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Operating systems traditionally handle the task scheduling of one or more application instances on processor-like hardware
architectures. RAMPSoC, a novel runtime adaptive multiprocessor System-on-Chip, exploits the dynamic reconfiguration on
FPGAs to generate, start and terminate hardware and software tasks. The hardware tasks have to be transferred to the reconfigurable
hardware via a configuration access port. The software tasks can be loaded into the local memory of the respective IP core either
via the configuration access port or via the on-chip communication infrastructure (e.g. a Network-on-Chip). Recent-series of
Xilinx FPGAs, such as Virtex-5, provide two Internal Configuration Access Ports, which cannot be accessed simultaneously.
To prevent conflicts, the access to these ports as well as the hardware resource management needs to be controlled, e.g. by a
special-purpose operating system running on an embedded processor. For that purpose and to handle the relations between
temporally and spatially scheduled operations, the novel approach of an operating system is of high importance. This special
purpose operating system, called CAP-OS (Configuration Access Port-Operating System), which will be presented in this paper,
supports the clients using the configuration port with the services of priority-based access scheduling, hardware task mapping and

resource management.

1. Introduction

Scheduling of tasks within a given time frame and with
respect to a required deadline due to real-time aspects is
well known in computer science from operating systems
(OSes), especially in real-time operating systems (RTOSes).
Scheduling strategies of conventional OSes vary between
pre-emptive and non-pre-emptive scheduling. They can
be further classified into static and dynamic scheduling,
where static scheduling occurs at design time and dynamic
scheduling at runtime. Therefore, dynamic scheduling is
more suitable for runtime adaptive systems. Well-known
dynamic scheduling algorithms are earliest deadline first
(EDF) or rate monotonic algorithm (RMA) (see [1] for
detailed descriptions). The classical scheduling and task
mapping process of software-based systems with a traditional
OS has its counterpart in novel runtime reconfigurable hard-
ware systems. Within these systems, tasks can be presented

additionally to the traditional software representation, as
physical hardware realization, for example, on an FPGA.
That means that an additional degree of freedom for task
mapping on hardware resources is available for the OS layer.
For example, compared to a task in a traditional software-
based system that was mapped and executed on a resource
as a software thread, the hardware reconfigurable variant
of such a system would also allow running this task as a
hardware block realized with logic resources on an FPGA.
This difference and the new degree of freedom in task
representation require the consideration of a novel concept
for hardware task scheduling and mapping. In order to
handle this process, a detailed analysis of the consequences,
for example, due to data dependencies, priority, and real-
time aspects, has to be investigated and formalized into
a feasible algorithm for an efficient, special-purpose OS.
Furthermore, the underlying hardware resources, including
the internal configuration access port (ICAP), have to be



characterized in terms of timing, determinism, behavior in
termination cases, and so forth. Also, these results have
to be accounted for in the special-purpose OS approach
by a cost function. The described investigation and the
results can be exploited efficiently in the runtime adap-
tive multiprocessor system-on-chip (RAMPSoC) approach
as described in [2]. In this approach, several processors,
coprocessors, and hardware accelerators are available for
concurrent task realization on an FPGA. The approach
presented in this paper allows scheduling tasks of a control
dataflow graph (CDG) and mapping these tasks either in
hardware or in software on a reconfigurable multicore system
on the FPGA. The algorithm, therefore, considers data
dependencies; physical constraints from the configuration
interface and the reconfigurable resources; the capability
of the parallel data processing hardware of the RAMPSoC
approach.

The paper is organized as follows: related work is pre-
sented in Section 2. Section 3 describes briefly the RAMPSoC
approach and its features. In Section 4, the concept and
the features of CAP-OS (configuration access port-operating
system) are described. Section5 presents how CAP-OS
is integrated into the RAMPSoC hardware architecture.
The implemented system and first results are presented in
Section 6. A case study with an image-processing application
is shown in Section 7. Finally, the paper is closed by
presenting the conclusions and an outlook in Section 8.

2. Related Work

Scheduling for a hardware reconfigurable architecture is
used in approaches reported in various publications. The
selected publications discussed in this paper are only a subset
of the numerous approaches developed in academic and
industrial environment. However, the selected papers reflect
the significant aspects in respect to the presented approach
and allow an objective comparison of the benefits achieved
in the proposed solution of the special-purpose OS named
CAP-OS.

Garcia et al. [3] give an overview of the requirements
for runtime- and operating systems for reconfigurable
hardware-based systems. The authors especially point out the
fact that physical constraints, such as the availability of hard-
ware resources (in terms of area) and the configuration time,
limited by the bandwidth of the configuration memory and
interface, have to be taken into account for the scheduling.
Especially, these are the challenges which have to be taken
into account when reconfigurable hardware aware operating
systems are introduced or developed.

Dittmann and Frank [4] describe a scheduling approach
for a single processor and several accelerators, which can be
configured at runtime. The solution provides a pre-emptive
reconfiguration, which is important if a task with a higher
priority has to substitute the configuration process of a task
with lower priority. The scheduling strategy is based on a
deadline monotonic (DM) algorithm with some extensions
related to the fact that a hardware/software reconfigurable
system is targeted. The approach has some restrictions due
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to the fact that only homogeneously shaped reconfigurable
areas are supported. Because of this, only a fixed time
frame for reconfiguration of the hardware is considered in
the algorithms. In real systems, especially, when different
hardware IPs have to be reconfigured, this time can vary
significantly. A further restriction is that data dependencies
between the tasks are not considered within the scheduling
algorithm. The CAP-OS approach incorporates this into the
metrics for the scheduling in order to achieve a beneficial
scheduling of the hardware tasks. Furthermore, the approach
requires drivers supporting the physical reconfiguration of
the FPGA. This certainly could be a standard ICAP driver
with the related IP cores.

Ullmann et al. [5] also target a single-processor solution
with reconfigurable accelerators in a homogeneous shape
and size, similar to the previously described approach. The
scheduling is priority based and non-pre-emptive due to
the fact that this approach was developed for automotive
applications where pre-emption of a certain task is not
allowed. The reported runtime system in the paper includes
the hardware drivers for the configuration access port. The
runtime system included some features, such as context load
and save, which allows the resumption of tasks in hardware
or software, or even a migration of the tasks from hardware
to software or vice versa. The restrictions of this approach
are mainly in the high overhead if a different application
scenario needs to be realized. A time-consuming and hand
crafted adaptation of the runtime system needs to be done.
Furthermore, the fact that this approach was developed for
the automotive domain limits the reuse in other application
domains, such as image processing, where a more flexible
scheduling is required.

ReconOS [6] uses an eCos (embedded configurable
operating system) real-time operating system as basis for
the scheduling approach. Also, here a single processor with
loosely coupled reconfigurable accelerators is the target hard-
ware architecture. In comparison to the previously described
approach, the authors use a fixed priority scheduling
approach. For synchronization purposes, a communication
method for the software and hardware threads over the eCOS
RTOS was developed. An interesting result is that a task
graph with dependent and independent tasks is used as the
input description for the scheduler. However, the limitation
of using a single processor to perform the applications differs
the ReconOS approach from CAP-OS. In CAP-OS, a variety
of processors and accelerators can be handled.

In [7], the authors describe a concept for a quality
of service- (QoS-) based operating system for multimedia
applications on hand-held computers (e.g., PDA) with
a reconfigurable accelerator. The paper includes also the
strategy to abstract from the hardware layer in order
to hide the complexity of the heterogeneous architecture
consisting of a network-on-chip (NoC) and the processing
elements from the developer. In relation to the RAMPSoC
approach, the solution does not include a heterogeneous
and adaptive communication infrastructure and processors
and does not include the design flow for generating the
required sources. The paper describes a definitely pioneering
work in the area of operating systems for reconfigurable
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Figure 1: Example of an RAMPSoC architecture connected over an incomplete star-wheels network-on-chip. For comparison, on the top

right side, an example of a complete star-wheels NoC is illustrated.

hardware and can be seen as the root for the evolution in this
domain.

Based on the reported approaches, it is obvious that a
novel OS approach for a runtime reconfigurable multipro-
cessor systems, such as RAMPSoC, has to be developed and
introduced. One simple example for this necessity is the fact
that the reconfigurable regions are no longer homogeneous
in their footprint and, therefore, the configuration times vary
between the different tasks, which may have to be allocated to
the hardware. This and other parameters have to be handled
with the novel approach of the CAP-OS.

3. The RAMPSoC Approach

The CAP-OS is used for runtime scheduling, task mapping,
and resource management on a runtime reconfigurable mul-
tiprocessor system, such as RAMPSoC [2]. Figure 1 shows
an example for a RAMPSoC architecture at one point in
time. RAMPSoC is a heterogeneous multiprocessor system-
on-chip (MPSoC) with distributed memory. It consists of a
number of different processors connected over a commu-
nication infrastructure, which is a heterogeneous network-
on-chip (NoC) called star-wheels NoC [8] in this example.
Between others, the advantages of the star-wheels NoC are
that it supports runtime adaptation and that it does not
need to be implemented completely. Therefore, if additional
switches are demanded, they can be added at runtime.
Furthermore, different clock domains are supported, which
is important, to achieve a good performance per watt ratio
for multiprocessor systems. Additionally, a high throughput
and therefore a low latency are supported, which is important
for, for example, image-processing applications. Depending
on the application requirements and the number of needed
processors, also other communication infrastructures, such
as point-to-point connections, buses, or other NoCs are

supported and can be selected from a library at design
time.

Each processor can be extended with one or several
hardware accelerators to increase their performance for
special-purpose instructions. Also, a finite-state machine
(FSM) together with a hardware function can be used
instead of a processor. The FSM is required to support the
communication protocol over the NoC for communicating
with the other processing elements.

Different processors can be chosen from a library (e.g.,
Xilinx MicroBlaze [9], Leon Sparc [10], etc.), and also a small
library for image-processing hardware accelerators exists.

Dynamic and partial reconfiguration [11] is used to
adapt the RAMPSoC hardware architecture at runtime.
The software executables for the processors can be loaded
at runtime either also by exploiting dynamic and partial
reconfiguration (similar to the approach described by Sander
etal. [12]) or by transferring the software executables via the
communication infrastructure (e.g., the NoC). Furthermore,
the clock frequency of the different processing elements can
also be adapted at runtime. Like for the software executables,
also here two possibilities exist: either by reconfiguring
the appropriate digital clock manager (DCM) [13] or by
switching to a different clock domain. In summary, the
following runtime adaptations are supported by RAMPSoC:

(i) number and characteristics of processors,

(ii) communication infrastructure (e.g., size, bandwidth,
and topology),

(iii) number and functionality of hardware accelerators,
(iv) software executables of the processors,

(v) clock frequency of the processing elements and
network domains.
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FIGURE 2: Design methodology of RAMPSoC.

A well balance between performance, power consump-
tion, and area requirements can be achieved through runtime
adaptation of the hardware architecture in respect to the
requirements of the applications. More details about the
hardware architecture of the RAMPSoC and its benefits can
be found in [2].

For an efficient programming of such a flexible hardware
architecture, an easy-to-use design methodology is required,
which guides the user in application partitioning and in gen-
erating the appropriate hardware architecture at design time.
As a result of the different analysis and partitioning steps,
a task graph is generated for each partitioned application.
The design suite also generates the partial bitstreams for the
several hardware modules (e.g., processors, accelerators) as
well as the software executables for the different processors.
Figure 2 shows an overview of the current status of the design
flow, which can be used for normal C/C++ applications
or C/C++ applications using the message passing interface
(MPI) [14]. MPI is a standard parallel programming model,
which is used for supercomputing applications and especially
to program multiprocessor systems with distributed mem-
ory. As the processors have only local memory, they exchange
information by sending messages using the MPI standard

protocol. RAMPSoC has its own MPI implementation layer,
which translates the MPI standard protocol commands into
the appropriate communication protocol required by the
star-wheels NoC. The support for further possible commu-
nication infrastructures is currently under development as
well as the improvement of the design methodology. A more
detailed description of the functionality of the different tools
within the design methodology can be found in [15].

The partial bitstreams, the software executables, and the
task graphs of the applications are required by the CAP-
OS, which will be presented in detail in the next section.
The CAP-OS is responsible for the runtime scheduling of
the configurations of the different tasks, allocating the tasks
to the processing elements and for resource management.
Furthermore, the CAP-OS needs to respond to runtime
demands of the application, such as one or several processors
requesting additional or different accelerators.

4. Concept of the CAP-OS

For an adaptive MPSoC, such as RAMPSoC, a flexible
RTOS is required, which schedules the reconfiguration of the
tasks and their runtime allocation to a specific processing
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FiGURE 3: CAP-OS embedded in the several abstraction layers of the system approach.

element. Furthermore, this RTOS has to assure that the
different applications meet their real-time requirements and
that the utilization of the hardware resources and therefore
the power consumption is kept low. Figure 3 shows how
the CAP-OS manages the underlying RAMPSoC hardware
architecture to fulfill the real-time requirements of the user
applications. The CAP-OS further hides the complexity of
the underlying dynamic RAMPSoC architecture from the
user.

Physical resource allocation at runtime is done by
performing partial and dynamic reconfiguration using the
ICAP. Software task can be loaded either using the ICAP
or using the interprocessor communication architecture.
Therefore, the scheduling algorithm has to consider the
time required for reconfiguring/loading a module, which
depends on the data throughput of the ICAP interface or
the communication infrastructure and certainly on the size
of the module. This time frame is not negligible since the
data amount for hardware modules can be very small, but
also several hundred kilobytes. The software modules are
normally smaller than 250 Kbytes, due to the restricted on-
chip memory, while the hardware modules can be bigger.
For each task, two different implementation options exist.
A task can either be executed in software on a processor or
in hardware as a hardware accelerator. The hardware task is
normally a codesign, where parts of the task are executed
in software on the processor and the compute intensive
part is executed in hardware with the closely coupled
accelerator. The choice to implement a task in software
or in hardware depends normally on different parameters
such as varying allocated hardware area, performance, and

reconfiguration/loading time. The scheduling algorithm has
to choose the appropriate type of realization to fulfill the
real-time constraints. Moreover, the presented scheduling
approach tries to reuse existing resources, which were already
configured onto the chip in a previous point of time, with
the goal to reduce the overall reconfiguration overhead.
Furthermore, the scheduling algorithm has to support pre-
emptive reconfiguration, because while reconfiguring one
task, it can happen that a request for the reconfiguration of
another task with higher priority occurs. As only one ICAP
is available, the reconfiguration of the previous task has to
be terminated and the new task needs to be reconfigured.
After this procedure, the reconfiguration of the interrupted
task has to restart, because a continuation of the terminated
reconfiguration is not supported by the FPGA vendor. In
contrary to this, the loading of an SW task via the com-
munication infrastructure can be preempted and resumed.
Here, a restart as for the ICAP interface is not required.
The communication infrastructure allows the loading of
more than one software task simultaneously, but then the
bandwidth will be divided between the tasks. Therefore, it
is more beneficially to load one task after the other based on
the priorities of the tasks.

The scheduling approach presented in this paper can
handle both independent and dependent tasks. A group of
interrelated tasks is called a task graph (TG). Each TG must
fulfill the following requirements:

(i) the TG is a directed acyclic graph (DAG),
(ii) each task runs on processors/hardware accelerators,
(iii) each task has an identity (ID)



Ty: task x
D: global deadline
Ky: communication costs between task x and task y

FiGure 4: Example task graph with global deadline, interrelation,
and communication costs.

(iv) each task has the following information:

(1) neighborhood relation (predecessor/successor),

(2) algorithm type or hardware constraints (Algo-
ID),

(3) execution time, reconfiguration/loading time,

(4) communication costs,

(5) name of the corresponding partial bitfile or
software executable,

(v) the TG has a global deadline (D),

(vi) the TG has either hard or soft real-time constraints,
which are inherited by the tasks belonging to the TG.

For the configuration of a task, the following three rules
apply:
(i) it can be terminated;

(ii) it can be interrupted (only for SW tasks loaded over
the communication infrastructure);

(iii) it is only feasible, after all predecessor tasks are
completely reconfigured/loaded.

Figure 4 illustrates an example of such a TG including the
global deadline, the interrelation, and the communication
costs.

Within the CAP-OS, each task within a TG has a life cycle
as shown in Figure 5.

Table 1 describes each of the states, which are traversed
by a task during its life cycle, in detail.

Important here is that if the configuration of a task
is interrupted, the task returns into the Ready state, the
configuration data is lost and has to start all over again.
The loading of a software task via the communication
infrastructure on the other hand can be resumed if it has
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been interrupted. The address of the last word, which has
been transferred via the communication infrastructure to the
target processor, is stored, so that CAP-OS can later resume
loading the software executable. Exceptions are

(i) the interrupted software will be remapped to a
different processor;

(ii) the software had been interrupted by another soft-
ware task, which will be loaded on the same pro-
cessor. After the task has finished executing, the
interrupted software will be loaded again on this
processor.

In both cases, the loading of the interrupted software task
has to restart from the beginning.

For simplicity, in the following section, the terms
configuration and configuration time will be used for both
configuration via ICAP and loading via the communication
infrastructure. Loading via the communication infrastruc-
ture will only be used when explicitly requested.

As already mentioned in the previous section, the multi-
processor model used for the scheduling is a heterogeneous
runtime adaptive MPSoC that uses a message passing
communication scheme. The runtime scheduling algorithm
is only performed for tasks, which are in state Ready. The
novel runtime scheduling approach is described in detail in
the next subsection.

4.1. The Novel Runtime Scheduling Approach. The novel
runtime scheduling algorithm is divided into two main steps.
First, a static scheduling algorithm is used to roughly assign
priorities to the tasks of each TG using the information
given by the TG description. The TG description has
been received together with the bitstreams and software
executables from the RAMPSoC design methodology. The
TG description is written using the XML standard format
and includes the following information: list of all tasks
and detailed information for each task. For each task,
these files contain the ID, the algo type, the successor
tasks, the communication costs, the name of the bitstream
file or/and software executable, the reconfiguration/loading
time, and the execution time. Furthermore, for each task
graph, the global deadline is given. Finally, this file also
includes a list of possible processors, their configurations
(e.g., pipeline length, memory size, specialized instructions,
etc.), and the name of the corresponding bitfile. CAP-OS
parses this XML file and updates its internal tables for
the tasks and the processors. Also it stores the bitstreams
and software executables, which have been received by the
user, for example, via a Compact Flash card or an Ethernet
connection, in the external memory.

For the priority-based static scheduling, the list schedul-
ing algorithm is used, because it respects resource con-
straints. The available resources are the single ICAP, the
communication infrastructure, and the maximum number
of possible processors, which depends on the size of the
chosen FPGA. First conservative estimates for the ASAP
(as soon as possible) and the ALAP (as late as possible)



International Journal of Reconfigurable Computing

TasLE 1: Description of the life cycle states of a task.

Configuration

. Description
and execution

Not_ready This task is not ready for reconfiguration, because its predecessors are not completely reconfigured.
Read This task is ready for reconfiguration and competes with the other Ready task for the access to the ICAP. Only
Y tasks without predecessors, or whose predecessors have already been reconfigured, can enter this state.
The task is under configuration/loading via the ICAP/the communication infrastructure onto the RAMPSoC. If
Confi a task with higher priority becomes Ready, the reconfiguration/loading process is terminated/interrupted, and
8 the task returns into the Ready state and waits for a new possibility to access the ICAP/communication
infrastructure.
Exec After successful configuration/loading, the task starts execution and enters this state. An execution cannot be
interrupted.
Exit After the execution, the task enters this state. The allocated processing element is now free for the next task.

{Not_ready Pt Ready ConﬁgurationH Execution H Exit J

F1GURE 5: Life cycle states of a task.

start times for each task of a TG, consisting of m tasks, are
calculated using the following formulas:

ASAP(Tx) = Z (tcon(T) + texe(T))a
Tepre(Ty)
pre(Ty): Predecessor of task Ty, (1)

teon(T): Configuration time of task ,

texe(T): Execution time of task T,

ALAP(TY) =D = > (ton(T) + texe(T)),
Tesuce(Ty)
succ(Ty): Successor of task Ty, (2)
D: Global deadline of the task graph,
u(Ty) = ALAP(T,) — ASAP(T,), )

u(Ty): Mobility of task Ty.

The task loading via the communication infrastructure
is the default procedure for software task to keep the ICAP
interface available for the hardware task, because they do not
have an alternative data path. Only when the communication
infrastructure is blocked with a high-priority task, and
another high-priority software task needs to be loaded as
well, then the ICAP interface will be used to load the second
software task. At this moment, it is not known, if an already
configured processor can be reused for the software task.
Therefore, t.n is the time required to reconfigure a new
processor together with the software required for this task.
This results in the worst case ALAP and ASAP start time.

Based on the ASAP and ALAP start time of each task,
a priority can be assigned to each task in the TG using the
urgency or the mobility of each task. The urgency depends on
the maximum number of successors of a task. The mobility

of a task (see Formula (3)) is the difference between its ALAP
and ASAP start time and favors the tasks along the critical
path. The TG in Figure 6 has, for example, the following
critical path: T1 — T2— T4— T5— T6. Because of this,
the mobility is used here to assign the priorities to the tasks.
The smaller the mobility, the higher is the priority of the task.

At runtime, only the Ready tasks are scheduled for
configuration according to their priorities, which have been
calculated with the list scheduling algorithm. Figure 6 shows
such a TG which is processed by the CAP-OS for the purpose
of scheduling the configuration of the different tasks. In the
current time step shown in Figure 6, T'1 has already been
configured, and therefore T2 and T3 are now in the Ready
state. Normally, the task with the highest priority will be
configured first. If there are two or more Ready tasks and
the difference between the mobility of the two tasks with the
highest priority is smaller than the configuration time of the
task with the lower priority (see Formula (4)), a dynamic
cost function K (T, T)) (Formula (5)) is used to reassign the
priorities of these two tasks.

K(Ty, T,) considers the ratio between the mobility of the
two tasks K; (T, Ty) (Formula (6)) and the ratio between the
number of successors of the two tasks Ky (T, T)) (Formula
(7)). K(Ty, T)) is computed using Formulas (5) to (7), and it
is only computed for the current two tasks with the highest
priority to be scheduled. K, gets a greater weight in the cost
function compared to Kj, because for real-time applications
the execution time is the most important factor. Therefore,
the default values were set to 0.6 for w; and 0.4 for w,.
These weights can be modified by the user depending on the
requirements of the application. Additionally, multiple TGs
can be scheduled at runtime. If some of these TGs have hard
real-time and others only soft real-time requirements, then
all tasks of the TGs with the soft real-time constraints will be
delayed. They will be configured after the tasks with the hard
real-time constraints, even though they might have a higher
priority according to the list scheduling algorithm. This is



important, to assure that the hard real-time TGs meet their
constraints.

T, gets highest priority if

u(Ty) -u(T)>CT(T)),  w(T)<u(Ty),

CT(Ty) : Configuration time of task y.

(4)
Else decision is made using K (Tx, Ty) :
K (Tx, Ty> <0, T, gets highest priority,
K (Tx, T},> >0, T, gets highest priority,
K(T. T)) = w1 % (Ki (T Ty) = K (T, T2 ))
to* (K(To Ty) ~K(T), Te)), ()
wy,wz: Weighting factors,
“(Ty>
K1<TX,TJ’) — Ty’ W) < #<Ty> AT 70,
0, else
u(Ty): Mobility of task x,
(6)
N(T,)
, N(T.) >N(T,) AN(T,) #0,
R oo (1) (1)
0, else

N(Ty): Number of successors of task x.

(7)

Finally, an additional feature is supported by CAP-OS.
This feature allows for increasing the clock frequency of
a processing element at runtime. This can be done by
either reconfiguring the corresponding digital clock manager
(DCM) [16] or by using clock multiplexers to switch to
a different clock frequency. Both approaches have been
described in [17]. The reconfiguration of a DCM takes
more time than the use of clock multiplexers. However, the
DCM reconfiguration provides a greater variety of possible
clock frequencies than the clock multiplexers, because only
a limited number of clock multiplexers are available on the
FPGA. Both approaches are supported here. Therefore, in the
following, DCM reconfiguration stands for both approaches.
The user has to select at design time the approach, which is
more appropriate for the target application.

DCM reconfiguration is used to speed up the execution
time of a task. Hereby, it is assumed that the execution time
stays in strong relation to the clock frequency. This DCM
reconfiguration is used if a task cannot complete within its
ALAP time or if another task urgently requires the same
processor.

Therefore, the single steps of the CAP-OS scheduling
algorithm can be summarized as follows:
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@ Task x is in state Exec

Current
scheduling step

@ Task x is in state Ready
@ Task x is in state Not_ready

F1GURE 6: Task graph to illustrate the functionality of the schedul-
ing.

(1) calculate ASAP and ALAP start time for each task in
the task graph,

(2) calculate the mobility of each task and schedule their
priorities using a list scheduling algorithm,

(3) select the Ready tasks, and schedule them dynami-
cally:

(a) delay tasks with soft real-time constraints,

(b) reassign priorities using the cost function if
necessary,

(c) reconfigure the DCM, if necessary,

(d) terminate the current configuration if a task
with a higher priority occurs.

This results in a pre-emptive scheduling approach, which
allows the termination of a configuration. Furthermore, it
uses a combination of static list scheduling and a novel
dynamic scheduling approach. It considers resource con-
straints, such as a single ICAP, the communication infras-
tructure, or the maximal number of possible processors.
Furthermore, it is used to schedule both hardware and
software tasks. Moreover, the clock frequency of processing
elements can be increased at runtime, if necessary, and
the configuration times as well as the communication costs
between tasks are considered. Another degree of freedom is
that, while a hardware task is loaded via the ICAP interface,
a software task can be loaded simultaneously via the on-chip
communication infrastructure.

4.2. Resource Allocation of the CAP-OS. After the scheduling,
the CAP-OS tries to allocate a resource for the Ready task
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with the highest priority. For the resource allocation, the
decision is made as shown in Figure 7.

First CAP-OS analyzes if a processor is present and
available on the reconfigurable hardware. If no processor is
present, a new one is configured and reserved for the new
task. If processors are present in the system, it searches for
one, which is not blocked by another task. If all existing
processors are blocked, it is checked if one of them will
finish its execution soon. This is important, because the
reconfiguration and allocation takes time. If an existing
processor finishes in a shorter amount of time than the
reconfiguration time of a new processor, the reuse of this
existing processor is preferred. This also has the benefit to
reduce the area utilization and therefore to reduce the overall
power consumption. If none of the existing processors
will finish soon, it is analyzed if the maximal number of
processors is reached or if there is still space to reconfigure
a new processor. If there is space on the reconfigurable
hardware, a new processor is reconfigured and allocated for
the new task. If not, the new task has to wait until one of the
processors becomes available.

The same procedure is done for a codesign task, because
this task is a combination of an SW task and a hardware
accelerator. Here, the available processor is extended with an
accelerator, while the software part of the codesign task is
loaded into the chosen processor.

Pure hardware tasks also exist. These are requests from
existing RAMPSoC processors, which either need an accel-
erator to increase performance or which want to exchange
the existing accelerator against a different one due to requests
from the environment. Such exchange requests could be, for
example, the exchange of an image-processing filter due to
a change in the incoming frame of the image. In that case,
no decision tree is required, and the requesting processor is
extended by configuring the requested hardware accelerator
via the ICAP interface.

4.3. Configuration Management. After the Ready task with
the highest priority has been successfully assigned to a pro-
cessor, this task is assigned to the configuration management.
The configuration management is responsible for handling
the configuration of the tasks via the ICAP and also for
loading software tasks into already existing processors over
the communication infrastructure. It is also responsible for
pre-empting a current configuration if another task with
a higher priority needs to be configured. As mentioned
before, a terminated configuration has to restart again
from the beginning, because Xilinx FPGAs do not support
the continuation of a terminated configuration so far. On
the other side, software tasks, under configuration via the
communication infrastructure, can be interrupted if a task
with higher priority occurs. Afterwards, the terminated
configuration can be resumed. Furthermore, it is possible to
configure a hardware and a software task or two software
tasks simultaneously by using the configuration via the
communication infrastructure for one of the software tasks,
while the other tasks are configured via the ICAP interface.
Therefore, the configuration management of the CAP-OS
distinguishes between three types of configurations as shown
in Table 2.

The term soft and medium means an interruptible and
hard means a noninterruptible configuration. Soft configura-
tions are new software tasks that get loaded via the commu-
nication infrastructure into an existing processor. As they can
be pre-empted and continued easily, they can be interrupted
any time if a task with high priority occurs. Medium
configuration types are, for example, the configuration over
the ICAP interface of software tasks or hardware accelerators
for existing processors. As soon as 80% of the corresponding
bitstream of a medium configuration type is configured,
this element changes to be a hard configuration type. The
reason is to prevent the termination of a nearly finished
configuration, because the already configured data would
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TaBLE 2: Configuration types.

Configuration type Features Elements

Soft (communication infrastructure) Interruptible Software

Medium (ICAP)

Hard (ICAP) Not interruptible

Interruptible until 80% of the bitstream are reconfigured

Software, accelerator
Processor, DCM

TaBLE 3: Performance of the currently supported different inter-
faces in RAMPSoC.

Performance (100 MHz,

Interface Virtex-4)
FSL-ICAP [18] 28,28 MB/s
Point-to-point via FSLs (Fast Simplex

Links) [19] 13,09 MB/s

be lost. 80% is a default parameter and can be changed by
the user, depending on the application requirements. Other
examples of hard configuration types are the configuration of
the DCMs and of the processors, because the configuration
of a DCM is urgent and fast, and the processor is far less task
specific than an accelerator.

The decision to configure a software task via the ICAP
interface or via the communication infrastructure depends
on the mobility of the task, the availability of the interfaces,
and the loading speed of the interface, which depends on
the target platform and the chosen interface. Table 3 gives
an overview about possible interfaces and how is their
performance.

It is possible to increase the throughput of these inter-
faces by connecting them directly to the external memory
instead of using the processor to load the data from external
memory. An example is the PLB-ICAP from Claus et al.
[20], which achieves a throughput of 400 MB/s. It is therefore
planned to provide a direct memory access also to the FSL-
ICAP to further increase its performance. The performance
of communication infrastructure can be increased in a
similar fashion.

4.4. Communication Establishment between Tasks. After suc-
cessfully configuring a task, the CAP-OS tries to establish a
communication with this task and to transfer information
about the IDs of the communication partners to it. Figure 8
illustrates the required steps, to successfully establish a
communication between the different tasks at runtime.

The five runtime communication establishment steps
required after a task has been mapped onto a processor x are

(1) CAP-OS sends sync word to processor x;

(2) processor x responds with the same sync word to
ensure a correct communication;

(3) CAP-OS sends task info (Task ID, number of pre-
decessor/successor tasks, and their IDs) to processor
x. This task info is required by the task to find its
communication partners at runtime;

(4) processor x sends its Task ID to all other processors,
and it checks each of its communication links for

——
Processor | 4 Processor
CAP-OS x
z
2)(5
4
Processor
y
@2 Sync 4) Task ID
(3) Task info 5) End

FIGURE 8: Runtime communication establishment steps between
different tasks.

the Task ID of its communication partners. It has to
send its Task ID to all other processors, because it
could happen that a predecessor and a successor will
be mapped onto the same processor. An example for
such a case will be given in Section 6;

(5) after execution, processor x informs CAP-OS that it
is now free for a new task.

5. Integration of CAP-OS on RAMPSoC

CAP-OS software is integrated into an RAMPSoC on one
of the available microprocessors. On the selected micropro-
cessor, a state-of-the-art RTOS with multithreading capa-
bilities is implemented. On top of this RTOS, the CAP-
OS is implemented using different threads for the different
functionalities. As shown in Figure 9, this microprocessor
is directly connected with the Xilinx ICAP primitive via an
FSL connection. Furthermore, the processor has access to an
external memory, in which the partial bitstreams of the tasks
are stored.

The microprocessor is connected with the other pro-
cessors in this example over the star-wheels NoC. A point-
to-point connection with each of the other partners or a
connection over a different NoC or a bus is also supported.
Several possible choices for an on-chip microprocessor exist.
The IBM PowerPC 405 (PPC405) [21] was chosen for
running CAP-OS. It is available on Xilinx Virtex-4FX FPGAs
as a hard IP core. The main reasons for choosing the PPC405
are the support of high frequencies up to 450 MHz and
the availability on the Virtex-4FX100 FPGA on the used
target FPGA board from Alpha-Data [22]. High frequencies
are important to execute the CAP-OS with a low latency
to support and enable the real-time requirements. Other
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FIGURE 9: Integration of the CAP-OS on the RAMPSoC.

possible microprocessors would be soft IP cores, such as
Xilinx MicroBlaze or Leon SPARC, but they lack with the
support of such high frequencies. As the new Xilinx FPGAs,
such as Virtex-6, does not provide the PowerPC anymore, an
alternative version of CAP-OS for the MicroBlaze processor
was also realized and implemented.

After selecting the processor, an appropriate RTOS was
chosen. The demands for the RTOS are

(i) proven support of PPC405 and MicroBlaze,
(i) multithreading capabilities,

(iii) small memory footprint.

Several different RTOSes exist, but due to the reasons
above, the Xilkernel [23] from Xilinx was selected. The CAP-
OS is programmed in C, and its functionalities are imple-
mented in several different threads, which are executed in
Xilkernel using multithreading. For scheduling the different
threads, Xilkernel offers two scheduling policies: round robin
or priority-based scheduling. Priority-based scheduling was
chosen to execute the different CAP-OS threads according to
their priorities.

Furthermore, the processor is directly connected to
the ICAP primitive and to an external memory (DDR2
SDRAM), in which the bitstreams are stored. The CAP-
OS and Xilkernel are executed using on-chip memory for
maximum performance. In the following subsection, the
implementation of the different CAP-OS threads is described
in detail.

5.1. Implementation of the CAP-OS. The CAP-OS is pro-
grammed using six threads as shown in Table 4.

The priorities are sorted with increasing numbers start-
ing with the highest priority from 0. Test_main is the startup
thread and has a fixed priority. The priorities of the other five
threads can change at runtime depending on the demands
of the applications. The three threads with priority level 3
(Schedule, Configure, and Contr_Exit_Task) compete against
each other, after the first three threads with higher priority
have finished executing. While the other threads only execute
in the beginning once, these three concurring threads execute
until the last task finishes executing.

6. Implementation and First Results

The functionality of the CAP-OS as specified was evaluated
by implementing an RAMPSoC system on the target Alpha-
Data FPGA board. The CAP-OS was implemented using
one of the available PPC405s and the Xilkernel RTOS. The
maximum number of reconfigurable processors was set to
four, to be artificially below the number of tasks within
our evaluation task graphs. As the target Virtex-4FX 100
FPGA provides a large number of reconfigurable resources,
a higher number of processors could be used, if necessary.
As reconfigurable processor, the Xilinx MicroBlaze (uBlaze)
[9] was chosen due to its small area footprint and the
compatibility to the PPC405. As shown in Figure 10, the
Fast Simplex Links (FSLs) [19] are utilized for the com-
munication between the processors. The decision for these
communication infrastructures has its basis in the fact that
FSLs offer an FIFO-based unidirectional communication and
that for the limited number of processors, an NoC would
create a high overhead in terms of utilized area. The PPC405
can be connected via FSL to 32 data sinks and sources, while
each yBlaze could be connected to 16.
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FiGure 10: Implemented RAMPSoC system.
TaBLE 4: Realized threads of the CAP-OS.
Thread Priority Description
Test_main 0 Initial thread. Launches the other five threads.
Init_proc 1 Generates a list containing all possible processors and their attributes. Executes only once.
Initialization of the tasks and generation of the task graphs. Calculation of ALAP and ASAP start
Task_graph 2 time and the mobility of each task. Matching of tasks with equal requirements (HW constraints,
same algorithm)
Schedule 3 Scheduling of the Ready tasks and processor allocation.
Configuration management for the scheduled and allocated task and communication
Configure 3 : . .
establishment between the new configured task and its neighbors.
Contr_Exit_Task 3 Controls the executing tasks. If a task finishes execution, the occupied processing element is freed.

Additionally, the FSL-ICAP IP core from Xilinx together
with an external DDR2 SDRAM is connected to the PPC405.
The user interface to the CAP-OS is realized through an
RS232 port. For the preliminary tests, the dynamic and
partial reconfiguration was not deployed, because the scope
was to verify the CAP-OS and not the FSL-ICAP primitive.
Instead of sending the partial bitstreams to the ICAP core,
a counter within the Configure thread was used, to simulate
artificially the reconfiguration times of the different tasks.
For reconfiguring a whole processor via the ICAP interface
5ms, and for loading a software task onto an existing
processor via the FSL communication infrastructure, 2 ms
were assumed. These times are-worst case scenarios, and
certainly the reconfiguration time and the loading time vary
in real scenarios depending on the size of the bitstream/the
software executable. Table 5 shows the estimated reconfigu-
ration times for an average size MicroBlaze and for the size
of a typical image processing application software.

At system startup, it is assumed that only the static part
is present and the other processors will be “reconfigured”
on demand. Physically, the system shown in Figure 10 was

TaBLE 5: Reconfiguration/loading times for the chosen interfaces:
FSL-ICAP and FSL point-to-point links.

Reconfiguration/loading

Type Size time

Reconfiguring a

MicroBlaze ca. 120KB 4,24 ms

Loading a software 16 KB 1,22 ms

present from the beginning, and after the artificial simulation
of the reconfiguration time is finished, the corresponding
processor is activated. For the verification of the CAP-OS
functionality and to measure the timing overhead of the
current CAP-OS implementation, TG1 shown in Figure 11
was used. TG1 has hard real-time constraints. This could be
for example, an image-processing application, which receives
the images from a camera and has to provide the results of
an image-processing algorithm to the user via a monitor in
real time. Therefore, the global deadline (D;) of TG1 is 40 ms
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F1GURE 11: Task graph used for the CAP-OS evaluation: D; = 40 ms.

TaBLE 6: Timing overhead of CAP-OS for processing TG1.

Thread Average number of clock cycles per call
Init_proc 2118
Task_graph 9022
Schedule 650
Contr_Exit_Task 227

using a camera with a frame rate of 25 Hz. If this deadline is
missed, frames will be lost.

To measure the timing overhead, the CAP-OS was
executed on the FPGA using TGI. To proof, if the CAP-
OS correctly reuses existing resources, the two tasks T'1 and
T5 were set to have the same algorithm (same Algo-ID) as
shown in Figure 11. During the execution on the FPGA, the
number of clock cycles, required per call by each thread, were
measured. The results for the timing overhead provided by
the CAP-OS are shown in Table 6.

The clock cycles of the Configure thread depend on
the size of the bitstream and on the speed of the ICAP
primitive. Therefore, they are not explicitly presented here.
Test_main only launches the other five threads, but itself
does not produce timing overhead and is therefore also not
mentioned here. Of course, Init_proc depends on the number
of processors (here four), and Task_graph depend on the TG
(here TG1 with five tasks). Therefore, these numbers are just
an example for the given TG. The clock cycles required for the
Schedule thread depends on the complexity of the scheduling.
For example, they increase slightly if the cost function needs
to be evaluated for two tasks. Contr_Exit_Task is very stable.

With this example, it can be shown that CAP-OS worked
correctly as specified and assigned the tasks of TG1 without
violating the global deadline. Also, the resource reuse worked
correctly. T5 was allocated onto the same processor as T1,
because they have the same algorithm, and this way the
reconfiguration time could be saved.

13

Task graph 2: hard real time

@

D; = 40 ms

Figure 12: Task graph TG2 of an image-processing application,
which detects template-based and point-like objects within an
image.

7. Case Study with Image-Processing Scenario

Finally, a case study using an image-processing application
for object recognition was designed. Figure 12 illustrates the
task graph of the application. Task 1 is a pure software task
and receives an input image via PCI bus. It then forwards the
complete image to task 2. After partitioning the image into
two overlapping tiles, it forwards the upper half of the image
to task 3 and the lower half to task 4. Task 2 equalizes the
histogram of the image. As this is a very compute intensive
task, parts of the algorithm are outsourced in an accelerator.
Therefore, task 2 requires both a processor for the software
part of the algorithm and a closely coupled accelerator for
the compute intensive part of the algorithm. Task 2 sends
its results to task 5. Task 5 tries to find objects within
the equalized image by comparing a predefined template
with the input image using the SAD (sum of absolute
differences) algorithm. It is implemented in software and
forwards its results to task 6. Task 3 and task 4 execute both
the hotspot detector algorithm in software on different parts
of the image. The hotspot detector algorithm is an image-
processing algorithm, which searches inside an image for
bright point-like objects. The results of task 3 and task 4
are then forwarded as well to task 6, which is responsible for
collecting all results and forwarding them to the Host PC via
the PCI connection. Like task 1, task 6 is also implemented
as a software task, and both require a processor with a PCI
connection.

To measure the execution times of each task separately,
each task was implemented on a single MicroBlaze processor
running at 100 MHz on the target FPGA platform. For the
measurement, an input image with the size of 64 x 64 pixels
was used. An exception is task 2. The execution time of this
task was measured using a single MicroBlaze connected via
FSL with the hardware accelerator. The size of the software
executable file for each algorithm is received using the GCC
compiler within the Xilinx Platform Studio [24]. This size
is important for calculating the loading time via the FSL
communication infrastructure into the local memory of a
processor on the FPGA.
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F1GURE 13: Theoretical results of CAP-OS for the image-processing applications and respecting heterogeneous configuration times.

For each design, the place and route report was used
to extract the values for the utilized area, this means the
required number of CLBs, block RAM (BRAM), and DSPs
for the MicroBlaze processor. For task 2, the amount of
resources for the accelerator was also taken into account.

The smallest addressable segment of a Virtex-4 FPGA
configuration memory space is called a frame and covers a
height of 16 CLBs or 4 BRAMs or 8 DSPs. It has a length
of 1312 bits [25]. 22 frames are needed to reconfigure a
column of 16 CLBs. To reconfigure 4 BRAMs, 64 frames
are needed for the BRAM content, and 20 frames for the
BRAM interconnect. To reconfigure 8 DSPs, also 21 frames
are needed. Therefore, the number of frames required for
the partial bitstream is calculated as shown in the following
Formula:

#Frames > [#C;BS] x 22+ [#DSSPS] x 21

[#BRAMS
=

(8)
1 * (64 + 20).

The reconfiguration time is then calculated by using this
Formula:

#Frames * Framelength
8 * Throughput FSL_ICAP’

Reconfiguration Time =

)

In Table 7, a detailed description for each task of TG2
together with the measured execution times and the esti-
mated reconfiguration times are presented. The reconfigura-
tion times are worst-case reconfiguration times. This means
that for each task the reconfiguration of a new processor has
been assumed. These reconfiguration times are the input for
the static list scheduling algorithm of the CAP-OS described
in Section 4. The static list scheduling algorithm is used to
assign each task to a priority, based on the mobility of the
task. The mobility of a task is the subtraction of its ASAP
start time from its ALAP start time as shown in Formula (3).
Table 7 shows the resulting priorities for TG2.

Furthermore, the last column in Table 7 shows the Algo-
ID of each task. The Algo-ID is used by the dynamic

scheduling decision of CAP-OS to decide which task may
reuse an existing processor. 73 and T4 have the same Algo
ID, because they execute the same software algorithm on
a different data set. T1 and T6, which both execute a
different algorithm, have the same Algo-ID, because they
have a common hardware restriction, as they require both
a processor with a connection to the PCI interface.

Figure 13 shows the calculated results of CAP-OS for
the TG2. As can be seen, four processors PO to P3 were
used. Figure 10 shows how the final implemented system
would look like, where PO is the only processor with a
PCI connection. Due to this, that processor is reused by
task 6 after task 1 has finished. Task 3 and task 4 are
mapped onto different processors even though they have
the same Algo-ID, because otherwise the global deadline
would be violated. Also, the benefit of using the FSL
communication infrastructure for loading software into an
existing processors and therefore keeping the ICAP interface
available for the hardware reconfiguration can be seen. For
example, processor P3 is being reconfigured via the ICAP
interface while simultaneously the software executable of task
4 is loaded over the FSL communication infrastructure to
processor P1.

Table 8 shows the estimated execution times for mapping
the application sequentially on one processor in the first row,
parallelizing it using for each task a processor in the second
row and the solution proposed by CAP-OS, which uses four
processors in the last row. Furthermore, Table 8 shows the
part of the execution time, which is spent for reconfiguring
the hardware and for loading the software.

As can be seen, both the uni-processor design and
the 6-processor designs are static and do not require any
reconfiguration time.

The uni-processor design is the slowest solution and
violates the global deadline of the application, because it can
only execute the complete application sequentially.

The 6-processor design is the fastest solution, but also has
the highest resource requirements and therefore the highest
power consumption. Furthermore, some of the processors
are idle (e.g., processor with task 6), while others are
executing (e.g., task 3, 4, and 5). This results in a bad
workload balancing.
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TABLE 7: Detailed information about each task of the TG 2 at 100 MHz.
Task Description Rec. time in ms Exe. time in ms Priority Algo ID
T1 SW Task: Read from PCI 4,24 1 1 1
T2 SW Task + Accelerator: Histogram equalization 4,5 2,25 2 2
T3, T4 SW Task: Hotspot detector 4,24 14,5 4,5 3
T5 SW Task: SAD (sum of absolute differences) 4,24 17,25 3 4
T6 SW Task: Send to PCI 4,24 1 6 1

TasBLE 8: Estimated execution times for the TG2.

. . Time spent for HW
Estimated execution .
System . reconfiguration/SW
time in ms . o
loading time
UniProcessor 50,5 0
6 Processors 17,25 0
CAP-OS (4 31,72 17,22/2,44
Processors)

CAP-OS with its four processors provides a meet-in-the
middle solution by reusing existing processors. It therefore
achieves a good balance between performance and power
consumption. It is faster than the uni-processor design and
fulfils the global deadline of the application. Moreover, it
requires fewer processors than the 6-processor solution and
therefore has lower power consumption. Also, as can be seen
in Figure 13, the workload between the processors is well
balanced. It can be further seen that as soon as a processor
finishes its current task, it is allocated for executing the next
task of the application.

It has to be mentioned here that the execution times
of the different tasks, for example, T'1, are longer in this
figure than the ones given in Table 7. The reason for this is
the consideration of the communication between the tasks.
For example, task 1 has to wait until all its successors are
reconfigured, before it can finish its execution.

8. Conclusions and Outlook

In this paper, the concept and the features of a special-
purpose OS called CAP-OS were presented. The CAP-OS is
responsible for the scheduling, the resource allocation, and
reconfiguration and for managing the access to the configu-
ration access port. The CAP-OS has been integrated into the
RAMPSoC approach to handle the runtime organization for
the adaptive RAMPSoC hardware architecture. The CAP-OS
was implemented using six threads on the Xilkernel RTOS
running on a PPC405 and on a MicroBlaze processor. The
correct functionality and the timing overheads of the CAP-
OS were measured on the FPGA using an example task graph.
The benefits of the CAP-OS were shown using a case study
with a task graph from an image-processing application and
comparing the results against both a uni-processor design
and a complete parallel design.

Future work will be the extension of the CAP-OS to
support the reconfiguration of the communication infras-
tructure. Furthermore, it will be extended to handle not

only the demands of the user, but also the reconfiguration
demands of the other processors within the RAMPSoC.
These demands are mainly the reconfiguration of the
accelerators if at runtime, for example, a different accelerator
is required depending on the currently processed data.
Furthermore, the CAP-OS will be further evaluated and will
be also tested using real dynamic and partial reconfiguration.
The implementation of a partial reconfigurable design of
the presented case study is currently under development to
evaluate that the calculated results are equal to the statically
measured ones. Additional extensions of CAP-OS will be
the support of merging several bitstreams and supporting
bitstream relocation. Bitstream relocation is important to
reduce the amount of required external memory for storing
each bitstream for each possible location.
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