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Abstract

Traditional geometric methods for partitioning an embedded graph neglect the connectivity of the vertices via edges.
For a special class of graphs, the so-called `1 graphs, however, one can devise geometric graph partitioning methods that
incorporate the edges. A plane graph G is an `1 graph if and only if it an isometric subgraph of a half-cube, a bipartite half
of a hypercube. Such a graph comes with vertex labels which encode all its convex cuts, i. e., cuts which yield subgraphs that
are closed with respect to shortest paths. Convex cuts are useful for graph partitioning as they induce well-shaped partitions.
The vertex labels also encode distances between any pair of vertices and thus provide guidance for finding shortest paths in
the subgraph.

In this paper we first generate a “well-arranged” subgraph Gw of G. This means that Gw comes with an arrangement of
embedded paths running across edges and through faces of Gw such that (i) any edge of Gw is hit by exactly two paths, (ii)
the paths do not intersect themselves, and (iii) any two paths cross each other at most once. We prove that Gw is an isometric
subgraph of a half-cube. In particular, the arrangement of Gw generates all convex cuts of Gw.

To obtain a partition of G, we extend the paths of the arrangement towards the unbounded face of G. The extensions
are guided by a gradient vector field on G∗ (the dual of G) and indicate steepest descent paths with respect to the distance
to the vertex representing the unbounded face of G. The extended paths are free of self-intersections and each pair of paths
intersects at most once. Our algorithm for computing all extended paths runs in linear time with respect to the maximum of
|E(G)| and the number of edges in all extended paths.

Thus, combining the generation of Gw with the extension of the paths constitutes a geometric method for partitioning a
plane graph G that does not rely on coordinates. The density of the extended paths (any face of G is intersected by at least
two paths) suggests to use them as a basis for methods solving more complex partitioning problems, e. g., with constraints on
the sizes of the subgraphs.

1 Introduction

A common variant of the graph partitioning (GP) problem asks for the division of a graph’s vertex set into (approximately)
equally sized subsets such that the size [or weight, respectively] of the cutset, i. e., the set of edges with endpoints in different
subsets, is minimized. Despite advances in approximation [14, 12] and exact algorithms [4] for this NP-hard problem and
similar ones, heuristics are dominant in practice. A class of popular global heuristics are geometric methods which partition
the graph’s vertex set by hyperplanes. Unfortunately, such geometric GP methods are limited by their inability to account
for the connectivity of G. Thus, the number of edges that are cut is often high compared to (more complex and more time
consuming) methods that take the connectivity of G into account [13].

In this paper we consider plane graphs and compute a collection of embedded paths that partition G. We expect this collection
to be useful as a basis for methods solving more complex partitioning problems such as the one above.

The rationale behind our methods is as follows. If G were a so-called `1 graph [3], it could be embedded into Rn (usually
n � 2) such that the distance between vertices u and v of G (i. e., the number of edges on a shortest path from u to v)
equals the `1 distance of the embedded vertices in Rn. (The `1 distance between x = (x1, . . . , xn) and y = (y1, . . . , yn) is∑n

i=1 |xi−yi|.) In this case one can devise geometric GP methods in Rn that incorporate the connectivity of G. Specifically,
(convex) partitions of Rn by hyperplanes orthogonal to the unit vectors of Rn yield a plethora of convex cuts of G. For the
role of convex cuts in graph partitioning see Section 1.1.
∗Electronic address: roland.glantz@kit.edu
†Electronic address: meyerhenke@kit.edu
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Planar `1 graphs are tightly connected to hypercubes since every planar `1 graph G has a so-called scale two embedding into
a hypercube H [3]. This means that G can be embedded into a hypercube H such that the distance between u and v in G
equals half the distance between u and v in H for all u, v in G. Equivalently, G has an isometric embedding, i. e., a scale one
embedding, into a half-cube H

2 of H (a half-cube is a bipartite half of a hypercube).

A hypercube in Rn can be partitioned into two halves (these are not half-cubes) by a hyperplane orthogonal to a unit vector
of Rn. The arrangement of these n hyperplanes partitions G such that any edge of G is intersected by two hyperplanes.
Indeed, an edge of G is an edge of H

2 which, in turn, corresponds to a path of length two in H and is thus intersected by two
hyperplanes. Moreover, for any pair of hyperplanes there exists at most one edge of G that is intersected by both hyperplanes.
Thus the arrangement of hyperplanes gives rise to an arrangement of plane curves in R2 that partition G. For an example see
the colored “curves” in Figure 1b. The arrangement becomes a plane graph A if we put vertices at the ends of the curves and
at points of intersection between curves. See the red vertices in Figure 1b. The plane curves thus turn into a collection E(G)
of embedded paths of A such that (1) none of the paths intersects itself, (2) any pair of distinct paths intersects at most once
and (3) any edge of G is intersected by exactly two paths.

For a plane graph G that is not an `1 graph, we relax the requirements on E(G).

Property 1.1 (Collection E ′(G) of embedded paths)
The collection E ′(G) for partitioning G has to meet the following criteria.

1. Any path in E ′(G) must not intersect itself,

2. any pair of distinct paths in E ′(G) must not intersect more than once,

3. any face of G is intersected by at least two paths in E ′(G), and

4. any path in E ′(G) intersects an edge of G that is intersected by exactly one other path in E ′(G).

The purpose of Item (4) is to exclude collections of paths which have many (parallel) paths that yield identical partitions of
G.

1.1 Related work.

The fundamental notion of convexity can be used to draw a connection between continuous objects in a metric space and
discrete objects like graphs. A subgraph S of a graph G is convex if for all u, v ∈ V (S), all shortest paths between u and v
are contained in S. Following Artigas et al. [1], a convex k-partition in a graph is a partition of the vertex set into k convex
sets. If G has a convex k-partition, then G is said to be k-convex. Deciding whether a graph is k-convex, isNP-complete for
a fixed k ≥ 2 [1].

Graph partitions with particular properties are of high interest in many applications. Among the practical ones are parallel
computing [13] and VLSI design [7]. Sample applications benefiting from the convexity property of a cut are parallel numeri-
cal simulations using certain iterative linear solvers. For some solvers used in these simulations, the shape of the partitions, in
particular short boundaries, small aspect ratios, but also connectedness and smooth boundaries, plays a significant role [10].
Convex cuts typically admit these properties. Another example is the preprocessing of road networks for shortest path queries
by partitioning according to natural cuts [5]. The definition of a natural cut is not as strict as that of a convex cut, but they
have a related motivation.

The classical planar separator theorem [9] can be used to design divide-and-conquer algorithms for planar graphs. In such
algorithms the vertex set is recursively partitioned into subsets of respective size not larger than 2

3 |V |. The solutions of the
recursive subproblems are combined at their interface, whose size is O(

√
|V |) by the theorem.

Our approach to finding collections of paths that have Property 1.1 is motivated by the connections between convex cuts and
alternating cuts as described in [3]. As an example we would like to mention Proposition 2 in [3]. It states that a cut of a
plane G is alternating if and only if it is convex, provided that G has a certain property. Although the property is not used in
this paper, Proposition 2 and others provide crucial insights for the methods we propose here. The subgraph Gw of G that we
define in Section 3.3 is a plane graph whose alternating cuts coincide with its convex cuts. The alternating cuts in [3] give
rise to the alternating paths in this paper.
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1.2 Outline and contribution.

In Section 2 we specify the class of plane graphs G which serve as input for our method. The main purpose of Section 3 is to
represent the collection of alternating cuts of G, as defined in [3], as a collection E(G) of alternating paths embedded in R2.
In particular, any edge of G is intersected by exactly two paths from E(G), and the paths are straight from a local perspective.
This means that a path enters and leaves a face F of G through edges that are opposite edges of F (see the colored paths in
Figure 1b). In Section 3 we also formulate conditions on E(G), i.e., that no path in E(G) intersects itself and that two paths
in E(G) intersect at most once. The “well-arranged” graphs below are the graphs whose collections meet these conditions.

Recall that our aim is to find a collection E ′(G) of embedded alternating paths which partition G such that the collection has
Property 1.1. To this end, our search for E ′(G) is centered around a well-arranged subgraph Gw of G. In Section 4 we show
that any well arranged subgraph is an isometric subgraph of a half-cube. Thus Gw can be partitioned naturally into convex
subgraphs.

In Section 5 we first present a linear-time method for finding Gw. In order to arrive at a collection E ′(G) that partitions G
and that has Property 1.1, we extend the paths in E(Gw) towards the unbounded face. Specifically, the extensions are guided
by a gradient vector field on the dual of G that indicates steepest descent paths with respect to the distance to the vertex
representing the unbounded face of G (this gradient vector field has already been used to find Gw). The running time of
transforming E(Gw) into E ′(G) is linear in the total number of edges of paths in E ′(G). The running time of the rest of our
method amounts to O(|E(G)|).

The collection E ′(G) arises from the combination of two geometric partitioning concepts, none of which depends on locations
of vertices or lengths of edges. The first geometric concept is partitioning through arrangements of hyperplanes [2]. In fact,
Gw is an isometric subgraph of a half-cube and the convex subgraphs cut out by the paths in E(Gw) correspond to half-spaces
cut out of Rn by hyperplanes. Here n is the dimension of the half-cube into which Gw is embedded isometrically. The second
geometric concept is partitioning through paths of steepest descent. We use this concept to find Gw and to transform E(Gw)
into E ′(G). Practically the latter concept helps to keep the cutsets of a partition small. To the best of our knowledge, the
combination of geometric concepts just described is new in the realm of graph partitioning methods.

2 Preliminaries

All primal graphs and their geometric duals considered in this paper are finite, undirected, connected, free of self-loops and
plane. If G is such a graph, we write G = G(V,E), where V is the set of G’s vertices and E is the set of G’s edges. Since G
is plane, we may identify V with a set of points in R2 and E with a set of plane curves that intersect only at their end points,
which, in turn, make up V . For e ∈ E with end points u, v (u 6= v) we sometimes abuse notation by writing e = {u, v},
being aware of the fact that, due to parallel edges, e is not necessarily determined by u and v. We denote the standard metric
on G by dG(·, ·). In this metric the distance between u, v ∈ V amounts to the number of edges in a shortest path from u to v.

We denote the geometric dual of a primal graph G = (V,E) by G∗ = (V ∗, E∗). For E0 ⊆ E, let E∗0 denote the set of edges
in E∗ that are dual to the edges in E0. For e ∈ E, e∗ is the edge of E∗ that is dual to e. If F is a face of G, we write E(F ) for
the set of edges that bound F . Finally, F∞ denotes the unbounded face of G, and u∗∞ denotes the vertex of G∗ that represents
F∞.

3 Well-arranged plane graphs

The main purpose of this section is to introduce well-arranged plane graphs. To this end, we define a multiset of non-
embedded alternating paths for any plane graph G in Section 3.1. After that, Section 3.2 is devoted to embedding these paths.
This will eventually give rise to arrangements of alternating paths and well-arranged plane graphs in Section 3.3. There we
also define a weak dual of an arrangement, which will turn out to be a partial cube in Section 4.

3.1 Alternating paths

Intuitively, an embedded alternating path P runs through a face F of G such that the edges through which P enters and leaves
F are opposite—or nearly opposite because, if |E(F )| is odd, there is no opposite edge, and P has to make a slight turn to
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the left or to the right. The exact definitions for not yet embedded alternating paths are as follows.

Definition 3.1 (Opposite edges, left, right, unique opposite edge)
Let F 6= F∞ be a face of G, and let e, f ∈ E(F ). Then e and f are called opposite edges of F if the lengths of the two paths
induced by E(F ) \ {e, f} differ by at most one. If the two paths have different lengths, f is called the left [right] opposite
edge of e if starting on e and running clockwise around F , the shorter [longer] path comes first. Otherwise, e and f are
called unique opposite edges.

Definition 3.2 (Alternating path graph A(G) = (VA, EA), edge through face F of G)
The alternating path graph A(G) = (VA, EA) of G = (V,E) is the (non-plane) graph with VA = E and EA consisting of
all two-element subsets {e, f} of E such that e and f are opposite edges of some face F 6= F∞. Such an edge {e, f} is
sometimes referred to as edge through F .

The alternating path graph defined above only provides the edges for the multiset of alternating paths defined next. We have
to resort to a multiset of alternating paths (with multiplicities one and two) because, as we will see in Section 3.2, a single
non-embedded path may give rise to two embedded alternating paths.

Definition 3.3 ((Multiset P(G) of) Alternating paths in A(G))
A maximal path P = (v1A, e

1
A, v

2
A, . . . e

n−1
A , vnA) in A(G) = (VA, EA) is called alternating if

• viA and vi+1
A are opposite for all 1 ≤ i ≤ n− 1 and

• if vi+1
A is the left [right] opposite of viA, and if j is the minimal index greater than i such that vjA and vj+1

A are not
straight opposites (and j exists at all), then vj+1

A is the right [left] opposite of vjA.

The multiset P(G) contains all alternating paths in A(G): the multiplicity of P in P(G) is two if vi+1
A is a straight opposite

of viA for all 1 ≤ i ≤ n− 1, and one otherwise.

(a) (b)

Figure 1: Primal graph: Black vertices, thin solid edges. Dual graph: White vertices, dashed edges. (a) Multiset P(G) of
alternating paths: Red vertices, thick solid lines. The paths in P(G) are colored. In this ad-hoc drawing all alternating paths
that contain a vertex vA (edge e of G) go through the same point on e, i. e., where a red vertex was placed. (b) Collection
E(G) of embedded alternating paths: Red vertices, thick solid colored lines.

3.2 Constructing a plane embedding of alternating paths

In this section we demonstrate how we derive a collection of embedded alternating paths E(G) from a multiset P(G) of
(non-embedded) alternating paths. A path in P(G) with multiplicity m ∈ {1, 2} will give rise to m embedded paths in E(G).
Visually, we go from Figure 1a to Figure 1b.

Notation 3.4 The collection of embedded alternating paths is denoted by E(G).

The following procedure for embedding alternating paths is guided by the objective to minimize intersections. We specify
only the essential characteristics of the embedding, e. g., whether the two alternating paths entering a face F of G via an edge
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e ∈ E(F ) do so by going through one or two points on e (the two paths cross on e if and only if it is one point). The exact
position of the point(s) on e is irrelevant for the rest of the paper, as is the exact course of an alternating path through F . For
any path P through F it will always be clear, however, which other paths through F are intersected by P in F ∪ E(F ) and
where the intersection takes place (on which edge of E(F ) or in F ). We call a face of F even [odd] if |E(F )| is even [odd].

If F 6= F∞ is an even face of G, and if e, f are unique opposite edges in E(F ), then there exist P1, P2 ∈ P(G) with parallel
edges e1 and e2 from e to f such that e1 and e2 are edges through F in the sense of Definition 3.2. For an illustration see
Figure 2a. In E(G) the edge e1 [e2] is a non-self-intersecting plane curve from a point pe1 on the interior of e to a point pf1 on
the interior of f [pe2 on the interior of e to a point pf2 on the interior of f ]. We embed the edges e1 and e2 such that pe1 6= pe2,
pf1 6= pf2 , and e1 ∩ e2 = ∅ (see again Figure 2a).

Now let F be an odd face of G, and let e ∈ E(F ). If e bounds more than one bounded face and if the other face is even,
the two alternating paths through e must intersect with the interior of e at two points pe1 6= pe2 (see above). If the other face
is odd, too, we let the two alternating paths through e intersect at a point in the interior of e (see Figure 2b). We embed the
edges through (odd) F such that two edges intersect in the interior of F if and only if they enter F through different faces.
Two edges that intersect in F ’s interior must do so only once, and we prohibit intersections of more than two edges at a single
point.

If e is an edge of G that bounds F∞ and another face F , we embed the alternating paths ending at e such that they end in
different points in the interior of e (see Figure 1b).

(a) 2

P

P

e1

ep
1

pe
2

p
1

f

p
2

f

e

2

e

f

1

(b) even face

even face odd face

odd faceodd face

Figure 2: Intersection pattern of (a) a hexagon and (b) a pentagon.

3.3 Well-arranged plane graphs and their weak duals

In this section we first specify a special class of collections of alternating paths, i. e., arrangements of alternating paths.
In the following sections we will see that plane graphs whose collection of alternating paths falls into this class, i. e., the
well-arranged plane graphs defined below, are graphs that have natural partitions into convex subgraphs.

Definition 3.5 (Arrangement of alternating paths, well-arranged graph Gw)
E(G) is called an arrangement of alternating paths if

1. none of the alternating paths is a cycle,

2. none of the alternating paths intersects itself, and

3. there exist no paths P1 6= P2 ∈ E(G) such that P1 ∩ P2 contains more than one point.

A plane graph Gw is called well-arranged if E(Gw) is an arrangement of alternating paths.

The notion of an arrangement of alternating paths can be seen as a generalization of the notion of an arrangement of pseu-
dolines [2]. The latter arrangements have long been known to have duals that are partial cubes [6]. The weak dual defined
below will also turn out to be a partial cube.

Definition 3.6 (Domain D(G) of G, (bounded) face of E(G), adjacent faces)
The domain D(G) of G is the set of points covered by the vertices, edges and faces of G. A face of E(G) is an (open and
bounded) connected component (in R2) of D(G) \ E(G), where E(G) denotes the set of points covered by the paths in E(G).
Two faces f 6= f ′ of E(G) are adjacent if their boundaries share more than one point.
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Definition 3.7 (Weak dual Q of E(Gw))
Let Gw be well-arranged. Then a plane graph Q = Q(E(Gw)) is a weak dual of E(Gw) if each (bounded) face of E(Gw)
contains exactly one vertex of Q and if two vertices of Q are connected by an edge of Q if and only if the faces around the
vertices are adjacent in the sense of Definition 3.6.

Due to the intersection pattern of the embedded alternating paths in Gw’s faces, as specified in Section 3.2 and illustrated in
Figure 2, there are the following three kinds of vertices in V (Q):

Definition 3.8 (Primal, intermediate and star vertex of Q)

• Primal vertices: Vertices which represent a face that contains a (unique) vertex v of Gw in its interior or on its
boundary. If v sits on the boundary of the face, it does not sit on an alternating path but only on the boundary of
D(Gw) (for an example see the vertex on the upper left in Figure 1b). Thus we may let v represent the face and, more
generally, interpret the vertex set of Gw as a subset of the vertex set of Q.

• Intermediate vertices: The neighbors of the vertices of the first kind.

• Star vertices The remaining vertices.

For an example of a weak dual see Figure 3, where the black, gray and white vertices correspond to the primal, intermediate,
and star vertices. Also note that Q is tripartite as no two vertices of the same color are connected by an edge.

(a) (b)

Figure 3: (a) Arrangement of alternating paths: Red vertices and thick colored solid lines. Weak dual Q: Black, gray
and white vertices, thin black solid lines. The black, gray and white vertices are the primal, intermediate and star vertices,
respectively. The dashed polygonal line delimits the domain of the primal graph. (b) Weak dual Q only. The red edge,
however, is an edge of G. The path formed by the two bold black edges is an example of a path in Q of length two that
connects two primal vertices that are adjacent in G via an intermediate vertex in Q.

4 Well-arranged plane graphs are partial half-cubes

Let Gw be a well-arranged plane graph, i. e., E(Gw) is an arrangement of alternating paths. Also, let Q be a weak dual of
E(Gw). In this section we prove that Q is a partial cube and that Gw is a partial half-cube. For a good overview on partial
cubes see [11].

Definition 4.1 (Isometric subgraph, partial cube, (partial) half-cube)
A subgraph S = (VS , ES) of a (not necessarily plane) graph H is an isometric subgraph of H if dS(u, v) = dH(u, v) for all
u, v ∈ VS . A partial cube is an isometric subgraph of a hypercube. Moreover, a half-cube is a bipartite half of a hypercube
and a partial half-cube an isometric subgraph of a half-cube.

Due to the structure of the hypercube, Q is a partial cube if and only if we can assign labels that are binary vectors of equal
length (indicating a hypercube’s corners) to the vertices of Q such that the distance between any pair of vertices in Q is equal
to the Hamming distance of the corresponding binary vectors. We denote the Hamming distance of two binary vectors b and
b′ by h(b, b′) and the label of a vertex v of Q by l(v).
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Figure 4: Isometric subgraph Q′ of the weak dual Q shown in Figure 3b. The subgraph is obtained by deleting all white
vertices of Q.

The length n of any binary vector l(v) equals the number of paths in E(Gw), and the entries of l(v) indicate v’s position with
respect to the paths in E(Gw). Specifically, we start by numbering the paths in E(Gw) from one to n, which yields the paths
P1, . . . , Pn. For each 1 ≤ i ≤ n we then select one component of D(Gw) \ Pi. Finally, we set the ith entry of l(v) to one if
the face represented by v is in the selected component of D(Gw) \ Pi (zero otherwise).

Theorem 4.2 Q, the weak dual of E(Gw), is a partial cube.

In order to prove that a well-arranged plane graph is an isometric subgraph of a half-cube, we focus on a subgraph Q′ of a
weak dual Q of E(Gw) first. For an example of Q′, see Figure 4.

Lemma 4.3 Let Q′ denote the plane graph obtained from Q by deleting all star vertices (cf. Definition 3.8, Figure 4). Then
Q′ is an isometric subgraph of Q and thus a partial cube.

Theorem 4.4 Any well-arranged plane graph Gw is a partial half-cube.

Proofs of Theorem 4.2, Lemma 4.3 and Theorem 4.4 can be found in the appendix.

The fact that Gw is a partial half-cube implies that it can be partitioned naturally into convex subgraphs.

5 Partitions of plane graphs from well-arranged subgraphs

We go back to the setting before Section 3.3, where a plane graph G is not necessarily well-arranged, i. e., where E(G) is not
necessarily an arrangement of alternating paths. In Section 5.1 we introduce a method to find a well-arranged subgraph of G.
The latter is used in Section 5.2 to find a collection of plane curves for G that has Property 1.1.

5.1 Well-arranged subgraphs

In order to find a well-arranged subgraph of a non-well-arranged plane graph G, we first tie the violations to well-arrangedness
to certain faces of G. To this end, let P1, . . . , Pn denote the paths in E(G). In order for E(G) to be an arrangement of
alternating paths, any Pi must not cross itself and may cross any Pj 6= Pi at most once.

The first condition is violated if and only if there exists a face F of G such that the self-intersection of Pi occurs in F ∪E(F ).
Such a face F is called problematic because of a self-intersection. The second condition is violated if and only if there exist
faces Fa 6= Fb of G such that

• Fa and Fb are crossed by Pi,

• Fa ∪ E(Fa) and Fb ∪ E(Fb) are intersected by Pj , and

• E(Fa) ∩ E(Fb) ∩ Pj = ∅.

The last condition is important because it prevents Pi from crossing Pj only once (on E(Fa) ∩ E(Fb)). If Pi is a cycle
with Fa and Fb as above, any edge of Pi is called problematic because of multiple intersections. If Pi is not a cycle, let
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(a) (b) (c) (d)

Figure 5: (a) Primal graph G: Black vertices, thin solid edges. Dual graph: White vertices, dashed edges. Maximal embedded
alternating paths: Red vertices, thick solid colored lines. All faces of G that are crossed by the light blue or the dark blue
path, e. g., the shaded face, are problematic because of multiple intersections. (b) The shaded face in (a) is fused with the
unbounded face. Thus some embedded alternating paths, e. g., the dark blue path, come apart. The new subgraph of G is
well-arranged. (c) Part of gradient vector field (see the two arrows in the upper part) that specifies how the shaded face is
fused with the unbounded face. (d) Collection of plane curves for G that has Property 1.1. See appendix for enlarged versions of the

figures.

S := (F1, . . . , Fn) denote the sequence of G’s faces that are crossed by Pi as Pi is traversed from one terminal vertex to the
other. Then any face between Fa and Fb in S, including Fa and Fb, is called problematic because of multiple intersections.
To summarize, G is not well-arranged if and only if it has problematic faces. For an example of a problematic face, see
Figure 5a.

In the following we form subgraphs of G that have fewer and fewer problematic faces in an iterative process. The idea is to
fuse problematic faces with the unbounded face F∞ via “straight paths” of intermediate faces, if any. Specifically, we first
compute dG∗(u

∗, u∗∞) for any vertex u∗ of G∗ (recall that u∗∞ is the vertex representing F∞). We then form pairs (u∗, e∗),
where u∗ 6= u∗∞ and e∗ = {u∗, u∗−1} for some u∗−1 such that

dG∗(u
∗
−1, u

∗
∞) = dG∗(u

∗, u∗∞)− 1 (1)

These pairs specify shortest paths from any vertex of G∗ to u∗∞ and, by duality, a shortest path (u∗ = u∗0, e
∗
1, u
∗
1, . . . , e

∗
k, u
∗
k =

u∗∞) corresponds to a sequence (F = F0, e1, F1, . . . , ek, Fk = F∞) of faces and edges of G. If F is a problematic face, we
remove the edges e1, . . . , ek and thus fuse F and the intermediate faces Fi with F∞ (see Figure 5b). If this process creates
edges bounding only one face, we remove them, too. These edges are easily detected by the fact that their duals are self-loops.

Technically, we encode all pairs using a single gradient vector field (GVF) [8]. Specifically, the pairing of u∗ with e∗ =
{u∗, u∗−1} gives rise to a vector (arrow) pointing from the dual edge of e∗ into the face dual to u∗−1. We refer to such a
GVF as steepest descent GVF. The arrows in Figure 5c belong to a steepest descent GVF and specify how the shaded face in
Figure 5a is fused with F∞. For any face F 6= F∞ of G there exists exactly one edge in E(F ) that is the source of an arrow.
Thus the fusion of the problematic faces with F∞ can only result in a connected subgraph of G.

The entire scheme for finding a subgraph with no problematic faces, i. e., a well-arranged subgraph, is shown in Algorithm 1.
We can conclude:

Theorem 5.1 Algorithm 1 computes a well-arranged subgraph of G in time O(|E|).

For a proof see the appendix.

5.2 New collections of plane curves for partitioning G

In the previous section we have determined a well-arranged subgraph Gw of G. Let Fw
∞ be the unbounded face of this

subgraph Gw. An edge e of Gw that bounds Fw
∞ may or may not bound F∞. In the latter case exactly two paths from E(Gw),
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Algorithm 1 Find a well-arranged subgraph of a plane graph G

1. Compute a steepest descent GVF of G.
2. Define a global 1D array a with indices 1, . . . , |E| (note that |E| is an upper bound for the number of alternating paths).

Store the current number of paths in the variable n, and set all entries of array a to zero.
3. Traverse P1 (in any direction). If P1 is a cycle, start anywhere. Otherwise start at one of the terminal vertices. Update

array a such that, at all times, a[j] indicates the number of intersections with Pj so far. If a[1] = 1 or a[j] ≥ 2 for some
j > 1, a problematic face F has been found. If the intersection causing the last update of array a had occurred on an
edge e of E(F ), all paths entering F through e intersect e at a unique point p (see Section 3.2). Split p into p1, p2 ∈ e
and change the embedding of the two paths intersecting at p such that they now end at p1 and p2 and such that no new
intersections of the two paths are introduced.
In any case the part of P1 traversed so far, i. e., the part up to the edge through which F was entered, becomes the new
path Pn+1. Assign the new label n+1 to each edge of the new path by going backwards on former P1 and, in the same
pass, reset array a. Finally, increment n by one.

4. Fuse F with F∞.
5. Continue the traversal of P1, find new problematic faces (if any), proceed as above and fuse the new problematic faces

with F∞.
6. Proceed with P2, . . . Pn as with P1. The only difference is that some of the faces traversed by Pi may now be missing

due to fusions. Before running into a missing face, assign the new label n+ 1 to each edge of the latest section of Pi,
reset array a and increment n by one. Then proceed at the next existing face crossed by Pi.

7. Determine all alternating paths in the remaining subgraph from scratch.

say P1 and P2, will end at e. The steepest descent GVF defined in the previous section indicates a path from e to F∞ through
bounded faces of G. We now extend P1 and P2 through these faces. Note that, as we follow the GVF through faces of G,
more and more extensions of alternating paths may “flow” into the fused face. For an example see Figure 5d.

The GVF, however, guarantees that all extensions can be embedded without intersections. Indeed, because of the GVF, all
extensions through a face F must leave F through the same edge, denoted by e0. Let (e0, e1, . . . , ek) be the sequence of
edges bounding F , which starts at e0 and which is oriented, say, clockwise. We can then draw the extensions that enter F
through e1 (and leave F through e0) as a bundle with no intersections that yields a simply connected region R in F which is
still bounded by all ei with i > 1. Thus we can draw the extensions entering F through e2 as a bundle with no intersections
that yields a simply connected region R′ in F which is still bounded by all ei with i > 2, and so on.

Extending all paths of E(Gw) yields a new collection E ′(G), which has Property 1.1. Indeed, the paths in E ′(G) do not
intersect themselves because E(Gw) is an arrangement of alternating paths and because the extensions of the paths from
E(Gw) are free of self-intersections, too (see above). This yields Item 1 of Property 1.1. Moreover, no pair of paths P1 6=
P2 ∈ E ′(G) can intersect outside D(Gw), and inside Gw they can intersect at most once because E(Gw) is an arrangement
of alternating paths. This yields Item 2 of Property 1.1. Item 3 of Property 1.1 is fulfilled for any face in D(Gw) because
E(Gw) is an arrangement of alternating paths, and it is fulfilled for any face outside D(Gw) because here the paths from
E(Gw) have been extended along a steepest descent GVF. Finally, Item 4 of Property 1.1 is a consequence of the fact that any
path in E ′(G) must go through an edge of Gw.

The transformation from E(Gw) to E ′(G) is guided by the steepest descent GVF which always uniquely determines the next
face through which an extension must run. Hence, all extensions can be done in optimal time O(mE′(G)), where mE′(G)

is the number of edges in all paths of E ′(G). Since the time complexity of constructing E(G) in the first place is optimal
O(|E(G)|), and since the time for constructing Gw is optimal O(|E(G)|) (see Theorem 5.1) we have proved the following.

Theorem 5.2 Let mE′(G) be the number of edges in E ′(G). A collection of maximal embedded paths that partitions G and
has Property 1.1 can be computed in optimal time O(max {|E(G)|,mE′(G)}).

6 Conclusions

In this paper we have combined two geometric concepts for the purpose of partitioning a plane graph G. The first concept
is analogous to partitioning Rn by hyperplanes into (convex) halfspaces. This concept yields convex partitions of a well-
arranged subgraph Gw of G. The second concept consists of using a steepest descent gradient vector field for extending
every path in Gw. The collection E ′(G) of extended paths admits Property 1.1. This makes the paths in E ′(G) or even entire
subcollections of E ′(G) promising candidates for small cuts when solving NP-hard constrained partitioning problems.
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In future work we would like to a obtain tight bound on mE′(G) in Theorem 5.2. Also, a further exploration of the concept of
well-arranged subgraphs is of high interest, in particular concerning the size of these subgraphs.

Acknowledgments We thank P. Sanders and C. Schulz for helpful discussions on the topic.
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A Appendix

A.1 Proof of Theorem 4.2

It suffices to show that dQ(u, v) = h(l(u), l(v)) for any pair u 6= v ∈ V .

Since on any path of length k from u to v in Q it holds that h(l(u), l(v)) ≤ k, we have dQ(u, v) ≥ h(l(u), l(v)).

We may assume u 6= v (the case u = v is trivial as both distances are 0). To see that dQ(u, v) = h(l(u), l(v)), by induction it
suffices to show that u has a neighbor u′ such that h(l(u′), l(v)) < h(l(u), l(v)) (because then there also exists u′′ such that
h(l(u′′), l(v)) < h(l(u′), l(v)) and so on until v is reached in h(l(u), l(v)) steps).

Indeed, this follows from the case distinction below. Fu stands for the face of E(Gw) that is represented by u, and I(u)
denotes the set of indices of paths in E(Gw) that bound Fu.

1. If u has only one neighbor u′, then I(u) = {k} for some k, and the only vertex in one of the components of D(Gw)\Pk

is u. For an example see the black vertex in the upper left corner of Figure 1b. Since the binary labels of u and u′

differ only at position k, and since the binary labels of u′ and v agree at position k, it must hold that h(l(u′), l(v)) <
h(l(u), l(v)).

2. If u has at least two neighbors, we first assume that none of the Pk with k ∈ I(u) cross each other. Then u is uniquely
determined by the entries at the positions given by I(u). Indeed, Fu is then bounded by non-intersecting and non-self-
intersecting paths in E(Gw) that go from a point on the border of D(Gw) to another point on the border of D(Gw)).
Hence only a vertex inside Fu can have the same entries as u at the positions given by I(u). Thus, since u is the only
vertex in Fu and since u 6= v, the labels of u and v must differ at a position in I(u), and we are done.

3. The remaining case is that u has at least two neighbors and there exists at least one pair (i, j) ∈ I(u) × I(u), i 6= j,
such that Pi crosses Pj . Let C denote the set of all such pairs. For any pair (i, j) ∈ C the path Pi crosses the path
Pj exactly once, because E(Gw) is an arrangement of alternating paths. Thus Pi and Pj subdivide D(Gw) into four
regions, each of which is characterized by one of the four 0/1 combinations of vertex label entries at i and at j. We
may assume that v is contained in the same region as u for each pair (i, j) ∈ C (otherwise we choose u′ on the other
side of Pi or Pj and are done). The intersection of all these regions, one region per pair in C, is denoted by R.

If all pairs of I(u) × I(u), i 6= j, are in C, we are done. Indeed this means that R = Fu and thus that u is uniquely
determined by the entries at the positions given by I(u). We can then proceed as above. The remaining case is
that there exist i ∈ I(u) such that Pi does not intersect any Pj with j ∈ I(u), j 6= i. Let the set of these indices
be denoted by I ′(u). In particular the faces of E(Gw) that are contained in R are separated by the paths Pi with
i ∈ I ′(u). Recall that we assumed u 6= v ∈ R, i. e., u and v are contained in different faces of R. Since the paths
Pi with i ∈ I ′(u) do not cross each other, the entries of u’s and v’s labels differ at all positions in I ′(u), and u′ with
h(l(u′), l(v)) < h(l(u), l(v)) can be reached from u by crossing a single path Pi with i ∈ I ′(u).

A.2 Proof of Lemma 4.3

Recall that the primal vertices of Q are precisely the vertices of Gw. Due to the intersection pattern of the embedded
alternating paths, as specified in Section 3.2, any edge e = {u1, u2} of Gw gives rise to at least one path of length two in Q
that connects u1 and u2 via an intermediate grey vertex of Q (see Figure 3b).

Now let P be a path that connects vertices u and v on the boundary of a face F of Gw that is not longer than the path that
connects u and v in the opposite direction around F . Then P gives rise to a path PQ on Q that is twice as long as P (since it
runs over intermediate vertices). Due to the intersection pattern of the embedded alternating paths in F , PQ crosses any path
in E(Gw) at most once. Since Q is a partial cube (Theorem 4.2), this means that PQ is a shortest path from u to v in Q [11].
Consequently, in order to follow a shortest path in Q, the traversal of black primal and grey intermediate vertices is sufficient.
Thus if we delete all white star vertices, we obtain Q′ and preserve all shortest path distances as in Q. Also, since isometric
subgraphs of partial cubes are partial cubes as well, Q′ is a partial cube.
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A.3 Proof of Theorem 4.4

Analogous to the argument in the proof of Lemma 4.3, the length of each shortest path in Gw has exactly half the distance of
the corresponding shortest path in Q′. As before with Q, the black primal vertices of Q′ form precisely V (Gw). Moreover,
Q′ is bipartite and the black vertices form one partition. Thus, since Q′ is a partial cube, Gw is a partial half-cube, i. e., an
isometric subgraph of a half-cube.

A.4 Proof of Theorem 5.1

Correctness follows from the fact that all problematic faces have been fused with F∞ when the algorithm terminates, as
shown in Section 5.1. The first two steps and the last one can clearly be done in O(|E|) time. The claim now follows from
the fact that the traversals of the paths in E(G) are such that any edge on any alternating path is traversed at most twice, and
from the fact that the number of fusions affecting one face and one neighboring face cannot exceed the number of edges in G.

12



A.5 Figure 5 enlarged

(a) (b)

(c) (d)
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