on the latitudinal dependency
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of the trends is possible, including results from up to 16 sites. A scientific discussion on these trends

can be found in Section 5.3. The period 2004–2009 was included in the sensitivity study of the present

section in order to find out how strongly the trend for this 6-year period differs from the one for a longer

time series. In addition, it is scientifically interesting to find out whether there is a consistent signal of

a change in the rate of increase (of HF) or decrease (of HCl and ClONO2) during the last few years.

For this first sensitivity study, the selected fitting function was a linear trend combined with a third-order

Fourier series accounting for the seasonal cycle (see function 4.1). As already mentioned above, for the

time series from some of the sites, using the third-order Fourier series did not produce reliable trend

results because the time series contain too large gaps. Those are the sites poleward of 70◦N and S, due

to polar night, and La Réunion, where the earliest measurements were performed on a campaign basis

only. For these sites, a first-order Fourier series was used instead.

Figure 4.1 shows the trends of HCl, ClONO2, and HF for the three time ranges discussed above.

At most of the sites, the trends for the different time ranges agree within their errors. The uncertainty

Figure 4.1: Dependence of the resulting trend (in % per year) on the time period, determined for the FTIR mea-

surements of HCl (top left), ClONO2 (top right), and HF (bottom). Please note the different y-scales.

The fitting function is the linear one with seasonal cycle. The results for 1996–2009 are shown in blue,

those for 2000–2009 in black (at Toronto, this is 2002–2009, and at Poker Flat it is 2000–2004) and for

the 2004–2009 period in red. The error bars were determined with the bootstrap method.
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calculated with the bootstrap method (Section 4.1) is larger, the shorter the time series. This is expected,

mainly due to the smaller number of data points. In addition, the start and end time of the year is assumed

to have a stronger influence on a short time series than on a long one. Not all results from all sites are

displayed in Figure 4.1. Reasons for this are that they are unreliable due to large gaps in the time series,

or that they lie outside of the displayed range. For more detailed information on which site is missing for

what reason please see Kohlhepp et al. (2012). At most sites, the 1996–2009 and 2000–2009 trends lie

close together, while the 2004–2009 trend differs from them.

For HCl, the northern hemisphere 2004–2009 decreasing trends seem to be weaker than those for the

other two time ranges. Because this picture is so consistent, there might indeed be a slight weakening

in the decrease of HCl in the last few years. However, for ClONO2, no clear signal can be detected.

This is probably due to the larger amplitude of the seasonal cycle in ClONO2 than in HCl, especially in

polar regions, combined with the large gaps due to polar night. At the other sites, ClONO2 is difficult

to measure due to the low total column abundance in lower latitudes, leading to a very small spectral

signature only. This also results in larger error bars. So overall, we can conclude that the ClONO2 trends

for 2004–2009 are not very reliable, while the HCl trends for the same time range might show a real

tendency, although their values should not be trusted exactly either. For most HCl and also some ClONO2

time series from the northern hemisphere, the trends for 2000–2009 are slightly stronger than those for

1996–2009. This also may be a real signal, resulting from the fact that the stratospheric inorganic chlorine

loading reached a plateau around 1996 and then only slowly started to decrease.

In the HF results, it is also not easy to decide which signals in the differences between the time periods

are real and which result from the trends for 2004–2009 being less reliable than those for the other two

time ranges. But it seems to be likely that on the northern hemisphere, there is a tendency towards

weaker HF increases in the later time periods. At most of the sites, the 2000–2009 trend is weaker than

the 1996–2009 result, while the weakest increase or even a decrease is mostly found for 2004–2009.

This finding agrees with the results of Zander et al. (2008) who reported a stabilisation of the HF total

column abundance around 2003–2004.

Concluding from this sensitivity study on the influence of time series length and the time period

chosen, we can state that overall, there is good agreement between the trends calculated for the different

time ranges, especially for the 1996–2009 and 2000–2009 results. The 2004–2009 trends have the largest

uncertainties and are not very reliable, which is what is expected from a time series that is only 6 years

long and exhibits a strong seasonal variation. However, some signals are quite consistent at a few sites

and therefore should be considered to possibly be real.

Dependency on the trend calculation approach

An important characteristic of the time series analysed here is the non-negligible seasonal cycle, which

is most pronounced in ClONO2 at the polar sites. Concerning the reasons for these variations please

see for example Section 5.2.2. Because the expected trends are relatively small (around ±1%/yr), the
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fitting function needs to represent the time series very well in order to give a reliable and significant

trend estimate. In the following, we investigate on how strongly the FTIR trends of HCl, ClONO2, and

HF at the different sites depend on whether a Fourier series is included in the fitting function (called

the “standard” approach) or not (the “linear” approach). In addition, a linear function is fitted to the

data recorded between June and November on the northern hemisphere and between December and May

in the Southern Hemisphere. This approach is called “summer/autumn” or “s/a” from now on. The

variability is assumed to be less strong during these months. Especially at the high latitude sites, the total

column abundances of the chlorine species are strongly influenced by the polar vortex during the winter

and early spring months which are excluded in the summer/autumn approach.

A comparison between the three mentioned trend determination approaches is shown in Figure 4.2 for

HCl, ClONO2, and HF measured by the FTIR instruments between 2000 and 2009. The best agreement

Figure 4.2: Dependence of the resulting trend (in % per year) on the type of fitting function, determined from the

FTIR measurements of HCl (top left), ClONO2 (top right), and HF (bottom) for the time range 2000–

2009 (except at Toronto where it is 2002–2009, and at Poker Flat it is 2000–2004). Please note the

different y-scales. The results of the “standard” procedure using a linear function with a third or first

order Fourier series are shown in black, those of the “linear” trend calculation in blue and of the linear

calculation with summer/autumn data only (“s/a”) in red. The error bars were determined with the

bootstrap method. Concerning the reasons for missing trend values please see Kohlhepp et al. (2012).
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between the different approaches can be found for HCl, where at all sites the error bars overlap for all

methods. Additionally, overall, the error bars for HCl are smaller than those for ClONO2 and HF. For all

three species, the confidence interval is larger for the summer/autumn and the linear method than for the

standard one at most sites. This difference in uncertainty between the standard and the linear approach

agrees with the assumption that including the Fourier series leads to a better representation of the time

series by the fitting function, and thereby to a smaller root mean square difference between data and fit.

One reason why the confidence interval for the summer/autumn approach is quite large at some of the

sites is probably that the assumption of no variability during the summer months does not hold there.

Moreover, the summer/autumn time series of course contain less data than the complete ones. This effect

may be even stronger than expected, for example at sites where the measurements were performed on

a campaign basis, or where the weather conditions are usually worse during summer and autumn than

during winter and spring (see also Kohlhepp et al., 2012). The less data points, the larger the error bars.

Furthermore, as has been shown by Kohlhepp et al. (2011) for FTIR measurements at Kiruna, even the

trend result obtained by the standard approach is sensitive to the start and end time of the year. This effect

is assumed to be even stronger if only a linear function is fitted so that part of the difference between the

approaches may be due to this.

We can conclude from this investigation that the “standard” approach to fit a linear function and a

Fourier series leads to the smallest error bars among the three methods tested here. It is therefore assumed

to give the most reliable trend results. For HCl, there is no significant difference to the other methods.

However, when looking at the fits to the data (not shown here), it is obvious that also the Fourier series

is not able to completely represent the sometimes very large and sudden peaks occurring at high-latitude

sites in ClONO2 at the end of the winter, for example. These peaks usually result from the movement or

break-up of the polar vortex. Especially the Arctic vortex exhibits a large intra-annual and inter-annual

variability so that the peaks usually do not occur at exactly the same time, which would be necessary for

the periodic Fourier series to be able to capture this feature.

Influence of sampling

Another general characteristic of time series from solar FTIR absorption measurements is their irregular

sampling, especially when considered on a daily basis. It results from the dependency on direct sunlight.

No measurements are possible during nighttime and when the sky is cloudy. As a result, large gaps may

occur in the time series, especially at the high latitude sites where polar night lasts a few months. In the

following, we try to investigate the influence of these larger and smaller regular and irregular gaps on the

resulting trend. For this purpose, we use simulations by chemistry-transport models (CTMs). A trend

is determined from the complete time series which consists of one value per day, and another one when

using only the values of the days at which FTIR measurements are available, from that same model

time series. This was done for simulations by two different CTMs, KASIMA and SLIMCAT, which

are described in Section 5.1. These CTM results are well suited for this purpose because SLIMCAT
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Figure 4.3: The dependence of the resulting trend (in % per year) on sampling is investigated by comparing trends

from the KASIMA data on all days (left column; red) with those calculated from the model time series

on days with FTIR measurements only (orange) and with the FTIR trends themselves (black). The

same comparison is shown for SLIMCAT (right column; blue) and SLIMCAT only on FTIR days

(cyan). Please note the different y-scales. The error bars were determined with the bootstrap method.

used re-analysis data and KASIMA was nudged to re-analysis and analysis fields so that on every single

day, the meteorological fields simulated by the models are expected to correspond to the real state of

the atmosphere. The influence of sampling on the trend should therefore be even more realistically

reproduced than it would be by using the chemistry-climate model (CCM) simulations described in

Section 5.1 that created their own independent meteorology and dynamics of the atmosphere. The fitting
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function used was the linear one, combined with a third- or first-order Fourier series accounting for the

seasonal cycle, and the error bars were determined with the bootstrap method. The time range considered

is 2000–2009 because most sites measured during this period.

Figure 4.3 shows a comparison of the FTIR results with the two different model trends, for KASIMA

(left column) and SLIMCAT (right column). There is no clear signal as to whether the trend from the

daily model series or from the one with FTIR sampling agrees better with the FTIR trends. At most

sites, the two model trends agree within their bootstrap errors. The sites where this is not the case are

mostly located at high latitudes where we expect the influence of sampling to be largest, as a result of the

gaps due to polar night, combined with the relatively large amplitude of the seasonal cycle. In addition,

the variability of the considered species at these high latitude sites is especially strong in winter and

spring when the sites are sometimes located underneath the polar vortex, sometimes outside of it, or

underneath its edge. We can conclude from this investigation that although we cannot quantify it, we

must keep in mind that especially at the high-latitude sites, the influence of sampling on the trend may

not be negligible.

4.2.2 Influence of multi-annual variations

Apart from a linear decrease or increase and the seasonal cycle which is accounted for in this work

by a Fourier series, the time series of an atmospheric species may contain signatures of dynamical or

chemical variations on longer timescales, e.g., a few years or decades. They might considerably or even

significantly influence the trend result or at least its error bars, thereby depending on the time series

length and the strength of the influence. These longer-scale variations include for example the 11-year

solar cycle and the quasi-biennial oscillation.

The 11-year solar cycle is a variation in the solar irradiation reaching earth, with an amplitude of about

0.17 W/m2, or 0.07%, peak-to-peak (Gray et al., 2010). Due to the dependency of the irradiation change

on wavelength, and through dynamical feedbacks, the resulting impact on the atmosphere can be much

larger than what would be expected from this small relative change in total irradiation. The 11-year

solar cycle is associated with the sunspot number on the Sun’s photosphere. When this number reaches

its maximum, also the solar irradiation peaks. This is not obviously expected because the sunspots are

darker and therewith colder parts of the photosphere, but their existence is compensated by a likewise

larger than usual number of faculae during solar maximum. Faculae are hotter spots that are not visible

as well as the larger dark sunspots (Gray et al., 2010). In many studies, this change in solar irradiation

has been shown to modify stratospheric meteorological variables like temperature and zonal wind (e.g.

Labitzke and van Loon, 1988; Lu et al., 2009; Gray et al., 2010). The correlation of the stratospheric

ozone concentration and the atmospheric ozone total column abundance with the 11-year solar cycle

has been intensely investigated and described by e.g. Steinbrecht et al. (2003), Sinnhuber et al. (2006),

WMO (2007), Gray et al. (2010), Muncaster et al. (2011), and Efstathiou and Varotsos (2012). Similarly

to the stratospheric NOy budget (Legrand et al., 1989) (NOy = NO + NO2 + NO3 + 2 N2O5 + BrONO2
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+ ClONO2 + HNO3 + HNO4), O3 in the upper and middle stratosphere is influenced by solar variability

especially directly through the dependency on photochemical processes, while the influence on the lower

stratosphere occurs mostly indirectly through dynamical changes (Efstathiou and Varotsos, 2012).

In addition, these stratospheric 11-year solar signals are modulated by the quasi-biennial oscillation

(QBO) (Labitzke and van Loon, 1988; WMO, 2007; Lu et al., 2009; Efstathiou and Varotsos, 2012). The

name QBO refers to a variation of the equatorial stratospheric zonal wind between easterly and westerly

direction, with a period of roughly 28 months, on average (e.g., Baldwin et al., 2001). This oscillation

is probably driven primarily by gravity waves that were generated by deep convection in the tropics.

Despite being a tropical phenomenon, the QBO affects the whole stratosphere by modulating the effects

of extratropical waves and may even influence the troposphere and mesosphere (Baldwin et al., 2001).

The number density of the gases primarily investigated here (HCl, ClONO2, and HF) peaks in the

stratosphere (see profiles in Section 2.2).They might therefore be influenced by the changes occurring

there in chemistry and dynamics associated with the 11-year solar cycle and the QBO. As the time series

considered here are only about 13–16 years long, the trends determined from them could be affected in

this case.

In order to investigate a possible signature of the solar cycle and the QBO in the trace gas time series,

a multiple linear regression was performed. For this purpose, the fitting function described in Section 4.1

was extended by the possibility to scale and include one or more normalized time series of any desired

predictor. In this work, the solar 10.7 cm flux and/or the equatorial zonal wind at 10 and 30 hPa above

Singapore representing the QBO were used. These two heights bearing QBO signals that are out of

phase by nearly π/2 were chosen in order to get the phasing correctly, thereby following Steinbrecht

et al. (2003). The normalized time series are shown in Figure 4.4.

The fitting function used here then reads

f (t)= p1 (1+ p2t)

{
1+

3

∑
i=1

[qi cos(2iπt)+ ri sin(2iπt)]+
3

∑
j=1

[s jd j(t)]

}
[4.2]

where d j(t) represents the normalized predictor time series, and s j are the parameters scaling these

datasets to give the best linear least squares fit to the trace gas data. In this work, not more than three

predictors were used at the same time (the solar flux and two QBO series), but of course, technically,

more would be possible. Except for the last term, function 4.2 corresponds to function 4.1.

To estimate the error bars of the fitting parameters, again the bootstrap method was applied (see Sec-

tion 4.1). From 5000 additional fits to different artificial datasets, the 97.5 and 2.5 percentiles for each

parameter could be determined, from which a mean precision was calculated.

This procedure was applied to the time series of the HCl, ClONO2, and HF total column abundances

for the time periods 1996–2011 (at Jungfraujoch and Kiruna) and 1999–2011 (at Jungfraujoch, Kiruna

and Izaña). The influence of the solar cycle is expected to be stronger on the chlorine gases than on HF

due to the dependency of especially ClONO2 formation on the availability of NO2. NOy again is directly
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Figure 4.4: Time series of the solar 10.7 cm flux (left), and of the equatorial zonal winds on the 10 and

30 hPa pressure levels above Singapore (right), showing the quasi-biennial oscillation. All three

time series were normalised to mean zero and standard deviation 1. The data sources are

ftp://ftp.geolab.nrcan.gc.ca/data/solar_flux/monthly_averages/solflux_monthly_average.txt for the so-

lar 10.7 cm flux, and http://www.geo.fu-berlin.de/met/ag/strat/produkte/qbo/singapore.dat for the

QBO.

influenced by photolysis rate changes occurring in the course of the solar cycle, in particular in the upper

and middle stratosphere (Legrand et al., 1989).

The dependency of the scaling factor value on the fitting function was tested, for the function contain-

ing a linear trend or not, the solar flux predictor or the QBO predictors only, and both the solar flux and

the QBO. Results were compared when using the monthly means, the deseasonalised monthly means,

and the annual means of the respective gases. Only in case of the monthly mean time series, the third

order Fourier series was included in the fitting function. The deseasonalisation was performed by divid-

ing the monthly means by the normalised mean monthly means determined for the complete time series

(referring to the corresponding annual means).

In Figures 4.5 and 4.6, the results for the fits of the above described different regression functions

to the deseasonalised mean monthly mean data sets of HCl and ClONO2 above Kiruna are presented,

respectively. From a first glance, one gets the impression that, at least for the examples shown here, the

fit is much worse without incorporating the linear trend. For HCl, the influence of the solar cycle on the

total column abundance is not easily visible, but a QBO signal seems to be detectable, corresponding very

well to the phase of the QBO seen in the 10 hPa equatorial zonal winds. The dominating QBO signal in

ClONO2 at Kiruna corresponds well to the phase at the 30 hPa level above Singapore, but peaks slightly

earlier. This shifted peak can be represented by the smaller but non-negligible contribution from 10 hPa

to the fit. The solar flux influence on ClONO2 at Kiruna is not very well visible in this presentation,

either.

As the original predictor time series were all normalised by their standard deviation, and the mean

value was subtracted, the scaling factors determined in the linear regression can be directly intercompared
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Figure 4.5: Fit results from the multiple linear regression performed for the deseasonalised time series of the total

column abundances of HCl measured by the FTIR in Kiruna. The left column shows all fits without a

linear trend included, in the results shown in the right column, a linear function was included. For the

top line fits, the only predictor time series was the solar 10.7 cm flux, for the middle line, it was only

the QBO at 10 and 30 hPa, and for the last line, both solar flux and QBO were included in the fitting

function.

to quantitatively determine the relative influence of the respective predictors for every gas. There is no

strong difference as to whether the deseasonalised monthly mean time series, the annual mean time series

or the monthly mean time series are used (in the latter case with a third order Fourier series included in the

fitting function). Neither does the value of the scaling factors depend significantly on the other predictors
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Figure 4.6: Like Figure 4.5, but for ClONO2.

used in the regression function. For this reason, only the results for the deseasonalised monthly mean

time series and the fitting function including both the solar flux and the QBO are shown in Figure 4.7.

The largest scaling factors resulted for the solar flux influence on ClONO2 in most cases, followed by the

10 hPa QBO influence on HCl. Especially at Kiruna, the difference between the two time ranges in the

solar flux scaling factor is considerably large. This can be expected because the time range 1999–2011

covers only about one cycle of the solar flux variation. The correlation between the QBO at 10 hPa and

the HCl time series at Kiruna is significantly positive.

As mentioned above, it is already known that the solar flux signal in the stratosphere may be modulated

by the QBO. Analogously to e.g. Labitzke and van Loon (1988) and Lu et al. (2009), the deseasonalised
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Figure 4.7: Scaling factors for the multiple linear regression to the deseasonalised monthly mean time series of

HCl, ClONO2, and HF above Kiruna, Jungfraujoch, and Izaña, for the time ranges 1996–2011 (right)

and 1999–2011 (left), where available. The fitting function included both the solar 10.7 cm flux and the

QBO on the 10 and 30 hPa levels. In each picture, two values are shown for each parameter, one from

the fit with a linear trend included in the fitting function (wt) and one from the fit without. The fitted

predictor time series were normalised to mean 0 and standard deviation 1 so that the factors indicate

the relative strength of the influence of the corresponding predictor.

monthly mean time series of ClONO2, HCl, and HF were separated into QBO east and west phase

according to the equatorial stratospheric zonal winds at the 10 and 30 hPa pressure levels. Months with

mean absolute wind values less than 2 m/s were excluded from the analysis, following Lu et al. (2009).
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Figure 4.8: Scaling factors for the multiple linear regression fits of the solar 10.7 cm flux to the FTIR time series

of ClONO2, HCl, and HF, at Kiruna (top line) and Jungfraujoch (bottom line). A linear trend was

included in the fitting function. The time range shown is 1996 to 2011. The factors were determined

for the whole data set of deseasonalised monthly means, and also for this time series split up into

months with QBO east and west phase. This separation according to QBO east and west phase was

done once from the equatorial zonal winds at the 10 hPa pressure level above Singapore (left), and once

for the winds at the 30 hPa level (right).

Then, a multiple linear regression with the solar flux as only predictor was performed on the QBO east

and west parts of the data sets separately. The resulting scaling factors for the Kiruna and Jungfraujoch

time series are displayed in Figure 4.8, where the data have once been separated using the QBO on the

10 hPa pressure level as separation criterion, and once using the 30 hPa QBO data. Firstly, it can be

stated that obviously none of the differences between the scaling factors calculated for the QBO east and

west phases are significant. But especially when applying the QBO at 30 hPa as separation criterion, the

ClONO2 time series at Kiruna shows a dependency even of the sign of the solar flux scaling factor on

the QBO phase. More precisely, the correlation between the solar flux and the total column abundance

of ClONO2 is positive during the QBO west phase and negative during the QBO east phase, with a

very similar absolute value of the scaling factor. Using the QBO phase at 10 hPa as separation criterion

reveals qualitatively the opposite result for ClONO2, with slightly weaker absolute scaling factors. The
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influence on HCl and HF again does not seem to be as strong. There is a slightly positive correlation

between HCl and the solar flux while the QBO at the 10 hPa level is in its west phase, and a slightly

negative correlation during the QBO east phase at the 10 hPa level. For HF, there is no dependency

neither on the solar flux nor on the QBO phase if separated according to the 10 hPa pressure level QBO,

but a slightly positive correlation with the solar flux during the QBO west phase at 30 hPa, and a slightly

negative correlation during the corresponding QBO east phase. Of course, the results from the different

separation criteria are expected to differ because the QBO phases are shifted by about π/2, but there is

no way to decide which QBO level may be more suitable for which gas at which location. Above Kiruna,

the 30 hPa QBO may have a stronger influence on the correlation of ClONO2 with the solar flux than

the 10 hPa QBO. In contrast, the 10 hPa QBO seems to influence the correlation between HCl and the

solar flux more strongly than the 30 hPa QBO does. This may be connected with the ClONO2 mixing

ratio reaching its maximum slightly lower in the stratosphere than HCl (please compare the profiles in

Figure 2.4).

Overall, the signals for the Jungfraujoch data are very similar to those for Kiruna, but weaker in

amplitude. The only discrepancy occurs for the ClONO2 time series separated according to the QBO 10

hPa criterion, where the results correspond better to those at the Jungfraujoch when the separation is done

with the 30 hPa QBO than to the Kiruna results when applying the same criterion. At the Jungfraujoch,

the signals are much too weak for a statement on whether the QBO at the 10 hPa level or the QBO at

the 30 hPa level may have a stronger influence on the correlation between the solar flux and the different

species.

Concluding on the analysis and comparison of the scaling factors, it can be stated that especially for

ClONO2 at Kiruna, the influence of the solar flux is non-negligible and in general the larger, the shorter

the time series. Also the influence of the QBO on HCl and HF can be detected by this method. The

dependency of the correlation with the solar 10.7 cm flux on the QBO phase is very interesting although

not significant.

The essential question of this section for the trend analyses performed in Chapters 5 and 6 of this

work is whether or how strongly the trends of the considered gases depend on the inclusion of one or

more predictors in the fitting function. This question is addressed in Figure 4.9, where the trend results

for the deseasonalised monthly mean time series at Kiruna, Jungfraujoch, and Izaña are presented for

the periods 1999 to 2011 and 1996 to 2011, where available. There is no big difference in the general

features if the monthly mean time series (with a third order Fourier series included in the fitting function)

or the annual mean series are used instead of the deseasonalised one.

It is obvious that there is no significant, distinguishable influence on the 1996–2011 trends at Kiruna

and Jungfraujoch (Figure 4.9, right column). The trend of ClONO2 at the Jungfraujoch is slightly weaker

when the fitting function contains the solar flux time series. In contrary to the 1996–2011 trends, those for

1999–2011 of some of the gases are quite strongly, but (due to their large error bars) also not significantly

influenced by including the solar flux in the regression function. With the solar flux, the ClONO2 and HCl
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Figure 4.9: Trend results for different multiple linear regression functions for the time ranges 1999 to 2011 (left

column) and 1996 to 2011 (right column), for the deseasonalised mean monthly mean time series of

ClONO2, HCl, and HF above Kiruna (top row), the Jungfraujoch (middle row), and Izaña (bottom

row). The trends were determined when the solar 10.7 cm flux, the quasi-biennial oscillation (QBO)

in 10 and 30 hPa, or both the solar flux and the QBO were included in the fitting function, and are

compared here with the trend results from a simple linear regression.

trends at all three sites Kiruna, Izaña, and Jungfraujoch between 1999 and 2011 are weaker than without

the solar flux. The reason for this is probably that part of the decrease is attributed to the decrease in
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the solar 10.7 cm flux at that time, following the maximum around the year 2001 (see also Figure 4.4).

However, the trends calculated for 1999–2011 without solar flux correspond very well to those for 1996–

2011 (which are similar whether or not the solar flux is included), for both sites Jungfraujoch and Kiruna.

Only the trends for 1999–2011 with the solar flux included are different. As discussed for example in

Section 5.3, no significant change in the rate of increase or decrease is expected between 1996 and 1999

for all of these gases. For these reasons, we assume that the difference in the trend results for 1999–

2011 between including or not including the solar flux in the fitting function is only an artificial effect

that occurs because the time series consist of only about 13 years, not much more than one cycle of the

solar flux variation. This assumption is supported by the fact that the effect on the 1996–2011 trends, in

contrary, is negligible.

The positive HF trend at Kiruna for 1999–2011 increases slightly with the solar flux included in the

fitting function because a very small but not significant positive correlation is found in the regression (see

also Figure 4.7). The trends for 1996–2011 are undisturbed, so that qualitatively the same argumentation

as for the ClONO2 and HCl trends holds for HF, too.

In this section, the influence of some multi-annual variations on the trend determination with the

method described in Section 4.1 was investigated. No considerable change in the trends was found when

including the QBO in 10 and 30 hPa in the multiple linear regression function. Concerning the 11-year

solar cycle, a not significant but non-negligible impact on the trends of HCl, ClONO2, and HF was found

for the shorter time range 1999–2011, but not for 1996–2011. But as the 1999–2011 trends without solar

flux agree better with the 1996–2011 trends than those for 1999–2011 with the solar flux included do, it is

concluded that the change occurring in the 1999–2011 trends is an artificial effect and that the solar cycle

does not significantly influence the trend results calculated with the method described in Section 4.1.

Some side aspects dealt with here like the dependency of the solar flux influence on the QBO phase

are also very interesting and would be worth to be investigated further.

4.2.3 Conclusions

From the results in Section 4.2.1, it is obvious that the error bars for the trend are smaller, the longer the

analysed time series, as expected. However, many more NDACC sites performed FTIR measurements

during the period 2000–2009 than during 1996–2009, so that for the more detailed investigation and

comparison with the model results in Chapter 5, the shorter time period was chosen. Among the three

different trend determination approaches tested in Section 4.2.1, the “standard” one, fitting a linear trend

and a first- or third-order Fourier series to the data, results in the smallest error bars. This is why it

is chosen for the trend investigations in the present work. It should be kept in mind that the irregular

sampling of the FTIR measurements may influence the resulting trend. This effect may be important,

especially for the comparison of the FTIR measurements with the model calculations (Chapter 5), but it

is not quantitatively considered because it cannot be quantified precisely. Applying the same sampling to
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4.2 Limitations of the trend determination

the model results would induce other errors in the simulations by the EMAC and SOCOL models which

do not use meteorological analyses (please see Section 5.1.2 for more detailed information).

Furthermore, the influence of including the 11-year solar flux and two QBO time series in the fitting

function was explored in this chapter using a multiple linear regression approach. From this analysis, no

significant change of the resulting trend could be determined so that it is assumed that both longer-scale

variations do not need to be considered in the extended trend analyses in Chapters 5 and 6.

49



4 Trend analysis method and sensitivity studies

50



5 Comparison of measurement and model data of HCl, ClONO2,
and HF

As already described in the introduction to this thesis, HCl and ClONO2 are stratospheric chlorine reser-

voir species and thereby an indicator of the overall stratospheric inorganic chlorine burden. In activated

form, chlorine can catalytically destroy ozone, which is why monitoring the fraction of chlorine that is

present in form of the reservoir species can also indicate the strength of chlorine activation and thereby

possible ozone depletion. In this thesis, the primary focus is on the temporal evolution of HCl, ClONO2,

and HF, and on whether the influence of the Montreal Protocol regulations concerning the so-called

ozone-depleting substances can be confirmed with ground-based FTIR measurements and model results.

The results presented in this chapter were already published by Kohlhepp et al. (2012). In this study,

the investigations of Rinsland et al. (2003) were continued and extended. Rinsland et al. (2003) analysed

measurements of HCl and ClONO2 by Fourier transform infrared (FTIR) spectrometers at 9 sites belong-

ing to the infrared working group (IRWG) of the Network for the Detection of Atmospheric Composition

Change (NDACC), until the year 2001. These ground-based data were compared to satellite measure-

ments by HALOE at 55 km height, and to the output of a 2-dimensional atmospheric chemistry model.

From these data sets, the stabilisation of the stratospheric chlorine content and thereby the effectiveness

of the Montreal Protocol could be confirmed. During the last few years, the NDACC IRWG grew so that

in the consecutive study by Kohlhepp et al. (2012), already 17 sites took part, which were compared with

five different atmospheric chemistry models. The main purpose thereby was to investigate on whether

the expected decrease of stratospheric chlorine could be confirmed with the ground-based FTIR mea-

surements, and to test the overall ability of atmospheric chemistry models of different architecture to

reproduce the measured trends. In addition to HCl and ClONO2, HF was included in the study because

it is expected to be influenced by the Montreal Protocol regulations, too, although it is not explicitly

restricted as it is not involved in stratospheric ozone depletion. Fluorine is contained in many of the

prohibited source gases, but also in some of their substitutes. This is why HF is expected to be still

increasing, and why an investigation of its time development is also very interesting.

In the following, at first, the measurement and model database for this comparison is described (Sec-

tion 5.1). The next section (5.2) shows a comparison of the time series of measurements and models,

while Section 5.3 presents the results of a trend analysis performed on these time series, using the method

described and discussed in Chapter 4. In Section 5.4, these trend results are discussed in more detail,

also in the context of other studies.
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5 Comparison of measurement and model data of HCl, ClONO2, and HF

Figure 5.1: Geographical distribution of the 17 NDACC measurement sites.

5.1 Data base description

This section gives a short overview on the measurements (Section 5.1.1) and on the model data (Sec-

tion 5.1.2) used in this chapter. The measurement part concentrates on describing some sites and general

characteristics because a detailed description of the measurement principle, the retrieval and their error

sources can be found in Chapter 3.

5.1.1 FTIR measurements at 17 NDACC sites

The measurements of HCl, ClONO2, and HF analysed in this chapter stem from 17 ground-based FTIR

spectrometers belonging to the NDACC. The sites are located between 77.8◦S and 80.1◦N, so the data

presented here are able to provide a near-global overview on the total column abundances of these gases

as measured from the ground (see Figure 5.1 and Table 5.1). As mentioned already in Section 4.2, a

general feature that is characteristic for this type of measurements is their dependency on direct sunlight.

It leads to irregular and regular gaps in the time series due to unsuitable (e.g., cloudy) weather conditions

and polar night, respectively. Of course, longer gaps may also occur as a result of an instrumental break-

down. The different groups operating the instruments taking part in this study use different retrieval

codes for the inversion of their spectra, namely SFIT1, SFIT2, GFIT, and PROFFIT. The latter was

developed at the Institute for Meteorology and Climate Research (IMK-ASF) of the Karlsruhe Institute

of Technology by Hase (2000). It is also shortly described in Section 3.2 of the present work. For more

information on SFIT1 and SFIT2, please refer to Rinsland et al. (1998). The GFIT code is for example
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5.1 Data base description

Table 5.1: Overview of the geographical coordinates of the 17 sites and the time ranges covered by the HCl,

ClONO2, and HF measurements.

Measurement site Latitude Longitude Altitude

a.s.l.

(m)

HCl

meas.

since

ClONO2

meas.

since

HF

meas.

since

Meas.

used

until

Eureka, Canada 80.1◦ N 86.4◦W 610 1997 1997 1997 2009

Ny Ålesund, Svalbard, Norway 78.9◦ N 11.9◦ E 15 1992 1992 1992 2009

Thule, Greenland, Denmark 76.5◦ N 68.7◦W 225 1999 1999 1999 2009

Kiruna, Sweden 67.8◦ N 20.4◦ E 419 1996 1996 1996 2009

Poker Flat, Alaska, USA 65.1◦ N 147.4◦W 610 1999 1999 2004

Harestua, Norway 60.2◦ N 10.8◦ E 596 1994 1994 1994 2009

Zugspitze, Germany 47.4◦ N 11.0◦ E 2964 1995 1996 1995 2009

Jungfraujoch, Switzerland 46.6◦ N 8.0◦ E 3580 1984 1986 1984 2009

Toronto, Canada 43.6◦ N 79.4◦W 174 2002 2002 2009

Tsukuba, Japan 36.1◦ N 140.1◦ E 31 1998 1998 2009

Kitt Peak, Arizona, USA 31.9◦ N 111.6◦W 2090 1981 1980 1980 2009

Izaña, Tenerife, Spain 28.3◦ N 16.5◦W 2367 1999 1999 1999 2009

Mauna Loa, Hawaii, USA 19.5◦ N 155.6◦W 3397 1991 1995 2009

Réunion Island, France 21.8◦ S 55.5◦ E 50 2004 2004 2009

Wollongong, Australia 34.5◦ S 150.9◦ E 30 1996 1996 1996 2009

Lauder, New Zealand 45.0◦ S 169.7◦ E 370 1990 1990 1992 2009

Arrival Heights, Antarctica 77.8◦ S 166.7◦ E 250 1992 1997 1997 2009

described by Washenfelder et al. (2006). SFIT1 and GFIT only scale the a priori profile, so they do not

retrieve any vertical information. In contrast, both SFIT2 and PROFFIT perform a profile fit, and their

results were proven to agree with each other for example by Hase et al. (2004) and Duchatelet et al.

(2010). Specific information on which group uses which code, on the retrieval settings, and a reference

for each site can be found in the appendix of this thesis. More information on the instruments and on

some special measurement conditions at each site is given by Kohlhepp et al. (2012). In the framework

of this thesis, measurements with the Kiruna instrument were performed. In the following, only the sites

Kiruna and Izaña are described in detail because these two are operated by the FTIR group of the Institute

for Meteorology and Climate Research (IMK-ASF) at the Karlsruhe Institute of Technology, where the

present thesis was produced.

The FTIR measurements in the Kiruna area were started by the above-mentioned FTIR group in the

winter of 1989/90, when a home-made spectrometer called MIPAS-LM (Michelson interferometer for

passive atmospheric sounding – lab model) was brought to the Esrange rocket range facility close to

Kiruna in a container. Since then, campaigns aiming at measuring the Arctic stratospheric polar vortex

conditions were performed every winter. From 1993/94 on, a Bruker 120 M spectrometer was used.

In 1996, in a cooperation between the IMK-ASF, the University of Nagoya (Japan), and the Swedish

Institute of Space Physics (Institutet för Rymdfysik, IRF), a Bruker 120HR spectrometer was set up in a

laboratory in the IRF building at Kiruna (67.84◦N, 20.41◦ E, 419 m a.s.l.). Since this time, measurements

are performed on about 80 days per year, depending on the weather conditions, and with a regular gap
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5 Comparison of measurement and model data of HCl, ClONO2, and HF

Table 5.2: Overview of the models. Please note that the vertical domains are pressure altitudes as most models

operate on a pressure grid.

Model Model type Horizontal

resolution

Vertical

domain

(approx.)

Strat. vertical

resolution

Init.

year

Bound. cond. (GHG /

CFC scenario)

Chemical kinetics

Bremen

2-D model

2-D model 9.5◦ 0–100 km ∼ 3.5 km 1958 IPCC (2001) A1B /

WMO (2002) Ab

Sander et al. (2006)

KASIMA CTM 5.6◦×5.6◦

(T21)

7–120 km ∼ 0.75–3 km 1972 IPCC (2001) A1B /

WMO (2002) Ab

Sander et al. (2002)

SLIMCAT CTM 5.6◦×5.6◦ 0–60 km ∼ 2 km 1977 IPCC (2001) A1B /

WMO (2006) A1

Sander et al. (2002)

EMAC CCM 2.8◦×2.8◦

(T42)

0–80 km ∼ 2 km 1958 IPCC (2001) A1B /

WMO (2006) A1

Sander et al. (2002)

SOCOL CCM 3.6◦×3.6◦

(T30)

0–80 km ∼ 1–5 km 1960 IPCC (2001) A1B /

WMO (2002) Ab

Sander et al. (2002,

2006), Atkinson et al.

(2004, 2006)

between end of November and end of January due to polar night. Since July 2004, the instrument is

controlled remotely. In July 2007, it was upgraded to an 125HR. This upgrade consisted mainly in a

change of the electronics that helps to reduce the noise in the spectra. The Kiruna site is very well suited

to investigate processes specific to the polar atmosphere with an FTIR spectrometer. In winter, it is

frequently influenced by the polar vortex. At the same time, polar night does not last long because Kiruna

is not very far north of the Arctic polar circle. As mentioned before, this is an essential factor for solar

absorption measurements because they depend on direct sunlight. More details on the measurements at

Kiruna can be found for example in Blumenstock et al. (2006).

The Izaña Atmospheric Research Center is located on Tenerife Island, at 28.30◦N, 16.48◦W, and

2367 m a.s.l. The observatory is run by the Spanish Weather Service (AEMET). A Bruker 120M spec-

trometer was operated by IMK-ASF in a container at this site between 1999 and 2005. It was replaced

then by a Bruker 125HR instrument, after both were run side-by-side in April and May 2005. For O3 and

CH4, comparisons between the different instruments were for example performed by García et al. (2012)

and Sepúlveda et al. (2012), respectively. The site is very well suited for observations of stratospheric

trace gases because due to the position in the subtropical Atlantic ocean at a relatively high elevation, the

air is very clean (Schneider et al., 2005).

5.1.2 Five different atmospheric chemistry models

In addition to the FTIR measurements, five atmospheric chemistry models of different architecture have

been used in the study by Kohlhepp et al. (2012). These are the 2-dimensional Bremen model, the 3-D

chemistry-transport models (CTMs) KASIMA and SLIMCAT, and the 3-D chemistry-climate models

(CCMs) EMAC and SOCOL. An overview on the models and their simulations is presented in Table 5.2,

while a more detailed description can be found in Kohlhepp et al. (2012). The Bremen 2-D model is
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an altitude-latitude model, so one horizontal dimension is missing. As a result, for example horizontal

transport has to be parameterised. The main difference between a CCM and a CTM is that the latter

makes so-called “off-line” chemistry simulations, while a CCM is an “on-line coupled” model. In a

CCM, feedbacks between the chemical and dynamical field distributions are possible because they are

calculated simultaneously. An example therefor would be the coupling of stratospheric ozone and tem-

perature. In contrast, a CTM uses meteorological fields calculated by another model. These fields may

be so-called analyses or reanalyses, where all available measurement data are assimilated into the model

in order to create a best guess for the real state of the atmosphere. From these given meteorological

fields, the CTM calculates the distribution and transport of the chemical species, but no feedbacks on

atmospheric dynamics are possible. The main reason for involving the models in this study was to get an

overview on how well they are able to reproduce the absolute values, the seasonal cycle, and the trends

of the HCl, ClONO2, and HF total column abundances, as measured by the FTIR instruments. Thereby,

the influence of the differing model architecture is an interesting aspect. Furthermore, the two CTMs

were used to investigate the influence of sampling on the trend result (see Section 4.2.1). With respect

to Chapter 6 where a difference between the ClONO2 and HCl trends is investigated, it is also very in-

teresting to find out whether the models reproduce this feature that was seen before already in the FTIR

data above Kiruna by, e.g., Mikuteit (2008) and Kohlhepp et al. (2011).

Figure 5.2: Time series of monthly mean CCly (left) and CFy (right) surface volume mixing ratios (in pptv)

and growth rates (in % per year) from different halocarbon scenarios, between 1992 and 2010. The

one called “WMO (2003) REF2” corresponds to the scenario Ab in WMO (2003) and was used by

KASIMA and the 2-D model. The “WMO (2003) REF1” time series of CCly and CFy are based on

that same scenario until the year 2000, but were corrected by additional measurements between 2000

and 2004. It was used by SOCOL. The “WMO (2007)” scenario is the one called A1 in WMO (2007)

and was used by SLIMCAT and EMAC in this study. For the definition of CCly and CFy, please see

text.
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5 Comparison of measurement and model data of HCl, ClONO2, and HF

All five models used the same lower boundary conditions for the emission of the most important an-

thropogenic greenhouse gases, i.e., CO2, CH4, and N2O, corresponding to the A1B scenario of the IPCC

(2001). This scenario assumes very rapid economic growth, low population growth, and the rapid intro-

duction of new and more efficient technologies (Nakicenovic et al., 2000). In contrast, the assumptions

for the emission of the source gases to ozone-depleting substances (ODS) differ slightly within the model

simulations. These different scenarios can be compared in Figure 5.2, where the surface volume mixing

ratios for CCly (3 CFC-11 + 2 CFC-12 + 3 CFC-113 + 2 CFC-114 + CFC-115 + 4 CCl4 + 3 CH3CCl3
+ HCFC-22 + 2 HCFC-141b + HCFC-142b + Halon-1211 + CH3Cl) and CFy (CFC-11 + 2 CFC-12 +

3 CFC-113 + 4 CFC-114 + 5 CFC-115 + 2 HCFC-22 + HCFC-141b + 2 HCFC-142b + 2 Halon-1211 +

3 Halon-1301 + 2 Halon-1202 + 4 Halon-2402) are shown. They originate from two consecutive WMO

(World Meteorological Organization) reports on ozone depletion, and each one corresponded to the best-

guess scenario at the time of its publication. KASIMA and the 2-D model used the scenario Ab of

WMO (2003), while SOCOL applied a modification of this scenario with corrections from newer mea-

surements between 2000 and 2004. The ODS boundary conditions in EMAC and SLIMCAT follow the

A1 scenario of WMO (2007). All these ODS data were provided in the framework of SPARC–CCMVal

(Stratospheric Processes and their Role in Climate Change – Chemistry Climate Model Validation).

For the present comparison with trends from the FTIR measurements, primarily the time range 2000–

2009 was used. However, from SOCOL, data were only available until the end of 2004, and from the

2-D model until the end of 2008. The KASIMA, SLIMCAT, and EMAC output consisted of one value

per day, while for the 2-D model, one value every fifth day was available, and for SOCOL, it was only

the monthly means.

5.2 Time series comparison

In this section, the time series of HCl, ClONO2, and HF from models and measurements are compared

with respect to the agreement of the absolute total column abundances (Section 5.2.1) and of the mean

seasonal cycle (Section 5.2.2).

5.2.1 Absolute total column abundances

For an overview, the time series of models and measurements of HCl, ClONO2, and HF are shown in

Figures 5.3 to 5.5, respectively. A more quantitative comparison is performed in Table 5.3, where the

mean differences between the models and measurements are presented, averaged over all sites where

FTIR results were available. The differences for KASIMA and SLIMCAT were calculated from the

daily values, while for EMAC, SOCOL, and the 2-D model, the monthly means were used. The reason

for this is that the latter three did not use meteorological analyses or reanalyses as boundary conditions.

EMAC and SOCOL created their own independent meteorology, while the 2-D model used the daily

Montgomery potential from meteorological analyses of one single year and repeated this cycle over and

over. So these three model simulations cannot be compared to the measurements on a daily basis, but

56



5.2 Time series comparison

Figure 5.3: Time series of HCl total column abundances in molecules per cm2 at the different sites as measured by

FTIR (black dots) and simulated by SLIMCAT (blue line), KASIMA (red line), SOCOL (green line),

EMAC (orange line), and Bremen 2-D model (brown line).
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Figure 5.4: Time series of ClONO2 total column abundances in molecules per cm2 at the different sites as measured

by FTIR (black dots) and simulated by SLIMCAT (blue line), KASIMA (red line), SOCOL (green line),

EMAC (orange line), and Bremen 2-D model (brown line).

Table 5.3: Mean differences between models and FTIR measurements in % (calculated as (model-meas)/meas)

averaged over all sites, and their standard deviations (σ ), for HCl, ClONO2, and HF. The differences for

KASIMA and SLIMCAT were calculated from the daily values, while for EMAC, SOCOL, and the 2-D

model, the monthly means were used. Significant differences (2 σ level) are printed in bold.

species KASIMA SLIMCAT 2-D model EMAC SOCOL

HCl −11.9 ± 2.1 +10.5 ± 1.9 +8.3 ± 3.9 −24.8 ± 2.0 +9.5 ± 3.5
ClONO2 +11.6 ± 14.1 +90.0 ± 35.6 +15.4 ± 10.0 +30.1 ± 22.0 −17.3 ± 5.6
HF +1.8 ± 2.5 +36.3 ± 3.1 −14.3 ± 3.1
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5.2 Time series comparison

Figure 5.5: Time series of HF total column abundances in molecules per cm2 at the different sites as measured

by FTIR (black dots) and simulated by SLIMCAT (blue line), KASIMA (red line), and Bremen 2-D

model (brown line).

59



5 Comparison of measurement and model data of HCl, ClONO2, and HF

when averaging over a longer time range and with respect to the mean seasonal cycle, they are expected

to agree with them.

In the HCl time series, the models and measurements all show a steady increase until about the mid-

1990s, followed by a stabilisation, and a decrease since then (Figure 5.3). The southern hemisphere

is delayed by a few years with respect to the northern hemisphere. According to Table 5.3, overall,

SLIMCAT, SOCOL, and the 2-D model tend to slightly overestimate the total HCl column abundances

as measured by the FTIR spectrometers. EMAC and KASIMA significantly underestimate the FTIR

values. Reasons for the relatively low KASIMA values have been discussed by e.g. Hamann (2007),

Mikuteit (2008), and Kohlhepp et al. (2011). One of them is that KASIMA does not include the part

of the troposphere below 7 km. In addition, some of the tropospheric processes must be parameterised,

for example wash-out, because the model does not simulate cloud or rain droplets. Furthermore, it has

been shown by Hamann (2007) that the HCl column abundances at polar latitudes become more realistic

in KASIMA when increasing the resolution, for example from T21, which was used for the present

simulation, to T42. This is due to a better representation of the polar vortex and especially also the

processes at its edge if the resolution is higher.

As can already be seen in Table 5.1, measurements of ClONO2 are only available at 12 of the 17 sites.

The main reason for this is that ClONO2 is not easy to measure with an FTIR spectrometer, especially at

lower latitude sites, due to its weak spectral signature and the relatively low total column abundances at

lower latitudes. The sites Tsukuba, Mauna Loa, Poker Flat, Toronto, and La Réunion are therefore not

included in Figure 5.4. Analogously to HCl, the ClONO2 time series show an increase until the end of

the 1990s, and a decrease since then. Especially at the polar sites Ny Ålesund, Thule, and Kiruna, the

models seem to overestimate the total column abundances, especially the annual minima. On average,

SLIMCAT shows the largest positive deviation from the measurements (see Table 5.3), but also EMAC

overestimates the FTIR measurements considerably.

The two CCMs EMAC and SOCOL do not simulate the atmospheric HF content, therefore only results

of KASIMA, SLIMCAT, and the 2-D model can be compared with the FTIR measurements at the 17

sites (Figure 5.5). SLIMCAT tends to overestimate the HF total column abundance, while the KASIMA

results on average agree very well with the FTIR measurements (see also Table 5.3). The 2-D model

output is very similar to the KASIMA one, except for some low and midlatitude sites (e.g., Toronto, Kitt

Peak, Izaña, and La Réunion), where it seems to underestimate the increase especially in the 1990s. This

leads to a mean underestimation of the HF abundance by the 2-D model (Table 5.3).

Concluding from the comparison of the time series from models and measurements, we can state that

the overall agreement on the temporal development is good. This is expected because the models use

similar boundary conditions which include actual measurements. The results also agree with earlier

studies from measurements mentioned above, e.g. those by Considine et al. (1999), Rinsland et al.

(2003), Newchurch et al. (2003), Lary et al. (2007), and Zander et al. (2008). An absolute constant offset

in the total column abundances as seen for example in the EMAC and KASIMA HCl or the SLIMCAT
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HF results is not expected to have a significant influence on the trend calculations and comparisons

performed in Section 5.3.

5.2.2 Seasonal cycle

From the model and measurement time series of the total column abundances, normalised mean monthly

means have been calculated. This was done by first normalising the monthly means with the correspond-

ing annual means, and then averaging over the time range 2000–2009, where available. The resulting

seasonal cycles for HCl, ClONO2, and HF are compared in Figures 5.6 to 5.8, respectively. A sea-

sonal variation is expected for all three gases considered here, mainly due to the varying height of the

tropopause. The stratospheric general circulation transports air from the summer to the winter hemi-

sphere. This goes along with upwelling above the summer pole, and subsidence above the winter pole.

That also means that the tropopause is higher in the summer hemisphere than in the winter hemisphere

(see also Section 2.1). Because HCl, ClONO2, and HF are produced mainly in the stratosphere, the

largest contribution to the total column abundances stems from there. The lower the tropopause, the

larger is the stratospheric fraction of a vertical column, and the smaller the tropospheric one. This leads

to relatively high total column abundances of the three investigated gases at the end of winter. The HCl

and ClONO2 abundances above the winter pole also depend strongly on the location of the polar vortex,

and on the degree of chlorine activation therein. In case of strong chlorine activation, the proportion

of Cl, ClO, and Cl2O2 in Cly is much larger than usual, resulting in lower column abundances of the

reservoir species HCl and ClONO2 (see also Section 2.2). At the end of polar night, in the beginning of

spring, when the polar vortex breaks up, most of the active chlorine is converted to the reservoir species

HCl and ClONO2 again. This results in strong peaks of the total column abundances of these gases. In

the Arctic, normally, at first ClONO2 is formed because the reaction producing it is faster than the one

forming HCl (see Section 2.2), and a few weeks later, a slightly broader peak of HCl follows. In the

Antarctic, this sequence is not very pronounced, but instead, both HCl and ClONO2 recover at about the

same time in spring. This is due to a usually stronger denitrification in the Antarctic than in the Arc-

tic where the stratospheric polar vortex is more variable and not as stable, long-lasting and cold as the

Antarctic polar vortex. Furthermore, this strong Antarctic vortex also leads to stronger ozone depletion

at the end of the winter above the Antarctic than above the Arctic so that the production of ClO from Cl

and O3 is limited (reaction [2.9]), resulting in less production of ClONO2 (reaction [2.12]).

According to the measurements, the annual maximum in HCl occurs in April and May in the Northern

Hemisphere, and in October and November in the Southern Hemisphere (Figure 5.6). When compared

to the FTIR results, the seasonal cycle simulated by the 2-D model is too weak at most sites. Both

SLIMCAT and EMAC capture the time of maximum and minimum of the seasonal cycle very well at

most sites. But the amplitude SLIMCAT calculates is slightly too large, especially at the polar sites.

KASIMA and SOCOL simulate the maximum about one month too late at some of the sites.
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Figure 5.6: Annual cycle of HCl at the different sites as determined from the FTIR instruments (black) and sim-

ulated by SLIMCAT (blue), KASIMA (red), SOCOL (green), EMAC (orange), and the Bremen 2-D

model (brown). The mean relative monthly means were calculated by normalising the monthly means

with the respective annual mean and then averaging over the period 2000–2009. The error bars of the

FTIR measurements represent the standard deviation of the distribution of the monthly means.
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5.2 Time series comparison

Figure 5.7: Annual cycle of ClONO2 at the different sites as determined from the FTIR instruments (black) and

simulated by SLIMCAT (blue), KASIMA (red), SOCOL (green), EMAC (orange), and the Bremen

2-D model (brown). The mean relative monthly means were calculated by normalising the monthly

means with the respective annual mean and then averaging over the period 2000–2009. The error bars

of the FTIR measurements represent the standard deviation of the distribution of the monthly means.
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Figure 5.8: Annual cycle of HF at the different sites as determined from the FTIR instruments (black) and simulated

by SLIMCAT (blue), KASIMA (red), and the Bremen 2-D model (brown). The mean relative monthly

means were calculated by normalising the monthly means with the respective annual mean and then

averaging over the period 2000–2009. The error bars of the FTIR measurements represent the standard

deviation of the distribution of the monthly means.
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Most models agree with the measurements on the ClONO2 maximum in March in the Northern Hemi-

sphere (Figure 5.7). Only EMAC tends to simulate it about one month too late. Among the models,

SLIMCAT shows the largest amplitude of the seasonal cycle. It thereby overestimates the FTIR ampli-

tude in the Northern Hemisphere midlatitudes, while in the higher latitudes, SLIMCAT tends to agree

best with the measurements. In contrast, the other models underestimate the high latitude seasonal am-

plitude, but at midlatitudes agree better with the FTIR results than SLIMCAT does. In the Southern

Hemisphere, the seasonal cycle expected by the models with a maximum between August and October

is not very pronounced in the measurements.

The seasonal cycle of HF as measured by the FTIR instruments is captured very well by the two CTMs

KASIMA and SLIMCAT. The annual maximum occurs around March in the Northern Hemisphere and

in October in the Southern Hemisphere. The 2-D model underestimates the amplitude of the seasonal

cycle at the mid and low latitude sites on both hemispheres.

As a conclusion from this analysis and comparison of the mean seasonal cycles from measurements

and models, we can state that the overall agreement is good. At the Arctic sites, the time shift of the

maximum in ClONO2 and HCl described above is very nicely visible.

5.3 Trend results

In this section, the trends determined from the modelled and measured time series of HCl, ClONO2, and

HF described and discussed in the previous sections are presented. In addition to the linear trend, the

fitting function (4.1) included a first- (for FTIR series from sites poleward of 70◦) or third-order Fourier

series in order to account for the seasonal cycle, as described in Section 4. This function is expected to

yield the smallest root mean square differences and thus the smallest 95% confidence intervals within

the methods discussed in Section 4.2.1. The time range considered for the comparison is 2000–2009

because all FTIR sites except Toronto and La Réunion performed measurements during this period (see

Table 5.1). Furthermore, an approximately linear decrease between 2000 and 2009 is expected for the

two chlorine species, while for HF, it is interesting to determine whether the more or less linear increase

assumed by the model scenarios (see Figure 5.2) can be seen in the measurements, too.

For the trend determination, all model data that were available were used, i.e., from EMAC, KASIMA,

and SLIMCAT one value per day, from the 2-D model one every fifth day and from SOCOL the monthly

means. When comparing these model trends to those from the measurements, the irregular sampling and

the gaps in some of the FTIR time series must be kept in mind. In addition to sampling, also the type

of fitting function, the time of year chosen, time series length, and longer-scale variations with time may

affect the trends and/or their confidence intervals, as discussed in Section 4.2. As already mentioned, the

SOCOL time series end in 2004 so that the SOCOL trend results should not be compared quantitatively

to those from the other data sets, although they may qualitatively agree with them.

The measurements and models agree on a decrease of HCl by about 1%/yr (Figure 5.9 and Table 5.4).

On average, the FTIR measurements seem to indicate a slightly stronger decrease of HCl in the northern
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Figure 5.9: Comparison of the HCl trends from the FTIR measurements (black) between 2000 and 2009 (in % per

year) with those modelled by SLIMCAT (blue), KASIMA (red), SOCOL (green), EMAC (orange), and

the Bremen 2-D model (brown). In order not to overload the picture, the bootstrap error bars for the

modelled trends are not shown, only those for the measurements.

hemisphere than in the southern hemisphere. In contrast, most of the models do not simulate a distin-

guishable difference between the hemispheres, except for KASIMA, but its signal is opposite to the FTIR

one, with slightly stronger decreases in the southern hemisphere. This disagreement on the hemispheric

difference results in an underestimation of the FTIR trends by all models except SOCOL at nearly all

sites in the northern hemisphere, and an overestimation in the southern hemisphere. The FTIR trend at

the southernmost Northern Hemispheric site, Mauna Loa, is weaker than at most sites in the northern

hemisphere mid and high latitudes. This tendency towards weaker decreases in the northern hemisphere

low latitudes is also simulated by KASIMA and SLIMCAT, and possibly also by SOCOL, but its results

are difficult to interpret. EMAC shows the opposite signal, and the 2-D model none.

The ClONO2 trends from models and measurements show a larger spread than those of HCl, but

overall, they agree on a decrease of roughly around 1.5 to 2%/yr (Figure 5.10 and Table 5.5). So ClONO2

at most sites decreases faster than HCl. More discussion on this topic can be found in Chapter 6. The

FTIR trends of ClONO2 show a strong dependency on latitude, especially in the northern hemisphere,

with stronger trends in the low and high latitudes than in midlatitudes. When interpreting this, the large

error bar must be kept in mind. In addition, the ClONO2 trend at Eureka may be significantly biased by

the use of different spectroscopic data. More information on this effect can be found in Fast et al. (2011),

Lindenmaier et al. (2012), or in the Eureka site description by Kohlhepp et al. (2012). However, the signal

of a stronger decrease when approaching the north pole can also be found in all the models except the 2-D

one. In the southern hemisphere, the decrease seen in the FTIR measurements becomes weaker towards

the pole, and the Arrival Heights measurements even show an increase of ClONO2. However, this site
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5.3 Trend results

Table 5.4: HCl trend in % per year between 2000 and 2009, calculated by fitting a linear function combined with

a first (sites poleward of 70◦) or third order Fourier series to the data. The error bars were determined

with the bootstrap method. Significant trends are printed in bold.

Measurement site FTIR KASIMA SLIMCAT 2-D model EMAC SOCOL

Eureka −0.87 ± 0.42 −0.63 ± 0.09 −0.64 ± 0.15 −0.84 ± 0.03 −0.95 ± 0.12 −1.86 ± 0.82
Ny Ålesund −0.81 ± 0.23 −0.50 ± 0.10 −0.46 ± 0.15 −0.84 ± 0.03 −1.08 ± 0.12 −1.41 ± 0.96
Thule −1.21 ± 0.31 −0.61 ± 0.09 −0.53 ± 0.15 −0.84 ± 0.03 −0.94 ± 0.12 −1.61 ± 0.85
Kiruna −1.05 ± 0.36 −0.41 ± 0.10 −0.42 ± 0.16 −0.83 ± 0.02 −0.96 ± 0.12 −1.62 ± 0.86
Poker Flat −1.56 ± 0.64 −0.46 ± 0.09 −0.63 ± 0.11 −0.83 ± 0.02 −0.90 ± 0.09 −1.87 ± 0.60
Harestua −0.44 ± 0.40 −0.43 ± 0.10 −0.59 ± 0.15 −0.83 ± 0.03 −0.90 ± 0.10 −1.65 ± 0.73
Zugspitze −0.63 ± 0.19 −0.34 ± 0.08 −0.61 ± 0.13 −0.85 ± 0.02 −0.91 ± 0.09 −1.87 ± 0.56
Jungfraujoch −0.98 ± 0.16 −0.34 ± 0.07 −0.64 ± 0.12 −0.86 ± 0.02 −0.93 ± 0.09 −1.80 ± 0.56
Toronto −1.22 ± 0.37 −0.22 ± 0.11 −0.34 ± 0.19 −0.80 ± 0.02 −1.08 ± 0.15 −0.03 ± 1.44

Tsukuba −1.00 ± 0.25 −0.48 ± 0.07 −0.73 ± 0.16 −0.89 ± 0.02 −0.93 ± 0.10 −0.30 ± 0.56

Kitt Peak −1.03 ± 0.53 −0.42 ± 0.06 −0.62 ± 0.12 −0.90 ± 0.03 −0.95 ± 0.09 −1.75 ± 0.38
Izaña −0.66 ± 0.15 −0.37 ± 0.06 −0.53 ± 0.12 −0.91 ± 0.04 −0.87 ± 0.08 −1.48 ± 0.39
Mauna Loa −0.39 ± 0.19 −0.03 ± 0.05 −0.35 ± 0.11 −0.90 ± 0.03 −1.22 ± 0.06 0.18 ± 0.72

Wollongong −0.55 ± 0.16 −0.95 ± 0.05 −0.74 ± 0.13 −0.87 ± 0.02 −0.96 ± 0.09 −1.26 ± 0.50
Lauder −0.60 ± 0.21 −0.96 ± 0.07 −0.79 ± 0.12 −0.85 ± 0.02 −0.97 ± 0.09 −1.78 ± 0.67
Arrival Heights −0.36 ± 0.67 −1.09 ± 0.08 −0.74 ± 0.13 −0.97 ± 0.15 −0.87 ± 0.09 −1.32 ± 1.26

Table 5.5: ClONO2 trend in % per year between 2000 and 2009, calculated by fitting a linear function combined

with a first (sites poleward of 70◦) or third order Fourier series to the data. The error bars were deter-

mined with the bootstrap method. Significant trends are printed in bold.

Measurement site FTIR KASIMA SLIMCAT 2-D model EMAC SOCOL

Eureka −4.56 ± 0.78 −1.18 ± 0.19 −0.83 ± 0.25 −1.21 ± 0.10 −1.75 ± 0.16 −3.37 ± 2.87
Ny Ålesund 6.79 ± 5.01 −1.03 ± 0.20 −0.62 ± 0.26 −1.20 ± 0.08 −1.59 ± 0.17 −1.84 ± 3.07

Thule −3.58 ± 1.04 −1.28 ± 0.18 −0.94 ± 0.25 −1.20 ± 0.07 −1.77 ± 0.16 −3.37 ± 2.46
Kiruna −1.45 ± 0.95 −0.91 ± 0.16 −0.71 ± 0.24 −1.19 ± 0.04 −1.05 ± 0.17 −1.62 ± 2.36

Harestua −0.07 ± 0.52 −1.05 ± 0.14 −0.80 ± 0.21 −1.21 ± 0.03 −1.01 ± 0.16 −2.73 ± 1.58
Zugspitze −1.37 ± 0.52 −0.90 ± 0.12 −0.02 ± 0.24 −1.24 ± 0.05 −1.16 ± 0.15 −3.42 ± 0.62
Jungfraujoch −1.44 ± 0.33 −0.90 ± 0.12 −0.06 ± 0.22 −1.25 ± 0.05 −1.16 ± 0.15 −3.30 ± 0.61
Kitt Peak −2.53 ± 1.16 −0.86 ± 0.08 −0.21 ± 0.18 −1.31 ± 0.05 −1.14 ± 0.12 −2.89 ± 0.67
Izaña −2.86 ± 0.67 −0.72 ± 0.10 0.19 ± 0.16 −1.33 ± 0.08 −1.14 ± 0.10 −2.14 ± 0.66
Wollongong −2.18 ± 0.60 −1.47 ± 0.07 −0.96 ± 0.16 −1.25 ± 0.04 −1.54 ± 0.11 −1.46 ± 0.92
Lauder −0.35 ± 0.46 −1.61 ± 0.09 −0.59 ± 0.20 −1.22 ± 0.05 −1.18 ± 0.16 −2.21 ± 0.74
Arrival Heights 0.99 ± 0.76 −1.65 ± 0.20 −1.11 ± 0.26 −0.84 ± 0.82 −0.52 ± 0.23 −1.54 ± 3.71
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5 Comparison of measurement and model data of HCl, ClONO2, and HF

Figure 5.10: Like Figure 5.9, but for ClONO2.

may also suffer from biases, in this case because of sampling, in combination with the large seasonal

cycle. In contrast, most models do not show a clear signal, which leads to a mean underestimation of the

decrease at Wollongong and an overestimation at the two other sites. Only EMAC shows a behaviour

similar to that of the measurements, with the smallest decrease at Arrival Heights.

At most sites, the CTMs KASIMA and SLIMCAT agree with the measurements on an increase of

HF during the time range 2000–2009 with around 1%/yr, while the 2-D model only shows a very weak

increase (Figure 5.11 and Table 5.6). In the northern hemisphere, both models and measurements show

Figure 5.11: Like Figure 5.9, but for HF.
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5.4 Discussion and conclusions

Table 5.6: HF trend in % per year between 2000 and 2009, calculated by fitting a linear function combined with

a first (sites poleward of 70◦) or third order Fourier series to the data. The error bars were determined

with the bootstrap method. Significant trends are printed in bold.

Measurement site FTIR KASIMA SLIMCAT 2-D model

Eureka −0.56 ± 0.69 0.76 ± 0.11 0.79 ± 0.11 0.23 ± 0.03
Ny Ålesund 0.61 ± 0.70 0.85 ± 0.10 0.93 ± 0.11 0.23 ± 0.03
Thule −1.11 ± 0.54 0.74 ± 0.11 0.83 ± 0.11 0.22 ± 0.03
Kiruna 0.61 ± 0.42 0.94 ± 0.12 0.96 ± 0.15 0.22 ± 0.04
Poker Flat 1.54 ± 1.18 1.22 ± 0.11 1.41 ± 0.15 0.21 ± 0.04
Harestua −0.02 ± 0.54 0.93 ± 0.12 0.93 ± 0.16 0.19 ± 0.03
Zugspitze 0.95 ± 0.32 1.10 ± 0.10 1.24 ± 0.16 0.14 ± 0.05
Jungfraujoch 0.48 ± 0.25 1.11 ± 0.10 1.22 ± 0.15 0.14 ± 0.05
Toronto −0.04 ± 0.61 1.04 ± 0.14 1.45 ± 0.25 0.00 ± 0.05

Tsukuba 0.31 ± 0.34 0.96 ± 0.08 1.00 ± 0.19 0.09 ± 0.04
Kitt Peak 0.55 ± 0.68 1.20 ± 0.07 1.27 ± 0.15 0.08 ± 0.04
Izaña 0.92 ± 0.21 1.43 ± 0.07 1.66 ± 0.15 0.06 ± 0.06

Mauna Loa 0.43 ± 0.30 2.32 ± 0.09 2.11 ± 0.15 0.03 ± 0.05

Wollongong 1.61 ± 0.31 0.80 ± 0.07 1.15 ± 0.15 0.14 ± 0.04
Lauder 1.07 ± 0.28 0.81 ± 0.08 1.27 ± 0.15 0.19 ± 0.04
Arrival Heights 0.68 ± 0.58 1.14 ± 0.10 1.38 ± 0.09 0.26 ± 0.04

the tendency of weaker increases when approaching the pole. Some FTIR trends are even negative, but

most of them not significantly, except for Thule.

In the following Section (5.4), the trend results from models and measurements presented here are

discussed in more detail.

5.4 Discussion and conclusions

In the following discussion on the trend results, the findings of Section 4.2 should be kept in mind, where

the influence of the choice of fitting function, time of year, time series length, the time period, and of

sampling is investigated. In addition, multi-annual variations with time may be present in the time series

and affect the calculated trend. Besides, it must be remembered that not all trends are exactly comparable

with each other. As mentioned before, the time series of SOCOL end in 2004 and those of the 2-D model

in 2008, and measurements at Poker Flat are also only available until 2004. The Toronto FTIR series

were included in the 2000–2009 trend calculations although measurements at this site started in 2002

only.

Overall, there is good agreement of the results shown in Section 5.3 (and published by Kohlhepp et al.,

2012) with earlier investigations of HCl, ClONO2, and HF. The measured and modelled trends obtained

in this work amount to around -1 and -2%/yr for HCl and ClONO2, respectively, and to around +1%/yr

for HF. This corresponds well to the trend of (-0.78±0.08)%/yr for HCl between 50 and 65 km height

and 60◦S and 60◦N calculated by Froidevaux et al. (2006) from measurements by the MLS (Microwave

Limb Sounder) instrument on the Aura satellite between August 2004 and January 2006. A significantly
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negative trend of about -5.1%/decade to -5.8%/decade for 1997–2008 was found by Jones et al. (2011)

from a HCl time series created by combining HALOE (Halogen Occultation Experiment) data with ACE-

FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) results between 35 and 45

km. Measurements with the McMath-Pierce solar telescope on Kitt Peak (Arizona, U.S.) suggest a

slightly larger decrease of the HCl total column abundance of (-1.8±0.4)%/yr between 1997 and 2007

(Wallace and Livingston, 2007).

From tropospheric measurements of ozone-depleting substances, the EESC (Equivalent Effective Stra-

tospheric Chlorine) abundance can be assessed (Newman et al., 2007). Thereby, the time necessary to

transport the chlorine- and bromine-containing source gases from the troposphere to the stratosphere is

accounted for, as well as the dependency of the fractional release rates on the mean age-of-air. The

midlatitude EESC abundance was estimated by the WMO (2011) to have decreased by 11% between the

peak in 1997 and 2008, corresponding to a trend of about -1%/yr. Above Antarctica, the peak of EESC

occurred later, around 2002. Until 2008, the EESC abundance decreased by about 5% there (WMO,

2011) which corresponds to a trend of -0.8%/yr (WMO, 2011). This later EESC peak agrees very well

with the FTIR trend results presented here that show a slightly weaker decrease of HCl in the southern

than in the northern hemisphere. The models do not reproduce this hemispheric dependency. However,

the EMAC results indicate weaker decreases especially for ClONO2, but also slightly for HCl, when

approaching the south pole.

Part of the difference between the modelled trends can be explained by the different halocarbon scenar-

ios used (see Section 5.1.2 and Figure 5.2). Considering a time shift due to transport from the troposphere

to the stratosphere, the weakest stratospheric inorganic chlorine decrease is expected to result from the

WMO (2007) Ref 2 scenario used by KASIMA and the 2-D model. Indeed, KASIMA shows the smallest

trend values, along with SLIMCAT (Figs. 5.9 and 5.10 and Tabs. 5.4 and 5.5). But, interestingly, the 2-D

model simulates a stronger decrease of HCl and ClONO2 than would be expected from the WMO (2007)

Ref 2 scenario. Also EMAC and SOCOL show stronger decreases than their surface scenario suggests.

The difference in the HF trends of the CTMs and the 2-D model cannot be explained by different sce-

narios because as already mentioned, KASIMA and the 2-D model used the same one. A reason for part

of the discrepancy is very likely the fact that the 2-D model does not treat all halogen-containing species

explicitly. Specifically, HCFC-141b is not treated explicitly, but proportionately added to CH3CCl3, and

the CFC-114, CFC-115, and HCFC-142b surface mixing ratios are considered in the HCFC-22 value.

However, this is done proportionately to the number of chlorine atoms, and consequently the number of

fluorine atoms is not exactly correct. At the beginning of the considered time range, the fluorine surface

mixing ratio in the 2-D model is very roughly about 50 pptv too small. This missing fluorine abundance

increases with time, which leads to a slightly too small HF increase in the 2-D model simulation.

For all three investigated gases, the measurements show different temporal evolutions in the two hemi-

spheres that are not reproduced by the models. According to the FTIR results, the two chlorine species

decrease stronger in the northern than in the southern hemisphere. The only model with a weak hemi-
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spheric dependency of these trends is KASIMA, but the signal is opposite to the FTIR one. In the HF

measurements, the increase is stronger in the southern than in the northern hemisphere. A possible rea-

son for these hemispheric differences is that the major fraction of the chlorine and fluorine source gases

was and is emitted in the northern hemisphere. Consequently, as already described above for EESC,

there is a slight time shift of a few years in the temporal evolution of HCl, ClONO2, and HF between

the two hemispheres, resulting from the time needed for the transport from the northern to the south-

ern hemisphere. In the southern hemisphere time series for 2000–2009, part of the chlorine plateau is

therefore included. This leads to a weaker overall trend result than in the northern hemisphere, where

the peak occurred before the year 2000. Concerning HF, a leveling-off in the total column abundances

above Jungfraujoch around 2003–2004 has been reported already by Zander et al. (2008). In the present

work, this finding can be confirmed with the FTIR trend results between 2000 and 2009 which do not

significantly differ from zero at some other northern hemisphere sites, for example Ny Ålesund, Toronto

(where the time range is 2002–2009), Tsukuba, and Kitt Peak (Figure 5.11). In addition, the 2004–2009

trends from the FTIR measurements at even more northern hemisphere sites are zero or even negative

(Figure 4.1). However, as already mentioned, a 6-year period is certainly too short to determine reliable

trends in this context. In contrast to the northern hemisphere results, the 2000–2009 and 2004–2009

trends of HF in the southern hemisphere all show relatively stronger increases. Analogously to the argu-

mentation for chlorine, this may be due to a slight time shift between northern and southern hemisphere

also in the stabilisation of the fluorine abundance, resulting from the transport from the northern to the

southern hemisphere.

Another very interesting phenomenon found in the measurement and model data analysed here is

a difference between the trends of HCl and ClONO2. It has been described before e.g. by Mikuteit

(2008) and Kohlhepp et al. (2011) for FTIR total column abundances above Kiruna or in the SPARC-

CCMVal (2010) report for the Jungfraujoch. The normalised decrease of HCl appears to be weaker than

that of ClONO2 at most of the sites. In the FTIR trends, a latitudinal dependency of this discrepancy

can be found in the northern hemisphere, with a larger difference in the high and low latitudes, and

only slightly stronger decreases of ClONO2 than of HCl in the midlatitudes (Figs. 5.9 and 5.10). The

two CCMs EMAC and SOCOL also show larger differences in the high than in midlatitudes, and to a

certain degree also SLIMCAT does. In the other two models, the difference does not exhibit a latitudinal

dependency, but the decrease of ClONO2 is slightly stronger than the HCl one at all sites. In the southern

hemisphere, the Arrival Heights FTIR time series of ClONO2 may have a sampling problem and is

therefore not interpreted here. But the measurements at the two remaining sites show a similar signal

as those in the northern hemisphere do, with a larger difference at the lower latitude site Wollongong

than in the midlatitudes, at Lauder, where there is actually no difference within the error bars. In the

following chapter (6), a more detailed discussion of this problem is provided, along with the description

of sensitivity studies performed with the EMAC model in order to find the explanation for this difference.
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6 On the difference between the trends of HCl and ClONO2

A very interesting phenomenon that could be seen in the results from models and measurements pre-

sented in the previous chapter (5) but that had also been reported earlier for the FTIR measurements at

Kiruna (by, e.g., Mikuteit, 2008; Kohlhepp et al., 2011) is a difference in the strengths of the HCl and

ClONO2 trends. From the decrease in chlorine source gases due to the Montreal Protocol, the two species

would be expected to decrease at about the same rate. However, both models and measurements indicate

a stronger decrease of ClONO2 than of HCl. The reason for this is investigated in the present chapter. A

direct comparison of the HCl and ClONO2 trends from the previous chapter is presented in Section 6.1,

and a possible explanation for the difference is discussed in Section 6.2. This theory is investigated by

sensitivity studies with the EMAC model in Section 6.3, and conclusions are drawn in Section 6.4. The

last part of this chapter (Section 6.5) discusses the FTIR data from Kiruna and Jungfraujoch with respect

to the findings of the previous sections.

6.1 Evidence from FTIR measurements and model results

This section shortly discusses some results which were already presented in the previous chapter, i.e.,

trends of HCl and ClONO2 as derived from FTIR measurements at 11 NDACC sites and from model

results interpolated to these locations are shown. A detailed description of the data sets can be found

in Section 5.1. For a better overview on the difference between the HCl and ClONO2 trends, a direct

comparison of these results is provided in Figure 6.1 for the FTIR data and the two time periods 1996–

2009 and 2000–2009, and in Figure 6.2 for the model simulations by KASIMA and EMAC, for 2000–

2009. The trends were determined by fitting a linear function and a Fourier series to daily data (with

gaps in between in case of the FTIR measurements), and the error bars were estimated with the bootstrap

method (for a more detailed description of the trend determination method please see Chapter 4).

For the time range 1996–2009, FTIR measurements are available from only 7 NDACC sites (Fig-

ure 6.1). Out of these 7 sites, 4 show a larger ClONO2 than HCl decrease. According to the bootstrap

error bars, the difference is significant at 3 of these sites. At the two northern hemisphere midlatitude

sites Jungfraujoch and Zugspitze, the trends of the two chlorine species are approximately similar. The

ClONO2 trend is weaker than the HCl trend only at Harestua, but the difference is not significant. Ny

Ålesund is not included in Figures 6.1 and 6.2 as we do not trust the resulting ClONO2 trend because of

the large variability in the time series, resulting from the strong seasonal cycle and irregular sampling due

to the weather conditions, in combination with the long gap due to polar night. Also the Arrival Heights

FTIR time series may be biased, as mentioned before. For the time range 2000–2009, measurements at
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Figure 6.1: Comparison of HCl and ClONO2 trends from FTIR measurements between 1996 and 2009 (left) at

7 NDACC FTIR sites and between 2000 and 2009 (right) at 11 sites, ordered from south to north.

The trends were calculated by fitting a linear function combined with a first (at the sites poleward of

70◦: Arrival Heights, Eureka, Thule) or third order Fourier series to the daily means. The errors were

determined with the bootstrap method.

11 sites are available (Figure 6.1). At 8 of them, the ClONO2 decrease is stronger than the HCl one, at

6 of these sites even significantly. Both Lauder and Harestua show a non-significantly (according to the

bootstrap method) stronger decrease of HCl, while at Arrival Heights, ClONO2 increases. This also may

be a sampling bias, but interestingly, the signal shown by the EMAC model is similar, with a stronger

trend of HCl at this site (see text below and Figure 6.2).

As an example, the trends of the two chlorine species from two of the model simulations are pre-

sented and compared in Figure 6.2. The KASIMA model simulates a significantly stronger decrease of

ClONO2 than of HCl at all sites. The strongest decreases of both gases occur in the northern hemisphere

high latitudes and in the southern hemisphere, but the difference does not show a pronounced latitudinal

dependency. In contrast, the difference between the ClONO2 and HCl trends in the EMAC simulation

depends on latitude: The ClONO2 trend is significantly larger than the HCl one only at the high northern

hemisphere sites Eureka and Thule and at the lower latitude sites Wollongong and Izaña. At the mid-

latitude sites, ClONO2 also decreases faster than HCl, but not significantly. Interestingly, the behaviour

of EMAC at Arrival Heights also differs from the other sites, like for the FTIR results, with a stronger

decrease of HCl in this case.

Concluding from this direct comparison of the ClONO2 and HCl trends between 1996 and 2009 and

2000 and 2009, we can state that there is a pronounced or even significant difference between them

in the measurements at many of the FTIR sites. Furthermore, the KASIMA model shows a stronger

decrease of ClONO2 than of HCl for all sites between 2000 and 2009. The EMAC model even seems to

reproduce the latitudinal dependency of this difference seen in the FTIR measurements, with a stronger

difference in the high and low latitudes than in the midlatitudes. This indicates that the models may
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Figure 6.2: Comparison of HCl and ClONO2 trends from KASIMA (left) and EMAC (right) between 2000 and

2009 at 11 NDACC sites, ordered from south to north. The trends were calculated by fitting a linear

function combined with a third order Fourier series to the daily means. The errors were determined

with the bootstrap method.

include the mechanism responsible for the differing trends which should therefore be understandable

with sensitivity studies.

6.2 Coupling of the chlorine reservoir species with methane and nitrous oxide

As already described in Section 2.2, chlorine is released in the stratosphere from organic source gases

(e.g., CFCs, HCFCs, and halons) mainly by photolysis and reaction with atomic oxygen (O(1D)) and, to

a lesser extent, with the hydroxyl radical (OH). These freed chlorine atoms then mostly react either with

methane (CH4) or ozone (O3), forming HCl or chlorine monoxide (ClO), respectively:

Cl+CH4→ HCl+CH3 [2.11]

Cl+O3→ ClO+O2 [2.9]

The ClO produced by reaction [2.9] may react with nitrogen dioxide (NO2) forming ClONO2:

ClO+NO2 +M→ ClONO2 +M [2.12]

So, obviously, the most important other gases involved in the partitioning of chlorine between the two

reservoir species HCl and ClONO2 are CH4, O3, and NO2. The main source of stratospheric NOy is

nitrous oxide (N2O) (Legrand et al., 1989) via the reaction

N2O+O(1D)→2NO [6.1]

The nitric oxide (NO) produced there may react with O3 forming NO2:

NO+O3→ NO2 +O2 [2.5]
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6 On the difference between the trends of HCl and ClONO2

This reaction is in photochemical equilibrium with the reactions

NO2 +hν →NO+O [6.2]

O+O2 +M→O3 +M [6.3]

These connections lead to the presumption that also the N2O abundance may (indirectly) influence strato-

spheric chlorine partitioning. A different temporal evolution of NO2 (or N2O), CH4, and O3 therefore

could result in differing trend magnitudes for HCl and ClONO2. In addition, it must be considered that

the rate constants of the reactions described above depend on atmospheric temperature. A decrease of

stratospheric temperature from about 224 K by 4 K for example would lead to an increase of the rate con-

stant of reaction [2.12] by about 6.2% (Table 6.1). In contrast, reactions [2.11] and [2.9] are slower for

Table 6.1: Examples for rate constant values of the major HCl and ClONO2 production reactions, at two different

temperatures, calculated according to Sander et al. (2011). The examples were chosen as to fit to the

discussion in Section 6.4: T1 roughly corresponds to the stratospheric temperature at about 30 km

altitude in the year 2000 in the EMAC simulations discussed there, while T2 represents a lower estimate

of the temperature in the same region for the year 2050. The relative change in the rate constants was

determined as (k(T2)-k(T1))/k(T1).

rate constant k Cl + CH4 [2.11] Cl + O3 [2.9] ClO + NO2 [2.12]

T1 = 224 K 2.39×10−14 9.41×10−12 1.64×10−13

T2 = 220 K 2.15×10−14 9.25×10−12 1.74×10−13

change (T1→ T2) -9.9% -1.6% +6.2%

such a lower temperature, by around 9.9% and 1.6%, respectively. So for a cooling of the stratosphere,

relatively more ClONO2 production and less HCl production than in a warmer stratosphere would be

expected from the temperature dependency of the rate constants. In the end, the reaction rates determine

the partitioning, and they depend both on the rate constants of the reactions and on the abundances of the

involved species.

6.3 Sensitivity studies with EMAC

In order to investigate the possible influence of the CH4 and N2O trends on the difference between the

trends of HCl and ClONO2, sensitivity studies were performed with EMAC. This model was chosen

because, like the FTIR measurements, it calculates stronger ClONO2 than HCl decreases for the period

2000–2009, and especially also because it shows a similar dependency of this trend difference on latitude

(see Section 6.1). Therefore, it is assumed that the responsible mechanism is contained correctly in the

model. At first, an overview is given on the EMAC model and the simulations used for the sensitivity

studies (Section 6.3.1). The correlation between the chlorine and CH4 and N2O total column abundances

in the different simulations for the time range 2000–2050 is investigated in Section 6.3.2, and trends are
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presented in Section 6.3.3 for the total columns and for the volume mixing ratio profiles of the involved

species.

6.3.1 Model and simulations description

The EMAC (ECHAM/MESSy Atmospheric Chemistry) model is a combination of the 3-dimensional

general circulation model (GCM) ECHAM5 with different modular submodels describing atmospheric

processes (e.g., Jöckel et al., 2006; Kirner, 2008). The GCM and the submodels are coupled on-line via

the interface MESSy (Modular Earth Submodel System) (please see http://www.messy-interface.org or

Jöckel et al., 2005). The chemistry scheme is contained in the submodel MECCA (Module Efficiently

Calculating the Chemistry of the Atmosphere) (Sander et al., 2005). The included chemical reactions

are listed in the supplements to Sander et al. (2005) and Jöckel et al. (2006), for example. A detailed

explanation of the EMAC model modular structure can be found in Jöckel et al. (2005) and its online

supplement. The ECHAM5 base model is described by Roeckner et al. (2003a,b). EMAC simulates

the atmosphere from the surface up to 0.01 hPa (about 80 km), on levels which follow the orography in

the troposphere. This dependency of level pressure on surface pressure becomes weaker towards higher

altitudes and is zero at the higher levels, above about 15 km (Kirner, 2008).

The simulations with EMAC analysed in the present work were conducted by O. Kirner at the Stein-

buch Centre for Computing (SCC) of the Karlsruhe Institute of Technology (KIT). The horizontal res-

olution was “T42”, i.e. about 2.8◦× 2.8◦, and 39 vertical layers were used. The time step was 600 s,

and the model results were stored every 24 simulated hours. One reference simulation was performed,

covering the time range 1958–2050. For this long-term simulation, the model ran freely after being

initialised with meteorological fields from ERA-40 (ECMWF re-analyses). Thereby, sea surface tem-

perature (SST) and sea ice cover (SIC) were taken from a coupled atmosphere-ocean simulation with

the ECHAM5/MPI-OM model that used the A1B scenario from IPCC (2007). A comprehensive strato-

spheric chemistry scheme was included in the simulation. To define the boundary conditions for the

ozone-depleting substances, i.e., CFCs, HCFCs, and halons, the scenario A1 from WMO (2007) was

applied (see Figure 6.3). The surface volume mixing ratios of the greenhouse gases CH4, N2O, and CO2

were prescribed according to the IPCC (2007) scenario A1B, thus they are consistent with SST and SIC.

Figure 6.4 shows the temporal evolution of CH4 and N2O in this scenario, between 1960 and 2050. In

the simulation, however, the prescribed CH4, N2O, and CH4 mixing ratios depend on latitude, thereby

accounting for the latitude-dependent annual cycle. The quasi-biennial oscillation (QBO) and the 11-

year solar flux variation are not included. The sulfuric acid (H2SO4) mixing ratio is kept constant in the

sense that the values derived from SAGE measurements for the year 1999 are repeated every year.

In addition to the reference simulation described above, two other simulations were performed with

EMAC, for the time range 2000–2050. They were initialised with the meteorological and chemical fields

from the reference simulation at the beginning of the year 2000. In one of the simulations, the CH4

mixing ratio was fixed to the value of the year 2000 (global mean: about 1760 ppbv), while in the other
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6 On the difference between the trends of HCl and ClONO2

Figure 6.3: Temporal evolution of the CCly and CFy surface volume mixing ratios according to the scenario A1

from WMO (2007), as prescribed as a lower boundary condition in the EMAC simulation used as a

reference here, between 1960 and 2050. For the definition of CCly and CFy please see page 56.

Figure 6.4: Temporal evolution of the CH4 (left) and N2O (right) surface volume mixing ratios according to the

scenario A1B from IPCC (2007), as prescribed as a lower boundary condition in the EMAC simulation

used as a reference here, between 1960 and 2050.
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one, N2O was fixed to its value of the year 2000 (global mean: about 316 ppbv). In the following, they

are called the CH4fix and N2Ofix simulations, respectively. Apart from these two greenhouse gases,

these simulations use the same boundary conditions and model setup as the reference simulation does.

6.3.2 Correlation of chlorine with methane and nitrous oxide

The linear correlation coefficient r represents a commonly used measure to determine whether two dif-

ferent quantities are (linearly) correlated. We are interested in the consequences of keeping the surface

volume mixing ratio of CH4 or N2O constant especially on the HCl, ClONO2, and NO2 total column

abundances. The linear correlation coefficient was determined between the total column differences in

CH4 and the differences in each of the other gases (HCl, ClONO2, and NO2) between the reference sim-

ulation and the one with constant CH4. The analogous calculations were done for the simulation with

constant N2O. The correlation coefficient is defined as the ratio of the covariance σxy of two quantities x

and y, and their standard deviations σx and σy (e.g., Taylor, 1988):

r =
σxy

σxσy
=

∑(xi− x̄)(yi− ȳ)√
∑(xi− x̄)2 ∑(yi− ȳ)2

[6.4]

where i is the summation index and indicates the daily values, while an overbar denotes an arithmetic

mean. In our case, x represents the changes in one species, for example either CH4 or N2O for the CH4fix

and the N2Ofix simulations, respectively, and y the changes in one of the other gases. The data used were

the daily values of the total column abundances between 2000 and 2050, for the global mean (GM) and

different latitude bins: 90–60◦N (northern high latitudes, called NHL), 60–30◦N (northern midlatitudes,

NML), 15◦N – 15 ◦S (tropics, TROP), 30–60◦S (southern midlatitudes, SML), and 60–90◦S (southern

high latitudes, SHL). Because of the large variability in the stratospheric species above the high latitudes

in winter and spring due to the polar vortex, we do not expect a strong correlation with the tropospheric

species on a daily basis there. However, the high latitudes were included in the investigation of the

EMAC sensitivity studies because FTIR measurements at the high latitude site Kiruna are discussed in

Section 6.5. The resulting values for r are shown in Figure 6.5.

It is obvious that the two chlorine species exhibit a correlation with CH4, especially for the global

means, with a positive correlation of nearly 0.6 for HCl and an even stronger negative correlation with

ClONO2, amounting to nearly 0.8 (top panel in Figure 6.5). When separated according to the different

latitude bins, the correlations for both species are highest in the midlatitudes and tropics, and smallest

at the high latitudes. The positive correlation of CH4 and HCl corresponds to the expectations from

reaction [2.11], which describes the formation of HCl from Cl and CH4. Obviously, as the total number

of chlorine atoms is limited, the ClONO2 total column abundances must be negatively correlated with

CH4 then.

For the comparison of the simulation with constant N2O to the reference simulation, a positive cor-

relation of the NO2 change is found with the change in N2O (right panel in Figure 6.5). With the other

species, no correlation is detectable. As N2O constitutes a major source of NO2 (via reaction [6.1]), the
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6 On the difference between the trends of HCl and ClONO2

Figure 6.5: Linear correlation coefficients between different gases, determined from the three EMAC simulations,

for daily values of the total column abundances between 2000 and 2050. The coefficients describe the

dependency of the change in HCl, ClONO2, and NO2 when CH4 (left) or N2O (right) is kept constant

on the value of the year 2000 instead of increasing according to the IPCC scenario A1B.

strong correlation found in Figure 6.5 agrees with the expectations. The correlation coefficient thereby

is largest in the tropics because reaction [6.1] depends on sunlight via the existence of O(1D), and the

availability of sunlight is much more regular in low than in high latitudes. The conclusion from this

investigation of the correlations of CH4 and N2O with some other species is that EMAC basically shows

what is expected from the chemical reactions discussed in Section 6.2. CH4 constitutes a source for HCl,

so they are positively correlated. As a result, the other stratospheric chlorine reservoir gas, ClONO2,

must be anticorrelated with CH4. For N2O, no strong connection was found with the chlorine species,

only with NO2. A difficulty in this analysis is the fact that HCl and ClONO2 are stratospheric species,

i.e., their mixing ratio peaks in the stratosphere, while N2O and also CH4 are primarily tropospheric

gases. When determining the correlation between these species, the time lag resulting from the transport

from the troposphere to the stratosphere (about 3 to 5 years) was not considered.

6.3.3 Chlorine trend sensitivity

In this section, the trends between 2000 and 2050 calculated from the three EMAC simulations described

in Section 6.3.1 are presented. At first, the trends from the total column abundances of HCl, ClONO2,

CH4, N2O, NO2, and O3 are investigated, followed by the height dependency of the HCl and ClONO2

volume mixing ratio (vmr) trends. O3 was included in this investigation because it is the most important

trace species in the stratosphere (Seinfeld and Pandis, 1998). Its temporal evolution is essential for life

on earth, so it is interesting to also have a short look at it in the present EMAC simulations.
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Total column trends

From the three EMAC simulations described in Section 6.3.1, trends have been calculated for the total

column abundances of HCl, ClONO2, CH4, N2O, NO2, and O3. The data used were daily values between

2000 and 2050, averaged over the same latitudes as in Section 6.3.2. A linear trend combined with a

third-order Fourier series accounting for the seasonal cycle was fitted to the time series, and the error

bars were determined with the bootstrap method, as explained in Chapter 4. Examples for the fits from

the reference simulation are shown in Figure 6.6 for the global mean total column abundances of the six

species mentioned above.

Figure 6.7 presents the latitude dependency of the trend results for these species. The CH4 and N2O

trends of the CH4fix and N2Ofix simulations, respectively, also enable a certain check of the modifica-

tions made, and as expected, they are approximately zero everywhere. On the other hand, the CH4 trends

from the N2Ofix simulation agree very well with those from the reference simulation (the trends from

the reference simulation are hardly visible in Figure 6.7 because they are covered by the results from the

N2Ofix simulation). The same is the case for the N2O trend from the CH4fix simulation. In addition,

it becomes obvious here that the N2O trend contained in the applied scenario A1B from IPCC (2001)

(about 0.22%/yr) is considerably smaller than the CH4 trend (about 0.84%/yr).

From the HCl and ClONO2 trend results for the different simulations, we can see that overall, keep-

ing CH4 constant on the level of the year 2000 has a stronger influence on the 2000–2050 trends than

keeping N2O constant on its 2000 level. HCl decreases more strongly if CH4 is constant than it does

in the two other simulations where CH4 increases with time. This corresponds to the expectations from

reaction [2.11] and from the positive correlation coefficient between the two species found in the previ-

ous section (6.3.2). If less CH4 is available, less HCl is produced. Concerning ClONO2, Section 6.3.2

showed a negative correlation with the CH4 total column abundance. This is confirmed by the ClONO2

trends which are more weakly negative if less CH4 is available because in this case, more Cl atoms are

bound in ClONO2. The effect of keeping N2O fixed on the HCl and ClONO2 trends is only weak.

The general pattern of latitude dependence seen in the ClONO2 trends does not change strongly if

CH4 or N2O are kept constant: The total column abundances decrease most strongly in the tropics, and

in the southern high latitudes, the decrease is even weaker than in the northern high latitudes. In all

simulations, HCl decreases slightly stronger in the southern hemisphere than in the northern hemisphere,

with the strongest decrease in the tropics. As for ClONO2, the pattern of the HCl trends does not strongly

change if CH4 or N2O are kept constant, except for the northern high latitudes where the HCl trend in

the N2Ofix simulation is slightly stronger than would be expected from the overall pattern and the other

two simulations.

The fact that ClONO2 quite distinctively shows the strongest relative decrease in the tropics in all three

simulations can probably be explained by the latitudinal dependency of the total column abundances. As

discussed in Section 2.2, photolysis of ClONO2 (reactions [2.13] and [2.14]) is more effective in lower
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6 On the difference between the trends of HCl and ClONO2

Figure 6.6: Examples of fits of function 4.1 to the globally averaged daily values of the CH4, N2O, HCl, ClONO2,

O3, and NO2 total column abundances calculated from the EMAC reference simulation, between 2000

and 2050. The fitting function consisted of a linear trend and a third-order Fourier series accounting

for the seasonal cycle.

latitudes, leading to smaller ClONO2 and larger ClO total column abundances above the tropical region

than closer to the poles.

In the simulation with constant N2O, the NO2 total column abundance decreases with time at all

latitudes. The decrease is weakest in the tropics. From reaction [2.12], we could expect the ClONO2 and

NO2 trends to be positively correlated, but this is not visible in the correlation coefficients (Figure 6.5)

either. In the latitudinal dependency of the trends, we even find some kind of anti-correlation, because as
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Figure 6.7: Latitudinal dependency of the trends of CH4, N2O, HCl, ClONO2, O3, and NO2 total column abun-

dances calculated from the three EMAC simulations between 2000 and 2050. The trends were de-

termined with the bootstrap method by fitting a linear function combined with a third order Fourier

series to the daily values. Please note the different y-scales. The CH4 and N2O trends from the refer-

ence simulation are hardly visible because they are covered by the results from the N2Ofix and CH4fix

simulations, respectively.

described above, the ClONO2 decrease is strongest in the tropics. In the reference simulation, NO2 also

decreases at most latitudes. A significant increase is simulated only for the tropical region. If CH4 is

constant, NO2 increases or does not significantly change at all latitudes. However, the relative differences
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Figure 6.8: Comparison of the trends of HCl and ClONO2 total column abundances calculated from the three

EMAC simulations between 2000 and 2050 for different latitudes. The trends were determined with

the bootstrap method by fitting a linear function combined with a third order Fourier series to the daily

values.

between the three simulations in the NO2 trends discussed above are very weak. NO2 does not change

strongly in any of the simulations.

The O3 trends of all three simulations confirm a recovery of the stratospheric ozone layer. The

strongest increases are simulated for the polar regions, with a maximum trend value in the southern

high latitudes. The main reason for this is probably that the trends presented in Figure 6.7 are normalised

values and the ozone depletion in the beginning of the simulation is strongest above the Antarctic.

In order to get a better overview on the influence of CH4 and N2O on the difference between the

HCl and ClONO2 trends, Figure 6.8 presents the latitudinal dependency of the difference for every

simulation separately. As already obvious in Figure 6.7, the results for the chlorine trends from the

N2Ofix simulation are very similar to those from the reference simulation. On a global average (GM),

ClONO2 decreases stronger than HCl. When sorted according to latitude, this is also the case at all

latitudes except at the southern high latitudes, where both chlorine species decrease at about the same

rate. In contrast, in the CH4fix simulation, HCl decreases faster than ClONO2 at all latitudes except the

tropics. On a global average, there is practically no difference between the trends.
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As a conclusion from this investigation, we can state that changing the prescribed surface mixing ratio

CH4 trend in the EMAC model strongly influences the difference between the trends of the total column

abundances of HCl and ClONO2. A more detailed discussion can be found in the next Section (6.4).

Height-resolved trends

In order to investigate the height dependency of the difference in the HCl and ClONO2 temporal evolution

in the three EMAC simulations, trends were determined also for the volume mixing ratios on all 39 model

levels. These calculations were performed for the same latitude bands as before, however, only the trends

from the global means are shown here because the other results are qualitatively similar, with slightly

larger error bars. For this investigation on the height dependency of the trends, only the annual means of

the volume mixing ratios for every height were used, and a linear function was fitted to them. Otherwise,

the trend (and trend error) analysis procedure was the same as described in Chapter 4.

Profiles of trends of HCl and ClONO2, determined from the mixing ratios calculated in the three

EMAC simulations, are presented in Figure 6.9. Only the stratospheric trends are shown here, for the

layers 27 to 8, corresponding to about 223 to 0.9 hPa, or roughly 10 to 50 km altitude. As the pressure

of the lower layers (27 to 23) depends weakly on orography, the pressure values on the y axis are only

approximate values there. In the troposphere, the mixing ratios of HCl and ClONO2 are quite small

(Figure 2.4) so that it is very difficult to determine reliable trends. This is also the case for ClONO2

in the mesosphere. For these reasons the results for the troposphere and mesosphere are not discussed

here. Overall, it is obvious again that keeping CH4 constant has a stronger effect on both the HCl and

ClONO2 trends than keeping N2O constant. The pictures for the N2Ofix and the reference simulation are

very similar (Figure 6.9). In Figure A.1 of Appendix A.2, the same HCl and ClONO2 profiles are plotted

differently so that the difference in the trends between the three simulations can be compared directly. It

is obvious from this figure that the difference in the ClONO2 trend between the CH4fix and the other two

simulations does not vary strongly with height: The trend in the CH4fix simulation is weaker at all model

levels. In contrast, the HCl decrease in the CH4fix simulation is stronger than in the other simulations in

the stratosphere.

In the lower stratosphere, at most levels between about 220 and 70 hPa (layers number 27–22), the

chlorine trends in the reference and N2Ofix simulations agree within their bootstrap error bars (Fig-

ure 6.9). Above, the ClONO2 decrease is stronger than the HCl one. In contrast, in the CH4fix simula-

tion, the trends of HCl and ClONO2 are similar in the middle stratosphere, while in the upper and lower

stratosphere, HCl decreases more strongly than ClONO2.

In the following section (6.4), a detailed discussion on the results from the EMAC sensitivity studies

is presented.
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Figure 6.9: Profiles of the trends of HCl and ClONO2 volume mixing ratios in the stratosphere (about 10 to 50 km

altitude) calculated from the EMAC reference simulation (REF, top left panel), the CH4fix simulation

(top right panel), and the N2Ofix simulation (lower left panel), between 2000 and 2050. The trends

were determined with the bootstrap method by fitting a linear function to the global annual mean vmr

values.

6.4 Discussion and conclusions from the sensitivity studies

Evidence from the EMAC sensitivity studies suggests that in case of the simulation used as reference

here, the CH4 trend has a stronger influence on the difference between the HCl and ClONO2 trends than

the N2O trend does. However, we cannot exclude that this may in part result from the relative change in

N2O assumed by the A1B scenario being much smaller than the one in CH4 (see Figures 6.4 and 6.7).

The increase of CH4 seems to be the reason for ClONO2 decreasing faster than HCl in the reference

simulation. From the comparison of the reference simulation with the CH4fix simulation, it is obvious

that the HCl decrease is stronger if CH4 does not increase, and the ClONO2 decrease is weaker. This

corresponds very well to the assumption that reaction [2.11] producing HCl from Cl and CH4 is less

important if less CH4 is available. Of course, only a limited amount of chlorine atoms is available so that

the ClONO2 trend must change accordingly. Due to the increase of CH4, inorganic chlorine partition-

ing changes during the reference and N2Ofix simulations such that the HCl production is increasingly
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favoured relative to the ClONO2 production, resulting in a stronger decrease of ClONO2 than of HCl dur-

ing 2000–2050. In contrast, in the CH4fix simulation, no such strong effect can be detected in the HCl

and ClONO2 trends from the global mean total column abundances. They decrease at about the same

rate, with the ClONO2 decrease being slightly weaker than the HCl decrease. However, from the trend

calculations for different latitude regions separately, a weaker decrease of ClONO2 than of HCl is found

at mid and high latitudes, but not in the tropics. This stronger decrease of HCl may be explicable by the

temperature dependency of the rate coefficients of the reactions involved in chlorine partitioning. Due

to the increase of the greenhouse gas mixing ratios, the troposphere warms and the stratosphere cools

down (IPCC, 2007). An upper estimate for the temperature decrease at 30 km between 2000 and 2050

would be 4 K for the EMAC reference simulation (Kirner and Ruhnke, 2012, and P. Bohlinger, personal

communication, 2012). This decrease is only about 0.4 and 0.2 K weaker in the CH4fix and N2Ofix

simulations, respectively, than in the reference simulation. The fact that this difference is so small prob-

ably results mainly from the sea surface temperature (SST). The same SST (which stems from a coupled

atmosphere-ocean model using the A1B greenhouse gas scenario) had to be used for all three simulations

because EMAC only simulates the atmosphere. As a result, the SST increases as it is expected from the

increasing CH4 and N2O abundances in the reference simulation, but it is probably slightly too high in

both sensitivity simulations. This leads to higher tropospheric and lower stratospheric temperatures both

in the CH4fix and N2Ofix simulations than expected from their greenhouse gas abundances.

The influence of a 4 K temperature decrease from about 224 K on the rate coefficients of reac-

tions [2.11], [2.9], and [2.12] was discussed in Section 6.2 already. It is expected to result in a stronger

relative ClONO2 production at the end of the simulations compared to the beginning, leading to a weaker

overall decrease of ClONO2 than of HCl between 2000 and 2050 in all three simulations. However, as

mentioned above, this effect is weakly visible in the CH4fix simulation, but not at all in the other two (see

Figure 6.8). So in case of the reference and N2Ofix simulations, the favouring of ClONO2 expected from

the temperature decrease and the resulting changes in the rate coefficients is clearly overcompensated by

the strong increase of the CH4 mixing ratio. In other words, in the reference and N2Ofix simulations, the

effect of the increase of CH4 manifests itself much stronger in the final rates of the reactions producing

HCl and ClONO2 than the change in the rate coefficients due to the temperature decrease does. In con-

trast, in the CH4fix simulation, the influence of the temperature change on the rate constants does not

seem to be overcompensated by any concentration changes in the involved species.

The roughly 0.3 K difference in stratospheric temperature between the three simulations around the

year 2050 and the resulting influence on the rate coefficients is not expected strong enough to be de-

tectable. However, it might be able to explain some of the differences between the N2Ofix and the

reference simulation in the HCl and ClONO2 trends. As the stratosphere becomes slightly cooler during

2000–2050 in the reference than in the N2Ofix simulation, HCl would be expected to decrease stronger in

the reference than in the N2Ofix simulation. This is the case in the southern hemisphere and tropics, and

on the global average (Figure 6.7). In contrast, ClONO2 would be expected to be slightly favoured at the
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end of the reference simulation compared to the N2Ofix one, leading to a weaker decrease in ClONO2

between 2000 and 2050 in the reference than in the N2Ofix simulation. This is true for the tropical

and midlatitude regions, and very weakly also for the global mean (Figure 6.7). However, these differ-

ences in the chlorine trends between the reference and N2O simulations might also be attributable to less

availability of NO2 for ClONO2 production in the N2Ofix simulation than in the reference simulation

(Figure 6.7).

So as a final conclusion for this investigation on the reason for the difference between the HCl and

ClONO2 trends, we can state that there is considerable indication from EMAC model simulations that

the CH4 trend strongly influences this difference. The model shows only a very small difference between

the trends if CH4 is kept constant, while the HCl decrease is weaker and the ClONO2 decrease stronger

if CH4 increases. For N2O, no such strong influence on the difference between the chlorine species

trends could be determined with the conducted simulations. Furthermore, in this analysis, the effect of

changing rate coefficients due to the temperature changes on the partitioning between HCl and ClONO2

is relatively small on a global average compared to the effect of the CH4 increase.

6.5 The CH4 stabilisation in the atmosphere between 1999 and 2006

In order to complete the circle, it would be nice to detect this influence of CH4 on the chlorine trends

found in the EMAC sensitivity studies also in atmospheric measurements. Usually no such experiments

are possible in the real atmosphere. However, the CH4 trend indeed changed during the period where

FTIR measurements are available, so that an influence on the measured chlorine trends might be de-

tectable. According to the fourth IPCC report, the tropospheric CH4 volume mixing ratio increased

strongly in the late 1970s and early 1980s (by up to 1%/yr), but this increase slowed down in the early

1990s and CH4 was nearly constant between 1999 and 2005 (IPCC, 2007). Newer measurements, how-

ever, indicate that since 2007, it is on the rise again: Dlugokencky et al. (2009) found a global CH4

increase of (8.3± 0.6) ppb in 2007 (corresponding to about (0.47± 0.04)%/yr) and of (4.4± 0.6) ppb

in 2008 (corresponding to about (0.25± 0.04)%/yr). A study from FTIR total column measurements

at four northern hemisphere high and midlatitude sites on average showed a slightly stronger increase

between 2007 and 2009 (Angelbratt et al., 2011). In contrast to CH4, N2O is reported by IPCC (2007) to

have increased approximately linearly at a rate of about 0.8 ppb/yr over the past few decades (until 2005),

corresponding to very roughly 0.25%/yr. In order to illustrate this, the temporal evolution of the global

mean surface volume mixing ratios as measured by the NOAA global air sampling network between

1979 and 2010 is shown in Figure 6.10.

The ClONO2 decrease measured by the FTIR instrument at Kiruna for the time range 1996–2009 is

significantly stronger than the corresponding one for HCl (Figure 6.1). In contrast, for the time range

2000–2009, no significant difference is detected, and both trends are slightly stronger than the HCl

one for 1996–2009. In the following, it will be discussed whether this effect might be attributable to

the above-mentioned stabilisation of CH4 between 1999 and 2006. However, this plateau only lasted
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6.5 The CH4 stabilisation in the atmosphere between 1999 and 2006

Figure 6.10: Temporal evolution of the globally averaged CH4 (left) and N2O (right) surface volume mixing ratios

between 1979 and 2010, as measured by the NOAA global air sampling network. Figures taken from

http://www.esrl.noaa.gov/gmd/aggi/.

for about 7 years, which is probably too short to reliably determine a CH4 influence on stratospheric

inorganic chlorine. In order to extend this investigation, in addition to the Kiruna site, measurements from

the Jungfraujoch FTIR instrument were included. This site was chosen because the time series recorded

there are very long and of very high quality. Furthermore, it represents another latitude region, being

located in the middle of Europe, in contrast to the Arctic site Kiruna. For a more detailed description of

these sites and their measurement specifications, please refer to Section 5.1.1 and Kohlhepp et al. (2012)

and references therein.

For a comparison of the surface volume mixing ratio trend of CH4 with total column trends of the

primarily stratospheric species HCl and ClONO2, the time lag due to transport from the troposphere to

the stratosphere has to be considered. This time lag is assumed here to be very roughly equal to the

stratospheric age-of-air which amounts to about 4 years for the Jungfraujoch and approximately 5 years

for Kiruna in 20 km height (Stiller et al., 2008). So the beginning of the stabilisation of the surface CH4

mixing ratio around 1999 reached the stratosphere above Jungfraujoch and Kiruna about 4–5 years later,

around 2003/2004. For this reason, we split the available time period of HCl and ClONO2 measurements

in two, i.e., 1996–2003 and 2004–2009. The corresponding trend of stratospheric CH4 is then expected

to be positive for the first interval and roughly zero for the second one.

Considering the conclusions of Section 6.3.3 concerning the influence of the CH4 abundance on strato-

spheric inorganic chlorine partitioning, we would therefore expect the HCl decrease to be weaker in the

first period than in the second one, and vice versa for the ClONO2 trend. As shown in Table 6.2, this is

exactly what is found in the Kiruna trends. However, an obvious disadvantage of calculating trends for

such short periods of only 8 and 6 years is that half of the results are not significantly different from 0,

and most of them are not significantly different from each other either.

Possibly due to the favouring of HCl production resulting from the assumed stratospheric CH4 increase

between 1996 and 2003, no significant trend can be detected for HCl above Kiruna in this period, while
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Table 6.2: Trends of HCl and ClONO2 from FTIR measurements above Kiruna and the Jungfraujoch in % per

year, for 1996–2009 and 2000–2009, calculated by fitting a linear function combined with a third order

Fourier series to the daily means. The error bars were determined with the bootstrap method. Significant

trends are in bold.

trend (%/yr) 1996–2003 2004–2009

Kiruna: HCl -0.00 ± 0.50 -0.59 ± 0.88

Kiruna: ClONO2 -6.15 ± 1.40 +3.76 ± 4.20

Jungfraujoch: HCl -0.65 ± 0.25 -0.42 ± 0.39

Jungfraujoch: ClONO2 +0.50 ± 0.71 -0.87 ± 0.75

the ClONO2 decrease is significant and quite strong. In contrast, in the second period, ClONO2 produc-

tion is obviously favoured relative to HCl production, which again could at least partly be explained by

the influence of CH4 discussed in the previous sections. However, a quantification of the CH4 impact is

very difficult. The trend changes seen in the data are probably a combination of different effects, possibly

also including the second one discussed in Section 6.4 concerning the dependency of the rate coefficients

on stratospheric temperature.

At the Jungfraujoch, the trend results do not correspond to the expectations from the CH4 stabilisation

and to the trends determined for Kiruna. ClONO2 shows no significant change between 1996 and 2003,

and a decrease during the period 2004–2009. This would agree with the behaviour expected from the

peak in stratospheric inorganic chlorine that was reached at the end of the 1990s. But in contrast, the

HCl trend does not show these properties.

It was already discussed above that because HCl and ClONO2 are stratospheric species, it is of course

the CH4 mixing ratio in the stratosphere that is responsible for their partitioning. As a result, the changes

seen in the growth rate of the CH4 surface volume mixing ratio (Figure 6.10) are smoothened by the

mixing of air masses with different ages during the transport to the stratosphere. On the other hand, we

use measurements of total column abundances of HCl and ClONO2 so that the effect the changing CH4

trend may have on some part of the atmosphere or stratosphere is also smoothened. Both facts make it

even more difficult to detect the influence of the CH4 plateau on stratospheric inorganic chlorine.

From the above-presented analysis of the atmospheric CH4 stabilisation between 1999 and 2006, it

can be concluded that there is a change in the HCl and ClONO2 trends at Kiruna that may indeed be

attributable to the varying availability of CH4. However, other reasons for the differing chlorine trends for

different time periods cannot be excluded. The plateau in the CH4 mixing ratio time series was relatively

short, only about 7 years, which makes a clear detection of a CH4 influence on stratospheric chlorine

partitioning difficult. Using total column abundances of the chlorine species is assumed to smoothen

the possible effect of CH4, so that alternatively, satellite data sets with a better vertical resolution might

be useful for a similar analysis. However, the plateau reached in the stratospheric inorganic chlorine
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time series occurred at about the same time as the stabilisation of the CH4 abundance, during the end of

the 1990s. This makes a separation of the influence of these two parameters on the HCl and ClONO2

trends quite challenging, independently of the measurement type. But if the CH4 abundance continues

to increase more or less linearly during the next few years, the second trend change point in the CH4

time series around 2006 might be helpful to determine the influence of CH4 on stratospheric chlorine

partitioning in atmospheric measurements.
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7 Summary and outlook

The analyses presented in this thesis focus on trends of three stratospheric trace species, i.e., the two

chlorine reservoir species HCl and ClONO2, and the fluorine reservoir HF. The main interest in their

temporal evolution results from the involvement of chlorine in the depletion of stratospheric ozone. In

the present work, time series of FTIR measurements of total column abundances of the three species at

17 NDACC sites were compared with corresponding model output from simulations by the Bremen 2-D

model, KASIMA, SLIMCAT, EMAC, and SOCOL. The primarily analysed time period was 2000–2009

as sufficient data are available from most of the measurement sites during this time. In the framework

of studies on the sensitivity of the resulting trends, also the periods 1996–2009 and 2004–2009 were

investigated. However, only at a few sites, significant differences between the trends for the different

periods were detected. Another outcome of the sensitivity studies was the decision to determine the

trends for the comparison between models and measurements by fitting a linear function combined with

a (third- or first-order) Fourier series accounting for the seasonal cycle. The error bars when fitting this

function were smaller than in the cases when only a linear function was fitted and when only the summer

and autumn part of the time series was used. Because the solar absorption measurements with FTIR

spectrometers depend on direct sunlight, no spectra can be recorded on cloudy days, nor during polar

night. That leads to irregular sampling of the measurements, which may induce errors in the resulting

trends. This sampling influence was investigated by comparing trends calculated from daily CTM output

with those from the same time series on days with FTIR measurements only. Significant differences in

the trends were found only at some polar sites, where the long-lasting polar night leads to large regular

gaps in the time series. Furthermore, with a multiple linear regression approach, the influence of the

11-year solar cycle variation and of the quasi-biennial oscillation on the resulting trend was investigated

for the species of interest here, at the sites Jungfraujoch and Kiruna. As no significant influence was

detectable, the solar cycle and QBO time series were not included in the fitting function for the analysis

and comparison of all data.

The comparison of the FTIR measurements with model data revealed an overall good agreement of the

total column abundances and of their qualitative temporal evolution. The KASIMA and EMAC models

tend to underestimate the HCl content, while SLIMCAT overestimates HF and ClONO2, when compared

to the FTIR measurements. The amplitude of the mean seasonal cycle of ClONO2 is slightly too large in

SLIMCAT in lower and midlatitudes, while the other models tend to underestimate it at the polar sites.

The HCl and HF seasonal cycles are captured well by the models, except for the 2-D model showing

a slightly too weak amplitude at many sites. Overall, the models are able to reproduce the decreasing
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trend amounting to roughly -1 and -2%/yr in the HCl and ClONO2 measurements, respectively, and the

HF increase by about 1%/yr during the period 2000–2009. However, the measured chlorine decreases

are stronger and the HF increases weaker in the northern than in the southern hemisphere, while this

difference cannot be found in the model results. A possible reason for this hemispheric dependency

of the FTIR trends is the distribution of the ODS emission sources, which concentrate in the northern

hemisphere. The models obviously do not consider this fact.

At most of the included NDACC sites, ClONO2 decreases stronger than HCl does, both in the mea-

surements and the model results. This interesting and at first unexpected fact was described previously

already by Mikuteit (2008), in the SPARC-CCMVal (2010) report and by Kohlhepp et al. (2011), for

example. Sensitivity studies conducted with EMAC model simulations in the present work revealed a

strong influence of the CH4 abundance and its temporal evolution on the partitioning of inorganic chlo-

rine into HCl and ClONO2. The influence of N2O, in contrast, was found to be much weaker. A strong

increase in the CH4 mixing ratio leads to HCl production being increasingly favoured at the cost of

ClONO2 production so that HCl decreases less strongly than ClONO2 in this case.

An indication for the influence of CH4 was then searched for also in the FTIR chlorine measurements

at Kiruna and the Jungfraujoch because the stabilisation of the tropospheric CH4 mixing ratio between

1999 and 2006 together with its increase before and afterwards seems to provide a unique setting for such

an investigation. Especially the stronger decrease of ClONO2 than of HCl above Kiruna during 1996–

2009 may be attributable to the increasingly favoured HCl production as the CH4 mixing ratio increases.

In contrast, the HCl and ClONO2 trends are approximately equal during 2000–2009, when CH4 did not

change as strongly. However, the Jungfraujoch FTIR data do not show this effect. At this site, it may be

overcompensated by the peak in stratospheric inorganic chlorine occurring also at the end of the 1990s.

The influence of this effect cannot be separated easily from the possible impact of the CH4 stabilisation,

especially for HCl. As described above, the CH4 mixing ratio was approximately constant from 1999

until about 2006 but then started increasing again. In case it continues to increase at an approximately

linear rate for the next few years, this second turning point in the CH4 time series around 2006/2007 can

be used to investigate the CH4 influence on chlorine partitioning with atmospheric measurements. As

a result of using total column abundances for the studies presented here, the CH4 influence is probably

weakened. From measurements with a higher vertical resolution, e.g., by satellites, more distinct results

might be obtained.

As stated for example by WMO (2011), the decrease of the atmospheric chlorine (and bromine) con-

tent is not the only factor influencing the recovery of the stratospheric ozone layer, although it is the most

important one. Due to climate change, stratospheric temperature decreases, leading to an enhanced ozone

production rate in the upper stratosphere (e.g., Müller, 2012). In addition, the projected strengthening of

the Brewer-Dobson circulation is expected to contribute to a faster return of the ozone abundance to its

1980 and 1960 values. So overall, global total ozone is estimated to recover more quickly than expected

from the decrease in stratospheric halogen loading (Müller, 2012). One exception is the Antarctic, where
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the ODS influence is relatively much stronger than the influence of climate change. So ozone recovery

there corresponds more closely to the temporal evolution of the ODS concentrations and thus occurs later

than in the rest of the world. Simulations also indicate that in the tropics, ozone levels may never return

to the 1980 or 1960 conditions because the strengthening of the Brewer-Dobson circulation leads to a

decrease of ozone production in the lower stratosphere (WMO, 2011; Müller, 2012). According to Rav-

ishankara et al. (2009), along with the decrease in anthropogenic chlorine and bromine source gases, the

importance of N2O as an ODS will gradually increase within this century due to its projected increasing

or at least continuing anthropogenic emission.

Stratospheric halogen levels are projected to return to 1960 levels only by the end of this century

(WMO, 2011). So despite climate change and the increasing N2O abundance, the stratospheric halogen

loading will remain the most important factor influencing the ozone layer for many years to come. It is

thus essential to continue monitoring the stratospheric inorganic chlorine content and its anthropogenic

source gases. In this context, the global ground-based Network for the Detection of Atmospheric Com-

position Change is very important because it provides long time series which enable reliable trend deter-

minations. In addition, atmospheric chemistry models and data from satellites with usually much shorter

lifetimes need to be validated by such long-term measurements.
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A Appendix

A.1 Measurement specifications of HCl, ClONO2, and HF at the 17 NDACC sites

Table A.1: Specifications of the FTIR measurements of HCl at the 17 NDACC sites used for the comparison with

the models in Chapter 5.

Measurement

site

Spectral

reso-

lution

[cm−1]

Spectral

microwindows

[cm−1]

Retrieved

interfering

species

Source of p/T

profiles

Retrieval

code

Spectroscopic

database

Reference

Eureka DA8

(1997-2006)

0.004 2925.70-2926.10 NO2 radiosondes,

NCEP, US

Sub-Arctic

Winter Model

SFIT1.09e HITRAN 1992

plus updates

Fast et al. (2011)

Eureka 125HR

(2006-2009)

0.0035 2775.72-2775.80

2821.40-2821.62

2925.75-2926.05

O3, CH4,

N2O; HDO,

N2O; CH4,

NO2, OCS,

O3

radiosondes,

NCEP, US St.

Atm.

SFIT2

v3.92C

HITRAN 2004

plus updates

Batchelor et al.

(2009)

Ny Ålesund 0.005 2925.65-2926.25 CH4 NCEP GFIT updated ATMOS

linelist from

GFIT package,

v2.6.4

Notholt et al.

(1995b)

Thule 0.0035 2727.60-2727.95

2775.60-2775.95

2925.70-2926.10

O3, CH4,

HDO

NCEP SFIT2

v3.93

HITRAN 2004

plus updates to

2007

Hannigan et al.

(2009)

Kiruna 0.005 2727.73-2727.82

2775.73-2775.79

2819.52-2819.61

2821.52-2821.62

2843.60-2843.65

2904.09-2904.14

2923.65-2923.78

2925.80-2926.00

2942.70-2942.75

2961.04-2961.09

2963.25-2963.32

2995.76-2995.79

H2O, O3,

CH4

NCEP PROFFIT HITRAN 2004 Blumenstock et

al. (2006)

Poker Flat 0.0035 2925.80-2926.00 H2O, CH4,

NO2, O3

radiosondes,

UKMO,

CIRA86

SFIT2

v3.7

HITRAN 2004 Kagawa et al.

(2007)
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Table A.1: Continued: Specifications of the FTIR measurements of HCl at the 17 NDACC sites used for the

comparison with the models in Chapter 5.

Measurement

site

Spectral

reso-

lution

[cm−1]

Spectral

microwindows

[cm−1]

Retrieved

interfering

species

Source of p/T

profiles

Retrieval

code

Spectroscopic

database

Reference

Harestua 2925.60-2926.20

2925.75-2926.00

H2O, CH4,

NO2, HCl,

O3

NCEP SFIT2

v3.81

HITRAN 2004

Zugspitze 0.005 2925.74-2926.06 CH4 Munich ra-

diosonde

SFIT1.09e HITRAN 1996 Sussmann and

Schäfer (1997)

Jungfraujoch 0.003 2925.74-2926.06 CH4, NO2 NCEP SFIT1.09c HITRAN 1992 Rinsland et al.

(2003)

Toronto 0.004 2925.80-2926.00 CH4, NO2,

O3

NCEP, US St.

Atm.

SFIT2

v3.82B3

HITRAN 2004 Wiacek et al.

(2007)

Tsukuba 0.0035 2925.69-2926.21 CH4, H2O radiosondes at

Tateno

SFIT1.09e HITRAN 1996 Murata et al.

(2005)

Izaña 0.0036 same as Kiruna H2O, O3,

CH4

local radioson-

des

PROFFIT HITRAN 2004 Schneider et al.

(2005)

Mauna Loa 0.0035 2925.69-2926.50 CH4 radiosondes at

Hilo

SFIT1 HITRAN 2000 Hannigan et al.

(2009)

La Réunion 0.00513

and

0.00893

2925.70-2926.10 CH4 NCEP SFIT2

v3.9

HITRAN 2004

plus updates

for H2O, N2O,

HNO3, C2H6

Senten et al.

(2008)

Wollongong 0.0035 2925.80-2926.00 CH4 NCEP GFIT HITRAN 2004 Rinsland et al.

(2003)

Lauder 0.0035 2925.75-2926.05 CH4, NO2,

H2O, O3

NCEP/ NCAR SFIT2

v3.82B3

HITRAN 2000 Rinsland et al.

(2003)

Arrival

Heights

0.0035 2925.75-2926.05 CH4, NO2,

H2O, O3

NCEP/ NCAR SFIT2

v3.82B3

HITRAN 2000 Mahieu et al.

(2008)

Table A.2: Specifications of the FTIR measurements of HF at the 17 NDACC sites used for the comparison with

the models in Chapter 5.

Measurement

site

Spectral

reso-

lution

[cm−1]

Spectral

microwindows

[cm−1]

Retrieved

interfering

species

Source of p/T

profiles

Retrieval

code

Spectroscopic

database

Reference

Eureka DA8

(1997-2006)

0.004 4038.78-4039.10 H2O radiosondes,

NCEP, US

Sub-Arctic

Winter Model

SFIT1.09e HITRAN 1992

plus updates

Fast et al. (2011)

Eureka 125HR

(2006-2009)

0.0035 4038.78-4039.10 H2O, HDO,

CH4

radiosondes,

NCEP, US St.

Atm.

SFIT2

v3.92C

HITRAN 2004

plus updates

Batchelor et al.

(2009)

100



Table A.2: Continued: Specifications of the FTIR measurements of HF at the 17 NDACC sites used for the com-

parison with the models in Chapter 5.

Measurement

site

Spectral

reso-

lution

[cm−1]

Spectral

microwindows

[cm−1]

Retrieved

interfering

species

Source of p/T

profiles

Retrieval

code

Spectroscopic

database

Reference

Ny Ålesund 0.005 4038.60-4039.24 H2O NCEP GFIT updated ATMOS-

linelist from

GFIT package,

v2.6.4

Notholt et al.

(1995a)

Thule 0.0035 4000.80-4001.20

4038.75-4039.20

H2O, CH4,

HDO

NCEP SFIT2

v3.93

HITRAN 2004

plus updates to

2007

Hannigan et al.

(2009)

Kiruna 0.0075 4000.90-4001.05

4038.85-4039.08

H2O NCEP PROFFIT HITRAN 2004 Blumenstock et

al. (2006)

Poker Flat 0.0035 4038.804-4039.15 H2O radiosondes,

UKMO,

CIRA86

SFIT2

v3.7

HITRAN 2004 Kagawa et al.

(2007)

Harestua 4038.10-4039.50

4038.86-4039.05

H2O, HDO,

CH4, HF

NCEP SFIT2

v3.81

HITRAN 2004

Zugspitze 0.0078 4038.80-4039.10 H2O col-

umn

Munich Ra-

diosonde

SFIT1.09e HITRAN 1996 Sussmann and

Schäfer (1997)

Jungfraujoch 0.004 4038.80-4039.105 CH4, NO2 NCEP SFIT1.09c HITRAN 1992 Zander et al.

(2008)

Toronto 0.004 4038.77-4039.13 H2O, HDO,

CH4

NCEP, US St.

Atm.

SFIT2

v3.82B3

HITRAN 2004 Wiacek et al.

(2007)

Tsukuba 0.0035 4038.80-4039.10 H2O, HDO,

CH4

radiosonde SFIT1.09e HITRAN 1996 Murata et al.

(2005)

Izaña 0.0036 4000.90-4001.05

4038.85-4039.08

H2O local radioson-

des

PROFFIT HITRAN 2004 Schneider et al.

(2005)

Mauna Loa 0.0035 4038.85-4039.05 H2O radiosondes at

Hilo

SFIT1 HITRAN 2000 Hannigan et al.

(2009)

La Réunion 0.0072 4038.70-4039.05 H2O NCEP SFIT2

v3.9

HITRAN 2004

updates for H2O,

N2O, HNO3,

C2H6

Senten et al.

(2008)

Wollongong 0.0035 4038.81-4039.09 H2O NCEP GFIT HITRAN 2004 Mahieu et al.

(2008)

Lauder 0.0035 4038.78-4039.01 H2O, HDO,

CH4

NCEP/ NCAR SFIT2

v3.82B3

HITRAN 2000 Reisinger et al.

(1994)

Arrival

Heights

0.0035 4038.78-4039.10 H2O, HDO,

CH4

NCEP/ NCAR SFIT2

v3.82B3

HITRAN 2000 Reisinger et al.

(1994)
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Table A.3: Specifications of the FTIR measurements of ClONO2 at the 12 NDACC sites used for the comparison

with the models in Chapter 5.

Measurement

site

Spectral

reso-

lution

[cm−1]

Spectral

microwindows

[cm−1]

Retrieved

interfering

species

Source of p/T

profiles

Retrieval

code

Spectroscopic

database

Reference

Eureka DA8

(1997-2006)

0.004 779.550-781.100 O3, H2O,

CO2, C2H2

radiosondes,

NCEP, US

Sub-Arctic

Winter Model

SFIT1.09e HITRAN 1992

plus updates

Fast et al. (2011)

Eureka 125HR

(2006-2009)

0.0035 779.850-780.450

782.550-782.870

938.300-939.300

CO2, O3,

HNO3; O3,

CO2, H2O,

HNO3; CO2

radiosondes,

NCEP, US St.

Atm.

SFIT2

v3.92C

HITRAN 2004

plus updates

Batchelor et al.

(2009)

Ny Ålesund 0.005 778.640-782.800 O3, CO2,

H2O, C2H2

NCEP GFIT updated ATMOS-

linelist from

GFIT package,

v2.6.4

Notholt et al.

(1995b)

Thule 0.01 780.120-780.320

780.700-781.250

O3, CO2 NCEP SFIT2

v3.93

HITRAN 2004

plus updates to

2007

Hannigan et al.

(2009)

Kiruna 0.005 779.000-779.800

780.000-780.300

780.300-781.300

H2O, CO2,

O3, HNO3,

C2H2

NCEP PROFFIT HITRAN 2004 Blumenstock et

al. (2006)

Harestua 779.500-780.700

779.905-780.340

CO2,

H2O, O3,

ClONO2,

HNO3

NCEP SFIT2

v3.81

HITRAN 2004

Zugspitze 0.0036 779.300-780.600

780.050-780.355

H2O, O3,

CO2

Munich ra-

diosonde

SFIT2

v3.8

HITRAN 1996

with Birk pa-

rameters for

ClONO2

Sussmann and

Schäfer (1997)

Jungfraujoch 0.005 779.300-780.600

780.050-780.355

Wide: H2O,

O3, CO2;

Narrow:

O3, HNO3,

COF2

NCEP SFIT2

v3.81

HITRAN 1996

including Birk

and Wagner line

parameters

Rinsland et al.

(2003)

Izaña 0.0036 779.000-779.800

780.000-780.300

780.300-781.300

H2O, CO2,

O3, HNO3,

C2H2

local radioson-

des

PROFFIT HITRAN 2004 Schneider et al.

(2005)

Wollongong 0.0035 779.300-780.600

780.050-780.355

Wide: O3,

H2O, CO2,

C2H2; Nar-

row: none

NCEP SFIT2

v3.92

HITRAN 2004 Rinsland et al.

(2003)

Lauder 0.0035 779.300-780.600

780.050-780.355

Wide: O3,

H2O, CO2,

C2H2; Nar-

row: none

NCEP/ NCAR SFIT2

v3.82B3

HITRAN 2000 Rinsland et al.

(2003)

Arrival

Heights

0.0035 779.300-780.600

780.050-780.355

Wide: O3,

H2O, CO2,

C2H2; Nar-

row: none

NCEP/ NCAR SFIT2

v3.82B3

HITRAN 2000 Rinsland et al.

(2003)
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A.2 Trend profiles of HCl and ClONO2 from EMAC

Figure A.1: Profiles of the trends of HCl (left) and ClONO2 (right) volume mixing ratios calculated from the three

EMAC simulations discussed in Chapter 6, between 2000 and 2050. The trends were determined with

the bootstrap method by fitting a linear function to the global annual mean vmr values. This figure is

just another way of plotting the results already shown in Figure 6.9. This was done in order to see the

difference between the simulations more clearly.
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