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Zusammenfassung

Peer-to-Peer (P2P) Anwendungen im Internet erfreuen sich zunehmender Beliebt-
heit. Sei es zur Telefonie mit Skype, zum Dateiaustausch mittels BitTorrent oder
fiir virtuelle private Netze mittels P2P-VPN. Auch Forschungsprojekte wie das
Spontane Virtuelle Netze Projekt (SpoVNet) nutzen die Technologien von P2P-
Anwendungen, um einen evolutiondren Ansatz fiir zukiinftige Dienste im Internet
bereitzustellen. Ein Grund fiir die Popularitat von P2P-Anwendungen sind deren
Eigenschaften: sie arbeiten autonom, funktionieren ohne aufwéindige Konfigurati-
on, skalieren mit der Anzahl der Nutzer und benotigen keine Anderungen in der
Infrastruktur. P2P-Anwendungen verlassen sich allerdings darauf, dass die Netze,
in denen sie ausgebracht werden, nahtlose Konnektivitit bereitstellen. Das bedeu-
tet, dass jedes Gerat auf dem die P2P-Anwendung gestartet wurde, potentiell mit
allen anderen Geraten kommunizieren kann.

Durch die wachsende Heterogenitét ist dies aber nicht mehr uneingeschankt mog-
lich. Wurde im Internet beispielsweise zuvor nur mit dem IPv4 Protokoll kommu-
niziert, sind es heute durch die Einfithrung von IPv6 zwei Protokolle. Ein Gerét
innerhalb eines reinen IPv6 Netzes kann so nicht mit einem Gerat aus einem rei-
nen IPv4 Netz kommunizieren. Weiterhin wurden an das Internet viele private
Netze, wie beispielsweise Heimnetze, angeschlossen welche fiir weitere Heterogeni-
tat sorgen. Technologien wie Bluetooth oder ZigBee verstarken die Heterogenitét
noch weiter. Diese Umstande machen eine Nutzung géngiger P2P-Anwendungen
schwierig oder gar unmoglich.

Diese Arbeit stellt eine Middleware vor, welche nahtlose Konnektivitat fiir P2P-
Anwendungen in heterogenen Netzen bereitstellt. Dazu werden Geréite verwendet,
die sich in mehreren Netzen gleichzeitig befinden; die Middleware verletzt dabei
keine der zuvor genannten Eigenschaften von P2P-Anwendungen.
Die in der Arbeit vorgestellte Middleware besteht aus zwei Teilen:

— Erkennung der Teilnetze mit bestehender nahtloser Konnektivitat, und

— Kopplung der heterogenen Netze

Erkennung der Teilnetze mit Konnektivitat

Um nahtlose Konnektivitét effizient bereitstellen zu konnen, muss zunéchst erkannt
werden, in welchen Teilnetzen bereits nahtlose Konnektividat besteht und wo nicht.
Dabei spannt eine Gruppe von Nutzern welche untereinander Nachrichten austau-
schen konnen eine sogenannte Konnektivitatsdoméne auf. Nutzer, welche sich in
mehreren solcher Konnektivitdtsdoméanen befinden, konnen Nachrichten zwischen
den Gruppen austauschen und werden Relays genannt. Die Konnektivitatsdoma-
nen spiegeln so die in heterogenen Netzen bereits bestehende Konnektivitat wider.
Zur Erkennung der Konnektivitat miissen diese Konnektivitatsdoméanen ermittelt
werden.
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Die Tatsache, dass durch die Eigenschaften der P2P-Anwendungen kein explizites
Wissen tiber die heterogenen Netze und deren Konnektivitat vorausgesetzt wer-
den kann, stellt eine Herausforderung dar. Die Arbeit zeigt, dass dieses Problem
dadurch dhnlich zu dem Problem des Aufzédhlens aller Cliquen in einem Graph
ist. Es ist bekannt, dass dieses Problem schwer losbar ist. Aus diesem Grund wird
in der Arbeit zundchst theoretisch ermittelt unter welchen Voraussetzungen und
Annahmen eine Erkennung im Rahmen einer P2P-Anwendung moglich ist.

Auf Basis dieser Analyse wird das Connectivity Measurement Protokoll (CMP)
vorgestellt. CMP priift zunachst, ob sich das Gerét eines Nutzers in mehreren
Konnektivitatsdoménen befindet. Danach einigt sich CMP auf den Gerédten der
aller Nutzer, welche sich in derselben Konnektivitatsdoméane befinden, auf einen
eindeutigen Identifizierer. Die Identifizierer dienen dann der Adressierung der un-
terschiedlichen Konnektivitatsdoméanen.

Es konnte gezeigt werden, dass CMP die Konnektivitéit selbst unter widrigen Be-
dingungen in weniger als 20 Sekunden erkennt, mit der Anzahl der Nutzer skaliert
und wenig Bandbreite benotigt. Im besten Fall kann CMP die Konnektivitit in
wenigen Sekunden erkennen. Weiterhin passt CMP die Identifizierer automatisch
an Veranderungen der Konnektivitit an. Die Eigenschaften der P2P Anwendungen
werden durch CMP nicht beeintrachtigt.

Kopplung der heterogenen Netze

Auf Basis der zuvor ermittelten Identifizierer stellt das Connectivity Domain In-
terconnection Protocol (CDIP) eine nahtlose Konnektivitét zwischen Geréten in
unterschiedlichen Konnektivitatsdoméanen her. CDIP verbindet dazu zunachst die
Relays zu einem logischen Netz, welches alle erkannten Konnektivitatsdoménen
iiberspannt. Dann nutzt es ein Routing-Protokoll in diesem logischen Netz um
Nachrichten zwischen Konnektivitdtsdoménen anhand der jeweiligen Identifizierer
weiterzuleiten. In der Arbeit wird dazu ein geeignetes Routingprotokoll, Tailored
Routing (TRout), vorgestellt. Dieses beeintréichtigt keine der Eigenschaften von
P2P-Anwendungen. Es skaliert in Bezug auf den Speicherplatzbedarf, die Anzahl
der Nutzer und die Veranderungen im Netz.

Die entwickelten Protokolle werden theoretisch und simulativ auf ihre Tauglich-
keit im Rahmen von P2P-Anwendungen iiberpriift. In den betrachteten Szenarien
konnte nachgewiesen werden, dass die vorgestellten Protokolle den Anforderungen
von P2P-Anwendungen gerecht werden.

Durch die in dieser Arbeit vorgestellte Middleware konnen existierende P2P-Anwen-
dungen mit wenigen Anderungen auf heterogenen Netzen ausgebracht werden. Es
ist davon auszugehen, dass die Netzlandschaft in Zukunft, bespielsweise durch
Netzvirtualisierung, immer heterogener wird. Diese Arbeit tréagt einen wichtigen
Ansatz zur Beherrschbarkeit dieser Netzlandschaft bei.
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Chapter 1
Introduction

The Internet has a significant and ongoing impact on society. Emails, the World-
Wide-Web and many other services are indispensable for daily life and economics.
One of the reasons for the Internet’s success is the seamless connectivity the In-
ternet provides, i.e., the potential of a user to reach any other user with Internet
access. A category of applications that rely on seamless connectivity are peer-
to-peer (P2P) applications. Those applications have recently become popular for
file-sharing using BitTorrent [8], telephony using Skype [60], video streaming using
StreamSwarm [59], and to provide virtual private networks using P2P-VPN [74].
Furthermore, future Internet initiatives provide P2P frameworks to support new
services for today’s infrastructure [44]. P2P applications run on personal devices
and use the existing network to provide additional services.

Most P2P applications have the following features in common:

— they just work, i.e., a P2P application uses self-organization techniques to
reduce the need for manual configuration.

— they scale with an increasing number of users.

— they operate autonomously and do not require any changes in the infras-
tructure, i.e., no changes in the network are required. Hence, most P2P
applications do not have a single point of failure.

A drawback for P2P applications is that networks have become increasingly
heterogeneous. The introduction of IPv6 in the Internet, middle boxes in DSL home
routers that use network address translation (NAT) [25, 43], Bluetooth [82], and
virtual private networks (VPNs) are some examples. Additionally, future Internet
design projects, e.g., the 4WARD [18] or the G-Lab project, introduce “virtual
networks” that allow the deployment of specialized networks, e.g., for IPTV, or
content delivery networks (CDNs). This results in even more heterogeneity.
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Figure 1.1 — An initial example: nodes with access to heterogeneous networks.

In most cases only dedicated gateways can provide seamless connectivity between
such heterogenecous networks since these networks are incompatible to each other.
Installing and configuring such gateways is a time-consuming, error-prone task.
This makes the use of existing P2P applications in heterogeneous networks tricky
or even impossible. Furthermore, users running P2P applications on their devices,
e.g., on their home computers, notebooks, or smart phones, usually do not want
to install and configure gateways. They often are not aware which networks they
are using. Instead, they expect that the P2P application just works even when the
communication path needs to cross several heterogenecous networks.

Figure 1.1 illustrates active networked devices, so-called nodes, with access to
heterogeneous networks. The figure comprises an IPv4, an IPv6, and an Bluetooth
network. The nodes have access to at least one of those networks each. Node @)
has access to the IPv6 network, (& has access to the IPv4 network, and node @
has access to the Bluetooth network. Nodes and have access to more than
one network, i.e., they are multi-homed. Node has access to the IPv4 and IPv6
network, and node has access to the IPv4 and Bluetooth network. Those nodes
are called relays since they are able to forward messages between the IPv4/IPv6,
and IPv6/Bluetooth networks, respectively. The two relays have the potential to
enable communication between all nodes in this setup; as an example, the figure
shows a possible communication path between nodes @) and @ via relays and

D).

This thesis focuses on the deployment of P2P applications in heterogeneous
networks. For a better understanding of the barriers of P2P applications in het-
erogeneous networks, it is necessary to know that they use overlay networks (or
just overlays) to provide their services. Overlays are logical networks built on top
of another network, i.e., briefly the underlay. In the overlay, nodes are connected
by links, which are established using the transport protocols of the underlay. Many
P2P applications construct overlays that have a certain structure. For example, a
P2P application can form an overlay with ring topology, comprising nodes ordered
by their telephone numbers. This ring could then be used to find a user in order
to make a phone call. The service-oriented structure of the overlays of P2P appli-
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Figure 1.2 — Example of an overlay of a P2P application deployed in heterogeneous
networks.

cations mandates that underlay has to provide seamless connectivity between all
nodes.

1.1 Problem Statement

A P2P application cannot built a service-oriented overlay because of the lack of
seamless connectivity in heterogeneous networks. Figure 1.2 shows an overlay of a
P2P application deployed in heterogeneous networks. In the illustrated scenario,
the P2P application attempts to build the an overlay with a ring topology. How-
ever, due to the heterogeneity, the P2P application cannot establish links between
the overlay nodes @), @ and @), @ to complete the ring. The P2P application
cannot operate correctly.

One drawback of P2P applications in heterogeneous networks is the lack of
detailed information about the sets of nodes that have seamless connectivity. Fur-
thermore, they do not know which nodes are relays that may help to overcome
the lack of seamless connectivity. Additionally, even when the P2P application
knows about the provided connectivity, the challenge of working around the lack
of seamless connectivity remains. Possible measures are either changing the overlay
structure or re-establishing seamless connectivity.

Another difficulty is, that nodes may change their network access anytime—either
explicitly, by connecting to a VPN, or implicitly, when migrating from one private
home WiFi to another one. Each of those events results in a change of connectivity
that needs to be taken into account.

1.2 Claims

The main contribution of the Connectivity Domain middleware (CD middleware)
is seamless connectivity for P2P applications deployed in heterogeneous networks.
The claims of this thesis are as follows:
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Claim 1: The CD middleware does not weaken the typical strengths of P2P appli-
cations.

P2P applications run decentralized in an unstable environment where nodes may
join, fail, or leave at any point in time. P2P applications handle those events
and adapt automatically. Furthermore, they are scalable and do not need infras-
tructure support. This thesis claims that the CD middleware does not weaken
any of those properties.

Claim 2: The CD middleware can detect the connectivity provided by heterogeneous
networks.

Connectivity detection enables the efficient interconnection of heterogeneous
networks for P2P applications. Furthermore, the CD middleware allows to tailor
P2P protocols for heterogeneous networks. This thesis claims that connectivity
detection is possible.

Claim 3: The CD middleware can provide seamless connectivity for P2P applica-
tions and requires only small modifications on existing P2P applications.
Knowing the existing connectivity it is possible to provide seamless connectivity
by applying a routing protocol that uses the detected connectivity efficiently.
This thesis claims, that the CD middleware provides seamless connectivity for
P2P applications. Existing P2P applications only need to modify the address
format.

1.3 Contributions

The main contributions of this thesis are:

Autonomous Detection of Connectivity: A major contribution of this thesis is an
in-depth theoretical discussion of the problem and solution space of connec-
tivity detection. It provides insights under which conditions the connectivity
detection is possible in the scenario of P2P applications. These theoretical dis-
cussions are validated using additional simulations where applicable. Based on
the theoretical findings the thesis introduces a protocol, the Connectivity Mea-
surement Protocol (CMP), that detects connectivity in heterogeneous networks.
Simulations of CMP are used to confirm the theoretical findings.

Interconnection of Heterogeneous Networks: Based on the detected connectivity
this thesis presents a protocol that interconnects heterogeneous networks for P2P
applications. This can be boiled down to a typical routing problem. This thesis
discusses popular routing protocols available in related work and introduces a
protocol for interconnecting heterogeneous networks, called Tailored Routing
(TRout).

Moreover, the solutions of the sub-problems in this thesis have a positive im-
pact on applications in other fields. Three aspects are relevant to other fields of
applications as well:

Constraints of Relay Detection: This thesis provides theoretical insight on the fea-
sibility of detecting relays in scalable decentralized systems. These findings can
be transferred to other applications as well, e. g., the Unmanaged Internet Ar-

chitecture (UIA) [34].
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Figure 1.3 — Overview of the P2P application using the connectivity domain (CD)
middleware to support heterogeneous networks

Random Number Agreement: This thesis presents an in-depth analysis of random
number agreement algorithms. Random number agreements have entanglements
with leader election and consensus algorithms which are essential for many de-
centralized systems.

Scalable Routing: The routing used for interconnecting the heterogeneous net-
works may also be used to route messages in ad-hoc networks or as a starting-
point for further investigations on scalable routing; especially, when anycast is
required.

1.4 Approach

As aforementioned, this thesis contributes a middleware that provides seamless
connectivity to P2P applications. Figure 1.3 gives an architectural overview of the
CD middleware. The bottom layer is the communication and discovery layer that
allows finding other nodes that use the CD middleware as well. This layer provides
a unified way of exchanging messages with nodes in the same network similar to the
Berkeley socket interface [85] provided by operating systems. When considering
the example depicted in Figure 1.2, this means that node @) can discover and
exchange messages with node (B). Node (B) can discover and exchange messages

with nodes @), @, and (D), and so forth.

The communication and discovery layer does not provide detailed information
about the connectivity between devices. The Connectivity Measurement Protocol
(CMP) above the communication and discovery layer takes care of this problem.
CMP detects the sets of nodes, called Connectivity Domains (CDs), that have
seamless connectivity. For this purpose, CMP induces agreements on one Connec-
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Figure 1.4 — An example of CMP’s CID agreement among nodes in the same con-

nectivity domain and a message routed across connectivity domains
by CDIP.

tivity Identifier (CID) for each connectivity domain to differentiate them. CMP,
furthermore, adapts the CIDs when connectivity changes.

It turns out, that the problem of connectivity detection is similar to the prob-
lem of enumerating all maximal cliques in a graph—which is known to be a hard
problem. Thus, the theoretical constraints of connectivity detection are studied
carefully. The theoretical findings, in conjunction with additional simulations of
CMP, show that the CIDs can be determined quickly with low overhead. After
CMP has detected connectivity domains, the layers above CMP learn about the
CIDs of the connectivity domains including the node.

The layer above CMP, i.e., the Connectivity Domain Interconnection Protocol
(CDIP) handles the routing of messages across connectivity domains, and, thus, be-
tween heterogeneous networks. Hence, CDIP is responsible for providing seamless
connectivity to the P2P application.

CDIP builds an unstructured relay overlay containing all relays running the CD
middleware and uses a routing protocol called Tailored Routing (TRout) which
is based on the well-known Virtual Ring Routing (VRR) [13]. TRout is designed
to run on the relays in the unstructured relay overlay and to route messages to a
relay in the respective connectivity domain. For communication across connectivity
domains the P2P applications use CDIP-addresses. A CDIP-address comprises the
connectivity identifier CID(z) and the underlay address addr(z) of some node z:

(CID(z), addr(z)).

The underlay address denotes the address used for communication in the node’s
connectivity domain, e. g., a tuple of IPv4 address and UDP-port. The CID is used
to determine whether the message needs to be routed across several connectivity
domains by the relays. The underlay address of the destination node is used to
deliver the message within the destination connectivity domain. From the P2P
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application’s point of view the communication with CDIP-addresses represents
seamless connectivity.

Figure 1.4 illustrates the connectivity domains with the respective CIDs that
were detected by CMP. The CIDs in the figure are only 16-bit wide to ensure
readability. Node @) agreed on a CID of 026152, node ® on a CID of 0z17a8,
and node @ on a CID of Orba2c. The relays (B) and (D) know the CIDs of the two
connectivity domains they are in. The figure also shows a message CDIP would
route from node @) to node @ using the relays (B) and (D).

1.5 Organisation

This thesis is organized as follows: Chapter 2 provides the fundamentals and no-
tation used in this thesis. Chapter 3 describes the development of an underlay
abstraction that resulted in the ariba middleware and was a motivation for the
effort of this thesis. Chapters 4 and 5 introduces the main elements of the CD
middleware, i.e., the CMP and CDIP protocol. Finally, Chapter 6 summarizes the
results of this thesis, reviews the claims, and discusses further work.






Chapter 2
Fundamentals and Notations

This chapter introduces fundamentals and notations used in this thesis. It starts
with the definition of graphs used for modeling networks in Section 2.1 and natural
names for the complexities. Section 2.2 gives an introduction of P2P applications
and properties. Finally, Section 2.3 explains basic principles and protocols for
routing messages in a network.

2.1 Graphs and Complexities

For modeling network graphs, this thesis uses the notation and definitions derived
from [70]. Since the graphs used in this thesis mostly reflect networks, a vertex is
equivalent to a node, and an edge is equivalent to a link in an (overlay) network.
Furthermore, if not noted differently, all sets in this thesis are finite. For con-
venience, Table 2.1 summarizes the notation of graphs. Directed and undirected
graphs are defined as follows:

Definition 2.1 (Directed Graph) — A directed graph, or digraph, G := (V, E)) consists
of a set of vertexes (or nodes) V(G) and a set of edges (or links) E(G) C VxV. A di-
rected edge e := (u,v) € E(G) with u,v € V(G) is a pair of nodes v and v denoting
a directed edge from vertex u to vertex v. Let v € V(G) be a vertex of graph G, then
' (v;G) == {z|(z,y) € E(G),y = v} denotes the set of in-neighbors, 1. e., vertexes
with edges to vertex v. Furthermore, deg™ (v; G) := |I'" (v; G)| denotes the indegree,
i.e., number of in-neighbors, of vertex v. Respectively, I'"(v; G) denotes the set of
out-neighbors, i. e., vertexes with edges from vertex v, and deg® (v; G) := [T (v; G)|
the outdegree.

Definition 2.2 (Undirected Graph) — An undirected graph (or graph) G := (V, E)
comprises a set of vertexes/nodes V' and a set of edges £ C {{u, v}|{u,v € V}. V(G)
denotes the vertex set and F(G) the edge set of G. An edge e := {u,v} € E(G) is
a set of two vertexes u and v. Let v € V(G) be a vertex of graph G, then I'(v; G) C
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Notation | Description

NeN number of vertexes/nodes in a graph/network.
M eN number of edges/links in a graph/network.
G:=(V,FE) a graph with a set of vertexes/nodes V' and edges/links F.
E(G) set of edges/links of graph G.

V(Q) set of vertexes/nodes of graph G.

I'~/*(v;G) set of in/out-neighbors of vertex v in digraph G.
I'(v; G) set of neighbors of vertex v in graph G.
deg_/+(v, G) in/outdegree of vertex v in digraph G.

deg(v, G) degree of vertex v in graph G.

p(u,v; G) a sequence of edges connecting vertexes u and wv.
w(e;G) eR weight of edge e.

dist(u,v; G) € R | length of the shortest path connecting vertexes u and v.
diam(G) € R diameter of graph G.

C(v;G) eR local clustering coefficient of a node v in graph G.

C(G) eR global clustering coefficient of graph G.

Table 2.1 — Notation for describing graphs.

V(G) denotes the set of neighbors of vertex v. Furthermore, deg(v; G) := |I'(v; G)|
denotes the degree, i.e., the number of neighbors, of vertex v.

If not defined otherwise, N = |V(G)| and M = |E(G)| denote the cardinality
of the set of vertexes V(G) and set of edges E(G) of graph G respectively. Basic
graph types are, e. g., path graphs, cycle graphs, and complete graphs. Figure 2.1
illustrates some examples. A path graph is a graph comprising vertexes connected
to a straight linem and a cycle graph is a graph comprising vertexes connected to
form a ring. In a complete graph each vertex is connected to any other vertex in
the graph. A graph may contain several sub-graphs which are defined as follows:

Definition 2.3 (Cycle, Clique, and Maximal Clique Sub-Graphs) — A cycle in a
graph is a sub-graph, i.e., a subset G’ C G of a graph G that is a cycle graph.
A clique is a complete sub-graph, i.e., a subset G’ C G where all vertexes are
connected to each other. A maximal clique is a clique that cannot be extended by
adding an additional vertex from G.

It is important to know paths in a graph for modeling message flows/routes in
a network. For this reason, the following definitions describe paths in graphs and
specify the distance between vertexes. Furthermore, the diameter of a graph is
defined.

Definition 2.4 (Path, Distance, and Diameter) — Let G be a (di-)graph and u,v €
V(G) two vertexes in V(G). Then p(u,v;G) := (ey,...,e,) denotes a path in
G, i.e., a sequence of edges ej,...,e, € F(G) that connects vertexes u and v.
If the edges of a graph are weighted by w(e; G) € R,e € E(G), dist(u,v;G) =
Zeep(uw;@ w(e; G) denotes the distance as sum of all weights on the shortest path
connecting vertexes u and v. If the graph is unweighted, w(e; G) := 1 is assumed
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Figure 2.1 — Examples of graphs: a directed, a undirected, a path, a cycle, and a
complete graph.

for all edges. The diameter of a graph G is defined as the maximum distance
between two nodes, i.e., diam(G) := max, yev () dist(z,y; G)

The clustering coefficient [96] is an important metric in graphs. It describes the
connectedness of the vertexes in a graph, i.e., how close the graph is to a complete
graph:

Definition 2.5 (Clustering Coefficient) — The local clustering coefficient of a vertex
v € V(G) of a graph G denotes how close the neighbors of v, I'(v; G), are to a
complete graph (or clique). More precisely, a clustering coefficient of 1.0 denotes
that the neighbors of v form a clique, while a value of 0.0 means that the neighbors
of v are not connected at all. The clustering coefficient of vertex v € V(@) in graph
G is the quotient of the number of edges between v’s neighbors and the number of
edges that could possibly be between them. Hence, the local clustering coefficient
is calculated as follows:

2-{{z,y} € B(G) : 2,y € [(v;G)}|
deg(v; G) - (deg(v; G) — 1)

C(v;G) =
The global clustering coefficient is the average of all local clustering coefficients:

D Yelie)

veV(G)

O(G) =

2.1.1 Random Graphs

Random graphs are generated using a random graph model. These graphs have
a certain structure, e.g., certain clustering coefficient, degree distribution, and
diameter. This section introduces two popular models of random graphs: the
Erdds-Rényi model and the Barabasi-Albert (BA) model.

Erdos—Rényi Model

The Erdés—Rényi model describes two variants of generating random graphs. One
variant connects N vertexes with M randomly chosen edges. The other vari-
ant connects two vertexes with an edge with probability p. The notation of an
Erdés—Rényi graph is either G(N, M) or G(N,p). Random graphs following the
Erdés-Rényi model tend to have a clustering coefficient of C(G(N,p)) ~ p.
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(8) Random graph following the (b) Random graph following the
Erd6s—Rényi model with Barabési-Albert model with
N=8M=11 N=8k=1

Figure 2.2 — Example of Erdés-Rényi (GNM) and Barabési-Albert (BA) random
graph models.

Barabasi-Albert (BA) Model

The Barabési-Albert (BA) model generates graphs with power-law distributed de-
gree, i. e., they consist of many vertexes with a small degree and only a few vertexes
with a high degree. To achieve this, the BA model uses a preferential attachment
strategy. It begins with an initial graph comprising at least two vertexes, then,
new vertexes are added to the graph. Each new vertex is connected to k other
vertexes with new edges. The vertexes are chosen in favour of their degree, i.e., a
vertex v is chosen using probability

. deg(v)
P) = deaa)

Therefore, it is likely that a vertex with a high degree will become connected to
even more vertexes. This results in the power-law distributed vertex degree.

Figure 2.2 shows a exemplary graph generated with the Erdés—Rényi and Barabasi-
Albert models. While the Erdés—Rényi-based graph does not show any particular
structure, the Barabasi-Albert-based graph shows an immanent power-law struc-
ture.

2.1.2 Complexities
To express complexities of algorithms or protocols, this thesis uses the following
natural terms instead of a mathematical big/small O notation where N denotes
the dependency of the complexity. The order of the complexities is from constant,
i.e., low complexity, to exponential, i.e., high complexity:

Constant:  O(1). Hence, the complexity does not grow with N.

Logarithmic:  O(log N)

Poly-logarithmic:  O((log N)),c > 1

Fractional power: O(N€),0<c<1

Sub-linear:  o(N)

Linear: O(N)

Quasi-linear:  O(N - (log N)%),c >0
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Polynomial: O(N€),c>1
Quadratic:  O(N?)
Ezponential:  O(cM),c>1

2.2 Peer-to-Peer Applications

A peer-to-peer (P2P) application is a software that runs on end-systems devices,
e.g., personal computers, notebooks, mobile phones, or tablets, and implements
a decentralized network service, e.g., file-sharing or telephony. They are very
popular because P2P applications tend to “just work”—without time-consuming
and error-prone manual configuration—using the existing networks, e.g., the In-
ternet. Furthermore, most P2P applications scale because each instance of the P2P
application contributes a limited amount of the device’s resources for running the
network service. Since P2P applications implement a decentralized network service
they commonly do not have a single-point of failure, e. g., a central server. Today’s
P2P applications are widely deployed, e. g., BitTorrent for file-sharing or Skype for
Internet telephony. Furthermore, the Spontaneous Virtual Network (SpoVNet)
project uses technology behind P2P applications to provide an evolutionary ap-
proach to enable future Internet services.

On deployment, instances of the P2P application run on devices attached to
one or more networks, e.g., the Internet, VPNs, or LANs. To provide a network
service, the P2P application uses a P2P protocol that builds an overlay network, or
just overlay, using the existing networks. The underlay comprises all networks used
by the devices. To build an overlay, the P2P protocol uses the transport protocols
in the underlay to communicate with other instances of the P2P application using
underlay addresses, e. g., IP address and UDP port in the Internet.

Overlays

An overlay is a logical network consisting of nodes and links. The overlay size
denotes the total number of nodes in the overlay. A link between two nodes indi-
cates that they can communicate bi-directionally by using underlay addresses. A
unidirectional link between two nodes indicates that a node can sent a message to
another node by using an underlay address. If a node only knows or has stored the
underlay address of another node, but has not yet sent or received a message, the
underlay address represents a contact of another node. The nodes connected to a
node z via links are the node x’s overlay neighbors.

A node can establish a link to another node in the overlay by actively sending
messages using the node’s underlay addresses. A link is removed from the overlay
when nodes cannot exchange messages bi-directionally anymore, e. g., when a node
failed or one node can’t send or return a message. A node may detect a link
failure by probing, e.g., using keep-alive messages to check if the node can send
and receive messages via a link.

How P2P Protocols Build an Overlay

P2P protocols employ two main mechanisms to build an overlay:
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— DBootstrapping: First, a new node establishes at least one link to an initial node
already in the overlay by discovering the initial node’s underlay address. This
can be done, for example, by using a central server as rendezvous-point, by
using a cache with addresses of nodes recently seen or by broadcasting the
local network.

—  Qverlay maintenance: Second, if required, each node exchanges underlay ad-
dresses with its overlay neighbors. Subsequently, the node may establish
new links to further nodes and may drop existing links to re-structure the
overlay until it has a topology serving the network service best, or at least
best possible. Examples of a network service are group membership, routing,
or multicast services. Furthermore, the P2P application adapts the overlay
when new nodes join, leave or fail.

Overlay Graph

An overlay graph O := (V, €) can be used to describe overlay topology theoretically.
In this graph a vertex v € V of the graph represents a node and an edge e € £ C
{V x V} in the graph represents a link in the overlay. The set I'(v; O) C V denotes
the overlay neighbors of a vertex v. To describe an overlay with unidirectional
links, the directed overlay graph uses directed edges to represent unidirectional

links.

Churn and Overlay Partitioning

Overlays of P2P applications are highly dynamic, i. e., the topology can be changed
by the P2P protocol anytime and is naturally changed in cases of churn!, i. e., nodes
joining, leaving, and node failures. These dynamics may cause that an overlay
graph partitions into several disconnected parts. Disconnected means, that at

least two sets A and B with |AU B =N (N denotes the overlay size) exist, where
not a single node in A connects to a node in B via a link. This issue is called
overlay partitioning. If an overlay is not partitioned, it is connected.

Transitive Connectivity and Heterogeneity

Most P2P applications rely on transitive connectivity provided by the underlay.
This means that a node Y may send an underlay address of an overlay neighbor X
to another overlay neighbor Z which subsequently can establish a link with node X
using the received underlay address. This can be translated into the communication
relation: when nodes X and Y, and, nodes Y and Z can exchange messages, then
nodes X and Z can exchange messages (cf. (X,Y)A(Y,Z) = (X, Z)). Commonly,
nodes attached to the same network in the underlay, e. g., the Internet with IPv4
addressing, have transitive connectivity. The presence of transitive connectivity
among a set of nodes implies that

— each node can sent a message to any other node using a valid underlay address,

— all nodes have direct connectivity, i. e., can communicate directly by only using
the connectivity provided by the underlay, and,

— the P2P protocol can build an overlay with an arbitrary topology.

!Observations of real churn are provided in [88].
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If the underlay does not provide transitive connectivity among all nodes of a P2P
application, the underlay is heterogeneous. The reasons for non-transitive connec-
tivity are manifold, e.g., the underlay may comprise several networks that use
different addresses, address spaces, or, transport protocols. The following sections
describe two of the most popular overlay types: unstructured and structured over-
lays.

2.2.1 Unstructured Overlays

Unstructured overlays provide group membership services by using a connected
overlay. For this purpose, the P2P application builds an overlay where all nodes
connect via a limited number of links to randomly chosen overlay neighbors. There-
fore, the overlay graph O is a random graph, cf.. Section 2.1.1, and connected with
high probability. The random topology usually makes this type of overlay highly
resilient against overlay partitioning in cases of churn because each node and link
is equally important in the overlay. For the same reason, unstructured overlays do
not require transitive connectivity provided by the underlay. This is an essential
property for the CMP protocol described in Chapter 4.

One of the first P2P file-sharing applications that builds an unstructured overlay
is GIA [16]. Furthermore, a complete class of protocols for P2P applications, so-
called gossiping protocols, build unstructured overlays to efficiently and reliably
disseminate data among all nodes in the overlay.

For finding a node in an unstructured overlay, e.g., one that stores a certain
content, the P2P application needs to flood query messages in the unstructured
overlay. In consequence, many nodes not matching the query’s criteria receive
and process these messages. This suggests that unstructured overlays are not very
efficient and do not scale with the overlay size and number of queries. As an
alternative, structured overlays, presented in the next section, provide a scalable
method to find nodes or store data.

2.2.2 Structured Overlays

In contrast to unstructured overlays, structured overlays have a structured topology
to fulfill a certain task, e. g., efficiently finding a node or content stored in the node.
The most prominent class of P2P protocols that build structured overlays are key-
based routing (KBRs) protocols. They serve as basis for distributed hash-tables
(DHTs) which allow, e.g., file-sharing P2P applications to find files efficiently,
or a user record for P2P telephony [6]. One of the earliest and most prominent
structured overlay protocol is Chord.

Chord

Chord [87] builds an overlay that arranges all nodes on a ring overlay topology. In
this ring, each node has a link to a successor and predecessor node. Each node x
on the ring is equipped with an node identifier, i.e., NID(z). The successor s :=
succ(z) of a node x either has a node identifier that is greater, i. e., NID(x) < NID(s)
or has the smallest identifier of all nodes. Respectively, the predecessor p := pred(z)
of a node either has a node identifier that is smaller, i.e., NID(z) > NID(p) or has
the greatest identifier of all nodes. The ring forms a convex address space. When
a node intends to route a message to an other node y, it just routes it greedily in
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Term | Description
Router A node running a routing protocol
Physical link Bi-directional communication channel between two

nodes on the link layer
Physical neighbors, I'(z) | The nodes connected to a node = by physical links

w(zx,y) Message forwarding costs over a physical link between
nodes x and y

Source Sender node

Destination Receiver node

Locator Location-dependent address, e. g., an IP-address

Identifier Location-independent address, e. g., a node identifier

Table 2.2 — Routing: terms and notations.

the ring based on the distance on the ring towards the destination node identifier
NID(y). Since this would result in a average path length of O(/N) hops in the
ring, Chord adds a logarithmic number of so-called “fingers” to each node. The
i —th finger is a link to the 2¢ predecessor on the ring. It has been shown that this
reduces the number of required hops to logarithmic complexity.

2.3 Routing

In a network, a node running a routing protocol is a router. Each router in a
network has network interfaces which can receive or forward messages from and
to the node’s physical neighbors over a physical link. A router learns about its
physical neighbors using a neighbor discovery mechanism. This mechanism for is
different for each network type, e. g., routers in wireless networks may use beacons,
routers in fixed networks may use the information provided by the link layer.
Forwarding a message over a physical link is associated with costs, e. g., bandwidth
consumption and/or delay. This cost is expressed by a function w(z,y) € N for a
physical link between the routers x and y. w does not have to be symmetric, i.e.,
w(z,y) # w(y,z) is possible. The unit “hop(s)” denotes the number of physical
links a message traverses until it reaches the destination. A network of physical
links and routers forms an abstract network topology. The network topology is
modeled as a graph G := (V, E) where routers are represented by vertexes and
physical links by edges between them.

The main purpose of routing is the forwarding of messages routers from a sender,
the source, to a receiver, the destination. To route messages, routing protocols use
addresses. On the one hand, an address may depend on the location of a router
in the network topology. Those addresses are called locators. On the other hand,
an address may be a arbitrary unique identifier which is independent from the
location and the network topology.

Most routing algorithms minimize the routing costs for routing a message from
the source to the destination. This is equivalent to finding the shortest-path in
terms of routing costs. It is not surprising that traditional routing algorithms
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are in fact decentralized versions of the well-known shortest-path algorithms, e. g.,
Dijkstra [23], Bellman-Ford [35], and Floyd-Warshall [32].

2.3.1 Distance Vector Routing

The distance vector algorithm (DV algorithm) implements a distributed version of
the Bellman-Ford’s [35] algorithm. The DV algorithm holds a vector of distances for
each physical neighbor. Each vector contains the distances to other routers via the
physical neighbor. This ends up in a cost matrix. When the Let z,u, v be routers
and 0,, € R represent the distance-matrix on a router z containing the distance
0y, to router u via router v. When DV algorithm starts, each router  knows only
its physical neighbors I'(x). In this case, the DV algorithm initializes the matrix
on router x with the costs to forward a message to the physical neighbors, i.e.,
dyy = w(z,y),y € I'(x). Then, the DV sends periodic updates of the routers
minimal distance vector, i.e.,
(5; = min o, ,

to all its physical neighbors. If a router x receives an update from router y, it adds
the costs w(y, z) to all entries of the vector and updates his distance-matrix

5u,y = 5; + w(y, I)

accordingly.

Figure 2.3 illustrates the distance matrix of four routers (@),...,(®). Values
printed in bold have been changed. The gray table cells denote the shortest distance
to the destination, i.e., the contents of ¢’. A new shortest distance is transferred
to the neighbors of a router. At T=1, the DV algorithm initializes the distance
matrices on each router with the forwarding costs to the router’s neighbors. Sub-
sequently, the DV algorithm sends distance vector updates to all neighbors of each
router. At T=2, the DV algorithm on router @) receives the distance vector com-
prising the distance to router @, &c = 9 and to router @, &’'p = 1. The DV
algorithm on router @) adds the costs w(A, B) to this distance vector and assigns
these values to its distance matrix, i.e., dcp := 12, and dpp := 4. The DV
algorithm does the same on all other routers with the respective distance vector
updates. Then, the updates in the distance vector ¢’ are again sent to the neigh-
bors of each router. T=3 and T=4 perform the same operations. In T=4 the DV
algorithm has reached convergence.

Count-To-Infinity

The distance vector algorithm has a performance penalty when routers fail, i.e., it
takes a long time until all routers set the according distance to infinity. Consider
T=4 in the example of Figure 2.3. If router @) fails, router ) will set d4 4 := oc.
Router @ still knows a route to router @) via @ or (@. Therefore, the DV
algorithm on router & will just update the minimal distance vector ¢4 := 15
and send it to its neighbors. Then, the DV algorithm sets d4 5 on router @ to
154+ 9 = 24 and on router (® to 15+ 1 = 16. The subsequent updates sent to
router () increase the minimal distance vector 6’4 by 2 to 16 + 1 = 17. The
DV algorithm on router & will send his updated minimal distance vector to the
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router’s neighbors and so forth. The DV algorithm is in an infinite loop counting
the distances to router @) to infinity.

2.3.2 Destination Sequenced Distance Vector Routing

The Destination-Sequenced Distance Vector (DSDV) algorithm was introduced by
Perkins et al. in 1994 [72]. Later, Babel [61] refined DSDV to make it more powerful
and more efficient. DSDV uses a routing-table where each entry comprises

— the destination’s address, e. g., locator or identifier,
— the costs for routing,
— the destination sequence number, and,

— the next-hop, e.g., the physical link over which the routing protocol will
forward a received message addressed to the destination.

The main idea behind DSDV is, that each router announces its address in con-
junction with a sequence number. This sequence number increases on any routing
update by the destination (or originate) node. When a node receives routing up-
dates from its neighbors it adapts the distance of an routing-table entry, if the
distance in the update is smaller, or the sequence number is greater. This prin-
ciple solves the count-to-infinity problem that comes with distance vector (DV)
protocols. This is the case, because a worse route is only accepted by other nodes
when the origin node has chosen a new sequence number. Consequently, nodes
have to choose a new sequence number until the protocol re-converges to a stable
state in case of dynamic networks.

Figure 2.4 depicts the same network as shown in Figure 2.3 using the DSDV
algorithm. First, DSDV fills the routing-table with the distances to the physical
neighbors and itself. Then, DSDV periodically notifies the physical neighbors about
changes in its routing-table. Therefore, in T=2, the routers learn about new routes.
The DSDV algorithm only accepts routes whose routes whose distance is shorter
or sequence number is greater. In step, T=3, router (& replaces the route to router
@) with a distance of § = 6 via the next-hop over router ®. The DSDV algorithm
has converged.
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Figure 2.3 — Example of the distance vector algorithm. Values printed in bold
have been changed. The gray table cells denote the shortest distance
to the destination. A new shortest distance is transferred to the
neighbors of a router.
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Figure 2.4 — Example of the destination sequenced distance vector algorithm. Val-
ues printed in bold have been changed. The table headers have the
follwing meaning: to denotes the destination, next denotes the next-
hop towards the destination, ¢ denotes the distance to the destination,

and seq denotes the current sequence number.




Chapter 3
Underlay Abstraction

The idea of abstracting from the underlay is one of the research topics in Spon-
taneous Virtual Networks project (SpoVNet). SpoVNet has two major objectives
[17):

1. Provide communication services flexibly, adaptively and spontaneously in het-
erogeneous networks.

2. Enable seamless transition from current to future networks.

To achieve these objectives, SpoVNet proposes a two-tier abstraction architecture
consisting of an underlay and a service abstraction. The underlay abstraction
has the goal to abstract from heterogeneous networks in order to provide a solid
base for implementing advanced services, e.g., multicast or event services. The
service abstraction has the goal to abstract from different implementations of ad-
vanced services. Both tiers provide this abstraction with a well-defined interface
which stays valid even when the underlying network evolves. Using this architec-
ture, SpoVNet can emulate advanced services today and replace them with native
services when the Internet evolves eventually in the future. Therefore, SpoVNet
provides an evolutionary approach towards the future Internet.

The first objective states that the approach should work flexibly, adaptively
and spontaneously on top of heterogeneous networks. Hence, SpoVNet can take
advantage of recent developments in the area of P2P applications which have a
similar objective. Additionally, the techniques used with P2P applications usually
scale—an additional feature SpoVNet seeks. The protocols used by P2P appli-
cations serve as starting-point for emulating advanced services. One drawback is
that P2P applications do not support heterogeneous networks, though.

The main motivation behind the concepts presented in this thesis is the need
of an proper underlay abstraction that enables an easy creation of new P2P-based



22 | Chapter 3 — Underlay Abstraction

services on top of heterogeneous networks. The first concepts towards this goal are
presented in [9]. The paper contains several concepts to deal with heterogeneous
networks, e. g., different addressing, quality-of-service, and mobility. It states that
the underlay abstraction needs the following features to ease the development of
new P2P-based services:

Seamless connectivity: Seamless connectivity enables the transfer of current P2P-
based services to heterogeneous networks.

Identifier-based addressing: Identifier-based addressing hides mobility and multi-
homing from the P2P-based service. In contrast to locator-based addressing, i. e.,
using IP-addresses, identifiers do not change, when devices change networks or
move. Furthermore, in future networks, devices are most likely multi-homed,
i. e., they have access to more than one network and, consequently, more than one

locator. This makes the selection of an appropriate locator for communication
difficult.

Requirement-based protocol selection: The SpoVNet underlay abstraction pro-
poses to select transport protocols by requirements, e.g., quality of service,
latency, reliability, and not by their types.

SpoVNet uses a two layer design to implement these features in the underlay ab-
straction, namely the

— Base Communication (BC) and
— Base Overlay (BO).

The Base Communication runs once per device and abstracts from heterogeneous
networks in terms of different protocols and technologies. This also includes the
provisioning of seamless connectivity on top of heterogeneous networks by using
so-called relay paths. A Base Overlay runs once per application and uses the Base
Communication to provide an isolated identifier-based address space for communi-
cation between SpoVNet-nodes. Each SpoVNet-node has an unique node identifier
inside a spontaneous virtual network, i.e., a SpoVNet, formed by the Base Overlay.
Each SpoVNet has an unqiue identifier as well, i.e., the SpoVNet-identifier.

Figure 3.1 illustrates two SpoVNets deployed on top of heterogeneous networks.
The figure depicts 6 networked devices, i. e., nodes (@),. . .,®) and 3 heterogeneous
networks, i.e., an IPv6, an IPv4, and a Bluetooth network. Node @) has access to
the IPv6 network, node (@ has access to the IPv4 network, and node ( has access
ot the Bluetooth network. Two nodes have access to two networks simultaneously
and are therefore denoted relays. Relay ((B)j has access to the IPv4 and IPv6 net-
work and relay (D) has access to the IPv4 and Bluetooth network. On each node
runs the SpoVNet underlay abstraction consisting of the Base Communication
and the Base Overlay. The Base Communication runs exactly once per node, the
Base Overlay once per SpoVNet-application. Each SpoVNet has an identfier, i.e.,
SpoVNetl with SpoVNet-identifier 0x2608 and SpoVNet2 with SpoVNet-identifier
0x1006. SpoVNetl consists of SpoVNet-nodes with NID 1 running on node @,
NID 2 running on node @, and NID 3 running on node ((B)j SpoVNet2 consists of
SpoVNet-nodes with NID 4 running on node @, NID 5 running on node @, and
NID 6 running on node ((): Since node @ accomodates two SpoVNet nodes, two
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Figure 3.1 — Two spontaneous virtual networks (SpoVNets).

instances of the Base Overlay run on one instance of the Base Communication. The
application running on each SpoVNet-node can communciate with SpoVNet-nodes
in the same SpoVNet using the node identifiers in their respective SpoVNets.

The ariba-underlay [64], in development at the Karlsruhe Institute of Technology
(KIT), implements a part of the SpoVNet underlay abstraction. From the service
and application perspective, ariba provides a virtual network substrate that fea-
tures identifier-based addressing and a unified developer interface. ariba hides the
complex handling of heterogeneous networks and mobility from the developer. To
achieve this, aritba routes messages across heterogeneous network borders and hides
changing underlay addresses when nodes move or join other networks. This eases
the implementation of new services and applications significantly.

Figure 3.2 shows an overview of the ariba architecture. At the top layer, ap-
plications and services use the ariba developer and legacy interface. The latter
allows existing applications to benefit from ariba’s features without any changes.
To achieve this, ariba emulates an IP-based network [45]. Each ariba-based appli-
cation, i.e., using the developer interface presented in Section 3.1, may use several
ariba-based services or use ariba directly. ariba provides an isolated virtual network
with identifier-based addressing between all SpoVNet-nodes for each application
and its services, the Base Overlay, described in Section 3.2. The Base Overlay
itself builds its virtual network using links from the Base Communication.

The Base Communication runs once per device and handles all links requested
from all Base Overlays of the applications, heterogeneous addresses, and provides
relay-based communication between heterogeneous networks. For this purpose, it
implements several modules for different underlay protocols, e. g., TCP with IPv4
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Figure 3.2 — The ariba-underlay abstraction’s architecture overview.

and IPv6, and modules to discover other SpoVNet-nodes that are already running
the application for bootstrapping, e.g., using broadcast, or Bluetooth SDP. The
base communication interfaces directly with the (heterogeneous) underlay that
comprises many different protocols, e.g., TCP (Layer 4) or Bluetooth RFCOMM
(Layer 2). Section 3.3 describes the base communication in further detail.

ariba has proven itself in many applications, e.g., demos shown at conferences.
Section 3.4 presents some of the highlights. The concepts developed in this thesis
go beyond some of the implemented features in ariba. Section 3.5 describes the
motivation and contributions for the CD middleware based on ariba.

3.1 Developer Interface

The ariba developer interface eases the creation of new decentralized applications
and services. Table 3.1 summarizes the main functionality of the ariba developer
interface. It comprises methods to initiate a new spontaneous network (SpoVNet)
for the application, join/leave an a SpoVNet. ariba uses an event-based and asyn-
chronous processing model. This model implies, that all methods immediately
return. Events are emitted by ariba as soon as it has completed the respective op-
eration of the method. Thus, a service or application needs to handle the events,
when ariba has completed the join or leave of a SpoVNet-node. It also informs the
service or application in case of failure of an operation.

When a new node has joined the SpoVNet an application or service is able to
send messages to other SpoVNet-nodes. For this purpose, an application or service
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Function | Description
Methods for Base Overlay control
initiate Creates an application-specific SpoVNet
join Join an existing SpoVNet
leave Leave the SpoVNet
Events emitted by the Base Overlay
onJoinCompleted | Join succeeded
onJoinFailed Join failed
onLeaveCompleted | Node left the SpoVNet
onLeaveFailed Node could not leave the SpoVNet
Methods for communication
bind Binds a service ID
unbind Unbinds a service ID
establishLink Establishes a link to another SpoVNet-node
dropLink Drops a link
sendMessage Sends a message over a link or to a SpoVNet-node
Events emitted during communication
onLinkUp Link has been established
onLinkDown Link has been dropped
onLinkChanged Link has been changed
onLinkFailed Link failed
onLinkRequest Incoming link request
onMessage Incoming message on a link

Table 3.1 — ariba’s developer interface.

can bind service identifiers, a 16-bit numeric value that identifies the application
or a service. This identifier should be well-known by all SpoVNet-nodes running
the same service or application. To exchange messages between SpoVNet-nodes,
ariba provides two ways of communication.

First, it is possible to establish a link to another SpoVNet-node using a node
identifier and service identifier, so messages can be sent over the link to the other
SpoVNet-node. Second, it is possible to send a message without setting up a link
first using a SpoVNet-node and service ID—ariba will then establish a link and
deliver the message over this link internally. The difference between these two

modes is, that links may have a certain context (i.e., different link properties) and
are identified by a link ID.

ariba emits several events during communication. The major part of these events
inform the service or application about successful link establishment, link failure,
link change, or incoming link requests from other SpoVNet-nodes. Furthermore, a
callback informs the service or application about incoming messages from another
SpoVNet-nodes.

The developer interface also hides all issues related to heterogeneous networks
and mobility using a homogeneous identifier-based addressing. The main module
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providing this addressing and the virtual network substrate for the application is
the Base Overlay.

3.2 Base Overlay

The Base Overlay provides a virtual network substrate for services and applications.
The Base Overlay itself uses links from the Base Communication to build a key-
based routing (KBR) overlay. When an SpoVNet-node joins a SpoVNet, it actually
joins this KBR overlay. The KBR overlay serves two purposes. First, it provides
a identifier addressing space, so each SpoVNet-node in the KBR overlay can be
reached using a SpoVNet-node identifier. Second, it provides the isolated virtual
network substrate to the services or application. The implementation of the KBR
overlay depends on the service’s or application’s requirements. In general, any
KBR overlay may be implemented in ariba because of its modular design. The
current release of ariba implements two KBR overlays services and applications
may choose from:

—  Full mesh: The full-mesh KBR overlay connects each SpoVNet-node with
any other SpoVNet-node. Thus, this approach is not scalable.

—  Modified Chord: The modified Chord KBR overlay builds a ring overlay topol-
ogy with log N fingers (or “short-cuts”). Thus, the modified Chord, on the
one hand, scales well with the network size N, because each SpoVNet-node
connects to O(log N) other SpoVNet-nodes only. On the other hand, to reach
other SpoVNet-nodes the modified Chord needs O(log N) hops. The main dif-
ference to the original Chord is, that the modified Chord uses bi-directional
successors, predecessors, and fingers. Furthermore, it uses discovery messages
to build the ring similar to those used in TRout (cf. Section 5.3). These mod-
ifications allow the modified Chord to recover from network partitioning.

These implementations are rudimentary, but demonstrate the general flexibility of
ariba’s design. In further work, ariba may be extended by a variety of different KBR
overlays depending on the requirements of the service or application. Examples for
other KBR overlays are Kademlia [65], or Bamboo [76].

3.3 Base Communication
As mentioned before, the KBR overlay is built using links from the Base Commu-
nication. The Base Communication has the following properties:

— The Base Communication abstracts from heterogeneous addressing and net-
works. To this end, it uses end-point descriptors that comprise all underlay
addresses of a node. The KBR overlay can exchange these end-point de-
scriptors between SpoVNet-nodes without knowing its exact contents. Sub-
sequently, the KBR overlay can use the end-point descriptors to build new
links between nodes using the Base Communication. Section 3.3.1 describes
the communication and discovery sub-module of the Base Communication
that provides this abstraction.

— Furthermore, the Base Communication provides relay-based end-to-end con-
nectivity across heterogeneous networks using the relay-based connectivity
sub-module described in Section 3.3.2.
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ISO/OSI-Layer | Address
4 udp{14632};tcp{1976112987}
3 ip{141.3.71.46|2200:1398:9:£b00:al11:96£f: fel16:396c}
2 bluetooth{C8:84:47:02:CD:A1};rfcomm{10}

Table 3.2 — An exemplary end-point descriptor.

— Finally, the Base Communication monitors and manages links from all KBR
overlays in the link management sub-module described in Section 3.3.3.

The following describes each of the sub-modules in further detail.

3.3.1 Communication and Discovery
The communication and discovery sub-module provides the following functionality:

— Discovery of end-point descriptors of other SpoVNet-nodes.
— Establishment of links for the Base Overlay.

To provide this functionality the Base Communication uses end-point descriptors.
The communication and discovery comprises additional components, the discovery
components and the communication components.

End-Point Descriptors

An end-point descriptor comprises all underlay addresses a node has, e. g., TCP/UDP
ports, IPv4/v6, Bluetooth medium access addresses (MAC), or RFCOMM chan-
nels. The end-point descriptor holds these underlay addresses loosely-coupled, e. g.,
a TCP port is stored independently from the IPv4/IPv6 addresses. Table 3.2 shows
an exemplary end-point descriptor. It contains a UDP port, two TCP ports, an
[Pv4 address, an IPv6 address, a Bluetooth MAC and a RFCOMM channel. The
sub-modules of the Base Communication will combine the addresses of each layer
to communicate with other nodes.

Discovery of End-Point Descriptors of Other Nodes

To bootstrap the Base Overlay, the Base Communication provides discovery mech-
anisms that announce and collect end-point descriptors from other SpoVNet-nodes
also running the ariba-underlay. The discovery components of the Discovery and
Communication sub-module implement this functionality for different network
technologies. For example, the Base Communication announces a node’s end-point
descriptor using the IPv4/v6 one hop multicast functionality, the multicast DNS
(mDNS) service, or the service discovery protocol (SDP) of the Bluetooth network
stack. Each announcement contains the SpoVNet-identifiers, so an application can
determine if the node is in the same SpoVNet. The Base Communication collects
these announcements to provide them to the Base Overlay for bootstrapping, i.e.,
joining a SpoVNet.

Establishment of Links

The interface to establish new links for the KBR overlay is similar to what the Base
Overlay provides to the services and application (cf., methods for communication
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in Table 3.1). The main difference is that the Base Communication uses end-point
descriptors for addressing other nodes.

When the Base Overlay asks the Base Communication to establish a link, the
Base Communication tries to reach the other node using all addresses from the
end-point descriptor. For this purpose, it tries to send the message using all com-
munication components of the communication and discovery sub-module, e.g.,
TCP/UDP using IPv4/v6, or Bluetooth REFCOMM. Each communication compo-
nent extracts the underlay addresses it understands from the end-point descriptor
and tries to send link request to the other node.

When the Base Communication on a node receives a link request from another
node, it immediately responses with an acknowledgement message. Hence, a node
receives potentially multiple link requests and responds with multiple acknowledge-
ment messages. As the Base Communication only needs to establish one link, it
sets up the link using the underlay address for which it receives the first acknowl-
edgement message.

The mechanism above works reliably for nodes using the same protocols and
being in the same network. In case of network heterogeneity, when nodes cannot
communicate with each other directly, the next section describes the relay-based
connectivity sub-module that handles this problem.

3.3.2 Relay-based Connectivity

Relay-based connectivity is required when the KBR overlay attempts to establish a
link to a SpoVNet-node in a different network, so that a link cannot be established
with the end-point descriptor. As mentioned in Chapter 2.2, KBR overlays are built
incrementally, starting with links to overlay neighbors and subsequently refining
the overlay by exchanging addresses. In case of ariba, end-point descriptors are
exchanged. For finding an indirect path between SpoVNet-nodes, the relay-based
connectivity sub-module monitors the path of the end-point descriptor in the Base
Overlay. If a link cannot be established directly between two SpoVNet-nodes, the
Base Communication uses this “relay path” to communicate indirectly. Each node
on the relay path tries to shorten the path by trying to establish a direct link to one
of the next hops. This induces a lot of overhead subject to the relay path length
as each SpoVNet-node will greedily try to shorten the path concurrently. Bryan
Ford’s “Unmananged Internet Architecture” (UIA) [34] uses similar mechanisms.

3.3.3 Link Management
When a link has been established, the Base Communication handles the link man-
agement. This includes

— partial hiding of mobility, i. e., the internal re-establishment of failed links in
case of mobility using an updated end-point descriptor and

— monitoring if the link is operational by sending keep-alive messages.

Link management increases the reliability of links and, thus, the Base Overlay.
Furthermore, the link management sub-module may be extended by native mobility
support, e.g., mobile IP, and additional link failure detection mechanisms, e.g.,
when a network interface or access fails.
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Figure 3.3 — The ariba demo setup. Source: [46]

3.4 Demos and Applications

ariba has proven itself at many conferences, demos and a programming contest in
small-scale scenarios. The basic demonstration setup of ariba comprises 4 hetero-
geneous networks: an [Pv4 WLAN behind a NAT WLAN router, an IPv6 LAN,
an IPv4 LAN and a Bluetooth network. None of these networks are connected;
however, 6 devices connect to these heterogeneous networks, four of them are
multi-homed, i.e., connect to more than one network.

Figure 3.3 shows the real-world ariba demonstration setup for two demos. One
of the two ariba-demos shows the self-organizing provisioning of end-to-end con-
nectivity [46]. The demo has been awarded with the 2nd place “best-demo” at
SIGCOMM 2009 in Barcelona, Spain and received an honourable mention. The
other one shows unmodified legacy applications running with ariba [45].

The main feature of both demos is self-organization. The network configuration
in the demos can be changed interactively by unplugging Ethernet cables from the
switches and re-plugging them. In each case, ariba adapts to the changed network
and re-establishes end-to-end connectivity, if possible.

3.5 Motivation and Contribution of the CD Middleware

The concepts of the CD middleware contribute to the relay-based connectivity
sub-module of the Base Communication. The main motivation are the following
problems that came up during the development of ariba:
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— Coupling between Base Qverlay and Base Communication: To find relay-
paths the Base Overlay and Base Communication modules need to be tightly
coupled. This means, the Base Overlay must inform the Base Communication
about the overlay paths to find an appropriate relay path for the link in the
Base Overlay. This results in circular dependency which is not desired in a
layered architecture.

— "Highway™-effect and length of relay paths: Relay-paths are concatenated
overlay paths which tend to be very long. Furthermore, for the same reason,
it is likely, that the same relay is used most of the time even when more
relays exist. ariba’s current approach makes it nearly impossible to control,
which and how many nodes are involved when routing messages across het-
erogeneous networks.

— Path-shortening overhead: In the current approach each relay-path needs to
be shortened separately. This means, each node on the relay-path must probe
if it can reach a node on the path directly. Depending on the number of links
in the Base Overlay this overhead is significant.

In the process of handling these problems, [98] introduces the concept of con-
nectivity domains. Further work, i.e., [69, 66, 67] refines this concept and is the
base of the CD middleware presented in this thesis. The CD middleware solves the
following difficulties:

— The CD middleware gives ariba more control over the message forwarding
between heterogeneous networks, since the CD middleware detects connec-
tivity explicitly. Furthermore, relays are detected by the CD middleware.
Therefore, relay paths can be easily shortened, without additional probing.

— The CD middleware uses a dedicated routing protocol to forward messages
between Connectivity Domains, which reduces the “Highway”-effects. Fur-
thermore, the length of the relay paths can be optimal (shortest-paths), if
required, or grows only logarithmically with the number of nodes. The ded-
icated routing protocol of the CD middleware decouples the Base Overlay
from the Base Communication module.

The communication and discovery layer introduced in Appendix A is almost equiv-
alent to the one used in ariba. The differences are results of the lessons learned
from small technical issues in ariba, but do not differ in the basic functionality.



Chapter 4
Autonomous
Detection of Connectivity

This chapter explores the detection of connectivity in the context of P2P applica-
tions. Parts of this work have already been presented at the International Confer-
ence on Peer-to-Peer Computing 2011 [68].

As mentioned in Section 2.2 a P2P application builds an overlay on existing
networks, the underlay. Most P2P applications' rely on seamless connectivity,
more technically “transitive connectivity”, provided by the underlay. Transitive
connectivity means that when nodes X and Y, and, nodes Y and Z can exchange
messages, then, nodes X and Z can exchange messages as well. In today’s net-
works, the assumption of transitive connectivity does not hold in many cases. First,
the introduction of IPv6 compromises the transitive connectivity in the Internet
as nodes supporting IPv6 only cannot communicate with nodes that support IPv4
only. Second, scenarios including more heterogeneous networks, e. g., private net-
works behind firewalls, virtual private networks (VPNs), point-to-point connections
(e. g., Bluetooth RFCOMM), do not have transitive connectivity.

Related work discusses the problem of non-transitive connectivity in two ways.
First, workarounds to P2P applications exist to handle non-transitive connectivity,
e.g., [38]. Second, protocols exist that do not need transitive connectivity at all
[34, 13]. Both approaches compensate the impact of non-transitivity by tolerating
long and non-deterministic detours, overload of nodes compensating non-transitive
connectivity, and the bypass of non-transitive connectivity introduced on purpose
(e.g., for limiting traffic to a specific domain). The user faces the latter, for exam-
ple, when Skype uses another client to traverse a firewall. Furthermore, concepts

'For example, all P2P applications using structured overlays



32 | Chapter 4 — Autonomous Detection of Connectivity

(sockets)
P P Bluetoot
PAN

Figure 4.1 — Connectivity detection in the P2P middleware

( CDIP |
P2P application A
. Links Connectivity identifiers
/gy L L L L L e L LR oow (CIDs) and relay discovery =
Connectivity Domain
% Interconnection Protocol (CDIP) .,0" Connectivity Measurement Protocol (CMP)
=
2 Connectivity Measurement . o)
5 9
3 < Protocol (CMP) Relay detection CID agreement %
E .. ———— . 2
o) . @
@) Communication and discovery . Unstructured overlay <
X A
| pva || 1pve |[Locar|| .. | : :
~ o -~ " Links Discovery &
Network access . .
[ \ 4 \ 4

Communication and discovery

exist to deal with heterogeneous networks or “network pluralism” [36, 20]. These
concepts present architectures that support and promote the interconnection of
different networks using interfaces at the border of each network. These concepts
provide prior information about transitive connectivity. This allows to tailor P2P
applications for each heterogeneous network, and enable traffic-engineering, load-
balancing, and, efficient routing. The main problem is that these concepts require
manual configuration and infrastructure support. This is hardly an option for P2P
applications as they should just work without manual configuration if possible.

This chapter introduces a third concept which has not yet been considered by
related work. First, it provides insight under which conditions subsets of nodes
that have transitive connectivity can be detected. Second, it contributes the Con-
nectivity Measurement Protocol (CMP). CMP proactively detects sets of nodes,
so-called Connectivity Domains (CDs), that have transitive connectivity. Then,
CMP agrees on a unique Connectivity Identifier (CID) with nodes in each connec-
tivity domain to differentiate them. Using the CIDs it is known if a node that is
in several connectivity domains and, therefore, is a relay. CMP adapts the CIDs
when connectivity between nodes changes, i.e., when nodes are detached from a
network, or attached to other networks.

CMP itself comprises three key mechanisms shown in Figure 4.1. For commu-
nication in each homogeneous network, the communication and discovery layer
described in Appendix A enables discovery of and communication between in-
stances of the CD middleware running on the nodes. However, the layer provides
neither transitive connectivity nor information about nodes that share transitive
connectivity.

Using the communication and discovery layer, CMP first builds an unstructured
overlay (cf. Section 2.2.1). This overlay comprises all nodes running the CD
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middleware and does not rely on transitive connectivity. Then, CMP checks for
transitive connectivity using a mechanism called triangle check to detect if a node
is a relay. After detecting all relays, CMP assumes that non-relays have transitive
connectivity, i.e., are in the same connectivity domain. Then, CMP uses a random
number agreement on the non-relays to agree on an CID for each CD. Simulations
of CMP show that CMP agrees on CIDs in less than 20 seconds from a cold-
start in the considered scenarios, i.e., a worst-case of CMP. The observed average
bandwidth overhead was below 4 kbyte/s per node till convergence. For more
results refer to Section 4.6.

The outline of this chapter is as follows: Section 4.1 discusses the problem and
solution space under a set of assumptions and requirements of P2P applications.
Section 4.2 presents a solution how to autonomously detect connectivity. This
solution requires relay detection and random number agreement algorithms. Sec-
tions 4.3 and 4.4 provide a feasibility study of different relay detection and random
number agreement algorithms and build the fundament for the CMP design. Sub-
sequently, Section 4.5 presents the Connectivity Measurement Protocol (CMP).
Section 4.6 shows results of simulations using CMP in heterogeneous networks.
Section 4.7 discusses further work and concepts to CMP. Finally, Section 4.8 sum-
marizes the contribution and results of this chapter.

4.1 Problem and Solution Spaces

This section discusses the problem and solution space of detecting the connectivity
provided by heterogeneous underlays. To get an intuitive understanding of con-
nectivity, Section 4.1.1 provides an example of a P2P application deployed on a
heterogeneous underlay. Using the insight from this example, Section 4.1.2 intro-
duces a formal problem statement. Based on this statement, Section 4.1.3 discusses
the problem and solution space of connectivity detection.

4.1.1 Introductory Example

Figure 4.2 illustrates a scenario of an unstructured overlay built by a P2P appli-
cation on a heterogeneous underlay. The underlay layer shows nodes attached to
several networks. Nodes i(Bj, C) \(D}j are connected to a private home WLAN. The
private home WLAN network accesses the Internet using a NAT /Firewall-WLAN-
Router. Nodes @) and /(B)j have a Bluetooth module, thus, they can communicate
inside a Bluetooth network. Nodes (@), @, @, (G) have public Internet access,

and nodes /(G)\ and @) have access to a virtual private network (VPN).

The overlay layer in the figure shows an exemplary unstructured overlay built by
the P2P application. This is possible because unstructured overlays do not require
transitive connectivity. In the example, it is assumed that nodes can establish
links when they have access to the same network. For example, nodes (® and
(® establish links using the underlay addresses from the public Internet, e.g., IP
address and UDP-port. Other pairs of nodes that do not have access to the same
network, e. g., nodes @ and @, must use a multi-homed node, e.g., a relay like
node (D), to communicate indirectly.

The heterogeneous underlay does not provide transitive connectivity between
all nodes. The figure illustrates (non-)transitive connectivity. On the one hand,
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Figure 4.2 — Exemplary scenario of an unstructured overlay built by a P2P applica-
tion on a heterogeneous underlay with transitive [ and non-transitive
H connectivity.

at [, node @ can send the underlay address of node (G) to node @. Node @
can use this address to establish a new link to node . Thus, when node .
can communicate with node ) and node ) with node @, then node @ can
also communicate with because they all have access to the same network. On
the other hand, at H, nodes @, @, and & do not have transitive connectivity,
because, if (@ transfers the underlay address of node @ to node @, the underlay
address from the Home WLAN is not valid in the public Internet, this means, the
nodes cannot establish a link. The nodes are not aware of that a-priori because
both networks use the same address types, i.e., IP addresses, and, thus, look valid
to the P2P application. However, the addresses belong to networks with disjoint
address spaces which make the establishment of a link impossible.

For handling a heterogeneous underlay properly the nodes need to detect sets of
nodes that have transitive connectivity, i.e., can communicate directly. Further-
more, nodes that do not have transitive connectivity need to know about appro-
priate relays to communicate indirectly. The next section formalizes the problem
of detecting connectivity.

4.1.2 Problem Statement

The formal problem statement comprises four steps. First, the connectivity func-
tion provides insights about potential links two nodes can establish in the overlay.
Second, the connectivity graph defines the graph of all potential links between
the nodes. Third, the connectivity graph allows the definition sets of nodes with
transitive connectivity. Finally, connectivity domains and relays are defined.

Connectivity function: Let A denote the set of nodes in an overlay of size N = |N].
Then, the connectivity function defines the ability of establishing a link between
two nodes:

c: N x N — {true, false} .
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Figure 4.3 — Example of connectivity domains/cliques and relays in the connectiv-
ity graph of the scenario presented in Section 4.1.1.

It holds ¢(n,m) = true, if and only if nodes n,m € N can establish a link, and
c(n,m) = false otherwise. Since the the links in an overlay are bi-directional,
c(n,m) is symmetric, i.e., ¢(n,m) = true < c(m,n) = true.

Connectivity graph: The connectivity function allows the definition of the connec-
tivity graph G = (N, &) with the set of nodes N and the set of undirected
edges

E:={{n,m}:cln,m)=truen,me N}.

Transitive connectivity in the connectivity graph: Using the connectivity graph, a
definition of nodes having transitive connectivity is possible. The nodes in set
C C N have transitive connectivity when all nodes can establish links to each
other:
Va,y,z € C:e(z,y) Ay, z) = ez, 2)

Hence, in a subset of nodes that have transitive connectivity, there exists an
edge between every pair of nodes in the connectivity graph. In other words, the
subset is one clique in the connectivity graph.

Connectivity domains (CDs) and relays: A maximal set of nodes C that have tran-
sitive connectivity is called connectivity domain. In this case, maximal means
that the set C cannot be extended by including one more adjacent node from
the connectivity graph without violating the condition of transitive connectiv-
ity. C denotes the set of all connectivity domains. For two connectivity domains
C1,Cy € C, anode r € C;yNCy is a relay between C; and C,. Relays may also
form cliques. It is assumed, however, that C does not contain any Connectivity
Domains comprising relays only.

Figure 4.3 shows the connectivity domains/cliques and relays in the connectivity
graph of the scenario presented in Section 4.1.1. The formal problem is to detect
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connectivity domains efficiently and find the relays between them. This is similar
to enumerating all maximal cliques in a graph, which is a NP-hard problem in
general. Therefore, it is necessary to narrow the problem down using the scenario
of P2P applications. The next section discusses the problem and solution space in
this scenario.

4.1.3 Related Work, Requirements, and Assumptions

Section 4.1.2 shows that determining all connectivity domains and relays is sim-
ilar to listing all maximal cliques in the connectivity graph of an overlay with
size N. The Bron-Kerbosch algorithm [12] would be an intuitive, central solution
to this problem. It uses recursive backtracking to find all maximal cliques with
O(3N/3) complexity in the worst-case. Additionally, [62] provides several new and
optimized algorithms for solving the problem, and [26] provides an algorithm for
sparse graphs in near-optimal time; however, all these algorithms have a com-
plexity within O(3V/3) proven in [92]. There also exist many variants of these
algorithms, e. g., variants supporting dynamics [86], or algorithms that distribute
the task using a central server [51].

Reducing the Solution Space

The main issue of the algorithms and their variants is, that they need global knowl-
edge of the connectivity graph and are not decentralized. Thus, those algorithms
are not viable solutions for a P2P application. A viable solution must comply two
main requirements of P2P applications:

Requirement 4.1 (Decentralized and Autonomous) — Since P2P applications try
not to rely on a central entity, e.g., a central server, or, other special hardware,
P2P applications require a solution that works decentralized and autonomously on
each node in the overlay.

Most P2P applications are scalable because they use local resources provided
by the nodes itself. Thus, it is important that the solution detecting connectivity
domains does not reduce the scalability of an existing P2P application:

Requirement 4.2 (Scalability) — For reasons of scalability the solution can only
use a limited amount of local resources of a node, e. g., memory usage, bandwidth
consumption, or, computational resources. Limited means, the usage must either
be limited by a constant or grow moderately with the number of nodes, e. g., within
O(log N) when N is the number of nodes.

These requirements reduce the solution space. However, possible real-world
scenarios allow several assumptions that reduce the problem space as well.

Reducing the Problem Space

The scenario of P2P applications allows to state several assumptions that reduce
the problem space. First, it is obviously highly improbable that the connectivity
graph of an overlay of size N comprises the theoretically maximum number of
cliques 3V/3. This assumption reduces the theoretical worst-case complexity of
finding all maximal cliques magnitudes below O(3V/3).
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Second, in real-life networks usually only a few routers connect a larger number
of end-systems. This means, real-life networks have a low relay ratio and allows to
claim the following assumption:

Assumption 4.3 (Relay ratio) — The number of nodes attached to a single network is
larger than the number of relays connected to several networks. In the formalism of
the connectivity domains, this means that for two connectivity domains Cy,Cs € C,
it holds |C;\(C1 N Cq)| > |C1 NCql, for i € {1,2}. Furthermore, the number of
connectivity domains is finite and small compared to the number of all nodes, i.e.,

IC| < |V

In the analysis in Section 4.3, this assumption is used to show the feasibility of
relay detection.

Finally, if nodes migrate from one network to another one, for example, by de-
taching a node from an IPv4 and re-attaching it to an IPv6 network, it usually
includes a change of underlay addresses. Consequently, the node loses all over-
lay neighbors that are attached to the previous network. This allows to use the
events of link failures on a node as an indicator for connectivity changes under the
following assumption:

Assumption 4.4 (Node Migration) — If nodes migrate from one network to an other,
links in the previous network fail and new links are established in the new network.

This assumption allows the Connectivity Measurement Protocol (CMP), cf. Sec-
tion 4.5 to detect connectivity changes.

Summary

The previous requirements and assumption reduced both, the solution and the
problem space. The most challenging question is, if the problem space is simple
enough so a solution can be found. The next sections will discuss one feasible
solution that fits the requirements and uses the assumptions to determine its fea-
sibility.

4.2 Desighing a Scalable and Decentralized Solution

Using the formal problem description, i.e., the requirements and assumptions of
Section 4.1, a possible solution comprises the following steps:

1. Build an unstructured overlay O = (N, £’) as sub-graph of the connec-
tivity graph G with node degree bound by some k € N, i.e., & C & and
{ee & :nee}| <kforall n e N. Overlay neighbors in O can be selected
by random sampling from the connectivity graph. In practice this is done us-
ing peer sampling [50] or random walks [4] in a scalable, and self-organizing
manner, i.e., fulfilling the requirements in Section 4.1.3. Furthermore, a un-
structured overlay commonly does not require the underlay to have transitive
connectivity, cf., Section 2.2. The unstructured overlay serves as helper to
detect connectivity.

2. Detect relays within the unstructured overlay . Thus, a mechanism is
needed to detect relays in the overlay. This step is motivated from the key
insight that, if all relays are detected, and non-relay nodes know which of their
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overlay neighbors are relays, they know that all remaining overlay neighbors
are in the same connectivity domain.

3. Reach an agreement on a globally unique connectivity domain iden-
tifier (CID) among the non-relay nodes implying that these nodes are in the
same connectivity domain.

With this solution each node knows if it is a relay and CIDs of the connectivity
domain(s). Furthermore, each non-relay can check by comparison of the CID if it
is in the same connectivity domain.

This solution is not yet a protocol that solves the problem. Before the Connec-
tivity Measurement Protocol (CMP) is derived, appropriate algorithms for the two
main sub-problems, namely, relay detection and agreeing on a CID per connec-
tivity domain, need to be found. The following sections present algorithms that
solve these issues under the given requirements and assumptions. Additionally, the
sections provide worst-case bounds for each sub-problem where applicable.

4.3 Relay Detection
Informally, if a node wants to determine if it is a relay, the node must check if one
pair of nodes it can communicate directly with that cannot communicate directly
with each other. Formally, a node x has to check if there is a pair of potential
overlay neighbors a, b in the connectivity graph G that cannot establish a link, i.e.,
check if

da,b € I'(x;G) : c(a,z) A c(z,b) # c(a,b)

as this would violate the transitive connectivity condition. Hence, the node is a
relay for at least one pair of nodes. Depending on the number of nodes in the
overlay, a node may have millions of nodes as potential overlay neighbors in the
connectivity graph. As every pair needs to be considered this leads to a quadratic
complexity with subject to the number of nodes in the overlay per node. This
makes relay detection challenging.

The solution introduced in Section 4.2 already narrows the problem down by
only considering a limited set of overlay neighbors I'(z; O) in the unstructured
overlay O for relay detection. Thus, each node z needs only O(k"*) = O(1) checks
because the number of actual overlay neighbors &' = |['(x; O)| is limited; however,
this also reduces the accuracy of the detection, i.e., a node may not be able to
detect if it is a relay.

To shed light on this issue, the following sections study the feasibility of detect-
ing relays when considering the assumptions and requirements from Section 4.1,
in conjunction with the solution in Section 4.2. The study is threefold. First,
Section 4.3.1 presents a technical tool called “triangle check” to probe if a pair
of overlay neighbors of a node can establish a link. Section 4.3.3 describes the
worst-case for relay detection. Then, Section 4.3.4 and Section 4.3.5 discuss two
approaches to determine the required number of triangle checks by considering the
worst case:

— First, the random sampling approach considers triangle checks between a ran-
domly sampled pair of overlay neighbors, i.e., a,b € I'(x; G) for each triangle
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Figure 4.4 — Triangle check of node A between overlay neighbors X and Y

check. Thus, this approach is independent from the unstructured overlay O
and discusses the general relay detection in the connectivity graph G. This is
important, since the unstructured overlay is built using random sampling.

— Second, the wunstructured overlay approach considers the actual set A C
[(z;G), |A| < k of overlay neighbors sampled randomly from the connec-
tivity graph G for relay detection.

Finally, Section 4.3.6 summarizes the results of this study.

4.3.1 Triangle Checks

It is essential to check if a pair of overlay neighbors of a node can communicate
directly to enable relay detection on a node. When considering the formal problem
statement presented in Section 4.1.2, this is equivalent to the evaluation of the
connectivity function c(a,b) between two overlay neighbors a,b € I'(x; O) of node
x. The feasibility of this solution relies on one idea of an implementation. This
section sketches such an implementation called triangle check. Whenever a triangle
check fails a node knows it is a relay for at least two overlay neighbors.

Figure 4.4 shows the steps of a triangle check issued by node @) between the
overlay neighbors € and @) in detail. The figure shows a sequence of 5 steps
H to B In the first step EJ, node @ sends messages containing the other
overlay neighbors’ underlay addresses to node €9 and €, i.e., underlay address
addr(Y') to node € and addr(X) to node @ respectively. Then, node @) waits for
acknowledgements from node € and @) to indicate that the check was successful.

If nodes €9 and @ receive node €)’s message in step H both try to establish a
link using the underlay addresses contained in the messages. If the link has been
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Notation | Description

G :=(N,¢&) Connectivity graph

O :=N,&) Unstructured overlay (graph)
N = |N| Overlay size

k Max. no. of overlay neighbors

A:=T(x;0),k :=|A] | Set of overlay neighbors A of node x in the unstructured
overlay k' denotes the actual number of overlay neigh-
bors of node x

Ne Number of connectivity domains

c(a,b) — {true, false} | Connectivity function/triangle check between nodes a, b

Ci,...,Cne TN Connectivity domains

C:={Cy,...,Cn.} Set of all connectivity domains

C(z):=(Cy,...,Cp) Sequence of connectivity domains comprising node x

O(x) :=(01,...,0,) Probability 6; that a node x samples an overlay neighbor
from the connectivity domain C; with ¢ = 1...n and
(Ci)i=1..n = C(x)

d Distribution of non-relay nodes

r Relay ratio

Table 4.1 — Summary of notations.

established successfully, nodes € and @) exchange acknowledgement messages
ACK(X) and ACK(Y) in step EJ. Finally, nodes € and 9 forward these acknowl-
edgements to @) to inform @) that the triangle check was successful in step . If
the overlay link cannot be established in step [, node @) runs into a timeout and
assumes that the triangle check has failed in step [E. To ensure that the triangle
check did not fail due to of messages loss, congestion, or other reasons, node @)
repeats the check several times. Only when all repetitions have failed, node @)
assumes that it is in fact a relay for overlay neighbors €9 and Q.

4.3.2 Notations and Model for Random Sampling

The solution sketched in Section 4.2 uses random sampling to find overlay neighbors
for a node. Hence, for the discussion of the feasibility of relay detection a definition
of random sampling is necessary. For this reason, let

C(%) = (CZ)Zzln withn € N, 1 <n < N¢ (4.1)

define the sequence of connectivity domains comprising node x. Then, each 6; of
n |
O(x) = (0;)i=1..n With 6; € (0,1],n = |C(x)],> _6; =1 (4.2)
i=1

denotes the probability that a node z samples an overlay neighbor from con-
nectivity domain C; of C(z). Thus, ©(z) characterizes the random sampling of
node x’s overlay neighbors from the connectivity graph. Two distributions of
O(z) = (0;)i=1..n, for random sampling are considered:
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— On the one hand, the uniform-©-distribution describes the uniform random
sampling of nodes from all connectivity domains C(z) of a node z, i.e., ¢ =
=, =1

— On the other hand, the non-uniform-0©-distribution describes the non-uniform
random sampling with a probability proportional to the number of nodes in

a connectivity domain, i.e., #; = %, o0, = %, with N, = ZXGC@) |X|
being sum of the number of nodes of all connectivity domains comprising
node x. This includes relays, thus, N, can be greater than the number of

nodes N.

The following describes the worst-case scenario and sheds light on the number of
triangle checks required using the random sampling approach. For convenience,
Table 4.1 summarizes the notations this section uses.

4.3.3 Worst-Case Scenario

Intuitively, relay detection on a node gets harder in terms of the required number of
triangle checks the less connectivity domains comprise the node. This makes relay
detection on a node in two connectivity domains the worst case. The following
backs this intuition formally.

Let  be the only node present in n > 2 connectivity domains C(z) and ©(x) :=
(0;)i=1..n an arbitrary ©O-distribution. Furthermore, let p := max©(z) be the
maximum probability of random-sampling an overlay neighbor from a connectivity
domain. Then, the maximum probability of random-sampling a pair of overlay
neighbors from disjoint connectivity domains is (1 — p?). A triangle check fails
with this probability and the node detects it is a relay. p decreases monotonically

with a growing number of connectivity domains n because of > 1  6; = 1, and,
0; # 0, cf., term (4.2). Thus (1 — p?) grows monotonically with growing number
of connectivity domains n and makes relay detection on the node more likely.
Consequently, relay detection on a node in two connectivity domains is the worst
case.

Scenario with Two Connectivity Domains

Motivated by the worst-case of relay detection, the following describes a scenario
comprising a set of nodes N of size N := || which are at least in one of the two
connectivity domains C; and Cs. The set of relays R := C; NCsy denotes the nodes in
the intersection of both connectivity domains. For further discussion the goal is to
describe this scenario with relative parameters. These relative parameters describe
the node distribution d among C;,Cs and the number of relays in R using the relay
ratio r. The relay ratio defines the fraction of relays in connectivity domains C;
and Ca:
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The node distribution?® d € (0, %} defines the distribution of non-relay nodes among
the connectivity domains C; and Co:

CA\R[= [d-(1—7) N] (4.4)
Co\R[ = [(1=d)-(1—7)-N] (4.5)

This means, e.g., if d equals % the two connectivity domains comprise an equal
number of non-relay nodes. The smaller d, the less non-relay nodes are in C; and
the more are in C3. Adding up all relay and non-relay nodes yields the number of
all nodes N, more precisely:

ICA\R| + |C2\R| + |R] =N
& [d-(1—-r)-N|+[1-=d)-(1—=7r)-N]+[r-N] =N
& N =N

This confirms that the node distribution d and relay ratio r are in fact relative
parameters to describe the scenario of two connectivity domains independently
from the absolute number of nodes N.

According to Assumption 4.3 in Section 4.1.3 there must be more non-relay
nodes than relays. This means, the number of relays in R must be significantly
lower than the number of non-relay nodes in C;\'R. More precisely,

IR| < |CiI\R| & r N<d-(1-r)-N&r<d-(1-r)
which allows the derivation of the constraints

rgi and d > 4
1+d 1—7r

(4.6)

of the node distribution d and relay ratio r.

Figure 4.5 illustrates the relay detection on node @) in a scenario with a node
distribution of d = % in the connectivity domains C; and Cs, and an extraordinary
high relay ratio of r = % Node @) performs four triangle checks between pairs of its
overlay neighbors, @, (U), (V), and ). The problem of relay detection on node @)
is, that some of the node’s overlay neighbors are relays. Therefore, triangle checks
succeed across connectivity domain boundaries. This makes the relay detection
complex. Only the triangle check between nodes €y and @ fails in the example.
In this case, both overlay neighbors are not relays and in different connectivity
domains.

4.3.4 Relay Detection using Random Sampling

The example in Figure 4.5 shows that a triangle check initiated by a node x € R
fails if the node chooses two overlay neighbors in different connectivity domains
which are not in the set of relays. Without loss of generality, let the random

2Without loss of generality, let connectivity domain C; comprise less nodes than Ca, i.e., |C1| < |Ca].
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Figure 4.5 — Exemplary scenario for relay detection on node A with an extraordi-

nary high relay ratio of r = % and a node distribution of d = %

sampling of a node € R obey the non-uniform-O-distribution O(z) = (6, 62) for
the connectivity domains C(x) = (Cy, Cy) parametrized with d and 7:
0, G| _ N-(d-(L—7)+7)
Ny Ny
y 1G] N (=) 1 =r)+n
Ny Ny
Ny :=|Ci| +[Co] =N -(1+7)

Then, the probability that a triangle check between two randomly sampled overlay

neighbors of node x fails can be approximated as function of r and d:

JCAR| [C\R)
N N

Prait(r,d) := 2 =2-d-(1—d)-(1—r)> (4.7)
The term comprises the probability that two randomly sampled overlay neighbors
are not in the set of relays (1—r)? and in different domains 2-(1—d)-d. Additionally,
the term allows the derivation of the probability that at least one of A,,;, triangle
checks will fail. The term represents only a approximation. The real probability
could only be calculated using the absolute number of nodes:

o 1C\R|-ICAR]
fail - N—1
("57)
However, Prq(r, d) is a lower bound as Py (r, d) := €- P (r, d) with € := — N,

1 when N — oo and € < 1.
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Figure 4.6 — Probability of a valid relay detection on a node: P,y and ﬁrelay.

Prait(r, d) allows to calculate the probability of relay detection a node:

Prelay(Amim T, d) =1- (1 - Pfail (T7 d))Amm (48)

By applying the constraints of (4.6), derived from Assumption 4.3, to (4.7) leads
to a lower bound of Pielay:

r

—) (4.9)

. 1
1= (472 =27+ 1) with r € (0, ) (410)

Prelay<Amim T) = Prelay<Amz'n; r,

= ﬁrelay(Amin; T’) =

A~

Pclay Tepresents the worst-case probability in terms of the node distribution d and
Assumption 4.3. More precisely, the set of relays R comprises the same number
of relays as there are non-relay nodes in the smallest of the connectivity domains
Cy or Cy. This results in an imbalance in the number of non-relay nodes in the
connectivity domains C; and C,.

Figure 4.6 shows several curves of the probabilities of relay detection as a func-
tion of the relay ratio r and node distribution d for an increasing amount of triangle
checks Ay € {5,10,20,40} using Prelay and Prelay-

Figure 4.6(a) shows Pelay as function of the relay ratio r with an even node

distribution of d = % This is equivalent to a random sampling that obeys the
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uniform-©-distribution. The plot suggests that 10 < A,,;, < 20 triangle checks are
sufficient for relay detection on a node in a scenario with r < 20% relays with high
probability. This relay ratio is way beyond what was expected in Assumption 4.3.

A difficulty of relay detection using random sampling, is the impact of a small
node distribution d which results in a non-uniform-©-distribution. Figure 4.6(b)
shows Pclay as function of the node distribution d with a relay ratio » = 0.1. Even
with a high number of triangle checks the probability of relay detection drops to
zero when the node distribution is unbalanced. This is natural, an unbalanced node
distribution makes it more likely that a node samples two overlay neighbors from
the larger connectivity domain Cy. Figure 4.6(c) suggests the same behaviour. It
shows Pielay as function of the relay ratio r with a fixed node distribution d = 0.1.
Only a high number of triangle checks A,,,;, > 40 makes the relay detection feasible
given a node distribution of 0.1.

Finally, figure 4.6(d) shows the worst-case assumption on the node distribution
by illustrating ﬁrelay as function of the relay ratio . Only a relay ratio r above 0.1,
a resulting worst-case node distribution d > 0.1, and at least A,,;, > 20 triangle
checks, make the relay detection feasible.

In summary, the study of the random-sampling approach, gave the following
insight:

— The worst-case scenario is the relay detection on a node in two connectivity
domains. The two connectivity domains can be modelled using two parame-
ters, the relay ratio r and the node distribution d which are independent of
the absolute number of nodes N.

— The higher the relay ratio » > 0 and/or the more unbalanced the node dis-
tribution d < 0.5, the harder the relay detection.

— A large number of triangle checks A,,;, > 10 can compensate a high relay
ratio r > 0, and an unbalanced node distribution d < 0.5.

The random-sampling approach does not consider the unstructured overlay. It just
uses random-sampling for relay detection. Thus, the approach is more generic.

4.3.5 Relay Detection using the Unstructured Overlay

This section discusses relay detection by using the overlay neighbors in the un-
structured overlay. For this reason, let A := (ag,...,aw_1)T, k" < k be the vector
of random-sampled overlay neighbors a; € I'(x; O) of a node x in the unstructured
overlay. Furthermore, using the scenario of two connectivity domains, let A com-
prise ¢; € N overlay neighbors from C;\R, j € {1,2} and ¢, overlay neighbors from
R such that ¢; + ¢y + ¢, = K.

Assume that node x € R is a relay. Then, to describe the worst case, i.e.,
maximal imbalance and maximal relay ratio, co and ¢, are calculated as follows:
first, let ¢; denote the number of overlay neighbors in C;\R. Second, assume
that the number of relays equal the number of non-relays in C;. According to
Assumption 4.3 this is unlikely, but with respect to the previous insight makes
relay detection difficult. Consequently, since node x is a relay, let ¢, := ¢; — 1
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denote the number of overlay neighbors in R. Finally, the rest of the overlay
neighbors must be in Co\R, thus, ¢o := k' —2-¢; + 1.

For relay detection on node z three strategies are considered:

Random strategy:
The node performs A,,;, triangle checks between randomly chosen overlay neigh-
bors a;, a; with 7 # j.

Overlapping strategy:
The node performs Ay, = k' triangle checks between a;, and a1y mod i
i=0...(Apim—1).

Non-overlapping strategy:

The node performs A,,;, = L%J triangle checks between a(s.5), and (2.i41) mod &’
i=0...(Apm—1).

For evaluation of those strategies a simulation sheds light on the probability of
relay detection. The simulation determines the probability of the overlapping and
non-overlapping strategy by counting the permutations of A that lead to a triangle
check failure divided by the number of all permutations 2. The probability when
using the random strategy is calculated using

Ampin
Plrotay =1 — (1—2%-%)
according to (4.8).  Figure 4.7 shows the simulation results for the probability
of a relay detection on a node in the unstructured overlay as function of varying
parameters k' € {10,16,20} and ¢;. The reason for k' < 20 is because the number
of permutations grows with the factorial of &’; more than k' > 20 overlay neighbors
takes too much time to simulate.

Figures 4.7(a), and 4.7(b) show the probability of relay detection for k¥’ = 10
and k' = 16 as function of ¢;. Both figures show the superiority of the overlapping
strategy. It is close to 1.0 even when the number of relays ¢, exceeds the num-
ber of non-relays c;. The random and non-overlapping strategies show an nearly
proportional probability; however, the non-overlapping strategy uses half of the
triangle checks, thus, has a slightly lower probability. Both hardly come close to
1.0 with a low number of nodes ¢; while the overlapping strategy easily reaches
and sustains a probability of 1.0. A noteworthy abnormality is the initial sharp
drop in the curve of the non-overlapping strategy. This follows when ¢; = 1, then,
¢ is zero, and ¢o = k' — 1, hence, in any permutation of A a non-overlapping pair
of overlay neighbors as.; € C1\R, and a(2.i11) mod ¥ € C2\R, @ = 0... (Apin — 1)
can be found which causes the triangle check to fail.

Figure 4.7(c) shows the probability of relay detection for &' = 20 and Fig-
ure 4.7(d) illustrates the values of ¢, and ¢, as function of ¢;. Figure 4.7(c) acknowl-
edges the trend shown by the figures 4.7(a) and 4.7(b). The overlapping strategy
provides the best probability of relay detection. Even when Assumption 4.3 is
violated by a larger number of relays than non-relay nodes, i.e., ¢, exceeds co, the
overlapping strategy allows relay detection with a probability higher than 75%.
This is also the case with a lower number of overlay neighbors &£’ when comparing
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Figure 4.7 — Probability of a relay detection on a node in the unstructured overlay.

the curves from the other figures. In conclusion, among the considered strategies,
the overlapping strategy outperforms, both, random, and pairwise non-overlapping
strategy.

Naturally, relay detection on nodes in the unstructured overlay can only detect
relays that have at least one overlay neighbor in each connectivity domain C;\R, i €
{1,2}. Additionally, the number of overlay neighbors k&’ of a node z also limits
the number of detectable connectivity domains. Hence, the unstructured overlay
approach only provides a weak relay detection—Ilimited to the unstructured overlay.
In contrast, the random-sampling approach provides a statement that reflects the
feasibility of relay detection in the connectivity graph G in general.

4.3.6 Summary

This section discussed the feasibility of detecting relays with the constraints given
in Section 4.1. For this purpose, worst-case scenarios have been considered for
different relay detection approaches. This results in the insights as follows:

1. A node in two connectivity domains is a worst-case for relay detection (cf.
Section 4.3.3).

2. Unbalanced connectivity domains and a high relay ratio make relay detection
difficult in the random-sampling and unstructured overlay approach.

3. Yet, relay detection in the unstructured overlay is feasible under the assump-
tions from Section 4.1 and even beyond (cf. Section 4.3.5).
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4. A minimum of 10 < A,,;, < 20 using the overlapping triangle check strategy
is adequate for a relay detection in the unstructured overlay. This requires
a node to have 10 < £’ < 20 overlay neighbors if possible. Furthermore, the
choice of A,,;, and k" also provides a good chance of relay detection in the
connectivity graph G (cf. Section 4.3.4).

After the relay detection, non-relays must agree on an identifier for each domain.
The next section discusses several random number agreement schemes for this
purpose.

4.4 Connectivity Identifier (CID) Agreement

After the nodes performed the relay detection, the non-relay nodes know that they
are in a connectivity domain with their overlay neighbors. To identify a connec-
tivity domain, non-relays agree on a random number, the connectivity identifier
(CID), with their overlay neighbors. At the same time relays wait until their non-
relay overlay neighbors have agreed on CIDs. This way, they become aware of the
set of connectivity domains they are relay for.

This section discusses the requirements, a possible random number agreement
to agree on a CID and provides a feasibility study. For this purpose, the fol-
lowing considers an unstructured overlay graph comprising the non-relays in a
connectivity domain. Formally, let O" := (N’ ") comprise the non-relay nodes
of the unstructured overlay that are in a connectivity domain N’ := C\R and
E" = {{a,b} € & :a,b € N'}. The goal is to reach an CID agreement on all
nodes in O'.

4.4.1 Requirements and Related Work

Naturally, the random number agreement algorithm must comply with the re-
quirements from Section 4.1.3. Hence, the CID agreement must be scalable and
decentralized. Furthermore, it must use the unstructured overlay of the solution
in Section 4.2. In addition to these requirements, the CID agreement has two
additional requirements:

Requirement 4.5 (Leak robustness) — The CID agreement must be tolerant when
weak relay detection fails on some nodes. In this case, nodes might agree on a CID
which are in fact in several connectivity domains. Thus, the CID agreement has
leaks to several connectivity domains. It is desirable that the CID agreement is
robust against at least some of those leaks.

Requirement 4.6 (Agreement stability) — After the non-relay nodes agreed on a
CID this agreement must be stable. This means, a single joining, leaving, or failing
node must not be able to change the CID agreement. Ideally, only the majority of
nodes should decide on a new CID agreement.

For finding a feasible random number agreement algorithm to agree on a CID
several related work is considered. First, one way of agreeing on a CID is to elect
a leader that chooses a CID. The very first point of reference is [41], which elects
the node (or process) with the greatest identifier. Janson et. al [48] provides
a discussion of the convergence of general leader election algorithms. Most of the
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leader election algorithms assume a full mesh, i. e., all nodes link to all other nodes.
This makes these approaches unattractive. Furthermore, electing a leader would
introduce a single point of failure, i.e., the leader may select a CID that is not
unique.

Since CMP uses a unstructured overlay, gossip-based consensus protocols be-
come interesting in the design process. The basic idea of gossiping is inspired by
the spread of epidemics discussed by Demers et. al [22] and rumor spreading theory
[73, 54]. This led to a variety of gossip algorithms [11].

The random agreement is a consensus on a random number among a set of
nodes. Generally, a consensus has certain bounds: Fischer et. al [31] show the
impossibility of a consensus with only one single faulty process (or node). Newer
work, i.e., [77], shed light on the impossibility of consensus when links fail between
nodes. Thus, in CMP, if a node does not want to adapt a certain CID, there is no
consensus on a CID among all nodes. This is a typical boundary.

4.4.2 Gossip-based Random Number Agreement

To fulfill the requirements from Section 4.4.1, the most appropriate group of pro-
tocols are gossip-based consensus algorithms [11]. These algorithms assume a un-
structured overlay and use a gossiping protocol to achieve a consensus between
nodes. It is known that gossiping protocols are scalable, decentralized, have good
convergence time, and are well-understood theoretically [73]. Thus, fit the require-
ments from Section 4.1.3 with one exception: the most gossip-based consensus
algorithms find a consensus on an average value. The CID agreement needs to
agree on a random number. However, these algorithms provide an starting point
for a gossip-based random number agreement algorithm.

The approach behind gossip-based algorithms is as follows: Each T;.4,,q seconds,
or each round, a node exchanges a message of limited size comprising gossip with a
set of randomly chosen overlay neighbors. This results in a constant “fan-out”, i.e.,
number of messages sent, and constant “fan-in”, i. e., number of messages received
per node as the number of overlay neighbors k&’ < k is limited. The contents of the
gossip depends on the intention, e.g., finding a consensus or random agreement,
of the gossip-based algorithm.

Algorithm 4.1 describes a gossip-based random number agreement on a node
x with k' := |I'(z; O")| overlay neighbors. In this case, the gossip exchanged by
the algorithm is a random number. The algorithm first chooses a random number
¢ € N,,. This random number is the node’s first proposal for the random number
agreement. To ensure that the proposal is unique with high probability, rand()
returns a random number within the interval N, := [1, 2128 _ 1] C N, i.e., a 128-bit
value. The value of zero denotes an invalid proposal. After that, the k’-tuple of
received proposals P := (p1,...,px) is initialized with zeros. A specific element
pi € N,U{0} of the k’-tuple stores a received proposal from an overlay neighbor or
has an invalid value. Then, the algorithm sets the running flag and proceeds with
the first round in the while-loop.
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In the loop, node x sends his proposal ¢ to all of its overlay neighbors. Conse-
quently?, in the next step, the node receives proposals and refreshes the proposals
of the overlay neighbors in the k’-tuple P while waiting T}yunq sSeconds. After wait-
ing, node x chooses a new proposal ¢ from the k’-tuple P using a selection function
D and starts over.

The analysis of the algorithm’s properties requires an global view on the propos-
als of the nodes V(O’) in O'. For this purpose, let ®; := Uer(O’) ¢, be the set of
proposals of the nodes in @’. ¢, denotes the proposal ¢ chosen by Algorithm 4.1 on
node x € V(') after a maximum of ¢ € N rounds. Before the algorithm enters the
main loop ®¢ comprises |V (O']) distinct proposals with high probability. When the
nodes have found an agreement, &5, = {p'} contains exactly one random number
p after R, € N rounds. R, or R, - Trouna are metrics of the convergence time of
the random number agreement.

To reach a random number agreement, Algorithm 4.1 must use a suitable selec-
tion function D : N’;/ — N, which reduces the overlay-wide proposals in ®; to a
single proposal after a finite number of rounds R,. The next section discusses the
properties of several selection functions.

4.4.3 Discussion of Selection Functions
The selection function D : N’;/ — N, selects a new proposal from proposals P €

Npk/ received from &’ overlay neighbors of node x. To ease the understanding of
the selection functions the following sections use the exemplary values of P:

P’ = (75,12,45,12,45,98).

Additionally, the definition of the selection functions uses the following notation:

[* Initialization: choose a random number proposal */
¢ < rand();

P« (0,...,0);

running < true;

[* Main loop: exchange proposals periodically */
while running = true :

/* Send proposal to overlay neighbors */

foreach overlay neighbor y € I'(x; O'): send(o, Y);
/* Receive proposals from overlay neighbors during wait of 7', sSeconds */
recetve_and_wait(P,Tround);

[* Select new proposal */

¢ < D(P)

Algorithm 4.1 — Gossip-based random number agreement on node z with k' :=
IT'(z; O")] overlay neighbors

3The overlay neighbors run the same algorithm.
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Distinct proposals: The n,-tuple U” := (u1, ..., u,,) € Np* with n, := )Ufil Di

and u; € Uflzl p; denotes the distinct proposals from P ordered decendingly by
the frequency and by the value of the proposal to break ties. Thus, u; is one of
the most frequent and u,, one of the least frequent proposals in P. Example:

UP' .= (45,12,98,75).

Proposal frequency: f”(p) € N,p € N, denotes the frequency of a proposal p in

P. Example:
P |45 12 98 75

Pz 2 1

Using these notations the following sections discuss several selection functions.

Maximum Selection Functions

A very obvious possibility to agree on a proposal, is to select the largest number?
in P. The maximum selection function Dy; implements this behaviour:

Dyi(P) := maxp (4.11)
peEP

The algorithm’s convergence time using this selection function is equivalent to
rumor spreading [73] which is within n, € O(log N) (N is the number of nodes
in @) rounds®. The disadvantage is, that the random number agreement always
converges to the largest proposal. In consequence, the agreement loses its random
quality.

To fix this, the maximum hash (MH) selection function Dy selects the random
number proposal having the maximum cryptographic hash value. This ensures
that the resulting random number agreement does not lose its random quality:

Dy (P) := argmax H(p) (4.12)
peEP

However, if one node proposes a random number that has a greater hash value
than the current agreement, all nodes will agree on this proposal. Therefore, a
single node can change the agreement. This violates the stability requirement.

To introduce stability after the nodes have agreed on a proposal, the majority
maximum hash (MMH) selection function Dy uses an absolute majority vote.
It selects the random number that 50% of overlay neighbors propose or the random
number with the greatest hash to break ties:

u, it fP(ur) > 5K (4.13)

argmax,.p H(z), otherwise

Dynvu(P) = {

4This is similar to the leader election algorithm [41] or bully algorithm

5 Actually, this complexity can also be deduced from considering flooding in a random graph. Because
random graphs have a logarithmic diameter, gossip-based flooding takes a logarithmic number of rounds
as well.
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As defined before, u; is t/he most frequent proposal in P. Thus, random number
uq is selected if at least % overlay neighbors propose ;.

Using Dyvy the agreement on a CID can be realized fast due to the expected
logarithmic number of rounds needed to converge, and stable due to the consider-
ation of the absolute majority vote in the selection function. However, Dy is
not robust against leaks. If one relay is not detected, all nodes in all connectivity
domains comprising the undetected relay will likely agree on the same CID.

The main reason for Dypy’s failure in the presence of leaks is that it selects a
proposal by interpreting its value, i. e., comparing that the hash. The next section
presents the random selection functions which change this behaviour.

Random Selection Functions

In contrast to the maximum selection functions the random selection functions do
not interpret the value of a proposal. This makes it less likely that a single proposal
has an influence on the random number agreement. The simplest random selection
function is given by Dy which selects one proposal from P randomly. Thus, it
does not make any decision based on the values of the proposals. This prevents
that a particular proposal has a global impact on the agreement—each proposal is
treated equally:

Dr(P) :=p, € P,z € {1,...,k'} chosen randomly (4.14)

Intuitively, this function will cause that nodes agree extremely slow, or, worse,
never on a single random number. To accelerate the agreement and to provide
stability for the agreement the relative majority random (RMR) selection function
Dgryvr combines the random selection function with a relative majority vote:

Uy, if |UP‘ >2A fp(ul) > fP(UQ)

4.15
Dg(P), otherwise (4.15)

DRMR(P) = {

If one proposal in P is more frequent than others, i.e., f7(u1) > f¥(us), then
Drur selects this proposal. Otherwise, Dgryr selects a random number proposal
randomly. Like in Dy the majority vote provides the required stability for the
agreement. Furthermore, if one proposal has the relative majority, it is likely that
other nodes choose this proposal which accelerates the agreement.

The goal of Dy is reducing the impact of leaks in the random number agree-
ment—not preventing it. Furthermore, the relative majority vote of Dryr makes
an agreement more likely and stable. The main problem is that the number of
rounds R, needed to agree on a random number is unclear. Related work does not
give a answer to this task. In the next section Algorithm 4.1 using Dg is analysed
to back the intuition with facts.

4.4.4 Analysis of the Random Selection Function

The goal in this section is to gain insight of the number of rounds R, needed for
Algorithm 4.1 with selection function Dg on N nodes in an graph O’ until an
agreement on a single random number is reached. The analysis is twofold. First,
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Lemma 4.7 provides insights if @’ is a cycle or path. Second, Theorem 4.8 extends
the insight of Lemma 4.7 to random graphs.

All following considerations assume that Algorithm 4.1 operates synchronously
on all nodes in @'. This means all nodes initially propose a random number ¢
at the same time, therefore, |®¢| comprises N different proposals. Then, in each
round, all nodes send their proposals ¢ to their overlay neighbors instantly and
wait Troung seconds. Next, all nodes choose a new proposal ¢ randomly applying
DR on the received proposals and start over.

Lemma 4.7 (Dgr on cycle and path graphs) — Let @ be a cycle or path graph
comprising N > 3 nodes. Then at least a quarter of the initially distinct proposals
are expected to get lost in the first round of Algorithm 4.1 using Dy, i.e., |®1] <
2 . |®|. Furthermore, the recurrence relation

T()I: N
Tiyi= -1 (§) N

describes a upper bound of the expected number of distinct proposals in @' after
i € Ny rounds. Hence, |®;| < e- T}, for a fixed € > 1.

Proof. Let O be a cycle or path comprising N nodes and G := (V| F) the directed
graph with V' := V(0O’) that describes the proposal selections. An edge e :=
(a,b) € E :=V x V in G denotes that node a selects the proposal of node b,
i.e., @ — @. Since all nodes choose a proposal the outdegree deg®(z) of a node
x € V is exactly 1. The indegree deg™ (z) < 2 depends on the number of node x’s
neighbors I'(z; V') which select node z’s proposal. If deg™ () is zero the proposal
is lost because no neighbor selects the proposal. Assume node z is added to O’
between nodes a and b in the cycle or path, then the potential edges in G are as
follows:

= ~ OO 0O-—|= ¢, lost
~0 O-0-—|= ¢, lost
~0+-0Q-0
-0 O=0

Table 4.3 — Proposal reduction when using Dy: node z added between nodes a
and b

—
—

0000
1

U
00006

(X
[ x
,_°<_
D=

=W N =

Table 4.3 shows that exactly 2 out of 8 possibilities lead to loss of node x’s
proposal. By induction, this applies to all nodes added to a cycle @ with N > 3
and %1 - N proposals are expected to get lost. When (' is a path, then nodes at the
ends of the path have no choice but to select the proposal of their only neighbor.
This case has to be investigated separately.
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O-0—-0=0 | = ¢ lost
O-0=0« 0 | = b4 ¢qlost
=0 0=0
O=0-0+ 0O | = ¢ lost

Table 4.4 — Possible selections in a path comprising N = 3,4 nodes

=0+ 0O | = ¢ lost
(b

1 @
2| © =0 | = ¢, lost

1
ISR NI

Table 4.4 considers the possible selections in a path comprising N = 3,4 nodes.
The selections show that with N = 3 nodes one proposal gets lost for sure. With
N = 4 nodes, one proposal gets lost with at least probability %. This satisfies the
induction start—also for paths.

The induction in Table 4.3 allows to derive the recurrence relation 7T; of the
lemma. A node proposes a unique random number, i.e., no other node in O’
proposes the same random number, with probability % The induction only holds,
if nodes @, €@, and @), all propose unique random numbers. The probability

for this is (%)3 Thus, the probability that node x’s unique proposal gets lost is
% . (%)3 Applying this probability to all nodes leads to the recurrence relation Ef]
7.

This lemma allows to proof that the behaviour applies to random graphs as well:

Theorem 4.8 (Dr on connected random graphs) — Lemma 4.7 applies also for
connected random graphs G with at least 3 nodes and a minimum node degree of

k>2 e, V(G)>3and Vo € V(G) : deg(v; G) > k, with high probability.

Proof. Let O’ be a connected random graph with at least 3 nodes and a minimum
node degree of k. Then, in comparison to the path and cycle graph, each node
has to choose a proposal from least k neighbors. Hence, the probability that

N 2
a no neighbor chooses a node’s proposal is f(k) := (1 - %) . f(z) increases

monotonically from f(2) = 1 to f(z) — e~! for + — co. Hence, at least 1 of all
proposals are lost and Lemma 4.7 applies for G as well. ]

The recurrence relation in Lemma 4.7 is not solvable by using a well-known
methodology (e.g., master-method), i.e., no closed-form is available. Thus, the
values are calculated to gain further insights on the behaviour on the random
number agreement using Dy. Figure 4.8(a) shows the fraction of distinct proposals
as function of rounds of the gossip-based random number agreement algorithm.
The Figure shows that convergence to a single proposal value x needs many rounds
and gets improbable as the number of rounds increases. However, in the first
rounds, the slope is very steep, therefore, the number of distinct proposals reduce
massively. Figure 4.8(b) shows the number of rounds needed to converge to a single
unique proposal as a function of the amount of nodes. It also shows that Dy is
hardly scalable, since convergence time is not growing sub-linearly.
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Figure 4.8 — Fraction of unique proposals and convergence speed using the recur-
rence relation of Dy

4.4.5 Feasibility Study

Section 4.4.3 presented the selection functions Dy, Dryig Dy, Dy for the gossip-
based random number agreement. The main goal of this section is to confirm the
theoretic findings of Section 4.4.2 with experiments. Those experiments should use
an unstructured overlay graph as proposed by Section 4.2.

To achieve this goal, a custom simulation has been developed. This simulation
allows to simulate Algorithm 4.1 on a large-scale unstructured overlay graph with
different selection functions. For reasons of scalability, the simulation is limited
to the algorithmic aspects. Therefore, neither message loss nor a network com-
munication channel is simulated between the nodes. One simulation run works as
follows:

— First, an unstructured overlay graph comprising N nodes is constructed with
a minimum degree of % - k and maximum degree of k. The simulator builds
this graph as follows. Initially, the simulator adds N nodes to the graph.
Then, the simulator iteratively connects nodes with less than % - k neighbors
with another randomly chosen node. The result is an unstructured overlay
graph as proposed in Section 4.2.

— Second, in each simulation round the simulator performs one round of the
algorithm on all nodes.

The simulation stops until the number of distinct proposals of all nodes reaches 1
or the number of simulation rounds reaches 100.

The choices of random and maximum selection functions used for Algorithm 4.1
are simulation parameters. Additionally, the simulation distinguishes between two
simulation modes:

Synchronous mode: In synchronous mode, the simulation runs Algorithm 4.1 ab-
solutely synchronous. This means, in each simulation round, the simulator lets
all nodes select their proposal at the same time. Then, all nodes send their
proposal to their neighbors at the same time as well®.

6The analysis of Dy in Section 4.4.4 assumes this mode.
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Figure 4.9 — Distinct propoals during the random number agreement.

Asynchronous mode: In asynchronous mode, the simulation runs Algorithm 4.1
asynchronously. This means, in each simulation round, each node selects an
proposal and sends the selected proposal to its neighbors immediately. This has
an influence on the proposal selection in the same round. The influence depends
on the order in which the algorithm is simulated on the nodes in each simulation
round. To simulate asynchronous behaviour, the simulation shuffles the order
in each simulation round. The asynchronous mode results in a more realistic
simulation because message delays and asynchronous clocks in real networks
would have a similar effect.

The simulator records the performance of the random number agreement in terms
of the following metrics:

. . ®; . . .
— fraction of distinct proposals among the nodes % after simulation round i,
— convergence time, i. e., required number of rounds R, for the random number

agreement, and

— fraction of successful agreements in the presence of leaks.

Each simulation run is repeated 100 times with different initialization seeds for the
pseudo random number generator” which is used to build the unstructured overlay
graph and initial random number proposals on the nodes. The simulator provides
means and 95% confidence intervals for each performance metric. The following
sections describe the experiments and discuss the results.

Distinct Proposals

The first experiment evaluates the fraction of distinct proposals, i.e., % in each
round of Algorithm 4.1using the four selection functions in asynchronous and syn-
chronous mode. Figure 4.9(a) shows the results for the random selection functions
Dg and Dgryr. The curves of Dy, both in asynchronous and synchronous mode,
reflect the behavior already predicted and proven by Theorem 4.8. Dy reduces the
number of distinct proposals tremendously in the first rounds indicated by a steep
slope between rounds 0 and 5. This makes it more likely that nodes may agree on

"Mersennne twister
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Figure 4.10 — Convergence time of the random number agreement.

a distinct proposals that has a relative majority among all proposals when using
Dgryvr. The curves of Dgryg illustrate this behaviour. During the first rounds,
Dgrwr is almost equal to Dy in terms of distinct proposals in the first few rounds,
i.e., 0 to 10 in the synchronous mode, and, 0 to 5 in the asynchronous mode. When
the fraction of distinct proposals falls below 0.1 nodes recognize the relative major-
ity of a certain proposal and accelerate the convergence of the agreement, i.e., the
fraction of distinct proposals drops to % In summary, the experiments confirm
the theoretical insights gained in Section 4.4.4 and Figure 4.8. Furthermore, they

show the impact of the relative majority vote in Dryg.

Figure 4.9(b) shows the results for the maximum selection functions Dy and
Dyiva. In contrast to the random selection functions, the fraction of distinct
proposals decreases rapidly, i.e., under 0.3 after the first round. The reason for
this is the flooding character of the maximum selection functions. A node just has
to receive the proposal with the global maximum hash and has converged already.
Since the majority vote only provides stability, it does not have much influence on
the fraction of distinct proposals. That is why the curves of Dyy and Dyvp are
almost identical.

In all cases the asynchronous mode decreases the fraction of distinct proposals
much faster than the synchronous mode. This is because in asynchronous mode, it
less likely that two adjacent nodes just exchange their proposal and do not reduce
the fraction of distinct proposals.

Convergence Time

The next experiment sheds light on the number of rounds needed for convergence,
i.e., the convergence time as function of the number of nodes N and maximum
number of neighbors k. Figure 4.10(a) shows the convergence time as function of
the number of nodes N with the random selection functions Dr and Dgyr with
a maximum number of neighbors £ = 20. The curves show the bad convergence
time of Dgr and Dryr. Dgr exceeds the simulation round limit of 100 when the
number of nodes exceeds 64 in synchronous, and 128 in asynchronous mode. This
behavior has been predicted using the recurrence relation in Figure 4.8(b). Drur
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Figure 4.11 — Convergence time of the random number agreement.

performs better, i.e., has a much lower convergence time with a growing number
of nodes. This is because the relative majority vote of Dgryr accelerates the agree-
ment. However, the curves, when using Dryr show a super linear trend with a
growing number of nodes. This makes Drygr—-although it is better than Dr—a
bad candidate for an random number agreement with a large number of nodes as
well.

Figure 4.10(b) shows the convergence time as function of the maximum number
of neighbors k and with fixed numbers of nodes N = 1024 and N = 8192 when
using Dryr. One insight from this Figure is that the convergence time decreases
when the maximum number of neighbors grow. This is because the maximum
number of neighbors decides on the ability of a node to recognize that the proposal
is having the network-wide relative majority. Informally, the view of a node on the
network-wide relative majority situation of proposals becomes sharper the more
neighbors a node can consider. Another insight is, that the impact of a growing
k is decreasing. In asynchronous mode, a maximum number of neighbors above
k > 20 does not decrease convergence time significantly in case of constant number
of nodes N = 1024 and N = 8192.

Figure 4.11(a) shows the convergence time as function of the number of nodes
N with the maximum selection functions Dy and Dy and a maximum number
of neighbors k = 20. In contrast to the random selection functions, the maximum
selection functions converge very fast and in a scalable manner. The curves show
that the number of rounds needed to agree on a random number increases within
logarithmic complexity. An interesting point is, that Dypg makes the agreement
slightly faster than Dyip—at least in synchronous mode. The reason for this is that
the absolute majority vote is not stable on all nodes. Thus, the proposal represent-
ing the absolute majority may flip several times and delay the agreement slightly.
Obviously, in asynchronous mode, this behavior is less likely. To understand the
steps in the curves, one must understand that the maximum selection functions
basically flood the network limited times for an agreement. Flooding correlates
with the diameter of the unstructured overlay graph. The diameter itself is an
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integer because each link has a weight of 1 and suffers from quantization effects,
i.e., several graphs have the same diameter. This explains the steps in the curves.

Figure 4.10(b) shows the convergence time as function of the maximum number
of neighbors k£ and with fixed numbers of nodes N = 1024 and N = 8192 when using
Dyivi- As already observed in the random selection functions, a larger number of
maximum overlay neighbors does not significantly improve the convergence time
for k > 20.

Impact of Leaks

Finally, the last experiment addresses the random number agreement in the pres-
ence of leaks. For this purpose, the experiment uses a setup similar to the worst-
case presented in Section 4.3.3. It comprises two unstructured overlay graphs
connected by “leaking” nodes connected to both graphs. Figures 4.12 and 4.13
show the experiments comparing Dy and Drygr in scenarios of growing number
of nodes, neighbors, and leaks. When comparing Figures 4.12(b) and 4.12(a) Drur
is more robust against leaks than Dypg with a growing number of nodes. Surpris-
ing is, however, that Dy is robust against leaks to some extend. The reason for
this behaviour is as follows: when 50 percent of the nodes agree on the proposal
with the maximum hash in each unstructured overlay graph fast enough, leaks
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can not change the agreement. For both selection functions, Dryr and Dy,
Figures 4.13(b) and 4.13(a) show the low impact of a growing maximum number
of overlay neighbors k on the robustness against leaks.

4.4.6 Feasibility of the CID Agreement in a Connectivity Domain

One problem not yet been considered is the necessity of the non-relay having non-
relay overlay neighbors in order to agree on a CID. More precisely, O" needs to
be connected and comprise all non-relay nodes of a connectivity domain. When
taking the worst-case scenario into account, cf. Section 4.3.3, it is possible that
all overlay neighbors of a non-relay node are relays if the relay ratio r is high. In
this case, a connectivity domain-wide CID agreement is impossible when O’ is not
connected.

Intuitively, each non-relay node must have at least one non-relay overlay neigh-
bor to agree on a CID. Furthermore, O is only connected with high probability,
if each non-relay node has at least 3 non-relay overlay neighbors. In this case, O’
is a random graph and Vv € V(O’) : deg(v) > 3. For the worst-case scenario, the
probability that a non-relay node has 3 non-relay overlay neighbors is calculated as
follows with subject to the relay ratio » and the node’s number of overlay neighbors
k'

K3 1 v
/ R i —1
PZB—non—relays(k 7T) T ZZ; (Z) r (1 7“)

The P>3_non—reiays calculates the probability that each non-relay node has at least
3 non-relay neighbors.  Figure 4.14 shows a plot of P>3s_pon—reiays as function of
the relay ratio r and for different numbers of overlay neighbors &' € {10, 20, 30}.
One can see that the probability that the CID agreement is feasible decreases with
a growing relay ratio r. A larger number of overlay neighbors &/, however, can
compensate a higher relay ratio. This is because the more overlay neighbors a
non-relay node has the higher the probability of one of these neighbors being a
non-relay. With the maximum number of neighbors k& = 20 the non-relay nodes
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have at least k' > 10 overlay neighbors®. Thus, a relay ratio of ~ 0.4 is still

acceptable.

4.4.7 Summary

This section discussed the properties of selection functions for a gossip-based ran-
dom number agreement algorithm. Two proposal selection functions D are promis-
ing candidates for use with the gossip-based random agreement algorithm: on the
one hand, Dryr which is robust against leaks, but has moderate convergence time.
On the other hand, Dyn, which is vulnerable against leaks, but has a fast conver-
gence time, i.e., uses a number of rounds depending on the logarithmic diameter
of the unstructured overlay graph. The majority selections used in both selection
functions advise a maximum of overlay neighbors of about k &~ 20. The following
table summarizes the results:

Requirement Drvr Dyivia
Convergence time Bad Very good
Leak robustness ~ Very good Moderate/Good
Stability Very good Very good

To use the best of both worlds, i. e., Dryr and Dyivg, Algorithm 4.1may use Drvr
when the leaks are still probable, i.e., during the first Rgygr rounds, and switch
to Dyvp to finally agree on a CID in a timely manner when leaks are unlikely.
Formally, Dyyprip implements this behaviour:

DRMR<P), round S RRMR

: (4.16)
Dyvu(P),  otherwise

Duyprip(P) = {

The next section uses the discussed mechanisms and algorithms to design the
Connectivity Measurement Protocol (CMP).

4.5 Connectivity Measurement Protocol (CMP)

The Connectivity Measurement Protocol (CMP) determines accurate connectivity
identifiers (CIDs) for each connectivity domain and provides information about
relays. For this purpose, CMP implements the solution proposed in Section 4.2 in
conjunction with the relay detection studied in Section 4.3, and CID agreement
algorithms of Section 4.4.

Figure 4.15 shows a brief overview of CMP’s placement in the CD middleware
and its internal structure. It is placed upon the communication and discovery layer
that provides direct communication functionality between nodes in homogeneous
networks and functionality to discover nodes already running CMP. CMP uses the
communication layer to build an unstructured overlay, as proposed in Section 4.2.
Furthermore, CMP detects whether a node is a relay using the triangle checks
discussed in Section 4.3. If a node is not a relay, CMP uses the CID agreement
algorithm as discussed in Section 4.4 to agree on a CID for each connectivity
domain with the node’s overlay neighbors. CMP provides the determined CIDs to

8 Assuming the number of nodes is greater than k
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Figure 4.16 — CMP’s main loop.

the Connectivity Domain Interconnection Protocol (CDIP), so it can use them to
forward messages between different connectivity domains. The discovery module
provides peer sampling and random walks functionality to build the unstructured
overlay and exchange information about relays in each connectivity domain.

4.5.1 CMP’s Main-Loop, State Machine, and Node Status

This section gives a general overview how CMP works. This includes the CMP’s
main loop, the node’s status, the tasks in each of CMP’s states described in a finite
state machine, and CMP’s parameters with a preliminary discussion.

Main Loop

To understand CMP, it is important to get a general idea how CMP works. CMP
is gossip-based protocol and operates in rounds implemented by a single loop.
A round is started every T,u.q seconds and comprises the handling of CMP’s
mechanisms. Figure 4.16 gives a brief overview of CMP’s loop consisting of the
following steps:
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Status | Description

— Status

state(x) Current state of the node:HOLD, AGREEING, or, STABLE.
isRelay(x) | true if node detected it is a relay.
o(z) Current CID proposal.

— Additional Information
A checked() | true if overlay neighbor x has been checked using a triangle check.

Table 4.5 — CMP’s status information and additional information to a node’s over-
lay neighbors. CMP’s status is sent to overlay neighbors each T',und
seconds on change. CMP stores additional information locally on each

node.
State: HOLD State: STABLE
Setup unstructured overlay < > CID agreement (non-relay)
and perform triangle checks. Waiting (relay)

Unstructured overlay stable and
overlay neighbors checked or
X triangle check failed (relay).

Connectivity
change detected.

\

State: AGREEING On non-relay:
blacklist current CID choose —_
new proposal.

CID agreement (non-relay)
Waiting (relay)

Relay: all neighbors STABLE.
Non-Relay: agreement stable.

Figure 4.17 — CMP’s finite state machine.

CMP is initialized.
CMP maintains the unstructured random overlay, as described in Section 4.5.2

CMP sends the node’s status to all overlay neighbors, if changed.

Ll O

CMP initiates triangle checks between overlay neighbors as described in Sec-
tion 4.5.3.

5. On a non-relay node, CMP agrees on a CID using some selection function, as
described in Section 4.5.4.

6. Finally, CMP waits T},u,q Seconds and the loop starts over.

Node Status and Finite State Machine

The node’s status comprises three fields: the node’s state according to CMP’s
finite state machine, a flag indicating whether the node is a relay, and, the node’s
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Parameter | Default | Description

— General

Tround \ Is | Waiting time before next round

— Unstructured Overlay

k 20 Maximum number of overlay neighbors per node

discoveryRate 2 Number of discovery attempts per round

Tlink—timeout o8 Link keep-alive timeout

— Triangle Checks

TA oo 3s Waiting time for triangle check messages to return

A etries 2 Triangle check retries until a failure is assumed

— CID Agreement

D Dyivia CID agreement selection function used:
Dyivir, Drvr, or DayBRID

Ryiackiisted 5 rounds | No. of rounds a CID is blacklisted after connec-
tivity change

Rrvr 10 rounds | No. of rounds to use Dryr when using D =
Dyysrip

Table 4.6 — Overview of CMP’s parameters and default values.

current proposal for the CID agreement. For convenience, Table 4.5 summarizes
the status. For a binary representation of the status refer to the Appendix B.1.

CMP’s finite state machine is an abstract view on the operations CMP per-
forms in the main loop. The state decides which operations are actually performed
in CMP’s main loop. The finite state machine has three states which have the
following meaning:

— HOLD: CMP is still setting up the unstructured overlay or performing triangle
checks.

— AGREEING: CMP wants to agree on a CID or detected it is a relay and waits
for its overlay neighbors to pass into a STABLE-state.

— STABLE: CMP has converged and is stable.

Figure 4.17 shows a state transition diagram of CMP’s finite state machine. In
HOLD-state, CMP sets up the unstructured overlay and performs triangle checks.
When the unstructured overlay is stable, and all overlay neighbors have been
checked using triangle checks, or a triangle check failed, CMP passes to the AGREE-
ING-state. In this state, CMP uses the ¢ status field to agree on a CID with its
overlay neighbors, if the node has not detected it is a relay. If CMP detected that
the node is a relay, CMP waits until all overlay neighbors are in STABLE-state.
When all overlay neighbors are in STABLE-state or the agreement is stable the
node passes to the STABLE-state. This state is only left, when a connectivity
change has been detected.
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Parameter Overview and Discussion

CMP uses several parameters summarized in Table 4.6. There are 4 groups of pa-
rameters: parameters concerning CMP’s general operation, unstructured overlay,
triangle checks, and, CID agreement. The following list describes each parameter
and its effect on CMP’s performance in detail.

CMP’s general protocol parameter:

Troung denotes the waiting time before the next round in seconds. Tj,y,q has
impact on CMP’s convergence time and bandwidth consumption. The lower
Tround, the shorter is the convergence time and the higher is the bandwidth
consumption. This is because all of CMP’s operations are performed in its
main loop, i.e., unstructured overlay maintenance, triangle checks, and, CID
agreement. However, each operation produces additional traffic. To limit the
traffic and to take into account that a message needs some time for delivery,
CMP’s default value is set to Tyoung = 1 second.

Protocol parameters concerning the unstructured overlay:

k denotes the (expected) maximum number of overlay neighbors per node. The
unstructured overlay connects to at least % -k overlay neighbors, if enough nodes
are available. The impact on CMP’s performance by this parameter is twofold:

— First, it influences the bandwidth consumption on each node, because the
node sends status updates each Tjoung second(s) to its overlay neighbors.
Therefore, the upper bound of the bandwidth consumption grows in pro-
portion to k and the lower bound to % - k.

— Second, it influences the CID agreement algorithm convergence time and
stability. The selection functions Dgryr and Dy used within the CID
agreement both use majority selections among the proposals received from
the overlay neighbors. Thus, the lower the number of neighbors per node is,
the less proposals are available in the majority vote. As Section 4.4 points
out the CID agreement convergence time benefits from a larger number of
overlay neighbors. Furthermore, the less overlay neighbors, the easier for a
small number of nodes to influence the majority selection of a node.

The theoretical findings in Sections 4.4 and 4.3 allow the claim that £ = 20 is a
adequate default value for this parameter.

discoveryRate denotes the number of trials to discover new overlay neighbors for
the unstructured overlay per round. The higher this value, the faster the un-
structured overlay will converge because the overlay neighbors get discovered
more quickly. Commonly, the traffic grows in proportion to discoveryRate. To
limit the convergence time of CMP’s unstructured overlay to less than 10 seconds
with k& = 20, discoveryRate default value set to 2.

Think—timeour denotes the timeout of a link. The main impact of this parameter is
bandwidth consumption and time to detect a connectivity change. The shorter
the timeout, the more frequently keep-alive messages need to be sent—increasing
bandwidth consumption in the same proportion. Naturally, the smaller the
timeout of the link, the faster CMP detects change in connectivity, because
CMP detects connectivity changes by observing link failures. The default value
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is set to Tk timeout = D Seconds to save bandwidth and to achieve a reasonable
connectivity detection delay (max. Typk—timeout SeCONdS).

Parameters concerning the triangle checks:

TA_ieow denotes the timeout when waiting for triangle check messages to return
to the sender. The default value is set to Ta_,,,,.... = 3, that means, that CMP
assumes that the message delay does not exceed 1 second which is common in
today’s networks.

Aeries  denotes the number of retries of the triangle check when the triangle check
messages timed out until the node assumes that the triangle check has failed. A
high number of triangle check retries compensates the loss of triangle messages.
The default value of A,.ies = 2 compensates the loss of maximal one triangle
check message out of 4. This is equivalent to a packet-loss smaller than 25 per
cent.

Parameters concerning the CID agreement:

D denotes the selection function used for the CID agreement algorithm. It rep-
resents one of the selection functions introduced in Section 4.4, i.e., D being
Dyivir, DrMr, 0r DHyBRID-

Rptacriistea  denotes the number of rounds a CID is blacklisted after a CMP detected
a connectivity change. The main purpose of this value is to prevent CMP from
re-converging to the former CID. Rpj,cristed i associated with a trade-off: on the
one hand, the node needs to wait for the other nodes to detect the connectivity
change and replace the old CID at all nodes by a new CID. On the other hand,
the node might be in the minority of nodes that detected a connectivity change,
i.e., it is probable that the detected connectivity change is a false-positive. In
this case, the node should quickly fall back the the old CID. CMP commonly
uses a conservative timeout of Rpygeriisted = D rounds to give other nodes enough
time to detect link failures and, therefore, the connectivity change as well.

Rrvr denotes the number of protocol rounds CMP uses the Dgryr selection func-
tion for agreeing on a CID. This parameter provides a trade-off between robust-
ness against undetected relays (leaks) and convergence time. A higher number
of Dryvr provides more robustness while a smaller number provides short con-
vergence time. The default value of 10 rounds ensures that the steep drop of
distinct proposals seen in Section 4.4.5 is included in the period.

4.5.2 Unstructured Overlay and Status Updates

CMP builds an unstructured overlay by establishing a limitied number of links to
randomly selected nodes. Algorithm 4.2 describes the overlay construction. Before
CMP starts, CMP initializes the unstructured overlay in initOverlay() and chooses
a 128-bit long node identifier (nid) randomly so it is unique with high probability.

Then, in each round, CMP executes maintainOverlay(). This method tries to
discover new overlay neighbors when the current number of overlay neighbors &’ is
below %k: To allow stabilization of the unstructured overlay if less than %k: nodes
exist, the number of discovery trials is limited by k. The discovery itself is done by
the discovery module explained in Section 4.5.5. When enough overlay neighbors
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are discovered, the overlay is considered to be stable and CMP remembers the
number of overlay neighbors k” in this state. When half of the k" links fail, CMP re-
stabilizes the unstructured overlay by resetting the discoveries and overlayStable
variables. When a new link to an overlay neighbor has been established, CMP
exchanges the node identifiers (NIDs) using a keep-alive message and initializes its
status.

CMP keeps track of the overlay neighbors using a overlay neighbor table. Ta-
ble 4.8 illustrates an example of this table. One entry in the table comprises

— the node identifier, i.e., NID,
— the address used to contact the overlay neighbor, i.e., addr(z),

— a flag indicating if the overlay neighbor has been checked, i.e., A pecked(),

method initOverlay()

k' <« 0;

overlayStable « false; discoveries < 0;
nid < rand();

method maintainOverlay()

[* Try to discover new overlay neighbors. */

if (k' < 4 -k A discoveries < k):

foreach i€ {1,..., discoveryRate}:
discover RandomQuverlayNeighbor();
discoveries + discoveries+1;

[* Overlay stable. */

else if (—overlayStable):

overlayStable «+ true;

k' k/;

/* On link drops, try to discover new overlay neighbors. */

if (overlayStable Ak < 1 -k”) :

discoveries <+ 0;

overlayStable «+ false;

method newOverlayNeighbor(x)
sendKeepAlive(); addToOverlayNeighborList();
Achecked (X) — false;

state (x) < nil;

E «— K +1;

method droppedLinkTo(x)
recordDropForConnectivityChangeDetection();
K« kK —1;

Algorithm 4.2 — Construction of CMP’s unstructured overlay.
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| Link information | Status
| NID | addr | Acpeckea | last — reculsent || state | isRelay | ¢
ox6ded | addr(A) | false -20ms/-100ms HOLD false 0

B) | false |-98ms/-1000ms | STABLE true 0
C) true | -990ms/-786ms || AGREEING | false | oxo1s7
D) true | -180ms/-972ms | AGREEING | false | oxo1s7

Oxaedf addr(
0x3209 | addr(
ox5009 | addr(

W N = O =

Table 4.8 — Exemplary CMP’s unstructured overlay neighbor table. For better
readability, node identifiers (NIDs) and proposals (¢) in the table are
only 16-bit instead of 128-bit.

— a timestamp that denotes the reception time of the last message from the
overlay neighbor. i.e., last — reception, last — sent, and,

— the status of the overlay neighbor, i.e., state(x), isRelay(x), and, ¢, cf., Ta-
ble 4.5.

To keep the entries in this table up-to-date, CMP uses keep-alive messages. These
keep-alive messages contain the node’s identifier (NID) only. The first keep-alive
message that is received from an overlay neighbor is used to initialize the NID-field
in the according entry of the overlay neighbor table.

If CMP receives/sends a message from/to an overlay neighbor it refreshes re-
spective the timestamps in the last — recv/sent-field of the overlay neighbor table.
If the last message to an overlay neighbor was sent %  Think—timeout S€CONAS ago,
CMP sends a keep-alive message to keep the time stamp up-to-date. If the last
time a message was received from an overlay neighbor is Tk timeout S€CONdS ago,
CMP drops the link. Dropping a link involves removing the entry from the overlay
neighbor table and sending a link drop notification message to the overlay neighbor.

Status Updates

Each round CMP sends its status using status update messages to all overlay
neighbors of a node when changed. Naturally, new overlay neighbors get informed
about the current status right away. When CMP receives a status update, it
modifies the respective entry in the overlay neighbor table. There is one exception
to the status being sent to an overlay neighbor. When the overlay neighbor has not
yet been checked, i.e., Apecked(r) = false, CMP always sends a status containing
the HOLD-state and an invalid proposal. This is important, because CMP must
first check if the node is a relay for the new overlay neighbor. Otherwise, the node
might become a long-term leak in the CID agreement.

Connectivity Change Detection

CMP detects changes in connectivity properties by constantly monitoring link fail-
ures on non-relay nodes. If £ links fail in an interval of 2 - Ty timeous S€CONAS,
CMP takes this as indication for a connectivity change.
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4.5.3 Relay Detection

CMP uses triangle checks to detect if the node is a relay. For this reason, this
section first describes the triangle check mechanism, and then, secondly, describes
the CMP’s triangle check strategy for relay detection.

Triangle Check Mechanism
As already introduced in Section 4.3, CMP uses triangle messages to initiate a
triangle check. The following refines the implementation of a triangle check. In
CMP, triangle messages contain a hop field, a nonce field, the source node identifier
and a via address:

(hop, nonce, src, via)

For a binary representation of the status refer to the Appendix B.1. The hop-field
denotes the number of nodes the message passed. The nonce-field is a random
number identifying the triangle check and kept locally unique by the sender. The
src-field denotes the node identifier of the sender. The via-field contains the ad-
dress” of an overlay neighbor of node src. When CMP initiates a triangle check on
node @) between two of its overlay neighbors €9 and ), CMP sends two triangle
messages. First, CMP sends a triangle message to overlay neighbor €9 allocating
the via-field with address addr(Y) of overlay neighbor 9:

(hop = 0, nonce = 10680, src = @), via = addr(Y))

Second, CMP sends a triangle message to overlay neighbor ) allocating the via-
field with address addr(X) of overlay neighbor € and having same hop, nonce,
and, src-fields the same. CMP handles the incoming message in regard to the
hop-field as follows:

— When CMP receives a triangle message on a node with a hop-field of 0 it
extracts the address stored in the via-field and removes the field from the
message. Then, it increases the hop field by one and forwards the message
using the communication and discovery layer and the address extracted from
the via-field.

— When CMP receives a triangle message on a node with an hop field of value
1, it increases the hop field again. Then, the node extracts the node identifier
of the src-field and removes the field from the triangle message. Finally,
the node forwards the triangle message using the existing link to its overlay
neighbor with an node identifier equal to the NID extracted from the src-field.

— When CMP receives a triangle message on a node with an hop field of value
2, it checks if the nonce of triangle message matches the nonce of a message
sent. If this is the case, the node knows that the triangle check was successful.

CMP maintains a table, illustrated by Table 4.9, of pending triangle check mes-
sages. It contains the nonce used in for the triangle messages, a time-stamp, that
denotes the point in time when the triangle messages have been sent, the number
of retries, and the number of triangle messages that have returned already.

9As provided by the communication and discovery layer
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Nonce Timestamp Retries Returned

10680 1332076739 0 1
26876 1332076769 0 0

Table 4.9 — Example of CMP’s table of pending triangle checks.

A

Overlay «<----» Iriangle check

A" initiated by A

<hop=0,nonce=10680, -
src=A, via=addr(Y)> ':<hop:0,nonce:10680,
' src=A, via=addr(X)>

X,Y receive
triangle messages

: XY try to

E send messages
_ <hop=1,nonce=10680,: using addr(Y) and
- Src=A>! addr(X)

E X,Y return
messages to A

------------- » Send message using via-address Step
——> Send message over link

1<hop=1,nonce=10680,
1 Src=A>

-
-

<hop=2,nonce=10680>

<hop=2,nonce=10680>

S
[YY)

Figure 4.18 — Sequence diagram of a examplary, successful triangle check.

Each round, CMP checks this table if a triangle check timed out. If a triangle
check timed out, CMP repeats sending the triangle check messages A, ¢pres times.
When all attempts fail, it assumes that the triangle check has finally failed, con-
cludes that the node is a relay and sets its isRelay-status to true. Only if CMP on
the node receives a all triangle check messages the triangle check has been success-
ful. When a triangle check failed or succeeded CMP remove the respective entry
in the table of pending triangle checks.

Figure 4.18 shows a sequence diagram of a successful triangle check between two
overlay neighbors € and @ issued by €):

— In the first step Fl, node @) sends triangle messages to nodes € and 9.

— In the second step [ those nodes use the addresses of the via-field to forward
the triangle message to node @ and node €3 respectively. The nodes remove
the via-field because it is not needed anymore.

— Finally, in step [EJ, nodes € and @) return the triangle messages to the
sender, i.e., node @), using the existing link. Before that, the nodes remove
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the src-field because it is not needed anymore. When node @) receives a
triangle message it compares the nonce of the message received with the
pending checks. After receiving both triangle messages. Node @) knows that
the triangle check was successful.

Triangle Check Strategy

CMP initiates triangle checks each round on unchecked overlay neighbors. CMP
uses a slightly modified version of the overlapping strategy introduced in Sec-
tion 4.3.5 to perform relay detection on a node in the unstructured overlay. More
precisely, CMP initiates a triangle check for every unchecked overlay neighbor
with its predecessor in the list of overlay neighbors. The first overlay neighbor is
checked with the last overlay neighbor in the list. After the triangle check has been
successful or failed, the A pecreq(x) flag is set to true. As already pointed out in
Section 4.3.5 this strategy leads to &’ triangle checks initiated by each node.

Optimization: Triangle Check Skipping

To reduce the number of necessary triangle checks, CMP skips triangle checks
between overlay neighbors that are in STABLE-state, propose the same CID, and
are not relays. This results in a convergence-time equivalent to the time needed to
join the unstructured overlay.

4.5.4 CID Agreement

CMP embeds the CID agreement according to the gossip-based random agreement
algorithm described in Section 4.4 by inclusion of the proposal in the node’s status
updates. When CMP is in AGREEING-state and has not detected that the node
is a relay it selects a proposal using the selection functions Dy, Drwr, or,
Dyyprip each round. This proposal is then sent to all overlay neighbors by a
status update. The selection function takes all proposals from overlay neighbors
that are non-relays, and which are in AGREEING or STABLE state, as input
parameter P.

The CID agreement is considered to be stable when % of all nodes in AGREEING-
state propose the same CID. The value of % is chosen so the majority is slightly

higher than the absolute majority vote used in Dypyg. With % of the nodes propos-
ing the same CID it is more likely that the CID represents global absolute majority.

Blacklist of CID on Connectivity Change

On a connectivity change a non-relay node resets its state and re-converges. To
prevent CMP from converging to the same CID, CMP blacklists the former CID
for Rpjackiisteq rounds. During this time, the CID agreement algorithm ignores the
blacklisted proposals when selecting a new proposal using the selection function
D.

4.5.5 Discovery

CMP needs to discover overlay neighbors in same connectivity domain(s). Discov-
ering a node means knowing its underlay address in this context. The discovery
module provides this functionality by implementing random walks and peer sam-
pling techniques. Two cases are considered:
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Random Node Discovery

CMP uses random node discovery to connect to randomly selected overlay neigh-
bors for its unstructured overlay. The function discoverRandomQuverlayNeighbor
is called for this purpose. If such a request is made, CMP executes the following
steps:

1. If no link has been established, CMP uses the communication and discovery
to find some nodes to bootstrap the overlay.

2. If some links already exist, CMP employs a random walk as specified in [89] to
find further random nodes. On a non-relay node the random walk is limited
to the node’s connectivity domain. To ensure this, the random walk never
crosses a relay.

3. Finally, if CMP discovers a node, it sets up a link and reports this to the
unstructured overlay.

Random Relay Discovery

For random relay discovery CMP implements a gossip-based peer sampling protocol
similar to [50]. CMP keeps two lists: a positives and a negatives list. The lists
contain triples, called relay-triples, containing the address of a relay, a sequence
number, and a flag indicating if the triple is positive or negative. The sequence
number denotes the freshness of the relay-triple. The higher the sequence number
the fresher it is. The positive/negative flag indicates if the relay-triple denotes if the
relay is alive/dead. On a relay, CMP piggybacks a positive relay-triple containing
the relay’s address and sequence number to each gossip/keep-alive message sent
to its overlay neighbors. Furthermore, if the set of the relay’s overlay neighbors
changes CMP increases the sequence number.

If CMP receives a piggybacked relay-triple from a relay it adds the triple to the
respective lists. If a list already contains a relay-triple with the same underlay
address, it replaces the relay-triple when the sequence number of the relay-triple in
the list is smaller. If the positives list contains a relay-triple with the same address
and a smaller sequence than the received negative relay-triple, the relay-triple is
removed from the list. This ensures that dead relays are removed from the positive
list.

On non-relay nodes, CMP chooses one positive/negative triple from each of
the lists randomly and piggybacks them to each gossip/keep-alive message. This
way, the relay-triples get disseminated in the connectivity domain. If a CMP
on a non-relay detects that a relay in among the node’s overlay neighbors fails,
it adds a respective triple to its negative list. This way dead relay-triples are
removed from the positives lists. The size of both lists is limited to k. If a entry
does not fit the list, a least recently used/seen strategy is used to replace an entry.
CMP implements a getRandomRelay method that returns an address of a randomly
selected relay from the positives list. This method is used by CDIP to build its
unstructured relay overlay.

Alternatives
Both solutions for node discovery represent possibilities to implement the random
node discovery. Many other alternatives exist to implement this typical case for
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peer sampling. Peer sampling techniques have been investigated thoroughly in
related work, e.g., [91] provides adaptive peer sampling, [4] compensates more
churn, [53] provides better safety. Depending on the application scenario, the
aforementioned mechanism could be replaced by one of these techniques.

4.5.6 Discussion

In some scenarios, CMP has a specific behaviour, e. g., the common- and best-case
scenarios of CMP, in scenarios with churn, and when relays have relay overlay
neighbors only.

CMP’s Common- and Best-Case Scenario

The theoretic discussions in Section 4.3, and Section 4.4 focus on the worst-case
of relay detection and the convergence time, stability and robustness of the CID
agreement. The following sheds light on the common- and best-case of CMP.

In the best-case of CMP a non-relay node joins the unstructured random overlay
and all neighbors have already agreed on a CID. In this case, all overlay neighbors
propose the same CID and no triangle checks must be performed by the added
node. The node just adopts the CID of the overlay neighbors after it has been
checked by triangle checks from its overlay neighbors. As the CID agreement is
stable among the overlay neighbors, the join of fewer than 50% of the quantity
of nodes already in the unstructured random overlay has no influence on the CID
agreement. The common-case of a relay joining the network is similar. When
overlay neighbors propose different CIDs, CMP performs a triangle check between
them, detects that the node is a relay, and converges.

Influence of Churn on CMP

In contrast to many P2P applications, churn has a low influence on CMP. The
reason for this behaviour is that even with high churn, the CID agreement algo-
rithm will converge to the maximum hash proposal as long as the unstructured
random overlay graph is connected for a short period of time. Literature, i.e.,
[49], confirms this behaviour for gossip-based protocols. The majority selection of
Dyivin, furthermore, causes that a node quickly converges to a CID as long as less
than 50% join the unstructured random overlay. This allows CMP to stay stable
even in case of a simultaneous join or leave of a huge amount of nodes.

Pure-Relay Connectivity Domains

CMP divides connectivity domain detection into two parts: relay detection, and
CID agreement between non-relay nodes. There one case in which this becomes
a problem: when a relay has only relays as its overlay neighbors. Then, there is
no node that agrees on a CID. Figure 4.19 illustrates such a scenario. Relay (D)
and (E) only have overlay neighbors that are relays too. Hence, CD2 and CD3 are
not detected. However, each relay knows that all its overlay neighbors are relays.
Hence, CMP works around this problem by placing the relay in a separate pure-
relay connectivity domain and assigning a unique identifier to it, e.g., the node
identifier of the relay itself.
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Figure 4.19 — Pure relay connectivity domain identifiers

4.5.7 Summary

This section describes CMP in detail. CMP is gossip-based and uses rounds to
operate. The implementation of CMP can be done in a single main loop plus the
concurrent handling of received messages, i.e., node status updates and triangle
check messages. This makes CMP light-weight.

4.6 Evaluation

Based on the theoretical findings of Sections 4.3 and 4.4, several worst-case bounds
according to the scenarios are known. More precisely, Section 4.3 describes that
a scenario of two connectivity domains represents the worst-case for CMP. Hence,
the experiments can be limited to a small number of connectivity domains with a
varying relay ratio r. Furthermore, Section 4.5.6 gives an argument why CMP is
robust against churn. The goal of the experiments evaluated in this section is to
gain insights on the unknown factors of CMP and to confirm some of the theoretical
findings, e. g., the influence of the relay ratio, convergence time, and the reactivity
of CMP in case of connectivity changes.

Section 4.6.1 provides a description of the evaluation methodology in a simu-
lation framework. Section 4.6.2 introduces necessary performance metrics. The
further sections present the results of the experiments.

4.6.1 Methodology

The evaluation of CMP uses the OMNet++ simulation framework [94]. The main
goal of the experiments involving CMP is to confirm the algorithmic behavior of
CMP in a more realistic setup.

Since the focus is on application layer connectivity and not on lower layer pro-
tocol details, the network models provided by OMNeT++, such as the INET
framework, are not used. Instead, the simulation employs a basic underlay model
comprising several networks with disjoint address spaces. Each of those networks
represents a connectivity domain and provides transitive connectivity. The simu-
lation associates each node with at least one of the networks and assigns a unique



4.6. Evaluation , 75

address out of the network’s address space to the node. Therefore, nodes can
communicate with all other nodes in the same network using their addresses. For
modelling network dynamics in the experiments, the simulation migrates nodes
between the networks. The simulation migrates a node by removing the address
from the current network and instantaneously assigning an address from the new
network. To inhibit synchronization effects in CMP, the simulation induces mes-
sage delay for each network. For modelling message delay, the simulation places
each node randomly on a fictive quadratic areal of size 100 x 100 The euclidean
distance between the nodes is used to model a message delay in milliseconds to
inhibit synchronization effects. All experiments use a waiting time T},,,q of one
second before starting the next round in CMP. Therefore, message delays below 1
second do not have a significant effect on CMP’s operation.

CMP is implemented according to the description in Section 4.5. For building
CMP’s unstructured overlay, the simulation uses a simplified discovery mechanism.
This mechanism discovers an overlay neighbor randomly among the networks in the
node’s underlay. One instance of CMP runs on each of the N simulated nodes. All
experiments use a cold-start to simulate CMP’s worst-case. That means, all nodes
in the network start almost at once. To avoid synchronous behavior among the
nodes, each node starts with a delay chosen randomly between [0, T} 4ynq] seconds.
Each experiment uses 10 to 100 repetitions with different random seeds. The
simulator calculates means of CMP’s performance metrics and 95% confidence
intervals. If not defined otherwise, all experiments use the default parameters
according to Section 4.5.1:

Unstructured overlay Triangle checks CID agreement
Parameter Default Parameter \ Default Parameter \ Default
Tround Is TA_ timeout 3s D DMMH
k 20 Aretm'es 2 Rblacklisted 5 rounds
discoveryRate 2 Rrvr 10 rounds
Tlink— timeout s

4.6.2 Performance Metrics

The simulation records two primary performance metrics: accuracy of the CID
agreement and message overhead in terms of quantity and bandwidth consumption.

The determination of the accuracy of the CID agreement is difficult. For ex-
ample, if some nodes in a connectivity domain agree on a CID—the simulation
does not know if this is the correct CID. Thus, the first problem is to define which
CIDs are correct. Another issue is the possibility that the nodes in two or more
connectivity domains agreed on the same, i. e., ambiguous, correct CID.

The following definitions solve both problems and provides an adequate deter-
mination of the CID agreement accuracy:

Definition 4.1 (Correct CID) — The CID chosen by the majority of non-relay nodes
in a connectivity domain is correct. Additionally, the highest CID is correct to
break-ties when there is no majority. This allows to determine a correct CID for
each connectivity domain.
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Figure 4.20 — Correct CIDs and accuracy

When the correct CIDs are determined, ambiguous correct CIDs among all con-
nectivity domains need to be eliminated.

Definition 4.2 (Accurate CID) — A correct CID of a connectivity domain is accurate
if no other connectivity domain has the same correct CID. If several connectivity
domains have the same, ambiguous, correct CID, the CID of the connectivity do-
main with the least number of nodes is accurate. If the number of nodes are bal-
anced among the connectivity domains, one connectivity domain chosen randomly
has an accurate CID.

The accuracy of the CID agreement can now be defined as the quotient of the
number of non-relays that agreed on an accurate CID, if available, and the total
number of non-relays.

In a scenario with two connectivity domains, both comprising the same number
of nodes, and all having agreed on a single CID, the accuracy is 0.5. Figure 4.20
illustrates an additional example. It comprises two connectivity domains (CD1
and CD2), 10 non-relay nodes (@,...,®&), and one relay ((X)). Each node agrees
on an CID for the connectivity domain. However, many CIDs exist until a single
CID is determined. Since, three non-relay nodes (@, @, (@) propose CID3, this
is the correct CID for connectivity domain CD1. Respectively, CID4 is the correct
CID for connectivity domain CD2. CID3 is chosen by 3 non-relay nodes, CID4 is
chosen by 3 non-relay nodes, and there are 10 non-relay nodes in total. The chosen

3+3

CIDs by the non-relay nodes are 55> = 60% accurate.

Additionally to the CID accuracy, CMP’s bandwidth consumption may be cru-
cial to some applications. For this reason, the simulation records the average and
maximum overhead in terms of traffic, bandwidth, number of triangle checks, and
number of gossip messages per node.
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Figure 4.21 — CMP’s accuracy in the worst-case scenario with varying relay ratio
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w 9 o 85
o [ MMH —e— & —f. o MMH —e— '
2 B3 HYBRID — - A 1‘\\:2\ £ 72 HYBRID — = - /“\.\
3 75 RMR -;a;( N RMR —-e—: ,{
S L ¥ | W] 5 65 s
6.5} - X
o * 2 6t} -
o 6 -/ 9 () /
g s55¢¥ ] z 55 y
Qo 51 i o 5L
o 45 Y o 45
> 4 . . . . . . . > 4 . . . . . . .
< 01 02 03 04 05 06 07 08 09 < 01 02 03 04 05 06 0.7 08 0.9

Relay ratio Relay ratio
(a) k=20 (b) k=40

Figure 4.22 — CMP’s convergence time in the worst-case scenario with varying
relay ratio r with D being Dy or Drvr for the CID agreement
algorithm.

4.6.3 Accuracy in case of a High Relay Ratio

The relay ratio r is one of the most important parameters of CMP’s worst-case
scenario presented in Section 4.3. The worst-case scenario comprises two connec-
tivity domains comprising the same number of nodes with - IV relays being in both
connectivity domains, when N denotes the total number of nodes. The higher the
relay ratio r is, the lower the probability that CMP can detect if a node is a relay
and the less relays are detected, the more leaks remain. Consequently, the CID
agreement loses accuracy. In the worst-case nodes in both connectivity domains
agree on the same CID. This yields an accuracy of 50%; the absolute worst-case
in this scenario. The experiments in this section explore the influence of the relay
ratio on the worst-case scenario with different selection functions D being Dy,
Dgrur, or Dpygrip used for the CID agreement and different maximum numbers
of overlay neighbors. Each simulation run uses 100 different seeds to ensure a
sufficient confidence in the values.
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Figure 4.21 shows the accuracy during the experiment with a varying number
of maximum overlay neighbors & € {20,40} and N = 1024 nodes. Figure 4.21(a)
shows the accuracy as function of the relay ratio r. The curves reflect the expected
behavior of CMP in this scenario. The higher the relay ratio is the less probable
is a accurate CID agreement. The use of Dryg in the CID agreement algorithm
compensates more leaks in contrast to Dypn and improves the accuracy. Dgrug
nearly compensates a relay ratio r < 0.4 while Dyppr only compensates a relay
ratio of r < 0.3. Furthermore, the slope of accuracy when using Dypyy is much
steeper. The hybrid selection function Dyyggrip provides the same performance to
the CID agreement as Dryr. This suggests that Dyyprip converges using Druvr
during the first Rpyr = 10 rounds. Figure 4.21(b) shows the same experiment
with the difference that it uses a maximum number of overlay neighbors of k£ = 40.
According to the insight of Section 4.4.6, a larger number of overlay neighbors
makes a CID agreement more likely. The figure reflects this insight as the accuracy
improves independently of the selection function.

An interesting behavior is shown by Figure 4.22. It shows the convergence
time of the experiments as function of the relay ratio r for different maximum
numbers of overlay neighbors k € {20,40}. Consider the left Figure 4.22(a) of
the experiment that uses a maximum of £ = 20 overlay neighbors: the figure
confirms the longer convergence time when using the Dryr and Dyygrip selection
functions. Section 4.4 points out the same. What is interesting on the first glance,
is the peak on convergence time at a relay ratio of between 0.5 < r < 0.6. The
reason for this is CMP’s relay detection algorithm. When a triangle check fails,
CMP retries the triangle check two times by default. The more triangle checks fail,
the longer it takes to triangle check new overlay neighbors, and, hence, the longer
the convergence time. The probability of detecting a relay is high the convergence
time grows with the relay ratio r. If the probability of detecting a relay decreases
the convergence time decreases as well. Theoretical insight in Section 4.3 states
that a high relay ratio r makes relay detection less likely. At some point, i.e.,
at a relay ratio r > 0.6, the amount of undetected relays supersedes the amount
of detected relays, which reduces the convergence time. Figure 4.22(b) illustrates
this behavior even more. Since a higher number of maximum overlay neighbors k
improve the relay detection, the convergence time grows with the relay ratio r.

4.6.4 Convergence

The convergence time of CMP depends on two primary factors. First, the time
the unstructured overlay needs for stabilization including the time the concurrent
triangle checks need. Without any churn, this period is within O(k). Second, the
period the CID agreement needs. This time is limited by O(log N) when using
the Dyivig or Dyygrip selection functions and follows the convergence time deter-
mined using the recurrence relation in Section 4.4.4. Since CMP is a round-based
protocol, the amount of traffic is proportional to the convergence time. For the
evaluation of CMP’s convergence, the simulation performs an experiment compris-
ing one connectivity domain with different numbers of nodes N. Furthermore, the
experiments use varying numbers of maximum overlay neighbors k. The simu-
lation runs each experiment for 50 seconds and records the convergence time of
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Figure 4.23 — CMP’s convergence and traffic consumption per node in a single
COIlIleCtiVity domain with D being DMMH, DRMR7 or DHYBRID for
the CID agreement algorithm. Experiments use varying numbers of
nodes N € {2/ :i=28,...,14} and k = 20.

each node. Then, convergence of all nodes within 50 seconds has been checked
manually.

Figure 4.23 shows the convergence time and traffic of an exponentially increas-
ing number of nodes N with different selection functions D being Dyivn, DrwMR,
or Dyyprip and k = 20. Figure 4.23(a) shows the convergence time as function of
the number of nodes N. It proves that the convergence time develops as expected.
With the use of the Dypyp and Dyyprip as selections function, the convergence
time grows linearly when the number of nodes grow exponential-—confirming the
logarithmic complexity. The convergence time when using Dryr suggests at least a
magnitude longer convergence time than with Dy, As known from Section 4.4.4,
Dryr can have a very high convergence time. Figure 4.23(b) confirms the pro-
portional growth of the overhead in terms of traffic subject to the convergence
time.

Figure 4.24 shows the convergence time and traffic of an increasing maximum
number of overlay neighbors k& € {10, 20, 30,40} with different selection functions
D being Dyvp or Dpyprip and N € {256,4096}. Figure 4.24(a) shows the conver-
gence time as function of the maximum number of overlay neighbors k. Two factors
influence the convergence time when the maximum number of overlay neighbors
grows. On the one hand, the more overlay neighbors exist the smaller is the di-
ameter of the unstructured overlay. Hence, the CID agreement needs less time
when using Dyivg. On the other hand, when the maximum number of overlay
neighbors grows, the unstructured overlay needs more time for stabilization. The
factors conflict eachother and lead to an nearly linear convergence time subject to
the maximum number of overlay neighbors when using Dypyg. When using the
Dyvprip selection function this is different. Dyyprip benefits from a higher max-
imum number of overlay neighbors much more than Dypg because of the relative
majority vote in Dgryr. This leads to a decrease of the convergence time when the
maximum number of overlay neighbors grows. Figure 4.24(b) confirms the propor-
tional growth of overhead subject to the maximum number of overlay neighbors in
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Figure 4.25 — Simulation setup for evaluating CMP’s reactivity.

terms of traffic. The influence of the convergence time on the traffic is too small
to be seen in the figure.

4.6.5 Reactivity to Connectivity Changes

The experiments in this section explore CMP’s reactivity on massive connectivity
changes. For simulating these massive connectivity changes, the simulation em-
ploys a scenario comprising splits and merges of connectivity domains. Figure 4.25
illustrates this scenario. The simulation starts at step [i] with a single connectivity
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Figure 4.26 — CMP’s convergence time and average number of triangle checks initi-
ated by a node on connectivity changes with D being Dy, DRMR,
or Dyyprip for the CID agreement algorithm, N € {256,16384},
and k£ = 20.

domain CD1 of N nodes. Then, after 50 seconds, in step EN, 12.5% of the nodes
are migrated to a new connectivity domain CD2. One of the migrated nodes stays
in the connectivity domains CD1 and CD2—hence, this node is a relay in CD1 and
CD2. After additional 50 seconds, in step H, 25% of the nodes in CD1 migrate
to a new connectivity domain CD3, like before, one of the migrated nodes stays in
CD1 and CD3. The last split, 50 seconds later, in step [E], migrates 50% of the
nodes in CD1 to a new connectivity domain CD4 with one node staying in CD1
and CD4. The last step [El, after another 50 seconds, reverses the last split by
migrating the nodes in CD4 back to CD1. Finally the simulations stops after 250
seconds. In all steps, the nodes migrate instantaneously to the other connectivity
domain.

This scenario challenges CMP in many ways motivated by CMP’s potential
weaknesses. First, the scenario comprises connectivity changes involving a growing
percentage of nodes in the same connectivity domain up to 50%. In case of 50%,
this is the majority of all nodes and may have an influence on CMP’s majority
vote in the CID agreement. Second, the instantaneous migration is equivalent to a
massive failure and join of nodes in CMP’s unstructured overlay. This challenges
the stability of the unstructured overlay at maximum. Furthermore, the CID
agreement must quickly agree on a new CID for convergence to an accurate state.

Figure 4.26 shows CMP’s convergence time and average number of triangle
checks initiated by a node on connectivity changes with D being Dyvyg or Drvr
as selection function for the CID agreement, N € {256,16384}, and k = 20. Figure
4.26(a) shows the accuracy as function of simulation time. The different curves in
the figure are nearly indistinguishable—even with the major step from N = 256
to N = 16384 nodes. This indicates the fast convergence of CMP and very good
scalability. Only the curve of the experiment using the Dryr selection function is
distinguishable. This is due to the bad convergence properties—cf. Section 4.4.4.
The figure shows the agreement on a single CID for the only connectivity domain
CD1 during the first 18 seconds.
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Figure 4.27 — CMP’s bandwidth consumption on connectivity changes with D be-
ing Dyiv, Druvr, or Diysrip for the CID agreement algorithm.

After 50 seconds the simulation performs the first split. 12.5% of the nodes from
the single connectivity domain get attached to a new connectivity domain CD2.
One node is attached to both connectivity domains CD1 and CD2. Consequently,
the accuracy must drop by 12.5% because the migrated nodes still know the old
CID. CMP detects the connectivity change shortly after the migration, puts the
old CID on the blacklist, stabilizes the unstructured overlay, and agrees on an new
CID for the new connectivity domain. CMP does this in less than 20 seconds as
indicated in the figure. The same happens at 100 and 150 seconds of simulation
time with 21.5% and 32.1% of all nodes migrating from connectivity domain CD1
to new connectivity domains CD3 and CD4. In both cases, the curves in the figure
show a small difference to the first split. About 3 seconds after the split there is
an additional drop of accuracy by up to 0.1. The cause of this drop are nodes in
CD1 that accidentally detect a connectivity change—a false-positive. In the last
step, the simulation migrates the nodes from connectivity domain CD4 back to
CD1 after 200 seconds of simulation time. In this case the additional drop cannot
be observed since links of nodes in CD1 do not fail. Consequently, the nodes in
CD1 will not detect a connectivity change.

Figure 4.26(b) shows the average number of initiated triangle checks oer all
nodes per second and node during the experiment as function of simulation time.
CMP initiates a triangle check on a node on every new overlay neighbor. In the
first seconds of the experiment all nodes initiate checks on all their neighbors—4
per second and node on average. The subsequent splits and merges require the
migrated nodes to initiate triangle checks on their new overlay neighbors. Since
the simulation quantifies the number of triangle checks as average over all nodes,
the number of triangles checks CMP initiates is proportional to the number of
nodes the simulation migrates. The gap between the actual split or merger and
the first triangle check initiated after the split or merger is the connectivity change
detection time.

Figure 4.27 shows the bandwidth consumption on the nodes during the experi-
ments. Figure 4.27(a) shows the average bandwidth consumption on all nodes as
function of simulation time. Like in Figure 4.26(a), the curves in the figures are
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Figure 4.28 — CMP’s convergence time on connectivity changes with D being
Dyivins Druvr, or Dyygrip for the CID agreement algorithm.

nearly indistinguishable, even with the major increase of the number of nodes from
N = 256 to N = 16384. This suggests that CMP uses the bandwidth mainly for
triangle checks. The number of triangle checks CMP initiates depends on the num-
ber of new overlay neighbors CMP discovers each round—independently from the
total number of nodes. Hence, it is not surprising that, like the number of triangle
checks in Figure 4.26(b), the bandwidth consumption correlates with the number
of nodes the simulation migrates. After convergence of CMP only the keep-alive
messages require some bandwidth, but less than 250 bytes/s. The maximum av-
erage bandwidth consumption stays below 4 kbytes/s. To explore the worst-case,
Figure 4.27(b) shows the peak bandwidth consumption on all nodes as a function
of simulation time. It shows that the peak bandwidth consumption is below 9
kbytes/s. These results suggest that CMP is lightweight in terms of bandwidth
consumption.

As last observation, Figure 4.28 shows the average convergence time of CMP
in this experiment. Not surprisingly, those observations are almost the same as
those in Section 4.6.4. Only Figure 4.28(b), with an growing number of maximum
overlay neighbors, differs compared to the figure in Section 4.6.4. The curves of
Figure 4.28(b) show a linear growth of convergence time with the growth of the
maximum number of overlay neighbors. The reason for that is that the stabilization
time of the unstructured overlay has a significant impact on convergence time.
Fach time a node migrates to another network, it needs to discover new overlay
neighbors. In the static case this needs to be done exactly once. This explains the
impact of the growing maximum number of overlay neighbors. In summary, these
results confirm CMP’s good scalability—also in case of connectivity changes.

4.6.6 Summary

The experiments in this section confirm the theoretical findings in Section 4.3 and
Section 4.4 in terms of convergence time and overhead. CMP detects connectivity
and adapts to connectivity changes in a reasonable time, i.e., below 20 seconds.
When the connectivity changes this has the most impact on the migrated nodes.
The migration of more than 20% of the nodes of a connectivity domain only affects
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a few non-migrating nodes. The accuracy of the detection achieves 100% within
the limits Section 4.4 and Section 4.3 discuss, i.e., in case of a low relay ratio.

CMP is highly scalable and lightweight in terms of bandwidth consumption
and in the considered scenarios. It never supersedes 9 kbyte/s. It is below 4
kbytes on average during convergence. After convergence CMP consumes about
250 bytes/s for keep-alive messages. CMP uses these keep-alive messages to detect
connectivity changes. The main bandwidth overhead is caused by triangle checks.
Note that overlay neighbors in some networks might not need triangle checks,
e. g., networks with completely incompatible address formats. This will reduce the
CMP’s overhead significantly.

4.7 Additional Discussion

CMP is the first protocol of its kind that provides information about connectivity
for P2P applications. This section outlines several cases for further work with
CMP. Section 4.7.1 outlines enhancements and optimizations of CMP. Section 4.7.2
outlines new P2P applications that could emerge with CMP. Finally, Section 4.7.3
discusses security issues of CMP.

4.7.1 Enhancements and Optimizations

This section describes ideas of possible extensions and generalizations of CMP.
It addresses the integration of networks with scarce resources, how connectivity
domains can be identfied by a natural name, for example, “home network x” or
any other name, and how new network paradigms can be supported.

Integration of Networks with Scarce Resources

Not all nodes may have the same resources. For example, a P2P application may
run on a mobile phone, or even sensors. To address these devices CMP must
scale with the communication and computational resources. CMP can be adapted
to fit each purpose. First, it is possible to reduce the communication overhead
considerably by configuring CMP that a node is not relay. Then, the node is not
performing a CID agreement and triangle checks. Second, CMP can selectively
reduce the maximum number of overlay neighbors k to reduce the use of bandwidth.
Finally, third, it is possible to omit the CMP meachanisms on the node. In this
case, the node simply adapts the identifier chosen by one of the overlay neighbors.
For connecting networks with extremely scarce resources, such as sensor networks,
relays can be pre-configured for the network in a way that the CD middleware
must not be run on non-relay nodes.

Connectivity Domain Names

CMP identifies connectivity domains with CIDs. CIDs are not associated with
any semantic information. However, in practice, networks usually have names,
e.g., “home network” or “wireless LAN 1”7 (cf. SSID). For supporting connectivity
names (CNs), non-relay nodes need to agree on a common name for each connec-
tivity domain identifier. Depending on the application scenario, this name needs
to be globally unique and there might be more than one name for the same con-
nectivity domain. Such functionality could be provided by a name service on the
relay nodes, e.g., P2PNS [6], after CMP detected connectivity. Each node inside
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a connectivity domain could propose a name to the relays for the connectivity
domain. Subsequently, the relays try to register the name with the name service.
Furthermore, nodes could ask relays for a CID to a given name.

Content or Information Domains

New clean slate future Internet research initiatives recently introduced content or
information centric networking. In these networks, addresses do not locate end-
systems but content. Therefore, end-systems do not exchange messages anymore,
but provide and retrieve content. To extend the design of CMP for this kind of
networks, the term of connectivity needs to be transformed to content. Hence,
content domains need to be considered, where all nodes in a content domain can
transitively retrieve a certain content. For example, when a node X can receive
content A, and X distributes the address of content A to a node Y, then Y can also
retrieve content A. Therefore, a “content accessibility check” replaces the triangle
check. In this case relays distribute data from one content domain to another.

This is a synthetic scenario. Relays would most likely have a conventional (end-
to-end) way of communication to delegate content from one domain to another.
Furthermore, CMP requires to build an unstructured random overlay. This en-
hancement is just stats an example how CMP could be adapted to different, future
network protocols and paradigms.

4.7.2 Additional Application Scenarios

CMP offers information about sub-networks in the underlay of an overlay network
and determines relays in the overlay that are able to connect them. Using this in-
formation new P2P application scenarios emerge. The following outlines additional
application scenarios:

Dependable P2P applications

Assume the CD middleware interconnects connectivity domains. This enables P2P
application deployment using a hierarchical design. Each layer implements the P2P
service provided by an arbitrary P2P application. The local connectivity domain
confines the first, or local layer. The second, or global layer, extends the local layer
by interconnecting them. Figure 4.29 illustrates this application scenario by
considering a chord ring hierarchy. Chord rings can be used for many applications,
for example, for implementing a distributed hash table (DHT) to look up names for
Internet telephony. The figure shows 4 connectivity domains (CD1-4) connected by
3 relays (4,3, and, 7) and 5 non-relay nodes. Upon these 4 domains, the application
that runs on the nodes, constructs chord rings: a local one in each domain and a
global one that comprises all nodes across all domains. For better understanding,
the figure shows the overlay of the global ring. The text at the links of the global
ring show the relays involved for communication across connectivity domains. Each
chord ring provides its functionality within its domain. In an DHT P2P application,
nodes participating in the local ring put data on local the local and global ring.
This leads to redundancy because, e.g., in case of a DHT, it stores data locally
and globally. The advantage is that even when one of the relays (4,3, or 7) fails all
local rings are intact and self-healing. This highly increases dependability of the
P2P applications. One disadvantage is that this approach needs more resources.
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Horizontal Composition of P2P-Overlays

Despite the hierarchical design of P2P applications presented in Section 4.7.2, the
connectivity domain information can be used to compose P2P overlays horizon-
tally. The information about connectivity domains can be combined with addi-
tional cross-layer information, e.g., the network type (ad-hoc, wireless, mobile,

..). Using this information, P2P applications can use employ different P2P over-
lays in each connectivity domain. For example, if one connectivity domain has
native multicast support and another one is an ad-hoc network, this enables the
application to use the native multicast directly, while using an P2P protocol for
overlay multicast inside the ad-hoc network, e.g., TrAM [7]. Thus, the concept of
connectivity domains is an enabler for horizontal compositions in the scope of P2P
applications.

4.7.3 Security Considerations

Although this thesis does not address security and safety in the presence of ad-
versarial nodes, this section provides a security analysis of potential attacks of an
adversary on CMP. There are several regions that can be attacked. First, the P2P
application that uses CMP by become a victim of an attack. Common attacks
include the sybil- [24] or eclipse attack [79]. In case of the sybil-attack, an adver-
sary can impersonate a large fraction of nodes inside the P2P application and can,
therefore, control parts of, or the entire, network. The eclipse attack describes a
stronger attack by impersonating a smaller fraction of the nodes and causing more
damage to a specific target. Both have in common, that a fraction of adversaries,
participating in a P2P application, influences the “normal” P2P protocol operation.
This Section provides an analysis of an scenario where adversaries influence CMP,
such as attacks on the random agreement, man-in-the-middle (MITM) attacks, and
peer sampling poisoning.
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Attacks on the CID Agreement

Attacks on the CID agreement are particularly possible during the first convergence
phase of the protocol. Although the worst-case was considered, where all nodes
join exactly the same time and try to agree on an identifier, if majority detection
fails on all nodes, each attacker has the same influence on the CID agreement as
a leak caused by an undetected relay. Depending on the used selection function in
the CID agreement algorithm, in the worst-case, a single adversary can affect the
outcome of the CID agreement. However, once CMP has converged, an adversary
needs to impersonate about 50% percent of nodes to change the identifier of a
connectivity domain. This is because CMP only re-negotiates a new identifier
when 50 percent of the nodes fail or the majority dictates a different identifier.
Hence, CMP is remarkably robust against adversaries, against a large fraction of
adversarial nodes after convergence, but highly vulnerable during the first phase
of convergence.

Man-in-the-Middle Attacks using Relays

Every node using the CD middleware can announce it is a relay. This opens the
door for man-in-the-middle attacks. If an adversary announces it is a relay for
a connectivity domain, at least some traffic will be forwarded to the adversary,
so-called man-in-the-middle. This can be compensated by using different disjoint
paths via other relays, in case the adversary just drops packets. Furthermore,
a node can use secure end-to-end encryption and authentication to prevent an
attacker from eavesdropping.

Peer Sampling-Poisoning

There are several known attacks on peer sampling, e. g., the mosquito attack [52],
which attacks the randomness of the peer selection. Hence, the adversary can
partition the unstructured random overlay or poison the list of peers. The latter
means that all harmless nodes will only know nodes impersonated by the adversary
in the end. This gives the adversary full control over the network. As the CMP’s
discovery module uses peer sampling excessively during bootstrapping phase the
adversary has a fairly small window to attack the unstructured random overlay.
Nevertheless, as mentioned before, there exists no solution to prevent the adversary
to claim that its impersonated nodes are relays and re-route, drop, modify or
eavesdrop on messages.

4.8 Summary

This chapter presents CMP, a protocol that identifies transitive connectivity for
P2P networks. To this end, CMP solves two main problems: relay detection and
identification of connectivity domains. By theoretical analysis, it has been shown
that a node detects whether it is a relay with high probability with a triangle check
per overlay neighbor and a maximum of overlay neighbors k > 20.

Furthermore, three selection functions for the CID agreement algorithm are
discussed. First, Dryr which is resilient against leaks, but has slow convergence
time. Second, Dypvm, which is vulnerable against leaks, but has an exceptionally
short convergence time within O(log N), when N is the number of nodes in a
connectivity domain. Third, Dyygrip uses both selection functions.
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CMP combines the relay detection and the CID agreement algorithms to de-
tect connectivity autonomously. CMP is scalable, converges to accurate CIDs in
less than 20 seconds in the considered worst-case scenarios while using bandwidth
overhead of 4 kbyte/second per node on average during convergence time. CMP’s
convergence time and bandwidth consumption grows logarithmically subject to the
number of nodes. After convergence, CMP induces no additional overhead besides
keep-alive messages.



Chapter 5
Interconnection of
Heterogeneous Networks

This chapter introduces the Connectivity Domain Interconnection Protocol (CDIP)
as part of the CD middleware. CDIP interconnects heterogeneous networks using
the detected connectivity and provides seamless connectivity for P2P applications.
This allows the deployment of existing P2P applications in heterogeneous networks
with small modifications only. The main difference when deploying a P2P appli-
cation that uses the CD middleware is the address format. In contrast to the
deployment in the Internet only!, the CD middleware requires the P2P application
to use a tuple of a CID and an underlay address, called CDIP-address,

(CID(x),addr(x))

to send a message across heterogeneous networks to node x. Therefore, the CDIP-
address may be a substitute for the IP address and UDP-port tuple used in current
P2P applications. For further abstraction of the addressing, e. g., identifier-based,
or name-based addressing, P2P applications may use a key-based routing protocol
to map the node’s name or identifier to an CDIP-address. One example of of such
a mapping is provided by the Base Overlay in the ariba middleware described in
Chapter 3.

Figure 5.1 illustrates the placement of CDIP in the CD middleware. CDIP is
situated beneath the P2P application and provides a bootstrapping and message-
based communication interface to the P2P application. The bootstrapping in-
terface allows P2P applications to request several CDIP-addresses of nodes that
already run the CD middleware. The message-based communication interface en-
ables the P2P application to send and receive messages with CDIP-addressing.

1On the Internet P2P application commonly use a tuple of IP address and UDP



90 , Chapter 5 — Interconnection of Heterogeneous Networks

| P2P application
P2P application 4 Message routing and
* and bootstrapping
I .
Conne(_:tivity Domain Connectivity Domain
o Interconnection Protocol (CDIP) Interconnection Protocol (CDIP)
g On relay : On non-relay
(] i '
g _< Connicrt(;\tlloté/ol\l/l(e;\s;llg;ament Tailored Routing
I3 ] S I (TRout) | Relay selection &
o .. . ! i
O Communication and discovery Unstructured ! [eiEgiding
relay overlay
| pva |[ pve |[Locar|| .. | A
N T T e T T T EEEEE T E LT EEEEE .. o ® Link Connectivity identifiers 1
Network access » HINKS (CIDs) and relay discovery =
(sockets)

P MP
IPv4 Bluetoot [ c ]
Interne PAN

Figure 5.1 — CDIPs placement in the connectivity domain middleware.

CDIP uses the information about the connectivity domains detected by the Con-
nectivity Measurement Protocol (CMP) which is situated beneath CDIP. Using
its relay discovery module, CMP provides the connectivity identifiers (CIDs) and
underlay addresses to relays in the node’s connectivity domain(s) to CDIP.

When a P2P application sends a message on a node using the CD middleware,
CDIP compares the CID in the CDIP-address with the CID(s) of the node. If the
CID matches one of the node’s CIDs, CDIP delivers the message directly using
the underlay address in the CDIP-address. If the CID does not match any of the
node’s CIDs, CDIP adds a header to the message containing the destination and
source CDIP-address. Then, CDIP forwards the message to a relay. The relays
take care of routing messages across connectivity domains. For this purpose CDIP
employs two main mechanisms illustrated by two layers in Figure 5.1:

Unstructured Relay Overlay

CDIP builds an unstructured relay overlay by establishing links to relays selected
randomly. The construction of the unstructured relay overlay uses the same mech-
anisms as CMP for the unstructured overlay. In contrast to the unstructured
overlay of CMP, the unstructured relay overlay comprises relays only.

Tailored Routing

CDIP employs the Tailored Routing protocol (TRout) to route messages across
connectivity domains in the unstructured relay overlay. If a non-relay node wants
to send a message to a node in a different connectivity domain, it sends the message
to a known relay in its connectivity domain. Then, the relays route the message to-
wards the destination connectivity domain based on the CID in the CDIP-address
included in the message header. When the message reaches the destination con-
nectivity domain, the relay in the destination connectivity domain delivers the
message using the underlay address in the CDIP-address.
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Figure 5.2 — Example of CDIP scenario comprising 3 connectivity domains, 3 re-
lays forming the unstructured relay overlay, and 3 non-relay nodes.
All non-relay nodes know at least one relay inside their connectivity
domain.

The scenario depicted in Figure 5.2 illustrates three connectivity domains (CID1,

, CID3), three relays, (A), ..., (C), and three non-relay nodes, €9, ..., @). The
relays form an unstructured relay overlay and use TRout to route messages across
connectivity domains. Each of the three non-relay nodes knows its CID and under-
lay address. Additionally, each non-relay node knows at least one underlay address
of a relay in its connectivity domain?. As mentioned before, a P2P application uses
CDIP-addresses to send messages to other nodes. When node € wants to send
a message to node @ then node €9 recognizes that @ is in a different connec-
tivity domain by comparing the CIDs in the CDIP-address tuple. Then, CDIP
adds the source and destination CDIP- address to the message and forwards the
message to the known relay \A/ Relay (A) routes the message over the unstruc-
tured relay overlay to relay (C) in node @ s connectivity domain. Finally, relay
(©) delivers the message to node @ using node @’s underlay address included in

the CDIP-address.

The CD middleware needs to handle a broad range of heterogeneous networks.
For evaluation of CDIP in such networks, Section 5.1 describes reasonable connec-
tivity domain scenarios. These scenarios are relevant for today’s and most likely
for future networks. Furthermore, the section discusses possible routing modes
in those scenarios, and defines the requirements of a appropriate routing proto-
col. To find an appropriate routing protocol Section 5.2 discusses related work
and subsumes that the Virtual Ring Routing (VRR) protocol can be considered
as a reasonable starting-point. Section 5.3 describes the Tailored Routing protocol
(TRout), that fulfills the requirements defined in Section 5.1. Section 5.4 provides
an evaluation of TRout using the unstructured relay overlays extracted from the
connectivity domain scenarios. Finally, Section 5.5 summarizes the results.

2CMP provides this information.
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5.1 Scenarios and Requirements

In contrast to the scenarios considered with CMP, the evaluation of a routing
protocol requires more realistic and larger scenarios that describe how relays are
deployed in heterogeneous networks. Section 5.1.1 provides and discusses those
scenarios. They describe the access of relays to connectivity domains. Furthermore,
Section 5.1.2 describes how the unstructured relay overlay built between relays.
The scenarios and the unstructured relay overlay construction allows the derivation
of unstructured relay overlay topologies. These serve as foundation to evaluate and
design a routing protocol that is able to route messages across connectivity domains
on the relays. Two routing modes may be used in these network topologies: unicast
and anycast. Section 5.1.3 discusses the those modes in the context of the network
toplogies. Finally, Section 5.1.4 defines the requirements of a routing protocol for
use in CDIP.

5.1.1 Connectivity Domain Scenarios

In general, it is difficult to obtain scenarios which describe relays connected to con-
nectivity domains. The reasons for that are twofold. First, multiple heterogeneous
networks exist that have not yet been interconnected autonomously, e.g., Blue-
tooth capable mobile phones, virtual private networks (VPNs), or mobile ad-hoc
networks. Second, it is unclear how the Internet and other networks will evolve,
e.g., if all nodes use IPv6 and have transitive connectivity in the future, then
only one connectivity domain will exist. Even related work, e. g., the Unmananged
Internet Architecture (UIA) [34] that supports similar networks does not state
concise scenarios.

The goal of this section is to extrapolate possible scenarios describing how relays
are connected to connectivity domains. These scenarios are inspired by today’s and
future heterogeneous networks. The first scenario is inspired by today’s scenario
of deployed NATs and firewalls. The second scenario is inspired by the evolution
of the Internet. Those scenarios are conceptional. Relays do not actually connect
to connectivity domains but to relays in other connectivity domains. To fill this
gap Section 5.1.2 provides insight how relays connect to other relays in the same
connectivity domain(s) using an unstructured relay overlay.

Star Scenario

The main reasons of today’s violation of transitive communication properties are
personal firewalls and network address translation routers (NATs) [83] that sepa-
rate a private (home-)network from the public Internet. Almost 90% of all P2P
applications run behind a firewall or NAT [21]. To reach devices in the private net-
work behind a NAT router from the Internet, the NAT router needs a virtual server
rule so a device in the private network can be reached from the Internet. Technolo-
gies, like Universal Plug and Play (UPnP) [1] enable the automatic configuration
of such forwarding rules.

A P2P application has to deal with these obstacles. Most of the P2P applica-
tions, e. g., uTorrent [2], use UPnP to communicate transitively with other nodes.
UPnP has significant drawbacks. First, the number of possible virtual server rules
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Figure 5.3 — Example of the Star connectivity domain scenario.

on home routers is limited®. Second, many people or administrators disable UPnP
in the routers because of security issues [93].

The use of CMP allows a more general and controllable way to achieve forwarding
between private networks and the Internet. Using the CD middleware only one
node must have a virtual server rule in the private network. CMP detects that this
node is a relay which connects the private network with the public Internet. Nodes
inside the private network will automatically agree on a CID for the connectivity
domain spanned by the private network. All relays and nodes directly connected
to the Internet will agree on a CID for the connectivity domain spanned by the
Internet. Consequently, nodes in the private network will use the relay to exchange
messages in other private networks. This setup allows the derivation of the star
scenario. It comprises one main connectivity domain spanned by the global Internet
and thousands to millions of small connectivity domains spanned by the private
networks attached to the Internet.  Figure 5.3 shows an more general version
of this scenario. It comprises a center, i.e., the Internet, and branches, i.e., the
private networks connected to the Internet by relays. The branches in the figure
show more than one private network resulting in a the star diameter of ds > 2.
This generalizes the scenario mentioned before with respect to additional private
networks inside them. One example of such an additional private network would
be a Bluetooth network created by a node.

Internet-inspired Scenario

The previous scenario is based on the consideration of current facts in the Inter-
net. As known, the Internet is a network of networks. Each network forms an
autonomous system (AS) connected by border gateway (BGP) routers. This is
quite similar to connectivity domains. One could imagine connectivity domains
connected by relays as an analog to ASes connected by BGP routers. When P2P

3The number of available TCP or UDP ports limits the number of virtual server rules
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applications are deployed on more heterogeneous networks in the future, it is likely
that connectivity domains will evolve and look like the ASes in the Internet.

The AS-graph is a model of the ASes connected on the Internet. Each vertex
in the graph represents an AS and each edge two BGP routers connecting the
ASes. Related work states a long list of studies, e.g., [47, 78, 29], which resemble
and discuss the structure of the AS-graph. A early observation in the AS-graph
indicates that its degree distribution follows the power-law. This means, there
exists a majority of ASes that connect to a single other AS, while only a few ASes
connect to a large number of other ASes.

The Barabési-Albert random graph model (BA-model) [5] with preferential at-
tachment can be used to generate graphs with such an power-law distribution. The
generation starts with a small, randomly connected graph. Then, it iteratively adds
new vertexes and connects them to a vertex already present in the graph with an
edge. To achieve a power-law degree distribution in the graph, the BA-model uses a
preferential attachment strategy. This strategy connects new vertexes more likely
to vertexes with a high degree than to vertexes with a low degree. More formally,
the probability that the BA-model connects a new vertex a to a vertex b is

deg(b)
erv deg<$)

for a graph G := (V, E), set of vertexes V', and set of edges E CV x V.

P(“connect a with b”) :=

The challenge is the derivation of a scenario for connectivity domains and a
relay graph with similar properties. A straight-forward solution of dealing with
this challenge is to use an AS-graph and model the vertexes inside the graph
as connectivity domains and each edge as a relay connected to two connectivity
domains. The drawback of this is obvious: each relay connects to two connectivity
domains only. It is doubtful if this is always the case in reality.

As the power-law accompanies many graphs observed in real life, it is proba-
ble that this law can be applied for relays connected to connectivity domains as
well. This means that most of the relays are in fact connected to exactly two
connectivity domains but a small fraction of the relays connects to more than two
connectivity domains. Related work does not provide observations on this matter.
Hence, this thesis claims that such a scenario represents a reasonable case of future
heterogeneous networks.

The following tasks describes a strategy to generate a scenario of relays con-
nected to several connectivity domains:

1. Generate a graph G := (V, E) with |V| vertexes based on the preferential-
attachment scheme of the BA-model. Let the vertexes V' represent connectiv-
ity domains C and each edge {a,b} € E C V xV represents a relay connected

to exactly two connectivity domains. In the following N¢ := |V| denotes the
total number of connectivity domains and N := |E| the total number of
relays.

2. Replace each edge with a relay vertex connected to the connectivity domains.
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3. Compute a power-law distribution f(x) := c¢- 2~ that describes the fraction
of relays f(x) connected to m > x > 2 connectivity domains. The parameter
m denotes the maximum number of connectivity domains a relay may connect
to.

4. Connect the relays to additional connectivity domains to fit the power law
distribution given by f(z) using preferential attachment.

One problem of this strategy is the determination of an appropriate power-law
distribution f(x), more precisely, the parameters ¢ and . Several constraints allow
the determination of those parameters. First, the sum of f(x) nodes between 2 and
m must be equal to 1, as the distribution should cover all available relays. This
defines parameter c as a function of the maximum number of connectivity domains
connected to a relay m and the distribution parameter A:

m

1
fle)=1ec=—— (5.1)
; Zx:2x A
Applying ¢ to f(z) yields the distribution function f'(z):
—A
x
F(z) = (5.

Zum:2 u—A

The distribution parameter A > 0 defines the steepness of the slope of the power-
law’s distribution. The steeper the slope of the power-law distribution, the less
relays are connected to several connectivity domains.

From the current point of view, an educated guess of the maximum number of
connectivity domains, a relay is connected to about m ~ 6 connectivity domains.
Estimating that a “power-user’s” node might connect to multiple private and busi-
ness VPN or local network, a Bluetooth network, and the public Internet with
[Pv4 and/or IPv6 connectivity. However, this highly depends on the evolution of

future heterogeneous networks.
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Figure 5.5 — Example of the Internet-inspired connectivity domain scenario. The
left graph shows the relays connected to only two connectivity do-
mains each using the BA-model (left). The right graph shows relay
connected to additional connectivity domains following the power-
law.

A reference point for the distribution’s steepness is the observation of the ex-
ponent of the power-law distribution on the Internet [29]. The observations claim
a value between 2.2 and 2.5. Therefore, it is claimed that a value of A = 2.3 =~
1(2.2+2.5) will most probably work for f’(z) as well. Figure 5.4 shows the power-
law distribution of f’(z) with m = 6, A = 2.3. The bar chart shows that 55.56% of
the relays connect to 2 connectivity domains, while only about 4.44% connect to
the maximum of 6 connectivity domains. Figure 5.5 illustrates a generated connec-
tivity domain graph with relays. On the left one can see a Barabasi-Albert random
graph of connectivity domains where each edge has an inserted relay. On the right
the relays have been connected to more than two connectivity domains following
the power-law with m = 6, A\ = 2.3 and preferential attachment. The next section
discusses how relays are connected to relays across connectivity domains by an
unstructured relay overlay.

5.1.2 Unstructured Relay Overlay

CMP exchanges underlay addresses of relays in each connectivity domain. Each
node using CMP knows a set of underlay addresses of randomly sampled relays
which are in a common connectivity domain. CDIP uses these underlay addresses
to build an unstructured relay overlay covering all detected connectivity domains.
To achieve shortest paths in each connectivity domain, ideally, this unstructured
relay overlay should have full meshes in each connectivity domain. That means,
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each relay maintains links to all other relay in the same connectivity domain. This
is infeasible because of scalability.

To achieve a trade-off between path length and number of overlay neighbors,
CDIP builds an unstructured relay overlay in the same way as CMP builds it for
detecting connectivity. Each relay tries to establish links to at least % other relays
in the same connectivity domain and deliberately accepts link requests from other
nodes. This way, it is expected that the number of neighbors does not exceed k.
Detailed information about the process can be obtained from Section 4.5.2.

As mentioned before, not forming a full mesh between relays in the same connec-
tivity domain has consequences on the path lengths in each connectivity domain.
More precisely, it is known from Bollobds and Fernandes [10] and newer results
from Fernholz and Ramachandran [30], that random graphs have a diameter within
O(log N), when N denotes the number of nodes. The relays in the same connec-
tivity domain build such an random graph in unstructured relay overlay.

This means, on the one hand, a shortest path traversing n. connectivity domains
would traverse exactly n, — 1 relays when using a complete mesh. On the other
hand, when using the unstructured relay overlay, the shortest path takes O(n, -
log N¢) additional hops in each connectivity domain. The only way to lower the
number of additional hops is to add additional overlay neighbors. This can be done
in two ways:

1. by increasing the maximum number of overlay neighbors £ of the unstructured
relay overlay, and

2. by setting additional links between relays in the same connectivity domain
on-demand, e. g., for special traffic.

When combining the unstructured relay overlay with the connectivity domain
scenarios from Section 5.1.1, large-scale unstructured relay overlays topologies can
be generated. Fach relay in those unstructured relay overlays knows CIDs of the
connectivity domains and maintains links to other relays in the same connectivity
domain. The next section discusses two routing modes for routing messages across
connectivity domains.

5.1.3 Routing Modes

Once the relays built an unstructured relay overlay, they are able to route messages
across connectivity domains. For that, relays employ a routing protocol. This
routing protocol can route messages across connectivity domains using two different
routing modes:

— Anycastrouting: When using anycast routing, each relay announces the CIDs
of the connectivity domains it is connected to. The routing protocol then
routes messages addressed to a CID to one of the relays that registered the
CID. Ideally, the path to this relay is shorter than alternative routes to other
relays that announce the same CID.

— Unicast routing: When using unicast routing, relay cannot announce the
CIDs using the routing protocol. Therefore, each relay x chooses an identifier
NID(x) to route messages from one relay to an other. Hence, CIDs are only
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used to determine if a node is in the same connectivity domain. To forward
messages between connectivity domains, a non-relay node must know the NID
of a relay in the destination’s node connectivity domain to send a message.
This requires an additional mapping mechanism.

If both modes are considered separately, each has its advantages and disadvantages.
First, anycast routing takes the decision which relay is used to deliver the message
in the destination domain to the routing protocol. The sender cannot decide which
relay to use in the destination connectivity domain. Unicast routing would allow
this by explicitly addressing a relay in the destination connectivity domain. Second,
using anycast routing, the sender can directly use the CIDs to send messages to
nodes in a different connectivity domain. Unicast routing would need an additional
step of mapping a destination CID to a NID. Consequently, it is desirable to use a
routing protocol that supports both modes, namely, anycast and unicast routing
for best flexibility.

5.1.4 Requirements
The scenario of peer-to-peer applications allows to summarize the following re-
quirements for a suitable routing protocol:

Requirement 5.1 (Scalable) — One of the key properties of many P2P applications
is scalability. That means, each node contributes a poly-logarithmic amount of
resources with an increasing number of nodes. It is important that the routing
protocol on the relays is scalable as well. Literature defines scalability of routing
protocols by the growth of the routing-table depending on the network size. A
routing protocol is scalable, when the size of the routing-table grows sub-linearly
with the network size.

Requirement 5.2 (Adaptation-scalable) — One of the key features of P2P appli-
cations is that each node can join, leave, or fail at any time resulting in network
changes. This also applies to relays. Hence, the routing protocol used on the relays
must adapt quickly and with low overhead to these changes. A routing protocol is
called adaptation-scalable if the communication overhead for re-stabilization grows
poly-logarithmically with the number of changes.

Requirement 5.3 (Anycast and unicast) — As mentioned in Section 5.1.3 anycast
and unicast support provides best flexibility for routing messages between connec-
tivity domains.

Requirement 5.4 (Identifier-based) — CMP uses flat identifiers called CIDs to
identify connectivity domains. Therefore, the routing protocol needs to handle
location-independent identifiers for addressing—at least for the anycast routing
(cf. Section 5.1.3)

The next section discusses appropriate routing protocols for use on the relays in
the unstructured relay overlay.

5.2 Related Work and Discussion

The goal in this section is to find a suitable routing protocol for routing across
connectivity domains via relays. To this end, Section 5.2.1 defines complexity
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and performance metrics of routing protocols. Furthremore, it and maps them to
the requirements stated in Section 5.1.4. Then, the properties of existing routing
protocols are summarized. Finally, based on the complexity of the routing protocols
and the requirements Section 5.2.3 subsumes that Virtual Ring Routing (VRR) is
a starting-point for a appropriate routing protocol.

5.2.1 Performance Metrics and Features of Routing Protocols

This section provides an overview of complexity/performance metrics and features
needed to compare the routing protocols in terms of the requirements stated in
Section 5.1.4.

Complexity and Performance Metrics

Almost all routing protocols have a common denominator. They use a routing-
table to route messages to other nodes. Furthermore, they use signalling messages
to build these routing-tables which result in a certain message overhead. Every
time a node joins, leaves, or fails inside the network, the routing protocol has to
adapt some of the routing-tables. This leads to three main complexity metrics:

Definition 5.1 (Routing-table size) — The routing-table size (RT-Size) denotes the
number of routing-table entries needed on each node to route messages. If the
routing protocol is scalable the RT-size grows sub-linearly (cf. Requirement 5.1).

Definition 5.2 (Convergence costs) — The convergence costs denote the traffic
per node the routing protocol for convergence. This includes the traffic from a
simultaneous start until convergence of the routing protocol on N nodes.

Definition 5.3 (Adaptation costs) — The adaptation costs denote the traffic per node
that the routing protocol needs to stabilize its routing-tables when |AN| nodes fail,
leave, recover, or join. If the adaptation costs grow sub-linearly with |[AN|, the
protocol is adaptation-scalable, cf. Requirement 5.2.

When the routing-tables are filled with entries and the routing protocol forwards
messages, the stretch is one of the main performance measures that decides on the
quality of the routing protocol:

Definition 5.4 (Stretch) — The (multiplicative) stretch denotes the factor « the
routing path differs from the possible shortest path. E.g., a stretch-2 means that
the routing path is twice as long as the shortest path. Another variant is additive
stretch 5. It denotes the absolute value 8 the routing path differs from the shortest
path. If not explicitly noted differently, the multiplicative stretch is considered in
this thesis.

Features

Routing protocols come with different features. To comply with the requirements
(cf. Section 5.1.4), the following two features are considered:

— Anycast support: When a routing protocol supports anycast, several nodes
are reachable using the same anycast address. When a message is sent to an
anycast address it sends it to exactly one node, e. g., the closest one.
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— Direct-ID support: When a routing protocol supports identifiers (IDs) di-
rectly, it does not need an additional indirection step of mapping an identifier
to a location-dependent locator.

The next section uses these features, complexity- and performance metrics to pro-
vide a comparison of suitable routing protocols.

5.2.2 Comparison of Routing Protocols

In this section several protocol routing protocols are compared to find a suitable
one for use on the relays. The pre-selection of the routing protocols has been done
in two primary classes:

1. Infrastructure routing: Infrastructure networks usually have less dynamics
than P2P applications. However, the autonomous systems (ASes) and the
concept of connectivity domains have some similarities. Since the Internet
uses BGP to interconnect ASes, classical routing algorithms, like the path-
vector, BGP uses, and distance vector algorithms, are discussed. Current
research in this field recently discusses practicable compact routing schemes
[37, 90] to provide scalability for infrastructure routing. Since scalability is
required in P2P applications the most recent approach called Disco [80] is
considered.

2. Ad-hoc routing: Ad-hoc networks assume network dynamics close to those
seen in P2P applications. This makes ad-hoc routing protocols interesting.
Two protocols are highly scalable—also in case of dynamics: Virtual Ring
Routing (VRR) [13] published 2006 by Caesar et al. and Dynamic Address
RouTing (DART) [28] first published 2004 by Eriksson et al. The latter
was selected because its core idea has been picked up again by Virtual Id
ROuting (VIRO) [81] in the year 2011 by Jain et al. and adapted for use in
infrastructure networks. Virtual Ring Routing (VRR) in contrast to other,
similar protocols, i.e., UIP [33], PeerNet [27], SSR [39], is better understood,
both theoretically and practically [14, 63].

The following briefly describes the basic functionality and properties extracted from
the protocol description and evaluation results in each paper. These properties and
results are not comparable one-by-one; however, they allow to see a trend which
helps choosing a suitable routing protocol.

Path-/Distance-Vector (PV/DV) Routing

Routing protocols based on the path- and distance-vector algorithms disseminate
route information of each node in the network and provide a shortest-path routing
from a node to any other node. This allows these routing protocols to route
messages with a perfect stretch of 1.0 when using a routing-table with N entries
and N being the network size. On topology changes, routing updates of each joining
or failing node need to be sent to all other nodes. This induces adaptation costs per
node that grow proportional with the network size. Thus, these protocols are not
adaptation-scalable. However, both categories of protocols can support identifiers
directly. Furthermore, it is easy to support anycast; several nodes just announce
the same identity while the protocol chooses the closest-path to one of them.
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The main drawback of shortest-path routing is the lack of scalability. Frederick-
son et al. [37] and Thorup et al. [90] have proved bounds describing the trade-offs
between stretch, i.e., the deviation from the shortest-path, and routing-table size.

This lead to several protocol designs. One of them is distributed compact routing
(Disco).

Distributed Compact Routing (Disco)

Distributed Compact Routing [80] provides scalable routing by introducing a bounded
stretch of 7.0 before, and 3.0 after the the Disco sent the first message to another
node. This allows a maximal growth of the routing-table within fractional power,
i.e., O(y/N -log N) complexity.

Disco uses a 2-steps hierarchical design to reduce the routing-table size. To
create the hierarchy, Disco chooses /N -log N landmarks in the network ran-
domly. Then Disco provides shortest-paths between the landmarks using a stan-
dard (PV/DV) routing protocol. In result, each node knows the shortest-paths to
all landmarks. Each landmark chooses a unique identifier. Furthermore, each node
learns about the shortest-paths of the v/N - log N its closest neighbors. This set is
called vicinity.

For routing, each node chooses an address comprising the identifier of its closest
landmark and the shortest source-route from the landmark to the node. When a
node sends a message to this address Disco first routes the message to the landmark.
Then, Disco uses the source-route to deliver the message to the destination node.
It is obvious that this detour to the landmark induces stretch. To reduce this
stretch, Disco uses several short-cut mechanisms. Finally, it has been shown that
the stretch is between [1.05,1.10] on practical network topologies. The evaluation
results claim convergence costs that grow with O(y/N -log N) (fractional power)
complexity. Adaptation costs are not considered in the paper.

Disco’s addresses are location dependent, i.e., comprising route information.
To support location-independent addressing Disco uses a mapping scheme from
an arbitrary identifier to this address. The resolution of the identifier results in
stretch when Disco delivers the first message. Furthermore, the mapping scheme
does not allow anycast.

One problem of Disco and path-/distance-vector routing is that they are mainly
evaluated on static networks or on networks with little dynamics. This makes a
rating of adaptation-scalability difficult. The main concern in the evaluations of
these protocols are stretch and routing-table size to highlight scalability. A class
of protocols that supports highly dynamic networks are ad-hoc routing protocols.
The following introduces two popular representatives.

Dynamic Address RouTing (DART) and Virtual Id ROuting (VIRO)

The design of Dynamic Address RouTing (DART) [28] and Virtual Id ROuting
(VIRO) [81] is quite similar. Both protocols cluster nodes of the network hierar-
chically. The result is binary tree. In this binary tree, the root represents the
cluster covering the whole network and siblings form smaller clusters as subsets
from the parent cluster. The leaf clusters of the binary tree contain a single node.
Subsequently, the address of a node is formed using the path from its leaf to the
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binary tree root. The routing-table of a DART /VIRO node comprises of log N en-
tries to closest nodes in other clusters and are determined using a distance-vector
protocol.

For constructing and maintaining the routing-tables, the evaluation results show
that the convergence and adaptation costs per node follow the trend of at least
poly-logarithmic complexity. Also, due to the topology-dependent addressing, the
evaluation shows a stretch of 1.30...1.60 for small-sized networks from 100 to 1000
nodes in an ad-hoc network.

Like Disco, DART and VIRO use locators. To deal with identifiers both pro-
tocols use a mapping service that maps the identifier to the respective locator.
The main difference between DART and VIRO is that VIRO has a more sophis-
ticated identifier mapping mechanism which is more resilient against node failing
or leaving. VIRO also sheds more light on the theoretical properties of the routing
scheme.

One drawback of DART and VIRO is the initial clustering scheme. While DART
provides a very simple protocol to cluster the nodes, VIRO only documented a
centralized clustering. One problem in the clustering scheme is the imbalance
of the resulting binary tree. This can easily lead to very long addresses lengths
beyond 128 bit in large networks. Although DART comes up with several solutions
to some of these problems, a general technique to deal with this is an open problem.
Additionally, obtaining and balancing the binary tree ends up in large-scale address
changes, so called, renumbering. This goes hand in hand with identifier to locator
mapping updates and leads to high overhead. This would make an extension for
anycast support very complicated.

The following section describes Virtual Ring Routing (VRR) protocol that han-
dles identifiers directly.

Virtual Ring Routing (VRR)

The Virtual Ring Routing (VRR) was one of the first routing protocols that was
inspired by DHTs. DHTs comprise a key-based routing (KBR) layer. KBR forwards
data using flat identifiers in a virtual network build upon the existing infrastructure,
i.e., on the application layer. One of the popular KBR protocols is Chord [87]. It
builds a virtual ring ordered by the nodes’ identifiers. Each node on the ring has a
successor, i. e., a node with a greater identifier, and predecessor, i.e., a node with
a smaller identifier. To close the ring, the successor of the node with the greatest
identifier is the node with the smallest identifier and vice versa. Routing in such
a ring is simple. The ring forms an convex identifier space. That is the reason
why a node can forward messages greedily along the ring without worrying about
running into a “dead-end” in the address space. However, the path length of the
routes can be very long, more precisely, within O(N). To reduce the path length,
Chord adds so called fingers, i.e., additional links to other nodes as “short-cuts”
through the ring. This reduces the path length to O(log N).

VRR pushes the idea of Chord “down-the-stack” from the application-layer to
the network-layer. To fill its routing-tables, each node tries to discover routes to
closer successors or predecessors until the routing-tables are stable. VRR has the
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] | PVIDV | Disco | Requirements |
RT-size || Linear O(v/N -log N) Poly-log.
Convergence costs || Linear O(v/N -Tog N) Poly-log.
Adaptation costs || Linear Not considered Poly-log.
Anycast || Yes No Yes
Direct-IDs || Yes No Preferably yes
Mult.-stretch || 1.0 1.05...1.10 Preferably small
] | DART/VIRO | VRR | Requirements
RT-size || Logarithmic Q(+v/N3) (on 2D-grid) Poly-log.
Convergence costs || Poly-log. Poly-log. Poly-log.
Adaptation costs || Poly-log. Poly-log. Poly-log.
Anycast || No No Yes
Direct-IDs || No Yes Preferably yes
Mult.-stretch || 1.30...1.60 Logarithmic Preferably small

Table 5.1 — Comparison of trends by complexity and performance metrics and fea-
tures of distance/path-vector (DV/PV) routing, distributed compact
routing (Disco) [80], dynamic address routing (DART) [28], virtual ID
routing (VIRO) [81], and virtual ring routing (VRR) [13]. Additional
sources: (3, 56, 57]

potential to reduce the necessity of flooding routing updates because of this. Fur-
thermore, when nodes join, leave, or fail, only routes to the virtual ring neighbors
need to be repaired. This leads to a poly-logarithmic trend in convergence and
adaptation costs. Recent theoretical findings by Malkhi et al. [63] show that the
routing-table size grows within fractional power, i.e., Q(v/N3), complexity when
using a two-dimensional grid network topology. The small state and the direct use
of identifiers to form the ring leads to a logarithmic stretch, i.e., O(log N/\/p) (p
denotes the path intersection coefficient of the network), according to [63]. VRR
itself does not support anycast. However, due to the direct use of identifiers for
routing it should be possible to add this functionality:.

Table 5.1 summarizes the complexity/performance metrics and features of the
protocols extracted from the respective related work. The protocols were evaluated
under various conditions, i.e., several network topologies and different network
sizes were considered. Hence, the values in the table represent trends only. While
complexity of the protocol are quite comparable, the stretch denotes the specific
values from the respective experiments.

5.2.3 Discussion and Design Decision

In summary, the main shortcoming of the observed routing protocols is the lack of
anycast functionality. The only category providing this functionality is path-vector
routing. This category is out of scope due to scalability issues. Disco is an excellent
choice for static networks that require scalability but no adaptation-scalability. It
is not clear how Disco will perform in cases of dynamics.

This leaves two options: VRR and VIRO/DART. Both protocols are have the
potential to be adaptation-scalable. However, the use of locators and the mapping
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mechanism of an identifier to the locators has not been evaluated in DART and its
performance is an open issue. VIRO adds this component, but still does not sup-
port anycast. This leaves Virtual Ring Routing (VRR) as one appropriate option.
VRR scales with thousands of nodes and with network changes. Furthermore,
VRR uses identifiers for routing directly without an additional mapping mecha-
nism. However, the logarithmic stretch is one problem of VRR. This problem is
left for further work.

The next section introduces Tailored Routing (TRout), a routing protocol in-
spired by Virtual Ring Routing (VRR) and Destination-Sequenced Distance Vec-
tor (DSDV) routing. Furthermore, TRout uses linearization and parallel discovery
to build its routing-tables more efficiently than VRR, and provides anycast sup-
port.

5.3 Tailored Routing (TRout)

This section describes the Tailored Routing (TRout) protocol. TRout is inspired by
the well-known virtual ring routing (VRR). However, in contrast to VRR, TRout
has been improved as follows:

Modularity: In TRout route maintenance is split from virtual ring maintenance.
This makes TRout more controllable and easier to test than VRR. Furthermore,
the route maintenance module takes care of concurrency effects and handles
node failures properly.

Improved stabilization: VRR only uses a discovery mechanism for building the vir-
tual ring. In contrast, TRout uses the concept of the self-stabilizing linearization
algorithm [71] to evaluate the promising features of this algorithm. These fea-
tures include fast and theoretically proven re-stabilization. Furthermore, TRout
uses a parallel discovery mechanism for faster convergence. Furthermore, in
contrast to VRR, TRout does not flood any routing information. To achieve
this, TRout first builds a virtual path and then connects this virtual path to a
virtual ring.

Anycast support: Based on the virtual ring and in conjunction with the route
maintenance module, TRout can easily support anycast. For this purpose, it
re-uses the routes of the virtual ring and builds an anycast tree.

Before describing TRout in further detail, Section 5.3.1 states notations used
to describe TRout. Section 5.3.2 gives an overview to TRout’s modules. Sec-
tion 5.3.3 describes the mechanisms that maintain routes and virtual links between
virtual neighbors. Section 5.3.4 describes the mechanisms used to build the virtual
path/ring. Section 5.3.5 presents the anycast extension to the virtual ring. Finally,
Section 5.3.6 presents TRout’s additional optimizations and summary of TRout’s
protocol parameters.

5.3.1 Preparations

TRout uses a virtual identifier space for routing like the Virtual Ring Routing
Protocol (VRR) published by Matthew Caesar et al. [13]. The following describes
this virtual identifier space, routes, virtual links, co-relation to the unstructured
relay overlay, the virtual ring, and how messages are routed on the virtual ring.
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Figure 5.6 — Physical network and virtual identifier space.

The Virtual Identifier Space, Routes, and Virtual Links

The virtual identifier space Z := { z | 0 < x < 2!*® — 1} C N is a subset of the
natural numbers. Each virtual identifier (VID) x € Z is encoded as a 128-bit string.
TRout uses these virtual identifiers for routing messages between nodes. For this
reason each node x possesses a permanent virtual identifier chosen randomly* called
node identifier NID(z). A node z may also possess additional virtual identifiers
VID(xz) C Z. This allows TRout to let a node to receive messages addressed to any
of the VIDs possessed by the node if required. This is important as a relay possesses
several VIDs each equal to one of the CIDs for anycast routing, for example.

Figure 5.6 shows a network of nodes connected by links and the virtual identifier
(VID) space. The virtual identifier space comprises virtual nodes which reflect the
NIDs chosen by each node. Furthermore, the figure shows additional VIDs, e.g.,
VID 101 and 392 possessed by node @, in the virtual identifier space.

TRout routes messages to nodes which possess a VID using a routing-table (RT).
Each entry in this routing-table contains some VID z and the next hop NID to-
wards a node possessing the VID z. Figure 5.6 illustrates this by an arrow with
the adjacent VID pointing to towards the next hop neighbor. TRout builds uni-
directional routes to a node with a given VID by setting up routing-table entries
(RT-entries). The figure shows one exemplary route. This route leads from the
virtual node @ to @ which possesses VID 101. Two RT-entries are needed for
setting up this route: one RT-entry on node @ pointing to its neighbor @ and
one on node @ pointing to its neighbor @.

4This ensures that the virtual identifier is unique with high probability.
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Two routes leading from a node possessing a VID to a node possessing a an other
VID and reverse denote a virtual link between a pair of VIDs. The figure shows one
virtual link between the virtual nodes @ and @ resulting in RT-entries on nodes
0. ©, and @. Two virtual nodes, e.g., virtual nodes @ and @, connected by
a virtual link are denoted wvirtual neighbors in the virtual identifier space. The
process of setting up virtual links using RT-entries to form a certain topology is
called embedding. The process of setting up one or more routes towards a node x
that possesses a certain VID is called announcement.

Co-relation to the Unstructured Relay Overlay

TRout runs on each node in the unstructured relay overlay and, thus, TRout is
able to forward messages between connectivity domains. For this reason, TRout’s
virtual identifier space is compatible to the set of connectivity identifiers (CIDs)
defined in Section 4.4.2. Thus, like NIDs, the set of CIDs is a subset of the virtual
identifier space. Each relay in the unstructured relay overlay possesses VIDs equal
to the CIDs of the connectivity domains comprising the relay. TRout itself does
not modify the unstructured relay overlay, e.g., does not establish new links. It
uses the unstructured relay overlay as is. Therefore, for TRout the unstructured
relay overlay is a network comprising nodes and links. Each node in this network
has a NID chosen by TRout and several additional VIDs equal to the respective
CIDs known by the relay.

Virtual Ring

The virtual ring enables TRout to route messages between nodes using their NIDs.
The virtual ring is formed by connecting the virtual nodes with virtual links. Each
virtual node on the virtual ring has a virtual link to a successor and a predecessor.
The successor of a virtual node x is the virtual node s whose NID(s) is greater
than the NID(x) of x and closest to z in terms of the euclidean distance between
both NIDs, i.e., INID(z) — NID(s)|. In the same way, the predecessor is the virtual
node p whose NID(p) is smaller than the NID(z) of x. To close the ring, the virtual
node with the greatest NID chooses its predecessor to be the virtual node with the
smallest NID and vice versa. TRout’s challenge is to build the virtual links for the
virtual ring, i.e., to fill the routing-tables accordingly.

Figure 5.7 shows an exemplary virtual ring comprising 5 nodes (@, ..., @)
and their respective virtual nodes (@), ..., ®) connected to a virtual ring using
virtual links. Furthermore, it shows the RT-entries in the routing-tables necessary
to form the virtual ring. The figure contains short-cuts which appear when links
are reflected by virtual links in the virtual identifier space. The next section will
shed more light on the impact of these short-cuts.

Forwarding in the Virtual Ring

When the virtual ring is built, a node can send messages to any other node by
routing messages along the virtual ring. A virtual node = with NID(x) routes a
message towards a virtual node a with NID(a) by sending the message towards
its virtual neighbor y with NID(y) closest to NID(a) in terms of the euclidean
distance |[NID(y) — NID(a)|. Intuitively, this will lead to a maximal path length
within O(N) as this reflects the maximal hop-count on the virtual ring. However,
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Figure 5.7 — Example of a virtual ring embedded into the network.

like VRR, TRout uses the short-cuts in the virtual ring to reduce the path-length
significantly.

Using a Virtual Path to Build a Virtual Ring

The problem with the virtual ring is that the virtual node with the greatest NID
needs to wrap around zero to find its successor on the virtual ring. The same goes
for the virtual node with the smallest NID when discovering its predecessor. The
wrap in the virtual ring causes VRR to converge to a so-called loopy-cycle. A
loopy-cycle consists of several concatenated rings, e. g., |-1-5-9-|-3-6-10-| (the bar
| denotes the wrap of each ring). For each node on a loopy-cycle the predecessor
and successor is accurate locally. Globally, however, the virtial ring is not accurate
because it should look like this: |-1-3-5—6-9-10-|. The loopy-cycle in the example
occurs if the node with NID 9 it not able to discover the node with NID 10 as its
ring successor. VRR fixes the problem by flooding routes to nodes that assume
that they have the smallest NID in the network (FloodMin). Using FloodMin, the
route to node with NID 3 would be flooded in the network. Consequently, the node
with NID 1 would discover is real successor, i.e., the node with NID 3. This will
repeat until the loopy-cycle converges to an accurate virtual ring.

One observation on routing in the virtual ring is that a convex topology is enough
to successfully route messages to a virtual node. It is obvious that a virtual path
is also convex; hence, is not necessary to close the ring for routing messages. The
result is a virtual path comprising all virtual nodes sorted by their NIDs. The
advantage of the virtual path is that it simplifies the protocol and does not need
to flood the network.

To obtain a virtual ring afterwards, TRout first builds a virtual path and subse-
quently connect the ends of the virtual path to a virtual ring. Figure 5.8 shows an
exemplary virtual path embedded into the network. The difference to the virtual
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Figure 5.8 — Example of a virtual path embedded into the network.
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Figure 5.9 — An overview of TRout’s architecture.

ring is the missing virtual link between the virtual nodes with smallest and greatest

NIDs.

The following sections describe how TRout’s effectively builds and maintains its
virtual ring. Furthermore, they describe an anycast extension that uses the virtual
ring to form an anycast tree.

5.3.2 Overview of TRout

This section gives a general overview of TRout. Figure 5.9 illustrates this overview.
As part of CDIP, TRout internally provides a routing interface that allows sending
messages addressed to a known VID. Furthermore, it allows to register several
anycast-VIDs, i. e., the CIDs of CMP. Below the interface two main modules provide
the functionality of TRout.
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The virtual ring maintenance module builds the virtual ring using one of the
two virtual ring construction mechanisms: linearization and discovery. These two
mechanisms use two primitives for establishing and maintaining virtual links in the
virtual ring: route updates and route forwarding. The route maintenance module
provides this functionality. The route update primitive allows adding new and
updating existing RT-entries. The route forwarding mechanism allows to build
new routes and virtual links using existing ones.

When virtual links or routes between virtual nodes have been established, the
route maintenance module handles virtual link failures and notifies the anycast,
and virtual ring maintenance module about newly added or removed routing-table
entries. The unstructured relay overlay beneath the route maintenance module
provides the network for TRout and the information about failed or new neighbors.

Based on the virtual ring the anycast extension module provides the required
anycast functionality. For this purpose, it uses the next-hops in the virtual ring
to setup additional RT-entries using the route maintenance module. The anycast
extension needs to adapt to the RT-entries of the virtual ring. For this purpose,
the virtual ring maintenance informs the anycast extension module on any change
of the successor or predecessor in the virtual ring.

TRout itself runs in a single loop and is round-based. In this loop each module
performs its maintenance mechanisms every T,,u,q seconds. Figure 5.9 illustrates
this maintenance loop on the left.

The following describes the mechanisms of TRout in detail. The description
starts with the modules that are most important for TRout: maintenance of the
routing-table in Section 5.3.3 and maintenance of the virtual ring in Section 5.3.4.
Section 5.3.5 describes the anycast extension which uses the virtual ring and route
maintenance modules. Additionally, Section 5.3.6 presents several optimizations
of TRout and summarizes its parameters. Implementation details of TRout are
available in Appendix B.2.

5.3.3 Route Maintenance
The route maintenance module keeps a routing-table comprising RING and ANY-
CAST routes and provides two primitives:

1. Route update which allows adding new and updating existing RT-entries, and

2. Route forwarding which allows the extension of a route to some other virtual
node.

Furthermore, it handles route teardowns efficiently when links/nodes fail or routes
are not needed anymore, e. g., in case they are not part of the virtual ring anymore.
For this purpose, the route maintenance module maintains a route usage record
for each route.

The route maintenance module is based on the destination-sequenced distance
vector (DSDV) protocol. DSDV uses sequence numbers to solve the problems of
count-to-infinity and routing loops seen in distance-vector routing. The reasons
for using this protocol as basis are manifold. First, DSDV allows to flood the
network on-demand for a shortest-path between two nodes. Second, DSDV eases
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route maintenance and has the potential to provide shorter virtual links because
DSDV prefers shortest paths. Finally, DSDV has a lower bandwidth overhead
compared to path-vector protocols because they do not have to transfer complete
path-vectors. The following sections describe the primitives of updating routes and
route forwarding.

Routing-Table Entry and Route Updates

A routing-table entry (RT-entry) of TRout’s routing-table comprises 7 primary
fields:

1. Route type: states the kind of the route, i. e., if the route is part of the virtual
ring (RING) or part of the anycast extension (ANYCAST).

2. Virtual identifier VID: denotes the destination VID.

3. Owner-NID (optional): denotes the owner of the route. The field is used only
in conjunction with a ANYCAST-route to differ an equal VID possessed by
several nodes.

4. Distance: denotes the number of hops to the destination.

5. Sequence number: denotes the current sequence number of the route. The
sequence number is a 16-bit integer.

6. Next-hop: denotes the NID of the next-hop node towards the node possessing
the destination VID.

7. Route usage record: denotes a set of NIDs of the neighbors that rely on this
RT-entry.

The route update derives directly from the contents of a RT-entry. It only differs
from a RT-entry in the next-hop field and route usage record for two reasons: first,
the next-hop field is not needed by a recipient because the node knows where the
update message came from. Second, the route usage record is valid locally only.

When the route maintenance module receives a route update®, it first checks
whether it has an existing RT-entry matching the VID and, when applicable, the
owner-NID. If no RT-entry has been found, the route maintenance module accepts
the route update: the route update is turned into a new routing-table entry® by
copying the contents of the route update to the new RT-entry. Furthermore, the
distance is increased by one the next-hop field is set to to the NID of the node the
route update came from.

If an entry matching VID and owner-NID already exists, the route maintenance
module only accepts route updates with greater sequence number or smaller dis-
tance, i.e.,

1. the sequence number of the update is greater than the sequence number in
the RT-entry, or

2. the distance in the update plus one is smaller than the distance in the RT-
entry.

A route update initiated by the virtual ring maintenance to add a trailing route back to the sender
of a discovery message, for example.
6Adding a RT-entry is just a special case of a routing-table update.
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This solves the count-to-infinity problem identically to the DSDV protocol. If
the topology changes or routes become longer, the RT-entry needs to be updated
with a new sequence number to get accepted by nodes. The sequence number is
initialized with 1 and is increased on each topology change. TRout currently does
not handle a sequence number overflow. However, this can be handled, e.g., by
accepting a lower sequence number when the current sequence number approaches
210 — 1.

The routing-table also contains self-RT-entries, i.e., RT-entries having VIDs
possessed by a node with a distance of zero and the current sequence number.
The linearization and discovery mechanisms use these self-RT-entries to forward a
route to one of the node’s VIDs to other nodes. Furthermore, the self-RT-entries
keep track of the sequence numbers for each VID the node possesses. To increase
readability, figures in this Section only show self-RT-entries if they are actually
needed.

Route Forwarding

Route forwarding allows a virtual node to forward a route to another virtual node.
To achieve this, the route maintenance module extracts a route update from its
routing-table. Let this route lead to virtual node u. Then, it forwards the route
update using a route forwarding message along a known route to virtual node
v. Each node on the path to virtual node v updates its routing-table with the
route update included in the message. Hence, when the route forwarding messages
reaches virtual node v, the node knows a route to virtual node u. This primitive
eases the establishment of new virtual links between virtual nodes, e.g., during
linearization and discovery.

Figure 5.10 illustrates an example of the route forwarding mechanism. The
figure comprises the 5 nodes (@, ..., @), and the respective virtual nodes (@,
.., ®), in the virtual identifier space. Virtual node @ initially knows two routes:
one to virtual node &), and one to virtual node @). Route forwarding allows
virtual node @ to forward its known route to virtual node @ to virtual node ®).
After forwarding the route, virtual node @) also knows a route to virtual node @).
For this purpose, virtual node @ sends an route forwarding message along the
route towards virtual node ®). This message contains the route update contents
of virtual node’s @ RT-entry leading to virtual node @).

In step El, node @ receives the route forward message and adds a RT-entry
leading to virtual node @). Then, it forwards the route forward message to node
@. When node @ receives this update in step B, the node realizes it already
knows a shorter route to virtual node @ and updates the route forward message
with its RT-entry and forwards it to node @. In step [EJ, node @ adds a new
RT-entry leading to virtual node @). This results in a route from virtual node
® to @ with node @ being the only intermediate node. The route has been
successfully forwarded.

Route Usage Records

The route usage records are important for three tasks. First, they allow to notify
nodes that announced a route that it has been partially torn down, e. g., in case of a
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Figure 5.10 — Example of the route forwarding mechanism in TRout’s route main-
tenance module.

node failure. Second, they allow TRout to perform consistency checks as presented
in Section 5.3.6. Third, they allow the efficient removal routes that are not part of
the virtual ring, e.g., routes that are only needed until the virtual ring has been
stabilized.

The route usage record in each RT-entry keeps a set of neighbors whose route
uses the RT-entry. For this purpose, TRout informs a node’s neighbors about the
removed or required RT-entries. More precisely, the following invariant describes
the route usage record: when a node u knows a route to VID z with the next hop
being node v, then node v must know a route to VID x as well. Furthermore, node
v’s route usage record of the RT-entry to VID x comprises node u’s NID. The
route usage records causes TRout to use some additional traffic which is almost
proportional to the route updates received. Thus, it does not have an influence on
scalability. Furthermore, it is possible to compress the usage information message
to the neighbors by using a bloom-filter, if required.

Figure 5.11 shows the route usage records of NID1 on the nodes @ and €. If
one of the nodes’ neighbors routes to NID1 traverses a node this is kept in the route
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Figure 5.11 — Example of a route usage record of TRout’s route maintenance on
a virtual node with NID 1.

usage record. Node @ knows that its neighbor @ uses the RT-entry leading to

node @’s virtual node @. Node @ knows that nodes @ and @ use the RT-entry
leading to node @’s virtual node @.

Route Teardowns and Notifications

When a a link between nodes fails, invalid routes using this link need to be removed
from the routing-tables. The route maintenance module takes care of this problem
by forwarding teardown messages to the neighbors that hold routes using the link
by using the route usage records. When a node receives a teardown message for a
specific route, it forwards this message to other neighbors using this route until all
invalid RT-entries are removed from the network.

Furthermore, the destination nodes are notified that one of their routes has been
partially or completely torn down. Notified nodes and neighbors affected by the
failure increase the sequence number of all self-RT-entries in their routing-table and
notify all other modules to react properly, e. g., fixing the virtual ring. All routes
removed from the routing-table will get blacklisted for Ryjmeous TOunds to prevent
old routes from reappearing. The blacklist sensitive to the sequence number. This
means, a new route with a greater sequence number than the one blacklisted is
accepted. The blacklist is important as the virtual ring stabilization does not care
about torn down routes and, hence, may re-establish partially broken routes. The
blacklist effectively inhibits this.

Figure 5.12 shows a link failure between the nodes € and @. In consequence,
TRout checks the route usage record of all RT-entries on nodes € and @ and
sends notifications to all nodes whose route has been affected by the failure. In
this case, @ sends a notification to virtual node @, and node @ to virtual node
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Figure 5.12 — Example of a route teardown by TRout’s route maintenance.

@. Additionally, nodes @ and @ send teardown messages to nodes that use a
route traversing the failed link, i. e., to virtual nodes @ and &).

5.3.4 Virtual Ring Maintenance

Section 5.3.1 states that the virtual ring can be build using two steps: first, build
a virtual path, and second, connect its ends to a virtual ring. TRout does this
exactly this way. It uses two mechanisms either discovery or linearization to build
a virtual path. Then, TRout connects both ends to build a virtual ring.

Both mechanisms, first, add the node’s own NID to its routing-table, i.e., a self-
RT-entry. Second, TRout informs the node’s neighbors about its virtual node using
a route update of the route maintenance module. This way, the network topology
is reflected by virtual nodes and virtual links in the virtual identifier space. Both
mechanisms use the initial virtual neighbors to subsequently build the virtual path.
The following describes both mechanisms in further detail.

Discovery

The discovery mechanism of TRout is almost identical to the one used in VRR.
TRout, however, only builds a virtual path instead of a virtual ring. The advantage
of the virtual path is, that it does not converge to loopy cycle as mentioned in
Section 5.3.1. The VRR protocol used an algorithm that floods routes to the node
with the smallest NID to fix this problem. This has a significant drawback. When
the node with the smallest NID fails, the network must be flooded again—this
reduces the adaptation-scalability.
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Figure 5.13 — TRout’s virtual ring maintenance: example of one discovery mes-
sage.

Starting with the initial virtual neighbors, the discovery mechanism successively
attempts to find a closer predecessor and a closer successor. The discovery mecha-
nism does this using two discovery message types. One message’s goal is to discover
a closer predecessor, the other ones goal is to discover a closer successor. Both
message types include the route update information of the node’s self-RT-entry to
enable other nodes to add a RT-entry towards the sender of a discovery message.

Each node x sends two messages of each type to the same neighbor chosen ran-
domly each round. The recipient of a discovery message remembers a route back
to the sender of the message by adding a RT-entry using the update information
inside the discovery message. This way each discovery message leaves a trailing
route behind. Then, the recipient routes the message towards the closest predeces-
sor/successor route available in its routing-table. If the recipient of the discovery
message is the closest predecessor/successor itself, it establishes a virtual link to
virtual node x by forwarding its self-RT-entry route towards the sender. Natu-
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Figure 5.14 — TRout’s virtual ring maintenance: example of one linearization step.

rally, virtual nodes that are already a successor or predecessor do not establish a
new virtual link. The periodic attempts of each virtual node to discover a closer
predecessor /successor leads to the virtual path after a finite amount of time. The
proof of correctness and upper bounds of time complexity can be derived from [15]
and [19].

Figure 5.13 illustrates an example of one discovery step. It comprises 5 nodes
(@, ..., @) with their respective virtual nodes (@, ..., ®). Virtual node @ has
just started integrating itself into the virtual path. For this purpose, it sends two
discovery messages to node @ in step El. Node @ is a predecessor of @). Since
virtual node @ already has a virtual link to @) no further action is required. In
step H, virtual node @ routes the predecessor discovery message to virtual node
@. This is the predecessor of virtual node @). Therefore, in step [EJ, node @
forwards the route to itself back to virtual node @). This results in an virtual link
between nodes @ and @). So, node @) is correctly integrated in the virtual path.

Linearization

Linearization is a self-stabilizing algorithm introduced by M. Onus et al. [71] in
2007. Linearization sorts a graph comprising vertexes addressed by an identi-
fier to a straight line sorted by the identifier in ascending order. Self-stabilizing
means that the algorithm can recover from any state. Furthermore, [71] shows that
linearization needs O(log N) iterative steps to converge. Linearization splits the
virtual neighbors of node with NID(x) into two sets:

— the set of left neighbors, i.e., virtual neighbors having a NID smaller than
NID(x), and

— the set of right neighbors, i.e., virtual neighbors having a NID greater than
NID(z).

Without loss of generality, let a be a new left neighbor on virtual node x. Then,
TRout establishes a virtual link between NID(a) and the closest virtual neighbor
z of x on the right hand side of a, i.e., NID(a) < NID(2). The virtual node z is
called virtual node a’s linearization neighbor. The link is established by forwarding
the routes between the virtual nodes a and z on virtual node x in both directions.
Linearization of a new right neighbor works in the mirrored way.
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Figure 5.15 — TRout’s anycast extension: additional anycast routes.

When using linearization with TRout, each node helps other nodes to find their
closest predecessor and successor. Linearization is triggered each round for each
new virtual neighbor that has been forwarded to the virtual node once. Figure 5.14
illustrates how linearization builds the virtual path. As mentioned before, in the
beginning, each node learns routes to NIDs of its neighbors, i.e., in step [EJ, virtual
node (® learns about the virtual nodes @, @, @, and @. Virtual nodes @,
are the best successor and predecessor virtual node @ and the virtual node has
a virtual link to both of them. The routes to virtual nodes @), @ are new and
need to be linearized. Consequently, routes are forwarded between virtual nodes
@, @, and, @, @, cach pair in both directions, so a virtual link is established
for each pair.

On node failures, nodes need to linearize the virtual path. The route mainte-
nance keeps track of failed virtual routes. If a route fails the virtual ring main-
tenance is notified of the failure. In case TRout uses linearization, it marks the
linearization neighbors around the failed virtual link as new. These virtual neigh-
bors will be linearized in the next round.

Building the Virtual Ring

For building the virtual ring, virtual nodes which do not have a predecessor seek
a the virtual node with the greatest NID using a discovery message each round.
Then, the discovered virtual node that does not have an successor establishes a
link; the virtual path has transformed into a virtual ring.

5.3.5 Anycast extension

The anycast extension uses the virtual ring routing to add additional routes leading
to anycast VIDs. Each node may announce several of those anycast VIDs. The
announcements are forwarded along the routing paths of the virtual ring until they
reach the node with the closest NID to the announced VID. Furthermore, the
announcements add a route to owner, i.e., the node that possesses the same VID,
on each node it passes. To distinguish the routes the anycast extension allocates the
owner-field with the NID of the announcing node. This makes each route unique.
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If a subset of nodes announce the same VID the resulting routes intersect at a some
node. In this case, the announcement is only forwarded when the distance to the
node that possesses the same VID is shorter or has a lower owner-NID to break
ties. The result is a anycast tree. When routing to an anycast VID, the virtual
ring routing is used until an anycast route is found. Then, the message follows this
path to the announcing node.

Figure 5.15 illustrates the routes provided by the anycast extension. It comprises
five nodes with their respective virtual nodes. Virtual nodes @ to @), and virtual
node @ announce an additional anycast VID 6. These nodes announce routes
towards the virtual node that is closest to VID 6, which is @ in this case’. As
mentioned before, the announcement of a route stops if a node knows a shorter
route to this VID. This results in an anycast tree as shown by the figure.

5.3.6 Optimizations, and Protocol Parameters

TRout implements several optimizations. First, TRout enhances the Discovery
mechanism by using a parallel discovery mechanism. Furthermore, it automati-
cally reduces signalling traffic when the virtual ring is stable. For optimization
of the concurrency effects of the Linearization mechanism TRout keeps track of
the best successors and predecessors linearized so far. Automatic teardowns and a
route consistency check ensure that TRout does not maintain unnecessary routes.
Finally, TRout can aggregate route update messages into larger messages to reduce
the number of messages sent by TRout, if required.

Parallel Discovery Mechanism
TRout a parallel discovery mechanism to speed up convergence. In this case, dis-
covery messages are sent to D, randomly chosen and pairwise different neighbors.

Discovery/Anycast with Decreasing Overhead

Unlike when using linearization, TRout sends discovery and anycast announce-
ments each round even when the virtual ring is stable and all routes are intact.
This induces unnecessary overhead. To reduce this overhead, the anycast and
discovery mechanism counts the number of rounds the node did not receive any
notification message and no virtual neighbor has been added or removed. If this
counter exceeds delayThreshold rounds, the next announcements are delayed with
each round by a linearly increasing number of rounds, per round. If any change
occurs, the counter is reset and the announcements are sent each round.

Linearization with Predecessor/Successor Awareness

The concurrent linearization mechanism has a bad performance [40] as the algo-
rithm was designed for iterative processing of graphs. In a distributed setting, lin-
earization is performed on many nodes concurrently. This leads to a high amount
of unnecessary overhead. To lower the unnecessary overhead, TRout uses a sim-
ple method: it only linearizes new left or new right neighbors if the linearization
neighbor is closer to the NID than the NIDs linearized before. For this purpose,
two additional fields are added to the routing-table: the NIDs of the forwarded
route to the closest successor and predecessor.

"Note that using the euclidean metric, two NIDs may be close to a VID—however, this is highly
improbable when the address space is large, i.e., TRout is using 128-bit.
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Route Consistency Check and Automatic Teardowns

The route usage record allows TRout to check whether the entries in the routing-
table of a node are valid. For this purpose TRout notifies its neighbors of the usage
of routes every Rconsistency Tounds. If a node receives a notification of a route that
it does not know about, it sends a teardown message to drop the route. This way,
invalid routes are removed from the network.

Furthermore, TRout removes unused RT-entries. If a RT-entry does not rep-
resent a route used in the virtual ring or is not used by one of the neighbors, it
removes this RT-entry after Ryjneous Tounds.

Route Update Queue

To reduce the amount of messages sent by a node, TRout implements a route
update queue. Normally, when TRout processes an incoming message and sub-
sequently sends messages, these messages are sent immediately. These messages
may comprise only a small number of route updates, leading to a large number of
small messages. To aggregate them into larger messages, TRout keeps a message
queue for every neighbor. This queue is either flushed, i. e., messages in the queue
are sent to the respective neighbor, immediately, flushQueue =Immediately, or
queued until the next round, flushQueue =In-round.

Protocol Parameters

TRout uses several protocol parameters that have a significant influence on its per-
formance. Table 5.2 summarizes these parameters. The T}.,,,q parameter denotes
the period in seconds until the TRout’s next round starts. The route mainte-
nance R opsistency Parameter denotes the number of rounds until TRout checks its
routing-table of consistency, so all routes in the routing-table are valid. Further-
more, TRout cleans up orphaned, unused RT-entries that are not needed anymore
and the route blacklist each Ryjmeons rounds. The virtual ring module has two
modes of constructing the ring: Discovery (default), or Linearization. mode de-
notes the mode used. In Discovery mode, D, denotes the number of parallel
discovery messages sent each round. The greater D,, the faster TRout converges
at the expense of more traffic being generated. Finally, the flushQueue parameter
denotes whether the route update queue should be flushed immediately after TRout
processed route updates from a neighbor, or whether the route updates should be
queued until the next round. TRout has been designed to comply with the re-
quirements in Section 5.1.4 for scalability and anycast support. The next section
evaluates the properties of TRout using the scenarios presented in Section 5.1.1.

5.4 Evaluation

The TRout protocol has been implemented hand-in-hand with a routing simulation
framework, called RoutingSim [97], based on the OMNet++ discrete event simula-
tor [94]. This framework provides build-in statistics, abstract graph readers, and a
modular design to ease large-scale benchmarks of routing protocols. The following
describes the simulation methodology. Then, the subsequent sections present the
evaluation results of TRout’s convergence and behavior under network dynamics
in Section 5.4.4.
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Parameter | Default | Description

Tround 1s Waiting time for the next round

R eonsistency 60 Rounds before the next consistency check

Riimeout 30 Rounds before the next cleanup of the routing-
table

D 4 No. of parallel discovery attempts

delayThreshold 5 No. of rounds until the discovery/anycast mech-
anism slows down

mode Dis. | Mode of virtual ring construction
(Discovery (default), or Linearization)
flushQueue Imm. | Mode of queue flushing

(Immediately (default), or In-round)

Table 5.2 — TRout protocol parameters and default values.

5.4.1 Simulation Methodology

The goal of the simulation is to verify TRout’s algorithmic scalability on network
topologies that match the unstructured relay overlay. Stretch and message delay
are not the primary focus of these simulations; however, some results are shown
when applicable. Evaluation of scalability usually requires to simulate a large-
scale network, i.e., of size up to several thousands. To run the evaluation in a
reasonable time, e.g., up to several days, a trade-off between complexity and a
realistic simulation must be found. The following describes this trade-off.

Simulation vs. Reality

To reduce the complexity of the simulations the following simplifications have been
made:

CMP simulation: Connectivity detection is only feasible if the connectivity do-
mains contain one magnitude more non-relay nodes than relays, cf. Chapter 4.
Hence, simulating CMP and TRout in a large-scale network requires even more
non-relay nodes. This makes the evaluation unnecessarily complex, since the
detection itself has no influence on TRout. Hence, the simulation uses the un-
structured relay overlay topologies, cf.. Section 5.1.1, to evaluate TRout.

Unstructured relay overlay: In the unstructured relay overlay topologies, each re-
lay has a unique node identifier NID and several anycast VIDs equal to the CIDs
of the detected connectivity domains. For an evaluation of routing stretch,
the simulator pre-calculates shortest-paths between all relays. Dynamics in the
unstructured relay overlay topology, e.g., failure or recovery of relays, does
not change the topology. This relieves the simulation from re-calculating the
shortest-paths.

Message loss and delay: The simulation does not consider message loss in the
unstructured relay overlay topology since message loss can be compensated us-
ing an ARQ mechanism on TRout’s deployment. Furthermore, message delay
has a small effect on the algorithmic behavior of TRout. It would increase con-
vergence time but does not prevent TRout from converging in the end. Hence,
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Parameter | Scenario | Value

Network size N Both 255, 511, 1023, 2047, 4095, 8191
Number of CDs N¢ Both 256, 512, 1024, 2048, 4096, 8192
Max. number of neighbors & Both 10, 20, 30

Star diameter d, Star 2

Power-law coefficient A Int.-insp. | 2.3

Max. CDs per relay ¢ Int.-insp. | 6

Table 5.3 — TRout’s parameters for the unstructured relay overlay scenario. Values
printed in bold denote default simulation parameters.

the simulation uses a uniformly distributed message delay between 50-350 mil-
liseconds per link to simulate queueing, and to avoid synchronization effects.
The variance of the delay reflects typical delays seen with a DSL-line to national
servers (~ 50 milliseconds) and transatlantic delays (=~ 350 milliseconds).

Neighbor detection and link failure: The simulation abstracts from the detection
of new neighbors and neighbor failure. More precisely, the simulation informs
TRout about a failing or new neighbor instantaneously. In reality, the detection
would take some time and result in a small increase of TRout’s convergence
time.

As aforementioned, the simulation uses unstructured relay overlay topologies. The
following sections denote these topologies as network topologies.

Network Topologies

The network graphs for TRout’s evaluations are generated using the star- and
Internet-inspired scenarios presented in Section 5.1.1 and the unstructured relay
overlay construction mechanisms presented in Section 5.1.2. Depending on the
scenario, these network graphs have either a star- or a Internet-inspired topology.
Table 5.3 summarizes the parametrization of the network graph generation. Both
star and Internet-inspired topologies connect N¢ connectivity domains (CDs) with
N = N¢ — 1 relays. This explains the correlation of the values of No and N in the
table. For TRout, NV is the network size. It denotes the number of relays in the
unstructured relay overlay. Furthermore, N¢ is the number of different anycast
addresses used in the network. The diameter of the star scenario is set to ds = 2,
thus, the branches of the star topology comprise a single connectivity domain. This
is likely in today’s networks. The parameters of the Internet-inspired scenario are
the values presented in Section 5.1.1.

Each relay in the generated network graph has a node identifier NID and several
CIDs of the connectivity domains the relays connect to. The simulation uses the
NID and CIDs to parametrize TRout on each relay for a realistic simulation. The
following paragraphs describe the properties of the resulting network graphs in
further detail.

Figure 5.16 shows degree distributions, i.e., the distributions of the number of
neighbors, in the generated network topologies of the star and Internet-inspired
scenarios. Figure 5.16(a) with N = 255 and k = 10. Figure 5.16(b) with N = 8191
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Figure 5.16 — Degree distributions of the generated star and Internet-inspired un-
structured relay overlay.
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Figure 5.17 — Clustering coefficient of the generated star and Internet-inspired un-
structured relay overlay.

and k = 20. As expected both show a peak at %,
to at least % relays chosen randomly. Also, the degree is bound by k with high
probability. In the star topology all relays can connect to each other; hence, the

degree is always greater or equal than g In the Internet-inspired scenario, however,

as each relays tries to connect

connectivity domains comprising less than g relays may exist. This explains that
some relays have a degree lower than g

Figure 5.17 shows the distribution of the clustering coefficient as a function of
the network size N and the maximum number of neighbors k. Informally, the
clustering coefficient describes the connectedness of a graph. A complete graph
has a clustering coefficient of 1, while a sparsely connected graph has a clustering
coefficient close to 0. For a formal definition refer to Section 2.1. Figure 5.17(a)
shows the clustering coefficient of the star and Internet-inspired network topology
with an exponentially increasing network size N = 255, ...,8191. The figure shows
that the clustering coefficient decreases for both, star and Internet-inspired, with
the increase of N. This is natural, as the number of neighbors is constant while
N increases. In contrast, Figure 5.17(b) shows how the increase of the number
of neighbors k increases the clustering coefficient, because the network becomes
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Figure 5.18 — Diameter of the star and Internet-inspired unstructured relay over-
lay.

more dense. Both figures show a notable difference between the star and Internet-
inspired scenario. The reason for this is that a relay is connected to exactly two
connectivity domains in case of the star scenario. In the Internet-inspired scenario,
a relay connects to a power-law distributed number of different connectivity do-
mains. This increases the clustering coefficient. In fact, the clustering coefficient
is close to the one observed in the Internet [95], i.e., of ~ 0.2 — 0.3.

Figure 5.18 shows the diameter of the network graph as function of an increasing
network size and an increasing maximum number of neighbors. The diameter is
important for TRout’s convergence. The larger the diameter is, the more hops
TRout’s signalling messages need. Figure 5.18(a) suggests that the diameter in-
creases with the network size and follows a logarithmic trend. This logarithmic
trend reflects—as expected—the theoretical bounds of the diameter of random
graphs. This has already been pointed out in Section 5.1.2. The figure also shows
that the star topology has a smaller diameter than the Internet-inspired topology.
This is obvious, as the star graph has a smaller diameter than the BA graph.
Figure 5.18(b) shows that with an increasing maximum number of neighbors the
diameter decreases. This is obvious because each additional edge reduces the di-
ameter.

Network Dynamics

Churn and catastrophic failures are typical models for dynamics in P2P networks.
Churn describes continuous change of the network. A catastrophic failure (CF)
describes a sudden failure and recovery of relays in the network without prior
notice. While a catastrophic failure is a simple model, realistic churn models are
hard to obtain. The most prominent churn model is the Lifetime Churn-model (LC
model). In this model, a new relay joins the network and stays for ¢;;esime, seconds.
After this time the relay leaves the network and stays out of it for tgeqgtime,- Then,
the relay joins again and stays for fjfetime, seconds, and so forth. The LC model
is periodic. Relays join and leave with different life- and dead-times. Studies [75]
show that life- and dead-times vary from several seconds to one hour. Those studies
also discuss several possibilities to model churn by stochastic lifetime distributions.
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The work by Stutzbach et al. [88], and more recently, by Steiner et al. [84] claim
that a Weibull distribution

=k (3) 7

with the Weibull parameter £ = 0.5 and mean lifetime meanLifetime = A ~ 10000
seconds fits observations from the Kad-filesharing network. The simulation uses
this model as reference and varies the meanLifetime between 1000, 5000, 10000,
and 20000 seconds. The network dynamics are implemented as relay failure and
relay recovery in the network graph. The catastrophic failure uses the following
parametrization: after . = 100 seconds, a fraction F' € {0.10,0.20,0.40} of all
relays fail. Then, after t,.coper = 100 seconds, all failed relays recover.

The following table summarizes the parameters of both models:

Parameter | Model | Value

Fraction of relays that fail ¥ | CF [ 5%, 10%, 20%, 40%

Time of failure t/qizure CF | 100s

Duration of failure ¢,ccover CF 100s

meanLifetime LC 1000s, 5000s, 10000s, 20000s

Table 5.4 — Model parameters of the network dynamics. LC denotes the lifetime
churn model, CF the catastrophic failure model. Default values are
printed in bold.

This completes the simulation’s network topology and dynamics. The next sec-
tion introduces the general simulation setup and environment.

Simulation Setup
The simulation consists of the following steps:

1. The network graph and pre-calculated shortest-paths are loaded. Subse-
quently, relays are connected by links.

2. The simulator instantiates TRout on each relay. TRout is notified about
its physical neighbors, i.e., the neighbors in the unstructured relay overlay
topology. Furthermore, the simulation parametrizes TRout with the node
identifier NID and the anycast-VIDs on each relay as defined by the network
graph.

3. If dynamics are enabled: apply relay failures and recoveries depending on the
chosen dynamics model, i.e., either LifetimeChurn or CatastrophicFuailure.
On failure or recovery of a relay, the simulation notifies the respective TRout
instance.

4. When Tsenapetay simulated seconds have been passed, TRout sends a message
to a randomly selected relay that has not failed, each T},ynq seconds. If
anycast-functionality is enabled in TRout, it sends an additional message to
an anycast address each 77,4 seconds.
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5. After Ty, simulated seconds, the simulation ends.

During the simulation, the simulator samples several performance metrics from all
relays each second. Thus, these values represent a snapshot of TRout’s current
network-wide state.

Performance Metrics

Each second, the simulation samples the performance metrics from all relays in the
network. Furthermore, the simulation determines the complementary cumulative
density function (CCDF), mean, and difference for each metric. The performance
metrics are defined as follows:

Convergence time: is the time TRout needs to build an accurate virtual ring. The
simulation obtains this metric by checking if the virtual ring is accurate each
second. Hence, with a sampling rate of 1/second, the convergence time is an
integer and subject to quantization errors.

Traffic: is the accumulated incoming and outgoing signalling traffic per relay as
absolute value in bytes.

Bandwidth consumption: is the bandwidth consumption per relay of the incoming
and outgoing signalling traffic in bytes per second.

Routing-table size , or, RT-size: is the routing-table size as number of entries.
Delivery ratio: is the fraction of successfully and correctly delivered messages.
Stretch: is the stretch of the routes the delivered messages took.

Refer to Section 5.2.1 for additional information on the performance metrics, e. g.,
a definition of stretch.

Summary of Simulation Parameters

Table 5.5 lists the simulation parameters. The parameters are categorized into
three groups. The simulation specific parameters comprise the simulated time
limit in seconds, the used network topology using the given network size and max-
imum number of neighbors. Furthermore, the Tscpipeny parameter denotes the
delay until the simulation starts sending probe messages using TRout to deter-
mine the delivery ratio and stretch. These parameters are followed by TRout’s
general parameters. These include the duration of a TRout protocol round T’ung
and a flag if the message queue should be flushed immediately or in each proto-
col round flushQueue. The routing mode states wheather the anycast traffic and
routing is simulated additionally to the unicast routing. Furthermore, R onsistency
denotes how often TRout checks its routing-table for consistency. Rymeout denotes
the number of rounds until unused routing-tables are removed. Finally, the TRout
virtual ring construction parameters describe how TRout maintains the virtual
ring. mode denotes the maintenance mechanism, i. e., Discovery, or Linearization.
The Discovery mechanism needs further parametrization by D, and delayThresh-
old. D, denotes the number of discovery attempts done in parallel. delayThreshold
denotes the number of rounds the successor and predecessor need to be stable un-
til the discovery attempts slow down round by round to reduce overhead. If not
stated otherwise, the simulations use default values. The next sections present the
evaluation results.
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Parameter | Simulation values

— Simulation specific

Toim Simulated time limit in seconds
Topology Star (default), Internet-inspired
Network size N /N¢ 255/256, ..., 2047/2048, ..., 8191/8192
Max. number of neighbors k£ | 10, 20, 30

TsendDelay 1 second

— TRout general

Tround 1 second

flushQueue Immediately (default), In-round
Routing mode Unicast (default), Anycast
Rconsistency 60 rounds

Riimeout 60 rounds

— TRout virtual ring construction

mode Discovery (default), or Linearization
D, 1,...,4,....,8

delayThreshold 5 rounds

Table 5.5 — Overview of TRout’s simulation parameters. Default values are printed

in bold.

5.4.2 Convergence

By definition, TRout converges when the virtual ring has been built and no routing-
table changes are pending. To evaluate convergence, the simulator performs a
“cold-start”, i. e., TRout is started on all relays virtually simultaneously. The sim-
ulator adds a variance of 1000ms to avoid synchronous behaviour. The simulator
monitors the state of the virtual ring and ends the simulation after T§;, = 60
seconds of simulated time. The following paragraphs describe simulation results
concerning the impact of

D, and message queue
— network size, and

— maximum number of neighbors

on convergence time and traffic using the Star topology. Furthermore, light is shed
on TRout’s stretch.

Impact of D, and Message Queue

When TRout uses the Discovery mechanism to maintain its virtual ring, it sends
discovery messages in parallel to several relays. TRout does this to reduce conver-
gence time. Figure 5.19(a) shows the convergence time as function of the number
of parallel discovery attempts D,. The results come from experiments using Star
and Internet-inspired topologies and both flushQueue strategies. In all cases, con-
vergence time decreases when D, increases. However, with a D, greater than 4,
the convergence time shows only weak improvement. Thus, the default value of
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Figure 5.19 — Impact of parallel discovery attempts (using k& = 20, Unicast, Dis-

covery).
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Figure 5.20 — Convergence with different network sizes: Linearization vs. Discov-
ery (using Star topology, k£ = 20, Unicast).

D, = 4 is adequate. The figure also shows that the message queue flush strategy
In-round increases convergence time. This is natural, because each signalling mes-
sage is delayed by % seconds on average. The fluctuations in convergence time
are caused by quantization errors in the sampling of the ring accuracy each second.
Parallel discovery attempts are associated with costs in terms of generated traffic.
Figure 5.19(b) shows the CCDF of the traffic with linearly increasing number of
parallel discovery attempts D,. As expected, the traffic increases proportional to
D,.

Impact of the Network Size

Convergence time with a growing network size N is an important metric of scal-
ability. Figure 5.20 shows simulations of TRout with an exponentially increasing
network size N from 255 to 8191 using the Discovery and Linearization virtual ring
maintenance mechanisms. For the Discovery mechanism, the number of parallel
discovery attempts D, is 4. Figure 5.20(a) shows the convergence time as func-
tion of the network size. The convergence time increases logarithmically with the
network size with both mechanisms, i.e., Discovery or Linearization. This is sur-



128 | Chapter 5 — Interconnection of Heterogeneous Networks

__ 10 T T T T 160 r. T

2 8 140 e 1

e °[ "~ 7 120 | T
5 6t T~ S 100 |

g 6 ——— 2

c | = 80}

S 47 g 6o}

o T

> o1 ) = 40t :

5 _ Discovery —e— 20 | _ Discovery —e—
o 0 Linearization — m- - 0 Linearization — »- -

10 15 20 25 30

Max. no. of neighbors

(a) Convergence time

10 15 20 25 30 35
Max. no. of neighbors

(b) Traffic

Figure 5.21 — Convergence with a different maximum number of neighbors k us-
ing Linearization and Discovery (using Star topology, N = 2048,
Unicast).

prising, as the Linearization mechanism is often considered as the better alternative
to the Discovery mechanism [55, 58]. However, these results show that parallel
discovery attempts can nearly achieve the convergence time of Linearization.

Figure 5.20(b) compares the traffic generated until TRout converges. The results
come from experiments using the Discovery and Linearization mechanisms. The
figure shows that, with the Discovery mechanism, TRout converges with sub-
linear (almost logarithmic) signalling overhead subject to the network size. The
Linearization mechanism, however, lets TRout need more traffic which is caused
by its concurrent and partly overprovisioned stabilization. The plot suggests a
polynomial development.

When comparing the costs in terms of traffic needed for TRout to converge, the
Discovery mechanism has a convergence time almost as good as the Linearization
mechanism but with less traffic.

Impact of the Maximum Number of Neighbors

As mentioned in Section 5.4.1 the maximum number of neighbors £ has an impact
on the diameter of the network topology. Thus, an increase of k is expected to
reduce the convergence time of TRout since path lengths decrease. Figure 5.21
shows the convergence time and traffic as function of the maximum number of
neighbors k. The figures confirm that convergence time and traffic reduce with an
increase of k—independent from the virtual ring maintenance mechanism.

Stretch

The simulation sends probe messages each second to a random relay in the net-
work and records the stretch. Figure 5.22 shows the CCDF of the stretch for an
exponentially increasing network size. The results in Figure 5.22(a) come from
experiments within the Star topology. The results in Figure 5.22(b) come from
experiments with in the Internet-inspired topology. When comparing the figures,
the topology has virtually no influence on the stretch, even though the topologies
highly differ in the clustering coefficient, cf. Section 5.4.1. Furthermore, the stretch
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Figure 5.22 — Impact of the network topology on (Multiplicative-)Stretch (Star
topology, k = 20, Unicast, Discovery).
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Figure 5.23 — RT-size distribution with different network sizes using Star and
Internet-inspired topologies (and k = 20, Discovery, Unicast)

increases logarithmically subject to the network size. This confirms the findings in
[63].

5.4.3 Routing-Table Size

As mentioned before, scalability of routing protocols is defined by the number of
routing-table entries (RT-size) required to route messages within a network of size
N. If the increase in the number of RT-entries is sub-linear subject to the network
size, a routing protocol is considered scalable. The following discusses the RT-size
with and without anycast routing-table entries subject to the network size.

Impact of the Network Size

Figure 5.23 shows the CCDF of the RT-size of all relays with an exponentially
growing network size for both Star and Internet-inspired topology. In both cases
the RT-size grows poly-logarithmically subject to the network size—indicated by
the horizontal distance of the CCDF curves. This means, TRout is scalable on both
topologies. However, when using the Internet-inspired topology, a bigger amount
of relays have a large routing table—indicated by the steeper CCDF curves. It is
likely, that this is caused by the higher clustering coefficient of the Internet-inspired



130 , Chapter 5 — Interconnection of Heterogeneous Networks

1 T T 1 T T T T T T
N=511, Anycast i R k=10, Anycast
—_ 82 | N=511, Unicast — — - | —_ 82 | ‘\‘\\\ k=10, Unicast — — - |
x 07l N=8191, Anycast ———- 2 RN k=30, Anycast ———- |
N N=8191, Unicast - - - - - AT ARG k=30, Unicast ---- -
© 06} © 06} PR .
w 05T Hoost RN
~ 0.4 \ ~ 04 NN
x 03} N x 03} AVRN
T 02f AN T 02f NN
01t Nl 0.1t RN
0 N hIERY e 0 N N LTS e, SIS N N
0 400 800 1200 1600 0 100 200 300 400 500 600 700 800 900
RT-size RT-size
(&) Varying network size (b) Varying maximum number of neighbors

Figure 5.24 — RT-size distribution using Unicast and Anycast, and Internet-
inspired topology

topology. In summary, the results suggest that TRout is scalable in the considered
scenarios.

Unicast vs. Anycast

TRout’s anycast extension adds additional routing-table entries. Figure 5.24 shows
a comparison of TRout’s RT-size CCDF with and without the Anycast routing-
table entries for N = 511, N = 8191 with £ = 20 and k € {10,20,30}, N = 2047.
Figure 5.24(a) shows that with a network size increased by a factor of 16, N =
511 to N = 8192, the number of additional routing-table entries grows only by
50%. This suggests that the number of routing-table entries added by the anycast
extension is logarithmic subject to the network size. The same applies when the
maximum number of neighbors grows (see Figure 5.24(b)). In summary, the results
suggest that the anycast extension does not violate TRout’s scalability.

5.4.4 Churn and Catastrophic Failure

To show how TRout handles network dynamics, the delivery ratio and the band-
width consumption and traffic required on each relay to repair the routing-tables is
of importance. The following describes the evaluation results using LifetimeChurn
with the mean lifetimes of Lt=1000, 5000, 10000, and 20000 seconds.

Bandwidth Consumption with Lifetime Churn

Figure 5.25 shows the bandwidth consumption per relay as function of the net-
work size for Linearization, Discovery, and different mean lifetimes under the
LifetimeChurn model. On the one hand, Figure 5.25(a) shows Discovery’s un-
perturbed behaviour under churn. Even with a low mean lifetime, and thus high
churn, the bandwidth consumption per relay grows only sub-linearly with the net-
work size. This is natural, because discovery messages are sent once each T yng
seconds at maximum, independently of the changes in the network. Hence, TRout
is adaptation-scalable when using Discovery. Figure 5.25(a) shows the bad be-
haviour of Linearization under churn. Since re-linearization is triggered on any
change in the network this leads to a bandwidth consumption that grows almost
linearly with the network size. Even small changes in the network cause a large
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Figure 5.25 — Bandwidth consumption with lifetime churn in networks of increas-
ing size and Internet-inspired topology (using k& = 20, Unicast).
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Figure 5.26 — Delivery ratio with lifetime churn in networks of increasing size (Star
topology, k = 20).

number of concurrent Linearization steps. This makes Linearization a bad candi-
date for virtual ring maintenance in cases of churn.

In summary, the results suggest that the Discovery mechanism handles lifetime
churn better than the Linearization mechanism. Worse, the results suggest that
TRout is only adaptation-scalable when using the Discovery mechanism. The
further discussion only covers the Discovery mechanism because of this insight.

Delivery Ratio of Unicast and Anycast with Lifetime Churn

Figure 5.26 shows the delivery ratio as function of the network size for Unicast
and Anycast messages under different mean lifetimes. Figure 5.26(a) shows that
the Unicast delivery ratio stays above 95% even in cases of high churn and up to a
network size of 2047. The figure also shows that the amount of churn TRout can
handle depends on the time TRout needs to repair the routing-tables. The longer
this takes the less messages are delivered. The curves that represent experiments
with a mean lifetime of 1000 seconds confirm this suggestion; the delivery ratio
is logarithmically reduced with the network size growth. This correlates with
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Figure 5.27 — Delivery ratio and traffic during a catastrophic failure of a frac-
tion of ' € {0.05,0.10,0.20,0.40} relays using the Internet-inspired
topology (and k = 20, N = 2047, Anycast).

the diameter of the network graph. The greater the diameter is, the more hops
signalling messages need, and the slower the routing-table stabilization.

Furthermore, Figure 5.26(b) shows the delivery ratio of messages routed using
the Anycast routing-table entries. Anycast strongly relies on an intact virtual
ring, e.g., Unicast messages need to be delivered reliably. This explains why the
Anycast delivery ratio is worse than the Unicast delivery ratio. Moreover, the
figure shows that cases of high churn, i.e., a mean lifetime of 1000 seconds, lead to
a high loss of messages.

In summary, the results suggest that Unicast and Anycast delivery ratios are
over 92% with an mean lifetime of 10000 seconds which is expected in P2P applica-
tions and a network size less than 2048. The results suggest a logarithmic drop of
the delivery ratio subject to the network size. It is worth noting that the fraction
of undelivered messages include those that were already on its way to destination
before the relay failed.

Delivery Ratio and Traffic during a Catastrophic Failure

Another case of dynamics is the catastrophic failure. In this case, TRout has to
repair its routing-tables to compensate for failed relays and re-integrate recovered
relays.
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Figure 5.27 shows the delivery ratio and traffic as function of simulation time
during these events using the Discovery mechanism, the Internet-inspired topology
of size N = 2047 and a maximum number of neighbors k£ = 20. Figure 5.27(a)
shows that TRout recovers quickly, i.e., in less than 8 seconds, from a failure of
40% of all relays. Furthermore, the recovered relays are integrated at the same
speed. The figure shows a drop of the delivery ratio in case a fraction of the relays
fail or recover. In case of a relay failure TRout must repair all routes traversing the
failed relay. In case of a relay recovery TRout needs to re-integate the recovered
relay into the virtual ring. This explains the sharp drop of the delivery ratio on
relay failures compared to the relay recovery. Figure 5.27(c) shows the detailed
delivery ratio of the failure. The curves show a sharp drop of the delivery ratio
almost proportionally to the fraction of relays that fail. Figure 5.27(d) shows the
detailed recovery of the relays. Since all relays send a message each round even
when the relay has not yet been re-integrated in the virtual ring, the delivery ratio
drops in proportion to the fraction of relays that recovered.

Figure 5.27(b) shows the traffic consumption per relay during the catastrophic
failure. The Discovery mechanism slows down when the virtual ring is stable;
consequently the traffic grows less after 30 seconds. When relays fail, the Discovery
mechanism returns to normal speed to repair the damage. The same occurs when
relays recover to quickly re-integrate the relays.

In summary, the results suggest that TRout can handle a catastrophic failure
and recovery of up to 40% of all relays and re-stabilizes in less than 10 seconds in
an experiment with N = 2047 relays.

5.5 Summary

The CDIP protocol comprising TRout interconnects heterogeneous networks. For
this reason, this chapter provides an in-depth analysis of connectivity domain sce-
narios which are likely in today’s and future networks. For interconnecting the
connectivity domains, several routing protocols were discussed and, subsequently,
the Tailored Routing (TRout) has been presented to provide anycast and identifier-
based routing for CDIP.

TRout is inspired by the Virtual Ring Routing (VRR) protocol. In contrast
to VRR, TRout is modular, implements improved stabilization mechanisms to
build the virtual ring, and supports anycast. Furthermore, TRout does also not
suffer from loopy-cycles that required VRR to flood the network. TRout has been
evaluated in Section 5.4 using simulations. One of the most surprising result and
insight is the behavior of the linearization mechanism for building the virtual ring.
Related work stated this mechanism as new and better way of maintaining the
virtual ring with proven behavior. While this seems to be true for bootstrapping
a virtual ring, in the case of lifetime churn, linearization performs less than the
discovery mechanisms. More precisely, the parallel discovery mechanism allows the
same performance as linearization with less costs in terms of traffic and bandwidth
consumption.

The simulations suggest that TRout can recover from a catastrophic failure of
up to 40% of all relays. They also suggest that the bandwidth needed to handle
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lifetime churn grows logarithmically to the network size when using parallel dis-
coveries. The experiments observing the routing-table size suggest that it has a
poly-logarithmic growth subject to the network size. This confirms the theoretical
findings in [63] and the good scalability of TRout. In summary, the evaluations
suggest that TRout does comply with all requirements stated in Section 5.1.4 for
CDIP’s scenarios.



Chapter 6
Conclusion and Further Research

The popularity of P2P applications in the Internet is growing. Telephony using
Skype, Filesharing via BitTorrent, and virtual private networks state some ex-
amples. Furthermore, research projects, like the Spontaneous Virtual Network
project (SpoVNet), use P2P technologies for provisioning new services. However,
the growing amount of heterogeneous networks limit usability of P2P applications
due to the limited connectivity these networks provide.

6.1 Results

This thesis presents a middleware that enables the deployment of P2P applications
on heterogeneous networks. For this purpose, it introduces the CD middleware that
provides seamless connectivity for P2P applications on heterogeneous networks.
The CD middleware uses an approach that consists of two main achievements:

— autonomous detection of connectivity, and

— interconnection of heterogeneous networks.

Autonomous Detection of Connectivity

For efficient provisioning of seamless connectivity, it is important, to detect groups
of nodes with existing seamless connectivity, so-called Connectivity Domains (CDs),
first. Nodes in more than one connectivity domains are denoted relays. Due to
the properties of P2P applications, no explicit knowledge about heterogeneous net-
works and the existing connectivity is available. This makes detection of connec-
tivity challenging. Chapter 4 discussed this problem in further detail. It provides
an in-depth theoretical analysis of the feasibility to detect the existing connectiv-
ity in heterogeneous networks. This analysis results in a solution, that includes
building an unstructured overlay, detecting all relays in this overlay, and non-relay
nodes agreeing on a connectivity identifier (CID). This solution does not weaken
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any of the strengths of P2P applications. The main findings of the analysis of
connectivity detection using the solution are as follows:

— Detecting relays is an essential element of connectivity detection as unde-
tected relays may lead to a failure of the CID agreement.

— Connectivity detection for P2P applications is feasible if the number of nodes
in several connectivity domains together is much smaller than the number of
nodes in a single one. This is the case in most of today’s networks.

— The worst-case for relay detection is a node with access to other nodes in
exactly two connectivity domains.

Based on the theoretical insight, the Connectivity Measurement Protocol (CMP)
implements a protocol for connectivity detection. CMP’s evaluations confirm the
theoretical findings and show additionally, that CMP is reactive to connectivity
changes. In the considered worst-case scenarios, CMP detects connectivity in less
than 20 seconds and consumes only about 4 kbytes/s on average per node during
this time. The peak bandwidth per node stays below 9 kbytes/s. In the best-case,
CMP converges at the same time the unstructured overlay is set up, i.e., when
all overlay neighbors &’ checked a new node using triangle checks. This induces a
overhead limited within O(k’).

The concept of CMP and the gained insights may have a positive impact on other
fields of applications as well, e. g., for evaluating other approaches that deal with
non-transitive connectivity, e.g., [38, 34]. Additionally, random number agree-
ments are applicable in many distributed systems, e. g., for leader election or con-
sensus. Therefore, it is likely, that other applications will benefit from the designs
described in Section 4.4.

Interconnection of Heterogeneous Networks

The detected connectivity enables the efficient interconnection of heterogeneous
networks. To achieve this, Chapter 5 introduces the Connectivity Domain Inter-
connection Protocol (CDIP). CDIP builds an unstructured relay overlay containing
all relays and spanning the detected connectivity domains. Furthermore, CDIP
uses a routing protocol called Tailored Routing (TRout) on the relays to route
messages across heterogeneous networks by using the CIDs. Section 5.1 discusses
appropriate scenarios and requirements while Section 5.2 reviews related work to
find an appropriate starting-point for TRout’s design. Finally, Sections 5.3 and
5.4 describe TRout’s design and evaluate it thoroughly. TRout has the following
features:

Identifier-based routing: TRout uses identifiers directly for routing. No additional
mapping mechanism is necessary.

Anycast support: TRout supports anycast which enables several nodes to an-
nounce the same identifier. TRout will route messages sent to the closest node
that announced the identifier!.

'With respect to the virtual ring.
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Scalable: The evaluation of TRout in Sections 5.4.3 and 5.4.4 show, that it is scal-
able in static and dynamic networks, i. e., the overhead required for stabilization
grows in proportion to the network changes, especially with lifetime churn.

Modular: TRout’s design consists of 3 modules: route maintenance, virtual ring
maintenance, and anycast support. The route maintenance eases the handling
of route failures and setup of new routes. This allows to use TRout as base for
other DHT-inspired protocols.

Improved stabilization: TRout uses a parallel discovery mechanism to maintain its
virtual ring. The evaluation in Section 5.4.4 shows that the parallel discovery
mechanism has better performance than the linearization mechanism proposed
recently.

Those features make TRout a suitable protocol for interconnecting heterogeneous
networks for P2P applications. Additionally, with some modifications, TRout can
be used in ad hoc networks like VRR. Some features, e.g., good scalability in
the case of dynamic networks, make TRout also a good candidate for further
investigation in scalable routing.

The CD middleware uses CMP and CDIP to provide seamless connectivity for
P2P applications. In addition to the seamless connectivity, P2P applications can
use the CIDs to support heterogeneous networks efficiently, e. g., for making better
routing decisions, or for more robustness when relays fail. This opens up a new
field of possibilities for tailoring P2P applications to heterogeneous networks. It is
expected that heterogeneity will grow in the future, e. g., by network virtualization,
and new specialized network types. This leads to highly heterogeneous networks.
This thesis contributes important components that help handling this growing
number of heterogeneous networks.

6.2 Review of the Claims

This section reviews the claims stated in Chapter 1 and verifies to which extent
each of these claims hold:

Claim 1: The CD middleware does not weaken the typical strengths of P2P appli-
cations.
CMP and CDIP are designed carefully not to weaken any of the typical strengths
of P2P applications. CMP is scalable and induces a low overhead, i.e., a peak
bandwidth below 9 kbytes/sec, during its convergence time. It also handles join-
ing, leaving or failing nodes smoothly, in less than 20 seconds in the considered
worst-case scenarios, cf. Section 4.6.5. CDIP uses TRout for routing messages
across connectivity domains. Like CMP, TRout is scalable (see Section 5.4.3),
even in cases of churn, cf. Section 5.4.4. The further simulations in Section 5.4
suggest that the overhead induced by TRout grows sub-linearly with the number
of relays, connectivity domains, and churn.

Claim 2: The CD middleware can detect the connectivity provided by heterogeneous
networks.
As claimed the Connectivity Measurement Protocol can detect the existing con-
nectivity in heterogeneous networks in typical scenarios. However, there are
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some limitations as described theoretically in Sections 4.3 and 4.4, and simula-
tive in Section 4.6.3. Briefly, connectivity detection is difficult in the unlikely
scenario of having more relay than non-relay nodes.

Claim 3: The CD middleware can provide seamless connectivity for P2P applica-
tions and requires only small modifications on existing applications.
Using the CMP’s CID agreement and detected relays CDIP provides seamless
connectivity using the TRout routing, that provides anycast support. To route
messages across heterogeneous networks, P2P applications just use a different
address format, i.e., CDIP-addressing; no further changes are necessary.

6.3 Further Research

The concepts presented in this thesis just scratched the surface of possible use-
cases of CMP and CDIP. The following sections discuss further research on each
contribution:

Detection of Connectivity

CMP detects connectivity using an unstructured overlay. Some of the theoretical
considerations assume this unstructured overlay to form a random overlay graph.
Although, the presented discovery mechanisms in Section 4.5.5 return random sam-
ples with high probability, the exploration of CMP using additional approaches
from related work is of interest. Related work usually combines random sampling
with building an unstructured overlay at the same time. Therefore, the method of
building unstructured overlay could be revised at the same time which could make
CMP’s design lighter.

CMP also suffers from many security issues stated in Section 4.7.3. While some
of those issues are inevitable, some have a good chance of getting solved, e.g.,
preventing the mosquito attack [52] on the unstructured overlay.

Finally, even though CMP’s default parameters are chosen carefully, they might
need additional adjustment to serve a specific P2P application to its full extent.
CMP, furthermore, introduces generalizations and extensions, i.e.,

— the integration of networks with scarce resources,

— naming connectivity domains, and

— CMP’s support of new network paradigms,

as discussed in Section 4.7.1 whose exploration is left for further research.

Interconnection of Heterogeneous Networks

The Connectivity Domain Interconnection Protocol (CDIP) builds an unstructured
relay overlay and uses TRout to route messages across connectivity domains. Al-
though this is enough to provide seamless connectivity for P2P applications, it
does not use the information provided by CMP to its full extent on both levels:
the unstructured relay overlay and routing.

The unstructured relay overlay currently does not consider the heterogeneity
of the connectivity domains, e.g., when a relay knows that a certain connectivity
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domain has lower bandwidth capacities or less resources in general, it could con-
nect to less relays inside this connectivity domain. Putting more structure to the
unstructured relay overlay will certainly help to use the heterogeneous resources
more efficiently and balance load.

The Tailored Routing (TRout) used by CDIP in the unstructured relay overlay
has a potential to increase efficiency. First, TRout can be extended to support
metrics on the routing paths, e.g., for balancing load in the unstructured relay
overlay. Second, it could reduce stretch by adding additional overlay neighbors to
relays in the same connectivity domain as stated in Section 5.1.2. Of course the
amount of additional overlay neighbors need to be limited to ensure scalability.

Third, TRout could adapt its node identifiers (NIDs) to the unstructured relay
overlay topology. This would reduce stretch of routes, delay of messages, and
the routing-table size. Numerous concepts how this can be done are discussed
in related work [42] for key-based routing schemes. As TRout is based on the
key-based routing, those concepts can also be applied to TRout. In addition, the
network coordinates in [42], enables non-relay nodes to choose closer relays in terms
of message delay. Finally, TRout could also be replaced by compact routing [80];
this, however, would need a careful design of the compact routing scheme as most
compact routing schemes are not adaptation-scalable.






Appendix A
Communication and Discovery

P2P applications commonly are deployed on homogeneous networks, mostly on the
Internet. To extend P2P applications to work with heterogeneous networks, e. g.,
networks using different protocols, having different address-spaces, P2P applica-
tions need a unified way of communicate and discover other networked devices, or
nodes, running the P2P application. The communication and discovery layer in the
CMP /CDIP middleware provides an interface which implements this functionality.

The communication and discovery layer comprises a simple, asynchronous message-
based communication interface and discovery interface to discover nodes already
running the P2P application. Furthermore, different address types, e.g., IPv4,
[Pv6, TCP/UDP-Ports, or MAC addresses are encapsulated in a generic binary
container called address-set.

Figure A.1 shows the placement of the communication and discovery layer. It
provides two interfaces: one for exchanging messages between P2P nodes in het-
erogeneous networks and another one for discovering other nodes at random. Con-
ceptually, the communication interface (de-)multiplexes messages send or received
to modules that provide the functionality of the interface. The figure shows three
exemplary implementations for TCP, UDP, and Bluetooth L2CAP. The discovery
interface uses several mechanisms to discover other nodes in the local network,
e.g., multicast. Furthermore it uses peer sampling to distribute locally discovered
nodes to other nodes.

A.1 Data Types

This section provides introduces basic data types used by the communication and
discovery layer: a address-set for generic encapsulation of arbitrary addresses, and
a link context comprising address-sets associated with a communication link.
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Figure A.1 — The communication and discovery layer in the P2P middleware

Address Set

A address-set, is a container for addresses of any kind. An address in an address-set
should be atomic, i.e., the address can not be separated into sub-addresses, e. g.,
a TCP server has an address-set comprising the IP address and port as separate
addresses.

All addresses in an address-set are stored as pure binary data using a type-
length-value (TLV) encoding scheme:

| Type | Length | Value(s) |

The type and length fields have 16 bits. Both fields are unsigned 16-bit integers
encoded in network-order (big endian). The length fields indicates the length of the
value, and the type uniquely identifies the address type. A address-set is encoded
using a sequence of pairwise different TLVs (set property). Thus a address-set
comprising an IPv4 address and TCP port, e.g., 10.11.12.13:14, is encoded as
follows:

0x0800 0x0004 0x0a 0x0b 0x0Oc 0x0d
0x0006 0x0002 0x00 0xOe

The order of the TLVs is not of importance. The total size of this address-set is
14 bytes. Compared to the length of the values, i.e., 6 bytes a lot of overhead is
introduced by the type and length fields.

To reduce this overhead, the first bit of the type field indicates that the type-
length header is compressed. Both formats are encoded as follows:
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O| Type | Length
Uncompressed: Value
0 7
1 | Type |Log-Length
Compressed: Value

In the compressed form, 32 address types can be defined in the Type-field. The
Log-Length holds the logarithmic length of the value to a base of 2. Thus, a length
of 1,2,4, and 8 bytes is possible. An IPv4 address plus TCP port has a compressed
size of 8 bytes. In both cases the address type fields need to uniquely identify
the address type used in the P2P applications. The precise numbers are left as
implementation specifics.

Due to the type-length-value format the P2P application can work with these
address-sets without knowing the real addresses encoded in them. Thus, can be
treated like a black-box. However, the P2P application can transfer them to
other nodes and perform operations like union and intersection. Thus, if X,Y
are address-sets, X (Y denotes the intersection, X |JY denotes the union of X
and Y.

Link Context

When a node receives messages, a node creates a link-context that describe the
source and the used destination address-set to send the first message. These
address-sets are called local and remote initial address-sets (IAS), and denoted
by addr(z,y), where x is the local, and y the remote node. An example, for an
IAS, are IP addresses and TCP ports of the local and remote server socket. Nodes
exchange the TAS to allow other nodes to send messages to other nodes.

Furthermore, it comprises a address-set used for communicating with the remote
node. In case of TCP, the address-set would comprise the local/remote TCP-ports
and IP addresses after the connection has been established. Those address-sets are
denoted by caddr(z,y), where x is the local, and y the remote node. The interfaces
introduced in the following sections use these data types for message exchange and
node discovery.

A.2 Communication Interface

The communication interface provides rudimentary functions to send and receive
messages unreliably. The difference to, e. g., Berkeley sockets is that the functions
use address-sets to send data. Furthermore, when receiving messages the inter-
face provides an link-context to return messages and managing the address. The
following specifies the interface in detail:

send( message, address-set [, maxDelay, strategy] ): This function sends a mes-
sage to another node using the given message and address-set. The remaining
parameters are optional.
The maxDelay parameter denotes that the message should leave the device’s
output buffer after maxDelay milliseconds. The main use of the parameter is to



144 Appendix A — Communication and Discovery

Link —=€---- Initial message

addr(A,B) ...
Q"""""""Ed&%ié,'if)g

Initial address set node x
used to send a message to y

caddr(A, B)
Q caddr(B, A)@

Communication address set
node x uses to send a messages to y

addr(x,y)

caddr(x,y)

Figure A.2 — Establishing a link between nodes using the initial address-sets

priorize messages accordingly in local buffers on the device. If the device cannot
comply with the maximum delay, the message is dropped.

The strategy parameter states the selection of the addresses in the address-set
to send the message. Two modes are differentiated:

1. random: The random strategy selects one possible address from the address-
set and sends the message. Thus, only single message is sent.

2. multicast: The multicast strategy sends the message to all adresses that
can be extracted from the address-set. For example, when the address-set
comprises two IP addresses and one TCP port, the message would be sent
to both TP addresses using the same TCP port. Thus, duplicates of the
same messages are sent to several addresses. If the strategy parameter is
omitted, this is the default strategy.

The function sends the message unreliable, i.e., the message might get drop
locally or in the network. Furthermore, there is no flow control. Congestion
inside the network leads to loss of messages. The function may drop a message
when it exceeds the maximum transfer unit (MTU) of the underlying network.

receive( callback ): This function binds a callback for received messages. When-
ever a message has been received, the callback function is called and the link-
context and the message itself is passed, i.e.,

receive_callback( message, link-context )
monitor( link-context, Tini— timeout» CAllDACK): This function monitors a link using

keep-alive messages. When no messages were received Tlini—timeout S€CONds, the
callback is called and the link-context is passed:

monitor_callback( link-context )
If a link has no activity

A node receiving a message can respond to it by using the communication address-
set included in the link-context. Using this interface nodes can exchange messages
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using different network protocols, e.g., UDP/TCP over IPv4/6, Bluetooth RF-
COMM, any many more.

Figure A.2 shows the establishment of a link between two nodes @) and @.
In the first step, both nodes use the initial address sets (IAS) addr(A, B) and
addr(B, A) to send a message to each other. Subsequently, both nodes receive the
message with the appropriate link-context. Finally, the nodes use the address-sets
caddr(A, B) and caddr(B, A) to exchange messages over the link between them.
The following sections provide implementation notes to this interface.

Implementation notes

The communication interface multiplexes all its method to several communication
modules, i.e., implementations that support several protocols, e.g., TCP, UDP,
or Bluetooth L2CAP. This section provides some implementation notes how to
implement such modules exemplary for a unreliable datagram protocol, e. g., UDP,
and, a reliable stream-based protocol, e.g., TCP. The main problem to solve in
both cases is the transmission of the initial address sets (IAS). These address-sets
are needed to provide a valid link context.

UDP Communication Module

To provide the functionality of the communication interface for a datagram proto-
col, i.e., UDP, the implementing module must take care of creating a link-context.
Let X and Y be nodes. When node X sends a message to node Y, it knows the TAS
addr(X,Y’) of node Y. To let node Y know its own IAS, node X needs to sent the
[AS addr(X,Y) to Y in the first message. This is important, as middle-boxes, like
NAT routers, may change the destination address, so the IAS, can’t be extracted
from the packet. Furthermore, node Y needs to know the IAS of node X for the
link-context. To this end, X includes any information needed to build the TAS
in the first message, i.e., the server-port to construct the IAS together with the
IP source address. When the first message is received by Y, the communication
addresses caddr(Y, X) of the link-context on Y, in case of UDP, is the same has
the TAS, i.e., caddr(Y, X) = addr(Y, X).

TCP Communication Module

In contrast to the UDP datagram module, the TCP communication module use
the IAS to establish a new TCP connection to a node representing the link. Let
X and Y be nodes, then node X uses the IAS addr(X,Y’) to establish a TCP
connection to the link. Like the UDP module, it includes IAS addr(X,Y), and
server-port of node X for the link-context. When the first message is received
by Y, the communication addresses caddr(Y,X) is a pointer to node ¥ memory
containing the socket-description of the TCP connection. To consider the maxDelay
parameter in the send function, it is possible to schedule messages in an earliest-
deadline-first (EDF) scheme into the TCP output buffer, so delay bound are met.
Additionally, a limited number of concurrent TCP connections to the same node
may be established to concurrently send messages.

To bootstrap an overlay network, i.e., finding another node that is running
the P2P middleware/application, the following describes the necessary discovery
functionality.
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A.3 Discovery Interface

The discovery interface provides a generic interface to discover other nodes run-
ning the P2P middleware/application. Two key mechanisms are provided in the
interface: first, a node can advertise that it wants to be discovered for a certain
time. Second, an advertisement of a node may be discovered by another node. The
communication and discovery layer holds a list of advertisements of other nodes
and disseminates them randomly among known nodes. Thus, the discovery of an
advertisement is a random sampling from all advertisements.

The following specifies the discovery interface in detail:

advertise(time-to-live [, address-set] ): This function advertises that the node wants
to be discovered by the given type string for a certain time (time-to-live) using
the given address-set. The address-set is optional. If omitted, the IE address-set
discovered by the node itself is used.

discover( discover_callback ): This function discovers address-sets announced by
other nodes. When an address set has been discovered by the function it calls
the callback function and passes the type and the discovered address-set, i.e.,

discover_callback( address-set )
The address-set can be used to send messages to a new overlay neighbor.

Implementation notes

The discovery interface can be implemented using a variety of mechanisms. First of
all, nodes in the local network can be discovered using multicast packets, Zeroconf
(mDNS) or the Bluetooth service discovery protocol (SDP). All these mechanisms
provide address-sets of nodes nearby.
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Implementation

This chapter contains additional notes on implementation of the Connectivity Do-
main Measurement (CMP) and extended Virtual Ring Routing (eVRR) protocols.

B.1 Connectivity Measurement Protocol (CMP)

This section contains several implementation specifc details to the Connectivity
Measurement Protocol (CMP).

Message Formats

This section proposes a binary formats for CMP’s messages. CMP uses two message
types: status update and triangle check messages. The following sections describe
the formats.

Status Update

CMP sents status updates in each of its round when changed. Figure B.1 shows
the binary format of the state update message. The first 32-bit of the message
contains CMP’s version, state, and flags. The first 4 bits denote CMP’s version,
for the first version the field is allocated with 0001. The state-field encodes CMP’s
current state. The allocations are as follows: HOLD =0000, AGREEING =0001,
STABLE =0010. The CPA, CID Proposal Availibility bit is set to 1 if the message
contains a valid CID proposal, and 0 otherwise.

Triangle Check

CMP uses triangle checks to detect if a node is a relay. To do this, CMP sends
triangle check messages containg a hop count, a nonce, a source node identifier
and a via underlay address. Figure B.2 shows the binary format of a triangle
check message. The hop-field is a 8-bit integer and represents the hop count and
the nonce-field contains a 24-bit integer. The src-field contains a 128-bit node
identifier. Finally, the via-field contains an underlay address of variable size. The
presence of the optional fields, src and via, is indicated by the message length.
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Figure B.1 — CMP’s status update message format.
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Figure B.2 — CMP’s triangle check message format.

B.2 Tailored Routing (TRout)

This section gives hints for implemented Tailored Routing (TRout). It is the
technical documentation for each of the modules TRout comprises and serves as
guideline that helps implementing TRout. To understand this documentation its
highly recommended to read the description of TRout’s mechanisms in Section 5.3.

Route Updates and Queue Module

The route update queue collects updates to be sent. For this purpose the route
update queue comprises a list of updates for each physical neighbor. When the
queue is flushed, i.e., the updates should be sent, it assembles all route updates
in one message for each physical neighbor, sends the message, and clears the list.
Figure B.3 shows the binary format of a route update. Each message sent to a
physical neighbor contains at least one of these updates. The route update starts
with the update and route type. The update type may hold the following values,
handled by the route maintenance module:

— UPDATE (0x01) denotes a “usual” route update
— TEARDOWN (0x02) denotes that the route should be torn down

— FORWARD (0x03) denotes that the route should be forwarded to the node
with the destination id

— NoTiry (0x04) denotes that the update should be deliviered to the node
that announced the destination id. It informs this node about a change in
the network topology.
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Figure B.3 — Route update record

— UseED,UNUSED (0x08,0x09) denotes a notification that a node that a route
is used/not used.

Additionally, the virtual ring module processes the following route types:

— DiscovER-PRED,Succ (0x10,0x11) denotes that the route update should
be forwarded towards a closest predecessor or successor.

Finally, the anycast extension module processes the following route types:

— ANYCAST-ANNOUNCEMENT (0x20) denotes that the update should be for-
warded along a path closest to the virtual identifier (VID) until it finds a
route already present with a shorter route.

The update type field is followed by the route type. TRout currently knows only
two types of routes: virtual ring (0x01) and anycast routes (0x02). The next word
of 16-bits contains flags. These flags indicate whether optional fields exist in the
route update. The ONR-bit indicates whether the owner-NID field is available.
The DST-bit indicates whether the dest-VID field is available. The SPA-bit indi-
cates whether the successor/predecessor-VIDs are available. The ISN-bit indicates
whether the sequence number should be increased on in an Notify route update.
The sequence number seq of the route and the distance dist to the node that an-
nounced the route follow after the flags. Measure of the distance is the the number
of hops. The next field, the route’s virtual identifier (VID), denotes the identity
of the route. This completes the mandatory section of the route update. The
presence of the next fields are indicated by the flags mentioned before. The first
field contains the owner of the update, the owner node identifier NID. The second
optional field holds the destination-VID dest. TRout uses this field to explicitly
forward a route to a specific node. The third optional fields are successor- and
predecessor-VID fields succ/pred. These fields contain the best-known successor-
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and predecessor VIDs of the route VID. Linearization uses these two fields for
optimizations.

The route update queue module has 3 basic methods:

queue.send(nid,update). queues a route update to be sent to the node with the
node identifier (NID) nid.

gueue.clear(nid): clears the route update queue of the node with the node identi-
fier (NID) nid.

gueue.flush(nid): packs the route updates for the node with the node identifier
(NID) nid into a message, sents it to the node, and flushes the queue.

The contents of a route update anticipate some of the module’s functionality. In
the following the mechanisms are explained in further detail.

Route Maintenance Module

The route maintenance module eases setup and failure handling of routes. It draws
its primary idea from the destination-sequenced distance vector (DSDV) protocol
(cf.. Section 2.3.2). The main idea behind DSDV is, that each node announces
routes identified by an identifier (VID) and distance together with a sequence
number. When a node receives distance vectors from its neighbors it adapts the
distance of an entry, if the distance is smaller, or, the sequence number is greater.
This principle solves the problems that come with distance vector (DV) protocols:
count-to-infinity problem and routing loops. This is the case, because a worse route
is only accepted by other nodes when the origin node has chosen a new sequence
number. Because routes become only longer when the network topology changes.
Thus, the sequence number should be increased at least on every topology change
to converge to a stable state.

The route maintenance module provides functional tools to build routes between
nodes:

1. Route forwarding: route forwarding allows a node A to forward a route from
node X to node Y. For this purpose, node A needs to know the route to
Y as well for forwarding. After forwarding node Y knows a route to node
X—most likely with node A as one intermediate node.

2. Route usage recording: Each node keeps a record of the routing-table entries
referenced by its physical neighbors, i. e., a node knows that it is the next-hop
in the routing-table entry of a physical neighbor. This allows efficient route
teardowns.

3. Automatic route teardowns: By using the route usage record, a node can
teardown routes easily by notifying the physical neighbors about a invalid
route when a link fails. The notified nodes spreads the message to other
nodes that use the same route to remove the entry as well. This continues
until all entries of the route are removed from all routing-tables. At the same
time, the destination node is informed about the failure, so it can re-establish
a new route.

4. Route notifications: route notifications notify nodes that announced a route
about topology changes or other events.
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Name Description

x.vid Identifier (VID)

X.owner Owner node identifier (NID, optional)
X.type Route type (ring, or anycast)

X. dist Distance to node that announced the route
X.S€q Sequence number

x.nexthop The physical node the update came from
x.usedby Neighbors using this entry

xX. unused Number of rounds the entry was not used
x.neighbor Flag: indicates a entry from a physical neighbor
x.changed Flag: indicates a change

x.forwarded Flag: indicates a forwarded entry

x.forwardednew Flag: indicates a newly forwarded entry
x.succ, x.pred  Predecessor / successor VIDs (optional)

Table B.1 — Contents of a routing-table entry x of TRout

Before describing these mechanisms in further detail, the following describes con-
tents of a routing-table entry.

Routing-Table Entry

The contents of TRout’s routing-table entries are a common denominator for all
routing-table construction mechanisms, namely, discovery, linearization, and any-
cast extension implemented in TRout. Table B.1 summarizes the contents of a
routing-table entry. It comprises 5 sections. The first section describes the fields
of a typical distance vector protocol: the vid-field denotes the identifier of the route,
the type-field denotes the route type, i.e., if the route is part of the virtual ring
or the anycast extension. The dist-field denotes the number of hops to the node
that announced the route. The seg-field denotes the sequence number in terms of
the DSDV-principle, finally, the nexthop-field denotes node identifier of a physical
neighbor closer to a node that announced the route.

The second section stores a usage record of the entry. For this purpose, the
usedby-field denotes the subset of physical neighbors of a node X whose routing-
table contains the same route with node X’s in the nexthop field. The unused-field
denotes the number of rounds the usedby set was empty and the entry has not been
changed.

The third section stores several flags. The neighbor-flag denotes whether the
route was announced from a physical neighbor, i.e., when dist = 1. The changed-
flag indicates a change of the entry during a protocol round. The forward-flag
indicates that the route has been established using route forwarding. The forward-
new-flag indicates that the entry is new and has been forwarded, and is ready for
linearization.

The fourth section stores the closest successor and predecessor identifiers for the
route identifier. Those two fields are only used for optimizing linearization.
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Basic Routing-Table Management

For routing-table management, the route maintenance module provides several
methods to add, and remove VIDs owned by the node to its routing-table. Fur-
thermore, it has methods that allow the query of routing-table entries by VID and
owner-NID. The following describes these methods:

routes.addld(vid,[owner],type) — entry: adds a new entry the routing-table of the
given VID, type, i. e., ring or anycast, and owner. Its purpose is to add new routes
to be announced by the node with the given VID to the routing-table. As this
is a new entry, the changed, forwarded, forwardednew-flags are set to true, the
distance dist is set to 0. The method also informs listeners about the newly
added entry.

routes.removeld(vid,[owner]): removes a routing-table entry with the given VID,
and owner-NID. The method also informs listeners about the removed entry. If
one of the physical neighbors uses the route of this routing-table entry, teardown
messages are sent to completely remove the route from the network.

routes.get(vid,[owner],[ensure]) — entry: returns the routing-table entry for the
respective VID and owner-NID, or nil when the entry is not available. If ensure
is true, a new routing-table is allocated and returned. If the owner is not given,
it returns the entry that has an unspecified owner (nil).

routes.getAll(vid) — {z € R|z.vid = vid A z.dist = 0}: returns a set of routing-table
entries with the given VID. This includes VIDs with different owners.

These methods allow routing-table access from the other modules, e. g., adding or
removing new VIDs, and querying specific routing-table entries.

Neighbor Management

The route maintenance keeps track of physical neighbors and manages the changes
in the routing-tables when the physical neighborhood changes. In case of the

neighbors := neighbors\ {nid};
foreach z € R:
| if x.nexthop = nid: remove(x);
foreach xr € R:
if x.dist = 0: continue; /* do not remove my own entries */
if = nid in x.usedby: continue;
notify(x.id, x.owner);
queue. clear(nid);
increaseSeq();
notifyListeners();

Algorithm B.1 — The routes.removeNeighbor(nid) method’s pseudo-code. R de-
notes the routing-table. neighbors the set of NIDs of the physical
neighbors.
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unstructured relay overlay, this is the case, when a new overlay link is established
or fails.

routes.addNeighbor(nid): informs the route maintenance module that the node
as a new neighbor with the given NID. In consequence the route maintenance
increases the sequence number of all routing-table entries and informs listeners
about the new neighbor.

routes.removeNeighbor(nid): informs the route maintenance module that a node’s
neighbor left the network or failed. Consequently, all routing-table entries that
use this neighbor as next-hop are removed from the routing-table. Additionally,
the nodes that announced routes which included the neighbor are notified about
the failure, so they can update their sequence number for the route to restore it
if required. Subsequently, all sequence numbers of the node are increased and
the listeners informed about the removed neighbor. Algorithm B.1 describes
this method in further detail.

routes.getNeighbors() — {nidl,... nidn}: returns the set of known NIDs of all
neighbors.

These methods are primarily called from the unstructured relay overlay, when new
links are established or fail.

The route maintenance module has a primary process(nid,u) method that demuli-
plexes a incoming route update u from a node with a node identifier (NID) nid.
The following uses the notation process,(nid, u) for the demultiplexed handling of
a route update u with type x, i.e., w.routeType = x. Furthermore, the notation
T, « » denotes that field y in = gets replaced with the value of z.

Route Update Processing

When the route maintenance module receives a “usual” route update from another
node, or module, the route maintenance module processes the route update as
follows:

routes.processypdate(Nid,u): The method, first checks whether the route update is
on the blacklist, i.e., has been removed recently. If this is the case, the route
update is discarded. If not on the blacklist, the method searches for an entry e
for the respective VID wu.vid and owner u.owner. If not available, the routing-
table entry e is created using the routes.get method. Subsequently, the route
update is adapted to the routing-table entry, one of the following conditions are
true:

1. The routing-table entry is new.

2. The sequence number e.seq of the routing-table entry is smaller than the
sequence number u.seq of the route update.

3. The sequence numbers of routing-table entry and route update are equal,
but the distance u.dist+1 of the route update is smaller than the distance
of the routing-table entry.

The adaptation of the route update basically involves copying the fields from the
route update to routing-table entry. However, some fields need special attension.
First, method assigns the distance field e.dist of the routing-table entry with the
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distance of the route update plus 1, because the route update traversed one more
hop. The e.neighbor of the routing-table entry is set true, when w.dist equals 0,
i.e., is a physical neighbor. The e.nexthop := nid is set to the node identifier
the route update came from. Finally, the e.changed := true flag is set, because
the routing-table entry has been changed, and, the e.forwarded, e.forwardedneu-
fields are set true, when the route update came from a physical neighbor. To
inform the physical neighbors about the usage of the route update, the method
sends USED/UNUSED-route updates to the respective physical neighbors. Fur-
thermore, it informs listening modules about the changed or new entry. Algo-
rithm B.3 describes this method in further detail.

The route update processing already includes notifications about the usage of the
route updates to the physical neighbors. These records are used to remove or-
phaned or inconsistent routing-table entries from the network. The following in-
troduces the necessary mechanisms to do this.

Route Usage Records and Blacklist

When a route update has been adapted by a node, i.e., updated its routing-table
entry with the update, it informs the physical neighbor about this using USED and
UNUSED route updates. This allows a consistency check and the removal of unused
entries from the network. Furthermore, the route maintenance holds a blacklist
of recently removed entries to inhibit the re-adoption of old routing-table entries

if isBlacklisted(update):

queue.send(m'd, U update Type < UNUSED);

return;
e « get(u.vid,u.owner,true);
if (u.seq > e.seq) V ((u.dist+ 1) < e.seq A u.seq = €.seq) V (€ is new):
/* Inform neighbor when if next-hop changes */
if w.nexthop # e.nexthop:

| queue.send(e.vid, €| ypaateType « Unusn);

copy contents from u to e;
e.dist < u.dist + 1;
e.changed < true;
e.nexthop <— nid;
e.neighbor < (u.dist = 0);
e.forwarded < e.forwarded V e.neighbor;
e.forwardednew < €e.forwardednewV e.neighbor;
/* Inform neighbor that route update is used */

queue.send(md, U update Type +— USED);
else:

‘ queue.send(md, Uupdate Type UNUSED);

Algorithm B.2 — The routes. processyppars (nid,u) method’s pseudo-code.
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in routes.processyppare. The following methods implement the functionality of the
route usage records and blacklist:

routes.processyseq(nid,u): queries the entry according to the update u from the
routing-table using the routes.get method. When found, it adds the node’s
identifier nid of the physical neighbor to the usedby-field in the routing-table
entry. If not found, it initiates a teardown of the route to the neighbor. This
ensures that the neighbor wipes invalid routes from its routing-table.

routes.processSynused(nid,u): proceeds like routes. processysgp, but removes the node
identifier f rom wusedby-field in the routing-table entry, and does not initiate a
teardown.

routes.consistencyCheck(): re-sends USED-updates of all routing-table entries to
the corresponding next-hop, physical neighbors. If any inconsistency is detected,
the physical neighbors will respond with a teardown of the route. This ensures
validity of routes after checking consistency.

routes.addToBlacklist(entry): adds routing-table entry to the blacklist. If a entry
with the same vid and owner is already blacklisted, it overwrites the entry when
entry has a greater sequence number seq.

routes.isBlacklisted(u): checks whether the route update is on the blacklist. This
is the case, when the blacklist contains a entry with the same vid, owner, and a
greater sequence number seq.

routes.maintenance(ttl): cleans up the routing-table when unused entries are found.
Every call to this method increases the unused-field of each routing-table entry
that has not been changed and is not used by any physical neighbor. When called
every protocol round, the unused-field counts the rounds the routing-table en-
try is not used. If it exceeds the time-to-live ¢/, then the method asks listing
modules, whether the entry is still needed. If this is not the case, it removes the
entry. At the same time it clears the blacklist from entries older than ¢t/ rounds.

Route Teardown and Notifications

Route teardowns are used when nodes withdraw their announced routes, i.e., by
calling removeld and when nodes leave the network or fail. To ensure the validity of
the routes, the teardown mechanism removes routing-table entries in the network
that rely on a certain routing-table entry on a node. This mechanism highly relies
on the route usage record maintained with each routing-table entry. To notify
nodes about a change in its announced routes, e.g., for increasing the entry’s
sequence number, the notify mechanism forwards a notification route update to
the announcing node.

routes.remove(entry). removes a routing-table entry. If the routing-table entry
is still part of a active route, routes that depend on this entry are torn down
using a teardown route update. Furthermore, it informs the next-hop neighbor
that the routing-table entry has been removed using a UNUSED-route update.
Algorithm B.3 describes this method in further detail.

routes.notify(entry,incSegNo): sends a notify route update to the node that an-
nounced the route the entry belongs to. A respective routes.processxorpy (nid,u)
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method handles the notify route updates and forwards them until it reaches the
announcing node. If incSeqNo is set true, the sequence number of the routing-
table entry on the announcing node is increased.

routes.teardown(nid,entry): sends a teardown message to a physical neighbor with
node identifier nid for the routint-table entry. A respective routes.processrgarpown(nid,u)
handles the teardown route updates and removes the routing-table entry with
the remove-method. This method subsequenly initiates further teardowns until
all affected nodes remove the routing-table entries of the nodes relying on the
entry, i.e., is on the route to the annuncing node, from the network.

Route Forwarding
Route forwarding is an important building-block for the linearization algorithm.

Briefly, linearization tries to forward “better” routes to other virtual nodes. The
functionality is implemented using two methods:

routes.forward(entry,toEntry). fowards a route update extracted from the routing-
table entry along the route to the node that announced toEntry.

routes.procesSeonward(Nid,u): calls the routes. processyppary method to add the route
to node’s routing-table and forwards the route update further along the path to
toEntry. If a shorter route is found, i. e., a routing-table entry that has a smaller
distance to the same destination, the forward route update will be replaced with
the data extracted from this routing-table entry.

Listener Interface

The route maintenance module notifies the virtual ring maintenance and anycast
extension module about new, changed, or deleted routing-table entries. Further-
more, it asks the modules if a specific routing-table entry is still

routes.registerListener(listener). registers a module that listens to routing-table
changes.

listener.entryUpdate(entry ,newEntry): is called by the route maintenance when a
routing-table entry has been added or changed.

listener.entryRemove(entry): is called by the route maintenance when a routing-
table entry has been removed.

listener.entryNotify(entry): is called when a notify route update has been received.

Inform listeners;
foreach nid in none.entryusedby:
| teardown(nid,entry);
queue.send(none. entrynexthop, entry|,,aoterype « Unusen);
addToBlacklist(entry);
Remove entry with vid and owner from routing-table;

Algorithm B.3 — The routes.remove(entry) algorithm in pseudo-code.
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listener.entryNeeded(entry) — bool: is called to check whether the entry is still
needed. Implenenting modules need to return ¢rue when the entry should not
be removed.

The next section describes the virtual ring maintenance which implements this
interface and registers itself to the route maintenance module.

Virtual Ring Maintenance

The virtual ring maintenance module builds a virtual ring using the route mainte-
nance module. First, it adds a routing-table entry with its own node identifier NID
to the routing-table using the routes.addl/d-method. Then it employs two mecha-
nisms to establish virtual links to its neighbors: discovery and linearization. The
mechanisms are triggered by TRout’s main-loop to vring.maintenance:

vring.maintenance(): maintains the virtual ring routing-table. TRout’s calls this
method each Tj,unqg seconds from its main-lopp. First, the method sends its
own VIDs to its physical neighbors if changed. This way, physical neighbors
get to know each other. Subsequently, it calls the maintenance methods of the
selected TRout-mode mode, i.e., DISCOVERY or LINEARIZATION. Finally, it
increases the stable-counter and resets the change flags in the virtual ring table
vringTable. Algorithm B.4 describes this method in further detail.

The stable-counter counts the number of rounds, no changes affected the virtual
links to the virtual ring neighbors. The DISCOVERY-mode uses this counter to
reduce the number of discovery messages sent each round.

As mentioned before, the virtual ring maintenance module reacts on notifications
from the route maintenance module. For this purpose, it implements the listener

/* Iterate over the NIDs of my neighbors */
foreach nid in routes.getNeighbors():
/* Inform phyical neighbors about my ring-VIDs */
foreach e in vringTable:
if (—e.dist = 0 A e.changed): continue;
e.usedBy < m.usedByU {nid};
e.unused < 0;
queue'send(nid76|updateType — UPDATE);
/* Call maintenance of the specific mode */
if mode = DISCOVERY: vring.maintainDiscovery();
if mode = LINEARIZATION:vring.maintainLinearization();
[* Increase stability counter and reset flags */
stable <« stable + 1;
resetFlags();

Algorithm B.4 — Pseudo-code of vring.maintenance(). The main maintainance
method for constructing the virtual ring. Called each T),unq sec-
onds in TRout’s main-loop.
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interface of the route maintenance module and registers itself to get notifications
about routing-table changes. The virtual ring maintenance module keeps a ascend-
ing, ordered list of routing-table entries that belong to the ring in vringTable, i.e.,
route Type=RING. This list is kept up-to-date using the implementation of the lis-
tener-interface. Furthermore, it builds virtual links to virtual ring neighbors. More
formally, the virtual ring maintenance module implements the listener-interface as
follows:

listener.entryUpdate(entry, newEntry): returns immediately when entry.route Type

RING, i.e., not a virtual ring routing-table entry, or newEntry = false, i.e., not
a new entry. Otherwise, the method inserts entry into the virtual ring routing-
table vringTable at the appropriate position, so the table stays in ascending
order. If the entry denotes a route to a new virtual ring neighbor, it forwards its
own routing-table entry, i. e., dist = 0 and vid = nid to the vid of this entry. This
way, the new virtual neighbors learns a route to the node. Subsequently, the
method calls vring.linearizationNotify() or vring. discoveryNotify() depending on
TRout’s mode, to handle the new virtual neighbor.

listener.entryRemove(entry): does almost the same as listener. entry Update( entry,
newEntry) only the other way round. It first calls vring.linearizationNotify()
or vring.discoveryNotify() depending on TRout’s mode, to handle the removed
virtual neighbor. Then, it removes the entry from vringTable. Because a node
or link failure usually causes the removal of a virtual neighbor, the method
increases all sequence numbers of virtual ring routing-table entries using the
routes.increaseSeqg-method.

listener.entryNotify(entry): resets the stable-counter when entry.route Type = RING.

listener.entryNeeded(entry) — bool. returns true, if the entry denotes leads to a
virtual neighbor or false, if not, or when entry.route Type # RING. Thus, unused
routes to not leading to a virtual neighbor are removed from the routing-table.

Using these preparations leaves 2 methods, i.e., for maintenance and handling
change notifictions, for each of TRout’s modes, i.e., DISCOVERY and LINEARIZA-
TION to implement. These two mechanisms do not build a virtual ring, but a
virtual ordered path or line connecting all virtual nodes beginning with the lowest
VID and ending with the highest VID. The virtual ring can be builtby connecting
the ends of the path to a ring.

Discovery

The discovery mechanism finds virtual line neighbors by iteratively searching and
discovering closer virtual neighbors, i. e., closer successor on the left, and predeces-
sor on the right. Two methods implement this meachnism:

vring.maintainDiscovery(): sends discovery route updates towards the D, ran-
domy chosen neighbors. To inhitbit that discovery route updates are sent to a
physical neighbor more than once, it keeps a set of physical neighbors considered
already in the process. Furthermore, the stable-counter is used to lineary de-
lay sending new discovery routes. It delays new discovery route updates by the
number of rounds the virtual neighborhood is stable and no notification has been
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received. This highly reduces signalling overhead when there are no changes in
the network topology. Algorithm B.5 describes this method in further detail.

VIing.processpiscovery-succipred (Nid,U): handles the discovery route updates sent by
maintainDiscovery. It adds a routing-table entry that leads towards the an-
nouncing node and forwards the discovery route update to a better successor, or
predecessor if possible. If the node is the closest one, it forwards a route to itself
back to the node that sent the discovery message. Thus, a virtual link is estab-
lished between them. The pseudo-code in Algorithm B.7 shows this method in
further detail.

The discovery mechanism adaptively reduces the number of updates sent by
using the stable-counter. To ensure that TRout adapts quickly in case of net-
work changes, the stable-counter needs a reset, whenever the virtual neighborhood
changes. In this case, as explained before, the notifyDiscovery is called:

vring.notifyDiscovery(entry): informs virtual neighbors about changes in the net-
work. For this purpose, it uses the routes.notify methods to send a notification
route update to the predecessor and successor. The route maintenance module
then calls the listener.entryNotify method of the virtual ring maintenance which
resets the stable-counter to zero.

This completes the description of the virtual ring maintenance with the discovery
mechanism. The next section describes the linearization mechanism to build the
virtual ring.

[* Delay sending discovery messages when stable. */
discoveryDelay < discoveryDelay + 1;

if discoveryDelay < 4¥¢: return;

discoveryDelay <« 0;

[* Send discovery messages */

foreach e in vringTable:

/* Not the node identifier of this node? -> continue */
if e.dist # 0: continue;

[* Send discovery route updates to D,, neighbors chosen randomly. */
R <« getNeighbors();

foreachiin (1,...,D, + 1):

if |R| = 0: break;

r < “random neighbor from R”;

R <« R\{r}

queue-send(r-n€$tH0p7e|updateType « DISCOVERY-PRED);}
queue.send(r. nextHop,e|update Type + DISCOVERY-SUCC);

Algorithm B.5 — The pseudo-code of vring.maintainDiscovery().
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Linearzation

Linearization is a self-stabilizing algorithm introduced by by M. Onus et al. [71]
that sorts a graph where each vertex holds an identifier to a straight line sorted
ascendingly by the identifiers.Self-stabiliting means, that the algorithm can recover
from any state. A problem of using linearization to build a virtual path is concur-
rency [40]. The original algorithm was designed for iterative processing of graphs.
In a distributed setting, linearization is performed in parallel on many nodes. This
leads to a high amount of redundant steps in the worst-case. To lower the redun-
dancy, TRout uses a simple method: it only linearizes left- and right-routes if the
linearization neighbor is closer to the VID than the VIDs linearized before. TRout
uses the succ, pred-fields in the route update for this purpose. Like the discovery
meachnisms, two methods are responsible for linearization:

vring.maintainLinearization(): first, finds a pair (a,b) of forwarded routing-table
entries in vringTable, so that a.vid < b.vid. Second, it checks whether one of
these entries has been changed or could profit from knowing the other route by
checking the respective succ/pred-fields. If the case, it forwards routes when
both are left neighbors and a is a newly forwarded entry, or when both are right
neighbors and b is a newly forwarded entry. This implements the linearization
algorithm. When forwarded, the method adapts the succ/pred, and forwarded-
New fields. The pseudo-code in Algorithm B.6 shows this method in further
detail.

foreach alndex in (0, ..., vringTable.size — 1):
/* Find left-neighbor */
a < vringTable[alndex];
if —a.forwarded Vv a.dist = 0: continue;
foreach bindex in (alndex + 1,...,vringTable.size — 1):
b <« vringTable|bindex];
/[* Find closest linearization neighbor */
if —b.forwarded: continue;
ifa or b have changes and provide a new succ/pred to eachother:
forward < false;
/* Newly forwarded entry, and a,b left neighbors? -> forward */
if a.forwardednew A (a and b are left-routes):

| a.forwardednew < false; forward < true;
[* Same as above, only mirrored */
if b.forwardednew A (a and b are right-routes):

| a.forwardednew < false; forward < true;
[* Forward routes */
if forward:

Set new predecessor/successor entries for a and b
routes. forward(a,b); routes. forward(b,a);

Algorithm B.6 — The algorithm of vring.maintainLinearization() in pseudo-code.
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vring.notifyLinearization(entry): initiates a re-linarization with its left /right-route
depending if the entry itself is a right or left route. This is done by setting the
forwardNew and changed-flags of the routing-table entry to true. Subsequently,
vring.maintainLinearization will re-linearize the routing-table entry in the next
protocol round.

Finding the Next-Hop

When the virtual path is complete, routing can be done greedily, as the virtual
path represents a convex address space. The next-hop to a given VID is always
denoted by the nextHop-field of the routing-table entry in vringTable that is closest
to the given VID. Because the vringTable also includes routes that do not lead to a
virtual neighbor, but also routes traversing the node, short-cuts are taken naturally.
The next section adds anycast support to TRout using the virtual ring maintaince
module.

[* Add route to node where the discovery came from */
rOUteS'pTOCGSSUPDATE(nidau|updateTy;l)e — UPDATE);
[* Get source/destination virtual ring routing-table entry indexes */
srcindex <« indezOf (none.uvid); dstindex <« indexOf(none.udest);
/* If one of both entries are not available-> skip */
if srcindex=-1V dstindex=-1: return;
[* Get source/destination routing-table entries */
src < vringTable[srcindex]; dst <+ vringTable[dstindex];
[* Check for successor / predecessor */
if (u.updateType = DISCOVERY-SUCC) A (srcindex + 1) < vringTable.size:
| dst < vringTable[srcindex+1];
if (u.update Type = DISCOVERY-PRED) A (srcindex — 1) > 0:
| dst « vringTable[srcindex-1];

/* The node is the closest one? -> forward my route to source, stop */
if dst.dist = 0:

Src.forwarded <+ true;

routes. forward(dst.vid, src.vid);

notifyDiscovery(src);

return,;
[* Split horizon */
if dst.nextHop = nid: return;
/* Route message */
newRoute < SrC|updateType < u.update Type>
newRoute.dest < dst.vid;
src.usedBy < Src.usedByU {dst.nextHop};
queue.send(dst.nextHop,newRoute);

Algorithm B.7 — The vring.processpiscovery-Suce/Prep (74d,u) algorithm in pseudo-
code.
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Anycast

The anycast extension uses the virtual ring routing to add additional routes that
lead to anycast VIDs. Each node may announce additional, arbitrary anycast VIDs.
These announcements are forwarded along the routing paths of the virtual ring until
they hit the node with the closest NID to the annouced VID. To differentiate the
routes the anycast extension assigns the owner-field with the NID of the announcing
node. This makes each route unique. If a subset of nodes annouce the same VID
the resulting routes intersect at a certain point. In this case, only the shortest (or
the one with the lowest owner-NID to break ties) announcement is forwarded to
the virtual node with the closest NID.

When routing to an anycast VID, the virtual ring routing is used, until a anycast
route is found. Then, the message follows this path to the announcing node.
Because the anycast extension only announces the shortest-route to the VID using
the virtual ring routing, close nodes announcing the same VID are preferred. This
reduces stretch.
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