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An Efficient Generator for Clustered Dynamic Random
Networks?

Robert Görke, Roland Kluge, Andrea Schumm, Christian Staudt, and Dorothea Wagner

Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Germany

Abstract. A planted partition graph is an Erdős-Rényi type random graph, where, based on a
given partition of the vertex set, vertices in the same part are linked with a higher probability
than vertices in different parts. Graphs of this type are frequently used to evaluate graph clustering
algorithms, i.e., algorithms that seek to partition the vertex set of a graph into densely connected
clusters. This is motivated by the possibility to compare the computed clustering to the planted
partition or ground-truth, which can be used to assess clusterings independently of any particular
optimization function. We propose a self-evident modification of this model to generate sequences
of random graphs that are obtained by atomic updates, i.e., the deletion or insertion of an edge
or vertex. The random process follows a dynamically changing ground-truth clustering that can
be used to evaluate dynamic graph clustering algorithms. We give a theoretical justification of our
model and show how the corresponding random process can be implemented efficiently.

1 Introduction

The broad variety of network structures we encounter in many fields of science and everyday
life can mostly be modelled as graphs, where entities are mapped to vertices and the observed
relationships to edges. It is not so clear how to subdivide the vertices of these graphs into clus-
ters. In fact, no single answer to this question exists but a broad variety of approaches has been
proposed in the past [1,2]. What all these measures agree on, is that clusters are characterized
as densely connected subgraphs by some means or other. Frequently, the networks under con-
sideration evolve over time, as vertices and links between them may appear or disappear. This
can be either caused by random fluctuations or the split or merge of communities.

Even though real-world dynamic clustered instances with a reference clustering exist – that
is, we know the clustering of the data in advance – there are several reasons why we are interested
in generating artificial test data: First, we would like to produce graphs with a set of predefined
properties such as the distribution of vertex degrees or size of the clusters, enabling us to examine
the behavior of dynamic clustering algorithms under almost arbitrary circumstances. Second,
real-world instances are not numerous and, most often, subject to confidentiality agreements.

Numerous results on random graphs exist [3]. One of the oldest and most fundamental
models is the one introduced by Gilbert [4], in which each possible edge is present with uniform
probability. These model can be altered in a straightforward way to incorporate a planted
partition, i.e., a partition of the vertex set such that vertices in the same part are connected
with a higher probability than vertices in different parts [5,6,7]. These graphs are frequently
used to evaluate static graph clustering algorithms [1]; the big advantage of this approach is
that the clustering obtained by an algorithm can be compared to the planted partition or
ground-truth clustering used by the generator, which yields a possibility to assess clusterings
independently of any particular quality measure. Well-known examples of random graphs based
on this concept are the GN benchmark introduced by Girvan and Newman [8] and the relaxed
cavemen graphs [9].

Prominent and fundamental models of social networks include small world networks [10]
and the Barabási-Albert model [11]. The latter can be seen as a dynamic model for graph
growth according to a preferential attachment process. Numerous variations thereof exist, most
of which are targeted in capturing more accurately properties observed in real world social
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networks [12,13]. These models typically only simulate network growth and do not incorpo-
rate a known reference clustering. An exception is the model of Bagrow [14], where, starting
from a graph generated according to Barabási-Albert, edges are randomly rewired to incorpo-
rate a given planted partition. The well-known LFR benchmark introduced by Lancichinetti
and Fortunato is generated in a similar way [15]. While these approaches combine a reference
partitioning with a more realistic degree distribution, the inherently dynamic process is lost.
Other modifications of the planted partition model include the generalization to weighted [16]
and bipartite [17] graphs, as well as hierarchical [18] and overlapping [19] reference clusterings.
Aldecoa and Maŕın [20] propose to interpolate between two graphs with a strong clustering
structure by rewiring edges at random. This process does not keep track of an explicit reference
clustering over time, however, the assumption is that intermediate clusterings should have low
distance to both the initial and the resulting clustering. Brandes and Mader [21] use as data
for their experiments dynamic random graphs that are obtained by using exponential-family
random graph models [22] for the generation of the initial graph and stochastic actor-oriented
models [23] to model the evolution between two networks. Both steps rely on properties of
real-world dynamic networks that are given as input.

Other models for dynamic graphs based on random evolution according to a given Markov
chain include edge-Markovian Dynamic Graphs [24,25]. This model does not incorporate a
reference clustering but uses two fixed parameters p and q that represent the edge birth-rate
and edge death rate of each possible edge. In contrast to the model we consider, an arbitrary
number of edge deletions and insertion can take place in each time step.

Our Contribution In this work, we augment the planted partition model by allowing dynamic
events; edge and vertex events add or delete an edge or vertex, whereas cluster events split or
merge clusters. More formally, we generate a time series of random graphs G0, . . . , Gn, where Gt
emerges from Gt−1 via atomic updates, i.e., the insertion or deletion of an edge or vertex. Over
the whole generation process, the generator keeps track of a (dynamic) ground truth clustering.
The probability of atomic events is chosen in a way that adheres to this clustering, without losing
randomness. Graph growth/shrinkage and cluster dynamics can be simulated, steered by input
parameters. Together with the benefit of the reference clustering, this can be used to thoroughly
evaluate dynamic graph clustering algorithms, i.e., algorithms that incrementally update the
calculated clustering as new node/edge events occur. A preliminary version of our generator
is documented in our technical report [26] and the dissertation of one of the authors [27], and
has been used in [28]. The new generator documented here differs fundamentally in the data
structures used, which allows for faster practical and worst case running time, as well as linear
space complexity. As the random model and parameters used are taken from the old generator,
their description closely adheres to the technical report. Our generator is free for use and can
be downloaded as Java software from our project page 1.

Notation Let G = (V,E) be an undirected, unweighted, and simple graph, i.e., G is loopless
and has no parallel edges2. If not otherwise stated, n and m will always denote the cardinality
of the sets V and E, respectively. The degree deg v of a vertex v is the number of its adjacent
vertices. The set of all possible undirected edges in G is denoted with

(
V
2

)
. For a given graph G

its complement graph G is defined as G = (V = V,E =
(
V
2

)
\E). The pairs of vertices in E are

called non-edges of G and m := |E|.
A clustering C = {C1, . . . , Ck} is a partition of V where each of the Ci is non-empty. If not

defined otherwise, the variable k will always refer to the number of clusters in C. C(v) denotes
the cluster in C that contains vertex v. For a cluster C the graph G(C) = (C,E(C)) is the vertex
induced subgraph of C, where E(C) are called intracluster edges of C. We identify a cluster C
with the set of vertices it constitutes and with its vertex-induced subgraph of G. m(C) is the

1 http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/dyngen
2 Throughout this work, we will only consider graphs with this property

http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/dyngen
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number of edges in G(C) and m(C) =
∣∣∣
(
V (C)
2

)
\ E(C)

∣∣∣ is the number of intracluster non-edges

of C. Edges having endpoints in two distinct clusters are called intercluster edges; the number
of intercluster edges will be denoted with minter.

A Markov chain is a pair M = (S, P ), where S is a finite set of states and P a row stochastic
matrix containing transition probabilities between the states. C ⊆ S is closed if for all i ∈ C
and j ∈ S \ C the transition probability from i to j is 0. M is irreducible, if there is no proper
closed subset of S. We call a distribution vector w stationary if w is a left eigenvector of P .

2 Static Model

Gilbert’s model on the generation of random graphs with uniform edge probability [4] can be
easily modified to incorporate a planted partition [6,7]. The idea behind this random model,
which we will call G(n, pin, pout), is that vertices in the same cluster should be linked with
high probability pin, whereas intercluster edges should be present with a lower probability pout,
i.e., we always assume pin > pout.

The parameter n denotes the number of vertices. Edges are added randomly according to the
following process. The generation is based on a fixed ground truth clustering C = {C1, . . . , Ck}
of the vertices. We chose to set pout to a single value, whereas pin is a list of length k: pin =(
pin(C1), . . . , pin(Ck)

)
. For two vertices u and v the probability for edge e = {u, v} to exist in a

graph created with G(n, pin, pout) is called edge probability p(e) = p(u, v), where

p(u, v) =

{
pin(Ci) u, v ∈ Ci
pout otherwise

The probability of a graph G according to this model is thus

p(G) =
∏

e∈E
p(e) ·

∏

e∈E

(1− p(e))

Our dynamic generator is strongly based on this concept, and the first graph in the gener-
ated sequence is a G(n, pin, pout) graph. The number of clusters as well as a list of intracluster
probabilities and the uniform intercluster probability pout are input parameters. Cluster sizes
can either be set manually or determined automatically by the generator. In the latter case, we
choose the cluster of a vertex uniformly at random which entails a binomial distribution of the
cluster sizes with mean n

k .
Furthermore we introduce a coefficient β which skews the binomial distribution as follows

(β = 1 in the unskewed case): Each cluster Ci is assigned to a subinterval
[
i−1
k , ik

)
of [0, 1).

When searching for a cluster to add a new vertex to, we draw an integer i ∈ [0, k− 1]. Now, we

add the vertex to the cluster which is assigned to the surrounding interval of
(
i
k

)β
. Examples

for cluster size distributions with different values of β can be found in Figure 1.

3 Edge Dynamics

Neglecting cluster dynamics for the moment, we describe the random process we use for edge
dynamics, along with some theoretical properties of the random sequence generated. We further
give details on how this process is implemented in our generator, together with a worst case
guarantee on the running time of edge events.

3.1 Associated Markov Chain and Distribution

At first glance, we would like to have a random process that triggers an edge operation, i.e., in-
sertion or deletion, in each time step such that the relative frequency of a graph G in this
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(c) k = 10, β = 0.33

Fig. 1: Expected fractions of |V | in each cluster for k = 10, using different values of β ≤ 1.0 for
biased selection.

sequence follows its probability p(G) in the G(n, pin, pout) model. Unfortunately, such a random
process does not have to exist in general: Consider for example the simple case that we have
two vertices and the probability of the edge between these equals 0.1. Under these assumptions,
the probability of the empty (complete) graph on two vertices equals 0.9 (0.1), respectively. On
the other hand, there is only one possible edge operation in each state. Hence, each random
sequence alternates between the states, which can never lead to the assumed probabilities.

There is however a simple random process that follows prescribed edge probabilities if we
allow for repeated occurrences of a graph in the sequence. This process chooses in each step a
pair of vertices u and v uniformly at random, deletes the edge {u, v} if it exists and (re)inserts
it with probability p(u, v). There is a natural correspondence between this procedure and a
Markov chain M ′ whose states represent all possible (labeled) graphs on n vertices. It is not
hard to see that G(n, pin, pout) is the unique stationary distribution of this chain. Thus, if we
choose our initial state according to this distribution, the expected relative frequency of a graph
generated by this Markov chain follows G(n, pin, pout).

However, in the context of evaluating dynamic algorithms, we are typically interested in
sequences of graphs such that consecutive graphs follow from each other by atomic changes. We
therefore slightly modifyM ′ such that each time step that does not change the graph is discarded
and call the resulting Markov chain M . Let PE :=

∑
e∈E
(
1−p(e)

)
and PE :=

∑
e∈E p(e). Then,

the probability pdel(u, v) that one step of M deletes an existing edge {u, v} is

pdel(u, v) =

(
n
2

)
·
(
1− p(u, v)

)
∑

e∈E
[(
n
2

)
·
(
1− p(e)

)]
+
∑

e∈E
[(
n
2

)
· p(e)

] =
1− p(u, v)

PE + PE

and the probability pins(u, v) of inserting a non-existing edge is

pins(u, v) =

(
n
2

)
· p(u, v)∑

e∈E
[(
n
2

)
·
(
1− p(e)

)]
+
∑

e∈E
[(
n
2

)
· p(e)

] =
p(u, v)

PE + PE
.

Intuitively, we expect the relative frequency of unlikely states in the sequence generated by M
to be slightly larger than in the sequence generated by M ′ and vice versa, as they are less often
discarded. The following theorem makes this intuition precise.

Theorem 1. If we choose the initial graph G0 according to G(n, pin, pout), the expected relative
frequency of a graph G = (V,E) in a sequence R generated by M is

p(G) ·



∑

e∈E
(
1− p(e)

)
+
∑

e∈E p(e)

2 ·∑e∈(V2) p(e)
(
1− p(e)

)



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Proof. We use that M is derived from M ′ and look at the random sequence R′ = G′1, . . . , G
′
T ′

with T ′ ≥ T that M ′ generates. We call an occurrence of a graph at time step t ≥ 1 valid, if
G′t 6= G′t−1. The probability that G has a valid occurrence at a certain time step t is then

p(G′t=G) · p(G′t−1 6=G | G′t=G) = p(G′t=G) · [1− p(G′t−1=G | G′t=G)] (1)

If we use that the probability of G at any time step equals p(G), the probability that no edge
in G is changed from t− 1 to t equals

p(G′t−1=G | G′t = G) =
p(G′t−1=G)

p(G′t=G)
· p(G′t=G | G′t−1 = G)=

∑

e∈E

p(e)(
n
2

) +
∑

e∈E

1− p(e)(
n
2

)

Hence, the right hand side of Equation 1 is equal to

p(G) ·


1−

∑

e∈E

p(e)(
n
2

) −
∑

e∈E

1− p(e)(
n
2

)


 = p(G) · 1(

n
2

) ·


∑

e∈E

(
1− p(e)

)
+
∑

e∈E

p(e)


 (2)

The probability that a time step contains a valid occurrence of an arbitrary graph is the sum
over all pairs of vertices that the corresponding edge is flipped in this time step, which equals
2 · 1

(n2)
·∑e∈(V2) p(e)(1− p(e)). Dividing the probability of a valid occurrence of G at time step t

(Equation 2) by this probability yields the claim. ut
Until now, we have assumed that the initial graph is chosen according to G(n, pin, pout) and that
the following time steps are obtained by mere edge dynamics. As motivated in the introduction,
our generator also incorporates vertex and cluster dynamics, which we will introduce later on.
The latter two types of dynamics disturb the probability distribution in a way that is difficult
to analyze. However, as it is always possible to reach any graph from any other graph in a finite
number of steps with a positive probability, M is irreducible. The expected relative frequency
in Theorem 1 is therefore the only stationary distribution of M and we can expect the relative
frequency of graphs to get close to this distribution after a sufficiently large number of edge
operations following vertex or cluster events [29].

3.2 Data Structures and Implementation

After a brief description of how vertex pairs can be enumerated continuously, we introduce the
dynamic data structures our generator builds upon. In the second part, we show how these data
structures can be used to efficiently implement edge dynamics.

Enumerating Vertex Pairs To simplify the process of drawing random edges, we will use
a bijection between pairs of vertices and integers between 0 and

(|V |
2

)
proposed by Batagelj

and Brandes [30] to enumerate potential edges. Figure 2 intuitively illustrates this bijection by
using the adjacency matrix of the graph. As we only consider undirected graphs, potential edges
correspond to the entries below the diagonal. These entries can be enumerated by traversing
this sub matrix likewise. For given vertices u and v, the index e(u, v) can be obtained by

n−1

0

0 n−1

0
1 2

. . .

1
2

3 4 5

Fig. 2: Indexing scheme

e(u, v) =
u−1∑

k=0

k + v =
1

2
(u− 1)u+ v

Vice versa, given the edge index e(u, v), the correspond-
ing vertices u and v can be found as follows:

u = 1 +

⌊
−1

2
+

√
1

4
+ 2 · e(u, v)

⌋

v = e(u, v)− 1

2
u(u− 1)
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Fig. 3: Example of a random binary selection tree and its associated array. Blue numbers are
weights of individual elements, whereas red number correspond to the accumulated weight of
subtrees. Random number 1.08 in [0, 2.7) guides the selection process through the tree.

Random Binary Selection Tree In order to choose the next edge to be added or deleted,
we need a data structure that allows us to efficiently draw an element from a weighted set
O = {o1, . . . , on} such that the probability to choose a certain element is proportional to its
weight. Given such a data structure, a näıve generator could simply store each potential edge
{u, v} with weight p(u, v) and each non-edge with weight 1− p(u, v) and iteratively draw edges
to add or delete. Later on, we will show that one entry for each cluster rather than for each
edge is sufficient.

A simple solution for such a data structure is an array A storing prefix sums of the weights,
i.e., A[k] =

∑k−1
i=1 w(oi), 1 ≤ k ≤ n+ 1. Let W be the sum of all weights. Then we can draw a

uniformly distributed random number x in the interval [0,W ) and use binary search to find the
index k such that A[k] ≤ x < A[k + 1]. It is easy to see that this process selects each element
ok with probability w(ok)/W . For static sets this approach works well, however, we will need
to update weights frequently, and to add and delete elements occasionally. Updating the prefix
sums has linear worst-case complexity, which we would like to avoid.

We therefore use a complete binary tree to store the elements. We define each vertex of this
tree to be a tuple qi = (oi, wi, li, ri), where oi is an element, wi is its associated weight w(oi),
li is the sum of the weights in the left subtree and ri is the sum of weights in its right subtree.
The weight lm and rm of a leaf qm are simply 0. Contrary to the prefix sum array, inserting and
deleting elements as well as weight updates can be done in logarithmic time. To keep the tree
balanced, new elements are inserted as leaves with minimum distance to the root and deleted
elements are replaced by a leaf element with maximum distance to the root. Afterwards, weight
changes have to be propagated on the path(s) to the root.

The procedure for the selection of an element starts at the root s by drawing a random
number x from the interval [0, ls + ws + rs). Now there are three possible ranges for x: if
ls ≤ x < ls + ws, the element is returned; if x < ls, the carryover x is sent to the left subtree;
and if ls+ws ≤ x, the carryover x−ws− ls is sent to the right subtree. The procedure continues
recursively from there until an element is returned after at most O(log n) steps. The correctness
of the selection process can be seen by constructing an array with prefix sums of the weights such
that elements in the array are ordered according to an inorder traversal of the tree. Selecting
an element in the tree is equivalent to a binary search in this array. An example for a random
binary selection tree and the corresponding array can be found in Figure 3.

Virtual Fisher Yates Shuffle As edges between pairs of vertices in the same cluster are
equiprobable, using a binary tree to store all intracluster vertex pairs is quite inefficient. Instead,
we use a modified Fisher-Yates shuffle [31] for this task. A Fisher-Yates shuffle is a simple
method to uniformly sample without replacement from a given set of n elements. The elements
are stored in an array of size n with indices from 0 to n − 1 and the border index i of the
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Table 1: Illustrative figures for select. Index r ∈ {i, . . . , n− 1} is drawn uniformly at random.

Initial state Final state

Case 1 i r i r

Case 2 i rj i rj

Case 3 i rs i rs

Case 4 i rjs i rjs

shuffle is initially set to 0. In each step, a random number r between i and n − 1 is drawn,
the corresponding element at index r is marked as selected and swapped with the element at
index i. Then, the border index i is increased by 1. It is easy to see that each element can only
be chosen once and the probability to choose each subset of size k is the same.

A drawback of this approach is that we have to enumerate and store each element explicitly.
For elements that can be easily enumerated it is more efficient to store an implicit representa-
tion of this array one of which is the virtual Fisher-Yates shuffle introduced by Batagelj and
Brandes [30].

Let i be the number of elements drawn so far, L be the set of indices smaller than i that
have not yet been drawn and H the set of indices at least i that have been drawn. In our view,
the indices in L and H are “exceptions from the rule that small indices are selected and large
indices unselected”. The crucial observation is that the cardinality of L and H is equal. Hence,
we can define a bijection from H to L and store it in a map replace. Similarly to the original
Fisher-Yates shuffle, we can now iteratively draw a random number r between i and n − 1. If
replace(r) =⊥, i.e., if there is no entry for r in the map, index r has not yet been selected and
we select the corresponding element. If replace(r) = s, we choose index s instead. This process
guarantees that we draw in each step an unselected element with uniform probability.

After we have selected the element, we have to update the map such that it is still guaranteed
that each element in L is assigned to a corresponding element in H. Depending on the previous
state of the shuffle, we have to consider the four cases shown in Table 1. Entries of the form
replace(x) = y are depicted as arrows from x to y and the thick line marks the border between
elements with index less than i and larger i. It is easy to see that in each case a constant number
of lookup, delete and insert operations in replace suffices. If we assume that the data structure
we use for the map replace is a binary search tree, these operations take logarithmic time.
Hence, the time complexity of choosing the next element is in O(log n).

Unlike the generation of static random graphs, we also need to delete edges over time. To
this end, we have to modify the virtual Fisher-Yates shuffle slightly to deselect already selected
numbers, i.e., putting them once again in the set of selectable elements. This can be done by
making the pointers bidirectional, i.e., for each entry of the form replace(j) = i, we add a
corresponding entry replace(i) = j. Deselection now works analogously to selection: First, we
draw a random number r in the interval [0, i − 1]. If there is no entry for r in replace, r is a
currently selected index. In this case, we undo the selection by setting replace(i− 1) = r and
vice versa and move the border one index to the left. If r is an unselected element, we undo the
selection of replace(r) instead. Special care has to be taken if the element at index i−1 is also
unselected, i.e., if replace(i− 1) 6=⊥. Figure 2 depicts all possible cases and the corresponding
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Table 2: Illustrative figures for deselect. Index r ∈ {0, . . . , i− 1} is drawn uniformly at random.

Initial state Final state

Case 1 i−1r i−1r

Case 2 i−1r j i−1r j

Case 3 i−1r s i−1r s

Case 4 i−1r j s i−1r j s

updates of the map. Deselection is therefore just as efficient as selection. For each selected
element, we have to store at most two entries in the map, hence the space requirement is linear
in the number i of currently selected elements.

Overview of Selection Procedure In this section we explain how we use a combination
between a random binary selection tree and virtual Fisher-Yates shuffles to efficiently implement
edge dynamics according to the random model described in Section 3.1. For the sake of simplicity,
we first assume that we only want to draw intracluster edges, i.e., pout = 0. In this case, the
following procedure can be used.

Each cluster has an associated shuffle that stores all intracluster edges in the cluster. This
shuffle is used to uniformly select edges in the cluster to delete or to insert. To be able to
use the enumeration scheme described above, each vertex v receives two ids, a global id that
unambiguously identifies the vertex during the whole generation process and a local id in the
range [0, |C(v)|−1]. The local id is used to enumerate intracluster edges in the individual shuffles.

On top of that, we store two randomized binary selection trees Γins and Γdel that each
contain one entry for every cluster. The weight of each cluster C in Γins corresponds to the
sum of the probability weight of edge insertions within the cluster, m(C) · pin(C). Similarly, its
weight in Γdel is defined as m(C) ·

(
1 − pin(C)

)
. The overall process of selecting the next edge

operation is now divided into three steps:

1. As introduced in Section 3.1, let PE =
∑
{u,v}∈E

(
1 − p(u, v)

)
and PE =

∑
{u,v}/∈E p(u, v).

With probability PE/(PE + PE) we decide to delete and with probability PE/(PE + PE) to
insert an edge.

2. For edge deletions, we choose a cluster C in Γdel according to the stored weights. Similarly,
we choose a cluster in Γins if we have decided to insert an edge.

3. Depending on the choice in the first step, we insert or delete an edge in the virtual Fisher-
Yates shuffle associated with C.

Finally, the weight of C in Γins and Γdel has to be updated. Later on, we will show that this
process inserts an intracluster edge between two unconnected vertices u and v with probabilities
according to the random process described in Section 3.1. Before we detail this, we describe
how this procedure can be altered to be able to deal with intercluster edges.

Dealing with Intercluster Edges In principle, it would be possible to handle intercluster
edges analogously and just introduce a virtual Fisher-Yates shuffle containing all pairs of ver-
tices in different clusters. As all these vertices exist with the same probability, this would be
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C2

Ck

C1 C2 Ck

...

Einter
0 minterr

u′
v′

e = {u, v}

globalID

pseudoID

(1)(2)

Fig. 4: Example for a deselect operation in the pseudocluster: r is the integer drawn uniformly
at random in the range of 0, . . . ,minter− 1 and u′, v′, resp. u, v are the local, resp. global vertex
indices of the endpoints of the selected edge. The white area consists of the intercluster edges
and dark gray areas contain all (forbidden) intracluster edges.

perfectly feasible. The problem with this approach is that it is not easy to consistently enu-
merate intercluster vertex pairs, as, due to vertex and cluster dynamics, the number of vertices
in each cluster changes. For this reason, we introduce a shuffle for a pseudocluster containing
all vertices in the graph. This pseudocluster gets an entry in Γins with weight m · pout. As the
pseudocluster contains all vertices, the associated shuffle also contains intracluster vertex pairs.
Hence, it is possible to draw intracluster edges either in the shuffle of the corresponding clus-
ter or in the shuffle of the pseudocluster, which overestimates the probability of choosing such
edges. To correct this, we exploit our assumption that pin(C) > pout for each cluster C and
decrease the weight associated with C in Γins to m(C) · (pin(C)− pout) ≥ 0.

For edge deletions, this trick cannot be used as 1 − pout is larger than 1 − pin(C). This is
why we introduce an additional array storing the global id of all intercluster edges and draw a
random edge in this array in case we decide to delete an intercluster edge. The respective edge is
then both deleted in the array and in the shuffle of the pseudocluster. This procedure guarantees
that we do not erroneously delete intracluster edges by choosing from the pseudocluster, which is
why the weight of the true clusters in Γdel remains unchanged. The weight of the pseudocluster
in Γdel corresponds to minter(1 − pout). Whenever an intracluster edge is inserted or deleted,
either in the pseudocluster or in its own cluster, the corresponding entry in the other shuffle has
to be updated. Asymptotically, this does not increase running times and space requirements.
Figure 4 illustrates the data structure used for the pseudocluster and the process of deleting an
intercluster edge.

Correctness and Time Complexity In the following, we show that the selection process for
edge dynamics described up to now follows the random model introduced in Section 3.1.

Proposition 1. The described process inserts an edge between two unconnected vertices u and
v with probability

p(u, v)/(PE + PE).

Proof. The probability of an edge insertion is PE/(PE + PE). We first consider the case that
u and v are both contained in a cluster C. The probability of choosing C in Γins is m(C)/PE ·
(pin(C)−pout) and the probability of choosing the pseudocluster in Γins is m/PE ·pout. Similarly,
the probability of choosing {u, v} in the associated shuffles is 1/m(C) and 1/m, respectively.
Hence, these probabilities sum up to

PE
PE + PE

·
[m(C)

PE
· (pin(C)− pout) ·

1

m(C)
+

m

PE
· pout ·

1

m

]
=

p(u, v)

PE + PE
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If {u, v} is an intercluster pair, it can only be chosen via the pseudocluster. Hence, the corre-
sponding probability is

PE
PE + PE

· m
PE
· pout ·

1

m
=

p(u, v)

PE + PE
ut

A very similar proof yields the following proposition stating that deletions also follow the spec-
ified random model.

Proposition 2. The described process deletes an existing edge {u, v} with probability

(
1− p(u, v))/(PE + PE

)

Deciding whether to insert or delete an edge is done in constant time. For both operations, choos-
ing the cluster in the respective cluster tree takes time O(log k), where k denotes the current
number of clusters. Similarly, selection or deselection in the corresponding virtual Fisher-Yates
shuffle takes time logarithmic in the size of the shuffle. Hence, the expected time complexity for
both operations is in O(log n). As the total size of the shuffles is asymptotically upper bounded
by the number of edges of the current graph, it is easy to verify that the total space requirement
is linear in the size of the graph.

4 Vertex and Cluster Dynamics

Assessing dynamic clustering algorithms usually involves the question, whether the algorithm is
able to follow changes in the ground truth clustering. This is why we also included the possibility
to incorporate vertex and cluster dynamics, both of which are not covered by G(n, pin, pout).

Vertex Dynamics Vertex dynamics are steered by a parameter pχ that specifies the probability
that instead of an edge operation, we delete or insert a vertex. If a vertex operation is to be
performed, another parameter pν determines the probability that this operation is a vertex
insertion. Choosing pν to be smaller or larger than 0.5 gives the opportunity to simulate graph
growth or shrinkage. For deletion, a vertex is chosen uniformly at random and all incident edges
are deleted. To adhere to the initial cluster size distribution, new vertices are assigned to clusters
according to expected cluster sizes, similar to the generation of the initial clustering. To dampen
the effect of additional edge deletions in the course of vertex deletions and to stay closer to the
G(n, pin, pout) model, new vertices are immediately connected to other vertices according to the
prescribed edge probabilities. Näıvely, this takes O(n) time, however, it is possible to use the
geometric method introduced by Fan et al. [32] and used by Batagelj and Brandes [30] to reduce
the running time to O(deg v), where deg v is the resulting degree of the new vertex v.

︷ ︸︸ ︷ ︷ ︸︸ ︷

u

vf
u

Fig. 5: Update if vertex with
local id u is deleted.

It remains to explain what has to be done to update the data
structures. Updating the affected entry in the cluster trees takes
O(log k) time. If a new vertex is inserted or deleted, the index
space of the shuffle of its cluster and of the pseudocluster has to
be adapted. For insertion, it suffices to assign the highest vertex
id in the cluster to the new vertex and increase the index space of
the shuffle accordingly. If a vertex is deleted, we have to guarantee
that the index space is still continuous. We do this by relabeling
the vertex vf with the previously largest local id in the shuffle of
the deleted vertex u by the id of u. The same procedure has to
be performed for the vertex wf with the largest local id in the
pseudocluster. Figure 5 illustrates this case.

For the relabeling step, we first delete all edges incident to vf or wf in the shuffle and
then reinsert them using the new edge ids. Hence, the overall expected time complexity of the
deletion of vertex v is O

(
(deg v + deg vf + degwf ) · log n

)
, whereas for vertex insertion we get

O
(
deg v · log n

)
.
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Cluster Dynamics Cluster dynamics is independent of vertex and edge dynamics in the
sense that in each time step, additionally to the vertex or edge operation performed, a cluster
operation can take place. The probability of a cluster operation is determined by the input
parameter pω and the probability that this cluster operation merges two clusters is determined
by the parameter pµ. With probability 1 − pµ, one of the clusters is split by assigning each of
its vertices to one of the new clusters with uniform probability.

To calculate new values for pin, an obvious possibility is to just use the old value(s). For a
cluster split, this means that the new clusters inherit pin from the old cluster, whereas for a
cluster merge, the new cluster is assigned the average of the intracluster edge probabilities of
the participating clusters. This process leads to increasingly uniform pin values over the course
of time. For this reason, depending on a user parameter, new pin values are generated ran-
domly according to a Gaussian distribution estimated from the initially given list of intracluster
probabilities. A more detailed description can be found in our technical report [26]

One of the main motivations for using G(n, pin, pout) graphs for the evaluation of clustering
algorithms is the knowledge of a ground truth clustering the result of the algorithm can be
compared to. However, for cluster dynamics, it can easily be imagined that immediately after
a split or merge operation, the clustering algorithm has no chance to detect the current ground
truth clustering, as the change is not yet reflected in the edge structure. For this reason, the
generator keeps track of an additional reference clustering that follows the current ground-truth
clustering with some delay, roughly speaking, as soon as the involved subgraph becomes similar
enough to the ground truth’s expectation. A detailed description of the behavior of the reference
clustering can be found in our technical report [26]. To prevent the interleaving of concurrent
cluster events, as long as the change in the ground-truth is not propagated to the reference
clustering, the participating clusters are not available for further cluster operations. If, for this
reason, in some time step a cluster event is triggered but no available clusters are found, the
cluster event does not take place.

To keep the data structures up to date, we delete the involved old shuffle(s) and create one
or two new shuffles from scratch, depending on the kind of cluster operation. Furthermore, the
additional array associated with the pseudocluster that stores all intercluster edges has to be
updated. The reason for this is that for a split operation, new intercluster edges between the
two parts arise, whereas cluster merges turn some intercluster edges into intracluster edges.v
If pointers are used to link the occurrences of an edge in different data structures, all these
operations take O

(
(n(C) + m(C)) · log n

)
time, where C is either the cluster that is about

to be split or the new cluster after a merge. Removing the old cluster(s) and inserting the
new cluster(s) in the cluster trees takes logarithmic time. Hence, this does not increase the
(asymptotic) running time.

5 Experiments

We give a brief impression of the absolute running times of different sample configurations. All
values are averaged over 15 runs and do not include the time to write the graph to hard disc.

The first experiments in Figure 6a evaluate the running times for one million steps of the
generator, while only the intracluster density varies. The planted partition contains 15 clusters
and the cluster size distribution is unskewed (β = 1). The number of vertices as well as the
intercluster edge probability pout = 0.1 are constant. As the number of edges is in Θ(n2), the
time to generate the initial graph sometimes dominates the time needed for edge dynamics
and is therefore not included in the plot. Similarly, as the expected degree of each vertex is in
Θ(n), we didn’t include vertex and cluster dynamics and set the corresponding probabilities to
0. As expected, the running time is almost independent of pin. The low running times for the
experiments with pin = 1 can be explained by the fact that intracluster edges are never deleted
or inserted and all dynamics involve intercluster vertex pairs. To obtain logarithmic worst case
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Fig. 6: Running times for some sample configurations.

running time for edge operations, the map replace used for the virtual Fisher-Yates shuffles
can be stored in a binary search tree. For comparison, we repeated the experiments with hash
maps instead of these trees. It can be seen that for graphs of high density, hash maps yield
better practical running times3.

Figure 6b illustrates the running time for less artificial parameter settings. Here, the number
of clusters equals

√
n and the size distribution is skewed (β = 0.5). The probability of a vertex

event instead of an edge event is set to 0.1 and in half of the cases a vertex is added (deleted).
The probability of a cluster event is 0.01 and in half of the cases a cluster is split (two clusters
are merged). The expected degree of a vertex is constant, which yields very sparse graphs. To
give a more realistic impression of the total running time, we included the time to generate the
initial graph, followed by 100 000 dynamic updates. As above, the running times obtained by
using hash maps are better than for the tree based variant.

In summary, the experiments show that hash maps yield better practical performance and
that dynamics can be added to the planted partition model without causing much overhead.

Implementation Notes We conducted all experiments on a Dual-Core AMD Opteron(tm)
Processor clocked at 2.6 GHz, using Java version 1.6.0 22. The machine has 32GB of RAM and
2 × 1 MB of L2 cache. The implementation uses no external libraries. As hash map, we used
java.util.HashMap, whereas the tree-based implementation uses java.util.TreeMap, which
is based on a red-black tree.

6 Conclusion and Outlook

We proposed a dynamic generalization of the planted partition model that can be used to
evaluate dynamic graph clustering algorithms, with the additional benefit of a known reference
clustering. Furthermore, we described how large dynamic random graphs according to this
model can be efficiently generated and showed the practicability of this approach on selected
example configurations. In order to make this model more realistic, modifications similar to the
static model are conceivable. Possible changes in the random model include vertex movements,
less uniform degree distribution, higher clustering coefficient as well as the generalization to
hierarchical reference clusterings.

3 Note that entries in the hash map are not distributed evenly over all possible indices, which is why we don’t
have expected constant time for all parameter settings
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