
 
 

 

 

Sustainable, efficient approaches to renewable platform 

chemicals and polymers 

 
 
 

Zur Erlangung des akademischen Grades eines 
 
 

DOKTORS DER NATURWISSENSCHAFTEN 

 
(Dr. rer. nat.) 

 

 

Fakultät für Chemie und Biowissenschaften 
 

Karlsruher Institut für Technologie (KIT) – Universitätsbereich 
 

Genehmigte 
 
 

DISSERTATION 
 
 

von 
 

M.Sc. Hatice Mutlu 
 

aus 
 

Kircali, Bulgaria 

 

 

 

Dekan: Prof. Dr. M. Bastmeyer 

Referent: Prof. Dr. M. A. R. Meier 

Korreferent: Prof. Dr. C. Barner-Kowollik  

Tag der mündlichen Prüfung: 19.04.2012 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Die vorliegende Arbeit wurde von Juli 2008 bis Februar 2012 unter Anleitung von Prof. 

Dr. Michael A. R. Meier an der Hochschule Emden/Leer (von Juli 2008 bis August 2009), 

der Universität Potsdam (von September 2009 bis Dezember 2011) und am Karlsruher 

Institut für Technologie (KIT, von January 2011 bis Februar 2012) - Universitätsbereich 

angefertigt. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SevdiklerimeSevdiklerimeSevdiklerimeSevdiklerime………… 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 



 
 

 

 

Abstract 

 

Environmental concerns, such as pollution and decreases in natural resources, have led 

to an increased demand for renewable materials in recent years. Adoption of efficient 

approaches, like metal-free organocatalysis, olefin metathesis and thiol-ene coupling, 

both in academic and industrial research, offers the potential of increased 

sustainability, comparatively lower production costs (besides olefin metathesis), and 

more environmentally benign processes. Thus, the following work is performed with 

the attempt to meet both, making use of oils as renewable feedstock, in this case 

mainly plant oil derived platform chemicals, and using sustainable, efficient 

approaches as valuable synthetic tools. 

 

 

 

 

 

 

 

 

 



 
 

 

 

Kurzzusammenfassung 

 

Ökologische Bedenken, wie Umweltverschmutzung und der Rückgang der natürlichen 

Ressourcen, haben in den letzten Jahren zu einer gestiegenen Nachfrage nach 

nachwachsenden Rohstoffen geführt. Die Anwendung effizienter synthetischer 

Methoden, wie etwa metallfreie Organokatalyse, Olefinmetathese und Thiol-En-

Kupplung, sowohl in akademischer als auch industrieller Forschung, haben das 

Potenzial zu mehr Nachhaltigkeit, vergleichsweisen niedrigeren Produktionskosten und 

umweltfreundlicheren Prozessen beizutragen. Aus diesem Grund hat die vorliegende 

Arbeit als Ziel sowohl die Nutzung nachwachsender Rohstoffe, in diesem Fall vor allem 

von Pflanzenöl und davon abgeleiteten Plattform Chemikalien, als auch der 

Anwendung nachhaltiger und effizienter Methoden als wertvolle synthetische 

Werkzeuge zu veranschaulichen. 
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1 Introduction 

 

Oil, the history of which dates over five thousand years ago, when oil seeping up 

through the ground was used in waterproofing boats, paints, lighting and even for 

medication;1 is a wide ranging term that includes many substances and forms of 

liquids. On the other hand, the modern crude oil history is known since the 19th 

century, with the discovery and the subsequent commercialization. Furthermore, since 

World War II, chemistry has become dependent on crude oil, especially naphta, which 

is a side stream of the production of fuels from crude oil. Thus, along being the 

dominant source of energy, crude oil is a vital source of a wide range of raw materials 

required for manufacturing the ubiquitous plastics and other products that are 

involved in every level of life in our modern society. However, the tremendous growth 

of the petrochemical industry in the 20th century slowed down with the re-gained 

importance of bio-based products. Moreover, not only the challenge of a globalized 

economy and the awareness of the depletion of fossil resources, but also the desire to 

reduce the global warming due to the carbon dioxide emissions has directed the 

attention of researchers to the use of biomass as a source of energy and raw material 

for value-added commodity and speciality products. Thus, "sustainable (green) 

chemistry" rose as an innovative, multi-disciplinary field to cover the research about 

developing environmentally benign and crude oil-independent methods.2 In parallel, 

by introducing “The 12 principles of Green Chemistry”,3 Anastas and Warner made 

incredible impact to the Brundtland-report,2 thus emphasizing that a sustainable 

development has to be addressed in a technological, social and economical context 

(Figure 1.1) and particularly revealed the basic twelve rules that chemists and others 
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should apply in the design of new methods or in improving existing methods to 

decrease their impact on the environment and on human health. 

 

 

Figure 1.1: The complete integration of green chemistry within sustainable development. 

 

To achieve the goal of sustainable development and thus to improve the greenness of 

a method, the following major objectives can be pointed out from these twelve 

principles: 

• Maximize waste and energy saving 

• Use renewable feedstocks in a sustainable fashion as often as possible 

• Minimize of used toxic reactants and solvents 

• Use catalytic (and other efficient) chemical reactions 

 

Nowadays, these principles are aiming to motivate chemistry at all levels: industry, 

basic research, education and public perception, thus encompassing several fields of 

activity. Key areas for application of these principles are: renewables, catalysis, 

polymers, solvents, analytical methods and new synthetic pathways. 
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Following the emergence of developing and modifying sustainable methods and taking 

into account the structural diversity of plant oils and thereof derived platform 

chemicals, the present thesis describes new ways for value creation from plant oils 

within different synthetic approaches. Among them, the synthesis of polymers is an 

active and important research field with the objective of minimizing the strong 

dependence of the polymer industry on fossil-derived raw materials. On the one hand, 

the direct utilization of plant oil triglycerides for polymer synthesis was investigated: 

 

• Regarding the direct use of plant oils, it has been shown that plukenetia 

conophora oil can be used for the synthesis of hyperbranched polyesters, with 

interesting rheological properties, via olefin metathesis (acyclic triene 

metathesis, ATMET) polymerization. 
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• In a different approach, the introduction of styrene moieties into the structure 

of sunflower oil has been used to obtain a multifunctional monomer for the 

synthesis of hyperbranched polymers also via ATMET. 
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On the other hand, plant oil derived platform chemicals such as fatty acids, esters and 

alcohols were shown to be versatile building blocks for the synthesis of polymers: 

 

• Different monomers for ring-opening metathesis polymerization (ROMP) have 

been prepared and polymerized by functionalization of a hydroxyl containing 

norbornene with different fatty acids. 
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• The synthesis of fatty acid-based polyamides has been studied following two 

different approaches: acyclic diene metathesis (ADMET) polymerization of 

amide-based dienes, and TBD-catalyzed polycondensation of fatty diester and 

diamines. 

 

 

 

 

 

 

 

 



7 
 

 

• TBD has been efficiently applied as catalyst for the synthesis of carbonate and 

carbamate-based building blocks as well as renewable polycarbonates from 

castor oil derivative, (E) icos-10-ene-1,20-diol, and dimethyl carbonate. In 

addition, for the first time, ADMET polymerization has been successfully 

applied for the polycarbonate synthesis of terpene-based monomers 

containing trisubstituted terminal-olefins. 
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• The applicability of 1,3-propanediol-based telomers, in particular α,ω−diene 

ones, has been extended for the first time to the synthesis of polymers 

following two different approaches: ADMET polymerization and thiol-ene 

polyaddition. 
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2 Bio-based resources and their 

efficient utilization: Plant oils as 

alternative to crude oil 

 

A current challenge of the chemical industry is to design sustainable processes. From 

that point of view, agricultural and forestal raw materials, such as plant oils, starch, 

sugar, cellulose, fibers, and other agricultural resources are obvious candidates for a 

sustainable chemical production with regard to the advantage of a low-carbon 

economy. It is noteworthy that some of these feedstocks have already been used for 

centuries. Until the beginning of the 20th century, all materials, fuels and chemicals, 

such as dyes, fibers, medicine, clothes and organic solvents were made from bio-based 

resources.4 On the other hand, renewable raw materials might be a limited resource. 

However, in contrast to fossil resources that have required millions of years for their 

formation, renewable raw materials can be produced every year (such as oils from 

oilseed crops) or within a few years (e.g. in the case of forestation), thus not 

endangering the management and utilisation of natural renewable resources and 

providing a continuous supply for required raw materials. Table 2.1 gives an overview 

of industries and material uses of some of the most commonly used renewable raw 

materials (in alphabetical order).5 
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Table 2.1: Commonly used renewable materials (in alphabetical order) and respectively the 

industries involved and fields of application.5 

Raw 

material 
Resources Types of industry Applications 

N
a

tu
ra

l 
fi

b
e

rs
 Europe: Hemp, flax, 

nettle, cotton 

Imported: cotton, 

kenaf, jute, sisal, ramie 

Textile industry, pulp 

and paper industry, 

plastic industry 

Textiles, technical 

textile, nonwovens (e.g. 

insulating materials), 

fiber reinforced plastics, 

paper 

P
la

n
t 

o
il

s Europe: rape, 

sunflower, olive; 

Imported: soybean, 

palm oil 

Chemical industry, 

pharmaceutical 

industry, technical 

industry, plastics 

industry 

Lubricants, surfactants, 

binders, paint additives, 

polymers, polymer 

additives, linoleum, 

glycerol 

S
u

g
a

r Europe: Sugar beet. 

Imported: sugar cane 

Chemical industry 

(fermentation), 

pharmaceutical 

industry, plastic 

industry 

Bulk chemicals, fine 

chemicals, polymers, 

pharmaceuticals, 

bioethanol 

S
ta

rc
h

 Wheat, potato, maize, 

other cereals 

Pulp and paper 

industry, chemical 

industry (fermentation), 

pharmaceutical 

industry, plastic 

industry 

Paper starch, glues, 

binders, chemicals, 

cosmetics, textile 

starch, bioethanol, 

polymers 

W
o

o
d

 Europe: Soft wood, hard 

wood. 

Imported: tropical hard 

wood 

Pulp and paper 

industry, timber 

industry, plastic 

industry 

Construction wood, 

packaging furniture, 

paper, cellulose 

 

 

A comprehensive industrial survey revealed that the total use of renewable raw 

materials (without wood) in Europe was about 9 million tonnes in the last years.5 While 

other industries processed 2.65 million tons, the chemical industry used 6.4 million 
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tonnes of renewables: divided into oils and fats (31%), starch (35%), sugar (14%), 

natural cellulose fibres (16%) and other (4%) (Figure 2.1). 

 

 

Figure 2.1: Renewable raw materials distribution in the chemical industry.5 

 

One can consider that new challenges would require new tools to tackle them. 

However, as a matter of fact, raw material familiarity is an important component in the 

shift of the industry from non-renewables to renewables. The technology and 

equipment present in the chemical industry can be adapted to use the derived building 

blocks from the non-fossil-based sources. Especially, the fatty acid structure 

undoubtedly contributes to the greater relative amounts of renewable raw materials 

consumed by the chemical industry. Fatty acids and derivatives, in contrast to the 

highly oxygenated structure of carbohydrates, represent a class of hydrocarbons and 

are more closely related to petrochemicals, and thus well suited for many 

transformations already applied by the chemical industry. Fatty acids are primarily 

obtained from natural oils and fats. Evidently, an enormous amount of plant-based fats 

and oils are produced annually. The annual global production of the major plant oils in 

2010/11 amounted 147 million tons.6 The main component of plant oil is triglyceride 
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(98%), beside for some oils like cashew nutshell oil. Depending on the oils source used 

(Table 2.2), the fat splitting process can lead to a wide variety of fatty acids (saturated 

or unsaturated fatty acids shown in Figure 2.2 and Table 2.3), each possessing different 

types of functional groups (-OH, epoxides, triple bonds and etc.). On the other hand, 

the content of the different fatty acids in the plant oils can be modified by breeding or 

genetic modification of crops.7 

 

Table 2.2: The broad range of oil sources that could conceivably be used to supply the 

oleochemical industry. 

Animal fats Butter, edible tallow, inedible tallow and grease, Lard 

Edible plant oils 
Canola, Corn, Cotonseed, Olive, Peanut, Safflower, Sesame, 

Soybean, Sunflower 

Industrial oils Castor, Linseed, Oiticica, Rapeseed, Tall, Tung 

Marine oils Fish, Menhaden, Sperm 

Palm oils Babassu, Coconut, Palm 
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Figure 2.2: Structures of some usual and unusual fatty acids derived from different plant oils: 

(a) oleic acid, (b) linoleic, (c) linolenic, (d) petroselinic, (e) erucic, (f) calendic, (g) α-eleostearic, 

(h) vernolic, (i) sterculic, (j) ricinoleic, (k) chaulmoogric and (l) lesquerolic. 
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Table 2.3: Fatty acid content of the major commodity oils (wt%). C: number of carbon atoms. 

DB: number of double bonds. 

Fatty acid C:DB Castor
a)

 Corn 
Cotton 

seed 
Linseed Olive Palm Soybean Sunflower 

High 

oleic 

Palmitic 16:0 0.9 10.9 21.6 5.5 13.7 44.4 11.0 6.1 6.4 

Stearic 18:0 0.8 2.0 2.6 3.5 2.5 4.1 4.0 3.9 3.1 

Oleic 18:1 2.9 25.4 18.6 19.1 71.1 39.3 23.4 42.6 82.6 

Linoleic 18:2 4.5 59.6 54.4 15.3 10.0 10.0 53.2 46.4 2.3 

Linolenic 18:3 0.6 1.2 0.7 56.6 0.6 0.4 7.8 1.0 3.7 

DB/Triglyceride  - 4.5 3.9 6.6 2.8 1.8 4.6 - 3.0 

a) castor oil contains ricinoleic acid in the range of 87.7-90.4%. 

 

Due to the aforementioned different functional groups on the fatty acids, which can be 

used to introduce new functionality and then further be modified, there is a wealth of 

possible fine chemicals, monomers, and polymers that can be produced from plant 

oils.8 Typically, five chemically reactive sites can be identified on a fatty acid for further 

modification (Figure 2.3, R1 and R2 chains correspond to fatty alkyl chains). The 

possible chemical transformations depending on the reacting functional group are 

listed in Figure 2.3. 
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Figure 2.3: Illustration of a generic triglyceride with its reactive sites and the consequent 

possible transformations of each chemically active point. 

 

However, the state of the art in chemical modification of plant oils focuses almost 

entirely on simple, cumulative changes at the acyl group of the fatty acid. Indeed, a 

literature8,9 survey clearly indicated that, regarding the industrial uses of oils and fatty 

acids, most of the classical and well-established transformations are directed to the 

carboxyl and ester groups, and relatively little are carried at the side chain. With the 

implementation of these conventional reactions at the carboxy group, fatty acids are 

mainly transformed to fatty alcohols,10 soaps,11 esters,12 thioesters,13 hydrazides,14 

amides15 or amines.16 While this is generally not a new approach regarding the 

reactivity of the ester group, there have been several useful new developments. For 
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instance, recently an outstanding dimeric complex of Ru and Os was reported as 

homogeneous efficient catalyst for the hydrogenation of triglycerides, thus allowing 

the synthesis of unsaturated fatty alcohols directly from olive oil in almost quantitative 

yields (Figure 2.4).17 

 

 

Figure 2.4: Direct synthesis of fatty alcohols from triglycerides under neutral conditions using a 

novel complex of Ru and Os as a catalyst.17 

 

In the last two decades, extensive research, both in academic and industry has been 

performed regarding the selective functionalization of the alkyl chain of fatty 

compounds, and great attention was given especially to the C=C double bond. 

Remarkably, only very few reactions utilizing the double bond of unsaturated fatty 

compounds are currently applied in the chemical industry: hydrogenation, ozone 

cleavage, or epoxidation being the most prominent examples.  

The epoxidation of unsaturated fatty acids and triglycerides with the so called 

Prilezhaef reaction18 generates products with increased polarity and reactivity. In a 

typical epoxidation reaction, the olefinic double bonds of the unsaturated fatty acids 

are oxidized by a short chain percarboxylic acid to epoxides. The epoxidation reaction 

can be promoted either by enzymatic19 or usual organic catalysts either in 

homogeneous or heterogeneous fashion.20 The conversion of various triglycerides and 

fatty acids to epoxides actually dates to 1940s.21 It is worth mentioning that nowadays 

epoxidized soybean oil (ESO) and different products based on epoxidized derivatives of 

fats and oils are already commercially available. For example, currently, fatty acid 
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epoxides are predominantly employed as PVC-plasticizers and stabilizers due to their 

ability to scavenge free HCl thus slowing down PVC degradation. Moreover, vernonia 

oil, a naturally occuring epoxidized vegetable oil, was used as a renewable raw 

material for the synthesis of novel symmetric and asymmetric bolaamphiphilic 

compounds with potential application in drug delivery.22 Beyond this, the epoxide rings 

can undergo electrophilic or nucleophilic ring-opening reactions to generate other 

chemical functions such as alcohol,23 azide,24 and carbonate25 (some representative 

reactions are shown in Figure 2.5). Hence, they represent valuable raw materials for 

the production of various polyurethanes.26 Although the synthesis of soybean oil-

based carbonate (CSO) required 70 h,25a,27 it was employed as a synthetic building 

block for the synthesis of isocyanate-free polyurethanes as well as polyesters which 

showed better bio-degradation behavior than other polyurethane systems. Since CSO 

has the potential to replace petroleum in the synthesis of biodegradable polymers, its 

synthesis has been recently improved. Erhan et al. uitilized supercritical CO2 as a 

solvent, thus enabling the synthesis of the material in ~ 1/3 of the reaction time 

reported in the literature.27d 
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Figure 2.5: Summary of some common functionalizations on epoxidized vegetable oils: A) 

epoxide ring-opening reactions in the presence of different nucleophiles: B) direct carbonation 

of epoxidized oil in the presence of CO2 and a suitable catalyst; C) hydrolysis of epoxidized oil 

generating hydroxylated vegetable oil. 

 

Radical, electrophilic, nucleophilic, as well as pericyclic additions to the C=C double 

bond of a readily accessible unsaturated fatty acid led to a large number of novel 

oleochemicals with interesting characteristics (Figure 2.6).8f,28 For instance, 

formaldehyde addition in an ene reaction onto unsaturated fatty acids in the presence 

of stoichiometric amounts of dimethylaluminium chloride (Me2AlCl) [or 

ethylaluminium dichloride (EtAlCl2)] generates a hydroxyl-carboxylic acid which, in turn 

is of interest as polyester component (Pathway C in Figure 2.6) 
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Figure 2.6: Some representative Lewis acid induced electrophilic addition reactions to the 

double bonds to afford: A) 4-chlorotetrahydropyrans; B) alkylated products (in this case: 9- 

and 10-isopropyloctadecanoic acid); C) β,γ -unsaturated oxocarboxylic acid. 

 

Another interesting and complex reaction of multiple C=C double bonds is the 

dimerization reaction.29 Different homogeneous and heterogeneous catalysts can be 

employed at relatively high reaction temperatures to yield a fatty acid dimer which can 

be further reduced into fatty diol dimers. Such materials are valuable monomers for 

specialty polymers, for instance to reduce the brittleness of polymers or introduce a 

higher hydrophobicity to materials. 

Naturally occuring fatty acids generally have the cis configuration and interest has 

been nowadays growing regarding the potential impact of trans fatty acids upon 

health. Thus, the cis-trans isomerization of double bonds is employed to convert the 

less thermodynamically stable cis-isomer into the more stable trans-isomer.30 Thyil 

radicals, produced from the homolysis of mercaptanes or sulfides, are suitable for this 
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reaction. The well-known example of this of type transformation is  the cis-trans 

isomerization of oleic acid (cis-9-octedecenoic acid) to ~ 80% trans-9-octadecenoic acid 

at 30 °C in the presence of active radicals generated from β-mercaptopropionic acid or 

diphenyl sulfide activated by UV light.31 On the other hand, in order to generate a 

conjugated arrangement of isolated, multiple C=C double bonds, alkaline hydroxides in 

alcoholic solution, nickel/activated coal and iron pentacarbonyl [Fe(CO)5] are examples 

of suitable catalysts.32 

By combining double-bond migration with an irreversible reaction step that selectively 

removes certain double-bond isomers from the equilibrium, new synthetic 

transformations for fatty acid derivatives can be accomplished (Figure 2.7).33 In this 

way, mixtures of double-bond isomers are selectively converted into valuable, 

terminally functionalized products. Hence, diverse functional groups can be introduced 

selectively at the terminal position of the alkyl chain, taking advantage of both the 

lower electron density and lower steric hindrance of terminal olefins relative to all 

other isomers [Figure 2.7, A)]. For example, [Ir(COE)2Cl]2/dppe as a catalysts promoted 

both the isomerization of the double bond from the 9,10-position of methyl oleate to 

the terminal position and the subsequent selective hydroboration of this isomer gave, 

in 45% yield, a product with terminal (C18 position) boronate ester group.33a 

Moreover, the resulting linear boronate of methyl oleate can be further converted into 

high-value-added chemicals, such as alcohol, amine, aldehyde, and alkyl halide. Along 

this, recently, the synthesis of 18-formyl stearic acid methyl ester, α,ω-bifunctional 

product containing both ester and aldehyde groups, was reported from unsaturated 

fatty acid methyl esters under hydroformylation conditions by using a rhodium catalyst 

bearing a sterically demanding phosphite ligand. Cole-Hamilton and colleagues were 

able to demonstrate the synthesis of dialkyl dicarboxylates by isomerising 

alkoxycarbonylation in the presence of a palladium-based catalyst system.33b 
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Figure 2.7: Examples of transition metal catalyzed double bond isomerizing tandem reaction in 

oleic acid derivatives: A) selective ω-functionalization of methyl oleate to yield ω-boronate, ω-

aldehyde and dialkyl dicarboxylate derivatives, respectively; B) direct synthesis of long-chain 

γ-lactones from oleic acid; C) transformation of ethyl oleate to β-substituted esters. 

 

On the other hand, a silver(I)-based catalytic system was employed in a one-step 

isomerization-γ-lactonization tandem process, which allowed the direct conversion of 

unsaturated fatty acids into the corresponding γ-lactones in good yields [in Figure 2.7, 

B)].34 In addition, the successful combination of isomerization and conjugate addition 

of aryl and nitrogen nucleophiles in the presence of a rhodium/phosphite system 

yielded valuable β-functionalized compounds.35 It was observed that the initial 

position of the double bond was not of relevance for the efficiency of the 

transformation. Although, as the number of possible double-bond isomers increased 

with growing chain length, even ethyl oleate, with a rather low concentration of the 

required α,β-unsaturated isomer in the equilibrium mixture, was selectively converted 

to the desired product. 
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In the context of double bond transformation, olefin metathesis and thiol-ene 

additions are considered as alternative and efficient processes, which contribute not 

only to a more feasible synthesis of plant oil-based polymers, but also to broaden the 

application possibilities of plant oils. Accordingly, these two reactions will be described 

separately in Chapter 3 since olefin metathesis and thiol-ene chemistry are employed 

as important synthetic methods and as polymerization techniques in this thesis. 

The ω-functionalization at the alkyl or alkenyl chains in fatty acids and derivatives 

could be highly desirable and of general economic interest, as they would lead to 

oleochemicals with new properties or serve as building blocks for polymer synthesis. 

However, the unreactive character of the sp3 C-H bonds makes the alkyl chain of fatty 

acid methyl esters barely accessible for almost any selective functionalization by 

chemical means. For example, the ω-CH3 has the highest dissociation energy for the C-

H bond, however, it exhibits the lowest steric hindrance for chemical reactions. Hence, 

multi-step processes including dehydrogenation, separation, and finally 

oxyfunctionalization are necessary to obtain the desired oxygenates.36 As an 

alternative, biocatalysts can be applied for the direct and selective oxyfunctionalization 

of inert C-H bonds.37 Accordingly, in recent work, a biocatalytic procedure was shown 

to be efficient for the selective functionalization of the ω-position of fatty acid methyl 

esters with medium length alkyl chains specifically (Figure 2.8).38 

 

 

Figure 2.8: General scheme of the ω−oxyfunctionalization of fatty acid methyl ester using a 

biocatalyst containing alkane monooxygenase genes.38 

 

In theory, all typical substitution reactions of aliphatic petrochemicals should be 

applicable on the saturated hydrocarbon chain of fatty acids and derivatives. In this 
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line, Hinkamp et al.
39 were able to report the chlorination of stearic acid with high 

selectivity in the (ω-2), (ω-1) and ω-positions of the corresponding free fatty acid by 

absorbing the fatty acid on alumina, thus allowing it to react with gaseous chlorine or 

t-BuOCl at 20 and – 35 °C. 

In contrary to the ω-position, the α-position of fatty acid derivatives is activated either 

by the neighbor carboxyl or ester group, thus it is feasible to perform several selective 

modifications40 on this reactive site, such as α−sulfonation, α-halogenation (Hell-

Volhard-Zelinsky reaction), Claisen condensation, alkylation, acylation and addition of 

carbonyl compounds. 

Taking the advantage of the naturally occurring functional groups present in 

triglycerides and the aforementioned further chemical modifications on the active 

sites, the application of plant oils and their derivatives in polymer chemistry has 

become an important research area in constant growth. The polymerization attempts 

of triglycerides, which are multifunctional monomers, usually ended up with the 

synthesis of cross-linked41 polymers along linear and hyperbranched42 ones. 

In addition to above mentioned transformation of typical fatty acids and derivatives, 

there are some readily available fatty acids that offer different substitution patterns. 

Nowadays, the only commercial source of such different substituted fatty acid is castor 

oil,43 naturalized and cultivated all around the world in temperate zones. Like other 

plant oils, castor oil is a triacylglycerol composed of various fatty acids and glycerol. 

The fatty acids consist of up to 90% ricinoleic acid and varying small amounts of 

saturated and unsaturated fatty acids.44
 The high content of ricinoleic acid is the 

reason for the high value of castor oil and its versatile application possibilities in the 

chemical industry. The pyrolysis of castor oil (Figure 2.9) splits the ricinoleate molecule 

to form heptaldehyde and undecenoic acid, as well as light gases and few percent of 

free fatty acids (saturated and unsaturated) from C10 to C18.43,45 The two products, 

heptaldehyde and 10-undecenoic acid are important raw materials for cosmetics (C11 

and C7 aldehydes are used in soaps, shampoos, talcum powders and perfume 

formulations), pharmaceuticals, and polymeric compounds.44 Furthermore, 

heptaldehyde is used as a solvent for rubber, resins, and plastics, and 10-undecenoic 
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acid can be directly used for applications as bactericides and fungicides.44 In addition, 

10-undecenoic acid was shown to be a valuable precursor for the synthesis of 

antitumor compounds and antibiotics,46 but most importantly, 10-undecenoic acid is 

one of the oldest renewable building blocks, being used in the industry as a Nylon 11 

precursor. 

 

 

Figure 2.9: The synthesis of the two of the most common industrial platform chemicals derived 

from castor oil via pyrolysis: heptaldehyde and 10-undecenoic acid.43,44,45 

 

On the other hand, ricinoleic acid can be polymerized with polyols in the presence of 

immobilized lipases from Candida Antarctica B and Rhizomucor miehei under solvent 

free conditions at 70 °C to yield poly(ricinoleic acid)-based star polymers.47 In addition 

castor oil was modified with acrylic acid, acryloyl chloride, and α,α´-dimethyl benzyl 

isocyanate (TMI). The acrylated castor oil derivatives were found to cross-link via 

radical photopolymerization, whereas the castor oil-TMI adduct was cross-linked via 

cationic polymerization.48 In addition, by taking the advantage of the hydroxyl group, 

castor oil was employed in the synthesis of wide variety of polyurethane products, 

ranging from coatings, cast elastomers, thermoplastic elastomers, rigid foams, semi-

rigid foams, sealants and adhesives to flexible foams;8b,49
 clearly showing that castor oil 

is and will be one of the most promising renewable raw materials for the chemical and 

polymer industries. 
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3 Efficient approaches for carbon-

carbon and carbon-hetero atom bond 

formations 

 

Maximizing the benefits of sustainable chemistry requires the development of 

innovative methods and/or the modification of the already existing procedures 

towards higher efficiency in terms of resources, and more benefit to the 

environment.2,3 Moreover, in a broader sense to favour research in academia as well 

as in industry. Such approaches include, for example, catalytic procedures.50,51 With 

regard to waste minimization, energy saving and atom efficiency catalysis is 

essential.3,50 Thus, catalytic methods offer an efficient strategy and represent a key 

technology for to advance of sustainable/green chemistry.52 Especially, the use of 

transition-metals as catalysts53 has brought a dramatic revolution in synthetic organic 

chemistry, particularly in carbon–carbon bond forming reactions. Nowadays, 

nucleophilic displacements, radical additions or organometallic couplings are the most 

useful chemical methods for the preparation of this type of bond.54 Moreover, among 

the various types of transition metal catalyzed C-C bond forming reactions, olefin 

metathesis,55 a C=C double bond breaking and reforming sequence, has become one of 

the most important synthetic organic tools in recent years, owing to the wide range of 

transformations that are possible with commercially available and easily handled 

catalysts.56-62 Clean reactions with minimal waste and by-products drawn on the olefin 
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metathesis to be categorized as potential sustainable method which is easily applicable 

either in the synthesis of “small” or “macro” molecules.62,63  

Concurrently, metal-free catalysis64 represents an attractive option in organic synthesis 

as alternative green approach by complementing environmental acceptability within 

widespread resources. Thus, during the past decades there was considerable effort 

directed toward the development of synthetic methodologies based on metal-free 

catalysts of high performance.65,66 In particular, organic catalysts are in many cases 

complementary to metal or enzyme catalysts. Recent reports highlight the advantages 

of organocatalytic approaches, especially in biomedical or microelectronic67 

applications where the presence of metal residues in the final material can be 

deleterious to their end use. In this aspect, the bifunctional character and high basicity 

of guanidines68 make them a common tool for the synthetic organic chemist for a 

variety of base participative organic transformation.  

On the other hand, Sharpless and co-workers introduced in 2001 the concept of click 

chemistry as an additional concept involving a set of highly efficient carbon-carbon and 

carbon-heteroatom bond formation reactions.69 Click systems are advantageous from 

the standpoint of starting with readily accessible starting materials, and resulting in 

products with high yields that can be isolable by non-chromatographic methods. Thus, 

the attention of these reactions is focused on the easy production of properties rather 

than on challenging structures. With this idea behind, the click philosophy has received 

widespread attention by researchers in different fields and inspired the publication of 

hundreds of papers in areas such as materials and polymer science, nanotechnology, 

drug delivery and the pharmaceutical sciences in general.70 Initially, the Cu(I)-catalyzed 

azide-alkyne cycloaddition attracted most of the attention in the field, however, many 

other reactions are consistent with the click philosophy. Most of these reactions were 

firmly established before the click concept was proposed. This is the case for the 

Michael addition and Diels-Alder cycloaddition, which have been traditionally used for 

decades. At the same time, the introduction of the click concept has attracted 

renewed interest on efficient classical transformations. 
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3.1 Olefin metathesis 

Among the large number of organic and organometallic reactions allowing the 

formation of carbon-carbon bonds, olefin metathesis has found its place in organic 

synthesis as well as polymer science as a very versatile tool that allows transformations 

that were not (or hardly) possible before.55,62 Olefin metathesis, or trans-

alkylidenation, is a chemical reaction that involves the rearrangement of alkene 

fragments by the scission of carbon-carbon double bonds, thus coupling, cleaving, ring-

closing, ring-opening, or polymerizing olefinic molecules (Figure 3.1). Moreover, the 

reversible nature of the process is a reason for the formation of equilibrium mixtures 

of starting materials and products. Thus, the driving force behind this reaction is either 

the release of ring strain, the formation of a stable ring, or the formation of volatile co-

products (mainly ethylene). The extension of this reaction to triple bonds was made 

possible and termed as ene-yne and alkyne metathesis.71  In addition, advantages 

including the creation of fewer side products and non-hazardous wastes make this 

reaction an alternative sustainable process. Evidently, the importance of the 

development of metathesis methods in organic synthesis was recognized by the award 

of the Nobel Prize in Chemistry for 2005 jointly to Yves Chauvin, Robert H. Grubbs, and 

Richard R. Schrock. 
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Figure 3.1: Types of transition metal-catalyzed olefin metathesis transformations: (a) self-

metathesis (SM), (b) cross-metathesis (CM), (c) ring-opening metathesis (ROM), (d) ring-closing 

metathesis (RCM), (e) enyne cross-metathesis (enyne ROM), (f) enyne ring-closing metathesis 

(enyne RCM), (g) metathesis polymerizations, respectively ring-opening (ROMP) and acyclic 

diene metathesis (ADMET) polymerizations. 

 

Although the olefin metathesis reaction was reported as early as 1955 in a Ti(II)-

catalyzed polymerization of norbornene,72 it took approximately 15 years till Hérisson 

and Chauvin envisioned the today’s still accepted mechanism for the first time (Figure 
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3.2).73 According to this mechanism, a metallacyclobutane intermediate is formed via 

the [2+2] cycloaddition of an olefinic double bond with a metallocarbene, and the 

consequent cycloreversion of the metallacyclobutane in the opposite sense leads to a 

new olefin and a metal alkylidene. Investigations performed by Casey,74 Katz75 and 

Grubbs76 helped to unlock the key to the reaction, thus providing experimental 

evidences for the validity of the mechanism. Notably, Casey and co-workers were the 

first to show that an exchange between a metal carbene and an olefin occurs as a 

fundamental step in the olefin metathesis.74 The contributions by Katz et al. were 

mainly focused on the kinetics of the reaction, while Grubbs used isotopically labeled 

olefins to track the exchange of the groups. 

 

 

Figure 3.2: The generally accepted mechanism for olefin metathesis postulated by Hérisson 

and Chauvin in 1971.73 

 

The proposed mechanism introduced new essential ideas for the development of new 

catalysts, thus many transition metals have been investigated considering their 

applicability in olefin metathesis either in homogeneous or heterogeneous fashion. 

Initially, poorly defined group VIII multicomponent catalysts, such as Mo(CO)6/alumina, 

WCl6/Bu4Sn, MoO3/SiO2 and WOCl4/EtAlCl2,77 which did not possess an alkylidene 

fragment, were employed until the mid of 1970s. It is now established that ill-defined 

catalysts form the active alkylidene in situ either after the addition of a carbene source 

or by coordination of the substrate to the coordinative unsaturated complex with 

subsequent 1,2-hydrogen shift. While these catalysts were generally cheap and readily 

commercially available, the lack of initiation efficiency (especially in polymerization 
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reactions) triggered researchers to look for more efficient ones. Hence, reports of well-

defined early and late transition metal akylidenes as metathesis catalysts began to 

appear in the literature.59,78 In 1986, the first well-characterized, highly active, neutral 

tungsten (C1) and molybdenum (C2) alkylidene complexes were synthesized by 

Schrock and co-workers (Figure 3.3).79 

 

 

Figure 3.3: First well-defined catalysts developed by Schrock.79 

 

Even though C1 and C2 were employed both in the metathesis of different olefins and 

the ROMP of functionalized norbornene to polynorbornene with low polydispersities,80 

the low stability of these catalysts in combination with their limited functional group 

tolerance was still a major drawback. 

Alternatively, the coordination chemistry of ruthenium (Ru-) complexes progressed, 

and features like high electron transferability, low redox potentials, stability of reactive 

metallic species, metallacycles, and metal carbenes of Ru had opened the way for a 

broad variety of catalytic transformations. Thus, in 1992, Grubbs and co-workers 

synthesized a Ru-complex via reaction of RuCl2(PPh3)3 with phenyldiazomethane and 

tricyclohexylphosphine. This well-defined Ru-catalyst, named as the first generation 

Grubbs catalyst (C3 in Figure 3.4), is known as remarkably tolerant towards many 

organic functional groups.81 Hence, it is widely used in organic syntheses under a 

variety of reaction conditions, including protic media. Consequently, Hermann and co-

workers contributed to the improvement of the performance of C3 by reporting on the 

synthesis of mononuclear as well as binuclear N-heterocyclic carbene (NHC)-based Ru-
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alkylidenes.82 Although NHCs are considered to be analogous to tertiary phosphine 

ligands, complex C4 (Figure 3.4), which resulted from the replacement of one 

tricyclohexylphosphine by a (NHCs), often perform superior to C3 in terms of catalytic 

activity and stability. The introduction of a chelating isopropoxybenzylidene moiety in 

this catalyst by Hoveyda and co-workers (Hoveyda-Grubbs 2nd generation catalyst, C5 

in Figure 3.4), and the design of the fast initiating bromo-pyridine catalysts (known as 

third generation Grubbs catalyst, C6, Figure 3.4) are other notable historical 

developments in the progression of olefin metathesis catalysts.83 While C5 affords 

superior stability, C6 has greatly benefited polymer synthesis in materials application 

especially with the synthesis of well-defined polymers with low polydispersity values 

via ROMP. So far, to tailor the applicability of metathesis catalysts, C7 (known as Zhan-

1B catalyst) was developed by Prof. Zhan based on the modification of the structure of 

C5, as an efficient and air stable catalyst giving rise to different synthetic possibilities.84 

With the introduction of strong electron withdrawing group para to the ligatating iPrO 

in C5, the chelation between iPrO and Ru is weakened thus facilitating initiation of the 

catalytic cycle. 

Since then, significant progress has been made to understand both catalyst and 

substrate structural features, and more importantly, their interactions. As a result of 

this continuous improvement, nowadays, many different catalysts exist with activities 

that are tuned towards a variety of specific applications. Very recently, a modified 

catalyst showed great promise in the Z-selective olefin metathesis (C8, in Figure 3.4).85 
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Figure 3.4: The development of Ru-based olefin metathesis catalysts. 

 

Dixneuf, Fürstner, Hill and Nolan developed a parallel system to first, second and third 

generation Grubbs catalysts, where the benzylidene ligand is replaced by an 

indenylidene one (Figure 3.5).86 

 

 

Figure 3.5: Ru-indenylidene analogues (C9, C10 and C11) of Ru-benzylidene catalysts C3, C4 

and C6.86 

 

The feasibility of the olefin metathesis reaction has led to search for more stable and 

active Ru catalytic systems. Moreover, it is known that the catalytic activity and latency 
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of a metathesis catalyst is affected either by direct substitution of the chelating 

heteroatom or by proper functionalization of the chelating benzylidene ether (like in 

the case of C7, Figure 3.4).87 Thus, encouraged by the success of a method based on 

proper functionalization of the chelating benzylidene ether, Grela and co-workers88 

investigated the effect of modifying C5 by introducing a donor group (in this case keto 

group) as a terminal substituent of the benzylidene ether. Accordingly, it was observed 

that, the keto functionalized Hoveyda-Grubbs 2nd generation catalyst (C12, Figure 3.6) 

exhibited higher performance than the unmodified C5 in RCM and CM, for both 

standard and challenging substrates. 

 

 

Figure 3.6: New precatalyst generated from monofunctionalized styrenyl ethers; ketyl 

functionalized Hoveyda-Grubbs 2nd generation catalyst.88 

 

Many review articles89,56 on olefin metathesis have appeared in the last years; some of 

them concerned a particular group of compounds like carbohydrates, peptides, or fatty 

acids. An attractive application of alkene metathesis deals with the transformation of 

plant oil derivatives into added-value molecules.7e For instance, recently, the 

transformation of plant oil unsaturated acid derivatives into α,ω-bifunctional linear 

molecules90 with potential as surfactants or monomers, precursors of polyesters,91 and 

polyamides92 has been successfully accomplished. The cross-metathesis of plant oil 

unsaturated acids and esters with acrylonitrile in the presence of Ru-alkylidene 

complexes such as C3 and C5 catalysts has just allowed the direct access to linear α,ω-

nitrile acid/ester derivatives,93 some known precursors of polyamides.92d 
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Apart from the synthesis of high-added value molecules, olefin metathesis has turned 

to be a powerful polymerization technique for the synthesis of various functionalized 

polyalkenes, alternating block-copolymers, telechelic, and even hyperbranched 

polymers.94 ROMP and ADMET are attractive synthetic tools for polymer chemist since 

these polymerizations can be performed under extremely mild and user-friendly 

conditions. The general structures of the polymers obtained by ADMET and ROMP are 

illustratable in the same fashion [compare Figure 3.1, (g)], however each requires a 

different set of considerations for successful polymerization.94 

Acyclic diene metathesis (ADMET) polymerization is a step-growth polymerization 

driven by the release of a condensate, usually ethylene.95 ADMET is typically 

performed on α,ω-dienes to produce well-defined and strictly linear polymers with 

unsaturated polyethylene backbones. The mechanism of the ADMET polymerization 

cycle is well established (Figure 3.7).96 

 

 

Figure 3.7: Generally accepted mechanism of ADMET polymerization.96 
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The olefin coordinates to the metal centre followed by formation of a 

metallacyclobutane intermediate (1). At this point, the productive cleavage of 1 leads 

to the formation of the metathesis active alkylidene complex (2). Subsequent reaction 

with the double bond of another monomer produces the metallacyclobutane ring (3), 

which subsequently leads to polymer formation. The cycle proceeds with coordination 

of another diene or growing polymer, followed by productive cleavage, and release of 

ethylene. Since all the species involved in this catalytic cycle are in equilibrium, in 

order to shift it towards polymer formation, ethylene is usually removed from the 

reaction mixture by applying vacuum or by using a constant flow of an inert gas, such 

as nitrogen or argon. 

Regarding other experimental issues, ADMET polymerizations, just like any other step-

growth polymerization, are preferably performed in bulk to avoid the formation of 

cyclic oligomers. However, as the polymerization proceeds and high molecular weights 

are achieved, the viscosity increases impeding stirring and making an efficient ethylene 

removal difficult. For this reason, depending on the monomer properties, the use of 

solvents can be necessary to reach high conversions. In these cases, non-volatile 

solvents such as toluene or o-xylene are preferred. Already the first reports on ADMET 

highlighted the mild reaction conditions required to polymerize non-functionalized 

α,ω-dienes as a main advantage of this technique. Nowadays, the availability of robust 

and versatile metathesis catalysts permits the ADMET polymerization of a wide variety 

of functionalized α,ω-dienes at low temperatures. It is essential to the success of 

ADMET polymerizations to prevent side reactions. This can be realized by choosing a 

suitable catalyst and suitable reaction conditions. Each type of catalyst system has 

strengths and weaknesses, thus the choice particularly depends on the functional 

groups of the diene to be polymerized and other factors like the melting point or 

solubility of the monomers. For instance, increasing the steric hindrance of the olefins 

leads to decreased metathesis rates.97 Sterically hindered and electronically 

deactivated substrates are often rather difficult to polymerize with C4, however the 

activity of C5 has often surpassed that of Schrock type Mo-based metathesis 

catalyst.98,99 This clearly indicates that the functional group tolerance is partly 

dependent on the central metal, while it can be improved by ligand design.100 
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As already indicated above, the key to improved functional group tolerance in olefin 

metathesis was the development of catalysts that react preferentially with olefins in 

the presence of heteroatomic functionalities. Being less oxophilic, well defined Ru 

catalyst systems developed by Grubbs and co-workers have thus been used to 

polymerize monomers containing ketones,101 alcohols,59 esters,102,103 ethers,104 silyl 

chlorides, siloxanes,105 amides,106,107 and carboxylic acids.103 Additionally, these 

complexes allowed solution ADMET polymerization of amino acid containing 

monomers.108 

ADMET does not always produce defined polymeric architectures when olefin 

isomerization competes with metathesis chemistry, an issue that has been related to 

catalyst chemistry.109,110 As a result, double bond isomerization side-reactions have 

been the subject of extensive research. Double bonds can migrate (isomerize) along 

the polymer backbone and/or in the monomer during olefin metathesis and, as a 

result, the repeat unit structure of the produced polymer can become irregular with 

respect to carbon chain length and double bond position.  

Many heterogeneous and homogeneous organometallic complexes were reported to 

promote the olefin isomerization.109,110 Although the exact mechanism for the Ru 

catalyzed olefin metathesis was not established, two major mechanisms were 

proposed for transition metal catalyzed isomerization of olefins.110 As one of the two 

prevalent pathways, the π-allyl mechanism (intramolecular 1,3-hydrogen shift) is less 

common (Figure 3.8, A). The key step in this pathway is supposed to be the oxidative 

addition of an activated allylic carbon-hydrogen bond of the olefin substrate to a 

transition metal complex (in this case Ru-based metal complex in Figure 3.8, A) with 

the formation of a π-allyl metal hydride intermediate. By reductive elimination of the 

olefin from this intermediate, the isomerization would be observed if the hydrogen 

shifts to the α-carbon instead of returning to the γ-carbon (in the case of terminal 

alkene, as depicted in Figure 3.8, A). The other established pathway for olefin 

isomerization is the metal hydride addition/β elimination mechanism (alkyl mechanism 

or 1,2-hydrogen shift) (Figure 3.8, B).110 In this mechanism, free olefin coordinates to a 

kinetically stable metal hydride species to give a π-complex. Subsequent insertion 

(hydrometalation) into the metal-hydride bond yields a σ-alkyl complex. Formation of 
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the secondary metal alkyl followed by β-elimination yields isomerized olefins and 

regenerates the initial metal hydride by dissociation of the isomerized alkene. 

Considering the research performed upon the mechanistic investigations of olefin 

metathesis, it could be concluded that the π−allyl metal hydride mechanism is the 

more likely mechanism for Ru catalyzed metathesis reactions. 

Two decades ago, some reports assumed that isomerization might result during the 

purification of the final metathesis product by distillation.111 Fürstner and co-workers 

isolated a Ru-dihydride complex, RuCl2(PCy3)2(H)2, that they proposed to be 

responsible for the isomerization, presumably through a hydride mechanism.112 

Furthermore, Sutton et al. suggested that impurities in the metathesis catalyst lead to 

the isomerization.113 Recent studies showed that Ru-hydride species, either formed in 

situ from the decomposition of the Ru-metathesis catalyst or present as impurities in 

the original catalyst, are responsible for the isomerization process.110 For instance, 

mechanistic investigations of the thermal decomposition of the second generation 

catalyst from Grubbs (C4) clearly showed that heating the catalyst results in the 

formation of a binuclear Ru-hydride complex, which is most likely responsible for the 

isomerization.114 During the last decade, several strategies have been reported that 

can reduce the amount of olefin isomerization side reactions. For instance, 

phenylphosphoric acid115 and benzoquinones116 have been reported to efficiently 

suppress olefin isomerization side reactions during metathesis reactions. Moreover, tin 

and iron halogenides have been reported to not only enhance the metathesis activity 

of Grubbs type catalysts, but also to reduce or even completely suppress the 

isomerization side reactions.117 In order to be able to quantify the actual amount of 

isomerization during ADMET polymerizations, a strategy to analyze the monomer 

repeat units after ADMET polymerization by GC-MS was recently developed.118 Within 

this study not only the quantification of side reactions was possible, but also the 

polymerizations procedures were developed using second generation catalysts that 

allowed for the preparation of well-defined polymers with very little isomerization. 
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Figure 3.8: Two possible mechanistic pathways of metal catalyzed olefin isomerization:110 A) π-

allyl hydride mechanism (up); B) hydrometalation/β-hydride mechanism (down). 

 

The discovery and use of both the Schrock and Grubbs metathesis catalysts opened the 

way for the synthesis of various polymer architectures and functionalities via 
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ADMET.59,94,95,100-108 Consequently, broad ranges of novel polymers with designed 

architectures can be prepared that are difficult or impossible to synthesize via other 

routes. A variety of telechelic polymers has been prepared, both directly and by the 

ADMET depolymerization of unsaturated polymers,119 and some of these were used 

for the synthesis of segmented and ABA-type block copolymers.120 Furthermore, 

ADMET enabled synthetic routes to perfectly linear polyethylene and to a variety of 

alkyl branched and functionalized polyethylenes with precisely placed pendant groups 

along the hydrocarbon backbone.94 Graft copolymers with "perfect comb" structures 

are also accessible through ADMET polymerization.121 Many representative examples 

of these diverse materials with defined architectures were surveyed with recent 

reviews published by Meier et.al and Wagener et al.
94 

The alternative reaction, the so-called ROMP,122 involves a chain-growth 

polymerization of cyclic olefins to linear unsaturated polymers as illustrated in Figure 

3.1, (g). Several industrial processes involving ROMP have been developed and brought 

into practice, such as the ROMP of cyclooctene, norbornene and dicyclopentadiene, 

leading to useful polymers.123 

An important feature that distinguishes ROMP from typical olefin addition 

polymerizations is that in ROMP any unsaturation associated with the monomer is 

conserved as it is converted to polymer. 

The mechanism for ROMP in the presence of C4 is based on the general mechanism 

proposed by Chauvin (Figure 3.9).73 Initially, a 14 electron complex dissociated from 

the metathesis initiator (C4) undergoes [2+2] cycloaddition to give a 

metallacyclobutane intermediate, which rapidly undergoes [2+2] cycloreversion to 

produce a ring opened product. This sequence is highly thermodynamically favoured 

due to the relief of the ring strain of the initial monomer. This intermediate contains 

the catalytically active Ru-alkylidene and undergoes further reactions until the 

monomer is completely consumed. Subsequent quenching with ethyl vinyl ether124 

results in a polymer and an alkoxycarbene complex. 
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Figure 3.9: A general mechanism for C4 mediated ROMP based on Chauvin´s mechanism.73 

 

Regarding metal-mediated ROMP reactions, some features are considered as quite 

prominent in the polymerization and on the final product, respectively.122 For instance, 

ROMP reactions are generally reversible like most olefin metathesis reactions. 

However, ROMP polymerization reactions can be equilibrium-controlled and the 

position of the equilibrium (monomer vs. polymer) can be predicted by considering the 

thermodynamics of the polymerization. Thus, the driving force is the release of the 

ring strain; in other words, cyclic, bicyclic, and polycyclic olefins having a more negative 

∆G value of polymerization due to their increased ring strain are especially prone to 

polymerize via ROMP.125 For instance, cyclohexene, with a very little enthalpic driving 

force, does not undergo ROMP.126 On the other hand, the temperature and 

concentration at which the ROMP is conducted have an additional strong influence 

over the outcome of the reaction.127 Generally, the highest monomer concentration at 

the lowest possible temperature results in a successful ROMP reaction. 

Among other living/controlled polymerization techniques, living ROMP (LROMP) has 

recently emerged as a powerful tool for the polymer chemist due to the absence of 

side reactions which can occur in conventional ROMP, such as chain termination and 

chain transfer.128 As a consequence, the synthesis of well-defined polymers with 
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controlled molecular weight and narrow PDI can be accomplished. The introduction of 

well-defined catalysts that mediate living ROMP has pushed the frontier of living 

polymerization.83 In this context, Grubbs-type catalysts (C4, C5 and C6 in Figure 3.4) 

have been proven to be particularly useful in ROMP due of their high tolerance toward 

air, moisture, and functional groups.83c,129 ROMP performed in the presence of slow 

initiating 2nd generation catalysts (C4 and C5) is fast but uncontrolled; on the other 

hand, the 3rd generation dipyridine analogue C6 displays both high reactivity and 

precise specification of chain lenghts, with PDIs as low as 1.02.83c For example, the 

LROMP of cyclobutenecarboxamide (a glycine derivative) in the presence of C6 

generated amino acid functionalized polymers (PDIs ranging from 1.2 to 1.6.) with a 

stereoregular backbone, and moreover these polymers showed excellent prospects for 

applications in both materials and chemical biology (Figure 3.10).130 

 

 

Figure 3.10: Regio- and stereoselective ROMP of glycine-derived cyclobutene.130 

 

In recent years, Ru-indenylidene complexes have been intensively investigated as the 

promising alternative to the Grubbs type benzylidene derivatives in all areas of olefin 

metathesis. In line with this, the scope of C11 (Figure 3.5) in the living/controlled 

ROMP of norbornene-type monomers was demonstrated.131  

Regarding the stereochemistry of ROMP polymers, it was considered that the above 

mentioned Ru-based initiators gave only exclusively trans polymers,132 while Grubbs et 

al. has recently demonstrated that classic Ru-catalysts (for example C4) can give 

polymers with unexpectedly high cis selectivity in certain situations (48 - 96%).133 It 

was observed that the cis content in the final polymer varied significantly with the 
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monomer structure: bicyclic monomers resulting in high cis content in contrast to 

monocyclic monomers. 

Living ROMP reactions are commonly quenched deliberately through the addition of a 

specialized reagent.124 The function of this reagent is either to selectively remove and 

deactivate the transition metal from the end of the growing polymer chain (i.e. ethyl 

vinyl ether) or install a known functional group in place of the metal.134 Vinylene 

carbonate and 3H-furanone, as examples of unsaturated lactones, are alternative 

quenching agents for ROMP. By using those, aldehyde and carboxylic acid end-groups 

can be introduced. 

In the search for high performance polymer architectures, norbornene and its 

functionalized derivatives have become the monomers of choice for living ROMP due 

to commercial availability, low cost, and general ease of synthesis.135 Moreover, the 

high ring strain136 (about 27.2 kcal/mol) allows for efficient polymerization, and 

furthermore, certain substituents on the norbornene can prevent secondary 

metathesis of the polymer backbone. 

In line with green/sustainable chemistry, the integration of renewable monoterpenes 

(such as limonene oxide or β-pinene) in the ROMP polymerization of 

dicyclopentadiene (another commonly used ROMP monomer) allowed the synthesis of 

hyperbranched polymers137 or thermosets.138 In the latter case, the presence of β-

pinene, during the ROMP of dicyclopentadiene altered the degree of cross-linking and 

plasticized the thermoset, thus creating a sustainable method for altering the physical 

properties (modulus and glass transition temperatures) of thermosets. 

Literature survey revealed many review articles focused on ROMP and 

LROMP.89d,94b,122b,139 For instance, Grubbs et al. covered the fundamental aspects of 

living ROMP and briefly traced its historical development from a catalyst-design 

perspective.122b Additionally, they illustrated the utility of living ROMP in the 

preparation of macromolecular materials with advanced structures and functions. On 

the other hand Slugovc and co-workers presented the current state of research in 

ROMP reactions initiated by Ru-benzylidene and indenylidene complexes, emphasizing 

the use of ROMP reactions employing sustainable substrates.94b In addition, the 
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usefulness of combining ROMP with other synthetic techniques such as RAFT, ATRP or 

click chemistry was highlighted.94b On the other hand, Nguyen et al. outlined the 

promising emergence of ROMP-derived amphiphilic block copolymers containing 

therapeutic agents, their assembly into polymer nanoparticles, together with their 

modification for the targeting group attachment.139 

 

3.2 Guanidines as efficient and promising organocatalysts 

Although chemical transformations employing organic catalysts have been reported 

over the past century, the sudden “birth” and the rapid growth of this field dates back 

to the 1990s.66b,140 However, it took 10 more years until the term “organocatalysis” 

was introduced to the chemical literature and since then, it is accepted as one of the 

main branches of catalysis. Although organocatalysis offers economic, environmental 

and scientific benefits, the significant advantages are in terms of operational simplicity 

and potential for new synthetic possibilities. Along this, of particular importance is the 

often lower toxicity of the used catalysts. Hence, several publications that give a 

comprehensive overview of organocatalysis are available.66,141 

The guanidine functional group, which is frequently found in bioactive compounds, 

either from natural sources142 or of synthetic origin,143 constitutes an attractive 

building block not only in total synthesis, but also for the design of new materials 

(Figure 3.11).144 Recently, guanidines and guanidinium salts are additionally employed 

as ionic liquids and encountered in coordination chemistry as guanidinium counter 

cations, as chelate guanidinate, and as neutral guanidine ligands with different 

metals.145 Special interest in guanidine originates also from its activity as strong neutral 

organic base, which in turn arises from the resonance stabilization of their conjugated 

acids. 
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Figure 3.11: Examples of guanidines either from natural source or of synthetic origin: the 

amino acid arginine (L-Arginine), (±) isoalchorneine, 1,1,3,3-tetramethylguanidine (TMG) and 

1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), respectively. 

 

Modifications on the guanidine skeleton by the introduction of chirality into the 

molecule are a widely and easily applied approach for the synthesis of a variety of 

guanidine bases. The driving force behind some of the major advances made in the 

development of bicyclic guanidines is the synthesis of both inorganic and organic solid-

supported derivatives.146 

The tetrasubstituted bicyclic guanidine TBD (Figure 3.12) represents the most widely 

used member of the family of bicyclic guanidines,147 which have been previously 

utilized as organocatalysts in many transformations for the synthesis of fine 

chemicals,68b,148 and the polymerizations of diverse monomers, either via 

polycondensation149 or (controlled) ring-opening polymerization (Figure 3.12).150 
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Figure 3.12: Scope of TBD reactivity.145,148,150 

 

Additionally, the green aspects of TBD-promoted chemistry have been explored by 

examining the potential for catalysis under solvent-free conditions. For example, 

Waymouth et al. have shown that the secondary amides from vinyl, benzyl and ethyl 

esters, as well as primary amides can be afforded in the presence of TBD under bulk 

conditions.147 Furthermore, the same researchers have also shown that TBD is 

additionally an efficient catalyst for transesterifications and for the ring-opening 

polymerization of cyclic esters such as lactide, δ-valerolactone, and ε-caprolactone.147 

Extension to other monomer systems has been established, including the 

polymerization of cyclic carbosiloxanes,151 trimethylene carbonate,152 and other 

substituted cyclic carbonate monomers. The flexibility of the TBD organocatalytic 

system was demonstrated with the formation of organic-inorganic hybrid materials 

involving the graft polymerization of ε-caprolactone onto a polysilsesquioxane.153 

Regarding the mechanistic investigations of the polymerization, comparative 

experiments and NMR analyses indicated that the NH proton is vital to the high activity 

and stereoselectivity. Based on X-ray diffraction analysis of both guanidine and 
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adducts, a preliminary mechanism has been proposed to illustrate a dual activating 

mode (Figure 3.13).150 

 

 

Figure 3.13: The acetyl transfer: an initially proposed mechanism by which TBD catalyzes ring-

opening polymerization of lactide.150 

 

Based on observations from a bifunctional thiourea amine system, an alternative 

system was proposed.154 

 

 

Figure 3.14: Reaction intermediate predicted by computational studies.154
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Accordingly, the dual activation of the monomer and alcohol occurs only through 

hydrogen bonding to the guanidine, giving intermediates (A) and (B) in Figure 3.14. 

This is energetically preferred over the acetyl transfer pathway, and furthermore the 

theoretical results were consistent with the experimental data. 

In line of sustainable chemistry, an important target is the utilization of TBD along 

renewable resources (such as plant oils or CO2) as a carbon resource. Hence, in 1996, 

Costa and co-workers showed that TBD catalyses the reaction of acetylinic amines with 

CO2 to form 5-methylene-oxazolidin-2-ones.155 Although no mechanism was proposed 

for the role of the guanidine catalysts, it was found that the rate of reaction was 

independent of the pKa of the catalyst. Another report has shown that TBD catalyzes 

the synthesis of propylene carbonate from propylene glycol and carbon dioxide.156 In 

addition, TBD was employed as an excellent catalyst for polycondensation reactions 

thus leading to terpene-based polyesters (Figure 3.15)149 and isocyanate-free, well-

defined, bio-based segmented polyurethanes.157 Recently, Hillmyer et al. 

demonstrated the controlled ring-opening transtesterification polymerization of a 

monomer produced from renewable resources in the absence of solvents, and at 

moderate temperatures, using TBD.158  
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Figure 3.15: Bio-based polyesters obtained via TBD mediated homopolymerization of terpene-

derived heterodifunctional monomers.149b 

 

Due to its hydrophilic nature, TBD also plays an important role in the stabilisation of 

protein conformations through hydrogen bonding and in the mediation of solubility of 

natural products. The lability of the NH atom of TBD has been exploited in an isotope 

exchange reaction.159 Using 4´-methoxyacetophenone as a test substrate and a catalyst 

loading of 30% at room temperature, the total incorporation yield for TBD was 92% 

after 0.5 h. Besides this, TBD is considered as a very interesting agent in designing 

molecular systems for crystal engineering and for studies of the proton transfer 

reactions and formation of hydrogen-bonded chains with phenols and C-H acids.160 

The existing chemistry for the synthesis161 of non-functionalized bicyclic guanidines 

requires multi-steps or it is based on the use of expensive starting reagents (Figure 

3.16, A). A simple one-pot method was published in 1986,162 hence this procedure led 

to the commercial availability of TBD, driven by an interest in the utilization of these 

compounds for many applications. Despite the good yield provided by this method, the 
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generation of toxic intermediates and the formation of hydrogen sulfide have 

motivated the search for more environmentally-friendly synthesis methods. Therefore, 

recently, a greener method was developed for the synthesis of TBD (Figure 3.16, B).163 

According to this method, TBD was generated easily by the condensation reaction of 

TMG (or cyanamide) with bis(3-aminopropyl)amine at reaction temperature in the 

range of 130-170 °C. The noteworthy advance of this approach was the high purity of 

the TBD (>95%), obtained in one step without any additional purification. Moreover, it 

was shown that the addition of strong acids up to 1.0 equivalent of the amount of 

triamine drastically improved the yields of TBD versus the likely occurring side 

reaction; the polyimine formation. Furthermore, it was observed that all guanidine 

moiety-containing structures (besides melamine) can produce a cyclic guanidine. The 

authors concluded that the major driving force for the reactions was the constant 

removal of volatile amines (dimethylamine in the case of TMG) from the reaction 

mixture. Accordingly, the formation of TBD starts with the substitution of a nitrogen 

atom in the guanidine with a nitrogen atom, from the triamine, followed by a number 

of further substitutions with formation both TBD and oligomeric products. 
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Figure 3.16: Schematic representation of methods for the synthesis of TBD: A) the 

commercially adapted162 and B) recently proposed “green” approach,163 respectively. 

 

In summary, along the aforementioned advantages over more traditional catalysts, the 

ease of handling and mildness of reaction conditions certainly make TBD a catalyst of 

choice for many applications. 

 

3.3 Thiol-ene reaction 

Researchers are continuously seeking the development of highly efficient and 

orthogonal reactions that do not require any metal catalyst in order to contribute to a 

sustainable chemistry. This has created a trend toward the convergence of synthetic 

organic techniques within the 12 principles of Green Chemistry. Along this trend, in 

2001, Sharpless and co-workers introduced the term “click chemistry” to define a set 

of nearly perfect reactions that resemble natural biochemical ligations.69 Thus, in order 

to a reaction to be considered as a click, certain requirements which should be 
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fulfilled, such as simplicity, high reactivity, and broad variety of available reagents 

applicable in wide scope of reactions.69 

Given that there have been a number of outstanding reviews written on polymer 

synthesis via click chemistry for different applications,69,164 a brief introduction of the 

employed reactions and summary of the very recent developments in thiol-ene 

coupling is aimed within the following paragraphs. 

Whilst commonly copper (I)-catalyzed alkyne−azide cycloaddi`on (CuAAC) is 

highlighted as click chemistry,
69

 the concept is not limited to the CuAAC reaction, and 

involves many reactions with distinct mechanisms and conditions [Figure 3.17, (a)]. 

However, due to the toxicity of copper and the inherent danger of working with azides, 

a growing interest has rose in the development of copper and azide-free chemistry. 

Regarding this, Schubert et al. published an overview of the latest achievements in 

metal-free click chemistry.
165

 Within the past decade, Bertozzi and co-workers have 

developed the reaction of azides with cyclooctyne derivatives
166

 referred to as strain-

promoted azide-alkyne coupling (SPAAC) [Figure 3.17, (b)]. With this contribution, it 

was clearly observed that the cyclooctyne derivatives greatly increased the reactivity 

of azide−alkyne cycloaddi`ons in the absence of copper, par`cularly when 

difluorinated. However, the complex synthesis of the difluorinated cyclooctynes 

remains a limitation.
167

 The well-known Diels-Alder reaction, first reported by Otto 

Diels and Kurt Alder in 1928,
168

 which is a highly selective [4 + 2] cycloaddition 

between an electron-rich diene and an electron-poor dienophile, is another commonly 

applied example of click chemistry [Figure 3.17, (c)]. Contrary to other click reactions, 

which result in carbon-heteroatom bonds, DA click cycloadditions result in new 

carbon-carbon bonds in a “reagent-free” manner that does not require catalyst, 

photoinitiator, or radical initiation, however, with the drawback of relatively longer 

reaction times.
169
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Figure 3.17: (a) copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC), (b) azide-alkyne 

coupling (SPAAC), (c) Diels-Alder (DA) cycloaddition, (d) radical-mediated thiol-ene coupling, 

(e) thio-Michael addition to maleimides, and (f) to vinyl sulfones. 

 

Thiols have been used in diverse chemical reactions for well over a century; on the 

other hand practical considerations regarding the utilized thiols include such as odor, 

the storage and shelf life stability. However, with the improved synthetic methods, 

these challenges have been overcome and features such as wide accessibility made 
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thiols to good candidates for the click reactions. Consequently, reactions such as 

nucleophilic substitutions, thio-Michael additions, and radical thiol-ene couplings are 

considered as other highly efficient transformations that fulfil the click criteria [Figure 

3.17, (d)-(f)].170,171 The history of Michael type addition of thiols to α,β-unsaturated 

carbonyl compounds dates back to 1940s,172 and to this day, it continues to be a 

versatile tool within different fields of organic chemistry. The reaction rates of this 

versatile approach depend on the nucleophilicity of the thiol component.171 While 

thiol-maleimide [Figure 3.17, (e)] is a relevant example for protein conjugation,173 the 

vinyl sulfone-thiol click reaction [Figure 3.17, (f)]70d is serving as an important cross-

linking mechanism for the synthesis of enzyme-degradable hydrogels. On the other 

hand, the hydrothiolation of a C=C bond [Figure 3.17, (d)], which is already known 

since a century,174 has been limited to the synthesis of simple thioethers and to kinetic 

studies for a long time.175 However, it re-emerged as a powerful approach with the 

first implementation in polymer science by means of preparing near-perfect networks 

and films.176 Schlaad and co-workers were the first to name the radical-mediated thiol-

ene reaction as a click reaction,177 when they investigated the radical addition of 

hydrophilic and hydrophobic thiols (like mercaptan) onto the poly[2-(3-butenyl)-2-

oxazoline] homo- and copolymers. In this way, the thiol-ene coupling was utilized as a 

versatile tool for the synthesis of tailor-made polymers. 

The free-radical chain mechanism was established as the initial mechanism of thiol-ene 

coupling by Kharasch and co-workers.178 Hence, typically, the thiol-ene reaction is 

conducted through generation of a thiyl radical from a thiol, either thermally, radically 

or by light initiation. Subsequently, the thiyl radical adds to the alkene in an anti-

Markovnikov fashion to give an alkyl radical that, by abstraction of a hydrogen radical 

from the thiol, leads to the final thioether and a new thiyl radical, thus maintaining the 

propagation of the radical chain (Figure 3.18). In addition, to this well-established 

mechanism, there is a comprehensive literature on the reaction pathways and kinetics 

of thiols.179 
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Figure 3.18: Mechanism of thiol-ene coupling induced either thermally, by light or with 

initiator.
178

 

 

Notably, the thio-ene coupling can be employed under aerobic conditions with total 

atom economy and rapid kinetics, and without expensive and potentially toxic metal-

based catalysts. Moreover, it is highly tolerant to a wide range of functional groups. Of 

special relevance is that thiol-ene reactions can be initiated by irradiation at a 

wavelength close to visible light, or can even be performed without any initiator.
149a

  

As aforementioned, the free-radical addition of thiols to double bonds is a highly 

efficient tool in many areas of chemistry, being used for polymerizations, curing 

reactions, and for the modification of polymers.180 A remarkable example was 

reported by Hawker et al., who synthesized dendrimers up to fourth generation 

employing sequential thiol-ene “click” reactions and esterifications under solvent free 

conditions, without deoxygenation, and by 30 min irradiation with a hand-held UV-

lamp (λ = 365 nm).181 Most importantly, the dendrimer obtained after each thiol-ene 

coupling step was purified by simple precipitation. 

In addition to the fossil-based fine chemicals, monomers and polymers that possess 

double bonds, vegetable oils and derivatives can be addressed as additional reactants 

for thiol-ene coupling. The double bonds of vegetable oils are electron-rich, thus 

enabling radical addition of various molecules, especially of thiols; however, when 

compared to olefins with terminal unsaturations, the reaction rates are slower183 The 

literature survey exposes many references to reactions of fats with thiols,182such as the 

synthesis of α,ω-dicarbonylic oleic acid derivatives through thiol-ene additions using 
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thiols and dithiols. In addition, several works were focused on the oligomerization
183

 or 

cross-linking reactions with polyfunctional thiols.
184

 Recently, the synthesis of 

telechelic alcohols from allyl 10-undecenoate by thiol-ene coupling with 

mercaptoethanol was afforded.
185

 In this way, a series of telechelics with molecular 

weights ranging from 1.0 to 3.0 kDa and with hydroxyl, carboxyl, or trimetoxysilyl end-

groups were synthesized. Meier et al. performed the thiol-ene addition to 

functionalize methyl 10-undecenoate, a derivative of castor oil, with mercaptoethanol 

or 1-thioglycerol (Figure 3.19).
149a

 Hence, the resulting monomers were polymerized to 

yield polyesters with molecular weights ranging from 4.0 to 10.0 kDa. This technique 

was also adapted to the synthesis of di/tri-carboxylic acids used as polyanhydride 

precursors.
186

 Moreover, the thiol-ene functionalization was also carried out onto 

polyoxazoline to yield polyols with controlled molecular weight and hydroxyl 

content.
187

 In addition, the synthesis of fatty polyols as precursors for polyurethane 

synthesis was accomplished with the thiol-ene coupling of 2-mercaptoethanol directly 

on unsaturated triglycerides.
188

 Recently, an UV-initiated thiol-ene coupling was 

carried out for the synthesis of a polyamine from an unsaturated vegetable oil and 

cysteamine chloride.
189

 

 

Figure 3.19: Fatty acid-based precursors for polyester synthesis via thiol-ene chemistry.
149a
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Meier et al. copolymerized fatty acid derivatives with ferulic acid (as a representative 

of renewable polyphenolics) derivatives in different ratios via thiol-ene addition with 

1,4-butanedithiol.
190

 The thermal analysis of the final copolymers revealed high glass 

transition temperature values, derived from the incorporation of high amounts of the 

ferulic acid derivative in the final copolymer composition. 

Last but not least, polyhedral oligomeric silsesquioxanes containing thiol groups were 

introduced into acrylated castor oil, thus to develop a novel photocured hybrid 

material via thiol-ene chemistry with the potential in applications such as coatings.
191

 

The examples described above clearly indicate that thiol–ene chemistry can be 

considered as an efficient tool for the synthesis of fine chemicals and monomers, as 

well as for the synthesis and modification of polymers derived either from natural or 

fossil-based sources. 
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4.1 Acyclic Triene Metathesis (ATMET) Polymerization of plukenetia conophora oil: 

branched polymers by direct polymerization of renewable resources 

 

Introduction 

The most straightforward way of using plant oils as raw materials for the synthesis of 

polymers is their direct polymerization. For this purpose, the reactivity of the 

functional groups contained in the fatty acid alkyl chains can be used, and since plant 

oils are composed of triglycerides, the polymers derived from them are generally 

cross-linked or hyperbranched. Some popular oils like sunflower, linseed, soybean and 

rubber seed, which contain a variable number of double bonds in the fatty chains, 

have been used for the preparation of different polymers varying from alkyds,
192

 

polyepoxides,
193

 polyesteramides
194196

 or polyurethanes.
197199

 On the other hand, 

castor oil has been used as natural polyol in the formulation of polyurethanes with 

good water resistancy and flexibility, however, its low functionality and the low 

reactivity of the secondary alcohol groups lead to semi-flexible and semi-rigid 

materials.
49

 Furthermore, castor oil is an industrially relevant oil and its derivatives 

have recently received much attention as building blocks for a large variety of different 

polymers.
44

 However, due to the competitive use of some of the mentioned oils, the 

use of commercially less developed oils might provide an opportunity to develop new 

value added products. Plukenetia conophora (PKC) is a climbing shrub that is common 

in the South-western part of Nigeria, Cameroon, Gabon, Sierra Lone and Benin 

Republic.200 The seeds are eaten like walnuts and the leaves are also edible. 

Furthermore, the seeds, which contain about 50% oil, are also traditionally used for 

curing headache.200 The physico-chemical characterization of the seed oil201 has shown 

that it is best employed for industrial rather than for edible purposes. Moreover, PKC 

oil, which consists of 98.0% unsaturated fatty acids made up of mainly 70.3% of 

linolenic acid, has been reported to belong to the drying oil group and might be a 

substitute for linseed oil (Table 4.1).201 
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Table 4.1: Typical plukenetia conophora oil composition.
201 

Fatty acid Mol percentage (%)
201

 

Palmitic 0.8 

Stearic 0.6 

Oleic 10.7 

Linoleic 17.0 

Linolenic 70.3 

 

 

Over the last 20 years, researchers have investigated the synthesis of highly branched 

three-dimensional macromolecular architectures, since these are considered 

candidates for tailor made materials with high performance and/or novel functionality 

due to their unusual and unique physical and chemical characteristics.
202

 Several 

reviews
 

have been written on the topic discussing interesting details on the history and 

current trends in hyperbranched polymers.
202204

 Generally, this type of polymers can 

be synthesized by step-growth polymerization of multifunctional monomers,
202, 203,205-

207
 copolymerization of conventional monomers via self-condensing vinyl 

polymerization,
208,212

 or copolymerization of vinyl monomers in the presence of 

multifunctional vinyl co-monomers.
213,214

 “Living”/controlled radical polymerization 

approaches have also been used to synthesize a variety of hyperbranched molecules 

with controlled compositions and variable functionality.
215,220

 Recently, Gorodetskaya 

et al. have introduced the acyclic diene metathesis (ADMET) polymerization as an 

alternative method for the synthesis of hyperbranched macromolecules of ABn 

monomers with one terminal and two or more acrylic olefins,221 an approach that was 

used short after by Xie et al.
222 for the synthesis of hyperbranched azo-polymers. 

Building on these findings, Meier and co-workers reported the first synthesis of star-

shaped polymers via ADMET using Hoveyda-Grubbs 2nd generation catalyst (C5). This 

was possible by polymerization of a castor oil-based AB monomer containing a 

terminal double bond and an acrylate in the presence of glycerol triacrylate as core 

molecule. Moreover, the molecular weight was efficiently controlled by choosing the 

desired monomer/core molecule ratio. Work in the same group dealt with the 

development of a simple way to synthesize branched macromolecules from an A3 

monomer derived from castor oil. This monomer, a triglyceride containing three 
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terminal olefins, was polymerized via olefin metathesis in a procedure that was termed 

acyclic triene metathesis (ATMET) polymerization. Moreover, cross-linking was 

prevented by adding methyl acrylate as chain-stopper, which thus remained at the end 

groups providing a direct access to end-functionalized hyperbranched polyesters.223 

Larock and co-workers applied the olefin metathesis directly on the commercially 

available unsaturated plant oils in the presence of 0.1 mol% Grubbs 1st generation 

catalyst (C3).224 Furthermore, Meier and co-workers reported the solvent-free ATMET 

synthesis of highly branched and functionalized polyesters taking commercially 

available native high oleic sunflower oil (over 92% of oleic acid, monounsaturated).225 

In view of the high oil content of the seed, the fatty acid composition of the oil and in 

line with our interest of using renewable feedstock, the aim of this work is to continue 

investigations regarding the opportunities of using metathesis polymerization for the 

synthesis and characterization of highly branched polymers by direct ATMET 

polymerization of PKC oil.  

 

Results and discussion 

The pioneering work of Boelhouwer and co-workers opened a new route towards 

producing many valuable chemicals via the metathesis of fatty acids and derivatives of 

commonly available plant oils.226 In this respect, self-metathesis and acyclic diene 

metathesis polymerization of plant oils have been widely reported in the 

literature.223,227-229 However, little is reported on the direct polymerization of plant oils 

via metathesis. Considering this, Plukenetia conophora oil (PKCO), a highly 

polyunsaturated seed oil consisting of about 70% linolenic acid, has the potential to be 

polymerized via ATMET (Figure 4.1). From a chemistry point of view all different 

double bonds of 1, as shown in Figure 4.1, have very similar reactivity. Thus, since 

olefin metathesis is an equilibrium reaction, when a metathesis catalyst is added to 1, 

an equilibrium of oligomers of 1 should be formed as schematically outlined in Figure 

4.1. The first step of this step-growth polymerization is the formation of a dimer, such 

as 2, and an alkene as condensation product. If not the ω−9 double bonds are reacting 

as depicted in Figure 4.1, but two ω−3 double bonds of the triglycerides react, a lower 
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molecular weight condensation product (3-hexene in this case) with lower boiling 

point is formed. Of course, all intermediate situations are also occuring and thus five 

different dimers and also five different condensation products can be formed. For 

example, the cross-metathesis of a ω−3 double bond of a linoleic acid moiety with a 

ω−9 double bond of an oleic moiery can form 3-dodecene. Moreover, self- metathesis 

of linoleic acid residues will result in the formation of 1,4-cyclohexadiene via ring-

closing metathesis.
230

 

 

 

Figure 4.1: Major triglyceride of Plukenetia conophora oil and the schematic representation of 

oligomerization and polymerization of 1. 

 

These considerations are important for the further discussion, since this behaviour is 

very different from the recently reported polymerization of high oleic sunflower oil, 

where only 9-octadecene can be formed as a condensate.
225

 In sharp contrast, the 

possible formation of 1,4-cyclohexadiene and 3-hexene in equlibrium during the 
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polymerization of PKCO allows for an easy removal of these condensation products 

due to their low boiling points and in consequence simplifies the polymerization 

procedure and does not require high vacuum. The ADMET polymerizations of PKCO 

were performed in collaboration with C. O. Akintayo. 

PKCO was polymerized via olefin metathesis under different conditions using different 

metathesis catalysts in order to study the molecular weight variations of the resulting 

polymer. Since the catalyst has a prominent effect in olefin metathesis reactions, initial 

studies have been focussed on the evaluation of the different Ru-benzylidene and 

indenylidene catalysts (Table 4.2). 

 

Table 4.2: Polymer characteristics at different reaction condition using different metathesis 

catalysts. 

Sample Catalyst
a) b)

 T (°C) 

Mw
c)

 

(kDa) 

Mn
c)

 

(kDa) 

PDI
c)

 

(Mw/Mn) 

Conversion
c)

 

(%) 

P1 C5 70 28.7 7.3 3.94 86.0 

P2 C5 90 28.8 7.4 3.90 80.3 

P3 C4 70 19.2 6.5 2.95 84.5 

P4 C4 90 19.9 6.6 3.02 85.6 

P5 C11 70 11.7 5.1 2.30 81.0 

P6 C11 90 14.2 5.5 2.58 82.4 

P7 C12 70 15.0 5.4 2.78 85.8 

P8 C12 90 15.1 6.1 2.48 86.0 

P9 C12 110 26.2 6.7 3.91 88.3 

 

a) 1.5 mol% catalyst/triglyceride; b) Additional conditions applied during polymerization: N2 purging for 10 
minutes during the polymerization; c) data obtained from GPC performed in THF relative to PMMA 
calibration. 
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Recently, investigations performed by Meier and co-workers based on the ATMET of 

the unsaturated model trygliceride glyceryl triundec-10-enoate and high oleic 

sunflower oil, have revealed that the best results concerning reaction conditions and 

yields were obtained using the Hoveyda-Grubbs 2nd generation catalyst (C5).223,225 

Thus, the ATMET of PKCO has first been carried out in bulk in the presence of 1.5 mol% 

C5 at different reaction conditions (compare entries 1-2 in Table 4.2). The increase of 

reaction temperature from 70 to 90 °C had a marginal effect on the reaction (compare 

Table 4.2, entries 1 and 2). According to GPC analysis, conversions of the investigated 

polymerization reactions were all >80% (Table 4.2 and Figure 4.2). 

 

Figure 4.2: GPC traces of crude reaction mixtures obtained from monomer 1, and polymers P2, 

P6, and P8. 

 

Subsequently, C4 was tested for the polymerization of 1 (compare P3 and P4 in Table 

4.2). Unlike P1 and P2, the polymers obtained from the ATMET reaction of PKCO with 

C4 possessed similar Mn values and lower PDI indexes, indicating more defined 

structures. Also with this catalyst quite high conversion could be obtained. Along with 

the well known Ru-benzylidene catalysts, the activity of Ru-indenylidene-based 

catalysts M31 (C11) and M51 (C12) were examined. These catalysts led to the formation 

of polymers, but the molecular weights were somewhat lower. It is interesting to note 
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that in case of C11 at 70 °C, a rather defined branched polymer was obtained having a 

PDI value of only 2.3 (compare Table 4.2, P5). In an attempt to further increase the 

molecular weight of the hyperbranched macromolecules, all catalysts were also 

investigated at 90 °C. However, this further increase of the polymerization 

temperature only resulted in slightly increased molecular weights for C11 and C12. On 

the other hand, when  C12 was investigated at 110 °C, a clear increase in the molecular 

weight was observed on increasing the temperature from 70 °C to 110 °C.  Moreover, it 

is important to point out here that no gelation was observed for any of these 

reactions, most likely due to the presence of about 11% of oleic acid in PKCO, which 

gives the high boiling 9-octadecene as condensation product, which is not removed 

during the polymerization. Thus, 9-octadecene remains in the polymerization mixture 

and can still participate in metathesis reactions, thus effectively acting as a chain 

stopper. Moreover, the presence of small amounts of saturated fatty acids will also 

efficiently act as chain stoppers. 

Figure 4.3 shows the 1H NMR spectrum of polymer P2. Notably the spectrum of the 

branched polymers is similar to its monomer (PKCO) as their structures are similar; the 

spectra thus only differ in the peak intensities. Interestingly, the bisallylic hydrogens at 

2.8 ppm in the pure PKCO have disappeared after the reaction. This can easily be 

explained by the formation of 1,4-cyclohexadiene as condensate during metathesis of 

linoleic and linolenic acid derivatives.230 Moreover, one could expect that the 

resonance signals at 0.98 ppm of protons corresponding to ω-1 terminal methylene 

group of linoleate will diminish due to the formation of 3-hexene as a condensate. On 

the other hand, the 1H NMR spectra of P2 shows two new overlapping peaks -two 

triplets- around 0.95 ppm, which might correspond to the cis and trans configurations 

of the possible end-group EG1 as represented in Figure 4.4. The presence of this end 

group was confirmed with 13C NMR and additional 2D-NMR, 1H,1H-COSY and 

heteronuclear multiple-quantum correlation spectrum (HMQC) experiments. The 

double bond has a marked influence on the easily recognized ω-1 to ω-3 signals. 

Furthermore, it is well know that if the the double bond is sufficiently far from the acyl 

function and from the end methyl group in any unsaturated trigyleride, the two 

olefinic carbon atoms have the same chemical shift. In our case, for the another 
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possible end group EG3 shown in Figure 4.4, these olefinic carbons were observed in 

13C NMR at ~ 129.7 and 130.1 ppm for cis and trans, respectively. On the other hand, in 

case of end group EG1, the olefinic group positioned at carbon ω-3 has two chemical 

shifts; thus ω-3 and ω-4 carbons show resonances at 131.9 and 129.1 ppm, 

respectively. Moreover, resonances arising from the carbon atoms adjacent to the 

double bond indicate the position of the double bond. Thus, the allylic carbon ω-2 in 

EG1 appears at 20.4 ppm in comparison to allylic carbons in EG2 and EG3 which appear 

at ~27 ppm. 

 

Figure 4.3: 
1H NMR spectra of the product obtained from the ATMET polymerization of 1 

(PKCO) in the presence of C5 (top, P2, see Table 2) and pure PKCO (bottom). 

 

Additionally, the chemical structures of the hyperbranched macromolecules were also 

analyzed by GC-MS after a transesterification reaction of the polymer with methanol. 

The GC-MS profile of P2 after this degradation via transesterification clearly reveals 

the ester corresponding to EG1 (methyl 9-dodecenoate), which showed the molecular 

ion at 213 m/z at 8.4 min retention time (Figure 4.5). Furthermore, in the view of the 

GC-MS results of the transesterification reaction of P2, the possible repeating unit and 
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the end groups of the hyperbranched structures were proposed (Figure 4.4). These 

results confirm that oleic acid residues acted as chain-stoppers and are present as end-

groups in the prepared polymers. Moreover, the presence of EG1 confirms ring-closing 

metathesis reactions to form 1,4-cyclohexadiene as a condensate. 

 

 

Figure 4.4: Schematic illustration of: a) the possible end groups by ATMET and consequent 

secondary metathesis reactions; b) the major methanol transesterification products of P2. 

 

Figure 4.5: GC-MS profile of transesterified P2. 
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NMR spectroscopy is an important tool for the characterization of the hyperbranched 

structures, since detailed analysis of the spectra permits calculation of the degree of 

polymerization. Thus, in order to determine the degree of polymerization, the crucial 

point is to determine the ratio of terminal methyl protons of the fatty acid chain E (–

CH3, Figure 4.3, 0.89-0.98 ppm) and glycerol units G (-CH2O-, Figure 4.3, 4.15-4.30 

ppm). In the case of pure PKCO oil, E = 3 and G = 1, and thus, the ratio E/G equals 3. 

Furthermore, as more triglyceride molecules react with each other without 

intramolecular cyclization, the ratio of E to G should decrease and ultimately reach a 

1:1 ratio for an idealized macromolecular structure with increase in molecular weight. 

Thus, considering this idealized polymerization, the ratio of E/G should follow the 

general rule (x+2):x, where x is the degree of polymerization of PKCO.225 Analysis of the 

data in Table 4.3 indicated that the highest degree of polymerization was observed for 

P9, which was synthesized in the presence of C12 at 110 °C. Indeed, this result is 

consistent with the GPC results (compare Table 4.2, P9). On the other hand, 

intramolecular cyclization can be expected during the polymerization of PKCO, as also 

reported in the literature.223-225 If there was at least one macrocycle in the structure 

due to the possible ring-closing metathesis between the internal double bonds, the 

ratio of E/G will be x:x, and  in case of two intramolecular cycles: (x+2):x and so on. 

Thus, the calculated DPs in Table 4.3 are most likely heavily underrepresented. 
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Table 4.3: Characterization of branched macromolecules obtained from ATMET. 

Entry E/G
1)

 DP
b)

 

P1 1.56 3.6 

P2 1.64 3.1 

P3 1.76 2.6 

P4 1.50 4.0 

P5 1.80 2.5 

P6 1.75 2.7 

P7 1.61 3.3 

P8 1.68 3.0 

P9 1.44 4.6 

 

a) Ratio of end groups E (-CH3) and glycerol units G determined by 1H NMR; b) Degree of polymerization of 
PKCO estimated from the ratio E/G=(x+2):x, where x = DP. 

 

The behavior of these polymers as highly branched macromolecules can be 

conclusively confirmed by the specific solution properties. Thus, DLS and SLS were 

used as complementary methods to characterize the dilute solution properties of the 

hyperbranched macromolecules. Static light scattering (SLS) was performed with P2 in 

order to get more information about the weight average molar mass of this sample. 

Initially, refractive index increment (dn/dc) analyses were performed for P2 in toluene, 

THF and DMAc, since it was necessary to determine these values for the purpose of 

precise SLS measurements. The obtained value in toluene was quite low, -0.014 mL/g, 

and since dn/dc was lower than 0.050 mL/g, the intensity of the scattered light was too 

low. On the other hand the dn/dc value of P2 in DMAc was measured as 0.036 mL/g. 

Since the intensity of the scattered light did not change with scattering angle, the 

measurements for P2 were performed at the angle of 90°. However, an evaluation of 

the Zimm plot for P2 was not possible. The polydisperse nature of the solvent/solute 

system may have contributed to the abnormal shape of the Zimm plots from the static 
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data. As expected, SLS measurements are more sensible to the presence of the 

aggregates, which leads to a larger intensity of the scattered light and consequently to 

the higher values of the weight average molar mass.  

DLS was then used to investigate the size of the macromolecules and the influence of 

different types of solvents on the hydrodynamic radius of the sample in the solution 

and to study the ability of aggregate formation in THF, toluene and DMAc. From the 

results obtained by the intensity, volume, and number distribution it can be observed 

that the presence of the aggregates can be detected in the sample both in THF and 

toluene solutions. The size distribution histogram of P2 in THF showed a bimodal 

distribution. The presence even of the small amount of the aggregates led to the high 

scattering of the light, which further induced the appearance of the second 

distribution of the peaks in the graph for the intensity distribution. A similar behaviour, 

with even higher aggregate size, was observed from the results obtained for P2 in 

toluene. On the other hand, when the analysis was performed in DMAc as a solvent, 

the presence of aggregates was not detected in the number distribution of P2, from 

which it is possible to determine the number of molecules of different sizes (Figure 

4.6). The NICOMP calculation revealed that these particles have a mean diameter of 6 

nm (99.5% in the present DLS sample of P2). The volume of this specific molecule was 

calculated from the volume distribution as 86.1%. 
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Figure 4.6: Number and volume distributions of P2 in DMAc solution at 25 °C by DLS analysis 

with an advanced evaluation method. 

 

The dimensionless shape parameter ρ defined as ρ=Rg/Rh, is often used to describe the 

structure of macromolecules in solution.231 The type of structure (sphere, rigid rod, 

flexible coil), the nature of the solvent, the segment density in the polymer chain and 

the dispersity of the system are important parameters are influencing the value of ρ. 

Many previous experimental results have verified that the ρ value is in the range of 

1.50−1.70 for flexible linear polymers in a good solvent,231 whereas the value is 0.78 for 

a homogeneous sphere. On the basis of a Kirkwood approximation for the 

hydrodynamic interaction,42 the ρ parameter for hyperbranched structures was 

theoretically predicted as 1.22. In our case, the value of ρ was 0.50, suggesting that P2 

does not possess a high degree of branching. 

Hyperbranched polymers find potential applications in drug delivery, coatings and as 

rheology modifiers for processing,232,233 this serves as a strong driving force for 

studying the rheology of the synthesized polymers. Thus, rheological experiments 

were performed on P2 as a model compound. An important first step in performing 

dynamic rheological characterization is to determine the linear viscoelastic (LVE) 

region of materials in which dynamic rheological parameters are independent of 
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applied strains. In order to determine the LVE region for P2, dynamic strain sweep 

experiments were performed at 0.1, 1.0 and 10.0 Hz from 1 to 1000% strain amplitude. 

Figure 4.7 shows the strain dependence of storage (G′) and loss moduli (G″) of P2 at 25 

°C with a frequency of 1.0 Hz. The LVE region is valid for the whole strain amplitude 

measured. No non-linear behaviour, e.g. shear-thinning, occurs.  Due to the difference 

of G’’ and G’ of about two decades, the sample behaves predominantly viscous. Thus, 

the structural character of P2 can be determined by comparing the G´ and G´´. The 

frequency dependence of the storage and loss modulus of P2 measured by dynamic 

frequency sweep experiments within LVE range is depicted in Figure 4.8. For low 

frequencies, vanishing values for the storage modulus G′ were obtained, at the limit of 

the sensitivity of ARES-G2 rheometer indicative of the dominant viscous response of 

the material. Besides this, P2 showed no crossover in G´ and G´´ at higher frequency 

values, indicating that there is no transition from viscous-like deformation behaviour 

to a more elastic one. 

 

Figure 4.7: Strain dependence of storage modulus (grey line) and loss modulus (black line) of 

P2 at 25 °C and 1.0 Hz. 
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Figure 4.8: Frequency dependence of G′ and G
′ ′ 

for P2 measured at 25 °C applying f = 0.1-10.0 

Hz, γο = 100%. 

 

Polymer P2 showed a Newtonian behavior, i.e. the melt viscosity was not affected by 

the shear rate within the shear range tested, which indicates an absence of chain 

entanglements. This behavior was also justified with the continuous constant loss 

modulus over a wide frequency range with a slope of 1.00, which was 1-2 decades 

higher than the storage modulus. Moreover, it has already been reported that the lack 

of entanglement of the dendritic macromolecules leads to their Newtonian 

behaviour.234 The viscosity of the polymer was determined by steady shear 

measurements (shear rate from 0.05-10 s-1) as 4.1 Pa-s.  
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Figure 4.9: Comparison of η and |η∗| for polymer P2 at 25 °C. 

 

Another commonly reported rheological feature of dendritic polymers is the possible 

correlation between the oscillatory viscoelastic properties and steady shear viscosity. 

Cox and Merz gave one very simple rule, known as the Cox–Merz rule, which predicts 

that complex viscosity, η∗(ω), and steady shear viscosity, η( ); are the same value at 

the same deformation rate.235 To test the applicability of the Cox-Merz rule in this 

present investigation, the shear viscosity and the complex viscosity, which were 

obtained at 25 °C, were compared for P2 (Figure 4.9). The result given in Figure 4.9 

agreed well with only a slight deviation, indicating that the investigated polymers are 

indeed rheologically simple and not cross-linked. 

Hyperbranched polymers are usually formed by very short and dense branches, which 

completely prevent crystallization and molecular entanglement.236 On the other hand, 

it has been reported that hyperbranched polyesters terminated with long-enough alkyl 

chains not only have a lower Tg, but show several different crystalline phases since the 

length of the linear parts is sufficient for formation of crystalline domains.237 The 

performed X-ray studies by Hult et al. on AB2 monomer-based hyperbranched 

polyesters showed that hyperbranched macromolecules with long terminal alkyl chains 
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crystallize via intramolecular interactions, whereas in the case of hyperbranched 

polyesters with shorter alkyl chains the crystallization takes place intermolecularly by 

the interpenetration of end-groups from adjacent molecules.
238

 

 

Table 4.4: Thermal results of all prepared polymers. 

Entry Tg (°C)
a) 

Tm (°C)
a) 

T5% loss (°C)
b) 

P1 -64.3 -0.2 292.0 

P2 -61.5 -0.9 330.5 

P3 -52.1 -0.8 314.6 

P4 -57.9 -0.1 309.8 

P5 -60.4 -6.1 297.0 

P6 -64.1 -1.5 318.0 

P7 -49.1 -0.3 301.0 

P8 - -1.9 324.0 

P9 -66.5 0.5 316.5 

 

a)DSC data; b) Onset degradation temperature (5% weight loss) 

 

In our case, the DSC analyses showed melting peaks during the second heating scans 

for all polymers (Table 4.4). Among all polymers, P5 showed the lowest melting 

transition temperature at -6 °C. The rest of the polymers, regardless of structural 

variations for this series of samples, had melting transitions in the range of -1.9 °C. 

From the results in Table 4.4, it can be seen that these hyperbranched polymers 

display acceptable thermal stability under nitrogen. Under the given experimental 

conditions a measurable mass loss (T5% loss) of the polymers starting between 290 and 

330 °C was detected. Therefore, it can be concluded that in these samples, below 290 

°C, no measurable amount of evaporable compounds were present. As already 

mentioned, the consequence of intramolecular metathesis reactions during the 

polymerization is the formation of the cyclic structures. However, these small 
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molecules are most likely evaporated at the temperature used in the polymerization 

reactions (compare Table 4.3 and Table 4.4). 

 

Conclusions 

The presented approach thus allows the preparation of polymeric materials that are 

fully along the lines of green chemistry. These imperfectly branched, dendritic 

structures were shown to have special structural and rheological properties that might 

lead to potential applications in various areas, such as rheology modifiers and drug 

deliver 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 

 

4.2 Acyclic Triene Metathesis (ATMET) polymerization of soybean oil modified with 

4-vinylbenzene sulfonic acid 

 

Introduction 

Although plant oils naturally contain functional groups such as double bonds and 

hydroxyl groups, their reactivity towards polymerization is often limited. For this 

reason, the introduction of polymerizable functional groups in their structure opens 

the way to a wider range of plant oil-based polymeric materials. Among many different 

efficient approaches that use the reactivity of double bonds, the epoxidation is one of 

the most used ones. This reaction is performed industrially with H2O2 and acetic or 

formic acid in the presence of strong mineral acids (H2SO4 or H3PO4),239 but also other 

catalysts can be employed with better results in low-scale reactions such as 

methyltrioxorhenium,240 ammonium molybdate,241 ion exchange resins242 or 

Venturello’s catalyst.243 Phase transfer catalysts such as quaternary ammonium 

tetrakis(diperoxotungsto) phosphates244 and crown ethers245 improve the selectivity 

and increase both conversion and yield. Furthermore, the lipase-catalyzed 

chemoenzymatic epoxidation is a highly efficient alternative that works at mild 

temperatures.246 Moreover, since the enzymes can be immobilized in cross-linked 

supports, their removal from the reaction mixture via filtration of the reaction mixture 

is straightforward and allows for catalyst recycling. 

The oxirane rings of epoxidized plant oils are highly reactive towards nucleophiles and 

thus can be used to introduce polymerizable groups. Moreover, once the epoxides are 

opened, the hydroxyl functionalities formed can be used for further functionalization 

or left in the structure to provide specific properties to the final polymers. Thus, as an 

example, epoxidized soybean oil (ESO) has been converted to its acrylate ester with 

acrylic acid, to its cinnamate ester with cinnamic acid, and to its maleate ester with 

monomethyl maleate among other transformations. These esters can be free-radically 

polymerized or copolymerized with reactive diluents, such as styrene, to give 

thermoset resins having mechanical properties that are similar to those of 

commercially successful polyester and vinyl ester resins.247-250  
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The reaction of different epoxy compounds with arene sulfonic acid yielding 1-

arylsulfanyloxy-2-alkonols has been reported in literature.
251-253

 Thus, in this work, a 

new triglyceride-based monomer was synthesized by the reaction of ESO with 4-

vinylbenzene sulfonic acid (4VBSA, Figure 4.10). The product, 1-(4-vinylbenzene 

sulfonyl)oxy-2-alkonols of epoxidized soybean oil (SESO), contains styrenic moieties 

that can be polymerized in the presence of metathesis initiators via ATMET (Figure 

4.11). As mentioned in Chapter 3, the Grubbs 1st generation catalyst (C3) is highly 

reactive but lacks functional group tolerance. Therefore, the 2nd generation catalysts 

such as Grubbs 2nd generation (C4), Hoveyda-Grubbs 2nd generation (C5) catalysts, and 

C12 are usually better suited for ADMET polymerization of functionalized 

monomers.254 Motivated by the well-known good characteristics of the ADMET 

reaction, it was reasoned that SESO would be well suited to synthesize vegetable oil-

based polymers via this method. Compared to the direct ATMET polymerization of 

Plukenetia conophora oil, the approach proposed here, which is based on the previous 

modification of the plant oil’s structure, presents both disadvantages and advantages. 

On one side, the epoxidation and ring-opening reactions are extra steps before the 

polymerization, however, this modifications allow the introduction of functional 

groups that otherwise would not be possible. 

 

 

Figure 4.10: Schematic representation of the new monomer and its polymerizations. 
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Result and discussion 

In order to determine whether catalysts C3-C5 and C12 tolerate the functional groups 

present on SESO, a monofunctional model compound was synthesized by reaction of 

epoxidized methyl oleate (EMO) with 4VBSA. This monomer (SEMO) contains all the 

functional groups in SESO and can be used as 1H-NMR model. ADMET dimerization of 

SEMO proceeded as expected and a singlet peak at ~7.00 ppm corresponding to the 

vinyl protons in the 1H-NMR verified the production of SEMO dimer. The reaction is 

shown in Figure 4.11. 

 

 

 

Figure 4.11: ADMET dimerization of SEMO and ADMET polymerization of SESO. 
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Table 4.5: ADMET polymerization of SESO: conditions, yields, and thermal properties. 

Entry 

Catalyst 

(mol%/double bond) 

T (°C) Conditions time 
Yield 

% 
Tg (°C) 

P1 C3, 0.5 mol% 40 CH2Cl2 19 h 65.4 -12.5 

P2 C4, 0.5 mol% 40 CH2Cl2 18 h 79.4 -11.9 

P3 C5, 0.5 mol% 40 CH2Cl2 12 h 80.3 -11.3 

P4 C12, 0.5 mol% 40 CH2Cl2 10 h 81.4 -11.6 

P5 C5, 0.5 mol% 115 Bulk 15 min 87.2 -1.6 

P6 C12, 0.5 mol% 115 Bulk 30 min 84.5 -1.5 

 

 

The ADMET reaction of SESO was carried out in solvent (CH2Cl2) at 40 °C, since the neat 

viscous monomer was immiscible with the any of the catalyst at that temperature. It 

was already reported that high viscosity, due to the absence of solvent can be a 

limiting factor, as the efficiency of ethylene removal is critical toward the success and 

extent of polymerization.16 Catalysts C3-C5 and C12 were used for these 

polymerizations, to be able to compare the activity of catalysts of different 

generations. The results of this screening are summarized in Table 4.5. During these 

polymerization reactions, a continuous viscosity increase was observed. The GPC 

chromatogram in Figure 4.12 shows the gradual increase of the molecular weight 

during the synthesis of P1 (Table 4.5, entry 1). After 2 hours of reaction time, the 

polymer products were no longer completely soluble in THF, thus no further analysis 

via GPC was possible.  
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Figure 4.12: GPC data for P1 in 1 and 2 h reaction time. 

 

Table 4.5 shows that C3 gave the lowest conversion most probably due to its limited 

functional group tolerance. The use of the more stable catalysts C4, C5 and C12 

provided more satisfactory results in short reaction times. The 1H NMR spectra of the 

soluble part (oligomers and unreacted monomer) of the obtained polymers showed in 

all cases a distinct singlet for the double bond conjugated to the benzene rings at ~ 

7.10 ppm, which clearly indicated the on-going polymerization. 

The reactivity of the monomer used towards ADMET was also investigated under bulk 

conditions. It was observed that due to the high melting point of the monomer, a 

reaction temperature of 115 °C was required and this high temperature was 

incompatible with the thermal stability of C3 and C4. However C5 and C12 showed 

better stability and provided good results under these conditions Bulk polymerization 

proceed at a much faster rate than solution polymerization, due to the higher 

temperature used. 

An insoluble network polymer was obtained in the ATMET polymerizations of SESO 

with catalysts C3-C5 and C12. Although all performed polymerizations would 

ultimately result in similar polymer networks, the rates of polymerization may be 
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different. Thus, the polymerizations in solvent most likely show a lower conversion of 

functional groups, leading to more flexible and less cross-linked polymer networks, and 

thus to lower Tgs (Table 4.5). 

 

Conclusions 

A new polymerizable triglyceride-based monomer was synthesized by the addition of 

4-vinylbenzene sulfonic acid to epoxidized soybean oil triglycerides. This new 

monomer was polymerized via ATMET and the final properties of these polymers were 

investigated. The second generation metathesis catalysts C4, C5 and C12 

outperformed the first generation catalyst C3 at 40 °C in DCM, probably due to the low 

tolerance of the latter to the sulfonyl groups of SESO. The polymerization time can be 

reduced from several hours to minutes by working in bulk; however, in this case higher 

temperatures are needed (115 °C) to provide homogeneity to the reaction mixture. 

The resulting polymers have glass transition temperatures close below ambient 

temperature. 
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4.3 Living Ring-Opening Metathesis Polymerization (ROMP) of fatty acid derived 

monomers 

 

Introduction 

The development of synthetic methodologies to produce macromolecules with defined 

structures is a major goal in polymer chemistry. Controlled/living polymerization 

techniques that enable control over the molecular weight through variation of the 

monomer/initiator ratio ([M]/[I]) and/or the monomer conversion have been widely 

applied for  the synthesis of well-defined polymers.255257 ROMP, as an example of a 

powerful tool for polymer synthesis,94b is a highly functional group tolerant 

polymerization technique that allows for the facile introduction of many different 

functional groups to a polymer main- or side-chain.258-260 Since the rate of initiation is 

faster or comparable to propagation and secondary metathesis reactions are 

minimized, very narrow molecular weight distributed polymers can be prepared with 

this type of polymerizations.128,261 As already mentioned in Chapter 3, the well-defined 

transition metal alkylidenes Grubbs 2nd generation (C4) and Hoveyda-Grubbs 2nd 

generation (C5) catalysts, are particularly useful in initiating ROMP. However, the 

ROMP with slow initiating 2nd generation catalysts is fast but uncontrolled, thus 

resulting in ill-defined polymeric materials with respect to molecular weight 

distributions. With the introduction of the pyridine-based Grubbs 3rd generation 

initiators (C6 as representative example) that combine high activity, complete 

initiation, high functional group tolerance and low sensitivity towards moisture and 

oxygen, new synthetic strategies emerged allowing the synthesis of well-defined 

polymers by controlled/living ROMP.260 

Regarding the use of plant oil-based monomers, Larock and co-workers have 

performed the non-living ROMP of norbornenyl anhydride-functionalized castor 

oil/cyclooctene262 and Dilulin (a norbornenyl-functionalized linseed 

oil)/dicyclopentadiene.263 Both systems afford green thermosets and provide a 

promising new route to bio plastics from bio renewable resources. Moreover, the 

synthesis of ester-functionalized poly(norbornene)s via ROMP was already reported 
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using Grubbs 1
st

 generation catalyst (C3).
264

 High molecular weights and yields were 

observed, but these polymers possessed relatively high polydispersity indices (PDIs) of 

~2.1, pointing to a non-living ROMP. The authors attributed this to the low functional 

group tolerance of C3. The synthesis of copolymers of norbornene derivatives with an 

ester group and CO, using cationic Pd compounds as a catalyst via vinyl addition 

polymerization was also reported.265 The number average molecular weights (Mn) of 

the synthesized polymers ranged from 3800 to 5300, and the glass transition 

temperature (Tg) varied from -32 to 117 °C, revealing that the presence of linear long 

side chains remarkably decreased the Tg value of the norbornene copolymers. 

Considering the drawbacks of the previous research performed on the vinyl and ROMP 

with norbornenes bearing ester groups, this section deals with a synthetic approach 

towards polynorbornenes functionalized with fatty acids varying from 6 to 18 carbons. 

The approach involves the esterification of a hydroxy-functional norbornene monomer 

with fatty acids of different chain lengths and their subsequent controlled/living ROMP 

with 3-bromopyridine-based catalyst C6. All synthesized polymers were characterized 

by GPC and NMR. Furthermore, the effects of the fatty acid chain length on the 

polymerization process, and the thermal properties of the resulting polymers have 

been extensively investigated. 

 

Results and discussion 

Monomers synthesis 

Functional poly(norbornene)s are of particular interest because of their unique 

physical properties. Functionalization of commercially available exo,endo-5-

norbornene-2-methanol (NBM) was carried out via 1,1'-Carbonyldiimidazole (CDI) 

assisted esterification with different chain length fatty acids (varying from 6 to 18 

carbons, see Figure 4.13) to give the corresponding alkyl ester containing norbornenes 

(Figure 4.13). Although greener and more sustainable one step transesterification 

methods of NBM with FAMEs can be envisaged (e.g. using TBD, p-toluensulfonic acid 

or other catalysts), the observed presence of side reactions during such 

transesterification reactions clearly revealed the mild CDI coupling approach as the 
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method of choice. CDI is a well-known coupling agent and has been widely used in 

peptide coupling, small molecule synthesis and also to prepare polymers.266 

Advantages of this reagent include its ease of handling and its relatively low toxicity. 

During this in situ activation, only imidazole, CO2, and the reactive intermediate 

carboxylic acid diimidazole were formed.267 The intermediate was easily converted 

with the norbornene-2-methanol to the resulting pure fatty acid functionalized 

norbornene-based monomers in high isolated yields. No side reactions were observed. 

 

 

Figure 4.13: Synthetic representtaion of CDI activation of fatty acids and subsequent coupling 

to NBM to yield monomers M1-M7. 

 

ROMP of monomers M1-M7 

Grubbs 3rd generation catalyst C6 was used to polymerize monomers M1-M7 (Figure 

4.13). Reactions were carried out in degassed dichloromethane DCM and THF with 

various monomer-to-initator ratios at room temperature with a monomer 

concentration of 0.064M (Table 4.6). 
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Table 4.6: Results of the ROMP of M1-M7 using catalyst C6. 
a)

 Results are representative for at 

least duplicated experiments; 
b)

 Monomer-to-initiator (C6) ratio; 
c)

 isolated by precipitating in 

methanol; 
d) determined by GPC in THF relative to PMMA standards; e) assuming full monomer 

conversions. 

Entry
a)

 Monomer [M]/[I]
b)

 
Yield 

(%)
c)

 

Mn(obs.)  

(kDa)
d)

 

Mn (theo.) 

(kDa)
e)

 
PDI 

P1 

P2 

P3 

M1 

M1 

M1 

50 

100 

200 

92 

95 

93 

10.6 

20.5 

43.2 

11.1 

22.2 

44.5 

1.17 

1.19 

1.16 

P4 

P5 

P6 

M2 

M2 

M2 

50 

100 

200 

90 

91 

93 

11.5 

22.0 

46.5 

12.5 

25.0 

50.0 

1.18 

1.25 

1.21 

M3 

M3 

P7 

P8 

P9 M3 

50 

100 

200 

89 

93 

93 

12.0 

25.3 

50.0 

14.0 

27.9 

55.7 

1.2 

1.18 

1.15 

M4 

M4 

M4 

M4 

P10 

P11 

P12 

P13 

P14 M4 

50 

100 

200 

400 

100+300 

92 

94 

92 

95 

95 

16.2 

34.1 

65.0 

140.0 

138.0 

15.3 

30.7 

61.3 

122.6 

122.6 

1.25 

1.13 

1.16 

1.14 

1.11 
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Cont. Table 4.6: Results of the ROMP of M1-M7 using catalyst C6. 
a)

 Results are representative 

for at least duplicated experiments; 
b)

 Monomer-to-initiator (C6) ratio; 
c)

 isolated by 

precipitating in methanol; 
d) determined by GPC in THF relative to PMMA standards; e) 

assuming full monomer conversions. 

Entry
a)

 Monomer [M]/[I]
b)

 
Yield 

(%)
c)

 

Mn(obs.) 

(kDa)
d)

 

Mn (theo.) 

(kDa)
e)

 
PDI 

M5 

M5 

P15 

P16 

P17 M5 

50 

100 

200 

92 

92 

93 

18.0 

36.2 

64.0 

16.7 

33.5 

67.0 

1.09 

1.12 

1.11 

M6 

M6 

M6 

P18 

P19 

P20 

P21 M6 

50 

100 

200 

500 

93 

93 

91 

95 

25.8 

40.8 

70.3 

165.0 

18.1 

36.3 

72.6 

181.3 

1.13 

1.14 

1.15 

1.26 

M7 

M7 

P22 

P23 

P24 M7 

50 

100 

200 

76 

70 

83 

18.7 

36.5 

75.0 

19.5 

39.0 

78.0 

1.05 

1.06 

1.09 

 

 

The solvent mixture of THF and DCM was necessary, since polymerizations in pure 

DCM and THF were not progressing in a living manner (see also discussion below). 

Polymerizations were quenched with an excess of ethyl vinyl ether, monitored by GPC 

and showed a rapid and quantitative reaction. The obtained Mn values showed 

degrees of polymerization consistent with the monomer to initiator ratio and most 

polymerizations were complete in less than one minute. It was observed that the 

polymerization proceeded in a living fashion (e.g. low polydispersity indices of 1.06-

1.25; see also discussion below). These results were in contrast to those already 

reported in the literature, where broad polydispersities of typically 1.9, 2.1 and 2.2 

were observed for polymers derived from M2, M3 and M4, respectively.264,265 It can 
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thus be concluded that the polymerizability of the monomers largely depends on the 

bulkiness of the substituent and the applied solvents. 

In order to determine the effect of changing the polymerization conditions on the 

secondary metathesis reactions occurring during the course of the reaction, a time and 

solvent study using 200 equivalents of monomer M4 to catalyst C6 was performed. A 

change in the solvent of the reaction had remarkable effects. Samples of M4 in DCM, 

solvent mixtures of EtOH:DCM and THF:DCM were polymerized under ambient and 

nitrogen atmosphere, and terminated at different times (Figure 4.14). 

 

Figure 4.14: GPC traces of polymerizations of monomer M4 performed in different reaction 

solvents: EtOH:DCM (dashed line), DCM (dotted lined) and THF:DCM (solid line) quenched 

after 15 seconds reaction time with ethyl vinyl ether (results were obtained with GPC 

operating with one column system). 

 

After a 15 second reaction time in DCM under nitrogen flow, a broadly dispersed high 

molecular weight polymer was obtained, which clearly indicates that under this 

reaction conditions secondary metathesis reactions compete with chain propagation. 

On the other hand, when EtOH was used as co-solvent together with DCM, chain 

termination was observed as side reaction (Figure 4.14, dashed line). However, in a 

THF:DCM solvent mixture, the reaction was completed after 15 seconds and only a 
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minor high molecular weight shoulder was observed in GPC. After an additional 15 

minutes reaction time, the polydispersity did not broaden and no higher molecular 

weight species appeared, indicating a controlled/living polymerization without 

competing chain transfer reactions. Along the same lines, it was already reported that 

changing the reaction solvent to a more coordinating solvent, such as THF, can limit or 

even prevent secondary metathesis reactions.268,269 When the monomer concentration 

was lowered to 0.01 M in a THF:DCM solvent mixture, no effects on the product yields, 

molecular weights, or PDI values for M4 were observed. Furthermore, increasing the 

reaction temperature from 25 °C to 45 °C in THF:DCM gave a polymer with a similar Mn 

but a considerably broader PDI of 1.32. These results suggest that chain transfer or 

backbiting occurs at higher temperatures for monomer M4. 

Encouraged by the obtained narrow PDI values, we examined whether the molecular 

weights are controlled by the stochiometry of the reaction. Representative graphs of 

Mn versus [M]/[I] feed ratios for monomer M4 are presented in Figure 4.15, clearly 

showing linear relationships. Together with the observed low PDI values these results 

indicate that the performed polymerizations were indeed living. 

 

 

Figure 4.15: Plot of Mn versus DP (based on the results listed in Table 4.6) for the ROMP of M1, 

M4 and M6 with C6 in THF: DCM=1:1 at 25 °C. 
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To further investigate the livingness of these polymerizations, a kinetic study of M4 

revealed a linear correlation of –ln([M
t
]/[M

0
]) vs. time (Figure 4.16) for M4, thus 

confirming the constant number of propagating species throughout the reaction and 

the livingness of the polymerization. 

 

Figure 4.16: First-order kinetic plot (-ln ([M
t
]/[M

o
]) vs. time) for ROMP of M4 with an aimed DP 

of 100. 

 

However, for longer fatty acid substituted norbornenes, such as M7, at higher [M]/[I] 

ratios, the polymerization stalled at approximately 76% conversion (compare also 

behavior of M6 in Figure 4.15). The monomer chain length seems to be a critical factor 

for the observed conversions, probably due to the steric hindrance during the 

propagation step. Thus, reaction conditions that afford higher conversions of M7 were 

investigated. Due to the high activity of C6 and low critical monomer concentration of 

norbornene, the ROMP of M6 and M7 can be performed at very low concentrations 

([M0] = 0.02M) to keep a relatively low viscosity of the solution throughout the 

polymerization. When the initial monomer concentration was decreased from [M0] = 

0.064M to [M0] = 0.02M, the molecular weight stayed consistent, and the observed 

conversions and isolated yields remained high. Figure 4.17 represents the GPC traces 

of polymers of M6 obtained in diluted reaction conditions with different molecular 

weights, clearly revealing that it was possible to obtain narrowly distributed polymers 
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over a wide range of molecular weights, further indicating the control over the 

polymerization. 

 

Figure 4.17: GPC traces of polymers of different molecular weights obtained by ROMP of M6. 

 

To further proof that our polymerizations fulfill the criteria of a living polymerization, a 

representative two-step polymerization sequence was carried out for M4, the 

monomer with intermediate length of the alkyl side chain. A 100:1 [M]/[I] ratio of 

monomer M4 was thus first polymerized to completion and allowed to stir for an 

additional 5 minutes. Subsequently, an additional 300 equivalents of monomer were 

added. Figure 4.18 depicts the results of this chain-extension experiment. A well-

defined monodisperse final polymer (Table 4.6, entry 14, Mn = 138 x 103, PDI = 1.11) 

was thus obtained, and the complete molecular weight distribution of the original 

polymer (Table 4.6, entry 11, Mn = 34.1 x 103, PDI = 1.13) shifted to higher molecular 

weights. No fractions of low-molecular weight polymers were observed by GPC after 

chain-elongation, indicating that no chain termination reactions occurred in the course 

of the sequential addition of the monomer. Both chain termination and chain transfer 

would produce nonliving polymer chains that would not increase in molecular weight 

upon further addition of fresh monomer. Identical results were observed for monomer 

M1, with the shortest length of alkyl side branch. These findings, together with the 
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findings discussed above, clearly proved the controlled/living character of our 

polymerization reactions. 

 

 

Figure 4.18: GPC traces of the chain-extensoin experiment using M4 with C6 in THF:DCM= 1:1 

at 25 °C (entries 11 and 14, table 4.6). 

 

The polymerization of all monomers, like all other poly(norbornene)s synthesized via 

ROMP, could also be monitored via 1H NMR spectroscopy (Figure 4.19). The alkene 

proton signals of the strained norbornene ring at approximately δ = 6.0 ppm shifted 

upfield to approximately δ = 5.0-5.2 ppm upon ring-opening and subsequent 

polymerization. This greatly facilitated the monitoring the progress of the 

polymerization. 1H NMR spectroscopy proved that all the monomers had been 

quantitatively converted into polymers over various polymerization times and 

confirmed the structure of the polymers. 
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Figure 4.19: 
1
H NMR spectry of M1 and the corresponding polymer P2 (compare Table 4.6). 

 

Thermal properties 

Finally, thermal investigations by DSC and TGA of the prepared polymers were 

performed. The thermal stabilities of the polymers were studied by TGA under 

nitrogen atmosphere with a 10 °C/min heating rate. It was observed that, 

independently of the monomers, the temperature corresponding to 5% weight loss for 

all polymers was around 325 °C, indicating good thermal stability of the prepared 

polymers. Moreover, DSC studies revealed a decreasing Tg with increasing alkyl chain 

lengths of the studied monomers. The thermal properties of the prepared polymers 

are summarized in Table 4.7. It can be concluded that the alkyl side chains behave like 

an internal plasticizer, thus lowering the Tg. Moreover, only polymers with a side chain 

of 14 or more carbon atoms started to crystallize. The latter effect is in good 
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agreement with other polymers bearing fatty acid side chains. As the length of the 

pendant alkyl chain increases, the crystallization might be increasingly hindered, thus 

leading to the observed decrease in the Tm and crystallinity of the polymers. 

 

Table 4.7: Thermal properties of the prepared well defined renewable polymers. 

 

Polymer Tg (°C) Tm (°C) 

P2 102 - 

P5 84 - 

P8 54 - 

P11 35 - 

P16 26 29.8 

P19 10 15.3 

P23 -32 5.9 

 

Conclusions 

The synthesis and ROMP of fatty acid functionalized norbornenes was developed and 

studied. This approach was used for the preparation of polymers with a high level of 

structural control at the repeating unit level as well as over polymer molecular weight 

and polydispersity. Using different chain length fatty acids as grafts thus allowed us to 

study structure property relations within this series of defined polymers. Moreover, 

the study broadens the applicability of fatty acid derived renewable polymers and 

demonstrates their broad range of achievable polymer properties. 
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4.4 Studies on the activity and selectivity of indenylidene-based metathesis catalysts 

during ADMET polymerization 

 

Introduction 

As already described in Chapter 3, double bond migration is an important side reaction 

of Ru-catalyzed metathesis reactions. Early reports on this class of olefin isomerization 

described its occurrence with substrates containing allylic oxygen or nitrogen 

functional groups in combination with first generation catalysts.111,270-273 Later, the 

degradation product of Grubbs 1st generation catalyst (C3) was found to catalyze 

double bond migration,274 and this side reaction was also demonstrated in the 

presence of 2nd generation catalysts on a broad variety of substrates, competitively, 

and in some cases prior to olefin metathesis.113,275-278 A number of further publications 

addressed this problem discussing two possible reaction pathways and their 

corresponding mechanisms: the π-allyl metal hydride and the metal hydride addition-

elimination mechanisms.110a,111,113,273,275-278, In most cases, isomerization was attributed 

to the presence of a Ru-hydride species,275,113 a conclusion that was supported by 

mechanistic investigations. It was also reported that a proper selection of solvents and 

additives can eliminate isomerization (see Chapter 3). 

In the context of ADMET, isomerization from terminal to internal olefin, followed by a 

productive metathesis step with a terminal olefin, would liberate an α-olefin such as 

propene or 1-butene, as opposed to the ethylene liberated from a conventional 

ADMET reaction of two terminal olefins (Figure 4.20).94c Release of these higher 

condensate molecules would decrease the mass yield of the polymer and, if olefin 

isomerization occurs in a similar timescale as metathesis, this would result in polymers 

with ill-defined repeat units, thus also affecting the physical properties of the polymer. 

Noteworthy, C3 was found not to promote double bond migration during ADMET.279 
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Figure 4.20: Olefin isomerization during ADMET polymerization. 

 

In model studies carried out with simple olefins, Wagener and co-workers could show 

that while Grubbs 1st generation and Schrock´s molybdenum alkylidene catalysts (C2) 

did not produce appreciable double bond isomerization, Grubbs 2nd generation 

catalyst (C4) presented significant isomerization activity, which was greatly reduced at 

temperatures below 30 °C.278,280 These studies were further complemented and 

confirmed by MALDI analysis of an aminoacid polymer synthesized with C4.281 

Meier and Fokou performed a detailed study of the dependence of double bond 

migration on the temperature, catalyst, and ADMET polymerization conditions.279 

Thus, the tendency of C4 to promote double bond migration was found to increase at 

high temperatures, i.e. 100 °C. Several second generation metathesis catalysts were 

subsequently studied in ADMET polymerizations.282 All investigated catalysts showed 

high degrees of isomerization at 80 °C. The addition of BQ efficiently reduced olefin 

isomerization when added before the catalyst, which indicates that catalyst 

decomposition begins as soon as the catalyst is added to the reaction mixture at high 

reaction temperatures. The effects of nitrogen purging and higher temperatures in the 
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presence of BQ were also investigated, revealing that nitrogen purging did not 

significantly change the result, or reduced the degree of isomerization in some cases. 

Presently, there is a lack of knowledge on the double bond migration activity of 

commonly used metathesis catalysts during ADMET polymerizations. Among the 

numerous metathesis initiators available, this study is focused on the application of 

the less investigated indenylidene Ru-based catalysts C10, C11, and C12
283 in ADMET 

polymerization, and on their tendency to yield isomerized products under different 

reaction conditions. 

These indenylidene Ru-complexes provide an attractive alternative to the Ru-

benzylidene compounds. It has been shown that all indenylidene Ru-catalysts display 

higher resistance to demanding reaction conditions (temperature and functional group 

tolerance) compared to their Ru-benzylidene counterparts.129d,131,284, In addition, good 

catalytic activities in the RCM of linear dienes284-287 and the ROMP of cycloolefins129d,131 

have been reported. RCM studies using diethyl diallylmalonate and diallyl tosylamine 

as substrates showed an appreciable catalytic activity and selectivity for the 2nd 

generation 16-electron Ru-indenylidene complex (C10).291 High temperatures allow for 

better ligand dissociation, and hence for a higher initiation rate of C10 in RCM.285,287 

Moreover, good activities have been obtained in the self-metathesis reaction of 

undecylenic aldehyde, a renewable building block derived from castor oil pyrolysis.92b 

Research performed by Monsaert et al. illustrated that C11 gives high conversions in 

the ROMP of 1,5-cyclooctadiene, and conversions of up to 80% in the RCM of diethyl 

diallylmalonate in short reaction times (5-10 min), thus being superior to the 

benzylidene analogue.287 

Recently, Grela and co-workers compared the performance of several Ru-indenylidene 

complexes with Grubbs and Hoveyda-Grubbs type catalysts in olefin metathesis 

reactions.292 In contrast to Grubbs and Hoveyda-Grubbs catalysts, C10 was found 

practically inactive in the room temperature RCM of diethyl diallymalonate using 

catalyst loadings as low as 0.05 mol%. However, conversions dramatically increased 

when the reaction temperature was increased to 70 °C. In addition, application of C10 

to challenging substrates such as diethyldi(methallyl)malonate in fluorinated aromatic 
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hydrocarbon solvents resulted in a remarkable enhancement of the catalytic activity. 

Moreover, this approach was successfully extended to the RCM of natural products 

and the synthesis of trisubstituted alkenes via cross-metathesis.293 

In the following lines, the performance of C10, C11 and C12 in ADMET polymerization 

is described and their double bond migration activities are studied in relation with the 

reaction conditions. 

 

Results and discussion 

To date, only one example of ADMET polymerization with an in situ generated Ru-

indenylidene catalyst has been reported.289 The related arene Ru-indenylidene 

complex (Figure 4.21) was generated in situ from [RuCl(p-

cymene)(=C=C=CPh2)(PCy3)][CF3SO3], as the catalyst precursor and HOSO2CF3, and 

applied in the ADMET of 1,9-decadiene to yield a polymer with 94% conversion in 12 h 

at 0 °C. 

 

Figure 4.21: Representative scheme for the in situ generated Ru-indenylidene.289 

 

The α,ω-diene used in the ADMET polymerizations was synthesized following a 

procedure adapted from the literature using 1,3-propanediol, which can be prepared 

from glycerol, and 10-undecenoic acid,44a commercial derivative of castor oil (Figure 

4.22). A set of ADMET polymerizations was used to evaluate the performance of 

complexes C10, C11 and C12 at four different temperatures (60, 80, 100 and 120 °C), 

under bulk conditions, for 5 h reaction time, and constant catalyst loading 

(200:1=monomer 1: catalyst). This provided a broad data set to evaluate the catalytic 

systems tested (Table 4.8 and Table 4.9, respectively). The activity of these catalysts 
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was compared to the Hoveyda-Grubbs 2
nd

 generation catalyst (C5), which was 

previously examined in ADMET polymerizations of the same monomer.282 In all cases, 

continuous nitrogen purging was applied throughout the polymerizations and 

polymerizations were run in duplicate to obtain a reliable set of data. 

Moreover, the resulting ADMET polymers were transesterified with methanol to yield 

α,ω-diesters. The resulting structures represent monomer units from the polymers, 

and thus provide direct information about the extent of isomerization. Further analysis 

of the transesterification mixtures with GC-MS allowed the quantification of double 

bond migration during ADMET (Figure 4.22). For polymerizations in which 

isomerization does not occur, would result, after transesterification, in a GC-MS 

spectrum consisting of one single peak representing the unsaturated C-20 repeating 

unit of the studied polymers (compare Figure 4.22). On the other hand, the occurrence 

of double bond migration during ADMET would result in a mixture of α,ω-diesters 

diesters with different chain lengths. The molecular weight of the isomerized diesters 

vary by multiples of 14 g/mol (one methylene group), corresponding to the differences 

in mass between the olefin molecules released during the ADMET polymerization. In 

this case, the GC-MS spectrum would consist of a distribution of different peaks. 
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Figure 4.22: Synthesis of the studied α,ω-diene, its ADMET polymerization, and strategy to 

evaluate isomerization side reactions. 

 

The analytic data of the polymers synthesized is summarized in Tables 4.8 and 4.9 and 

selected GPC traces are depicted in Figure 4.23. Except for the cases in which only 

oligomers were obtained, monomer conversion was quantitative as determined by the 

total disappearance of the monomer signal in the GPC traces of the reaction mixtures. 

The runs at 60 °C showed that, among C10, C11 and C12 (compare entries 1, 3 and 5 in 

Table 4.8, respectively; and Figure 4.22), C10 led to the highest molecular weight of 

around 10.0 kDa, with a moderate isomerization degree of 36.3% (Table 4.8, entry 1). 

Interestingly, at this temperature C11 showed a considerably low degree of 

isomerization of 9.91%, however we were able to obtain just oligomers (Mn 1700 Da). 

Another goal in this research was to suppress the isomerization side reaction and thus 

to synthesize well defined polyesters. Benzoquinones are very effective additives for 

the prevention of the olefin isomerization.116 Thus, we performed the same set of 
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experiments in the presence of BQ, and observed that the degree of isomerization was 

significantly reduced for C10, from 36.3% to 0.7% of degree of isomerization. However, 

this decrease in the isomerization degree was accompanied with reduced molecular 

weights for all studied catalysts. In the worst case of C11, the molecular weight was 

reduced by factor of 3 (compare entries 3 and 4 in Table 4.8). 

 

Table 4.8: Overview of polymerization and the isomerization results of the corresponding 

polymers at 60 and 80 °C. 

Entry Polymer 

Cat % 

(0.5 mol%) 

T (°C) Conditions
a)

 Iso %
b)

 
Mn 

(kDa)
c)

 
PDI 

1 P1 C10 60  36.3 10.5 2.00 

2 P2 C10 60 BQ (1.0 mol%) 0.70 8.3 2.05 

3 P3 C11 60  9.91 1.7 1.16 

4 P4 C11 60 BQ (1.0 mol%) NId) 2.2 1.36 

5 P5 C12 60  69.6 8.0 1.60 

6 P6 C12 60 BQ (1.0 mol%) 63.9 4.2 1.76 

7 P7 C10 80  63.9 14.0 1.92 

8 P8 C10 80 BQ (1.0 mol%) 74.2 14.0 2.09 

9 P9 C11 80  41.9 14.2 1.90 

10 P10 C11 80 BQ (1.0 mol%) 28.6 9.2 1.90 

11 P11 C12 80  91.4 11.9 1.80 

12 P12 C12 80 BQ (1.0 mol%) 59.2 11.3 1.93 

 

a) Additional conditions applied during polymerization: BQ: amount of benzoquinone in % respective to 
monomer; b) % amount of isomerized diesters observed with GC-MS after transesterification of the 
respective polymer c) GPC was performed in THF, containing BHT, with PMMA calibration; d) NI: no 
isomerization. 
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Figure 4.23: GPC traces of the polymerizations performed at 60, 80, 100 and 120 °C in 

presence of a) 0.5 mol% C10, b) 0.5 mol% C11, c) 0.5 mol% C12, and d) 0.5 mol% C10 with 1 

mol% BQ. 

 

When the polymerization temperature was increased to 80 °C higher molecular weight 

polymers were obtained with all studied catalysts. For instance, C11 produced a 

polymer with more than double molecular weight when increasing the reaction 

temperature from 60 to 80 °C. Furthermore, the increase of the temperature led to an 

increase in the amount of the isomerization for all of the catalysts. Concerning the 

isomerization inhibition effect of BQ on the catalyst, the effect was significant (factor 

of 1.5) for C11 and C12, whereas BQ was ineffective in the presence of C10. In case of 

C12, the molecular weights of the corresponding polymers synthesized with and 

without BQ were similar, with a lower isomerization value for P12, as expected. 

Surprisingly, C10 showed higher isomerization degrees in the presence of BQ at 80 °C. 
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In an attempt to further increase the molecular weights of the obtained polyesters; all 

catalysts were also investigated at 100 °C (Table 4.9). Surprisingly, this further increase 

of the polymerization temperature led to lower molecular weights for all studied 

catalysts. Quite interestingly, at that temperature the most significant inhibition effect 

of BQ on the degree of isomerization was observed for C2 (compare entries 15 and 16 

in Table 4.9), however just yielding oligomers. Similarly as for the results at 80 °C, 

when we used C10 and BQ, we observed the increase of isomerization degree along 

the almost same Mn value (Table 4.9, entries 13 and 14). On the other hand, C12 

revealed the same tendency as at 80 °C. The obtained polymers possessed lower 

isomerization percentage, and quite high molecular weight values. 

Furthermore, the catalysts C10, C11, and C12, together with C5 as a comparison, were 

investigated at 120 °C (Table 4.9, entries 19, 21, 23, and 25). All complexes provided 

comparatively high molecular weights, following the order C10 (~17000 Da) > C11 

(13000 Da) > C12 (12200 Da) > C5 (10500 Da). Regardless of the catalyst, all the 

polymers at that temperature possessed high isomerization values. Subsequently, we 

tried to reduce the amount of isomerization by performing the same set of reactions in 

the presence of BQ (Table 4.9, entries 20, 22, 24 and 26). The isomerization degree 

was slightly reduced when using C10 (Figure 4.24a), and the most prominent effect of 

BQ was observed again for C11 (Figure 4.24b); however, this time the polymerization 

in the presence of BQ resulted in polymer with Mn of 8500 Da, compared to the results 

at lower temperatures. Interestingly, the polymerization with C12 in the presence of 

BQ followed the same tendency like at 100 °C and resulted in higher molecular weight 

polymer in comparison to the polymerization without BQ, whereas the isomerization 

remained high (Table 4.9, entries 23 and 24). 
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Table 4.9: Overview of polymerization and the isomerization results of the corresponding 

polymers at 100 and 120 °C. 

Entry Polymer 

Cat % 

(0.5 mol%) 

T (°C) Conditions
a)

 Iso %
b)

 
Mn 

(kDa)
c)

 
PDI 

13 P13 C10 100  79.3 10.0 1.79 

14 P14 C10 100 BQ (1.0 mol%) 81.6 11.3 1.74 

15 P15 C11 100  53.6 9.0 1.85 

16 P16 C11 100 BQ (1.0 mol%) 0.80 4.5 1.60 

17 P17 C12 100  55.2 6.7 1.72 

18 P18 C12 100 BQ (1.0 mol%) 37.2 10.2 1.92 

19 P19 C10 120  89.4 16.7 1.80 

20 P20 C10 120 BQ (1.0 mol%) 73.0 11.0 1.83 

21 P21 C11 120  83.7 13.0 1.66 

22 P22 C11 120 BQ (1.0 mol%) 16.0 8.5 1.78 

23 P23 C12 120  87.4 12.2 1.73 

24 P24 C12 120 BQ (1.0 mol%) 73.8 14.9 1.73 

25 P25 C5 120  80.5 10.4 1.93 

26 P26 C5 120 BQ (1.0 mol%) 66.5 12.0 1.67 

 

a) Additional conditions applied during polymerization: BQ: amount of benzoquinone in % respective to 
monomer; b) % amount of isomerized diesters observed with GC-MS after transesterification of the 
respective polymer c) GPC was performed in THF, containing BHT, with PMMA calibration. 

 

In the already mentioned work by Fokou and Meier, Hoveyda-Grubbs 2nd generation 

catalyst (C5) was shown to provide polymers with molecular weights Mn of 8.0 kDa at 

80 °C, and 8.8 kDa at 100 °C. The isomerization degrees were found to be 24% and 20% 

respectively.282 Herein we have demonstrated that C5 can be applied at a higher 

temperature (120 °C), in the presence of BQ (1.0 mol%), and low amount of catalyst 

(0.5 mol%), thus yielding a polymer with Mn of 12000 Da. However, at 120 °C the 
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amount of isomerization was high with and without BQ (entries 25 and 26, Table 4.9). 

These results, along with the results mentioned in our previous work, proved that C5 

can be used in a quite broad temperature range. 
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Figure 4.24: GC-MS study of the acid-catalyzed degradation products of polymers P19, P20, 

P21, and P22. 

 

As a summary, the tendency found for the activity of these catalysts as a function of 

the temperature was not linear. A clear increase in the activities was observed when 

increasing the temperature from 60 °C to 80 °C, however, when the temperature was 

increased to 100 °C a general activity decrease was observed for all catalysts, and 

finally the activity increased again when performing the reactions at 120 °C. As the 

temperature is increased the activity of the catalyst increases, however, its 

degradation might also be accelerated. At 100 °C, the degradation of the catalyst could 

be predominant, thus resulting in lower molecular weights. On the other hand, when 

the temperature is raised to 120 °C, the catalysts degradation could be compensated 

by an extremely fast initiation and short-term propagation promoted by the high 

temperature, giving as a result high molecular weights before catalysts degradations 
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take place. This argumentation is speculative, but in order to provide some data to 

support this idea, we decided to examine the progress of the polymerization at 

different times for C10 at 80, 100 and 120 °C. We took samples at 5, 15, 30, and 120 

minutes for each temperature and analyzed them by GPC (Figure 4.25). As predicted 

from the arguments above, the propagation observed for the polymerization at 80 °C 

was slower than that at 100 °C at short times, however, the polymerization stalled at 

100 °C, maybe due to catalyst degradation, yielding lower molecular weights. 

Furthermore, the propagation in the initial steps for the polymerization at 120 °C was 

found to be the fastest, leading to high molecular weight species in short times before 

catalyst degradation became predominant. 
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Figure 4.25: GPC traces of polymerizations performed with C1 at 80, 100, and 120 °C. Samples 

taken at 5 min (―–), 15 min (−), 30 min (− ⋅ ⋅), and 120 min (-). 
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Olefin isomerization occurring during ADMET polymerization leads to macromolecules 

with ill-defined structures. Depending on the isomerization degree, the physical 

properties of the polymers are correspondingly affected. A different insight into the 

effect of the isomerization ratio on the thermal properties of the polymers can be 

achieved by differential scanning calorimetry (DSC) analysis of the synthesized 

polymers. The thermal behavior of two polymers with similar Mn, synthesized at same 

temperature with and without BQ was studied by DSC (Figure 4.26). Polymer P12 

(Table 4.8, entry 12), possessing a lower degree of isomerization, exhibited a quite 

sharp Tm peak at 47 °C. On the other hand, the DSC trace of polymer P11 (Table 4.8, 

entry 11), with higher isomerization degree, presented multiple peak melting 

transitions at lower temperatures resulting from its ill-defined repeat unit structure. 

These results show that, even if the addition of BQ does not completely avoid 

isomerization in most of the herein presented examples, polymers with a higher 

structural regularity can be obtained by using BQ. 

 

Figure 4.26: DSC traces of ADMET polymers P11 and P12 (Table 4.8, entries 11 and 12, 

respectively). 

 

Conclusion 

In summary, the indenylidene Ru-complexes provided an attractive alternative to the 

benzylidene compounds and allowed preparing polyesters of up to 17.0 kDa via 
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ADMET polymerization, even at elevated temperatures with enhanced activity. 

Unfortunately, the attempt to synthesize regular polymer architectures through 

addition of BQ and thus to prevent the isomerization reaction was not possible with 

these catalyst. Nevertheless, these results should be regarded as first experimental 

data set on these catalysts and further improvement, building upon these results, can 

be expected in the future. 
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4.5 Synthesis of castor oil-derived unsaturated PA X,20 via metathesis and catalytic 

amidation 

 

Introduction 

Aliphatic polyamides (PA) are important engineering materials that are widely applied 

due to their excellent properties, such as a high modulus, good toughness, relatively 

high melting points and heat resistance, abrasion resistance, as well as chemical 

inertness.294 The mainly applied methods for their synthesis include the 

polycondensation of ω-aminocarboxylic acids, the polycondensation of aliphatic 

diamines and dicarboxylic acids (or their derivatives), or the ring-opening 

polymerization of lactams.295 As an alternative, recently, a new polymerization 

reaction in the presence of dearomatized Ru-pincer complexes emerged as a 

synthetically useful and general method for the preparation of a variety of polyamides 

under mild, neutral conditions, using non-toxic reagents, not requiring preactivation of 

the substrates, and generating no waste.296 In the case of renewable polyamides, the 

most prominent example of industrially produced, 100% bio-based, polyamide is the 

AB-type polyamide-11.8a In contrast, the synthesis of 100% bio-based AABB type 

polyamides is not expected in the near future due to the non-availability of bio-based 

diamines. However, research on routes to obtain diacids from glucose (adipic acid) or 

vegetable oils (azelaic acid, sebacic acid) for the production of partially bio-based 

polyamides-6,6, -6,9, and -6,10 are currently investigated. Adipic acid, for instance, can 

be obtained from glucose via fermentation with modified E. coli.
297 The resulting 

intermediate, cis,cis-muconic acid, was then chemically hydrogenated to adipic acid at 

elevated pressure. Production of nylon X,6 from the derived adipic acid and a diamine 

would then follow a conventional step growth polymerization. In contrast to the 

fermentation pathway to adipic acid from glucose, azelaic acid and sebacic acid can be 

produced via oxidative cleavage of oleic acid and alkaline pyrolysis of castor oil, 

respectively.8a,298  

Among various polycondensation methods, acyclic diene metathesis (ADMET) is useful 

for the synthesis of a variety of polymer architectures that would otherwise be difficult 
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to obtain.
95

 Due to the development of functional group tolerant metathesis catalysts, 

it is now possible to polymerize various α,ω-dienes bearing ether, ester, ketone, acetal, 

alcohol, amino acid, boronate and carboxylic acid functional groups via ADMET 

polymerization.102,106,299-304  However, attempts to polymerize amide containing α,ω-

dienes were less successful until now. Tastard et al. described the indirect 

polymerization of a variety of amide containing α,ω-dienes by first performing a ring-

closing metathesis (RCM) reaction at high dilution in chloroform or THF with 1.0 mol% 

of the Grubbs 2nd generation catalyst (C4) to obtain an amide containing macrocycle in 

moderate to good yields.305 These macrocyles were then further polymerized by an 

entropically driven ring-opening polymerization (ED-ROMP) using 0.5 mol% of the 

same catalyst, to give the final polyamides (including PA 8,20). The properties of the 

resulting polymers were not described. Moreover, the direct ADMET polymerization of 

amide containing α,ω-dienes was investigated in this study revealing that only 

oligomers were formed with 1.0 mol% of C4 after 4 days of reaction time.305 Moreover, 

many different types of long chain aliphatic polyamides obtained by conventional melt 

polycondensation are described in the literature. For instance, the long chain diacids 

octadec-9-enedioic acid,306 eicosanedioic acid,307,308 1,16-octadecane diacid309 and 

1,14-hexadecane diacid310 were polymerized with various aliphatic diamines, ranging 

from 2 to 12 methylene units. The resulting polymers showed good thermal 

properties. For instance, the melting temperature (Tm) of these polyamides increased 

along with an increase of the relative amide group density, whereas the decomposition 

temperature showed no obvious trends with respect to increasing diamine chain 

length. 

The main goal of this study is to describe the synthesis of novel unsaturated 

polyamides that can be obtained from plant oil derivatives via two different 

approaches, each involving one metathesis step.62 First, long chain aliphatic α,ω-dienes 

with two symmetrically spaced amide segments were polymerized via ADMET. 

Secondly, E-dimethyl-eicos-10-enedioate 2 was polymerized with different aliphatic 

diamines using strong organic bases, such as TBD, as catalysts. The monomer 2 is a bio-

based unsaturated monomer and was obtained via self-metathesis of 

methyl-10-undecenoate, a castor oil derived platform chemical. Both reaction 



110 

 

pathways led to unsaturated PA X,20 and the two different routes were investigated, 

optimized and compared to one another. Moreover, the properties of the resulting 

polyamides were investigated revealing that these long-chain polyamides are well 

applicable as engineering plastics and that their properties depend on the structure of 

the applied monomers, as expected. 

 

Results and discussion 

The main objective of the present study was to investigate the synthesis of PA X,20 

from renewable resources via two routes and to compare these routes to one another 

(compare Figure 4.27). Both routes rely on methyl-10-undecenoate 1 that can be 

obtained from castor oil by pyrolysis and is thus a renewable building block that does 

not interfere with food or feed. Although 3a-3d are at present petroleum based the 

desired polymers 5a-d have a renewable percentage varying from 70 to 80% by mass, 

depending on the used diamine. 

 

 

 

Figure 4.27: Schematic representation of the two different investigated routes to obtain PA 

X,20 from renewable resources; note: depending on the applied synthesis route the double 

bonds of polymers 5 will be either a cis/trans mixture (ADMET) or solely E configured (route 

via monomer 2). 
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Both routes involve one metathesis step and one catalytic amidation step, only in 

reverse order. Thus, the first route is based on the synthesis of ADMET monomers 

4a-d. These α,ω-dienes were obtained from 1 and different chain length diamines (3a-

3d; Figure 4.27). The strong organic bases DBN, DBU, and TBD were tested as catalyst 

at three different temperatures (25, 75 and 100 °C) and different amounts (1, 2.5, 5, 

7.5 and 10.0 mol%) for the solvent-free amide synthesis revealing that TBD at 75 °C 

and 7.5 mol% was best suited for this reaction, since these conditions provided the 

highest conversions of methyl 10-undecenoate to the corresponding monomers 4a-4d 

as observed by GC, IR and 1H NMR investigations. A larger quantity of TBD and/or 

higher temperature did not improve the observed yields. After this optimization 

procedure, the desired monomers 4a-4d could be obtained in high yields and purities 

in a simple and reproducible catalytic one step reaction. The thus obtained α,ω-diene 

monomers were soluble in dimethyl formamide (DMF) and o-xylene (after applying 

sonication) and slightly soluble in dimethyl sulfoxide (DMSO) and dimethyl acetamide 

(DMAc). The ADMET polycondensation of 4a-4d was then investigated with 2nd 

generation catalysts C4 and C5, since these catalysts are highly tolerant to functional 

groups, oxygen and small amounts of moisture, and can be applied at higher 

temperatures.59,311 Most often, ADMET polymerizations are performed using neat 

liquid monomers, however the investigated amide containing monomers were all 

crystalline solids with high melting points that unfortunately required the use of 

solvent for these polymerizations. Typically, C4 and C5 are soluble in dichloromethane, 

toluene or THF, and metathesis reactions are carried out in these solvents at 

temperatures ranging from room temperature to about 80 °C.312 However, the 

synthesized α,ω-diene monomers 4a-d were insoluble in all of these solvents and their 

ADMET polycondensations had to be carried out with minimal amounts of DMF to 

assure a homogeneous reaction mixture. These ADMET reactions were tested with up 

to 10% of C4 and C5 and all polymerizations were monitored by GPC. It was observed 

that, even after 24 hours reaction at 80 °C, during which the ethylene was removed by 

a continuous nitrogen flow, neither of these catalysts yielded polymers, and unreacted 

monomers were recovered. Further increasing the reaction temperature did not 

change this situation. However, attempts to perform the polymerization in o-xylene 

revealed better results. The diamide monomers 4c and 4d both reacted in the 
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presence of C5 (5.0 mol%) in o-xylene at 80 °C gave polymers 5c and 5d, respectively. 

Moreover, monomer 4d also polymerized in the presence of C4 (5.0 mol%) and the 

obtained polymers showed higher molecular weights in comparison to polymerization 

with C5. Higher catalyst loadings of 10.0 mol% of C4 and C5 for both monomers 4c and 

4d, did not lead to higher molecular weights. In contrast, any attempt to polymerize 

monomers 4a and 4b via ADMET failed completely. The unreactivity of the latter 

monomers was attributed to the significantly lower solubility in o-xylene. Moreover, 

one can conclude that DMF is an unsuitable or at least nonpreferential solvent for 

ADMET (and other metathesis reactions), most likely due to its coordinative character. 

The results obtained from these ADMET polymerization are summarized in Table 4.10 

and clearly show that this route to renewable PA X,20 is feasible, but unsatisfactory 

since not all monomers can be polymerized and low molecular weight polymers were 

obtained. 

 

Table 4.10: Results obtained from the ADMET polymerization of monomers of 4a-d with o-

xylene as a solvent at 80 °C. 

 

Polyamide Catalyst (mol%) Mn (GPC) Mw/Mn (GPC) 

8,20 (5d) C4 (5.0) 6000 2.11 

8,20 (5d) C4 (10.0) 6800 1.98 

8,20 (5d) C5 (5.0) 4900 1.87 

8,20 (5d) C5 (10.0) 5500 2.23 

6,20 (5c) C5 (5.0) 4000 1.98 

6,20 (5c) C5 (10.0) 4100 2.01 

 

 

Our alternative route for the synthesis of unsaturated PA X,20 involves the self-

metathesis of 1 in the presence of C4 to yield 2 and the subsequent catalytic amidation 

of this monomer with aliphatic diamines (Figure 4.27). The self-metathesis of 1 could 

be performed with very low amounts of catalyst under bulk conditions, as expected. 

This is a first important advantage of the second route, since the use of solvent for the 
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metathesis step can be avoided and only low amounts of precious metathesis catalyst 

are required. Both aspects are also important in terms of a lower environmental 

impact of the second route. The subsequent catalytic amidation polymerizations of 2 

with 3a-d showed noticeable differences in term of thermal behavior of the obtained 

polymers compared to the polymers synthesized via ADMET polymerization, already 

indicating their higher molecular weight. Classic procedures to prepare long chain 

aliphatic PAs are the melt polycondensation at high temperature of 

carboxylate/ammonium salts formed beforehand or the reaction of the respective acid 

chlorides with the diamines. The main disadvantages of these procedures are the 

requirement of high reaction temperatures (180-300 °C) and the application of acid 

chlorides, respectively. Moreover, side reactions, such as transamidation, as well as 

oxidative and thermal decomposition can be observed, which almost always occur 

during melt condensation. The required efficient removal of the produced side 

products, water and HCl, are additional disadvantages.295 In contrast, our catalytic 

amidation shows good product yields and no salt is produced, the only by-product 

being methanol (and the catalyst). 

 

In our approach two different routes were studied and optimized: the one step-

heating (A) and the three step-heating catalytic amidation (B). For the A process 

various reaction temperatures were tested (60, 75, 100, 125 and 150 °C). IR and GPC 

analysis were used to identify the most suitable reaction temperature. For all reaction 

temperatures, a decrease of the ester group peak (1740 cm-1) and an increase of the 

amide peaks (3306 and 3080 cm-1) was observed by IR with increasing reaction time. 

For the lower reaction temperatures (60 and 75 °C) the conversion of the ester peak 

into amide peaks was slow and the molecular weights obtained from GPC analysis 

were comparatively low. The higher temperatures showed considerably better 

conversions and higher molecular weights, whereby 150 °C provided the best results. 

Further increasing the temperature above 150 °C did not improve the results. 

Moreover, the IR spectra of the polymers prepared at 150 °C revealed full conversion 

of the ester and therefore, this reaction temperature was used for all further 

experiments. Thus, monomer 2 was reacted with different diamines 3a-3d at 150 °C in 

the presence of TBD as a catalyst. Three different amounts of catalyst were tested: 5.0, 
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7.5 and 10.0 mol%. TBD was chosen as the catalyst for these polymerizations, since it 

provided the best results for the synthesis of monomers 4a-d. Since 4a-d can be 

considered as model compounds of polymers 5a-d, we expected a similar behavior 

during these polymerizations. All polymerizations were performed under bulk 

conditions and a continuous flow of nitrogen to facilitate the removal of methanol. 

Solvent-free conditions were chosen to avoid solvent waste, to enhance conversions, 

and to avoid the formation of cyclic structures. The analytic results of the polymers 

with the highest obtained molecular weights via this route are summarized in Table 

4.11. Similarly like for route A, the three step-heating amidation B was performed in 

bulk and under nitrogen flow, but three different temperatures (75, 100 and 150 °C) 

were applied stepwise. The B route was tested in order to reduce the evaporation of 

the lower molecular weight diamines at the beginning of the reaction at the high 

polymerization temperatures. Higher molecular weight polymers were obtained via 

route A, with the exception of the most volatile diamine 3a. This behavior can for 

example be observed if GPC traces of the unsaturated PA 8,20 prepared via the two 

different routes are compared (Figure 4.28). 

 

 

Figure 4.28: GPC traces of crude reaction mixtures of trifluoroacetylated 5d prepared via the 

two different routes A and B. 
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Additionally to the reaction temperature, the catalyst loading was of great importance. 

When route A was applied, the optimal catalyst loading in terms of observed molecular 

weights decreased with increasing diamine chain length. The results obtained after 

optimizing the polymerizations via the two different routes are summarized in Table 

4.11. It should be mentioned here that the GPC results presented in Table 4.11 are 

relative to polymethycrylate standards and that the molecular weights are of the 

solubilized polymers (modification with TFAA). Therefore, the molecular weights are 

expected to be quite off their absolute values. However, this simple method was a 

valuable tool to optimize different reaction conditions and the results should be valid 

at least relative to each other. Moreover, the results clearly show that route A is, at 

least for long chain diamines and diesters, a simple and reproducible laboratory 

technique suitable for the preparation of polymers with considerable molecular 

weights that can be used for structure confirmation and for the evaluation of basic 

material properties.  

 

Table 4.11: Results obtained from the catalytic amidation polymerizations of monomers 2 with 

diamines 3a-d. 

 

Polyamide Route TBD (mol%) Mn (GPC) Mw/Mn (GPC) 

8,20 (5d) A 5.0 14700 2.4 

8,20 (5d) B 10.0 6000 2.0 

6,20 (5c) A 5.0 11300 2.3 

6,20 (5c) B 7.5 8200 1.9 

4,20 (5b) A 10.0 9300 2.0 

4,20 (5b) B 7.5 6300 1.9 

2,20 (5a) A 7.5 5300 1.9 

2,20 (5a) B 10.0 5500 2.3 

 

 

The polyamides with the highest obtained molecular weights were then used for 

structural and thermal characterization. The GPCs of these polymers are depicted in 
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Figure 4.29 showing that symmetrical molecular weight distributions were obtained 

for 5b-5d, whereas 5a mainly consisted of oligomers. These polymers were also 

investigated by 
1H NMR in a CDCl3/TFAA solvent mixture. All peak assignments were 

based on the literature and on the comparison of polyamide spectra with those of 

their trifluoroacetylated model compounds 4a-d.306,310,313 

 

 

Figure 4.29: GPC traces of trifluoroacetylated 5a-5d obtained by optimized reaction conditions. 

 

As an example of these NMR investigations, the 1H NMRs of monomer 4d and polymer 

5d are presented in Figure 4.30. No end-group signals stemming from 

trifluoroacetylated amine or carboxylic acid derivatives could be detected in the 

polymer spectrum indicating its high molecular weight. 

The 1H NMR spectrum of polymer 5d showed an internal olefin peak at 5.38 ppm and 

the methylene groups in α position to the carbonyl of trifluoroacetylated amide 

linkages at 2.8 ppm as typical signals for monomer 2. The signal at 3.7 ppm 

corresponds to the protons in α position to the nitrogen atom of the diamine unit. All 

other signals could also easily be identified and thus the 1H NMR of the investigated 

polymers clearly confirmed their structure. However, a small signal at 2.4 ppm was 

observed in the 1H NMR of all polymers that could not be properly assigned despite all 

efforts. Similar signals could also not be assigned in literature examples.306,310  



117 

 

 

Figure 4.30: 
1
H NMR spectra of trifluoroacetylated monomer 4d (top) and polymer 5d 

(bottom). 

 

DSC studies showed a broadened endotherm in the second heating run with a 

shoulder on the high temperature side for PA 2,20, PA 4,20 and PA 6,20. For PA 8,20 a 

single endotherm was observed. According to previous reports on polyamides thermal 

properties, the low temperature endothermal peak originates from the melting of the 

thin lamellae crystals in the semicrystallized polymers and the high temperature one is 

attributed to the melting of the thick lamellae crystals or the recrystallized parts during 

the heating process.314,315 Not surprisingly, PA 2,20 exhibited the highest melting 

temperature (Tm) in comparison to the other prepared PAs because of the shorter 

diamine segment and thus the higher amide group content. In general, the thermal 

properties (compare Table 4.12) are in the expected range and it is also worth 

mentioning that our E-configured unsaturated PA 8,20 (Tm = 180 °C) showed a slightly 

higher melting point compared to that of the polyamide synthesized from Z-octadec-9-

enedioic acid, PA 8,18 (Tm = 169 °C).313 This is most likely a result of a better 

crystallization due to (i) the better crystal fitting of the E configuration and (ii) the 

length of the diacid monomer unit. 
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Moreover, the TGA data (Table 4.12) indicate a good thermal stability for all 

polyamides under consideration. Except for PA 2,20, all polymers have a 

decomposition onset temperature, Td, of 400 °C or higher. The somewhat poorer 

stability of PA 2,20 can most likely be related to the low molecular mass of this 

polymer. 

 

Table 4.12: Thermal properties of the synthesized renewable polyamides X,20. 

 

Polyamide Tm (°C) Td (°C) 

8,20 (5d) 180 416 

6,20 (5c) 193 404 

4,20 (5b) 222 400 

2,20 (5a) 226 370 

 

 

Conclusion 

 

It has been demonstrated that the self-metathesis of monomer 2 and its subsequent 

polymerization with diamines using TBD as a catalyst is a straightforward method for 

the preparation of aliphatic polyamides, at least on lab scale. This route was superior 

to the also investigated ADMET polymerization of monomers 4a-d and has some 

advantages (e.g. avoiding of acid chlorides) over conventional polyamide synthesis 

techniques. The obtained polymers showed good properties indicating their potential 

use as engineering plastics. Moreover, our studies clearly demonstrated that the 

described unsaturated polyamides can be obtained from renewable resources and 

demonstrate a new example of the use of plant oil derivatives in polymer science. 

 

 

 

 



119 

 

4.6 Synthesis of carbonate-based polymers and building blocks 

 

Introduction 

Unsymmetric and symmetric organic carbonates are important intermediates for the 

chemical industry (Figure 4.31). They can, for instance, act as useful protecting groups 

of alcohols and phenols, since they are more stable than the corresponding esters 

under basic conditions.
316 Additionally, organic carbonates have found application as 

monomers for organic glasses and as solvents, for instance, in the manufacture of 

lithium batteries.317 Although the remarkable importance of aryl and alkyl carbonates 

in various fields as chemical intermediates is well documented by the presence of a 

large number of patents318 and articles317,319 in the literature, very few carbonates are 

available commercially. The conventional methods for the preparation of organic 

carbonates suffer from disadvantages and still require the use of toxic reagents,319,320 

such as phosgene, dimethyl sulfate, pyridine and carbon monoxide. Most commonly, 

chloroformate esters obtained from phosgene and alcohols were proposed as safer 

substituent.321 However, the methods based on phosgene produce a high quantity of 

chloride salts as side products and phosgene istself is of course highly toxic. 

 

 

 

 

Figure 4.31: General view regarding carbonate applications in organic synthesis. 

 

Furthermore, the selective synthesis of unsymmetric organic carbonates was 

accomplished using alkyl halides, either via the alkylation of metal carbonate with 
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various alkyl halides and sulfonates in ionic liquids,
322

 or by inorganic catalysts (e.g. 

Cs2CO3) based coupling of alcohols, carbon dioxide and alkyl halides.323 Thus, bearing in 

mind these drawbacks, it seems advisable to develop more convenient and 

environmentally benign catalytic systems for the synthesis of carbonates.146,324 

Along with this idea, the organic carbonate interchange reaction can be proposed as 

the most pursued eco-friendly “carbonylation” route to produce unsymmetric as well 

as symmetric carbonates in the presence of organic, metal-free catalyst, and dimethyl 

carbonate (DMC). Since DMC can be synthesized using CO2 as building block,325 and 

features high biodegradability and low toxicity, it incorporates several of the 

fundamental aspects of green chemistry (Figure 4.32).3 In particular, DMC has been 

proposed as a substitute of dimethyl sulphate, methyl halides and phosgene and reacts 

either as methoxycarbonylating or as a methylating agent, depending on the reaction 

conditions.324,326 

 

 

O O

O
CO, O2, MeOH CO2, MeOH

 

 

Figure 4.32: Phosgeneless routes to dimethyl carbonate.325 

 

The carbonate interchange reaction was investigated by many researchers,319 

however, since this reaction is an equilibrium reaction, sophisticated procedures, high 

temperatures (>100 °C) and rather complicated heterogeneous catalysts systems 

(including MCM-41-TBD,146Mg/La metal oxide,324e
 CsF/α-Al2O3,324b

 nano-crystalline 

MgO327
 and metal–organic frameworks328) have been applied to shift the equilibrium 

towards the desired product. Furthermore, although unsymmetric organic carbonates, 

compared to symmetric ones, are more useful synthons, the synthetic routes are 

becoming even more complex. On the other hand, organocatalysts are steadily 

approaching the performance of organometallic catalysts and enzymes. Therefore, in 



121 

 

order to develop a sustainable and selective unsymmetric organic carbonate synthesis, 

1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) can be proposed as an alternative catalyst.  

Concerning polymers, it is well know that carbonate linkages within the backbone 

structure introduce a spectrum of properties, such as reduced biodegradation time 

and enhanced mechanical performance.329 Moreover, symmetric organic carbonates, 

especially long-chain ones, find application in lubricant, cosmetic, plasticizer and fuel 

compositions.330 For all these reasons, the development of new phosgene- and metal-

free synthetic routes to polycarbonates and low molecular weight organic carbonates 

is of major interest. Thus, the following discussion will be focused on the reactivity of 

DMC in the presence of commercially available TBD at low catalyst loadings (1.0 

mol%), which allowed us to set up a simple and mild approach to the synthesis ofa 

wide range of symmetric and unsymmetric carbonates, as well as polycarbonates from 

different renewable diols. The synthesis of castor oil and citronellol derived symmetric 

α,ω-diene carbonates, and their further polymerization via ADMET will also be 

described.94c 

 

Results and discussion 

Unsymmetric organic carbonate synthesis 

As discussed in the introduction, most of the catalytic systems for the synthesis of 

organic carbonates require the toxic and hazardous reagent phosgene at some stage. 

In order to address this problem, several groups used dimethyl or diethyl carbonate as 

a substituent for phosgene. In addition to this, organocatalysis has the potential to 

make current chemical processes more environmentally benign by avoiding the use of 

toxic transition metal catalysts. Among a wide variety of existing organocatalysts, TBD 

displays an outstanding catalytic performance in condensation reactions. Thus, the 

solvent-free direct condensation of alcohols and dimethyl carbonate, using TBD as 

homogeneous organocatalyst, was studied (Figure 4.33). It should be noted that 

although DMC is used in excess, both the monoaddition and the diaddition products 

can be expected. 
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Figure 4.33: The solvent-free, direct condensation of an alcohol and dimethyl carbonate in the 

presence of TBD in homogeneous fashion. 

 

First, it was important to set the proper reaction temperature, since, as 

aforementioned, DMC exhibits a versatile and tuneable chemical reactivity that 

depends on the experimental conditions, especially on the reaction temperature. 

Although there is no clear cut-off, it is known that in the presence of nucleophiles at 

the reflux temperature (T ~ 90 °C), DMC acts as a methoxycarbonylating agent, and at 

higher temperatures acts primarily as a methylating agent.324 Furthermore, high 

temperatures favour the elimination of CO2 from the organic carbonate, thus 

facilitating the formation of the corresponding ether. In this case, we found that the 

best results in terms of yield and selectivity were achieved by performing the reactions 

at 80 °C. 

A number of different alcohols were chosen to evaluate the scope of the reaction; the 

first experiments were carried out using a simple primary alcohol (1-octanol) in order 

to optimize the reaction conditions. In a typical experiment, an excess of DMC was 

reacted with the alcohol in the presence of TBD. The product distribution was 

monitored by GC and GC-MS analysis and in some cases by NMR. The results obtained 

from these experiments are summarized in Table 4.13. While investigating the effect of 

the DMC/alcohol ratio at 80 °C using a catalyst loading of 1.0 mol% (to alcohol), it 

became clear that the rate of the reaction was somewhat reduced if the DMC/alcohol 

ratio was increased to 12/1 (Table 4.13, entry 4); in other words, the use of a larger 

excess of DMC did not further improve the yield of the reaction. It was thus necessary 

to reach a compromise between the amounts of unsymmetric and symmetric 
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carbonate (undesirable product in this case) obtained in the reaction. Thus, we chose a 

DMC/ROH ratio of 5/1 as the one providing the best relation between yield of 

unsymmetric carbonate and excess of DMC, and at the same time the lowest amount 

of symmetric carbonate. Moreover, longer reaction times did not improve the 

conversion, since the competitive formation of the symmetric carbonates began to be 

more pronounced.  

In order to enhance the selectivity, different catalyst amounts of TBD in the presence 

of constant molar ratio of DMC/ROH (5/1) were investigated. For example, catalyst 

loadings greater than 1.0 mol% led to rapid reaction; the reaction was complete in 15 

min at a catalyst loading of 5.0 mol% (Table 4.13, entry 5). 

 

Table 4.13: Carbonylation of 1-octanol under different reaction conditions. 

Entry DMC/ROH 
TBD 

(mol%) 
time 

conversion 

(%)
a)

 

selectivity 

(%)
b)

 

1 3/1 1.0 1 h 96 83 

2 5/1 1.0 1 h >98 95 

3 10/1 1.0 1 h 97 97 

4 12/1 1.0 1 h 96 98 

5 5/1 5.0 15 min >98 91 

6 5/1 0.5 
1 h 30 

min 
>98 93 

7c) 5/1 1.0 15 min >98 89 

8d) 5/1 1.0 30 min >98 92 

 

a) Conversions were calculated by GC-FID analysis using tetradecane as internal standard; b) The 
selectivity towards the unsymmetric carbonate; c) Reaction performed under continuous flow of Argon; 
d) Reaction carried out in the presence of molecular sieves 4Å. 

 

In this case, the selectivity for the desired unsymmetric carbonate was 91%; higher 

catalyst loadings only marginally improved this result. On the other hand, decreasing 
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the catalyst loading to 0.5 mol% did not result in comparably better selectivity 

(compare entries 2 and 6 in Table 4.13). 1.0 mol% TBD loading thus seemed to be a 

good compromise in terms of conversion and selectivity. It is well known that the 

removal of methanol strongly determines the efficiency of TBD-catalyzed 

transesterification; consequently, a model reaction was carried out under fixed 

reaction conditions (DMC/ROH = 5/1, 1.0 mol% TBD, 80 °C) applying a continuous 

stream of an inert gas or molecular sieves to remove the released methanol, 

respectively (entry 6 and entry 7 in Table 4.13). From these results, it became evident 

that no clear increase in the rate of the reaction took place in any of both cases. 

However, the selectivity in both the continuous gas flow and addition of molecular 

sieves reactions decreased due to the formation of the symmetric carbonate. 

The same experimental conditions were adopted for the synthesis of the 

corresponding unsymmetric carbonates, presented in Table 4.14, in order to evaluate 

potential differences in the reactivity of different alcohols. Alkyl methyl carbonates (n 

= 3-5), especially butyl methyl carbonate, are suitable as co-solvents in lithium-ion 

batteries.331 Thus, a clean and quantitative alternative synthesis of butyl methyl 

carbonate is a matter of interest. In accordance, butyl methyl carbonate was 

synthesized in relatively short time and with 91% selectivity. 

Catalytic cross-coupling reactions of allylic and propargylic compounds are used as a 

intermediates for the formation of carbon-carbon and carbon-hetero atom bonds;332 

for this reason we investigated the usefulness of our approach for the synthesis of 

unsymmetric allylic and propargylic carbonates. Initial attempts were performed to 

synthesize the unsymmetric carbonates of primary alcohol derivatives (Table 4.14, 

entries 5-7). After optimization, the maximum conversion for the synthesis of allyl 

methyl carbonate was 88% with a DMC/ROH molar ratio of 7.5/1 in 1 h, with quite high 

selectivity (94%). Prolonging the reaction times resulted in the formation of the 

symmetric product. Applying high molar ratios of DMC/ROH (such as 10/1, 15/1 and 

20/1) did not result in higher conversions. However, these results (88% conversion, 

94% selectivity) are very useful for synthetic procedures and are by far less toxic than 

usually applied synthetic routes (i.e. the use of chloroformates). 
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Table 4.14: Synthesis of various unsymmetric carbonates via TBD catalysed transesterification 

of DMC. 

Entry
a)

 Product 
DMC/

ROH 
time 

conversion 

(%)
b)

 

selectivity 

(%)
b)

 

1 

 

5/1 30 min 98 91 

2 

 

5/1 30 min 99 93 

3 

9  

5/1 2 h 98 97 

4 

 

5/1 30 min 99 97 

5 

 

7.5/1 1 h 88 94 

6 

 

5/1 40 min 98 94 

7 

 

5/1 2 h 98 92 

8c) 

 

7.5/1 6 h 80 94 
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Cont. Table 4.14: Synthesis of various unsymmetric carbonates via TBD catalysed 

transesterification of DMC. 

Entry
a)

 Product 
DMC/

ROH 
time 

conversion 

(%)
b)

 

selectivity 

(%)
b)

 

9 
n

Mn~500  

5/1 5 h 99 98 

10d) 

 

5/1 3 h 98 97 

11 
OO

O

 

5/1 20 h 98 99 

12 

 

5/1 4 h 98 98 

13 

 

5/1 4 h 98 97 

14 

 

7.5/1 8 h 99 97 

15 

O

OO

 

5/1 3 h 99 94 
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Cont. Table 4.14: Synthesis of various unsymmetric carbonates via TBD catalysed 

transesterification of DMC. 

Entry
a)

 Product 
DMC/

ROH 
time 

conversion 

(%)
b)

 

selectivity 

(%)
b)

 

16e) 

 

7.5/1 48 h 86 99 

17 

 

5/1 20 min 99 96 

 

a) all reactions were carried out with 15 mmol of the corresponding alcohol and 0.15 mmol (1.0 mol%) of 

TBD unless stated otherwise; b) conversions and selctivity were calculated for crude reaction mixtures 

via 1H NMR (300 MHz) and /or GC and GC-MS with tetradecane as internal standard; c) 5.0 mol% catalyst 

was used instead of 1.0 mol% TBD; d) molecular sieves were added; e) 10.0 mol% catalyst was used 

instead of 1.0 mol% TBD. 

 

Moreover, the tendency of substituted allylic alcohols to afford better yields than the 

allyl alcohol was remarkable (compare results in entry 5 and 6 in Table 4.14). It should 

also be noted that divinyl carbinol (Table 4.14, entry 13), a prochiral and bis-allylic 

alcohol, provided the desired product with relatively good conversion and selectivity 

within 4 h. Further, the carbonylation of propargyl alcohol proved to be more difficult; 

only a higher molar ratio of DMC/ROH (7.5/1) in combination with a higher catalyst 

loading (5.0 mol% TBD) resulted in a satisfactory conversion (entry 8, Table 4.14).  

Besides this, another interesting example was the carbonylation of poly(ethylene 

glycol) methyl ether (mPEG-OH, Mn ~ 500 Da). The covalent modification of biological 

macromolecules and surfaces for many pharmaceutical and biotechnical applications is 

accomplished by the coupling of PEG to the peptide or protein.333 Hence, an important 

aspect in this process is the incorporation of various PEG functional groups, like 

anhydrides, chloroformates and carbonates, which can easily conjugate to the protein. 
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Within this in mind, mPEG-OH was successfully carbonated to the corresponding 

unsymmetric organic carbonate (entry 9, Table 4.14) with quantitative conversion and 

high selectivity. 

The behaviour of a few representative and less reactive secondary alkyl and aryl 

alcohols was also studied (Table 4.14, entries 10-15). All substrates were transformed 

to the corresponding unsymmetric carbonates in comparably good selectivity to the 

previously reported methods. Also in the case of the chiral, homoallylic, secondary 

alcohol, 4-phenyl-1-buten-4-ol (entry 15, Table 4.14), almost quantitative conversion 

was obtained. Of special note is that the tert-butyl methyl carbonate (entry 16, Table 

4.14), which is useful as octane enhancer for gasoline,319 was selectively obtained in 

86% conversion within 48 h. Although it was necessary to use a molar ratio DMC/ROH 

of 7.5/1 and catalyst loading of 10.0 mol%, the procedure is still advantageous in 

comparison to the method employing inorganic base (cesium carbonate) with phase 

transfer catalyst (PEG-2000) under pressure at 125 °C, in which the final yield was just 

43%.334 Additionally to all these monoalcohols, a potential renewable platform 

molecule for synthesis, glycerol, was tested as well under the specified conditions: 

DMC/ROH molar ratio 5/1 and 1.0 mol% TBD (Table 4.14, entry 17). When the reaction 

was conducted for 20 min, the synthesis of glycerol carbonate with conversion of 

glycerol of >99.9% and selectivity of 96% was observed. 

 

Polycarbonate synthesis via TBD mediated polycondensation 

After proving the carbonylation efficiency of TBD as organocatalyst for the synthesis of 

several unsymmetric organic carbonates, the next step was to test the activity of TBD 

in the polymerization of DMC with diols of different chain lengths. Aliphatic 

polycarbonates are important precursors for the preparation of novel polyurethanes 

and are conventionally synthesized either by polycondensation of phosgene with diols, 

or by the transesterification of five-membered cyclic carbonate with selected diols 

through heterogeneous or lipase-based catalysis.329 In addition to the growing interest 

in the synthesis of aliphatic polycarbonates for fiber and film forming applications, 

aliphatic polycarbonates have attracted increasing attention as degradable 
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biomaterials in recent years because of the non-production of acid components upon 

in vivo implantation. Moreover, the use of renewable diols is desirable, and for this 

reason, one of the chemical precursors used for the synthesis of aliphatic 

polycarbonates was 1,3-propanediol (D1), which can be obtained from renewable 

resources through economical and sustainable processes such as microbial 

fermentation.
335

 1,6-Hexanediol (D2) and the fatty acid derived (E) icos-10-ene-1,20-

diol (D3) were also investigated as alternative diols. Industrially, 1,6-hexanediol is 

prepared by the hydrogenation of adipic acid and since the first pilot plant producing 

adipic acid via a fermentation process using non-food, plant-based feedstock was 

recently set up, D2 can be considered as (potentially) biomass derived as well.
336

 

TBD catalyzed polycondensation between DMC and the respective diol occurred in two 

steps: (a) hydroxyl and carbonate end groups reacted with the elimination of alcohol 

(MeOH) to yield the oligomers; (b) transesterification between two carbonate end 

groups with elimination of DMC. A representative procedure for the synthesis of 

polymers is depicted in Figure 4.34. 

 

 

 

 

Figure 4.34: One-pot two-step polymerization via TBD catalyzed carbonylation of DMC in the 

presence of renewable diols. 
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Based on the results obtained for the synthesis of the unsymmetric carbonates, the 

initial polymerization attempts were performed with 1.0 mol% TBD related to the diol 

molecule. Solvent-free conditions were chosen to avoid solvent waste, enhance 

conversions, and reduce the formation of cyclic structures. Whereas conventional 

catalytic polycondensation reactions of AA-BB type monomers require 1:1 feed ratio, 

the 1st step (Figure 4.34) was performed under atmospheric pressure at 80 °C in bulk 

using a DMC/diol molar ratio of 2/1. In this way, we prevented the loss of DMC that 

would shift the reaction stoichiometry. Furthermore, in this type of polymerizations, 

low DMC feed ratios yield low molecular weight chains with hydroxyl terminal 

groups.337 However, with sufficient excess of DMC, chain growth would continue by 

the reactions occurring both between hydroxyl and methyl carbonate as well as 

between two terminal methyl carbonate groups (with release of DMC). On the other 

hand, if the DMC/ROH ratio is quite high, i.e. using a 4 to 1 stoichiometry, the terminal 

groups of the polymer would entirely be methyl carbonate moieties and thus the 

polymerization rate would be quite slow. In summary, for the propagation to continue, 

a substantial fraction of chain ends must be methyl carbonate moieties. 

To favour the formation of the oligomers, continuous argon flow was applied within 

the first step. Online monitoring by GPC and/or NMR was performed on the crude 

reaction samples. From these results (Table 4.15), it was clearly observed that the time 

required for this reaction step was determined by the chain length of the employed 

diol. For the diol with shortest chain, D1, the transesterification reaction (1st step in 

Figure 4.34) took ~1 h, and for D3, this was 4 h. Once a sufficient amount of oligomers 

was formed, in an effort to facilitate the polymerization by removing the unreacted 

DMC and methanol produced by the condensation reactions and to reach high 

molecular weight, the reaction temperature was increased to 90 °C with reduced 

pressure. 
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Table 4.15: Results for the synthesis of aliphatic carbonates via the polycondesation reaction 

of DMC and three renewable diols in the presence of 1.0 mol% TBD. 

Entry Diol 

first step
a)

 

time / T 

Mn
b)

(kDa) / PDI(Mw/Mn) 

second step 

time / T 

Mn
b)

(kDa) / PDI(Mw/Mn) 

P1 D1 

1 h / 80 °C 

1.2 / 1.97 

3 h / 90 °C 

3.5 / 2.16 

P2 D2 

2 h / 80 °C 

2.4 / 2.40 

1 h / 90 °C 

12 h / 100 °C 

7.5 / 2.15 

P3 D3 

4 h / 80 °C 

3.2 / 2.39 

1 h / 90 °C 

12 h / 100 °C 

15.5 / 1.85 

 

a) first step performed at 80 °C in bulk under continuous flow of argon; b) data obtained from GPC 
performed in THF relative to PMMA calibration. 

 

The crucial point in the second step was to determine the final temperature till which 

the polymerization could be carried out. We clearly observed that the Mn and the yield 

of polymers synthesized with D1 decreased with increasing temperature. Performing 

the reaction at 100 °C for 1 h under vacuum resulted in markedly decrease in Mn from 

3.5 kDa to 2.6 kDa. This could be ascribed to the evaporation of oligomers of D1 and 

thermal degradation of the final polymer under these conditions. Therefore, 90 °C was 

the best poylmerization temperature for D1. In contrast, 90 °C was inefficient to yield 

high molecular weight polymers with D2 and D3; thus, the reaction temperature was 

increased to 100 °C under vacuum. After 12 hours at 100 °C under continuous vacuum 

the final Mn value for P2 was still not high, indicating that these reaction conditions are 

not efficient for D2. On the other hand, for P3 in Table 4.15 under the preliminary 

polymerization conditions and consistent with chain growth was the observation that, 
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by using a 2/1 DMC/D3 feed, the PDI value decreases from 2.39 to 1.85 throughout the 

course of the second step. This trend could be attributed to the longer reaction times 

at 100 °C, which permitted the low molar mass products to diffuse to catalyst and form 

products of higher molecular weight, thereby reducing the low molecular weight 

fraction and decreasing the PDI. 

In order to further improve the Mn values for the polymer synthesized with D2, the 

temperature was hourly increased to 150 °C during the second polymerization stage, 

which resulted in significatly improved molecular weight (Table 4.16). 

In further experiments, we observed that the polymerizations of D1 and D2 were also 

promoted by lower loadings of TBD (Table 4.16). By minimizing the catalyst loading to 

0.5 mol%, formation of polymer with Mn of 33.0 kDa for D2 was accomplished (Table 

4.16, entry 3). Figure 4.35 shows the GPC chromatograms of the polymers synthesized 

with D2 in the presence of 0.5 and 1.0 mol% TBD, respectively (compare P6 and P4, 

Table 4.18). These results represented a significant improvement with regards to 

previously reported result for the same polymer, where 11.0 kDa were obtained via 

the polymerization of diethyl carbonate with 1,6-hexanediol catalyzed by immobilized 

Candida antarctica Lipase B.329 In line with these observations, increasing the catalyst 

loading to 5.0 mol% resulted in a decrease of the Mn values both for D1 and D2. 
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Table 4.16: Optimized reaction conditions for the polymerization of D1 and D2 with different 

catalyst loadings. 

Entry 
Diol / TBD 

(mol%) 

first step
a)

 

time / T 

Mn
b)

(kDa) / PDI(Mw/Mn) 

second step 

time / T 

Mn
b)

(kDa) / PDI(Mw/Mn) 

P4 D2 /1.0 

1 h / 80 °C 

13.5 / 2.18 

1 h / 90 °C 

1 h / 100 °C 

1 h / 120 °C 

1 h / 140 °C 

1 h / 150 °C 

16.2 / 2.15 

P5 D1 /0.5 

1 h / 80 °C 

3.0 / 2.17 

3 h / 90 °C 

5.9 / 1.97 

P6 D2 /0.5 

2 h / 80 °C 

5.2 / 2.31 

1 h / 90 °C 

1 h / 100 °C 

1 h / 120 °C 

1 h / 140 °C 

1 h / 150 °C 

33.0 / 1.94 

P7 D1 /5.0 
1 h / 80°C 

2.8 / 1.91 

3 h / 90°C 

5.9 / 1.97 

 

a) first step performed at 80 °C in bulk under continuous flow of argon; b) data obtained from GPC 
performed in THF relative to PMMA calibration. 

 

 



134 

 

 

Figure 4.35: GPC chromatogram for the polymers of D2 with two different catalyst loadings, 

respectively 0.5 and 1.0 mol% TBD. 

 

Furthermore, a closer look at the polymerization results via NMR revealed an 

interesting fact regarding the obtained molecular structure of the final polymer 

synthesized from D1. It became evident that in the presence of high TBD loadings, the 

terminal methyl carbonates are cleaved, and as a consequence of this the formation of 

terminal allyl carbonate group was observed. This clearly provided an explanation for 

the decrease of the Mn in the presence of 5.0 mol% of TBD. Figure 4.36 shows, in its 

inset, the 1H NMR spectrum of the precipitated polymers obtained from D1 in the 

presence of different amounts of TBD, in which the effect of catalyst loading on the 

formation of the aforementioned cleavage can be clearly observed. Indeed, this 

cleavage, leads to a allyl carbonate function displaying a different reactivity that might 

be further exploited in another context. Evidently, it should be noted that the 

polymers obtained from D1 in the presence of TBD are classified as poly(trimethylene 

carbonate), and the proposed method can substitute the traditional synthesis by ring-

opening polymerization of 1,3-dioxan-2-one, which on the other hand is obtained by 

refluxing 1,3-propanediol in an excess of diethyl carbonate. 
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Figure 4.36: 
1
H NMR spectra of polymers synthesized with D1 in the presence of 0.1, 0.5, 1.0 

and 5.0 mol% TBD, thus revealing the effect of TBD on the possible side reaction: cleavage of 

terminal methyl carbonate. 

 

Moreover, decarboxylation is a side reaction which is known to commonly occur 

during the synthesis of polycarbonates at high reaction temperature.
338

 It is 

noteworthy to mention that we did not observe the corresponding signals in our NMR 

spectra, indicating that TBD does not cause such side reactions (at least within our 

temperature limits). 

 

Symmetric organic carbonate synthesis and subsequent ADMET studies of 

representative monomers 

As an extension, we turned our attention to the utilization of this approach for the 

synthesis of symmetric organic carbonates, which possess terminal double bonds and 
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can thus be employed as monomers in olefin metathesis polymerization. 10-Undecen-

1-ol and citronellol are two biomass derived alcohols and thus the final symmetric 

organic carbonates can be considered as renewable building blocks for the synthesis of 

aliphatic bio-based linear polycarbonates. In addition, to assess the scope of the 

symmetric organic carbonate synthesis, the reactivity of allyl alcohol, benzyl alcohol 

and the chiral, homoallylic, secondary alcohol, 4-phenyl-1-buten-4-ol, were 

investigated. It is worth to highlight the simplicity of the reaction, which was 

performed under solventless conditions by mixing (at room temperature) DMC and the 

corresponding alcohol in ratio of 2.1/1, along with a catalytic amount (1.0 mol%) of the 

guanidine base TBD and subsequent heating to 80 °C. 

The synthetic results of the reactions are presented in Table 4.17. Generally speaking, 

this reaction gave very good conversions with all tested alcohols allowing us to obtain 

the corresponding symmetric organic carbonates as the only product. No product 

arising from the methylation of the alcohol was observed under these reaction 

conditions. However, as was anticipated, in the case of benzyl alcohol the reaction was 

slower and afforded the desired product only after 45 h. Moreover, the carbonate 

interchange reaction of citronellol with DMC led to a new terpenoid, which could be 

further investigated as a potential monomer for olefin metathesis polymerization. 
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Table 4.17: Selected results for the synthesis of symmetric organic carbonates at 80 °C. 

Entry
a)

 Product 
Time 

(h) 

conversion 

(%)
b)

 

selectivity 

(%)
b)

 

1 

 

16 99 99 

2 
M1

 9 9  

14 99 99 

3 

M2

 

12 99 99 

4 

O

O O

 

45 99 99 

5 

 

8 99 99 

 

a) all reactions were carried out with molar ratio DMC/ROH of 1/2.1 and 15 mmol of the corresponding 
alcohol in the presence of 1.0 mol% of TBD under bulk with continuous Argon stream unless stated 
otherwise; b) conversions were calculated for crude reaction mixtures via 1H NMR (300 MHz) and /or 
GC/GC-MS with tetradecane as internal standard. 

 

 

ADMET polymerization allows the polymerization of α,ω-diene monomers bearing a 

wide variety of functionalities (see Chapter 3). Thus, the product of diaddition of 10-

undecen-1-ol to DMC (M1, see Table 4.17) was used for polycarbonate synthesis via 

ADMET polymerization. In order to study the molecular weight variations of the 
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resulting polymers, the first experiments (Table 4.18) were performed in bulk at 80 °C 

under continuous vacuum for 1 h using three different metathesis catalysts: Grubbs 2nd 

generation catalyst (C4), Hoveyda-Grubbs 2nd generation catalyst (C5) and Zhan 1B 

catalyst (C7) (Figure 4.37). The precise control of the backbone functionality can be 

interrupted with the possible side reaction: olefin isomerisation of the terminal double 

bonds. Thus, benzoquinones (especially 1,4-benzoquinone, BQ), which are very 

effective additives for the prevention of the olefin isomerization116 were added to the 

reaction mixture prior to the catalyst addition. The analytic data of the polymers 

synthesized is summarized in Table 4.18 and selected GPC traces are depicted in Figure 

4.37. Monomer conversion was quantitative as determined by the complete 

disappearance of the monomer signal in the GPC traces of the reaction mixtures. The 

results clearly indicated that M1 can be successfully polymerized in the presence of 0.2 

mol% C7, reaching Mn values of 27.5 kDa. 

 

Table 4.18: Selected results for ADMET of M1 at 80 °C with three different catalysts. 

Entry Catalyst (mol%) Mn
b)

(kDa) / PDI(Mw/Mn) 

P8 C4 (0.2) 9.5 / 1.60 

P9 C5 (0.2) 13.5 / 1.73 

P10 C7 (0.2) 27.5 / 1.92 

 

a) data obtained for crude reaction mixtures from GPC performed in THF relative to PMMA calibration. 
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Figure 4.37: GPC data of ADMET polymer for M1 synthesized in the presence of C7. 

 

Nowadays, of great interest is the applicability of terpenes as renewable raw materials 

for the synthesis of new chemical intermediates via different chemical 

transormations.339 Apart from this, a considerable number of terpene derivatives have 

been tested as polymer precursors, using different polymerization mechanisms.340 

Wagener and co-workers investigated the reactivity of 1,1-disubstituted and 

trisubstituted olefins towards ADMET in the presence of the highly active Lewis acid 

free Schrock alkylidenes type catalyst.341 However, all attempts to polymerize failed; 

the tungsten-based catalyst was unable to promote metathesis chemistry with any of 

the mentioned substituted olefins. On the other hand, the molybdenum-based catalyst 

afforded the metathesis of 1,1-disubstituted alkenes but only through cross-

metathesis with internal olefins, which were no more than disubstituted. Having in 

hand the symmetric organic carbonate monomer M2 (Table 4.17, entry 3), synthesized 

with the aforementioned method from citronellol and DMC in the presence of TBD, 

some test experiments were performed. Hence, considering the enhanced difficulty for 

the challenging polymerization of M2, the highly active C7 was the catalyst of choice. 

The initial screening showed that high temperature was necessary to achieve high 

conversion. Consequently, the reaction was directly attempted under solvent free 

conditions at 90 °C with 1.0, 2.5 and 5.0 mol% C7 and the respective BQ amount (2.0 

equivalents to the catalyst) was added prior the catalyst addition. As already reported, 

vacuum or continuous gas flow is a requirement for a successful release of ethylene 
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during the olefin metathesis polymerization reactions. However, in case of the ADMET 

polymerization of M2, tetramethylethylene is the condensate. Therefore, to further 

accelerate the release of this compound (boiling point = 73 °C), continuous vacuum 

was employed. Our results indicated that 1.0 and 2.5 mol% C7 were inefficient to 

polymerize (compare results in Table 4.19) M2 and that the used amounts of BQ were 

not enough to prevent the isomerization occurring during the ADMET reactions of the 

respective this diene (observed by GC-MS and NMR, Figure 4.38). On the other hand, a 

catalyst loading of 5.0 mol% C7, together with 20.0 mol% of BQ, was efficient enough 

to yield a methyl-branched, unsaturated hydrocarbon polymer (P14 in Table 4.19). The 

GPC chromatogram of the precipitated polymer is represented in Figure 4.39. The GPC 

monitoring of the reaction revealed that the present reaction conditions provided a 

polymer in 75% yield with 89% monomer conversion within 4 h. 

 

Table 4.19: Selected results for ADMET of M2 with C7 at 90 °C. 

Entry 

C7 (mol%) 

/ BQ (mol%) 

Mn
a)

(kDa) / 

PDI(Mw/Mn) 

P11 1.0 / 2.0 0.6 / 1.19 

P12 2.5 / 5.0 1.6 / 1.75 

P13 5.0 / 10.0 4.1 / 1.86 

P14 5.0 / 20.0 7.9 / 1.81 

 

a) data obtained for crude reaction mixtures from GPC performed in THF relative to PMMA calibration. 
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Figure 4.38: The olefin isomerization observed during the polymerization of M2 in the 

presence of C7 (Table 4.19, entry P13). 

 

 

Figure 4.39: GPC data for the precipitated polymer P14 (table 4.19). 
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Conclusions 

The herein reported method, which is very easy to implement and incorporates many 

features of green chemistry, such as clean synthesis and the use of less toxic reactants, 

permits the synthesis of unsymmetric carbonates from the parent alcohols under 

solvent-free conditions with good selectivity. The influence of several reaction 

parameters such as amount of DMC, catalyst loading and reaction time on the reaction 

efficiency are discussed. Furthermore, the process opens new ways for a flexible 

utilisation of renewable resources for non-food value-added products, since we have 

shown the transformation of a variety of renewable  alcohols into polycarbonates via 

ADMET polymerization and via classic polycondensation. 
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4.7 On the polymerization behavior of telomers: Metathesis versus thiol-ene 

chemistry 

 

Introduction 

Within the scope of efficient and environmentally friendly processes for the 

production of building blocks, the addition of nucleophiles to olefins and alkynes 

represent typical examples of 100% atom-efficient reactions. Among these reactions, 

the telomerization reaction,342 a synthetic methodology originally discovered by 

Smutny in 1967,343 is reported to provide linear dimerization products of 1,3-dienes 

(such as 1,3-butadiene and isoprene) via 1,6 or 3,6-addition of an appropriate 

nucleophile (e.g. alcohols,344 water,345 amines and ammonia,346 sugar347 and polyols,348 

starch349 and carbon dioxide350) in good yields for countless applications. This valuable 

process enables, for instance, the synthesis of intermediates for natural products or 

fine chemicals synthesis351 and the preparation of amphiphilic compounds that find 

use as surfactants or emulsifiers if the proper diene/nucleophile combination is 

selected.352 In addition, if the applicability of telomers, in particular α,ω-diene ones, 

could be extended to polymerization reactions, this would open up new opportunities 

for building high molecular weight and value-added materials. To date, studies 

reporting the use of telomers as monomers for polymer synthesis are rare. The only 

example is the copolymerization of ethylene with 2,7-octadienyl methyl ether, a mono-

telomer available by the telomerization of 1,3-butadiene with methanol and palladium 

catalysts.353 However, di-telomers have not been yet regarded as monomers for the 

synthesis of polymers. Since di-telomers contain internal and terminal double bonds, 

both ADMET and thiol-ene polyaddition are in principle suitable polymerization 

techniques.  

Thus, in order to broaden the application possibilities of butadiene telomers, we report 

here a comparative study on the polymerization of α,ω-diene telomers using these two 

straightforward and simple chemical pathways as versatile tools to convert such 

valuable monomers into potentially useful macromolecular materials. 
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Results and discussion 

The di-telomers used in this study were synthesized by Andrei N. Parvulescu, Pieter C. 

A. Bruijnincx and Bert M. Weckhuysen, from the Utrecht University. The Pd-catalyzed 

telomerization of 1,3-butadiene (readily available and relatively cheap) with renewable 

1,3-propanediol, a 100% atom-efficient process, is an elegant way to synthesize the 

herein studied monomers with minimum environmental impact.354 It must be pointed 

out that 1,3-propanediol can be obtained directly either from corn or any plant oil as a 

renewable raw material,355 and thus the telomerization process can be in principle be 

integrated in a 100% biomass-based synthesis platform as long as butadiene is 

obtained from renewable sources, for instance from bio-ethanol.356 With the 

application as surfactant precursor in mind, previous studies were aimed at optimizing 

conditions for formation of the mono-telomer of 1,3-propanediol.354 However, as the 

di-telomer product was required for our polymerization studies, the telomerization 

conditions were adapted by our colleages from the University of Utrech. They used a 

larger excess of butadiene (1,3-butadiene:1,3-propanediol molar ratio of 6:1) and a 

longer reaction time at 80 °C under solvent-free conditions. Using the Pd/TOMPP 

complex as telomerization catalyst, the di-telomers were obtained with full conversion 

of the diol substrate and a yield of 92%. Telomerization products are almost inevitably 

obtained as a mixture of the linear (1-addition product) and branched (3-addition) 

octadienes. Thus, we received three different di-ethers with different linear/branched 

ratios as shown in Figure 4.40. 
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Figure 4.40: a) Di-telomer composition as obtained via GC-MS and NMR analysis; b) schematic 

representation of the applied polymerization techniques and idealized products.  

 

ADMET Polymerizations 

The efficacy of the telomers (1, 2 and 3) as monomers was evaluated using two 

polymerization methods. The first route focuses on the reactivity of the di-telomers in 

the presence of metathesis catalysts. As mentioned in the introduction, it is well 

known that, in addition to the construction of many complex and important low 

molecular weight molecules, the metathesis reaction has enabled the synthesis of 

diverse polymers.357 So far, concerning the transformation of the hydrophobic chain of 

different mono-telomers [such as (E)-1-phenoxy-2,7-octadiene or the 

(peracetylated)octadienylether of xylose], the activity of several Ru-based Grubbs 1st 

and 2nd generation catalysts, as well as Re- and W-based complexes, has been 

investigated.358 In those cases where Ru-based catalysts were used, compounds 

corresponding to a metathesis involving internal double bonds were observed. 

However, up to date olefin metathesis has not been applied to di-telomers. As the di-

telomers can be considered α,ω-dienes, they would be suitable monomers for ADMET 
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polymerization. Nevertheless, di-telomers also possess internal double bonds and thus 

cannot be considered traditional α,ω-dienes, but participation of the internal olefins in 

ADMET would nonetheless still lead to polymer formation. Therefore, the ADMET 

reactions of monomers 1, 2 and 3 were investigated (Figure 4.40). The readily available 

Ru-based metathesis catalysts should be more suitable for these di-telomers, given 

their functional group tolerance.94a,c In order to study the scope and limitations of the 

ADMET polymerization, extensive optimization studies involving changes of catalyst, 

temperature and substrate (the effect of l/b ratio) were carried out. Since ADMET 

polymerization is ideally performed in bulk monomer to maximize monomer 

concentration and favor formation of polymer,103 the reactions were performed under 

solvent-free conditions. Moreover, ADMET chemistry relies on ethylene removal, 

which drives the reaction in this step-growth polymerization.95 Therefore, unless 

otherwise specified, a continuous gas flow (argon or nitrogen) was applied throughout 

the reactions, which were run for 4 h. Furthermore, all results presented stem from at 

least two individual reactions. Monitoring of these reactions by GPC and NMR 

provided the necessary insights to fully understand the polymerization behavior of 

these new monomers. The primary screening of the ADMET reaction of telomers 1, 2 

and 3 was focused on the effects of catalyst loading and temperature on the 

conversion to the desired polymer. The crucial point in this study was to retain the 

internal double bonds of the monomers unreacted. Ru-benzylidene metathesis 

catalysts are known to have better activities at mild temperatures.78a Furthermore, low 

reaction temperatures reduce the extent of the possible isomerization during ADMET. 

Thus, the efficiency of some classical metathesis catalysts such as Grubbs 1st (C3) and 

2nd (C4) generations were initially compared at 40 °C with monomer 1, which 

possesses the highest l/b ratio (Table 4.20 and Table 4.21). When 0.2 mol% C3, one of 

the most widely studied metathesis catalysts, in relation to the di-telomer was used 

(Table 4.20, entry 1), 1 was recovered along with 30% dimeric product. Since further 

gradual increasing of the catalyst loading up to 2.0 mol% (entries 2-6) did not 

significantly change this result, a catalyst loading of 0.4 mol% C3 was chosen for 

exploring the effect of the temperature on C3. Although it has been reported that C3 

does hardly show any side reactions up to a polymerization temperature of 90 °C,279,282 

temperatures higher than 70 °C were not applied due to the occurrence of catalyst 
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decomposition in the current system.
359

 Therefore, in attempts to favor higher 

conversions, the reaction temperature was varied between 50 and 70 °C. However, the 

higher reaction temperature was found not to have a considerable effect on the 

polymerization reaction, as evidenced by GPC (Table 4.20, compare entries 7-9). 

Moreover, also longer reaction times did not result in higher molecular weights, 

leading us to conclude that C3, at least under the applied bulk conditions, is unsuitable 

for the polymerization of these telomers. 

 

Table 4.20: Selected results of ADMET studies of telomer 1 in the presence of C3 at different 

reaction temperatures after 4 h reaction time. 

Entry
a)

 

Catalyst 

(mol%) 

T (°C) Mw
b)

 (Da) 

PDI
b)

 

(Mw/Mn) 

1 C3 (0.2) 40 600 1.35 

2 C3 (0.4) 40 650 1.27 

3 C3 (0.8) 40 650 1.32 

4 C3 (1.0) 40 700 1.26 

5 C3 (1.6) 40 750 1.48 

6 C3 (2.0) 40 820 1.50 

7 C3 (0.4) 50 830 1.50 

8 C3 (0.4) 60 750 1.48 

9 C3 (0.4) 70 690 1.42 

 

a) Additional conditions applied during polymerization: argon was applied for 4 h, unless otherwise 
specified; b) GPC was performed crude reaction samples, quenched with ethyl vinyl ether, in THF, 
containing BHT, with PMMA calibration; Mw is the weight average molecular weight detected via GPC. 

 

The catalyst screening showed that C4 (0.4 mol%) was more effective at low 

temperature, with better consumption of 1 (entries 1, 3 and 4, Table 4.21). However, 

neither this catalyst afforded high molecular weight polymers. Efforts to increase the 
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molecular weight by increasing the catalyst amount from 0.4 to 2.0 mol% at 40 °C 

showed similar trends as in the case of C4. 

Hoveyda-Grubbs 2nd generation catalyst C5 possesses metathesis efficiency similar to 

Grubbs 2nd generation catalyst (C4), but with different substrate specificity. Under the 

initial conditions (i.e., at 40 °C and 0.4 mol% of catalyst) only 50% of oligomer 

formation with 35% monomer recovery was observed together with 15% undefined 

low molecular weight product formation (GPC data). Thus, high catalyst loadings were 

used to improve the yield of high molecular weight products. Reactions of 1 with 

loadings of 0.4, 0.8, 1.0 and 2.0 mol% of C5 gave low-molecular-weight oligomers with 

conversions increasing with the catalyst loading (up to 80% at 2.0 mol% of C5). 

Encouraged by this result, the ADMET reaction of 1 in the presence of 1.0 mol% of C5 

was performed at 80 °C, a typical polymerization temperature for ADMET reactions. 

The results of this experiment indicated high activity of C5 after 4 h at 80 °C. However, 

even at 90% conversion, appreciably high molecular weights were not achieved. On 

the other hand, unidentified low molecular weight products were observed at higher 

retention times by GPC. The use of 2.0 mol% C5 resulted in lower conversion of 1 with 

high amount of undefined small product formation (detected by GPC). A switch to 

another metathesis catalyst with chelating alkylidene ligand, C4, gave similar results at 

80 °C with loadings of 1.0 mol% as with C5 (cf. entries 8 and 12 in Table 4.21). 
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Table 4.21: Selected results of ADMET studies of telomer 1 in the presence of C4, C5 and C12 

at different reaction temperatures after 4 h reaction time. 

Entry 

Catalyst 

(mol%) 

Conditions
a)

 T (°C) Mw
b)

 (Da) 
PDI

b)
 

(Mw/Mn) 

1 C4 (0.4) - 40 2200 1.82 

2 C4 (0.4) BQ (0.8 mol%) 40 750 1.39 

3 C4 (0.4) - 60 1500 1.64 

4 C4 (0.4) - 80 890 1.54 

5 C5 (0.4) - 40 1100 1.69 

6 C5 (2.0) - 40 1900 1.74 

7 C5 (2.0) BQ (4.0 mol%) 40 4650 1.98 

8 C5 (1.0) - 80 1900 1.75 

9 C5 (1.0) BQ (2.0 mol%) 80 4000 2.01 

10 C5 (1.0) BQ (8.0 mol%) 80 4900 2.65 

11c) C5 (1.0) BQ (8.0 mol%) 80 5600 2.17 

12 C12 (1.0) - 80 1750 1.78 

13 C12 (1.0) BQ (8.0 mol%) 80 1950 1.84 

14c) C12 (1.0) BQ (8.0 mol%) 80 5450 2.33 

15d) C5 (1.0) BQ (8.0 mol%) 80 9400 (6350)e) 
5.73 

(2.48)e) 

16d) C12 (1.0) BQ (8.0 mol%) 80 
3800 

(2750)e) 

2.71 

(2.50)e) 

 

a)Additional conditions applied during polymerization: argon was applied for 4 h, unless otherwise 
specified; BQ: amount of benzoquinone in % with respect to monomer; b)GPC was performed to crude 
reaction samples, quenched with ethyl vinyl ether, in THF, containing BHT, with PMMA calibration; Mw is 
the weight average molecular weight detected via GPC; c)vacuum was applied for 4 h instead of gas flow; 
d)reactions were performed for 48 h with continuous argon flow for the first 4 h; e)GPC data for crude 
reaction samples after 24 h, quenched with ethyl vinyl ether, in THF, containing BHT, with PMMA 
calibration. 
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After these studies, it became apparent that the reason for the inability to achieve a 

higher degree of polymerization could be the in situ isomerization of the double bonds 

during metathesis.110a,111,278,360 Previous studies showed that, depending on the nature 

of the reacting olefinic partners, the reaction conditions, as well as the nature of the 

catalyst, double bond isomerization reactions may occur.116 Double bond isomerization 

occurs as result of Ru-hydride formation, which can be suppressed by the addition of 

hydride scavengers, e.g., 1,4-benzoquinone (BQ).116 Thus, catalysts C4, C5 and C12 

were examined with the same set of experiments in the presence of BQ. Rather 

unexpectedly, the inclusion of BQ did not show efficient isomerization inhibition at 40 

°C for C4; in contrast, a drop of the molecular weight was detected, as observed by 

GPC (Table 4.21, entries 1 and 2). On the other hand, at 80 °C with a loading of 1.0 

mol% C5 and 8.0 mol% BQ, an increase of the molecular weight up to 4.9 kDa was 

observed (entry 10, Table 4.21). To investigate whether the BQ addition would favor 

an increase in molecular weight through longer reaction times, reactions 10 and 13 in 

Table 4.21 were reproduced and run for 48 h with initial argon flow for 4 h (entries 15 

and 16, respectively). The GPC data of the reactions showed the catalysts to be still 

active even after 24 h in the presence of BQ with the molecular weight values clearly 

increasing. 

Since the kinetics during ADMET are dictated by the removal of ethylene, a possible 

reason why ADMET mainly produced low molecular weight polymers, even in the 

presence of the isomerization inhibitor, could be inefficient ethylene removal. 

Therefore, an efficient ethylene removal by applying vacuum, instead of inert gas flow, 

was investigated. Indeed, when ADMET was performed under vacuum for 4 h in case 

for C5 (entry 11, Table 4.21), the efficiency was substantially improved. For catalyst 

C12, the effect of applied vacuum was more pronounced (compare entries 13 and 14, 

Table 4.21), showing higher monomer conversions (monitored via NMR and GPC). 

Moreover, when the reactions represented at entries 11 and 13 in Table 4.21 were run 

over night (after applying vacuum for 4 h), the final products were highly viscous, 

sticky materials, soluble in chloroform.  

Monomer 1 is a mixture of linear and branched telomers with an l/b ratio of 93/7. 

Since the branched monomers possess 3 or 4 terminal double bonds, they act as 
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branching points leading to the formation of hyperbranched structures. In order to get 

a more accurate picture of both the mechanism and the scope and limits of the 

reaction, the other two monomers 2 and 3, which possess lower l/b ratio, were 

reacted under the optimized conditions: 1.0 mol% C5 (or C12) at 80 °C under vacuum 

for 4 h. The results presented in Table 4.22 show a clear tendency for both catalysts 

(C5 and C12): the molecular weights increase with the branching ratio of the 

monomers, which supports the polymerizations to highly branched systems and is due 

to the presence of a higher amount of more reactive terminal double bonds. 

Furthermore, the same set of experiments was performed for 24 h, with continuous 

vacuum for the first 4 h. The results of this set are also in line with the formation of 

hyperbranched structures. Furthermore, in the case of monomers 2 and 3, the higher 

content of branched telomers led to gelation caused by cross-linking. Once cross-

linked, the characterization of these materials (entries 3 and 4 in Table 4.22) was 

troublesome as they were no longer soluble in any common solvents such as THF, 

CHCl3, DMSO and DMF. 

 

Table 4.22: ADMET screening of monomers 2 and 3 at 80 °C with 1.0 mol% C5 (or C12) and 8.0 

mol% BQ. 

Entry Monomer 

Catalyst 

(mol%) 

T (°C) Mw
a)

 (Da) 
PDI

a)
 

(Mw/Mn) 

1 2 C5 (1.0) 80 5350 4.35 

2 2 C12 (1.0) 80 4950 3.85 

3 3 C5 (1.0) 80 3500 5.84 

4 3 C12 (1.0) 80 4220 3.61 

 

Additional reaction conditions applied during polymerization: vacuum was applied for 4 h, unless 
otherwise specified; a) GPC was performed to crude reaction samples, quenched with ethyl vinyl ether, 
in THF, containing BHT, with PMMA calibration; Mw is the weight average molecular weight detected via 
GPC. 
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Presumably, in the reactions performed with constant flow of argon, the failure in 

directing the reaction of monomer 1 towards high molecular weight was due to other 

interfering intra- and intermolecular metathesis reactions. The intramolecular 

metathesis of a α,ω-diene could yield ethylene and an unsaturated carbocycle (or 

heterocycle) via ring-closing metathesis (RCM), whereas the intermolecular reaction 

would result in the release of ethylene with oligomer or polymer formation via 

ADMET. The GPC traces for almost all products in Table 4.21 and Table 4.22 were 

multimodal, with several distinct peaks in the low molecular weight range, suggesting 

that low molecular weight cyclic products were formed along with linear chains. Thus, 

to gain more evidence whether the RCM was occurring, control experiments under 

dilute solvent conditions (dichloromethane as solvent) with two different catalyst 

amounts (0.4 and 5.0 mol% C4 or C5 per 1) were performed. Surprisingly, even under 

the dilute solvent conditions, oligomer formation as well as RCM took place in the first 

30 min of the reactions (under continuous gas flow). To better understand the 

polymerization mechanism of monomer 1, 1H NMR analysis was performed at different 

reaction times with additional 2D-NMR, 1H,1H-COSY, and heteronuclear multiple-

quantum correlation (HMQC) experiments to confirm the structures drawn in Figure 

4.41. The NMR analysis of both control experiments and ADMET polymerizations at 

different reaction times clearly showed that RCM of the terminal and internal double 

bonds did take place (with release of cyclopentene, see Figure 4.41), yielding a mixture 

of products (RCM products and new monomer structure suitable for further ADMET). 

Cyclopentene and 1,6-heptadiene were collected from the ADMET reaction as 

distillate. Along with these compounds, a ring-opening metathesis compound (dimer) 

was observed in the distillate as determined by 1H NMR and GC-MS. The isolated 

mixture of cyclopentene and 1,6-heptadiene amounted to 1/5th of the total reaction 

mixture. The rate and the yield of RCM reaction depended on the reaction conditions, 

e.g. whether argon flow or vacuum was applied; under vacuum, the RCM was 

observed only in the first 5 min of the reaction. However, with a continuous gas flow, 

the RCM occurred for approximately 45 min. The formation of the ring-closing product 

between the terminal and internal double bond was evidenced by 1H NMR, which 

showed a decrease of the terminal double bond proton resonances at 5.81 [5, in Figure 

4.41, a)] and 4.97 ppm (4) and the appearance of new terminal double bond protons at 
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5.91 (1) and 5.20 ppm (2) belonging to the allylic ether. Furthermore, it was observed 

that the products from step (a) in Figure 4.41 subsequently reacted via ADMET, either 

with themselves or with unreacted monomers, thus giving a mixture of products as 

shown in Figure 4.41b. These metathesis reactions led to polymer formation (as 

observed by GPC); however, 1H NMR analysis of the products also revealed that further 

double bond isomerization took place (Figure 4.42). The vinyl ether signals observed 

(hydrogens 1, 2, 3, and 4 in Figure 4.42), which have similar intensities as the signals 

belonging to the internal olefins formed by direct ADMET, illustrate this. The 

isomerization of the allylic (ether) double bonds to the vinyl position gave a 1:1 

mixture of trans (1 and 2 in Figure 4.42) and cis (3 and 4) isomers. While this can be 

considered a non-disturbing side reaction in most polymerizations, the isomerization 

of allyl ethers to vinyl ethers has to be considered as it can lead to slow catalyst 

deactivation (ethyl vinyl ether124 is the typical reagent used to quench metathesis 

reactions catalyzed with Ru-alkylidenes). Moreover, a small amount of terminal double 

bond isomerization was also observed (Figure 4.42). Along with the aforementioned 

points, in ADMET polymerization, the polymerizability of a monomer can be limited by 

the number of methylene spacers between the olefin and the ether oxygen.104,361 Thus, 

it could be that, to some extent, also the so-called “negative neighbouring group 

effect” is a reason for the somewhat poor polymerization results. Moreover, in some 

cases, self- and cross-metathesis reactivity was observed for monomers with only one 

methylene spacer present.362 Finally, oligomerization of diallylic ethers has been 

reported before.302 All this contributes to the observed rather poor polymerizability of 

the di-telomers via ADMET. 

In summary, although it is possible to react the monomers with low catalyst loadings 

and relatively low temperatures via metathesis, the presence of branched telomers in 

the monomer mixture caused cross-linking at high monomer conversions. Moreover, 

ADMET was not sufficiently regioselective, allowing RCM events to take place. In 

addition, olefin isomerization events led to vinyl ether moieties within the polymer 

backbones. 
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Figure 4.41: Study of the polymerization mechanism by means of NMR analysis: a) initial 

reactions observed (first 30 min of ADMET reaction) (entry 11, Table 4.21); b) subsequent 

reactions of RCM product. 
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Figure 4.42: NMR spectra of a sample of the crude reaction mixture of entry 11, Table 4.21, 

taken after 2 h, showing the isomerization occurring during the ADMET reaction. 

 

Thiol-ene polymerizations 

Thiols have a strong tendency to react with terminal double bonds in radical-initiated 

reactions. Therefore, in order to establish an alternative polymerization pathway for 

monomers 1, 2 and 3, the transformation of the di-telomers was also investigated in 

the presence of thiols as comonomers. 

Initially, the model compound 1-octanethiol was reacted with telomer 1 under radical-

initiated (model reaction A) or thermally induced (model reaction B) conditions using a 

molar ratio of 4:1 (thiol:1). Although low temperatures are generally favorable for 

thiol-ene additions, elevated reaction temperatures are required to avoid high 

viscosity or crystallization during polymerization. Furthermore, it was shown that in 

dithiol/diene mixtures, which are free of oxygen, radicals can also form spontaneously 

under initiator-free conditions.363 Therefore, the model reaction was carried out at 70 

°C without initiator. Although Hawker and colleagues showed that thiol-ene coupling 
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reactions do not strictly require deoxygenation
181,364

 when performed under solvent-

free conditions, both model reactions were nonetheless kept under vacuum (200 

mbar) for 5 min prior to exposing to heat and/or addition of initiator in order to 

remove oxygen, which is an efficient radical scavenger in these types of reactions.
364

 

The dithioether generated from the reaction performed in the presence of the radical 

initiator (AIBN) was the expected anti-Markovnikov diaddition product (Figure 4.43). 

As illustrated by the disappearance of the protons associated with the terminal double 

bonds (5.78 and 4.96 ppm) and homoallylic (1.46 ppm) signals, and the appearance of 

proton signals corresponding to the thioether product (methylenes in α- 2.52 ppm and 

β-position δ1.60 ppm to the sulphur atom), the conversion was found to be essentially 

quantitative after 1 h at 75 °C (for complete description of the NMR data see the 

experimental section). Interestingly, the 1H NMR spectra displayed also new significant 

signals at δH 6.20 (d, J=12.6 Hz, 1Htrans), 5.91 (dd, J=6.2, 1.3 Hz, 1Hcis), 4.81-4.68 (m, 

1Htrans) and 4.37-4.25 (m, 1Hcis) due to a migration of the internal allyl ether double 

bonds to the vinylic position (cis- and trans-isomers were observed), along with a 

corresponding decrease of the integral value of the internal double bond signal (Figure 

4.43). The thermally-induced reaction without added initiator, on the other hand, 

resulted in a lower yield (90%) (model reaction B) after a significantly longer reaction 

time (20 h) at 70 °C. However, in this case, the aforementioned internal double bond 

migration occured to a much lesser extent; just 3% internal allyl ether double bond 

migration was detected in contrast to 27% migration in case of model reaction A 

(compare results in Figure 4.43). While the extent of olefin migration may not be 

substantial under standard thiol-ene addition conditions, its occurrence is of 

considerable fundamental importance, since it involves hydrogen atom transfer 

between thiyl and allylic species.365 
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Figure 4.43: a) Schematic representation of the model reactions mimicking the products from 

thiol-ene polymerization. b) 
1H NMR spectra (CDCl3; 300 MHz) comparison of the model thiol-

ene reactions A and B with the corresponding monomer: di-telomer A (black line, crude 

reaction mixture of model reaction A, 1 hour, with AIBN; blue line, crude reaction mixture of 

model reaction B, 1 hour, without AIBN; light grey line, model reaction B, 2 hour; dark grey 

line, model reaction B, 15 h; red line, monomer: di-telomer A). 

 

Thiols are efficient hydrogen donors, and since C-H bonds are stronger than S-H bonds 

[bond dissociation energy (BDE) = 91 kcal/mol],366 thiyl radicals are usually regarded as 
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unreactive with respect to hydrogen abstraction. Hydrogen atom transfer reactions are 

usually very sensitive to enthalpic polar effects, however. It was indeed reported that 

thiyl radicals can abstract hydrogen atoms from thermodynamically favorable allylic 

systems
365 in water/alcohol mixtures as well as from other C-H activated 

compounds.367 Since an allylic C-H bond is unusually weak (BDE = 82 kcal/mol),366 the 

free radical abstraction of such hydrogens is easier than for non-allylic hydrogens. The 

migration of the double bond could thus be explained by the mechanism proposed in 

Figure 4.44. This involves a favorable allylic hydrogen abstraction, followed by trapping 

of either the intermediate allylic radical or the more stable additional resonance form 

[step (b) in Figure 4.44] by a thiol to regenerate the initial structure or to form the 

internal vinyl ether (in the latter case). It should be noted that the hydrogen atom 

transfer between the electron-rich C-H bond in the di-telomer and the electrophilic 

thiyl radical is favored, if there is an appropriate polarity match between radical and 

the alkene [step (a) in Figure 4.44].368 The same assumption could be applied for step 

(c) (Figure 4.44), where the hydrogen atom is transferred from the electrophilic thiol, 

acting here as a hydrogen atom donor, to the nucleophilic carbon centred radical. 

 

 

Figure 4.44: Thiyl radical-mediated olefin migration. 
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The model study thus shows that the use of radical initiator shortens the reaction time 

and results in double bond migration. This migration, leads to a vinyl ether function 

displaying a different reactivity that might be further exploited in another context.  

Encouraged by the successful model study, and in order to demonstrate the feasibility 

of di-telomers in thiol-ene polymerizations, three different dithiols were investigated: 

1,4-butanedithiol (DT1), 2-mercaptoethyl ether (DT2) and 3,6-dioxa-1,8-octane-dithiol 

(DT3), under comparable conditions, in the absence or presence of radical initiator. 

Compared to the model reactions, the synthesis of polymers could present a number 

of additional challenges regarding efficiency. Although the internal double bonds of 

the di-telomers showed quite low reactivity at 70 °C during the model studies, the 

polymerizations were conducted at three different temperatures in order to obtain 

more detailed information about the effect of the temperature on the reactivity of the 

internal double bonds. Monomer 1, possessing the highest l/b ratio [Figure 4.40, a)], 

was used in the initial optimization studies. The polymerizations were followed by GPC 

and NMR. The reactions were run until a viscosity increase was qualitatively observed, 

and then quenched by cooling to room temperature and diluted with an excess of THF 

to avoid cross-linking. All of the major impurities, including excess reactant and the 

initiator residue, were easily removed by repeated precipitation, and no 

chromatography was required. 

Monomer 1 was polymerized at 35, 50 and 70 °C with DT1, first without the initiator 

AIBN. The GPC analysis showed that, even after 72 h at 35 °C, the thiol-ene reaction 

did not occur as efficiently as expected, and only low-molecular-weight oligomers 

(molecular weight < 3000 Da) were formed (Table 4.23, entry 1). Generally, the results 

confirmed the internal double bonds to be less reactive than the terminal ones, which 

is known from literature and is a result of the reversibility of the C-S bond formation.369 

The NMR data of the reaction run at 50 °C (Table 4.23, entry 2) revealed characteristic 

peaks attributed to the formation of thioether bonds as well as the repeat units of 

thiol monomer and signals from the telomer backbone, which indicated that the 

reaction occurred. Moreover, the data shows that the internal double bonds remain 

almost unreacted. When the reaction was performed at 70 °C (Table 4.23, entry 3), a 

successful polyaddition was observed; however, prolonging the reaction times (more 
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than 24 h) resulted in gelation. As with the model reactions described above, in the 

experiments performed at 50 and 70 °C, the internal double bond migration from the 

allylic to vinylic position was again observed.  

 

Table 4.23: Reaction conditions and analytical data of selected thiol-ene polymerizations. 

Entry Monomer : Thiol (ratio) T (°C) 
Reaction 

time (h) 
Mw

a)
 (Da) 

PDI
a)

 

(Mw/Mn) 

1b) 1 : DT1 = 1:1 35 24 (72) 2200 1.85 

2 1 : DT1 = 1:1 50 48 19820 5.60 

3c) 1 : DT1 = 1:1 70 24 124200 27.00 

4 1 : DT2 = 1:1 35 72 49900 9.88 

5 1 : DT2 = 1:1 50 96 48100 6.40 

6 1 : DT2 = 1:1 70 56 40200 9.46 

7 1 : DT3 = 1:1 50 48 53800 8.61 

8 1 : DT1 = 1:0.95 50 72 6400 2.91 

9 1 : DT1 = 0.95:1 50 56 20300 5.08 

10 1 : DT2 = 1:0.95 50 96 20600 3.61 

11 1 : DT2 = 0.95:1 50 96 480000 53.0 

12 1 : DT1 = 1:1 (2.5 mol% AIBN) 75 1 12100 3.22 

13 1 : DT2 = 1:1 (2.5 mol% AIBN) 75 1 13200 5.01 

14 1 : DT3 = 1:1 (2.5 mol% AIBN) 75 1 32600 5.74 

15 1 : DT3 = 1:1 (1.0 mol% AIBN) 75 4 8400 2.49 

 

Additional conditions applied during polymerization: reaction mixtures were degassed via 3 times 200 
mbar vacuum and subsequent Ar purge, unless otherwise specified; a)GPC was performed to crude 
reaction samples in THF, containing BHT, with PMMA calibration; Mw is the weight average molecular 
weight detected via GPC.; b)reaction was performed for 72 h, however there was no difference between 
the GPC data of 24 and 72 h; c)GPC data is for the corresponding soluble part of the crude reaction 
mixture 
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To explore the influence of the dithiol’s structure on the reactivity of 1, DT2 was 

selected as it contains an ether group and thus resembles more the structure of the 

1,3-propandiol di-telomers. The reactions were conducted in analogy to those with 

DT1. Online GPC monitoring of the reactions revealed that the conversion of the di-

telomer and of the dithiol were better in comparison to DT1 [Figure 4.45, a)]. 

 

 

Figure 4.45: a) Crude GPC chromatograms and b) representative NMR data of the thiol-ene 

reaction product of DT2 at three different temperatures (35, 50, and 70 °C). (The GPC data was 

obtained from SEC system with method A). 
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The 
1
H NMR spectra of entries 4, 5 and 6 (Table 4.23) showed little variation [Figure 

4.45, b)]. As a common feature, the internal double bonds did not react, as calculated 

by comparison of the integrals of the characteristic multiplet centred at ~5.53 ppm (1H 

of the internal double bond), and the triplet at ~3.50 ppm (4H from the 1,3-

propanediol core of monomer A, which should not vary throughout the reaction). On 

the other hand, the integral value of the terminal double bond peak at ~4.95 ppm 

decreased, confirming the successful thiol-ene coupling. The conversion of the 

terminal double bonds could be calculated from the characteristic multiplet centered 

at 4.95 ppm and the triplet at 3.50 ppm. The product obtained at 50 °C showed 75% 

conversion of terminal double bonds, while the products obtained at 35 and 70 °C 

showed 84 and 82% conversion, respectively. The polymerization at 35 °C gave the 

highest conversion of terminal double bonds, but it also resulted in an inhomogeneous 

molecular weight distribution (compare Figure 4.45). On the other hand, the 

polymerization at 70 °C gave a higher terminal double bond conversion than at 50 °C, 

but since the increase both in terminal double bond conversion and in molecular 

weight (GPC) was small, 50 °C was taken as temperature for further optimization of the 

reaction conditions. In the initial experiments, the dithiol amount used was calculated 

considering the di-telomer samples as pure linear di-telomers. To account for the small 

percentage of branched di-telomers present [Figure 4.40, a)], the effect of varying the 

di-telomer/dithiol ratio, from 1:1 to 0.95:1 and to 1:0.95, on the polymerizations at 50 

°C was studied. Since the branched telomers contain extra terminal double bonds that 

can more easily react with the dithiols, an increase in the thiol ratio should favor 

branching reactions and thus should lead to higher molecular weights and higher PDIs 

(entry 11, Table 4.23). This was confirmed by the GPC traces of DT1 (Table 4.23, entries 

2, 8 and 9) and DT2 (Table 4.23, entries 5, 10 and 11). The GPC analysis of the samples 

from the reaction of 1 with slight excess of thiol DT2 (0.95:1) indeed showed an 

increase of molecular weight compared to the 1:1 reaction (75% conversion), which 

was in accordance with the observed 82% conversion of terminal double bonds 

(determined by 1H NMR); however, 1H NMR analysis also revealed 8% conversion of 

the internal olefins. Excess of di-telomer (1:0.95) resulted in a drop of conversion of 

the terminal double bonds to 70%, again in accordance with the lower Mw observed by 

GPC. These results demonstrate that variation in the temperature did not have a 
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pronounced effect on the reactivity of the internal olefins, but a small excess of dithiol 

did have a considerable effect on the molecular weights. 

Next, DT3 was tested in the thiol-ene polymerization of the di-telomers. The third 

dithiol tested, was expected to have a positive effect on the polymerization results in 

terms of improved compatibility (miscibility) between both monomers (1:1 ratio at 50 

°C, Table 4.23, entry 7). The GPC data of the 24 h crude reaction mixture revealed 92% 

monomer conversion to the polymer. The higher double bond conversion (80% by 1H 

NMR) obtained at short reaction time further confirmed the improved polymerization 

compared to DT1 and DT2.  

Since the thermally induced thiol-ene polymerization reactions needed long 

polymerization times (at least 48 h), AIBN was applied as radical initiator (2.5 mol% to 

di-telomer molecule) to reduce the reaction time. The AIBN-initiated polymerizations 

were completed in 1 hour (reaction mixture was not stirring anymore) with 

conversions of 95% for entry 14, Table 4.23 (by GPC). As with the previously obtained 

products, the polymers were completely soluble, although dissolution took time 

(around 6 h for the polymer with the highest molecular weight). The difference in 

solubility was attributable to the molecular weight difference. Since the high 

concentrations of radicals present in the reaction mixture increases the probability of 

side reactions, also lower AIBN loadings were tested for monomer 1. From NMR and 

GPC analysis, it became clear that an initiator loading of 1.0 mol% already results in 

95% conversion (by GPC, no carbons corresponding to the end groups detected in 13C 

NMR). Almost no double bond migration is observed by 1H NMR, thus more well-

defined polymers were synthesized (Table 4.23, entry 15). In the same fashion, 

additional experiments were performed with monomer 2 and 3 in order to study the 

effect of the l/b ratio on the polymerizations performed in the presence of AIBN. 

Indeed, the higher the branching ratio, the higher the molecular weight and also the 

less well-defined structures with broad PDI values were obtained. 

Both the thermally and radical-induced thiol-ene reactions were initially affected by 

difficulties in reaching the quantitative conversions targeted for polymer synthesis. 

However, variation of the di-telomer to dithiol ratio and the type of dithiol, led to 
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optimized reaction conditions allowing for the formation of high molecular weight 

products. Very interestingly, the three dithiols yielded thermoplastic polysulfides of 

different structures, which could be shaped as transparent and colorless films by 

casting THF solutions (graphical abstract and Figure 4.46). To ascertain the thermal 

properties of the obtained thiol−ene polymers, DSC analysis was performed. The 

majority of the samples, even when subjected to different heating rates during DSC 

analysis, did not show any thermal transition in the studied temperature range (from 

−75 to +250 °C). However, a small Tg at 99 °C (at 20 °C/min) was observed for the 

polysulfide from entry 2, Table 4.23, suggesting that the rest of polysulfides possibly 

have Tgs in the same range, but are not detectable by DSC (Figure 4.46). It should be 

noted that the ditelomers monomers have no detectable glass or melting transitions in 

the studied temperature range and that the investigated polymer (entry 2, Table 4.23) 

can be reshaped by redissolution and solvent casting for several times, suggesting that 

it is not cross-linked. From the TGA analysis performed on the same polymer, it could 

be seen that the polymers display acceptable thermal stability under nitrogen. Under 

the given experimental conditions 5% mass loss of the polymer was detected at 306 °C. 

 

 

Figure 4.46: DSC chromatogram of for the polysulfide from entry 2, Table 4.23. 
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Conclusions 

The potential of di-telomers obtained from 1,3-propanediol as monomers for the 

synthesis of polymers via ADMET and thiol-ene polymerizations has been assessed. 

Regarding the ADMET pathway, it was shown that the products obtained were 

different depending on the method used to remove the released ethylene. When a 

flow of argon was used, mostly ring-closing metathesis products were obtained 

together with oligomers. On the other hand, when vacuum was applied low molecular 

weight polymers were obtained in a ring-closing metathesis-ADMET-olefin 

isomerization sequence. The thiol-ene polyaddition with different dithiols led to higher 

molecular weights than ADMET polymerization. The polymerizations in the presence of 

a radical initiator (AIBN) were considerably faster than the thermally initiated ones. In 

both cases, isomerization of the allyl ether to vinyl ether was observed, although in a 

more prominent fashion in the presence of AIBN. The high molecular weight polymers 

obtained via the thiol-ene route showed interesting application possibilities and 

behaved as shapeable and completely transparent thermoplastics. 

 

 

 

 

 

 

 

 

 

 



166 

 

 

 

5 Experimental section 

 

5.1 Characterization methods 

 

The analytical techniques employed in the development of this thesis, together with 

the technical specifications of the equipment used are listed below. 

 

Thin layer chromatography (TLC) 

 

Thin layer chromatography (TLC) was performed on silica gel TLC-cards (layer thickness 

0.20 mm, Fluka). The compounds were visualized by using as developing solution the 

permanganate reagent, prepared as follows: potassium permanganate (3 g) + 

potassium carbonate (20 g) + 5% aqueous NaOH (5 mL) + water (300 mL). 

 

Nuclear magnetic resonance (NMR) spectroscopy 

 

1H-NMR and 13C-NMR spectra were recorded on different spectrometers: 

A) Bruker AVANCE DPX spectrometer operating at 300 MHz. 

B) Bruker AVANCE DPX spectrometer operating at 400 MHz. 

C) Bruker AVANCE DPX spectrometer operating at 500 MHz. 

D) Varian 400-MHz spectrometer (Waltham, MA). 
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CDCl3 or DMSO-d6 were used as solvents depending on the samples solubility. 

Chemical shifts (δ) are reported in parts per million (ppm) relative to the internal 

standard tetramethylsilane (TMS, δ = 0.00 ppm). For the analyses of the polymers, the 

relaxation time (d1) was set to 5 seconds in order to obtain reliable integration values. 

 

Gas chromatography (GC) 

 

Analytical GC characterization was carried out with a Bruker 430 GC instrument 

equipped with a capillary column FactorFourTM VF-5 ms (30 m × 0.25 mm × 0.25 μm), 

using flame ionization detection. The injector transfer line temperature was set to 220 

°C. Measurements were performed in split–split mode using hydrogen as the carrier 

gas (flow rate 30 mL × min-1). Different oven temperature programs were used: A) 

initial temperature 95 °C, hold for 1 min, ramp at 15 °C × min-1 to 220 °C, hold for 4 

min, ramp at 15 °C × min-1 to 300 °C, hold for 2 min. 

 

Gas chromatography-Mass spectroscopy (GC-MS) 

 

GC-MS (EI) chromatograms were recorded using two different equipments: 

A) Varian 431-GC instrument with a capillary column FactorFourTM VF- 5ms (30 m × 

0.25 mm × 0.25 μm), and a Varian 210-MS detector. Scans were performed from 40 to 

650 m/z at rate of 1.0 scans × s-1. Measurements were performed in the split–split 

mode (split ratio 50:1) using helium as carrier gas (flow rate 1.0 ml×min-1). Different 

oven temperature programs were used: initial temperature 95 °C, hold for 1 min, ramp 

at 15 °C × min-1 to 200 °C, hold for 2 min, ramp at 15 °C × min-1 to 325 °C, hold for 5 

min. The injector’s transfer line temperature was set to 250 °C. 

B) VARIAN 3900 GC instrument with a capillary column FactorFourTM VF- 5ms (30 m × 

0.25 mm × 0.25 μm) and a Saturn 2100T ion trap mass detector in the presence of 

tetradecane as an internal standard. Scans were performed from 40 to 650 m/z at rate 

of 1.0 scans x s-1. The oven temperature program was: initial temperature 95 °C, hold 

for 1 min, ramp at 15 °C x min-1 to 200 °C, hold for 2 min, ramp at 15 °C x min-1 to 325 

°C, hold for 5 min. The injector’s transfer line temperature was set to 250 °C. 
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Measurements were performed in the split–split mode (split ratio 50:1) using helium 

as carrier gas (flow rate 1.0 mL x min
-1

). 

 

Mass spectrometry (MS) 

 

Mass spectra (ESI) were recorded on a VARIAN 500-MS ion trap mass spectrometer 

with the TurboDDSTM option installed. Samples were introduced by direct infusion with 

a syringe pump. Nitrogen served both as the nebulizer gas and the drying gas. Helium 

served as cooling gas for the ion trap and collision gas for MSn. Nitrogen was generated 

by a nitrogen generator Nitrox from Dominick Hunter. 

Electron spray ionization mass spectra (ESI-MS) were recorded on a Micromass Q-TOF 

instrument and high resolution mass spectra (HRMS) with electron impact ionization 

(EI) were recorded on a GC-TOF. 

 

Size exclusion chromatography (SEC) 

 

Polymer molecular weights were determined using an SEC System LC-20 A from 

Shimadzu equipped with a DGU-20A3 degassing unit, a SIL-20A auto sampler, a CTO-

20A oven, and a RID-10A refractive index detector. THF stabilized with 250 ppm of BHT 

was used as eluent at a flow rate of 1 mL × min-1 and a temperature of 50 °C. Different 

column systems were used: 

A) One PSS SDV column (5 µm, 300 mm × 7.5 mm). 

B) Two PSS SDV columns (5 µm, 300 mm × 7.5 mm). 

C) Three PSS SDV columns (5 µm, 300mm x 7.5mm). 

D) PLgel 5µm MIXED-D column (Polymer Laboratories, 300 × 7.5mm). 

E) PLgel 5 µm MIXED-D column (Varian, 300 mm x 7.5 mm) with PSS SDV gel pre-

column (5 µm, 50 mm x 8.0 mm). 



169 

 

All determinations of molar mass were performed relative to PMMA standards 

(Polymer Standards Service, Mp 1100–981.000 Da). 

 

Differential scanning calorimetry (DSC) 

 

DSC experiments were carried out with two different systems: 

A) DSC 1 STARe system (Mettler Toledo) calorimeter with autosampler under a 

constant nitrogen flow of 10 mL × min-1 using 40 or 100 µL aluminum crucibles. 

B) DSC821e (Mettler Toledo) calorimeter under a constant nitrogen flow of 10 mL × 

min-1 using 40 µL aluminum crucibles. 

The melting temperature, Tm, is reported as the minimum of the endothermic peak of 

the second heating scan unless annealing was used as a pretreatment. The glass 

transition temperature, Tg, is reported as the midpoint of the step change of the heat 

capacity in the second heating scan. 

 

Thermogravimetric analysis (TGA) 

 

TGA was performed on a TGA/SDTA851e instrument (Mettler Toledo) under nitrogen 

atmosphere at a heating rate of 10 °C × min-1. The weights of the samples were in the 

range of 8-10 mg. The decomposition onset temperature, Td, was recorder as the 

temperature at which a 5% loss in weight occurred. 

 

 

Static light scattering (SLS) 

 

SLS was performed using a MALLS-detector (multi-angle laser light scattering detector) 

SLD 7000 from Polymer Standards Service GmbH (PSS), Mainz, Germany. The polymer 

was dissolved in DMAc. The required dn/dc values where measured in the same 
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solvent with a refractometer dn/dc 2010 also from PSS, Mainz, Germany. Typically six 

concentrations of the polymer from 2-12 mg × mL
-1

 were used to determine dn/dc-

values and SLS measurements. 

 

Dynamic light scattering (DLS) 

 

Hydrodynamic radii where determined with a NICOMP 380 DLS spectrometer (Particle 

Sizing Systems, Santa Barbara, USA). The measurements where performed in 

automatic mode and evaluated with a standard Gaussian and an advanced evaluation 

method, the latter using an inverse Laplace algorithm to analyze for multimodal 

distributions. N,N-dimethyl acetamide (DMAc) was used as solvent at a temperature of 

23 °C resulting in a viscosity of 0.553 cP for the solvent, received from an interpolation 

of literature data.370-372 Prior to the light scattering measurements the sample 

solutions of polymer P2 in DMAc (0.1 mg × mL-1) were filtered using Millipore Teflon 

filters with a pore size of 0.45 μm. 

 

Rheology 

 

Rheological measurements were conducted for oscillatory and steady shear on an 

ARES G2 strain controlled rotational rheometer from TA Instruments in cone plate 

geometry (25 mm, 0.02 rad) at room temperature (25 °C). The temperature was 

controlled with a force convection oven.  Dynamic strain sweep experiments were 

performed at 0.1, 1 and 10 Hz from 1 to 1000% strain amplitude (γo). A dynamic 

frequency sweep test was conducted from 0.1-10 Hz at 100% strain amplitude (γo). 
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5.2 Acyclic Triene Metathesis (ATMET) polymerization of plukenetia conophora oil 

 

Materials 

Plukenetia conophora seeds, which were collected during the raining season, were 

bought from Erekesan Market in Ado Ekiti, Nigeria, then milled on a C&N Junior 

laboratory mill size 5 (Christy and Norris Limited Engineers, Chemlsford, England) and 

extracted using n-hexane in a Soxhlet apparatus.  

[1,3-bis(2,4,6 trimethylphenyl)-2-imidazolidinylidene]dichloro-(3-phenyl-1H-inden-1-

ylidene)(pyridyl)ruthenium(II) (Umicore M31, C11) and [1,3-bis(2,4,6-trimethylphenyl)-

2-imidazolidinylidene]dichloro-[2-(1-methylacetoxy)phenyl]methyleneruthenium(II) 

(Umicore M51, C12)were kindly donated by Umicore, [1,3-bis-(2,4,6-trimethylphenyl)-

2-imidazolidinylidene]dichloro(o-isopropoxy-phenylmethylene)ruthenium (Hoveyda-

Grubbs 2nd generation catalyst, C5),  benzylidene [1,3-bis-(2,4,6-trimethylphenyl) 

imidazolidinylidene]dichloro (tricyclohexylphosphine)ruthenium (Grubbs 2nd 

generation catalyst, C4), n-hexane and ethyl vinyl ether (99%) were obtained from 

Aldrich. All reagents were used without further purification. 

 

Specifications on the analytical methods  

NMR: Spectrometers A and B. 

SEC: Column systems B and C. 

DSC: System A. Meassurements performed at a heating rate of 10 °C × min-1 up to 180 

°C with samples in the range of 8–15 mg.  
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Synthetic procedures 

ATMET polymerization of Plukenetia conophora with different metathesis catalysts 

Plukenetia conophora oil (0.5 g, 0.598 mmol) was added into a 3 mL conical vial with 

screw cap and septum. Different amount of catalysts  (C4, C5, C11 or C12) were added 

separately. The influence of the reaction conditions on the obtained molecular weight 

was studied (Table 2). After 6 h reaction, the residue was dissolved in THF and the 

metathesis reaction was stopped by adding ethyl vinyl ether (500-fold excess to the 

catalyst) and stirring for 30 minutes at room temperature. The crude product mixtures 

were analyzed by 1H, 13C NMR spectroscopy, as well as GPC analysis. Prior to the 

rheological experiments, P2 was precipitated in cold MeOH on ice bath and afterwards 

dried at the oven at 50 °C as a viscous material. 

 

Representative transesterification of the obtained polymer P2 and GC-MS analysis 

The respective polymer (30 mg), excess methanol (4 mL) and concentrated sulphuric 

acid (5 drops) were added to a carousel reaction tube, stirred magnetically, and 

refluxed at 85 °C for 5 h. At the end of the reaction, the excess of methanol was 

removed under reduced pressure. Then, the residue was dissolved in diethyl ether and 

filtered over a small column of basic aluminum oxide. Subsequently, a GC-MS sample 

was prepared by taking 500 µL of this solution and diluting it with methanol (500 µL). 

 

 

 

5.3 Acyclic Triene Metathesis (ATMET) polymerization of soybean oil modified with 

4-vinylbenzene sulfonic acid 

 

Materials 

ESO (Paraplex G-62) having 4.2 mole epoxy groups per mole of triglyceride was 

purchased from C.P. HALL COMPANY (Chicago, USA), Sodium 4-vinylbenzene sulfonate, 
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Al2O3, NaHCO3 and Na2SO4 were purchased from Merck (Darmstadt, Germany), THF 

was purchased from J.T.Baker (Deventer Holland), sulphuric acid (98%, Sigma-Aldrich), 

benzylidene-bis(tricyclohexylphosphine)dichlororuthenium (Grubbs 1st generation 

cataylst, C3), (1,3-Bis(2,4,6-trimethylphenyl)-2-

imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium(II) 

(1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(o-

isopropoxyphenylmethylene)ruthenium(II) (Grubbs 2nd generation catalyst, C4), [1,3-

bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(o-isopropoxy-

phenylmethylene)ruthenium (Hoveyda-Grubbs 2nd generation catalyst, C5), 1,3-

bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(2-(1-

methylacetoxy)phenyl]methyleneruthenium(II) (Umicore M51, C12) and ethyl vinyl 

ether obtained from Sigma-Aldrich (Milwaukee, WI). 

 

Specifications on the analytical methods 

NMR: Spectrometers A and D. 

SEC: Column system B. 

DSC: System B. Meassurements performed at a heating rate of 10 °C × min-1 with 

samples in the range of 7-10 mg. 

 

Synthetic procedures 

Synthesis of 1-(4-vinylbenzene sulfonyl)oxy-2-alkonols of epoxidized soybean oil 

(SESO) 

2.5 g Sodium 4-vinylbenzene sulfonate (12.6 mmol) and 3.0 g ESO (containing 12.6 

mmol epoxy groups) were added to 100 mL CH2Cl2. The mixture was stirred for 10 

minutes at room temperature and then 2 mL of 98% H2SO4 (36.8 mmol excess) was 

added to the mixture dropwise in 2 hours. The reaction was completed after 2 hours. 

Na2SO4 by-product was removed from the solution by a simple filtration. CH2Cl2 layer 

was washed successively with water, 5% NaHCO3 (aq.) solution and water in order to 
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remove excess H2SO4 and 4-vinylbenzene sulfonates. The aqueous layers were 

discarded while the CH2Cl2 was filtered through a short Al2O3 column to remove any 

residual H2SO4 and 4-vinylbenzene sulfonates. The CH2Cl2 solution was dried and the 

solvent was evaporated. 4.0 g of a light yellow viscous product was obtained. 

1H NMR (400 MHz, CDCl3, δ in ppm): 0.9 (-CH3), 1.2–1.6 (-CH2-), 2.3 (-CH2-(C=O)-), 3.5 (-

O-CH2-CH-), 3.6-3.8 (-OH), 4.2 (-CH2OH-CH2-O-), 4.9(-CH2-CH(-O-)CH2-), 5.3 (-CH2-CH(-O-

)CH2-), 5.5 (CH2=CH-Ar), 5.9 (CH2=CH-Ar), 6.7 (CH2=CH-Sty), 7.5 (Ar-H), 7.8 (Ar-H) 

13C NMR (100 MHz, CDCl3, δ in ppm): 14.1 (-CH3), 22.6 (-CH2-CH3),  24.7 (-CH2-CH2-

(C=O)-) , 29.6-31.8 (-CH2-), 34.0 (-CH2-(C=O)-), 62.7 (-OCH2-CH2-O-), 68.8 (-OCH2-(CH2-O-

)-CH2O-), 72.1 (-S-OCH2-CHOH-) (-CHOH-CHOH-), 85.6 (-S-OCH2-CHOH-), 118.4 

(CH2=CH-Ar), 126.6 (meta-C (Ar)), 128.0 (orto-C (Ar)), 135.1 (CH2=CH-Ar),  143.4 (para-

C, ipso-C (Ar)), 173.3 (-CH2-(C=O)-) 

IR (Film) (cm-1): 3000-3600 (br, OH), 3087-3063 (w, -OSO3-), 2927 (s, CH), 2855 (s, CH), 

1741 (s, C=O), 1658 (m, -C=C- Ar), 1630-1596 (m, -HC=CH-), 1461 (m, CH2, Def.), 1397 

(w, SO), 1362 (m, S=O, Strech.), 1214 (m, C-O-C, Def.), 1190-1186-1714 (s, CO, Def.; C-

O-C, Def. ), 1139 (w, C-O-C, Def.), 1099 (w, C-O-C, Def.), 1050 (w, SO), 910 (m, Ar-SO), 

846 (w, Ar-SO coordinated water), 663 (m, Ar), 561 (s, Ar) 

 

Synthesis of methyl 10-hydroxy-9-(4-vinylphenylsulfonyloxy)octadecanoate (SEMO) 

Methyl oleate was first epoxidized following a literature method25. The epoxidized 

methyl oleate (3 g, 9.6 mmol) and sodium 4-vinylbenzene sulfonate (1.979 g, 9.6 

mmol) were added to 50 mL CH2Cl2. The mixture was stirred for 10 minutes at room 

temperature and then 1.6 mL of H2SO4 ( 98%, 28.8 mmol) was added to the mixture 

dropwise in 1 h. The reaction was completed in 1 h. Na2SO4 was removed by filtration. 

The CH2Cl2 was washed successively with water, 5% NaHCO3 (aq.) solution and water in 

order to remove excess H2SO4 and 4-vinylbenzene sulfonates. The aqueous layers were 

discarded while the CH2Cl2 was filtered through a short Al2O3 column to remove any 

residual H2SO4 and 4-vinylbenzene sulfonates. The organic layer was dried over 

molecular sieves (4 Å, beads), filtered and the solvent was evaporated to obtain a light 

yellow viscous oil in a quantitative yield (4.52 g, ~95%). 



175 

 

1
H NMR (300 MHz, CDCl3, δ in ppm):  0.89 (-CH3), 1.2–1.6 (-CH2-), 2.3 (-CH2-(C=O)-), 3.4 

(-OH), 3.7 (-O-CH3), 4.8 (-CH2-CH(-O-)CH2-), 5.5 (CH2=CH-Ar), 5.9 (CH2=CH-Ar), 6.7 

(CH2=CH-Sty), 7.6 (Ar-H), 7.9 (Ar-H) 

 

General procedure for self-metathesis of SEMO 

To 0.1 g of SEMO (0.02 mmol) in a 3 mL conical vial with screw cap and septum, 0.5 

mol% of the corresponding Ru catalyst was added at 40 °C reaction temperature under 

continuous nitrogen flow for 4 h. The reaction mixture was dissolved in 1 mL THF and 

quenched by addition of ethyl vinyl ether. The final reaction mixture was analyzed by 

1H NMR without further purification. 

1H NMR (300 MHz, CDCl3, δ in ppm): 0.89 (-CH3), 1.2–1.6 (-CH2-), 2.3 (-CH2-(C=O)-), 3.4 

(-OH), 3.7 (-O-CH3), 4.8 (-CH2-CH(-O-)CH2-), 7.0 (-CH=CH-), 7.8 (Ar-H), 7.9 (Ar-H). 

 

General Procedure for ATMET polymerization 

To 0.1 g of SESO (0.067 mmol, containing 0.16 mmol vinyl groups) in a 3 mL conical vial 

with screw cap and septum, 0.5 mol% of the corresponding Ru catalyst was added at 

the desired reaction temperature (see Table 1.) under continuous nitrogen flow. 

Methanol (10 mL) was added to the reaction mixture to precipitate out the polymer 

and the polymerizations were quenched by addition of ethyl vinyl ether. The solid 

product was filtered and extracted with diethyl ether to remove unreacted monomers, 

non-cross-linked oligomers, or both. The final polymer was dried at 50 °C for 4 hours. 

Conditions, catalysts and yields are given in Table 1. 
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5.4 Living Ring-Opening Metathesis Polymerization (ROMP) of fatty acid-derived 

monomers 

 

Materials 

Bicyclo[2.2.1]hept-5-ene-2-methanol (5-norbornene-2-methanol, NBM, Aldrich, 98%, 

mixture of endo and exo), ethyl vinyl ether (Aldrich, 99%), 1,1’-carbonyl diimidazole 

(CDI, Fluka, 98%), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD, Aldrich, 98%), tetradecane 

(Aldrich, ≥99.5%), tetrahydrofuran (THF, anhydrous, ≥99.9%, contains 250 ppm BHT as 

inhibitor, Aldrich), dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-

imidazolidinylidene](benzylidene)bis(3-bromopyridine)ruthenium(II) (Grubbs 3rd 

generation catalyst, C6, Aldrich) were used as received. Fatty acids were kindly 

donated by Cognis Oleochemicals. Dichloromethane (technical grade) was distilled and 

stored over molecular sieves (4 Å) prior to use.  

 

Specifications on the analytical methods 

NMR: Spectrometers A and C. 

SEC: Column systems A and C. 

DSC: System B. Meassurements performed at a heating rate of 20 °C × min-1 up to 150 

°C with samples in the range of 4-10 mg. 

GC-MS: equipment B.  

 

Synthetic procedures 

Monomer synthesis (M1-M7) 

Bicyclo [2.2.1] hept-5-ene-2-methyl hexanoate (M1) 

Caproic acid (2.426 g, 20.8 mmol) was reacted in a 100 mL round bottom flask with 1.2 

equivalents of CDI (4.047 g, 25 mmol) using THF (25 mL) as solvent at 55 °C. The 
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reaction was monitored by GC-MS and TLC. It was found that fatty acid, independent 

of the chain length, was completely converted to the intermediate acylimidazole after 

approximately 2 h. Subsequently, 1.2 equivalents of NBM (85% endo, 15% exo, 2.751 g, 

22.88 mmol) was slowly added to the reaction mixture and the stirring was continued. 

The progress of the reaction was monitored by GC-MS. After an additional 16 h of 

stirring at 55 °C, the reaction was stopped and the solvent was evaporated. Diethyl 

ether was used to extract the desired product from the residue. The organic phase was 

subsequently washed with saturated NaHCO3 (aq) and water twice, then dried over 

anhydrous Na2SO4. After the extraction, the solvent was evaporated. The product was 

further purified by column chromatography with basic alumina using hexane: diethyl 

ether (8:2) as eluent. The solvent was removed in vacuo and the desired product was 

obtained as analytically pure compound in 99.8% (4.62 g) yield as colorless viscous oil. 

1H NMR (300 MHz, CDCl3, δ in ppm) (Figure 5.1): 6.07 (dd, J = 3.03 and 5.7 Hz, 0.85H, 

Hendo2), 6.0 (m, 0.3H, Hexo2 and Hexo3), 5.86 (dd, J =2.88 and 5.70 Hz, 0.85H, Hendo3), 3.9-

4.07 (ddd, J = 7.83, 10.89 and 19,99 Hz, 0.3H, Hexo8), 3.58-3.77 (ddd, J = 8.11, 10.73 and 

20.15 Hz, 1.7H, Hendo8), 2.79 (s, 0.85H, Hendo4), 2.74 (m, Hendo1 and Hexo4), 2.61 (s, 0.15H, 

Hexo1), 2.32 (m, 0.85H, Hendo5), 2.22 (dd, J = 7.42 and 13.86 Hz, 2H, H9), 1.71 (ddd, J = 

5.97, 4.82, 3.38 Hz, 0.85H, Hendo6b), 1.64 (m, 0.15H, Hexo5), 1.56 (m, 2H, H10), 1.37 (m, 

0.85H, Hendo7b;), 1.15−1.25 (m, 5.3H, Hexo6b, Hendo7a, Hexo7a, Hexo7b, and H11-12), 1.09 (ddd, 

J = 2.55, 5.19 and 11.74 Hz, 0.15H, Hexo6a), 0.81 (t, J = 6.69, 6.69 Hz, 3H, H13), 0.48 (ddd, 

J = 2.60, 4.40 and 11.69 Hz, 0.85H, Hendo6a) (Figure 5.1). MS (ESI-positive): m/z = 245.2 

([M+Na]+, calc. 245.3). 

Bicyclo [2.2.1] hept-5-ene-2-methyl octanoate (M2) 

Monomer M2 was synthesized applying a similar procedure as described for the 

preparation of M1 starting with 3 g (20.8 mmol) of caprylic acid. The desired product 

was collected in 97.7% (5.09 g) yield as colorless viscous oil. 1H NMR shifts and 

coupling constants were identical with compound M1, the intensity of δ = 1.15−1.25 

corresponds to 9.3H (m, Hexo6b, Hendo7a, Hexo7a, Hexo7b, and -(CH2)4-CH3). MS (ESI-

positive): m/z = 273.2 ([M+Na]+, calc. 273.4).   
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Figure 5.1: Structures of monomers M1-M7. 
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Bicyclo [2.2.1] hept-5-ene-2-methyl decanoate (M3) 

Monomer M3 was synthesized applying a similar procedure as described for the 

preparation of M1 starting with 3.597 g (20.8 mmol) of capric acid. The desired 

product was collected in 81.2% (4.703 g) yield as colorless viscous oil. 
1
H NMR shifts 

and coupling constants were identical with compound M1, the intensity of δ = 

1.15−1.25 corresponds to 13.3H (m, Hexo6b, Hendo7a, Hexo7a, Hexo7b, and -(CH2)6-CH3). MS 

(ESI-positive): m/z = 301.3 ([M+Na]+, calc. 301.4). 

Bicyclo [2.2.1] hept-5-ene-2-methyl dodecanoate (M4) 

Monomer M4 was synthesized applying a similar procedure as described for the 

preparation of M1 starting with 4.167 g (20.8 mmol) of lauric acid. The desired product 

was collected in 85.8% (5.45 g) yield as colorless viscous oil. 1H NMR shifts and 

coupling constants were identical with compound M1, the intensity of δ = 1.15−1.25 

corresponds to 17.3H (m, Hexo6b, Hendo7a, Hexo7a, Hexo7b, and -(CH2)8-CH3). MS (ESI-

positive): m/z = 329.3 ([M+Na]+, calc. 329.5).  

Bicyclo [2.2.1] hept-5-ene-2-methyl tetradecanoate (M5) 

Monomer M5 was synthesized applying a similar procedure as described for the 

preparation of M1 starting with 4.750 g (20.8 mmol) of myristic acid. The desired 

product was collected in 78.4% (5.453 g) yield as colorless viscous oil. 1H NMR shifts 

and coupling constants were identical with compound M1, the intensity of δ = 

1.15−1.25 corresponds to 21.3H (m, Hexo6b, Hendo7a, Hexo7a, Hexo7b, and -(CH2)10-CH3) MS 

(ESI-positive): m/z = 357.3 ([M+Na]+, calc. 357.6). 

Bicyclo [2.2.1] hept-5-ene-2-methyl hexadecanoate (M6) 

Monomer M6 was synthesized applying a similar procedure as described for the 

preparation of M1 starting with 5.3338 g (20.8 mmol) of palmitic acid. The desired 

product was collected in 82.2% (6.2 g) yield as colorless viscous oil. 1H NMR shifts and 

coupling constants were identical with compound M1, the intensity of δ = 1.15−1.25 

corresponds to 25.3H (m, Hexo6b, Hendo7a, Hexo7a, Hexo7b, and -(CH2)12-CH3). MS (ESI-

positive): m/z = 385.4 ([M+Na]+, calc. 385.6).  
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Bicyclo [2.2.1] hept-5-ene-2-methyl octadecanoate (M7) 

Monomer M7 was synthesized applying a similar procedure as described for the 

preparation of M1 starting with 5.940 g (20.8 mmol) of stearic acid. The desired 

product was collected in 73.1% (5.938 g) yield as white solid. 
1
H NMR shifts and 

coupling constants were identical with compound M1, the intensity of δ= 1.15−1.25 

corresponds to 29.3H (m, Hexo6b, Hendo7a, Hexo7a, Hexo7b, and -(CH2)14-CH3). MS (ESI-

positive): m/z = 413.4 ([M+Na]+, calc. 413.7).  

 

Metathesis Polymerization of Monomers M1-M7 

If not otherwise mentioned, all polymerization reactions were carried out under 

ambient atmosphere. For a polymerization aiming at 100 repeating units ([M]/[I] ratio: 

100/1), a typical polymerization procedure was as follows: A 3 mL conical vial (Supelco) 

was charged with 0.128 mmol of the respective monomer (M1-M7), 1 mL of THF, 0.8 

mL of DCM, and a magnetic stirrer. A stock solution of catalyst (0.00128 mmol of C6 in 

0.1 mL of DCM) was rapidly and completely added to the vigorously stirring monomer 

solution via syringe in ambient atmosphere. After stirring at 25 °C for 1 min, ethyl vinyl 

ether (~ 0.1 mL) was added and the reaction was allowed to stir for 30 min at room 

temperature. The residue was then precipitated by drop-wise addition of the reaction 

mixture into 20 mL of vigorously stirred cold MeOH in an ice bath. The polymers were 

washed multiple times with MeOH. Depending on the monomer applied, polymers 

were precipitated as sticky rubbery materials to white solids. 

 

5.5 Studies on the activity and selectivity of indenylidene-based metathesis catalysts 

during ADMET polymerization 

 

Materials 

10-undecenoic acid (Sigma-Aldrich, 98%), 1,3-propanediol (Sigma-Aldrich, 99.6%), p-

toluenesulfonic acid monohydrate (Sigma-Aldrich, 98.5%), ethyl vinyl ether (Sigma-
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Aldrich, 99%), sulfuric acid (Fluka, 95–97%), 1,4-benzoquinone (Fluka, 98%), (1,3-

Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene) dichloro-(3-phenyl-1H-inden-1-

ylidene)(tricyclohexylphosphine)ruthenium(II) (Umicore M2, C10), (1,3-Bis(2,4,6-

trimethylphenyl)-2-imidazolidinylidene)dichloro-(3-phenyl-1H-inden-1-ylidene) 

(pyridyl)ruthenium(II) (Umicore M31, C11), (1,3-bis(2,4,6-trimethylphenyl)-2-

imidazolidinylidene)dichloro(2-(1-methylacetoxy)phenyl]methyleneruthenium(II) 

(Umicore M51, C12) (1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(o-

isopropoxyphenylmethylene)ruthenium(II) (Hoveyda-Grubbs 2nd generation catalyst, 

C5, Sigma-Aldrich).  

 

Specifications on the analytical methods  

NMR: Spectrometers A and C. 

SEC: Column system C. 

DSC: System B. Meassurements performed at heating rates of 5, 10 and 20 °C × min-1 

up to 150 °C with a sample mass of approximately 4 mg. 

GC-MS: Equipment A. 

 

Synthetic procedures 

Synthesis of 1,3-propylene diundec-10-enoate (1) 

50.00 g (0.27 mol) of 10-undecenoic acid, 8.4 g (0.11 mol) of 1,3-propanediol and 3 g 

(0.0157 mol) of p-toluensulfonic acid were placed in a round-bottomed flask provided 

with a magnetic stirrer and a Dean-Stark apparatus. Then, 200 mL of toluene were 

added and the resulting reaction mixture was heated to reflux. Water was collected as 

the reaction proceeded and once the reaction was completed, the reaction mixture 

was allowed to cool down. Toluene was removed under reduced pressure and the 

residue was filtered through a short pad of basic aluminium oxide using hexane as 

eluent. After removing the hexane, the crude product was dissolved in diethyl ether 
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(200 mL) and washed with two times with water (200 mL). The organic fraction was 

dried over anhydrous MgSO4 and the solvent was removed under reduced pressure. 

The desired product was isolated in 87% yield (39 g). 

1
H NMR (CDCl3): δ=5.85−5.76 (m, 2H, 2x-CH=CH2), 5.00−4.91 (m, 4H, 2xCH=CH2), 4.15 

(t, 4H, J=6.1 Hz, 2xCH2OCO-), 2.30 (t, 4H, J=7.3 Hz,CH2COO_), 2.00 (m, 4H, 

2xCH2
_CH=CH2), 1.99−1.94 (m, 2H, J=6.1 Hz, CH2CH2OCO_), 1.64−1.58 (m, 4H, 

2xCH2CH2COO_), 1.38−1.34 (m, 4H, 2xCH2) 1.29−1.24 (br.s, 16H, 2x[4CH2]) ppm. 

13C NMR (CDCl3): δ=173.6 (s, _
COO_), 139.0 (s, _

CH=CH2), 114.1 (s, _CH=CH2), 60.7 (s, 

CH2OCO_), 34.1 (s, CH2), 33.7 (s, CH2), 29.2 (s, CH2), 29.1 (s, CH2), 29.0 (s, CH2), 28.8 (s, 

CH2), 24.8 (s, CH2) ppm. MS (EI): m/z=408 [M]+, calc. 408.3239. 

 

ADMET polymerization (P1-P26) 

To 1 g (2.45 mmol) of 1,3-propylene diundec-10-enoate in a tube equipped with a 

screw, 0.5 mol% of the corresponding Ru catalyst, (C10: 11.6 mg (0.0122 mmol), C11: 

9.1 mg (0.0122 mmol), C12: 8 mg (0.0122 mmol) and C5: 7.7 mg) was added at the 

desired reaction temperature (60-120 °C). In some cases, 1.0 mol% of BQ was added to 

the reaction mixture 10 min before addition of the catalyst. Reactions were carried out 

in parallel using a carousel reaction station from Radleys. The stirring was continued at 

the selected temperature under a continuous flow of nitrogen for 5 h. After 5 h 

reaction time, the reaction mixture was dissolved in 1 mL of THF and the 

polymerization was quenched by addition of 1 mL of ethyl vinyl ether and stirring for 

30 min at room temperature. The product was purified by precipitation into cold 

methanol. Final polymer molecular weights were determined after precipitation using 

GPC system. 

 

Transesterification of the obtained polymers (P1-P26) and GC-MS analysis 

The respective polymer (30 mg), excess methanol (4 mL) and concentrated sulphuric 

acid (5 drops) were added to a carousel reaction tube, stirred magnetically, and 

refluxed at 85 °C for 5 h. At the end of the reaction, the excess of methanol was 
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removed under reduced pressure. Then, the residue was dissolved in diethyl ether and 

filtered over a small column of basic aluminum oxide. Subsequently, GC-MS samples 

were prepared by taking 500µL of this solution and diluting it with methanol (500µL). 

The percentage of olefin isomerization was calculated based on the areas of the peaks 

belonging to the isomerized diesters. 

 

5.6 Synthesis of castor oil-derived unsaturated PA X,20 via metathesis and catalytic 

amidation 

 

Materials 

10-Undecenoic acid (Aldrich, 98%), 1,2-Diamonoethane (EDA; Aldrich, 98%), 1,4-

Diaminobutane (DAB; Aldrich, 98%), 1,6-Hexanediamine (HMDA; Aldrich, 98%), 1,8-

Diaminooctane (OMDA; Aldrich, 98%), 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD; 

Aldrich, 98%), benzylidene [1,3-bis(2,4,6-trimethylphenyl)-2-

imidazolidinylidene]dichloro(tricyclohexylphosphine)ruthenium (Grubbs 2nd generation 

catalyst, C4, Aldrich), (1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(o-

isopropoxyphenylmethylene)ruthenium (Hoveyda-Grubbs 2nd generation catalyst, C5, 

Aldrich), trifluoroaceticanhydride (TFAA; Fluka, 99%). Methyl-10-undecenoate was 

synthesized by esterification with methanol from corresponding 10-undecenoic acid 

according to standard laboratory procedures. 

 

Specifications on the analytical methods  

NMR: Spectrometer C. 

SEC: Column system D. Polyamide samples had to be derivatized for GPC analysis 

according to the following modified literature procedure:373,374 small amounts of 

sample (10-20 mg) were weighed into GPC vials. 50 µl of dichloromethane and 50 µl of 

TFAA were then added to the vial and the sample was sealed and kept until the 

polymer dissolved. Once a clear solution was obtained, the vials were opened and the 
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solutions were diluted with 900 µl of THF resulting in sample concentrations of ~ 1 mg 

× mL
-1

. Each solution was prepared immediately prior to analysis. 

DSC: System B. Meassurements performed at a heating rate of 10 °C × min-1 up to 280 

°C with a sample mass of approximately 5 mg. 

 

Synthetic procedures 

Synthesis of monomers 

E-dimethyl-eicos-10-enedioate (2) 

2 was prepared according to a modified literature procedure.90a 60.0 g (302 mmol) of 1 

were heated to 40 °C. 50 mg (0.059 mmol = 0.02 mol%) of C4 were then added under a 

nitrogen atmosphere and the reaction was continued under vacuum (20 mbar) for 7 h. 

After cooling to room temperature, the reaction mixture was treated with 500 mL 

hexane and 30 g of silica at room temperature for 6 h. The silica was filtered off and 

the solvent was removed in vacuo to yield the crude product (90% purity by GC). The 

trans product was then isolated by recrystallization from methanol (34.2 g, 57%). 

Melting point: 45.5 °C. Analytic data is in accordance with the literature.90a  

N,N'-(ethane-1,2-diyl)diundec-10-enamide (4a) 

 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD; 0.06195 g, 0.445 mmol, 7.5 mol%) was 

added to a mixture of methyl-10-undecenoate (1.764 g, 8.896 mmol, 2.5 equiv) and 

1,2-Diamonoethane (0.214 g, 3.56 mmol, 1 eq.) in a 100 mL round bottom flask and 

stirred magnetically at 75 °C overnight under a continuous flow of nitrogen in order to 

remove the produced methanol. At the end of the reaction, the mixture was cooled to 

room temperature and the white solid was washed with methanol to remove the 

catalyst and unreacted ester. The solvent was removed in vacuo. The product was 

obtained as an ivory solid (1.235 g, 70%), m.p.: 147.3 °C. 

1H NMR (500 MHz, CDCl3/TFAA, δ):  5.82 (m, 2H), 4.99 (m, 4H), 3.99 (s, 4H), 2.78 (t, J = 

7.5 Hz, 4H), 2.05 (dd, J = 14.3 and 7.0 Hz, 4H), 1.66 (m, 4H), 1.31 (m, 20H). MS (ESI-

positive, MeOH): m/z 415.5 ([M+Na]+, calc. 415.3). 
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N,N'-(butane-1,4-diyl)diundec-10-enamide (4b) 

Diene 4b was prepared by reaction of 1,4-Diaminobutane with methyl-10-

undecenoate applying a similar procedure as described for the preparation of diene 

4a. The product was obtained as a white solid (1.323 g, 75%), m.p.: 144.2 °C. 

1H NMR (500 MHz, CDCl3/TFAA, δ):  5.82 (m, 2H), 4.96 (m, 4H), 3.73 (m, 4H), 2.79 (t, J = 

7.5 Hz, 4H), 2.05 (dd, J = 14.3 and 7.0 Hz, 4H), 1.66 (m, 4H), 1.62 (m, 4H), 1.35 (m, 20H). 

MS (ESI-positive, MeOH): m/z 443.5 ([M+Na]+, calc. 443.4). 

N,N'-(hexane-1,6-diyl)diundec-10-enamide (4c) 

Diene 4c was prepared by reaction of 1,6-Hexanediamine with methyl-10-undecenoate 

applying a similar procedure as described for the preparation of diene 4a. The product 

was obtained as a white solid (1.570 g, 89%), m.p.: 137.5 °C. 

1H NMR (500 MHz, CDCl3/TFAA, δ):  5.84 (m, 2H), 4.92 (m, 4H), 3.69 (m, 4H), 2.79 (t, J = 

7.4 Hz, 4H), 2.05 (m, 4H), 1.66 (m, 4H), 1.59 (m, 4H), 1.35 (m, 24H). 

MS (ESI-positive, MeOH): m/z 449.2 ([M+H]+, calc. 449.4). 

N,N'-(octane-1,8-diyl)diundec-10-enamide (4d) 

Diene 4d was prepared by reaction of 1,8-Diaminooctane with methyl-10-undecenoate 

applying a similar procedure as described for the preparation of diene 4a. The product 

was obtained as a white solid (1.588 g, 90%), m.p.: 134.5 °C. 

1H NMR (500 MHz, CDCl3/TFAA, δ):  5.82 (m, 2H), 4.97 (m, 4H), 3.69 (m, 4H), 2.78 (t, J = 

7.5 Hz, 4H), 2.04 (m, 4H), 1.66 (m, 4H), 1.57 (m, 4H), 1.35 (m, 28H). 

MS (ESI-positive, MeOH): m/z 499.4 ([M+Na]+, calc. 499.6). 

 

Synthesis of polyamides 

 

Catalytic amidation 

Catalytic amidation polymerizations were carried out in 3 mL conical vials (Supelco) 

equipped with screw cap and septa. Monomer 2 (0.2 g, 0.543 mmol, 1 eq) was mixed 
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with diamine (3a-3d, 1 eq) and degassed under nitrogen for 1 h. TBD (5.0, 7.5 or 10.0 

mol%) was then added to the reaction mixture. The reaction mixture was then flushed 

with nitrogen for 10 minutes at RT under magnetic stirring, since TBD is hygroscopic, 

sensitive to CO2 and humidity.375 For route A, the stirring was continued at 150 °C with 

a continuous flow of nitrogen overnight. For route B, the stirring was continued at 75 

°C for 2 h. Then the reaction temperature was increased to 100 °C. After being kept for 

2 h at 100 °C, the reaction temperature was adjusted to 150 °C and kept for an 

additional 2 h under these conditions. The resulting polymers were then 

trifluoroacetylated and subsequently precipitated in order to remove the catalyst from 

the reaction mixture. 

 

ADMET polymerization 

Polymerization were carried out in a 3 mL conical vial (Supelco) equipped with screw 

cap and septa under nitrogen atmosphere. C4 or C5 were added to pre-degassed 

solution of 4a-d (0.25 mmol) in o-xylene (0.25 mL), and the resulting mixture was kept 

stirring in an oil bath at 80 °C under a continuous flow of nitrogen. Catalyst 

concentrations were varied from 1.0 to 10.0 mol%. After 4 h reaction time, the 

polymerization was quenched by adding ethyl vinyl ether (0.1 mL). The resulting 

mixture was concentrated with a rotary evaporator and the residue was washed with 

DMF and subsequently dried to isolate the polymer. 

 

5.7 Synthesis of carbonate-based polymers and building blocks 

 

Materials 

All alcohols (analytical grade), glycerol (≥99%), dimethyl carbonate (DMC, 99%), 1,5,7-

triazobicyclo[4.4.0]dec-5-ene (TBD, 98%), 1,4-benzoquinone (BQ, ≥98%), ethyl vinyl 

ether (99%), tetradecane (>99%), pyrrolidine (>99.5%), benzylidene[1,3-bis-(2,4,6-

trimethylphenyl)imidazolidinylidene]dichloro(tricyclohexylphosphine)ruthenium 

(Grubbs 2nd generation catalyst, C4), [1,3-bis-(2,4,6-trimethylphenyl)-2-
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imidazolidinylidene]dichloro(o-isopropoxy-phenylmethylene)ruthenium (Hoveyda-

Grubbs 2
nd

 generation catalyst, C5) were obtained from Aldrich. 1,3-bis-(2,4,6-

trimethylphenyl)-4,5-dihydroimidazol-2-yliden[2-(isopropoxy)-5-N,N-

dimethylaminosulfonyl)phenyl] methylene ruthenium (II) dichloride (Zhan catalyst, C7, 

96%) was delivered from ABCR. Poly(ethylene glycol) methyl ether (mPEG-OH, Mn~500 

Da) was purchuased from Fluka. All reagents were used without further purification. 

(E) Icos-10-ene-1,20-diol (D3) was prepared according to the procedure reported by 

Meier and co-workers.149b Solvents for chromatography were technical grade. 

Specifications on the analytical methods  

NMR: Spectrometer A. 

GC-MS: Equipment A. Two different oven programs: Method A - the oven temperature 

program was: initial temperature 95 °C, hold for 1 min, ramp at 15 °C × min-1 to 200 °C, 

hold for 2 min, ramp at 15 °C × min-1 to 325 °C, hold for 5 min. Method B - the oven 

temperature was: initial 35 °C, hold for 2 min, ramp at 10 °C × min-1 to 150 °C, hold for 

1 min. The injector’s transfer line temperature was set to 250 °C. 

SEC: Column system E. 

 

Synthetic procedures 

All reactions and polymerizations were perfromed in a carousel reaction stationTM 

RR98072 (Radleys Discovery Technologies, UK). 

 

Synthesis and characterization of unsymmetric organic carbonates 

Tetradecane (10.0 mol% relative to the alcohol) was used as internal standard and the 

conversion, selectivity and yield were calculated with respect to the alcohol. In a 

typical procedure, a mixture of the alcohol (15.0 mmol) and the corresponding amount 

DMC (see Table 2 in the main text) was added to the carousel tube and stirred 

magnetically at 80°C for a couple of minutes. After taking a t = 0 min sample, if not 

otherwise specified, 0.15 mmol TBD was added to the carousel tube (see Table 2 in the 



188 

 

main text for additional information). The reactions were sampled and analysed by GC, 

GC-MS and NMR in specific time intervals, thus the product distribution and 

conversion being determined. After a defined time, the heating was stopped and the 

recation mixtures were allowed to cool to room temperature. The crude reaction 

mixture was purified by column chromatography to obtain the pure product. In cases 

when the product was a mixture of the unsymmetric and symmetric organic carbonate 

mixture, fractional destillation was applied. 

 

 

Model compound - methyl octyl carbonate: after purification with column 

chromotography (n-hexane/ethyl acetate = 9:1) methyl octyl carbonate was obtained 

as colourless oil in a yield of 95%. The 1H and 13C NMR spectra were in accordance with 

the already reported one.376 

 

Characterization of the unsymmetric carbonates. 

 

Butyl methyl carbonate (Table 4.16, entry 1): colourless liquid, n-hexane/ethyl acetate 

= 2/1, yield = 85%. 

1H NMR (300 MHz, CDCl3, δ in ppm): 4.11 (m, 2H, -CH2-O-), 3.77 (s, 3H, -O-CH3), 

1.73−1.46 (m, 2H, -CH2-CH2-CH3), 1.43−1.15 (m, 2H, -CH2-CH2-CH3), 0.87 (t, J = 6.6 Hz, 

3H, -CH3). 

13C NMR (75 MHz, CDCl3, δ in ppm): 155.7 (-OCO2-), 69.1 (-CH2-O-), 54.9 (-O-CH3), 28.9 

(-CH2-CH2-CH3), 18.8 (-CH2-CH2-CH3), 13.5 (-CH3). 

MS (EI) of C6H12O3 [M+H]+ calc. 133.08 found 133.2 

Hexyl methyl carbonate (Table 4.16, entry 2): colourless oil, n-hexane/ethyl acetate = 

9/1, yield = 89% 

1H NMR (300 MHz, CDCl3, δ in ppm): 4.22−3.98 (m, 2H, -CH2-O-), 3.77 (s, 3H, -O-CH3), 

1.77−1.49 (m, 2H, aliphatic -CH2-), 1.46−1.16 (m, 6H, aliphatic -CH2- ), 0.87 (t, J = 6.6 

Hz, 3H, -CH3). 

13C NMR (75 MHz, CDCl3, δ in ppm): 155.9 (-OCO2-), 68.2 (-CH2-O-), 54.6 (-O-CH3), 31.6 
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(aliphatic -CH2-), 28.6 (aliphatic -CH2-), 25.3 (aliphatic -CH2-), 22.5 (aliphatic -CH2-), 13.9 

(-CH3). 

HRMS of C8H16O3 [M+H]+ calc. 161.11 found 161.30 

 

Methyl undec-10-en-1-yl carbonate (Table 4.16, entry 3): colourless oil, n-

hexane/ethyl acetate = 9/1, yield = 93%. 

1H NMR(300 MHz, CDCl3, δ in ppm): 5.80 (ddt, J = 16.9, 10.2 and 6.7 Hz, 1H, CH2=CH-), 

5.03−4.82 (m, 2H, CH2=CH-), 4.11 (t, J = 6.7 Hz, 2H, -CH2-O-), 2.07−1.96 (m, 2H, 

CH2=CH-CH2-), 1.69−1.57 (m, 2H, -CH2-CH2-O-), 1.42−1.18 (m, 12H, aliphatic -CH2-). 

13C NMR (75 MHz, CDCl3, δ in ppm): 155.8 (-OCO2-), 139.1 (CH2=CH-), 114.1 (CH2=CH-), 

68.2 (-CH2-O-), 54.5 (-OCH3), 33.8 (CH2=CH-CH2-), 29.4-25.6 (aliphatic-CH2-). 

HRMS of C13H24O3 [M+H]+ calc. 229.18 found 229.10 

3,7-dimethyloct-6-en-1-yl methyl carbonate (Table 4.16, entry 4): colourless liquid, n-

hexane/ethyl acetate = 9/1, yield = 94%. 

1H NMR (300 MHz, CDCl3, δ in ppm): 5.18−4.95 (m, 1H, -HC=C(CH3)2 ), 4.28−4.04 (m, 

2H, -O-CH2-), 3.86 (s, 3H, -O-CH3), 1.94 (pt, J = 13.1, 6.6 Hz, 2H, -CH2-HC=C(CH3)2), 

1.78−1.08 (m, 11H), 0.91 (d, J=6.4 Hz, 3H, -CH(CH3)-). 

13C NMR (75 MHz, CDCl3, δ in ppm): 155.9 (-OCO2-), 131.3 (-HC=C(CH3)2), 124.5 (-

HC=C(CH3)2), 66.6 (-O-CH2-), 54.6(O-CH3), 36.9 (-CH2-CH2-HC=C(CH3)2), 35.6 (CH3O-

C(O)2-CH2-CH2-), 29.3 (-CH2-CH(CH3)-CH2-), 25.6 (-CisomerH2-HC=C(CH3)2), 25.3 (-CisomerH2-

HC=C(CH3)2), 19.3 (-HC=C(CH3)2), 17.6 (-HC=C(CH3)2). 

HRMS of C12H22O3 [M+H]+ calc. 215.16 found 215.20 

Allyl methyl carbonate (Table 4.16, entry 5): colourless oil, n-hexane/ethyl acetate = 

15/1, yield = 80%. 

1H NMR (300 MHz, CDCl3, δ in ppm): 6.06−5.77 (m, 1H, CH2=CH-), 5.38−5.21 (m, 2H, 

CH2=CH-), 4.60 (dd, J = 5.7 and 1.3 Hz, 2H, -CH2-O-), 3.68 (s, 3H, -O-CH3). 

13C NMR (75 MHz, CDCl3, δ in ppm): 155.7 (-OCO2-), 131.7 (CH2=CH-), 118.5 (CH2=CH-), 

68.5 (-CH2-O-), 54.9 (-O-CH3). 

MS (EI) of C12H22O3 [M+H]+ calc. 117.05 found 117.20 
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Methyl trans-2-hexen-1-yl carbonate (Table 4.16, entry 6): colourless oil, n-

hexane/ethyl acetate = 9/1, yield = 92%.
 

1H NMR (300 MHz, CDCl3, δ in ppm):  5.97–5.32 (m, 2H, -CH=CH-), 4.54 (ddd, J = 19.6, 

10.3, 4.2 Hz, 2H, -CH2-O-), 3.76 (s, 3H, -O-CH3), 2.17−1.87 (m, 2H, -CH2-CH=CH-), 

1.50−1.27 (m, 2H, -CH2-CH2-CH=CH-), 0.90 (t, 3H, -CH3). 

13C NMR (75 MHz, CDCl3, δ in ppm): 155.8 (-OCO2-), 137.4 (-CH=CH-CH2-OCO2-), 123.5 

(-CH=CH-CH2-OCO2-), 68.9 (-CH2-O-), 54.8 (-O-CH3), 34.4 (-CH2-CH=CH-), 22.1 (-CH2-CH2-

CH=CH-), 13.7 (CH3-). 

HRMS of C8H12O3 [M]+ calc. 158.09 found 158.20 

Methyl trans-2,4-hexadien-1-yl carbonate (Table 4.16, entry 7): colourless oil, n-

hexane/ethyl acetate = 9/1, yield = 89%. 

1H NMR (300 MHz, CDCl3, δ in ppm): 6.40−5.93 (m, 2H, -CH=CH-CH=CH-), 5.86−5.54 (m, 

2H, -CH=CH-CH=CH-), 4.72−4.52 (m, 2H, -CH2-O-) 3.77 (s, 3H, -O-CH3), 1.87−1.65 (m, 

3H, -CH3). 

13C NMR (75 MHz, CDCl3, δ in ppm): 155.6 (-O-CH3), 135.5 (-CH=CH-CH=CH-CH3), 131.6 

(-CH=CH-CH=CH-CH3), 130.3 (-CH=CH-CH=CH-CH3), 122.9 (CH=CH-CH=CH-CH3), 68.2 (-

CH2-O), 54.7 (-O-CH3), 18.1 (-CH3). 

HRMS of C8H12O3 [M]+ calc. 156.08 found 156.10 

 

Methyl propargyl carbonate (Table 4.16, entry 8): yellowish oil, n-hexane/ethyl 

acetate = 15/1, yield = 75%. 

1H NMR (300 MHz, CDCl3, δ in ppm): 4.68−4.64 (m, 2H, -CH2-O-), 3.75 (s, 3H, -O-CH3), 

2.52−2.48 (m, 1H, HC≡C-). 

13C NMR (75 MHz, CDCl3, δ in ppm): 155.1 (-OCO2-), 76.9 (HC≡C-, overlapping with 

CDCl3), 75.6 (HC≡C-), 55.1 (-CH2-O-), 55.0 (-O-CH3). 

MS (EI) C5H6O3 [M+H]+ calc. 115.04 found 115.20 

 

Methyl poly(ethylene glycol) methyl ether carbonate (Table 4.16, entry 9): excess of 

DMC carbonate was removed via extraction of the crude reaction mixture with 

hexane; the highly viscous product was dried under vacuum thus yielding 94% viscous 
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colourless oil. 

1
H NMR (300 MHz, CDCl3, δ in ppm): 4.30- 4.20 (m, 2H, -CH2-O-C(O)O-CH3end group), 3.76 

(s, 1H, -CH2-O-C(O)O-CH3end group), 3.72-3.49 (m, repeating unit -O-CH2-CH2-O-), 3.35 (s, 

3H, -CH2-O-CH3end group). 

13C NMR (75 MHz, CDCl3, δ in ppm): 156.8 (-OCO2-), 71.9 (-O-CH2-CH2-O-CH3end group), 

70.6 ( repeating unit -O–CH2-CH2-O-), 70.4 (-O-CH2-CH2-O-CH3end group), 68.9 (-CH2-CH2-

O-C(O)O-CH3end group), 66.9 (-CH2-O-C(O)O-CH3end group), 58.9 (-CH2-O-CH3end group), 54.6 (-

C(O)O-CH3end group). 

HRMS [M+H]+ found 575.5 

 

Cyclohexyl methyl carbonate (Table 4.16, entry 10): colourless liquid, n-hexane/ethyl 

acetate = 9/1, yield = 93%. Spectroscopic properties were in agreement with those 

reported in the literature.377 

 

Bicyclo[2.2.1]hept-5-en-2-yl methyl carbonate (Table 4.16, entry 11): colourless liquid, 

n-hexane/ethyl acetate = 4/1, yield = 95%. 
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1H NMR (300 MHz, CDCl3, δ in ppm): 6.36−6.27 (m, 1H, H2), 6.00−5.92 (m, 1H, H3), 

5.25−5.15 (m, 1H, H5), 3.72 (s, 3H, OMe), 3.18−3.12 (m, 1H, H4), 2.85−2.78 (m, 1H, H1), 

2.16−2.08 (m, 1H, H6), 1.48−1.43 (m, 1H, H7), 1.29 (d, J = 8.9 Hz, 1H, H7´), 1.03−0.95 (m, 

1H, H6´). 

13C NMR (75 MHz, CDCl3, δ in ppm): 154.20 (CO), 139.97 (C2´), 137.28 (C2), 130.87 (C3´), 

129.79 (C3), 77.54 (C5´), 77.23 (C5), 53.02 (OMe´), 52.98 (OMe), 46.11 (C7), 45.86 (C7´), 

44.67 (C4´), 44.31 (C4), 40.75 (C1), 39.07 (C1´), 33.01 (C6, C6´). 

HRMS of C12H18O3 [M]+ calc. 168.08 found 168.80 
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2-Adamantyl methyl carbonate (Table 4.16, entry 12): recrystalized from MeOH, yield 

= 93%. 

1H NMR (300 MHz, CDCl3, δ in ppm) 4.86−4.67 (m, 1H, -CH-O-C(O)O-), 3.76 (s, 3H, CH3-

O-C(O)O-), 2.17−1.96 (m, 2H), 1.92−1.66 (m, 8H), 1.53 (t, J = 16.1 Hz, 4H). 

13C NMR (75 MHz, CDCl3, δ in ppm): 155.3 (-OCO2-), 81.1 (-CH-O-C(O)O-), 54.4 (-O-CH3), 

37.3 (2C), 36.3 (2C), 31.8, 31.5, 28.8, 27.1, 26.9. 

HRMS of C12H18O3 [M+H]+ calc. 211.13 found 211.00 

 

Methyl-1,4-pentadien-3-yl carbonate (Table 4.16, entry 13): colourless oil, n-

hexane/ethyl acetate = 15/1, yield = 89%. 

1H NMR (300 MHz, CDCl3, δ in ppm): 5.94−5.69 (m, 2H, CH2=CH-), 5.46 (dt, J=11.6 and 

8.3 Hz, 1H, -CH-O-), 5.38−5.13 (m, 4H, CH2=CH-), 3.75 (s, 3H, -O-CH3). 

13C NMR (75 MHz, CDCl3, δ in ppm): 156.4 (-OCO2-), 134.6 (CH2=CH-), 118.1 (CH2=CH-), 

79.1 (-CH2-O-), 54.8 (-O-CH3). 

 

Benzyl methyl carbonate (Table 4.16, entry 14): colourless oil, n-hexane/ethyl acetate 

= 9/1, yield = 93%. Spectroscopic properties were in agreement with those reported in 

the literature.378 

 

Methyl (1-phenylbut-3-en-1-yl) carbonate (Table 4.16, entry 15): colourless oil, n-

hexane/ethyl acetate = 5/1, yield = 90%. 

1H NMR (300 MHz, CDCl3, δ in ppm): 7.49−7.27 (m, 10H, aromatic –CH-), 5.87−5.57 (m, 

1H, CH2=CH-), 5.29−4.99 (m, 3H, CH2=CH- and CH2=CH-CH2-CH-), 3.69 (s, 3H, -OCH3), 

2.99−2.42 (m, 2H, CH2=CH-CH2-CH-). 

13C NMR (75 MHz, CDCl3, δ in ppm): 155.0 (-OCO2-), 139.4 (aromatic –CH-), 132.8 

(CH2=CH-), 128.4 (aromatic –CH-), 128.1 (aromatic –CH-), 126.4 (aromatic –CH-), 118.3 

(CH2C=H-), 79.3 (-CH-O-), 54.6 (-CH2-O-), 40.7 (CH2=CH-CH2-). 

HRMS of C12H14O3 [M+H]+ calc. 207.10 found 207.10 
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tert-Butyl methyl carbonate (Table 4.16, entry 16): colourless liquid, n-hexane/ethyl 

acetate = 10/1, yiled = 82%. 

1H NMR (300 MHz, CDCl3, δ in ppm): 3.74 (s, 3H, -O-CH3), 1.43 (s, 9H, C-(CH3)3). 

13C NMR (75 MHz, CDCl3, δ in ppm): 155.6 (-OCO2-), 81.1 (-C-(CH3)3), 55.9 (-CH2-O-), 

28.4 (-C-(CH3)3). 

MS (EI) of C6H12O3 [M+H]+ calc. 133.08 found 133.10 

 

Glycerol carbonate (Table 4.16, entry 17): colourless oil, n-hexane/ethyl acetate = 

1/25, yield = 95%. 

1H NMR (300 MHz, DMSO-d6, δ in ppm): 5.28 (dd, J = 7.2, 3.8 Hz, 1H, HO-CH2-CH-) 4.80 

(ddd, J = 11.6, 5.9, 3.0 Hz, 1H, HO-CH2-CH-), 4.49 (td, J = 8.3, 2.9 Hz, 1H, -O-CH2-CH-), 

4.28 (dd, J = 8.1, 5.8 Hz, 1H, -O-CH2-CH-). 3.67 (ddd, J = 12.6, 5.4, 2.7 Hz, 1H, HO-CH2-

CH-), 3.50 (ddd, J = 12.6, 5.6, 3.3 Hz, 1H, HO-CH2-CH-). 

13C NMR (75 MHz, DMSO-d6, δ in ppm): 155.3 (-OCO2-), 77.1 (HO-CH2-CH-), 65.9 (HO-

CH2-CH-), 60.6 (-O-CH2-CH-). 

MS (EI) of C4H6O4 [M+H]+ calc. 119.03 found 119.01 

 

One pot two-step polymerization via TBD mediated polycondesation 

Polymers in Table 3, 4 and 5 were synthesized following a two-step polycondensation 

of DMC with D1, D2 and D3 (Scheme 2 in the main text), respectively, in the melt. In a 

typical experiment 2.7 gr (35.0 mmol) of DMC and 1.0 equvialent (17.5 mmol) of the 

corresponding “potential” green diols (D1, D2 or D3) were introduced into a carousel 

tube. The reaction was equipped with magnetic stirring and a screw cap with a 

septum. The mixture was homogenized at room temperature for 10 min and the 

specific amount of TBD (0.1, 0.5, 1.0 and 5.0 mol% to the alcohol) was added and the 

reaction which was equipped with argon purge and heated at 80 °C. Once the 

sufficient amount of oligomers was obtained, vacuum was applied (10-2 bar) and the 

temperature was increased to 90 °C to facilitate the polymerization by removing both 

unreacted DMC and methanol released in the condensation reactions. The reactions 

were kept at 90 °C for 1 h except for D1. The temperature of the reactions for D2 and 
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D3 were gradually increased to 150 °C over a period of ca 3 h and maintained at this 

temperature for 1 h to allow complete removal of the methanol and DMC. The 

reaction of D1 was kept at 90 °C at continuous vacuum for 3 h in total. After 

completion, the reaction mixtures were dissolved in THF and the obtained polymers 

were precipitated in ice cold MeOH in yields ranging from 75 to 95%. 

P3 (89%): 1H NMR (300 MHz, CDCl3, δ in ppm): 5.41−5.28 (m, -CH=CH-), 4.11 (t, J = 6.7 

Hz, -CH2-O-), 1.98 (t, J = 14.6 Hz, -CH=CH-CH2-), 1.72−1.53 (m, -CH2-CH2-O-), 1.40−1.21 

(m, aliphatic -CH2-). 

P5 (82%): 1H NMR (300 MHz, CDCl3, δ in ppm): 4.25−4.03 (m, -O-CH2-CH2-CH2-O-), 

3.66−3.56 (m, -OHend group), 2.03−1.87 (m, H, -O-CH2-CH2-CH2-O-), 1.85−1.72 (m, 1H). 

P6 (89%):1H NMR (300 MHz, CDCl3, δ in ppm): 4.19−3.92 (m, -O-CH2-), 1.73–1.48 (m, -

CH2-CH2-CH2-CH2-CH2-CH2-), 1.47–1.21 (m, -CH2-CH2-CH2-CH2-CH2-CH2-). 

 

Synthesis and characterization of the symmetrical organic carbonates 

Reactions were performed in a carousel reaction stationTM RR98072 (Radleys Discovery 

Technologies, UK). Tetradecane (10.0 mol% relative to the alcohol) was used as 

internal standard, and the conversion, selectivity and yield were calculated with 

respect to the limiting reactant (in this case: DMC) 

 

Typical procedure - Diallyl carbonate (Table 4.19, entry 1): 871 mg of allyl alcohol 

(15.0 mmol) was mixed with 643 mg of DMC (7.14 mmol) into a carousel reaction tube. 

To this mixture, 10.0 mg of TBD (1.0 mol%) was added at 80 °C. The reaction was 

stirred under contionuos argon purge until completion as confirmed by TLC. The 

heating was stopped and the reaction mixtures were allowed to cool to room 

temperature. The crude reaction mixture was filtered through a short pad of silica gel 

with n-hexane/ethyl acetate = 9/1 to give a light yellow liquid in 95% yield. 

1H NMR (300 MHz, CDCl3, δ in ppm): 5.94 (ddd, J = 16.2, 11.0, 5.8 Hz, 2H, CH2=CH-), 

5.42−5.19 (m, 4H, CH2=CH-), 4.64 (dd, J = 5.7 and 1.3 Hz, 4H, -CH2-O-). 

13C NMR (75 MHz, CDCl3, δ in ppm): 155.7 (-OCO2-), 131.7 (CH2=CH-), 118.1 (CH2=CH-), 

68.5 (-CH2-O-). 
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MS (EI) of C7H10O3 [M]+ calc. 142.06 found 142.10 

 

 

Characterization of the symmetrical carbonates  

 

Di(undec-10-en-1-yl) carbonate (M1, Table 4.19, entry 2): purified over short pad of 

silica with n-hexane to give a colourless liquid in 95% yield. 

1H NMR (300 MHz, CDCl3, δ in ppm): 5.80 (ddt, J = 16.9, 10.2 and 6.7 Hz, 2H,CH2=CH-), 

5.03−4.82 (m, 4H, CH2=CH-), 4.11 (t, J = 6.7 Hz, 4H, -CH2-O-), 2.07−1.96 (m, 4H, 

CH2=CH-CH2-), 1.69−1.57 (m, 4H, -CH2-CH2-O-), 1.42−1.18 (m, 24H, aliphatic -CH2-). 

13C NMR (75 MHz, CDCl3, δ in ppm): 155.4 (-OCO2-), 139.1 (CH2=CH-), 114.1 (CH2=CH-), 

67.9 (-CH2-O-), 33.8 (CH2=CH-CH2-), 29.4−25.7 (aliphatic -CH2-). 

HRMS of C23H42O3 [M+H]+ calc. 367.32 found 367.30 

 

Di(3,7-dimethyloct-6-en-1-yl) carbonate (M2, Table 4.19, entry 3): purified over short 

pad of silica (n-hexane/ethyl acetate = 9/1), colourless oil in 95% yield. 

1H NMR (300 MHz, CDCl3, δ in ppm): 5.08 (t, J = 7.0 Hz, 2H, -HC=C(CH3)2), 4.25−4.07 (m, 

4H, -O-CH2-), 1.94 (pt, J = 13.1, 6.6 Hz, 4H, -CH2-HC=C(CH3)2), 1.77−1.53 (m, 16H), 

1.53−1.11 (m, 6H), 0.91 (d, J = 6.4 Hz, 6H-CH(CH3)-). 

13C NMR (75 MHz, CDCl3, δ in ppm): 155.4 (-OCO2-), 131.3 (-HC=C(CH3)2), 124.5 (-

HC=C(CH3)2), 66.4 (-O-CH2-), 37.0 (-CH2-CH2-HC=C(CH3)2), 35.5 (CH3O-C(O)2-CH2-CH2-), 

29.2 (-CH2-CH(CH3)-CH2-), 25.7 (-CisomerH2-HC=C(CH3)2), 25.3 (-CisomerH2-HC=C(CH3)2), 

19.3 (-HC=C(CH3)2), 17.6 (-HC=C(CH3)2). 

HRMS of C21H38O3 [M+H]+ calc. 339.29 found 339.20 

 

Dibenzyl carbonate (Table 4.19, entry 4): purified with extraction using n-hexane to 

yield a solid at RT (93%). 

1H NMR (300 MHz, CDCl3, δ in ppm): 7.54−7.30 (m, 10H), 5.22 (s, 4H). 

13C NMR (75 MHz, CDCl3, δ in ppm): 155.0 (-OCO2-), 135.1 (aromatic CH), 128.4 

(aromatic CH), 69.6(-CH2-O-). 
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HRMS of C15H14O3 [M+H]+ calc. 243.10 found 243.10 

 

Di(1-phenylbut-3-en-1-yl) carbonate (Table 4.19, entry 5): purified over short pad of 

silica (n-hexane/ethyl acetate = 5/1); colourless oil in 95% yield. 

1H NMR (300 MHz, CDCl3, δ in ppm): 7.49−7.27 (m, 10H, aromatic CH), 5.87−5.57 (m, 

2H, CH2=CH-), 5.29−4.99 (m, 6H, CH2=CH- and CH2=CH-CH2-CH-), 2.99−2.42(m, 4H, 

CH2=CH-CH2-CH-). 

13C NMR (75 MHz, CDCl3, δ in ppm): 153.9 (-OCisomerO2-), 153.8 (-OCisomerO2-), 139.4 

(aromatic CH), 139.3 (aromatic CH), 132.8 (CH2=CisomerH-), 132.7 (CH2=CisomerH-), 128.4-

126.3 (aromatic CH), 118.2 (CisomerH2C=H-), 118.1 (CisomerH2C=H-), 79.2 (-CisomerH-O-), 

79.1 (-CisomerH-O), 40.7 (CH2=CH-CisomerH2-), 40.6 (CH2=CH-CisomerH2-). 

HRMS of C21H22O3 [M+H]+ calc. 323.16 found 323.20 

 

ADMET polymerization of M1 with different metathesis catalysts 

Reactions were carried out in parallel using a carousel reaction stationTM RR98072 

(Radleys Discovery Technologies, UK). In a representative polymerization 500 mg (1.37 

mmol) of M1 and 0.4 mol% BQ were added to a carousel tube equipped with a screw 

at the reaction temperature of 80 °C and let to stir magnetically for 10 min. Then, 0.2 

mol% of the corresponding Ru catalyst (C4, C5 or C7) was added to the reaction 

mixture. After 1 h reaction under continuous vacuum, the reaction mixtures were 

allowed to cool to room temperature, the residue was dissolved in THF and the 

metathesis reaction was stopped by adding ethyl vinyl ether (500-fold excess to the 

catalyst) and stirring for 30 minutes at room temperature. Polymers were precipitated 

in cold MeOH on ice bath. 

P10 (85%): 1H NMR (300 MHz, CDCl3, δ in ppm): 5.44−5.30 (m, -CH=CH-), 4.12 (dt, J = 

9.7, 6.5 Hz, -CH2-O-), 2.05−1.87 (m, -CH=CH-CH2-), 1.73−1.54 (m, aliphatic -CH2-), 1.27 

(s, aliphatic -CH2-). 
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ADMET polymerization of M2 

Reactions were carried out in parallel using a carousel reaction station
TM

 RR98072 

(Radleys Discovery Technologies, UK). In a representative polymerization 500 mg (1.48 

mmol) of M1 and different amounts of C7 were added separately to a carousel tube 

equipped with a screw  at 90 °C. The influence of the amount of the BQ, added 10 min 

prior to the catalyst addition, on the obtained molecular weight was studied. After 4 h 

reaction under continuous vacuum, the reaction mixtures were allowed to cool to 

room temperature, then the residue was dissolved in THF and the metathesis reaction 

was stopped by adding ethyl vinyl ether (500-fold excess to the catalyst) and stirring 

for 30 minutes at room temperature. Polymers were precipitated in ice cold MeOH. 

P14 (75%) 1H NMR (300 MHz, CDCl3, δ in ppm): 5.46−4.96 (m, -CH=CH-), 4.14 (dt, J = 

13.3, 6.6 Hz, -CH2-O-), 2.48−2.15 (m, -CH=CH-CisomerizedH2-), 2.14−1.80 (m, -CH=CH-CH2-

), 1.80−1.40 (m, aliphatic -CH2-), 1.38−1.04 (m, aliphatic -CH2-), 1.04−0.72 (m, -CH3). 

 

 

5.8 On the polymerization behavior of telomers: Metathesis versus thiol-ene 

chemistry 

 

Materials 

All chemicals were used as received: Pd(dba)2 (dba, bis(dibenzylideneacetone) 

(Aldrich), TOMPP (tris-(ortho-methoxyphenyl)phosphine), 1,3-propanediol (> 99%, 

Fluka), 1,3-butadiene (Linde Gas), 1,4-benzoquinone (BQ, >99%, Aldrich), 1-octanethiol 

(>98.5%, Aldrich), 1,4-butanedithiol (DT1, >97%, Aldrich), 2-mercaptoethyl ether (DT2, 

>95%, Aldrich), 3,6-dioxa-1,8-octane-dithiol (DT3, >95%, Aldrich), benzylidene-

bis(tricyclohexylphosphine) dichlororuthenium (Grubbs 1st generation catalyst, C3, 

Aldrich), benzylidene [1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene] 

dichloro(tricyclohexylphosphine) ruthenium (Grubbs 2nd generation catalyst, C4, 

Aldrich), (1,3-bis-(2,4,6-trimethylphenyl)-2-

imidazolidinylidene)dichloro(oisopropoxyphenylmethylene) ruthenium (Hoveyda–
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Grubbs 2
nd

 generation catalyst, C5, Aldrich), [1,3-bis(2,4,6-trimethylphenyl)-2-

imidazolidinylidene]dichloro [2-(1-methylacetoxy)phenyl]methylene ruthenium(II) 

(Umicore M51, C12), ethyl vinyl ether (99%, Aldrich), 2,2'-azobis(2-methylpropionitrile) 

(AIBN, 98%, Aldrich) was used after recrystallization from methanol. All solvents 

(technical grade) were used without purification. 

 

Specifications on the analytical methods  

NMR: Spectrometers A and B. 

SEC: Column systems B, C and E. 

DSC: System A. Meassurements performed at a heating rate of 10 °C × min-1 up 250 °C 

with samples in the range of 8-15 mg. 

 

Synthetic procedure 

Thiol-ene model reaction for di-telomers 

The thiol-ene model reactions were performed in a carousel reaction stationTM 

RR98072 (Radleys Discovery Technologies, UK). Into a reaction tube, 0.5 g (1.71 mmol) 

of the di-telomer and 1.0 g 1-octanethiol (6.84 mmol) were introduced and degassed 

via 3 times 200 mbar vacuum and subsequent argon purge. The reaction were 

conducted either radically (model reaction A) or thermally induced (model reaction B) 

under solvent-free conditions at the desired reaction temperature (75 and 70 °C for 

the respective model reactions A and B). In the case of radical initiated reactions, 2.5 

mol% (0.04 mmol) of AIBN was added to the reaction mixture. The reactions were 

followed with TLC with hexane-ethyl acetate (15:1, v:v) as eluent. Moreover, the 

monomer conversion was calculated from integration of corresponding 1H NMR 

signals. A relaxation time (d1) of 5 s was used in the 1H NMR analyses in order to 

obtain reliable integral values. The reaction products were purified by column 

chromatography with hexane-ethyl acetate (15:1, v:v) as eluent. 
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1H NMR (300 MHz, CDCl3, δ in ppm) 6.20 (d, -CH=CH-O-CH2-, J=12.6 Hz, 1Htrans), 5.91 

(dd, -CH=CH-O- CH2-, J=6.2, 1.3 Hz, 1Hcis), 5.72-5.62 (m, -CH=CH-CH2O- trans-isomer, -

CH=CH2 branched telomer), 5.58-5.48 (m, -CH=CH-CH2-O- trans-isomer, -CH=CH-CH2-O- cis-isomer), 

5.17-5.11 (m, -CH=CH2 branched telomer), 4.81-4.68 (m, -CH=CH- O-CH2-, 1Htrans), 4.37-4.25 

(m, -CH=CH-O-CH2-, 1Hcis), 3.99 (d, J = 4.8 Hz, -CH=CH-CH2-O- cis-isomer), 3.89 (d, J = 5.9 

Hz, -CH=CH-CH2-O- trans-isomer), 3.79-3.64 (m, -CH=CH-O-CH2-CH2-CH2-O-), 3.48 (t, J = 6.4 

Hz, -O-CH2-CH2-CH2-O-), 2.57-2.46 (m, -CH2-S-CH2-), 2.10-1.98 (m, -CH2-CH=CH-), 1.90-

1.79 (m, -O-CH2-CH2-CH2-O-, -CH=CH-O-CH2-CH2-CH2-O-), 1.67-1.52 (m, -S-CH2-CH2-CH2-

), 1.42-1.31 (m, -CH2-), 0-92-0.84 (t, -CH3). 

13C NMR (75 MHz, CDCl3, δ in ppm) 146.18 (-CH=CH-O-CH2- cis-isomer), 144.99 (-CH=CH-O-

CH2-trans-isomer), 134.31 (-CH=CH-CH2-O- trans-isomer), 134.17 (-CH=CH-CH2-O- cis-isomer), 

126.95 (-CH=CH-CH2O- cis-isomer), 126.80 (-CH=CH-CH2O- trans-isomer), 106.78 (-CH=CH-O-

CH2-cis-isomer), 104.09 (-CH=CH-O-CH2-trans-isomer), 74.88 (-CH=CH-O-CH2-CH2-CH2-O-), 

71.80 (-CH=CH-CH2-O- trans-isomer), 67.38 (-O-CH2-CH2-CH2-O-), 66.65 (-CH=CH-CH2-O- cis-

isomer), 32.35 (-CH2-S-CH2-), 32.29 (-CH2-S-CH2-), 32.15 (-CH2-CH=CH-O-), 31.93 (-CH2-

CH=CH-CH2-O-), 30.37 (-O-CH2-CH2-CH2-O-), 30.13 (-CH=CH-O-CH2-CH2-CH2-O-), 29.79 (-

S-CH2-CH2-CH2-CH2-), 29.72 (-S-CH2-CH2-CH2-), 28.90 (-S-CH2-CH2-CH2-), 28.67 (-CH2-

CH2-CH2=CH-), 28.4 (-CH2-CH2-CH2-CH3), 22.27 (-CH2-CH3), 14.14 (CH3). 

 

Polymerization reactions 

General procedure for ADMET polymerizations 

The ADMET reactions were performed in a carousel reaction stationTM RR98072 

(Radleys Discovery Technologies, UK). Di-telomer 1, 2 or 3 (0.5 g, 1.71 mmol) was 

added into the carousel tube. Different amounts of catalysts C3, C4, C5 or C12 were 

added separately. The influence of the reaction conditions on the obtained molecular 

weight was studied (Tables 1, 2 and 3). Ethylene gas (byproduct) was removed by 

applying gas or vacuum continuously. The reactions were cooled down to room 

temperature and quenched in THF by adding ethyl vinyl ether (500-fold excess to the 

catalyst) with stirring for 30 min at room temperature. Samples were taken 

periodically to determine the monomer conversion and the molar mass (distribution) 
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of the resulting polymers using 
1
H, 

13C NMR spectroscopy, as well as GPC analysis. The 

final reaction mixtures were precipitated in ice cold methanol. The yields varied in the 

range of 50-85%. 

 

General procedure for thiol-ene polymerizations 

The thiol-ene polymerization reactions were performed in a carousel reaction 

stationTM RR98072 (Radleys Discovery Technologies, UK). Into a reaction vessel 0.5 g 

(1.71 mmol) of the di-telomer (1, 2 or 3) and the corresponding dithiol compound (see 

Table 4) were introduced and degassed via 3 times 200 mbar vacuum and subsequent 

Ar purge. Afterwards, the reaction was let to stir magnetically (500 rpm) at the desired 

reaction temperature (35–70 °C) till the reaction became very viscous and could not be 

stirred anymore (Table 4.23). In some cases, desired amounts of AIBN (1.0-2.5 mol%) 

were added to the reaction mixture and reacted at 75 °C (Table 4.23). The final 

reaction mixtures were precipitated in ice cold methanol. The yields varied in the 

range of 70-92%. 

 

Spectroscopic data of representative thiol-ene polymers 

P2:
 1H NMR (300 MHz, CDCl3, δ in ppm) 5.85-5.72 (m, -CH=CH2), 5.72-5.62 (m, -CH=CH-

CH2-O-trans-isomer, -CH=CH2 branched telomer), 5.58-5.48 (m, -CH=CH-CH2-O- trans-isomer, -CH=CH-

CH2-O- cis-isomer), 5.17-5.11 (m, -CH=CH2 branched telomer), 5.01-4.92 (m, -CH=CH2), 3.99 (d, J 

= 4.8 Hz, -CH=CH-CH2-O- cis-isomer), 3.89 (d, J = 5.9 Hz, -CH=CH-CH2-O- trans-isomer), 3.48 (t, J 

= 6.4 Hz, -O-CH2-CH2-CH2-O-), 2.57-2.46 (m, -CH2-S-CH2-, -CH2-SH end group), 2.10-1.98 (m, 

1H, -CH2-CH=CH-), 1.90-1.79 (m, 1H, -O-CH2-CH2-CH2-O-, -CH2-CH2-SH end group), 1.74-

1.63 (m, -S-CH2-CH2-CH2-CH2-S-), 1.63-1.52 (m, 1H, -S-CH2-CH2-CH2-), 1.52-1.42 (m, -

CH2-CH2-CH=CH2 end group), 1.42-1.31 (m, -CH2-).  

13C NMR (75 MHz, CDCl3, δ in ppm) 138.80 (-CH=CH2), 134.31 (-CH=CH-CH2-O- trans-

isomer), 134.17 (-CH=CH-CH2-O- cis-isomer), 126.95 (-CH=CH-CH2-O- cis-isomer), 126.80 (-

CH=CH-CH2-O- trans-isomer), 114.73 (-CH=CH2), 71.80 (-CH=CH-CH2-O- trans-isomer), 67.38 (-O-

CH2-CH2-CH2-O-), 66.65 (-CH=CH-CH2-O- cis-isomer), 33.40 (-CH2-CH=CH2), 33.22 (-CH2-CH2-
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SH), 32.35 (-CH2-S-CH2-), 32.29 (-CH2-S-CH2-), 31.93 (-CH2-CH=CH-), 30.37 (-O-CH2-CH2-

CH2-O-), 29.72 (-S-CH2-CH2-CH2-), 28.95 (-S-CH2-CH2-CH2-CH2-S-), 28.90 (-S-CH2-CH2-

CH2-), 28.67 (-CH2-CH2-CH=CH-), 28.47 (-CH2-CH2-CH=CH2), 24.41 (HS-CH2-CH2-). 

 

P3:
 1H NMR (300 MHz, CDCl3, δ in ppm) 5.85-5.71 (m, -CH=CH2), 5.71-5.61 (m, -CH=CH-

CH2-O- trans-isomer, -CH=CH2 branched telomer), 5.58-5.48 (m, -CH=CH-CH2-O-  trans-isomer, -

CH=CH-CH2-O- cis-isomer), 5.17-5.11 (m, -CH=CH2 branched telomer), 5.01-4.92 (m, -CH=CH2), 

3.99 (d, J = 4.9 Hz, -CH=CH-CH2-O- cis-isomer), 3.89 (d, J = 6.1 Hz, -CH=CH-CH2-O-  trans-

isomer), 3.70 (t, J = 6.6 Hz, –O-CH2-CH2-SH end group), 3.60 (t, J = 6.6 Hz, -S-CH2-CH2-O-CH2-

), 3.47 (t, J = 6.4 Hz, -O-CH2-CH2-CH2-O-), 2.87 (t, J = 6.6 Hz, –O-CH2-CH2-SH end group) 2.68 

(t, J = 6.9 Hz, -S-CH2-CH2-O-), 2.53 (t, J = 7.4 Hz, -S-CH2-CH2-CH2-), 2.10-1.98 (m, 1H, -

CH2-CH=CH-), 1.88-1.79 (m, 1H, -O-CH2-CH2-CH2-O-), 1.64-1.52 (m, 1H, -S-CH2-CH2-CH2-

), 1.52-1.42 (m, -CH2-CH2-CH=CH2 end group), 1.42-1.33 (m, -CH2-). 

13C NMR (75 MHz, CDCl3, δ in ppm) 138.81 (-CH=CH2), 134.30 (-CH=CH-CH2-O- trans-

isomer), 134.21 (-CH=CH-CH2-O- cis-isomer), 126.91 (-CH=CH-CH2-O- cis-isomer), 126.78 (-

CH=CH-CH2-O- trans-isomer), 114.74 (-CH=CH2), 71.80 (-CH=CH-CH2-O- trans-isomer), 70.87 (-S-

CH2-CH2-O-CH2-CH2-S-), 69.40 (-O-CH2-CH2-SH), 67.37 (-O-CH2-CH2-CH2-O-), 67.30 (-O-

CH2-CH2-CH2-O-), 66.63 (-CH=CH-CH2-O- cis-isomer), 33.40 (-CH2-CH=CH2), 32.74 (-S-CH2-

CH2-O-CH2-CH2-S-), 32.33 (-CH2-S-CH2-), 31.70 (-CH2-CH=CH-), 30.35 (-O-CH2-CH2-CH2-O-

), 29.79 (-S-CH2-CH2-CH2-), 28.87 (-S-CH2-CH2-CH2-), 28.59 (-CH2-CH2-CH=CH-), 28.53 (-

O-CH2-CH2-SH), 28.44 (-CH2-CH2-CH=CH2). 

 

P4:
 1H NMR (300 MHz, CDCl3, δ in ppm) 5.87-5.72 (m, -CH=CH2), 5.72-5.63 (m, -CH=CH-

CH2-O- trans-isomer, -CH=CH2 branched telomer), 5.59-5.50 (m, -CH=CH-CH2-O- trans-isomer, -

CH=CH-CH2-O- cis-isomer), 5.18-5.12 (m, -CH=CH2 branched telomer), 5.03-4.93 (m, -CH=CH2), 

4.00 (d, J = 4.8 Hz, -CH=CH-CH2-O- cis-isomer), 3.90 (d, J = 5.9 Hz, -CH=CH-CH2-O- trans-isomer), 

3.74 (t, J = 6.7 Hz, –O-CH2-CH2-SH end group), 3.66-3.60 (m, -CH2-O-CH2-CH2-O-CH2-), 3.49 

(t, J = 6.4 Hz, -O-CH2-CH2-CH2-O-), 2.89 (t, J = 6.7 Hz, –O-CH2-CH2-SH end group) 2.70 (t, J = 

7.0 Hz, -S-CH2-CH2-O-), 2.53 (t, J = 7.3 Hz, -S-CH2-CH2-CH2-), 2.09-1.99 (m, -CH2-CH=CH-

), 1.90-1.80 (m, -O-CH2-CH2-CH2-O-), 1.64-1.53 (m, -S-CH2-CH2-CH2-), 1.53-1.43 (m, -

CH2-CH2-CH=CH2 end group), 1.43-1.33 (m, -CH2-). 
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13C NMR (75 MHz, CDCl3, δ in ppm) 134.45 (-CH=CH-CH2-O- cis-isomer), 134.24 (-CH=CH-

CH2-O- trans-isomer), 126.77 (-CH=CH-CH2-O- trans-isomer), 126.44 (-CH=CH-CH2-O- cis-isomer), 

71.76 (-CH=CH-CH2-O- trans-isomer), 71.19 (-S-CH2-CH2-O-CH2-CH2-O-CH2-CH2-S-), 70.43 (-S-

CH2-CH2-O-CH2-CH2-O-CH2-CH2-S-), 67.34 (-O-CH2-CH2-CH2-O-), 32.68 (-S-CH2-CH2-O-

CH2-CH2-O-CH2-CH2-S-), 32.28(-S-CH2-CH2-CH2-),  31.28 (-CH2-CH=CH-), 30.32 (-O-CH2-

CH2-CH2-O-), 29.79 (-S-CH2-CH2-CH2-), 28.84 (-S-CH2-CH2-CH2-), 28.56 (-CH2-CH2-CH=CH-

). 
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6 Summary and outlook 

 

Within this thesis, a variety of examples of the utilization of renewable resources for 

the synthesis of organic building blocks and polymers have been described. Special 

attention has been given to plant oils and thereof derived platform chemicals, which 

have been successfully used as precursors of monomers for the synthesis of linear and 

hyperbranched polymers such as polyesters, polyamides or polycarbonates. For this 

purpose, olefin metathesis has been shown as a suitable chemical transformation for 

monomer synthesis and for the polymerization of renewable monomers via ADMET 

and ATMET. In this aspect, and due to its simplicity, the direct polymerization of 

naturally occurring Pluketenia Conophora oil via ATMET to obtain hyperbranched 

polyesters is remarkable. Moreover, a thorough study of their properties suggested 

that these hyperbranched polymers may find application as rheology modifiers and in 

drug delivery. In a different approach, epoxidized soybean oil (SESO) was used as 

starting material, which provides access to wider functionalization possibilities by ring-

opening of the oxirane functionalities. A new triglyceride derivative containing 4-

vinylbenzene sulphonic acid moieties synthesized from SESO was polymerized via 

ATMET, and the properties of the resulting cross-linked materials were evaluated. Also 

of interest is the first successful living ROMP of fatty acid-based norbornenes, which 

led to polymers with controlled molecular weights and low polydispersities. This work 

supposed one of the first reports on the controlled/living polymerization of fatty acid-

based monomers, and set a starting point for further investigations on the synthesis, 

properties and applications of this kind of polymers. Further work on ADMET 
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polymerization consisted of a study of the performance of three Ru-based 

indenylidene catalysts, which up to that date had not been applied with this purpose. 

Moreover, their tendency to promote double bond migration during ADMET was 

evaluated, and it could be concluded that these catalysts have a high double bond 

migration activity even in the presence of 1,4-benzoquinone, an additive that 

efficiently reduces this side-reaction in the case of conventional Ru-based catalysts. 

The functional group tolerance of Ru-based metathesis catalysts was demonstrated 

with the polymerization of castor oil and citronellol derived α,ω-dienes containing 

carbonate functionalities. As a result, polycarbonates with Mn of 27.5 and 7.9 kDa 

respectively were obtained, which, in the latter case, was surprisingly high considering 

that the polymerization involves the metathesis of trisubstituted olefins. 

The bicyclic guninide base organocatalyzed reaction of dimethyl carbonate (green 

carbonylating agent) and alcohols with a wide variety of structures was shown to be a 

very efficient and selective method for the synthesis of symmetric and unsymmetric 

carbonates. A TBD loading of 1.0 mol% was sufficient to give conversions between 88% 

and 99% and selectivities between 91 and 99%. Moreover, DMC was reacted with 

different diols in the presence of 1.0 mol% of TBD yielding polycarbonates with Mn up 

to 33.0 kDa. Taking into account that DMC can be obtained via phosgene-free 

methods, the low price of TBD, and the simplicity of this reaction protocol, it is possible 

to consider its large-scale applicability. 

Telomers, which are industrially relevant compounds can be produced in large scale 

and find a number of applications. However, they had never been used as monomers 

for polymer synthesis. Di-telomers obtained from 1,3-butadiene containing terminal 

and internal double bonds, were used as monomers for ADMET and thiol-ene 

polymerization. Efficient ethylene removal with vacuum was necessary to induce 

ADMET polymerization and avoid competitive RCM; however, also low molecular 

weight oligomers were obtained in a ring-closing metathesis-ADMET-olefin 

isomerization sequence. Thiol-ene polyaddition was successful, and the addition of 

AIBN was found to strongly accelerate the polymerization rate, but at the same time it 

promoted double bond migration. As a result, colourless and transparent shapeable 

thermoplastics were obtained. 
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The data summarized above demonstrate the effort dedicated in the development of 

environmentally friendly methodologies for the production of organic building blocks 

and polymers. All procedures exhibit some interesting advantages over the traditional 

synthetic routes within the minimisation of waste production and the concomitant 

benefit of using safer reagents. Thus, within this work, we have contributed to the 

production of monomers and polymers by sustainable reactions with fatty acid 

derivatives. 

On the other hand, we can also consider that much work will soon follow this direction 

due to the vast, yet unexplored, possibilities of the aforementioned sustainable and 

efficient methods in combination with fatty acids, and other renewable platform 

chemicals. In addition, the versatility of plant oils as precursors of diverse materials has 

been, and is still nowadays proved with the development of synthetic strategies 

leading to new polymeric materials. Clearly, an immense amount of work is still left to 

be done to both improve current sustainable/green approaches and develop new 

ones. 
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7 List of abbreviations 

 

2D-NMR:  wo-dimensional nuclear magnetic resonance 

4VBSA:  4-vinylbenzene sulphonic acid 

ADMET: Acyclic diene metathesis 

AIBN:  Azobisisobutyronitrile 

ATMET: Acyclic triene metathesis 

BHT:  Butylated hydroxytoluene 

BQ:  1,4-benzoquinone 

CDI:  1,1'-Carbonyldiimidazole 

CM:  Cross-metathesis 

COSY:  Correlation spectroscopy (2D-NMR) 

DBN:  1,5-Diazabicyclo[4.3.0]non-5-ene 

DBU:  1,8-Diazabicyclo[5.4.0]undec-7-ene 

DCM:  Dichloromethane 

DLS:  Dynamic light scattering 

DMAc:  N,N´-dimethylacetamide 

DMC:  Dimethylcarbonate 

DMF:  Dimethylformamide 

DMSO:  Dimethylsulfoxide 
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DP:  Degree of polymerization 

DSC:  Differential scanning calorimetry 

ED-ROMP: Entropically driven ring-opening metathesis polymerization 

EMO:  Epoxidized methyl oleate 

ESI-MS: Electrospray ionization mass spectrometry 

ESO:  Epoxidized soybean oil 

FAME:  Fatty acid methyl ester 

G´:  Storage modulus 

G´´:  Loss modulus 

GC:  Gas chromatography 

GC-MS: Gas chromatography coupled with mass spectrometry 

GPC:  Gel permeation chromatography 

HMQC: Heteronuclear multiple quantum coherence (2D-NMR) 

HRMS:  High resolution mass spectrometry 

IR:  Infrared (spectroscopy) 

LROMP: Living ring-opening metathesis polymerization 

LVE:  Linear viscoelastic (region) 

[M]/[I]: monomer-to-initiator molar ratio 

Mn:  Number average molecular weight,  

MO:  Methyl oleate 

Mw:  Weight average molecular weight,  

NBM:  5-Norbornene-2-methanol 

NHC:  N-heterocyclic carbene 

NMR:  Nuclear magnetic resonance (spectroscopy) 

PA:  Polyamide 

PDI:  Polydispersity index (Mw/Mn) 
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PEG:  Poly(ethylene glycol) 

PKCO:  Plukenetia conophora oil 

PMMA: Poly(methyl methacrylate) 

RCM:  Ring-closing metathesis 

ROM:  Ring-opening metathesis 

ROMP:  Ring-opening metathesis polymerization 

ROP:  Ring-opening polymerization 

SEC:  Size exclusion chromatography 

SEMO:  methyl 10-hydroxy-9-(4-vinylphenylsulfonyloxy)octadecanoate 

SESO:  1-(4-vinylbenzene sulfonyl)oxy-2-alkonols of epoxidized soybean oil 

SLS:  Static light scattering 

SM:  Self-metathesis 

TBD:  1,5,7-Triazabicyclo[4.4.0]dec-5-ene 

TFAA:  Trifluoroacetic anhydride 

Td:  Thermal decomposition temperature 

Tg:  Glass transition temperature 

TGA:  Thermogravimetric analysis 

THF:  Tetrahydrofuran 

TLC:  Thin-layer chromatography 

Tm:  Melting temperature 

TMS:  Tetramethylsilane 

TOMPP: Tris(2-methoxyphenyl) phosphine 
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