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Abstract
This dissertation tackles the different aspects of the creation and transmission of (new) knowl-
edge in the context of the characteristics of a general purpose technology (GPT). Particular
emphasis is put on the role of the composition of knowledge as well as the corresponding (pre-
sumed) knowledge spillovers on the one hand and on the concrete impact of collaboration and
knowledge sharing in innovator networks on the other hand. The thesis offers a coherent lit-
erature review in its first part, analysing the theoretical role of knowledge for innovation and
growth as well as the role of knowledge diffusion and sharing. Although the development of
GPTs is particularly knowledge- and innovation-intensive and GPTs are found to be ’engines of
growth’, the role of knowledge for innovation in GPTs has not been distinctive subject to investi-
gation yet. Therefore, the two mentioned sets of research questions were tackled empirically in
this thesis using the showcase example of nanotechnology. Nanotechnology is argued to be the
key technology of the future, and empirical analyses in this thesis using patent and publication
data provided evidence that there is sensible reason to consider nanotechnology as GPT.

The first array of research questions is concerned with the role of local knowledge composi-
tion and spillovers for the development of nanotechnology. Two different approaches capture
these issues. The first one investigates how the characteristics of the regional technological
nano-knowledge base as approximated (mainly) by patents influence the creation of new nano-
knowledge. Panel negative binomial regression analyses are employed to disentangle the effects.
The second approach captures the performance of nano-firms depending on the local endow-
ment with knowledge as investigated by means of OLS and fixed effects panel analyses. The
central finding is that the regional endowment with knowledge impacts the development of
nanotechnology. Concerning the composition of the knowledge bases, evidence suggests that
specialisation and diversity are positively impacting innovation in nanotechnology. More par-
ticularly both are necessary to support nanotechnology’s characteristics both as high-technology
and as GPT.

Focusing on the role of collaboration and knowledge sharing in networks, the second array
of research questions is tackled by another two analyses. One analysis focuses on the devel-
opment of the role of collaboration and networking. The means of social network analysis of
German nanotechnology patents’ co-contributorship networks shed light on the relationship be-
tween collaboration, the efficiency of the networks and the technological overlap (and hence
the potential for cooperation) and the development of nanotechnology. The second analysis
more particularly puts an emphasis on the factors that impact the generality of a patent. There-
fore variables such as intensity of collaboration, access to knowledge, experience and overlap of
technological background are included into fractional logit analyses. Findings include that the
performance of a GPT can be enhanced through collaboration by offering efficient means for the
organisation and coordination of knowledge sharing and knowledge spillovers and by fostering
an increase in the technology’s generality level due to knowledge sharing in teams and networks.

Keywords:
Knowledge, Innovation, General Purpose Technology, Spillovers, Networks, Specialisation, Di-
versity, Patents, Nanotechnology.
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Zusammenfassung
Die vorliegende Dissertation beschäftigt sich mit den verschiedenen Aspekten des Entstehens
und der Übertragung von (neuem) Wissen im Kontext der Eigenschaften von Querschnittstech-
nologien (QSTen). Der erste Teil der Dissertation enthält einen umfassenden Überblick über
die Literatur, die die theoretische Rolle von Wissen für Innovation und Wachstum wie auch
die Rolle von Wissensdiffusion und -transfer behandelt. Obwohl die Entwicklung von QSTen
besonders wissens- und innovationsintensiv ist und QSTen gemeinhin als ’Wachstumsmotoren’
betrachtet werden gibt es bis dato keine umfassende Untersuchung dieser Zusammenhänge mit
QSTen. Hiermit beschäftigt sich diese Dissertation anhand des Beispiels der Nanotechnologie.
Nanotechnologie wird als Schlüsseltechnologie der Zukunft angesehen, und eine entsprechende
empirische Analyse in dieser Dissertation zeigt, dass Nanotechnologie durchaus zu Recht als
QST betrachtet wird.

Das erste Set von Forschungsfragen analysiert den Einfluss der Zusammensetzung von (lokalem)
Wissen und von Spillovern auf die Entwicklung von Nanotechnologie und wird durch zwei
verschiedene Ansätze aufgegriffen. Zunächst wird untersucht, wie die Charakteristika von
regionalem technologischem Nano-Wissen (abgebildet durch Patente) die Entstehung neuen
Nano-Wissens beeinflusst. Eine zweite Analyse greift den Effekt von regionaler Verfügbarkeit
von Wissen in Form von hochqualifiziertem Personal auf das Wachstum von Nano-Firmen auf.
Zentrales Ergebnis dieser Analysen ist, dass die regionale Verfügbarkeit von Wissen und dessen
Zusammensetzungen die Entwicklung von Nanotechnologie beeinflussen. Präziser sind es Spezi-
alisierung und Diversität gleichermaßen, die das Wachstum von Nanotechnologie-Innovationen
beschleunigen und die nötig sind, um den Charakteristika von Nanotechnologie als Hoch- und
Querschnittstechnologie gerecht zu werden.

Zwei weitere Analysen werden durchgeführt, um die Rolle von Kooperation und gemeinsamer
Wissensnutzung in Innovationsnetzwerken im zweiten Set von Forschungsfragen genauer zu
beleuchten. Mithilfe der Methoden der sozialen Netzwerkanalyse wird die Entwicklung von
Co-Erfinder und Co-Anmeldernetzwerken, die auf der Grundlage von Nanotechnologie-Patenten
aus Deutschland konstruiert sind, evaluiert, um den Zusammenhang zwischen Kooperation, Net-
zwerkeffizienz und der Überschneidung technologischem Wissens zu der nationalen Innovation-
sproduktivität zu beleuchten. Im Anschluss wird der Fokus eingeengt auf diejenigen Faktoren
und Einflussmechanismen, die die Generalität bestimmen. Dafür werden Variablen wie Inten-
sität der Kooperationen, Zugang zu Wissen über Netzwerke, Erfahrung und Überschneidung
des individuellen technologischen Wissens in Betracht gezogen und ausgewertet. Ein wichtiges
Ergebnis ist, dass die Entwicklung der QST Nanotechnologie durch Kooperationen und Innova-
tionsnetzwerke entscheidend vorangebracht werden kann, weil diese nicht nur einen effizienten
Mechanismus zur Organisation und Koordination von gemeinsamer Wissensnutzung und der Ef-
fektivität von Spillovern bieten, sondern ebenfalls die Generalität und damit den (potentiellen)
Effekt von Querschnittstechnologien auf das Wachstum erhöhen.
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Introduction

Knowledge and innovation are nowadays the key to the wealth of nations. They ensure

on-going economic growth more than labour, savings, investments or natural resources.

The development of industrialised economies towards knowledge economies spotlights

the role of the creation, accumulation, diffusion and transmission of knowledge for the

sustainable development of innovations. The various relationships between knowledge

and innovation are coined by the peculiar features of knowledge, i.e. the non-rivalry

and the incomplete appropriability, or, put another way the character of being a partly

public good. This property induces complex interconnected mechanisms and makes the

assessment of the fundamental drivers of growth hardly tangible, elusive and difficult

to measure.

The diffusion and the flow or, put differently, the transfer of knowledge is commonly

recognised to be a key explanatory factor for the location of innovative activity close to

other knowledge creating agents. Proximity to other sources of knowledge is accepted

to heavily impact the transfer of valuable and mostly tacit, embodied knowledge that

is difficult to codify: The application of knowledge created in one place for one pur-

pose in a (completely) different context for another (additional) purpose lowers the

cost and boosts the productivity of innovations. The availability of knowledge through

publication, knowledge spillovers, collaboration or, generally spoken, knowledge shar-

ing increases the stock of knowledge resources. These knowledge resources can be built

on, they can be recombined to new ideas and innovations eventually, thereby impacting

economic growth: Knowledge gains when it is shared. If one aims to understand how

growth is sustained by innovation, a deeper understanding of the impact of knowledge

sharing and knowledge transfers, be they spillovers, collaborations or networks of inno-

vations, on innovative activity is indispensable.

The complexity of these relationships, and in particular the relevance of proximity, both,

geographical and cognitive, as impacting innovations, does not stop at general purpose

technologies (GPTs). GPTs are characterised by a wide variety of uses, technological dy-

namism and innovation spawning that result in innovational complementarities (Bres-

nahan 2010). Due to their capacity to spur a set of complementary innovations, GPTs
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are expected to interact with other technologies along various value creation chains and

thus to serve as engines of innovation, or, more generally spoken as ’engines of growth’.

Precisely due to the innovation-inducing effect of GPTs, the pertinence of knowledge,

knowledge sharing, location and their impact on innovations are even multiplied. If

GPTs are engines of innovation and growth, the mechanisms of knowledge creation are

the prime movers of this engine. To understand how knowledge gets GPT as an engine

of growth to work is the main goal of this thesis.

The central research question of this thesis is hence how the development of GPTs as

engines of growth is sustained by the availability, the targeted application, the diffusion

and finally the recombination of knowledge. The several research questions that are

derived thereof are organised around two main working packages. One deals with the

role of knowledge composition (i.e. the nature of the knowledge stock with respect to

specialisation and diversity) and localised knowledge spillovers. The other takes the

role of knowledge sharing and networks into account. To make these main analyses

comprehensive, a preparatory working package constitutes the building block of the

empirical analyses: It introduces nanotechnology as a showcase example of a general

purpose technology and operationalizes the research questions by an exploratory case

study. However, before these empirical analyses are accomplished, the analytical frame-

work is built.

This thesis has a modular set-up. First, parts organise the thesis in a preparatory lit-

erature review and the description of the research set-up, followed by the empirical

analyses and the conclusion. The literature review in the next part provides the theo-

retical underpinnings and surveys findings of former research. In particular, Chapter 1

provides an introduction into the main economic theories that elaborate on knowledge

and growth. Chapter 2 broaches the issue of the diffusion of knowledge for innovation.

It is subdivided in three sections, one referring to the role of spillovers for innovation

and one elaborating on the impact of collaboration and networks. The intersection be-

tween the former, rather abstract and the latter, rather concrete section is constituted

by the mechanisms of knowledge transfer. Then, general purpose technologies are inte-

grated into the course of this thesis (Chapter 3). The second part derives the research

gap and the correspondingly arising research questions and presents the organisation

of the empirical research (Chapter 4). Chapter 5 introduces the most important data

and methodology employed. It follow the part of the empirical analyses (Chapters 6 –

11), that is again unitised in three different modules in form of a basic building blocks

working package and two thematic working packages. The last part concludes with

Chapter 12. Note that, in order to avoid redundancies, important approaches, concepts
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and definitions will be introduced in the preparatory parts I (content-related) and II

(methdology-related). Particularly when reading the empirical analyses chapter-wise it

is hence recommended to look up unclear notions in part I and II.

The results of the analyses accomplished offer a threefold contribution: They enhance

the understanding of the working principles behind knowledge, knowledge transfers

and innovation in general. More particularly, the results of the analyses enrich the com-

prehension of how knowledge enhances innovative activity in general purpose tech-

nologies and thereby contributes to its effects on economic growth. And last, the inves-

tigation of nanotechnology as a showcase GPT in the context of the German innovation

system offers a comprehensive analysis on the state of the development of nanotechno-

logy in Germany as backed by the creation and diffusion of knowledge. This makes it

possible to finally derive preliminary policy implications.
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1 Knowledge and Innovation

Firms and economic entities face substantial competition leading to a dependence on

innovation and technological advance in order to be able to earn – at least for a short

time – monopolistic rents (Schumpeter 1946). Innovation in this context ’[...] concerns

the search for, and the discovery, experimentation, development, imitation, and adop-

tion of new products, new production processes and new organizational set-ups’ (Dosi

1988, p. 222). Put another way, innovation is the ability to blend and merge differ-

ent types of knowledge into something new, unprecedented and commercialisable; it is

hence a process of creating economic value on the market (Feldman and Kogler 2010).

Inventions, by contrast, rather comprise the new idea, the concept or the new approach

itself that precedes the process of commercialisation (Schumpeter 1912). However, not

all inventions have to finally become innovations and result in economic value-added.

Innovations are nowadays seen as central engines of economic growth. Modern in-

novation theories date back to Schumpeter (1912), who was one of the first scholars

who described and systematised innovative activity as process of ’creative destruction’,

persistently renewing the economic structure and thereby leading to economic growth.

One of the most influential theories on economic growth, the neoclassical growth model

by Solow (1956), however, concluded that labour and capital are indispensable to ex-

plain the growth of economies. Knowledge was brought into the economic debate again

by another seminal contribution of Solow (1957) to the study of the mechanisms of

growth. Having tested his earlier theory empirically in the US, he then emphasised the

role of total factor productivity for explaining the different levels of economic growth

in different economies, hence pointing to different levels of technology. A few years

later, knowledge as possible determinant of total factor productivity had become imple-

mented into production functions within several models and studies. However, these

models were still neoclassical growth models, all explaining growth by assuming exoge-

nous technological change. But knowledge does not display the typical properties of

production factors and is not consistent with the neoclassical constant return to scale

assumptions leading to zero compensation for the costs that are associated with creating

the innovation (Barro and Sala-i-Martin 2003). Knowledge, hence, cannot be regarded

as a traditional production factor. By contrast, the feature of knowledge being a partly
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public good makes it a peculiar economic entity. Besides the necessary distinction be-

tween knowledge and information within production contexts, which encompasses how

knowledge is processed, an important and distinctive property of knowledge is the mat-

ter of knowledge externalities, also known as knowledge spillovers. These are induced

by incomplete appropriability. Such ’external economies’ have been described first by

Marshall (1890). However, they were not systematically implemented into theoretical

economic models before Romer (1986, 1990). Romer (1990), as well as Grossmann

and Helpman (1990) and Aghion and Howitt (1992) used knowledge externalities to

model non-diminishing returns at the macro level, thereby explaining long-run growth

without exogenous technological progress and constant returns to scale in production.

Modelling growth endogenously, they established the New Growth Theory. More re-

cently, the existence of externalities played a central role in the establishment of the

New Economic Geography fundamentally coined by Krugman (1991b).

1.1 Knowledge as Economic Entity

The ability to access and create new knowledge is crucial for innovation processes and

technological advance and hence for economic growth, competitiveness and subse-

quently prosperity of (economic) regions (Cincera 2003). It is, however, difficult to

give a clear definition of knowledge as there is no common one existing. By contrast,

the appreciation of knowledge depends on the context it is employed in. The value of

knowledge as produced and production good depends on the usability of knowledge,

i.e. how it can be used, translated and converted. Although knowledge surely refers

to much more than to an economic entity only, its economic properties are in the focus

in this thesis. In the economic literature, knowledge is mainly seen as commodity or

particular input that is used to produce value added. However, knowledge is a special

factor of production as it is cumulative, that is new knowledge is produced by using

the existing stock of knowledge, or, put differently the existing knowledge base, i.e. the

accumulated knowledge of an individual, an organisation or a geographic space, e.g..

In contrast to common factors of production, knowledge is inexhaustible and hence

non-rival in supply. This means that knowledge can, in theory, be exploited by many

agents at the same time without decreasing the value of the knowledge for each of

the users (Grossmann and Helpman 1991). Moreover, knowledge is only imperfectly

excludable. It diffuses easily, making it impossible for the producer of knowledge to ap-

propriate the full returns (Grossmann and Helpman 1991). These diffusion processes,

given the non-rival nature of knowledge as partly public good, are focal for the con-

sideration of knowledge as an economic entity. Knowledge created and implemented

in any particular context can also develop economic value in other contexts: Knowl-
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edge processing is likely to induce knowledge spillovers and thereby exhibit increasing

returns (Griliches 1979). The kind of knowledge that spills over is further disentan-

gled in the literature as it is emphasised that it is mostly tacit knowledge that spills

over (Audretsch 1998, Breschi and Lissoni 2001b). More particularly, knowledge has

to be split up in two parts, namely a tacit and a non-tacit part. The latter refers to eas-

ily transferable, codified knowledge with an unambiguous meaning and is commonly

subsumed under the term information, whilst knowledge in its tacit sense is difficult

to codify, vague and rather difficult to transmit (if this is possible at all). This is the

case although the information and communication technology’s (henceforth ICT) revo-

lution made it possible to reduce marginal cost of transmitting information to close to

zero. Hence, the possibility of transmitting and processing knowledge depends on the

characteristics of the knowledge: Tacit knowledge is in sharp contrast to information,

i.e. explicit or codified knowledge. Codified knowledge can be precisely and formally

articulated and subsequently transmitted easily via media in its codified form. The con-

cept of tacit knowledge on the other hand was brought up by Polanyi (1966), referring

to knowledge from a know-how-to-do perspective, i.e. knowledge that is incorporated

in individuals that are capable of processing it. Tacit knowledge is highly contextual

and difficult or even impossible to codify (Gertler 2003). The diffusion of tacit knowl-

edge is thus happening mostly via face-to-face contacts and personal relations which

require spatial proximity. For this distinction, Grupp (1998) more visually referred to

embodied and disembodied knowledge (see Figure 1.1 for an overview on the different

forms). Embodied knowledge is bound to entities and hence tacit, while disembodied

knowledge is codified and can be found e.g. in traded capital, intermediate goods or

services. Since the marginal cost of transmitting tacit, embodied knowledge rise with

spatial and cultural distance as personal relationships become less prevalent, this kind

of knowledge is no longer freely available for anyone but those proximate to its source.

Therefore, knowledge that spills over is a local public good (Breschi and Lissoni 2001b)

and knowledge in general thus a partly local public good – which is a building block in

explaining localisation of innovative activity as is done in Section 2.1.1

During the last decades a respectable shift towards knowledge-based economies or

’the era of information’ has taken place in the industrialised economies. The rise of

knowledge-intensive sectors in production and in services is the main feature of this

new era of capitalism (Tödtling et al. 2006). Innovation in these knowledge-based

1According to standard neoclassical theories that model growth externally, by contrast, knowledge is
seen as a public good produced outside the economic system. Due to bounded rationality, economic
agents are not capable of acting economically optimal. Hence, routines are developed that shall
reduce uncertainty, particularly in the field of new knowledge creation (Nelson and Winter 1982),
resulting in research close to prior existing knowledge (Boschma 2005).
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1 Knowledge and Innovation

Figure 1.1: Different forms of knowledge.
Source: own illustration.

industries differs remarkably from innovation in traditional industries with respect to

learning, the use, accumulation, transfer and recombination of knowledge, their links

to geography and hence local economic structures (Tödtling et al. 2006). In this the-

sis, such knowledge-intensive high-tech industries are especially relevant. Focusing on

high-tech sectors, Grupp (1994) pointed to the fact that, while innovative products are

often equated with high-tech products, the high-tech phenomenon is very dynamic and

cannot be captured easily. It is neither a natural nor an economic phenomenon, but

rather a political or public manifestation. Notwithstanding the lack of a clear definition

of what high-technology sectors exactly are, one feature is widely accepted: High-tech
always relies on high knowledge, hence high-tech industries are knowledge-intensive,

science-based industries. Grupp et al. (2000) defined high-tech as technologies which

usually require an average investment in R&D of more than 3,5% of turnover and fur-

ther distinguish between high-level and leading-edge technologies, with leading-edge

referring to more than 8,5% investment shares. Science-based high-technologies are

hence characterised by the importance of knowledge. In classical scientific fields, such

knowledge can be considered codifiable to a large part. New knowledge is published in

scientific journals and hence made explicit. In order to make use of this knowledge, ex-

perience and know-how is often needed which constraints explicitness and introduces

tacitness. More particularly, leading edge technologies have to be distinguished further:

While there exist a language and/or even standards on how to name, describe and han-

dle findings in stable technologies, the situation is different in emergent technologies.

Here, the field is about to be explored. Since tacit knowledge is the ultimate source of

new knowledge (Nonaka and Takeuchi 1995), these fields depend on tacit knowledge.

It is acquired through experience and not easily expressible in words. The articulation of

such ’craftsman’s knowledge’ is difficult because its understanding requires high degrees
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of expertise in the field.2 However, the sharing of this tacit knowledge among innova-

tors with different backgrounds and perspectives is critical for innovation in emerging

technologies. Over time, the tacit mental model can get verbalised and eventually con-

densed into explicit concepts (Nonaka and Takeuchi 1995). This is important for the

process of the creation of knowledge, since only tacit knowledge that is made explicit

through externalisation can be shared by others and become the basis for the creation

of new knowledge (Nonaka et al. 2003). The less emergent and hence the more stable

a technology gets, the less important the dimension of tacitness as tacit knowledge gets

more and more converted into explicit knowledge. The distinction between analytical
and synthetic knowledge bases (as was done by Asheim and Gertler (2005) and as pre-

sented in Figure 1.1) makes it possible to differentiate the knowledge used in rather

traditional industries that particularly cope with specific problem solving and hence

exhibit low levels of R&D, but high levels of learning by doing. Here, synthetic knowl-

edge dominates. Contrariwise, analytical knowledge is crucial in industries relying on

scientific inputs and tacit or embodied knowledge with formally organised knowledge

production processes. Although research is done within companies in most of the cases,

innovative agents rely on external knowledge spilling over from universities, public re-

search labs and other private agents (Tödtling et al. 2006). These industries in their

emerging stage are in the focus in this thesis, which puts an emphasis on the role of the

sharing of tacit knowledge.

1.2 Knowledge, Innovation and Growth

The creation, accumulation, implementation and application of knowledge rely on in-

novation. Innovation processes, by contrast, are dynamically diverse, frequently subject

to geographical concentration and imperfect competitive situations. To analyse this, tra-

ditional assumptions of perfectly competitive markets and constant returns to scale are

not helpful. Standard external growth models include knowledge as costless and per-

fectly transferable input factor, which is in the extent of its whole stock used by rational

individuals that are perfectly and at no cost informed. Knowledge is thus assumed to

be a pure public good in the diffusion of which spatial distance is irrelevant. Since

knowledge is non-rival, it must be produced only once. This suggests that the produc-

tion of knowledge and technological advance implies large fixed R&D cost, which leads

to the notion of increasing returns (Sala-i-Martin 2002). The average costs of knowl-

edge production always exceed marginal costs. In case of perfect competition, i.e. price

2Döring and Schnellenbach (2006) noted that in case the process of communication of messages within
an epistemic community itself is tacit (besides tacitness as an intrinsic knowledge property), benefiting
from knowledge spillovers would require cognitive proximity in addition to spatial proximity. This is
further disentangled in Subsection 2.3.1.
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equals marginal costs, no agent will hence invest in R&D. The modelling of technologi-

cal progress therefore needs the relaxation of the perfectly competitive world, which is

the foundation of the exogenous growth models, and allow for imperfect competition.

In Romer’s first model in 1986, he avoided this problem by assuming that new knowl-

edge was generated unpurposefully as a side product of investment. In the later 1990

model, Romer introduced imperfect competition in a Dixit and Stiglitz (1977)-model

with new product variety as innovation. Aghion and Howitt (1992, 1998), by contrast,

implemented innovation as improvements to existing products. The aim of innovation

here was to make previous generations of products obsolete, which is why these models

can be classified as Schumpeterian ’creative destruction’ models.

These, and many other New Growth Theory models all have in common that they

abandon constant or decreasing returns. They stress the role of technology, intellec-

tual spillovers and knowledge externalities. The non-rival nature of knowledge allows

for modelling increasing returns in competitive markets, which were needed to gener-

ate endogenous economic growth. All these theories indicate that in an endogenously

growing economy with competitive markets, spillovers are a crucial feature of the econ-

omy: The technological level, or more generally knowledge, is modelled as a (partially)

public or private good in this context. The know-how of the production process of a

specific agent can be used by others when technology is modelled as such a partially

public good. Based on the experience of other agents, an agent can develop new prod-

ucts by learning by doing (Arrow 1962). This affects the behaviour of other agents

in turn. The technological level is considered as given and as positively dependent on

the capital intensity (i.e. capital per labour unit). Now, real interests are falling with

increasing capital intensity. As the technological level increases in capital intensity, this

effect is countervailed by technological progress and hence diminishing returns on cap-

ital no longer prevail. This leads to positive growth of per-capita income, equal to the

growth rate of capital intensity in the long-run equilibrium. Hence, the positive ex-

ternality of the accumulation of capital intensity on the technological level is creating

endogenous growth. By contrast and in the case in which agents can privatise the re-

turns of their technological advance, e.g. by patenting it, innovations are characterised

as rather private goods (i.e. knowledge becomes excludable but still, it remains non-

rival in use). Successful innovations then lead to (temporary) monopoly rents which

constitute incentives to invest in R&D in order to become a monopolist by innovation.

This innovativeness leads to horizontal (Romer 1990) or vertical innovations (Aghion

and Howitt 1992, 1998), inducing higher output and growth.
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1.2 Knowledge, Innovation and Growth

The Human Capital Theory more particularly focuses on how knowledge is processed.

As discussed above, knowledge can be subdivided into explicit and tacit knowledge.

Tacit knowledge cannot be formalised and is thus indivisible to the human being who

possesses this knowledge. Explicit knowledge is transportable through media like books,

instructions or the internet. But this knowledge cannot be activated without human be-

ings, either. Thus, knowledge can be considered as incorporated in individuals who are

able to process old and create new knowledge. This, in turn, is the principle behind

the notion of human capital. The productivity of human capital is influenced by the

location of the individual (Rigby and Essletzbichler 2002). Individual human capital

is the amount of knowledge and skills of an individual. The level of human capital in

a certain region is the sum of the human capital of all individuals living and/or work-

ing in that region (Marlet and van Woerkens 2004). Knowledge as the key driver of

innovation and technological advance makes people become the motor force behind

growth. Investments in human capital can be made by learning, whereas forgetting

as well as knowledge that became obsolete due to technological advance depreciate

the value of the human capital. Investments in human capital increase future labour

productivity (Wößmann 2003). This idea was already expressed by Smith (1776) and

Marshall (1890), who both pointed to the value of human capital exceeding the one

of ’normal’ capital. Lucas (1988) then modelled human capital and physical capital as

complementary production factors where diminishing returns of each input are avoided

by accumulation of the respectively complementary factor. Hence, knowledge in the

form of human capital becomes a positive externality and finally results in economic

growth.

More recently and more particularly Acemoglu et al. (2006) introduced an endoge-

nous growth model where firms engage in imitation as well as innovation in technol-

ogy and have access to different kinds of human capital. They argued that, vis-à-vis

sources of productivity growth, innovation increases in importance relative to imitation

the closer an industry3 is to the world technology frontier. Since highly skilled human

capital is indispensable for innovation (Nelson and Phelps 1966), industries closer to

the technology frontier select highly skilled human capital in order to be able to pursue

an innovation-based strategy. By contrast, industries farther away from the technology

frontier do not only select little since they pursue an investment-based strategy. They

showed that the switch from this strategy to an innovation-based one might occur at a

point in time that is not optimal due to appropriability issues. In particular Acemoglu

et al. (2006) suggested that the organisation of knowledge production should be dif-

3Their model puts an emphasis on countries, but Acemoglu et al. (2006) themselves argued that their
model should be transferable to industries.
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1 Knowledge and Innovation

ferent in industries that are closer to the world technology frontier. The thesis at hand

focuses on such industries where innovation and hence highly skilled human capital is

needed and growth strategies are innovation-based.

14



2 Knowledge Diffusion for Innovation

Innovation tends to cluster spatially. Yet, it is highly debated in the literature whether

opportunities are equally distributed across space as it is supposed by the Neoclassi-

cal Theory, assuming that production factors are frictionlessly mobile across space – or

whether certain places offer a more fertile soil for economic activity. This view is sup-

ported by a short look at the map: Throughout humanity, economic and especially in-

novative activity has been concentrated in certain areas. And indeed and paradoxically:

Despite the worldwide trend of globalising economies accompanied by decreasing costs

for transport and submitting information, the importance of agglomerations increases.

In contrast to some economists predicting footloose multinational corporations as a re-

sult of a ’death of distance’ (Cairncross 1997), there is evidence in empirical research

that exactly these multinational firms focus their innovative activity on a few particular

locations. In the knowledge economy, where agents compete for differentiated perfor-

mance and innovation, innovative activity as high value activity has hence not become

dispersed across space. By contrast, of all economic activity it is innovation that benefits

most from agglomeration (Feldman and Kogler 2010).

The following chapter sets out to introduce the discussed reasons for this relationship

between proximity and productivity for the production of knowledge. Being a main

rationale for the need for proximity in the context of innovation, the accessibility of

knowledge is in focus in this chapter. Therefore, the investigation is split into three

parts that gradually shade into each other: One focussing on knowledge spillovers, one

tackling how knowledge is transferred and spilt over and the last one assessing networks

and collaboration in a more particular sense.

2.1 Knowledge Spillovers and Innovation

Referring to the Human Capital Theory, Lucas (1988) highlighted the clustering effect of

knowledge in cities, in which human capital and information are agglomerated. Here,

knowledge spillovers are effective and ideas can move easily due to low cost levels of

knowledge transfer, thereby stimulating innovation and growth.
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2 Knowledge Diffusion for Innovation

The reason for the clustering of innovation in agglomerations in general and cities in

particular can be explained by both, functional and sectoral specialisation of regions

(Duranton and Puga 2005). Both of them are explored in the following. The first

part of this section refers to the role of functional specialisation, i.e. the proximity-

productivity relationship, knowledge spillovers in general and innovation. Subsection

2.1.2 introduces the controversy around the role of sectoral specialisation and sectoral

diversity for innovation and thereby refers to the latter.

Functional specialisation within regions relies on the regional separation of management

and production activities of multi-unit agents that result as a consequence of organisa-

tional change. Location costs increase with centrality and hence actors are only located

at the centre of an agglomeration if the correspondingly higher costs can be justified by

increased productivity, e.g. due to access to knowledge flows. Centrality is not only ben-

eficial for headquarters and business services but also for innovation: Feldman (1994)

suggested that especially innovative activities cluster spatially. Kahnert (1998) similarly

found that highly knowledge intensive, innovative production facilities with high levels

of necessary communication tend to be centralised in the core of agglomerations. In-

novative activity is characterised by pronounced degrees of labour division, interaction

and transfer of knowledge between people and institutions and can be seen as a collec-

tive learning process. Spatial proximity to other innovating actors is hence important.

Therefore, a certain degree of agglomeration of innovators within a particular area is

assumed to be conducive to innovation activities (Porter 1998, Fritsch and Slavtchev

2010). By facilitating flows of knowledge, agglomerations are the place where individ-

uals crowd to learn from each other and where new ideas are developed faster, hence

resulting in higher levels of innovation and growth. Feldman and Audretsch (1999)

showed that there is evidence that cities are the centres of innovation, as cities are

the main producers of new knowledge and new ideas. When geographic proximity

enhances the transmission of information, knowledge and eventually ideas, this effect

should be particularly important in dense regions. Dense regions and cities have the

ability to attract human capital, thereby promoting productivity and hence inducing

growth (Lucas 1988). They concentrate knowledge and the agents who are active in

the process of knowledge accumulation. Jacobs (1969) and Lucas (1988) claimed that

these are reasons for agents to pay significantly higher rents of production factors in

cities instead of living and producing in rural areas. Localised knowledge spillovers are

regarded as a key explanatory factor for the geographical concentration of innovative

activity (Dahl and Pedersen 2004): It is the simple fact of being close to other agents

and hence benefiting from external effects, as knowledge spillovers from other agents

increase the agent’s own innovative productivity (Romer 1986) and as new ideas ’[...]
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2.1 Knowledge Spillovers and Innovation

cross hallways and streets more easily than oceans and continents’ (Glaeser et al. 1992,

p. 1127). A key hypothesis is that a certain level of human capital possessing the rel-

evant knowledge concentrated in one place generates more spillover benefits than the

same level of human capital distributed across space (Martin and Sunley 1998).

In this context, two distinct kinds of externalities have to be disentangled: Technolog-
ical externalities display direct interdependence among knowledge-producers that are

not mediated by market mechanisms: A technological externality takes place when any

production function implies unpaid production factors (Antonelli 2008). Put differently,

they arise if an agent shares knowledge with other agents without reimbursement, be

they intended or not (Grupp 1996). Such technological, non-pecuniary spillovers arise

mainly from embodied knowledge to the extent to which the produced knowledge can-

not be appropriated. Contrariwise, spillovers from disembodied knowledge are pecu-
niary externalities. These refer to an indirect interdependence. They are embodied

in traded capital or intermediate goods and services and thereby affect the produc-

tion, cost and revenue functions. A pecuniary externality takes place when the prices

of factors and products are not equal to equilibrium values (Marshall 1890, Antonelli

2008, Fischer et al. 2009). In the following, the former case of externalities are in the

focus: Technologies externalities, also known as pure knowledge spillovers, are elabo-

rated upon in the New Growth Theory.1 These deal with the role of spatial knowledge

accumulation on productivity, thereby providing a rationale for location and growth

patterns of industries (Henderson et al. 1995). Hence, knowledge spillovers increase

the efficiency of innovations and are therefore important to regional development and

growth dynamics (Jaffe 1986, Jaffe et al. 1993, Audretsch and Feldman 1996, Karlsson

and Manduchi 2001, Audretsch and Feldman 2004).2 Therefore, previously existing

technologically proximate research of others might decrease an agent’s own research

necessary to achieve the results he intended. Caniëls (2000) emphasised the intellec-

tual gains by exchange of information with a lack of direct compensation or at least less

compensation than the value of the knowledge to the producer. Knowledge spillovers

might hence be defined as ’the amount of knowledge that cannot be appropriated by the

economic agent who created it’ (Greunz 2003). Put another way, spillovers as positive

externalities can be perceived as (unintended) results of the investments and efforts of

others to create knowledge, which the local agent can benefit from without reimburse-

1For a detailed background reading on pecuniary externalities as implemented in Aghion and Howitt
(1992) and other older models that aim at explaining the relationship between structural change and
growth refer to Antonelli (2008).

2The theoretical importance of spillovers as a source of positive returns to scale in the aggregate pro-
duction function has been stressed by Glaeser et al. (1992), Grossmann and Helpman (1991), Barro
(1991), Henderson et al. (1995), Anselin et al. (1997), Keilbach (2000) and Smolny (2000), among
others. For an overview see Döring and Schnellenbach (2006).
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ment (Lambooy 2010). Hence from a technological point of view, spillovers constitute

a positive externality that introduce increasing returns to scale (Greunz 2004), while

there might be negative economic effects concerning competition and incentives to in-

novate. Last, knowledge spillovers are also called dynamic knowledge externalities since

the intensity of their effects on productivity can be regarded as a function of the stock

of knowledge (Henderson et al. 1995, Henderson 1997, Dohse 2001). Putting it in a

nutshell, localised knowledge spillovers drive the efficiency of (regional) innovations

and they are hence seen as a source of (sustainable) regional economic growth (Döring

and Schnellenbach 2006).

2.1.1 Evidence for Localised Spillovers

The relevance of the geographic dimension in this context has not been obvious for a

long time. Krugman (1991a) for example argued that knowledge spillovers are of such

high importance that they overcome political or spatial boundaries which would limit

their effects. Although significantly influencing innovation, they are moreover consid-

erably difficult to trace (Krugman 1991b). In fact and in the age of globalisation, the

possibility of transmitting information fast and at nearly no cost misleads in so far as the

knowledge spillovers considered in this context rather relate to tacit knowledge than to

information. The tacit dimension of knowledge, including the knowledge on how to

activate information properly, cannot be transmitted by modern communication media

(see Chapter 1). Knowledge spillovers are therefore not invariant to distance (van der

Panne 2004, van der Panne and van Beers 2006). Geographic proximity between agents

is necessary for the transmission of tacit knowledge, a fact which turns space into a

determinative factor for innovation and subsequently drives the differentiation of the

economic landscape (Howells 2002, Gertler 2003, Tappeiner et al. 2008). The most in-

fluential studies investigating the relationship between knowledge spillovers and geog-

raphy either rely on micro-level data with patent citations and their spatial distribution

or on the rather macro-level, aggregate approach estimating the knowledge production

function as introduced by Griliches (1979). This approach has become a key concept of

the Endogenous Growth Theory, pointing to the relevance of knowledge production for

long-term productivity growth (Romer 1986, Aghion and Howitt 1992). In this context,

the production of knowledge and innovation is regarded as a function of the local stock

of knowledge. This stock produces, dependent on its composition, i.e. the nature (and

not the size) of the knowledge stock (e.g. with respect to specialisation and diversity),

more or less effective knowledge spillovers. Put differently, innovative outputs are mod-

elled as a function of inputs in the innovation process, among which the most important

are R&D investment and human capital.
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And indeed, Jaffe et al. (1993) were the first to study the localisation of knowledge

spillovers by means of patent citations and found that citations are extraordinarily lo-

calised: It is much more likely that a patent cites another patent from the same geo-

graphical region than a patent outside that region. Later, this result was confirmed with

European data by Maurseth and Verspagen (2002), who found that distance between

the loci of patents influences the propensity of citing negatively. The other way round,

Audretsch and Feldman (1996) showed that the R&D intensity (i.e. R&D-sales ratio)

of a region is positively influenced by geographical concentration of the innovative ac-

tivity. Jaffe et al. (2000) again confirmed the localisation of knowledge spillovers by

surveying inventors on patent citations. Knowledge spillovers are indeed mostly geo-

graphically bounded to the region they originate from and hence local. This introduces

the need for proximity, which is crucial to the absorption of knowledge spillovers: The

marginal transmitting cost of knowledge is lowest with frequent social interaction and

communication (Venables 2006). Bottazzi and Peri (2003) found for European regions

that only R&D investments within a perimeter of 300 km have a positive impact on

the regional patenting activity rather than impacting uniformly across space. Anselin

et al. (1997) and Malecki (2010) even found that spillovers are most effective within

a range of 50 miles from the metropolitan area of origin. Other studies, however, find

evidence for these effects to be time dependent: The younger the invention is, the more

relevant is proximity for the inherent knowledge to spill over. Over time, the distance

travelled by the knowledge increases (Keller 2002, Paci and Usai 2007). Moreover, cul-

tural and technological proximity seem to be substitutes to geographical proximity to

a certain extent: Technological specialisation between agents is shown to have a posi-

tive impact on spillovers (Peri 2002). Also, the same culture and same language of the

region the knowledge originates from and the potential receiver of spillovers influence

the effect on innovation (Thompson 2006, Agrawal et al. 2008). Other studies observed

that knowledge spillovers are not homogeneous across firms and industries. Different

knowledge production functions have been employed for smaller and larger firms (Acs

et al. 1994) and for knowledge intensive, young and less complex industries (Audretsch

and Feldman 1996), e.g.: Smaller firms with little or no R&D are more dependent on

the appropriation of external knowledge inputs. The degree of complexity of a technol-

ogy certainly determines the spatial concentration or dispersion of innovative activity

(Cantwell and Janne 1999). Due to the high degree of tacitness, or, put another way,

the embodied nature of knowledge, innovations in more complex technologies and fast

changing, such as (particularly young) high-tech and science-based technologies tend

to be geographically more concentrated as learning and spillovers are restricted within

space. Audretsch and Feldman (1996) hence concluded that spillovers are more rele-

vant in industries where new knowledge plays a crucial role.
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The existing empirical research thus provides evidence that knowledge spillovers indeed

can be seen as a key factor to explain spatial clustering of innovation, although their

impact may differ across firms and industries. To put it in a nutshell: The investigation

of knowledge spillovers within a spatial context relies on two nowadays stylised facts:

Innovation is geographically concentrated (Feldman 1994, Audretsch 1998, Feldman

and Audretsch 1999) and knowledge spillovers are bounded spatially (Jaffe et al. 1993,

Sonn and Storper 2008). The positive effects of localised knowledge in agglomera-

tions are therefore twofold: First, spatial proximity enhances knowledge spillovers and

decreases the costs of benefiting thereof. Second, innovations cluster within agglomer-

ations, thereby reinforcing the density and probability of spillovers. Since innovations

are the main driver of technological advance, it is not surprising that economic growth

in agglomerations tends to be faster than in peripheral regions. More than that, knowl-

edge spillovers in agglomerations most presumably secure sustained economic growth

due to the absence of decreasing returns (Glaeser et al. 1992, Fujita and Thisse 2002).

However, these fundamental insights into the nature of knowledge and its impact on

innovation and growth have been stated in the literature without any comprehensive

offer of an explanation how exactly knowledge spills over, i.e. which the working prin-

ciple behind these spillovers is (Storper and Venables 2005). The evidence on localised

knowledge spillovers is of indirect nature rather than definite.3 Efforts in filling this gap

by exploring and defining the mechanisms of spillovers have been done, a part of the

results of which are sketched in Section 2.2.

2.1.2 Marshall-Jacobs Controversy

Marshall (1890) figured out substantial agglomeration forces which arise due to as-

set sharing, a market for specialised skills and positive externalities – in short: due

to the aforementioned sectoral specialisation. In the context of innovation, knowledge

externalities that arise due to the above mentioned knowledge spillovers are possibly

the most important ones. Arrow (1962) contributed a formalisation of the economic

implications of learning-by-doing, later picked up and refined by Romer (1986). The

complementarity of these contributions on the mechanism behind inducement and ex-

ploitation of (knowledge) externalities arising within agglomerations of similar firms

of the same industry was discovered by Glaeser et al. (1992), who subsumed these

3It is beyond the scope of this thesis to explore all shortcomings of theoretical and empirical research on
knowledge spillovers. See Breschi and Lissoni (2001a), Audretsch and Feldman (2004) and more re-
cently Döring and Schnellenbach (2006) for critical surveys on theoretical and empirical contributions
to the investigation of the role of spillovers for innovation and agglomeration.

20



2.1 Knowledge Spillovers and Innovation

effects as Marshall-Arrow-Romer (MAR) externalities.4 Traditionally distinguishing be-

tween industry-specific localisation economies spurred by highly specialised, dense ar-

eas and city-specific urbanisation economies as a result of the diversity within a given

region,5 Glaeser et al. (1992) investigated the role of the economic structure for the

impact of dynamic externalities.

Industry-specificity

The basic reasoning behind Marshall-Arrow-Romer industry-specific agglomeration ad-

vantages implies that local agents within the same industry can share the same assets

and benefit from goods and services provided by specialised suppliers as well as from

a local labor market pool. Efficient communication as a consequence of face-to-face

contacts builds up trust, promotes the development of networks, partnerships and joint

projects. Thereby, it enables an easy diffusion of knowledge between the various actors

involved along the value creation chain. Prevalently, the corresponding knowledge as

well as the spillovers between the various actors refer to specialisation and are hence

industry-specific.6 By ’working on similar things and hence benefiting much from each

other’s research’ (Griliches 1979) knowledge spillovers increase the available knowl-

edge stock for everyone (nearby). Benefiting from these productivity gains enhances

the overall income thereby leading to bigger markets, inducing labour mobility and also

feedbacks to production. If the mentioned effects are sufficiently large they become

self-reinforcing, thereby acting as agglomeration forces that finally lead to spatial con-

centration of economic activity.7 Spatial concentration is frequently accompanied by

regional specialisation and the emergence of clusters. Although there is still no overall

consensus on a general definition of an industrial cluster, the term usually refers to a

specialised network of firms and institutions thus including ’[...] a geographically prox-

imate group of inter-connected companies and associated institutions in a particular

field, linked by commonalities and complementarities [...]’ (Porter 2000, p. 254). Its

functional principle relies on the advantages of spatial, technological, and cultural prox-

imity and linkages across activities thereby increasing the productivity of innovation and

production processes and thus triggering improved economic performance.

4Glaeser et al. (1992) also discussed the role of competition as ’Porter externality’, but as this is not of
importance in this context, it is not outlined further.

5Since both types of the corresponding externalities refer to a certain location and thus are localised to
some extent, the notion in city-specificity and industry-specificity is preferred here.

6In the literature these spillovers are also summarised by the term Marshall-Arrow-Romer (MAR) or as
localisation externalities.

7Although these basic relationships have been well-recognised for a long time, the seminal work of
Krugman (1991a) has provided the theoretical basis for an entire field in economics which now is
labelled as the New Economic Geography. Brakman et al. (2009) provided an excellent overview.
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City-specificity

By contrast, the superior effect of specialisation on the efficiency of innovations is

doubted as well. This line of argumentation bases on the concern that too much spe-

cialisation may inhibit the emergence and evolution of new technological fields. Lock-in

effects are risked particularly with respect to the exchange between basically comple-

mentary, but heterogeneous knowledge (Fritsch and Slavtchev 2008). Thereby, a higher

vulnerability to external shocks within a strictly localised industry is produced. This

leads to the alternative estimation of the various agents’ interaction and highlights the

role and importance of so-called city-specific externalities: Already Jacobs (1969) sug-

gested that especially the diversity of the economic structure fosters the recombination

and diffusion of ideas, which is why these externalities are also known as Jacobs exter-
nalities.

Following this line of argumentation, the exchange of complementary knowledge across

diverse firms and economic agents favours innovative activity, increases the stock of

knowledge available to the individual agent and thus also strengthens productivity of

a certain region in which the agent is embedded. Arguably, the most important spill-

overs come from outside the respective industry. Thus, particularly in the context of

innovation activity, the argument of diversity and hence the importance of city-specific

externalities becomes relevant. The reasoning for this is as follows: In diverse eco-

nomies, the potential for an exchange of knowledge and ideas and the probability of

random collisions of businesses are higher (Glaeser et al. 1992). More differentiated

knowledge creates a greater variety of knowledge spillovers.

An innovation working well in one industry often can be applied, modified and/or or

further developed in other industries (Wu 2005). This phenomenon of cross-fertilisation
between basically different, but at least to some extent related technologies as well

as even between (so far) unrelated technologies becomes more probable (Granstrand

1998, Suzuki and Kodama 2004, Garcia-Vega 2006). Glaeser (1996) even stated that

the idea of growth resulting from the exchange of ideas points directly to the role of

urban centres in triggering intellectual cross-fertilisation: It is widely accepted that mul-

tidisciplinarity and diversity of a team of highly skilled individuals can help the individ-

ual members to overcome the weaknesses resulting from being an expert in a particular

field, but not being able to have an advanced overview of the possible connections of

this field to other technologies. Like this, concepts to solve problems in one technology

can be connected to other technologies and solve problems in those contexts as well

(Schroeder et al. 1989). This underlines the relevance of diversity and indicates in the

same vein that cross-fertilisation is a way in which knowledge can spill over. Agents can
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hence benefit from new technological possibilities, ideas and knowledge spilling over,

stimulating innovative activity and preventing negative lock-in effects in one particular

technology.8

Marshall vs. Jacobs

However, Marshall and Jacobs externalities are not mutually exclusive, which one might

consider a paradox at the first glance. For instance, diversity and Jacobs economies

might very well explain cross-fertilisation effects and resulting innovation but they do

not exclude the additional possibility of on-going specialisation in particular industries

in the very same region (see also Ibrahim et al. (2009) and Feldman and Kogler (2010)).

In this vein, Henderson (1997) found that large cities (>500 000 inhabitants) are not

only more diversified but also more specialised, particularly in new industries, com-

pared to medium-sized cities.

So far, the overall impact of industry-specific and city-specific externalities on regional

development or, put differently, the question whether regional growth benefits most

from Marshall or Jacobs externalities, is still an unresolved puzzle. Previous analyses

do not provide an unambiguous solution to whether specialisation or diversity in a re-

gion better stimulates knowledge production and innovation activities. While Feldman

and Audretsch (1999) found that diversity rather than specialisation is important and

Duranton and Puga (2000) supported this view for the US, Paci and Usai (1999) found

ambiguous results for the case of Italy, where both externalities played a role in the in-

novations processes, with a tendency to more relevant specialisation effects. Fritsch and

Slavtchev (2008) concluded that specialisation is important but only to a certain degree,

further emphasising the ambiguity. Meanwhile, van der Panne and van Beers (2006)

argued that both externalities affect technological development but at different stages

of the innovation process with specialisation at the beginning and diversification rather

at later stages. They hence contemplate that dynamics are relevant in this context as

well. Also, diversity and specialisation might account for different kinds of innovation,

the former potentially favouring rather radical innovations, the latter rather incremen-

tal ones (Schumpeter 1946). This is also supported by recent research. Frenken et al.

(2007) expected industry-specific externalities to rather spur incremental and process

8Besides the diversified industrial structure, the advantages of city-specific urbanisation economies also
include more benefits arising from the density and size of a region, mainly in form of static exter-
nalities: market sizes, availability of suppliers and numbers of customers increase and the public
infrastructure endowment improves (Combes 2000). Moreover, fiscal and environmental externali-
ties are relevant and might come as negative externalities as well (e.g. pollution, congestion) (de
Groot et al. 2008). One might argue that all of these could be industry-specific as well, in this context,
however, city-specific effects will always outreach industry-specific ones.
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innovations and hence to increase productivity, while they found city-specific externali-

ties to rather induce radical innovation by facilitating the recombination of knowledge

from different sectors (see also Döring and Schnellenbach 2006, Feldman and Kogler

2010). Hence, which kind of spillover is more beneficial might eventually depend on

micro-level, i.e. sectorial and firm-level conditions (Porter 1990), while a possible an-

swer might be one of composition. However, while it is not clear which industrial struc-

ture is preferable to innovations, this debate emphasises that it is not only the stock of

knowledge that affects growth, but also its precise composition in a qualitative sense

(Frenken et al. 2007).

In this context, the speed of knowledge diffusion through knowledge spillovers has

been subject to investigation as well (Verspagen and Schoenmakers 2000, Mariani 2000,

Maurseth and Verspagen 2002). There is evidence that knowledge diffuses faster (and

hence develops new value in other context faster) in regions with higher productiv-

ity and larger knowledge stocks. This is a striking support for the cumulative na-

ture of knowledge creation: new knowledge can be better employed when necessary

complementary knowledge is available. More particularly, the diffusion between re-

gions that exhibit similar specialisation patterns is more likely and faster. Döring and

Schnellenbach (2006) argued that this is a support for the conjecture that spillovers

are more likely (to be effective) if source and recipient are similar in terms of knowl-

edge needed and knowledge acquired. Following these studies, intra-industry spillovers

should spread faster than city-specific spillovers, since the heterogeneity of recipient

and source does not seem to be driving knowledge diffusion. Summing up, these find-

ings support the role of the compatibility of new knowledge to existing knowledge for

the pace of innovations.

Recent research hence elaborates on a variety of complex relationships, emphasising

knowledge as a particular and in importance increasing input in an interplay with ag-

glomeration forces and proximity (de Groot et al. 2008). Moreover, the respective in-

dustrial structure characterised by specialisation and diversity is also considered impor-

tant when investigating the impact on location, innovation, productivity and eventually

(regional) economic growth.

2.2 Mechanisms of Knowledge Transfers and Spillovers

Having unravelled knowledge, or, put differently, human capital as a cornerstone for

innovations and technological change, economic growth theories yet treat knowledge

as spreading easily throughout the economy due to its nature as intangible good. This
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assumption, however, neglects the fact that knowledge does not diffuse this easily and

frictionlessly. It is by far not obvious how knowledge is spread most efficiently. There is,

by contrast, agreement that frictionless roaming of ideas even within geographic prox-

imity remains exceptional (Martin 2011). While geographical proximity might increase

the exposition to knowledge spillovers, it is by far not a sufficient precondition for the

transmission of knowledge or at least for a granted access to this knowledge. More par-

ticularly, although knowledge spillovers are widely accepted as a diffusion channel for

technological (tacit) knowledge (Jaffe 1986, Krugman 1995, Nooteboom 2000, Breschi

and Lissoni 2001a, Breschi et al. 2003, Henderson 2007), the precise nature of spill-

overs and the mechanisms of transfer are much less clear. The transmission of explicit

knowledge, by contrast, can be mediated by market mechanisms (Breschi and Lissoni

2001a, Baumol 2002).

On purpose, this section hence tackles both, knowledge transfers and knowledge spill-

overs. Knowledge spillovers indeed are a form of knowledge transfer. In the models

of the New Growth Theory, the main focus is on the stock of knowledge and its non-

rival, non-exclusive features on the aggregate level (Romer 1986, Lucas 1988). In these

models, the concept of spillovers refers to a non-specified mechanism of transfer and is

therefore appropriate. But, being concrete, what are these spillovers exactly? Veugelers

(1998) and Lambooy (2010) considered spillovers as intended and non-intended knowl-

edge transfers (’leakages’). Fallah and Ibrahim (2004), by contrast, distinguished be-

tween transfers of tacit knowledge and spillovers. While transfers imply that knowledge

is transmitted intentionally, spillovers happen beyond the intended boundary. However,

they also argued that as soon as knowledge is exchanged, it can be used in any other

context. Hence knowledge sharing could result in spillovers and other knowledge exter-

nalities. Thereby, Fallah and Ibrahim (2004) also very strongly connected transfers and

spillovers. Lambooy (2010) argued that the concept of knowledge transfers is better

than the one of spillovers, since the latter is too general and too difficult to measure

(see also Krugman 1991b). The former, by contrast, makes its possible to capture and

investigate both, intended transfers and unintended spillovers – both as externalities.9

To operationalize spillovers and make them tangible, the approach of knowledge trans-

fers in a broad sense is employed in this thesis as well in order to capture knowledge

spillovers in particular. Since the transfer of tacit in contrast to explicit knowledge can

be assumed to be different with respect to the relevant mechanisms, the next section

only focuses on the form of knowledge that is most relevant in the context of innovation

and spillovers; hence on the tacit form as highlighted in Figure 2.1.

9Pure unintentional spillovers, Lambooy (2010) argued, should rather be reserved for the investigation
at the aggregate level where only the output of knowledge investments is interesting.
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Figure 2.1: Diffusion of tacit knowledge and knowledge externalities.
Source: own illustration.

2.2.1 Preconditions

First of all, tacit – embodied – knowledge is tied to persons. This is why relational

structures and contexts should be stressed (Bathelt and Glückler 2005). In this vein, a

common knowledge and competence base, i.e. a cognitive proximity, is often seen as

a prerequisite for bringing people together and enable them to learn interactively. Put

another way, an absorptive capacity as complementary asset is required to be able to

identify, interpret and exploit new knowledge (Cohen and Levinthal 1990). The recip-

ient of knowledge, as it is argued, has to be cognitively able to employ the available

knowledge. This capability refers not only to a common knowledge and competence

base, but also to the individual’s willingness to incur the costs of learning on how to

implement the new knowledge. Bernstein and Nadiri (1988) for example showed that

own knowledge spreads and new, externally gained knowledge is received quite differ-

ently across agents working in different industries. Therefore, Singh (2008) proposed

that the reception of new knowledge in form of spillovers needs informal mechanisms

promoting knowledge integration as well as learning across locations.

Boschma (2005) argued that organisational arrangements coordinate the exchange and

transfer of knowledge. Furthermore, economic relations are to some extent always em-

bedded in social contexts that affect the economic outcome. Above all, trust enhances
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the exchange of tacit knowledge. Institutional proximity refers to a system of norms and

rules that is indispensable to the unhampered flow of knowledge between agents. Only

finally Boschma (2005) emphasised the role of geographic proximity, as this defines the

extent to which positive knowledge externalities are effective at all.10 Geographical and

at least a certain degree of cognitive proximity are sufficient (but not necessary) for in-

teractive learning, while all other dimensions of proximity may strengthen or substitute

these.11 I.e. a certain degree of overlap coinciding with a certain extent of complemen-

tarity of the accumulated knowledge of two agents, or, put another way, their individual

knowledge bases and geographical co-location are sufficient for knowledge spillovers to

occur. Too much distance, e.g. between two very different knowledge bases with a very

small overlap might entirely suppress knowledge transfers by prohibiting communica-

tion and/or lowering the absorptive capacity. By contrast, too much proximity might

inhibit the positive effects of knowledge transfers, as no additional and complementary

knowledge can be added, hence no innovation can be produced. Thus, Boschma and

Iammarino (2009) proposed that it is neither regional diversity nor regional speciali-

sation (both referring to the optimal distance between knowledge (bases)), but related
variety that is most conducive to effective knowledge transfers and spillovers for inno-

vation. It triggers innovation by nourishing absorptive capacities through the low level

of distance between platform sub-fields.12

Malmberg and Maskell (2006), by contrast, assumed interactive learning processes,

and hence the creation of the capabilities necessary to process the new knowledge, to

occur along the dimensions of learning by interaction and by monitoring. This is of-

ten unintentional rather than mediated by market mechanisms, encompassing frequent

face-to-face interactions, local institutional and organisational embeddedness and a (so-

cial) system of norms and rules creating a local buzz (Storper and Venables 2005). Yet,

in the context of increased competition as a result of globalisation, global pipelines

must not be underestimated. Searching for global knowledge is much more planned

and conscious (Bathelt et al. 2002). Long-distance collaboration is therefore certainly a

part of new knowledge creation, although it can be assumed that this global knowledge

connects to the core competencies of the searcher, hence offering less opportunities to

benefit (unintendedly) from a very different but somehow complementary knowledge.

Often, this long-distance collaborations even reflect prior co-location and hence mirror

(past) geographical patterns (Bercovitz and Feldman 2011).

10A feature inherent in all kinds of proximity is the reduction of uncertainty and the solving of coordina-
tion problems (Boschma 2005).

11See Boschma (2005) for further details on proximity, as well as Feldman and Kogler (2010).
12Cooke (2009) directly related this to ’general purpose innovations’.
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However, given the absorptive capacities, related varieties or local buzzes, knowledge

transfers and spillovers can happen through different channels. The extent to which

knowledge can effectively be transferred depends on the features of the knowledge

good (Cincera 2003). However, the notion of the local buzz (Bathelt et al. 2002, Stor-

per and Venables 2005) emphasises that knowledge externalities can become effective

without any concrete interaction. But still, most frequently face-to-face contact is ar-

gued to be a critical medium for the efficient transmission of knowledge, which points

to both, geographical and cognitive proximity (Storper and Venables 2005).

2.2.2 Actual Transfers and Spillovers

Marshall (1890) already underlined the relevance of direct and unplanned contact

between economic agents. Lucas (1988) also pointed out that knowledge accumu-

lation, being a social activity, works through face-to-face interaction. By face-to-face

contacts, diversity and cosmopolitanism exhibit their positive effects (Storper and Ven-

ables 2005). Following von Hippel (1994), ’sticky’, i.e. highly contextual, uncertain

knowledge is best transmitted by frequent face-to-face contacts. One might even go one

step further and contend that face-to-face contacts are indeed necessary to exchange

tacit knowledge (Lawson and Lorenz 1999). After all, tacit and embodied knowledge

is bound to the individual and transfers of such knowledge compellingly require the

involvement of the individual. This must not, but in the most cases does, refer to di-

rect interpersonal contacts in form of face-to-face interaction. Lucas (1988) modelled

knowledge accumulation as such a social activity: Highly educated individuals interact

face-to-face and hence increase both, their own and each other’s knowledge. This pro-

cess of interpersonal knowledge exchange can then be subdivided into intentional and

unintentional transfers (e.g. of unprotected, unvalued knowledge or knowledge that is

non-excludable in personal interactions), the latter ones referring to spillovers in the

classical sense (see Figure 2.1 for a visualisation). In any case, face-to-face contacts

build up a platform of communication, trust and exchange. No matter if inter- or intra-

industry knowledge transfers, both happen via face-to-face communication. As Nelson

and Winter (1982) and Feldman and Audretsch (1999, p. 412) similarly pointed out,

a basis for interaction, such as the proximity of the new knowledge to the individual’s

prior knowledge base facilitates the exchange of old and the generation of new ideas

via face-to-face contacts. But even if the individuals interacting have completely dif-

ferent backgrounds, face-to-face contacts can help to develop a common language that

makes coordination between different key concepts possible and opens opportunities

for inter-industrial spillovers without a common knowledge base (Desrochers 2001).

This need for face-to-face contacts indicates why human capital accumulation works
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better in dense cities than in rural areas and that a given amount of human capital

in turn yields more benefits stemming from knowledge externalities (Marlet and van

Woerkens 2004). Dahl and Pedersen (2004) examined the role of face-to-face contact

driven informal networks for the development of regional agglomeration and found

that such networks are the main drivers of knowledge transfers between agents. The

value of these contacts partly even converges to more formal trading of information

(von Hippel 1987). The concept of ’good’ face-to-face contacts is closely related to that

of ’know-who’, which involves information about ’who knows what’ and ’who knows

to do what’. This particularly includes the social capability to establish relationships to

specialised groups with the experience one can best profit from (Lundvall 1996). With

the best knowledge transfers one can get, absorptive capacity is highest which in turn

accelerates the diffusion of knowledge.

2.2.3 The Realisation of Face-to-Face Interaction

A typical mechanism for realising such face-to-face contacts is interfirm movement of

highly skilled labour (Breschi and Malerba 2001, Breschi and Lissoni 2001a,b). Knowl-

edgeable workers who move between firms enhance the absorptive capacity and the

ability of firms to recombine knowledge to new ideas, to make use of good ideas spilling

over and to improve the productivity of their innovativeness (Storper and Venables

2005). The circulation of workers brings their previous know-how into a new context.

Thereby, different combinations of knowledge might bring up new ideas. Another im-

portant aspect in this context is the employment of university graduates, constituting

a mechanism for knowledge transfer from university to industry (Dasgupta and David

1994). Moreover, Zucker et al. (1998) argued that ’star-scientists’ embody highly rel-

evant and large amounts of knowledge. These scientists tend to enter in contractual

arrangements with existing firms or start up their own firm in order to extract the

supra-normal returns from their human capital. Localised intellectual capital which is

embodied in such star-scientists is hence a key to the development of new technolog-

ical start-up firms (see also Audretsch and Feldman 2004). The skills and knowledge

of these scientists are, in addition, another mechanism by which knowledge spills over

from universities to firms applying the universities’ research results (Knudsen et al.

2007). Star scientists thereby shape the importance of spatial proximity, as they are

more likely to be located in the same region the firm is located in when the transfer of

new (economic) knowledge is involved. More generally, research laboratories of uni-

versities provide one source of knowledge that is accessible to private firms and can be

exploited commercially. Hence knowledge created in universities induces spillovers and

thereby contributes to the generation of innovations by industrial firms (Feldman and
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Desrochers 2003). Researchers in private enterprises that have had an idea for an inno-

vation would, if it is not valued enough in their company, leave the firm and build-up

their own firm. Since the knowledge was generated in their old firms the new start-up

is a spin-off from the existing firm. Such start-ups normally do not have a large R&D

laboratory, but they are able to benefit from exploiting the knowledge and experience

they gained in their previous firms (Audretsch and Feldman 2004).13

Summarising, the literature assessing the transmission and diffusion of tacit knowl-

edge emphasises the importance of face-to-face interactions (Cowan and Jonard 2004).

There might exist other channels of diffusion of knowledge in innovation contexts, but

the personal one seems, by definition, the crucial one for the exchange of embodied

knowledge. The role of collaboration and particularly the role of corresponding net-

works are therefore explored further in the next section.

2.3 Collaboration in Networks and Innovation

As argued above, the diffusion of knowledge happens mostly interpersonally. Particu-

larly in these cases, geographical and cognitive proximity are accepted to improve the

efficiency of knowledge transmission since more geographically and cognitively prox-

imate individuals more easily establish interpersonal contacts. Consequently, knowl-

edge is not equally accessible and not equally diffused across innovators, regions or

(technological) innovation systems. In this context it is an important observation that

the knowledge production in science and technology over the last decades was charac-

terised by an increasingly collaborative nature (Meyer and Bhattacharya 2004, Wagner

and Leydesdorff 2005). This indicates that researchers need to collaborate in order to

continue contributing to state of the art knowledge production (Autant-Bernard et al.

2007, Hoekman et al. 2009). Since collaboration in innovations is a process involving

both tacit and codified knowledge exchanges (Gao et al. 2011), this also points to the

increasing role of face-to-face interactions for innovation efficiency. Face-to-face inter-

actions within the boundaries of a region or a technology can be considered as networks

of collaboration: If tacit knowledge is diffused by means of face-to-face contacts, the in-

vestigation of this diffusion must take explicit account of the structure of connections

between agents (Cowan and Foray 1997), since these networks constitute an impor-

tant mode for knowledge transmission. Evidence from empirical research indicates

that most industries have well-established informal networks through which knowl-

edge is exchanged and traded (von Hippel 1987, Schrader 1991, Hicks 1995, Cowan

13See Feldman (1999) and Breschi and Lissoni (2001a) for more complete overviews of spillover mech-
anisms.
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and Jonard 2004). The analysis of such networks plays a crucial role to understand

the dimension of the relationships between social entities in fostering the exchange of

knowledge for innovation.

The increasing complexity of technologies and the accordingly shifting research fron-

tiers highlight the role of very specialised researchers with an in-depth knowledge on

the field. On the other hand, the convergence of classical disciplines in many novel high

technologies considerably challenges the knowledge bases of individual researchers or

even research teams within an organisation: In these branches, only a few innovators,

i.e. single actors, are capable of innovating on their own since this means that they have

to have access to a huge amount of specialised and at the same time heterogeneous and

diversified knowledge. It is hence not only the sheer amount and specialised depth of

knowledge that is essential to innovations, but also the complementarity and novelty of

knowledge. This is needed in order to be able to exploit and recombine existing knowl-

edge and develop new ideas out of it. The need for targeted and in-depth, but yet to a

certain extent diverse knowledge results in a significant trend towards multi- and inter-

disciplinary research, triggering collaboration between researchers (Calero et al. 2006).

Particularly in novel and complex fields, research tends to become a collective effort

encompassing diverse actors, competencies and capabilities. Allen (1983) introduced

the concept of ’collective invention’ pointing to the phenomenon of exchange and avail-

ability of (tacit) knowledge within social networks of – even competing – agents that

results in faster diffusion and accumulation of knowledge conducive to the innovation

processes. Agents hence enter networks and collaborative alliances with other agents

to gain advantages they lack when operating independently. Innovation-seeking agents

need sources of expertise and knowledge that lie beyond their scope. The organisa-

tional institutions that connect individual researchers and their research institutions are

therefore discussed to play a crucial role (Laredo 2003). Still, local teams constitute the

basis for successful research, but emphasis is also put on the broad cooperative elements

that actually reflect reality in the scientific processes nowadays. Therefore, not only the

direct knowledge dimension focusing on which knowledge has to be developed, but also

indirect dimensions of knowledge pointing to organisational aspects of how knowledge

diffuses in such networks have to be considered.

When different individuals jointly work on R&D projects in order to develop innova-

tions, knowledge transfers are obviously occurring. In these cases, spillovers are con-

sidered to be at least partly voluntary. Thus, partners in R&D collaboration networks

can improve on the knowledge transfer among them (Veugelers 1998). Thereby, knowl-

edge is exchanged directly as well as as a side-product and hence in form of spillovers.
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Through such networks of collaboration, R&D partners can gain access to implicit as

well as only partly accessible explicit knowledge (Schmoch 2003). In any case, collab-

oration of this kind enhances not only the exchange of tacit know-how, but also mutual

learning, cross-fertilisation, unintended spillovers and thereby finally exponentiates the

value of each individual’s knowledge.

For such collaborations to be established, it is crucial that agents expect the relationship

to be reciprocal regarding the quality and quantity of knowledge that would be ex-

changed; otherwise agents would refuse to be a source of knowledge spillovers. The

more spillovers there are to be expected, the higher the levels of cooperative R&D

(Veugelers 1998). Collaboration, hence, can be seen as an integral foundation for

trust, which allows sharing tacit knowledge and thus encourages the diffusion of knowl-

edge and thereby fosters innovation (Almeida and Kogut 1999, Singh 2005). Moreover,

knowledge assets are not only incorporated in people, but are also often embedded

within relationships between people or organisations. As Ranft and Lord (2000) pointed

out, a significant share of knowledge might be located in formal and informal networks

of relationships within and across organisations (see also Nelson and Winter 1982).

Döring and Schnellenbach (2006) interpreted this as emphasis on the importance of

social networks for the fast diffusion of knowledge. This is confirmed by a number

of studies on the role of networks in innovating regions, among them the prominent

example of Saxenian (1996), who found that networks are important for innovating

actors in Silicon Valley and the Boston Area and very recently Meyer et al. (2011) and

Schiffauerova and Beaudry (2012) who showed the same for nanotechnology in the UK

and Canada.14 Schrader (1991) empirically showed that the frequency of R&D collabo-

ration has a positive impact on innovativeness. In the industrial organisation literature

it is moreover argued that, in the absence of cooperation, knowledge spillovers are

considered unintended. Eventually this results in lower R&D investment levels. Co-

operation, instead, enables agents to internalise such spillovers and increase efficiency

(Kamien et al. 1992, de Bondt 1996, Amir et al. 2003).15 It has hence become widely ac-

cepted that cooperation between (regional) actors an important channel for knowledge

transfer and spillover (Fritsch and Franke 2004) and that agents who are integrated

in a network of inter-agent relations exhibit a better innovative performance (Gilsing

14Cowan and Jonard (2003) introduced some documented historical examples for collective inventions
and innovative networks already in the early 1800s and showed that, contrary to Allens conjecture of
the decrease of the importance of collective invention with the rise of the industrial R&D lab (Allen
1983), rapid and free distribution of knowledge is an important input to innovations today . The most
important proof for the crucial role of collective invention they contended the internet and emerging
developer communities in projects such as LINUX.

15The role of R&D cooperation has been more extensively treated in the competition policy literature,
among others Katz (1986), Katz and Ordover (1990), Jorde and Teece (1990) and Vonortas (1994).
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et al. 2008). Consequently, innovation-related collaboration is also discussed by policy

makers who increasingly implement network promotion policies. They thereby follow

scholars stating that suboptimally low R&D investment might not only be due to ap-

propriability problems, but also due to a lack of coordination of actors (Bresnahan and

Trajtenberg 1995, de Jong and Freel 2010). By contrast, the focus on the role of prox-

imity has also been questioned in the literature. Empirical work that points to a higher

incidence of extra-local linkages over local linkages in the innovation context suggests

that it is not only spatially proximately originating, external knowledge that supports

innovative activity, but also knowledge stemming from other geographical scales such

as international cooperations (de Jong and Freel 2010).

In the contexts of the range of knowledge diffusion in networks, Callon (1997) put

forward the difference between different states of networks. Emergent configurations of

networks rather consist of research laboratories, where huge investments are necessary

in order to make knowledge accessible and applicable. Moreover, embodied knowledge

is in this stage not substitutable through codified knowledge. Tacit knowledge hence

dominates (see Chapter 1): Mechanisms to externalise the newly created tacit knowl-

edge do not yet exist. This limits the range of the knowledge and the necessity of sharing

tacit knowledge for innovation and for the applicability of the newly created knowledge

as a source for future innovations (Nonaka et al. 2003) points to the role of face-to-face

interactions as transmission mechanism. With the expansion of the emergent network

towards a stable configuration, the specific knowledge in the networks becomes more

and more general. The public good character of the knowledge in the network develops

and it becomes non-exclusive in the networks it circulates in. Codified knowledge dom-

inates in stable networks, actors are mostly private firms. Emergent networks hence do

not produce any conflict between appropriation and knowledge sharing since the use

and replication of the knowledge requires a costly infrastructure. Networking is per-

ceived as ’strategy of interessment’ (Callon 1997, p. 17) in order to rouse interest and

acceptance for research results. Stable configurations, by contrast, are characterised by

a homogeneous set of actors with the same knowledge bases and the same expectation.

Networking persists because costs and risks are seeked to be shared and own positions

shall be stabilised. However, both configurations are not expected to be found in their

pure forms, as intermediate configurations are the most common ones (Callon 1997).

Rather, a given configuration has to be regarded as a snap shot of the same dynam-

ics which points to the progressive development of a network (Schmoch 2003). This

approach can be put forward to account for the development of networks, particularly

between science and industry and particularly if the emergent phase is long enough in

order to establish relations (Schmoch 2003).
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To sum up, collaborations and the corresponding networks are assumed to play a more

and more important role in innovation activity. Particularly the increasing complex-

ity of emerging, science-based technologies reveals a necessity for joint research and

collaboration on the field (Haagedorn 1993). Thereby, different, but potentially com-

plementary knowledge can be exchanged resulting in the (faster) generation of new

knowledge induced by mutual learning. Subsequently, networking potentially fosters

the diffusion and the exchange of knowledge and thereby drives innovative activity.

The motivation to form network relations, however, depends on the actors’ need for

access to knowledge and thereby on the state of the network itself.

2.3.1 Geographic and Cognitive Systems of Innovation: Which
Network to Consider

There is a large body of literature dealing with national or regional innovation systems
(Lundvall 1992, Cooke 1992). Within such a geographic system of innovation it is a

central assumption that actors do not innovate on their own but in collaboration and

cooperation with other agents. The concepts hence rely on the mechanisms of learning

and the exchange of knowledge (Lundvall 1996). These approaches refer to the border

of a geographic region as border of the innovation system (i.e. national or regional bor-

ders), within which the respective policies (such as property rights and funding, e.g.)

influence innovative activity. More particularly, the requirement of direct interaction for

the transmission of tacit knowledge points to the relevance of spatially bound innova-

tion networks: Geographical proximity reduces the cost of establishing and maintaining

face-to-face interactions. Innovative networks most presumably hence do not stretch

across national or regional boundaries and are often relatively stable once they have

been established (Wilkinson and Moore 2000). Actors in these innovation systems are

public and private, large and small. The important point about innovation systems is

how these actors are interrelated, how they are formally and informally connected to

each other and how knowledge is processed in this system of innovation in order to

eventually produce innovation (Meyer et al. 2011).

Cognitive systems of innovation, by contrast are not defined by national but sectoral

or technological borders. The distinctive element is constituted by the idea that inno-

vation patterns differ drastically across the technologies they rely on. Such a cognitive

system consists of a distinctive knowledge base, a defined set of inputs, certain key tech-

nologies, and a corresponding demand for its innovations (Malerba 2002). As a partic-

ular subgroup, technological systems concentrate on general purpose technologies with

their widespread applications across different industries (Bresnahan and Trajtenberg
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1995, Meyer et al. 2011). However, it is mainly the borders, i.e. the perspective of

investigation that distinguishes this approach from the geographical ones. The core of a

technological system of innovation is still how the actors jointly advance the technology.

For instance, this approach has been used in the past in order to study the development

of specific technologies. As Meyer et al. (2011) pointed out, similar analyses could be

particularly interesting for policy-makers that aim at designing instruments to support

emerging technologies.

Both approaches are not capable of explaining technological change alone; more par-

ticularly it is very difficult to disentangle between the systems: Innovation is not taking

place in one region only – irrespective of the scale taken there is most presumably

always an ’outside’ that is important. On the other hand, innovation cannot be seen iso-

lated from regional conditions only in the context of their technological underpinning

(Oinas and Malecki 2002). Hence to completely display how innovation is processed in

networks one has to consider both, the technological and the regional dimension.

2.3.2 Knowledge Diffusion for Innovation in Networks

Both streams of research, however, emphasise the role of cooperation and collabora-

tion of actors to gain access to external knowledge. And indeed, cognitive proximity

combined with geographic proximity is found to culminate in more effective knowl-

edge transfer (Sorenson and Stuart 2001, Owen-Smith and Powell 2004). It was only

recently that attention in the economic literature was drawn to the properties of net-

works processing the knowledge needed for innovations and the corresponding impact

on knowledge diffusion and rate of innovation (Cowan and Jonard 2003, Cowan et al.

2004, Cowan and Jonard 2004, Cowan et al. 2005, Schiffauerova and Beaudry 2009,

Chen and Guan 2010, Schiffauerova and Beaudry 2012). Notwithstanding the kind

of possible organisational arrangements that constitute collaborations for innovation,

physical interaction finally takes place between people, i.e. between inventors. Inter-

personal networks of inventors, constructed on the basis of face-to-face interaction are

hence systems of channels for the flow of knowledge (Zucker et al. 1998). Sorenson

(2004) found evidence for an increase in importance of networks between agents the

more complex the knowledge base the inventors rely on. Moreover, this complexity also

affects the distance this knowledge can travel. Studies elaborated on the role of the em-

beddedness of agents in order to find out how and which kind of collaboration drives

innovative performance. Moreover, studies at the network level have also been con-

ducted, pointing to the properties of the alliances as affecting innovation: Direct as well

as indirect ties and their redundancy (i.e. the frequency of the collaboration with the
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same partners) are relevant for the innovative performance of an agent (Ahuja 2000,

Baum et al. 2000, de Jong and Freel 2010). The diffusion potential, i.e. the principle of

alliances being inter-agent channels for knowledge transfers is seen as the main cause

for this.

Knowledge for Exploitation

When knowledge, ideas and inventions are predominantly exploited, actors collaborate

because they can gain access to complementary know-how (Teece 1986) and/or speed

up the innovation process when they understand and elaborate on the same issues

and hence use a similar underlying knowledge base. This concept is strongly related

to the principle of absorptive capacity (Cohen and Levinthal 1990). Empirical studies

have indeed shown that the knowledge transferred and implemented becomes less with

decreasing similarity of the different actors’ knowledge bases when the innovative goal

is an exploitative one (Mowery et al. 1998, Fleming and Sorenson 2001).

Knowledge for Exploration

Exploration, by contrast, is a more radical part of the process of innovation since it refers

to the abandoning of old and the development of new ideas. Therefore, exploration is

a much more uncertain exercise with unforeseen outcomes. It is hence reasonable to

argue that is not the main function of transferring similar complementary knowledge

that makes networks relevant in this context. Contrariwise, networks are relevant in

their function as transfer mechanism of new knowledge, which is indispensable for the

creation of novelties. Here, it is not the similarity but the complementarity of knowl-

edge bases that constitutes an incentive to cooperate (Gilsing et al. 2008).

Putting these arguments together, innovating agents face a dual task: In order to be

able to develop new ideas, they have a strong need of heterogeneous and diversified

knowledge as potential sources of novelty. Obviously, this diversified knowledge re-

quires disintegrated network structures, i.e. continuous opportunity to get in touch

with new actors with diverging and novel knowledge bases. However, once valuable

novel knowledge is accessed it has to be processed and absorbed in order to create

value within the organisation. Therefore, the embeddedness in a dense and more ho-

mogeneous, redundant network providing access to complementary knowledge can be

seen as beneficial (Hansen 1999, Cowan and Jonard 2003, Cowan et al. 2004, Gilsing

et al. 2008).
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2.3.3 Network Structure Properties

The advantages of agglomeration economies and geographical proximity have been ad-

dressed in a prolific literature. Many different forms of knowledge transfers in close

proximity generate territorial externalities, or, put differently, localised knowledge spill-

overs, such as informal knowledge flows, interactive learning, face-to-face contacts and

network intensity (Storper and Venables 2005, D’Este et al. 2011). Recently, Social

Network Analysis (SNA) has proved to be a suitable tool for the analysis of innovation

networks. SNA is an interdisciplinary methodology, mainly developed by sociologists

and mathematicians. Due to the formal techniques employed to measure relation-

ships among interacting units, this approach has become interesting for many other

disciplines as well (Wassermann and Faust 2009). In economics and geography, the

literature around regional and national innovation systems claims the possibility of fun-

damental contributions to the field, disentangling the interaction of local institutions

and agents in the innovation process more systematically. Thereby, information on

how these agents are connected, and at which spatial levels, is analysed (Ter Wal and

Boschma 2009). Network analysis, however, is not confined to social contacts in their

basic sense: Any proximity that relates two social entities with each other can be used

to build a network. However, the networks that are analysed by means of SNA typically

consist of agents and relational ties between these agents, possibly constituting different

clusters again: Direct relationships between two agents are modelled with a relational

tie. These may also exist between groups of agents sharing the same characteristics, e.g..

Within SNA the terminology from graph theory is adopted, and hence agents constitute

the nodes or vertices of a network, while the linkages between the actors are employed

as lines or relations connecting the vertices, more particularly as arcs (directed) or edges
(undirected), which altogether constitute a graph. The kind of linkage is dependent on

the underlying data; a link might display pure knowledge, friendship or collaboration.

A network consists of a graph and additional information on the vertices or the lines of

the graph (de Nooy et al. 2008).

Given the assumption that a network improves its members’ accessibility of knowledge,

the impact of the network structures on the flow of knowledge is assessed several times

throughout this thesis. Therefore, as already mentioned, the approaches of SNA and

the corresponding assessment of network structure properties are useful.

The most basic measures of SNA are shortly introduced here and put into context in or-

der to provide the overview of the basic network structure properties necessary for the

grasp of the discussed concepts. These would structurally be subsumed under ’method-

ology’ and should consequently be tackled in Chapter 5. However, they are essential for
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the discussion of the literature on efficient knowledge diffusion in networks, which is

why they are advanced in the course of this chapter.

Ego-centred Indicators

A network, of course, is characterised by the number of vertices n, each of which can

have n− 1 relations to the other vertices in the network (resulting in n(n−1)
2 possible

connections in the whole network). The actual number of lines a vertex vi is incident

with is the degree d(vi) of the vertex. This measure is not comparable since it does not

relate to the size of a network. Therefore, degree centrality, the normalised degree, can

be employed:

Degree centrality

CD(vi) =
d(vi)

n−1
, CD(vi) ∈ [0,1]. (2.1)

A higher degree centrality displays the relative number of connections a vertex has.

However, this measure has to be treated with care: Degree centrality does not (neces-

sarily) identify the most important vertex in the network – the importance of a vertex for

the knowledge flow in a network is also determined by the quality of the connections,

for instance a vertex might be the single connection between important components of

the networks and hence all knowledge flows via this vertex. A component is a subnet-

work with the maximum number of vertices that are all directly or indirectly connected

by links (Wassermann and Faust 2009). Assuming that the connections in the networks,

or, put differently, the social relations are the channels that transmit information and

knowledge between people, central vertices are those who either have good access to

the knowledge flowing in the network or who are able to control the flow of knowledge

(de Nooy et al. 2008).

In order to measure the importance of a single vertex, the betweenness centrality in-

dicator is employed. In this sense, a vertex is more central if it is more often located

on the knowledge chains between other vertices. Knowledge chains are modelled as

geodesics, i.e. the shortest path between two vertices; the number of geodesics be-

tween vertex j and k is g jk. The betweenness centrality CB(vi) is then the proportion of

geodesics between pairs of other vertices that include the vertex, g jk(vi):
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Betweenness Centrality

CB(vi) =
N

∑
i=1

g jk(vi)

g jk
, CB(vi) ∈ [0,1], (2.2)

Thereby, it is assumed that each of the geodesics is equally likely to be chosen for

the flow of knowledge. High betweenness centrality indicates that a vertex acts as

important intermediary in the network of knowledge flows. Therefore, not only its

access to knowledge is better, but also its control over knowledge or, put differently, the

vertex is important for bringing together knowledge from different loci in the network.

Socio-centred Indicators

The so far introduced indicators are all ego-centred, i.e. they focus on the role of an

individual vertex. They also exist on the level of a network and hence as socio-centred
indicators. The basic measure corresponding to the pure degree is captured in the in-

dicator of the density of a network, which measures the structural cohesion within a

network. Density is the number of lines l in a simple network, expressed as a proportion

of the maximum possible number of lines:

Density

D =
2l

n(n−1)
, D ∈ (0;1). (2.3)

Most intuitively, a tighter network contains more connections resulting in a more cohe-

sive structure of the network and a value closer to the maximum value of density which

is 1 (with the lower limit of 0).

For the rest of the indicators, the idea behind the network level measures is always

relying on centralisation. Network centralisation is higher if it contains very central

and very peripheral vertices at the same time. This can be computed by comparing all

centrality scores in a network: More variation in the scores (i.e. a larger difference

between the maximum score and the individual scores of each vertex) corresponds to

a higher centrality (de Nooy et al. 2008). All indicators hence yield values between 0

and 1, where a centralisation index close to zero displays a network where all vertices

are equally central and an index value close to one identifies a strong centre-periphery

structure. The calculation of indicators is taken from Wassermann and Faust (2009).16

16Proofs for the simplification of the formulas were conducted by Freeman (1979).
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Referring to degree centrality, degree centralisation can hence be computed the follow-

ing way (with v∗ as the respective maximum value):

Degree Centralisation

CD =
∑n

i=1(CD(v∗)−CD(vi))

max∑n
i=1(CD(v∗)−CD(vi))

=
∑n

i=1(CD(v∗)−CD(vi))

(n−1)(n−2)
, CD ∈ [0,1]. (2.4)

Referring to betweenness centrality, betweenness centralisation can similarly be con-

structed, relying on betweenness centrality:

Betweenness Centralisation

CB =
∑n

i=1(CB(v∗)−CB(vi))

max∑n
i=1(CB(v∗)−CB(vi))

=
2∑n

i=1(CD(v∗)−CD(vi))

(n−1)2(n−2)
, CB ∈ [0,1]. (2.5)

2.3.4 Network Structure and Knowledge Diffusion

This subsection now turns from the focus on the relevance of collaboration and networks

to concrete network structures that support the diffusion of knowledge. Therefore, the

efficiency of a network structure in these respects is evaluated. A network is, in these

respects, regarded as more efficient if knowledge diffuses more easily thereby increas-

ing the productivity of innovations. Put differently, networks structures are evaluated

in terms of their creation of social capital. Social capital can be described as a set of

different entities that consists of social structures and that facilitate certain action of

actors (Coleman 1988). Cowan et al. (2004) showed that the existence of such effi-

cient network structures impacts the growth of knowledge positively in the long run

by influencing the diffusion of knowledge and thereby an agents’ innovative potential.

This was also confirmed by Fleming et al. (2007), who argue that an inventor’s past

collaborations increase subsequent innovative productivity.

Structural Cohesion

Schiffauerova and Beaudry (2012) argue that efficient knowledge transmission takes

place in cohesive networks. Structural cohesion refers to the connectedness of innova-

tors. The closer innovators are connected, the better the knowledge transfer should

work and the more positive should the impact on innovative activity be. The larger

the network, the more possible connections there are and the more probable is actual

collaboration. One would hence expect an increase in density causing an increase in

the productivity of the system. However, as Morrison et al. (2011) put it, a successful
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networks need always external linkages in order to ensure the inflow of new, comple-

mentary knowledge into the network, thereby avoiding lock-in effects.

Fragmentation

More efficient networks in terms of knowledge diffusion mechanisms, moreover, should

experience a lower level of fragmentation compared to less efficient networks. The

largest component’s size, for instance, goes beyond pure density by taking into account

the direct and the indirect contacts an innovator has in the network. It implies that

innovators can access knowledge not only through direct interaction but that they can

also benefit from knowledge that is available and transmitted from one innovator to

another through intermediaries who act as a ’broker’ of knowledge (Burt 1992, Walker

et al. 1997, Martin 2011, Schiffauerova and Beaudry 2012). Being embedded in a

component hence provides innovators not only with access to knowledge of directly

connected partners, but also to knowledge they are (via the connections of their part-

ners) indirectly connected to (Gulati and Gargiulo 1999). Consistently, Fleming et al.

(2007) found that larger components are correlated positively with the number of in-

novations. They pointed to the necessity of the aggregation of components, i.e. the

process of integrating previously unconnected components or isolates (i.e. vertices that

are not connected at all), for improved innovativeness. Aggregation supports the flow

of new knowledge within the network and smaller components as well as isolates will

gain access to the knowledge produced in other components (Fleming et al. 2006).

Network aggregation also promotes cross-fertilisation between so far isolated groups in

different fields (Hargadon 2003, Burt 2004). A larger (relative) size of the largest com-

ponent hence should provide a better environment for innovations. Last, lower levels

of fragmentation can be seen as bridging geographical distance.

Centrality and Centre-Periphery-Structure

Agents with central positions in broad networks tend to benefit better from the network

advantages than more peripherally located agents. The centrality at the convergence of

multiple, tightly bounded channels within the network is more likely to enable access to

the knowledge flowing within the network. The more central an agent is positioned, the

more he becomes a passage point for the knowledge spilling around (Owen-Smith and

Powell 2003). Moreover, even first mover advantages can be gained by agents when

they get the relevant knowledge early. There are hence incentives to not only join net-

works with a high and relevant knowledge potential but also to collaborate actively in

order to gain central positions.

Furthermore, the network position also determines the extent of possible non-redundant
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collaborations, which are seen as potentially generating novel ideas. Central agents are

faster and better informed of what is going on within the network and hence their op-

portunities to initiate new, non-redundant collaborations are better than those of more

peripheral agents (Gilsing et al. 2008). This is true for firms as well as for public re-

search institutes and universities, who can, given a strong and central position, improve

their reputation and stimulate the research activity within their network by letting their

knowledge diffuse within the network. This kind of technology transfer can indeed be

socially significant (Bergmann and Maier 2009). A dense network structure with central

agents as ’connecting interfaces’ hence could improve the region’s innovativeness and

counteract the common market failures in the innovation process.

Concerning the network structure as a whole, the efficiency in knowledge transmis-

sion and diffusion is supported by a centralised structure that induces fast knowledge

transmission (Schiffauerova and Beaudry 2012). Both in regions and in sectors, inno-

vation networks shaped such that there exists a core as well as a periphery are found

to be more productive in terms of innovations (Graf and Henning 2009, Ter Wal and

Boschma 2009). Innovators with leading-edge or relatively interdisciplinary knowl-

edge are usually positioned in the core, while innovators that are rather specialised

and/or produce incremental innovations are rather to be found in the periphery. Cen-

tralised networks, in contrast to decentralised networks, are less homogeneous which

enriches new knowledge creation due to the possibilities of selection and synthesis of

knowledge from different clusters or parts of the network (Scheidegger 2008). Centre-

periphery-structured networks are hence less redundant in knowledge provision than

decentralised networks. This implies that access to the same amount and diversity of

knowledge in such a network is less time consuming and therefore more efficient. A

centralised structure supports hence fast transmission of knowledge and should there-

fore induce higher innovation levels (Schiffauerova and Beaudry 2012). However, it has

to be kept in mind that strongly centralised networks, as they are coined by a few very

centralised individuals, bear the risk of becoming disrupted once knowledge diffusion

through central actors is disturbed.

Small Worlds

A more integrated approach to assess efficient network structures is the concept of a

’small world’. It is a common observation that people seem to have relations to compa-

rably similar subsets of other close people, although the overall population on earth is

very large: Meeting a complete stranger happens as often as finding out that one has at

least one friend in common, which often results in the finding that the ’world is small’.

Milgram (1967) was the first to tackle this phenomenon empirically and Granovetter
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(1973) developed a rationale for these short paths within a given social network: The

people I am friends with are likely to be friends with each other which results in a

dense network of friends. Although many of the connections are redundant, there are

also some few people that connect different groups of friends that are not connected to

each other. The connecting vertices (or ’weak ties’) are important vertices in the net-

work since they open opportunities of knowledge flows between different groups. This

is the background for the small world graph introduced by Watts and Strogatz (1998)

and Watts (1999). Figure 2.2 depicts the particularity of small world networks: These

networks are coined by short distances between agents (i.e. so called short path lengths)
and high degrees of clustering (Cowan and Jonard 2004, Morone and Taylor 2004).17

Clustering, also known as cliquishness, refers to the likelihood that two vertices that are

both connected to a particular third vertex are also connected to one another. While

the spectrum exists from regular to random connections, small world networks are in

between. In regular networks, the path length (which is the mean geodesic, i.e. the

mean of all lowest numbers of intermediary vertices needed to reach any other vertex)

increases with the number of vertices and the level of clustering is high. The other ex-

tremum, a random network, exhibits a low degree of clustering since path length only

increases logarithmically with the number of vertices and hence path lengths are way

shorter. In this network, inventors would be as likely connected to remote inventors

as to proximate ones. In small world networks, short paths lengths are possible due to

the introduction of cross-connections that provide short-cuts to distant vertices, which

keeps the degree of clustering high but makes isolates possible as well. This property is

found in many different networks, such as social networks but also networks in biology

and physics. Most importantly, small world networks accelerate knowledge diffusion

due to a high transmission capacity resulting from high degrees of clustering (Burt

2001). Such structures thereby support knowledge creation in innovation processes:

Clustering increases the absorptive capacity of a network and facilitates quick flows of

knowledge, supports the creation of trust and opens opportunities for collaboration be-

tween inventors (Schilling and Phelps 2007). This clustering by contrast, is also found

to have negative effects on innovative productivity, since the knowledge exchanged of-

ten is redundant (Cowan and Jonard 2004, Fleming et al. 2006). Since new knowledge

is crucial to innovation success, indirect relations and ’weak ties’ between different sub-

groups of inventors are substantial and a comparably low number of intermediaries (i.e.

short path lengths) secures fast dissemination. Decreased path length should hence im-

prove innovation due to easier transfers of new knowledge. High clustering and short

path length in combination hence increase the creation and dissemination of knowl-

edge, in particularly complex, tacit knowledge (Baum et al. 2003, Uzzi and Spiro 2005,

17See Watts and Strogatz (1998) for a more detailed discussion of this network structure.

43



2 Knowledge Diffusion for Innovation

Schilling and Phelps 2007, Breschi et al. 2009, Gao et al. 2011). It is hence sensible to

assume that more innovation occurs in small worlds, allowing the coexistence of dense

relationships for trust and close collaboration with more diverse ones that allow the

access to new knowledge (Fleming et al. 2006).

Figure 2.2: Network topologies, small world.
Source: Watts and Strogatz (1998, p. 441).

Several studies find that knowledge flows best in networks with these so called ’small

world properties’ (Kogut and Walker 2001, Baum et al. 2003, Cowan and Jonard 2004,

Verspagen and Duysters 2004, Uzzi and Spiro 2005, Schilling and Phelps 2007, Chen

and Guan 2010). Newman (2001) found that networks constructed by means of co-

authorship of scientific publications often exhibit this clustered structure. By contrast

Balconi et al. (2004) proposed, based on a study using co-inventorship data included

in patents, that inventor-networks in industrial research are often highly fragmented.

In line with Newman (2001), academic inventors are found to be more central than

non-academic inventors which might suggest that academics cooperate more (Balconi

et al. 2004). However, Fleming et al. (2007) found ambiguous results of small world

properties of regional co-inventor-networks on innovative performance.

A key question in the context of innovativeness and hence competitiveness and even-

tually growth of economies is not only how the current network structure influences

knowledge flows and innovative productivity but also how the configuration of a net-

work evolves over time, and which mechanisms might be held responsible for that. This

helps to assess future innovativeness and identify necessary policy measures. However,

while there has been an increased interest in the dynamics of networks (Snijders 2001,

Baum et al. 2003), virtually all existing empirical research on innovation networks has
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investigated the network properties from a static perspective, examining the network at

a certain point in time (Ter Wal and Boschma 2009).

For the dynamics of knowledge networks, preferential attachment is argued to be a possi-

bly relevant factor (Barabasi and Albert 1999, Ter Wal and Boschma 2009). Preferential

attachment explains how central agents tend to become more central over time, while

agents in the periphery stay peripheral. First empirical evidence supports this argu-

mentation: Orsenigo et al. (1998) found that core-periphery structures of collaboration

networks are fairly consistent. Studying the innovation networks in Jena, Cantner and

Graf (2006) moreover found that agents on the periphery exit the region while new

entrants rather locate proximate to the core. They conclude that the network devel-

ops towards an increasing focus on core competencies or core technologies. This is

then supposed to lead to an increasing specialisation of the regional innovation system

within these technologies. Moreover, geographical proximity is assumed to affect net-

work evolution, while the impact of proximity for the networking decisions might be

influenced by the respective relevance of tacit or explicit knowledge in the industry or

technology life cycle (Cowan et al. 2004). However, these are mainly suggestions based

on sparse empirical studies or theoretical argumentation only. They hence need thor-

ough empirical validation, in which the methods of social network analysis might play

a helpful role.
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The idea of the rise, implementation and evolution of technologies that can be applied

in many different contexts is as old as the analytical study of economics. Smith (1776,

p. 11) already referred to the capability of ’philosophers’ being able to combine the

most distant and dissimilar objects, i.e. to apply a given technology to different sectors.

Stigler (1951) referred to ’general specialities’, David (1990) quoted ’general purpose

engines’. Bresnahan and Trajtenberg (1995) formalised these ideas in their seminal

contribution. ’General purpose technologies’ (henceforth GPTs) potentially provide ex-

planations for long-run macroeconomic growth eras. Each era can e.g. be characterised

by long waves of economic development caused by a single drastic innovation and fol-

lowed by many incremental innovations (Schumpeter 1912, Kondratieff and Stolper

1935). Emerging GPTs, such as the steam engine, the electric motor or computers,

can possibly induce such cycles of pervasive technological progress. In sharp contrast

to the assumption of technological change occurring at a constant rate throughout the

economy in the Neoclassical Growth Theory, GPTs are discussed as hardly predictable

– inducing major break-through innovations at any point in time (Lipsey et al. 2005).

The fact that GPTs can act as engines of growth is, by contrast, a direct implication

of the New Growth Theory, as there exist scale economies in invention (Bresnahan

and Gambardella 1998). Moreover, GPTs might also be interesting when studying the

microeconomics of technological progress at different levels of value creation chains

and at different stages of the development process. However, the most important in-

sights might be gained when combining these two perspectives, offering explanations

for macroeconomic growth already on the micro-level, investigating incentives and in-

terdependencies (Bresnahan 2010).

3.1 Characteristics of General Purpose Technologies

Bresnahan (2010), relying on Bresnahan and Trajtenberg (1995), defined a GPT by

three characteristic features: A GPT is (1) widely used, exhibits (2) scope for ongoing

technological improvement and (3) spurs innovation in applications sectors.1 Innova-

1These characteristics are highlighted in a similar way also by other scholars, see e.g. Lipsey et al. (1998)
or David and Wright (1999).
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tional complementarities combine feature (2) and (3) and point to a dual inducement
mechanism introduced by innovational complementarities: Innovations in the GPT sec-

tor raise the return to innovations in each application sector and thereby the incentives

to innovate. These incentives then feed back vice versa. GPT models are capable of

explaining sustained aggregate growth, as GPTs with an economy-wide scope exhibit

increasing returns that are a necessary condition for permanent growth (Romer 1986,

Bresnahan 2010).

3.2 Innovation Processes in GPTs

While breakthrough innovations frequently are a result of the invention of a GPT and of

the ensuing successive technological generations, equally economically important inno-

vations result from the complementary invention of applications. As Bresnahan (2010)

emphasised, a GPT is characterised by horizontal inducement as well as innovative

complementarities between upstream and downstream sectors. These complementari-

ties are fundamental. While the GPT extends the frontier of possible innovations for the

whole economy, innovation in the application sectors changes the production function

of the respective sectors. The innovative activity in the application sectors exponentiates

the innovations induced by the GPT and at the same time increases the size of the mar-

ket for the GPT – e.g. by inducing new application fields themselves. Meanwhile, the

productivity and return on investment of GPT-related innovations in the various sectors

increases by mutual innovation. This process of mutual innovations can be maintained

since through further development at every level of the value creation chain, the GPT

may be improved continuously. When the quality of the GPT is improved, the down-

stream application sectors in turn benefit of a better quality of the GPT as an intermedi-

ate input. As private returns on investment in R&D are increasing with the GPT’s quality,

the downstream sectors have an incentive to improve their technology as well. These

interdependencies arise along the entire value creation chain. Moreover, the use of the

GPT becomes profitable for other sectors and thus the GPT’s range of use is widened.

This process of innovation works upwards the value creation chain as well, as a wider

range of use or a better downstream technology provides scope for improvement and

commercial opportunities as incentives to innovate in the GPT sector, thus displaying

a market size effect. Profits in the GPT sector are in the same way dependent on the

application sectors’ technologies, leading to higher investments in R&D when a down-

stream technology is improved. These feedback effects describe the aforementioned in-

novational complementarities: Profits from innovations in the downstream sectors rise

when the GPT is improved and vice versa, both as a result of an increased productivity

of R&D in the respective sector (Bresnahan and Trajtenberg 1995). These dynamic feed-
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back mechanisms hence induce at best a long-term dynamism, triggering investments

in R&D throughout the economy and having large positive effects on private and social

rates of return (for a formal derivation see Appendix A).

3.2.1 Social Increasing Returns and Externalities

Due to innovational complementarities, technical progress in the GPT sector hence in-

creases the incentive for innovators in the application sectors to invest in their techno-

logical level. This, in turn increases the incentive of GPT innovators to invest in their

quality. These increasing differences can overcome diminishing returns to innovation

over a wide range of applications and improvements (Bresnahan 2010). Particularly,

all the different, heterogeneous sectors and production processes of an economy are

relevant for the GPT consideration: The innovation costs of a large, heterogeneous

economy can decrease if there exists a way of exploiting the results of innovation in a

particular sector in others sectors as well. For instance, the construction of airplanes

and the improvement of medical endoprotheses are very heterogeneous fields at the

first glance. However, this illustrates how the technological progress of nanotechnology

(which will later be considered as GPT) combined with co-inventions in both of these

fields can spread across a wide variety of industries. As Bresnahan (2010) put it more

generally, the central assumption in considering GPTs as engines of growth is that in-

termediate inputs can be made less resource intensive due to continuous technological

improvements as they may become useful in a wide range of sectors. Pointing to the

features of knowledge as economic entity (see Section 1.1), the main point is that there

are, at least at the aggregate level, no marginal cost of reusing knowledge in different

contexts and hence knowledge may produce additional value at no additional cost. By

using co-inventions in application sectors, diminishing returns can be avoided. Thereby,

GPTs create social increasing returns at a high level. However, there are also externali-

ties immanent in this dual inducement mechanism (see Figure 3.1.

The positive vertical externality arises due to the feedback loops between up- and down-

stream sectors’ profits. Because of the innovational complementarities, their payoffs are

interdependent, resulting in appropriability effects in both directions: An innovating

sector, no matter if GPT or application sector, fails to appropriate the returns of its in-

vestments in innovation entirely because all other sectors of the value creation chain

profit from higher productivity of innovation investments. What follows is a bilateral

moral hazard problem: Neither up- nor downstream sectors have an incentive to invest

in innovations in a range that would be socially optimal (Bresnahan and Trajtenberg

1995).
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The positive horizontal externality is a product of the interdependence between the dif-

ferent application sectors in combination with the generic function of the GPT: With an

increasing number of application sectors, the opportunities for the GPT sector to realise

profits increase as well. This is also true for a higher technology level of the application

sectors as a result of investment in R&D. Consequently, these are incentives for the up-

stream sector to innovate, the quality of the GPT will thus increase. Suppose only one

application sector invests in R&D, enhancing a growth of the aggregated technology

level of the application sectors and in consequence of the GPT’s quality. Not only the

productivity of the innovating sector, but the productivity of all non-innovating appli-

cation sectors will improve, too. Thus at least a part on the return of the investment

of the innovative sector is a social return. As a result, innovation activity in application

sectors is lower than in the social optimum due to arising free rider behaviour, or, put

differently, another moral hazard problem.

This is why the quality of the GPT as well as the aggregate technology level of all appli-

cation sectors can be characterised as a partially public good (Bresnahan and Trajten-

berg 1995). A bilateral moral hazard problem and corresponding free ride behaviour

occur and in equilibrium neither the upstream nor the downstream sectors have enough

incentives to innovate. Hence the quality of the GPT as well as the overall technology

level of the application sectors is lower than in the social optimum.

Figure 3.1: Linkages and externalities in the innovation processes of a GPT.
Source: own illustration.

3.2.2 Dynamics of a GPT

Assume a profit-maximising GPT sector and (for simplicity) only one application sector

with a certain quality of the GPT as well as a certain technology level of the application

sector at a given point in time t. Let the adaption period one sector needs to adapt its
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technology to the innovation made by the other sector in the precedent period be of

ever the same length. To develop this adaption, the quality or technology level at time

t is thus relevant. Hence in each sector the quality/technology level remains constant

for a length of time of two adaption periods: From t to t + 1 the GPT sector develops

a certain improvement to the quality level of the GPT, from t + 1 to t + 2 the applica-

tion sector adapts its technology to this GPT. Then, from t + 2 to t + 3 the GPT sector

adapts the quality of the GPT to this technology level, in turn from t +3 to t +4 the ap-

plication sector responds with the development of an adaption of the technology level

and so on (see Figure 3.2). Over time, each agent in each sector maximises payoffs

discounting with the discount factor δ. This discount factor can be considered as the

anti-proportional measure for the difficulties of forecasting technological developments

in the respectively other sector.

This means that increasing difficulties of anticipation (thus decreasing δ) induce lower

values for the levels of quality/technology, respectively, for every point in time and sub-

sequently for the long-term equilibrium. In the extreme case of absolute uncertainty

(δ = 0) innovations would be disrupted entirely. Bresnahan and Trajtenberg (1995)

assume that, presumed there is coordination, knowledge exchange or flow of comple-

mentary knowledge (and thus less uncertainty), a part of the R&D for the adapting

innovation can already be done while the other sector has not finished its technol-

ogy improvement yet. Consequently, the innovation period (=double adaption period)

could be shortened. If there is no coordination at all, the innovation period is of maxi-

mum length, which effectively results in a decelerated innovation rate (Bresnahan and

Trajtenberg 1995). Uncertainty, besides the externalities, can thus be seen as another

market failure in the innovation process of GPTs. It has to be pointed out, however, that

uncertainty is a market failure inherent in innovation process in general and thus not

exclusive to GPT innovation processes. Notwithstanding, the impact of uncertainty on

innovation processes in GPTs is particularly strong due to the mentioned dual induce-

ment mechanism and the inherent feedbacks.

Figure 3.2: Dynamics of the GPT innovation processes.
Source: own illustration.
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To sum up: General purpose technologies introduce two main market failures in the

innovation process. Due to innovational complementarities and the resulting appropri-

ability effect, returns on investments in innovations cannot be appropriated completely

(positive vertical externality) which leads to too little investments. The same problems

occur on the horizontal level: Raising the technological level of all application sectors

by investments of a single application sector in R&D makes all application sectors better

off, which leads to a free-rider-symptomatic and results in too few application sectors,

each of them innovating too little. Hence externalities as well as uncertainties deceler-

ate innovations and lower the long-term equilibrium level of the GPT’s quality and the

application sectors aggregate technology level. Overcoming the moral hazard problems,

e.g. by coordination, however, would lead to a positive feedback loop, trigger incen-

tives to innovate at a certain sector in the system first and then – by increasing private

incentives – in the whole GPT innovation system (Bresnahan and Trajtenberg 1995).

It is hence not the idea that GPTs are important for growth because of the actual im-

portance of a particular GPT innovation alone. Due to the combination of technological

advance in the GPT sector as well as in other complementary sectors, innovations are

triggered by the GPT innovation that then feed back, thereby creating a cycle of inno-

vations and potentially large amounts of economic value.

3.3 GPTs, Diffusion and Aggregate Growth

Attempting to understand the benefits of coordinated inventions in the GPT as well as

the application sectors in order to understand how GPTs eventually impact macroeco-

nomic growth needs to understand the timing of innovation: The economic impact of a

GPT is driven by technology diffusion.

GPT theories refer to the distinction between GPT and application sectors when mod-

elling the delay between the technological invention and the final aggregate productiv-

ity growth. Indeed, many empirical studies of past GPTs showed that diffusion of these

technologies was slow at the beginning and accelerated later on (e.g. for electricity,

steam and ICT) (David 1990, Jovanovic and Rousseau 2005, Bresnahan 2010). Possible

reasons for the delay and then the acceleration of diffusion are manifold, including sup-

ply constraints (such as profitable adoption requiring the price of the technology to fall

below or the quality exceed a certain threshold), demand constraints (the large group

of low value demanders adopting later) and adjustment cost (learning in adoption)

(Bresnahan 2010). These constraints, however, are not exclusive to GPT innovation

processes and they are subject to diminishing returns. In GPTs, by contrast, the feed-
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back mechanism provides another reason for the S-shaped (i.e. slowly at the beginning,

accelerating later on) diffusion path and therefore the diffusion might even last longer:

A newly introduced GPT creates a new system of innovation that is, at the beginning,

limited in relevance by a low technological level of the GPT on the one hand and the

existing older solutions on the other hand. This lowers the extent to which the GPT

triggers innovation. However, the early adoption and complementary innovation in an

increasing number of application sectors endogenously enhances the incentives to in-

novate over time. The rapid adoption, steep part of the S-shape is reached once there

is a sufficient number of adopters making the system switch to the second wave of dual

inducement (Helpman and Trajtenberg 1998a). Slow diffusion is hence sustained by an

additional force which is constituted by the need for co-invention and hence the two

waves in which the innovation feedback cycle takes place. This delayed rapid adoption

is impacting wide fields of the economy. Due to the inherent dual inducement mech-

anism in GPT innovations, this happens even if coordination among the agents works

perfectly fine (Bresnahan 2010). Hence, the innovational complementarities lead to a

divergence between social optimum and the individual optima of chosen technological

expenses which occurs for all arms-length market mechanisms.

But when does aggregate economic growth finally occur? Helpman and Trajtenberg

(1998b) were the first to model cycles of macroeconomic growth induced by the dif-

fusion of GPTs, followed by many others (among them e.g. Jovanovic and Rousseau

(2002), Carlaw and Lipsey (2006)). The common feature of all these models is that

the reallocation of resources towards R&D in the field of the newly arrived GPT initially

may cause a productivity slowdown due to delayed research output and the missing

corresponding payoff. The phase of economic growth arriving once the research efforts

translate into economic returns of the GPT, however, outweighs the initial losses and

results in positive aggregate economic growth (Jovanovic and Rousseau 2005), reach-

ing its peak when all application sectors went through the phase of investment without

returns and subsequently contribute positively to aggregate economic growth.
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4 Motivation and Organisation

The previous Chapter 3 introduces GPTs as ’engines of growth’ which induce a bulk of

follow-up innovations which are speeded up by feedback mechanisms that provide on-

going incentives for innovation along various value creation chains. As elaborated in the

preceding Chapters 1 and 2, the central input for innovation is knowledge. Knowledge,

in turn, incorporates all the assets and drawbacks that have been discussed in the same

vein. Issues arising in the context of knowledge and innovation, such as the diffusion

and spillover of knowledge determining the degree of productivity of innovations are

expected to be even more relevant in the context of GPTs since they are particularly

intensive in knowledge and innovation. The accessibility of knowledge can, without

exaggeration, be seen as a drive mechanism of the growth-engine GPT. Even more so,

the coordination of knowledge creation processes is instanced as a potential remedy for

the occurring market failures that are found to reduce the levels of innovative activity in

GPTs. Hence, the peculiar characteristics of knowledge might be cause and cure for the

lower-than-socially-optimal innovation levels in GPT: On the one hand, knowledge as

partly public good induces the problem of appropriability and hence the externalities in

the innovation processes of a GPT that lower the level of innovations beyond the social

optimum. On the other hand the non-rivalry of knowledge offers a potential remedy

for this market failure, as these might be internalised through coordination in form of

collaboration and sharing of knowledge. The central questions arising in this context

hence refer to how the characteristics of GPTs influence the creation and diffusion of

(new) knowledge, or put differently, innovations on the one hand and how the supply

of knowledge on the other hand feeds back on innovations in GPTs. It should be the

aim to finally derive (policy) measures to trigger, support and align knowledge creation

processes, increase their efficiency and hence strengthen a GPT’s positive impact on

growth.

4.1 Research Gap and Research Questions

The most important aspects about GPTs for innovation and growth are the induced com-

plementary co-inventions in conjunction with the wide variety of uses. These constitute

the main features of a GPT. Co-invention lowers overall innovation costs by opening
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4 Motivation and Organisation

the opportunity to reuse and recombine knowledge in the many different fields the GPT

is applied in. Complementary inventions moreover trigger an increase in innovation

incentives resulting in the dual inducement mechanism. This mechanism, on the other

hand eventually and fundamentally influences the diffusion and growth process and

hence the scope of GPTs. Occurring externalities and uncertainties, however, lower the

extent to which a GPT triggers innovations below the level that is socially optimal. Co-

ordination was brought up as a central solution to overcoming these problems already

in the seminal contribution by Bresnahan and Trajtenberg (1995).

Yet, the effects of the GPT characteristics, most prominently expressed in the dual in-

ducement mechanism, on the creation, accumulation and diffusion of knowledge and

vice versa, as well as the proposed coordination of research efforts has to the author’s

knowledge not been investigated in more detail. On the one hand, the mechanisms of a

GPT’s diffusion and its impact on the economic development were modelled as detailed

in Section 3.3 and empirical studies aimed at identifying former and present GPTs, such

as conducted by Lipsey et al. (1998, 2005), Jovanovic and Rousseau (2005) and Youtie

et al. (2008). On the other hand there has been a vast amount of literature assessing

the role of knowledge for innovation as elaborated in Chapters 1 and 2. And yet, there

has been no structured attempt to connect the role of knowledge for innovation with

GPTs as not only engines of growth but particularly ’engines of innovation’. On the

one hand, the general findings on knowledge creation, diffusion and exploitation for

innovation should also hold true in the context of a GPT. On the other hand, given the

peculiarities of GPTs, the composition of knowledge bases as well as the nature of col-

laboration and re-utilisation of knowledge in different contexts is pointed out to be of

outmost importance for the optimal development of these technologies: As elaborated,

the optimal employment of knowledge reduces the (aggregate) costs for innovation and

opens opportunity for cross-fertilisation, which might be particularly important in the

context of a GPT: Cross-fertilisation describes the employment of knowledge from one

context into a completely different one which, at the end, benefits innovation in both

fields. Moreover, by targeting the diffusion of knowledge, coordination can take place in

many different ways: Through cross-fertilisation, in form of localised knowledge spill-

overs and particularly through collaboration and hence in networks. These knowledge

diffusion mechanisms therefore might provide a promising remedy to overcome occur-

ring market failures at least partly. Thereby, the inherent innovation processes of GPTs

could be increased and speeded up. This would add to the ’normal’ positive effect on

innovation collaboration is found to have.
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4.1 Research Gap and Research Questions

The central research question of this thesis is hence which role the creation and the

diffusion of knowledge play for innovations in GPTs with respect to their character as

engine of growth. Hence, the focus is put on how knowledge translates into innova-

tions, how this relates to the central characteristics of a GPT and how this might impact

technological and subsequently economic development. Given the state of the art and

the presented existing research (see Chapters 1 - 3), two arrays of questions are to be

answered in this context:

4.1.1 Knowledge Composition and Localised Knowledge Spillovers

This array refers to the role of knowledge bases, their composition and their potential

to trigger different forms of knowledge spillovers. In this context, spillovers are treated

in a quite abstract way, similarly as it is done in most of the literature on spillovers. No

concrete mechanisms, but rather the potential for spillovers is subject to investigation.

The arising questions are:

What is the role of the composition of knowledge bases and the re-

sulting potential for spillovers for the development of GPTs? In which

(regional) knowledge contexts are GPTs developed? Which composition of

(regional) knowledge supports the development of the ’engines of innova-

tion’ best? How does the development of GPTs feed back to the develop-

ment of the knowledge bases? Do knowledge spillovers occur? What kind of

spillovers is particularly conducive to GPT innovation? Given a GPTs multi-

purpose on the one hand and its nature of a leading-edge technology on the

other, which role do diversity and specialisation of knowledge play? How

does the interdependence of innovation processes along the value creation

chain, e.g. due to innovational complementarities impact the processing of

knowledge and subsequently overall innovativity? (How) do agent-specific

and location-specific characteristics interact and influence the growth pro-

cesses in a GPT? What is the impact of regional specialisation in this context?

Which characteristic of the GPT predominates in the context of firm growth:

its character as a high technology or the very GPT features?

4.1.2 Collaboration and Knowledge Sharing in Networks

The second set of questions tackles, more concretely, the role of collaboration and the

resulting networks as a diffusion channel for knowledge and a concrete mechanism for

spillovers on the one hand and as a potential remedy for occurring market failures in

the innovations processes of a GPT on the other hand.
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Which role does collaboration and networking play for the innovation

processes of a GPT? Which role does external knowledge play for an inno-

vator in a GPT context? What is the current role of collaboration in the R&D

processes of a GPT? Is there a pre-defined development path of collabora-

tion? How does collaboration impact the development of a GPT? Is there a

difference between national and international collaboration? Are these pro-

cesses of knowledge-sharing efficient? Which network structure prevails?

What are the potentials for knowledge sharing in such a widespread tech-

nology? How can they be used? Which innovators cooperate most produc-

tively for the development of a GPT? How is knowledge shared between

innovators? What about the often mentioned technological proximity - is

it a blessing or a curse for the development of a general purpose technol-

ogy? How do specialisation and diversity influence the network? What is

the effect of collaboration on generality? What is the impact of the access to

(new) knowledge on generality? Are experienced inventors enhancing team

performance? Is experience supporting the (productive) recombination of

knowledge? What is impact of technological relatedness in a team on the

generality of purpose (and hence the main feature of a GPT?

4.2 Research Organisation and Contributions

The empirical part of the research in this thesis is organised in three working pack-

ages. The first of them is the building blocks-package. It describes the current state,

marks the fundament for educated extrapolations into the future, explores relevant is-

sues and tests indicators as well as hypotheses. Generally spoken, it constitutes the

building blocks for the following analyses. The second working package is concerned

with the impact of the composition of knowledge (i.e. the nature of the knowledge

with respect to, e.g., specialisation, diversity and compatibility) and localised knowl-

edge spillovers and hence with the first array of the derived research questions, while

the third working package particularly tackles the role of collaboration and knowledge

sharing in networks. Figure 4.1 depicts this organisation of working packages while

Table 4.1 summarises the derived and investigated hypotheses in detail.

4.2.1 Building Blocks – Working Package 1

To operationalize the research approach of this thesis, nanotechnology was chosen as

a showcase example for a particularly knowledge intensive and widely spread technol-

ogy with an enormous growth potential for the future. The first analytical Chapter 6
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Figure 4.1: Organisation of the empirical analyses in working packages.
Source: own illustration.

tackles the question whether nanotechnology can indeed be considered as a gen-

eral purpose technology. Furthermore, the character of a merging technology, i.e.

feature of nanotechnology as merging different disciplines, is assessed in depth, since

this, similarly to the GPT character in general, directly connects to the challenges that

come along with nanotechnology and the handling of diverse knowledge. This chapter

mainly relies on the theoretical derivations from Chapter 3. It contributes to the current

scientific debate around the appropriate classification of nanotechnology and its charac-

teristics. Thereby, the character of nanotechnology as GPT is tested with patenting and

publication data from the whole world as well as for Europe in particular. The focus lies

on a comprehensive analysis of existing indicators (a survey of already existing stud-

ies is provided) and the development of new ones. Most importantly, the performance

of nanotechnology is structurally compared with benchmark technologies. Finally, the

analysis validates the choice of the example of nanotechnology as GPT showcase and

thereby constitutes a building block for the following analyses.

The next chapter forms the other part of the empirical building block. The analytical

approach relies on a case study of the development of nanotechnology in a particular

(regional) context. The aim of this Chapter 7 is to identify relevant aspects concern-

ing the interrelationship between the development of nanotechnology, the access
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to knowledge, the composition of the knowledge base and the (local) economic

development. This is accomplished by exploring the issues around the two main arrays

of research questions, i.e. around the role of collaboration and knowledge sharing as

well as the composition of knowledge and localised knowledge spillovers. Chapters 2

and 3 provide the theoretical underpinning for this explorative analysis. The main con-

tribution to the current state of the art is, besides the provision of an in-depth case study,

the exploration of further relevant topics in this context as well as the development and

testing of analytical indicators.

4.2.2 Knowledge Composition and Localised Knowledge Spillovers –
Working Package 2

This working package within the main analyses is particularly concerned with the first

array of research questions derived above. The issues chosen to be investigated follow

from the case study accomplished in Chapter 7. It hence tackles question around the

impact of the (regional) composition of knowledge and the corresponding (potential

for) localised knowledge spillovers.

The analysis in Chapter 8 focuses on the potential role of the anchorage of na-

notechnology into the regional specialisation pattern and even more prominently

on the role and dynamics of specialisation and diversity for innovation. A panel of

34 German nano-regions covering the local nano-patenting activity during the time pe-

riod from 1990 to 2009 is exploited for this scope. The nano-patenting activity is used

to construct the local nano-knowledge bases. The main assumption this analysis relies

on is that the propensity of industry- or city-specific externalities in form of knowledge

spillovers is relative to the degree of specialisation and diversity, respectively, of the

local nano-knowledge bases. Panel negative binomial regression analysis is then em-

ployed to evaluate the impact of regional compatibility, specialisation and diversity on

future innovativeness. Thereby, this chapter contributes to the Marshall-Jacobs debate

tackling the role of specialisation and diversity (externalities) for innovation.

The next chapter also deals with the array of research questions around knowledge com-

position and spillovers. Yet, the approach is significantly different to the one followed

in Chapter 8 since the analysis is zooming in: The focus is laid on the influence of the

indicated issues on employment growth in firms processing nanotechnology. Chapter

9 investigates the contribution of location-specific characteristics and knowledge

endowment to firm growth in nanotechnology with a particular focus on the role

of specialisation. Therefore, a unique panel of 245 German firms covering the time
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period from 2007 to 2010 is exploited. This data-set is the result of an online-survey

exclusively conducted for this purpose. The empirical analyses apply two regression

techniques, a simple OLS regression and a fixed effects model. This chapter contributes

to the literature in two ways: First, it investigates the knowledge-processing charac-

teristics and interrelationships in nanotechnology firms for the first time. Second, it

advances the knowledge about the role of location for firm growth: While current re-

search only elaborates on the influence of the accessible stock – and hence the quantity

– of local knowledge, the analysis is extended to the composition and hence the quality

of the local knowledge base, thereby pointing to issues such as the role of Marshallian

knowledge spillovers.

4.2.3 Collaboration and Knowledge Sharing in Networks – Working
Package 3

This third working package within the main analyses focuses on the second array of

research questions derived above.

Collaboration and innovation in networks are assumed to play an increasingly impor-

tant role for the efficiency of innovation in leading-edge technologies. This and the

corresponding theoretical underpinnings from Chapter 2 are the basis for the follow-

ing analysis. Particularly the increasing complexity of nanotechnology as a merging

general purpose technology (which directly connects to Chapter 6) reveals the urgent

necessity for joint research and collaboration in order to be able to contribute to leading

edge research. Notwithstanding the elaborated relationship, research on nanotechno-

logy networks still lacks a comprehensive analysis of collaboration in innovation and

corresponding networks. The analysis in Chapter 10 hence sets out to explore the

evolution of collaboration and (efficient) networking coming along with techno-

logical advance and most presumably influencing subsequent innovative activity.

The empirical research is organised around three main questions. These tackle the

role of collaboration and networks in general, the evolution of an efficient network of

knowledge sharing and the cooperation potential in terms of cross-fertilisation possibil-

ities in a network of technological overlap. Therefore, the analysis was restrained on

the German nanotechnology networks from 1980-1984 to 2003-2007, built through co-

contributorship as indicated in patent data. Indicators from similar and totally different

contexts were employed, adapted and developed further for the scope of deciding on

the derived hypothesis. The contribution to the empirical literature consists in a stock-

taking of the state of development and its ex-post dynamics, but it shall also offer the

basis for extrapolations into the future and provide insights into how important (effi-
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cient) collaboration is for the development of a GPT. Last, the analysis evaluate how

potentials for collaboration are/can be exploited, particularly vis-à-vis the important

role of coordination for solving the occurring market failures in a GPT’s innovation pro-

cesses.

The last empirical analysis shall consist in a catch-all-analysis, at least as far as possible.

Having elaborated on the role of knowledge, knowledge spillovers and knowledge shar-

ing, the last chapter picks up relevant issues from each of the preceding analyses, still

having the main focus on intended collaboration. Chapter 11 assesses the knowledge-

and cooperation-related factors that influence the generality of a nanotechnologi-

cal invention. The aim is to shed light on how the generality of an invention develops

and how it can be increased. Albeit alone not a sufficient feature, the generality of

purpose is certainly the most striking feature of a GPT. It ensures the possibility to

employ, adopt and adapt a GPT throughout the economy. Without exaggeration, the

formation of a set of extremely general inventions can hence be seen as not only driving

the development of the GPT itself, but also impact aggregate economic development

positively. The potential issues explored in this analysis concern the impact of collabo-

ration, the access to new knowledge (both directly picking up the findings from Chapter

10), (individual) experience and technological background (both relating to the role of

the composition of knowledge and hence to Chapters 8 and 9). The German nano-

technology patenting data from 1980-2005 were once again the basis for the fractional

logit analyses that investigated these factors. This research adds to existing research

as it, to the best of the author’s knowledge, is the first analytical empirical analysis of

knowledge-related factors influencing the main feature of a GPT as ’engine of innova-

tion’.

As the description of the working packages has made obvious, nearly all of the empirical

analyses rely on the use of patent data. There are even more data and methodological

approaches that are employed more than once. In these cases, data and methodology

are introduced beforehand in Chapter 5 in order to improve readability and avoid re-

dundancies. Yet, for the scope of comprehensiveness, redundancies cannot be totally

avoided either.
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5 Methodology and Data

While the basic theoretical framework and the main research questions derived thereof

are introduced in the preceding chapters, this chapter introduces the data, as well as

some of the main tools and indicators on which the empirical analyses rely. Note that

this chapter shall not be a complete introduction of all methodology employed in this

thesis, but rather an introduction to the most important concepts, approaches and data

(i.e. normally those that is used more than once in the analyses to come).

Jointly considering technological development, innovation, new knowledge and loca-

tion, which is done throughout this thesis, the industrial cluster concept is frequently

referred to. Instead of focussing on this narrower framework, this thesis assesses knowl-

edge production in the basic framework of regional knowledge bases as a broader con-

cept. Knowledge bases have a stock character and hence a knowledge base has a self-

reinforcing feature, as the existing knowledge can be used to create new knowledge and

innovations out of it, thereby contributing to the growth of the current (local) stock of

knowledge. Knowledge bases hence account for the peculiar characteristics of knowl-

edge (see Chapter 1) as well as for the knowledge production function approach with

respect to its (regional) conceptualisation (see Subsection 2.1.1). Yet, particularly when

investigating tacit knowledge it should be mentioned that not all components of this

particularly intangible good can be described appropriately (Nesta 2008). Instead, only

indirect trails of tacit knowledge can be analysed. As a proxy for this regional (tacit)

knowledge base it is referred to two essential parts: The scientific or analytic knowledge

roughly serves as a measure for scientific research outcomes and innovations and is

proxied by publications. By contrast, the technological or applied knowledge, as proxied

by patents, reflects more applied research and development results. Thereby, the di-

rectly measurable outcome that constitutes a knowledge base always also includes the

intangible amounts of tacit knowledge that are directly related to it and that are not

codifiable and measurable. In particular when one is concerned with high technologies

where tacit knowledge is the most important ingredient to innovation one hence has to

accept such proxies in order to operationalize the subject of investigation at all.
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5 Methodology and Data

Due to the complexity and for the scope of brevity, the discussion of knowledge produc-

tion and innovation indicators in general is set aside. Nowadays there is a wide range

of commonly accepted indicators, among which are patent- and publication-based indi-

cators. Because these are the main data sources for the following analyses, Sections 5.1

and 5.2 discuss only these, but in more detail.

Besides the creation of innovation through the accumulation of knowledge, the dif-

fusion of knowledge has been derived as a central mechanism for the productivity and

finally success of innovative activity. Innovation networks have been discussed in their

relevance for the accessibility of knowledge for inventors and the creation of innova-

tions. Section 5.4 introduces the network construction based on patent data.

5.1 Patents as Resource for Innovation Analysis

Patents, very generally, are property rights that are granted for inventions and their cor-

responding commercial use. A patent hence constitutes a temporal monopoly awarded

to the inventors for the commercial use of their invention (Trajtenberg et al. 1997).

Moreover, patents also have an information function. By disclosing patents, the techno-

logical state of the art is published and knowledge diffusion is amplified. In order to be

patentable at all, an invention has to fulfill three patentability criteria. (i) It has to be

novel, less evident it has also to be (ii) non-trivial, i.e. it shall hence not be obvious for

specialists in that particular field or, put differently, the invention must reach a particu-

lar quality – the inventive step. Last (iii) it has to be useful, i.e. it shall have potential

commercial value. A patent is published together with detailed information on the exact

technology of the inventions, the inventor, applicant and owner of the patent and (fre-

quently also) their addresses as well as the invention’s potential fields of use. Moreover,

prior art, either added by the assignee or by the patent examiner, in form of technologi-

cal antecedents (which may be patents or non-patent literature) is documented in form

of (backward) citations. Objections and forward citations, hence such patents that cite

the patent under consideration, are included as well (Fischer et al. 2009).

In the field of innovation research, patent data provide a fruitful and important source

of information for the study of innovation and technological change, since they are

detailed, highly standardised, very well available and, most importantly, have a very

close – though imperfect – link to innovational activity. These data include not only

information on the invention itself, but also relevant information on the applicant and

inventor, prior and subsequent art and corresponding technological areas in form of

IPC classes. Within the system of innovative activity, patent count is therefore a com-
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5.1 Patents as Resource for Innovation Analysis

monly used measure reflecting the innovative output of (mainly industrial) R&D activity,

especially within the framework of the knowledge production function (Grupp 1998).

However, Griliches (1990) and Trajtenberg (1990) and others claimed that patents only

measure an intermediate output in the entire innovation process since they incorporate

differences in efforts and hence are not a direct indicator of innovation output. They

subsequently also propose patents to be employed as a measure of inventive input. Most

importantly for the scope of this thesis, patent data is assessed with the limitation that

the tacit knowledge is not directly but rather indirectly captured by the patent itself.

A patent hence stands for a certain amount of tacit knowledge necessary for the real-

isation of that very invention. However, more standard limitations and assets shall be

discussed in the following, since most of the analyses constituting this thesis rely on

patent data.

5.1.1 Benefits and Shortcomings of Patent Data

The use of patents as innovation indicator has important limitations. First, patents re-

flect innovative (and not just inventive) activity since they are applied for during the

whole development and commercialisation process (Pavitt 1985). Second, by far not

all innovative activity is patented or even patentable. This is e.g. due to the costs a

patent application process incurs, due to the necessary publication of the inventions

or due to the characteristics of the invention itself, such as process innovations that

are hardly patentable. Subsequently patent analyses cannot capture these. Patentable

inventions or innovations hence constitute only a subset of all R&D outcomes. Third,

patenting often is a strategic decision as well, with the result that not all patentable

inventions actually become patented (Fischer et al. 2009). As a result, patents are not

equally frequently used in all sectors – by contrast, the propensity to patent varies sig-

nificantly across different sectors and industries (Pavitt 1985). Additionally, it has also

to be considered in a very general manner that larger firms tend to patent more than

smaller ones, mainly due to cost effects and the fact that intellectual property has to

be published during the patent application process. This might spoil technological and

hence competition advantages of smaller firms, which might therefore prefer alterna-

tive protections, such as secrecy. Furthermore, there is a wide range of values of patents

from a technological and economic point of view: Many patents actually have nearly

vanishing effects, while some patents protect break-through inventions that are, in ad-

dition, easily commercialisable (Schankerman and Pakes 1986). To face this problem,

patent citations that are seen as proxy for value are often used to estimate the impact

of patents. Last, patent analyses over time face the problem of other influences impact-

ing patenting activity, such as changing intellectual property rights, changing industrial
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landscape, and not to forget changing patenting behaviour – a biases that has to be kept

in mind when analysing such data (Pavitt 1985).1

However, in many cases patent data has proven to highly correlate with R&D activities

and hence to be a good proxy for (overall) innovative output (Griliches 1990). More-

over, these shortcomings lose their relevance at all, when patents are used as proxy for

competencies and the underlying knowledge instead of innovative performance (Nesta

2008) – which is the way patents are employed in this thesis. Patent data therefore is

very promising data for analyses on technological and innovational dynamics and the

geography of innovations in the short as well as in the long term (Grupp 1990, Griliches

1990). The detailed information about the locus of invention and the relationships to

other patents as captured by citations give rise to patents becoming the central resource

for analysing the spatial extent of knowledge spillovers (Fischer et al. 2009). Especially

in nanotechnology and other emerging technologies, patent data offers a basis for anal-

ysis where other data is only scarce. Patent analysis is therefore a valuable approach for

the investigation of technology development from the analysis of strategy at a national

level to modelling specific emerging technologies (Bengisu and Nekhili 2006). Although

very few of these patents eventually become highly valuable in terms of commercialisa-

tion opportunities, most of them are technically significant because they induce further

developments in technology (Ashton and Sen 1989). The detailed information provided

in patent documents permits the investigation of the development of the field in differ-

ent regions, the identification of agents active in the field, the mapping of technology

clusters, the construction of innovator-networks and much more (OECD 2009).

With citation references, patents also point to the use of prior art. This provides a

basis for tracing back knowledge flows and map the diffusion of previous inventions.

While patent citations are references from one patent to another patent, non-patent lit-

erature citations mainly refer to scientific publications or e.g. manuals. These can be

used as a proxy for knowledge spillovers between the different patent applicants and

inventors (Jaffe et al. 1993, OECD 2009). However, the character of this proxy has to be

emphasised as it is not standard, in contrast to references in scientific publications, that

the inventor or applicant add the citations themselves. Although, when filing a patent

at the USPTO inventor and applicant have to point to prior art by providing references

to the technology underlying their invention, this is not needed when applying at other

important patenting offices, such as EPO, WIPO, DPMA or JPO. At these offices, patent

1Pavitt (1985) further discussed possibilities and problems of patent analyses. In particular, he instanced
a number of different biases of the corresponding data with regard to international comparisons,
comparisons amongst industrial sectors or technical fields and comparisons amongst industrial firms.
For the scope of brevity, the interested reader is referred to his article.
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examiners or attorneys add the relevant prior art during the examination process or

later to the patent documents. Patent citations hence do not (directly) display which

existing knowledge was used by the inventor, but only what could have been known by

the inventor. When using patent citations in economic analyses, it is, by contrast as-

sumed that the citations reflect knowledge spillovers. To be exact, this is not necessarily

the case. However, patent citations are still a proxy for the knowledge that could have

been spilling over or eventually might still spill over (Thompson 2006). The fit of the

proxy is emphasised by Jaffe et al. (2000), who found through a survey of inventors that

the knowledge represented by the cited patent is known by the inventors of the patent

citing. However, the patent citation approach is not useful to investigate the concrete

mechanisms of local technological spillovers, let alone tacit knowledge (Breschi and

Lissoni 2001a, Döring and Schnellenbach 2006, Huber 2011).

Depending on the aim of the analysis, patent data provide fundamental information

on the dynamics, development and geography of technological inventions. According

to the perspective, however, different pieces of information from the patent document

are particularly useful. Figure B.1 in the Appendix B provides an example of a patent

application including different kinds of information.

5.1.2 Using Patents as an Indicator

Identifying the Appropriate Patents

When aiming at analysing how particular technological fields evolve, develop or per-

form the International Patent Classification (IPC) system is moreover especially helpful.

It is an internationally recognised patent classification system corresponding to which

patents can be classified by the applicants and patent office’s examiners according to

technology groups. These groups refer to the technological area(s) in which a patent

is relevant. The IPC is a hierarchical system, distinguishing between eight sections

that constitute technology as a whole. Each section is again divided into classes, sub-

classes and groups. Yet, since the intention of the IPC is to make it easier to retrieve

patents, IPC classes do not display industrial sector classification. However, using the

IPC classes, it is possible to identify different technological sectors a patent is relevant

in. Therefore, concordance tables are useful (see Tables B.1 and B.2 in the Appendix, for

instance). Several different approaches exist that link IPC classes into different indus-

trial classification systems. For instance, Verspagen et al. (1994) developed the MERIT

concordance table ISIC–IPC, Hinze et al. (1997) developed the OST/INPI/ISI concor-

dance and Schmoch et al. (2003) developed the NACE/ISIC concordance. Despite this
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classification system, patent identification is a tricky task – above all in emerging tech-

nologies. It is, for every technology, nearly impossible to cover all relevant patents since

they might be classified into very diverse (technological) contexts (Hinze and Schmoch

2004). For statistical purpose it is hence the aim to identify as much relevant patents

as possible, thereby including as few inappropriate as possible. In emerging fields it is,

more particularly, not seldom that there does not even exist a common definition of the

novel technology, not to talk about the implementation of the technology into the IPC

system. Patent identification in these fields is most frequently done by using keyword

queries, searching in abstracts and patent titles (Daim et al. 2006, Bengisu and Nekhili

2006). Yet, Hinze and Schmoch (2004) emphasised that keyword searches in patent

documents published by national patent offices are not as productive as desirable due

to less strict legal requirements of disclosure with regard to titles and abstracts.

Choosing the Appropriate Time Scale

When investigating patents as an indicator for the development of a technological field,

one has to carefully distinguish between the different dates that become relevant during

a patent application process. While the application filing date refers to the date when the

application is handed in to the patent office, the publication date is the date when the

patent application – and hence the invention – is published. At most of the patent offices

this date is 18 months after application. However, the date the closest to the actual

invention is the priority date (Hinze and Schmoch 2004). This date is the first date of

filing of a patent application anywhere in the world. Normally during a period of one

year (the priority year), the applicant can apply for patenting the very same inventions

at other patent offices as well. However, during this period, the priority date is always

used to determine the novelty of the invention. Inventions made after the priority date

but before the date of additional filing will not peril the novelty of the invention to be

patented (OECD 2009). The grant date has to be after the publication date. The length

of an application process differs heavily between 2 and 8 years. However, which date is

chosen for the analysis of time perspectives depends on the scope of the analysis itself.

Most frequently, application or priority dates (which coincide in case of one application

only) are chosen as they are closest to the invention. Within this thesis, the priority

date is considered. As patents are above all regarded as newly created knowledge in

the field, the priority date is suitable since it is the date closest to actual invention

(Hinze and Schmoch 2004).
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Choosing the Appropriate Geographic Origin

Patent data, moreover, are a valuable source for the study of geographical influences

of an on the invention processes, as the regional allocation of patents is possible. This

is most frequently done by using either the office of priority application or the address

data of applicants and/or inventors (Hinze and Schmoch 2004). The choice of patent

authorities as entity of geographical analysis is often misspecified, as international ap-

plicants to national patent offices do not display the innovative activity within the re-

spective national borders. However, it does make a difference whether the location of

the applicant or the one of the inventor is chosen as determinant of the geographical

allocation of a patent. The patent inventor is the one that actually developed the inven-

tion to be patented. The applicant, by contrast, is the one that, in case of a grant, will

own the patent as legal right. While inventor and applicant can be the same person,

they often are not, as the applicant most frequently is the company or organisation em-

ploying the inventor. When determining the location of an invention one has hence to

decide whether one wants to know where the invention was created or where the legal

rights are located. Patent counts can be allocated to inventor or applicant locations in

different forms. A patent may be assigned to a location if at least one of the associated

persons is located in this region. However, as Hinze and Schmoch (2004) remarked, it

has also become common to refer to the first person only or to use fractions to avoid

double counting.

Choosing the Appropriate Office of Reference

Patents are national legal rights, i.e. patent protection is limited to the country where

a patent is filed (Hinze and Schmoch 2004). Frequently, though not always, applicants

tend to file at their national offices first, resulting in the ’domestic advantage’ effect,

i.e. the overestimation of the home nation when using national data (Schmoch et al.

1988). On the other hand, patents from different national patent offices are hardly

comparable to each other because of different national patenting policies, leading to

different patent breadth, patenting costs, approval requirements, citation practices and

enforcement rules across different patenting offices (see Pavitt (1985) and more re-

cently (Fischer et al. 2009)). Therefore, international patent data often is preferred to

data from national patenting offices, as comparability of data is better due to relatively

higher homogeneity and value of patents, which corresponds to the same (higher) costs

of patenting and one policy during the application process, which is not influenced by

national legislation. Yet, and as a direct result of higher costs and efforts on the inter-

national level, many smaller firms and less valuable inventions tend to file only at the

national level. Hence, international patenting data again only constitutes a subset of
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all patenting data (Grupp et al. 2010). Although Hinze and Schmoch (2004), pointed

at the domestic advantage at national patent offices to be a major problem in patent

analyses, this can be confined to analyses that aim at comparing the performances of

different countries.2 Concerning the use of patents as an indicator for the very basic

underlying competencies and knowledge, the argument of comparability is hence not

valid, since one is not aiming of assessing the value of an innovation but the existence

of the novel idea in a very basic sense.

Peculiarities of GPTs and Patenting

The more general an invention is with respect to its potential applicability, the more

likely is it to become patented: With increasing numbers of applications, (potential)

demand for the technology also increases as it may be useful in a multitude of indus-

tries. Also, the propensity of this technology to be used in somewhat unrelated and

distant applications increases, which makes it more attractive for the owner of the in-

vention to patent it because the licensee might be in a fairly remote final market and

the potential competition could be weaker. From a more theoretical perspective, Bres-

nahan and Gambardella (1998) argued that more general purpose technologies induce

a greater vertical specialisation in the industry as well as the formation of upstream

technology specialist firms, which license the technology to several manufacturers in

different industries (Gambardella et al. 2007). However, when considering a distinctive

technology, problems of different propensities to patent only arise to a limit extend:

Griliches (1990) argued, that the propensity to patent varies across the industries. Al-

though GPTs are by definition relevant in a number of different industries, GPTs are, to

some extent, merging the classic disciplines (see Chapter 6 for more details). Therefore,

this might only be a minor problem in the context relevant for this thesis.

5.1.3 Patent-Databases used in this Thesis

Given the possibilities and problem introduced above, the following basic set-up is cho-

sen for all the patent databases employed in this thesis.

Although Feynman pointed at ’plenty of room at the bottom’ already in 1959, it was

2In order to be able to compare innovative performance and technological developments between dif-
ferent countries, one has to finally overcome the well-known home advantages of domestic applicants
and unequal market orientations of different patenting offices. After is has been popular for a long
time to use the triadic approach, i.e. to only include inventions filed for patents at USPTO, JPO and
EPO simultaneously (so called triadic patent families) (Grupp et al. 1996), Frietsch et al. (2008)
nowadays propose, due to changed impact of the corresponding countries within R&D, to instead
chose transnational patents, i.e. patents that are filed at WIPO within the PCT application process or
at the EPO (for a modification see also Frietsch et al. 2011).
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not before 1980 that the electronic force microscope was developed, which would then

make it possible for scientists to begin working at the nano-scale. The focus in this the-

sis is therefore on the development of nanotechnology during the 30 years subsequent

to the AFM discovery. Hence for the following analyses data of priority patents with

priority application year between 1980 and 2009 were extracted from the ’EPO World-

wide Patent Statistical Database’ (PATSTAT), version September 2010. This database

encompasses information about published patent applications (regardless of whether

they were granted later in the application process or not) filed at 81 patent authorities

worldwide. PATSTAT contains nearly complete information about these applications,3

e.g. information on applicants and inventors, filing dates, IPC classes, citations, deliv-

ered in an easily accessible and aggregated raw format. PATSTAT consists of 18 rela-

tional database tables (see Appendix B.2) containing information on about 66 million

patent applications. Enriching the analyses accomplished in this thesis, the database

was enhanced with additional information and cleaned datasets.4

In order to allocate the patents in the database of this thesis to Germany (respectively to

German regions), the country (region) of the inventor was chosen (if not stated other-

wise). Since it is not intended to compare the performance of countries but to account

for competencies and knowledge, no fractional counting was applied.

Given that the scope of this thesis is never to compare the technological performance

of different countries, the ’domestic advantage’ problem does not apply here. In order

to catch as much experience and knowledge in the field as possible, priority application

from every patent office in the world for which data is contained in PATSTAT is included.

Weighing pro against contra arguments for this approach, the most relevant one it shall

be avoided that a patent (and more important the corresponding knowledge) is not

included because the authority it was filed at is excluded.

Nano-Patent-Database

To identify relevant nano-patents, a validated search strategy is used that is based on

an approach merging keywords proposed by Mogoutov and Kahane (2007), Glänzel

et al. (2003), Noyons et al. (2003) and Porter et al. (2008); the keywords can be found

in the Appendix B.3.1. Abstract and title of all applications were then searched for

these keywords. In the literature, the search for nanotechnology patents is carried out

3For instance, legal information (i.e. information on objections and renewals, e.g.) are not included.
4Note that, throughout the following work, patent-related analyses are always based on this data and

for the scope of legibility, the terms ’patent’ and ’patent application’ are used synonymously, both
referring to the application of a patent as contained in the PATSTAT database.
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through two methods: lexical queries (i.e. search terms based on keywords) and patent

classes. The problem with patent classes is that since nanotechnology is an emerging

technology and the corresponding patent classes are still young, older patents have to be

reclassified by professional examiners which is not (fully) done yet. Therefore, lexical

queries are the most popular search methodology used in the literature to identify nano-

patents (Huang et al. 2010). However, nanotechnology is very cross-disciplinary and

its boundaries are not defined in a comprehensive way (Porter et al. 2008). Huang

et al. (2010) provided a detailed comparative overview on different search strategies

and find that the queries and their results commonly used only differ to a very limited

extent since they all share the same set of core keywords. This core set is hence used

in the following analyses as well. And still, mainly due to the ill-defined boundaries of

nanotechnology, but also resulting from limitations inherent in keyword searches, the

database of nano-patents underlying this thesis can be assumed to contain silence and

noise (besides all other limitations of patent data treated above): While not all actual

nano-patents can be retrieved (silence), some patents that are included in the nano-

database actually do not protect a nano-invention (noise). By excluding patents that

only contain very common keywords (such as ’nano-metre’ or ’nano-second’), the noise

can be reduced but never fully eliminated. By contrast, Bawa (2004) even pointed

to the common assignee practise of ’hiding’ nano-content in the patent-document in

order to inhibit knowledge diffusion to competitors or the explicit use of nano-terms

for marketing reasons, which also contributes to silence and noise, respectively. Figure

5.1 summarises what the nano-database underlying the empirical analyses in this thesis

catches and what is does not.

Comparative Databases

For the scope of comparison, the development of other technologies, namely informa-

tion and communication technologies (ICT) as commonly accepted, present GPT (e.g.

Jovanovic and Rousseau 2005) and the combustion engine technology (CE) as distinct

non-GPT (Graham and Iacopetta 2009) is also considered in this thesis. The basic ICT-

and CE-patent databases are constructed similarly to the nano-database. For the scope

of comparison, the same period of time is considered. However, both rely on IPC classes

and not on lexical queries. In the case of ICT a set of different IPC codes was scanned

for in the IPC classes of each first or priority patent application (see Appendix B.3.2). In

the case of CE only on IPC class, ’F02’, was used to identify relevant patents (Graham

and Iacopetta 2009). Further information on the range of comparativeness is given in

the respective sections were this is relevant.
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Figure 5.1: Inventions and innovations in the nano-database.
Source: own illustration based on Grupp (1998).

5.2 Publication Analysis

In analogy to patents, scientific publications display the output of the (public) research

system. In contrast to patent data, which capture applied R&D used downstream the

value chain, publication data are taken as a measure for R&D activities closer to basic

science. Since they are subject to peer-review, there is a quality control as well.

5.2.1 Benefits and Shortcomings of Publication Data

Like patent data, publication data cover various scientific fields and are easily available

over long time periods. Publication databases are more easily accessible than patent

databases, but in contrast to the patenting system publications are more random and

their publication process is less standardised. Yet, publications contain a huge vari-

ety of information, such as authors, their affiliations, their addresses, sometimes even

the authors’ technological background. Moreover, besides the fulltext, the classification

of the journal itself, the abstract, the title and the subject help to find relevant pub-

lications and to classify them. Yet, the lack of a standardised publication procedure

translates to the databases as well, as different technological indexing systems are used

by different databases instead of an analogously to the IPC system constructed common
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technological classification system. Last, publications in common databases also include

backwards citations (commonly known as ’references’) and also forward citations, i.e.

publications that cite the publication of interest.

Again, the mere number of publications as indicator of value can be misleading since

quantity does not necessarily reflect quality. Consequently, value indicators such as

numbers of citations are often included in analyses since they proxy the quality and the

usefulness of a scientific publication of the community (Hullmann 2007). Moreover,

publication data is biased in favour of English-language journals. And, similar to the

limitations of patent data, only published scientific outcome is covered, still the uncodi-

fied knowledge is not publishable and still, the propensity to publish in form of scientific

papers varies significantly across the different disciplines (Palmberg et al. 2009). The

structures of the individual disciplines often vary distinctly (Schmoch et al. 2012).

Yet, as scientific performance is as difficult to measure as is the innovative output that

shall be caught by patents, scientific publications are a commonly used and appropri-

ate indicator for measuring scientific excellence by quantifying the output. Similarly

conducted statistical analyses of publications are regarded as meaningful if they are

accomplished with regard for the methodology employed (Schmoch et al. 2012). Cita-

tions and connections to scientific fields, moreover, provide a paper trail of the structural

relationships between and the diffusion of scientific knowledge (Palmberg et al. 2009).

5.2.2 Using Publications as an Indicator

There are some methodological issues that should be considered when using publication

data. Yet, these issues are similar, yet not as complex as when using patent data, which

is why this section is intentionally kept short.

Identifying the Appropriate Publications

To identify appropriate publications from the database basically two ways exist. One

possibility is to rely on lexical keyword searches as proposed for patent data. The other

way would be to rely on the classification system of the database employed, i.e. to use

their subject classes or journals dedicated to particular subjects.

Choosing the Appropriate Time Scale

Since there is only one date involved in the process of publishing, i.e. the publication

date the choice of the appropriate time scale is rather straightforward. However, it
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should be mentioned in this context that the Web of Science as one important database

recently substantially extended the coverage of journals (the number of journals cov-

ered in the database increased between 2000 and 2008 by 29%, the number of papers

even by 34%, (Schmoch et al. 2012)). Schmoch et al. (2012) advised against compar-

ing absolute publication numbers when accomplishing country comparisons as the real

increase is difficult to determine. Specific growth structures in a given field or shares

should rather be taken into account (Michels and Schmoch 2012, Schmoch et al. 2012).

Choosing the Appropriate Geographical Origin

Similar to the time scale, the appropriateness of the choice of geographical origin is

not as complex as in patent analysis since there is no difference to be made between

authority, inventor or applicant: Authors are affiliated to their research institutions and

hence have one address. At most, fractional count is also applicable when there are

several authors.

5.2.3 Publication-Databases used in this Thesis

The publication analyses in this thesis are conducted on the basis of the Web of Science

(WOS) publication database provided by Thomson Reuters. This database covers highly

cited journals, which can be seen as a quality indicator similar to the examination pro-

cess in the patent filing process (Schmoch et al. 2012). Since all searches conducted

refer to natural, medical and engineering and life sciences, the coverage in Thomson

Reuters WOS can be regarded as suitable, whereby the English language bias should

not be a problem either since most German authors in these fields already publish in

English (Schmoch et al. 2012).

Nano-Publication-Database

As dedicated journals still only exist to a limited extent, emerging science fields such

as nanotechnology are about as hard to identify as are nano-patents. This is the case

although nano-publications are larger in numbers than are nano-patents since basic re-

search still plays a major role in the development of nanotechnology. Subsequently,

nano-publications have to be identified in the same way as nano-patents are identified:

By a keyword search algorithm, based on the one used for the identification of patents

(see Appendix B.4 for more details).

The considered nano-related publications are indexed in the Thomson Reuters ’Web

of Science’ database. Here, it is relied on the period between 1980 and 2009. Again, a
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Boolean search term is used in order to identify nano-related publications by searching

for certain keywords and excluding other keywords in the topic of the paper. Again,

the search term is based on a combination of different search queries, as proposed by

Glänzel et al. (2003), Mogoutov and Kahane (2007), and Porter et al. (2008) but, due

to technical restrictions, way shorter than the patent search term. The exact query can

be found in the Appendix B.4.1. Referring to publications, however, the distinction of

technological fields (parallel to the IPC system in the patenting system) is based on the

definition of Thomson Reuters subject areas assigned to the publication by the Web of

Science. These are the basis for measuring the publication indicators, well keeping in

mind that this classification system is not as reliable as the IPC classification system.

Comparative Databases

Concerning CE and ICT as benchmark values for publications the search terms were

self-developed due to the lack of existing work. For CE publications a lexical query was

developed, while for ICT publications all publications that were in the Thomson Reuters

subject areas ’Computer Science’ and ’Telecommunications’ were extracted, since a good

description via keywords seems to be impossible for this field (Schmoch 2011, personal

communication) (see Appendices B.4.2 and B.4.3).

5.3 Analysing Spillovers: An Approach Based on the
Knowledge Production Function

In line with previous research attempting to investigate the nature of spillovers (such as

Feldman and Audretsch (1999) and Paci and Usai (1999)) the theoretical framework of

the knowledge production function is employed where spatial agglomeration of knowl-

edge depends on the characteristics of the already existing knowledge (see Subsection

2.1.1). The presence of spillovers implies hence that a distinction must be made be-

tween the sum of innovative effort of each individual agent and the effective knowledge

base (Veugelers 1998). The knowledge base represents the total amount of knowledge

accessible for agents in the region. As a proxy for this existing regional knowledge

base this is split into two essential parts: the scientific knowledge that roughly serves

as a measure for basic research outcomes and which is represented by the accumu-

lated publications whereas the technological knowledge reflects more applied research

results and is approximated by the accumulation of patents. Innovations and hence new

knowledge are captured by newly published scientific or patented technological knowl-

edge (as argued above), whereas the stock of existing and potentially newly combinable

knowledge consists of innovations (i.e. patents and publications) of the last periods.
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Other than tracing knowledge spillovers directly, as e.g. done by Jaffe et al. (1993) and

many others after them, another approach to address the effects of spillovers is hence

pursued: By looking at the composition of the knowledge base on a regional level and

relating this to the creation of new knowledge, thereby indirectly measuring spillovers.

Former studies also implementing the knowledge-production-function-based approach

for analysing knowledge spillovers (such as e.g. Jaffe (1989), Audretsch and Feld-

man (1996), Henderson et al. (1998), Feldman and Audretsch (1999), Audretsch et al.

(2005), Fritsch and Slavtchev (2007)) have, in general, hardly paid attention to the

exact mechanisms behind these spillovers. This leads ineluctably to a lack in disentan-

gling market-mediated exchanges of knowledge and true knowledge spillovers (Breschi

and Lissoni 2001a, Massard and Mehier 2010). By contrast, these studies measured

the potential for localised spillovers that occur relying on various different transaction

mechanisms of knowledge (Breschi and Lissoni 2001b, D’Este et al. 2011). When this

approach is employed in the following (i.e. in Chapters 7 and 8), the focus is on the

composition of the knowledge base and the kind of the most presumably resulting spill-

overs. Thereby, the concrete mechanism of the knowledge transfers is neglected and

the (admittedly strong) assumption is made that knowledge transfers just occur. Op-

erationalising the importance of the nature and composition of knowledge spillovers,

it has hence to be kept in mind that the approach of investigating the knowledge pro-

duction function and hence the potential for spillovers overlooks the actual transport

mechanisms.

5.4 Patents (and Publications) as a Source of Network
Data

Besides using the knowledge production function to approach the composition and kind

of spillovers, concrete mechanisms of knowledge transfer is subject to investigation as

well. Chapters 10 and 11 analyse collaboration and innovation networks as channels

for the diffusion of knowledge. This is accomplished by means of social network analy-

sis (see Section 2.3.3). In the context of this thesis, networks are considered as a way of

simplified knowledge diffusion, improving the accessibility of knowledge to their mem-

bers (see Section 2.3). The agents and their relational ties in focus are therefore inno-

vators, i.e. contributors to the innovation process, and their relational ties are mainly

constituted by collaboration or, more basically, knowledge assumed to flow between

them. For the scope of building these networks, patent data proved to be fruitful. The

analysis of networks from patent data has the striking advantage that it rather assesses

the role of relations between individuals in which knowledge is embodied and between
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which the knowledge is assumed to be exchanged. The problem of the measurability of

the intangible is hence avoided by assessing relations rather than stocks.

Patent data as relational data has been used as secondary network data since first em-

ployed by Jaffe et al. (1993), who traced knowledge spillovers by patent citations and

by Breschi and Lissoni (2003), who were the first to use the data as relational data and

build a network thereof. In terms of co-contributorship networks, either inventor or ap-

plicant can then be used as nodes in the network to be constructed, which one to choose

depends on the intention one has. Figure 5.2 schematises and illustrates an example of

such networks and shows the differences. Most frequently, regional network analyses

use inventors as nodes in order to appropriately allocate patents as this corresponds to

the reality where personal relationships between inventors are said to be a central mech-

anism of knowledge transfer. Inventors who are assigned to the same patent are seen

as related, assuming that they got to know each other, as for example done by Breschi

and Lissoni (2004, 2005) and Fleming et al. (2007). Such relationships then constitute

the social network of inventors. In these cases, redundant collaboration is regarded as

redundant knowledge flowing and does, unless stated otherwise, not change neither

the relationship between the inventors nor the network structure. The advantage of

using the inventors’ addresses moreover is that applicants often are multi-establishment

companies. Hence, patents most frequently are assigned to the company’s headquarters

which does not necessarily display where the knowledge behind the patent has been

produced. By contrast, taking the inventor’s address most probably displays where the

knowledge actually comes from (Verspagen and Duysters 2004).

Yet, the boundaries of the organisation that appears as applicant are not considered in

these networks. When aiming at displaying the organisational level, links are estab-

lished either via co-patenting of applicants or via multi-applicant inventorship (Ter Wal

and Boschma 2009). Co-patents are patents that are applied for by more than one ac-

tor. This option is not frequently chosen. Although more than 20% of patents result

from collaborations with external organisations, only 3.6% of all patents are co-patents.

This approach hence leaves much silence in the relation of actual to observed collab-

oration (Ter Wal and Boschma 2009).5 Multi-applicant inventorship occurs when one

inventor is assigned to patents applied for by different organisations. This is widely

interpreted as a result of labour mobility, another acknowledged mechanism of knowl-

edge transfer. However, this is not always the reason for multi-applicant inventorship,

particularly not if patents are applied for at the same time. For instance, the reason not

to co-patent brought up above and hence to split up patents that resulted from a joint

5This might be due to the legal complexity of co-patents, which is why splitting of the right to patent
co-inventions between the partners of a joint R&D project (Ter Wal and Boschma 2009).
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Figure 5.2: Bipartite graph of applicants, patents and inventors (top) and corresponding one-mode
projections of co-contributorship-networks of inventors (bottom left) and applicants
(bottom right).
Source: own illustration based on Breschi and Lissoni (2005).

research project might result in multi-applicant inventorship and hence indicates coop-

eration as well. Another reason for multi-applicant inventorship might be that the right

to patent an invention was sold by the developing organisation; then applicants change

but inventors remain the same (Ter Wal and Boschma 2009). While such networks, no

matter how they are constructed, might not all show past cooperations, they all display

knowledge flows.

However, patent-data-based networks have a number of shortcomings as well. They,

first of all, only capture cooperative relationships that led to a patent, hence not all

successful relationships can be displayed. Moreover it has to be considered that patent

data always refer to cooperation and knowledge flows that connect applied, techno-

logical knowledge, whereas scientific and hence more fundamental knowledge cannot

be patented. Lastly, the shortcomings of patent data in general apply with the conse-

quence that the analyses of such networks have to be handled and interpreted with care

(Ter Wal and Boschma 2009). Since they constitute a relevant and easily accessible

source of data on knowledge diffusion in the innovation process, the advantages and

the potential of these kinds of analyses outweighs their shortcomings. Particularly due

to the fact that the results of scientific research are most frequently not displayed in

patents but rather in publications – and that nanotechnology is in a very young stage
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of development that relies to a huge extent on scientific research – it would have been

desirable to extend the construction of networks to co-authorship as displayed in (sci-

entific) publications. This is, in theory, very well possible. However, the data that was

accessible for this thesis did not allow for such analyses, which is why co-publication

networks are neglected here. The results obtained for patent data based networks may,

however, be helpful to get an idea of how collaboration in nanotechnology in general

works and opens opportunities to make educated guesses how networking in scientific

research might work.

The networks built and analysed in this thesis hence all rely on patent data from the

PATSTAT database. The data was then processed and analysed with free software such

as BIBEXCEL6 and PAJEK.7 The timespan a network connection is assumed to be valu-

able (i.e. valuable knowledge is transferred without renewing the relationship in form

of a new joint patent application) amounts to five years, which is consistent with a com-

monly assumed annual depreciation rate of patents around 20% (Leten et al. 2007).

6Developed by Olle Persson. Available for free download at http://www8.umu.se/inforsk/Bibexcel/.
Persson et al. (2009) provide a good introduction into its application.

7Developed by Vladimir Batagelj and Andrej Mrvar. Available for free download at http://pajek.imfm.
si/doku.php. de Nooy et al. (2008) provide an excellent manual.
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6 Nanotechnology as an Emerging
General Purpose Technology

It is widely accepted that nanotechnology is one of the most important technology of

the future. Nanotechnology is interdisciplinary and combines a lot of classical basis

technologies. This is what makes it so difficult to find a clear and common definition.1

To quote the US National Nanotechnology Initiative

’Nanotechnology is the understanding and control of matter at dimensions

of roughly 1 to 100 nano-metres, where unique phenomena enable novel

applications. Encompassing nano-scale science, engineering and technology,

nanotechnology involves imaging, measuring, modelling and manipulating

matter at this length scale.’

The European Patent Office, which just recently introduced a classification system for

patents protecting nanotechnology inventions comes to a similar definition:

The term nanotechnology covers entities with a controlled geometrical size

of at least one functional component below 100 nano-metres in one or more

dimensions susceptible of making physical, chemical or biological effects

available which are intrinsic to that size.’ (European Patent Office 2011).

The term nanotechnology stemming from and being applied in different fields thereby

refers to most different types of analysis and processing of materials which have one

thing in common: Their small size. Nanotechnology makes use of the special character-

istics that nano-structures do not only depend on the original material, but very much

also on their size and shape, which is used and manipulated by purpose in order to

obtain novel functions.2

1Palmberg et al. (2009, p. 19f) provide an overview on the definition of nanotechnology by various
actors.

2In this context, it could even be discussed whether nanotechnology encompasses too many different
technologies ’only’ having the small size and the corresponding purposeful manipulation with respect
to new functionalities in common. In this case, it would be sensible to employ ’nanotechnologies’
only in the plural form. Yet, since nanotechnology is treated as (possible) GPT in the following,
the convergence of technologies within the range of the term of nanotechnology is assumed and
subsequently the singular form is employed.
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The expectations held of nanotechnology are impressively emphasised by market fore-

casts and the correspondingly steeply increasing public R&D investments throughout

the world (see Figure 6.1): In fact, hardly any other technology field has benefited

from similarly extensive public support in a similarly short time (not even considering

private sector investments). The investments promise to pay off as future market size

has been estimated to up to as much as 3 trillion USD in 2015, corresponding to a job

creation of around 2 million globally (see Figure 6.2) (Hullmann 2007, Lux Research

2008, Palmberg et al. 2009).3

Figure 6.1: Global public R&D investments in nanotechnology
Source: Roco (2007).

Figure 6.2: Expected world market of nanotechnology. Scenarios based on the basis of 17 sources.
Source: Hullmann (2006).

However, as can easily be seen, nanotechnology still is in an early stage of its develop-

ment. It can therefore be described as emerging technology (Wong et al. 2007, Youtie

3Note that these figures were exemplarily chosen in order to point to the enormous expectations in na-
notechnology. For a summary of market forecasts see BMBF (2009), Palmberg et al. (2009), Aschhoff
et al. (2010), Schmoch and Thielmann (2012). These forecasts rely on studies of private consultancy
firms since no official statistics exist due to the lack of a clear cut definition. These firms, however,
tend to forecast positively and hence numbers might be too optimistic. See particularly Schmoch and
Thielmann (2012) for a recent discussion.
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et al. 2008, Palmberg et al. 2009, Schultz and Joutz 2010, Finardi 2011). By definition,

information diffusion is incomplete about emerging technologies (Saha et al. 1994): In

the early stages of its diffusion, only a subset of scientists and producers develop, or

even are aware of the new technology. This is also true for nanotechnology, as research

in this field is still mostly basic research (Jansen et al. 2007) with huge shares of pub-

lic research fundings and hence a resulting involvement of public research institutions

in the course of its development. Moreover, uncertainty about the future development

of nanotechnology is comparably large and technology forecasting is correspondingly

difficult, which results in a limited comprehension of the whole technology ecosystem

(Daim et al. 2006). Examples for such bottlenecks were put forward by Schmoch and

Thielmann (2012): They noted a lack of complete understanding of many effects in

nanotechnology arising due to the enhanced surface to volume ratio. In terms of com-

mercialization they pointed to the high cost of industrial production, i.e. of producing

large quantities of nanomaterials that would limit the wide range of potential applica-

tions. Moreover, missing information on the potential hazards of nanomaterials could

produce a negative image of nanotechnology in the public and thereby inhibit its fur-

ther development. Last, Schmoch and Thielmann (2012) emphasised nanotechnology’s

character as enabling technology, processed in vague value creation chain where the

current technology push needs to be considered alongside the complementary demand

pull.

While it might not be clear to what extent these huge expectations hence will indeed be-

come true, many scholars emphasise that nanotechnology is not only one important but

the GPT of the coming decades. In contrast to other important technologies spurring in-

novations and hence tackling economic growth, the effect of GPTs for economic growth

does not mainly stem from the invention of the GPT as such, but the economic value is

created by the pervasive mutual inducements and complementarities of joint inventions

in GPT and application sectors, yielding wide and continuing impacts for the whole

economy during a whole era (Bresnahan 2010) (see also Chapter 3).

There is a vast literature examining whether past technologies could have been such

a GPT, e.g. Lipsey et al. (1998) review potential candidates, Moser and Nicholas (2004)

examined whether electricity was a GPT, Jovanovic and Rousseau (2005) compared the

impact of IT and electricity and so forth. However, it is considerably more difficult as

well as more important to investigate whether currently emerging technologies have

the potential to become a GPT. It is more difficult because ex-ante even an exact def-

inition of emerging technologies is difficult, not talking about ways to measure their

impact. Youtie et al. (2008) doubted that the kinds of tests proposed in the literature
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are made for ex-ante analyses of emerging technologies because of the need of a consid-

erable amount of (historical) data. It is important, because GPTs provide large potential

effects for economic growth, but the inherent innovation processes also are subject to

market failures and hence innovations are assumed to arrive too late and to a too little

extent (Bresnahan and Trajtenberg 1995), hampering their positive effects on economic

growth. However, these theories rely on stable situations and not on emerging technolo-

gies. Hence, if nanotechnology can be identified as young, but emerging GPT, important

policy implications could be derived in order to avoid potentially occurring market fail-

ures or resolve them in parts. The identification of nanotechnology as possible (future)

GPT therefore constitutes the first building block within the main analysis of this the-

sis. This chapter offers a threefold contribution to the existing literature: First, existing

studies are surveyed. Then, the investigation of nanotechnology as possible GPT is con-

ducted using EPO-data and thereby shifts the focus from the US to Europe as well as

the world. Last, the investigation is systematised, indicators are modified and novel

indicators, such as technological coherence and innovational complementarities come

to use.4

6.1 Derivation of Hypotheses

As introduced in Chapter 3, Bresnahan and Trajtenberg (1995), who coined the term

GPT, characterised them as enabling technologies, offering a generic function which

can be productively used in a wide range of application fields. A GPT features three

distinctive characteristics: it is (1) widely used and pervasive, (2) exhibits scope for

on-going technological improvement and (3) spurs innovation in application sectors.

Innovational complementarities result from feature (2) and (3), pointing to the dual in-

ducement process: Innovations in the GPT sector raise the return to innovations in each

application sector and thereby the incentive to innovate and vice versa (see Chapter 3

for further details).

GPT models are capable of explaining sustained aggregate growth, as GPTs with an

economy-wide scope exhibit increasing returns which are a necessary condition for

permanent growth (Romer 1986, Bresnahan 2010). However, this positive effect on

productivity and growth does not arrive immediately with its emergence. By contrast,

Helpman and Trajtenberg (1998b) theoretically showed that the need for the develop-

ment of a certain threshold level of complementary inputs before the GPT can become

4This chapter relies to a large part (investigation and discussion of hypotheses H6.1 – H6.4) on joint
work with Florian Kreuchauff, research assistant at the Chair in Economic Policy, Karlsruhe Institute
of Technology. The jointly achieved findings are, however, presented in an own form. Needless to say,
all remaining mistakes are entirely the author’s.
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effective induces an initial phase of below average growth. David (1991) found empir-

ical evidence for this time lack. However, once this threshold is reached, the benefits of

an advanced GPT manifest themselves and the GPT can become an effective engine of

growth (see Section 3.3).

Nanotechnology seems to qualify as GPT because it potentially features the three char-

acteristics argued for as typical for general purpose technologies: Pervasiveness of use

(1) is ensured by the generality of purpose, stemming from the possibility to arrange

nano-scaled structures encompassing new material properties for literally countless ap-

plications in nano-medicine, atomically precise manufacturing, fuel cell electro cataly-

sis, organic photovoltaic cells etc.. The scope for improvement in nanotechnology (2)

is provided by the possible reduction of size and costs and increasing complexity. For

instance, nano-applications in semiconductor manufacturing technology resulted in a

remarkable reduction of processing size in recent years (Graham and Iacopetta 2009).

Hints for nanotechnology to spur innovation in application sectors (3) are given by the

existence of a nano-oriented value chains with basic, intermediate and downstream in-

novations (Youtie et al. 2008). It is hence proposed that nanotechnology is a general

purpose technology and subsequently the following hypotheses shall be tested.

Hypothesis 6.1 Pervasiveness
Nanotechnology is a widely used, pervasive technology.

Hypothesis 6.2 Technological Improvement
Nanotechnology exhibits scope for ongoing technological improvement.

Hypothesis 6.3 Innovation Spawning
Nanotechnology spurs innovation in applications sectors.

Hypothesis 6.4 Innovational Complementarities
Nanotechnology features innovational complementarities.5

Although not referring directly to the GPT character of nanotechnology, the debate

around converging technologies shall be picked up as well in this context. Wood et al.

(2003) pointed to the fact that many of the novel applications arising from nanotechno-

logy indeed are the result of the convergence of several (basis) technologies within the

field of nanotechnology. Put differently, nanotechnology is interdisciplinary and com-

bines various basic technologies thereby merges up to now mostly isolated disciplines,

5Technically speaking, innovational complementarities can be derived from H6.2 and H6.3 (Bresnahan
2010). However, finding evidence for innovational complementarities on their own provides further
evidence for nanotechnology being a GPT. This is why they are listed as proper hypothesis.

93



6 Nanotechnology as an Emerging General Purpose Technology

e.g. physics, chemistry and biology. Since this feature, however, might heavily influence

the processing of knowledge within the innovation processes of nanotechnology (for

instance for issues such as cross-fertilisation, the complementarity of knowledge bases,

cognitive proximity etc.), the investigation of this hypothesis seems sensible. The inves-

tigation of mergence serves a dual scope. First, the convergence of knowledge used to

create new knowledge in a certain technology might later translate into high levels of

generality of purpose. Therefore, the level of convergence might serve as an indicator

for the potential generality. Second, this merging of technologies indicates the need for

multidisciplinarity and emphasises the potential benefits of cross-fertilisation. Since the

knowledge base, on the basis of which new knowledge and subsequently innovation is

created, is of major importance for the rest of this thesis, the investigation of the merger

characteristics indeed is of interest here.

Hypothesis 6.5 Knowledge Mergence
Nanotechnology merges knowledge from several disciplines and technologies.

6.2 Methodology and Data

The key question is hence whether nanotechnology already provides empirical evi-

dence for being considered as GPT. There are two main paths tackling the investiga-

tion of this question and the correspondingly derived hypotheses. First, focusing on

the early stage’s productivity loss, macroeconomic measures can be defined to iden-

tify the impact of nanotechnology on an economy’s development. This approach is

strongly output-oriented, since a sufficient number of commercialised products in vari-

ous application sectors is needed to trace (nanotechnological) assets, R&D investments

as well as complementary organisational, social and cultural efforts which may cause

productivity slowdowns, while costly restructuring and adjustment of whole parts of the

economy take place (Aghion and Howitt 2009). Jovanovic and Rousseau (2005) there-

fore defined the start of a GPT-era as the point in time when the GPT has achieved a

one-percent diffusion in the median sector, e.g. measured by shares of total horsepower

generated by the main sources in manufacturing and shares of computer equipment and

software in the aggregate capital stock, regarding electricity and ICT respectively. Quite

obviously, a considerable amount of time will have to pass, until nanotechnology’s core

inventions emerge visibly in similar measures (Nikulainen 2007).

The second pathway is to find evidence for the peculiar characteristics of GPTs in nano-

technology. Essentially considering the aforementioned early stage of development this

can be done either by looking at R&D expenditures displaying the overall input effort
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or turning to patents and scientific publications as the resulting output. The R&D ap-

proach has a major drawback as well, considering the limited available data on public

R&D expenditures (attributable to nanotechnology) due to the lack of common statisti-

cal definitions (Palmberg et al. 2009). Private expenditures are even harder to account

for. By contrast, patents and publications as indicator – yet, encompassing a number

of shortcomings as well – provide an accessible and rather complete insight into the

existing output of nanotechnology nearly up to present times. Taking these output in-

dicators and the corresponding citation structures allow insights into the technological

links between different inventions (Bresnahan 2010) and hence constitute a basis for

investigations of the manifold characteristics of the underlying technological advances

(see Chapter 5 for a detailed discussion of these indicators).

Nanotechnology patent and publication data have recently been used in order to iden-

tify economic trends in these emerging technologies. Heinze (2004) studied the de-

velopment of nanotechnology based on publications and patent applications pointing

to its worldwide expansion. Hullmann (2007), for instance, examined the state of the

art of nanotechnology by analysing data on markets, funding, companies, patents and

publications finding that nanotechnology easily has the potential to overtake the tradi-

tional biotechnology and even reach the level of the current situation with ICT concern-

ing economic impact. The study by Wong et al. (2007) using USPTO-nanotechnology

patents to investigate the evolution of application areas found that the focus formerly

was on instrumentation (which is necessary for its development), whereas today more

application-based developments dominate the field. Meyer (2007) emphasised the inte-

grating and field-connecting characteristics of instrumentation within nanotechnology.

These results again point to the generality of purpose of nanotechnology. Palmberg

et al. (2009) gave a detailed overview on the development of nanotechnology, mainly

based on indicators using patent and publication data. Their publication data highlight

the broad-based and interdisciplinary nature of scientific advances that are conducive

to nanotechnology developments. Their findings on nanotechnology patenting include

dynamically increasing distribution across a broad range of sub-areas and application

fields. This emphasises the multiplicity of applications and a certain generality of pur-

pose. Though not systematically investigating this issue, these lines of research all point

to the direction of nanotechnology being an emerging GPT.

There are also studies that directly assess the general purpose technology character-

istics of nanotechnology using patent data. First attempts to uncover GPTs alike were

made by Hall and Trajtenberg (2006). They suggested measures of GPTs, such as gen-

erality, numbers of citations and patent class growth for the patents themselves and for
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6 Nanotechnology as an Emerging General Purpose Technology

the patents that cite the patents. First attempts to investigate whether nanotechnology

might be a GPT were made by Palmberg and Nikulainen (2006). However, they do

not apply common indicators or other measures to test their hypotheses systematically.

These were explored by Youtie et al. (2008), who tested indicators for generality and

highlighted evidence for nanotechnology being as pervasive as GPTs like ICT. Moreover,

they developed further indicators for innovation spawning. This finding is confirmed by

Graham and Iacopetta (2009), who also tested for these two features. Schultz and Joutz

(2010) also assessed this topic, finding that interdisciplinary nanotechnology is quickly

expanding, while they discovered a few very general nano-fields with the potential for

wide economic impact and nano-fields that experience a more focused development

path. Most recently, Shea et al. (2011) analysed a sample of USPTO patents of the

first 25 ’nano-years’, looking for early evidence that nanotechnology is a general pur-

pose technology, assessing all three characteristics. Table 6.1 provides a compiliation

of the existing studies investigating how a technology – in particular nanotechnology –

might be discovered as a GPT, focusing on the indicators that were used for this purpose.

Hence, the literature suggests that nanotechnology might be a GPT as it is employed

in a wide variety of applications and first approaches to investigate GPT features within

nanotechnology systematically have been developed. However, these were all based on

patent applications and all were investigating USPTO data. In the following chapter

it is attempted to further systematise the existing approaches, particularly with respect

to the indicators measuring the three GPT features and extending the analyses to pub-

lication data. More particularly, although nano-activity has been subject to investiga-

tion by the OECD in recent years (Palmberg et al. 2009), to the best of the author’s

knowledge there have not been any examinations of broadly accepted measures of GPT-

characteristics identified in scientific literature within the EU27 yet. This is also done in

the following.

In order to tackle the five hypotheses, distinct indicators for the validation of each

hypothesis is identified first. The calculation is always based on the nano-patent and

nano-publication database introduced in Chapter 5. To be able to compare the absolute

values of the indicators for nanotechnology to other technologies, namely a GPT and a

non-GPT, calculations of the same indicators were also done for ICT and CE respectively

(see Subsections 5.1.3 and 5.2.3 for further details). ICT can be found implemented in

almost every industrial sector or consumer product in electronics since semiconductor

elements have become extremely important and of general purpose, e.g. in desktop

PCs, notebooks, tablet PCs, cell phones, automobiles and many more. Moreover, fast

and timely information and communication have become increasingly important, sky-
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6 Nanotechnology as an Emerging General Purpose Technology

rocketing the need for high level ICT accordingly. First, computers revolutionised data

processing and automation, then personal computers invaded people’s lives and eventu-

ally the Internet has again changed economies. Combustion engines, by contrast, have

the rather specific function of producing mechanic energy by moving a physical compo-

nent (e.g. pistons) via pressure changes within a combustion chamber. Therefore, this

technology lacks the highly generic type of function that is responsible for application

in multiple industrial sectors and was argued in Section 3.1 to be the core element of a

GPT. Notwithstanding CE constituted a major technological breakthrough and has also

been carefully investigated as being a possible GPT by some (Jovanovic and Rousseau

2005, Lipsey et al. 1998), it can still be seen as a regular type of (radical) technologi-

cal breakthrough, constituting the lower benchmark level for comparative scope. Note

the fact that nanotechnology is still an emerging technology and the chosen benchmark

technologies ICT and CE are not emerging anymore. However, the time period investi-

gated is the same for all three technologies (i.e. 1980-2008 and not the respective time

periods when ICT and CE were still emerging) and in order to test a possibly emerging

technology against an existing, stable GPT and a stable non-GPT.

6.3 Analyses and Results

6.3.1 Pervasiveness (H6.1)

For a technology to be(come) pervasive, it has to be widely applicable already at an

early stage of its development, thereby using different diffusion channels and strength-

ening its impact on the whole economy with increasing maturity. Potential pervasive-

ness should hence become obvious is the technological characteristics of a (future) GPT.

Finding evidence for nanotechnology being a future GPT hence includes finding link-

ages of nanotechnology to a broad variety of different industries and technologies.

There is indeed qualitative evidence for the pervasiveness of nanotechnology. The gen-

erality of purpose, stemming from the possibility to rearrange atoms encompassing new

properties, particularly creates this potential. Nanotechnology can be processed in arbi-

trary levels of the value creation chains, but given its potential for the improvement of

old processes, materials and products (top-down approach) it is mainly applied at the

beginning of a value creation and should therefore tend to exhibit high diffusion rates.

The respective technological fields can be entirely different, as nanotechnology can be

employed, for instance, in making airplanes lighter without loss of stability, in drug de-

livery systems or in new generation solar cells. By contrast, bottom-up innovations, i.e.

completely new products developed with nanotechnology, are not that present yet.
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Diffusion

Nikulainen (2007) found that nanotechnology is linked to a variety of industries, and

in particular to industries with higher than average R&D intensity. Examining diffu-

sion rates as one possible indicator of pervasiveness, one might consider the share of

nano-patents/publications to total patents/publications in the respective portfolios of

the most innovative firms and research institutes, as here diffusion is assumed to be

fastest. Therefore, this first quantitative measure exemplarily is applied to the TOP25

firms in the European R&D Investment Scoreboard 20106 for patents and to the TOP25

publishing institutions in Europe (as extracted from the WOS) for publications. The

TOP25 institutions were chosen to ensure to get the most innovative institutions within

the Scoreboard, i.e. the top 2,5%. However, since nanotechnology still is in a nascent

phase and not all GPT characteristic can be assumed to be developed yet (even if it will

become a GPT eventually), the trend rather than the absolute level is of central interest.

It is therefore expected that the diffusion rate increases steeply with tendency towards

the one of ICT with proceeding time (and hence maturity of nanotech). The CE level of

diffusion rates should thereby serve as lower benchmark.

Figure 6.3 shows the shares of ICT-, CE-, and nano-patents of the Top25 firms in the

European R&D Investment Scoreboard 2010 over the past three decades.7 As the trend

indicates, the fraction of ICT-patents in innovative companies shows only a slight in-

crease over the past 20 years.8 It thus seems that there is a quite constant output rate

of new codified knowledge in ICT, so the growth follows a linear pattern. This is not

only true for these 25 chosen companies, but for the overall observations of patents as

well, as is shown in Subsection 6.3.3. While the share of patents of the non-GPT proxy

CE appears constant as well (around 7% percent for the last 20 years), the fraction of

nano-patents seems to rise with a remarkable increase setting in about 1997. Nano-

technology inventions thus appear to gain in importance regarding their proportion of

R&D-output. But even in the observed companies with higher than average R&D inten-

sity nanotechnology is still far away from outmatching the share of countable results

in CE related research, not to mention the comparison to ICT. Nevertheless, the trend

6’The 2010 EU Industrial R&D Investment Scoreboard’, released in October 2010, presented information
on the top 1000 EU companies and 1000 non-EU companies investing in R&D in 2009. (...) The data
for the Scoreboard are taken from the companies’ latest published accounts, i.e. the 2009 fiscal year
accounts and indicate the R&D invested by companies’ own funds, independently of the location of
the R&D activity.’ (see http://iri.jrc.es/research/scoreboard_2010.htm).

7Taking into account the fact that not every of those firms has attributable R&D-Output at the beginning
of the observation period, the data is clearly biased. Nonetheless, the shown trends seem to be robust
when reducing the sample to the firms for which patents can be found within the whole panel.

8It is worth noting that interpreting patent developments demands caution regarding the last years,
since patent filing and publishing takes its time. Data collection was therefore stopped 2008 (with a
database ranging till September 2010) due to this lag.
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points to a realignment of research activities with a considerably strong effort on nano-

technology.

Figure 6.3: Diffusion rates based upon patents of Top25 firms’ R&D.
Source: PATSTAT, own searches and calculations.

Scientific publications, though, are often associated with the more fundamental re-

search, and nanotechnology evidences this quite clearly, as Figure 6.4 depicts: While

patent diffusion rates for the Top25-sample in patenting do not nearly conquer either

ICT or CE, shares of nano-related scientific literature around 6.5% can be observed

within total publications of the Top25 publishing institutions worldwide, with an un-

bowed trend pointing to further growth in years to come. ICT shares of these publica-

tions linger around 3%, with only a 1% increase in two decades. Hence ICT in general

reveals a focus on applied research (as marked by patents), while nanotechnology is

still primarily a matter of the scientific debate. This is what could have been expected

due to the still largely nascent stage of nanotechnology in general. Moreover, this is

almost the same for the whole sample, as becomes obvious in Subsection 6.3.3.

With regard to these results measuring the pervasiveness of nanotechnology, a strong

and intensifying concentration concerning efforts of highly innovative firms and the

leading scientific institutions (chosen on the basis of high expenditures on R&D and
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publishing output respectively) was expected. Although the pervasive character of na-

notechnology based upon the proposition of Nikulainen (2007) is not to be seen in

patents yet, it is already visible within publications – arguably the upstream comple-

ment to patents. After all, there is no reason to doubt that the pervasive character

obvious within publications can be observed in their technological (and downstream

and hence later) counterparts patents soon, since the growth of nanotechnology in both

indicators shows the anticipated courses without any signs of weakening.

Figure 6.4: Diffusion rates based upon publications of Top25 publishing institutions.
Source: WOS, own search and calculations.

Generality

Already within their seminal paper, Bresnahan and Trajtenberg (1995) pointed to the

possibility of identifying valuable inventions by patents that are cited by a wide range of

different industries. To measure this, Trajtenberg et al. (1997) employed the Hirschman-

Herfindahl index which was further developed by Moser and Nicholas (2004) and Hall

and Trajtenberg (2004) as generality index Gi,

Gi = 1−
ni

∑
j

s2
i j, Gi ∈ [0,1] (6.1)

where si j denotes the percentage of citations received by patent i assigned to patent

class j, out of ni technological classes. Thus, if the knowledge of an invention benefited

subsequent inventions in a wide range of technological fields, this measure will be close

to one, whereas if most citations are concentrated in a few fields it will be close to

zero. This measure is not only useful with respect to patents and the corresponding

IPC classes on different levels, but can also be computed across technological fields

in concordance to the ISIC system. Hence, the underlying classes ni can consist of n-

digit patent IPC class or classifications by main technological fields (e.g. following the

NACE/ISIC Concordance developed by Schmoch et al. (2003), see Subsection 5.1.2).

This index is not even restricted to patents. As publications display the output of the

101



6 Nanotechnology as an Emerging General Purpose Technology

public research system and hence the scientific ideas and inventions, publication data

and a corresponding classification system (such as the Subject Areas (SAs) in Thomson

ISI Web of Science) can be used similarly. Yet, an only small forward time window

in the field of new and emerging technologies poses difficulties in calculating sensible

Generality indices, and hence si j is biased downwards as not all the citations are yet

observed, which constitutes a ’lag’ effect. Correcting this bias is possible e.g. by using

G̃i =
Ni

Ni −1
Gi, G̃i ∈ [0,1] (6.2)

with Ni = being number of citations observed (Hall 2002). This indicator, G̃i, is hence

calculated for nano-patents with respect to IPC classes and technological fields as well as

for nano-publications and subject areas for forward in order to test whether nanotech-

nological inventions exhibit the feature of pervasiveness. This is then compared to the

respective ICT and CE values. Due to resource constraints, only Top10 cited patents are

included. Hall and Trajtenberg (2006) argued that distribution of patent importance is

highly skewed and only very few are highly important, a characteristic that is commonly

accepted to reflect in patent citations. True GPT patents should be among those patents,

and hence the Top10 patents are chose as the tail of this skew distribution here. K30,

i.e. the allocation of IPC classes into the concordance of 30 technological fields was

chosen because less distinguishable classes reflect higher generality if a patent scores

high. This is the case because fewer classes provide a higher accuracy of discrimination

between pervasive technologies and those of which the citation structure refers to a

more limited number of fields.

Figure 6.5 shows the yearly average forward generality indices of the Top10 cited

patents of each year according to the K30 technology classification (see Table B.1 in

the Appendix for the IPC Concordance).9 The average generality values of the lower

benchmark CE are almost everywhere considerably smaller than those of ICT and nano-

technology, as was expected.10 To clarify the interwoven curves of nanotechnology and

ICT a Hodrick-Prescott filter was employed (λ = 100 for yearly data) on the right hand

side (see Figure 6.5). The separation of the cyclical component with respect to time al-

lows a disconnected view of the data at hand and the levels of ICT, nanotechnology and

CE respectively become more distinguishable (at the cost of a cyclical outcome that is

at least arguable). Anyhow, by concentrating on the pure levels now ICT’s generality is

9Note that for the CE values were calculated for 5-year-intervals only since the employed amount of
data was intended to be kept at a reasonable level. All other values are interpolated. However, there
is no reason to expect robustness problems by extending the data set.

10Note again, that the last around 4-5 years within the observation period are not to be overrated, now
even more in the context of forward citations that underlie this measure.
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visibly above the one of nanotechnology, indicating the grown pervasive character of the

upper benchmark is yet to be reached. This interpretation has to be taken with caution,

since for many years in the sample, nanotechnology’s average generality is clearly ex-

ceeding the one of ICT and the t-test results also do not indicate a significant difference

between the two technology’s generality values (see Table 6.2). A significant difference

can only be found for the generality values of CE against both groups of ICT and nano-

technology (see Table 6.2). The t-tests indicate that nanotechnology outperforms the

non-GPT by far in terms of forward generality and does not show any significant differ-

ence between nano and ICT. Hence, although the t-tests do not account for the trend

but compare the means of the generality values (and hence neglects the fact that na-

notechnology is still an emerging technology), nano can be regarded similarly general

as ICT. The fact that the t-tests do disclose any significant difference between European

and worldwide generality values and hence the regional comparison does not reveal

any contradiction only supports this fact.

A more sophisticated measure which allows for more distinctive scores that qualitatively

account for the perceived cognitive distance between the fields is desirable though,

which is why the technological coherence indicator is employed in the next subsec-

tion.11

Obs Mean StdDev ICT CE EU271

WORLD

NANO K30 29 0.5339 0.1144 -0.0403 3.7965*** -0.9671
ICT K30 29 0.5351 0.1109 3.9159*** -0.3279
CE K30 29 0.3482 0.1241 -0.1561

EU27

NANO K30 29 0.5353 0.1145 -0.2821 6.7428***
ICT K30 29 0.5425 0.0754 8.7179***
CE K30 29 0.3539 0.0888

Table 6.2: t-Tests (unpaired) of forward average generalities for ICT-, Nano- and CE-patents in
the world and in EU27 over time.
1 Paired t-Tests between WORLD and EU group values.
***Indicates significance at 0.01.
Source: own calculations.

Technological Coherence

Hall and Trajtenberg (2006) confined the extent of the validity of the generality mea-

sure they introduced, since they suffer from the fact that every pair of technologies is
11Results of the publication generalities are not discussed here since they offer no additional information.

Moreover, classification within Thomson ISI subject areas is subject to minor objectivity, which results
in hardly distinguishable average generality indices (see Figure C.2 in the Appendix).
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(a) World (b) World, HP-filtered

(c) EU27 (d) EU27, HP-filtered

Figure 6.5: Forward average generalities of Top10 cited patents p.a. (K30).
Source: PATSTAT, own search and calculations.

treated as equally ’distant’ or ’similar’ once they are in different technological classes.

This assumption is not as close to reality as it should be with the result of possible

over- or underestimations of the generality value. They propose the introduction of a

weighted generality measure. For this scope, the measure of technological coherence

shall be introduced.12 Technological coherence, in this context, is defined as the extent

to which inventions (i.e. patents) in a technological area share the same underlying

knowledge, i.e. the extent to which the technological underpinnings of the patents are

similar. This technological coherence can reasonably be assumed to be higher the more

specialised a technological field is. New inventions in a highly specialised technolog-

ical field are expected to be somewhat more coherent than are inventions in the field

of a general purpose technology. By definition, GPT related inventions can be found in

a wide range of application fields and therefore the technological coherence of these

inventions can be expected to be considerably smaller. Technological coherence has al-

ready been used and calculated in other contexts, for instance in studies examining the

role of spillovers, diversity and related variety by using patent data. However, it has

12However, this is not a direct advancement of the generality measure since it does not rely on the
Herfindahl index.
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never been used to identify or measure GPTs. It is hence be employed for the first time

in this context.

To calculate the relatedness of a patent portfolio a measure of the degree of relat-

edness has to be determined for each pair of technology classes. Commonly, as e.g.

done by Breschi et al. (2003) and Leten et al. (2007), this measure is constructed us-

ing co-occurences of technological classes that are associated (directly or via citations)

to a patent. This measure is not recalculated, but the technology relatedness matrix

constructed by Leten et al. (2007) is used instead.13 Following their approach, two

technology classes are considered as technologically related if patents associated to one

technology class often cite patents classified in the other technology class and vice versa.

The technological relatedness matrix (see Table C.1) is hence used to calculate the

technological coherence of (i) nano-patents applied for within one year and (ii) for-

ward citations of nano-patents, again within one year. These shall display how the

technology itself is developed by different fields and how it is applied. Benchmark val-

ues are calculated for CE and ICT patents. Coherence is then defined as the average

technological relatedness of all technologies associated to the patents, weighted by the

patent counts. Therefore, the weighted average relatedness COHi of technology i to

all other technologies relevant in the considered year is calculated for each technology,

displaying

COHi =
∑i�= j Ri j ×Pj

∑i�= j Pj
(6.3)

where Pj is the patent count weight.14 The overall coherence measure of nanotechno-

logy patents by year is then calculated as the weighted average of all the COHi measures:

COH =
∑i Pi ×COHi

∑i Pi
, COH ∈ [0;∞) (6.4)

With the technological coherence, the measurement of the extent to which patents in

a technological area share the same underlying knowledge is put into focus. The more

13The measures are based on EPO and USPTO cited patens by EPO patents applied for between 1990
and 2003 and granted before 06/2005. Concerning the technological classes the OST/INPI/ISI con-
cordance is used, developed by Hinze et al. (1997). Since the time period as well as the patent
authorities of the patents to calculate this matrix were filed at are also covered by the nano-patent
database all further calculation rely on, the use of the matrix for the purposes of this thesis is justifi-
able. For a more detailed description on how this measure is constructed see Leten et al. (2007) or
the Appendix C.1.

14See the Appendix C.1 for the derivation of Ri j.
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specialised a technology is, the higher should be its technological coherence since it

reflects the relatedness of the technological classes a patent is classified in (or cited

by). The coherence measure for nanotechnology as an emerging GPT was therefore

expected to be lower than for the non-GPT CE. Figure 6.6 shows that this is indeed the

case. The GPT-proxy ICT and nanotechnology shape a narrow side-by-side course with

visible distance to the CE coherence values. To verify the significance of this offset, a

two sample location t-test was performed (see Table 6.3). The results are robust across

the EU27 as well as the WORLD sample and also when taking the technology classes of

citing patents instead of the cited patents technology classes themselves (see right hand

side of the Figure).

(a) World, patent applications (b) World, forward citations

(c) EU27, patent applications (d) EU27, forward citations

Figure 6.6: Technological coherence of ICT-, Nano- and CE-patents p.a..
Source: PATSTAT, own search and calculations.

Hence, with this new measure it becomes clear that pervasiveness is undoubtedly much

stronger for the ICT and the GPT-candidate nanotechnology. Both show a visible dis-

tance to the lower benchmark technology CE, ICT with a smoother line due to the

clearer basis in the categorisation system, nanotechnology with soft swings around an

almost stationary level. This is visible in the results of the t-tests as well: Nano and ICT

seem to be pretty similar in terms of technological coherence when compared to CE:
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Obs Mean StdDev ICT CE EU271

WORLD

NANO 21 0.6305 0.0595 -2.4374** -22.0292*** 0.8630
ICT 21 0.6628 0.0131 -39.9758*** 0.4385
CE 21 0.9514 0.0304 -1.0831

NANO fw 21 0.6624 0.0811 -0.1871 -7.9591*** -0.9516
ICT fw 21 0.6490 0.0435 -14.9552*** 7.5255***
CE fw 21 0.9067 0.0512 -10.4017***

EU27

NANO 21 0.6200 0.0871 -2.1688** -16.8209***
ICT 21 0.6614 0.0096 -39.7650***
CE 21 0.9619 0.0333

NANO fw 21 0.6448 0.0955 1.9996* -11.6696***
ICT fw 21 0.6239 0.0351 -20.8685***
CE fw 21 0.8177 0.0279

Table 6.3: t-Tests (unpaired) of coherences of ICT-, Nano- and CE-patents and forward citing
patents over time.
1 Paired t-Tests between WORLD and EU group values.
***Indicates significance at 0.01.
Source: own calculations.

They exhibit statistically significantly lower values of technological coherence across all

different samples and indicators (see Table 6.3). In pairwise comparison, the set of

nano patents is even a little bit less coherent (significant on the 10% level) than the

ICT patents. These results are less clear when considering the set of forward citations.

Yet, a slight increase in coherence of nanotechnology might be found after 1990, the

starting point of a significant rise in the number of nanotechnology patents, possibly

due to a related small gain in concentration among technology classes. The comparison

of the WORLD sample against the EU27 again does not disclose any difference for the

patents themselves. However, the coherences of the forward citations of ICT and CE are

significantly lower in the EU27 than in the world. Since this does impact the described

relationship within the EU27 this is, finally, not a contradiction to the general support

for nanotechnology being similarly general as ICT. All in all, technological relatedness

seems to keep the promise of adding valuable information to current pervasiveness mea-

sures.

After all, the above derived results show that nanotechnology indeed exhibits a level

of pervasiveness that exceeds or at least levels the one of the non-GPT CEs. From the

upper benchmark’s ICT view, nanotechnology values are getting close(r). Generally

spoken, the above findings hence support hypothesis 6.1, at least in terms of a trend

towards the level of the ICT-benchmark: Nanotechnology develops with (increasing)

pervasiveness.
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6.3.2 Scope for Improvement (H6.2)

In nanotechnology the vast potential to further reduce cost, size or, e.g. improve other

characteristics of nano-enhanced material, such as the increase of stability of nano-

material is given at present. This displays the large scope for improvement.

Increase of Nano-Inventions

A very simple measure of scope for improvement was suggested by Palmberg and Niku-

lainen (2006) in form of accelerating growth of nano-inventions. Thereby, the pure

number of patents was observed and an accelerating growth pattern shaping nanotech-

nology’s development over recent years was expected. Figure 6.7 illustrates this course

strikingly. The number of nano-patents evolves noticeably, though it is still far from

reaching that of CE (not to mention ICT), a result strongly related to the contempora-

neous lack of countable applications for the emerging technical feasibilities.15

As already found for diffusion rates, publications again underscore the fundamental

theoretical work that has been done for nanotechnology in the past two decades. With

the pure numbers of publications surpassing those of ICT around the year 2000, nano-

technology has clearly become an object of scientific interest of the new century. Al-

though, as Schmoch et al. (2012) remarked, publication count data shall not be taken

for trend analyses because of the increasing coverage of the WOS and the resulting arti-

ficial growth of publications, this indicator might be used when comparing technologies,

since they all are subject to the database enlargement. Hence, although growth effects

might be partly due to database extension, nanotechnology still outperforms CE and

even ICT, on what level whatsoever. Its scope for on-going improvement is unbowed.

Considering scientific as well as crescent public excitement related to the countless tech-

nological possibilities, there is no reason to expect any attenuation within the next years.

One can only guess how many of those theoretical technological advancements might

transfer into applicable results manifested in patents soon.

Forward Citation Rates

In order to be characterised as GPT, a technology must undergo continual technolog-

ical improvements. Schultz and Joutz (2010) proposed later work citing the original

invention as an indicator for this development. Following hypothesis 6.2, nano-patents

are hence expected to have many citations indicating a pattern of cumulative innova-

tion (Hall and Trajtenberg 2006), an expectation which can easily be transferred to

15Again, the last few years within the observation period are not to be overrated.
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(a) World (b) World, comparison Nano to CE

(c) EU27 (d) EU27, comparison Nano to CE

Figure 6.7: Numbers of ICT-, Nano-, and CE-patents p.a..
Source: PATSTAT, own search and calculations.

(a) World (b) EU27

Figure 6.8: Numbers of ICT-, Nano-, and CE-publications p.a.
Source: WOS, own search and calculations.
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publications. Hence, citation rates for nano-patents as well as nano-publications are

computed. Citation rates are expected to be between those of ICT and those of combus-

tion engines. However, the trend is again considered relevant since nanotechnology as

emerging technology is still at the beginning of its development process. Moreover, cita-

tion rates are anticipated to increase and develop into the direction of ICT citation rates.

In fact, nanotechnology was found to produce patent citation rates even above those of

ICT as Figure 6.9 reveals. For nanotechnology a small absolute number of core patents

produce comparably large numbers of references. And these core technology founding

patents seem to stem from outside Europe, since the nano-patents found in the Euro-

pean Union have considerably smaller citation rates (see Figure 6.9(b)). Publications

should not be affected that much by borderlines, and as expected European publica-

tions show high nanotechnology-related citation rates again.16 This indicates that the

continuing technological improvements associated with nanotechnology are even more

impressive than expected. The significance of these findings is supported by the t-tests

performed between the different technologies’ citation rates which can be found in Ta-

bles 6.4 and 6.5.

H6.2 can hence be confirmed in general means: Nanotechnology is a technology of-

fering a large scope for improvement. Although the absolute numbers in overall nano-

technology patenting are unexpectedly low compared to ICT and CE, the steep increase

in nanotechnology-patents and hence the trend indicates the large potential of nano-

technology, particularly as emerging technology. This trend is also supported by the

strong numbers in nano-publications. Also, the results for the forward citation mea-

sures outperforming ICT and CE similarly support the hypothesis.

16As pointed out in Section 6.2, available data is restricted to European publications for this citation
measure, which does not affect the interpretation here anyway. For worldwide publications similar
citation rates should be expectable.
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(a) World (b) EU27

Figure 6.9: Forward citation rates of patents p.a..
Source: PATSTAT, own search and calculations.

Figure 6.10: Forward citation rates of publications in the EU27.
Source: WOS, own search and calculations.

Obs Mean StdDev ICT CE EU271

WORLD

NANO 29 6.0445 3.8381 6.1676*** 6.8659*** 6.2011***
ICT 29 1.5283 0.9045 2.1711** -11.5856***
CE 29 1.0983 0.5651 -11.2240***

EU27

NANO 29 2.5303 1.2504 0.9271 1.0510
ICT 29 2.2552 0.9957 0.1564
CE 29 2.2135 1.0357

Table 6.4: t-Tests (unpaired) of forward citation rates of ICT-, Nano- and CE-patents in the
World and in EU27 over time.
1 Paired t-tests between WORLD and EU group values.
***Indicates significance at 0.01.
Source: own calculations.
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Obs Mean StdDev ICT CE

NANO 29 23.9221 5.5554 12.6820*** 9.4701***
ICT 29 9.7372 2.3275 0.3342
CE 29 9.3283 6.1649

Table 6.5: t-Tests (unpaired) of forward citation rates of ICT-, Nano- and CE-publications in the
World over time.
***Indicates significance at 0.01.
Source: own calculations.

6.3.3 Innovation Spawning (H6.3)

The last of the three necessary features of a GPT is tested with Hypothesis 6.3, stating

that innovations which build on nanotechnology will themselves spawn many new in-

novations.

In the field of nanotechnology innovation spawning could be found in the existence

of nano-enhanced value creation chains, consisting of initial, intermediate, and down-

stream innovations. Carbon nanotubes, embodied in nano-enhanced coatings and fi-

nally employed in a variety of final products, such as airplanes, nano-enhanced clothes,

self-cleaning windows, oxidising organic matter, rotor blades or electronic displays can

be identified as such (Lux Research 2006, Youtie et al. 2008). In combination with

technological dynamism, this characteristic is the main driver of innovational comple-

mentarities (see H6.4).

Dynamism of Nano-Invention Activity

The dynamism that goes beyond the pure increase of nano-inventions constitutes a

meaningful indicator: An increasing share of nano-inventions can be used as an indi-

cator for the innovation spawning characteristic of nanotechnology, as well as the mere

volume of citations to inventions (nano/non-nano) might serve as an indicator evidenc-

ing nano to be a GPT (Shea et al. 2011, Hall and Trajtenberg 2006).

For the most part, trends for the diffusion rate of nano-, ICT-, and CE- patents world-

wide as displayed in Figure 6.11 are similar to the Top25 firm sample (see Figure 6.3).

The share of CE patents appears to decrease below 1.5% in recent years, at least for

world data (by contrast, an almost constant share for the Top25 firm sample around

the last 20 years was found). On the other hand, ICT-patents made up the majority of

patents within R&D intensive firms with up to almost 50% for two decades. Although

worldwide shares constitute a 20% smaller ICT-patent share, this ratio has been quite

constant for this 20 year period as well. Again, this does not hold for Europe: For ICT
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and CE likewise, there is a positive trend indicating strong research efforts on catching

up with Silicon Valley for ICT and gaining supremacy for CE respectively.

Nano-patents evolved the same way it was observed for the firm sample, which might

seem surprising: The shares within the Top25 firm sample could have been expected

to outweigh those of all patents. Nonetheless, while it was constituted that pervasive-

ness with respect to diffusion measures was not to be seen yet (since nanotechnology

is still far away from outmatching the share of CE patents), the growth pattern anyhow

indicates the high innovation spurring character of a GPT. As argued before, a remark-

able increase of the nano-patent proportion statistics can be observed. This manifests

the gains in importance regarding R&D-efforts into this new technology. For nascent,

emerging drastic technological advancements such as nanotechnology as potential GPT,

with most of the research efforts made in basic research, these efforts are naturally

much more apparent in publications, where nano-related scientific output has already

surpassed that of ICT, as Figure 6.12 depicts.

(a) World (b) World, comparison Nano to CE

(c) EU27 (d) EU27, comparison Nano to CE

Figure 6.11: Diffusion rates of ICT-, Nano-, and CE-patents p.a..
Source: PATSTAT, own search and calculations.
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(a) World (b) EU27

Figure 6.12: Diffusion rates of ICT-, Nano-, and CE-publications p.a.
Source: own calculations.

Growth in Citing Technological Classes

If H6.3 can be supported, nano-patents-citing technologies could be subject to a burst of

innovations because complementary goods are developed (Hall and Trajtenberg 2006).

A proxy for innovation spawning can hence also be the growth of the technological

classes that cite such a technology as was proposed by Hall and Trajtenberg (2006).

When nano-innovations are indeed spurring innovations, a way to see this in the data

could be to investigate the growth of the technological classes that cite nanotechno-

logy, assuming that innovations that refer to nanotechnology are increasing in numbers.

Therefore, nanotechnology patents and publications should show high citing technolog-

ical class growth.

Technological classes (or subject areas, referring to publications) that harbour nano-

citing patents were expected to show an above average growth. The top ten citing

classes were chosen according to their numbers of references. Similarly, the top ten

subject areas were identified according to a score system that accounts for the Top25

cited publications and the occurrence of their citations in these different subject ar-

eas.17 In the resulting development diagram 6.13 the time before 1988 is cut, since

just a few classes in the beginning of the evolution of nanotechnology were observable,

of which excessive average growth would lead to the false impression that nanotech-

nology’s trend was decreasing. Values later than 2002 were cut as well, since with de-

clining overall citation rates (remember Figure 6.9) the average class growth becomes

much less conclusive. Especially in highly complex technological areas (including unde-

17No European data was collected for this measure, since the immediate question arises how this cate-
gorisation could be implemented. Restricting the underlying cited patents to European ones would
incorporate citations from everywhere, which would invoke a misleading interpretation of the out-
come, as would covering only European citations for worldwide patents instead. Finally, employing
European patents with European citations does not yield any additional information of particular
value, and even if so, is out of all proportion to collecting the underlying additional data.
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niably the three technologies compared, i.e. ICT, nano and CE) citations and therefore

continual advancements take their time. So while not willing to conceal an observed

below average class growth for all of these three technologies after 2002, one has to

point out that the choice of classes is biased through the declining observable citations.

Thus with time, other classes might become more meaningful as predictor for an above

average class growth. Reselection of classes every year would lead to incomparability

though, which is why being careful in interpreting the years after around 2000 is mostly

without alternative.

For the observation period left, nano and ICT both prove to be outstanding in their

innovation spawning character. Almost without exception (1997 nano, 1993 ICT) cit-

ing class growth is found to be above average. The results of the performed t-tests,

however, indicate that only ICT values are significantly above average (see Table 6.6).

Admittedly, the lower benchmark CE does not perform too bad for this indicator either

(however, again, not significantly different from the average), which is not surprising

however: Though CE is not considered as GPT here, its ability to spawn innovation

within a less pervasive set of technological classes is unquestionable. Finally, regarding

publications as supporting indicator, the results are pretty similar – which can be seen

in Table 6.7: While ICT displays significant above average values for this indicator, the

other technologies perform fairly like the average.18

In overall terms, nanotechnology can hence be seen as technology inducing as many

innovations as should be expected from a GPT. The medium support of patenting diffu-

sion and the strong support of publications diffusion outweigh the missing support from

the citing class growth indicator – or at least clearly prevent a rejection of H6.3.

18However, a straightforward explanation for the significantly above average unweighted CE values is
yet to be found, but one might guess that the method chosen to select the top subject areas (with the
above mentioned score system) could be responsible for that outcome.
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Figure 6.13: Average annual growth rates (weighted) of top citing classes, ICT-, Nano- and CE-
patents in the world.
Source: PATSTAT, own search and calculations.

Figure 6.14: Average annual growth rates (weighted) of top citing subject areas, ICT-, Nano- and
CE-publications in the world.
Source: WOS, own search and calculations.
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Obs Mean StdDev ICT CE ALL1

ALL 28 0.0207 0.0587
NANO 28 0.1011 0.2818 0.7634 1.3519 1.5593
ICT 28 0.0571 0.1153 1.1243 2.3013**
CE 28 0.0246 0.1005 0.2918

NANO w 28 0.0832 0.2292 0.6424 1.5860 1.5186
ICT w 28 0.0525 0.1070 1.6071 2.1767**
CE w 28 0.0086 0.0973 -0.8766

Table 6.6: t-Tests (unpaired) of average within class growth rates of ICT-, Nano- and CE-patents’
citation’s technology classes, unweighted and weighted (w).
1 Paired t-tests between NANO, ICT, CE and ALL, respectively.
***Indicates significance at 0.01.
Source: own calculations.

Obs Mean StdDev ICT CE ALL1

ALL 28 0.0332 0.0313
NANO 28 0.0400 0.0364 -0.5677 -0.5318 1.3604
ICT 28 0.0461 0.0433 0.0307 1.7682*
CE 28 0.0457 0.0437 2.0139*

NANO w 28 0.0404 0.0363 -0.7189 -0.3311 1.449
ICT w 28 0.0482 0.0451 0.3598 1.9729*
CE w 28 0.0439 0.0441 1.7012

Table 6.7: t-Tests (unpaired) of within class growth of ICT-, Nano- and CE-publications’ cita-
tion’s subject areas, unweighted and weighted (w).
1 Paired t-tests between NANO, ICT, CE and ALL, respectively.
***Indicates significance at 0.01.
Source: own calculations.
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6.3.4 Innovational Complementarities (H6.4)

H6.4 refers to a GPT’s innovational complementarities and the mutual inducement pro-

cesses that Bresnahan and Trajtenberg modelled in 1995. They introduced two distinct

externalities, a vertical one between the fundamental research sector and various appli-

cation sectors, and a horizontal one across application sectors (Bresnahan and Trajten-

berg 1995). The vertical one follows from innovational complementarities while the

horizontal one is an immediate consequence of generality of purpose (Bresnahan and

Trajtenberg 1995, p. 94). Innovational complementarities can indeed be found anec-

dotic evidence for in nanotechnology. Electronic microscopy first made research on and

progress with nanotechnology possible and is now an application sector of nanotech-

nology itself (Palmberg and Nikulainen 2006, Youtie et al. 2008): Nano-components

are applied to augment the visibility of nano-scale effects based on digitally constructed

pictures, relying on the use of such microscopes and hence the inherent computers. The

storing capacity of computers doubled every one and a half years (known as ’Moore’s

Law’). This reaches its physical boundaries when the laws of solid state physics do no

longer hold. At this point, nanotechnology can enhance and still miniaturise the storing

chips using the laws of quantum physics. Consequently, technological progress in nano-

technology is a precondition for future innovations in micro technology, itself triggering

innovations in nanotechnology (Geng and Zhou 2005, Ott et al. 2009). Empirically, this

relationship is attempted to become detected in the data as well.

Innovational complementarities are a result of innovation spawning and the technologi-

cal dynamism inherent in GPTs. Yet, since they constitute a very important characteristic

for the further assessment of the economic implications of GPTs (see e.g. Chapter 3),

this feature shall be explored in more detail in this section. Therefore, the ratio ICi,t is

calculated. Given the original patent is from technology i, the first generation citation

is a citation by a patent stemming from technology j, ICi,t is calculated as follows

ICi,t =
ci,t

c j,t
, ICi,t ∈ [0,∞), (6.5)

with c referring to the number of second generation patent citations, i standing for

the technology under consideration, here nano, ICT or CE, respectively and j all other

patents that are not referencing to this technology and t referring to the year the origi-

nal patent was filed. Put differently, this indicator hence calculates the share of patents

that triggers a mutual innovation process from the original technology to a technology

from another field back to the original technology. Here again, the trend is interest-

ing concerning the expectations (since absolute values of this ratio should rise with the

number of original patents): The share of such innovational complementarities in na-
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notechnology is assumed to rise in the direction of the ICT values, which is expected to

be significantly higher than the CE indicator.

For ICT the number of patents is high. Moreover, the generality of purpose leads to

a broad applicability in a variety of tech-fields, with concentration among those fields

tending to be low. Thus, within this broad base of high diversity, it is admissible to as-

sume that the IC-indicator might show only slight increases over time, since the technol-

ogy has already emerged from its nativity phase. Hence, high but almost time-invariant

values for ICT can be expected using this first-step measure. The lower benchmark CE

on the other hand is expected to have a highly concentrated but small basis, so asso-

ciated patents should be located in only a few technology fields with a high degree of

specialisation. Given these circumstances, CE might as well produce high values for

this measure even without being considered as GPT. Second-generation citations with a

’CE-NonCE-CE’-like path are not that unlikely: One might think of an engineer enhanc-

ing the performance of an engine by altering materials and thereby inducing further

advancements in material sciences in the following years, with results eventually being

adopted by engineers again. So the share of those ’homecoming’ advancements should

be quite high as well, while an increasing value of this measure is not expected either.

The first-step IC-indicator is thus best suited for emerging GPTs in a very early stage,

such as nano, where an initially small number of patents within a growing basis of

technology fields should facilitate the traceability of an increasing mutual-inducement

trend, which is of high interest concerning the expectations of future developments. In

the light of these expectations for the proposed indicator, a second step is performed,

taking into account the breadth and magnitude of diversity for the three respective

candidates. The final measure is then computed as follows

ICi,t(weighted) = ln
(

pi
1

HHI
ICi,t

)
, ICi,t(weighted) ∈ [0,∞), (6.6)

where pi is the patent count weight. The additional expression ’weighted’ refers to

the reflection of the number of patents and their spreading amongst technology fields

(measured by a reciprocally entering Herfindahl-Hirschman-Index) as a weight for the

shares of ’homecoming’ citations computed in the first step. These adjustments should

yield a measure which still incorporates the emerging trend of nanotechnology but gives

credit to the insight that an emerging GPT’s growing number of patents and the corre-

sponding pervasiveness exhibit a great scope for improvement as well as innovation

spawning in various application fields, both of which are the foundation for those in-

novational complementarities Bresnahan and Trajtenberg originally thought of, and for

the measurement of which the two-step indicator represents a first approach.
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When investigating technologies through patents (and publications) it is no simple task

to distinguish between fundamental and applied research. One could argue that patents

on the whole have to be associated with development processes leading to marketable

products and are hence altogether results of applied research, but thinking of carbon

nanotubes for instance reveals that very fundamental research is obviously patentable as

well. Separating fundamental from applied research within patents is ultimately a con-

tentious decision and (even worse) not feasible for the amount of patents it is dealt with

in this thesis. The proposed indicator is hence to be seen as an indirect measure and

hence as proxy for innovational complementarities based upon citation patterns between
different technologies, incorporating patent growth and the magnitude of diversity of

each respective technology. It might thus be seen as a first approach to conquer both

horizontal and vertical externalities, catching the latter one – and thereby the object of

interest: complementarities between up- and downstream – ’incidentally’.

Figure 6.15 shows a comparison between the IC-indicators over time.19 The first-step

measure provides inside on the consideration of emerging GPTs: ICT has a broad base

of patents throughout the observation period and is clearly confined, though very per-

vasive as seen before. A huge fraction of second generation citations stems from ICT-

patents (referring to non-ICT patents that are originally based upon an ICT-point of

departure). This is quite the same for CE, with both technologies showing an almost

time-invariant share of those citations. Besides that, nanotechnology as an emerging

GPT in its very early stage of development is the only technology with an increasing

path of this measure. Since the number of patents as well as their diversity among tech-

fields is growing, possibilities for innovation spurring across technological field bor-

ders increase likewise. Weighting the first-step-measure with this basis-growth, as done

in Figure 6.15(b), therefore incorporates the idea of an increasing chance of within-

technology vertical externalities. This addition does not affect the general patterns of

ICT’s and CE’s development, but makes the trends more obvious. The results of the per-

formed t-tests that investigate differences in means over the observed time period (and

hence not a trend), however, point to the weak performance of nano in general (Table

6.8): Innovational complementarities are significantly more prevalent in ICT and CE.

There is anecdotic evidence for innovational complementarities to exist and to improve.

This trend ist particularly interesting since nanotechnology is not a fully matured tech-

nology yet and hence a stable situation is to be reached. The positive trend hence points

to its potential. Therefore, and since H6.4 is supported by the confirmation of H6.2 and

19Note that due to the need for patents to obtain second generation citations in order to obtain sensible
results, the calculation of the IC indicator stops after the year 2000. This allows 4 years for each
generation of forward citations to occur (2008 is the last year the underlying dataset can be considered
complete).
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H6.3, H6.4 can at least not be rejected and should be confirmable with the indicator

employed within the next couple of years.

With view to all the shortcomings mentioned, the proposed indicator offers only a first

attempt to catch innovational complementarities in patent data. Yet, the employed mea-

sure of IC shows higher values for ICT than for CE, indicating the goodness of fit of this

indicator referring to the relationship of ICT as upper and CE as lower benchmark.

(a) unweighted (b) weighted

Figure 6.15: Innovational complementarities p.a..
Source: PATSTAT, own search and calculations.

Obs Mean StdDev ICT CE

NANO 21 9.9595 1.6859 -13.2914*** -8.5998***
ICT 21 14.8733 0.1676 36.7705***
CE 21 13.1338 0.1376

Table 6.8: t-Tests (unpaired) of weighted innovational complementarities of ICT, Nano and CE.
***Indicates significance at 0.01.
Source: own calculations.

6.3.5 Knowledge Mergence (H6.5)

Finally, H6.5 intends to investigate the mergence character of nanotechnology. Since

a technology based on a variety of different core sciences and technologies might indi-

cate large ranges of possible uses (Nikulainen 2007) and since this potential of different

uses is an important and assessable characteristic, particularly when aiming at finding

ex-ante GPT-evidence in a young technologies’ life cycle, one could not only focus on

forward, but also on backward citations of nanotechnology patents.20 While forward

citations refer to the diffusion of nano-knowledge into later work, backward citations

indicate the use of a wide range of different core sciences and technologies, prior art
20Due to data restrictions, this is not possible for publications though.
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that, the more general it is, indicates a converging character of GPTs. To exploit this,

the generality measure introduced above is also calculated for backward citations. In

line with the assumed mergence character of nanotechnology, a similar value of back-

wards generality of nano-patents is to be expected compared to ICT values and a higher

one compared to CE results. As a second measure, the coherence of the patents that

are cited by nano (CE, ICT)-patents is investigated, in strong analogy to the measure

developed above to index pervasiveness. The less coherent, and hence the less cogni-

tively proximate the set of backward citations is, the more the technology can be seen

as convergent.

The results of the comparison of the generality of backward citations show that the

values of this indicator for nanotechnology lie significantly in between the values for CE

(lower) and ICT (higher), as Figure 6.16 and the results of the t-tests for K30 in Table

6.9 display. Since IPC4 is a much more granular level and high generality values are

reached fast (see above), the K30 results are more meaningful. Nanotechnology’s level

of mergence is not significantly different from the level found for ICT as upper bench-

mark. Yet, its level is significantly higher compared to the non-GPT CE. Moreover, this

relation holds true for both, patents from all over the world and patents from Europe,

although the levels of generality in Europe are significantly lower across all considered

technologies (see Table 6.9, EU27 t-tests). This overall lower level of backwards gener-

ality indicates that inventions stemming from Europe are generally less convergent than

patents from anywhere in the world.

(a) World (b) EU27

Figure 6.16: Average generalities (K30) of backwards citations of ICT, Nano- and CE-patents p.a..
Source: PATSTAT, own search and calculations.
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Obs Mean StdDev CE ICT EU271

WORLD

NANO K30 29 0.6210 0.1108 5.6814*** 1.4343 3.0054***
CE K30 29 0.4482 0.1207 - 5.4273*** 3.1864***
ICT K30 29 0.5867 0.0658 0.5694

EU27

NANO K30 29 0.5581 0.1221 7.0727*** -0.7068
CE K30 29 0.3710 0.0734 -10.3424***
ICT K30 29 0.5771 0.0782

Table 6.9: t-Tests (unpaired) of backwards average generalities (K30) for Nano, ICT and CE in
the World and in EU27 over time.
1 Paired t-tests between WORLD and EU group values.
***Indicates significance at 0.01. Source: own calculations.

The confirmation of H6.5 is also supported by the findings for the backwards coherence,

i.e. the technological coherence of backward citations of patents. This measure consti-

tutes a rather qualitative indicator for the similarity in terms of cognitive proximity of

the origins of the knowledge implemented in newly developed patents in the respec-

tive technology. A high level of similarity therefore refers to a lower level of mergence

of knowledge. Although the backwards coherence of nanotechnology is significantly

higher than the backwards coherence of ICT patents, it its way lower than the back-

wards coherence of CE patents, as can be seen in Figure 6.17 and Table 6.10 similarly

for the world and for Europe. The difference between nano and CE is several times

larger than the difference between nano and ICT, which nearly vanished in the most

recent years. This might be interpreted as a trend towards the level of non-coherence of

ICT and towards an even more converging character of nanotechnology in the future.

Again, coherence in the world in general is significantly lower (except for nanotechno-

logy) compared to Europe, supporting the findings from backwards generality. It might

therefore be stated that nanotechnology has is indeed merging knowledge from differ-

ent fields, similar to the one of ICT as present GPT and significantly differing from the

less converging character of CE as lower non-GPT benchmark.
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(a) World (b) EU27

Figure 6.17: Technological coherence of backward citations of ICT, Nano- and CE-patents.
Source: PATSTAT, own search and calculations.

Obs Mean StdDev CE ICT EU271

WORLD

NANO 29 0.6511 0.0538 -13.8240*** 2.5625** -1.4573
CE 29 0.8441 0.0525 21.2079*** -9.4439***
ICT 29 0.6239 0.0192 -4.8558***

EU27

NANO 29 0.6705 0.1092 -10.0539*** 1.7958*
CE 29 0.9359 0.0910 17.5107***
ICT 29 0.6335 0.0192

Table 6.10: t-Tests (unpaired) of technological coherences (backwards) for ICT, Nano and CE
in the World and EU27 over time.
1 Paired t-Tests between WORLD and EU group values.
***Indicates significance at 0.01.
Source: own calculations.
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6.4 Conclusion

Stating that nanotechnology is widely considered as the general purpose technology of

coming decades yields huge promises regarding consequent impacts on long-term eco-

nomic growth. A GPT’s three constituting characteristics, namely pervasiveness, high

technological dynamism and innovation spawning in various application fields have

therefore been subject of many studies. This chapter contributes to this research by ex-

tending the underlying data to scientific publications, regarding Europe as additionally

examined region for the very first time, adding up new measures such as technological

coherence and a first approach towards innovational complementarities as a composed

feature of technological dynamism and innovation spawning and, last, systematising

the investigation with respect to indicators and benchmark levels. With an upper and

lower benchmark technology, ICT and the CE respectively, comprehensive counterparts

are provided, which prove to be useful comparisons indeed. In addition to testing

the traditional three characteristics only, the analysis is extended to testing the direct

results of technological dynamism and innovation spawning, namely innovational com-

plementarities for the first time. Finally, the knowledge mergence character is subject

to investigation, a feature not constituting a GPT but assumed to be correlated with the

nature of a GPT.

Hypothesis Indicator Result of Nanotechnology Support

H6.1
Pervasiveness

Diffusion TOP25 PAT: way below ICT & CE, pos. trend weak
PUB: above ICT and CE strong

Generality Nano roughly between ICT and CE strong
Technological Coherence Nano and ICT way below CE strong

H6.2
Scope for Improvement

Increase of Nano-Inventions PAT: way below ICT & CE, pos. trend medium
PUB: way above CE, surpassing ICT strong

Forward Citation PAT: way above ICT and CE/ALL (W) strong
PUB: way above ICT and CE/ALL (EU27) strong

H6.3
Innovation Spawning

Diffusion PAT: way below ICT, trends tw. CE (W) medium
PUB: way above CE, surpassing ICT (EU27) strong

Citing Class Growth PAT: average, below ICT, similar to CE weak
PUB: average, below ICT, similar to CE weak

H6.4
Innov. Complementarities

IC weighted below ICT and CE, positive trend medium

H6.5
Knowledge Mergence

Backwards Generality above CE, close to ICT strong
Backwards Tech. Coherence way below CE, minimally above ICT strong

Table 6.11: Overview of results supporting the hypotheses.
Source: own compilation.

The results indicate what was expected: From an economic point of view (but driven

clearly from technological data) there is no substantial reason to doubt that nanotech-

nology will evolve as GPT, as predicted by both scholars and practitioners. While it

remains unclear if nanotechnology will yield similar potential as ICT has shown in the
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past two decades, the development of nanotechnology regarding its unbowed continual

advancement is undisputabley as promising. As summarised in Table 6.11 the first three

major hypotheses could be regarded as supported – or at least not as rejected. Despite

the fact that nanotechnology is still an emerging technology and despite the correspond-

ing difficulties in the forecast of its development, the indicators that are employed here

seem to suggest that nanotechnology already satisfies at least the most important fea-

ture of a GPT, namely that of generality, already. The other features convince at least in

their potential for development and with respect to the infancy of this technology this is

already an insightful achievement. Regarding the early stage of the technology’s devel-

opment, a clearer confirmation in the future may be reckoned. Moreover, the additional

two hypotheses underlining the impact of the first three hypotheses, i.e. the one for in-

novational complementarities and the one tackling knowledge mergence, could also not

be rejected. Hence, to put it in a nutshell: Notwithstanding its early stage nanotechno-

logy can, from today’s point of view, reasonably be seen as a pervasive, technologically

dynamic and innovation spawning technology, or, put differently, as a general purpose

technology. It has nonetheless to be noted that a development in another direction than

in the one of a full GPT is still possible.

Certainly, the incorporation of R&D expenditures representing the input side would en-

able important insights when combining these two perspectives, offering explanations

of macroeconomic growth already on the micro-level by investigating incentives and

their interdependencies (see Bresnahan 2010). This enrichment should facilitate the

political discussion regarding emerging GPTs, especially as soon as country-level data

reveals catching-up potentials. Furthermore, by adding impact measures of national (or

for instance European) and institutional technological leverage capabilities, inference

statistics could provide a more holistic view on nanotechnology and even more, on GPTs

altogether.

This means that, for the rest of the thesis to follow, nanotechnology is employed as

a showcase-example for a GPT, including all chances and opportunities as well as the

risks and problems associated with this kind of technology – and keeping in mind that

it still is considered as a an emerging instead of a stable GPT: Hence the results to come

are not deterministic.
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Since the last chapter provides strong evidence for nanotechnology to be an (emerging)

GPT, the rest of this thesis further investigates the consequences of the corresponding

effects and the peculiar economic aspects. For this scope, this chapter exemplarily ex-

plores the issues related with ’nanotechnology localised’: The particular, local setting

of nanotechnology in the German city state of Hamburg, which is chosen as a level of

analysis due to the property of being a city state, which is easily manageable but thereby

not less informative than for a broader regional setting, shall be introduced in depth in

a case study with the aim of identifying relevant aspects and hypotheses concerning the

interrelationship between the development of nanotechnology and the local economic

development, thereby constituting the second of the building blocks in the main empir-

ical analyses of this thesis.

In order to get a better understanding of the advancement of a GPT in general and

nanotechnology as emerging GPT in particular, one has to deal with the derived and

discussed characteristics of the technology (see Section 3.1). Thereby, one has to em-

phasise how the technology is embedded within the existing research and production

environment: Within a regional context, agglomeration economies such as spillovers

that result from the non-rivalry of the knowledge produced can have a positive impact

on innovations. Knowledge spillovers trigger increasing returns but they are limited

by geographical distance (see Section 2.1). As nanotechnology as GPT entails a great

variety of innovations (see Chapter 6) it is reasonable to assume that they act as agglom-

eration forces in sectors already showing a tendency to cluster. However, the impact of

different kinds of knowledge spillovers on innovativeness and regional development is

still an unresolved puzzle. The following questions are therefore tackled in this chap-

ter: In which contexts is nanotechnology in Hamburg developed and how does this

feed back to prevailing specialisation patterns? What is the role of diversity of the local

nano-knowledge base as immediate consequence of the pervasiveness of nanotechno-

logy in contrast to its specialisation? How does the importance of specialisation and

diversification evolve over time? What happens if innovation processes along the value
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creation chain are linked and hence interdependent, e.g. due to innovational comple-

mentarities?1

7.1 Derivation of Hypotheses

In the literature around national and regional innovation systems, evidence was found

that scientific and technological development as well as innovational activity show a

tendency to cluster (Feldman 1994, Zitt et al. 1999). More particularly and more re-

cently, this has also been confirmed for nanotechnology. In this field a strong regional

concentration of scientific and technological activity can be observed: Publications and

patents often are obviously concentrated in a few regions (Noyons et al. 2003). For in-

stance, Mangematin and Errabi (2012) found that only 200 clusters account for 70% of

the worldwide scientific publications in nanotechnology. Moreover, since nanotechno-

logical knowledge is generated using the existing knowledge bases in parent sciences,

such as physics or chemistry, the development of nano-knowledge bases (henceforth

NKBs) depends on previously existing and presumably regional structures. Such re-

gions, where nano-knowledge concentrates are often called nano-districts in the liter-

ature. While Shapira and Youtie (2008) observed a concentration of nano-activity in

US metropolitan areas, Zucker et al. (2007) investigated the reasons for this concen-

tration and find that regional growth of nano-knowledge is of cumulative nature, i.e.

it is stimulated by the regional stock of existing knowledge across all (not only nano)

fields. Moreover, it is important to the development how this knowledge is transferred

between the local actors. The importance of cooperation between actors has also been

pointed out by Robinson et al. (2007). Meyer et al. (2011) emphasised the potential

role of the overall knowledge production capabilities of a region in this context. They

moreover underlined that, while there surely is a stimulative effect of regionally concen-

trated knowledge on the development of nanotechnology, it should not be overseen that

links to other sources of non-local (but technology-specific) knowledge is indispensable

as well. There are many different (local and non-local, nano- and non-nano) knowl-

edge stocks that are assumed to be influencing the development of nanotechnology, the

composition of the regional nano-knowledge base has hence to be set into focus.

Tacit knowledge and spatially bound knowledge spillovers are conducive for local col-

lective learning processes (see Section 2.1). Put differently, proximity enhances the

ability to exchange ideas, to sense new developments, to induce learning processes, to

1An earlier version of this chapter has been published together with Ingrid Ott as KIT Working Paper
No. 18, 2011 under the title: ’On the role of general purpose technologies within the Marshall-Jacobs
controversy: the case of nanotechnologies’. However, it has been modified a lot since. Needless to
say, all remaining mistakes are entirely the author’s.
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reduce uncertainty and to align R&D activities. This facilitates the generation and diffu-

sion of innovations, thereby also feeding back along the value creation chain. Between

proximate actors, the marginal transmitting cost of knowledge is lowest due to frequent

social interaction, hence communication and knowledge spillovers arise much more fre-

quently than between remote ones (Venables 2006). Hence, innovation activities locate

where knowledge sharing and knowledge spillovers reduce R&D-costs and increase the

productivity of innovations. It can hence be assumed that

Hypothesis 7.1 Knowledge Sharing
Knowledge sharing occurs in the context of nanotechnological knowledge creation.

Moreover, regions with specialised economic structures tend to be more innovative in

that particular industry. The specialisation of an industry in a region can stimulate R&D

cooperation between firms or institutions sharing similar knowledge bases and thus

induce a high level of MAR knowledge spillovers between them and between others

(Mowery et al. 1998). This also applies to knowledge-intensive industries in general

where technological spillovers are crucial since they are a major driver of innovative ac-

tivity. More particularly, the diffusion between regions that exhibit similar specialisation

patterns is more likely and faster (see Subsection 2.1.2). This is argued to emphasise

a more probable and more effective diffusion of spillovers if source and recipient are

similar in terms of knowledge needed and knowledge acquired. Hence, intra-industry

spillovers from regional specialisation should spread faster and thereby support innova-

tive activity particularly. These findings suggest an important role of the compatibility of

new knowledge to existing knowledge vis-à-vis the pace of innovations. Callon (1997),

furthermore, pointed to the mostly tacit knowledge in technologies that are charac-

terised by emergent configurations: Here, particularly, the knowledge range is limited

and its composition is of rather specific nature. Since a certain degree of specialisation

is moreover also required to achieve sufficient expertise for improving the state of the

art of any technology, it is quite reasonable to develop an emerging GPT along already

existing specialisation patterns.

Hypothesis 7.2 Compatibility
Nanotechnology is mainly advanced in the context of already existing specialisation pat-
terns.

But such foci essentially come at the cost of a limited number of application fields.

Moreover, considering the GPT’s feature of pervasiveness, this restriction is not com-

pulsory: Instead, it is the multipurpose of uses that induces continuous technological

improvements thereby allowing for an even wider range of applications and thus expo-

nentiating the GPT’s inherent productivity effects. An increasing number of application
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sectors leads to higher innovation incentives in both the (upstream) GPT sector and

the other(downstream) application sectors. Due to innovational complementarities,

the innovation processes along the value creation chain are interdependent, horizontal

and vertical linkages between the various actors arise, and successful innovation hence

feeds back in both directions (Bresnahan and Trajtenberg 1995). Basically, aside from

the invention of new products and applications, the development of the GPT may also

lead to an overlap between so far unconnected fields, e.g. via cross-fertilisation that

is most probably realised by effective Jacobs externalities. Ideas and innovations that

firstly have been developed for a particular use are presumably applicable in a broad

variety of different fields as well (see e.g. Csikszentmihalyi (1997), Berkun (2007) and

Desrochers and Leppälä (2010)). Besides, GPTs entail a great variety of innovations

and may become a relevant agglomeration force in those sectors that already show a

tendency to cluster but where concentration is not yet prevalent. Thus, restricting the

development of a GPT in the context of already existing specialisations neglects the

technology’s inherent potential. It may even decrease the region’s overall productivity

of innovations elsewhere if feedback effects with other sectors and thus further innova-

tions are impeded. This leads to the hypothesis that

Hypothesis 7.3 Composition of the NKB
Both specialisation and diversity of the NKB may be observed.

Hence over time, specialisation alone cannot be the optimal development pattern of

nanotechnology in regions, as diversity in the sense of broad applications promises re-

spectable growth effects, too. Put differently: If specialisation and diversity are both

assumed to be conducive to the development of nanotechnology by innovations in this

field, hence if MAR and Jacobs externalities are basically relevant, how can these ex-

ternalities successfully be exploited? Given a prevailing regional production structure,

how does the regional nano-knowledge base develop over time?

In this context, it has to be set into focus how the given regional structure, on the one

hand, influences the development of nanotechnology and how this structure is shaped

by this development due to feedback effects on the other hand. Basically, two scenarios

are imaginable over time: The development of nanotechnology as a GPT begins with

already existing specialisation patterns that firstly are enhanced, e.g. by feedback loops

or bigger market opportunities. In this sense, nanotechnology is a source of specialisa-
tion deepening, i.e. the strengthening of existing specialisation patterns. At the same

time, as the NKB increases it is natural that it also becomes broader. But then already

existing but different specialisations in the region might get tied together through the
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common use of the GPT and inherent cross-fertilisation opportunities. This provides an-

other source of specialisation deepening within already existing regional specialisations.

Furthermore, due to the generality of purpose and the various vertical and horizontal

linkages along the value creation chain, bigger advancements of the innovation may

also have an impact on other and so far unrelated applications. This could induce the

development of new regional specialisations that extend the existing regional specialisa-

tion patterns, e.g. via cross-fertilisation. Since the amount of specialisation within one

region increases, this phenomenon hence describes a specialisation widening - mainly

referring to diversification in line with specialisation. Both seem to be likewise plausi-

ble and relevant in such a complex technology like nanotechnology. Consequently, both

specialisation and diversification of relevant nano-knowledge must be assumed to be

important determinants of the development of nanotechnology, but the time dimension

has to be considered. Finally, knowledge spillovers within the region would be expected

to particularly arise along related sectors and only to a small degree among unrelated

sectors, in analogy to economies of scope at the firm level. Jacobs externalities are

hence argued to increase with the extent of related variety among sectors in a region,

while the extent of local unrelated variety constitutes a custody against the negative

lock-in effects and possible asymmetric shocks (Frenken et al. 2007). Nanotechnology

as GPT might – in this context – be thought of as interface converting unrelated to

related sectors.

Hypothesis 7.4 Feedbacks over Time
(a) With the development of nanotechnology, specialisation-deepening occurs as well as
specialisation-widening/diversification.
(b) Over time and with an evolving NKB, the importance of specialisation decreases while
the importance of diversity increases.

7.2 Methodology and Data

In order to find out how innovative activity in nanotechnology might be shaped by

specialisation and diversity, how this would respond to the regional economic structure

and how the importance of specialisation and diversity change over time, a case study

on the role of nanotechnology and on its development was accomplished in the city

state of Hamburg, Germany, in 2011.

7.2.1 Data Collection

As introduced in Section 5.3, the following analysis mostly relies on the knowledge-

production-function-based approach to analyse the composition of the knowledge base
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and the (potential) spillovers that result thereof. Notice hence that the discussion refers

to the NKB itself rather than the concrete transfer mechanisms. For the analysis of

the technological NKB, data of nano patents applied for between 1995 and 2008 was

obtained from the PATSTAT database (see Section 5.1 for further information on the

data). For the period 1995-2008, 164 patents related to nanotechnology, which were

either applied for or developed by different actors located in Hamburg, were identified.

Both invention and application of nano-patents refers to local nanotechnological com-

petence. The further analysis also considers how each patent is assigned to one or more

patent classes according to the IPC system.

Referring to the NKB, a publication analysis was moreover conducted to gain infor-

mation about the dynamics of the scientific knowledge. The considered nano-related

publications are stemming from Hamburg and are indexed in the Thomson-ISI WOS

database. Again, the investigated is 1995 to 2008. 1878 publications with at least one

contributor who is located in Hamburg were identified (see Section 5.2 for further in-

formation on the data). Instead of information on IPC classes, subject areas (SAs) were

used in order to assess the disciplinary background and application.

To get a deeper understanding of Hamburg’s nano-scene as well as to better interpret

the publication and patent data, archival and documentary data, including websites and

analyses of the Hamburg chamber of commerce as well as of the Senate of Hamburg

were used, expert interviews and a telephone survey were carried out, and the speciali-

sation pattern was investigated. Besides, some analyses of data of the official statistics

are included.

For the following analysis, however, the specialisation pattern in general as well as

the development of the city state’s nanotechnological knowledge base in particular is in

the focus. Several indicators to measure specialisation and diversification of the NKB as

well as their impact on the development of new knowledge are developed and applied

in the following.

7.2.2 Case Description: Nanotechnology in Hamburg

Hamburg is Germany’s second biggest city and a relatively economically prosperous

metropolis with a GDP/capita of about 50 000 Euros in 2008 (Statistische Ämter des

Bundes und der Länder 2008). The city state’s economic structure is characterised by

a developed industrial and a well-developed tertiary sector. The harbour ensures ac-

cess to the world market which is especially important for industrial production. It
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reflects first-nature geography advantages thereby providing the basis for specialisation

in maritime industries. Other specialisation advantages in the secondary sector refer to

aerospace industries and life sciences2, while specialisation in the tertiary sector relies

mostly on media.3

Basically there exist various indicators to measure concentration or specialisation ac-

cording to a given context.4 Table 7.1 provides an overview on the recent economic

structure in the city state of Hamburg as represented by relative employment shares re-

sulting in location quotient (LQ) and cluster index (CI). The LQ calculates the ratio be-

tween regional and national employment shares. The CI is calculated by Runkwid and

Christ (2011) employing relative industry concentration and specialisation indicators

weighted by the size of the industry, again on the basis of employment data.5 The results

for selected branches that are distinguished according to the German Wirtschaftszweig-

klassifikation (WZ), a classification system that is similar to the international standard

industry classification (ISIC), are displayed.6 The left column in Table 7.1 highlights

how the various branches may be assigned to the already well-established clusters me-

dia, aerospace industries, maritime industries, and life sciences. An LQ > 1 indicates

that employment in the respective branch is above national average thus displaying re-

gional specialisation, while a CI > 1 indicates above average cluster characteristics, a

hint for cluster tendencies, while values of CI > 64 identify a NUTS3 region as proper

industry cluster on the level of 3-digit WZ classifications.

The nano-scene in Hamburg is shaped by protagonists which include private firms

(11 SMEs and 8 large companies), 11 different university research departments, and

4 research institutes. Moreover, there exist also explicit nano (research) networking

institutions, that somehow act as coordinating point: One of the central nano research

institutions in Hamburg is the Center for Applied Nanotechnology (CAN) that focuses its

2Notice that there is no clear cut delineation of life sciences within the official statistics. However
it is broadly accepted that life sciences encompass biotechnology, pharmacy, cosmetics and medical
engineering.

3These clusters are also promoted by the regional economic policy (see e.g. Handelskammer Hamburg
(2006) or http://metropolregion.hamburg.de/karte-clusterinitiativen).

4For instance, Paci and Usai (1999), Beaudry and Schiffauerova (2009) and Palmberg et al. (2009)
mention some indicators that are relevant in the context of nanotechnology.

5The cluster data used in this text was calculated for the research project "Die Bedeutung von Innova-
tionsclustern, sektoralen und regionalen Innovationssystemen zur Stärkung der globalen Wettbewerb-
sfähigkeit der Baden-Württembergischen Wirtschaft". See Runkwid and Christ (2011) and Hagemann
et al. (2011) for further details.

6For further information on the WZ classification see http://www.destatis.de/. More information on ISIC
can be found on http://unstats.un.org/. Notice that according to the LQ and CI more specialisations
could be identified for the city state of Hamburg. Within this chapter the discussion is restricted
to those specialisations that to the author’s understanding refer to nanotechnology. A recent and
exhaustive overview of specialisation in the city state of Hamburg is presented by Boje et al. (2010).
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Specialisation Branch of Economic Activity WZ LQ CI

Media

– reproduction of recorded media 182 2.05 58.4
– retail sale of cultural and recreation
goods in specialised stores

476 1.61

– publishing activities 58 2.32 66.0
– motion picture, video and television pro-
gramme production, sound recording and
music publishing activities

59 3.04 105.3/
43.31

– television broadcasting 602 0.46 18.7

Aerospace Industries
– manufacture of air and spacecraft and re-
lated machinery

303 8.94 189.1

– air transport 51 1.54 33.7/
228.51

Maritime Industries

– fish processing 102 1.28 12.1
– manufacture of refined petroleum prod-
ucts

192 4.36 204.4

– building of ships and floating structures 301 3.57 144.0
– water transport 50 11.93 1668.5/

58.11

Life Sciences

– manufacture of medical and dental in-
struments and supplies

325 0.67 16.1

– manufacture of soap and detergents,
cleaning and polishing preparations, per-
fumes and toilet preparations

204 3.19 35.8

– manufacture of other chemical products 205 1.36 26.9
– manufacture of pharmaceuticals, medic-
inal chemical and botanical products

210 0.28 1.1

– manufacture of irradiation, electromedi-
cal and electrotherapeutic equipment

266 5.22*

– veterinary activities 75 0.44 3.0
– human health activities 0.82 9.1

Aerospace Indus-
tries, Maritime
Industries, Life
Sciences

– R&D in science, engineering, agricultural
science and medicine

721 0.95 17.5

Table 7.1: Existing specialisations in Hamburg, as per LQ (2010) and CI (2008) and their as-
signments to the specialisations media, aerospace industries, maritime industries
and life sciences.
Source: Bundesagentur für Arbeit (Statistik der sozialversicherungspflichtig
Beschäftigten), March 2010 (*data from December 2008), own calculations.
Branches according to the German Wirtschaftszweigklassifikation (WZ2008 for
LQ and WZ2003 for CI) and matching to the existing clusters.
1 Two values are due to restricted compatibility between WZ2003 and WZ2008.
In case of two merged WZ2003 classes in WZ2008, both values of the original
classes are given.
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activities on nano-applications in life sciences. It has been co-founded as a public private

partnership by industrial enterprises in 2005.7 Since then, the CAN is concerned with

life science topics in three (of altogether four) foci: Cosmetics, medicine and pharmacy;

partnerships with private firms exist with enterprises that are also strongly related to

life sciences8. Another important nano institution in Hamburg, namely the interdisci-

plinary nanotechnology center Hamburg (INCH) strongly focuses on basic research and

states its key activity likewise as the connection of nanotechnology and life sciences.

Besides, the nano-industry is often considered as being part of the virtually existing life

science cluster (Handelskammer Hamburg 2006). However, since nanotechnology is

still in a nascent phase, most of the nano-knowledge produced is still basic research

and obviously stems from the two universities in Hamburg, which are the University

of Hamburg and the Technological University Hamburg-Harburg and their institutes,

particularly physics, chemistry and medicine. Therefore, nanotechnolgical knowledge

in Hamburg has to be described as being in a rather emergent configuration and there-

fore not yet stable (Callon 1997). This indicates that the technological development in

Hamburg is coined by uncertainty.

7.3 Analyses and Results

Figure 7.1 illustrates how the technological and scientific NKB in Hamburg has grown

during the years. The large technological dynamics inherent in the development of

nanotechnology induces innovation spawning and is hence mirrored by an immense

increase of the NKB within the last years. This pattern displays at a regional level

the development of nanotechnology that might be observed across all industrialised

countries (for a comparison of (international) dynamics see Palmberg et al. 2009).

7.3.1 Knowledge Sharing (H7.1)

The transfer of knowledge through face-to-face collaboration is one of the well-known

mechanisms of knowledge spillovers (see Section 2.2). Aiming at showing the poten-

tial for knowledge spillovers in the city of Hamburg, the collaborative patterns of the

players in the nano-scene are hence traced. While it is difficult to trace collaboration

between the above mentioned institutions directly with patent data9, it is possible to

7Further information can be found at www.can-hamburg.de/company/background.php.
8Industrial partners are Beiersdorf AG, Eppendorf AG, Merck KGaA and BODE Chemie GmbH, see

www.can-hamburg.de/company/network.php.
9This difficulty is due to the fact that the institutions mostly appear as applicants on patents. Patents

with two different applicants (so called co-patents) are, however, not very frequent (for details see
Subsection 5.1.2).
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(a) Technological NKB (b) Scientific NKB

Figure 7.1: Development of the NKB in Hamburg compared to overall knowledge base development.
Source: PATSTAT, own search and calculations.

show that there is cooperation between the different actors by means of mapping the

inventor-inventor (patent-based) network and the co-author (publication-based) net-

work over time. Inventors who are assigned to the same patent (authors on the same

publication) are seen as related, assuming that they got to know each other and knowl-

edge spillovers became effective via face-to-face interaction (see Subsection 5.4). These

relationships then constitute the social network of inventors.10

The co-inventor network in Figure 7.2 only includes inventors who live in Hamburg or

in commuting distance. The vertices represent the inventors, their size refers to their

patenting activity. As can easily be seen, inventors are connected quite densely, although

there are isolated inventors and although not all vertices are indirectly connected. The

density, i.e. share of actual to possible connections is 0.028. The average degree, i.e.

the average number of connections one inventor has is 2.31. Due to technical restric-

tions, the co-author network shown in Figure 7.3 includes all, not only local authors.

As is obvious, the network is extremely dense, i.e. authors are highly connected as well.

Comparing the network measures to those of the co-inventor network this network is

less dense, but the authors have more connections on average: Density amounts to

0.02, average degree is 10.6. These findings on the relevance of (local) collaboration

in nanotechnology are also confirmed by Meyer et al. (2011). They showed for the UK

regions that collaboration is stronger the more proximate the actors are to each other.

However, this analysis shows that collaboration plays an important role in the develop-

ment of new nano-knowledge. This indicates to confirm H7.1. Based on the co-inventor

10Note that the boundaries of the organisation that appears as applicant are not relevant in these net-
works, which is why it is also shown that there is cooperation between the different institutions.
However, due to the low rates of reported applicant-applicant collaboration on patents compared to
actual collaborations, this is only given for the sake of completeness and only built of nano-patents
that were applied for with reference to Hamburg; since an applicant-applicant network that only
includes within-Hamburg collaboration does only show very few collaborations.
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network, Figure 7.4 highlights how Hamburg’s inventors are connected to the periphery

of Hamburg (nodes on the inner circle), to other German regions and to regions in other

countries (nodes on the outer circle). Knowledge stemming from outside the region’s

local knowledge base seems to be employed as well. Hence, extra-regional knowledge

flows occur as well. However, these analyses do not offer a full picture of the relevance

of collaboration for nanotechnological knowledge creation. They rather indicate that

collaboration occurs, thereby constituting an opportunity for knowledge spillovers.

Figure 7.2: Co-inventor network Hamburg, only local inventors. The vertices are randomly dis-
tributed across the circle. Size of vertices proportional to patent count. Density: 0.028,
average degree: 2.31.
Source: PATSTAT, own search, calculation and illustration.

Figure 7.3: Co-author network of collaboration on publications with at least one contributor from
Hamburg. The vertices are randomly distributed across the circle. Size of vertices pro-
portional to publication count. Density: 0.02, average degree: 10.6.
Source: WOS, own search, calculation and illustration.
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Figure 7.4: Interregional collaboration on patents with at least one contributor from Hamburg.
Size of vertices relative to patent count.
Source: PATSTAT, own search and calculations.

7.3.2 Compatibility (H7.2)

As argued before, nanotechnology is still a very young technology and its development

is promoted by various actors. It was derived above that it is reasonable to assume that

during the advancement of the technology the actors tie in – at least to some remarkable

extent – with the existing economic structure. Recall that hypothesis 7.2 is discussed

with respect to the NKB. Other information on the nano-scene were incorporated to

interpret the results.

The specialisation of the economic structure as presented by the LQs and CIs within Ta-

ble 7.1 also mirrors the recent economic policy of Hamburg that supports clusters in the

fields of life sciences, maritime as well as aerospace industries, and media. Among these

clusters, life science is by far the most important application field of nano-activated

products, including nano-materials, nano-tools or nano-particles in general. Hence one

might observe not only specialisation of nanotechnology activity but one might assign

this activity to an already existing cluster.

Figure 7.5 displays the distribution of patents and publications into the most relevant

25 IPC4 classes/SAs. In order to make the classes more comprehensive, the concor-

dance developed by Hinze et al. (1997) is employed grouping these IPC4 classes into

industrial fields (see Subsection 5.1.2). These fields are again classified into 18 macro-
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disciplines, an adaption of the classification Porter and Rafols (2009) developed for

WOS categories. Publications and their respective TOP25 WOS categories are classified

into the same system. This has the advantage to make IPC4 classes and WOS categories

comparable concerning their contents. First of all it can clearly be observed that the

scientific knowledge base is mainly constituted by knowledge in the basic fields physics

and chemistry, while material science as interdisciplinary field seem to be important as

well. However, the few applications advanced within the scientific NKB are biomedical

science, relating to the life sciences cluster, and engineering science and technology,

most presumably a connection to basic applications in the aerospace and maritime clus-

ter. This connection to existing clusters becomes even more obvious regarding the re-

classification of patents. Here applications in biomedical science and technology as well

as the connection to the basic applied knowledge from materials science and chemistry

(both still open for multipurpose-applications) and transport (civil engineering) play a

major role.

(a)
Distribution of patents across TOP25 IPC4
classes

(b)
Distribution of publications across TOP 25 SA
areas

Figure 7.5: Distribution of patents and publications across fields.
See the Appendices D.1 and D.2 for the codification.
Source: PATSTAT/WOS, own search and calculations.

This aspect can also be assessed by measuring the compatibility of nanotechnology to

overall technological and scientific knowledge, which leads to the calculation of the so

called Revealed Technological Compatibility (RTC) index: The RTC index is adopted

from the Revealed Technological Advantage (RTA) index which is frequently used to

measure specialization within trade theory (Almeida 1996). Similarly to the LQ, the

RTC index calculates the ratio of the share of the number of nano-patents (nano-

publications) in the respective 3-digit IPC class11 (WOS SA) relative to the overall

number of patents (publications) in this IPC class (WOS category) in Hamburg and

11Since concordances, which connect IPC4 classes and ISIC classes, are not employed here, IPC3 classes
are chosen to ensure the caption of distinct technological fields.
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the respective shares in Germany:

RTC =
Pd,i / ∑i Pd,i

∑d Pd,i/∑d ∑i Pd,i
, RTC ∈ [0,∞), (7.1)

with P patent (publication) count, i region and d technological field. It hence displays

to which degree nanotechnology publications and patent applications from Hamburg

across different technological fields correspond to the city state’s overall scientific and

technological specialisation profile. Figure 7.6 illustrates the respective index values for

the top 15 IPC classes quoted by patents filed from Hamburg. A value close to unity

indicates that the considered field in nanotechnology application fields is similar to the

overall technological specialisation. This hence reflects links to locally existing research

and development structures. RTC values significantly larger than 1, by contrast, indi-

cate application fields towards which much research activity is directed. This might

suggest that the actors expect important future markets in this field. Obviously, this

is the case for the WOS categories PHY2 (physics, atomic, molecular & chemical) and

CHE5 & 7 (chemistry multidisciplinary & physical) as well as for most of the IPC classes

concerned with more basic/general matters (in contrast to those already focused on

particular application fields). For micro-technology, this index value supports the the-

sis that nanotechnology opens up new opportunities towards miniaturisation and the

sustainment of Moore’s Law, for materials science this hints to the relevance of nano-

materials as intermediary for the overall development of nanotechnology. Hence high

RTC values might also be a slight indicator for future emerging specialisation fields.

Figure 7.6(b) highlights that about one half of the scientific top nano-applications in

Hamburg coincide with the existing specialisation pattern. The picture drawn by Figure

7.6(a), which highlights compatibility of the technological knowledge, is differing from

this observation. However, in most of the application fields directly related to a focused

application rather than more general, multi-purpose fields RTC values are still closest to

one.12 Yet, the qualitative evidence as well as the employment of the RTC index in gen-

eral suggest that pre-existing scientific as well as technological specialisation patterns

significantly shape the relevant application fields of GPTs. This is especially true for the

existing cluster structure in Hamburg, shaping the regional development of nanotech-

nology. Nanotechnology advances hence in the context of already existing specialisation

12However, over half of the values are largely exceeding unity. Yet, while this large exceedance might be
a hint to the recognition of the high potential of nanotechnology at the first glance, the structure of the
patent data is a large problem for the calculation of this indicator: The underlying PATSTAT database
does not always report addresses of persons. While all data on nano-patents was manually cleaned
and hence more address data entries could be gathered, this procedure is way too time-consuming
for all entries of the database. Therefore, the RTC indicator can be assumed to be biased towards
overshooting and hence only tendencies and relative relationships can be interpreted reasonably.
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(a)
Compatibility of patents with respect to TOP15
IPC classes (4-digit)

(b)
Compatibility of publications with respect to
TOP15 SA areas

Figure 7.6: Compatibility of patents and publications w.r.t. fields.
Source: PATSTAT/WOS, own search and calculations.

patterns, which strongly supports H7.2. With respect to Hamburg it becomes obvious

that not all clusters are equally affected by the development of nanotechnology, but that

there is a strong bias in favour of life sciences.

7.3.3 Composition of the NKB (H7.3)

Taking a closer look at the composition of publication and patent fields, it becomes

obvious that both specialisation and diversity of the NKB may be observed (see Fig-

ure 7.5(a)): In total, the 164 patents refer to 85 different IPC4 classes and thus cover a

large variety of application fields – hence displaying diversity. If one also considers mul-

tiple assignments of one patent to various IPC classes these sum up to a total quotation

of 396 IPC classes for the 164 patents, again highlighting the feature of diversity. But at

the same time one might observe specialisation. For instance, it becomes obvious that

28/396 and hence 7% of patents quote one single IPC class. Thus, specialisation has

two dimensions: Among the 28 patents quoting IPC class C09K, for instance there are

patents exclusively assigned to C09K and patents that quote other IPC classes as well.

This can also be observed for publications, where 437/1878, i.e. 23% are assigned to

’multidisciplinary material science’, again not hampering diversity of different classes.

Figure 7.5(a) clarifies for the 25 most cited IPC4 classes that both issues of specialisa-

tion and diversity may be observed: There is a large number of mentioned IPC classes

which displays breadth/diversity, but at the same time one might also observe concen-

tration in some of them. An analogous result arises in the context of publications, where

again each single publication may be assigned to various WOS categories (see Figure

7.5(b)). The 1878 nano publications stemming from Hamburg cover altogether 74 dif-

ferent WOS categories areas, thus reflecting very diverse fields. But one might again
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observe that there are only a few subject areas where most of the publications concen-

trate. Again both features of specialisation and diversity become prevalent.

One might conclude that these findings basically support H7.3 since both features of

specialisation and diversification may be observed.

7.3.4 Feedbacks over Time (H7.4)

Figure 7.7 stylises a technology tree for nanotechnology in Hamburg and thereby de-

picts, how nanotechnology as a GPT relies on the existing clusters life sciences, maritime

and aerospace industries.13 This figure also includes the slightly observable cluster of

renewable energies which yet is important within the metropolitan area of Hamburg

but not within the city state.14 Moreover, it illustrates the already huge variety of in-

terdependencies of actors along the value creation chain and displays both horizontal

and vertical linkages among the various upstream and downstream industries. These

connections have manifold impacts on the specialisation patterns: (i) already exist-

ing specialisations are strengthened in the context of isolated clusters (specialisation-

deepening as a consequence of MAR externalities), (ii) cross-fertilisation induces inter-

action between so far isolated specialisation fields, which also deepens existing special-

isations (specialisation-deepening as a consequence of Jacobs externalities), and (iii)

cross-fertilisation also enables the development of new specialisations (specialisation-

widening or diversification as a consequence of both MAR and Jacobs externalities).

Figure 7.7: Technology tree of nanotechnology in Hamburg, displaying the relationship of nanotech-
nology to the economic structure. DS= Downstream Sector.
Source: own illustration based on Bresnahan and Trajtenberg (1995).

13Within Figure 7.7, the cluster ’media’ is neglected since there is no obvious link to nanotechnology at
this stage of technology development.

14This is why no LQ values for renewable energy industries are available yet.
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Composition and Compatibility over Time H7.4(a)

Since H7.2 could be supported in general and hence the development of nanotech-

nology anchors into the already existing specialisation pattern, it is now investigated,

whether specialisation-deepening and diversification indeed emerge.

The existing degree of nanotechnological specialisation in the life science sector in

Hamburg is presumably needed in order to achieve the expertise that is necessary when

aiming to improve the state-of-the-art techniques in such a complex technology (Garcia-

Vega 2006). Anecdotally, it can be stated that the application of nanotechnology in this

field hence deepens the existing regional specialisation pattern while contrariwise the

specialisation on life sciences at this stage of development surely drives the innovative

activity within nanotechnology. This reflects the feedback effects between upstream and

downstream sector and also provides an example for specialised innovation spawning

which leads to specialisation-deepening from the viewpoint of a single specialisation

field. Moreover, there exists a second dimension of specialisation-deepening, as nano-

technology as connecting interface is also a starting-point of possible cross-fertilisation

effects, for instance in the development of nano-particles for different applications

(Henn 2008). The application of nanotechnology across different fields may hence

also lead to an overlap between so far unconnected specialisation fields which then

have the same ’very upstream sector’ of nanotechnology in common (as is illustrated in

Figure 7.7) and can possibly benefit of cross-fertilisation effects. The research on nano-

materials in Hamburg, for example, is not only interesting for applications in life sci-

ences. Composites that, thanks to nanotechnology, combine old with new features (like

stability and lightness with conductivity) are not only interesting in medicine (like for

artificial replacements), but also for the endowment of airplanes (Airbus S.A.S. 2007).

Nano-particle research could be used as platform, originating nano-particles with partly

the same and partly differing features, depending on the later application. An improve-

ment of quality and technology levels of nano-materials as well as nanotechnology in

general (based on the feedback mechanism of innovational complementarities) is due

to increased research activity, learning and cross-fertilization effects. Besides, the joint

use of structures in several specialisation fields at the same time opens specialisation

advantages for other application sectors, in total exponentiating the positive effects for

the development of nanotechnology. In Figure 7.7 this effect of cross-fertilisation be-

tween so far unconnected specialisation fields is indicated by the dashed arrows.

The possibility of cross-fertilisation is not easily made visible. However, Figures 7.8 and

7.9 provide some evidence that there are several actors in Hamburg that apply for nano-

patents with reference to the same technology fields, although stemming from different
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industries.15 Hence, actors with a background in life sciences as well as in aerospace

and materials all file nano-patents in materials processing. Therefore, one should as-

sume, that there exists at least the potential for the actors in all fields to benefit from

each-others knowledge since the fields they are working in are considerably different,

but share at least the application of nanotechnology within materials processing. Fig-

ure 7.9 illustrates such relationships more systematically. It depicts the applicants of

patents with at least one connection to Hamburg. Edges display the potential for cross-

fertilisation; this relationship is constructed when two applicants file nano-patents on

the same technology field. Given their cognitive and geographical proximity, mutual

learning is very likely to occur once these applicants connect somehow (which might

happen trough collaboration, but also through labour movements or other mechanisms

of knowledge transfer). This is not only another hint to the multipurpose of nanotech-

nology, but this overlap could also be a possible originator of cross-fertilisation: When

actors of different industries apply nanotechnology in the same technological field it is

most likely that the technological underpinnings are the same and actors could learn

from each other.

Figure 7.8: Overlapping technology fields of applicants as possibility for cross-fertilisation.
Source: PATSTAT, own search and calculations.

Finally, nanotechnology as a GPT could possibly enhance connections to other potential

clusters in Hamburg, as its generality of purpose makes them applicable virtually ev-

erywhere and subsequently strengthens developments there. The opportunity of cross-

15Since actors focusing on ’materials’ are very frequent, this category was included as well as the three
main industry clusters in Hamburg and the category ’others’ for actors from all other industries. Since
there are only very few university patents, universities were excluded here.
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Figure 7.9: Network of potentials for cross-fertilisation due to technological overlap.
Size of vertices is relative to filed nano-patents, width of edges refers to the number
of overlapping technology fields. Applicants without headquarters in Hamburg are
coloured grey.
Source: PATSTAT, own search, calculation and illustration.

fertilisation for instance also exists for renewable energies, where another kind of the

mentioned composites could be used in rotor blades of wind wheels (NEWMEX Con-

sulting GmbH 2004, Hessen Agentur 2008). To quote another example, employing

nano-materials, new solar cells could be developed by utilising nano-tubes in combi-

nation with quantum dots which has already been tested at Hamburg’s research insti-

tutes (Bürgerschaft FHH 2008). These quantum dots were afore applied in pharma-

ceutical applications. By improving the opportunities and shaping the structures of an

emerging field of regional specialisation, nanotechnology is potentially able to induce

a specialisation-widening of both, the regional economic structure and the application

fields of nanotechnology. This interplay of existing and new structures and nanotech-

nology is finally implemented in figure 7.7 by mentioning also the cluster of renewable

energies.

This presumed (future) structure is developed due to rather qualitative findings on the

pattern of nanotechnological competencies and development in Hamburg. Although

there is not enough sensible qualitative neither quantitative evidence yet that could sup-

port H7.4(a), there is not enough evidence to reject it either. However, these anecdotal

results do emphasise the role of the regional economic specialisation pattern: Nano-
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technology is specialised where Hamburg’s regional industry is specialised, conveying

compatibility of nano-specialisations and the existing production as well as research and

development structure. Furthermore, existing specialisation gets strengthened with the

development of nanotechnology, also since so far isolated fields, such as e.g. avia-

tion and maritime industries, possibly get related via nano-applications. Specialisation-

widening seems to be plausible with respect to renewable energies.

Impact of the Composition over Time H7.4(b)

H7.4(b) is very closely related to H7.4(a) since it considers the other side of the feed-

back mechanism. While H7.4(a) focuses on how nanotechnology development might

influence regional development, H7.4(b) points to the feedback of the regional char-

acteristics on nanotechnology. H7.4(b) hence refers to the relative decline of the im-

portance of the specialisation of the nano-knowledge base for its future growth, while

diversity is assumed to become relatively more prevalent and growth-influencing with

evolving time. While, at the beginning, the anchorage into the general regional special-

isation pattern determines the composition of the regional knowledge base and thereby

evokes specialisation (H7.2), the development of nanotechnology as GPT in interaction

with the regional specialisation pattern is assumed to cause a diversification of the NKB.

This is investigated by developed indicators, which have at most marginally been ap-

plied to regional contexts – they are mostly borrowed from other contexts of the liter-

ature, e.g. industrial organisation or international trade. The argumentation is most

closely linked to the discussion of Avenel et al. (2007), who analysed NKB at the firm-

level. Again, the regional NKB which sums up all publications and patents stemming

from Hamburg serves as basis for the analyses. In order to identify specialisation, the

well-known concentration measure of the Hirschman-Herfindahl Index (HHI) is used.

It is constructed as

HHI = ∑
j

Ni j

Ni

2
, HHI ∈ [0,1], (7.2)

where Ni refers to the overall count of assigned IPC classes (subject areas) in year i,

Ni j is the count of the specific IPC class j. Applied to this analysis, specialisation thus

measures to which extent publications (patents) are concentrated within subject areas

(IPC classes). Higher levels indicate higher degrees of specialisation. In what follows

the corresponding variable is employed as DEPT H. In contrast to this is an indicator

that measures diversity or BREADT H. Notice that breadth is not just the opposite of

depth but is represented by an additional indicator that provides information on how
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many SAs (IPC classes) are assigned per publication (patent) on average:

BREADT H =
# o f assigned technological f ields in Hamburg in year t
# o f nano− publications/patents in Hamburg in year t

, BREADT H ∈ [1,∞)

(7.3)

The resulting values are equal to or exceed unity with higher values indicating more

breadth since then a single publication/patent becomes more useful in more fields or

applications.

Variable Obs Mean StdDev Min Max

scientific NKB
Publications 13 140.46 44.57 64 211
DEPT H 14 0.07 0.02 0.06 0.12
BREADT H 14 2.45 0.92 1 4.42

technological NKB
Patents 13 12.54 7.63 0 22
DEPT H 14 0.18 0.25 0.04 1
BREADT H 14 1.57 0.26 1.02 1.85

control GDP/Capita 14 43.77 3.53 38 48.7

Table 7.2: Descriptive statistics.
Source: own calculations.

The goal of the following part of the analysis is to better understand how the NKB

in Hamburg develops, not only with respect to time and size but with respect to its

composition, in this context assessed by breadth and depth.16 In doing so, an empirical

analysis for the period 1995–2008 is carried out, estimating the following regressions:

Publicationst(Patentst) = α+β1DEPT Ht−1 +β2BREADT Ht−1 +β3GDP/capitat−1 + ε

(7.4)

Recall that the development of the size of the NKB is already illustrated in Figure 7.1.

Table 7.2 gives an overview on the parameters DEPT H and BREADT H for both scientific

and technological knowledge as respective independent variables and the employed

control variable GDP/capita, which shall catch up overall yearly economic effects. Since

the aim is to investigate how depth and breadth influence the development of the NKB,

publications and patents are chosen as dependent variables and regress the respective

lagged explanatory variables on them. Like this, the DEPT H and BREADT H of the

precedent year’s NKB are modeled to impact the actual NKB development. Moreover,

16Alternatively it is possible to calculate breadth and depth at the firm level. This does not allow for a
proper analysis of how the values evolve over time as individual firm’s NKB are too small (yet).
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different models are estimated for both the scientific and the technological NKB in order

to account for the time effect. Therefore, the period is split into the ’early’ (1995-2001)

and the ’later’ (2002-2008) stage of the NKB in Hamburg. A correlation matrix can be

found in the Appendix D in Table D.3. It shows that variables in the same model do not

suffer from multicollinearity; except for the partly high values of the control variable.

Since the dependent variables are count data and suffer from overdispersion (variance

exceeds mean), a negative binomial regression model is employed, the results of which

are displayed in Table 7.3.

Scientific NKB - PUBLICATIONS

OVERALL early stage later stage

DEPT H 3.0000* (1.8109) 4.9337* (2.9072) 3.0368 (2.4928)
BREADT H 0.2787* (0.1490) 0.0911 (0.1990) 0.3032 (0.3293)
GDP/Capita 0.0887*** (0.0108) 0.1372*** (0.0241) 0.0507** (0.0228)
constant 0.3934 (0.4512) -1.4793 (0.9675) 2.1106* (1.1689)

Obs 13 7 6
Log likelihood -48.2409 -23.0354 -21.5833
LR chi2 38.76 21.16 6.63

Technological NKB - PATENTS

OVERALL early stage later stage

DEPT H -3.6111* (2.0902) -6.0529** (3.0812) 2.9033 (4.0230)
BREADT H -0.0128 (0.2286) -2.1448*** (0.7520) 0.8848 (0.5449)
GDP/Capita 0.0805 (0.0695) 1.4034*** (0.5038) 0.3625* (0.1869)
constant -0.5437 (3.5376) -49.6929*** (19.1114) -16.2313 (9.9301)

Obs 12 6 6
Log likelihood -36.2707 -10.7496 -18.8761
LR chi2 12.16 17.91 3.49

Table 7.3: Negative binomial regression results. PUBLICAT IONS/PAT ENT S as independent
variable. Standard errors in parentheses.
***Indicates significance at 0.01.
Source: own calculations.

Figures 7.10(a) and 7.10(b) illustrate how DEPT H and BREADT H evolve over time in

both the technological NKB and the scientific NKB, with the former rather increasing and

the latter decreasing. However, this only points to their prevalence. Table 7.3 presents

the results of the regression analysis investigating whether specialisation and diversity

indeed impact the subsequent development of the NKB. As one can easily see from the

results of the regressions, specialisation and diversity (i.e. DEPT H and BREADT H) are

both relevant for the overall development of the scientific NKB. However, when separat-

ing the analysis for the time perspective, it becomes clear that DEPT H is only significant

in the early stage of the development, while BREADT H shows no influence at all. While

the influence of specialisation in the early stage is in line with the expectations, the non-
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(a) Technological NKB (b) Scientific NKB

Figure 7.10: Development of the characteristics of the NKB in Hamburg w.r.t. depth and breadth.
Source: PATSTAT, own search and calculations.

significance of diversity does not support the assumptions. Causes might be seen in the

very low number of observations or the still early stage of development from an over-

all perspective. For the technological NKB the results point completely into another

direction: The specialisation (DEPT H) of the knowledge has a significantly negative

influence on the overall development, particularly in the early stage. This might indeed

point to the fact that the mere concentration into a few technological fields (in terms of

IPC classes) restricts the technological innovativeness in the field. In contrast to scien-

tific achievements, technological innovations in form of patents benefit extraordinarily

from a multitude of applications in terms of monetary revenue. The negative sign of

BREADT H in the early stage, by contrast, contradicts this possible explanation, since di-

versity hence seems to be negatively influencing further development as well. However,

since there are only very few observations and since there is only one single case inves-

tigated, these findings might not be reliable nor are they representative, which is why

they rather serve to test the appropriateness of hypothesis and measures. Therefore, the

assessment of this hypothesis is picked up again in the next Chapter 8. However, for the

moment H7.4 cannot be confirmed.

7.4 Conclusion

The results obtained within this introductory case study confirmed many of the sug-

gested hypotheses concerned with (local) aspects influencing the development of nano-

technology. However, it has to be said that nanotechnology is an emerging technology

and hence all relevant activity must be assumed to define an emergent configuration

(see Section 2.3 and Callon (1997)). This implies that a stable situation is yet to be

reached and a constant change of the situation in Hamburg is expectable. Having said

this, it can be stated that nanotechnological competence in Hamburg emerges and de-
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velops where the existing regional economic structure already exhibits specialisation

advantages, such as effective MAR-externalities. This is neither obvious nor compulsory

because nanotechnology as GPT is potentially applicable in virtually every industry. In

the context of the Marshall-Jacobs controversy, the results hence suggest that the role

of specialisation and diversity for technological development is not only to be asked

within the context of the given technology (such as (potential) GPTs) but also has to

be investigated in the light of prevailing regional economic structures. In Hamburg,

for instance, it has become obvious that nanotechnological specialisation is compatible

to the corresponding regional specialisation, which is mainly supported by sticking to

the life science cluster’s specialisation. This specialisation is the starting point of any

investigation of occurrence of specialisation and diversity within the NKB. The NKB in

Hamburg indeed shows signs of both, specialisation and diversity at the same time.

However, aiming at finding evidence for mutual feedbacks (i.e. nano-innovation sys-

tem in Hamburg to overall industrial structure to nano-innovation system...), there was

found anecdotal evidence for nanotechnology to (potentially) influence the industrial

structure in Hamburg. Specialisation deepening is evidenced by a rather natural result

from compatibility, namely the strengthening of competencies in the respective field,

but also by the fact that the development of nanotechnology relates fairly unconnected,

but in themselves specialised fields via cross-fertilisation of possible nano-applications

in these diverse fields. This cross-fertilisation might also become the driver of special-

isation (advantages) in additional fields by the mere application of nanotechnology in

this field, opening opportunities to benefit from existing knowledge. This diversification

of specialisations in Hamburg, for instance, seems plausible with respect to renewable

energies. The last hypothesis, i.e. the relevance of the specialisation and/or the diver-

sity of the knowledge base as a cause of the development of new innovations, could, by

contrast not be confirmed.

While this points to a central weakness of the case study approach (i.e. lack of compara-

bility, the few numbers of observations and, also, the lack of systemised operationaliza-

tion of the investigation such as hypothesis testing by anecdotal evidence), the attention

to detail in this case study was necessary to gain awareness and important insights into

relevant aspects of the development of nanotechnology within the context of a location.

The most important finding of this Chapter 7 for the rest of the analyses is that the

development of nanotechnology has to be analysed in the context of location: The un-

derlying regional economic structure significantly shapes the development of nanotech-

nology – and these feed back on the regional economic structure. Splitting this main

point into its parts, relevant results of this case study in the course of this thesis are the
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following starting points for further in-depth (and non-case based) analyses within two

main fields of investigation (which is tackled in two more working packages to follow):

Knowledge Composition and Localised Knowledge Spillovers (WORKING
PACKAGE 2)

The development of nanotechnology is assumed to anchor into existing industrial spe-

cialisation patterns; it should therefore be investigated whether and how this influ-

ences innovativeness in nanotechnology. Specialisation and diversity and with them

the Marshall-Jacobs controversy are indicated to be an important and non-neglectable

aspect in the context of the (localised) development of nanotechnology. Their influence

shall therefore be assessed further.

Collaboration and Knowledge-Sharing in Networks (WORKING PACKAGE 3)

Collaboration occurs, which, being a central mechanism for knowledge transfer bears

the very probable possibility of positive knowledge externalities to become effective.

Moreover, networks of collaboration (might) contribute to the diffusion of knowledge.

It is therefore of central interest how collaboration is organised and how it influences

innovativeness in GPTs and how mutual learning and cross-fertilisation can become

effective.
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Part III.b

Working Package 2: Knowledge
Composition and Localised Knowledge

Spillovers
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8 The Impact of the Knowledge
Composition on the Innovation
Outcome: Specialisation vs. Diversity

The role of the knowledge composition and the nature of knowledge spillovers is de-

rived as an open issue in Chapter 7. This chapter and Chapter 9 set out to investigate

the impact of the composition of knowledge on innovativeness. When the relevance of

agglomeration economies on economic growth has been assessed in the past, a focus

was laid on the analysis of innovation and the corresponding knowledge base within

regions. The central question discussed in this context is displayed within the Marshall-

Jacobs controversy and weighs whether specialisation or diversity generate more and

more efficient knowledge spillovers. Specialisation and diversity have been indicated

to be important and non-neglectable aspects in the context of the (localised) develop-

ment of nanotechnology as well (see Section 7.4). Moreover, there is evidence that the

development of nanotechnology anchors into existing industrial specialisation patterns.

This chapter hence tackles how the compatibility with the respective regional indus-

trial structure as well as specialisation and diversity of nanotechnological knowledge

influence the development of nanotechnology as GPT.

8.1 Derivation of Hypotheses

Since this chapter mainly takes up the hypotheses under investigation in the smaller

context of the case study of Hamburg accomplished in Chapter 7, the derivation of hy-

potheses in this chapter is held shorter without omitting any main points.

First, the anchorage of a nanotechnology into the regional industrial structure was in-

dicated to influence its development. Geographic and cognitive proximity (in the sense

of the use of similar knowledge bases in the same regions) of agents in the same in-

dustry generate intra-industrial (MAR) knowledge spillovers and other specialisation

advantages (Jaffe 1986, Boschma 2005). In order to benefit from these advantages that

regional specialisation of knowledge in some fields offer (such as asset sharing, access
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to a qualified labour market and infrastructure) and in order to be able to catch up

to and advance the state of the art, is is reasonably assumed that nanotechnology as

an emerging GPT, although being applicable in nearly all fields of the local industry is

advanced along and benefits from already existing local specialisation patterns. Remem-

ber also that Callon (1997) pointed to the specificity of knowledge bases in emergent

configurations and the necessity of huge investment in technology platforms in order

to be able to advance the technology (see Subsection 2.3). It can be presumed that the

accessibility of existing local structures in similar fields hence drives the development

of a technology.

Hypothesis 8.1 Compatibility to Local Structures
The development of nanotechnology in the context of regionally existing technological pat-
terns is conducive to the innovativeness in nanotechnology.

However, the advantages of specialisation are not the only factors conducive to innova-

tion. Pure specialisation of the regional knowledge-base, for instance, essentially comes

at the cost of a limited number of application fields within the context of a GPT. This

hampers its development in two ways. On the one hand, the incentives to innovate

increase with the number of application sectors across the whole value creation chain,

mainly due to innovational complementarities (see Section 3.2). On the other hand, the

relative cost of producing the new knowledge are higher: The more sectors actually em-

ploy nanotechnology, the more can the newly produced knowledge in this sector become

valuable in different contexts downstream – the fruits from innovation can be shared.

More differentiated knowledge potentially creates a greater variety of knowledge spill-

overs: The more diverse the application, the higher the potential for an exchange of

knowledge and ideas and for random collisions of businesses (Glaeser et al. 1992). An

innovation working well in one industry often can be applied, modified and/or further

developed in other industries (Wu 2005). This phenomenon of cross-fertilisation be-

tween superficially different, but to some extent related technologies as well as even

between (so far) unrelated technologies becomes more probable (Granstrand 1998,

Suzuki and Kodama 2004, Garcia-Vega 2006). Griliches (1998, p. 258) even pointed out

that ’true spillovers are ideas borrowed by research teams of industry i from the research

results of industry j’, thereby directly pointing to the relevance of inter-industrial spill-

overs and the resulting possibilities of cross-fertilisation. Agents can hence benefit from

new technological possibilities, ideas and knowledge spilling over that stimulate innova-

tive activity and prevent negative lock-in effects in one particular technology. Thereby,

this issue directly tackles the Marshall-Jacobs controversy (see Subsection 2.1.2).
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Hypothesis 8.2 Specialisation and Diversity
(a) The specialisation of the regional nano-knowledge base is conducive to its growth.
(b) The diversity of the regional nano-knowledge base is conducive to its growth.

The coexistence of specialisation and diversity is not a contradiction, since the existence

of multiple specialisations, for instance, might constitute diversity. However, there is a

fine line between specialisation and diversity due to several specialisations and diversity

without any specialisations. Given the presumed importance of MAR and Jacobs exter-

nalities, it is of relevance how the corresponding possible externalities can successfully

be exploited regarding their innovation-supporting effects. Nesta (2008) investigated

the role of specialisation and diversity of knowledge bases of firms: Specialisation, i.e.

the depth of large firms’ knowledge bases would be conducive to innovation most im-

portantly in the short run. In the longer term it would be rather diversity, i.e. the

breadth of their knowledge bases that drives innovative activity. Conveying this to the

aggregate regional nano-knowledge bases (regional NKBs, i.e. the aggregate regional

knowledge in nanotechnology) and to their general purpose character, the initial adap-

tion to the overall regional specialisation pattern and the corresponding depth of small

NKBs might trigger intra-industry knowledge spillovers and enhance the organisation

of innovations and the formation of strong knowledge to rely on later. With a growing

regional NKB and hence enough ’architectural’ knowledge, i.e. the knowledge of how to

incorporate diverse and multi-disciplinary knowledge (Zhang et al. 2007), is built up in

the region. Then, the diversification of the NKB might become conducive to its further

development, particularly as the breadth of the NKB potentially exponentiates inno-

vation incentives within the context of the diffusion of a GPT and triggers knowledge

spillovers across industries.

Hypothesis 8.3 Dynamics
As the NKB evolves, the importance of specialisation decreases whereas the importance of
diversity increases.

Last, empirical research has found evidence that scientific knowledge has a strong in-

fluence on the process of shaping new knowledge and innovation in high-technologies

(Plum and Hassink 2011). Put differently, technological knowledge needed for the de-

velopment of applications is based on the basic scientific knowledge. It can therefore

be assumed that the scientific nano-knowledge base and its characteristics do have an

influence on the development of the technological nano-knowledge base. However, as

it is most presumably not the specialised in-depth scientific knowledge at the edge of

the research frontier in a specific subject (and far away from application) that can be

transferred into marketable inventions, specialisation of the scientific knowledge base
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might be counterproductive for the development of technological applications thereof.

By contrast, diversity of the scientific knowledge might be the characteristic that drives

the development of applications in various different fields, thereby augmenting patent-

ing activity.

Hypothesis 8.4 Diffusion
(a) The size of the scientific NKB has a positive influence on the growth of the technological
NKB.
(b) Specialisation of the scientific NKB hampers the growth of the technological NKB.
(c) Diversity of the scientific NKB stimulates the growth of the technological NKB.

8.2 Methodology and Data

This chapter focuses on the impact of local knowledge characteristics on the develop-

ment of nanotechnology. Therefore, the perspective is restricted to a regional level,

thereby ignoring the knowledge flow into (and out of) the region by non-intra-regional

collaborations.1 In particular, different agglomerations of nanotechnological knowl-

edge across Germany are investigated. The analysis focuses on the determinants of the

growth of the respective NKB. Again, the NKB can be split up into a scientific and a tech-
nological part. The technological NKB can be measured by the number of nano-patents

(see Section 5.1.3 for detailed information on the underlying database of nanotechno-

logy patents). The regional NKB that is assumed to influence subsequent innovation

activity is constructed by using a moving time window of 5 years. Hence, the relevant

regional NKB in year t consists of the cumulated patent applications of the prior five

years stemming from that region. This makes a reliable measurement of compatibility,

diversity and specialisation possible, which are all calculated as average values over the

last 5 years. It has been found that a moving window of 4 to 5 years is an appropriate

time frame for assessing technological impact in high-tech industries. This is consistent

with the depreciation rate of patents close to 20% (Leten et al. 2007). The scientific

knowledge base is approximated by publication records. Characteristics of the regional

NKB are studied in this chapter and publication data is not as nearly as standardised as

patent data, the classification scheme is by far not as objective and valuable. Therefore,

the focus here is laid on patent data and the technological NKB. This NKB is appropriate

as is encompasses nearly the whole value creation chain of nanotechnology: Patents,

protecting marketable inventions, are employed throughout the whole value creation

1Yet, these are possible sources of novel and complementary knowledge that can be absorbed by local
agents. Similar to the relevance of the composition of the local knowledge base, the kind of knowledge
flowing in might very well be of importance: When it is related to the regional knowledge base, it
might enhance local learning and growth (Boschma and Iammarino 2009).
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chain with an increasing number of patenting research institutions. By contrast, it is

mostly in the very upstream basic research sector where publications dominate and

prevail. Yet, Jansen et al. (2007) found that Germany universities describe 75% of

nanotechnological research as basic. Still, nanotechnology is an emerging technology.

Therefore, the scientific NKB shall not be neglected here. Eventually and carefully, pub-

lication data is employed in this very function, as constituting the very upstream sector’s

knowledge, in order to be able to trace a diffusion pattern of knowledge in H8.4. For

publication as well, the moving time window approach to assess the impact of new sci-

entific knowledge in form of publications.

The relevant nano-agglomerations that are included in the panel are exclusively German

clusters to avoid the influence of country-specific differences. Identified nano-regions

are listed in the Micro/Nano-Atlas of Germany, published by IVAM (2010). A nano-

region identified very in size between more than 90 and less than 10 actors. The very

small regions have been defined either because there are very intense research activi-

ties or because they are the only regional concentration in their respective federal state

(IVAM 2010). This resulted in 38 nano-regions in Germany, each of which was classified

in subgroups according to its size. However, when data on patent and publication ac-

tivity in the field was collected, substantial nanotechnological knowledge output could

only be found in 34 of these regions. The data on these regions now constitutes the

investigated panel data set. The regional distribution of these clusters across Germany

is displayed in Figure 8.1.

Then, data of nano-patents applied for between 1990 and 2008 and being localised

to the regions considered were extracted from the PATSTAT database (for further de-

tails on the nano-database see Section 5.1). The considered nano-related publications

are stemming from the respective regions and are indexed in the Thomson-ISI WOS

database (for further details see Section 5.2). Here the analysis relies on the period

between 1995 and 2008.

8.2.1 Variables

Dependent Variable

This chapter considers the growth of the regional NKB, i.e. newly produced knowledge,

and not the performance of the given regions but the productivity in terms of innova-

tiveness in nanotechnology is in focus. The productivity of the region is displayed by its

scientific and technological knowledge output, which are regarded in the context of the

knowledge production function again. Since only the development of the technological
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Figure 8.1: Considered nano-agglomerations in Germany.
Size of circles proportional to nano-patent-output of the regions.
Source: own compilation.

knowledge is investigated, PAT ENT S serve as dependent variable, counting the abso-

lute number of patents applied for in the considered year in the considered region (for

the database see Subsection 5.3.1).

Explanatory Variables

Knowledge production is seen as a function of the stock of knowledge, which, depen-

dent on its composition produces more or less useful knowledge spillovers. The concrete

mechanisms of such transfers and spillovers are not subject to investigation, but rather

the theoretical possibilities of certain kinds of knowledge flows triggered by a certain

composition of the knowledge base. The variables catching these characteristics are

introduced in the following. Note that all explanatory variables are employed with a

time-lag, i.e. the explanatory variables are calculated for the 5-year period preceding

the year t, in which the dependent variable is measured. Like this, the effect of the prior

characteristics of the NKB on actual patenting in t can be caught.

Compatibility Displaying the degree of fitness of the NKB with the given regional

structures, the compatibility of the developed NKB to the specialisation profile of the re-

gion’s overall KB, the so called Revealed Technological Compatibility (henceforth RTC)

index is included. The RTC index is adopted from the Revealed Technological Advan-

tage (RTA) index which is frequently used to measure specialisation within trade theory

(Almeida 1996). The RTC index calculates the ratio of the share of the number of nano-

patents (nano-publications) in the respective IPC 4-digit class (subject area) in a region

relative to the overall number of patents (publications) in this IPC class (subject area)
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in the given region and the respective shares in Germany:

RTC =
Pd,i / ∑i Pd,i

∑d Pd,i/∑d ∑i Pd,i
, RTC ∈ [0,∞), (8.1)

with P patent count, i region and d technological field. The co-domain is [0,∞), where

values close to 1 for an application field display a specialisation profile of the nanotech-

nology application field close to the overall specialisation profile of the regional NKB

country or economic region. Since deviating values in both directions indicate non-

symmetric deviations from this overall profile (Palmberg et al. 2009), straight-forward

implications are not easily drawn. Therefore, the following normalisation is employed:

RTCN =
1∣∣RTC−1

RTC+1

∣∣ , RTCN ∈ [1,∞). (8.2)

This normalised index (RTCN) with co-domain [1,∞) increases with increasing compat-

ibility. Then, the average RTCN value of the top 5 of most frequently assigned subject

fields is taken as the indicator for compatibility COMP. This is done because not all

fields, but the most important fields are assumed to be relevant in terms of ’fitness’ of

the nano-knowledge to the regional specialisation pattern. Following hypothesis 8.1

hence, growth is tested to be increasing with COMP.

Specialisation In order to identify specialisation, the already mentioned Revealed

Technological Advantage (RTA)2 index is employed. The RTA index calculated here

by contrast is used to assess the relative advantages of region i in a patent’s technolog-

ical field d. It is calculated by the ratio of the share of patents of this region in a given

nanotechnology application field, divided by the total share of patents in this very field

in the whole country.

RTA =
Pd,i/∑d Pd,i(

∑i Pd,i/∑di Pd,i
) , RTA ∈ [1,∞) (8.3)

This index is commonly used as a measure for specialisation and the possible existence

of Marshallian externalities (Paci and Usai 1999, Palmberg et al. 2009). It equals unity

if the region holds the same share of nano-patents in one technological field, as total

patents exists in that area in the whole country, and is below (above) one if there is a

relative weakness (strength). Regarding the co-domain and the interpretability, similar

problems as described for the RTC occur. Moreover, this index is constructed as relative

specialisation index for one technological field and therefore not yet employable as

index for the specialisation extent of the NKB of a whole region. The following re-

2In conjunction with the use of employment data, this index is also known as locations quotient, LQ.
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construction is accomplished for this purpose: For the same top 5 assigned IPC classes

k on a 4-digit level3 as used for the calculation of the COMP variable, the square root

of the mean of the squared RTAk value is taken for each of these IPC classes. In order

to make this new indicator symmetric, it is normalised using the formula RTA−1
RTA+1 . This

yields a symmetric co-domain of [−1;1] with increasing values indicating increasing

specialisation and zero displaying average specialisation. I.e. the specialisation index

(SPEC) employed here is constructed as

SPEC =

√
∑k RTA2

k
k −1√

∑k RTA2
k

k +1
, SPEC ∈ [−1,1]. (8.4)

Being designed like this, under-average specialisation contributes negatively and a higher

level of specialisation in a few fields is more relevant than a lower level in more fields,

which displays the focus on specialisation in form of depth. According to hypothesis

8.2b, a positive relationship between specialisation and the growth of the NKB is hence

expected.

Diversity First of all, note that diversity is not just the opposite of specialisation. By

contrast both can coincide. Therefore, diversity is represented by two additional indica-

tors. In order to identify diversity, the inverse of the well-known concentration measure

of the Hirschman-Herfindahl Index 1−HHI is used. It is calculated as

DIV = 1−HHIk = 1−
N

∑
i=1

pik

Pk
, DIV ∈ [0,1], (8.5)

with i representing the IPC class4, k the overall region and P the number of patents.

Applied to this context, diversity thus measures to which extent patents are distributed

across IPC classes and hence how universal nanotechnology is. This index yields values

within the interval of zero and unity with higher levels indicating higher degrees of

diversity. Diversity is expected to be positively related to the yearly record counts, as

stated in H8.2a.

Size and Experience Above all diversity, but also opportunities to specialise within

one field depend on the size of the knowledge base. It is natural that larger NKBs are

more diverse than smaller ones, as more actors can process more and more different

knowledge. Moreover, larger NKBs are offering more possibilities of recombination.
3For the analysis of the last hypothesis, PUB_SPEC, specialisation for the scientific NKB is calculated on

the basis of subject areas.
4For the analysis of the last hypothesis, PUB_DIV , specialisation for the scientific NKB is calculated on

the basis of subject areas.
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This leads to a larger propensity of the actors who have access to it to eventually pro-

duce new knowledge and hence absolute counts of new knowledge will be higher.5 It

should therefore be controlled for the size of the NKB in terms of patent (or publication)

counts over the respective period. In this context, another aspect is important:

Tacit knowledge, being an important ingredient to innovation, frequently can only suc-

cessfully be acquired through lengthy experiences of individuals and learning-by-doing.

However, since experience and the corresponding tacit forms of knowledge are so diffi-

cult, costly, and time-consuming to obtain, these might be a relatively strong and lasting

source of competitive advantage in what concerns the creation of new knowledge and

innovation within a region.6 This aspect shall be accounted for by including an experi-

ence variable into the regression. On the one hand, it can be accounted for the expe-

rience by including the size of the total stock of nano-patents gained within a region,

which is the lagged accumulated number of patents over the past 5 years SIZE_NKB,

assuming that behind every patent a considerable amount of tacit knowledge is gained

as well. The lagged size of the NKB is expected to have a positive influence on NKB

growth as also detailed above.7 Moreover, the local stock of highly educated human

capital also proxies the amount of – admittedly less focused – experience. Therefore,

the variable HQ, displaying the local share of highly educated employees (i.e. those

holding a university degree) in the precedent year t −1 is included into the regressions

as well to improve the fit of the regressions and act as a control variable.

Year dummies To control for time specific factors that are likely to affect the number

of new patents, the model also includes year dummies. Such factors might include

the overall growing relevance of nanotechnology and the associated changes in these

technological fields as well as, for instance, economic fluctuations.

8.2.2 Descriptive Statistics

Descriptive statistics of the dependent and explanatory variables are provided in Table

8.1. The mean number of new patent applications per region is 14, mean lagged share

of highly qualified employees is 10% and the mean size of a region’s knowledge base

amounts to 69 patents. Technological specialisation of this knowledge base is 0.84 in

mean, whereas compatibility amounts to 1.71 and diversity to 0.74. As expected, these

5By contrast, relative growth rates are likely to be smaller since the denominator of the growth rate is
larger.

6Ranft and Lord (2000) detail this aspect for firms, but this might be particularly true for regions as
well.

7However, since knowledge might become obsolete after a certain amount of time, once again only the
knowledge stock of the 5 last years is included.
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numbers already reveal that the regions examined here are specialised in their main

nano-application fields as well as diversified across a wider range of fields. Table E.1

in the appendix displays the correlation coefficients between the variables (except for

the year dummies). The size of the NKB correlates highly with the rate of new patent

applications. This is also true, as expected, for the specialisation indicator with patents

and the size of the existing knowledge stock. Keep this in mind for the interpretation of

the results.

Variable Description Obs Mean StdDev Min Max

PAT ENT S Number of patents applied for in t 385 14.10 22.69 0 149
PUBLICAT IONS Number of publications applied for in t 396 158.90 155.52 0 951
SPEC Specialisation of the techNKB in t −1 367 0.84 0.12 0.45 0.99
COMP Compatibility of the techNKB in t −1 to

the overall regional structure
367 1.74 1.46 1.02 20.72

DIV Diversity of the techNKB in t − 1 to the
overall regional structure

367 0.74 0.21 0 0.97

SIZE_NKB Patent count over the whole 5-year pe-
riod in t −1

385 69.07 95.55 0 642

HQ Local share of highly educated employ-
ees in t −1

351 10.31 2.71 4.1 17.9

PUB_SPEC Specialisation of the sciNKB in t −1 396 0.48 0.22 0.09 1.00
PUB_COMP Compatibility of the sciNKB in t − 1 to

the overall regional structure
396 22.53 31.25 1.15 206.80

PUB_DIV Diversity of the sciNKB in t − 1 to the
overall regional structure

396 0.80 0.10 0.21 0.90

PUB_SIZE_NKB Publication count over the whole 5-
year period in t −1

396 622.27 629.48 3 3909

Table 8.1: Descriptive Statistics.
Source: own calculations.

8.2.3 The Model

Since the growth of the regional NKB is investigated, which is nothing else than how

much new knowledge is produced given the existing stock of knowledge and its com-

position, the knowledge production function approach is employed. It points to the

relevance of knowledge production for long-term productivity growth (Romer 1990,

Aghion and Howitt 1992). In this context, the production of knowledge is regarded as a

function of the stock of knowledge, which, dependent on its composition produces more

or less useful knowledge spillovers. Hence observable knowledge, i.e. patents, is linked

to observable regional characteristics of the stock of knowledge within the knowledge

production function and likewise determinants of the knowledge production shall be
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examined. The knowledge production function employed in this context is of the form

PAT ENT Si,t = α+β1SPECi,t−1 +β2DIVi,t−1 +β4COMPi,t−1

+β5SIZE_NKBi,t−1 +β8HQi,t−1 +
16

∑
i=9

βiY EAR+ ε,
(8.6)

which is adapted for the different models and scopes. When the dependent variable

is employed as a count variable, it only takes non-negative integer values (the number

of patents applied for from actors of a particular region in given year). Therefore, the

assumption of an underlying Gaussian distribution, as for instance used in OLS models,

is misleading. By contrast a Poisson regression approach provides an appropriate model

for such data (Vanhaverbeke et al. 2007, Grimpe and Patuelli 2008), but as count data

is likely to suffer from overdispersion (variance exceeds mean) – which is the case for

this data as well – the assumption of this model is violated. This is particularly relevant

in case of (time-invariant) unobserved heterogeneity, which might be a problem here.

Being able to better control for unobserved heterogeneity, i.e. the possibility that iden-

tical regions according to the measured variables still differ with respect to unobserved

features, a fixed effects negative binomial regression model is used. This is very similar

to the Poisson model but accounts better for heterogeneity problems. Moreover, the

employment of the size of the NKB in the precedent 5 years as control variable has the

effect of an instrument, further controlling for unobserved heterogeneity (Heckman and

Borjas 1980).

8.3 Results and Interpretation

In the following, the investigation of the hypotheses stated above is accomplished step

by step and is directly discussed.

8.3.1 Compatibility (H8.1)

In this chapter, the focus is laid on the influence of the characteristics of the existing

knowledge on the development of new knowledge in nanotechnology. It is hypothe-

sised in H8.1 that new knowledge is developed in the context of regionally existing

technological patterns. To test this, the characteristics of the technological NKB were

included into the regressions as well as some control variables testing the overall im-

pact of knowledge. The results of the fixed effects negative binomial estimation of the

relationship among the growth of the NKBs (i.e., the number of new patent applica-

tions, PAT ENT S), diversification DIV , specialisation SPEC and compatibility COMP are

presented in Table 8.2. Model 8.I includes all variables. As can be clearly seen, COMP
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is positively statistically significant, but, however economically only weakly influencing

the technological development. Yet H8.1 can generally be seen as supported. Hence,

the compatibility of the NKB, i.e. its fitness into the region’s overall specialisation pro-

file appears to have indeed a positive influence on the further development of the NKB.

However, different clusters in different stages of development are examined over a rel-

atively long period, particularly in relation to the young stage. Therefore, even though

the compatibility does not show a strong effect over this whole period of time it might

very well have been more important for the first few initial years. Hence, it might be

simply the given setting that produces the low impact. This result is thus relevant since

it becomes obvious that the anchorage into the regional system of industries does have a

(even if only a small) mid-term effect on the development of nanotechnology in German

regions. Moreover, as was elaborated in Chapter 7, the compatibility of nanotechnology

might have an impact on the development of structures of the region itself. However,

this is not evaluated in this chapter.

Model 8.I - ALL

SPEC 1.3991* (0.8374)
DIV 0.9643* (0.5234)
COMP 0.0869** (0.0411)
HQ 0.1442** (0.0586)
SIZE_NKB 0.0022*** (0.0007)
year dummies yes
Const -17.3657 (917.0516)

Obs 329
Number of Groups 34
Log likelihood -822.7665
Wald chi2 185.17

Table 8.2: Results of negative binomial fixed effects panel data analysis of PAT ENT S.
***Indicates significance at 0.01. Standard errors in parentheses.
Source: own calculations.

8.3.2 Composition of the NKB (H8.2)

Advancing to a more detailed consideration of the composition of local technological

NKB, hypotheses 8.2 state that diversity and specialisation are conducive to the devel-

opment of new nano-knowledge. For the discussion of H8.2 Table 8.2 again displays the

results to be discussed. The results are in line with previous findings in other techno-

logical contexts such as Paci and Usai (1999) and van der Panne and van Beers (2006),

and partly also with Mangematin and Errabi (2012). Concerning the Model 8.I, the

share of highly qualified employees and the size of the lagged nano-knowledge base

have the expected positive signs and are significant, using conservative two-tailed tests.
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This points to the relevance of the old knowledge for producing new knowledge on

the one hand, and to the importance of access to qualified employees that are able to

process this knowledge, on the other hand. The year-dummy coefficients indicate an

overall, although not monotonic, increase in patent applications across the years. As

expected and stated in H8.2, both, specialisation and diversity have a significant and

positive influence on the growth of the technological NKB. Remember that specialisa-

tion and diversity are not regarded as being mutually exclusive: A knowledge base can

be seriously specialised in certain fields (namely in this case, as is taken into account

in the employed specialisation measure, the most frequently cited technological fields)

and at the same time be diversified, producing and obviously reemploying diversified

knowledge. In this special case of nanotechnology as GPT, this result was expected:

In order to develop high-tech knowledge needed to radically and basically advance the

GPT, leading edge and highly specialised knowledge and the corresponding knowledge

spillovers are necessary. On the other hand, in order to make a high technology be-

come a GPT and to open up opportunities to unfurl its whole potential, options must

be proposed to employ the GPT in different, widespread application fields and to po-

tentially benefit from city-specific Jacobs externalities, such as cross-fertilisation. While

simultaneous specialisation and diversity might be counterproductive on the firm level

by producing a difficulty to cope with trade-off between exploitation and exploration

(Abernathy 1991, Benner and Tushman 2003),diversity and specialisation at the re-

gional level do not trigger such a trade-off or even dilemma – by contrast, they seem to

be stimulating simultaneously.

8.3.3 Dynamics (H8.3)

Coming to the dynamic impact the characteristics of the existing knowledge base, i.e.

the extent of the impact specialisation and diversity have on the development of new

nanotechnological knowledge, remember that H8.3 expresses the conjecture that the

importance of specialisation decreases, while the importance of diversity increases with

the size of the NKB. To advance this conjecture, it is distinguished between the dynam-

ics of specialisation and those of diversity. In order to be able to sketch the different

development stages, different sizes of agglomerations are considered separately. The

SMALL Group refers to agglomeration with a cumulative NKB below the average and

hence to relatively more emergent configurations, while the LARGE group refers to a

local NKB above the average which proxies a more developed knowledge and hence a

later stage of nano-development and hence to relatively more stable configurations.
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As the results of the t-test in Table 8.3 clearly indicate, there are significant8 differ-

ences in the mean values of specialisation and diversity across these groups: While the

specialisation is significantly higher in smaller regions compared to regions with larger

NKBs, this relationship is the other way around for diversity. However, these results

do not tell us anything about the role of diversity and specialisation for the further

development of nanotechnology.

Group Obs Mean StdDev t-Value

SPEC

SMALL 169 0.9143 0.0433
-13.4563***

LARGE 198 0.7797 0.1237
DIV

SMALL 169 0.6032 0.0957
14.133***

LARGE 198 0.8569 0.2304

Table 8.3: Independent group t-test of specialisation and diversity across size of agglomeration.
***Indicates significance at 0.01.
Source: own calculations.

Table 8.4 displays all results of the four different models employed in order to test

whether these difference do indeed influence the development of new patents on a

year-to-year basis. The results show that specialisation has a significant negative im-

pact on the patent activity in small clusters and a significant positive impact on the

development of larger clusters. This is the opposite to what is expressed in H8.3. More-

over, diversity does not seem to have an impact any longer once the models are split

up. Therefore, H8.3 cannot be confirmed. Trying to interpret these results, the negative

impact of specialisation in small clusters might be a result of the specific characteristics

of nanotechnology: Nanotechnology as GPT is assumed to profit from specialisation as

well as diversity. The employed indicator of specialisation in this context, however, is

higher when specialisation is stronger. This focus on stronger specialisation might be

the reason for this negative effect as a strong focus might hamper the positive effects

from diversity and multipurpose right from the beginning. Mangematin and Errabi

(2012), for example, also find that certain kinds of (scientific) specialisation in certain

fields hamper the growth of the clusters. In larger clusters, however, specialisation is

more stimulating. This result is, by contrast, in line with the (firm-level) literature on

exploration and exploitation of a technology, for instance. March (1991) distinguishes

between exploration and exploitation as two basic strategies for firms that aim to ac-

quire new knowledge, thereby adapting to technological advance. The former can be

related to searching, flexibility and radical innovation, while the latter rather encom-
8The t-value can be considered as significant if a limit of 2.0 is exceeded at a confidence level of 0.95 and

a degree of freedom of at least 5. This holds true for the tests accomplished here. Hence, a significant
difference between two mean values is given and the null hypotheses can be rejected (Bosch 1998).
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passes refers to refinement, production and incremental innovations (see also Subsec-

tion 2.3.2). While for the exploration and radical innovation phase, in which young

nano-regions surely are, diversity and creativity is assumed to be more relevant, spe-

cialisation becomes stimulating later when incremental innovations and exploitation

becomes important (Dittrich and Kijkuit 2004). Perhaps these findings are more rele-

vant for the development of nanotechnology as GPTs than assumed before, where the

focus was laid on the need for specialisation in small settings with respect to advanc-

ing high-tech research. This however seems to become more relevant in cases where

the regional nano-knowledge bases are larger. Yet, the diversity of the NKB does not

show any positive influence. This might have several reasons: It can be interpreted

as diversity only being particularly stimulating when there is a simultaneous influence

of specialisation like in Model 8.I. However, referring to the argumentation that led to

the formulation of the hypothesis and the literature on exploration and exploitation,

the reasoning is diametric. If both effects were relevant, this could lead to a mutual

cancellation of effects. However, these results can also be interpreted as diversity not

being particularly relevant for any distinct size, but likewise for all sizes (see Model 8.I).

Dynamics of Specialisation Dynamics of Diversity

MODEL 8.II - SMALL MODEL 8.III - LARGE MODEL 8.IV - SMALL MODEL 8.V - LARGE

SPEC -5.0416* (3.0357) 1.4135* (0.7429)
DIV 0.76120 (0.6546) -1.0287 (0.7045)
HQ 0.0520 (0.1049) 0.0773 (0.065) 0.10926 (0.1014) 0.0425 (0.0632)
SIZE_NKB 0.0011 (0.0093) 0.0022*** (0.0007) 0.00305 (0.0091) 0.0017** (0.0007)
year dummies yes yes yes yes
Const -9.7298 (757.2158) -3.1471*** (1.1172) -14.6705 (527.81) -0.6518 (1.0512)

Obs 149 180 149 180
Number of Groups 16 18 16 18
Log likelihood -270.1009 -537.2057 -270.70728 -538.0078
Wald chi2 50.28 136.84 49.24 133.57

Table 8.4: Results of negative binomial fixed effects panel data analysis of PAT ENT S.
***Indicates significance at 0.01. Standard errors in parentheses.
Source: own calculations.

8.3.4 Diffusion (H8.4)

Finally turning to H8.4, it is assumed that (a) the size of the scientific NKB has a posi-

tive influence on the growth of the technological NKB and moreover (b) specialisation

of the scientific NKB hampers the growth of the technological NKB while (c) diversity

of the scientific NKB stimulates the growth of the technological NKB. In order to test

these hypotheses, the characteristics of the scientific NKB have been calculated in anal-

ogy to the characteristics of the technological NKB. Keep in mind that due to different

qualities of the classification systems, results have to be treated with care, which is why
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they are taken as a hint here, not a definitive result. Table 8.5 presents the results for

this Model 8.VI. The results indicate that H8.4 can be confirmed here, at least in parts:

The size of the regional scientific NKB has a significant and positive influence on the

count of newly filed patents. Yet, although the effect is statistically significant on the

10% level, the economic significance is to be doubted due to an extremely small coef-

ficient. However, at least in tendency the amount of regionally existing scientific nano-

knowledge, contributes to the development of technological innovations. It can easily

be interpreted as being in line with the pure mathematical fact that the mere amount

of pre-exiting knowledge increases the opportunities of re-combination as well as being

in line with previous findings that scientific knowledge diffuses at an early level of the

value creation chain and is then employed in inventions in the fields of technological

application. Given this relationship, however, the small coefficient has to be mentioned

again. This part of the diffusion pattern is frequently referred to as technology transfer

and points to the relevance of basic research (i.e. most presumably university-industry

knowledge flows). Moreover, the results also show that while scientific diversity does

not have a significant influence on the development of the technological NKB, scientific

specialisation does not only not positively contribute, but indeed significantly hamper

the growth of the technological NKB. While scientific specialisation might advance the

scientific NKB, this highly contextual knowledge is only seldom directly marketable and

therefore obviously not useful for commercial applications in the short and medium

run. This would explain a non-significance. The negative sign might be a hint that

even the knowledge transfer suffers from this specialisation. Once stated that scientific

knowledge stimulates technological inventions, a weakly existing knowledge transfer

hence would even hamper the development of new applied nano-knowledge. Diversity,

by contrast, does again not show any positive impact on the creation of new technolog-

ical knowledge in nano. This is why H8.4a can be weakly and H8.4b can be strongly

confirmed, H8.4c cannot be confirmed.

8.4 Conclusion

Nanotechnology as GPT has the inherent potential to foster radical and widely spread

innovations that result in remarkable growth. Subsequently, it seems to be of significant

importance that regions create an environment for innovation that is conducive to the

development of such future technologies in order to benefit from the growth potentials.

In many regions, such policies have already been set in place in form of nano clusters or

science parks. However, nanotechnology is not only a knowledge intensive technology,

but also a general purpose technology. Therefore, not only the extent and the efficiency
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Model 8.VI

PUB_SPEC -1.3684*** (0.5261)
PUB_COMP 0.0012 (0.0012)
PUB_DIV 1.0780 (1.1366)
PUB_SIZE_NKB 0.0003* (0.0002)
HQ -0.0187 (0.0612)
year dummies yes
Const -12.60152 (397.4815)

Obs 341
Number of Groups 34
Log likelihood -848.5509
Wald chi2 188.28

Table 8.5: Results of negative binomial fixed effects panel data analysis of PAT ENT S.
***Indicates significance at 0.01. Standard errors in parentheses.
Source: own calculations.

of knowledge spillovers, but also their composition is of particular importance. This

chapter thus investigates, which circumstances support the technological development

and hence its competitiveness within the fast growing field of nanotechnology. The em-

pirical analysis in this chapter employs new patent filings in different German regions to

regress the characteristics of the previously existing nano-knowledge bases (constructed

as a 5-year-window of patent filings) on them.

First and most basically, it is found that the previously existing regional scientific and

technological nano-knowledge has a positive influence on the creation of new knowl-

edge. Given the cumulative nature of knowledge, this result is not surprising but yet of

fundamental importance for the development of NKBs in regions. This does not only

point to a path dependent creation of new knowledge given the existing regional knowl-

edge stock. Although nanotechnology is a high technology advanced in a worldwide

race for innovation, everything that so far happened locally is highly influential, em-

phasising the role of local knowledge spillovers. Development paths cannot be changed

quickly since they rely on knowledge acquired in the past few years. This has to be

considered by policymakers aiming to set up any kind of supportive policies.

Second, and prolonging the first point, not only the amount of precedent nanotechno-

logical knowledge, but the composition of the past nano-knowledge bases influences

present innovations. As found here, specialisation and diversity of the technological

NKB both have a significant and positive influence on the growth of the technologi-

cal NKB. Not being mutually exclusive, these results are highly interesting within the

Marshall-Jacobs-controversy, debating on whether specialisation or diversity externali-

ties stimulate innovations (better). In the case of nanotechnology, both seem to pos-

itively impact innovation activity which is assumed to be particularly due to the GPT
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nature of nanotechnology: While specialisation is needed to advance the technology

incrementally at the edge, diversity stimulates the application in various (new) fields,

thereby opening opportunities for cross-fertilisation and exponentiation of innovation

incentives.

However, concerning the dynamics of specialisation and diversity, the results obtained

are contrary to what was expected. For the two different cluster stages no difference in

the impact of diversity was found (in contrast to the expectation that diversity would

rather be important in later stages of development). By contrast, specialisation shows a

significantly negative impact on innovation in smaller clusters and a significantly posi-

tive influence in larger clusters. Assuming that the size of an agglomeration in terms of

the NKB reflects a time-dependent level of development, this is in contrast to what was

formulated in H8.3. As already argued above, this is in line with firm-level literature

on different innovations strategies. Sensibly assuming that, in general and hence on a

regional level, the exploration stage is prevalent before the exploitation phase, speciali-

sation would become more relevant in more advanced clusters. Diversity, however, has

no particular time-dependent effect, which might be due to its stage invariance or due

to mutual cancelation of the mentioned effects.

In what concerns the diffusion of scientific knowledge in direction of application within

the technological NKB, one can clearly state that the scientific knowledge base has a

positive impact on the growth of the technological knowledge base. Put another way,

this is a hint to active technology transfer. With respect to the composition of the scien-

tific knowledge base, results are again ambiguous: While specialisation of the scientific

NKB has a highly significant negative impact on technological innovations, which is

likely to be a hint to problems of technology transfer and and the marketability of basic

research results, scientific diversity – again – has no significant effect on innovations in

application.

Yet, for all these results it has to be pointed to the emerging character of nanotech-

nology and hence to regional configurations that are not yet stable. This implies that

changes in the investigated relationships have to be expected. Hence, all the insights

gained have to be regarded as a snapshot for this point in time. To put these in a nut-

shell: Locally existing nano-knowledge is an important ingredient to the development

of new knowledge in the field. Therefore it can reasonably be assumed that knowledge

transfers and respective spillovers are effective. Contributing to the Marshall-Jacobs-

controversy it has been investigated which characteristics of the local NKB contribute
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to innovations in nanotechnology and how. The underlying central assumption was

that the characteristics of the knowledge stock are in direct relationship to the kind of

spillovers that are at work. Generally spoken, both, specialisation effects and diversity

effects, are found to be stimulative for innovation in nanotechnology as GPT. However,

when it comes to the consideration of dynamics of diffusion effects, results change and

are dependent on the stage of development. Given the importance of GPTs for economic

growth and these results in the light of the still small sample and short period of time

investigated, it is surely worth future efforts to disentangle the relevance of the effects

of the overall development level of the knowledge base of a GPT and its composition.

To do so, it would surely be conducive to assess the mechanisms behind knowledge

diffusion in order to understand which knowledge flows when and with which effect.
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9 Impact of Local Knowledge
Endowment on Nanotechnology Firm
Growth

Picking up the open issue of the nature of knowledge spillovers nurturing innovative-

ness (Chapter 7) and extending the analysis accomplished in Chapter 8, this chapter

investigates the contribution of local knowledge endowment to employment growth in

nanotechnology firms. Thereby, the anchorage into the regional knowledge production

system as well as the role of the composition of the existing knowledge stock are again

be subject to investigation. Yet, the approach is significantly different to the one fol-

lowed in Chapter 8, since the focus is laid on the influence of the indicated issues on

employment growth in firms processing nanotechnology. Hence, the main questions

tackled in this chapter are: (i) (How) do firm-specific and location-specific characteris-

tics interact and influence the process of job creation of nanotechnology firms?, and (ii)

What is the impact of regional specialisation in this context? Put differently, which char-

acteristic of nanotechnology predominates: its character as a high technology (i.e. being

located in a specialised region thereby benefitting from regional knowledge spillovers is

of major importance) or the character of a GPT (according to which opportunities aside

from already existing specialisations may be more important for firm success)?1

9.1 Derivation of Hypotheses

There is a vast literature on firm growth referring to growth in sales, revenues, or em-

ployment. Most prominent determinants underlying the analyses are the characteris-

tics of the firm (e.g. size, age, industry affiliation, financing strategy), of firm loca-

tion (see e.g. Storey (1994) for an overview) or of the entrepreneur (e.g. education,

skill distribution). Related theories range from neoclassical considerations on optimal

1This chapter relies on joint work with Antje Schimke and Ingrid Ott. Source: Schimke, A., Teichert,
N. and Ott, I.: Impact of local knowledge endowment on employment growth in nanotechnology,
Industrial and Corporate Change, forthcoming. Printed with kind permission of Oxford University
Press.
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size (Coase 1937), over internal learning-by-doing processes (Penrose 1995) and evo-

lutionary concepts in which the ’fitness’ of firms plays a central role (Coad 2007) to the

socio-economic view which highlights the importance of resource availability and the

competition for these resources (Uhlaner et al. 2007). Empirical findings suggest that

there is not one single key determinant driving firm growth but factors are highly con-

text specific and depend upon the interaction of several influencing factors (e.g. Harhoff

et al. 1998, Delmar et al. 2003, Coad 2007).

Independent of the studied determinants, country or sector, the literature unambigu-

ously highlights the positive relationship between innovative activity and firm growth

(Acs and Audretsch 1988, Del Monte and Papagni 2003, Adamou and Sasidharan 2007,

Harrison et al. 2008, Coad and Rao 2008). The studies also stress the overall impor-

tance of employment and the availability of qualified labour for innovation (Acs and

Audretsch 1990, Pianta 2005, Lopez-Garcia and Puente 2009). Feldman (1994), or

more recently Feldman and Kogler (2010), provided evidence that particularly inno-

vative activity tends to cluster thereby pointing to the importance of specialisation; at

the same time several studies show that firms in specialised clusters reach higher levels

of innovation (Moreno et al. 2004, Fromhold-Eisebith and Eisebith 2005). Of special

interest are the characteristics of local knowledge, thereby suggesting that specialised

local knowledge has a particularly positive effect on innovation and firm growth (Feld-

man and Audretsch 1999). Fritsch and Slavtchev (2008, 2010) also confirmed that

innovating firms are not isolated, self-sustained entities but rather highly linked to their

environment. Location matters since it may provide access to specialised networks of

firms, suppliers, institutions, or labour (see also Porter (2000); more critically Martin

and Sunley (1998)). Other arguments discussed in the context of clustering include

stronger pressure to innovate or lower costs for innovation commercialisation (Ketels

2009). Spillover opportunities and thus the proximity-productivity linkage decrease

with distance, as knowledge that is highly contextual most frequently requires interac-

tion and face-to-face contact (see Chapter 2 or (von Hippel 1994)).

However, until recently there are only few studies that analyse the role of location and

the proximity-productivity relationship for post-entry performance, i.e. the growth of

firms, as was done by e.g. Gabe and Kraybill (2002), Boschma and Weterings (2005),

Audretsch and Dohse (2007) and Weterings and Boschma (2009). The concept of re-

gional clusters systematically picks up this proximity-productivity relationship, thereby

relying on specific economic activities and has become a popular policy measure. While

a cluster always refers to a specialised network of firms and institutions there is no

definitely accepted definition of industrial clusters. Porter’s considerations however,
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might be seen as representing the standard concept (Martin and Sunley 2003). Porter

(2000, p. 254) defined a cluster as a ’geographically proximate group of inter-connected

companies and associated institutions in a particular field that is linked by commonal-

ities and complementarities’. As a positive external knowledge spillover they increase

their productivity and economic performance. There is, indeed, evidence that firms

in clusters reach higher levels of innovation (Moreno et al. 2004, Fromhold-Eisebith

and Eisebith 2005). The basic reasoning behind specialisation or industry-specific ad-

vantages being relevant for the efficiency of local innovation activity implies that local

agents can share the same particular assets and can benefit from goods and services pro-

vided by specialised suppliers as well as from a local labor market pool (Marshall 1890).

The cluster environment provides not only a stronger pressure to innovate, but also a

richer source of relevant knowledge and ideas as well as lower costs for innovation

commercialization (Ketels 2009). Cluster strength is hence considered a determinant

of prosperity on a local level. As a clustered industry indicates that there are significant

benefits from co-location, the industry’s productivity is assumed to increase with the

level of specialisation within the cluster. In the light of this, knowledge diffusion will

occur when firms are embedded in more specialised environment (Marshallian exter-

nalities) or in regions that are more diversified (Jacobian externalities). More precisely,

the assumed relevance of clusters hence refers to the characteristics of local knowledge

and suggests that specialised local knowledge has a particularly positive effect on in-

novation and firm growth. This chapter contributes to this literature by extending the

basic question of the impact of specialised local knowledge endowment (both amount

and composition). In doing so, the analysis focuses on nanotechnology firms’ growth. In

nanotechnology, given its large scope for improvement, innovation activities are essen-

tial firm activities. In Germany, small and medium-sized enterprises (SME) account for

more than 80 % of all nanotechnology firms (Schnorr-Bäcker 2009). Due to fragmented

R&D and production processes, most of the firms only provide parts of complex value

creation chains while being embedded in various networks. As a consequence of their

high innovation intensity, the anchorage of the actors within regional specialisations is

central. One general expectation concerning the overall role of nanotechnology firms is

their contribution to job generation thereby strengthening regional competitiveness. It

is reasonable to assume that the characteristics of the economic surrounding feed back

to nanotechnology firms’ performance and vice versa.

Following the argumentation above, it is natural to expect that location characteris-

tics do affect the growth of firms in nanotechnology. Moreover employment growth in

nanotechnology firms should be strongly related to successful innovative activity. Fol-

lowing Feldman (1994), knowledge spillovers (from closely related external factors and
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knowledge sources) are especially relevant for small firms since the resources necessary

in order to maintain the knowledge base are typically beyond their means. Callon

(1997) moreover pointed to to the fact that in emergent configuration, a configuration

that can be assumed to prevail in emerging nanotechnology, particularly tacit knowl-

edge with a limited geographical range is relevant. Nano-firms hence can be assumed

to be particularly dependent on (external) tacit knowledge. The new growth literature

finds a propensity for knowledge inputs and spillovers to agglomerate and therefore

it can be reasonably assumed that firms that are in fact using knowledge inputs, such

as firms in (emerging) high-tech or innovation-intensive industries, will perform better

once they are located in a high-density region, as these firms will have better access to

knowledge resources and knowledge spillovers. Hence, characteristics of location seem

to preserve and even reinforce an innovating firm’s growth. However, until recently lit-

tle effort has been done to analyse the role of location and its economic characteristics

for post-entry performance, i.e. the growth of firms (Audretsch and Dohse 2007). The

importance of agglomeration and the impact of spatial proximity on firm performance

have only been studied recently (Gabe and Kraybill 2002, Audretsch and Dohse 2007,

Weterings and Boschma 2009). Following Audretsch and Dohse (2007), who found

that regions abundant in knowledge resources provide a particularly fertile soil for the

growth of young, technology oriented firms, such an analysis is carried out, also focus-

ing on the special role of locational characteristics for the growth of firms in high-tech,

particularly nanotechnology-applying industries. However, the following analysis goes

one step further by considering the composition of the local knowledge base. There-

fore, it is suggested that the extent to which external knowledge is crucial and can be

absorbed differs widely across firm size classes and knowledge intensive sectors. Paying

attention to the characteristics of the structure of the region a firm is located in (so-

called location characteristics) and the knowledge processing characteristics of the firm

itself. The impact of location characteristics on employment growth in nanotechnology

is assumed to differ across firm size classes, knowledge intensive sectors and age groups

(see description in section 4.3). It is therefore hypothesised that:

Hypothesis 9.1 Local Knowledge Endowment
Location characteristics do influence the employment growth of firms in nanotechnology.

Put differently, regions rich in knowledge are supposed to provide a particularly good

environment for the growth of technology-oriented, i.e. knowledge intensive firms in

emerging configurations.

Picking up the issue of the role of the composition of knowledge, the impact of two

economic key characteristics of nanotechnology and its corresponding potential for job
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creation and growth is addressed: As high technology, the usual arguments in the con-

text of the proximity-productivity relationship of innovation activity as derived in Chap-

ter 2 can be assumed to apply. Especially important are hence not only firm specificities

but also an amply specialised surrounding to translate spillovers into actual productivity

gains. Key determinants are thus a sufficiently high overlap of firms’ activities or put

differently and absorptive capacity (Cohen and Levinthal 1990), as well as the avail-

ability of qualified labour. Consequently, the agents’ regional anchorage and especially

the composition of regional labour markets are central determinants of success.

In contrast to this is the general purpose character of nanotechnology, which basically

allows for the introduction of the technology in any context. This implies that a certain

degree of regional specialisation is not mandatory per se, but, depending upon the state

of development of the technology, even the contrary may the case: Too narrow regional

specialisation patterns may inhibit the technology’s use in a multitude of application

fields, thereby possibly suppressing potential opportunities for cross-fertilisation and

innovation-enhancing feed-back mechanisms across diverse and so far unrelated value

creation chains (see Chapter 3).

Taking hence into account the peculiarities of nanotechnology as GPT and the inter-

action with the characteristics of location, the relationship between regional specialisa-

tion and firm growth is not per se clear in the discussed context. The arguments suggest

that the specialisation of the regional knowledge base might not be conducive for the

employment growth of firms that are active in the exploration of general purpose na-

notechnology since this hampers the inflow of knowledge from other fields and even

suppresses positive effects stemming from diversity and nanotechnology’s application

in a wide variety of fields. Catalysing knowledge recombination and fertilising ideas

from other application fields most presumably cannot be processed in an environment

with a strong, specialised focus. However, firms experience a tension when they aim

to advance and exploit existing knowledge and at the same time explore new fields

simultaneously (Leten et al. 2007). Specialisation is necessary to develop sufficiently

strong capabilities in particular domains in order to be able to realise economies of

scale in technology development while incrementally advancing the technology. Hence,

specialisation might have a positive effect on growth in nano-firms: Firms that are not

particularly intensive in knowledge are assumed to rather exploit existing knowledge.

Consequently, the analysis is separated again. The smaller and the younger a firm is, the

more it is assumed to be prone to specialisation externalities due to the fact that small

firms are often highly specialised and enter the market via specialised niches (van der

Panne 2004). Since the exploration of the field is intensive in knowledge it is moreover
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assumed that knowledge intensive, exploring firms are particularly benefiting from di-

versity and hence specialisation might have a negative impact. Given the GPT nature

of nanotechnology and the chances that are inherent in diversity and exploration of the

field and on the other hand the minimum degree of knowledge in the respective field

needed to be able to keep up with leading edge development, too less and too much

regional specialisation might negatively influence firm performance in either of the firm

classes distinguished (Fritsch and Slavtchev 2010). Hence, it is assumed that local spe-

cialisation effects have a negative impact on nanotechnology firm growth. Put another

way, the effects of the co-location of the distinct industry the nanotechnology firm be-

longs to negatively impact the development of the firm since it restrains the growth

opportunities across diverse fields that nanotechnology, being a general purpose tech-

nology, offers. Having stated this conjecture, it is hypothesised that the feature of na-

notechnology being a GPT outweighs the benefits local specialisation is found to inhere

for the growth of high-tech firms in general means.

Hypothesis 9.2 Impact of Local Specialiation
Local specialisation effects the employment growth of firms in nanotechnology negatively.
(a) While specialisation has a direct negative impact on employment growth in particularly
knowledge intensive firms and older firms,
(b) too much local specialisation hampers employment growth in general.

Finally, the robustness of the impact of specialisation and location characteristics on

employment growth is considered. Thus, it is investigated whether the yearly changes

of the level of specialisation might interfere with the yearly changes in the growth rates.

In this context and more technically it is assumed that

Hypothesis 9.3 Robustness
Specialisation effects that are related to average employment growth are the same as those
that are related to a year-to-year consideration of employment growth.

9.2 Methodology and Data

The analysis in this chapter is most closely related to Audretsch and Dohse (2007) who

found that regions abundant in knowledge resources provide a particularly fertile soil

for the growth of young, technology-oriented firms. They consider new market firms

and point to the need of investigating the relationship between local knowledge en-

dowment and firm performance in other high and emerging technologies. Their main

hypotheses are tested in the promising field of nanotechnology relying on unique data
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on German nano-firms which was composed and collected for this purpose. While Au-

dretsch and Dohse (2007) only elaborated on the influence of the accessible stock –

and hence the quantity – of local knowledge, the analysis here extends to the composi-

tion and hence the quality of the local knowledge base. Besides, the robustness of the

hypotheses is tested by two different econometric approaches and novel measures that

expand their explanatory power are introduced.

The focus of the underlying unique data-set is on firms operating in fields that develop

or apply nanotechnology. That means that the firms in the sample are concerned with

nanotechnology in any possible way, be it basic R&D or the employment of nanotech-

nology in later stages of the value creation chain, irrespective of whether this is their

main field of activity. These firms are not only knowledge intensive by operating in a

high-tech sectors, but particularly because nanotechnology is still in a nascent stage of

development and hence these firms are intensive in innovation – which is by defini-

tion knowledge intensive. However, nanotechnology firms operate across a wide range

of industries and are therefore particularly heterogeneous in nature, e.g. referring to

SIZE, KIS and AGE. This is why on the one hand all firms are investigated together

and on the other hand are split in subsamples across these characteristics. The data

set of firms consists of records from the ’competence atlas nanotechnology in Germany’

(www.nano-map.de), an online database providing information on firms that are con-

cerned with nanotechnology. An online-survey was conducted in 2011, asking the firms

for information on employment numbers for different years, profits, year of foundation,

zip code and their industry affiliation (i.e. NACE classification of the 2-digit and 3-digit

industry affiliation) on the basis of their main products. This is particularly necessary

since nanotechnology as GPT does not constitute a single industry, but is present in a

wide range of different industries. 216 of 1950 contacted firms answered, which gives

a response rate of 11.1%. The non-response bias (respectively t-test) is a commonly

used method (e.g. Wooldridge 2002) to ensure whether the firm sample is not prone

to sample selection. Running a t-test for the two groups of interest, i.e. early and later

answering firms, the latter ones represent the firms that will never provide a response.

The corresponding p-values are non-significant for both, the number of employees and

the profits, indicating that the firm sample is representative of the entire population.

In doing so, the independent samples t-test compares the difference in the means from

the two groups to a given value (usually 0). In this vein, the firm sample is split into

two groups: (i) response at an early stage (first wave of the survey) and (ii) response

at a later time (second wave of survey). The t-test statistics obviously show that there

are neither in the case of number of employees nor in the case of profits significant

differences between the two groups. The results indicate that there is no statistically
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Figure 9.1: Distribution of considered nano-firms across Germany.
Source: own illustration.

significant difference between the mean values for the first wave and the second wave

of survey (t = 1.1866, p = 0.2371 > 0.05). In other words, the firm sample is not prone

to sample selection.

The level of analysis is the geographical level of German planning regions (’Raumord-

nungsregionen’). Germany consists of 97 planning regions. This level is chosen as it

is particularly suited to approximate spatial and functional interrelations between core

cities and the corresponding hinterland (BBR 2001). Therefore, they are homogeneous

and comparable entities, which are large enough to assume that spillovers are intrare-

gional and hence no connection between the different regions has to be included in the

estimations (Audretsch and Dohse 2007). It has to be mentioned that the nano-firms in

the sample are not equally distributed: Out of the 97 planning regions, the nanotech-

nology firms in the sample are located in 62 different regions, some of them hosting

a multitude of firms. Figure 9.1 displays this distribution. The data for the regional

part of the analyses, i.e. mainly the employment data for the corresponding planning

regions comes from the Federal Employment Agency (Bundesagentur für Arbeit), statis-

tics of employees subject to social insurance contributions and from the Federal Office

for Building and Regional Planning (BBR, INKAR).
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9.2.1 Variables

Dependent Variable

Before starting with the analysis, an operationalization of the term firm growth is nec-

essary. There is a wide range of definitions that deal with firm growth. Garnsey et al.

(2006, p. 11) suggested that ’firms’ growth can be measured in terms of input (e.g.

employees), in terms of value of the firm and in terms of output (e.g. turnover, profit)’.

In the following analyses, the growth measure of the growth of employees is employed.

Hence, the dependent variables are defined by measuring the log-form of employment

growth as the ratio of the year t (respectively 2010) to year t − 1 (respectively 2006).

The variable values for the year of the financial crisis, 2008, were replaced by the av-

erage (i.e. mean value) of the other available years’ values. More precisely, it might

be that the stochastic properties of the growth rates exhibit entirely different growth

features as in the other years of the studied time period. In other words, growth events

(i.e. growth rates) during the financial crises (respectively 2008) seem to occur with a

significantly higher probability to follow extreme growth events. Nevertheless, in some

cases number of employees is completely missing for all years, which cannot be replaced

accordingly.

Explanatory Variables

Regarding the hypotheses, several independent variables are employed. These vari-

ables display firm-specific and location-specific characteristics. The firm-specific vari-

ables reflect rather usual factors found to influence employment growth, such as firm

size, age and industry affiliation. Location-specific variables by contrast shall reflect the

knowledge characteristics that are specific to the environment the firm is located in.

An overview of the description of explanatory variables is given in Table 9.1 and the

independent variables are discussed as follows:

Firm-specific characteristics The SIZE-dummy controls for the size of the firm. Smaller

firms more intensively and more frequently rely on knowledge spilling over for gen-

erating new knowledge and innovative activity than larger firms (Audretsch 1998).

Small and medium-sized firms (SIZE = 1) are hence assumed to benefit differently from

location-specific characteristics than larger ones (SIZE = 0). KIS is an industry-dummy,

indicating whether a firm belongs to a particularly knowledge intensive sector within

the sample (KIS = 1, high-KIS) or not (KIS = 0, low-KIS). KIS is constructed by the

share of ’knowledge workers’ in an industry’s labour force, which is measured by the

share of employees with a university degree. Sectors with an above-average share

of knowledge workers are hence seen as knowledge intensive (Audretsch and Dohse

183



Impact of Local Knowledge Endowment on Nanotechnology Firm Growth

2007). This dummy is used in order to be able to distinguish between firms that are

operating in above average knowledge-intensive industries among the sample of firms

and hence especially prone to knowledge spillovers as positive externality raising their

productivity. Moreover, high-KIS firms should be able to better incorporate, i.e. to use

the knowledge that is spilling over as it is widely accepted that firms that are themselves

active in knowledge processing and production exhibit a high absorptive capacity (Co-

hen and Levinthal 1990). Location is hence expected to have a more relevant, positive

influence on high-KIS firms and also firm age (AGE) is investigated as a potential initial

trigger for firm growth in nanotechnology. Age is consistently found to be a relevant

impact factor on firm performance (Coad 2010). Assuming that the impact of local

knowledge characteristics on firm growth depends on firm characteristics, the modal

age of the firms in the sample is used as a cut-off point for creating a subsample of

younger and older firms each. Hence, KIS,AGE and SIZE of nanotechnology are em-

ployed in form of a dummy in order to be able to introduce different subsamples and

investigate the particular role of location specific characteristics given differing firm-

specific characteristics.

Location-specific characteristics and the nature of the regional knowledge base The

location-specific variables refer to the role of locations, particularly to possible knowl-

edge spillovers generated in the region. With HQ a region-dummy is introduced that

refers to whether a region exhibits a share of highly qualified (HQ) employees in the

top quartile, measured by employees with university degrees. The IND variable, by

contrast, displays the absolute number of employees in the firms’ industry in its region.

In both, the HQ and IND it is hence implicitly assumed that the regional human capital

displays the regional knowledge resources, as commonly done, as knowledge can be

considered as incorporated in individuals who are able to process it (Rigby and Esslet-

zbichler 2002). The distinction between these two variables is useful, as the HQ dummy

is a relatively general measure of knowledge intensity in the region, whereas IND is

more specialised, pointing to the actual strength of the firm’s industry in the considered

region. Both are expected to have a positive influence on firm growth. INDDENS by

contrast is a catch-all region-specific variable catching agglomeration effects in general

by displaying the industry density of a region to improve model fit. It measures the num-

ber of industry employees subject to social insurance contributions per square kilometre

in the respective region. A further standard measure capturing regional knowledge re-

sources is the presence of a university in a region, as universities are at the same time

supportive and necessary for regional innovation and economic development (Feldman

and Kogler 2010). Research results are open to the public and ready to be exploited as

knowledge spillovers. Therefore, the absolute number of students in a region STUD is
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employed. Since it can be expected that knowledge spillovers increase with available

knowledge resources, STUD should have a positive impact on firm growth. A simi-

lar argumentation holds for R&D, a variable displaying the share absolute number of

employees mainly concerned with R&D in a region. The knowledge inherent in and

produced by human capital (mainly) concerned with R&D is likely to be another source

of knowledge spillovers. The specialisation (Location Quotient, LQ) variable measures

region-specific knowledge-resources and refers to the characteristics of the knowledge

within a region. It is constructed using employment data, corresponding to the industry

in which the firm operates. LQ is calculated by the ratio of the share of employees of a

region in the industry into which the nanotechnology firms classified itself, divided by

the total share of employees in this very field in the whole country:2

LQi j =
Ei, j/∑i Ei, j

∑ j Ei, j / ∑i ∑ j Ei, j
, (9.1)

with E number of employees, i the region-index and j the industry-index. LQ indices

are usual measures for specialisation externalities (Paci and Usai 1999). For the em-

pirical analysis a normalisation is employed, making the index symmetric and easier to

interpret by using the formula LQ(N) = 100∗ (LQ2−1)/(LQ2+1), which constrains pos-

sible values within the interval (-100,100) (Vollrath 1991, Grupp 1994). Values above 0

hence indicate an above average, values below 0 below average specialisation. Follow-

ing the hypotheses, LQ is expected to influence the growth of firms. Table 9.1 pictures

the different explanatory variables and a short description of variables, distinguishing

between firm-specific and location-specific characteristics.

2Note that, for reasons of readability, LQ is used instead of LQi, j.
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Characteristic Variable Description

Firm-Specific

SIZE Small and medium enterprises, defined as those with less than
251 employees (SIZE=1).

KIS Firms in sectors with an above-average share of employees with
university degree are knowledge intensive (KIS=1).

AGE Age of the firm in terms of years since foundation. Cut-off point
used to distinguish between young and old firms is modal age.

Location-Specific

HQ Region exhibits a share of highly qualified employees with univer-
sity degree in the top quartile.

INDDENS Measures industry density (employees in industry per km2) in a
region, catchall variable for agglomeration effects.

IND Absolute employment in the firms’ industry in its region, point-
ing to the actual strength of the firm’s industry in the considered
region.

STUD Absolute number of students in the considered region.
R&D Absolute number of employees in R&D in the considered region.
LQ LQ is calculated by the ratio of the share of employees of a region

i in industry j, divided by the total share of employees in this very
field in the whole country.

Table 9.1: Description of explanatory variables.
Source: own compilation.

9.2.2 Descriptive Statistics and Stochastic Properties

The final database consists of 216 firms. The descriptive statistics for the employed

variables are given in Table 9.2. With respect to the different stochastic properties of

the entire sample, the variables KIS, SIZE, AGE are hence used to distinguish between

the different subsamples. Table 9.3 shows the number of firms differentiated by differ-

ent firm size classes. Firms classified as SME are defined as those with less than 251

employees (European Commission 2010): Actually, there are more SME than larger

firms in nanotechnology. Following Schnorr-Bäcker (2009), however, nano-firms are

mostly SMEs and more seldom larger firms, which is why the sample represents the

population well. Table 9.3 moreover shows the share of firms differentiated into KIS

(i.e. the most knowledge intensive sectors) and AGE (i.e. younger and older firms).

Additionally, Table 9.3 pictures that the sample consists of an above average number of

firms active in knowledge intensive sectors (KIS). Finally, the sample is distinguished

between younger and older firms. The cut-off point in terms of younger and older firms

is represented by the modal age of eight years (Fagiolo and Luzzi 2006, Huergo and

Jaumandreu 2004). In this vein, the distinction between different age groups provides

additional information on the growth process. To sum up, the firm sample operates

across a wide range of industries and is therefore particularly heterogeneous in nature,

e.g. referring to SIZE, KIS and AGE. Therefore, independent group t-tests are per-

formed to test the different specifications against each other. In the case of the different
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firm SIZE classes, the t-statistic is −2.4202 with 214 degrees of freedom. The corre-

sponding two-tailed p-value is 0.0163, which is less than 0.05. The same is true for the

different AGE classes, i.e. t-statistic is −2.6107 with 214 degree of freedom and a corre-

sponding two-tailed p-value of 0.0097. Finally, it can be concluded that the difference of

means in growth rates between SME/larger firms and younger/older firms is different

from 0. Surprisingly, in the case of knowledge intensive sectors (KIS = 1/KIS = 0) the

mean difference of KIS = 1 and KIS = 0 is not different from 0 (i.e. t = 0.0187; d f = 214
and p-value= 0.9851). Nevertheless, these subsamples can be assumed to operate on

different frequencies and are differently influenced by location specific characteristics

(Audretsch and Dohse 2007).

Variable Obs Mean StdDev Min Max

EMP 216 0.1399 0.4411 -3.6110 1.6337
KIS 236 0.8178 0.3868 0 1
SIZE 236 0.6314 0.4835 0 1
AGE 222 40.4646 53.3503 0 343
HQ 236 0.1151 0.0354 0.0473 0.1845
INDDENS 236 45.4338 39.078 2.1653 165.90
IND 235 10295.4 12475.71 12 70531
STUD 236 38148.5 33889.06 0 134260.4
R&D 236 9112.375 11739.87 140 39879
LQ 234 -5.3429 58.5562 -100 99.4687

Table 9.2: Descriptive statistics.
Source: own calculations.

Category Subsample Description Freq Share

SIZE
SME 1 ≤ x ≤ 250 144 66.7

Large-sized >250 72 33.3

KIS
High-KIS (KIS=1) above avg share of R&D EMP 178 82.4
Low-KIS (KIS=0) below avg share of R&D EMP 38 17.6

AGE
Younger = 8 years (modal age) 42 19.5

Older > 8 years (modal age) 174 80.5

Table 9.3: Subsamples w.r.t. firm-specific characteristics.
Source: own calculations.

9.2.3 Regression Approach and Model Fit

First, a regression approach using OLS estimation is set up (see equation 9.2 and 11.6)

to analyse the average growth of the firms. As independent variables all the described

variables are used. Standard regression approaches are employed since it can be ex-

pected that the residuals are approximately normally distributed. There is no evidence
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for a deviation from a normal distribution in the data. Other problems, such as het-

eroscedasticity, are not found for the regressions with the logarithm of relative growth

as dependent variable, either. Reynolds et al. (1994) and more recently Audretsch

and Dohse (2007) developed an estimation approach that includes location-specific

determinants of growth which are built on for investigating whether firm growth in

nanotechnology is affected by different location-specific characteristics. Again, the av-

erage growth effect of these independent variables is analysed. For the investigation

the log-level model is employed. In the log-level model, 100∗α1 is sometimes called the

’semi-elasticity’ of y with respect to x (Wooldridge 2002). First, the impact of indicators

on the average growth (from 2007 to 2010) of employment is in focus. In the following

equations, LOCAT ION stands for the various measures of location-specific characteris-

tics, in this case HQ, INDDENS, IND,STUD and R&D. Furthermore, the regressions for

subsamples of different firm size classes (SIZE), knowledge intensive sectors (KIS) and

different age groups (AGE) all use the following model:

(log(empl2010) − log(empl2007)) j = a0 +
5

∑
k=1

ak LOCAT IONk j

+ a6 log(SIZE) j + a7 log(AGE) j + a8 KIS + ε.

(9.2)

Equation 9.2 shall preliminarily investigate whether former findings in the literature on

the relationship between location characteristics (as discussed above) and employment

growth hold for the studied case. The employment of the specialisation effect might

catch some of these effects, which is why this basic model is analysed first. However, in

equation 9.2 the degree of specialisation of the local knowledge base is still neglected.

Since regional specialisation is assumed to have an influence on nano-firm growth, the

LQ measure is added as well as its squared term LQ2:

(log(empl2010) − log(empl2007)) j = a0 + a1 LQ j + a2 LQ2
j

+
7

∑
k=3

ak LOCAT IONk j + a8 log(SIZE) j + a9 log(AGE) j + a10 KIS + ε.
(9.3)

Third, the robustness of the impact of specialisation and location characteristics on em-

ployment growth is analysed. Thus, the perspective is changed from average growth to

a year-to-year consideration of growth, investigating whether the yearly changes of the

level of specialisation might interfere with the yearly changes in the employment growth

rates. This means, if growth in one year depends on an increasing level of specialisation

or not, the relationship between current employment growth and previous specialisa-

tion might be a direct effect or an indirect effect. As things stand, specialisation effects

are only proved for average employment growth. Hence, it is not yet known whether
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specialisation effects also occur for yearly changes (very short-run consideration). It

has also not been proven that year-to-year specialisation effects do exhibit employment

growth. To prove this, it would be necessary to disentangle this dynamic effect. There-

fore, a cross-sectional time series model is conducted. Hence, firm growth is estimated

using cross-sectional time series estimation with fixed effects. In particular, the model

shall provide a more detailed insight on individual characteristics that may contribute

to the predictor variable and to control for unknown heterogeneity. To decide whether

the fixed effects model is suitable (instead of using random effects model), the Haus-

man test is performed. The null hypothesis can be rejected, leading to the conclusion

that the fixed effect model is appropriate (Prob > chi2 is significant). To see if time fixed

effects are needed when running a fixed effects model, the joint test is performed to see

if the dummies for all year are equal to 0 (i.e. if they are not then time fixed effects are

needed). The null hypothesis that all year coefficients are jointly equal to zero can be

rejected, therefore time fixed effects are needed in the panel specification (i.e. Prob > F

is significant). First, one regression set is conducted for all firms together and then two

other regressions for each of the SIZE,KIS and AGE subgroups separately:

log(empl)it = a0 + a1 LQ j + a2 LQ2
j +

7

∑
k=3

ak LOCAT IONk j + ε. (9.4)

Finally, it is tested and controlled for multicollinearity (see the correlation matrix in

Table F.1 the Appendix G) and endogeneity. Moreover, the first year value in 2007 (or

the first available value) of observation is employed as independent variables in the case

of H9.1 and H9.2.

9.3 Results and Interpretation

In the following section the main findings of the regression analyses are discussed and

interpreted. The regression results are reported in Tables 9.4 - 9.6.

9.3.1 Location Characteristics (H9.1)

Since the main aim is to gain information on the location characteristics that contribute

to the growth of nano-firms, the variables differentiate between the characteristics of

the structure of the region a firm is located in. Preliminarily it is assumed that location

characteristics do influence employment growth of nano-firms (H9.1). The results for

the regression analyses are presented in Table 9.4.

First, significant negative coefficients for the AGE of firms are found. This especially
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holds for the subsamples of all firms, smaller firms and both subsamples of KIS. Older

firms are hence less likely to show higher growth than younger firms, which is in line

with the findings of many other scholars before. It can be seen as ’stylised fact’ that

growth tends to decline with firm age (Audretsch and Dohse 2007). Older firms are

characteristically more routinized, more inert and less able to adapt (Coad 2007). In

contrast, there is a positive effect of SIZE for both knowledge classes and older firms.

Against the expectation that firm growth decreases with the size of the firms (which

is also a stylised fact), the regression results report a positive coefficient. The posi-

tive coefficients suggest that employment growth tends to increase as the firm becomes

larger. More important in the context of the hypotheses is the impact of HQ represent-

ing the knowledge intensity in the region. The positive and significant coefficients of

highly qualified employees (HQ) in the region on the employment growth of all firms

point out that firms exhibit higher growth in regions characterised by a share of highly

qualified employees in the top quartile. However, this finding does not hold for all sub-

groups and varies across different firm size classes, KIS and AGE groups. Actually, the

coefficient of HQ is significant and positive in smaller firms but not in larger. Thus,

the impact of HQ in the region is especially relevant for smaller firms. This might be

due to the fact that larger firms are not as much depending on external knowledge and

on possible knowledge spillovers stemming from high local endowments in knowledge,

since they benefit from internal economies of scale in knowledge production because

their own knowledge stock is larger. Looking at the results of firms that belong to a

knowledge intensive industry (i.e. KIS = 1), a strongly positive significant coefficient is

found. This means firms with high knowledge intensity experience higher employment

growth in regions with access to highly qualified employees which is very intuitive. Oth-

erwise and in the case of low-knowledge industries (KIS = 0) the coefficient shows no

longer a significance. This seems similarly plausible since these firms do not rely as

much on knowledge activities and hence regional knowledge endowment is not par-

ticularly important. Furthermore, another interesting issue concerning the impact of

HQ (Models 9.VI and 9.VII) is a positive and significant coefficient for firms that are

younger than 8 years, but with an insignificant coefficient in case of older firms. This

suggests that younger firms experience higher employment growth if they have access

to qualified knowledge workers in their region. This finding also goes in line with the

general findings by Dosi et al. (1995) and it even more emphasises the relevance of

possible knowledge spillovers for new firms that are entering or just entered the nano-

technology-market and its relevance for success in the beginning phase where funda-

mental knowledge is gained. Interestingly, in the case of low-KIS growth is moreover

even negatively influenced by the size of the group of employees that work in the same

industry they are engaged in (IND). As the numbers of employees in the same industry
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also proxies the strength of regional competition, it might indeed especially affect those

firms negatively that do not profit as much as others from the positive effects of this

concentration, such as (intra-industry) knowledge spillovers. Looking at the results for

the independent variable of R&D representing the common share of R&D employees in

the region, there is no significant coefficient for most of the models. However, a neg-

ative and statistically significant coefficient of R&D for low-KIS indicates that average

employment growth tends to decline with a high share of R&D employees in the re-

gion. While this result might be counterintuitive in the first place, it could be a hint to

what is investigated in the second hypothesis: It is not knowledge per se that positively

influences firm growth, but the influence of knowledge and the potentially resulting

spillovers depend on the characteristics of the available knowledge. The kind of R&D

processed might, e.g., be too basic or to incoherent to be beneficial for firms that are

interested in commercialisation. For instance, Frenken et al. (2007) as well as Boschma

and Iammarino (2009) referred to such an issue, when they argue that for knowledge to

spill over effectively, and hence contribute positively to a firm’s performance, related va-

riety in form of complementarities among industries and their knowledge is necessary.

Eventually, H9.1 can be confirmed: Location characteristics do influence the employ-

ment growth of nano-firms.

To sum up, the expectations are strongly confirmed by the results, emphasising that

location characteristics can stimulate the growth of firms in nanotechnology. Besides

typical impact factors such as age and size, the share of highly qualified employees

does play a major role. More particularly, this impact of highly qualified employees

on firm growth varies across firm size, knowledge intensive industries and age groups.

This means, in turn, that the share of highly qualified employees is more important in

smaller firms than in larger firms, and seems to be more relevant in firms that are ac-

tive in particularly knowledge intensive industries. Simultaneously, the impact of local

highly qualified employees is more decisive in younger firms. Therefore, more precise

hypothesis 9.1 is set up, suggesting that ’while the share of highly qualified employees

is more important in smaller and younger firms as well as in firms belonging to a partic-

ularly knowledge intensive industry, a high share of R&D employees in the region has

no positive impact on non-knowledge-intensive and older firms’. Eventually, the find-

ings in the literature that young, small and knowledge intensive firms with access to a

high density of knowledge workers do experience an above average growth (Audretsch

and Dohse 2007) are mostly confirmed by these findings. Thus, nanotechnology firms

innovate and grow as other highly knowledge intensive firms do, regardless of the pe-

culiarities a GPT implies. Moreover, nanotechnology firms rely as much on knowledge

spillovers as other high-tech (but not GPT) firms from other industries. Finally and most
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9.3 Results and Interpretation

simply, the location-specific measures indicate that the growth of firms in nanotechno-

logy is affected by their location-specific characteristics.

9.3.2 Specialisation of the Regional Knowledge Base (H9.2)

Remember the supposition that regions that provide knowledge enrich the growth of

technology-oriented, i.e. knowledge intensive firms. Since the extent to which external

knowledge is crucial and can be absorbed differs widely across different firm size classes

and knowledge intensive industries, hypothesis 9.2a states that specialisation has a di-

rect negative impact on employment growth in particularly knowledge intensive firms

and older firms. Moreover, a non-linear impact of LQ is assumed as H9.2b states that

irrespective to the characteristics of a firm, too much specialisation has a negative im-

pact on employment growth of firms in nanotechnology. As can be seen in Table 9.5,

the independent variable of interest is LQ, representing the extent of regional special-

isation. Moreover, LQ2 is included in order to be able to control for non-linear effects

of specialisation. Additionally, the sample is again differentiated into different firm size

classes (SIZE), knowledge intensity (KIS) as well as age groups (AGE).

As Model 9.I’ in Table 9.5 shows, the coefficient of LQ does appear significant with a

negative sign. This clearly indicates that specialisation in any application field of general

purpose nanotechnology has an overall negative impact on the growth of nano-firms in

terms of employment. This is a hint to the fact that specialisation is counterproductive

for explorative, knowledge intensive purpose in the GPT field under investigation here.

Specialisation suppresses multiple opportunities for nanotechnology as GPT to develop

and inhibits possibilities of catalysing effects and cross-fertilisation. The differentiation

into different subgroups emphasises that, however, this effect differs across different

firm characteristics again: The results for the independent variable of LQ are still signif-

icantly negative for high-KIS and older firms (see Table 9.5: Models 9.IV’ and 9.VII’).

These are the firms that are especially prone to exploitation activities since they are

knowledge-intensive. It might hence be the case that knowledge intensive firms explore

the nano-field as their flexibility of thinking might make it more easy for these firms to

perceive possibilities of application of old nano-knowledge in new fields. Another issue

is that HQ shows statistically insignificant coefficients, except in the case of low-KIS.

An explanation for this issue might be that HQ is captured by the specialisation mea-

sures. Also, HQ and LQ are correlated with each other (r = 0.2296 ∗ ∗∗) (see Table F.1

in the Appendix F). In the case of low-KIS, a significant coefficient with a negative sign

is found, which is interpreted as a support for the fact that firms where knowledge is

not a crucial driver of growth depend less on highly qualified employees in the region.

193



Impact of Local Knowledge Endowment on Nanotechnology Firm Growth

A
LL

SI
ZE

K
IS

A
G

E

M
O

D
EL

9.
I’

M
O

D
EL

9.
II

’
M

O
D

EL
9.

II
I’

M
O

D
EL

9.
IV

’
M

O
D

EL
9.

V
’

M
O

D
EL

9.
V

I’
M

O
D

EL
9.

V
II

’
A

ll
fir

m
s

SM
E

La
rg

e
fir

m
s

K
IS

=
1

K
IS

=
0

yo
un

ge
r

ol
de

r

LQ
-0

.0
00

9*
-0

.0
00

6
-0

.0
00

8
-0

.0
01

*
0.

00
04

-0
.0

00
8

-0
.0

01
1*

*
(0

.0
00

5)
(0

.0
00

9)
(0

.0
00

6)
(0

.0
00

6)
(0

.0
00

7)
(0

.0
01

9)
(0

.0
00

6)
LQ

2
-4

.6
1e

-0
6

-3
.8

7e
-0

6
2.

41
e-

06
-7

.8
3e

-0
7

-1
.5

6e
-0

5
-7

.1
7e

-0
6

-4
.5

4e
-0

6
(8

.3
9e

-0
6)

(1
.2

7e
-0

5)
(9

.2
9e

-0
6)

(1
.0

2e
-0

5)
(1

.0
8e

-0
5)

(2
.9

1e
-0

5)
(8

.7
0e

-0
6)

H
Q

0.
21

9*
*

0.
19

6*
0.

24
6

0.
26

5*
*

0,
00

93
1

0.
54

4
0.

13
8

(0
.0

91
0)

(0
.1

18
)

(0
.1

73
)

(0
.1

05
)

(0
.1

48
)

(0
.3

53
)

(0
.0

89
5)

IN
D

D
E

N
S

6.
70

e-
05

0.
00

11
-0

.0
01

7
-0

.0
00

2
0.

00
09

-0
.0

00
8

-5
.3

9e
-0

5
(0

.0
00

8)
(0

.0
01

2)
(0

.0
01

1)
(0

.0
00

9)
(0

.0
01

0)
(0

.0
02

9)
(0

.0
00

6)
IN

D
-1

.3
8e

-0
7

3.
81

e-
08

-2
.1

7e
-0

7
-9

.5
5e

-0
8

-2
.3

8e
-0

5*
*

-5
.6

3e
-0

6
-1

.2
4e

-0
7

(2
.5

7e
-0

7)
(4

.1
5e

-0
7)

(3
.7

7e
-0

7)
(2

.5
2e

-0
7)

(9
.0

6e
-0

6)
(1

.7
3e

-0
5)

(2
.7

4e
-0

7)
ST

U
D

-4
.4

0e
-0

7
-8

.3
8e

-0
7

-1
.0

2e
-0

6
-3

.4
3e

-0
7

-2
.9

9e
-0

6
-9

.6
6e

-0
7

-4
.6

3e
-0

7
(8

.9
8e

-0
7)

(1
.3

7e
-0

6)
(1

.3
1e

-0
6)

(9
.7

5e
-0

7)
(2

.4
6e

-0
6)

(4
.1

8e
-0

6)
(8

.2
0e

-0
7)

R
&

D
-4

.3
4e

-0
6*

*
-5

.4
0e

-0
6*

-4
.4

6e
-0

6
-4

.5
4e

-0
6*

-4
.7

8e
-0

6
-1

.1
2e

-0
5

-2
.5

1e
-0

6
(2

.1
2e

-0
6)

(3
.0

1e
-0

6)
(3

.5
3e

-0
6)

(2
.4

7e
-0

6)
(3

.5
3e

-0
6)

(6
.8

5e
-0

6)
(2

.0
5e

-0
6)

SI
Z

E
0.

14
1*

*
0.

10
1

0.
10

3
0.

34
6*

0.
09

03
(0

.0
54

9)
(0

.0
80

0)
(0

.1
04

)
(0

.2
03

)
(0

.0
59

6)
K

IS
0.

00
19

-0
.0

32
5

0.
02

51
0.

00
57

0.
01

02
(0

.0
58

0)
(0

.0
83

5)
(0

.0
60

8)
(0

.2
41

)
(0

.0
63

9)
AG

E
-0

.0
03

3
-7

.7
3e

-0
5

-0
.0

00
2

-0
.0

00
6

(0
.0

02
1)

(0
.0

00
5)

(0
.0

00
5)

(0
.0

00
7)

C
on

st
-0

,0
02

83
0.

21
4*

*
0,

06
93

0,
00

38
0.

29
8*

*
-0

.1
33

0,
02

39
(0

.0
71

5)
(0

.0
88

0)
(0

.1
13

)
(0

.1
12

)
(0

.1
40

)
(0

.2
43

)
(0

.0
73

5)
O

bs
21

5
13

4
71

17
0

35
42

17
3

R
2

0.
07

5
0.

05
9

0.
13

0
0.

07
5

0.
50

2
0.

17
6

0.
05

4

Ta
bl

e
9.

5:
R

es
ul

ts
of

O
LS

re
gr

es
si

on
s

w
it

h
LQ

of
E

M
P

.
**

*I
nd

ic
at

es
si

gn
ifi

ca
nc

e
at

0.
01

.
R

ob
us

t
st

an
da

rd
er

ro
rs

in
pa

re
nt

he
se

s.
So

ur
ce

:
ow

n
ca

lc
ul

at
io

ns
.

194



9.3 Results and Interpretation

The exploration-suppressing impact of specialisation (Greve 2007) might explain the

negative influence of specialisation on employment growth. Older firms already sur-

vived the critical start-up phase and moreover are more prone to possessing the neces-

sary endowment with resources to further explore the field. For the other subsamples

such as differentiation across size and low-KIS or younger firms, no significant effect of

specialisation can be found. This is contrary to the expectation that especially young

and small firm benefit from specialisation since they occupy mostly specialised niches

when entering the market. This is why H9.2 can be confirmed and H9.2(a) cannot.

In order to test H9.2(b), the squared form of LQ was also included in the model. The

results suggest that too much specialisation does not have any influence on the em-

ployment growth in firms active in nanotechnology except for the case of low-KIS firms

where too much specialisation and too little specialisation, in contrast to moderate spe-

cialisation is harmful. Although generally specialisation of the regional knowledge base

has no impact on a low-KIS firm’s performance, employment growth declines when

the region becomes too specialised. Since this does only hold for one particular case,

H9.2(b) cannot be confirmed here. This might be due to the fact that specialisation in

general already is counterproductive to the firms’ employment growth. This effect does

not seem to become more serious with increasing specialisation.

Summarising, it can hence be stated that regional specialisation does have a mostly

negative impact on nano-firm employment growth, even though not for all firms simi-

larly but depending on their knowledge processing characteristics. Hypotheses 9.2 can

therefore be confirmed in general means.

9.3.3 Robustness of the Impact of Specialisation (H9.3)

In a last step, the robustness of the impact of specialisation and the location character-

istics on growth is analysed, trying to highlight the question whether yearly changes of

the level of specialisation might interfere with yearly changes in the employment growth

rates. This means, if growth in one year depends on an increasing level of specialisation,

the relationship between current employment growth and previous specialisation might

be a direct effect. To disentangle this dynamic effect, regressions are conducted where

the different measures of specialisation LQ, LQ2 and the different LOCAT ION measures

are included. Hence, it is hypothesised that specialisation effects that are related to av-

erage employment growth are the same as those that are related to a year-to-year con-

sideration of employment growth. Table 9.6 presents the detailed regression results for

the fixed effects model. As already stated in hypothesis 9.1, firms in nanotechnology are
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affected by location-specific characteristics (e.g. HQ, INDDENS, IND, STUD, R&D).

Hence, most of these indicators are neglected because in this analysis it is beyond the

scope to analyse the pure impact of location again. By contrast, the more particular

impact of the level of specialisation is considered.

The comparison between the firm characteristics that relate to average growth (H9.2)

and the firm characteristics that relate to a year-to-year consideration (H9.3) results

in different findings across all subsamples. Obviously, the coefficients for LQ never be-

come significant. First, the results for all firms together no longer indicate a negative

coefficient for LQ. Yet, a significantly negative coefficient for LQ2 in the overall Model

9.I and the three subsamples of high-KIS, small firms and younger firms is found. This

can be interpreted as a statistical support for the fact that employment growth tends to

decline with very low and very high levels of specialisation.

Put differently, specialisation hampers year-to-year employment growth of local firms

if a certain threshold of specialisation is undercut or exceeded. Also in these cases the

effect of the average growth path is not confirmed for the year-to-year perspective. For

the year-to-year consideration the results suggest that specialisation indeed influences

firm employment growth in a non-linear way (see Table 9.6). While the marginal effect

of specialisation is initially insignificant, it becomes significant and negative for regions

that exhibit extreme values of specialisation. This means although generally special-

isation of the regional knowledge base has no impact on a firm’s performance, em-

ployment growth declines when the region becomes too much or too little specialised.

Even though there is no general positive effect for lower levels of specialisation this

reminds of an inverted u-shaped relationship between specialisation and performance

often found in empirical work on production (Betrán 2011) stating that too much (or

to less) specialisation has a negative influence on performance.

Generally spoken, this model does not confirm the results of the OLS regressions (av-

erage growth) around hypotheses 9.2. Hence, the results contradict the expectations

in hypothesis 9.3, which is why it has to be rejected. The characteristics accompany-

ing average growth are not usually related to occurrence of year-to-year employment

growth. The characteristics that come together with average growth are not usually

related to occurrence of year-to-year growth. However, an analysis of the year-to-year

growth process of nano-firms provides additional information, as discussed above. If the

perspective is changed from average growth to year-to-year consideration the findings

vary. Hence, the temporal structure of the growth process itself should be considered.
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Impact of Local Knowledge Endowment on Nanotechnology Firm Growth

9.4 Conclusion

Nanotechnology firms’ growth is influenced by the locations that host the firms. More

particularly, the analysis in this chapter sets out to examine whether the local endow-

ment with knowledge influences the growth of these firms. As expected in view of nano-

technology firms operating on an innovation and hence in a knowledge intensive high

technology field, the performance of these firms is – in general – stimulated by the local

access to (high) knowledge. However, the actual impact of knowledge varies across

firms with different characteristics. While the share of highly qualified employees never

hampers growth (although it seems not to advance it either in e.g. larger firms), the

local stock of employees concerned with R&D indeed has a hampering effect. This can

be interpreted as a hint to the necessity of the knowledge to be marketable. However,

this might also be interpreted as the inefficiency of knowledge transfer from universi-

ties to technology. Finally, knowledge is as relevant for nanotechnology firms as for

other highly knowledge intensive firms, regardless of the peculiarities a GPT implies:

Nanotechnology firms rely as much on knowledge spillovers as other high-tech (but not

GPT) firms from other industries. The impact, however, depends on knowledge process-

ing characteristics like it is the case in other industries.

Moreover, the impact of knowledge for nano-firm growth also depends on the char-

acteristics of knowledge itself. The analyses set out to investigate the special influence

of specialisation of the regional knowledge base. When analysing average employment

growth rates, the impact of specialisation is counterproductive to some firms, it has no

effect on growth in others. In the year-to-year consideration, however, regional special-

isation only has a negative effect in extreme situations. Although these results differ,

it becomes clear that specialisation does not have a positive effect on firm growth in

nanotechnology. The relevance of these effects has, however, to be seen in context with

the special characteristics of GPTs, which develop their positive and accelerating effect

on growth in a setting that is open to exploration and cross-application (which is not

supported by specialisation). These findings point to the importance of the study: Al-

though it is popular among policymakers to support the establishment of specialised

nano-clusters, the results suggest that this regional specialisation is not conducive for

the firms. Moreover, it might even become a burden for the performance of some firms,

depending on the local degree of specialisation and the firm’s knowledge processing

characteristics. However, the findings are relying on a small number of firms in nano-

technology only. Moreover, the indicators on the impact of local knowledge resources,

such as STUD and R&D could be refined (e.g. disentangling relevant STUD and R&D,

such as students in technological fields) in order to be able to further investigate which
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9.4 Conclusion

local knowledge is relevant. Further research should also be accomplished on the effect

of specialisation in a larger sample or other (GPT) settings to confirm these results, es-

pecially in view of findings that state a positive effect of specialisation for many other,

but different circumstances and industries. It moreover lies beyond the scope of this

paper to investigate the mechanisms behind the findings. It would be interesting to

learn how exactly local knowledge is processed, where spillovers indeed are effective

and how specialisation exactly affects innovation in high-technologies.

The conclusion of this chapter remains that local knowledge endowment indeed pos-

itively influences firm growth in emerging nanotechnology, while local knowledge spe-

cialisation surely is not always positively affecting the growth of individual firms. Al-

though one has to once again consider the emergent character of nanotechnology and

the lack of stability and hence predictability, this points to the relevance of the GPT fea-

ture of nanotechnology for processing knowledge in firms. And what is most important

in terms of the initial questions: There is, in most of the cases, no positive impact of spe-

cialisation on the employment growth of nano-firms. Referring to the preponderance

of high-tech or GPT features with respect to the relevance of the surrounding, GPT fea-

tures seem to outweigh high-tech ones – although further empirical investigation needs

to be done to disentangle the concrete effects of specialisation on firm growth in the

(emerging) high- and nanotechnologies.
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Part III.c

Working Package 3: Collaboration and
Knowledge Sharing in Networks
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10 The Development of
Nanotechnology through a Network
of Collaboration

Networks of collaborative relationships among innovators have been recognised as an

important organisation form of innovative activities allowing for improved knowledge

transmission (see Section 2.3). Particularly in high-growth, technology and hence

knowledge-intensive industries, networks of collaborative invention can be considered

and analysed as organisational devices for the coordination of heterogeneous learn-

ing processes by innovators with different sets of accumulated knowledge, skills and

(knowledge processing) competencies (Orsenigo et al. 1998). Callon (1997), more-

over, argued that particularly in emerging configurations knowledge tends to be tacit.

This limits the range of the knowledge and hence its character as a partly local public

good. In developing networks, however, knowledge becomes non-exclusive within the

networks it circulates in. The main focus of this chapter hence consists in the study

of knowledge flows and information exchange among innovators, i.e. in the charac-

terisation of the relations between them. This is done by investigating the German

nanotechnology innovation networks.

Networks are assumed to play a more and more important role in innovation activity

nowadays. Particularly the increasing complexity of emerging, science-based technolo-

gies such as nanotechnology reveals a necessity for joint research and collaboration on

the field (Haagedorn 1993): Particularly in emerging technologies, face-to-face inter-

actions in networks of collaboration play a huge role for the success of innovations,

since networking is a very important mechanism to exchange tacit knowledge infor-

mally. This tacit knowledge is dominating in emergent configurations due to the lack of

externalisation mechanisms. The exchange about tacit knowledge is necessary to con-

vert implicit knowledge into explicit knowledge, which constitutes the basis for further

innovations. Moreover, (emerging) GPTs are not only knowledge-intensive technolo-

gies, but they are in addition applied in a wide range of different sectors, innovation

processes in GPTs inherently express the necessity for coordination and collaboration in
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The Development of Nanotechnology through a Network of Collaboration

order to realise cross-fertilisation advantages. Thereby, different, but potentially com-

plementary knowledge can be exchanged resulting in the (faster) generation of new

knowledge induced by mutual learning. Moreover, coordination was brought up as a

central remedy to resolve market failures in the innovation processes of GPT (see Chap-

ter 3). Subsequently, networking potentially fosters the diffusion and the exchange of

knowledge and thereby drives innovative activity.

There has already been detailed empirical work focusing on the network structure

of nanotechnology. Most prominently these studies find network-related evidence for

the relevance of scientific (basic) research in nanotechnology. Meyer (2006) stressed

that around 35% of patent inventors are also publishing scientifically, the relevance

of which is confirmed by Bonaccorsi and Thoma (2007), who found that the role of

author-inventor patents is central for the development of nano-knowledge. Moreover,

also Miyazaki and Islam (2007) found that the regional science pole is actually driving

the nano-development. Explainable with respect to the early stage of nanotechnology,

these finding can be expected to change over the course of the next few years. Fo-

cussing on the role of geography for collaboration in form of co-inventorship in Canada,

Schiffauerova and Beaudry (2009) found that more than 60% of the nanotechnology

collaborative activity takes place within clusters, while international collaboration con-

stitutes 27% of all cooperation links. This emphasises both, the need for the exchange

of knowledge and the need for inflowing knowledge from abroad. However, research

on nanotechnology networks still lacks a comprehensive analysis of efficient networks

and their evolution coming along with technological advance. This is what is done in

the following chapter.

10.1 Derivation of Hypotheses

As discussed already in Section 2.3, the development of high-tech, knowledge-intensive

technologies such as nanotechnology becomes more and more complex. This defines

the need for the cooperation of actors with different sets of accumulated knowledge and

competencies to handle and exploit this knowledge as well as to create new knowledge.

Innovators more and more tend to share knowledge and, with the knowledge received

from each other, improve their own knowledge levels (Cowan and Jonard 2003). Silicon

Valley is frequently instanced as a hub of innovation due to the high level of rapid and

unrestrained diffusion of knowledge in the local innovator network (Saxenian 1996).1

1In this context, particularly the role of ICT and the internet increase in importance. The internet offers
a device for spaceless collective invention, generating strikingly large amounts of new knowledge by
facilitating knowledge transmission, diffusion and creation. Another recent trend to be mentioned
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10.1 Derivation of Hypotheses

Knowledge diffusion hence occurs through collaboration, putting an emphasis on the

structure of the network through which innovators interact as central impact factor

with regard to the extent of diffusion and hence the innovative potential (Cowan et al.

2004). Thus, if one defines innovation as the (commercialisable) recombination of ex-

isting and new knowledge which is then spurred by the diffusion of knowledge, the

assessment of knowledge flows among innovators and hence networking is a straight-

forward way to assess innovativeness (Cowan et al. 2004). Putting it different and in a

more general way, collaboration and networking should come along with a higher level

of innovations. Networking in nanotechnology as an emerging technology, in particu-

lar, exhibits rather emerging configurations. In these cases, tacit knowledge dominates

and the public good character of knowledge has yet to be developed in networks by

becoming non-exclusive through circulation and access to a costly infrastructure, such

as technology platforms, necessary for the use and replication of the tacit knowledge

(Callon 1997). Note that these networks are subject to continuous change since sta-

ble configurations are not yet reached. The fact that nanotechnology converges diverse

disciplines tightens the relationship between knowledge sharing in networks and inno-

vativeness since inventors have to be able not only to handle knowledge stemming from

very heterogeneous fields, but also to merge and then recombine this diverse knowledge

in order to finally develop inventions. In contrast to ’normal’ high technologies, inven-

tors hence have to operate on a wider field which results in the need for a much larger

and opener network in order to be able to gain access to knowledge stemming from

other fields, other regions or other applications. But this opener, wider network, follow-

ing the above argumentation, has to become closer and more embedded when it comes

to the integration of the novel knowledge with view at effectively using it. This aspect is

even more important in the early stage nanotechnology is in since available knowledge

is still scarce and convergence is still at the beginning. In brief: With growing compe-

tencies and interest in the field of nanotechnology the potential to cooperate increases

very simply because there are more innovators with the necessary knowledge around.

Knowledge becomes less specific and broader (see Chapters 7 and 8 as well as Callon

(1997)) which increases the need to teamwork. Networking incentives develop from

the ’strategy of interessment’ to more concrete knowledge access and stabilisation of

positions (Callon 1997). Hence, it is reasonable to assume that collaboration increases.

in this context is the phenomenon of open innovation, particularly prominent in the development of
software such as LINUX. Here, users are motivated to develop and integrate their own modifications
into the software. Such innovations constitute hence a free improvement of the existing product and
an addition to the existing stock of knowledge as basis for new innovations (Cowan and Jonard 2003).
Yet, in order to make this ’global scale’ of knowledge diffusion via the internet possible, the relevant
knowledge has to be codifiable (Cowan et al. 2004). The more codifiable knowledge in an industry
hence is, the less important becomes geographic proximity for innovation as discussed in Chapter 2.
While these phenomena, given the high degree of tacitness of nanotechnological knowledge, are not
tackled in this chapter, they are mentioned for the sake of completeness and rather as an outlook.
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The Development of Nanotechnology through a Network of Collaboration

Research, by contrast, nevertheless advances the leading edge pointing to the need of

a high degree of initial knowledge for innovation. Hence, inventors are particularly

dependent on external sources of knowledge, such as constituted by global linkages.

National or regional systems of innovation in the field might lack the necessary stock

of (specialised) leading edge knowledge. However, the less emerging a GPT is, the

less effort concerning the absorption of external knowledge from distant disciplines has

to be done since actors gradually fill these niches and the knowledge can be accessed

more easily by cooperating with actors that are more proximate or share less diverging

knowledge bases. The innovation network of nanotechnology is hence assumed to be

characterised by a high degree of international linkages since the local knowledge stock

necessary for innovation is only small. These linkages become less important as the

local knowledge stock emerges and local competencies develop.

Collaboration can be increased if actors willing to cooperate more easily find a suit-

able partner. Collaboration is hence assumed to take place where the opportunities are,

and, as elaborated above (see Subsection 2.3.1 in particular), this is most presumably

the case where geographic and cognitive proximity coincide. Spatial proximity is sup-

posed to increase the chances to find a fitting partner and hence to transfer knowledge

efficiently since it fosters face-to-face knowledge exchange and allows for frequent and

repeated contact (von Hippel 1994, Audretsch 1998). Geographically proximate part-

ners are even found to form part of a more successful collaborations (Gittelman 2007).

Autant-Bernard et al. (2007), however, constrained the role of geography for knowledge

spillovers through collaboration mainly to the national level, but they consider geogra-

phy as an impact factor for the formation of formal relationships. Moreover, they also

stressed the role of network effects, i.e. knowledge diffusion properties inside networks

for the formation of collaboration.2 More particularly, research as conducted by Co-

hen and Levinthal (1990), Boschma and Lambooy (1999) or Boschma and Iammarino

(2009) emphasises the need for cognitive proximity for a successful collaboration. In

the context of networks, collaboration should hence be more frequent - and increase in

their intensity - where cognitive and/or geographic proximity facilitates collaboration.

Hypothesis 10.1 Collaboration Pattern in Nanotechnology in General
(a) Over time, collaboration increases.
(b) Over time, the importance of international collaboration decreases.
(c) Collaboration occurs particularly where actors are geographically and cognitively prox-
imate.

2This property is picked up again in Chapter 11 in terms of efficiency of collaborations for the develop-
ment of innovations that are general.
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10.1 Derivation of Hypotheses

Turning from collaboration in general to network structures caused by collaboration

in more particular, the focal point of interest is how knowledge diffusion and hence

the efficiency of the network with regard to innovative activity is supported by network

structures. The general expectation thus is that the more efficient the network, the more

productive the corresponding innovation system. In the context of nanotechnology, an

increasingly efficient network of knowledge diffusion can reasonably be conjectured.

An in-depth analysis of network characteristics indicating efficiency is however indis-

pensable.

As elaborated in Subsection 2.3.4, the efficiency of a network with respect to knowl-

edge transmission can be assessed by a whole set of different indices: First, efficient

knowledge transmission is supported by structural cohesion: The closer actors are in-

terconnected, the more efficient the knowledge transfer should be. Therefore, increas-

ing density of the network would be expected with the development of nanotechno-

logy. Efficient knowledge diffusion, moreover, requires lower levels of fragmentation

since knowledge can then be accessed not only directly but also indirectly to a greater

extent. Particularly in the context of nanotechnology as converging general purpose

technology components might display collaboration in different technological fields.

Cross-connection of components is only achieved after a certain threshold-value of con-

vergence is reached. Such a partial overlap, however, constitutes an opportunity for

cross-fertilisation, which implies an improved knowledge diffusion. Furthermore, a dis-

tinct centre-periphery structure is often instanced as being conducive to rapid knowl-

edge transfers within networks, since they provide rapid and easy connection between

diversified and specialised actors anywhere in the network. The most striking approach

to assess network efficiency, however, is the concept of a small world network. High de-

grees of clustering increase the absorptive capacity of a network and support quick flows

of knowledge as well as the creation of trust and collaboration in general (Schilling and

Phelps 2007), while decreased path lengths improve innovation efficiency due to eas-

ier transfer of new knowledge via intermediaries as ’short cuts’. Since the efficiency of

the innovation network of nanotechnology can be assumed to increase with the small

world property, it is reasonable to expect that the network of nanotechnology develops

towards such a small world network structure. At the very beginning of the develop-

ment, extremes in terms of network topology are expectable, since the network has to

be built, while at later stages the development of a general purpose technology should

benefit above average from small world properties by connecting subgroups that work

on different subdomains of nanotechnology. This argument is also relevant in a more

general way: Ter Wal and Boschma (2009) and Graf and Henning (2009) and more

recently Tran (2011) pointed to the relevance of a centre-periphery structures of net-
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works, where central actors play the role of important intermediates and ’knowledge

brokers’, connecting remote actors that only seldom make use of external knowledge.

The more established a GPT’s network, having already proven to successfully generate

innovations, the more should the network hence resemble a small world structure.

Hypothesis 10.2 Efficiency of the Innovation Network
The efficiency of the innovation network of nanotechnology increases with its development
and over time. This means that
(a) the network becomes less fragmented and more cohesive.
(b) the network becomes more centralised.
(c) the network develops towards a small world.

However, despite of the need for access to more diverse knowledge the knowledge base

still has to be somewhat complementary in order for actors to be able to process the

knowledge at all: Cohen and Levinthal (1990) stressed the role of absorptive capacity;

Feldman and Audretsch (1999) emphasised the need for a common knowledge base

and Boschma and Iammarino (2009) quoted related variety when pointing at the im-

portance of a common technological understanding as basis for collaboration. Still,

innovators can be specialised in a certain field of knowledge or they can be diversi-

fied. The former have a narrower knowledge base resulting in a smaller potential for

commonalities (and complementarity) with others, whereas the latter obviously have

a diversified knowledge base that overlaps with more actors. Given the relevance of

the common knowledge base and the complementarity of knowledge, diversified actors

can hence be expected to cooperate with more and more different other actors or, put

differently, to occupy a more central position in the network. The more specialised an

actor, by contrast, the more probable it is that he is positioned in the periphery (Cantner

and Graf 2006). It is reasonable to assume that the network of technological overlap

more and more differentiates between diversified and specialised actors, or put differ-

ently develops a more distinct centre-periphery structure.

Hypothesis 10.3 Technological Overlap
The network of technological overlap of nanotechnology develops from a central structure
towards a (more cohesive) center-periphery structure.

10.2 Methodology and Data

As pointed out in Subsection 2.3.1, neither the analysis of the geographic system of

innovation nor the analysis of the cognitive system of innovation are on their own capa-

ble of explaining technological developments alone, since both the geography as well as
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10.2 Methodology and Data

the technological particularities are influencing factors: Knowledge flows and diffuses

through the network between innovators who are not necessarily placed in the same

region. Due to the high degree of complexity of technological knowledge needed for

innovation, a certain commonality is needed in order to understand each other. Un-

derstanding the specific ’language’ makes innovators to members of the technology’s

community. This community might, contrary to former assumptions about the transfer

of tacit knowledge, be geographically dispersed and still offer opportunities to exchange

tacit forms of knowledge. In this case, geographical proximity might, to a limited ex-

tent, be substituted by cognitive proximity. The technological networks hence do not

always require co-location of the innovators for the successful creation of innovations.

On the other hand, local players might be integrated into the network due to their geo-

graphic proximity to innovators in the technological network – note, however, that this

is no causal inclusion. Hence to completely display how innovation is processed one has

to consider both, the technological and geographical dimension, tackling the trade-off

between geographic networks and technological networks by assessing the largest pos-

sible intersection.

With respect to the complex nature of early stage nanotechnology, it should be con-

cluded that it is more than likely that there are different levels of networks that are

relevant to its development. Leading-edge basic research is likely to be internationally

distributed and hence the links to knowledge might be of a non-local nature as well. It

can thus be assumed that networks and connections to external knowledge might play

a significant role in the development processes of nanotechnology: Innovators need to

gain access to knowledge that is not local and hence to reach beyond provincial chan-

nels to absorb knowledge available in surroundings much beyond regional or national

boundaries. National or regional networks, on the other hand, are important to share

tacit knowledge, which seems to be particularly important for the high-tech, and hence

high knowledge demanding innovations in nanotechnology. Moreover, given the gen-

eral purpose nature of nanotechnology a special feature of local innovation systems

might be to bring knowledge from different industrial backgrounds – and hence less

coherent knowledge-bases – together.

The chosen level of analysis is hence the technological system of innovation in nano-

technology on the German national level, combining both approaches. Moreover, the

investigation is based on different time periods accounting for possible and expected

dynamic aspects. As already indicated in Subsection 5.4, the timespan a network con-

nection can be considered as valuable (i.e. valuable knowledge is transferred without

renewing the relationship in form of a new joint patent application) for 5 years, which
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is consistent with a commonly assumed annual depreciation rate of patents around 20%

(Leten et al. 2007). This is why the five-year moving time window approach was imple-

mented again to construct the different networks. This results in a split of the German

network of nano-innovators into 24 subnetworks, starting in 1980, the year considered

as the breakthrough of the feasibility of nanotechnology R&D, and ending in 2007. This

means that all networks from 1980-4, 1981-5, ..., 2003-7 were considered separately.3

For the following analysis, data of German nano-patents with priority application year

between 1980 and 2007 are hence employed (see Section 5.1).

All networks reconstructed in the following are based on patent data. Particularly in

the emerging stage nanotechnology is in that results is a high domination of scientific

and public research (normally published in form of publications), it would have been

desirable to also investigate co-author networks as is displayed in publication data. Un-

fortunately, the available publication data was not in a form that would have allowed

in-depth network analyses of this kind. Both, co-inventor and co-applicant networks

are then constructed as proposed in Subsection 5.4. While these networks might not

all show past direct cooperation (as argued in Subsection 5.4), they both display direct

knowledge flows. Therefore, both kinds are included in the analysis. Yet, the inventor

networks are assumed more important since applicant networks frequently only ex-

press legal rights sharing instead of actual knowledge sharing. Moreover, the following

analysis also investigates networks which are constructed in a slightly different way: A

network of technological overlap is employed to assess Hypothesis 10.3. Technological

overlap is therefore defined as the number of technological classes, again following the

ISIC-IPC concordance, in which two actors applied for a patent. Although this mea-

sure might seem simplistic, it captures the necessity for a minimal common knowledge

in order to be able to benefit from externally flowing knowledge in a very basic way

(Cantner and Graf 2006). Since relationships are modelled whenever two actors patent

in the same technological class, this network neither displays actual nor past knowledge

flows (not even by assumption), but rather a potential for collaboration.

10.3 Analyses and Results

The following section tackles the indicators used to explore the hypotheses as well as

the findings for these indicators.

3The data handling efforts for such networks are very high. Since it is frequently sufficient to investigate
steps, i.e. completely new compositions of networks, some analyses restrain on the intervals 1980-4,
1985-9, 1990-4, 1995-9, 2000-4 and 2003-7.
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10.3.1 Collaboration Pattern in General (H10.1)

As the hypothesis to be investigated is split into three subparts its analysis is divided

similarly.

Collaboration in General (a)

As Hypothesis 10.1(a) states, collaboration is assumed to increase. This is conjectured

to be the case since nanotechnology as GPT combines various different technology fields

and hence innovators might benefit from interdisciplinary work in teams. With growing

interest in the field of nanotechnology the potential to cooperate moreover increases

very simply because there are more innovators with the necessary knowledge around.

Also, the incentives to share knowledge increase when more and more knowledge cir-

culates in networks. Figure 10.1 depicts the development patterns of nanotechnology-

patents as well as the corresponding innovators. Nanotechnology in Germany obviously

follows the international trend of a sharply increasing patenting activity (see Chapter

6). Moreover, the development of the number of distinct innovators, i.e. inventors (a)

and applicants (b) is also displayed. It shows that the number of inventors lies above the

number of patents. This points to the important role of collaboration among inventors.

As displayed in Figure 10.2, the average number of patents per inventor increases only

slightly from 0.6 to 0.7, while the average number of inventors per patent increases

drastically from 2 in 1980-1984 to 3.2 in 2003-2007. However, the team size dropped

slightly over the last 10 periods after a steady increase before. It is sensible to assume

that there is a critical mass of inventors on a team that can productively contribute to a

single invention, which is counterbalanced by the need for interdisciplinary and diverse

knowledge. Therefore, this drop in team size could be explained by increasing prepon-

derance of the former. The case is different with the number of applicants, as it is below

the number of patents. This indicates that collaboration is less intense and important

among applicants. Presumably, the sector benefits from a critical mass of applicants (in

general consisting of firms and institutions). However, collaboration increases here as

well, as the average number of applicants per patent increases from 1.1 in 1980-1984

to 1.7 in 2003-2007, despite legally considerably more difficult collaboration of appli-

cants. Obviously, collaboration is indeed important and increases in significance over

time.

More particularly, the share of patents that are the result of a collaboration among in-

ventors increases from 59% in 1980-1984 with an average annual growth rate of nearly

14% to 78% in 2003-2007. As with applicants the case is again different: Collaborative

patents account for a share of 14% in 1980-1984, which increases by 11% yearly to
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(a) Inventor-based (b) Applicant-based

Figure 10.1: Development of nanotechnology patenting in Germany.
Source: PATSTAT, own search and calculations.

Figure 10.2: Development of the collaboration pattern. Team size is con-
tributors per patent in case of collaboration.
Source: PATSTAT, own search and calculations.

27% in 2003-2007. This points to the fact that the increase in average applicants per

patent is not only explained by an increase in the share of collaborations, but rather by

an increase in the team size of patents that are jointly applied for (see Figure 10.3(a)).

These figures obviously support Hypothesis 10.1: Collaboration does increase with the

development of nanotechnology. In concrete numbers, Table 10.1 displays the corre-

lation coefficient between nanotechnology patenting and share of collaborations. Both

for inventors as well as for applicants, the share of collaborations and the number of

contributors is significantly (at the 1% level) and highly correlated with the increasing

patenting activity. While it is beyond the scope of this chapter to explore the reasons

for this, it can be assumed that it is due to the need for complementary, but diverse

knowledge in order to create new knowledge for nanotechnology as GPT. The increased

interest in nanotechnology that comes along with its technological dynamics obviously

offers the opportunities of which the innovators make use in the same vein.
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INVENTORS APPLICANTS

share collaboration 0.526*** 0.7742***
share int collaboration 0.3323* 0.0204
contributors per patent 0.5355*** 0.8415***
share interregional collaboration 0.3396*

Table 10.1: Pearson correlation coefficient of collaboration indicators with number of patents.
***indicates significance at 0.01.
Source: own calculations.

International Collaboration (b)

Part (b) of Hypothesis 10.1 points to a decreasing role of international collaboration.

It is conjectured that national actors step by step fill the local knowledge gaps by de-

veloping competencies and occupying niches. Therefore, the necessary knowledge can

be found within the national system of innovation and resource-demanding interna-

tional collaboration can be replaced by national collaboration. Figure 10.4 provides

two snap-shots of knowledge flowing into the German nanotechnological innovation

system. The situation in 1980-1984 is well arranged: The most important collaborative

links are to the US, the Netherlands and Switzerland. By contrast and on a first glance,

the inflow of knowledge through cooperation in the 2003-2007 period seems to have

intensified. Still, the most important partners are the US and Switzerland, followed by

France, Austria, the UK and Japan. The conclusions one can draw of the importance

of these partners point to both, the need for leading-edge knowledge and the role of

proximity. While the US and Japan are certainly not proximate they are leading nations

in the field of nanotechnology. Switzerland and Austria, by contrast, are not renowned

for providing leading-edge technology, but are geographically and culturally proximate.

France and the UK might be regarded as a mixture of both.

However, the picture deceives with respect to the importance of international coopera-

tion as is illustrated by Figure 10.3(b): International collaboration of inventors increases

more slowly than does collaboration in general, on average by 9% p.a.. The share of

international collaboration of applicants even decreases sharply. Hence, although the

share of international collaborations does not decrease as conjectured (Table 10.1 dis-

plays a correlation between the increase of international collaborations and the increase

in patenting that is significant on the 10% level for inventors and non-significant for ap-

plicants), it loses importance vis-à-vis the faster growing rate of collaboration in general

(of which the international collaboration is a part). It is hence justifiable to interpret
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(a) Development of shares of collaborations

(b)
Development of share of international collabo-
rations

(c)
Development of shares of interregional collabo-
rations

Figure 10.3: Development of collaborations.
Source: PATSTAT, own search and calculations.

this development as a slight support for Hypothesis 10.1(b): International collaboration

becomes at least less important.

Geographic and Cognitive Proximity (c)

The findings above indicate that collaboration indeed became more important with the

development of nanotechnology. This subsection finally explores where collaboration

took place within the network. Part (c) now conjectures, that geographically and cog-

nitively proximate actors are more likely to work in teams.4

Figure 10.5 sketches the role of cognitive proximity. It shows the three largest compo-

nents of the networks from 1990-19945 and 2003-2007. Vertices are marked in colours

according to their technological background in one of the K30 technological fields (see

4The assessment in this section focuses on inventors since this is both, more sensible and fruitful –
particularly vis-à-vis data-handling issues.

5Instead of the first observed time period this network was chosen since it is the first to show any
significant interconnection between vertices in components, see Subsection 10.3.2 for further details.
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Subsection 5.1.2). An actor was allocated to the technology field where he filed the

most patents in.6 The components are dominated by inventors of one class. Still, there

are important vertices that connect one part of the component to the other although

(a) 1980-1984

(b) 2003-2007

Figure 10.4: International patent collaborations of Germany.
Source: PATSTAT, own search, calculation and illustration.

they do not share the same technology – and hence cooperate interdisciplinary. The

components that are not shown on the Figure exhibit even less interdisciplinary col-

laboration. The same picture drawn for the 2003-2007 network looks considerably

different: All three largest components are interdisciplinary and contain inventors from

various fields. Collaboration in general and interdisciplinary collaboration, which is

assumed to be an important cornerstone in the development of general purpose na-

notechnology, increased sharply. Having a closer look one can nevertheless observe

that there are always several smaller clusters of technologically proximate inventors.

Again and although multidisciplinarity increased, collaboration among inventors with

the same background is popular. Figures 10.3(c) and 10.6 draw a similar picture for

regional proximity. Figures 10.3(c) displays the development of the share of interre-
6When actors are listed on only one patent or all patents of an inventor belong to different classes they

were omitted.
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gional collaboration among all collaborations in German nanotechnology.7 A collabora-

tion is interregional, when all collaborating actors stem from the same planning region

(Raumordnungsregion; (ROR)). The share increases from 35% in 1980-1984 to 58% in

recent years. This is significantly (at the 10% level) correlated with the development of

nanotechnology as measured in patenting output (see Table 10.1. Hence, geographical

proximity seems to decrease in relevance since more collaborations include partners of

other regions. By contrast, an ROR is a comparatively small geographical area (between

NUTS2 and NUTS3) since it is designed to approximate spatial and functional interre-

lations between core cities and the corresponding hinterland (BBR 2001). 40% of all

collaborations taking place within one such planning region is still emphasising the role

geographical proximity.

Figure 10.6 depicts collaboration between different German ROR.8 The network of

1980-1984 shows that interregional collaboration takes place, but in comparison to

the 2003-2007 network only to a very limited extent. However, the interregional col-

laboration that takes place mainly happens between geographically proximate RORs,

such as Unterer Neckar, Rheinhessen/Nahe and Rheinpfalz or Hamburg and Schleswig-

Holstein Süd. One component, however, connects regions farther away, among them

the metropolitan areas with high innovative output, such as Berlin, Munich or Stuttgart.

This obviously indicates that geographical proximity might be a reason for collabora-

tion, but that it is not the only one: Regional players connect to the important regions

notwithstanding larger distance. This is most presumably the case since they want

to gain access to important, leading-edge or complementary knowledge in the region.

This still holds true for the network in 2003-7, although less visible due to the crowding.

Although no systematic measure was employed, this anecdotal evidence supports H10.1

(c) in general, technologically and geographically proximate inventors are more in-

tensively collaborating. The role of technological and geographic proximity, however,

seems to decrease with the development of the network. This might have several rea-

sons, e.g. consisting in the higher propensity to collaborate in general emphasising the

need for more partners to avoid redundancies, the necessity of complementarity knowl-

edge and perhaps also improved means of codification of tacit knowledge (i.e. the

7Note that data that can be used to allocate an innovator to a planning regions is by far not found on
all patents. For the calculation of these shares, only patents with such detailed data were considered.
Since this was done for both, the number of collaborations as well as the number of interregional
collaboration, a possible bias should be kept as low as possible.

8Note that collaboration that takes place within one such ROR is not displayed. This part of the hy-
pothesis explores anecdtoally whether there is a tendency for geographically proximate collaboration.
A visual way to do so is to depict collaboration within the German network, but between different
regions, thereby offering a way to get a feeling for distances.
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evolution of tacit knowledge to non-tacit knowledge). In particular, network structure

properties, i.e. the diffusion properties of collaboration partners, might shift into focus

as supposed by Autant-Bernard et al. (2007), once the networks evolves, thereby sub-

stituting geographic effects. The lack of a systematic cross-sectional analysis, however,

constrains these ideas to pure conjectures.
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(a) 1990-1994

(b) 2003-2007

Figure 10.5: Development of cognitively proximate collaboration in the nanotechnology inventor
networks. Figures display the three largest components each.
Colour of vertices represents a K30 technology field. See Figure G.1 in the Appendix G
for the key of the colours to technological fields.
Source: PATSTAT, own search, calculation and illustration.
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(a) 1980-1984

(b) 2003-2007

Figure 10.6: Development of interregional collaboration patterns in Germany. Size of vertices refers
to relative innovative output of the region. Width of edges refers to intensity of collab-
oration.
Source: PATSTAT, own search, calculation and illustration.
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10.3.2 Efficiency of the Innovation Network (H10.2)

Many different kinds of statistical network measures assess the influence of pace and

quality of knowledge transmission. This subsection sets out to explore the most impor-

tant sets of indicators for both, the inventor and the applicant networks of nanotechno-

logy in Germany across the investigated time periods. However, the applicant networks

are only considered for comparative and supportive means and hence only snap-shots

will be assessed every five years.

Network Fragmentation and Structural Cohesion (a)

The fragmentation of the innovation networks of nanotechnology in Germany can be

consulted in order to get a first impression on how well the networks are connected. The

number and sizes of the components and isolates are hence used as a first indicator for

the collaboration intensity. Table 10.2 contains all indicators calculated in this context

and the corrleation coefficient of the indicators when comparing them to the number

of patents produced in the relevant period. The average component size steadily in-

creases in the inventor network as well as in the applicant network. Compared with the

productivity of the system, a high and significant correlation is found. This points to

improved connection within the network and the positive relationship to innovativity.

Yet, the numbers are still comparatively low. This might be due to the high numbers in

isolates and small components. The share of isolates, however, decreases. That means

that inventors more and more connect to the network through cooperation and thereby

gain access to important knowledge resources. As was expected, this holds for both

the inventor as well as the applicant network, while the applicant network stays less

aggregated than the inventor network in these respects. This number moreover is, as

conjectured, negatively correlated with the productivity of the system.

Comparing just the numbers of components and isolate does, however, not sufficiently

explain a network’s connectivity because the importance of large components represent-

ing a substantial part of the overall network could be offset by many isolates. Repre-

sentation shares of the largest component as well as the difference to the second largest

component increase, emphasising the role of network aggregation for innovation and

knowledge transmission. The better nanotechnology develops, the more the actors seek

access to the cumulated knowledge in the network. Interestingly, the applicant network

performs even better at the end of the observation period. This might be a hint for the

strategic use of networking in case applicants collaborate.
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Taking every fragmentation measure into account, it can be concluded that both net-

works improve in terms of less fragmentation and hence actors gain access to larger

shares of the accumulated knowledge. Overall, the inventor networks seem better con-

nected than the applicant networks. This was expected due to lower benefits of appli-

cant collaboration in terms of knowledge transmission (in most cases it’s the inventors

that need the knowledge for innovation, rather than the applicants) and the higher costs

that come along with collaboration in terms of legal complications. Moreover, inventors

might collaborate even though they are coming from different disciplines, which might

even drive innovations in nanotechnology as GPT. This is not so prominent among ap-

plicants, however, since they are mostly companies presumably cooperating with other

applicants from the same sector.

Inventor Applicant

period avg
comp
size

largest
(%)

2nd
largest
(%)

1st/2nd isolates
(%)

avg
comp
size

largest
(%)

2nd
largest
(%)

1st/2nd isolates
(%)

80-84 2.0 3.2 3.2 1.00 25.7 1.0 2.9 2.9 1 94.1
81-85 2.1 2.9 2.9 1.00 23.9
82-86 2.1 6.4 2.6 1.17 23.8
83-87 2.1 5.9 2.4 1.17 20.5
84-88 2.1 5.8 2.4 1.17 20.5
85-89 2.2 6.0 2.7 1.00 18.0 1.1 4.7 2.8 1.67 89.7
86-90 2.3 5.7 2.5 1.00 17.0
87-91 2.4 5.6 2.3 1.00 16.3
88-92 2.5 13.4 2.1 2.50 14.9
89-93 2.6 11.4 3.1 1.43 15.1
90-94 2.6 8.5 2.7 1.20 16.0 1.2 8.9 5.8 1.54 68.9
91-95 2.7 12.3 2.9 1.56 12.5
92-96 3.0 13.9 2.3 2.06 12.0
93-97 3.2 15.9 3.8 1.32 11.1
94-98 3.2 13.3 2.6 1.59 11.1
95-99 3.3 26.0 1.9 4.06 10.4 2.3 12.4 4.4 2.78 34.1
96-00 3.4 25.8 1.9 3.98 10.0
97-01 3.5 27.0 2.8 2.77 9.6
98-02 3.5 27.8 2.4 3.24 9.5
99-03 3.6 27.1 2.8 2.64 6.4
00-04 3.6 15.4 2.7 1.59 9.4 2.6 27.7 2.9 9.56 29.8
01-05 3.7 15.6 2.9 1.46 8.9
02-06 3.7 17.2 3.2 1.43 8.9
03-07 3.8 30.2 3.5 2.29 9.2 3.0 36.5 1.5 24.13 25.2

corr1 0.798*** 0.6237*** 0.3478* 0.242 -0.6543*** 0.8743** 0.9822*** -0.6491 0.9537*** -0.7628*

Table 10.2: Fragmentation of the innovation networks of nanotechnology.
1 Pearson correlation coefficient with number of patents.
***Indicates significance at 0.01.
Source: own calculations.

Another measure of connectedness is the cohesion of a network. A cohesive network

is assumed to support innovativeness and hence should increase with increasing patent

outcome within the network of nanotechnology in Germany. Table 10.3 reports the

cohesion measures for the inventor and applicant network and their respective largest

components. The average degree, i.e. the number of different other actors one actor is
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connected to, increases sharply in all networks. It is, as was expected, highly and signif-

icantly correlated with the number of patents produced which points to the importance

of knowledge sharing for innovativeness. It is considerably higher in the largest com-

ponent, again playing the importance of lower levels of fragmentation. The density

decreases over time and ist negatively (and in case of inventors significantly) correlated

with network efficiency. Since the networks grow rapidly over the same period of time,

this is only evident since the number of possible lines increases rapidly with the number

of vertices, whereas the number of collaborations an individual can maintain is limited

(de Nooy et al. 2008). The density hence proves useless as an indicator of cohesion

when comparing how network structures evolve in a growing network and is hence

only reported for the sake of completeness.

Putting it in a nutshell, the nanotechnology networks become less fragmented and more

cohesive over the course of the rapid development on nanotechnological innovations

over the last three decades. H10.2(a) can thus be confirmed.

Centre-Periphery Structure (b)

A network with a clear centre-periphery structure exhibits high degrees of centralisation

(see Subsection 2.3.3). While the centre of such a network opens opportunities for a

more efficient transmission of knowledge and hence for higher degrees of innovative-

ness, more peripheral inventors are not as well connected and do not have similarly

easy access to the knowledge flowing in the network. This structure, in contrast to a

network with similar centrality scores for all inventors, points to the degree of develop-

ment of the innovation network: While established collaborations and important links

exist, new inventors or inventors working on a specialised field are less well connected

and less important for the overall knowledge transmission in the network. However,

vertices that are in the periphery of a network, but connected to at least one interme-

diary in the centre can get indirect access to all the knowledge flowing in the network,

although they do not as much engage in collaboration themselves.

The centre-periphery structure is hence assessed by means of centralisation indicators,

i.e. degree and betweenness centralisation. Results for the largest components are dis-

played in Tables 10.4. They are not as clear as expected for the whole network, which

is why they are visualised in Figure 10.7 (exact numbers can still be found in the ap-

pendix in Table G.1). This changing structure can be seen as another indication for the

still emergent configuration the nanotechnology network is in. Degree centralisation

refers to the differences in the degree centrality of the vertices. The degree centrality
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Inventor Applicant

Network 1st Component Network 1st Component
period D avg d(vi) D avg d(vi) D avg d(vi) D avg d(vi)

80-84 0.0091 1.70 1 5 0.0009 0.06 1 1.00
81-85 0.0087 1.78 1 5
82-86 0.0078 1.80 1 6
83-87 0.0071 1.76 1 6
84-88 0.0070 1.76 1 6
85-89 0.0075 1.95 1 6 0.0028 0.30 1 4.00
86-90 0.0075 2.12 1 6
87-91 0.0074 2.21 0.6667 4
88-92 0.0070 2.61 0.4125 8.3
89-93 0.0061 2.76 0.5069 8.2
90-94 0.0054 3.00 0.6013 10.22 0.0068 1.72 0.3737 7.10
91-95 0.0050 3.05 0.2460 6.64
92-96 0.0043 3.39 0.1832 6.59
93-97 0.0040 3.56 0.1545 6.8
94-98 0.0028 3.57 0.1181 6.26
95-99 0.0021 3.62 0.0537 7.36 0.0036 3.28 0.0708 8.00
96-00 0.0016 3.67 0.0397 7.06
97-01 0.0013 3.79 0.0315 7.03
98-02 0.0011 3.74 0.0264 7.33
99-03 0.0009 3.75 0.0227 6.81
00-04 0.0008 3.74 0.0345 6.58 0.0016 3.46 0.0114 6.76
01-05 0.0007 3.76 0.0305 6.59
02-06 0.0007 3.76 0.0230 6.02
03-07 0.0006 3.81 0.0134 6.79 0.0013 3.95 0.0063 6.83

corr1 -0.7884*** 0.6578*** -0.6392*** 0.0313 -0.4638 0.7655* -0.6767 0.3887

Table 10.3: Structural cohesion of the nanotechnology networks.
1 Pearson correlation coefficient with number of patents.
***Indicates significance at 0.01.
Source: own calculations.

(a) Whole networks (b) Largest components

Figure 10.7: Centralisation.
Source: PATSTAT, own search and calculations.

223



The Development of Nanotechnology through a Network of Collaboration

is nothing more than the normalised degree. It is hence assessed how different actors

are in term of their connectedness. While the degree centrality does not follow a clear

trend in the whole network, it decreases after the first increase in the components and

is therefore negatively correlated with the productivity of the system. The increase can

be explained by the development of a network structure in the components in the first

place after 1985. The decrease is caused by a similar increase in average as well as

maximum degree centralities, and hence actors tend to have similar numbers of con-

nections to others. However, the lack of a clear development path might point to the

emergent setting of the networks that is subject to change since it is not (yet) stable.

Betweenness centralisation, by contrast does not decrease. Betweenness centralisation

refers to the importance of some vertices as intermediaries for the knowledge flows.

The high values might be due to the fact that nanotechnology is a GPT: While not all ac-

tors are capable of (re)combining knowledge from different fields, some of the same act

as intermediaries between the fields and are hence more important than others for the

intra-network knowledge diffusion. This supposition is supported by Figure 10.5, where

the nodes with high betweenness centrality are mostly connected to vertices from dif-

ferent technological fields. This centre-periphery structure in the largest component can

be tracked in Figure 10.8 for inventors and in Figure 10.9 for applicants. While indeed,

degree centralisation cannot be observed it becomes clear that there are some vertices

that are important nodes for the cohesion of different parts of the network. Hence, al-

though degree centralisation is decreasing, an increasing centre-periphery structure can

be observed for betweenness centralisation with a positive and significant (***) correla-

tion to patenting and hence H10.2(b) can at least not be rejected. Since nanotechnology

networks must be assumed to be emergent, this snap shot of development might again

change in the next decade when the development towards a stable situation proceeds.
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(a) 1980-1984 (b) 1985-1989 (c) 1990-1994

(d) 1995-1999 (e) 2000-2004

(f) 2003-2007

Figure 10.8: Development of the largest component of the inventor-network of nanotechnology.
Source: PATSTAT, own search, calculation and illustration.
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10.3 Analyses and Results

(a) 1980-1984 (b) 1985-1989 (c) 1990-1994

(d) 1995-1999 (e) 2000-2004

(f) 2003-2007

Figure 10.9: Development of the largest component of the applicant-network of nanotechnology.
Source: PATSTAT, own search, calculation and illustration.

Small World (c)

The last part of H10.2 refers to small world properties of the largest component of the

network, which is assessed in this section. The small world variable assesses the extent

to which a network exhibits small world properties. A small world graph is a large-n,

sparsely connected, decentralised graph, exhibiting a characteristic path length close

to that of an equivalent random graph while the clustering coefficient is much greater

(Watts 1999). Hence, the number of vertices has to be large compared to the average

number of edges, while any vertex can only have a limited number of edges in order to
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form a decentralised graph. The small world variable hence consists of the characteris-

tic path lengths and the clustering coefficient which are calculated as follows:

Characteristic Path Length

L =
∑i ∑ j di j

2 n
, L ∈ [1,∞), (10.1)

with di j being the geodesic between vertex i and j. The clustering coefficient employed

for the small world characteristics calculation is the Watts-Strogatz Clustering Coeffi-

cient (Batagelj and Mrvar 2011). It measures the extent to which inventors that are

directly connected to a third inventor are also related among each other. This is a mea-

sure of cliquishness since it is a property of the network structure which refers to the

likelihood that two vertices that are connected to a particular third vertex are also con-

nected to one another. Cliquish networks are prone towards the exhibition of dense

neighbourhoods where innovators are better interconnected to each other. This se-

cures a high transmission capacity since knowledge can be diffused easily (Burt 2001).

Hence, for each vertex it is observed how many of its connections are also connected.

Put differently, for each innovator the connected partners are assessed in terms of their

connectedness among each each other. This value is then divided by the number of

possible connections in this context (Kogut and Walker 2001):

Watts-Strogatz Clustering Coefficient

C = ∑
i

2 E(G(vi))

d(vi) d(vi −1)
, C ∈ [0,1] (10.2)

with E(G(vi)) the number of edges among the directly linked neighbours of vertex vi

and d(vi) its degree.9 These two measures are then compared to a random network

consisting of the same number of vertices and connections per vertex. Watts and Stro-

gatz (1998) calculate limiting values for characteristic path lengths as well as clustering

in random networks, which are employed here. For a network with n vertices and aver-

age degree d, the average path length is compared to a path length in a random network

of Lrandom = ln(n)/ln(d) and a clustering coefficient of Crandom = d/n. For a network to

be a small world, the characteristic path length is close to the random network’s path

length, but the clustering coefficient is substantially larger. This can be expressed in the

following quotient (Kogut and Walker 2001).

9In case the clustering coefficient is not defined (i.e. the vertex has only direct neighbours) it is omitted
from further calculations.
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10.3 Analyses and Results

Small World Variable

SW =

Cactual
Crandom
Lactual
Lrandom

, SW ∈ [1,∞). (10.3)

The degree of the small world property increases with the variable. This variable can

only be computed in (strongly) connected networks since there would exist infinite

path lengths otherwise. This is assured by the fact that only the largest components

are assessed similarly. The results are presented in Table 10.5. Note that these results

only yield useful results on a relative basis. The small world variable increases clearly

over the time periods observed, although not monotonically in case of the inventor net-

work. However, the development of the small world property is significantly and posi-

tively correlated with the networks performance in terms of patent output, emphasising

the appropriateness of the indicator in terms of efficiency of knowledge transmission.

Hence, this can be seen as an indication of the overall increasing efficiency in knowl-

edge transmission in the largest component of the respective networks. While small

characteristic path lengths lead to faster knowledge diffusion through the whole net-

work, the high degrees of clustering allow for easy spread of knowledge. Interestingly,

the clustering coefficient is relatively high from the beginning pointing to high levels of

trust and dense neighbourhoods. Compellingly, the applicant network seems far more

efficient than the inventor-network. A possible reason might be the higher cost of con-

necting for applicants and a correspondingly strategic choice of collaboration partners.

Finally, this indicators show clear evidence for an increasingly efficient network of

knowledge for innovation of the German nanotechnology innovators, thereby support-

ing H10.2(c) in particular and together with the above findings the whole Hypothesis

10.2 in general. Although, due to the emergent character of the technology in general

and the networks in particular, the findings have to be constrained to snap-shots, the

investigation accomplished in this chapter allows insights into the the development in

the last three decades and hence a series of snapshots. What can be concluded is that,

on the way of the transition from emergent to more and more stable configurations, the

efficiency of the nanotechnology knowledge sharing network increases.
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10.3 Analyses and Results

10.3.3 Technological Overlap (H10.3)

The last hypothesis expresses the conjecture that the network of technological over-

lap develops from a rather central structure towards a centre-periphery structure. This

hypothesis is assessed for applicants only, since it focuses on the organisational frame-

work (and thereby also encompasses inventors that are mostly very closely related to

applicants) and the role of specialisation and diversity as well as the potential of the

actors to cooperate and realise cross-fertilisation advantages. Figure 10.10 visualises

the German nanotechnology networks of technological overlap from 1980-4 to 2003-7.

Table 10.6 presents the most important network statistics. First of all, it is clearly visible

that the networks become more cohesive, as the average degree increases drastically

and the number of isolates and components decreases (all of them being significantly

correlated with the productivity in terms of patent output, average degree positively

and isolated and components negatively). This translates into improved possibilities

to cooperate for each of the innovators (be it among applicants or inventors). Mean-

while, betweenness centralisation decreases (and is negatively correlated with patent

output, significant on the 5% level). This means a drop in the importance of interme-

diaries. Innovators hence are more or less directly connected to potential cooperation

partners, a fact that might be triggered by the small number of technological fields

and the increasing number of innovators. Degree centralisation, by contrast increases

sharply and is positively related with the yearly patent count. There are some very in-

terdisciplinary innovators at the centre of the network, that exhibit a very high degree

centrality. They are thus connected to a large number of actors through technological

overlap. It is not surprising that more important applicants in terms of the number of

patents are located at the centre of the networks since they can occupy a more diverse

technological spectrum than smaller ones. Hence, the German nanotechnology network

of technological overlap increases in differentiation between centre and periphery and

hence diversity and specialisation. By contrast, centralisation decreases with respect to

the distinct role of intermediaries, since actors become nearly equally important for the

potential knowledge flow within this network. This translates into more and more well-

developed opportunities for the actors to collaborate interdisciplinarily and eventually

realise cross-fertilisation effects. Note however, that in case of decreased cognitive prox-

imity (as is the case when actors with different technological backgrounds collaborate)

other forms of proximity have to act as substitutes in order to facilitate transfers of tacit

knowledge. Most easily, this might be realised through geographic proximity. Hence,

a more regional perspective instead of the national perspective would shed further in-

sights on how these multiple opportunities could indeed be realised.
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The Development of Nanotechnology through a Network of Collaboration

However, so far hypothesis 10.3 can be supported. The network of technological overlap

becomes more cohesive and opens opportunities for collaboration and cross-fertilisation

exceeding the frontiers of disciplines. This is particularly interesting in the light of na-

notechnology being a general purpose technology that moreover merges knowledge of

different classical disciplines. However, since intermediaries become less prominent,

the centre-periphery structure only intensifies with respect to degree and hence direct

(potential) links.

year components largest(%)1 isolates(%)1 avg d(vi) CD CB

1980 3 87 13 4.4 0.46 0.33
1981 3 67 8 2.5 0.38 0.24
1982 7 57 43 2 0.45 0.17
1983 6 50 19 2.13 0.3 0.11
1984 6 76 14 4.21 0.26 0.27
1985 7 57 22 4.09 0.39 0.07
1986 2 90 5 3 0.41 0.56
1987 5 65 8 3.38 0.16 0.17
1988 5 35 5 3.5 0.15 0.04
1989 7 40 5 1.7 0.19 0.07
1990 3 88 3 4.67 0.18 0.34
1991 1 100 0 8.42 0.3 0.12
1992 4 90 2 9.6 0.33 0.08
1993 3 92 0 10.88 0.29 0.12
1994 3 97 1 28.27 0.42 0.15
1995 6 90 6 21.38 0.54 0.15
1996 2 29 1 35.79 0.43 0.07
1997 2 98 0 49.27 0.4 0.06
1998 3 99 0 63.51 0.45 0.04
1999 1 100 0 115.56 0.57 0.05
2000 1 100 0 103.2 0.56 0.05
2001 1 100 0 115.43 0.56 0.06
2002 1 100 0 136.23 0.56 0.03
2003 1 100 0 124.5 0.66 0.04
2004 1 100 0 144.87 0.58 0.07
2005 1 100 0 161.79 0.7 0.05

corr2 -0.6741*** 0.5416*** -0.4442** 0.9876*** 0.7956*** -0.4767**

Table 10.6: Network of technological overlap.
1 Percentage refers to share of vertices in the network.
2 Pearson correlation coefficient with number of patents.
***Indicates significance at 0.01.
Source: own calculations.
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10.3 Analyses and Results

(a) 1980 (b) 1985 (c) 1990

(d) 1994 (e) 2000

(f) 2005

Figure 10.10: Development of the network of technological overlap of applicants. Size of vertices
proportional to the number of filed patents, width of edges proportional to the number
of overlapping technology fields.
Source: PATSTAT, own search, calculation and illustration.
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10.4 Conclusion

The aim of this chapter is to conduct a comprehensive analysis of the evolution of the

German nanotechnology innovation network with respect to the dynamics of collabo-

ration in general, the efficiency of knowledge transmission and the potential for cross-

fertilisation. In particular, the emergent character of nanotechnology had to be kept

in mind for the interpretation of the results. The analysis was accomplished by an

explorative data analysis focused on three main conjectures: The increase of collabora-

tion, the increase of efficiency and the organisation of collaboration opportunities into

a centre-periphery structure.

Collaboration indeed clearly increased with the development of nanotechnology. This

concerns the average number of innovators that contribute to a patent, the share of

patents that are the result of collaboration as well as the team size in this case. It is

assumed that this is due to the increased need for complementarity and diverse knowl-

edge particularly relevant in high-tech and general purpose nanotechnology. There is,

by contrast, evidence for a tendency of innovators to co-operate with geographically

and cognitively proximate candidates. In line with this is the decreasing trend of in-

ternational collaboration. Although the share of international collaboration increases,

the importance of international linkages can be stated to decrease in importance since

this share grows less than the one of collaborations in general. The reason is seen in

the development of a national knowledge base that offers the access to relevant (niche)

knowledge within the national borders.

The focus in this chapter is put on the efficiency of knowledge transmission within these

growing networks of innovators in nanotechnology in Germany. The networks not only

become larger, but also less fragmented and denser. Less fragmented networks offer

larger neighbourhoods of direct, but above all indirect relations to other innovators and

hence facilitate the access to more, more relevant and more diverse knowledge. Denser

networks refer to the number of (different) direct ties an innovator has and hence to

increasing habits of knowledge exchange with more partners. The most important in-

dicator in the context of efficient knowledge transmission is the small world variable.

It relates average path length, i.e. the distance to other innovators, to random average

path length and clustering, i.e. the density of the neighbourhood, to random cluster-

ing. Thereby, the importance of dense neighbourhoods that create trust and facilitate

knowledge exchange and the importance of short cuts that provide fast access to rather

remote knowledge are both accounted for. The analyses of this chapter unravelled that

the efficiency of knowledge transmission indeed increased over the last decades.
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10.4 Conclusion

Last, the potential for cooperation and cross-fertilisation in form of networks of techno-

logical overlaps was investigated. In brief, this network of opportunities became larger

and more efficient and now exhibits a structure coined by diversified actors with a large

potential for cooperation and cross-fertilisation in the centre and rather specialised, less

connected actors in the periphery. Through the network, they nevertheless have the

opportunity to access diverse knowledge if they intend to.

This chapter hence shows that knowledge is more and more efficiently shared in the

course of the development of innovations in nanotechnology. Although one might argue

that in such emergent network configuration no definitive conclusion could be drawn

about the development path of nanotechnology networks, the study of the network

characteristics over many periods allows for a plausible analysis of the trends. More-

over, the comparison of the recent snap-shot to early snap-shots allows for a comparison

of extremely emergent and ever more stable configurations. Extrapolating the trends,

it can reasonably be expected that this knowledge-sharing continues and advances in

the future. The findings describe the development of the network features and their

correlation with the patenting output. It was, however, beyond the scope of the chapter

to find clear causal relationships. It can reasonably be assumed that the improved net-

work structures caused the increase in innovative output, but it might, at least partly,

be the other way around. Successful innovations, for instance, might have seduced the

actors to more risky cooperation that eventually substantially contributed to improved

networking. It would hence be worthwhile to investigate the mechanisms that are at

work more deeply. Studies such as conducted by Gao et al. (2011) that investigate the

causal relationships of network efficiency and patenting might help to assess these is-

sues. It is moreover not clear how and why cooperation in nanotechnology begins and

what the distinct incentives are. The analyses find a hint for the role of geographic and

cognitive proximity on the one hand and the huge necessity countervailed by a large

potential for cross-fertilisation and multidisciplinary collaboration on the other hand.

More cooperation and more cross-fertilisation might be beneficial, since the develop-

ment of nanotechnology as GPT is driven by multipurpose applications and hampered

by a lack of coordination. Further research on how to support collaboration across

fields and how to use the unravelled potential for cross-fertilisation could hence help to

improve the development of this growth-driving technology.
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11 What Drives Generality? Assessing
the Mechanisms of Knowledge
Creation

The development of nanotechnology as a general purpose technology depends on and

triggers a wide range of innovations; most of them in high-tech industries. While this

does not distinguish the innovation processes at work from other high tech innova-

tions alone, general purpose technologies typically occupy a wide range of fields. GPTs

merge different, in other means separate disciplines (Wood et al. 2003, Ott et al. 2009).

This feature was also found to be true for nanotechnology (see H6.5 in Chapter 6).

In other words, nanotechnology as a GPT overlaps with research in almost any scien-

tific discipline, with physics, chemistry and biology being some examples (Meyer and

Persson 1998). Moreover, nanotechnology as GPT has the potential to become applied

in a particularly wide range of fields: One and the same innovation can be applied

and relevant in life sciences, engineering or information technologies similarly. Given

the assumption that one inventor can only handle a limited amount of (leading-edge)

knowledge, collaboration should be an important factor for the development of innova-

tions in nanotechnology. More particularly, collaboration should positively influence the

generality, i.e. the multitude of possible applications of the inventions produced – and

thereby support the development of pervasiveness as a constituting feature of a GPT.

This, on the other hand, implies that inventors and innovators have to be able not only

to handle knowledge stemming from very heterogeneous fields, but also to merge this

diverse knowledge in order to eventually develop innovations or incrementally advance

applications in the various fields. They hence have to be able to handle knowledge

from fairly wider fields than innovators in traditional high tech branches, resulting in

the need for a much larger and opener network of accessible (incorporated) knowledge,

ensuring access to this diverse knowledge. This aspect is even more important in the

early stage of a GPT’s development, as it is the case in the example of nanotechno-

logy, where the body of knowledge in the field is still scarce and convergence is still

at the beginning. Therefore, early innovators (particularly such as newly established

firms, see Baum et al. (2000)) are even more dependent on external sources of knowl-
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edge. Basic research, in particular, is often even characterised by a high degree of global

distribution and international collaboration. Given the complexity of nanotechnology

in particular and GPTs in general, early stage development is therefore especially de-

pendent on external linkages. Resources are constraint and moreover, even respective

regional or national systems of innovation in the field still lack the necessary stock of

knowledge. Collaboration can therefore be assumed to impact the value of inventions

in nanotechnology in multiple ways.

Since nanotechnology gains its fundamental economic importance through its general-

ity of purpose, i.e. the possibility to apply nanotechnology in a wide range of fields, one

way to assess the economic value of a nanotechnology-patent is to consider the value of

this invention for the GPT’s impact on overall innovativeness and value-creation. This

could hence be assessed in terms of its generality. For a patent to become as general as

possible, (interdisciplinary) collaboration seems of outmost importance. The investiga-

tion of the factors around collaboration that might lead to a ’general’ invention is the

scope of this chapter. Therefore, aspects of most of the preceding chapters are tackled,

such as the generality of patents (Chapters 3 and 6), the access to knowledge and the

role of collaboration (Chapters 2, 7 and 10), the impact of experience (Chapters 2 and

8) as well as the composition of knowledge (Chapters 6, 7, 8 and 9). This chapter hence

not only constitutes the second part of Working Package 3, but also concludes this thesis

by providing something similar to a catchall-analysis.

11.1 Derivation of Hypotheses

Collaboration in general is found to have a positive influence on the value of patents

in nanotechnology (Beaudry and Schiffauerova 2011). However, ’value’ here refers to

the usefulness in general, i.e. the extent to which an innovation might create economic

value added in which field whatsoever. This is commonly measured by the number of

citations (Trajtenberg 1990), the size of the patent family (Lanjouw et al. 1998), patent

renewal data (Wang et al. 2010) or the number of claims (Lanjouw and Schankerman

2004). The latter is the measure Beaudry and Schiffauerova (2011) chose. However,

these definitions of value do not discriminate between a preferably wide set range of

application fields and therefore do not take into account a GPT’s special feature of gen-

erality. Since the effect of nanotechnology on economic growth depends crucially on the

general applicability in a wide range of fields, the investigation of where this generality

stems from seems therefore particularly worthwhile. It can be assumed that collabora-

tion does not only have a positive effect on the sheer number of innovations and their

general value, but collaboration might also trigger generality in a narrower sense. By
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opening up the opportunity for the integration of at least to a minor extent different

knowledge and in the best case possible cross-fertilisation, collaboration supports the

creation of new and general ideas in a field as wide as nanotechnology. Collaboratively

developed inventions are therefore assumed to be more relevant in a wider range of

fields. Furthermore, displaying (in the best case diverse but complementary) accumu-

lated and simply a larger amount of knowledge, the number of inventors per patent

(i.e. the size of the collaborating group) should impact the generality of a patent pos-

itively. This, again, is found to be true for the impact of research outcomes in general:

The more contributors and the larger the collaborating group, the more important the

outcome (Lewison and Cunningham 1991). Widening this assumption to the gener-

ality (and therefore an impact as broad as possible) of patents it can be argued that

the more inventors there are, the more (different) incorporated knowledge is accessible

for the development of a new idea. Moreover, given the nascent stage of the develop-

ment of nanotechnology, knowledge stemming from international R&D contexts can be

assumed to be an important input for the generation of new nanotechnological knowl-

edge. Referring to scientific research, the internationality of research teams is found

to influence the impact of the resulting paper positively (Narin and Whitlow 1990, van

Raan 1998). Since international collaboration, in general and hence also in a more tech-

nological context, is assumed to enrich the (diversity of the) knowledge background of

local inventors with complementary resources (otherwise costly international coopera-

tion would hardly take place), it is reasonable to expect that the generality of a patent

developed in the course of an international collaboration is higher than the one of a

patent developed locally.

Hypothesis 11.1 Role of Collaboration in General
(International) Collaboration increases the generality of a patent.

Based on the concept of collective invention, the dynamics of knowledge sharing can

be assessed through various innovation networks. Here, the network of inventors as

an interpersonal network of individuals, who collaborate and exchange information

to produce innovations and scientific knowledge is in focus. It is believed that social

networks, both informal friendship and formal collaboration networks, contribute to

innovation by facilitating information, knowledge and technology diffusion (Hertzum

2008). In this vein, a relevant assumption is made and investigated: A better network

position of inventors can be hypothesised to have a positive impact on the generality of

their inventions. Two dimensions impact this relationship: The closer an inventor is to

other inventors and their knowledge, the shorter is the way knowledge has to travel.

Subsequently, more and more differing knowledge can be assessed by the individual
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in a central network position – with an increasing probability of diversity among the

incorporated knowledge. Moreover, this inventor is more prone to be indeed capable of

integrating this presumably diverse knowledge into his work. The high level of incor-

porated knowledge he is connected to is likely to be correlated with a higher degree of

absorptive capacity (Cohen and Levinthal 1990).

Hypothesis 11.2 Impact of the Access to (New) Knowledge
An inventor in a more central position in the network of inventors contributes to an inven-
tion of higher generality.

However, the well-positioned, central inventors are not necessarily the most productive

inventors. By contrast, most inventive output in nanotechnology is produced by only a

small proportion of inventors. An experienced inventor is presumed to be able to resort

to a well-developed experience in successfully integrating knowledge and developing

relevant nano-knowledge thereof. Advancing the role of experience, so called ’star-

inventors’, i.e. inventors that contributed to a certain threshold number of patents,

can be put into focus.1 In terms of general impact, Beaudry and Schiffauerova (2011)

showed that the value of a patent increases when a star-inventor contributes to its

production since these star-inventors exhibit high levels of absorptive capacity due to

a well developed experience, resulting in an ability to convert accessible knowledge

into inventions well above the average. Heinze and Bauer (2007) moreover found that

more productive scientists in nanotechnology are also more creative, addressing a broad

disciplinary spectrum in their work. Therefore, they could be seen as drivers of a group

of inventors, leading them to a successful exploitation of given and diverse knowledge

resources: When collaborating groups are provided not only with fresh knowledge from

distinct research environments, but also with an experienced and successful researcher

with a high absorptive capacity (with their higher ability to effectively communicate

with their colleagues and their broad work spectrum (Heinze and Bauer 2007)), this

should lead to an increased opportunity for creative recombination of this accessible

knowledge and thus enhance generality.

Hypothesis 11.3 Impact of Experience
The experience of an inventor increases the generality of an invention.

Finally, and most importantly, the respective knowledge that forms the combined knowl-

edge base of the collaborating inventors impacts the generality of an invention. Under-
1This concept of star-inventors is adopted from the ’star-scientists’ that have been discussed e.g. by

Zucker and Darby (1996) and more specifically for nanotechnology also by Heinze and Bauer (2007).
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standing collaboration in a cognitive approach requires the valuation of the technologi-

cal background of innovators (Meyer et al. 2011), relying on the fact that the cognitive

background of each individual strongly influences the ability to integrate further knowl-

edge. Cognitive constraints of inventors arise because of different intellectual complexi-

ties and ways of knowledge transfer. Therefore, innovators will keep close to their orig-

inal knowledge background to search for new knowledge because similar knowledge is

easier to process (Cohen and Levinthal 1990, Boschma 2005). Transferring these find-

ings to networking, collaborations are frequent with partners who belong to the same

or at least similar technological trajectory because they share the same knowledge base.

On the one hand, a certain degree of commonality in the technological understanding

constitutes a basis for successful collaboration (Feldman and Audretsch 1999, Boschma

and Iammarino 2009). Yet, GPTs in general and nanotechnology in particular (as found

for H6.5 in Chapter 6) typically merge different, in other means separate disciplines.

Inventors hence have to be able not only to handle knowledge stemming from very

heterogeneous fields, but also to merge this diverse knowledge in order to eventually

develop inventions usable in a wide range of fields. They hence have to operate on

a fairly wider field than inventors in traditional high tech branches. This has conse-

quences on the exploration part of the innovation process, namely the need for a much

larger and opener network in order to be able to gain access to knowledge stemming

from other fields (and not only from actors within the same disciplines but on different

tracks). On the other hand, collaboration with inventors that share exactly the same

knowledge base does not bring any new knowledge into the team. In such cases, col-

laboration produces at best the opportunity for labour sharing, which is not assumed

to be the main driver of knowledge creation. Frenken et al. (2007) therefore referred

to the term of ’related variety’, capturing the complementarity of knowledge given a

certain extent of relatedness. Particularly in the context of the creation of inventions as

general as possible, the role of the complementarity of the knowledge base has to be

emphasised. In the cases under consideration, the investigation of filed patents, the re-

latedness of knowledge can be, more or less, assumed to be given: When a collaboration

culminates into a patent application, it should be fair to suppose that the knowledge of

the inventors is sufficiently related. Hence, it is finally hypothesised

Hypothesis 11.4 Impact of the Technological Background
The less the knowledge background of the (individual) inventors in a group is coherent, the
more general is the resulting invention.
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11.2 Methodology and Data

In the following analysis, it is built on German nanotechnology priority patent applica-

tions in order to build the network of inventors as discussed in Subsection 5.4. There-

fore, all patents from the nano-database (described in Subsection 5.3.1) were selected

with at least one inventor allocated in Germany. These will be called German nano-

patents henceforth. The approach of the social network analysis introduced in Section

2.3.3 was then employed to evaluate the connections between the inventors in the Ger-

man nanotechnology network. As also already indicated in Subsection 5.4, the timespan

a network connection is assumed to be valuable (i.e. valuable knowledge is transferred

without renewing the relationship in form of a new joint patent application) amounts

to five years. This is why, once again, the five-year moving time window approach was

used to construct the different networks. This results in a split of the German network of

nano-inventors into 22 subnetworks, starting in 1980 and ending in 2005. This means

that the networks from 1980-4, 1981-5, ..., 2001-5 were considered separately. How-

ever, only patent applications from 1984 – 2005 were considered for the assessment of

the role of collaboration for the generality of patents. This is due to the fact that in

order to determine the network position of an inventor in year t, the network of the

precedent 5 years of collaboration, i.e. the network from year t − 4 to year t is consid-

ered. Considering only the patents applied for in one particular year to construct the

network would not capture the relationships created before and maintained throughout

this particular year.

11.2.1 Variables

Dependent Variable

Aiming at assessing the impact of collaboration on the multipurpose of a patent, the

GENERALITY indicator is employed. As already introduced in Chapter 6, this indicator

identifies valuable GPT-inventions as patents that are cited by a wide range of differ-

ent industries. To measure this, Trajtenberg et al. (1997) employed the Hirschman-

Herfindahl index which was further developed by Moser and Nicholas (2004) and Hall

and Trajtenberg (2006) as generality index Gi,

G̃i =
Ni

Ni −1

(
1−

ni

∑
j

s2
i j

)
, G̃i ∈ [0,1], (11.1)

where si j denotes the percentage of citations received by patent i assigned to patent

class j, out of ni technological classes; with Ni being number of citations observed.

Thus, if the knowledge of an invention benefited subsequent inventions in a wide range
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of technological fields, this measure is close be to one, whereas if most citations are

concentrated in a few fields it is close to zero. Due to the small forward time window

in the field of emerging technologies si j is biased downwards as not all the citations are

yet observed, a lag effect which is counterbalanced by the term Ni
Ni−1 (Hall 2002).

Explanatory Variables

In order to assess H11.1, variables displaying whether a patent is the result of a collab-

oration, how many inventors contributed and whether the collaboration is an interna-

tional collaboration are necessary. Very basically, the dummy COLL captures this, taking

the value of 1 in case of a collaborative invention, i.e. an invention with more than one

inventor, and 0 otherwise. EXCOLL is similarly constructed, taking the value 1 in case

of a collaboration with at least one inventor from outside Germany in the team and

vanishing otherwise. INV is a count variable, most simply counting the number of in-

ventors on a patent application. It is included in order to assess the role of the team-size.

H11.2 refers to the access to knowledge the collaborating team has. It thereby re-

lies on the network position of an inventor and hence on the degree of connection of

an inventor to other inventors. Therefore, various different variables are included that

contain information on the centrality of an inventor in the respective German nano-

technology network. Basically, two main indicators displaying network centrality exist:

The degree centrality, CD(vi) displays the number of different co-inventors (in all patent

applications over the last 5 years) an inventor has, relative to the possible connections

he could have in the given network. A high degree centrality hence refers to an in-

ventor important for the knowledge transmission in a network via direct connections

to others. Since degree centrality, however, does not account for the importance of an

inventor for the knowledge flow in a network in terms of the quality of his connections,

also betweenness centrality CB(vi) is included. It captures the intermediary role of in-

ventors for the knowledge transfer between inventors that are not directly connected.

For instance an inventor might be the single connection between important subgroups,

i.e. components, of the network. Hence, very relevant and presumably new knowledge

might flow via this inventor. Assuming that the connections in the networks, or, put dif-

ferently, the social relations, are the channels that transmit information and knowledge

between people, central inventors are hence those who either have good access to the

knowledge flowing in the network or who are able to control the flow of knowledge

(see Section 2.3.3 for further details). Inventors in good networking positions hence

gain access and control the flow of intentionally as well as unintentionally transferred

knowledge, the latter commonly known as knowledge spillovers. As for the integration

into the regressions, the average as well as the maximum centralities of the group of
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inventors contributing to a patent are included, offering the possibility to disentangle

whether a single, well connected inventor or the average connectedness of the whole

team is (more) important. This finally gives four variables, i.e. MAX CD(vi), AV G CD(vi),

MAX CB(vi) and AV G CB(vi).

In order to tackle the role of experience as assumed to impact generality in H11.3,

three different variables are included (see e.g. Beaudry and Schiffauerova (2011) who

already employed similar indicators): While the average number of patents per inventor

AV G_PAT S_P_INV in an R&D team shall display the overall experience and similarly the

absorptive capacity of a team. The dummy for the integration of a star inventor STAR

tackles the role of a single, outstandingly experienced and successful inventor. The

number of stars #STARS counts their number and shall investigate whether a larger

number of stars can still increase the generality value of an innovation.

Last, the technological backgrounds of the individual inventors who contributed to a

patent are subject to investigation in H11.4. Every inventor should have a specific

technological background, either due to his education or due to his experience. For the

following analysis it is assumed that every inventor has only one distinctive (main) tech-

nological background. Petrie (1976) acknowledged that for most individuals it is hard

even to master one discipline given time and energy constraints. Matching inventors to

their technological background is a complicated task, most of all due to the fact that the

discipline of an inventor is not included in patent information. A feasible approach to

integrate the technological background of an inventor nonetheless is the use of the IPC

classes and the corresponding technology classes (following the ISIC-concordance, see

Subsection 5.1.2) a patent is classified into. However, patents often have more than one

technological class and inventors can have contributed to many patents, which results

in the fact that inventors can have contributed to patents that belong to many different

technologies. Still, the technological background of a single inventor has to be approx-

imated as adequate as possible. Moreover, the results from interdisciplinary team work

have to be disentangled, where knowledge from one technology is incorporated into an-

other or where technologies are combined. For this reason the inventors are allocated

to the technological class that occurred most frequently amongst their individual patent

portfolio. Then, in case of a collaboration, the qualitative technological coherence of the

different technological backgrounds of the inventors is calculated, again based on the

technological relatedness matrix introduced in Chapter 6: To calculate the coherence

of a portfolio of technological background of a group of inventors, the measure of the

degree of relatedness is determined for each pair of technology classes. Commonly, this

measure is constructed using co-occurrences of technological classes that are associated
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(directly or via citations) to a patent (Breschi et al. 2003, Leten et al. 2007). Sub-

sequently, two technology classes are considered as technologically related if patents

associated to one technology class often cite patents classified in the other technology

class and vice versa. Based on the matrix containing the individual values for each class,

the coherence COH of the portfolio of technological backgrounds of the inventors on

a patent is then calculated. However, this coherence indicator cannot be computed for

technology portfolios that only consist of one technological class. Instead, the variety

VAR, i.e. the inverse of COH, is employed, which is a straightforward measure for how

’different’ technological backgrounds are: VAR = 1/COH, with VAR = 0 by definition

for all single inventors or teams of inventors with the same technological background.

Although this might underestimate the role of diversity within one technological field,

this seems at least a feasible way to tackle this kind of individual background at all.

Yet, this approach turns the focus to a considerably high basic degree of diversity which

might indeed become a problem, if the assumption of given relatedness once a team

collaborates is not fair. However, assuming it is fair, the expectation according to H11.4

then is: The more technological variety a technology portfolio of a collaborating group

exhibits, the higher the extent to which the inventors bring together complementarities

and the higher the degree of generality, accordingly. Hence, a positive relationship is to

be expected.

The above proposed GENERALITY indicator implemented as the dependent variable

is an indicator relying on forward citations and their technological classification. This

indicator, however, can also be used to measure the generality of backward citations.

Backward citations indicate the prior technological knowledge the actual invention is

relying on, regardless of the inventors and their networks and hence without directly

referring to the actual collaboration on the patents. Yet, backwards generality BW_GEN

refers to the composition of the knowledge base possibly used to create new knowl-

edge. The knowledge constituting the base for the creation of new knowledge has to

have been incorporated in the inventors somehow or the inventors at least have to have

been able to process this knowledge, which finally culminated into a successful inven-

tion. For this reason, it might be insightful to implement this BW_GEN indicator as

well when aiming to find out the role of the background of the inventors. It might be a

fair assumption to suppose that a higher level of convergence of the invention, or, put

differently, a sensible combination of knowledge from more different fields, results in a

better applicability in terms of generality of the current invention. Hence, backwards

generality can be assumed to induce (forward) generality – or, more generally speaking,

interdisciplinarity produces pervasiveness.
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Last, the number of citations (CITAT IONS) each individual patent receives is included.

While the number of citations is not assumed to have a causal effect on generality, sev-

eral of the variables described above might influence the value in terms of applicability

of a patent positively (see e.g. Beaudry and Schiffauerova 2011). Since the scope of

this chapter is to go one step further and investigate the factors that impact general-

ity, i.e. the applicability of patents in a multitude of fields, the implementation of the

CITAT IONS variable shall serve as a robustness check: If the variables only have an

effect on the number of citations (and not on the generality in a broader sense) these

effects should be controlled for in the regressions once the CITAT IONS variable is in-

cluded. The CITAT IONS variable shall hence on the one hand improve the model fit

and on the other hand allow for disentangling the effects on value in a broader and gen-

erality in a narrower sense. Table 11.1 provides an overview on the different variables

employed.

Characteristic Variable Description

dependent
GENERALITY inverse concentration index of patent forward citations

across different technological fields

collaboration

INV number of inventors involved
COLL collaboration: at least two contributing inventors (dummy)
EXCOLL external collaboration: at least two contributing inventors

from at least two different countries (dummy)

access to knowledge

MAX CD(vi) max degree centrality of contributing inventors
AV G CD(vi) avg degree centrality of contributing inventors
MAX CB(vi) max betweenness centrality of contributing inventors
AV G CB(vi) avg betweenness centrality of contributing inventors

experience
STAR at least one star inventor contributed to the patent
#STARS number of stars that contributed to the patent
AV G_PAT S_P_INV average number of patents field by the contributing inven-

tors

background
VAR variety, i.e. non-coherence of technological backgrounds of

contributing inventors
BW_GEN generality of backwards citations

control CITAT IONS number of forward citations a patent receives

Table 11.1: Description of variables.
Source: own compliation.

11.2.2 Descriptive Statistics

In order to get a clear picture of the underlying data set that exceed the descriptive

statistics as presented in Table 11.2, Chapter 10 should be referenced. The underlying

dataset of the analysis accomplished there is very similar to the data employed in this

chapter. However, since the variables employed differ, the data is once again presented.
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Although this chapter does not gear towards a thorough and focused analysis of the

relationship between generality and the evolution over time, the consideration of the

development path of nanotechnology given in this subsection might help to gain funda-

mental insights into the data.

As Figure 11.1(a) depicts, the number of patents as well as the number of inventors

increases sharply during the considered time period. The stronger increase of inventors

compared to the number of patents indicates that the role of collaboration increases. In

Figure 11.1(b), the variables included for the assessment of the role of collaboration in

general are displayed. The share of patents that are developed collaboratively increases

similarly to the number of inventors per patent, indicating that the increase in the num-

ber of inventors per patent also translates into a higher share of collaborations and not

only into larger group sizes. Together with the findings from Chapter 10 it can be stated

that German inventors collaborate more intensely, thereby exchanging their knowledge

and building larger networks of knowledge diffusion. The share of international collab-

orations, however, only increases to a very small extent – which might be due to the fact

that knowledge external to the German nanotechnology inventor network is relatively

more important at the beginning of the nano development.

(a) Patents and Inventors (b) INV , COLL, EXCOLL

Figure 11.1: Development of collaboration in nanotechnology patenting.
Source: PATSTAT, own search and calculations.

Figure 11.2 displays the development of network positions as indicating the access to

knowledge of a team of researchers. While both the average as well as the maximum

degree centrality measure clearly decrease over the course of the years, the respective

betweenness centrality measures increase. As concerning the decreasing value of degree

centrality, this could be explained by the crowding of the network and specialisation

within components (and hence less central positions in terms of direct collaborations)

with simultaneous disappearance of highly centralised inventors who are active across

the whole field of nanotechnology. The increasing value of betweenness centrality em-
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phasises that, despite a lower number of direct connections on average, intermediaries

gain in importance. This fits into the picture, since the tendency towards component

occupation and the general increase in network size is counterbalanced by more and

more central intermediaries.

Figure 11.2: Development of network positions of individual inventors.
Source: PATSTAT, own search and calculations.

Most naturally, the experience as displayed in Figure 11.3 increases with the develop-

ment of nanotechnology. This manifests itself in the average number of patents per

inventor as well as in the sheer number of star-inventors that contribute to a nanotech-

nology patent. However, by far not every team benefits from the absorptive capacity of

such an experienced inventor, even more so the share of patents that are co-developed

by a patent seems to have stagnated over the last ten years observed (while the collab-

orating stars increase). Whether this supports the development of nanotechnology as

GPT or not is investigated in the following section.

Figure 11.3: Experienced inventors.
Source: PATSTAT, own search and calculations.
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The technological background shall be assessed by the generality of backwards citations

and the variety of technological portfolios. The former is relatively constant over time

while the latter increases slightly. First of all, the constant value of BW_GEN indicates

that nanotechnology inventions still rely on a wide range of different technology fields.

This emphasises the need for the ability to cope with the need for a diverse set of knowl-

edge and competencies by the group of inventors, the achievement of which might be

the reason for the decreasing coherence of the technological backgrounds in a team of

inventors. Put differently: There is an unbowed necessity for the integration of diverse

knowledge, which is accounted for by an increasing interdisciplinarity in innovation.

Figure 11.4: Technological backgrounds of inventors.
Source: PATSTAT, own search and calculations.

Variable Obs Mean StdDev Min Max

GENERALITY 3691 0.2446 0.3006 0 0.9033
INV 3691 2.887 1.9252 1 16
COLL 3691 0.7302 0.444 0 1
EXCOLL 3691 0.1249 0.3306 0 1
MAX CD(vi) 3691 0.003 0.0061 0 0.0608
AV G CD(vi) 3691 0.0022 0.0039 0 0.0423
MAX CB(vi) 3691 0.0001 0.0004 0 0.0037
AV G CB(vi) 3691 0.0002 0.0005 0 0.006
STAR 3691 0.0707 0.2564 0 1
#STARS 3691 0.2525 0.8036 0 10
AV G_PAT_P_INV 3691 3.673 5.1157 1 66.5
BW_GEN 3691 0.3031 0.3091 0 0.9053
VAR 3691 0.7552 5.7942 0 100
CITAT IONS 3691 2.8353 5.82 0 114

Table 11.2: Descriptive statistics.
Source: own calculations.
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11.2.3 Regression Approach

Since the dependent variable is a variable with values in the interval [0,1], the variable

can be treated as a fraction. An OLS estimation approach would be misspecified in

so far as the predicted variable might lie outside this interval. Moreover, OLS implies

that a ceteris paribus unit increase in each independent variable affects the dependent

variable to the same extent regardless of its initial value. This cannot be the case, since

this would necessarily result in values exceeding the range of this interval (Wooldridge

2002). An approach to modelling fractional dependent variables is fractional logit, as

developed by Papke and Wooldridge (1996). Fractional logit models are similar to

familiar logit models except for the restriction on yielding predictions between 0 and 1

inclusive and not just its boundaries. It models the conditional expected value of the

dependent variable y as a logistic function (Wooldridge 2002):

E(y|x) =
exp(xβ)

[1+ exp(xβ)]
(11.2)

The predicted values of y are thereby also be in the interval [0,1] while the effect on

E(y|x) of any independent variable x decreases with increasing xβ. The model is based

on maximum quasi-likelihood estimations, since y is not restricted to 0 or 1. Wagner

(2001) showed that the fractional logit approach is superior to other possible methods

that can be used to estimate models with dependent variables that are (like) propor-

tions.

The interpretation of the coefficients yielded by fractional logit estimations is, however,

not straightforward. The coefficients of the fractional logit model are of similar nature

as coefficients in standard logit or probit regression: They do not hold the effects of

other explanatory variables constant since they do not equate to the first partial deriva-

tives, which makes the derivation of the second derivatives a non-trivial task (Greene

1993). Therefore, marginal effects are computed at means for all variables with 0 to

1 change for dummies. Finally, it is tested and controlled for multicollinearity (see the

correlation matrix in the Appendix H), which is why some of the variables have to be

included into distinct models.

The following models are estimated for the assessment of the four hypotheses stated:

MODEL 11.I – H11.1

G̃i = a0 + a1 INVi/COLLi + a2 EXCOLLi + a3 BW_GENi + ak Y EARk + ε (11.3)
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MODEL 11.II – H11.2

G̃i = a0 + a1 NETWORK POSi + a2 COLLi + a3 EXCOLLi + a4 BW_GENi + ak Y EARk + ε (11.4)

MODEL 11.III – H11.3

G̃i = a0 + a1 EXPERIENCEi + a2 COLLi + a3 EXCOLLi + a4 BW_GENi + ak Y EARk + ε (11.5)

MODEL 11.IV – H11.4

G̃i = a0 + a1 VARi + a2 COLLi + a3 EXCOLLi + a4 BW_GENi + ak Y EARk + ε (11.6)

11.3 Results and Interpretation

The results of the accomplished regression analyses confirm the derived hypothesis in

most of the cases as can be seen in Tables 11.3 and 11.5 as well as in Tables 11.4

and 11.6. The latter present the results of the models where CITAT IONS as a control

variable is included (see Subsection 11.2.1), in the following denoted with a prime. The

description and interpretation of the results follows in the rest of this section.

11.3.1 Collaboration (H11.1)

Remember that hypothesis 11.1 stated the conjecture that collaboration is conducive to

the generality value of a patent. Models 11.I(a) and 11.I(b) (as well as 11.I’(a) and

11.I’(b)) investigate this hypothesis in particular, the results of which can be taken from

Table 11.3 (11.4, respectively). The results of the fractional logit analyses of the two

models clearly support this hypothesis: Collaboration indeed has a significantly posi-

tive influence on the generality of a patent. This is true for all the employed variables

(INV,COLL,EXCOLL). As derived in Model 11.I(a), a patent resulting from collabora-

tion, in general, has a higher generality than a patent from one single inventor, keeping

all other variables constant at mean. More particularly, every unit increase in the num-

ber of inventors increases the generality of a patent (see Model 11.I(b)) in an econom-

ically and statistically significant way. The same is true for the effect of international

collaboration. Yet, once the number of citations is included, as done so in the models

11.I’(a) and 11.I’(b), the significance of the effect of external collaboration vanishes.

This indicates that international collaboration affects one part of the generality aspect,

namely the sheer quantity effect, but does not have an effect on the isolated effect of

breadth in application. The significance of the impact of external collaboration might

hence at least be considered with doubts. However, since the effect of collaboration

in general has proven significant and positive, H11.1 stays validated: As expected, a
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patent that is the result of a collaboration exhibits higher degrees of generality, i.e. it

is applicable in a wider range of fields. This discrete yes-or-no-relationship can even be

extended into a more continuous one: The more inventors contribute to the patent, the

more general the patent becomes.2

11.3.2 Access to (New) Knowledge (H11.2)

To assess hypothesis 11.2, it shall be tested whether the access to knowledge, proxied by

a good network position, has a positive effect on the generality. Therefore, four different

models, 11.II(a)-(d) (see Table 11.3), have been estimated since the variables employed

could not be included in one model for multicollinearity reasons. The results strongly

confirm the hypothesis: All employed variables for network positions that indicate the

extent of access to knowledge (i.e. MAXCD(vi),AV GCD(vi),MAXCB(vi),AV GCB(vi)) are

positive and significant. It does not matter wether average or maximum centralities are

included, all of the variables yield impressively significant results. Concerning degree

centrality this means, generally spoken, that better connected inventors contribute to

more general patents. More particularly, both seems important and conducive: a well

connected team on average as well as a very well connected individual within one team.

According to the results, the former situation is even more helpful. Put differently, it

is more important that all individuals are well connected than that one individual is

very well connected. This might be due to the fact that degree centrality refers to

direct connections and hence very direct access to knowledge, offering the possibility

for each individual to directly incorporate knowledge and learn through experience.

Larger individual knowledge processing abilities and knowledge stocks indeed should

be more conducive than, strinkingly spoken, one intelligent and several fools. Concern-

ing betweenness centrality and hence the intermediary position of an inventor in the

German nanotechnology innovation network, again both, the team average as well as

the maximum value are significant and with positive correlation. In this case, however,

maximum betweenness has a larger impact compared to the average group value. This

seems plausible since betweenness centrality refers to indirect connection and hence

one well connected intermediary already offers the whole team the necessary access to

different kinds of knowledge in different other fields of the network, which can then

be processed jointly. The more inventors in the group exhibit high betweenness cen-

tralities the better, however, with the confinement that this increases the probability

of redundancy which in turn does not constitute additional benefits. The results ob-

tained are indeed very similar to the ones found by Beaudry and Schiffauerova (2011)

2It is beyond the scope of this chapter to test for the impact of extreme values. I.e. it is imaginable
that the number of inventors has a decreasing effect on generality once a certain threshold value is
reached, as crowding might inhibit effective work.
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for the pure value of patents. It is, however, not straightforward that the result for the

quantitative valuation of ’usefulness’ of a patent yields such similar results. In order

to further disentangle the different forces that lead to broad applicability in contrast

to massive applicability regardless of the breadth of the fields, the CITAT IONS mea-

sure was included as test of robustness of the results (11.II’(a)-(d), Table 11.4). If this

good access to knowledge transmitted via the network was only boosting the value in

the sense of applicability in what field whatsoever, the CITAT IONS variable as a value

proxy should catch these effects and the network position variables should no longer

show any significance. Indeed, the implementation of CITAT IONS weakens the extent

to which these variables impact patent generality, however, all results stay as highly sig-

nificant as before. Hypothesis 11.2 is therefore impressively confirmed: The better the

access to knowledge transferred in the network of nanotechnology-inventors, directly

or indirectly, the better the performance in terms of generality of a patent.

11.3.3 Experience (H11.3)

Hypothesis 11.3 expresses the conjecture that experience enhances the generality of the

patent outcome of an innovation process, since experience improves absorptive capac-

ity and hence knowledge processing abilities. This hypothesis is tested by the imple-

mentation of the experience variables STAR, #STARS and AV G_PAT_P_INV in Models

11.III(a)-(c) (Table 11.5). The results obviously support this hypothesis: Both, STAR

as well as #STARS impact generality positively and significantly. Star-inventors fea-

ture high degrees of experience with successful innovation and hence with knowledge

recombination. Besides, they can be assumed to have a large knowledge stock incor-

porated. With the size also the probability of diversity within this knowledge stock

increases. The larger marginal effect of the star-dummy in comparison to the effect of

the number of stars indicates that it is more important that at least one experienced

inventor is in the team. Although more experienced inventors contribute to more gen-

erality, this effect is smaller than the latter one. This seems plausible: One experienced

team-member can help to absorb the knowledge that is gained access to and knows

how to recombine this knowledge. An additional member with such high knowledge-

processing capabilities does bring additional benefit, but less than the step from 0 to 1

star-inventor on the team. The importance of experience is supported by the significant

result of AV G_PAT_P_INV . Not only experience beyond a certain threshold value, but

on a very basic level translates into a better performance with respect to a general inno-

vation result. Beaudry and Schiffauerova (2011) find, by contrast, that this lower level

of experience does not have an impact on the (quantitative) value of a patent.
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These results show they do contribute to a better applicability in a wider range of fields,

although to a smaller extent than do highly experienced inventors. These findings

are weakened but still consistent with the findings from the models that included the

CITAT IONS measure (Models 11.III’(a)-(c), Table 11.6), which definitely points to their

robustness. Hypothesis 11.3 is hence fully supported: Experience of inventors drives the

generality of nanotechnology patents, most presumably via two channels: increased ab-

sorptive capacity and a larger (and more diverse) stock of knowledge incorporated.

11.3.4 Technological Background (H11.4)

Last, hypothesis 11.4 points to the positive impact of the non-relatedness of the techno-

logical backgrounds of the inventors, which is assessed by the implementation of VAR

and BW_GEN in Model 11.IV (Table 11.5). The empirical literature finds evidence for

the need for related variety for innovations. In the course of deriving the hypotheses,

it was argued above that the relatedness of the background could fairly be assumed

when innovative efforts culminated into a patent. Given this precondition, variety of

backgrounds should contribute positively to a particularly wide scope on innovations

as needed for a GPT to become effective. However, the findings here do not support

this, i.e. VAR is not significant. There might be two reasons for this: First, the variety

produces indeed difficulties in mutual understanding within the process of knowledge

creation and hence the assumption of the given threshold in relatedness needed for a

successful cooperation is not fair. Second, this measure might simply be too abrasive,

meaning that the variety of technological backgrounds goes too far when one mea-

sures it in terms of qualitative difference between K30 technology fields and neglects

differences and hence variety within one technological field. The second variable that

assesses H11.4, by contrast, supports the conjecture: BW_GEN has been implemented

in each of the models estimated and never proves to be insignificant. The more diverse

the knowledge underlying, again measured in terms of K30 generality, but this time

without any direct link to the inventors that incorporate the knowledge, the more gen-

eral the invention gets. This might appear straightforward at the first glance. At the

second glance, there is more beyond the obvious. First, this also implies information

on the inventors: In order to be able to process this diverse knowledge and produce

one coherent invention, inventors do have to have the capacity and ability to absorb the

relevant knowledge from their surrounding (e.g. via collaboration and good access to

knowledge in their network), to combine it with their own previously existing stock of

knowledge and finally to process all this information, knowledge and competencies to a

valuable innovation, both in terms of quantity and in terms of quality. Second, and this

is neither as obvious as the first, the convergence of knowledge definitely happens when
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one innovation is created that builds on knowledge from a diverse set of technologies.

However, it is far from trivial that this convergence translates into generality directly.

These results show that it does, to a high degree and robustly across pure quantity

effects. It is, most presumably, the result of the ’related variety’-background of the

people behind the innovation. Otherwise, i.e. with a narrow technological background,

backwards generality would not translate into forward generality, but into a specialised

(niche) innovation – or in no innovation at all. Although not as impressive as the last

validations, H11.4 should hence be seen at least as non-rejectable.

11.4 Conclusion

This chapter intends to shed light on the factors that impact the generality of nanotech-

nological innovations within the innovation processes. A special focus is laid on the

role of knowledge processing, i.e. collaboration, access to knowledge, experience and

technological background of inventors. The analysis is accomplished by the assessment

of four corresponding hypotheses, most of which could be validated completely. The

interplay of the four hypothesis is illustrated in Figure 11.5. To put each of them in a

nutshell:

Collaboration does support the generality of a nanotechnology innovation. The more

people collaborate, the more (diverse) knowledge they bring together and the more

their innovations outreach their individual knowledge frontier. Possibilities for knowl-

edge sharing, mutual learning, cross-fertilisation and also unintended (positive) knowl-

edge externalities in form of technological knowledge spillovers might occur. While

these are not measured isolatedly (and are, if at all, extremely difficult to measure),

the positive effect of collaboration on the generality of patents should incorporate all of

them to a certain extent.

Networking is a beneficial source of (new) knowledge and good networking positions

help to increase the generality of a patent, regardless of their reference to direct or

rather indirect and hence intermediary linkages. It is hence not only intra-group collab-

oration that drives generality of innovations, but also the use of knowledge resources

external to the group but internal to the innovation system.

Moreover, to be able to absorb the knowledge stemming from any sources whatsoever

and translate it into innovative generality, experience proves elementary. Both, highly

experienced star-inventors as well as marginally experienced multiple inventors con-

tribute positively to the generality of a patent. It can be assumed that this is due to two
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aspects, one being higher stock of accumulated and incorporated knowledge, the other

one being rather process-related and referring to the absorptive capacity. However, the

mechanisms were not tested and are still an open point for further research – a cen-

tral one given the scope of the effect experience showed. Last, the investigation of the

role of the technological backgrounds is the only hypothesis that cannot be supported

directly. While variety does not show a significant effect (which was supposed to be

the result of a too broad definition of variety in backgrounds), the backwards gener-

ality and thereby the variety in the knowledge the innovation is based on has a fairly

significant and positive effect on the generality. These findings show that the variety

in the underlying knowledge does have an effect on the innovative generality outcome.

Yet, since the reference to how this is processed by the inventor(s) could not be made,

further research is needed, again with respect to the underlying mechanisms.

It remains to be stated that the assessment of the factors impacting generality is a worth-

while task, particularly in delineation to (i) other, more quantity-based and hence less

information containing value indicators and (ii) in the special context of a general pur-

pose technology. In this case, generality of inventions vitally contributes to a GPT’s scope

for growth and economic development. The analyses accomplished here indicate that

the support of collaboration across diverse technological and experience backgrounds

does not only constitute a nutrient medium for a network wherein knowledge can be

transmitted, but also reinforces generality directly via this very network activity and the

improvement of the accessibility of knowledge.

Figure 11.5: Interplay of the dimensions investigated:
Each circle represents an inventor, the boundaries of which represent the different level
of experience, the filling represents the technological background and the smaller sets
of circles schematise the network relations.
Source: own illustration.
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12 Conclusion and Policy Implications

General purpose technologies are argued to be the ’engines of innovation’ or even ’en-

gines of growth’. By follow-up innovations across a wide range of fields and due to the

inherent innovational complementarities, a set of radical break-through innovations

can impact the economic development of a whole era. This impact stands and falls

with the availability and the efficient use of knowledge for the creation of innovations.

Knowledge, however, is a particular input, since it is at least partially a public good.

In modern theories of economic growth, this feature constitutes the basis for long-term

economic growth. Knowledge has a stock-character, is non-rival and not (always) fully

excludable, which results in huge opportunities for the employment of knowledge in

innovation. Knowledge, once created, can be re-used and re-employed in other con-

texts and develop additional economic value at lower additional costs or even at no

additional costs at all. Yet, given the particular relevance of tacit knowledge for techno-

logical innovations, the accessibility and the diffusion of knowledge are dependent on

geographical space: (Tacit) Knowledge does not travel frictionlessly. The efficiency of

(tacit) knowledge sharing depends on the distance between source and recipient of the

knowledge and hence geographical proximity is crucial. Innovation-intensive technolo-

gies can therefore benefit extraordinarily well from knowledge, if the (local) organisa-

tion of knowledge access and knowledge sharing is ensured. Since GPTs are particularly

intensive in innovation and since innovation is steadily reinforced through the GPT’s in-

herent dual inducement mechanism, knowledge access and knowledge sharing should

be of similar importance for their development. Moreover, GPTs develop their huge

effect on economic growth due to their applicability in a wide range of fields. This

introduces the relevance of cross-fertilisation, i.e. the employment of knowledge from

one context into a completely different one that, at the end, benefits innovations in both

fields. This puts an emphasis not only on the stock of available knowledge, but also on

its complementarity and its composition. Last, the huge effect of GPTs on economic

growth is curbed by sub-optimally low levels of innovation that arrive too late. This

is due to externalities and uncertainty. The coordination of the use of knowledge is

instanced as a remedy for these market-failures, another way in which the organisation

of the employment of knowledge would enhance the development of a GPT.
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12.1 Findings and Summary of Results

The common thread running throughout the empirical analyses of this paper is the in-

vestigation of the interaction of knowledge and the particular features of a GPT with

respect to the promising effects on economic growth. Therefore, the development of

nanotechnology as key technology of the future and showcase GPT is studied in depth.

More particularly, the research accomplished in this thesis intends to shed light on two

major sets of questions. First, the impact of the composition of knowledge and the cor-

responding localised knowledge spillovers is subject to investigation. In this context,

spillovers are treated as abstract as done in most of the literature on spillovers and no

concrete mechanisms, but rather the potential for spillovers, is analysed. The second set

of questions puts the focus the other way around: The concrete mechanisms of knowl-

edge transmission, in which spillovers are assumed to be inherent, are analysed rather

than the composition of knowledge, which is mainly abstracted from.

The empirical analyses of this thesis are subdivided in three working packages, the re-

sults of which are summarised separately in the following (for a summary on the set-up

and contributions of each analysis see Subsection 4.2).

12.1.1 Building Blocks – Working Package 1

Working Package 1 constitutes the building block for the rest of the empirical analyses.

It is thus first of all investigated whether the characteristics of nanotechnology are in

line with the typical features of a GPT. The second part of the first working package

consists in developing hypotheses and exploring the topic around (local) knowledge,

innovation and GPTs by studying the case of nanotechnology in Hamburg, Germany.

The analysis in Chapter 6 reveals that nanotechnology can indeed be considered as

an emerging GPT. Nanotechnology was not unambiguously considered to be a GPT

before. But by offering a coherent and systematised analysis based on patent and pub-

lication data that altogether expanded the set of the existing studies, the analysis ac-

complished in this chapter strongly proves the point. Moreover, evidence is supported

that nanotechnology is a merging technology. This is important since the convergence-

character often comes along with the GPT character, but has important implications for

the processing of knowledge that reaches beyond the impact of the GPT characteristics:

Individuals need to be able to combine knowledge from different fields already in the

process of innovation creation. Then the diffusion of these innovations across a wide

range of fields ensures the development of the GPT characteristics.
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The analysis in Chapter 7 with the aim of revealing relevant issues in the context of

knowledge, location and innovation in GPTs, is of rather explorative nature: Hypothe-

sis are tested, indicators are explored, developed and employed and anecdotal evidence

is searched for. This case study, besides exploring the concrete situation of Hamburg,

hence offers the basis for the rest of the empirical research accomplished by pointing at

the need for systematisation of the issues related to the two working packages to follow:

The development of nanotechnology is assumed to anchor into existing industrial spe-

cialisation patterns. Moreover, specialisation and diversity and with them the Marshall-

Jacobs controversy are indicated to be an important and non-neglectable aspect in the

context of the localised development of nanotechnology (referring to Working Package

2). Furthermore, collaboration occurs, which bears knowledge sharing and the very

probable possibility of positive knowledge externalities to become effective since it is a

central mechanism for knowledge transfers (Working Package 3).

12.1.2 Knowledge Composition and Localised Knowledge Spillovers
– Working Package 2

The analyses in the preceding chapters provide strong evidence for the importance of

knowledge composition and localised knowledge spillovers for innovation in general

purpose technologies, which is why Working Package 2 investigates the issues in more

depth.

Chapter 8 employs patent applications as proxies for the technological knowledge base

of German regions to investigate the impact of its characteristics and the assumed corre-

sponding knowledge spillovers on subsequent knowledge creation, again approximated

by new patent filings. Four sets of characteristics are then analysed by the means of

negative binomial regression analysis: The role of the anchorage, the impact, and the

dynamics of specialisation and diversity and the diffusion from scientific to technolog-

ical innovations. It is found that the fitness of the NKB to the regional specialisation

patterns influences new knowledge creation positively, as well as specialisation and

diversity do. This is in line with the expectations, since nanotechnology as a GPT poten-

tially benefits from both, industry-specific externalities from specialisation (as instanced

to be conducive to leading-edge innovation in high-technologies) as well as city-specific

externalities from diversity (as necessary for the deployment of the generality feature of

nanotechnology). The availability of scientific knowledge drives technological innova-

tions, too, pointing to the necessity of technology transfer. However, no clear results are

obtained for the temporal structure of the relative importance. The findings suggest,
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in contrast to the hypothesis, that specialisation is particularly relevant in later stages,

which might indicate the need for specialised knowledge in exploitation-related phases

of the development of nanotechnology.

In Chapter 9, a different approach to explore a similar issue is pursued: The central

question is again how the composition of knowledge influences the development of na-

notechnology. Here, employment data and data from a survey designed exclusively for

this purpose are employed to analyse the effect of local knowledge characteristics on

firm growth in nanotechnology. Moreover, the research question is narrowed, aiming to

disentangle the preponderance of nanotechnology as a high-technology with the neces-

sity of specialisation externalities or nanotechnology as a GPT, pointing to the role of

city-specific diversity externalities. Again, it is no surprise that the OLS regressions em-

ployed found that local knowledge endowment indeed positively influences firm growth

in nanotechnology. This points to the importance of access to knowledge and to po-

tential knowledge spillovers. Local knowledge specialisation, by contrast, surely is not

always positively affecting the growth of individual firms. Put in another way, in most of

the cases, no positive impact of specialisation on the employment growth of nano-firms

was found in the OLS and panel analysis conducted. Referring to the preponderance

of high-tech or GPT features with respect to the relevance of the surrounding, GPT fea-

tures seem to outweigh high-tech ones.

The main findings of this Working Package 2 can hence be summarised as follows: The

assumption that the development of nanotechnology anchors into existing industrial

specialisation patterns is supported by both, the analysis in Chapter 7 and the analysis

in Chapter 8. Moreover, specialisation and diversity of the nano-knowledge base both

prove to be driving the development of the technology, although no clear dynamic im-

pact pattern can be disentangled. Hence regional assets do play a role for innovation

in GPTs. Regional knowledge bases, therefore, can be seen as a suitable entity to de-

sign proper innovation policies. Furthermore, Marshall as well as Jacobs made a point

in the context of GPT innovations. Industry-specific externalities can be assumed to

support leading-edge innovations in distinct application fields, while city-specific exter-

nalities drive the development of nanotechnology as a multipurpose technology, e.g.

by inducing spillovers and offering access to complementary knowledge. Both kinds of

spillovers, following the results of the accomplished analyses, can be seen as important

in the innovation processes of GPTs by offering opportunities for knowledge-sharing

and at the same time providing an incentive to innovate within regions. Thereby, inno-

vative activity can be increased and speeded up. With the view on the preponderance

of specialisation and hence high-tech characteristics versus multipurpose GPT-features,
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specialisation within one industry does not always support the employment growth of

nanotechnology firms, thereby pointing, once again, to the relevance of the considera-

tion of particular GPT features for designing innovation policies in this context.

12.1.3 Collaboration and Knowledge Sharing in Networks – Working
Package 3

Working Package 3 intends to shed light on how knowledge is transmitted in networks,

is processed for innovation and how this contributes to the development of nanotechno-

logy as a general purpose technology. In contrast to Working Package 2, where knowl-

edge transfers are assumed to occur and the composition of knowledge is in focus,

this Working Package focuses on the afore neglected mechanisms of transfer. To be

precise, an emphasis is put on collaboration and networking as central mechanisms

for knowledge transmission, very probably including knowledge spillovers. Collabo-

ration is pointed out to be of particular importance for the development of GPTs in

general and nanotechnology in particular. The organisation of knowledge-sharing in

networks is suggested to trigger spillovers that reduce the (social) cost of innovation by

re-employing already gained knowledge several times in different contexts. Moreover,

networking could result in cross-fertilisation effects that boost both, direct innovations

as well as indirect innovations through the enhancement of the applicability of the GPT

and thereby elevate its effects on aggregate economic growth.

The analysis in Chapter 10 is conducted by constructing co-inventorship networks in

German nanotechnology. These networks are then assessed and evaluated in terms of

their effectiveness by means of social networks analysis. The assessment shows that

collaboration increases with the productivity of the technological system of innovation.

The number of distinct inventors in the system, the share of collaborations and the team-

size increase, while the relative importance of international collaboration decreases.

More particularly, the organisation of collaboration in the networks of the different pe-

riods becomes more and more efficient. Hence, not only the opportunities and the

conversion of knowledge sharing improves, but also the network properties develop

towards a more fertile and productive system of knowledge transmission. Last, the

analysis reveals a large potential for knowledge sharing across disciplinary boundaries.

This network of technological overlap, moreover, develops towards a centre-periphery

structure with diversified innovators in the centre and specialised innovators in the pe-

riphery. Chapter 10 hence points to the importance, the opportunities and the use of

coordination and cooperation in the network of innovators in Germany. It thus provides

resilient evidence that collaboration indeed drives innovation. Moreover, coordination
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and cooperation were instanced as a remedy for the market failures that occur on the

horizontal as well as on the vertical level of a GPT’s various value creation chains. Col-

laboration in networks seems to be a sensible mechanism to internalise some of the aris-

ing market failures into networks and thereby raise the level of innovations as well as

speed up the innovation processes through sharing of relevant pre-adoption knowledge.

The results of Chapter 10 suggest that networking can still be improved in terms of

expansion and efficiency. Particularly and on a more regional scale, opportunities for

cross-disciplinary collaborations exist that can be exploited. Chapter 11 more precisely

zooms in on how generality and thereby the degree of the ’generality of purpose’, which

is strongly correlated with the (potential) impact of a GPT on economic development, is

reached and enhanced. Fractional logit regression analyses are employed to disentangle

the different factors that might impact the generality of purpose, i.e. the applicability

across a wide range of fields particularly in contrast to the mere applicability in any

one field. First of all, collaboration proves to be of outmost importance by bringing

together different sets of acquired knowledge. Then, particularly the network position

and hence the access to diverse sources of (locally) existing knowledge is conducive as

well as the team’s ability to incorporate knowledge received in this manner. Another

crucial aspect is the extent to which the processed knowledge is diverse and ’general’.

Hence, the creation of a ’better’ in terms of ’broader’ and hence ’more impacting’ GPT

can be fostered by collaboration of the right innovators with a suitable composition of

knowledge, skills and meta-competencies.

The findings of Working Package 3 are hence clear: The productivity of the nanotech-

nology innovation network increases with intensity and the efficiency of collaboration

in networks, suggesting a strong causal relationship. Factors impacting collaboration

are diverse and include geographic proximity, technological proximity, technological

complementarity, overall knowledge composition, experience, strategic network posi-

tions and much more. Since collaboration in networks is regarded as a powerful and

well-oiled mechanism for knowledge sharing, in particular for knowledge transfers and

knowledge spillovers, it can be assumed to boost innovation in GPTs. More precisely,

knowledge externalities occur, knowledge production can be coordinated and hence

the arising market-failures in the innovation processes of a GPT can be met. Moreover,

collaboration of centrally positioned, experienced innovators who incorporate to some

extent complementary and new knowledge is found to enhance the level of generality

and thereby a GPT’s impact on the overall economic development.
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12.2 Main Conclusion

In brief, this thesis investigates how the access, composition and transmission of knowl-

edge impacts the development of a GPT; more precisely the development of nanotech-

nology as an emerging GPT. The literature revised in the theoretical part of this thesis

suggests that general purpose technologies act as an engine of growth through innova-

tion. Innovation, by contrast, is strongly relying on knowledge. The particular features

of knowledge as a partially public good open up huge opportunities for boosting the

innovativeness in GPTs and thereby its economic impact. The innovation processes of

GPTs are, in turn, hampered by similarly occurring externalities on the horizontal and

vertical level of the value creation chain that lower the total level of innovations as well

as by uncertainties that decelerate the pace of innovations. The empirical analyses in

this thesis, first of all, show that nanotechnology is a suitable example for an emerging

GPT. Location is found to be an important dimension due to the fact that tacit knowl-

edge only diffuses to an extent limited by spatial proximity.

The analysis around the role and the composition of the local nano-knowledge base as

well as the corresponding knowledge spillovers provides evidence that the local knowl-

edge base is important for the development of innovations in nanotechnology. Most

presumably this is the case due to knowledge transfers that are not invariant to dis-

tance and due to arising knowledge spillovers. Moreover, not only the access to any
knowledge, but also the composition of nanotechnological knowledge is of importance

for innovative activity and hence for a GPT’s impact on growth. The regional special-

isation pattern, for instance, influences the development of nanotechnology insofar, as

the degree of fitness of nanotechnological applications with the regional specialisation

pattern has a positive impact on innovativeness. Also in this context, Marshall as well

as Jacobs spillovers can be considered conducive on a regional scale. Both kinds of spill-

overs seem to support the development of both characteristics inherent in nanotechno-

logy, the ones of a knowledge-intensive high-technology and the ones of a widespread

general purpose technology. The latter seem to outbalance the former on the level of

the individual firm.

Concerning the role of knowledge sharing and collaboration in networks more con-

cretely, the analyses identify several strategies to boost the impact a GPT can have on

economic growth by more precisely investigating the important knowledge transmis-

sion mechanisms of collaboration and networking. The performance of a GPT can be

enhanced through collaboration by offering efficient means for the organisation and

coordination of knowledge sharing and knowledge spillovers. Arising externalities can
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be internalised into the network and eventually foster an increase in the technology’s

generality level due to knowledge sharing in teams and networks. Collaboration in net-

works hence is rightly seen as means of innovation enhancing knowledge sharing, even

more so in the context of a GPT.

This thesis sets out to investigate how the development of GPTs as engines of growth

can be sustained by the access to knowledge. Due to the wide scope of this question it

has to be narrowed substantially. To be able to finally find a qualified answer the ques-

tion is constrained on the role of the composition of knowledge as well as the impact

of knowledge sharing. Both are found to be relevant for the development of a GPT,

in particular of nanotechnology. Knowledge hence gains when it is shared, particularly

when knowledge of the right composition is shared and complemented. Knowledge

sharing drives innovation in manifold manners and thereby impacts GPTs as engines of

innovation in a multiplicative way: Knowledge sharing operationalizes the re-use and

re-employment of knowledge in different contexts, which lowers the costs and increases

the productivity of innovations in general. Knowledge sharing induces cross-fertilisation

and thereby enhances the wide applicability as well as the dual inducement feedback

mechanism within the innovation processes of a GPT. Knowledge sharing directly im-

pacts the generality of innovation and thereby the scope of a GPT and its impact on

economic growth. Knowledge sharing offers mechanisms of coordination and reduces

uncertainty and thereby increases innovative activity in GPTs in particular. Providing

well-designed framework conditions for the development of a supportive knowledge

base and the intensification of knowledge sharing are therefore suggested to be able to

sustainably support the working principles of the engine of growth GPT.

Concerning the indicated threefold contribution of this dissertation to the state of the

art, it can be concluded that the findings delineated above comply with the promise:

With the contribution to the Marshall-Jacobs controversy and the role of networking

for innovation, the understanding of the working principles behind knowledge, knowl-

edge transfers and innovation in general are enhanced. Even more compellingly, all of

the results enrich the comprehension of how innovative activity in GPTs contributes to

its effects on economic growth. Last, the policy implications derived from the state of

the development of nanotechnology in the light of the findings on innovation-inducing

factors are yet to follow below.
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12.3 Limitations and Future Research

There is a number of limitations that restrict the findings and therefore have to be kept

in mind when discussing the results of the preceding analyses. Yet, there are even more

issues beyond the scope of this thesis that are nevertheless of huge importance for the

understanding of the role of knowledge sharing for innovation in general purpose tech-

nologies. The former have already been instanced throughout the course of this work,

yet, they are summarised for the sake of completeness and to avoid overestimation of

the results.1 The latter is introduced in form of future research propositions.

12.3.1 Limitations

The main limitation to the interpretability of the results obtained is that nanotechno-

logy is still an emerging GPT. On the one hand, it was chosen as showcase particularly

because of the importance to understand innovation processes in this field in order to

be able to support them and ensure optimal effects on economic growth. On the other

hand, emergence implies change. This means that all the results obtained have to be

regarded as snap-shots of the development up to today. Since the configuration of na-

notechnology’s innovation system is not yet stable, a straightforward interpolation of

past trends into the future should only be dared with extreme caution. Yet, the anal-

ysis of the past points to relevant issues and offers explanations for the development

nanotechnology has taken. Moreover, it traces the path of the technology’s transition

towards a stable situation, whereby more recent configurations are already more sta-

ble than former ones. Thereby, the analyses allow for insights in how the technology

could develop and how it could be supported. Note, however, that findings are not

mandatory, there is no path dependency in the development of an emerging technology

that becomes stable over time. However, the importance of the ex-ante analysis of a

GPT underway, its development, the relevant issues and possible policy measures that

support its impact on economic growth outweighs the instable character of results and

predictions, which is why nanotechnology still is the best choice as a showcase example.

Another issue when discussing the limitations of this thesis is the underlying data.

Given the emergent state nanotechnology is in, basic research is still very important.

This research commonly culminates in publications rather than patents. However, par-

ticularly for the network analyses, the relevant publication data to build up networks

could not be accessed. Therefore, the second part of the thesis mostly relies on patent

data, keep in mind that application-related research in nanotechnology is even more

1Note, that only the main structural limitations will be mentioned again. For minor limitations see the
corresponding analysis itself.
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emergent than scientific research. Furthermore, working with patent data is fruitful

due to the excellent availability of the data and the huge amount of corresponding in-

formation. On the other hand, the nano-patent database, in most cases the basis for the

accomplished analyses, depicts only an imperfect picture of actual nano-innovations.

Not all innovations are patentable, not all nano-patents are contained in the database

and others are that are not nano-related. Needless to say that similar analyses to the

ones conducted above with a notional database concluding all nano-innovations could

possibly lead to other results. However, the probability that all the deducted results

would not hold in such a case is extremely small.

Moreover, another methodological drawback is the lack of traceability of the transmis-

sion of tacit knowledge, notably knowledge spillovers through (common) indicators.

This issue is approached by two evasions. Innovations in form of patents are under-

stood as including also the tacit dimension – not necessarily by the information on the

patent itself (since this is mostly textbook codified knowledge), but by the tacit knowl-

edge needed to create such an innovation in the first place. By dispensing with concrete

traceability at all, an approach chosen in Working Package 2 around the composition

of knowledge, knowledge spillovers were simply assumed to occur. Thereby, it is re-

lied on empirical evidence for the high probability of their occurrence in knowledge

contexts. Using this approach, particular emphasis is put on how knowledge stocks

are characterised. Another way is to build on the findings that tacit knowledge needs

proximity and at best face-to-face contacts to be transferred. This approach does not

distinguish systematically between intentional knowledge transfers and unintentional

spillovers since the latter is assumed to arise with the former. It is employed when the

concrete mechanism is in focus. Another possible way to trace transfers with patent-data

is the in depth-analysis of patent citations. Yet, these operationalizations stay indirect

and hence are far from being perfect. Therefore the deducted results have to be treated

with care.

12.3.2 Future Research

The empirical work accomplished in this thesis often is pioneering work. As stated in

the motivation for the research on this topic, the precise relationship of knowledge,

innovation, location and GPT characteristics has not been subject to investigation be-

fore. Therefore, each of the conducted analysis could be refined, re-tested and verified.

There is thus no doubt that there is plenty of room for further research. Next to perform-

ing similar analyses with different data, several empirical extensions seem particularly

worthwhile.
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First of all it has to be stated that this thesis started with the interest in the role of

knowledge for innovation in general purpose technologies. However, to operationalize

the issues the analyses are conducted using the showcase example of nanotechnology

after having provided evidence for this technology to be an emerging GPT. Therefore, a

replication is necessary in order to confirm the results deducted for this particular case

for other context. Particularly due to the emerging character of nanotechnology and

the inherent pressure of change, it would be insightful to replicate the analysis with a

GPT in a more stable configuration. This would be particularly worthwhile for a com-

parative scope. It would, moreover, allow for detecting whether the discovered factors

impacting the development of nanotechnology are generalizable. Moreover, strengths

and weaknesses in the German nanotechnology environment could be revealed, or the

performance of nanotechnology as well as the predicted opportunities could be evalu-

ated and related to the corresponding framework conditions.

Moreover, the network analyses could be narrowed down to a regional level. Then,

framework conditions and performances of different regions could be compared and

the most important network structures for the efficient transmission of knowledge on a

regional scale could be disentangled systematically. It is imaginable that productive re-

gions become best-practise examples for weaker regions; the diagnosis for their weaker

performance could be delivered by network structure analysis of multiple agent net-

works. Particularly the network of technological overlap is interesting for regions since

it depicts a map of potential cooperation partners who could create substantially im-

portant innovations if they collaborate. The analytical benchmarking of actual regional

collaborations against the potential for innovations or the benchmarking of the network

efficiencies against actual economic performance could be insightful in this respect.

Another concrete idea in the context of the extension of this thesis would be to con-

nect the input into GPT innovations to the output in terms of concrete growth. Such an

analysis would allow for the investigation of the growth-promoting frameworks through

the direct mechanisms that are at work when the GPT impacts growth. Variables to in-

clude could be, following the above deducted results, R&D expenditure for the GPT,

knowledge background of the agent, experience, knowledge composition in the region,

spillovers at work, network position of the agent, network structure of the region, etc..

In this context, it would be particularly insightful to identify gatekeepers and brokers of

knowledge. These could be the local repository of knowledge able to recombine existing

ideas from various resources. Thus, they should be extraordinarily well-performing and

enhance the productivity of the system by connecting regions with external knowledge.
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The role and evolution of electronic communications versus direct face-to-face commu-

nication is widely excluded in this thesis. The argument for doing this is that the transfer

of embodied knowledge needs direct contact between individuals to flow successfully.

Yet, electronic communication increases in importance and can occur instantaneously

at any distance with no decay. Gaspar and Glaeser contended in 1997 that the interper-

sonal dimension can be hidden in electronic communication and the content of what is

communicated can be much more strategic. While it is true that electronic communi-

cation was restricted in so far that direct contact still allowed individuals to exchange

way more than information this might be subject to change at present. With the ’web

2.x’ and social media, channels to transport more than information via new media have

emerged. In this vein, electronic and face-to-face communications might evolve from

complements (Henderson 2007) to substitutes. A large area for future research is hence

the investigation of the possibilities of information and communication technologies for

the transmission of tacit knowledge and the correspondingly renewed discussion of the

role of geographic proximity at present and above all in future.

Another important aspect in the same vein is the impact of open innovation. This new

paradigm is frequently discussed in the context of networking, innovation and technol-

ogy and hence directly related to the issues assessed in this thesis. Open innovation

thereby refers to the use of purposive inflows and outflows of knowledge to accelerate

firm-internal innovation and expand the markets for the external use of the innovation.

Within this paradigm, R&D is treated as an open system, where knowledge from the

outside and from the inside are both employed to develop innovations (Chesbrough

2008). The difference to the approach pursued in the current thesis is the notion of the

’system’ of openness, which expands the idea of networks of collaboration considered

here far beyond the occasional exchange of knowledge for innovation. Due to both, the

emergence of the knowledge economy as well as the high levels of the state of the art

in industrialised economies in conjunction with the already mentioned predominance

of the internet, the investigation of this phenomenon, its propositions, institutional un-

derpinnings and the corresponding consequences might be important to understand the

relationships around GPT as engines of growth as tackled in this thesis in the future.

12.4 Policy Implications and Recommendations

This thesis investigates how new knowledge is created, accumulated and shared, thereby

contributing to innovation in GPTs. Interested in how the particular features of GPTs im-

pact these processes and how these processes impact the development of GPTs in turn,

the empirical analyses are accomplished in the context of nanotechnology as a showcase
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example. Given the results obtained, sensible policy implications can only be derived

for this particular GPT, whereas its emerging and therefor snapshot character has to be

kept in mind. More research would be necessary to derive policy implications for the

support of growth-sustaining GPTs in general. Yet, even in the context of nanotech-

nology, implications and recommendations for economic policy can only be tentatively

derived and given, since nanotechnological development is only at its beginning and

data is still very scarce. Hence, the implementation of policy instruments should go

along with continuous observation and analysis of nanotechnology’s status quo and its

development. Being aware of all the limitations inherent in the accomplished analyses,

some preliminary implications can be derived that build on the following aims of Euro-

pean and German economic policy with respect to nanotechnology.

European and German policy towards the development of nanotechnology are closely

geared. On the European level, the recently expired nano strategy in the context of

the seventh framework program (FP-7) (European Commission 2004, 2009) is actually

becoming redesigned with, among others, the aim of maximising the contribution of na-

notechnology to sustainable development and cross-cutting and enabling R&D (BMBF

2011b). Foci of the EU nanotechnology policy, however, include international collabo-

ration, interdisciplinary collaboration and networking. Policy instruments aim to create

arrangements that institutionalise the development of internationally and institution-

ally diverse research networks, e.g. by improving the mobility of researchers and sup-

porting long-term research collaborations (Pandza et al. 2011). The German federal

government further itemises these goals in the ’action-plan 2015’ (BMBF 2011a). There

it is stated that potentials of nanotechnology shall be exploited and nanotechnology

shall contribute to growth and innovation in Germany. The federal government sees

an already existing network of infrastructure which shall be extended. Three supposed

instruments are of further interest in the context of this thesis: So called ’alliances for in-

novation’ (Innovationsallianzen) shall develop a leverage effect on economic growth by

setting-up long-term R&D strategies as well as a pre-defined division of labour, time and

budgets. Moreover, regional cluster (’Spitzencluster’) policies shall promote strategic

partnerships of firms, research institutes and other regional actors in order to support

the development of commercialisable high-technologies. Last, Germany’s top-position

in the international development of nanotechnology is to be advanced through interna-

tional cooperation (BMBF 2011a). With respect to the goals of the European/German

nanotechnology policy in terms of economic growth and taking into account the pro-

posed policy instruments, the following preliminary policy implications can be deducted

from the results of this thesis.
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First of all, the investment of (public) R&D into nanotechnology seems to be promising.

Nanotechnology can be considered as a GPT, thereby potentially contributing heavily

to economic growth. The theoretical models on GPTs show that due to only imper-

fect appropriability and occurring uncertainties, innovation in GPT arrive too late and

to a too little extent, in principle legitimating governmental intervention. The support

of nanotechnological R&D is, due to positive externalities, an obvious way to advance

the technology. This is already done (as sketched in Chapter 6): In recent years, the

German government spent around 15 million Euros annually, complemented with more

than a billion (in 2007/8) from the EU. However, the output of these investments is

assumed to be still way below its potential. The results of this thesis go one step further

since they include some findings on how public and private investments can become as

efficient as possible.

The analyses on the role of knowledge composition and localised knowledge spillovers

brought up evidence for the importance of compatibility of nanotechnological knowl-

edge with the overall regional knowledge base as well as for the impact of both, special-

isation and diversity. These findings suggest that a one-size-fits-all cluster policy might

not bring the intended results for the development of nanotechnology. By contrast, iso-

lated nano-clusters might even be counterproductive with view on the preponderance

of nanotechnology’s GPT features. Specialisation, however, is conducive to nanotech-

nological development if diversity is not suppressed. Hence, a policy recommendation

would be to thoroughly investigate each and every regional specialisation pattern and

the opportunities for nanotechnological application within these specialisation patterns

when aiming at setting up cluster policies. Moreover, framework conditions should en-

courage local agents to choose a not too narrow scope: Research should touch upon

diverse technological fields in order to possibly enable and trigger manifold starting

points for other agents from at best other technological fields to involve in cross-cutting

R&D in nanotechnology. This, in turn, exposes the necessity for agents to be able to

build up the specific capabilities to manage innovation in such diverse and interdis-

ciplinary networks. Policy measures to support the development of such ’absorptive

capacities’ seem sensible in this respect, thinking about the creation of multidisciplinary

study programmes to educate researchers in cross-border thinking or leadership work-

shops that bring together different researchers from different disciplines.

The importance of the role of collaboration and networking is also particularly high-

lighted. Hence, even more with the need for diversity, the opportunities of cross-

fertilisation and the corresponding impacts on the generality of innovation the support

of regional collaboration seems promising. Therefore, institutions of technology trans-
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fer, technology platforms or distinct cluster institutions and other local players might

act as connecting device for bringing local agents with similar but complementary in-

terests, knowledge and competencies together. Picking up the instrument of ’alliances

for innovation’, the role of such alliances could hence be to develop region-wise strate-

gies that set up research programmes, link agents, enable cross-fertilisation and thereby

support both specialisation as well as diversity. The envisaged support of international

collaboration seems sensible in order to connect to world-wide leading-edge research.

However, the results of this thesis indicate that the inter- and intra-regional collabora-

tion is even more crucial.

These policies do not have to start from scratch. By contrast, it can be built on exist-

ing policy measures and best-practise examples. However, in some case modifications

or special care might be necessary: There are several attempts to build up nanotech-

nology clusters in Germany that, in most of the cases, do support the development

of a particular field of nanotechnology depending on the local structures. The initia-

tive ’networking for innovation’ (Kompetenznetze Deutschland), for instance, points

to the existence of clusters with the topic micro-nano-opto, such as ’cc NanoBioNet’,

’Cluster Nanotechnologie’, ’Kompetenznetz für Materialien der Nanotechnologie’ and

the ’Nanotechnologie-Kompetenzzentrum Ultradünne funktionale Schichten’. Yet, in

order to avoid counterproductive and lock-in effects of such cluster policies, the open-

ness and support of interdisciplinary cooperation seems of importance. To account for

the necessity of compatibility, specialisation and diversity, existing nano-clusters should

somehow become connected to the regional strengths, thereby paying attention to all

possible connections with a particular eye on diversity. Imaginable instruments could

be public research funding, creation of institutions of technology transfer, public private

partnerships, research prizes, etc. that allow to direct a focus towards the integration

of new fields. Another example for implemented policy measures that are worth to be

pursued and extended is the example of the ’Centre for applied nanotechnology (CAN)’

in Hamburg (see Chapter 7). This public private partnership ensures the tying into

the regional specialisation patterns by acting as an interface of technology transfer and

connection of competencies at the same time with a focus on the previously existing

local economic structure with a specialisation in life sciences. Such institutions could

become a best-practise example for institutions that coordinate cooperation and help

agents to find suitable partners, thereby enabling cross-fertilisation. With regard to the

emerging character of nanotechnology and the corresponding high costs for knowledge

production due to necessary technology platforms, such institutions are of particular im-

portance: They can offer access to the costly infrastructure and to the tacit knowledge

flowing in the network at the same time. This is not even constrained to one field, but
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the platform can be accessible for researchers from any discipline thereby constituting

an interface for the establishment of cross-fertilisation.

As it appears from the results of this thesis, framework conditions should hence be

set in such a way that the given regional strengths and weaknesses are taken into ac-

count when promoting both, specialisation and diversity of nano-knowledge for the

development of nanotechnology in regions. Moreover, the framework for collaboration

should be as open and encouraging as possible, since collaboration enables the efficient

sharing of knowledge and supports the generality, the applicability and subsequently

the impact nanotechnology has on economic growth. By positioning the regional nano-

knowledge bases similarly, a sustainable nutrient medium for innovation and growth

could eventually be established.
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A General Purpose Technologies

To put this dual inducement mechanism more formally and strictly following Bresnahan

and Trajtenberg (1995), a given GPT with a quality z is provided to the application

sectors for the price w. The profit decreases when w increases. The technology level Ta

can be chosen by the downstream sectors by controlling their R&D-activity. Ta correlates

positively with the profit of the application sectors, as well as with z. The application

sectors act profit-maximising when

max
Ta

πa(w,z,Ta)−Ca(Ta) (A.1)

where Ca denotes costs for innovation in application sectors and πa are the gross private

returns to technological advance. With the innovational complementarities given by

πa
zTa =

δ2πa(w,z,Ta)

δzδTa
≥ 0 (A.2)

it follows that the marginal value of enhancing the application sectors’ technology in-

creases with z. The technology investment function

Ta = Ra(z,w) (A.3)

follows from the first order condition for (A.1). With d2Ca

d2Ta
> 0 and the second order con-

dition (δ2Ca

δ2Ta
< 0), Ra is upward sloping in z. This implies that a technological improve-

ment of the GPT results in complementary improvements in the downstream sectors.

Modelling the profit-maximising behaviour of the GPT sector yields

max
z

πg(z,TA,c)−Cg(z) (A.4)

with Cg(z) denoting the innovation costs (with dCg(z)
dz > 0 and d2Cg(z)

d2z > 0), c is the con-

stant marginal production cost for the good embodying the GPT and TA the aggregate

technological level of all application sectors.

313



A General Purpose Technologies

Assumed πg(z,TA,c)≡max
w

(w−c)∑
a

Xa(w,z,Ta), whereas ∑
a

Xa(w,z,Ta) is the (conditioned)

input-demand of all application sectors, with the first order condition this gives

z = Rg(TA,c) (A.5)

Because z depends on TA and therefore on every single Ta, the GPT-firm reacts on

changes in Ta in the following way:

δRg(TA,c)
δTa

≡
δ2πg(z,TA,c)

δzδTa

−δ2πg(z,TA,c)
δ2z + d2Cg(z)

d2z

(A.6)

It is assumed that each application sector behaves as if δw(z,T,c)/δTa = 0, i.e. the ap-

plication sectors do not account for the price change in the GPT that is induced by a

technology improvement (Bresnahan and Trajtenberg 1992). The innovational comple-

mentarities (see A.1), from which δ2∑aXa(w,z,Ta)
δzδTa

> 0 follows, lead to δ2πg(z,TA,c)
δzδTa

> 0. The

second order condition gives δ2πg(z,TA,c)
δ2z < 0. Thus

δRg(TA,c)
δTa

> 0 (A.7)

Hence Rg is upward sloping in TA. Thus private return to investment in z increases with

TA.1 The incentive to innovate for the GPT sector is interrelated with the behaviour of

the application sectors since innovations in the GPT sector raise the return to innova-

tions in each application sector and vice versa. The choice of the quality of the GPT z

and the technology level TA are therefore complements.

1For a more detailed modelling of application sectors and the GPT sector see Bresnahan and Trajtenberg
(1995).
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B Methodology and Data

B.1 European Patent Application

Figure B.1: European patent application.
Source: EPO.
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B.2 PATSTAT diagram

Figure B.2: PATSTAT Diagram, September 2010.
Source: European Patent Office (2010).
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B.3 Search Terms

B.3 Search Terms

B.3.1 Nano-Patent Search Term

The query that identified nano-patents was generated searching for the following terms

in title and abstract (referring to Mogoutov and Kahane (2007), Glänzel et al. (2003)

and Porter et al. (2008)):

nano; carbon tube; mechanical resonator; quantum dot; low dimensional system; semiconductor structure; li batter; solar cell; carbon composite;
carbon fiber; field emitter; crystal memory; emission propert; thin film; carbon film; film deposit; gold catalyst; tube modified; gold particle; plga
particle; heterogeneous catalyst; composite powder; tribological propert; composite coating; composite coating; silicate, composite; clay composite;
polymer composite; composite prepared; coating deposited; lipid particle; al2o3 composite; coating produced; sol method; semiconducting material;
diamond film; mesoporous material; soft magnetic material; primordial protein; block copolymer; hydrogen storage material; zinc compound; clay
composite; walled carbon; metallic carbon; semiconducting carbon; single carbon; surface plasmon; finite-difference time-domain method; chemisorp-
tion; atomistic simulation; tio2 solar; sensitized tio2; dye solar; sensitized solar; electrochemical performance; induced deposition; field emission;
vapor deposition; crystalline diamond; chemical vapor; ion implantation; plasma chemical; magnetic fluid; crystalline silicon; crystal morphology;
laser ablation; laser deposition; beam epitaxy; sputtering; molecular beam epitaxy; mesoporous silica; solid lipid; drug carrier; enhanced raman; co
oxidation; direct electrochemistry; electrode modified; raman scattering; immunosensor based; resonance light; modified glassy; glucose biosensor;
biosensor based; electrochemical biosensor; drug delivery; modified electrode; amorphous alloy; delivery system; surface chemistry; ball milling; drug
release; heterogeneous catalysis; spark plasma; supramolecular chemistry; gene delivery; severe plastic; gel method; mechanical alloy; plasma sintering;
gold electrode; situ polymerization; carbon electrode; single-molecule; biosensor; oligomeric silsesquioxane; metallic glass; poly methacrylate; block
copolymer; grain growth; plastic deformation; sintering; microstructural evolution; microstructure superplasticity; surface plasmons; electrostatic force
microscopy; transmission electron microscopy; quantum rings; chemical vapor deposition; graphitic carbon; dye-sensitized solar cell; magnetization
reversal; porous carbon; supercapacitor; growth from solutions; diamond-like carbon; mesoporous; self-assembly; surface-enhanced raman; mechanical
alloying; spark plasma sintering; ball milling; montmorillonite; organoclay; electrospinning; amorphous alloy

and excluding the following words:

nano2; nano3; nano4; nano5; nano liter; nano second,

always in-/excluding different orthographic versions and words with differing suffixes.

B.3.2 ICT Patent Search Term

Identifying ICT patents, patents from the following IPC classes were extracted, referring

to the 8th edition of the IPC:

Telecommunications:
G01S; G08C; G09C; H01P; H01Q; H01S; H1S5; H03B; H03C; H03D; H03H; H03M; H04B; H04J; H04K; H04L; H04M; H04Q;
Consumer Electronics:
G11B; H03F; H03G; H03J; H04H; H04N; H04R; H04S;
Computers, Office Machinery:
B07C; B41J; B41K; G02F; G03G; G05F; G06; G07; G09G; G10L; G11C; H03K; H03L;
Other ICT:
G01B; G01C; G01D; G01F; G01G; G01H; G01J; G01K; G01L; G01M; G01N; G01P; G01R; G01V; G01W; G02B6; G05B; G08G; G09B; H01B11; H01J;
H01L
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B Methodology and Data

B.4 Publication Identification - Search Terms and
Subject Areas

B.4.1 Nano Publication Search Term

Based on a combination of different search queries, again relying on Mogoutov and

Kahane (2007), Glänzel et al. (2003) and Porter et al. (2008) but, due to WOS database

restrictions, shorter than the patent equivalent, nano-publications were identified using

the following query:

(SO=(nano*) OR TS=(nano* NOT(nano2, nano3, nano4, Nano5, nanosecon*, nanoliter*)) OR TS=("quantum dot*" OR "quantum wire*" OR "beam
epitaxy*" OR "molecul* engineer*" OR "carbon tub*" OR "fulleren*" OR "self assembl* monolayer*" OR "self assembl* dot*" OR "molecul* self assembl*"
OR "single carbon*" OR "single molecule*" OR "atom* force microscop*" OR "tunnel* microscop*" OR "drug delivery" OR "walled carbon" OR "composite*
coating" OR "thin film" OR "microstructure*" OR "semiconducting material*" OR "singe electron*" OR "atomic(w)layer" OR "molecular manipulation"
OR "quantum wire?" OR "quantum devic*" OR "molecul* manufactur*" OR "molecular motor" OR "drug carrier" OR "single electron* tunneling" OR
"supramolecular chemistry" OR "molecular templates" OR "soft lithograph*" OR "tube* modified" OR "vapor deposition" OR "ball milling" ))

B.4.2 ICT Publication Search Term

To identiy ICT-publications, it was suffificient to search for the following Thomson ISI

subject areas (according to Schmoch 2011, personal communication):

’Computer Science’ and ’Telecommunications’

B.4.3 CE Publication Search Term

The search term that identified relevant CE-publications was developed by a team at

the Chair in Economic Policy at the Karlsruhe Institute of Technology:

(SO=("combustion engine*") OR TS=("combustion engine*" OR "CI engine*" OR "compression ignition engine*" OR "combustion motor" OR "combustion
product" OR "combustion-product" OR "otto engine*" OR "otto cycle*" OR "diesel engine*" OR "diesel cycle*" OR "two-stroke engine*" OR "two stroke
engine*" OR "four-stroke engine*" OR "four stroke engine*" OR "six-stroke engine*" OR "six stroke engine*" OR "wankel engine*" OR "wankel rotary
engine*"))

B.5 Concordances

IPC at 4-digit-level (K30 and K44 with concordance developed by Hinze et al. (1997)

and Schmoch et al. (2003) respectively, based upon NACE and ISIC)
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C Nanotechnology as an Emerging
General Purpose Technology

C.1 Technological Relatedness and Coherence

The technological relatedness matrix was constructed as follows (for further details see

Leten et al. (2007)): Let Oi j be the observed number of cited patents of technology class

j citing patents of technology class i, with Oi = ∑ j Oi j. A certain technology class has a

higher random probability to be cited if many patents are classi?ed in that technology

class, where Nj is the total number of patents classified in technology class j, with

T = ∑ j Nj. This results in the expected number of cited patents of technology class j

citing patents of technology class i

Ei j = Oi × Nj

T
(C.1)

The matrix of the measures of technological relatedness between class i and j, Ri j is

then calculated as follows:

Ri j =
Oi j +O ji

Ei j +E ji
(C.2)

If Ri j > 1, technologies i and j are more related than could be expected on a random

basis.
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C Nanotechnology as an Emerging General Purpose Technology

Figure C.1: Network of related technological Fields. Widths of edges proportional to the degree of
relatedness.
Source: own calculations.
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C Nanotechnology as an Emerging General Purpose Technology

C.2 Results

(a) World (b) EU27

Figure C.2: Forward average generalities of Top10 publications (SA) in the
World.
Source: WOS, own search and calculations.

GEN Obs Mean StdDev ICT CE

NANO 26 0.74 0.04 -0.1465 -2.6157**
ICT 6 0.75 0.05 -1.4996
CE 6 0.79 0.03

Table C.2: t-Tests (unpaired) of forward average generalities for
ICT-, Nano- and CE-publications in the world across
the years. ***Indicates significance at 0.01.
Source: own calculations.
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D Localised Nanotechnology: The
Case of Hamburg

Code Thomson Reuters Subject Area

BIO1 biochemical research methods
BIO2 biochemistry & molecular biology
BIO3 biophysics
CHE1 chemistry, analytical
CEL cell biology
CHE5 chemistry, multidisciplinary
CHE7 chemistry, physical
CHR crystallography
ENG3 engineering, chemical
ENG5 engineering, electrical & electronic
INS instruments & instrumentation
MAT2 materials science, ceramics
MAT4 materials science, coatings & films
MAT5 materials science, composites
MAT6 materials science, multidisciplinary
MET1 metallurgy & metallurgical engineering
NAN nanoscience & nanotechnology
NUC nuclear science technology
OPT optics
PHA pharamcology & pharmacy
PHY1 physics, applied
PHY2 physics, atomic, molecular & chemical
PHY3 physics, condensed matter
PHY6 physics, multidisciplinary
POL polymer science
SPE spectroscopy

Table D.1: Coded Thomson Reuters subject areas (top 25).
Source: own codification.
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D Localised Nanotechnology: The Case of Hamburg

Code IPC Class

A01 agriculture; forestry; animal husbandry; hunting; trapping; fishing
A23 foods or foodstuffs; their treatment, not covered by other classes
A61 medical or veterinary science; hygiene
B01 physical or chemical processes or apparatus in general
B05 spraying or atomising in general; applying liquids or other fluent materials to surfaces, in

general
B23 machine tools; metal-working not otherwise provided for
B29 working of plastics; working of substances in a plastic state in general
B32 layered prodcuts
B64 aircraft, aviation; cosmonautics
B81 micro-structural technology
B82 nano-technology
C01 animal of vegetable oils, fats, fatty substances or waxes; fatty acids therefrom; detergents;

candles
C02 treatment of water, waste water, sewage or sludge
C03 glass; mineral or slag wool
C04 cements, concrete; artificial stone; ceramics; refractories
C07 organic chemistry
C08 organic macromolecular compounds; their preparation or chemical working-up; composi-

tions based thereon
C09 dyes; paints; polishes; natural resins; adhesives compositions not otherwise provided for;

applications of materials not otherwise provided for
C11 micro-structural technology
C12 biochemistry; beer; spirits; wine; vinegar; microbiology; enzymology; mutation or genetic

engineering
C23 coating metallic material; coating material with metallic material; chemical surface treat-

ment; diffusion treatment of metallic material; coating by vacuum evaporation, by sputter-
ing, by ion implantation or by chemical vapour deposition in general; inhibiting corrosion
of metallic material or incrustation in general

G01 measuring; testing
G02 optics
H01 basic electric elements
H02 generation, conversion, or distribution of electric power

Table D.2: Coded IPC classes (top 25).
Source: WIPO.

1 2 3 4 5

1 DEPT H_pub 1
2 BREADT H_pub 0.19 1
3 DEPT H_pat -0.08 -0.72 1
4 BREADT H_pat 0.29 0.43 -0.55 1
5 GDP/Capita -0.16 0.67 -0.64 0.29 1

Table D.3: Correlation matrix ad Chapter 7.
Source: own calculations.
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E The Impact of the Knowledge
Composition on the Innovation
Outcome: Specialisation vs.
Diversity

1 2 3 4 5 6 7 8 9

1 PUB_SPEC 1
2 PUB_COMP -0.2 1
3 PUB_DIV -0.33 0.14 1
4 PUB_SIZE_NKB -0.71 0.18 0.22 1
5 PAT_SPEC 0.35 -0.28 -0.17 -0.66 1
6 PAT_COMP -0.06 0.17 0.09 0.07 -0.23 1
7 PAT_DIV -0.38 0.26 0.34 0.48 -0.61 0.19 1
8 PAT_SIZE_NKB -0.39 0.24 0.18 0.73 -0.85 0.18 0.53 1
9 HQ_T −1 -0.42 0.00 0.05 0.51 -0.54 0.2 0.41 0.53 1

Table E.1: Correlation matrix ad Chapter 8.
Source: own calculations.
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F Impact of Local Knowledge
Endowment on Nanotechnology Firm
Growth

1 2 3 4 5 6 7 8 9 10 11

1 EMP 1
2 HQ 0.06 1
3 INDDENS 0.05 0.37 1
4 IND -0.03 -0.08 -0.06 1
5 STUD 0.02 0.63 0.45 -0.09 1
6 R&D -0.05 0.59 0.1 0.01 0.24 1
7 LQ -0.11 0.23 0.02 0.00 0.19 0.23 1
8 LQ2 -0.02 -0.12 -0.02 -0.08 0.04 -0.05 -0.41 1
9 SIZE 0.16 -0.11 -0.13 -0.02 -0.12 -0.11 -0.07 -0.06 1
10 KIS 0.16 0.16 0.02 -0.01 -0.01 0.22 0.06 0.11 0.15 1
11 AGE -0.19 -0.02 -0.06 0.07 0.01 0.05 0.05 0.03 -0.14 0.01 1

Table F.1: Correlation matrix ad Chapter 9.
Source: own calculations.
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G The Development of
Nanotechnology through a Network
of Collaboration

Inventor Applicant

year avgCB(vi) maxCB(vi) CB avgCD(vi) maxCD(vi) CD avgCB(vi) maxCB(vi) CB avgCD(vi) maxCD(vi) CD

80-84 0 0.0002 0.0003 0.0091 0.0241 0.0179 0 0 0 0.0009 1 0.0145
81-85 0 0.0003 0.0003 0.0086 0.0245 0.0161
82-86 0 0.0002 0.0002 0.0078 0.0261 0.0184
83-87 0 0.0002 0.0002 0.0071 0.0242 0.0172
84-88 0 0.0001 0.0001 0.007 0.0237 0.0169
85-89 0 0.0001 0.0001 0.0075 0.0231 0.0157 0 0 0 0.0028 0.0377 0.0356
86-90 0 0.0003 0.0003 0.0075 0.0213 0.0139
87-91 0 0.0003 0.0003 0.0074 0.02 0.0127
88-92 0 0.0011 0.0011 0.007 0.0427 0.0359
89-93 0 0.0008 0.0008 0.0061 0.0357 0.0297
90-94 0 0.0006 0.0006 0.0054 0.0307 0.0254 0 0.0035 0.0035 0.0068 0.0709 0.0646
91-95 0 0.0009 0.0009 0.005 0.0392 0.0343
92-96 0 0.0013 0.0013 0.0043 0.0431 0.0389
93-97 0 0.0016 0.0016 0.004 0.0467 0.0428
94-98 0 0.0012 0.0012 0.0028 0.0324 0.0297
95-99 0 0.0032 0.0032 0.0021 0.0323 0.0303 0 0.0081 0.0081 0.0036 0.0445 0.0410
96-00 0 0.0027 0.0027 0.0016 0.0237 0.0222
97-01 0 0.0023 0.0023 0.0013 0.0184 0.0171
98-02 0 0.003 0.0030 0.0011 0.0186 0.0176
99-03 0 0.0028 0.0028 0.0009 0.0169 0.0159
00-04 0 0.0011 0.0011 0.0008 0.0122 0.0113 0.0002 0.0515 0.0513 0.0016 0.0322 0.0307
01-05 0 0.001 0.0010 0.0007 0.0088 0.0081
02-06 0 0.0012 0.0012 0.0007 0.0084 0.0078
03-07 0 0.0035 0.0035 0.0006 0.006 0.0054 0.0002 0.0798 0.0796 0.0013 0.0655 0.0643

Table G.1: Centre-periphery-structure of the nanotechnology-
networks.
Source: own calculations.
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The Development of Nanotechnology through a Network of Collaboration

Figure G.1: Colourkey for colours of vertices.
Source: own illustration.
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H What Drives Generality? Assessing
the Mechanisms of Knowledge
Creation

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 GENERALITY 1
2 INV 0.14 1
3 COLL 0.12 0.6 1
4 EXCOLL 0.07 0.27 0.23 1
5 MAX CD(vi) 0.27 0.37 0.26 0.06 1
6 AV G CD(vi) 0.25 0.37 0.28 0.07 0.90 1
7MAX CB(vi) 0.19 0.2 0.11 0.02 0.64 0.39 1
8 AV G CB(vi) 0.11 0.24 0.15 0.05 0.28 0.16 0.6 1
9 BW_GEN 0.27 0.05 0.05 0.02 0.03 0.04 0.02 0.03 1
10 STAR 0.18 0.13 0.10 0.01 0.43 0.34 0.4 0.30 0.03 1
11 #STARS 0.19 0.32 0.17 0.02 0.37 0.28 0.4 0.37 0.06 0.67 1
12 AV G_PAT_P_INV 0.24 0.17 0.15 0.00 0.47 0.35 0.59 0.47 0.07 0.69 0.72 1
13 VAR 0.00 0.07 0.08 0.02 0.02 0.02 0.01 0.02 0.03 0.00 0.00 0.00 1
14 CITAT IONS 0.45 0.12 0.10 0.09 0.28 0.29 0.12 0.03 0.14 0.09 0.08 0.10 -0.01 1

Table H.1: Correlation matrix ad Chapter 11.
Source: own calculations.
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This work tackles the different aspects of the creation and transmission of 
(new) knowledge in the context of the characteristics of a general purpose 
technology (GPT). Particular emphasis is put on the role of the composition 
of knowledge as well as the corresponding (presumed) knowledge spillovers 
on the one hand and on the concrete impact of collaboration and knowledge 
sharing in innovator networks on the other hand. The work offers a coherent 
literature review in its first part, analysing the theoretical role of knowledge for 
innovation and growth as well as the role of knowledge diffusion and sharing. 
Although the development of GPTs is particularly knowledge- and innovation-
intensive and GPTs are found to be ’engines of growth’, the role of knowledge 
for innovation in GPTs has not been distinctive subject to investigation yet. 
Therefore, the two mentioned sets of research questions were tackled empiri-
cally in this thesis using the showcase example of nanotechnology. 

Nanotechnology is argued to be the key technology of the future. Empirical 
analyses in this thesis using patent and publication data provide evidence that 
there is sensible reason to consider nanotechnology as a GPT. The effect the 
development of nanotechnology might have on ecomonmic growth is found 
to be dependent on the composition of the local knowledge bases as well as 
on the network structures among inventors and the corresponding efficiency 
of the sharing of new and complementary knowledge.
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